Advanced
API Security

OAuth 2.0 and Beyonad

Second Edition

Prabath Siriwardena

ApPress

Advanced API Security
OAuth 2.0 and Beyond

Second Edition

Prabath Siriwardena

Apress’

Advanced API Security: OAuth 2.0 and Beyond

Prabath Siriwardena
San Jose, CA, USA

ISBN-13 (pbk): 978-1-4842-2049-8 ISBN-13 (electronic): 978-1-4842-2050-4
https://doi.org/10.1007/978-1-4842-2050-4

Copyright © 2020 by Prabath Siriwardena

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Jonathan Gennick

Development Editor: Laura Berendson

Coordinating Editor: Jill Balzano

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484220498. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

www. EBooksWor I d. i r

https://doi.org/10.1007/978-1-4842-2050-4

This book is dedicated to my sister Deepani,
who backed me all the time!

Table of Contents

About the AUtROFcccuicemmmimmmne s —————————— XV
Acknowledgmentscccuieemnmmssssnnnmmsssssnnmssssssnnmsssssnnnssssssnnnssssssnnnsssssnnnssssssnnnnssssnnns Xvii
LT LT] | Xix
Chapter 1: APIS Rule!......cccccuuuiiiiimmsssssmnssnsmmmmmmsssssssssssssssssssssssssssssssssssssssnnssssssnsssssnns 1
D oI LT 10 S 1
11T 0 o N 3

T2 1T (0] P 5

1 0 5
FACBDOOK ...t ——— 6
1L G 7

L L0 =TT OSSO 8
GOVEIMIMENLS ..veecceresrsesse s s b e se s 9

12 R L0 o 9

00 T=T T o] oo RS 10
HEAINCATE ... ————————— 10
WEArADIES.......ceiccririre s ———————————— 11
BUSINESS MOUEIS ... s 12

LI o I 0] T 13

DA o 1P T <] . T o S 20
The Role 0f APIS in MICIOSEIVICES.......coveueereeerereesee e resese s se e se e ses e sse e e e senses 25
SUIMIMAIY....ceeecreecrerese s e s se e e e e s ae e e e e e e e e e Re e s r e e se e e e nRe e e ra e ne e e e nrnnnns 32
Chapter 2: Designing Security for APISccovsmmmssmmsssmmssmmssssmssssmsssssssssssssssssssnsns 33
THNIY OF TROUDIE......cveerere sttt s b b e e s ae st e e s aesae e e e naenne e 34
DESigN ChAlIBNQES ..c.vevveerererrererseresseseesesessessessssessessessssessessesssssssessesasssssessessesssssssessesssssnsensesaes 37

TABLE OF CONTENTS

USEI EXPEIIBICE. .. ceveiererite st reres e s s s s r e s e e s r e s e e s b s e e b e e e e n e e ae e 38

e (0] 11 T N 39
WEAKEST LINK ... s 40
DefenSe iN DEPHvecerece e e e 4
LT Lo A L (e TR 42
SECUritY DY ODSCUIILY ..eovevveierierere st sere st s e s e e s saesae e e s saesae e s e saesnesa e e naesnens 44
DESIGN PHNCIPIES ...eeeeeecereecte s er st r s e s e e e s a e sae e e n e s a e sae s e e nnesae e e nan s 45
I Ty o 11711 o 45
Fail-Safe DEfaUITScovrureeererirre s s 46
Economy of MEChANISIMcocviiieirririr e 48
Complete MEItioN.........covvrvriererrrere s s se s sa e sa e e eaesre e e e naenne e 49

00 T=T T 1= T O 49
Separation Of PrVIIEGEccvcvrerererreriereresessesse s sessese s sseses e ssesaesassessesaessessssessessessssensessens 51
Least COmmON MECRANISM ..o s 52
Psychological ACCEPTaDIlitYc.ccvvevrrrrerierr e e 53
LT o U T o 54
00 1110 T (7 O 54

1Y =T |13 56
AVAIADIIILY ...cueeeececcecrerernrsrsrsere e e e e e e nnas 57
SECUNLY CONTIOL ... e s p e se e 59
AULNENTICALION ... e e e e 59
AULNOTIZALION ... s e ne e 62
NONFEPUAIALION ... s 64
AUGITING .o e e r e nn 65
1] 4= OSSPSR 65
Chapter 3: Securing APIs with Transport Layer Security (TLS)ccccusseennmssssnnnnsnsns 69
Setting Up the ENVIFONMENTcoe vt e 69
DT80y T 10 (o =T 71
Securing Order API with Transport Layer Security (TLS)ccoovvvmverrrscrnsernsesere s sesessesesseens 74
Protecting Order APl with Mutual TLS........cccviiiinnrrsrr e s 76

TABLE OF CONTENTS

RUNNING OPENSSL 0N DOCKETveereerrererrerersessesessessessessssessessesssssssessesssssssessessessssssssssessessssensenses 78
11T 111 O SRS 79
Chapter 4: OAuth 2.0 Fundamentals........ccceunmssmmnnmsssssnsnssssssssssssssnssssssssssssssssnsnsess 81
Understanding QAULN 2.0 ... 81
OAULN 2.0 ACLOTScvreeerreerrseressese e srs s s s e e s s a e se s e nne e e e nrn e snnsnnnns 83
GIANE TYPES .eveerriesrnese s b e R e R e e e e Re e b e e nrn e nnrn e 84
Authorization Code Grant TYPEcccccevvrernsesmnesesssesrssess s sss s s sessssssssnens 85
IMPICIE GIaNT TYPReverere st e e e nne s 88
Resource Owner Password Credentials Grant TYPe.........ccvvrevreserssesnsesssssessssesessesessesessnnes 90
Client Credentials Grant TYPE........cocccrerernsesesenmrsse s s s ses e senns 91
Refresh Grant TYPEccceveeerererese s s 92
How to Pick the Right Grant TYPE?cuceererrnrennese s 93
OAULH 2.0 TOKEN TYPLS .eveeerreeerisreerrese s ssssess s sss s ses e e e s srs e s s sse e ses e s ssssnssassssssesnsanens 94
OAuth 2.0 Bearer TOKeN Profile..........coucvviennenennesnesssesess s s s sessssssessssessssesens 94
OAULN 2.0 CHENT TYPES ..vruerrerrereriereresessesessessessssessessessssessessesssssssessessessesessessessessssessesaesssssssessees 96
JWT Secured Authorization ReqUESt (JAR)cccvvererreremserierenessessessessessssessessessssessessessessssessessens 97
Pushed Authorization Requests (PAR)........cccurmininininsnsesse s sss s sesse s ssssesse s sssssssessesnes 99
£ 7 T 101
Chapter 5: Edge Security with an APl Gatewaycccccensssssssssssnnnmmsssssssssssssssnnnes 103
Setting Up ZUul APl GAIBWAY.........cccvvverereirrrenerisessssesess s sssse e s sssssssssssssssssssssssssssssssssessnns 103
RUNNING The OFdEr AP ..o 104
Running the Zuul APl GAtEWAY........c.cceerererrrsesrsesessssesessesessse s ssssesssssssssssessssesssssssssssessnses 105
What Happens Underneath?..........cccvininnnnnsnnsssissesese s ssssesse s sssssssessesees 107
Enabling TLS for the Zuul APl GAtEWAYcceververierniensenere s serese s e s se e sessessessessssessesaens 107
Enforcing OAuth 2.0 Token Validation at the Zuul APl GateWay..........ccevvverrererensersererensenseraens 109
Setting Up an OAuth 2.0 Security TOKen SErvice (STS).....ccccvvrrerererrerrerrereesessesseresessessensens 110
Testing OAuth 2.0 Security TOKEN SEIVICE (STS)....ccvrrrerrrerrerrerersrsersersessessssessessesssssssessesaes 112
Setting Up Zuul API Gateway for OAuth 2.0 Token Validation............ccevrevnnrieniernnensensenens 114
Enabling Mutual TLS Between Zuul APl Gateway and Order ServiCe.........cuvrrrrersereresserserens 117
Securing Order API with Self-Contained ACCESS TOKENSccceeeereerereriererreseressesesesessesesessesenns 121

vii

TABLE OF CONTENTS

Setting Up an Authorization Server t0 ISSUE JWTcccvvevrvnieriennnensensesesessesessessssessessees 121
Protecting Zuul APl Gateway With JWT.........cccvverrernnmreniernsenseresessssessessessssessessesssssssessesses 124
The Role of a Web Application Firewall (WAF).........covorinnnnnnne s sne s 125
SUMIMAIY ..ttt e e b E e e b b e e e R e R e e e e e e e Re R e e e e e Re e b e e e e e Renns 126
Chapter 6: OpenID Connect (0IDC)......ccussummmmssssnnnnsssssnnnnssssssnnnssssssnnnsssssnnnnsssssnnnnss 129
From OpenID 0 OIDC ... st st bt 129
Amazon Still Uses 0PeniD 2.0.......ccuccevermrinernesrnesessse e s sssss s ssssssssssssssssessanes 132
Understanding OpeniD CONNECTcovvvrierirnrirrere s se e e s e s e s e ssesaesassessesaees 133
Anatomy 0f the ID TOKENc.cceiierierieierer s s s a e s s 134
0peniD Connect REQUESTcoiirrce et 139
Requesting USer ALtHDULES ... s 142
0pPEnID CONNECT FIOWScc.couiiriireresir et b s e s b s s 144
Requesting Custom User AHMDULEScccovenerinernsernesere s 145
0pENID CONNECT DISCOVEIYccviererierersereressesessessessessssesse e sss e s e ssessesesessesaessesessesaessesessessesses 146
OpeniD Connect Identity Provider Metadatacccovvvvinevnsnsniene s sesse s sessessesnes 149
Dynamic Client RegiStration..........cccvevrrvrerernnirsenerssessesesesessesessessssessessesssssssessessessssessessens 151
OpenID Connect for SECUNNG APIS ... e 153
£ 7 S 155
Chapter 7: Message-Level Security with JSON Web Signatureccusseeeennnnnneas 157
Understanding JSON Web TOKEN (JWT)....cccorererinernsesrnesesesessssesesessssesessssessssessssssssssssssssesenns 157
JOSE HEAUENcovieirreeriese st ne e 158
JWT ClAIMS SEL......cceiriieirriserse s np s 160
JWT SIGNATUIE ..o e e 163
JSON Web Signature (JWS).....ccvereirrriereris e sss s s sessesse e ssssessesaesesssssessessesesssssesseses 167
JWS Compact Serializationccccvcevievnininiennsensinsesess s sese s ssssessessesasssssessessens 167
The Process of Signing (Compact Serialization)...........ccevvrrieriennnnsnrennnnsenese s sessesenes 172
JWS JSON Serialization...........cccvvrmmmmnssns s sessns 174
The Process of Signing (JSON Serialization)c.cuuernvrnnesnesensse s sessesessenens 176

£ 11134 R 184

viil

TABLE OF CONTENTS

Chapter 8: Message-Level Security with JSON Web Encryptionccccurvssnnnnnns 185
JWE Compact Seralizationccceecrnieninesrrcrnsesene s sessesesnenens 185
JOSE HEAUEccoviecececereris e e 186

JWE ENCIYPIEU KEY....covieecercce ettt sns s s r s s s nn s 191

JWE INitialization VECIONccoeveeereeccessss s sssasnnas 194

JWE CIPREIEXTvoviveeeeresiesesese st ssnnns 194

JWE AUthentication TAQceoevierierie st sa e s s sa e s s 194

The Process of Encryption (Compact Serialization)..........cccccvrerrernnerserrerenessensessessssessessenees 195

JWE JSON Serialization.........cceeceerenereerereeeseresesese e se s se s sessesesnenens 196
JWE Protected HEader ... e 197

JWE Shared Unprotected HEAderccccvreeerercrnienrc s se e se e e senns 197

JWE Per-Recipient Unprotected Headercoovvvininncncnc s sessennens 198

JWE INitialization VECLOF ..o e 198

JWE CIPREMEXTvevcecteeresesisesesese st sr e ssnas 198

JWE Authentication Tagccucerernnnieniernsirse s sss e s sssssssnssesnens 199

The Process of Encryption (JSON Serialization)............ccccucvvinnnininnnnnnesssnsesesesss e 199
o G L I ST 201
BT 111 T o SRS 210
Chapter 9: OAuth 2.0 Profilesccuummmmmmsmmmmmmmmmmmsssnnss 211
TOKEN INTrOSPECTION.....cccee i s 211
Chain GraNt TYPE ...cceeeecrerir e e e e e e 215
TOKEN EXCRANGEceeirerieic ettt e bbb s e e e 217
Dynamic Client Registration Profilecooorenrnnnnnesresesssessesese s 220
Token Revocation Profile.........c.cuueeiinernsennnessssse s ssss e s ssssssessssesessessssenens 225
BT 11134 OO 226
Chapter 10: Accessing APIs via Native Mobile APPS......ccuseemmrnssssnnnmssssssnsssssssnnnss 227
Mobile Single Sign-0n (SS0)......ccccvrererrrerrerrerrrersereressssese e sss s sssssssessesssssssessessesssssssesaens 227
Login with Direct Credentialsc.ccvverevrrerienieresessersese s sessesesss s e sessessessessssessesaees 228
LOgin With WEBVIBWceceeceririr e s s s s s s s 229
Login With @ SYSIEM BrOWSETccecviererirrerrerere s seressessssesessessssessessesaessssessessesssssssessees 230

ix

TABLE OF CONTENTS

Using OAuth 2.0 in Native MODIIE APPScuiererrererrerierersssersessessssessessesssssssessesssssssessessesssssssessens 231
Inter-app COMMUNICALIONcceerererrerererre s s s sae e e e s re e e e e nae s 233
Proof Key for Code EXChANQe (PKCE).........cccvrerrerrerrenerserersesensessessessssensessessssessessessssssessesaes 235

BrOWSEI-1ESS ADPS ...overiirciresiesisse e s s e s re e s s b e s e b b e e e e b e e e e e R Re b e e e nne 237
OAuth 2.0 Device Authorization Grant.............cocovinennnnnnnssss e 237

SUMIMAIY ..ttt e e R e e e e e R e R e e e e e RE e R e e e e e Re e Re R e e e e e Re e R e e e e e Renns 241

Chapter 11: OAuth 2.0 Token Bindingcccccrmssssssssssnmmmmsssssssssssssssssesssssssssssssssssnss 243

Understanding TOKEN BiNGiNgcccvveernsmnnesenenmrnsesessesese s sesssssssssessssssesssssssssssssssssssssenns 244
Token Binding Negotiation...........c.cuevrerersnernsesnesessse s sesss s sessesessssessssesesssssssenens 244

TLS Extension for Token Binding Protocol Negotiationcccoucvvenniscnnsesnnesesssesesesenseens 246

G T4 1= 1o o OO 247

Proof 0f POSSESSION........ccoiiririireirce s e 247

Token Binding for OAuth 2.0 Refresh TOKEN..........ccvivrrennnsc s sesseens 249

Token Binding for OAuth 2.0 Authorization Code/AcCess TOKEN..........ccccuvereresensensesiesessessessens 251

TLS TErMINALION ... se s s enne e s e ne s e e nnnnens 254

BT 111 T o OSSO 255

Chapter 12: Federating ACCeSS 10 APISccouusumsmsssnsmsssnsmsssnsssssnsssssnsssssnnssssnnssssns 257

Enabling FEAEIAtioNcccevreiirieriere e s s e e s rese e saesaesa e s nne s 257

Brokered AUtNENtICALIONcccvoiierincii 258

Security Assertion Markup Language (SAML)........cccorerrnierenienessseresesese s sesesessesessssesenns 261

SAML 2.0 Client AUthentiCation...........c.cooererrrrcrere e 261

SAML Grant Type for QAULN 2.0coeceeereeerecrrcrere s 264

JWT Grant Type for QAULN 2.0ccceiicerrerrreserese s srsseens 267

Applications of JWT Grant TYPE......ccucvrerrerrnninesie s s s s saessssesessessssessessessens 269

JWT Client AUthentiCation...........cccovrininsnns s 270

Applications of JWT Client Authenticationc.ccvevevvrierenenrrrenrers s sessessessens 271

Parsing and Validating JWT..........cciinnrrne s sns s sss e s ssessssessesnens 274

£ S 276

TABLE OF CONTENTS

Chapter 13: User-Managed ACCESS......uuuummmrmssssnnsssssssnssssssssnnsssssssnnsssssssnnssssssnnnnss 277
USE CASES ...vveeucreeresssseseesesessssesssesesas s e s e e sesssss e e e sassesss e sessssesssssssessssssssssssessnsenssssssessasensans 277
UMA 2.0 ROIES......ceieeereeeriecrenesessese e ses s e se s e sse s ses e s sesae s se e s s e ssssessesenessssenns 279
L0 P o 0] (00 S 280
Interactive Claims Gathering.........ccocvvcernrennesnise e 284
L1134 RS 286

Chapter 14: OAuth 2.0 SeCUrityuursmmmmenmrirmmmsssssssssssnsmmsssssssssssssssesssssssnsnsssssnnns 287
Identity Provider MiX-UD ... s sss s e ssessse s sessssssesaessesssssaesaensenns 287
Cross-Site Request FOrgery (CSRF) ... ses e s seseses e sessesenns 291
TOKEN RBUSE......eeeceeecereeesrecresese e e ses e s e e e e s sesse e s e e e e sse e s re e seene e nne e ssenesennesensenens 294
TOKEN LEAKAGE/EXPOIT......ccveereeererreerreesesesessesesssesessesessssessesssessssessssessesesssssssssssssssnsssnssssnsenees 296
(0TS (8 2T=T0 =T e (o] SRS 298
Code Interceplion ARACK.........ccvvrierenirsre e e e e s 300
Security Flaws in IMPliCit Grant TYPE.....cvcvevrrrierere s rerse s ves s s s e ssessssessessessesessessesnes 301
Google DOCS PRISHING AHACKccvereverreriererensereresesesseressesessssessessssessessessessssessessesssssssessenaes 302
SUMIMANY ..ttt e e R e e e e R e R e e e e R e R e e e e e Re e Re R e e e e e Re R e e e e e aenris 304

Chapter 15: Patterns and PractiCes.........ccconmmmssmmmmmmssssnnnmmsssssnnsssssssnssssssssnnsssssnnnnss 305
Direct Authentication with the Trusted Subsystem..........cccoverrcrncnnnesr e 305
Single Sign-0n with the Delegated Access CoNntrolccoccoverrennnsesnnesens s 306
Single Sign-0n with the Integrated Windows Authenticationcccocvvvvninnininienenensenienne, 308
Identity Proxy with the Delegated ACCESS CONIIOIccccvereverserreresesersere e nenaens 309
Delegated Access Control with the JSON WED TOKENcccceveverrerrererensensessessesessessessessssessensens 310
Nonrepudiation with the JSON Web Signature..........cccovvririinnsninisnsnssese e sessesnens 311
Chained Access Delegation............covcvrererenernerese s 313
Trusted Master ACCESS Delegation.........c.cucvvererenernsesesesessse s s ssssenens 315
Resource Security Token Service (STS) with the Delegated Access Control.........ccceeeveveeviernns 316
Delegated Access Control with No Credentials over the WiIre........ccoevvvvvnievenensensesenessensenens 318
£ 11134 7R 319

xi

TABLE OF CONTENTS

Appendix A: The Evolution of Identity Delegation..........cccceunssemnnrnssssnnnssssssnnnsssssnns 321
Direct Delegation vs. Brokered Delegationccccvvinvnniisnsnsnness s sesesse s sessessens 322
L= = 11 o TR 323

GOOGIE ClIENILOGIN.....ccciiiecirer e s s 325
GOOGIE AULNSUD ... e s 326
Flickr Authentication APL.........c.ooeereererere e 327
Yahoo! Browser—Based Authentication (BBAUth)ccccvvririennsnini e 327
OAULN .o e e e 328

Appendix B: OAUth 1.0....ccciiiiimemmmnnnrinnisssssssssnsssessnnnnnns 331

THe TOKEN DANCE.......ccveeerreerrnesrnsesesrsesesesssssse e sessessssssessssssesssssssssssssssssssssssssssssanssenssssssenees 331
Temporary-Credential Request Phase ... sesesens 333
Resource-0wner Authorization PRaSe..........coveeerrrrnesesiesese s 335
Token-Credential Request Phase...........cccvvrrinisnin s se e snes 336
Invoking a Secured Business APl with QAU 1.0.........ccoverrinerrresre s 338

Demystifying 0auth_Signature ..o s 339
Generating the Base String in Temporary-Credential Request Phasec.cccveeverenernnne. 340
Generating the Base String in Token Credential Request Phasec.cccevvvvvncvcnenicnnenn 342
BUilding the SigNature........c.ccceveeresernsesssesere s nennes 343
Generating the Base String in an APl Call..........ccocooeererrnsesrnnesessse s sesenns 344

Three-Legged OAuth vs. Two-Legged QAULh.........ccoiceviecncs e 346

OAULN WRAP ...ttt b bbb e et 347
Client Account and Password Profile...........ccccuvnnmnnnssssss s 349
ASSErtioN Profilecovviiiiririnsccsri s 350
Username and Password Profile ... 350
L L= oA o]0 B o ()1 S 352
ST To Yo 0 (01O 353
Accessing @ WRAP-ProteCted AP ... sssse s ssssessssessssenens 354
WRAP 10 QAULH 2.0ccvieieciictciririreresese st 354

xii

TABLE OF CONTENTS

Appendix C: How Transport Layer Security WOrks?ccccuussssnsnsssssssnssssssssnnsssssnns 355
The Evolution of Transport Layer Security (TLS)ccovvevrerererernierere s rsesessesessssesessesessenens 356
Transmission Control ProtoCol (TCP)cocccoerererercrncreresesee s se s sessesesnenens 358
How Transport Layer Security (TLS) WOIKSccocorrerennenerenersseseseseseses e sessesesssses e sessesenns 364

Transport Layer Security (TLS) HANASh@KE..........ccccoererernserenenereneressesese e sessesennenens 365
Application Data TraNSTEr ... s 374

Appendix D: UMA EVOIULiONcceerrreimmsssssssmssnnmmmsssssssssssssnssssssssssssssssnsssssssssssnnnnnns 377

PrOTECISEIVE ... e e nr s 377
UMA and OAULN......ccceie e s s st 384
UMA 1.0 ArChItECIUIEcucererrsciiri s 384
UMA 1.0 PRSEScucierriiriiirescsesese s s s s s s 385
UMA Phase 1: Protecting @ RESOUICEccecervererererserserensssesessessssessessessessssessessesssssssessenes 385
UMA Phase 2: Getting AUtROFZAtiONcccvvereresenseriere e s s s ssssessesneens 388
UMA Phase 3: Accessing the Protected RESOUICE......c.ccvvveeververevnsensersessesessesessessssessessees 394
UMA APIS.....ceveerereseseseseseessssessssssss s s sss s e e e ss s s snsssnsnsnsnsssnsnenenenes 394
ProtECHION AP ... o 395
AULNONIZALION AP ... e 396

Appendix E: Base64 URL ENCOAiNgcosseemmmmmmrrsssssssssnsnnnsssssssssssssssnnssssssssssssnnnnns 397

Appendix F: Basic/Digest Authenticationccucccenmmnnennnnnssssnnnnsssssnmsssssnsnnnn 401
HTTP BasiC AUTNENtICALION...........ceeeeeecreeceree e 402
HTTP Digest AUthentiCation..........ccoveecrrcerrererere e 406

Appendix G: OAuth 2.0 MAC Token Profile.........cccummsmmmmmmnmmmsmmsssssssssssnnnssssssssssnnnns 425
Bearer TOKen VS. MAC TOKENccccerrererrnsenrnsesesrese s ssssese e sss e ssssessssssessssessssesssssssssssssesssnenns 427
0btaiNING @ MAC TOKENcveveeiriere sttt se s s s sa s s e s sae s s sae s e e s saesae s s e saennes 428
Invoking an API Protected with the OAuth 2.0 MAC Token Profile.........ccvevverevenserierenensensenaens 432
Calculating the MAC........ccoe et sere s s s sa s s s s s e sae s s s e s sae e e e s e naenaes 433

xiii

TABLE OF CONTENTS

MAC Validation by the RESOUICE SEIVEN......c.cuvererrerereerenserseressssessessessssessessessessssessessesssssssessens 435
OAuth Grant Types and the MAC ToKen Profile.......cccccvvevrinrnicnncnns s 436
OAuth 1.0 vs. OAuth 2.0 MAC Token Profileccccviinnniniennsncnesssissese s sessessessessssessessens 436
INA@X.ueutiissnnnnnnssssnnnnmssssnnnnnsssnnnnssssnnnnesssnnnnsssssnnnnssssnnnnsssssnnnnessssnnnnsssssnnnnnsssnnnnssssn 439

Xiv

About the Author

Prabath Siriwardena is an identity evangelist, author,
blogger, and VP of Identity Management and Security at
WSO2. He has more than 12 years of industry experience
in designing and building critical identity and access
management (IAM) infrastructure for global enterprises,
including many Fortune 100/500 companies. As a
technology evangelist, Prabath has published seven books.
He blogs on various topics from blockchain, PSD2, GDPR,

IAM to microservices security. He also runs a YouTube
channel. Prabath has spoken at many conferences, including
RSA Conference, KNOW Identity, Identiverse, European Identity Conference, Consumer
Identity World USA, API World, API Strategy and Practice Conference, QCon, OSCON,
and WSO2Con. He has traveled the world conducting workshops and meetups to
evangelize IAM communities. He is the founder of the Silicon Valley IAM User Group,
which is the largest IAM meetup in the San Francisco Bay Area.

Acknowledgments

I would first like to thank Jonathan Gennick, Assistant Editorial Director at Apress, for
evaluating and accepting my proposal for this book. Then, I must thank Jill Balzano,
Coordinating Editor at Apress, who was very patient and tolerant of me throughout the
publishing process. Alp Tunc served as the technical reviewer—thanks, Alp, for your
quality review comments, which were quite useful. Also I would like to thank all the
external reviewers of the book, who helped to make the book better.

Dr. Sanjiva Weerawarana, the Founder and former CEO of WSO2, and Paul
Fremantle, the CTO of WSQO2, are two constant mentors for me. I am truly grateful to
both Dr. Sanjiva and Paul for everything they have done for me.

My wife, Pavithra, and my little daughter, Dinadi, supported me throughout this
process. Thank you very much, Pavithra and Dinadi.

My parents and my sister are with me all the time. I am grateful to them for
everything they have done for me. Last but not least, my wife’s parents—they were
amazingly helpful.

Although writing a book may sound like a one-man effort, it’s the entire team behind
it who makes it a reality. Thank you to everyone who supported me in many different
ways.

xvii

Introduction

Enterprise APIs have become the common way of exposing business functions to the
outside world. Exposing functionality is convenient, but of course comes with a risk of
exploitation. This book is about securing your most important business assets or APIs. As
is the case with any software system design, people tend to ignore the security element
during the API design phase. Only at the deployment or at the time of integration they
start worrying about security. Security should never be an afterthought—it’s an integral
part of any software system design, and it should be well thought out from the design’s
inception. One objective of this book is to educate the reader about the need for security
and the available options for securing APIs.

The book guides you through the process and shares best practices for designing
APIs for better security. API security has evolved a lot in the last few years. The growth of
standards for securing APIs has been exponential. OAuth 2.0 is the most widely adopted
standard. It's more than just a standard—rather a framework that lets people build
solutions on top of it. The book explains in depth how to secure APIs from traditional
HTTP Basic authentication to OAuth 2.0 and the profiles built around OAuth, such as
OpenlID Connect, User-Managed Access (UMA), and many more.

JSON plays a major role in API communication. Most of the APIs developed today
support only JSON, not XML. The book focuses on JSON security. JSON Web Encryption
(JWE) and JSON Web Signature (JWS) are two increasingly popular standards for
securing JSON messages. The latter part of the book covers JWE and JWS in detail.

Another major objective of the book is to not just present concepts and theories
but also to explain concepts and theories with concrete examples. The book presents
a comprehensive set of examples to illustrate how to apply theory in practice. You
will learn about using OAuth 2.0 and related profiles to access APIs securely with web
applications, single-page applications, native mobile applications and browser-less
applications.

I hope this book effectively covers a much-needed subject matter for API developers,
and I hope you enjoy reading it.

Xix

CHAPTER 1

APIs Rule!

Enterprise API adoption has exceeded expectations. We see the proliferation of APIs in
almost all the industries. It is not an exaggeration to say a business without an API is like
a computer with no Internet. APIs are also the foundation for building communication
channels in the Internet of Things (IoT) domain. From motor vehicles to kitchen
appliances, countless devices have started communicating with each other via APIs.
The world is more connected than ever. You share photos from Instagram in
Facebook, share a location from Foursquare or Yelp in Twitter, publish tweets to the
Facebook wall, connect to Google Maps via the Uber mobile app, and many more. The
list of connections is limitless. All this is made possible only because of public APIs,
which have proliferated in the last few years. Expedia, Salesforce, eBay, and many other
companies generate a large percentage of their annual revenue via APIs. APIs have
become the coolest way of exposing business functionalities to the outside world.

APl Economy

According to an infographic! published by the ACI Information Group, at the current
rate of growth, the global Internet economy is around 10 trillion US dollars. In 1984, at
the time the Internet was debuted, it linked 1000 hosts at universities and corporates. In
1998, after almost 15 years, the number of Internet users, globally, reached 50 million.
It took 11 years since then to reach the magic number 1 billion Internet users, in 2009.

It took just three years since then to get doubled, and in 2012 it reached to 2.1 billion.

In 2019, more than half of the world’s population—about 4.3 billion people—use the
Internet. This number could further increase as a result of the initiatives taken by the
Internet giants like Facebook and Google. The Internet.org initiative by Facebook,

'The History of the Internet, http://aci.info/2014/07/12/the-data-explosion-in-
2014-minute-by-minute-infographic/

© Prabath Siriwardena 2020
P. Siriwardena, Advanced API Security, https://doi.org/10.1007/978-1-4842-2050-4_1

http://aci.info/2014/07/12/the-data-explosion-in-2014-minute-by-minute-infographic/
http://aci.info/2014/07/12/the-data-explosion-in-2014-minute-by-minute-infographic/

CHAPTER 1 APIS RULE!

launched in 2013, targets to bring together technology leaders, nonprofits, and local
communities to connect with the rest of the world that does not have Internet access.
Google Loon is a project initiated by Google to connect people in rural and remote areas.
Itis based on a network of balloons traveling on the edge of space and aims to improve
the connectivity of 250 million people in Southeast Asia.?

Not just humans, according to a report® on the Internet of Things by Cisco,
during 2008, the number of things connected to the Internet exceeded the number
of people on earth. Over 12.5 billion devices were connected to the Internet in 2012
and 25 billion devices by the end of 2015. It is estimated that by the end of 2020, 50
billion devices will be connected. Connected devices are nothing new. They’'ve been
there since the introduction of the first computer networks and consumer electronics.
However, if not for the explosion of the Internet adoption, the idea of a globally
connected planet would never take off. In the early 1990s, computer scientists theorized
how a marriage between humans and machines could give birth to a completely new
form of communication and interaction via machines. That reality is now unfolding
before our eyes.

There are two key enablers behind the success of the Internet of Things. One is the
APIs and the other is Big Data. According to a report* by Wipro Council for Industry
Research, a six-hour flight on a Boeing 737 from New York to Los Angeles generates
120 terabytes of data that is collected and stored on the plane. With the explosion of
sensors and devices taking over the world, there needs to be a proper way of storing,
managing, and analyzing data. By 2014, an estimated 4 zettabytes of information was
held globally, and it’s estimated, by 2020, that number will climb up to 35 zettabytes.®
Most interestingly, 90% of the data we have in hand today is generated just during the
last couple of years. The role of APIs under the context of the Internet of Things is equally
important as Big Data. APIs are the glue which connect devices to other devices and to
the cloud.

2Google Loon, http://fortune.com/2015/10/29/google-indonesia-internet-helium-
balloons/

*The Internet of Things: How the Next Evolution of the Internet Is Changing Everything,
www.iotsworldcongress.com/documents/4643185/3e968a44-2d12-4b73-9691-17ec508ff67b

Big Data: Catalyzing Performance in Manufacturing, waw.wipro.com/documents/Big%20Data. pdf

°Big data explosion: 90% of existing data globally created in the past two years alone,
http://bit.ly/1WajrG2

2

http://fortune.com/2015/10/29/google-indonesia-internet-helium-balloons/
http://fortune.com/2015/10/29/google-indonesia-internet-helium-balloons/
http://www.iotsworldcongress.com/documents/4643185/3e968a44-2d12-4b73-9691-17ec508ff67b
http://www.wipro.com/documents/Big%20Data.pdf
http://bit.ly/1WajrG2

CHAPTER 1 APIS RULE!

The API economy talks about how an organization can become profitable or
successful in their corresponding business domain with APIs. IBM estimated the API
economy to become a $2.2 trillion market by 2018,° and the IBM Redbook, The Power
of the API Economy,” defines API economy as the commercial exchange of business
functions, capabilities, or competencies as services using web APIs. It further finds
five main reasons why enterprises should embrace web APIs and become an active
participant in the API economy:

e Grow your customer base by attracting customers to your products
and services through API ecosystems.

e Drive innovation by capitalizing on the composition of different APIs,
yours and third parties.

o Improve the time-to-value and time-to-market for new products.
e Improve integration with web APIs.

e Open up more possibilities for a new era of computing and prepare
for a flexible future.

Amazon

Amazon, Salesforce, Facebook, and Twitter are few very good examples for early
entrants into the API economy, by building platforms for their respective capabilities.
Today, all of them hugely benefit from the widespread ecosystems built around these
platforms. Amazon was one of the very first enterprises to adopt APIs to expose its
business functionalities to the rest. In 2006 it started to offer IT infrastructure services to
businesses in the form of web APIs or web services. Amazon Web Services (AWS), which
initially included EC2 (Elastic Compute Cloud) and S3 (Simple Storage Service), was a
result of the thought process initiated in 2002 to lead Amazon’s internal infrastructure in
a service-oriented manner.

SIBM announces new solutions for the API economy, http://betanews.com/2015/11/05/
ibm-announces-new-solutions-for-the-api-economy/

"The Power of the API Economy, waw.redbooks . ibm.com/redpapers/pdfs/redp5096.pdf

http://betanews.com/2015/11/05/ibm-announces-new-solutions-for-the-api-economy/
http://betanews.com/2015/11/05/ibm-announces-new-solutions-for-the-api-economy/
http://www.redbooks.ibm.com/redpapers/pdfs/redp5096.pdf

CHAPTER 1 APIS RULE!

The former Amazon employee, Steve Yegge, shared accidentally an Amazon internal
discussion via his Google+ post, which became popular later. According to Yegge’s
post,? it all began with a letter from Jeff Bezos to the Amazon engineering team, which
highlighted five key points to transform Amazon into a highly effective service-oriented

infrastructure.

o All teams will henceforth expose their data and functionality through

service interfaces.
o Teams must communicate with each other through these interfaces.

e There will be no other form of interprocess communication
allowed: no direct linking, no direct reads of another team's data
store, no shared memory model, no backdoors whatsoever. The
only communication allowed is via service interface calls over the
network.

e Itdoesn't matter what technology is used. HTTP, Corba, Pubsub,
custom protocols—doesn't matter.

o All service interfaces, without exception, must be designed from the
ground up to be externalizable. That is to say, the team must plan and
design to be able to expose the interface to developers in the outside
world. No exceptions.

This service-based approach leads Amazon to easily expand its business model from
being a bookseller to a global retailer in selling IT services or cloud services. Amazon
started exposing both EC2 and S3 capabilities as APIs, both in SOAP and REST (JSON
over HTTP).

8Steve Yegge on Amazon, https://plus.google.com/+RipRowan/posts/eVeouesvaVX

4

https://plus.google.com/+RipRowan/posts/eVeouesvaVX

CHAPTER 1 APIS RULE!

Salesforce

Salesforce, which was launched in February 1999, is a leader in the software-as-a-service
space today. The web API built around Salesforce capabilities and exposing it to the rest
was a key success factor which took the company to the state where it is today. Salesforce
kept on using platforms and APIs to fuel the innovation and to build a larger ecosystem

around it.

Uber

Google exposes most of its services via APIs. The Google Maps API, which was introduced
in 2005 as a free service, lets many developers consume Google Maps to create much
useful mashups by integrating with other data streams. Best example is the Uber. Uber

is a transportation network company based out of San Francisco, USA, which also offers
its services globally in many countries outside the United States. With the Uber mobile
application on iOS or Android (see Figure 1-1), its customers, who set a pickup location
and request a ride, can see on Google Maps where the corresponding taxi is. Also, from
the Uber driver’s application, the driver can exactly pinpoint where the customer is. This
is a great selling point for Uber, and Uber as a business hugely benefits from the Google
Maps public API. At the same time, Google gets track of all the Uber rides. They know
exactly the places of interests and the routes Uber customers take, which can be pumped
into Google’s ad engine. Not just Uber, according to a report® by Google, by 2013 more
than 1 million active sites and applications were using Google Maps API.

9A fresh new look for the Maps AP, for all one million sites, http://bit.ly/1NPH12z

http://bit.ly/1NPH12z

CHAPTER 1 APIS RULE!

Q% ¥4 mase
€< O 1122 Post Street

@ Nopalito

3min @ 26min F 41min

Cathedral Of Saint Mary rell St n :
Of The Assumption . R

E Uber m Lyft

e 2 & & &

$5-59 $8-510 $11-514 $17-521 $22-$2i
POOL uberX uberXL SELECT BLACK

3 min away REQUEST

Figure 1-1. Uber mobile app uses Google Maps

Facebook

Facebook in 2007 launched the Facebook platform. The Facebook platform made most
of the Facebook’s core capabilities available publicly to the application developers.
According to the builtwith.com,'® the Facebook Graph API was used by 1 million web
sites across the Internet, by October 2019. Figure 1-2 shows the Facebook Graph API
usage over time. Most of the popular applications like Foursquare, Yelp, Instagram, and
many more consume Facebook API to publish data to the user’s Facebook wall. Both
parties mutually benefit from this, by expanding the adaptation and building a strong
ecosystem.

YFacebook Graph API Usage Statistics, http://trends.builtwith.com/javascript/
Facebook-Graph-API

6

http://trends.builtwith.com/javascript/Facebook-Graph-API
http://trends.builtwith.com/javascript/Facebook-Graph-API

CHAPTER 1 APIS RULE!

Figure 1-2. Facebook Graph API usage statistics, the number of web sites over
time

Netflix

Netflix, a popular media streaming service in the United States with more than 150
million subscribers, announced its very first public API in 2008."! During the launch,
Daniel Jacobson, the Vice President of Edge Engineering at Netflix, explained the role of
this public API as a broker, which mediates data between internal services and public
developers. Netflix has come a long way since its first public API launch, and today it
has more than a thousand types of devices supporting its streaming API.'? By mid-2014,
there were 5 billion API requests generated internally (via devices used to stream the
content) and 2 million public API requests daily.

Netflix added record number of subscribers, www.cnn.com/2019/04/16/media/netflix-
earnings-2019-first-quarter/index.html

2API Economy: From systems to business services, http://bit.1ly/1GxmZe6

http://www.cnn.com/2019/04/16/media/netflix-earnings-2019-first-quarter/index.html
http://www.cnn.com/2019/04/16/media/netflix-earnings-2019-first-quarter/index.html
http://bit.ly/1GxmZe6

CHAPTER 1 APIS RULE!

Walgreens

Walgreens, the largest drug retailing chain in the United States, opened up its photo
printing and pharmacies to the public in 2012/2013, via an APL'3 They started with

two APIs, a QuickPrints API and a Prescription API. This attracted many developers,

and dozens of applications were developed to consume Walgreens’ API. Printicular is
one such application developed by MEA Labs, which can be used to print photos from
Facebook, Twitter, Instagram, Google+, Picasa, and Flickr (see Figure 1-3). Once you pick
your photos from any of these connected sites to be printed, you have the option to pick
the printed photos from the closest Walgreens store or also can request to deliver. With
the large number of applications built against its API, Walgreens was able to meet its
expectations by enhancing customer engagements.

42 Add photos from
Facebook

Dropbox

“"@Ht%

Google Photos

Flickr oo

Cart is empty

Figure 1-3. Printicular application written against the Walgreens API

Walgreens API, https://developer.walgreens.com/apis

8

https://developer.walgreens.com/apis

CHAPTER 1 APIS RULE!

Governments

Not just the private enterprises but also governments started exposing its capabilities

via APIs. On May 22, 2013, Data.gov (an initiative managed by the US General Services
Administration, with the aim to improve public access to high-value, machine-readable
datasets generated by the executive branch of the federal government) launched two
initiatives to mark both the anniversary of the Digital Government Strategy and the
fourth anniversary of Data.gov. First is a comprehensive listing of APIs that were released
from across the federal government as part of the Digital Government Strategy. These
APIs accelerated the development of new applications on everything from health, public
safety, education, consumer protection, and many more topics of interest to Americans.
This initiative also helped developers, where they can find all the government’s APIs in
one place (http://api.data.gov), with links to API documentation and other resources.

IBM Watson

APIs have become the key ingredients in building a successful enterprise. APIs open up
the road to new business ecosystems. Opportunities that never existed before can be
realized with a public API. In November 2013, for the first time, IBM Watson technology
was made available as a development platform in the cloud, to enable a worldwide
community of software developers to build a new generation of applications infused
with Watson's cognitive computing intelligence.'* With the API, IBM also expected to
create multiple ecosystems that will open up new market places. It connected Elsevier
(world-leading provider of scientific, technical, and medical information products and
services) and its expansive archive of studies on oncology care to both the medical
expertise of Sloan Kettering (a cancer treatment and research institution founded

in 1884) and Watson’s cognitive computing prowess. Through these links, IBM now
provides physicians and nurse practitioners with information on symptoms, diagnosis,
and treatment approaches.

“IBM Watson’s Next Venture, waw-03.1ibm.com/press/us/en/pressrelease/42451.wss

http://api.data.gov
http://www-03.ibm.com/press/us/en/pressrelease/42451.wss

CHAPTER 1 APIS RULE!

Open Banking

API adaptation has gone viral across verticals: retail, healthcare, financial, government,
education, and in many more verticals. In the financial sector, the Open Bank' project
provides an open source API and app store for banks that empower financial institutions
to securely and rapidly enhance their digital offerings using an ecosystem of third-party
applications and services. As per Gartner,'® by 2016, 75% of the top 50 global banks have
launched an API platform, and 25% have launched a customer-facing app store. The aim
of Open Bank project is to provide a uniform interface, abstracting out all the differences
in each banking API. That will help application developers to build applications on top
of the Open Bank API, but still would work against any of the banks that are part of the
Open Bank initiative. At the moment, only four German banks are onboarded, and it is
expected to grow in the future.!” The business model behind the project is to charge an
annual licensing fee from the banks which participate.

Healthcare

The healthcare industry is also benefiting from the APIs. By November 2015, there were
more than 200 medical APIs registered in ProgrammableWeb.'® One of the interesting
projects among them, the Human API" project, provides a platform that allows users
to securely share their health data with developers of health applications and systems.
This data network includes activity data recorded by pedometers, blood pressure
measurements captured by digital cuffs, medical records from hospitals, and more.
According to a report* by GlobalData, the mobile health market was worth $1.2 billion
in 2011, but expected to jump in value to reach $11.8 billion by 2018, climbing at an
impressive compound annual growth rate (CAGR) of 39%. The research2guidance?

*Open Bank Project, www. openbankproject.com/

6Gartner: Hype Cycle for Open Banking, www.gartner.com/doc/2556416/
hype-cycle-open-banking

"Open Bank Project connector status, https://api.openbankproject.com/connectors-status/

¥Medical APIs, www.programmableweb.com/category/medical/apis?&category=19994

"“Human API, http://hub.humanapi.co/docs/overview

»Healthcare Goes Mobile, http://healthcare.globaldata.com/media-center/
press-releases/medical-devices/mhealth-healthcare-goes-mobile

2IResearch2guidance, http://research2guidance.com/the-market-for-mobile-health-
sensors-will-grow-to-5-6-billion-by-2017/

10

http://www.openbankproject.com/
http://www.gartner.com/doc/2556416/hype-cycle-open-banking
http://www.gartner.com/doc/2556416/hype-cycle-open-banking
https://api.openbankproject.com/connectors-status/
http://www.programmableweb.com/category/medical/apis?&category=19994
http://hub.humanapi.co/docs/overview
http://healthcare.globaldata.com/media-center/press-releases/medical-devices/mhealth-healthcare-goes-mobile
http://healthcare.globaldata.com/media-center/press-releases/medical-devices/mhealth-healthcare-goes-mobile
http://research2guidance.com/the-market-for-mobile-health-sensors-will-grow-to-5-6-billion-by-2017/
http://research2guidance.com/the-market-for-mobile-health-sensors-will-grow-to-5-6-billion-by-2017/

CHAPTER 1 APIS RULE!

estimated the market for mobile health sensors to grow to $5.6 billion by 2017.
Aggregating all these estimated figures, it’s more than obvious that the demand for
medical APIs is only to grow in the near future.

Wearables

Wearable industry is another sector, which exists today due to the large proliferation
of APIs. The ABI Research?® estimates that the world will have 780 million wearables
by 2019—everything from fitness trackers and smart watches to smart glasses and
even heart monitors, in circulation. Most of the wearables come with low processing
power and storages and talk to the APIs hosted in the cloud for processing and storage.
For example, Microsoft Band, a wrist-worn wearable, which keeps track of your heart
rate, steps taken, calories burned, and sleep quality, comes with the Microsoft Health
mobile application. The wearable itself keeps tracks of the steps, distances, calories
burned, and heart rate in its limited storage for a short period. Once it’s connected to
the mobile application, via Bluetooth, all the data are uploaded to the cloud through the
application. The Microsoft Health Cloud API* allows you to enhance the experiences
of your apps and services with real-time user data. These RESTful APIs provide
comprehensive user fitness and health data in an easy-to-consume JSON format. This
will enhance the ecosystem around Microsoft Band, as more and more developers

can now develop useful applications around Microsoft Health APT, hence will increase
Microsoft Band adaptation. This will also let third-party application developers to
develop a more useful application by mashing up their own data streams with the data
that come from Microsoft Health API. RunKeeper, MyFitnessPal, MyRoundPro, and
many more fitness applications have partnered with Microsoft Band in that effort, for
mutual benefits.

2The Wearable Future Is Hackable, https://blogs.mcafee.com/consumer/
hacking-wearable-devices/

“Microsoft Cloud Health API, https://developer.microsoftband.com/cloudAPI

11

https://blogs.mcafee.com/consumer/hacking-wearable-devices/
https://blogs.mcafee.com/consumer/hacking-wearable-devices/
https://developer.microsoftband.com/cloudAPI

CHAPTER 1 APIS RULE!

Business Models

Having a proper business model is the key to the success in API economy. The IBM
Redbook, The Power of the API Economy,* identifies four API business models, as
explained here:

e Free model: This model focuses on the business adoption and the
brand loyalty. Facebook, Twitter, and Google Maps APIs are few
examples that fall under this model.

e Developer pays model: With this model, the API consumer or the
developer has to pay for the usage. For example, PayPal charges a
transaction fee, and Amazon lets developers pay only for what they
use. This model is similar to the “Direct Revenue” model described
by Wendy Bohner from Intel.?

e Developer is paid directly: This is sort of a revenue sharing model. The
best example is the Google AdSense. It pays 20% to developers from
revenue generated from the posted ads. Shopping.com is another
example for revenue sharing business model. With Shopping.
com API developers can integrate relevant product content with
the deepest product catalogue available online and add millions
of unique products and merchant offers to your site. It pays by the
clicks.

o Indirect: With this model, enterprises build a larger ecosystem
around it, like Salesforce, Twitter, Facebook, and many more. For
example, Twitter lets developers build applications on top of its
APIs. This benefits Twitter, by displaying sponsored tweets on end
user’s Twitter timeline, on those applications. The same applies to
Salesforce. Salesforce encourages third-party developers to extend its
platform by developing applications on top of its APIs.

2The Power of the API Economy, waw. redbooks . ibm.com/redpapers/pdfs/redp5096.pdf

»Wendy Bohner’s blog on API Economy: https://blogs.intel.com/api-management/
2013/09/20/the-api-economy/

12

http://www.redbooks.ibm.com/redpapers/pdfs/redp5096.pdf
https://blogs.intel.com/api-management/2013/09/20/the-api-economy/
https://blogs.intel.com/api-management/2013/09/20/the-api-economy/

CHAPTER 1 APIS RULE!

The API Evolution

The concept behind APIs has its roots from the beginning of computing. An API of

a component defines how others would interact with it. API stands for application
programming interface, and it’s a technical specification for developers and architects. If
you are familiar with the Unix or Linux operating system, the man command shouldn’t be
something new. It generates the technical specification for each command in the system,
which defines how a user can interact with it. The output from the man command can be
considered as the API definition of the corresponding command. It defines everything
you need to know to execute it, including the synopsis, description with all the valid
input parameters, examples, and many more. The following command on a Unix/Linux
or even on a Mac OS X environment will generate the technical definition of the 1s

command.

$ man 1s
NAME
1ls -- list directory contents
SYNOPSIS
1s [-ABCFCHLOPRSTUW@abcdefghiklmnopqrstuwx1] [file ...]

Going little further from there, if you are a computer science graduate or have read
about operating systems, you surely have heard of system calls. System calls provide an
interface to the operating system'’s kernel, or a system call is how a program requests a
service from the underlying operating system. Kernel is the core of the operating system,
which wraps the hardware layer from the top-level applications (see Figure 1-4). If you
want to print something from the browser, then the print command, which initiated from
the browser, first has to pass through the kernel to reach the actual printer connected
to the local machine itself, or remotely via the network. Where kernel executes its
operations and provides services is known as the kernel space, while the top-level
applications execute their operations and provide services in the user space. The kernel
space is accessible for applications running in the user space only through system calls.
In other words, system calls are the kernel API for the user space.

13

CHAPTER 1 APIS RULE!

Applications

Y

Kernel

\ Y v

CPU Memory Devices

Figure 1-4. Operating system’s kernel

The Linux kernel has two types of APIs: one for the applications running in the user
space and the other one is for its internal use. The API between the kernel space and user
space can also be called the public API of the kernel, while the other as its private API.

Even at the top-level application, if you've worked with Java, .NET, or any other
programming language, you've probably written code against an API. Java provides Java
Database Connectivity (JDBC) as an API to talk to different heterogeneous database
management systems (DBMSs), as shown in Figure 1-5. The JDBC API encapsulates the
logic for how your application connects to a database; thus, the application logic doesn’t
need to change whenever it connects to different databases. The database’s connectivity
logic is wrapped in a JDBC driver and exposed as an API. To change the database, you
need to pick the right JDBC driver.

Java Application

v

JDBC API

\

MySQL DB
MySQL JDBC Driver

Figure 1-5. JDBC API

An API itself is an interface. It’s the interface for clients that interact with the system
or the particular component. Clients should only know about the interface and nothing
about its implementation. A given interface can have more than one implementation,

and a client written against the interface can switch between implementations

14

CHAPTER 1 APIS RULE!

seamlessly and painlessly. The client application and the API implementation can run
in the same process or in different processes. If they’re running in the same process,
then the call between the client and the API is a local one—if not, it’s a remote call. In
the case of the JDBC AP]J, it’s a local call. The Java client application directly invokes the
JDBC AP], implemented by a JDBC driver running in the same process. The following
Java code snippet shows the usage of the JDBC API. This code has no dependency

to the underneath database—it only talks to the JDBC API. In an ideal scenario, the
program reads the name of the Oracle driver and the connection to the Oracle database
from a configuration file, making the code completely clean from any database
implementations.

import java.sql.Connection;

import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.SQLException;

public class JDBCSample {

public void updataEmpoyee() throws ClassNotFoundException, SQLException {
Connection con = null;
PreparedStatement prSt = null;

try {

Class.forName("oracle. jdbc.driver.OracleDriver");

con = DriverManager.getConnection("jdbc:oracle:thin:@<hostname>:<port
num>:<DB name>", "user", "password");

String query = "insert into emp(name,salary) values(?,?)";

prSt = con.prepareStatement(query);

prSt.setString(1, "John Doe");

prSt.setInt(2, 1000);

prSt.executeUpdate();

} finally {
try {

if (prSt != null) prSt.close();

if (con != null) con.close();

} catch (Exception ex) {

15

CHAPTER 1 APIS RULE!

// log

We can also access APIs remotely. To invoke an API remotely, you need to
have a protocol defined for interprocess communication. Java RMI, CORBA, .NET
Remoting, SOAP, and REST (over HTTP) are some protocols that facilitate interprocess
communication. Java RMI provides the infrastructure-level support to invoke a Java
API remotely from a nonlocal Java virtual machine (JVM, which runs in a different
process than the one that runs the Java API). The RMI infrastructure at the client side
serializes all the requests from the client into the wire (also known as marshalling) and
deserializes into Java objects at the server side by its RMI infrastructure (also known as
unmarshalling); see Figure 1-6. This marshalling/unmarshalling technique is specific to
Java. It must be a Java client to invoke an API exposed over Java RMI—and it’s language

dependent.
/-) .)
I Java Client Application Java Server Application
| RMI Client-side RMI Server-side
- _/ /

Figure 1-6. Java RMI

The following code snippet shows how a Java client talks to a remotely running Java
service over RMI. The Hello stub in the following code represents the service. The rmic
tool, which comes with Java SDK, generates the stub against the Java service interface.
We write the RMI client against the API of the RMI service.

import java.rmi.registry.locateRegistry;
import java.rmi.registry.Registry;

public class RMIClient {

16

CHAPTER 1 APIS RULE!

public static void main(String[] args) {

String host = (args.length < 1) ? null : args[o];

try {
Registry registry = LocateRegistry.getRegistry(host);
Hello stub = (Hello) registry.lookup("Hello");
String response = stub.sayHello();
System.out.println("response: " + response);

} catch (Exception e) {

e.printStackTrace();

}

SOAP-based web services provide a way to build and invoke a hosted API in a
language- and platform-neutral manner. It passes a message from one end to the other
as an XML payload. SOAP has a structure, and there are a large number of specifications
to define its structure. The SOAP specification defines the request/response protocol
between the client and the server. Web Services Description Language (WSDL)
specification defines the way you describe a SOAP service. The WS-Security, WS-Trust,
and WS-Federation specifications describe how to secure a SOAP-based service.
WS-Policy provides a framework to build quality-of-service expressions around SOAP
services. WS-SecurityPolicy defines the security requirements of a SOAP service in a
standard way, built on top of the WS-Policy framework. The list goes on and on.
SOAP-based services provide a highly decoupled, standardized architecture with
policy-based governance. They do have all necessary ingredients to build a
service-oriented architecture (SOA).

At least, that was the story a decade ago. The popularity of SOAP-based APIs has
declined, mostly due to the inherent complexity of the WS- standards. SOAP promised
interoperability, but many ambiguities arose among different implementation stacks. To
overcome this issue and promote interoperability between implementation stacks, the
Web Services Interoperability (WS-1)?® organization came up with the Basic Profile for
web services. The Basic Profile helps in removing ambiguities in web service standards.
An API design built on top of SOAP should follow the guidelines Basic Profile defines.

%The OASIS Web Services Interoperability Organization, www.ws-1i.org/

17

http://www.ws-i.org/

CHAPTER 1 APIS RULE!

Note SOAP was initially an acronym that stood for Simple Object Access
Protocol. From SOAP 1.2 onward, it is no longer an acronym.

In contrast to SOAP, REST is a design paradigm, rather than a rule set. Even though
Roy Fielding, who first described REST in his PhD thesis,*” did not couple REST to HTTP,
99% of RESTful services or APIs today are based on HTTP. For the same reason, we could
easily argue, REST is based on the rule set defined in the HTTP specification.

The Web 2.0 trend emerged in 2006-2007 and set a course to a simpler, less complex
architectural style for building APIs. Web 2.0 is a set of economic, social, and technology
trends that collectively formed the basis for the next generation of Internet computing.
It was built by tens of millions of participants. The platform built around Web 2.0 was
based on the simple, lightweight, yet powerful AJAX-based programming languages and
REST—and it started to move away from SOAP-based services.

Modern APIs have their roots in both SOAP and REST. Salesforce launched its public
APT in 2000, and it still has support for both SOAP and REST. Amazon launched its web
services API in 2002 with support for both REST and SOAP, but the early adoption rate
of SOAP was very low. By 2003, it was revealed that 85% of Amazon API usage was on
REST.?® ProgrammableWeb, a registry of web APIs, has tracked APIs since 2005. In 2005,
ProgrammableWeb tracked 105 APIs, including Google, Salesforce, eBay, and Amazon.
The number increased by 2008 to 1000 APIs, with growing interest from social and
traditional media companies to expose data to external parties. There were 2500 APIs by
the end of 2010. The online clothing and shoe shop Zappos published a REST API, and
many government agencies and traditional brick-and-mortar retailers joined the party.
The British multinational grocery and merchandise retailer Tesco allowed ordering via
APIs. The photo-sharing application Instagram became the Twitter for pictures. The Face
introduced facial recognition as a service. Twilio allowed anyone to create telephony
applications in no time. The number of public APIs rose to 5000 by 2011; and in 2014
ProgrammableWeb listed out more than 14,000 APIs. In June 2019, ProgrammableWeb

#Architectural Styles and the Design of Network-based Software Architectures,
www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

2REST vs. SOAP In Amazon Web Services, https://developers.slashdot.org/
story/03/04/03/1942235/rest-vs-soap-in-amazon-web-services

18

http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
https://developers.slashdot.org/story/03/04/03/1942235/rest-vs-soap-in-amazon-web-services
https://developers.slashdot.org/story/03/04/03/1942235/rest-vs-soap-in-amazon-web-services

CHAPTER 1 APIS RULE!

announced that the number of APIs it tracks eclipsed 22,000 (see Figure 1-7). At the same
time, the trend toward SOAP has nearly died: 73% of the APIs on ProgrammableWeb by
2011 used REST, while SOAP was far behind with only 27%.%°

GROWTH IN WEB APIS SINCE 2005

22000
20000 — * ProgrammableWeb
18000
16000
14000
12000
10000
8000
6000
4000
2000

0 JANUARY JANUARY JANUARY JANUARY JANUARY JANUARY JANUARY
2006 2008 2010 2012 2014 2016 2018

MONTH

TOTAL API COUNT

Figure 1-7. The growth of APIs listed on ProgrammableWeb since 2005

The term API has existed for decades, but only recently has it been caught up in
the hype and become a popular buzzword. The modern definition of an API mostly
focused on a hosted, web-centric (over HTTP), public-facing service to expose useful
business functionalities to the rest of the world. According to the Forbes magazine, an
APTI is the primary customer interface for technology-driven products and services and
a key channel for driving revenue and brand engagements. Salesforce, Amazon, eBay,
Dropbox, Facebook, Twitter, LinkedIn, Google, Flickr, Yahoo, and most of the key players
doing business online have an API platform to expose business functionalities.

»SOAP is Not Dead, http://readwrite.com/2011/05/26/soap-is-not-dead---its-undead

19

http://readwrite.com/2011/05/26/soap-is-not-dead%2D%2D-its-undead

CHAPTER 1 APIS RULE!

APl Management

Any HTTP endpoint, with a well-defined interface to accept requests and generate
responses based on certain business logic, can be treated as a naked API. In other words,
anaked API is an unmanaged API. An unmanaged API has its own deficiencies, as listed
here:

e There is no way to track properly the business owner of the API or
track how ownership evolves over time.

e APIversions are not managed properly. Introduction of a new API
could possibly break all the existing consumers of the old API.

e Norestriction on the audience. Anyone can access the API
anonymously.

e No restriction on the number of API calls by time. Anyone can invoke
the API any number of times, which could possibly cause the server
hosting the API to starve all its resources.

e No tracking information at all. Naked APIs won’t be monitored and
no stats will be gathered.

o Inability to scale properly. Since no stats are gathered based on the
APTI usage, it would be hard to scale APIs based on the usage patterns.

o No discoverability. APIs are mostly consumed by applications. To
build applications, application developers need to find APIs that suit

their requirements.

e No proper documentation. Naked APIs will have a proper interface,
but no proper documentation around that.

o No elegant business model. It’s hard to build a comprehensive
business model around naked APIs, due to all the eight reasons listed
earlier.

A managed API must address all or most of the preceding concerns. Let’s take an
example, the Twitter API. It can be used to tweet, get timeline updates, list followers,
update the profile, and do many other things. None of these operations can be

20

CHAPTER 1 APIS RULE!

performed anonymously—you need to authenticate first. Let’s take a concrete example
(you need to have cURL installed to try this, or you can use the Chrome Advanced REST
client browser plug-in). The following API is supposed to list all the tweets published by
the authenticated user and his followers. If you just invoke it, it returns an error code,
specifying that the request isn’t authenticated:

\> curl https://api.twitter.com/1.1/statuses/home_timeline.json
"errors":[{"message":"Bad Authentication data","code":215}]}

All the Twitter APIs are secured for legitimate access with OAuth 1.0 (which we
discuss in detail in Appendix B). Even with proper access credentials, you can’t invoke
the API as you wish. Twitter enforces a rate limit on each API call: within a given time
window, you can only invoke the Twitter API a fixed number of times. This precaution
is required for all public-facing APIs to minimize any possible denial of service (DoS)
attacks. In addition to securing and rate limiting its APIs, Twitter also closely monitors
them. Twitter API Health® shows the current status of each API. Twitter manages
versions via the version number (e.g., 1.1) introduced into the URL itself. Any new
version of the Twitter API will carry a new version number, hence won'’t break any of the
existing API consumers. Security, rate limiting (throttling), versioning, and monitoring
are key aspects of a managed business API. It also must have the ability to scale up and
down for high availability based on the traffic.

Lifecycle management is another key differentiator between a naked API and a
managed API. A managed API has a lifecycle from its creation to its retirement. A typical
API lifecycle might flow through Created, Published, Deprecated, and Retired stages,
as illustrated in Figure 1-8. To complete each lifecycle stage, there can be a checklist
to be verified. For example, to promote an API from Created to Published, you need
to make sure the API is secured properly, the documentation is ready, throttling rules
are enforced, and so on. A naked business API, which only worries about business
functionalities, can be turned into a managed API by building these quality-of-service
aspects around it.

OTwitter Health, https://dev.twitter.com/status

21

https://dev.twitter.com/status

CHAPTER 1 APIS RULE!

Figure 1-8. API lifecycle

The API description and discoverability are two key aspects of a managed API. For an
AP], the description has to be extremely useful and meaningful. At the same time, APIs
need to be published somewhere to be discovered. A comprehensive API management
platform needs to have at least three main components: a publisher, a store, and a
gateway (see Figure 1-9). The API store is also known as the developer portal.

The API publisher provides tooling support to create and publish APIs. When an API
is created, it needs to be associated with API documentation and other related quality-
of-service controls. Then it’s published into the API store and deployed into the API
gateway. Application developers can discover APIs from the store. ProgrammableWeb
(www . programmableweb . com) is a popular API store that has more than 22,000 APIs
at the time of this writing. You could also argue that ProgrammableWeb is simply
a directory, rather than a store. A store goes beyond just listing APIs (which is what
ProgrammableWeb does): it lets API consumers or application developers subscribe to
APIs, and it manages API subscriptions. Further, an API store supports social features
like tagging, commenting, and rating APIs. The API gateway is the one which takes all
the traffic in runtime and acts as the policy enforcement point. The gateway checks all
the requests that pass through it against authentication, authorization, and throttling
policies. The statistics needed for monitoring is also gathered at the API gateway level.
There are many open source and proprietary APl management products out there that
provide support for comprehensive API store, publisher, and gateway components.

22

http://www.programmableweb.com

CHAPTER 1 APIS RULE!

Discnvcrs{\

Subscribes

o APl > API Store

App Developes Creates applications
pp Developer using APIs \/ +
Publishes

i S—

st

& Creates AP S m— API Publsiher I Business APIs
API Developer
Publsihes
+ W,
» o
®:
—_—Accesses APl API Gateway

End user (via an
application) or an
Application

Figure 1-9. API management platform

In the SOAP world, there are two major standards for service discovery. Universal
Description, Discovery, and Integration (UDDI) was popular, but it's extremely bulky
and didn’t perform to the level it was expected to. UDDI is almost dead today. The
second standard is WS-Discovery, which provides a much more lightweight approach.
Most modern APIs are REST-friendly. For RESTful services or APIs, there is no widely
accepted standard means of discovery at the time of this writing. Most API stores make
discovery via searching and tagging.

Describing a SOAP-based web service is standardized through the Web Service
Definition Language (WSDL) specification. WSDL describes what operations are
exposed through the web service and how to reach them. For RESTful services and
APIs, there are two popular standards for description: Web Application Description
Language (WADL) and Swagger. WADL is an XML-based standard to describe RESTful
or HTTP-based services. Just as in WSDL, WADL describes the API and its expected
request/response messages. Swagger is a specification and a complete framework
implementation for describing, producing, consuming, and visualizing RESTful web
services. With more than 350,000 downloads per month, of Swagger and Swagger-related

23

CHAPTER 1 APIS RULE!

tooling, the Swagger specification is promising to be the most widely used format for
describing APIs.* Figure 1-10 shows the Swagger definition of the Swagger Petstore API.>

Swagger Petstore

This is a sample server Petstore server. You can find out more about Swagger at http://swagger.io or on irc.freenode.net, #swagger. For this
sample, you can use the api key special-key to test the authorization filters.

Find out more about Swagger

http://swagger.io

Contact the developer

Apache 2.0

pet : Everything about your Pets Show/Hide | List Operations Expand Operations
/pet Add a new pet to the store
m /pet Update an existing pet
m /pet/findByStatus Finds Pets by status
/pet/findByTags Finds Pets by tags
EE] pevipeud Deletes a pet
Ipet/{petld} Find pet by ID
m /pet/{petld} Updates a pet in the store with form data
m /pet/{petid}/uploadimage uploads an image

Figure 1-10. Swagger definition of the Swagger Petstore API

Based on the Swagger 2.0 specification, the OpenAPI Initiative (OAI) has developed
an OAI specification involving API consumers, developers, providers, and vendors, to
define a standard, a language-agnostic interface for REST APIs. Google, IBM, PayPal,
Intuit, SmartBear, Capital One, Restlet, 3scale, and Apigee got involved in creating the
OpenAPI Initiative under the Linux foundation.

30pen API Initiative Specification, https://openapis.org/specification
$2Swagger Petstore AP, http://petstore.swagger.io/

24

https://openapis.org/specification
http://petstore.swagger.io/

CHAPTER 1 APIS RULE!

MANAGED APIS AT NETFLIX

Netflix started its journey as a DVD rental service and then evolved into a video streaming
platform and published its first APl in 2008. In January 2010, Netflix APl recorded 600 million
requests (per month), and in January 2011, the number rose up to 20.7 billion, then again
after a year, in January 2012, Netflix APl was hit with 41.7 billion requests. Today, at the
time of this writing, Netflix handles more than one third of the entire Internet traffic in North
America. It’s a widespread service globally over 190 countries in 5 continents, with more than
139 million members. Netflix APl is accessed by thousands of supported devices, generating
billions of API requests per day.

Even though Netflix APl was initially developed as a way for external application developers to
access Netflix’s catalogue, it soon became a key part in exposing internal functionality to living
room devices supported by Netflix. The former is the Netflix’s public API, while the latter is its
private API. The public API, when compared with the private API, only attracted a small number
of traffic. At the time Netflix decided to shut down the public APl in November 2011, it only
attracted 0.3% of the total API traffic.3*

Netflix uses its own APl gateway, Zuul, to manage all its API traffic.*® Zuul is the front door for all

the requests from devices and web sites to the back end of the Netflix streaming application. As an
edge service application, Zuul is built to enable dynamic routing, monitoring, resiliency, and security.
It also has the ability to route requests to multiple Amazon Auto Scaling Groups as appropriate.

The Role of APIs in Microservices

Going back to the good old days, there was an unambiguous definition for API
vs. service. An APl is the interface between two parties or two components.
These two parties/components can communicate within a single process or
between different processes. A service is a concrete implementation of an API
using one of the technologies/standards available. The implementation of an

$Growth of Netflix API requests, https://gigaom.com/2012/05/15/
netflix-42-billion-api-requests/

#Top 10 Lessons Learned from the Netflix API, waw. slideshare.net/danieljacobson/
top-10-lessons-learned-from-the-netflix-api-oscon-2014

%How we use Zuul at Netflix, https://github.com/Netflix/zuul/wiki/
How-We-Use-Zuul-At-Netflix

%Zuul, https://github.com/Netflix/zuul/wiki

25

https://gigaom.com/2012/05/15/netflix-42-billion-api-requests/
https://gigaom.com/2012/05/15/netflix-42-billion-api-requests/
http://www.slideshare.net/danieljacobson/top-10-lessons-learned-from-the-netflix-api-oscon-2014
http://www.slideshare.net/danieljacobson/top-10-lessons-learned-from-the-netflix-api-oscon-2014
https://github.com/Netflix/zuul/wiki/How-We-Use-Zuul-At-Netflix
https://github.com/Netflix/zuul/wiki/How-We-Use-Zuul-At-Netflix
https://github.com/Netflix/zuul/wiki

CHAPTER 1 APIS RULE!

API that is exposed over SOAP is a SOAP service. Similarly, the implementation of an API
that is exposed as JSON over HTTP is a RESTful service.

Today, the topic, API vs. service, is debatable, as there are many overlapping areas.
One popular definition is that an API is external facing, whereas a service is internal
facing (see Figure 1-11). An enterprise uses an API whenever it wants to expose useful
business functionality to the outside world through the firewall. This, of course, raises
another question: why would a company want to expose its precious business assets to
the outside world through an API? Twitter once again is the best example. It has a web
site that allows users to log in and tweet from there. At the same time, anything that can
be done through the web site can also be done via Twitter’s API. As a result, third parties
develop applications against the Twitter API; there are mobile apps, browser plug-ins,
and desktop apps. This has drastically reduced traffic to the Twitter web site. Even today,
the web site doesn’t have a single advertisement (but as sponsored tweets on the usual
twitter stream). If there was no public API, Twitter could easily have built an advertising
platform around the web site, just as how Facebook did. However, having a public API
helped to build a strong ecosystem around Twitter.

nﬁk_ L ﬁ%

API Service

ﬁ{fr

Figure 1-11. API vs. service. An API is external facing

Exposing corporate data via an API adds value. It gives access to the data, not just
for corporate stakeholders but also for a larger audience. Limitless innovative ideas may
pop up and, in the end, add value to the data. Say we have a pizza dealer with an API that
returns the number of calories for a given pizza type and the size. You can develop an
application to find out how many pizzas a person would have to eat per day to reach a
body mass index (BMI) in the obesity range.

Even though APIs are known to be public, it’s not a strict requirement. Most of the
APIs started as public APIs and became the public face of the enterprise. At the same
time, private APIs (not exposed to the public) proliferated within enterprises to share

26

CHAPTER 1 APIS RULE!

functionalities within it, between different components. In that case, the differentiator
between an API and a service is not just its audience. In practice, most of the service
implementations are exposed as APIs. In that case, API defines the contract between the
service and the outside world (not necessarily public).

Microservices is the most trending buzzword at the time of this writing. Everyone
talks about microservices, and everyone wants to have microservices implemented. The
term “microservice” was first discussed at a software architects workshop in Venice,
in May 2011. It’s being used to explain a common architectural style they've been
witnessing for some time. Later, after a year in May 2012, the same team agreed that
the “microservice” is the best-suited term to call the previously discussed architectural
style. At the same time, in March 2012, James Lewis went ahead and presented some of
the ideas from the initial discussion in Venice at the 33rd Degree conference in Krakow,
Poland.*

Note The abstract of James Lewis’ talk on “Microservices — Java, the Unix Way,”
which happened to be the very first public talk on Microservices, in March 2012:

“Write programs that do one thing and do it well. Write programs to work together
was accepted 40 years ago, yet we have spent the last decade building monolithic
applications, communicating via bloated middleware and with our fingers crossed
that Moore’s Law keeps helping us out. There is a better way.

Microservices. In this talk, we will discover a consistent and reinforcing set of tools
and practices rooted in the Unix philosophy of small and simple. Tiny applications,
communicating via the web’s uniform interface with single responsibilities and
installed as well-behaved operating system services. So, are you sick of wading
through tens of thousands of lines of code to make a simple one-line change?

Of all that XML? Come along and check out what the cool kids are up to (and the
cooler gray beards).

$"Microservices - Java, the Unix Way, http://2012.33degree.org/talk/show/67

27

http://2012.33degree.org/talk/show/67

CHAPTER 1 APIS RULE!

One can easily argue that a microservice is service-oriented architecture (SOA) done
right. Most of the concepts we discussed today, related to microservices, are borrowed
from SOA. SOA talks about an architectural style based on services. According to the
Open Group definition, a service is a logical representation of a repeatable business
activity that has a specified outcome and is self-contained, may be composed of other
services; the implementation acts as a black box to the service consumers.*® SOA brings
the much-needed agility to business to scale and interoperate. However, over the past,
SOA became a hugely overloaded term. Some people defined SOA under the context of
SOAP-based web services, and others used to think SOA is all about an enterprise service
bus (ESB). This led Netflix to call microservices as fine-grained SOA, at the initial stage.

I don’t really care whether it’s public or private. We used to call the things
we were building on the cloud “cloud-native” or “fine-grained SOA,” and
then the ThoughtWorks people came up with the word “microservices.” It’s
just another name for what we were doing anyways, so we just started call-
ing it microservices, as well.*

—Adrian Cockcroft, former cloud architect at Netflix

NINE CHARACTERISTICS OF A MICROSERVICE

Martin Fowler and James Lewis, introducing microservices,* identify nine characteristics in a
well-designed microservice, as briefly explained in the following:

Componentization via services: In microservices, the primary way of componentizing will be
via services. This is a bit different from the traditional componentizing via libraries. A library
in the Java world is a jar file, and in .NET world, it’s a DLL file. A library can be defined as a
component isolated to perform some specific task and plugged into the main program via
in-memory function calls. In microservices world, these libraries mostly act as a proxy to a
remote service running out of process.

¥Service-Oriented Architecture Defined, www.opengroup.oxrg/soa/source-book/togaf/
soadef.htm

$¥Talking microservices with the man who made Netflix’s cloud famous, https://medium.
com/s-c-a-1-e/talking-microservices-with-the-man-who-made-netflix-s-cloud-famous-
1032689afed3

“Microservices, http://martinfowler.com/articles/microservices.html

28

http://www.opengroup.org/soa/source-book/togaf/soadef.htm
http://www.opengroup.org/soa/source-book/togaf/soadef.htm
https://medium.com/s-c-a-l-e/talking-microservices-with-the-man-who-made-netflix-s-cloud-famous-1032689afed3
https://medium.com/s-c-a-l-e/talking-microservices-with-the-man-who-made-netflix-s-cloud-famous-1032689afed3
https://medium.com/s-c-a-l-e/talking-microservices-with-the-man-who-made-netflix-s-cloud-famous-1032689afed3
http://martinfowler.com/articles/microservices.html

CHAPTER 1 APIS RULE!

Organized around business capabilities: In most of the monolithic applications we see today,
the layering is based on the technology not around the business capabilities. The user
interface (Ul) design team works on building the user interface for the application. They are the
experts on HTML, JavaScript, Ajax, HCI (human-computer interaction), and many more. Then
we have database experts who take care of database schema design and various application
integration technologies, like JDBC, ADO.NET, and Hibernate. Then we have server-side logic
team who write the actual business logic and also are the experts on Java, .NET, and many
more server-side technologies. With the microservices approach, you build cross-functional,
multidisciplined teams around business capabilities.

Products not projects: The objectives of a project team are to work according to a project plan,
meet the set deadlines, and deliver the artifacts at the end of the project. Once the project

is done, the maintenance team takes care of managing the project from there onward. It

is estimated that 29% of an IT budget is spent on new system development, while 71% is
spent on maintaining existing systems and adding capacity to those systems.*' To avoid such
wastage and to improve the efficiency throughout the product lifecycle, Amazon introduced the
concept—you build it, you own it. The team, which builds the product, will own it forever. This
brought in the product mentality and made the product team responsible for a given business
functionality. Netflix, one of the very early promoters of microservices, treats each of their API
as a product.

Smart endpoints and dumb pipes: Each microservice is developed for a well-defined scope.
Once again, the best example is Netflix.*? Netflix started with a single monolithic web
application called netflix.war in 2008, and later in 2012, as a solution to address vertical
scalability concerns, they moved into a microservices-based approach, where they have
hundreds of fine-grained microservices today. The challenge here is how microservices talk
to each other. Since the scope of each microservice is small (or micro), to accomplish a given
business requirement, microservices have to talk to each other. Each microservice would be
a smart endpoint, which exactly knows how to process an incoming request and generate the
response. The communication channels between microservices act as dumb pipes. This is
similar to the Unix pipes and filters architecture. For example, the ps -ax command in Unix
will list out the status of currently running processes. The grep Unix command will search

“You build it, You run it, www.agilejourneyman.com/2012/05/you-build-it-you-run-it.html
#Microservice at Netflix, www. youtube.com/watch?v=LEcdWVfbHvc

29

http://www.agilejourneyman.com/2012/05/you-build-it-you-run-it.html
http://www.youtube.com/watch?v=LEcdWVfbHvc

CHAPTER 1 APIS RULE!

any given input files, selecting lines that match one or more patterns. Each command is smart
enough to do their job. We can combine both the commands with a pipe. For example, ps -ax
| grep "apache' will only list out the processes that matches the search criteria ‘apache’.
Here the pipe (I) acts as dumb—uwhich basically takes the output from the first command and
hands it over to the other. This is one of the main characteristics of a microservice design.

Decentralized governance: Most of the SOA deployments follow the concept of centralized
governance. The design time governance and the runtime governance are managed and
enforced centrally. The design time governance will look into the aspects such as whether
the services passed all the unit tests, integration tests, and coding conventions, secured with
accepted security policies and many more, before promoting from the developer phase to the
QA (quality assurance) phase. In a similar way, one can enforce more appropriate checklists
to be evaluated before the services are promoted from QA to staging and from staging to
production. The runtime governance will worry about enforcing authentication policies,
access control policies, and throttling policies in the runtime. With the microservices-based
architecture, each service is designed with its own autonomy and highly decoupled from
each other. The team behind each microservice can follow their own standards, tools, and
protocols. This makes a decentralized governance model more meaningful for microservices
architecture.

Decentralized data management. In a monolithic application, all the components in it talk

to a single database. With the microservices design, where each distinguished functional
component is developed into a microservice, based on their business capabilities, will have its
own database—so each such service can scale end to end without having any dependency
on other microservices. This approach can easily add overhead in distributed transaction
management, as data resides in multiple heterogeneous database management systems.

Infrastructure automation: Continuous deployment and continuous delivery are two essential
ingredients in infrastructure automation. Continuous deployment extends continuous delivery
and results in every build that passes automated test gates being deployed into production,
while with continuous delivery, the decision to deploy into the production setup is taken
based on the business need.*® Netflix, one of the pioneers in APIs and microservices, follows
the former approach, the continuous deployment. With the continuous deployment, the new
features need not be sitting on a shelf. Once they have gone through and passed all the

#“Deploying the Netflix API, http://techblog.netflix.com/2013/08/deploying-
netflix-api.html

30

http://techblog.netflix.com/2013/08/deploying-netflix-api.html
http://techblog.netflix.com/2013/08/deploying-netflix-api.html

CHAPTER 1 APIS RULE!

tests, they are ready to be deployed in production. This also avoids deploying a large set
of new features at one go, hence doing minimal changes to the current setup and the user
experience. Infrastructure automation does not have a considerable difference between
monolithic applications and microservices. Once the infrastructure is ready, it can be used
across all the microservices.

Design for failure: The microservices-based approach is a highly distributed setup. In a
distributed setup, failures are inevitable. No single component can guarantee 100% uptime.
Any service call may fail due to various reasons: the transport channel between the services
could be down, the server instance which hosts the service may be down, or even the service
itself may be down. This is an extra overhead on microservices, compared to monolithic
applications. Each microservice should be designed in a way to handle and tolerate these
failures. In the entire microservices architecture, the failure of one service should ideally have
zero or minimal impact on the rest of the running services. Netflix developed a set of tools
called Simian Army,* based on the success of its Chaos Monkey, to simulate failure situations
under a controlled environment to make sure the system can gracefully recover.

Evolutionary design: The microservices architecture inherently supports the evolutionary
design. Unlike in monolithic applications, with microservices the cost of upgrading or
replacing an individual component is extremely low, since they’ve been designed to function
independently or in a loosely coupled manner.

Netflix is one of the pioneers in microservices adoption. Not just Netflix, General
Electric (GE), Hewlett-Packard (HP), Equinox Inc, PayPal, Capital One Financial Corp,
Goldman Sachs Group Inc, Airbnb, Medallia, Square, Xoom Corp, and many more
are early adopters of microservices.*® Even though microservices became a buzzword
quite recently, some of the design principles brought forward by the microservices
architecture were there for some time. It's widely believed that Google, Facebook, and
Amazon were using microservices internally for several years—when you do a Google
search, it calls out roughly 70 microservices before returning back the results.

Just like in the case of API vs. service, the differentiator between an API and a
microservice also relies on the audience. APIs are known to be public facing, while

microservices are used internally. Netflix, for example, has hundreds of microservices,

“The Netflix Simian Army, http://techblog.netflix.com/2011/07/netflix-simian-army.html

*Innovate or Die: The Rise of Microservices, http://blogs.wsj.com/cio/2015/10/05/
innovate-or-die-the-rise-of-microservices/

31

http://techblog.netflix.com/2011/07/netflix-simian-army.html
http://blogs.wsj.com/cio/2015/10/05/innovate-or-die-the-rise-of-microservices/
http://blogs.wsj.com/cio/2015/10/05/innovate-or-die-the-rise-of-microservices/

CHAPTER 1 APIS RULE!

but none of them are exposed outside. The Netflix API still acts as their public-facing
interface, and there is a one-to-many relationship between the Netflix API and its
microservices. In other words, one API could talk to multiple microservices to cater a
request generated by one of the devices supported by Netflix. Microservices have not
substituted APIs—rather they work together.

Summary

The API adoption has grown rapidly in the last few years, and almost

all the cloud service providers today expose public managed APIs.

e In contrast to naked APIs, the managed APIs are secured, throttled,
versioned, and monitored.

e An API store (or a developer portal), API publisher, and API gateway
are the three key ingredients in building an API management

solution.

o Lifecycle management is a key differentiator between a naked API
and a managed API. A managed API has a lifecycle from its creation
to its retirement. A typical API lifecycle might flow through Created,
Published, Deprecated, and Retired stages.

e Microservices have not substituted APIs—rather they work together.

32

CHAPTER 2

Designing Security
for APls

Just a few days after everyone celebrated Thanksgiving Day in 2013, someone who fooled
the Target defense system installed a malware in its security and payment system. It was
the peak time in business for any retailer in the United States. While the customers were
busy in getting ready for Christmas, the malware which was sitting in the Target payment
system silently captured all the credit card information from the cashier’s terminal and
stored them in a server, which was under the control of the attacker. Forty million credit
card numbers were stolen in this way from 1797 Target stores around the country.' It was
a huge breach of trust and credibility from the retailer, and in March 2015 a federal judge
in St. Paul, Minnesota, approved a $10 million offer by Target to settle the lawsuit against
the data breach.?

Not just Target or the retail industry but as a whole, the cybercrime has gained a
lot of momentum in the last few years. Figure 2-1 shows the annual number of data
breaches and exposed records in the United States from 2005 to 2018. The attack on Dyn
DNS in 2016 was one of the largest DDoS (distributed denial of service) attacks that took
many large Internet services down for several hours. Then in February 2018, the largest
recorded DDoS attack happened against GitHub. More than 1.35 terabits per second of
traffic hit the developer platform GitHub all at once.?

'Target Credit Card Hack, http://money.cnn.com/2013/12/22/news/companies/
target-credit-card-hack/

*Target Data Hack Settlement, http://money.cnn.com/2015/03/19/technology/security/
target-data-hack-settlement/

3GitHub Survived the Biggest DDoS Attack Ever Recorded, www.wired.com/story/
github-ddos-memcached/

33
© Prabath Siriwardena 2020

P. Siriwardena, Advanced API Security, https://doi.org/10.1007/978-1-4842-2050-4_2

http://money.cnn.com/2013/12/22/news/companies/target-credit-card-hack/
http://money.cnn.com/2013/12/22/news/companies/target-credit-card-hack/
http://money.cnn.com/2015/03/19/technology/security/target-data-hack-settlement/
http://money.cnn.com/2015/03/19/technology/security/target-data-hack-settlement/
http://www.wired.com/story/github-ddos-memcached/
http://www.wired.com/story/github-ddos-memcached/

CHAPTER 2 DESIGNING SECURITY FOR APIS

1750
1579

1500

1ons

1 244

-
L%
v
(=]

1093

exposed in mill

1 000

783 781

446.52
500

1 breaches and records
~
v
o

Data

250 157 169.07 178.
6679 91.98 8s5.61

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

=“®= Data breaches =#= Million records exposed

Figure 2-1. Annual number of data breaches and exposed records in the United
States from 2005 to 2018 (in millions), Statistica, 2019

Identity Theft Resource Center* defines a data breach as the loss of information
from computers or storage media that could potentially lead to identity theft, including
social security numbers, bank account details, driving license numbers, and medical
information. The most worrisome fact is that, according to an article® by The Economist
magazine, the average time between an attacker breaching a network and its owner
noticing the intrusion is 205 days.

Trinity of Trouble

Connectivity, extensibility, and complexity are the three trends behind the rise of data
breaches around the globe in the last few years. Gary McGraw in his book, Software
Security,® identifies these three trends as the trinity of trouble.

‘Identity Theft Resource Center, www.idtheftcenter.org/

*The cost of immaturity, www.economist.com/news/business/21677639-business-protecting-
against-computer-hacking-booming-cost-immaturity

8Gary McGraw, Software Security: Building Security In, Addison-Wesley Publisher

34

http://www.idtheftcenter.org/
http://www.economist.com/news/business/21677639-business-protecting-against-computer-hacking-booming-cost-immaturity
http://www.economist.com/news/business/21677639-business-protecting-against-computer-hacking-booming-cost-immaturity

CHAPTER 2 DESIGNING SECURITY FOR APIS

APIs play a major role in connectivity. As we discussed in detail, in Chapter 1, we live
in a world today where almost everything is connected with each other. Connectivity
exposes many paths of exploitation for attackers, which never existed before. Login to
Yelp, Foursquare, Instagram, and many more via Facebook means an attacker only needs
to worry about compromising one’s Facebook account to get access to his/her all other
connected accounts.

FACEBOOK DATA BREACH ~ SEPTEMBER 2018

In September 2018, Facebook team figured out an attack,” which put the personal information
of more than 50 million Facebook users at risk. The attackers exploited multiple issues on
Facebook code base around the View As feature and got hold of OAuth 2.0 access tokens that
belong to more than 50 million users. Access token is some kind of a temporary token or a
key, which one can use to access a resource on behalf of someone else. Say, for example, if |
want to share my photos uploaded to Instagram on my Facebook wall, | would give an access
token corresponding to my Facebook wall, which | obtained from Facebook, to Instagram. Now,
at each time when | upload a photo to Instagram, it can use the access token to access my
Facebook account and publish the same on my Facebook wall using the Facebook API. Even
though Instagram can post photos on my Facebook wall using the provided access token,

it cannot do anything else other than that. For example, it cannot see my friend list, cannot
delete my wall posts, or read my messages. Also, this is usually what happens when you log in
to a third-party application via Facebook; you simply share an access token corresponding to
your Facebook account with the third-party web application, so the third-party web application
can use the access token to access the Facebook API to know more about you.

In a connected enterprise, not just the applications developed with modern,
bleeding edge technology get connected but also the legacy systems. These legacy
systems may not support latest security protocols, even Transport Layer Security (TLS)
for securing data in transit. Also, the libraries used in those systems could have many
well-known security vulnerabilities, which are not fixed due to the complexities in
upgrading to the latest versions. All in all, a connected system, not planned/designed
quite well, could easily become a security graveyard.

"What Went Wrong?, https://medium.facilelogin.com/what-went-wrong-dogbodc24des

35

https://medium.facilelogin.com/what-went-wrong-d09b0dc24de4

CHAPTER 2 DESIGNING SECURITY FOR APIS

Most of the enterprise software are developed today with great extensibility.
Extensibility over modification is a well-known design philosophy in the software
industry. It talks about building software to evolve with new requirements, without
changing or modifying the current source code, but having the ability to plug in new
software components to the current system. Google Chrome extensions and Firefox
add-ons all follow this concept. The Firefox add-on, Modify Headers, lets you add,
modify, and filter the HTTP request headers sent to web servers. Another Firefox add-
on, SSO Tracer, lets you track all the message flows between identity providers and
service providers (web applications), via the browser. None of these are harmful—but,
then again, if an attacker can fool you to install a malware as a browser plugin, it could
easily bypass all your browser-level security protections, even the TLS, to get hold of
your Facebook, Google, Amazon, or any other web site credentials. It’s not just about
an attacker installing a plugin into the user’s browser, but also when there are many
extensions installed in your browser, each one of them expands the attack surface.
Attackers need not write new plugins; rather they can exploit security vulnerability in an
already installed plugin.

THE STORY OF MAT HONAN

It was a day in August 2012. Mat Honan, a reporter for Wired magazine, San Francisco,
returned home and was playing with his little daughter.® He had no clue what was going

to happen next. Suddenly his iPhone was powered down. He was expecting a call—so

he plugged it into a wall power socket and rebooted back. What he witnessed next blew

him away. Instead of the iPhone home screen with all the apps, it asked for him to set up

a new phone with a big Apple logo and a welcome screen. Honan thought his iPhone was
misbehaving—but was not that worried since he backed up daily to the iCloud. Restoring
everything from iCloud could simply fix this, he thought. Honan tried to log in to iCloud. Tried
once—failed. Tried again—failed. Again—failed. Thought he was excited. Tried once again for
the last time, and failed. Now he knew something weird has happened. His last hope was his
MacBook. Thought at least he could restore everything from the local backup. Booted up the
MacBook and found nothing in it—and it prompted him to enter a four-digit passcode that he
has never set up before.

SHow Apple and Amazon Security Flaws Led to My Epic Hacking, waw.wired.com/2012/08/
apple-amazon-mat-honan-hacking

36

http://www.wired.com/2012/08/apple-amazon-mat-honan-hacking
http://www.wired.com/2012/08/apple-amazon-mat-honan-hacking

CHAPTER 2 DESIGNING SECURITY FOR APIS

Honan called Apple tech support to reclaim his iCloud account. Then he learned he has called
Apple, 30 minutes before, to reset his iCloud password. The only information required at that
time to reset an iCloud account was the billing address and the last four digits of the credit
card. The billing address was readily available under the whois Internet domain record Honan
had for his personal web site. The attacker was good enough to get the last four digits of
Honan’s credit card by talking to Amazon helpdesk; he already had Honan’s email address and
the full mailing address—those were more than enough for a social engineering attack.

Honan lost almost everything. The attacker was still desperate—next he broke into Honan’s
Gmail account. Then from there to his Twitter account. One by one—Honan’s connected
identity falls into the hands of the attacker.

The complexity of the source code or the system design is another well-known
source of security vulnerabilities. According to a research, after some point, the number
of defects in an application goes up as the square of the number of the lines of code.’

At the time of this writing, the complete Google codebase to run all its Internet services
was around 2 billion lines of code, while Microsoft Windows operating system had
around 50 million lines of code.'® As the number of lines of code goes high, the number
of tests around the code should grow as well, to make sure that none of the existing
functionalities are broken and the new code works in the expected way. At Nike, 1.5
million lines of test code is run against 400,000 lines of code."!

Design Challenges

Security isn’t an afterthought. It has to be an integral part of any development project
and also for APIs. It starts with requirements gathering and proceeds through the design,
development, testing, deployment, and monitoring phases. Security brings a plethora

of challenges into the system design. It’s hard to build a 100% secured system. The

only thing you can do is to make the attacker’s job harder. This is in fact the philosophy
followed while designing cryptographic algorithms. The following discusses some of the
key challenges in a security design.

Encapsulation and Optimal Module Size, www.catb.org/esr/writings/taoup/html/
cho4s01.html

“Google Is 2 Billion Lines of Code, www.catb.org/esr/writings/taoup/html/ch0o4s01.html
'Nike’s Journey to Microservices, www. youtube.com/watch?v=h30ViSEZzWO0

37

http://www.catb.org/esr/writings/taoup/html/ch04s01.html
http://www.catb.org/esr/writings/taoup/html/ch04s01.html
http://www.catb.org/esr/writings/taoup/html/ch04s01.html
http://www.youtube.com/watch?v=h30ViSEZzW0

CHAPTER 2 DESIGNING SECURITY FOR APIS

MD5

MD5'2 algorithm (an algorithm for message hashing), which was designed in 1992, was
accepted to be a strong hashing algorithm. One of key attributes of a hashing algorithm is,
given the text, the hash corresponding to that text can be generated, but, given a hash, the text
corresponding to the hash cannot be derived. In other words, hashes are not reversible. If the
text can be derived from a given hash, then that hashing algorithm is broken.

The other key attribute of a hashing algorithm is that it should be collision-free. In other words,
any two distinct text messages must not result in the same hash. The MD5 design preserved
both of these two properties at the time of its design. With the available computational power,
it was hard to break MD5 in the early 1990s. As the computational power increased and it was
made available to many people via cloud-based infrastructure as a service (laaS) providers,
like Amazon, MD5 was proven to be insecure. On March 1, 2005, Arjen Lenstra, Xiaoyun Wang,
and Benne de Weger demonstrated that MD5 is susceptible to hash collisions.'

User Experience

The most challenging thing in any security design is to find and maintain the right
balance between security and the user comfort. Say you have the most complex
password policy ever, which can never be broken by any brute-force attack. A password
has to have more than 20 characters, with mandatory uppercase and lowercase letters,
numbers, and special characters. Who on Earth is going to remember their passwords?
Either you'll write it on a piece of paper and keep it in your wallet, or you'll add it as

a note in your mobile device. Either way, you lose the ultimate objective of the strong
password policy. Why would someone carry out a brute-force attack when the password
is written down and kept in a wallet? The principle of psychological acceptability,
discussed later in this chapter, states that security mechanisms should not make the
resource more difficult to access than if the security mechanisms were not present.

We have few good examples from the recent past, where user experience drastically
improved while keeping security intact. Today, with the latest Apple Watch, you can
unlock your MacBook, without retyping the password. Also the face recognition

2RFC 6156: The MD5 Message-Digest Algorithm, https://tools.ietf.org/html/rfc1321
3Colliding X.509 Certificates, http://eprint.iacr.org/2005/067.pdf

38

https://tools.ietf.org/html/rfc1321
http://eprint.iacr.org/2005/067.pdf

CHAPTER 2 DESIGNING SECURITY FOR APIS

technology introduced in the latest iPhones lets you unlock the phone, just by looking at
it. You never even notice that the phone was locked.

It is essential that the human interface be designed for ease of use, so that
users routinely and automatically apply the protection mechanisms cor-
rectly. Also, to the extent that the user's mental image of his protection goals
matches the mechanisms he must use, mistakes will be minimized. If he
must translate his image of his protection needs into a radically different
specification language, he will make errors.

—Jerome Saltzer and Michael Schroeder

Performance

Performance is another key criterion. What is the cost of the overhead you add to your
business operations to protect them from intruders? Say you have an API secured with
a key, and each API call must be digitally signed. If the key is compromised, an attacker
can use it to access the API. How do you minimize the impact? You can make the key
valid only for a very short period; so, whatever the attacker can do with the stolen key
is limited to its lifetime. What kind of impact will this have on legitimate day-to-day
business operations? Each client application should first check the validity period of
the key (before doing the API call) and, if it has expired, make a call to the authorization
server (the issuer of the key) to generate a new key. If you make the lifetime too short,
then almost for each API call, there will be a call to the authorization server to generate
a new key. That kills performance—but drastically reduces the impact of an intruder
getting access to the API key.

The use of TLS for transport-level security is another good example. We will be
discussing TLS in Appendix C, in detail. TLS provides protection for data in transit.
When you pass your login credentials to Amazon or eBay, those are passed over a
secured communication channel, or HTTP over TLS, which is in fact the HTTPS. No one
in the middle will be able to see the data passed from your browser to the web server
(assuming there is no room for a man-in-the-middle attack). But this comes at a cost.
TLS adds more overhead over the plain HTTP communication channel, which would
simply slow down things a bit. For the exact same reason, some enterprises follow the
strategy where all of the communication channels open to the public are over HTTPS,
while the communication between internal servers are over plain HTTP. They make sure

39

CHAPTER 2 DESIGNING SECURITY FOR APIS

no one can intercept any of those internal channels by enforcing strong network-level
security. The other option is to use optimized hardware to carry out the encryption/
decryption process in the TLS communication. Doing encryption/decryption process
at the dedicated hardware level is far more cost-effective than doing the same at the
application level, in terms of performance.

Even with TLS, the message is only protected while it is in transit. As soon as the
message leaves the transport channel, it’s in cleartext. In other words, the protection
provided by TLS is point to point. When you log in to your banking web site from the
browser, your credentials are only secured from your browser to the web server at your
bank. If the web server talks to a Lightweight Directory Access Protocol (LDAP) server
to validate the credentials, once again if this channel is not explicitly protected, then
the credentials will be passed in cleartext. If anyone logs all the in and out messages to
and from the bank’s web server, then your credentials will be logged in plaintext. In a
highly secured environment, this may not be acceptable. Using message-level security
over transport-level security is the solution. With message-level security, as its name
implies, the message is protected by itself and does not rely on the underlying transport
for security. Since this has no dependency on the transport channel, the message will
be still protected, even after it leaves the transport. This once again comes at a high
performance cost. Using message-level protection is much costlier than simply using
TLS. There is no clear-cut definition on making a choice between the security and the
performance. Always there is a compromise, and the decision has to be taken based on
the context.

Weakest Link

A proper security design should care about all the communication links in the system.
Any system is no stronger than its weakest link. In 2010, it was discovered that since
2006, a gang of robbers equipped with a powerful vacuum cleaner had stolen more than
600,000 euros from the Monoprix supermarket chain in France.' The most interesting
thing was the way they did it. They found out the weakest link in the system and attacked
it. To transfer money directly into the store’s cash coffers, cashiers slid tubes filled with

14“Vacuum Gang” Sucks Up $800,000 From Safeboxes, https://gizmodo.com/
vacuum-gang-sucks-up-800-000-from-sateboxes-5647047

40

https://gizmodo.com/vacuum-gang-sucks-up-800-000-from-safeboxes-5647047
https://gizmodo.com/vacuum-gang-sucks-up-800-000-from-safeboxes-5647047

CHAPTER 2 DESIGNING SECURITY FOR APIS

money through pneumatic suction pipes. The robbers realized that it was sufficient to
drill a hole in the pipe near the trunk and then connect a vacuum cleaner to capture the
money. They didn’t have to deal with the coffer shield.

Not always, the weakest link in a system is either a communication channel or an
application. There are many examples which show the humans have turned out to be
the weakest link. The humans are the most underestimated or the overlooked entity in a
security design. Most of the social engineering attacks target humans. In the famous Mat
Honan’s attack, calling to an Amazon helpdesk representative, the attacker was able to
reset Mat Honan’s Amazon credentials. The October 2015 attack on CIA Director John
Brennan’s private email account is another prime example of social engineering.'* The
teen who executed the attack said, he was able to fool a Verizon worker to get Brennan’s
personal information and duping AOL into resetting his password. The worst side of
the story is that Brennan has used his private email account to hold officially sensitive
information—which is again a prime example of a human being the weakest link of the
CIA defense system. Threat modeling is one of the techniques to identify the weakest
links in a security design.

Defense in Depth

A layered approach is preferred for any system being tightened for security. This is
also known as defense in depth. Most international airports, which are at a high risk of
terrorist attacks, follow a layered approach in their security design. On November 1,
2013, a man dressed in black walked into the Los Angeles International Airport, pulled
a semi-automatic rifle out of his bag, and shot his way through a security checkpoint,
killing a TSA screener and wounding at least two other officers.'® This was the first
layer of defense. In case someone got through it, there has to be another to prevent the
gunman from entering a flight and taking control. If there had been a security layer
before the TSA, maybe just to scan everyone who entered the airport, it would have
detected the weapon and probably saved the life of the TSA officer.

NSA (National Security Agency of the United States) identifies defense in depth as
a practical strategy for achieving information assurance in today’s highly networked

“Teen says he hacked CIA director’s AOL account, http://nypost.com/2015/10/18/
stoner-high-school-student-says-he-hacked-the-cia/

'8Gunman kills TSA screener at LAX airport, https://wapo.st/20BfNoI

41

http://nypost.com/2015/10/18/stoner-high-school-student-says-he-hacked-the-cia/
http://nypost.com/2015/10/18/stoner-high-school-student-says-he-hacked-the-cia/
https://wapo.st/2QBfNoI

CHAPTER 2 DESIGNING SECURITY FOR APIS

environments.'” It further explains layered defense under five classes of attack: passive
monitoring of communication channels, active network attacks, exploitation of insiders,
close-in attacks, and attacks through various distribution channels. The link and network
layer encryption and traffic flow security is proposed as the first line of defense for
passive attacks, and the second line of defense is the security-enabled applications. For
active attacks, the first line of defense is the enclave boundaries, while the second line
of defense is the computing environment. The insider attacks are prevented by having
physical and personnel security as the first line of defense and having authentication,
authorization, and audits as the second line of defense. The close-in attacks are
prevented by physical and personnel security as the first layer and having technical
surveillance countermeasures as the second line of defense. Adhering to trusted
software development and distribution practices and via runtime integrity controls
prevents the attacks via multiple distributed channels.

The number of layers and the strength of each layer depend on which assets you
want to protect and the threat level associated with them. Why would someone hire a
security officer and also use a burglar alarm system to secure an empty garage?

Insider Attacks

Insider attacks are less complicated, but highly effective. From the confidential US
diplomatic cables leaked by WikiLeaks to Edward Snowden'’s disclosure about the
National Security Agency’s secret operations, all are insider attacks. Both Snowden

and Bradley Manning were insiders who had legitimate access to the information they
disclosed. Most organizations spend the majority of their security budget to protect
their systems from external intruders; but approximately 60% to 80% of network misuse
incidents originate from inside the network, according to the Computer Security
Institute (CSI) in San Francisco.

There are many prominent insider attacks listed down in the computer security
literature. One of them was reported in March 2002 against the UBS Wealth Management
firm in the United States. UBS is a global leader in wealth management having branches
over 50 countries. Roger Duronio, one of the system administrators at UBS, found guilty
of computer sabotage and securities fraud for writing, planting, and disseminating
malicious code that took down up to 2000 servers. The US District Court in Newark,

"Defense in Depth, waww.nsa.gov/ia/ files/support/defenseindepth.pdf

42

http://www.nsa.gov/ia/_files/support/defenseindepth.pdf

CHAPTER 2 DESIGNING SECURITY FOR APIS

New Jersey, sentenced him for 97 months in jail.’® The Target data breach that we
discussed at the beginning of the chapter is another prime example for an insider
attack. In that case, even the attackers were not insiders, they gained access to the
Target internal system using the credentials of an insider, who is one of the company’s
refrigeration vendors.

According to an article by Harvard Business Review (HBR),' at least 80 million
insider attacks take place in the United States each year. HBR further identifies three
causes for the growth of insider attacks over the years:

e Oneis the dramatic increase in the size and the complexity of IT. As
companies grow in size and business, a lot of isolated silos are being
created inside. One department does not know what the other does.
In 2005 call center staffers based in Pune, India, defrauded four
Citibank account holders in New York of nearly $350,000, and later
it was found those call center staffers are outsourced employees of
Citibank itself and had legitimate access to customers’ PINs and
account numbers.

o The employees who use their own personal devices for work are
another cause for the growing insider threats. According to a report
released by Alcatel-Lucent in 2014, 11.6 million mobile devices
worldwide are infected at any time.? An attacker can easily exploit
an infected device of an insider to carry out an attack against the
company.

e The third cause for the growth of insider threats, according to the
HBR, is the social media explosion. Social media allow all sorts of
information to leak from a company and spread worldwide, often
without the company’s knowledge.

Undoubtedly, insider attacks are one of the hardest problems to solve in a security
design. These can be prevented to some extent by adopting robust insider policies,
raising awareness, doing employee background checks at the point of hiring them,

8UBS insider attack, www.informationweek.com/ex-ubs-systems-admin-sentenced-to-
97-months-in-jail/d/d-1d/1049873
“The Danger from Within, https://hbr.org/2014/09/the-danger-from-within

2Surge in mobile network infections in 2013, http://phys.org/news/2014-01-surge-mobile-
network-infections.html

43

http://www.informationweek.com/ex-ubs-systems-admin-sentenced-to-97-months-in-jail/d/d-id/1049873
http://www.informationweek.com/ex-ubs-systems-admin-sentenced-to-97-months-in-jail/d/d-id/1049873
https://hbr.org/2014/09/the-danger-from-within
http://phys.org/news/2014-01-surge-mobile-network-infections.html
http://phys.org/news/2014-01-surge-mobile-network-infections.html

CHAPTER 2 DESIGNING SECURITY FOR APIS

enforcing strict processes and policies on subcontractors, and continuous monitoring of
employees. In addition to these, SANS Institute also published a set of guidelines in 2009
to protect organizations from insider attacks.?!

Note Insider attacks are identified as a growing threat in the military. To address
this concern, the US Defense Advanced Research Projects Agency (DARPA)
launched a project called Cyber Insider Threat (CINDER) in 2010. The objective of
this project was to develop new ways to identify and mitigate insider threats as
soon as possible.

Security by Obscurity

Kerckhoffs’ principle?” emphasizes that a system should be secured by its design, not
because the design is unknown to an adversary. One common example of security by
obscurity is how we share door keys between family members, when there is only a
single key. Everyone locks the door and hides the key somewhere, which is known to
all the other family members. The hiding place is a secret, and it is assumed only family
members know about it. In case if someone can find the hiding place, the house is no
more secured.

Another example for security by obscurity is Microsoft’s NTLM (an authentication
protocol) design. It was kept secret for some time, but at the point (to support
interoperability between Unix and Windows) Samba engineers reverse-engineered it,
they discovered security vulnerabilities caused by the protocol design itself. Security by
obscurity is widely accepted as a bad practice in computer security industry. However,
one can argue it as another layer of security before someone hits the real security layer.
This can be further explained by extending our first example. Let’s say instead of just
hiding the door key somewhere, we put it to a lock box and hide it. Only the family
members know the place where the lock box is hidden and also the key combination to

*'Protecting Against Insider Attacks, www.sans.org/reading-room/whitepapers/incident/
protecting-insider-attacks-33168

#2In 1883, Auguste Kerckhoffs published two journal articles on La Cryptographie Militaire in
which he emphasized six design principles for military ciphers. This resulted in the well-known
Kerckhofts’ principle: A cryptosystem should be secured even if everything about the system,
except the key, is public knowledge.

44

http://www.sans.org/reading-room/whitepapers/incident/protecting-insider-attacks-33168
http://www.sans.org/reading-room/whitepapers/incident/protecting-insider-attacks-33168

CHAPTER 2 DESIGNING SECURITY FOR APIS

open the lock box. The first layer of defense is the location of the box, and the second
layer is the key combination to open the lock box. In fact in this case, we do not mind
anyone finding the lock box, because finding the lock box itself is not sufficient to open
the door. But, anyone who finds the lock box can break it to get the key out, rather than
trying out the key combination. In that case, security by obscurity adds some value as a
layer of protection—but it’s never good by its own.

Design Principles

Jerome Saltzer and Michael Schroeder produced one of the most widely cited research
papers in the information security domain.* According to the paper, irrespective of
the level of functionality provided, the effectiveness of a set of protection mechanisms
depends upon the ability of a system to prevent security violations. In most of the
cases, building a system at any level of functionality that prevents all unauthorized
actions has proved to be extremely difficult. For an advanced user, it is not hard to find
at least one way to crash a system, preventing other authorized users accessing the
system. Penetration tests that involved a large number of different general-purpose
systems have shown that users can build programs to obtain unauthorized access to
information stored within. Even in systems designed and implemented with security
as a top priority, design and implementation flaws could provide ways around the
intended access restrictions. Even though the design and construction techniques that
could systematically exclude flaws are the topic of much research activity, according

to Jerome and Michael, no complete method applicable to the construction of large
general-purpose systems existed during the early 1970s. In this paper, Jerome Saltzer and
Michael Schroeder further highlight eight design principles for securing information in
computer systems, as described in the following sections.

Least Privilege

The principle of least privilege states that an entity should only have the required set
of permissions to perform the actions for which they are authorized, and no more.
Permissions can be added as needed and should be revoked when no longer in use.

#The Protection of Information in Computer Systems, http://web.mit.edu/Saltzer/www/
publications/protection/, October 11, 1974.

45

http://web.mit.edu/Saltzer/www/publications/protection/
http://web.mit.edu/Saltzer/www/publications/protection/

CHAPTER 2 DESIGNING SECURITY FOR APIS

This limits the damage that can result from an accident or error. The need to know
principle, which follows the least privilege philosophy, is popular in military security.
This states that even if someone has all the necessary security clearance levels to access
information, they should not be granted access unless there is a real/proven need.

Unfortunately, this principle didn’t apply in the case of Edward Snowden,* or he
was clever enough to work around it. Edward Snowden who worked for NSA (National
Security Agency of the United States) as a contractor in Hawaii used unsophisticated
techniques to access and copy an estimated 1.7 million classified NSA files. He was
an employee of NSA and had legitimate access to all the information he downloaded.
Snowden used a simple web crawler, similar to Google’s Googlebot (which collects
documents from the Web to build a searchable index for the Google Search engine),
to crawl and scrape all the data from NSA’s internal wiki pages. Being a system
administrator, Snowden’s role was to back up the computer systems and move
information to local servers; he had no need to know the content of the data.

ISO 27002 (formerly known as ISO 17799) also emphasizes on the least privilege
principle. ISO 27002 (Information Technology - Code of Practice for Information Security
Management) standard is a well-known, widely used standard in the information
security domain. It was originally developed by the British Standards Institution and
called the BS7799 and subsequently accepted by the International Organization for
Standardization (ISO) and published under their title in December 2000. According to
ISO 27002, privileges should be allocated to individuals on a need-to-use basis and on
an event-by-event basis, that is, the minimum requirement for their functional role only
when needed. It further identifies the concept of “zero access” to start, which suggests
that no access or virtually no access is the default, so that all subsequent access and the
ultimate accumulation can be traced back through an approval process.?

Fail-Safe Defaults

The fail-safe defaults principle highlights the importance of making a system safe by
default. A user’s default access level to any resource in the system should be “denied”
unless they’'ve been granted a “permit” explicitly. A fail-safe design will not endanger the

2*Snowden Used Low-Cost Tool to Best NSA, www.nytimes.com/2014/02/09/us/snowden-used-
low-cost-tool-to-best-nsa.html

Implementing Least Privilege at Your Enterprise, waw. sans.org/reading-room/whitepapers/
bestprac/implementing-privilege-enterprise-1188

46

http://www.nytimes.com/2014/02/09/us/snowden-used-low-cost-tool-to-best-nsa.html
http://www.nytimes.com/2014/02/09/us/snowden-used-low-cost-tool-to-best-nsa.html
http://www.sans.org/reading-room/whitepapers/bestprac/implementing-privilege-enterprise-1188
http://www.sans.org/reading-room/whitepapers/bestprac/implementing-privilege-enterprise-1188

CHAPTER 2 DESIGNING SECURITY FOR APIS

system when it fails. The Java Security Manager implementation follows this principle—
once engaged, none of the components in the system can perform any privileged
operations unless explicitly permitted. Firewall rules are another example. Data packets
are only allowed through a firewall when it’s explicitly allowed; otherwise everything is
denied by default.

Any complex system will have failure modes. Failures are unavoidable and should be
planned for, to make sure that no security risks get immerged as part of a system failure.
Possibility of failures is an assumption made under the security design philosophy,
defense in depth. If no failures are expected, there is no point of having multiple layers
of defense. Let’s go through an example where every one of us is most probably familiar
with: credit card verification. When you swipe your credit card at a retail store, the credit
card machine there connects to the corresponding credit card service to verify the card
details. The credit card verification service will verify the transaction after considering
the available amount in the card, whether the card is reported as lost or blacklisted, and
other context-sensitive information like the location where the transaction is initiated
from, the time of the day, and many other factors. If the credit card machine fails to
connect to the verification service, what would happen? In such case, the merchants are
given a machine to get an imprint of your card manually. Getting an imprint of the card
is not just sufficient, as it does not do any verification. The merchant also has to talk to
his bank over the phone, authenticate by providing the merchant number, and then get
the transaction verified. That’s the fail-safe process for credit card verification, as the
failure of the credit card transaction machine does not lead into any security risks. In
case the merchant’s phone line is also completely down, then according to the fail-safe
defaults principle, the merchant should avoid accepting any credit card payments.

The failure to adhere to fail-safe defaults has resulted in many TLS (Transport Layer
Security)/SSL (Secure Sockets Layer) vulnerabilities. Most of the TLS/SSL vulnerabilities
are based on the TLS/SSL downgrade attack, where the attacker makes the server to
use a cryptographically weak cipher suite (we discuss TLS in depth in Appendix C). In
May 2015, a group from INRIA, Microsoft Research, Johns Hopkins, the University of
Michigan, and the University of Pennsylvania published a deep analysis* of the Diffie-
Hellman algorithm as used in TLS and other protocols. This analysis included a novel
downgrade attack against the TLS protocol itself called Logjam, which exploits export
cryptography. Export ciphers are weaker ciphers that were intentionally designed to be

*Imperfect Forward Secrecy: How Diffie-Hellman Fails in Practice, https://weakdh.org/
imperfect-forward-secrecy-ccsi15.pdf

47

https://weakdh.org/imperfect-forward-secrecy-ccs15.pdf
https://weakdh.org/imperfect-forward-secrecy-ccs15.pdf

CHAPTER 2 DESIGNING SECURITY FOR APIS

weaker to meet certain legal requirements enforced by the US government, in 1990s.
Only weaker ciphers were legally possible to export into other countries outside the
United States. Even though this legal requirement was lifted later on, most of the popular
application servers still support export ciphers. The Logjam attack exploited the servers
having support for export ciphers by altering the TLS handshake and forcing the servers
to use a weaker cipher suite, which can be broken later on. According to the fail-safe
defaults principle, in this scenario, the server should abort the TLS handshake when they
see a cryptographically weaker algorithm is suggested by the client, rather than accepting
and proceeding with it.

Economy of Mechanism

The economy of mechanism principle highlights the value of simplicity. The design
should be as simple as possible. All the component interfaces and the interactions
between them should be simple enough to understand. If the design and the
implementation were simple, the possibility of bugs would be low, and at the same
time, the effort on testing would be less. A simple and easy-to-understand design and
implementation would also make it easy to modify and maintain, without introducing
bugs exponentially. As discussed earlier in this chapter, Gary McGraw in his book,
Software Security, highlights complexity in both the code and the system design as one
attribute that is responsible for the high rate of data breaches.

The keep it simple, stupid (KISS) principle introduced by the US Navy in 1960 is quite
close to what Jerome Saltzer and Michael Schroeder explained under the economy of
mechanism principle. It states that most systems work best if they are kept simple rather
than made complicated.”” In practice, even though we want to adhere to the KISS principle,
from operating systems to application code, everything is becoming more and more
complex. Microsoft Windows 3.1 in 1990 started with a codebase slightly over 3 million lines
of code. Over time, requirements got complex, and in 2001 Windows XP codebase crossed
40 million lines of code. As we discussed before in this chapter, at the time of this writing, the
complete Google codebase to run all its Internet services was around 2 billion lines of code.
Even though one can easily argue the increased number of lines of code will not directly
reflect the code complexity, in most of the cases, sadly it’s the case.

2’KISS principle, https://en.wikipedia.org/wiki/KISS_principle

48

https://en.wikipedia.org/wiki/KISS_principle

CHAPTER 2 DESIGNING SECURITY FOR APIS

Complete Mediation

With complete mediation principle, a system should validate access rights to all its
resources to ensure whether they're allowed to access or not. Most systems do access
validation once at the entry point to build a cached permission matrix. Each subsequent
operation will be validated against the cached permission matrix. This pattern is

mostly followed to address performance concerns by reducing the time spent on policy
evaluation, but could quite easily invite attackers to exploit the system. In practice, most
systems cache user permissions and roles, but employ a mechanism to clear the cache in
an event of a permission or role update.

Let’s have a look at an example. When a process running under the UNIX operating
system tries to read a file, the operating system itself determines whether the process
has the appropriate rights to read the file. If that is the case, the process receives a file
descriptor encoded with the allowed level of access. Each time the process reads the file,
it presents the file descriptor to the kernel. The kernel examines the file descriptor and
then allows the access. In case the owner of the file revokes the read permission from
the process after the file descriptor is issued, the kernel still allows access, violating the
principle of complete mediation. According to the principle of complete mediation, any
permission update should immediately reflect in the application runtime (if cached,
then in the cache).

Open Design

The open design principle highlights the importance of building a system in an open
manner—with no secrets, confidential algorithms. This is the opposite of security by
obscurity, discussed earlier in the section “Design Challenges.” Most of the strong
cryptographic algorithms in use today are designed and implemented openly. One
good example is the AES (Advanced Encryption Standard) symmetric key algorithm.
NIST (National Institute of Standards and Technology, United States) followed an open
process, which expanded from 1997 to 2000 to pick the best cryptographically strong
algorithm for AES, to replace DES (Data Encryption Standard), which by then was
susceptible to brute-force attacks. On January 2, 1997, the initial announcement was
made by NIST regarding the competition to build an algorithm to replace DES. During
the first nine months, after the competition began, there were 15 different proposals
from several countries. All the designs were open, and each one of them was subjected
to thorough cryptanalysis. NIST also held two open conferences to discuss the proposals,

49

CHAPTER 2 DESIGNING SECURITY FOR APIS

in August 1998 and March 1999, and then narrowed down all 15 proposals into 5. After
another round of intense analysis during the April 2000 AES conference, the winner was
announced in October 2000, and they picked Rijndael as the AES algorithm. More than
the final outcome, everyone (even the losers of the competition) appreciated NIST for
the open process they carried throughout the AES selection phase.

The open design principle further highlights that the architects or developers of a
particular application should not rely on the design or coding secrets of the application
to make it secure. If you rely on open source software, then this is not even possible at
all. There are no secrets in open source development. Under the open source philosophy
from the design decisions to feature development, all happens openly. One can easily
argue, due to the exact same reason, open source software is bad in security. This is
a very popular argument against open source software, but facts prove otherwise.
According to a report® by Netcraft published in January 2015, almost 51% of all active
sites in the Internet are hosted on web servers powered by the open source Apache web
server. The OpenSSL library, which is another open source project implementing the
SSL (Secure Sockets Layer) and TLS (Transport Layer Security) protocols, is used by
more than 5.5 million web sites in the Internet, by November 2015.% If anyone seriously
worries about the security aspects of open source, it’s highly recommended for him
or her to read the white paper published by SANS Institute, under the topic Security
Concerns in Using Open Source Software for Enterprise Requirements.*

Note Gartner predicts, by 2020, 98% of IT organizations will leverage open
source software technology in their mission-critical IT portfolios, including many
cases where they will be unaware of it.*'

%Netcraft January 2015 Web Server Survey, http://news.netcraft.com/archives/2015/01/15/
january-2015-web-server-survey.html

»0penSSL Usage Statistics, http://trends.builtwith.com/Server/OpenSSL

$Security Concerns in Using Open Source Software for Enterprise Requirements, www.sans.org/
reading-room/whitepapers/awareness/security-concerns-open-source-software-
enterprise-requirements-1305

$IMiddleware Technologies—Enabling Digital Business, waw.gartner.com/doc/3163926/
hightech-tuesday-webinar-middleware-technologies

50

http://news.netcraft.com/archives/2015/01/15/january-2015-web-server-survey.html
http://news.netcraft.com/archives/2015/01/15/january-2015-web-server-survey.html
http://trends.builtwith.com/Server/OpenSSL
http://www.sans.org/reading-room/whitepapers/awareness/security-concerns-open-source-software-enterprise-requirements-1305
http://www.sans.org/reading-room/whitepapers/awareness/security-concerns-open-source-software-enterprise-requirements-1305
http://www.sans.org/reading-room/whitepapers/awareness/security-concerns-open-source-software-enterprise-requirements-1305
http://www.gartner.com/doc/3163926/hightech-tuesday-webinar-middleware-technologies
http://www.gartner.com/doc/3163926/hightech-tuesday-webinar-middleware-technologies

CHAPTER 2 DESIGNING SECURITY FOR APIS

Separation of Privilege

The principle of separation of privilege states that a system should not grant permissions
based on a single condition. The same principle is also known as segregation of duties,
and one can look into it from multiple aspects. For example, say a reimbursement claim
can be submitted by any employee but can only be approved by the manager. What if
the manager wants to submit a reimbursement? According to the principle of separation
of privilege, the manager should not be granted the right to approve his or her own
reimbursement claims.

Itis interesting to see how Amazon follows the separation of privilege principle in
securing AWS (Amazon Web Services) infrastructure. According to the security white
paper®*? published by Amazon, the AWS production network is segregated from the
Amazon Corporate network by means of a complex set of network security/segregation
devices. AWS developers and administrators on the corporate network who need
to access AWS cloud components in order to maintain them must explicitly request
access through the AWS ticketing system. All requests are reviewed and approved
by the applicable service owner. Approved AWS personnel then connect to the AWS
network through a bastion host that restricts access to network devices and other cloud
components, logging all activity for security review. Access to bastion hosts require SSH
public key authentication for all user accounts on the host.

NSA (National Security Agency, United States) too follows a similar strategy. In a fact
sheet® published by NSA, it highlights the importance of implementing the separation
of privilege principle at the network level. Networks are composed of interconnected
devices with varying functions, purposes, and sensitivity levels. Networks can consist
of multiple segments that may include web servers, database servers, development
environments, and the infrastructure that binds them together. Because these segments
have different purposes as well as different security concerns, segregating them
appropriately is paramount in securing a network from exploitation and malicious
intent.

$2AWS security white paper, https://do.awsstatic.com/whitepapers/aws-security-
whitepaper.pdf

$Segregating networks and functions, www.nsa.gov/ia/ files/factsheets/I43V Slick
Sheets/Slicksheet SegregatingNetworksAndFunctions Web.pdf

51

https://d0.awsstatic.com/whitepapers/aws-security-whitepaper.pdf
https://d0.awsstatic.com/whitepapers/aws-security-whitepaper.pdf
http://www.nsa.gov/ia/_files/factsheets/I43V_Slick_Sheets/Slicksheet_SegregatingNetworksAndFunctions_Web.pdf
http://www.nsa.gov/ia/_files/factsheets/I43V_Slick_Sheets/Slicksheet_SegregatingNetworksAndFunctions_Web.pdf

CHAPTER 2 DESIGNING SECURITY FOR APIS

Least Common Mechanism

The principle of least common mechanism concerns the risk of sharing state
information among different components. In other words, it says that mechanisms
used to access resources should not be shared. This principle can be interpreted in
multiple angles. One good example is to see how Amazon Web Services (AWS) works

as an infrastructure as a service (IaaS) provider. Elastic Compute Cloud, or EC2, is

one of the key services provided by AWS. Netflix, Reddit, Newsweek, and many other
companies run their services on EC2. EC2 provides a cloud environment to spin up and
down server instances of your choice based on the load you get. With this approach,
you do not need to plan before for the highest expected load and let the resources idle
most of the time when there is low load. Even though in this case, each EC2 user gets his
own isolated server instance running its own guest operating system (Linux, Windows,
etc.), ultimately all the servers are running on top of a shared platform maintained

by AWS. This shared platform includes a networking infrastructure, a hardware
infrastructure, and storage. On top of the infrastructure, there runs a special software
called hypervisor. All the guest operating systems are running on top of the hypervisor.
Hypervisor provides a virtualized environment over the hardware infrastructure. Xen
and KVM are two popular hypervisors, and AWS is using Xen internally. Even though a
given virtual server instance running for one customer does not have access to another
virtual server instance running for another customer, if someone can find a security hole
in the hypervisor, then he can get the control of all the virtual server instances running
on EC2. Even though this sounds like nearly impossible, in the past there were many
security vulnerabilities reported against the Xen hypervisor.**

The principle of least common mechanism encourages minimizing common,
shared usage of resources. Even though the usage of common infrastructure cannot be
completely eliminated, its usage can be minimized based on business requirements.
AWS Virtual Private Cloud (VPC) provides a logically isolated infrastructure for each of
its users. Optionally, one can also select to launch dedicated instances, which run on
hardware dedicated to each customer for additional isolation.

The principle of least common mechanism can also be applied to a scenario where
you store and manage data in a shared multitenanted environment. If we follow the
strategy shared everything, then the data from different customers can be stored in

3#Xen Security Advisories, http://xenbits.xen.org/xsa/

52

http://xenbits.xen.org/xsa/

CHAPTER 2 DESIGNING SECURITY FOR APIS

the same table of the same database, isolating each customer data by the customer id.
The application, which accesses the database, will make sure that a given customer
can only access his own data. With this approach, if someone finds a security hole in
the application logic, he can access all customer data. The other approach could be to
have an isolated database for each customer. This is a more expensive but much secure
option. With this we can minimize what is being shared between customers.

Psychological Acceptability

The principle of psychological acceptability states that security mechanisms should not
make the resource more difficult to access than if the security mechanisms were not
present. Accessibility to resources should not be made difficult by security mechanisms.
If security mechanisms kill the usability or accessibility of resources, then users may find
ways to turn off those mechanisms. Wherever possible, security mechanisms should be
transparent to the users of the system or at most introduce minimal distractions. Security
mechanisms should be user-friendly to encourage the users to occupy them more
frequently.

Microsoft introduced information cards in 2005 as a new paradigm for
authentication to fight against phishing. But the user experience was bad, with a high
setup cost, for people who were used to username/password-based authentication. It
went down in history as another unsuccessful initiative from Microsoft.

Most of the web sites out there use CAPTCHA as a way to differentiate human beings
from automated scripts. CAPTCHA is in fact an acronym, which stands for Completely
Automated Public Turing test to tell Computers and Humans Apart. CAPTCHA is
based on a challenge-response model and mostly used along with user registration
and password recovery functions to avoid any automated brute-force attacks. Even
though this tightens up security, this also could easily kill the user experience. Some
of the challenges provided by certain CAPTCHA implementations are not even
readable to humans. Google tries to address this concern with Google reCAPTCHA.*
With reCAPTCHA users can attest they are humans without having to solve a
CAPTCHA. Instead, with just a single click, one can confirm that he is not a robot. This is
also known as No CAPTCHA reCAPTCHA experience.

%Google reCAPTCHA, www.google.com/recaptcha/intro/index.html

53

http://www.google.com/recaptcha/intro/index.html

CHAPTER 2 DESIGNING SECURITY FOR APIS

Security Triad

Confidentiality, integrity, and availability (CIA), widely known as the triad of information
security, are three key factors used in benchmarking information systems security. This
is also known as CIA triad or AIC triad. The CIA triad helps in both designing a security
model and assessing the strength of an existing security model. In the following sections,
we discuss the three key attributes of the CIA triad in detail.

Confidentiality

Confidentiality attribute of the CIA triad worries about how to protect data from
unintended recipients, both at rest and in transit. You achieve confidentiality by
protecting transport channels and storage with encryption. For APIs, where the transport
channel is HTTP (most of the time), you can use Transport Layer Security (TLS), which
is in fact known as HTTPS. For storage, you can use disk-level encryption or application-
level encryption. Channel encryption or transport-level encryption only protects a
message while it’s in transit. As soon as the message leaves the transport channel, it’s
no more secure. In other words, transport-level encryption only provides point-to-point
protection and truncates from where the connection ends. In contrast, there is message-
level encryption, which happens at the application level and has no dependency on the
transport channel. In other words, with message-level encryption, the application itself
has to worry about how to encrypt the message, prior to sending it over the wire, and it’s
also known as end-to-end encryption. If you secure data with message-level encryption,
then you can use even an insecure channel (like HTTP) to transport the message.

A TLS connection, when going through a proxy, from the client to the server can
be established in two ways: either with TLS bridging or with TLS tunneling. Almost all
proxy servers support both modes. For a highly secured deployment, TLS tunneling is
recommended. In TLS bridging, the initial connection truncates from the proxy server,
and a new connection to the gateway (or the server) is established from there. That
means the data is in cleartext while inside the proxy server. Any intruder who can plant
malware in the proxy server can intercept traffic that passes through. With TLS tunneling,
the proxy server facilitates creating a direct channel between the client machine and the
gateway (or the server). The data flow through this channel is invisible to the proxy server.

Message-level encryption, on the other hand, is independent from the underlying
transport. It’s the application developers’ responsibility to encrypt and decrypt
messages. Because this is application specific, it hurts interoperability and builds tight

54

CHAPTER 2 DESIGNING SECURITY FOR APIS

couplings between the sender and the receiver. Each has to know how to encrypt/
decrypt data beforehand—which will not scale well in a largely distributed system.

To overcome this challenge, there have been some concentrated efforts to build
standards around message-level security. XML Encryption is one such effort, led by the
W3C. It standardizes how to encrypt an XML payload. Similarly, the IETF JavaScript
Object Signing and Encryption (JOSE) working group has built a set of standards for
JSON payloads. In Chapters 7 and 8, we discuss JSON Web Signature and JSON Web
Encryption, respectively—which are two prominent standards in securing JSON
messages.

Note Secure Sockets Layer (SSL) and Transport Layer Security (TLS) are often
used interchangeably, but in pure technical terms, they aren’t the same. TLS is the
successor of SSL 3.0. TLS 1.0, which is defined under the IETF RFC 2246, is based
on the SSL 3.0 protocol specification, which was published by Netscape. The
differences between TLS 1.0 and SSL 3.0 aren’t dramatic, but they’re significant
enough that TLS 1.0 and SSL 3.0 don’t interoperate.

There are few more key differences between transport-level security and message-
level security, in addition to what were discussed before.

o Transport-level security being point to point, it encrypts the entire
message while in transit.

e Since transport-level relies on the underlying channel for protection,
application developers have no control over which part of the data to
encrypt and which part not to.

o Partial encryption isn’t supported by transport-level security, but it is
supported by message-level security.

o Performance is a key factor, which differentiates message-level security
from transport-level security. Message-level encryption is far more
expensive than transport-level encryption, in terms of resource
consumption.

55

CHAPTER 2 DESIGNING SECURITY FOR APIS

o Message-level encryption happens at the application layer, and it has
to take into consideration the type and the structure of the message
to carry out the encryption process. If it's an XML message, then the
process defined in the XML Encryption standard has to be followed.

Integrity

Integrity is a guarantee of data’s correctness and trustworthiness and the ability to detect
any unauthorized modifications. It ensures that data is protected from unauthorized

or unintentional alteration, modification, or deletion. The way to achieve integrity is
twofold: preventive measures and detective measures. Both measures have to take care
of data in transit as well as data at rest.

To prevent data from alteration while in transit, you should use a secure channel that
only intended parties can read or do message-level encryption. TLS (Transport Layer
Security) is the recommended approach for transport-level encryption. TLS itself has a way
of detecting data modifications. It sends a message authentication code in each message
from the first handshake, which can be verified by the receiving party to make sure the
data has not been modified while in transit. If you use message-level encryption to prevent
data alteration, then to detect any modification in the message at the recipient, the sender
has to sign the message, and with the public key of the sender, the recipient can verify the
signature. Similar to what we discussed in the previous section, there are standards based
on the message type and the structure, which define the process of signing. If it’s an XML
message, then the XML Signature standard by W3C defines the process.

For data at rest, you can calculate the message digest periodically and keep itin a
secured place. The audit logs, which can be altered by an intruder to hide suspicious
activities, need to be protected for integrity. Also with the advent of network storage
and new technology trends, which have resulted in new failure modes for storage,
interesting challenges arise in ensuring data integrity. A paper® published by Gopalan
Sivathanu, Charles P. Wright, and Erez Zadok of Stony Brook University highlights the
causes of integrity violations in storage and presents a survey of integrity assurance
techniques that exist today. It describes several interesting applications of storage
integrity checking, apart from security, and discusses the implementation issues
associated with those techniques.

%Ensuring Data Integrity in Storage: Techniques and Applications, waw.fsl.cs.sunysb.edu/
docs/integrity-storagesso5/integrity.html

56

http://www.fsl.cs.sunysb.edu/docs/integrity-storagess05/integrity.html
http://www.fsl.cs.sunysb.edu/docs/integrity-storagess05/integrity.html

CHAPTER 2 DESIGNING SECURITY FOR APIS

Note HTTP Digest authentication with the quality of protection (qop) value set to
auth-int can be used to protect messages for integrity. Appendix F discusses
HTTP Digest authentication in depth.

Availability

Making a system available for legitimate users to access all the time is the ultimate goal
of any system design. Security isn’t the only aspect to look into, but it plays a major
role in keeping the system up and running. The goal of the security design should be to
make the system highly available by protecting it from illegal access attempts. Doing so
is extremely challenging. Attacks, especially on a public API, can vary from an attacker
planting malware in the system to a highly organized distributed denial of service
(DDoS) attack.

DDoS attacks are hard to eliminate fully, but with a careful design, they can be
minimized to reduce their impact. In most cases, DDoS attacks must be detected at the
network perimeter level—so, the application code doesn’t need to worry too much.
But vulnerabilities in the application code can be exploited to bring a system down.

A paper®* published by Christian Mainka, Juraj Somorovsky, Jorg Schwenk, and Andreas
Falkenberg discusses eight types of DoS attacks that can be carried out against SOAP-
based APIs with XML payloads:

o Coercive parsing attack: The attacker sends an XML document with a
deeply nested XML structure. When a DOM-based parser processes
the XML document, an out-of-memory exception or a high CPU load

can occur.

o SOAP array attack: Forces the attacked web service to declare a very
large SOAP array. This can exhaust the web service’s memory.

o XML element count attack: Attacks the server by sending a SOAP
message with a high number of non-nested elements.

%A New Approach towards DoS Penetration Testing on Web Services, www.nds.rub.de/media/
nds/veroeffentlichungen/2013/07/19/ICWS_DoS.pdf

57

http://www.nds.rub.de/media/nds/veroeffentlichungen/2013/07/19/ICWS_DoS.pdf
http://www.nds.rub.de/media/nds/veroeffentlichungen/2013/07/19/ICWS_DoS.pdf

CHAPTER 2 DESIGNING SECURITY FOR APIS

e XML attribute count attack: Attacks the server by sending a SOAP
message with a high attribute count.

o XML entity expansion attack: Causes a system failure by forcing the
server to recursively resolve entities defined in a document type
definition (DTD). This attack is also known as an XML bomb or a
billion laughs attack.

e XML external entity DoS attack: Causes a system failure by forcing
the server to resolve a large external entity defined in a DTD. If an
attacker is able to execute the external entity attack, an additional
attack surface may appear.

e XML overlong name attack: Injects overlong XML nodes in the XML
document. Overlong nodes can be overlong element names, attribute
names, attribute values, or namespace definitions.

e Hash collision attack (HashDoS): Different keys result in the same
bucket assignments, causing a collision. A collision leads to resource-
intensive computations in the bucket. When a weak hash function is
used, an attacker can intentionally create hash collisions that lead to
a system failure.

Most of these attacks can be prevented at the application level. For CPU- or memory-
intensive operations, you can keep threshold values. For example, to prevent a coercive
parsing attack, the XML parser can enforce a limit on the number of elements. Similarly,
if your application executes a thread for a longer time, you can set a threshold and kill it.
Aborting any further processing of a message as soon as it’s found to be not legitimate is
the best way to fight against DoS attacks. This also highlights the importance of having
authentication/authorization checks closest to the entry point of the flow.

Note According to eSecurity Planet, one of the largest DDoS attacks hit the
Internet in March 2013 and targeted the Cloudflare network with 120 Gbps. The
upstream providers were hit by 300 Gbps DDoS at the peak of the attack.

58

CHAPTER 2 DESIGNING SECURITY FOR APIS

There are also DoS attacks carried out against JSON vulnerabilities. CVE-2013-0269%
explains a scenario in which a carefully crafted JSON message can be used to trigger the
creation of arbitrary Ruby symbols or certain internal objects, to result in a DoS attack.

Security Control

The CIA triad (confidentiality, integrity, and availability), which we discussed in detail in
the previous section of this chapter, is one of the core principles of information security.
In achieving CIA, authentication, authorization, nonrepudiation, and auditing are four
prominent controls, which play a vital role. In the following sections, we discuss these
four security controls in detail.

Authentication

Authentication is the process of identifying a user, a system, or a thing in a unique
manner to prove that it is the one who it claims to be. Authentication can be direct

or brokered, based on how you bring your authentication assertions. If you directly

log in to a system just providing your username and password, it falls under direct
authentication. In other words, under direct authentication, the entity which wants

to authenticate itself presents the authentication assertions to the service it wants to
access. Under brokered authentication, there is a third party involved. This third party
is commonly known as an identity provider. When you log in to your Yelp account via
Facebook, it falls under brokered authentication, and Facebook is the identity provider.
With brokered authentication, the service provider (or the website you want to log in, or
the API you want to access) does not trust you directly. It only trusts an identity provider.
You can access the service only if the trusted identity provider (by the service provider)
passes a positive assertion to the service provider.

Authentication can be done in a single factor or in multiple factors (also known as
multifactor authentication). Something you know, something you are, and something you
have are the well-known three factors of authentication. For multifactor authentication,
a system should use a combination of at least two factors. Combining two techniques

CVE-2013-0269, https://nvd.nist.gov/vuln/detail/CVE-2013-0269

59

https://nvd.nist.gov/vuln/detail/CVE-2013-0269

CHAPTER 2 DESIGNING SECURITY FOR APIS

that fall under the same category isn’t considered multifactor authentication. For
example, entering a username and a password and then a PIN number isn’t considered
multifactor authentication, because both fall under the something you know category.

Note Google two-step verification falls under multifactor authentication. First

you need to provide a username and a password (something you know), and then
a PIN is sent to your mobile phone. Knowing the PIN verifies that the registered
mobile phone is under your possession: it’s something you have. Then again one
can argue this is not multifactor authentication, because you only need to know
the PIN, having the phone with you to get the PIN is not mandatory. This sounds bit
weird, but Grant Blakeman’s incident proved exactly the same thing.*® An attacker
was able to set a call forwarding number into Grant’s cell phone and was able to
receive Google password reset information to the new number (via call forwarding).

Something You Know

Passwords, passphrases, and PIN numbers belong to the category of something you
know. This has been the most popular form of authentication not just for decades but
also for centuries. It goes back to the eighteenth century. In the Arabian folktale Ali Baba
and the Forty Thieves from One Thousand and One Nights, Ali Baba uses the passphrase
“open sesame” to open the door to a hidden cave. Since then, this has become the

most popular form of authentication. Unfortunately, it’s also the weakest form of
authentication. Password-protected systems can be broken in several ways. Going back
to Ali Baba’s story, his brother-in-law got stuck in the same cave without knowing the
password and tried shouting all the words he knew. This, in modern days, is known as

a brute-force attack. The first known brute-force attack took place in the 18th century.
Since then, it has become a popular way of breaking password-secured systems.

$¥The value of a name, https://ello.co/gb/post/knOhWk-qeTqfSpl6+8-arCQ

60

https://ello.co/gb/post/knOWk-qeTqfSpJ6f8-arCQ

CHAPTER 2 DESIGNING SECURITY FOR APIS

Note In April 2013, WordPress was hit with a brute-force attack of massive scale.
The average scans per day in April were more than 100,000.%° There are different
forms of brute-force attacks. The dictionary attack is one of them, where the
brute-force attack is carried out with a limited set of inputs based on a dictionary
of commonly used words. This is why you should have a corporate password policy
that should enforce strong passwords with mixed alphanumeric characters that
aren’t found in dictionaries. Most public web sites enforce a CAPTCHA after few
failed login attempts. This makes automated/tool-based brute-force attacks harder
to execute.

Something You Have

Certificates and smart card-based authentication fall into the category of something you
have. This is a much stronger form of authentication than something you know. TLS
mutual authentication is the most popular way of securing APIs with client certificates;
this is covered in detail in Chapter 3.

FIDO (Fast IDentity Online) authentication also falls under the something you have
category. FIDO alliance*! has published three open specifications to address certain
concerns in strong authentication: FIDO Universal Second Factor (FIDO U2F), FIDO
Universal Authentication Framework (FIDO UAF) and the Client to Authenticator
Protocol (CTAP). FIDO U2F protocol allows online services to augment the security of
their existing password infrastructure by adding a strong second factor to user login. The
largest deployment of FIDO U2F-based authentication is at Google. Google has been
using FIDO U2F internally for some time to secure its internal services, and in October
2014 Google made FIDO U2F enabled to all its users publicly.*?

“The WordPress Brute Force Attack Timeline, http://blog.sucuri.net/2013/04/the-
wordpress-brute-force-attack-timeline.html

HFIDO Alliance, https://fidoalliance.org/specifications/overview/

#Strengthening 2-Step Verification with Security Key, https://googleonlinesecurity.
blogspot.com/2014/10/strengthening-2-step-verification-with.html

61

http://blog.sucuri.net/2013/04/the-wordpress-brute-force-attack-timeline.html
http://blog.sucuri.net/2013/04/the-wordpress-brute-force-attack-timeline.html
https://fidoalliance.org/specifications/overview/
https://googleonlinesecurity.blogspot.com/2014/10/strengthening-2-step-verification-with.html
https://googleonlinesecurity.blogspot.com/2014/10/strengthening-2-step-verification-with.html

CHAPTER 2 DESIGNING SECURITY FOR APIS

Something You Are

Fingerprints, eye retina, facial recognition, and all other biometric-based authentication
techniques fall into the category of something you are. This is the strongest form of
authentication. In most of the cases, biometric authentication is not done on its own,
rather used with another factor to further improve the security.

With the wide adoption of mobile devices, most of the retailers, financial institutes,
and many others have chosen fingerprint-based authentication for their mobile apps. In
the iOS platform, all these applications associate their username- and password-based
authentication with Apple Touch ID (or face recognition). Once the initial association is
done, a user can log in to all the associated applications just by scanning his fingerprint.
Further iPhone also associates Touch ID with App Store login and to authorize Apple Pay
transactions.

Authorization

Authorization is the process of validating what actions an authenticated user, a system,
or a thing can perform within a well-defined system boundary. Authorization happens
with the assumption that the user is already authenticated. Discretionary Access Control
(DAC) and Mandatory Access Control (MAC) are two prominent models to control

access in a system.

With Discretionary Access Control (DAC), the user who owns the data, at their
discretion, can transfer rights to another user. Most operating systems support DAC,
including Unix, Linux, and Windows. When you create a file in Linux, you can decide
who should be able to read, write to, and execute it. Nothing prevents you from sharing it
with any user or a group of users. There is no centralized control—which can easily bring
security flaws into the system.

With Mandatory Access Control (MAC), only designated users are allowed to grant
rights. Once rights are granted, users can’t transfer them. SELinux, Trusted Solaris, and
TrustedBSD are some of the operating systems that support MAC.

62

CHAPTER 2 DESIGNING SECURITY FOR APIS

Note SELinux is an NSA research project that added the Mandatory Access
Control (MAC) architecture to the Linux kernel, which was then merged into the
mainstream version of Linux in August 2003. It utilizes a Linux 2.6 kernel feature
called the Linux Security Modules (LSM) interface.

The difference between DAC and MAC lies in who owns the right to delegate. In
either case, you need to have a way to represent access control rules or the access matrix.
Authorization tables, access control lists (see Figure 2-2), and capabilities are three ways
of representing access control rules. An authorization table is a three-column table with
subject, action, and resource. The subject can be an individual user or a group. With
access control lists, each resource is associated with a list, indicating, for each subject,
the actions that the subject can exercise on the resource. With capabilities, each subject
has an associated list called a capability list, indicating, for each resource, the actions
that the user is allowed to exercise on the resource. A bank locker key can be considered
a capability: the locker is the resource, and the user holds the key to the resource. At
the time the user tries to open the locker with the key, you only have to worry about the
capabilities of the key—not the capabilities of its owner. An access control list is resource
driven, whereas capabilities are subject driven.

Authorization tables, access control lists and capabilities are very coarse grained. One
alternative is to use policy-based access control. With policy-based access control, you
can have authorization policies with fine granularity. In addition, capabilities and access
control lists can be dynamically derived from policies. eXtensible Access Control Markup
Language (XACML) is one of the OASIS standards for policy-based access control.

File-1 File-2 File-3
Tom Read Write Read
Peter Write Write Read 4
Jene Read Read Write

Figure 2-2. Access control list

63

CHAPTER 2 DESIGNING SECURITY FOR APIS

Note XACML is an XML-based open standard for policy-based access control
developed under the OASIS XACML Technical Committee. XACML 3.0, the latest
XACML specification, was standardized in January 2013.*3 Then again XACML is
little too complex in defining access control policies, irrespective of how powerful
it is. You can also check the Open Policy Agent (OPA) project, which has become
quite popular recently in building fine-grained access control policies.

Nonrepudiation

Whenever you do a business transaction via an API by proving your identity, later

you should not be able to reject it or repudiate it. The property that ensures the
inability to repudiate is known as nonrepudiation. You do it once—you own it forever.
Nonrepudiation should provide proof of the origin and the integrity of data, both in an
unforgeable manner, which a third party can verify at any time. Once a transaction is
initiated, none of its content—including the user identity, date and time, and transaction
details—should be altered to maintain the transaction integrity and allow future
verifications. One has to ensure that the transaction is unaltered and logged after it’s
committed and confirmed. Logs must be archived and properly secured to prevent
unauthorized modifications. Whenever there is a repudiation dispute, transaction
logs along with other logs or data can be retrieved to verify the initiator, date and time,

transaction history, and so on.

Note TLS ensures authentication (by verifying the certificates), confidentiality (by
encrypting the data with a secret key), and integrity (by digesting the data), but not
nonrepudiation. In TLS, the Message Authentication Code (MAC) value of the data
transmitted is calculated with a shared secret key, known to both the client and the
server. Shared keys can’t be used for nonrepudiation.

#$XACML 3.0 specification, http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-
os-en.pdf

64

http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.pdf
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.pdf

CHAPTER 2 DESIGNING SECURITY FOR APIS

Digital signatures provide a strong binding between the user (who initiates the
transaction) and the transaction the user performs. A key known only to the user should
sign the complete transaction, and the server (or the service) should be able to verify
the signature through a trusted broker that vouches for the legitimacy of the user’s key.
This trusted broker can be a certificate authority (CA). Once the signature is verified,
the server knows the identity of the user and can guarantee the integrity of the data. For
nonrepudiation purposes, the data must be stored securely for any future verification.

Note The paper* Non-Repudiation in Practice, by Chii-Ren Tsai of Citigroup,
discusses two potential nonrepudiation architectures for financial transactions
using challenge-response one-time password tokens and digital signatures.

Auditing

There are two aspects of auditing: keeping track of all legitimate access attempts to
facilitate nonrepudiation, and keeping track of all illegal access attempts to identify
possible threats. There can be cases where you're permitted to access a resource, but

it should be with a valid purpose. For example, a mobile operator is allowed to access

a user’s call history, but he should not do so without a request from the corresponding
user. If someone frequently accesses a user’s call history, you can detect it with proper
audit trails. Audit trails also play a vital role in fraud detection. An administrator can
define fraud-detection patterns, and the audit logs can be evaluated in near real time to
find any matches.

Summary

o Securityisn’t an afterthought. It has to be an integral part of any
development project and also for APIs. It starts with requirements
gathering and proceeds through the design, development, testing,
deployment, and monitoring phases.

*Non-Repudiation in Practice, wiw.researchgate.net/publication/240926842
Non-Repudiation In Practice

65

http://www.researchgate.net/publication/240926842_Non-Repudiation_In_Practice
http://www.researchgate.net/publication/240926842_Non-Repudiation_In_Practice

CHAPTER 2

66

DESIGNING SECURITY FOR APIS

Connectivity, extensibility, and complexity are the three trends
behind the rise of data breaches around the globe in the last few
years.

The most challenging thing in any security design is to find and
maintain the right balance between security and the user comfort.

A proper security design should care about all the communication
links in the system. Any system is no stronger than its weakest link.

A layered approach is preferred for any system being tightened for
security. This is also known as defense in depth.

Insider attacks are less complicated, but highly effective.

Kerckhoffs’ principle emphasizes that a system should be secured by
its design, not because the design is unknown to an adversary.

The principle of least privilege states that an entity should only have
the required set of permissions to perform the actions for which they
are authorized, and no more.

The fail-safe defaults principle highlights the importance of making a
system safe by default.

The economy of mechanism principle highlights the value of
simplicity. The design should be as simple as possible.

With complete mediation principle, a system should validate access
rights to all its resources to ensure whether they’re allowed to access
or not.

The open design principle highlights the importance of building a
system in an open manner—with no secrets, confidential algorithms.

The principle of separation of privilege states that a system should

not grant permissions based on a single condition.

The principle of least common mechanism concerns the risk of
sharing state information among different components.

CHAPTER 2 DESIGNING SECURITY FOR APIS

The principle of psychological acceptability states that security
mechanisms should not make the resource more difficult to access
than if the security mechanisms were not present.

Confidentiality, integrity, and availability (CIA), widely known
as the triad of information security, are three key factors used in
benchmarking information systems security.

67

CHAPTER 3

Securing APIs
with Transport Layer
Security (TLS)

Securing APIs with Transport Layer Security (TLS) is the most common form of
protection we see in any API deployment. If you are new to TLS, please check Appendix C
first, which explains TLS in detail and how it works. In securing APIs, we use TLS to secure
or encrypt the communication—or protect the data in transit—and also we use TLS
mutual authentication to make sure only the legitimate clients can access the APIs.

In this chapter, we discuss how to deploy an API implemented in Java Spring Boot,
enable TLS, and protect an API with mutual TLS.

Setting Up the Environment

In this section, we’ll see how we can develop an API using Spring Boot from scratch.
Spring Boot (https://projects.spring.io/spring-boot/) is the most popular
microservices development framework for Java developers. To be precise, Spring Boot
offers an opinionated' runtime for Spring, which takes out a lot of complexities. Even
though Spring Boot is opinionated, it also gives developers to override many of its
default picks. Due to the fact that many Java developers are familiar with Spring, and the
ease of development is a key success factor in the microservices world, many adopted
Spring Boot. Even for Java developers who are not using Spring, still it is a household
name. If you have worked on Spring, you surely would have worried how painful it was

'An opinionated framework locks or guides its developers into its own way of doing things.

69
© Prabath Siriwardena 2020

P. Siriwardena, Advanced API Security, https://doi.org/10.1007/978-1-4842-2050-4_3

https://projects.spring.io/spring-boot/

CHAPTER 3 SECURING APIS WITH TRANSPORT LAYER SECURITY (TLS)

to deal with large, chunky XML configuration files. Unlike Spring, Spring Boot believes in
convention over configuration—no more XML hell! In this book, we use Spring Boot to
implement our APIs. Even if you are not familiar with Java, you will be able to get started
with no major learning curve, as we provide all the code examples.

To run the samples, you will need Java 8 or latest, Maven 3.2 or latest, and a git
client. Once you are successfully done with the installation, run the following two
commands in the command line to make sure everything is working fine. If you'd like
some help in setting up Java or Maven, there are plenty of online resources out there.

\>java -version

java version "1.8.0 121" Java(TM) SE Runtime Environment

(build 1.8.0 121-b13)

Java HotSpot(TM) 64-Bit Server VM (build 25.121-b13, mixed mode)

\>mvn -version

Apache Maven 3.5.0 (ff8f5e7444045639af6516095c62210b5713f426; 2017-04-
03T12:39:06-07:00)

Maven home: /usr/local/Cellar/maven/3.5.0/1libexec

Java version: 1.8.0 121, vendor: Oracle Corporation

Java home: /Library/Java/JavaVirtualMachines/jdk1.8.0 121.jdk/Contents/
Home/jre Default locale: en_US, platform encoding: UTF-8 OS name: "mac os

x", version: "10.12.6", arch: "x86 64", family: "mac

All the samples used in this book are available in the https://github.com/
apisecurity/samples.git git repository. Use the following git command to clone it. All
the samples related to this chapter are inside the directory ch03.

\> git clone https://github.com/apisecurity/samples.git
\> cd samples/cho3

To anyone who loves Maven, the best way to get started with a Spring Boot project
would be with a Maven archetype. Unfortunately, it is no more supported. One option
we have is to create a template project via https://start.spring.io/ -which is known
as the Spring Initializer. There you can pick which type of project you want to create,
project dependencies, give a name, and download a maven project as a zip file. The
other option is to use the Spring Tool Suite (STS).> It’s an IDE (integrated development

*https://spring.io/tools
70

https://github.com/apisecurity/samples.git
https://github.com/apisecurity/samples.git
https://start.spring.io/
https://spring.io/tools

CHAPTER 3 SECURING APIS WITH TRANSPORT LAYER SECURITY (TLS)

environment) built on top of the Eclipse platform, with many useful plugins to create
Spring projects. However, in this book, we provide you all the fully coded samples in the
preceding git repository.

Note If you find any issues in building or running the samples given in this

book, please refer to the README file under the corresponding chapter in the

git repository: https://github.com/apisecurity/samples.git. We will
update the samples and the corresponding README files in the git repository, to
reflect any changes happening, related to the tools, libraries, and frameworks used
in this book.

Deploying Order API

This is the simplest API ever. You can find the code inside the directory ch03/sample01.
To build the project with Maven, use the following command:

\> cd sampleol
\> mvn clean install

Before we delve deep into the code, let’s have a look at some of the notable Maven
dependencies and plugins added into ch03/sample01/pom.xml.

Spring Boot comes with different starter dependencies to integrate with different
Spring modules. The spring-boot-starter-web dependency brings in Tomcat and
Spring MVC and, does all the wiring between the components, making the developer’s
work to a minimum. The spring-boot-starter-actuator dependency helps you
monitor and manage your application.

<dependency>
<groupld>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-actuator</artifactId>
</dependency>

71

https://github.com/apisecurity/samples.git

CHAPTER 3 SECURING APIS WITH TRANSPORT LAYER SECURITY (TLS)

In the pom.xml file, we also have the spring-boot-maven-plugin plugin, which lets
you start the Spring Boot API from Maven itself.

<plugin>
<groupIld>org.springframework.boot</groupId>
<artifactId>spring-boot-maven-plugin</artifactId>
</plugin>

Now let’s have a look at the checkOrderStatus method in the class file src/
main/java/com/apress/ch03/sample01/service/OrderProcessing.java. This
method accepts an order id and returns back the status of the order. There are three
notable annotations used in the following code. The @RestController is a class-level
annotation that marks the corresponding class as a REST endpoint, which accepts and
produces JSON payloads. The @RequestMapping annotation can be defined both at
the class level and the method level. The value attribute at the class-level annotation
defines the path under which the corresponding endpoint is registered. The same
at the method level appends to the class-level path. Anything defined within curly
braces is a placeholder for any variable value in the path. For example, a GET request
on /order/101 and /order/102 (where 101 and 102 are the order ids), both hit the
method checkOrderStatus. In fact, the value of the value attribute is a URI template.®
The annotation @PathVariable extracts the provided variable from the URI template
defined under the value attribute of the @RequestMapping annotation and binds it to the
variable defined in the method signature.

@RestController
@RequestMapping(value = "/order")
public class OrderProcessing {
@RequestMapping(value = "/{id}", method = RequestMethod.GET)
public String checkOrderStatus(@PathVariable("id") String orderId)
{
return ResponseEntity.ok("{'status' : 'shipped'}");
}
}

Shttps://tools.ietf.org/html/rfc6570

72

https://tools.ietf.org/html/rfc6570

CHAPTER 3 SECURING APIS WITH TRANSPORT LAYER SECURITY (TLS)

There is another important class file at src/main/java/com/apress/ch03/sampleo1/
OrderProcessingApp.java worth having a look at. This is the class which spins up
our API in its own application server, in this case the embedded Tomcat. By default
the API starts on port 8080, and you can change the port by adding, say, for example,
server.port=9000 to the sample01/src/main/resources/application.properties
file. This will set the server port to 9000. The following shows the code snippet from
OrderProcessingApp class, which spins up our API. The @SpringBootApplication
annotation, which is defined at the class level, is being used as a shortcut for four other
annotations defined in Spring: @Configuration, @EnableAutoConfiguration,
@EnableWebMvc, and @ComponentScan.

@SpringBootApplication
public class OrderProcessingApp {
public static void main(String[] args) {
SpringApplication.run(OrderProcessingApp.class, args);

Now, let’s see how to run our APT and talk to it with a cURL client. The following
command executed from ch03/sample01 directory shows how to start our Spring Boot
application with Maven.

\> mvn spring-boot:run

To test the APIwith a cURL client, use the following command from a different
command console. It will print the output as shown in the following, after the initial
command.

\> curl http://localhost:8080/order/11

{"customer id":"101021","order id":"11","payment_method":{"card type":"V
ISA","expiration":"01/22","name":"John Doe","billing address":"201, 1st
Street, San Jose, CA"},"items": [{"code":"101","qty":1},{"code":"103","qty"
:5}],"shipping address":"201, 1st Street, San Jose, CA"}

73

CHAPTER 3 SECURING APIS WITH TRANSPORT LAYER SECURITY (TLS)

Securing Order APl with Transport Layer
Security (TLS)

To enable Transport Layer Security (TLS), first we need to create a public/private key
pair. The following command uses keytool that comes with the default Java distribution
to generate a key pair and stores it in keystore. jks file. This file is also known as a
keystore, and it can be in different formats. Two most popular formats are Java KeyStore
(JKS) and PKCS#12. JKS is specific to Java, while PKCS#12 is a standard, which belongs to
the family of standards defined under Public Key Cryptography Standards (PKCS). In the
following command, we specify the keystore type with the storetype argument, which is
set to JKS.

\> keytool -genkey -alias spring -keyalg RSA -keysize 4096 -validity 3650
-dname "CN=foo,OU=bar,0=zee,L=sjc,S=ca,C=us" -keypass springboot -keystore
keystore.jks -storeType jks -storepass springboot

The alias argument in the preceding command specifies how to identify the
generated keys stored in the keystore. There can be multiple keys stored in a given
keystore, and the value of the corresponding alias must be unique. Here we use spring
as the alias. The validity argument specifies that the generated keys are only valid for
10 years or 3650 days. The keysize and keystore arguments specify the length of the
generated key and the name of the keystore, where the keys are stored. The genkey is the
option, which instructs the keytool to generate new keys; instead of genkey, you can
also use genkeypair option. Once the preceding command is executed, it will create a
keystore file called keystore. jks, which is protected with the password springboot.

The certificate created in this example is known as a self-signed certificate. In
other words, there is no external certificate authority (CA). Typically, in a production
deployment, either you will use a public certificate authority or an enterprise-level
certificate authority to sign the public certificate, so any client, who trusts the certificate
authority, can verify it. If you are using certificates to secure service-to-service
communications in a microservices deployment or for an internal API deployment, then
you need not worry about having a public certificate authority; you can have your own
certificate authority. But for APIs, which you expose to external client applications, you
would need to get your certificates signed by a public certificate authority.

To enable TLS for the Spring Boot API, copy the keystore file (keystore. jks), which
we created earlier, to the home directory of the sample (e.g., ch03/sample01/) and add

74

CHAPTER 3 SECURING APIS WITH TRANSPORT LAYER SECURITY (TLS)

the following to the sample01/src/main/resources/application.properties file. The
samples that you download from the samples git repository already have these values
(and you only need to uncomment them), and we are using springboot as the password
for both the keystore and the private key.

server.ssl.key-store: keystore.jks
server.ssl.key-store-password: springboot
server.ssl.keyAlias: spring

To validate that everything works fine, use the following command from ch03/
sample01/ directory to spin up the Order API and notice the line which prints the HTTPS
port.

\> mvn spring-boot:run
Tomcat started on port(s): 8080 (https) with context path "

To test the APTwith a cURL client, use the following command from a different
command console. It will print the output as shown in the following, after the initial
command. Instead of HTTP, we are using HTTPS here.

\> curl -k https://localhost:8080/order/11

{"customer id":"101021","order id":"11","payment method":{"card type":"V
ISA","expiration":"01/22","name":"John Doe","billing address":"201, 1st
Street, San Jose, CA"},"items": [{"code":"101","qty":1},{"code":"103","qty"

:5}],"shipping address":"201, 1st Street, San Jose, CA"}

We used the -k option in the preceding cURL command. Since we have a self-signed
(untrusted) certificate to secure our HTTPS endpoint, we need to pass the -k parameter
to advise cURL to ignore the trust validation. In a production deployment with proper
certificate authority-signed certificates, you do not need to do that. Also, if you have a
self-signed certificate, you can still avoid using -k, by pointing cURL to the corresponding
public certificate.

\> curl --cacert ca.crt https://localhost:8080/order/11

You can use the following keytool command from ch03/sample01/ to export the
public certificate of the Order API to ca.crt file in PEM (with the -rfc argument) format.

\> keytool -export -file ca.crt -alias spring -rfc -keystore keystore.jks
-storePass springboot

75

CHAPTER 3 SECURING APIS WITH TRANSPORT LAYER SECURITY (TLS)

The preceding curl command with the ca.crt will result in the following error. It
complains that the common name in the public certificate of the Order API, which is foo,
does not match with the hostname (localhost) in the cURL command.

curl: (51) SSL: certificate subject name 'foo' does not match target host
name 'localhost’

Ideally in a production deployment when you create a certificate, its common name
should match the hostname. In this case, since we do not have a Domain Name Service
(DNS) entry for the foo hostname, you can use the following workaround, with cURL.

\> curl --cacert ca.crt https://foo:8080/0order/11 --resolve
f00:8080:127.0.0.1

Protecting Order APl with Mutual TLS

In this section, we’ll see how to enable TLS mutual authentication between the Order API
and the cURL client. In most of the cases, TLS mutual authentication is used to enable
system-to-system authentication. First make sure that we have the keystore at sample01/
keystore. jks, and then to enable TLS mutual authentication, uncomment the following
property in the sample01/src/main/resources/application.properties file.

server.ssl.client-auth:need

Now we can test the flow by invoking the Order API using cURL. First, use the
following command from ch03/sample01/ directory to spin up the Order API and notice
the line which prints the HTTPS port.

\> mvn spring-boot:run
Tomcat started on port(s): 8080 (https) with context path "'

To test the API with a cURL client, use the following command from a different
command console.

\> curl -k https://localhost:8080/order/11

Since we have protected the API with TLS mutual authentication, the preceding
command will result in the following error message, which means the API (or the server)
has refused to connect with the cURL client, because it didn’t present a valid client
certificate.

76

CHAPTER 3 SECURING APIS WITH TRANSPORT LAYER SECURITY (TLS)

curl: (35) error:1401E412:SSL routines:CONNECT CR_FINISHED:sslv3 alert bad
certificate

To fix this, we need to create a key pair (a public key and a private key) for the cURL
client and configure Order API to trust the public key. Then we can use the key pair we
generated along with the cURL command to access the API, which is protected with
mutual TLS.

To generate a private key and a public key for the cURL client, we use the following
OpenSSL command. OpenSSL is a commercial-grade toolkit and cryptographic
library for TLS and available for multiple platforms. You can download and set up the
distribution that fits your platform from www.openssl.org/source. If not, the easiest way
is to use an OpenSSL Docker image. In the next section, we discuss how to run OpenSSL
as a Docker container.

\> openssl genrsa -out privkey.pem 4096

Now, to generate a self-signed certificate, corresponding to the preceding private key
(privkey.pem), use the following OpenSSL command.

\> openssl req -key privkey.pem -new -x509 -sha256 -nodes -out client.crt
-subj "/C=us/ST=ca/L=sjc/0=zee/0U=bar/CN=client"

Let’s take down the Order APIJ, if it is still running, and import the public certificate
(client.crt) we created in the preceding step to sample01/keystore. jks, using the
following command.

\> keytool -import -file client.crt -alias client -keystore keystore.jks
-storepass springboot

Now we can test the flow by invoking the Order API using cURL. First, use the
following command from ch03/sample01/ directory to spin up the Order API.

\> mvn spring-boot:run
Tomcat started on port(s): 8080 (https) with context path "'

To test the APIwith a cURL client, use the following command from a different
command console.

\> curl -k --key privkey.pem --cert client.crt https://localhost:8080/
order/11

77

http://www.openssl.org/source

CHAPTER 3 SECURING APIS WITH TRANSPORT LAYER SECURITY (TLS)

In case we use a key pair, which is not known to the Order AP]I, or in other words not
imported into the sample01/keystore. jks file, you will see the following error, when
you execute the preceding cURL command.

curl: (35) error:1401E416:SSL routines:CONNECT CR_FINISHED:sslv3 alert
certificate unknown

Running OpenSSL on Docker

In the last few years, Docker revolutionized the way we distribute software. Docker
provides a containerized environment to run software in self-contained manner. A
complete overview of Docker is out of the scope of this book—and if you are interested
in learning more, we recommend you check out the book Docker in Action (Manning
Publications, 2019) by Jeff Nickoloff and Stephen Kuenzli.

Setting up Docker in your local machine is quite straightforward, following the steps
in Docker documentation available at https://docs.docker.com/install/. Once you
get Docker installed, run the following command to verify the installation, and it will
show the version of Docker engine client and server.

\> docker version

To start OpenSSL as a Docker container, use the following command from the ch03/
sampleoO1 directory.

\> docker run -it -v $(pwd):/export prabath/openssl
#

When you run the preceding command for the first time, it will take a couple of
minutes to execute and ends with a command prompt, where you can execute your
OpenSSL commands to create the keys, which we used toward the end of the previous
sections. The preceding docker run command starts OpenSSL in a Docker container, with
a volume mount, which maps ch03/sample01 (or the current directory, which is indicated
by $(pwd) in the preceding command) directory from the host file system to the /export
directory of the container file system. This volume mount helps you to share part of the
host file system with the container file system. When the OpenSSL container generates
certificates, those are written to the /export directory of the container file system. Since

78

https://docs.docker.com/install/

CHAPTER 3 SECURING APIS WITH TRANSPORT LAYER SECURITY (TLS)

we have a volume mount, everything inside the /export directory of the container file

system is also accessible from the ch03/sample01 directory of the host file system.

To generate a private key and a public key for the cURL client, we use the following

OpenSSL command.

openssl genrsa -out /export/privkey.pem 4096

Now, to generate a self-signed certificate, corresponding to the preceding private key

(privkey.pem), use the following OpenSSL command.

openssl req -key /export/privkey.pem -new -x509 -sha256 -nodes -out
client.crt -subj "/C=us/ST=ca/L=sjc/0O=zee/OU=bar/CN=client"

Summary

Transport Layer Security (TLS) is fundamental in securing any API.

Securing APIs with TLS is the most common form of protection we
see in any API deployment.

TLS protects data in transit for confidentiality and integrity, and
mutual TLS (mTLS) protects your APIs from intruders by enforcing
client authentication.

OpenSSL is a commercial-grade toolkit and cryptographic library for
TLS and available for multiple platforms.

79

CHAPTER 4

OAuth 2.0 Fundamentals

OAuth 2.0 is a major breakthrough in identity delegation. It has its roots in OAuth 1.0
(see Appendix B), but OAuth Web Resource Authorization Profiles (see Appendix B)
primarily influenced it. The main difference between OAuth 1.0 and 2.0 is that OAuth 1.0
is a standard protocol for identity delegation, whereas OAuth 2.0 is a highly extensible
authorization framework. OAuth 2.0 is already the de facto standard for securing APIs
and is widely used by Facebook, Google, LinkedIn, Microsoft (MSN, Live), PayPal,
Instagram, Foursquare, GitHub, Yammer, Meetup, and many more. There is one popular
exception: Twitter still uses OAuth 1.0.

Understanding OAuth 2.0

OAuth 2.0 primarily solves the access delegation problem. Let’s say you want a third-
party application to read your status messages on your Facebook wall. In other words,
you want to delegate the third-party application the access to your Facebook wall. One
way to do that is by sharing your Facebook credentials with the third-party application,
so it can directly access your Facebook wall. This is called access delegation by credential
sharing. Even though this solves the access delegation problem, once you share your
Facebook credentials with the third-party application, it can use your credentials to do
anything it wants, which in turns creates more problems! OAuth 2.0 solves this problem
in a way you do not need to share your credentials with third-party applications, but
only share a time-bound temporary token that is only good enough for a well-defined

81
© Prabath Siriwardena 2020

P. Siriwardena, Advanced API Security, https://doi.org/10.1007/978-1-4842-2050-4_4

CHAPTER 4 OAUTH 2.0 FUNDAMENTALS

purpose. Figure 4-1 shows at a high level how access delegation works with OAuth 2.0,
and the following explains each step in Figure 4-1:

1. The user visits the third-party web application and wants to let the
web application publish messages to his/her Facebook wall. To do
that, the web application needs a token from Facebook, and to get
the token, it redirects the user to Facebook.

2. Facebook prompts the user to authenticate (if not authenticated
already) and requests the consent from the user to give
permissions to the third-party web application to publish
messages to his/her Facebook wall.

3. User authenticates and provides his/her consent to Facebook, so that
Facebook can share a token with the third-party web application.
This token is only good enough to publish messages to the Facebook
wall for a limited period and cannot do anything else. For example,
the third-party web application cannot send friend requests, delete
status messages, upload photos, and so on with the token.

4. The third-party web application gets a token from Facebook.
To explain what exactly happens in this step, first we need to
understand how OAuth 2.0 grant types work, and we discuss that
later in the chapter.

5. The third-party web application accesses the Facebook API with
the token provided to it by Facebook in step 4. Facebook API
makes sure only requests that come along with a valid token can
access it. Then again later in the chapter, we will explain in detail
what happens in this step.

82

Accesses Facebook API to
read user’s friendlist with
the token from step-4 -

CHAPTER 4 OAUTH 2.0 FUNDAMENTALS

Authenticates and grants
) access to the web application
Redirects the user 43

to read user's Facebook status
to Facebook. I messages. |

Facebook
3rd Party t Gets a token to read the
Froer s Facebook status messages on
Web Application \ behalf of the Facebook user. -

Facebook

. User

/X

Prompts for user

Faccbook API authentication and consent

by redirecting the user's

browser to the Facebook
login page.

fails.

Accesses Facebook
API to read user's
Faccbook status
messages with the
token from step-4.

Figure 4-1. OAuth 2.0 solves the access delegation problem by issuing a temporary
time-bound token to a third-party web application that is only good enough for a
well-defined purpose

OAuth 2.0 Actors

OAuth 2.0 introduces four actors in a typical OAuth flow. The following explains the role
of each of them with respect to Figure 4-1:

1.

Resource owner: One who owns the resources. In our example
earlier, the third-party web application wants to access the
Facebook wall of a Facebook user via the Facebook API and
publish messages on behalf of him/her. In that case, the Facebook
user who owns the Facebook wall is the resource owner.

Resource server: This is the place which hosts protected resources.
In the preceding scenario, the server that hosts the Facebook API
is the resource server, where Facebook API is the resource.

Client: This is the application which wants to access a resource on
behalf of the resource owner. In the preceding use case, the third-
party web application is the client.

83

CHAPTER 4 OAUTH 2.0 FUNDAMENTALS

4. Authorization server: This is the entity which acts as a security
token service to issue OAuth 2.0 access tokens to client
applications. In the preceding use case, Facebook itself acts as the
authorization server.

Grant Types

A grant type in OAuth 2.0 defines how a client can obtain an authorization grant from
aresource owner to access a resource on his/her behalf. The origin of the word grant
comes from the French word granter which carries the meaning consent to support.

In other words, a grant type defines a well-defined process to get the consent from the
resource owner to access a resource on his/her behalf for a well-defined purpose. In
OAuth 2.0, this well-defined purpose is also called scope. Also you can interpret scope
as a permission, or in other words, scope defines what actions the client application can
do on a given resource. In Figure 4-1, the token issued from the Facebook authorization
server is bound to a scope, where the client application can only use the token to post
messages to the corresponding user’s Facebook wall.

The grant types in OAuth 2.0 are very similar to the OAuth profiles in WRAP (see
Appendix B). The OAuth 2.0 core specification introduces four core grant types: the
authorization code grant type, the implicit grant type, the resource owner password
credentials grant type, and the client credentials grant type. Table 4-1 shows how OAuth
2.0 grant types match with WRAP profiles.

Table 4-1. OAuth 2.0 Grant Types vs. OAuth WRAP Profiles

OAuth 2.0 OAuth WRAP

Authorization code grant type Web App Profile/Rich App Profile
Implicit grant type -
Resource owner password credentials grant type Username and Password Profile

Client credentials grant type Client Account and Password Profile

84

CHAPTER 4 OAUTH 2.0 FUNDAMENTALS

Authorization Code Grant Type

The authorization code grant type in OAuth 2.0 is very similar to the Web App Profile

in WRAP. It's mostly recommended for applications—either web applications or native
mobile applications—that have the capability to spin up a web browser (see Figure 4-2).
The resource owner who visits the client application initiates the authorization code
grant type. The client application, which must be a registered application at the
authorization server, as shown in step 1 in Figure 4-2, redirects the resource owner to
the authorization server to get the approval. The following shows an HTTP request the
client application generates while redirecting the user to the authorize endpoint of the
authorization server:

https://authz.example.com/oauth2/authorize?
response_type=coded
client_id=0rhQErXIX49svVYoXJGtoDWBuUFca&
redirect _uri=https%3A%2F%2Fmycallback

The authorize endpoint is a well-known, published endpoint of an OAuth 2.0
authorization server. The value of response_type parameter must be code. This
indicates to the authorization server that the request is for an authorization code (under
the authorization code grant type). client_id is an identifier for the client application.
Once the client application is registered with the authorization server, the client gets
aclient _idandaclient secret. During the client registration phase, the client
application must provide a URL under its control as the redirect_uri, and in the initial
request, the value of the redirect uri parameter should match with the one registered
with the authorization server. We also call the redirect uri the callback URL. The
URL-encoded value of the callback URL is added to the request as the redirect_uri
parameter. In addition to these parameters, a client application can also include the
scope parameter. The value of the scope parameter is shown to the resource owner on
the approval screen: it indicates to the authorization server the level of access the client
needs on the target resource/API.

85

CHAPTER 4 OAUTH 2.0 FUNDAMENTALS

Client application exchanges

Authorization server the authorization code to an
replies back with an access access token.
token. |

(%) .

p— -

Client (M Authorization
Application Ny Server

A

Authorization server redirects the user
back to the client application along with
an authorization code. This message goes
through the browser.
Authorization server
opens user agent to
prompt for credentials.

User Agent
(web browser)

Client application initiates authorization

B " grant request, by redirecting the user to
mdwc:§ “ts $ tll,s” the authorization server. This message
. ::I:I‘If]‘:‘i::ltsi(]: s;:ver goes through the browser.
- I User submits
credentials for

Resource Owner authentication.
(user)

Figure 4-2. Authorization code grant type

In step 5 in Figure 4-2, the authorization server returns the requested code to the
registered callback URL (also known as redirect_uri) of the client application. This
code is called the authorization code. Each authorization code should have a lifetime.

A lifetime longer than 1 minute isn’t recommended:
https://callback.example.com/?code=9142d4cad58c66d0a5edfad8952192

The value of the authorization code is delivered to the client application via an HTTP
redirect and is visible to the resource owner. In the next step (step 6), the client must
exchange the authorization code for an OAuth access token by talking to the OAuth
token endpoint exposed by the authorization server.

Note The ultimate goal of any OAuth 2.0 grant type is to provide a token (which
is known as access token) to the client application. The client application can
use this token to access a resource. An access token is bound to the resource
owner, client application, and one or more scopes. Given an access token, the
authorization server knows who the corresponding resource owner and client
application and also what the attached scopes are.

86

https://callback.example.com/?code=9142d4cad58c66d0a5edfad8952192

CHAPTER 4 OAUTH 2.0 FUNDAMENTALS

The token endpoint in most of the cases is a secured endpoint. The client application
can generate the token request along with the corresponding client id (0rhQErXIX49s
vVYoXJGtoDWBuUFca) and the client _secret (eYOFkL756W8usQaVNgCNkz9C2D0a), which
will go in the HTTP Authorization header. In most of the cases, the token endpoint is
secured with HTTP Basic authentication, but it is not a must. For stronger security,
one may use mutual TLS as well, and if you are using the authorization code grant type
from a single-page app or a mobile app, then you may not use any credentials at all.

The following shows a sample request (step 6) to the token endpoint. The value of the
grant_type parameter there must be the authorization_code, and the value of the code
should be the one returned from the previous step (step 5). If the client application sent
avalue in the redirect _uri parameter in the previous request (step 1), then it must
include the same value in the token request as well. In case the client application does
not authenticate to the token endpoint, you need to send the corresponding client_id as

a parameter in the HTTP body:

Note The authorization code returned from the authorization server acts as an
intermediate code. This code is used to map the end user or resource owner to the
OAuth client. The OAuth client may authenticate itself to the token endpoint of the
authorization server. The authorization server should check whether the code is
issued to the authenticated OAuth client prior to exchanging it for an access token.

\> curl -v -k -X POST --basic
-u 0rhQErXIX49svVYoXJGtoDWBuFca:eYOFkL756W8usQaVNgCNkz9C2D0oa
-H "Content-Type:application/x-www-form-urlencoded;charset=UTF-8"
-d "grant_type=authorization_code&
code=9142d4cad58c66doa5edfad8952192&
redirect uri=https://mycallback”
https://authz.example.com/oauth2/token

Note The authorization code should be used only once by the client. If the
authorization server detects that it’s been used more than once, it must revoke all
the tokens issued for that particular authorization code.

87

CHAPTER 4 OAUTH 2.0 FUNDAMENTALS

The preceding cURL command returns the following response from the
authorization server (step 7). The token_type parameter in the response indicates the
type of the token. (The section “OAuth 2.0 Token Types” talks more about token types.)
In addition to the access token, the authorization server also returns a refresh token,
which is optional. The refresh token can be used by the client application to obtain a new
access token before the refresh token expires. The expires in parameter indicates the
lifetime of the access token in seconds.

{
"token_type":"bearer",
"expires in":3600,
"refresh_token":"22b157546b26c2d6c0165c4ef6b3f736",
"access_token":"cac93e1d29e45b16d84073dbTb460"

}

Note Each refresh token has its own lifetime. Compared to the lifetime of the
access token, the refresh token’s is longer: the lifetime of an access token is in
minutes, whereas the lifetime of a refresh token is in days.

Implicit Grant Type

The implicit grant type to acquire an access token is mostly used by JavaScript clients
running in the web browser (see Figure 4-3). Even for JavaScript clients now, we do not
recommend using implicit grant type, rather use authorization code grant type with no
client authentication. This is mostly due to the inherent security issues in the implicit
grant type, which we discuss in Chapter 14. The following discussion on implicit grant
type will help you understand how it works, but never use it in a production deployment.

88

CHAPTER 4 OAUTH 2.0 FUNDAMENTALS

. Client application initiates implicit
CI_'enE grant request, by redirecting the user to Authorization

Application the authorization server. This message Server

goes through the browser.

Authorization server sends the
access token to the user agent, in

a URI fragment. —‘
| Authorization server
opens user agent to
prompt for credentials.

User t
(webbl;oag::ner)

Browers posts user
credentials to the
. authorization server.
* I User submits
credentials for

Resource Owner authentication.
(user)

Figure 4-3. Implicit grant type

Unlike the authorization code grant type, the implicit grant type doesn’t have any
equivalent profiles in OAuth WRAP. The JavaScript client initiates the implicit grant flow
by redirecting the user to the authorization server. The response_type parameter in the
request indicates to the authorization server that the client expects a token, not a code. The
implicit grant type doesn’t require the authorization server to authenticate the JavaScript
client; it only has to send the client_id in the request. This is for logging and auditing
purposes and also to find out the corresponding redirect uri.The redirect uriinthe
request is optional; if it’s present, it must match what is provided at the client registration:

https://authz.example.com/oauth2/authorize?
response_type=tokend&
client_id=0rhQErXIX49svVYoXJGtoDWBuFca&
redirect uri=https%3A%2F%2Fmycallback

This returns the following response. The implicit grant type sends the access token as
a URI fragment and doesn’t provide any refreshing mechanism:

https://callback.example.com/#access_token=cac93e1d29e45b16d84073dbTb4608&ex
pires in=3600

Unlike the authorization code grant type, the implicit grant type client receives
the access token in the response to the grant request. When we have something in the
URI fragment of a URL, the browser never sends it to the back end. It only stays on the
browser. So when authorization server sends a redirect to the callback URL of the client

89

CHAPTER 4 OAUTH 2.0 FUNDAMENTALS

application, the request first comes to the browser, and the browser does an HTTP GET
to the web server that hosts the client application. But in that HTTP GET, you will not
find the URI fragment, and the web server will never see it. To process the access token
that comes in the URI fragment, as a response to HTTP GET from the browser, the web
server of the client application will return back an HTML page with a JavaScript, which
knows how to extract the access_token from the URI fragment, which still remains in the

browser address bar. In general this is how single-page applications work.

Note The authorization server must treat the authorization code, access token,
refresh token, and client secret key as sensitive data. They should never be sent
over HTTP—the authorization server must use Transport Layer Security (TLS).

These tokens should be stored securely, possibly by encrypting or hashing them.

Resource Owner Password Credentials Grant Type

Under the resource owner password credentials grant type, the resource owner must
trust the client application. This is equivalent to the Username and Password Profile in
OAuth WRAP. The resource owner has to give his/her credentials directly to the client
application (see Figure 4-4).

Client agplication uses the user input and
edded client_id and client_secret

to generate a token request to the
authorization server

the em

\ -@‘ Auths::ivgtion

#

Client Application

User provides username
and password to the
client application

Authorization server validates the user credentials
and app credentials (client_id and secret) and issues
an access token and refresh token

Figure 4-4. Resource owner password credentials grant type

The following cURL command talks to the token endpoint of the authorization
server, passing the resource owner’s username and password as parameters. In addition,

90

CHAPTER 4 OAUTH 2.0 FUNDAMENTALS

the client application proves its identity. In most of the cases, the token endpoint is
secured with HTTP Basic authentication (but not a must), and the client application
passesits client_id (0rhQErXIX49svVYoXJGtoDWBuFca) and client secret
(eYOFkL756W8usQaVNgCNkz9C2D0a) in the HTTP Authorization header. The value of the
grant_type parameter must be set to password:

\> curl -v -k -X POST --basic
-u 0rhQErXIX49svVYoXJGtoDWBuFca:eYOFkL756W8usQaVNgCNkz9C2D0oa
-H "Content-Type:application/x-www-form-urlencoded;charset=UTF-8"
-d "grant_type=password&
username=admin&password=admin"
https://authz.example.com/oauth2/token

This returns the following response, which includes an access token along with a
refresh token:

{

"token_type":"bearer",

"expires in":685,"
"refresh_token":"22b157546b26c2d6c0165c4ef6b3f736",
"access_token":"cac93e1d29e45b16d84073dbtb460"

Note If using the authorization code grant type is an option, it should be used
over the resource owner password credentials grant type. The resource owner
password credentials grant type was introduced to aid migration from HTTP Basic
authentication and Digest authentication to OAuth 2.0.

Client Credentials Grant Type

The client credentials grant type is equivalent to the Client Account and Password Profile
in OAuth WRAP and to two-legged OAuth in OAuth 1.0 (see Appendix B). With this

grant type, the client itself becomes the resource owner (see Figure 4-5). The following
cURL command talks to the token endpoint of the authorization server, passing the
client application’s client_id (0rhQErXIX49svVYoXJGtoDWBuFca) and client secret
(eYOFkL756W8usQaVNgCNkz9C2D0a).

91

CHAPTER 4 OAUTH 2.0 FUNDAMENTALS

Client sends client_id and
r client_sercret to the authorization

server

{50
P Authorization
i

Application

Authorization server validates the
client_id against the client_secret
and issues a token

Figure 4-5. Client credentials grant type

\> curl -v -k -X POST --basic
-u 0rhQErXIX49svVYoXJGtoDWBuFca:eYOFkL756W8usQaVNgCNkz9C2D0oa
-H "Content-Type: application/x-www-form-urlencoded;charset=UTF-8"
-d "grant_type=client credentials"
https://authz.example.com/oauth2/token

This returns the following response, which includes an access token. Unlike the
resource owner password credentials grant type, the client credentials grant type doesn’t
return a refresh token:

{ "token_type":"bearer",
"expires in":3600,
"access_token":"4c9a9ae7463ff9bb93ae7f169bd6a"

This client credential grant type is mostly used for system-to-system interactions
with no end user. For example, a web application needs to access an OAuth secured API
to get some metadata.

Refresh Grant Type

Although it’s not the case with the implicit grant type and the client credentials grant
type, with the other two grant types, the OAuth access token comes with a refresh token.
This refresh token can be used to extend the validity of the access token without the
involvement of the resource owner. The following cURL command shows how to get a
new access token from the refresh token:

92

CHAPTER 4 OAUTH 2.0 FUNDAMENTALS

\> curl -v -X POST --basic
-u 0rhQErXIX49svVYoXJGtoDWBuFca:eYOFkL756W8usQaVNgCNkz9C2D0oa
-H "Content-Type: application/x-www-form-urlencoded;charset=UTF-8"
-k -d "grant_type=refresh token&
refresh token=22b157546b26c2d6c0165c4ef6b3f736"
https://authz.example.com/oauth2/token

This returns the following response:

{
"token_type":"bearer",
"expires in":3600,
"refresh token":"9ecc381836fa5e3baf5a9e86081",
"access_token":"b574d1ba554c26148f5fca3ccebose2”
}

Note The refresh token has a much longer lifetime than the access token. If
the lifetime of the refresh token expires, then the client must initiate the OAuth
token flow from the start and get a new access token and refresh token. The
authorization server also has the option to return a new refresh token each time
the client refreshes the access token. In such cases, the client has to discard the
previously obtained refresh token and begin using the new one.

How to Pick the Right Grant Type?

As we discussed at the very beginning of the chapter, OAuth 2.0 is an authorization
framework. The nature of a framework is to provide multiple options, and it’s up to the
application developers to pick the best out of those options, based on their use cases.
OAuth can be used with any kind of application. It can be a web application, single-page
application, desktop application, or a native mobile application.

To pick the right grant type for those applications, first we need to think how the
client application is going to invoke the OAuth secured API: whether it is going to access
the API by itself or on behalf of an end user. If the application wants to access the API
just being itself, then we should use client credentials grant type and, if not, should
use authorization code grant type. Both the implicit and password grant types are now
obsolete.

93

CHAPTER 4 OAUTH 2.0 FUNDAMENTALS

OAuth 2.0 Token Types

Neither OAuth 1.0 nor WRAP could support custom token types. OAuth 1.0 always used
signature-based tokens, and OAuth WRAP always used bearer tokens over TLS. OAuth 2.0
isn’t coupled into any token type. In OAuth 2.0, you can introduce your own token type
ifneeded. Regardless of the token_type returned in the OAuth token response from the
authorization server, the client must understand it before using it. Based on the token
type, the authorization server can add additional attributes/parameters to the response.

OAuth 2.0 has two main token profiles: OAuth 2.0 Bearer Token Profile and OAuth
2.0 MAC Token Profile. The most popular OAuth token profile is Bearer; almost all OAuth
2.0 deployments today are based on the OAuth 2.0 Bearer Token Profile. The next section
talks about the Bearer Token Profile in detail, and Appendix G discusses the MAC Token
Profile.

OAuth 2.0 Bearer Token Profile

The OAuth 2.0 Bearer Token Profile was influenced by OAuth WRAP, which only
supported bearer tokens. As its name implies, anyone who bears the token can use
it—don’t lose it! Bearer tokens must always be used over Transport Layer Security
(TLS) to avoid losing them in transit. Once the bearer access token is obtained from the
authorization server, the client can use it in three ways to talk to the resource server.
These three ways are defined in the RFC 6750. The most popular way is to include the
access token in the HTTP Authorization header:

Note An OAuth 2.0 bearer token can be a reference token or self-contained
token. A reference token is an arbitrary string. An attacker can carry out a brute-
force attack to guess the token. The authorization server must pick the right length
and use other possible measures to prevent brute forcing. A self-contained access
token is a JSON Web Token (JWT), which we discuss in Chapter 7. When the
resource server gets an access token, which is a reference token, then to validate
the token, it has to talk to the authorization server (or the token issuer). When the
access token is a JWT, the resource server can validate the token by itself, by
verifying the signature of the JWT.

94

CHAPTER 4 OAUTH 2.0 FUNDAMENTALS

GET /resource HTTP/1.1
Host: rs.example.com
Authorization: Bearer JGjhgyuyibGGjgjkjdlsjkjdsd

The access token can also be included as a query parameter. This approach is mostly
used by the client applications developed in JavaScript:

GET /resource?access_token=JGjhgyuyibGGjgjkjdlsjkjdsd
Host: rs.example.com

Note When the value of the OAuth access token is sent as a query parameter,
the name of the parameter must be access_token. Both Facebook and Google
use the correct parameter name, but LinkedIn uses oauth2_access_token and
Salesforce uses oauth_token.

It's also possible to send the access token as a form-encoded body parameter. An
authorization server supporting the Bearer Token Profile should be able to handle any of
these patterns:

POST /resource HTTP/1.1

Host: server.example.com

Content-Type: application/x-www-form-urlencoded
access_token=]GjhgyuyibGGjgjkjdlsjkjdsd

Note The value of the OAuth bearer token is only meaningful to the authorization
server. The client application should not try to interpret what it says. To make the
processing logic efficient, the authorization server may include some meaningful
but nonconfidential data in the access token. For example, if the authorization
server supports multiple domains with multitenancy, it may include the tenant
domain in the access token and then base64-encode (see Appendix E) it or simply
use a JSON Web Token (JWT).

95

CHAPTER 4 OAUTH 2.0 FUNDAMENTALS

OAuth 2.0 Client Types

OAuth 2.0 identifies two types of clients: confidential clients and public clients.
Confidential clients are capable of protecting their own credentials (the client key and the
client secret), whereas public clients can’t. The OAuth 2.0 specification is built around
three types of client profiles: web applications, user agent-based applications, and native
applications. Web applications are considered to be confidential clients, running on a web
server: end users or resource owners access such applications via a web browser. User
agent-based applications are considered to be public clients: they download the code
from a web server and run it on the user agent, such as JavaScript running in the browser.
These clients are incapable of protecting their credentials—the end user can see anything
in the JavaScript. Native applications are also considered as public clients: these clients are
under the control of the end user, and any confidential data stored in those applications
can be extracted out. Android and iOS native applications are a couple of examples.

Note All four grant types defined in the OAuth 2.0 core specification require

the client to preregister with the authorization server, and in return it gets a client
identifier. Under the implicit grant type, the client doesn’t get a client secret. At the
same time, even under other grant types, it’s an option whether to use the client
secret or not.

Table 4-2 lists the key differences between OAuth 1.0 and OAuth 2.0 Bearer Token
Profile.

Table 4-2. OAuth 1.0 vs. OAuth 2.0

OAuth 1.0 OAuth 2.0 Bearer Token Profile

An access delegation protocol An authorization framework for access delegation
Signature based: HMAC-SHA256/RSA-SHA256 ~ Nonsignature-based, Bearer Token Profile

Less extensibility Highly extensible via grant types and token types
Less developer-friendly More developer-friendly

TLS required only during the initial handshake Bearer Token Profile mandates using TLS during
Secret key never passed on the wire the entire flow

Secret key goes on the wire (Bearer Token Profile)

96

CHAPTER 4 OAUTH 2.0 FUNDAMENTALS

Note OAuth 2.0 introduces a clear separation between the client, the resource
owner, the authorization server, and the resource server. But the core OAuth 2.0
specification doesn’t talk about how the resource server validates an access
token. Most OAuth implementations started doing this by talking to a proprietary
API exposed by the authorization server. The OAuth 2.0 Token Introspection profile
standardized this to some extent, and in Chapter 9, we talk more about it.

JWT Secured Authorization Request (JAR)

In an OAuth 2.0 request to the authorize endpoint of the authorization server, all the
request parameters flow via the browser as query parameters. The following is an
example of an OAuth 2.0 authorization code grant request:

https://authz.example.com/oauth2/authorize?
response_type=token&
client id=0rhQErXIX49svVYoXJGtoDWBuFcad
redirect uri=https%3A%2F%2Fmycallback

There are a couple of issues with this approach. Since these parameters flow via the
browser, the end user or anyone on the browser can change the input parameters that
could result in some unexpected outcomes at the authorization server. At the same time,
since the request is not integrity protected, the authorization server has no means to
validate who initiated the request. With JSON Web Token (JWT) secured authorization
requests, we can overcome these two issues. If you are new to JWT, please check
Chapters 7 and 8. JSON Web Token (JWT) defines a container to transport data between
interested parties in a cryptographically safe manner. The JSON Web Signature (JWS)
specification developed under the IETF JOSE working group, represents a message or
a payload, which is digitally signed or MACed (when a hashing algorithm is used with
HMAC), while the JSON Web Encryption (JWE) specification standardizes a way to
represent an encrypted payload.

One of the draft proposals! to the IETF OAuth working group suggests to introduce
the ability to send request parameters in a JWT, which allows the request to be signed

'The OAuth 2.0 Authorization Framework: JWT Secured Authorization Request (JAR).

97

CHAPTER 4 OAUTH 2.0 FUNDAMENTALS

with JWS and encrypted with JWE so that the integrity, source authentication, and
confidentiality properties of the authorization request are preserved. At the time of
writing, this proposal is in its very early stage—and if you are familiar with Security
Assertion Markup Language (SAML) Single Sign-On, this is quite analogous to the signed
authentication requests in SAML. The following shows the decoded payload of a sample
authorization request, which ideally goes within a JWT:

{
"iss": "s6BhdRkqt3",
"aud": "https://server.example.com",
"response type": "code id token",
"client_id": "s6BhdRkqt3",
"redirect uri": "https://client.example.org/cb",
"scope": "openid",
"state": "afoifjsldkj",
"nonce": "n-0S6_WzA2Mj",
"max_age": 86400

Once the client application constructs the JWT (a JWS or a JWE—please see Chapters
7 and 8 for the details), it can send the authorization request to the OAuth authorization
server in two ways. One way is called passing by value, and the other is passing by
reference. The following shows an example of passing by value, where the client
application sends the JWT in a query parameter called request. The [jwt_assertion] in
the following request represents either the actual JWS or JWE.

https://server.example.com/authorize?request=[jwt_assertion]

The draft proposal for JWT authorization request introduces the pass by reference
method to overcome some of the limitations in the pass by value method, as listed here:

e Many mobile phones in the market as of this writing still do not
accept large payloads. The payload restriction is typically either 512
or 1024 ASCII characters.

e The maximum URL length supported by older versions of the
Internet Explorer is 2083 ASCII characters.

98

CHAPTER 4 OAUTH 2.0 FUNDAMENTALS

e On aslow connection such as a 2G mobile connection, a large
URL would cause a slow response. Therefore the use of such is not
advisable from the user experience point of view.

The following shows an example of pass by reference, where the client application
sends a link in the request, which can be used by the authorization server to fetch the
JWT. This is a typical OAuth 2.0 authorization code request, along with the new request_
uri query parameter. The value of the request_uri parameter carries a link pointing to
the corresponding JWS or JWE.

https://server.example.com/authorize?
response_type=coded
client id=s6BhdRkqt3&
request_uri=https://tfp.example.org/request.jwt/Schjwewd
state=af0ifjsldkj

Pushed Authorization Requests (PAR)

This is another draft proposal being discussed under the IETF OAuth working group

at the moment, which complements the JWT Secured Authorization Request (JAR)
approach we discussed in the previous section. One issue with JAR is each client has

to expose an endpoint directly to the authorization server. This is the endpoint that
hosts the corresponding JWT, which is used by the authorization server. With Pushed
Authorization Requests (PAR) draft proposal, this requirement goes a way. PAR defines
an endpoint at the authorization server end, where each client can directly push (without
going through the browser) all the parameters in a typical OAuth 2.0 authorization
request and then use the normal authorization flow via the browser to pass a reference
to the pushed request. Following is an example, where the client application pushes
authorization request parameters to an endpoint hosted at the authorization server. This
push endpoint on the authorization server can be secured either with mutual Transport
Layer Security (TLS) or with OAuth 2.0 itself (client credentials) or with any other means
as agreed between the client application and the authorization server.

POST /as/par HTTP/1.1

Host: server.example.com

Content-Type: application/x-www-form-urlencoded

Authorization: Basic czZCaGRSa3FOMzo3RmpmcDBaQnIxS3REUmIuZ1ZkbU13

99

CHAPTER 4 OAUTH 2.0 FUNDAMENTALS

response_type=code&

state=afoifjsldkj&

client id=s6BhdRkqt3&
redirect_uri=https%3A%2F%2Fclient.example.orgh2Fcb&
scope=ais

If the client follows the JAR specification which, we discussed in the previous section,
it can also send a JWS or a JWE to the push endpoint in the following way.

POST /as/par HTTP/1.1

Host: server.example.com

Content-Type: application/x-www-form-urlencoded

Authorization: Basic czZCaGRSa3FOMzo3RmpmcDBaQnIxS3REUmIuZ1ZkbU13

request=[jwt_assertion]

Once the push endpoint at the authorization server receives the preceding request,
it has to carry out all the validation checks against the request that it usually performs
against a typical authorization request. If it all looks good, the authorization server
responds with the following. The value of the request_uri parameter in the response
is bound to the client_idin the request and acts as a reference to the authorization
request.

HTTP/1.1 201 Created
Date: Tue, 2 Oct 2019 15:22:31 GMT
Content-Type: application/json

{

"request_uri": "urn:example:bwc4JK-ESCow8acc191e-Y1LTC2",
"expires in": 3600

}

Upon receiving the push response from the authorization server, the client
application can construct the following request with the request_uri parameter from
the response to redirect the user to the authorization server.

https://server.example.com/authorize?
request_uri=urn:example:bwc4JK-ESCOw8acc191e-Y1LTC2

100

CHAPTER 4 OAUTH 2.0 FUNDAMENTALS

Summary

OAuth 2.0 is the de facto standard for securing APIs, and it primarily
solves the access delegation problem.

A grant type in OAuth 2.0 defines how a client can obtain an
authorization grant from a resource owner to access a resource on
his/her behalf.

OAuth 2.0 core specification defines five grant types: authorization
code, implicit, password, client credentials, and refresh.

Refresh grant type is a special grant type, which is used by an OAuth
2.0 client application to renew an expired or closer to expiry access
token.

Implicit grant type and client credentials grant types do not return
back any refresh tokens.

Implicit grant type is obsolete and is not recommended to use due to

its own inherent security issues.

OAuth 2.0 supports two types of client applications: public clients
and confidential clients. Single-page applications and native mobile
applications fall under public clients, while web applications fall
under confidential clients.

The OAuth 2.0 Authorization Framework: JWT Secured Authorization
Request (JAR) draft proposal suggests to introduce the ability to send
request parameters in a JWT.

The Pushed Authorization Requests (PAR) draft proposal suggests
to introduce a push endpoint at the authorization server end, so the
client applications can securely push all the authorization request
parameters and then initiate the browser-based login flow.

101

CHAPTER 5

Edge Security with
an APl Gateway

The API gateway is the most common pattern in securing APIs in a production
deployment. In other words, it’s the entry point to your API deployment. There are many
open source and proprietary products out there, which implement the API gateway
pattern, which we commonly identify as API gateways. An API gateway is a policy
enforcement point (PEP), which centrally enforces authentication, authorization, and
throttling policies. Further we can use an API gateway to centrally gather all the analytics
related to APIs and publish those to an analytics product for further analysis and
presentation.

Setting Up Zuul API Gateway

Zuul' is an API gateway (see Figure 5-1) that provides dynamic routing, monitoring,
resiliency, security, and more. It is acting as the front door to Netflix’s server
infrastructure, handling traffic from all Netflix users around the world. It also routes
requests, supports developers’ testing and debugging, provides deep insight into Netflix’s
overall service health, protects the Netflix deployment from attacks, and channels traffic
to other cloud regions when an Amazon Web Services (AWS) region is in trouble. In this
section, we are going to set up Zuul as an API gateway to front the Order API, which we
developed in Chapter 3.

'https://github.com/Netflix/zuul

103
© Prabath Siriwardena 2020

P. Siriwardena, Advanced API Security, https://doi.org/10.1007/978-1-4842-2050-4_5

https://github.com/Netflix/zuul

CHAPTER 5 EDGE SECURITY WITH AN API GATEWAY

All the samples used in this book are available in the https://github.com/
apisecurity/samples.git git repository. Use the following git command to clone it. All
the samples related to this chapter are inside the directory ch05. To run the samples in
the book, we assumed you have installed Java (JDK 1.8+) and Apache Maven 3.2.0+.

\> git clone https://github.com/apisecurity/samples.git
\> cd samples/cho5

Zuul
Ribbon Client Eureka Client
£l
A software load -
balancer L A service registry for
_ 4 Eureka | endpoint discovery
-~
. L TT
Archai
* Eureka | _ 7 RN _ | Eurcka
Properties J et | Tt Chient
, ; 1 - .
Microservice foo Microservice zee
Eureka
Client
Archaius
Ribbon
Gl Microservice bar j
ATchaiis Properties

Notification
Service

Properties __J
Configuration

management

Figure 5-1. A typical Zuul API gateway deployment at Netflix. All the Netflix
microservices are fronted by an API gateway

Running the Order API

This is the simplest API implementation ever, which is developed with Java Spring
Boot. In fact one can call it as a microservice as well. You can find the code inside the
directory, ch05/sample01. To build the project with Maven, use the following command
from the sample01 directory:

\> cd sampleo1
\> mvn clean install

104

https://github.com/apisecurity/samples.git
https://github.com/apisecurity/samples.git

CHAPTER5 EDGE SECURITY WITH AN API GATEWAY

Now, let’s see how to run our Spring Boot service and talk to it with a cURL client.
Execute the following command from ch05/sample01 directory to start the Spring Boot
service with Maven.

\> mvn spring-boot:run

To test the APTwith a cURL client, use the following command from a different
command console. It will print the output as shown in the following, after the initial
command.

\> curl http://localhost:8080/0rder/11

{"customer id":"101021","order id":"11","payment method":{"card type":
"VISA","expiration":"01/22","name":"John Doe","billing address":"201, 1st
Street, San Jose, CA"},"items": [{"code":"101","qty":1},{"code":"103","qty"
:5}],"shipping address":"201, 1st Street, San Jose, CA"}

Running the Zuul APl Gateway

In this section, we are going to build the Zuul API gateway as a Spring Boot project and
run it against the Order service. Or in other words, the Zuul gateway will proxy all the
requests to the Order service. You can find the code inside ch05/sample02 directory. To
build the project with Maven, use the following commands:

\> cd sample02
\> mvn clean install

Before we delve deep into the code, let’s have a look at some of the notable Maven
dependencies and plugins added into ch05/sample02/pom.xml. Spring Boot comes
with different starter dependencies to integrate with different Spring modules. The
spring-cloud-starter-zuul dependency (as shown in the following) brings in Zuul
API gateway dependencies and does all the wiring between the components, making the
developer’s work to a minimum.

<dependency>
<groupld>org.springframework.cloud</groupId>
<artifactId>spring-cloud-starter-zuul</artifactId>
</dependency>

105

CHAPTER 5 EDGE SECURITY WITH AN API GATEWAY

It is important to have a look at the class file stc/main/java/com/apress/ch0o5/
sample02/GatewayApplication. java. This is the class which spins up the Zuul API
gateway. By default it starts on port 8080, and you can change the port by adding, say, for
example, server.port=9000 to the src/main/resources/application.properties file.
This will set the API gateway port to 9000. The following shows the code snippet from
GatewayApplication class, which spins up the API gateway. The @EnableZuulProxy
annotation instructs the Spring framework to start the Spring application as a Zuul

proxy.

@EnableZuulProxy
@SpringBootApplication
public class GatewayApplication {
public static void main(String[] args) {
SpringApplication.run(GatewayApplication.class, args);

Now, let’s see how to start the API gateway and talk to it with a cURL client. The
following command executed from ch05/sample02 directory shows how to start the API
gateway with Maven. Since the Zuul API gateway is also another Spring Boot application,
the way you start it is the same as how we did before with the Order service.

\> mvn spring-boot:run

To test the Order API, which is now proxied through the Zuul API gateway, let’s use
the following cURL. It will print the output as shown in the following. Also make sure
that the Order service is still up and running on port 8080. Here we add a new context
called retail (which we didn’t see in the direct API call) and talk to the port 9090, where
the API gateway is running.

\> curl http://localhost:9090/retail/order/11

{"customer id":"101021","order id":"11","payment method":{"card type":
"VISA","expiration":"01/22","name":"John Doe","billing address":"201, 1st
Street, San Jose, CA"},"items": [{"code":"101","qty":1},{"code":"103","qty"
:5}],"shipping address":"201, 1st Street, San Jose, CA"}

106

CHAPTER 5 EDGE SECURITY WITH AN API GATEWAY

What Happens Underneath?

When the API gateway receives a request to the retail context, it routes the request
to the back-end API. These routing instructions are set in the stc/main/resources/
application.properties file, as shown in the following. If you want to use some other
context, instead of retail, then you need to change the property key appropriately.

zuul.routes.retail.url=http://localhost:8080

Enabling TLS for the Zuul APl Gateway

In the previous section, the communication between the cURL client and the Zuul API
gateway happened over HTTP, which is not secure. In this section, let’s see how to enable
Transport Layer Security (TLS) at the Zuul API gateway. In Chapter 3, we discussed

how to secure the Order service with TLS. There the Order service is a Java Spring Boot
application, and we follow the same process here to secure the Zuul API gateway with
TLS, as Zuul is also another Java Spring Boot application.

To enable TLS, first we need to create a public/private key pair. The following
command uses keytool that comes with the default Java distribution to generate a key
pair and stores it in keystore. jks file. If you are to use the keystore. jks file as it is,
which is inside sample02 directory, you can possibly skip this step. Chapter 3 explains in
detail what each parameter in the following command means.

\> keytool -genkey -alias spring -keyalg RSA -keysize 4096 -validity 3650
-dname "CN=zool,OU=bar,0=zee,L=sjc,S=ca,C=us" -keypass springboot -keystore
keystore.jks -storeType jks -storepass springboot

To enable TLS for the Zuul API gateway, copy the keystore file (keystore. jks),
which we created earlier, to the home directory of the gateway (e.g., ch05/sample02/)
and add the following to the [SAMPLE_HOME]/src/main/resources/application.
properties file. The samples that you download from the samples git repository
already have these values (and you only need to uncomment them), and we are using
springboot as the password for both the keystore and the private key.

server.ssl.key-store: keystore.jks
server.ssl.key-store-password: springboot
server.ssl.keyAlias: spring

107

CHAPTER 5 EDGE SECURITY WITH AN API GATEWAY

To validate that everything works fine, use the following command from
ch05/sample02/ directory to spin up the Zuul API gateway and notice the line, which
prints the HTTPS port. If you already have the Zuul gateway running from the previous
exercise, please shut it down first.

\> mvn spring-boot:run
Tomcat started on port(s): 9090 (https) with context path "

Assuming you already have the Order service still running from the previous section,
run the following cURL command to access the Order service via the Zuul gateway, over
HTTPS.

\> curl -k https://localhost:9090/retail/order/11
{"customer_id":"101021","order id":"11","payment_method":{"card type":"V
ISA","expiration":"01/22","name":"John Doe","billing address":"201, 1st
Street, San Jose, CA"},"items": [{"code":"101","qty":1},{"code":"103","qty"
:5}],"shipping address":"201, 1st Street, San Jose, CA"}

We used the -k option in the preceding cURL command. Since we have self-signed
(untrusted) certificates to secure our HTTPS endpoint, we need to pass the -k parameter
to advise cURL to ignore the trust validation. In a production deployment with proper
certificate authority-signed certificates, you do not need to do that. Also, if you have
self-signed certificates, you can still avoid using -k, by pointing cURL to the
corresponding public certificate.

\> curl --cacert ca.crt https://localhost:9090/retail/order/11

You can use the following keytool command from ch05/sample02/ to export the
public certificate of the Zuul gateway to ca.crt file in PEM (with the -rfc argument)
format.

\> keytool -export -file ca.crt -alias spring -rfc -keystore keystore.jks
-storePass springboot

The preceding command will result in the following error. This complains that
the common name in certificate, which is zool, does not match with the hostname
(localhost) in the cURL command.

curl: (51) SSL: certificate subject name 'zool' does not match target host
name 'localhost’

108

CHAPTER 5 EDGE SECURITY WITH AN API GATEWAY

Ideally, in a production deployment when you create a certificate, its common name
should match the hostname. In this case, since we do not have Domain Name Service
(DNS) entry for the zool hostname, you can use the following workaround, with cURL.

\> curl --cacert ca.crt https://zool:9090/retail/order/11 --resolve
z001:9090:127.0.0.1

Enforcing OAuth 2.0 Token Validation at the Zuul API
Gateway

In the previous section, we explained how to proxy requests to an API, via the Zuul API
gateway. There we didn’t worry about enforcing security. In this section, we will discuss
how to enforce OAuth 2.0 token validation at the Zuul API gateway. There are two parts
in doing that. First we need to have an OAuth 2.0 authorization server (also we can call
it a security token service) to issue tokens, and then we need to enforce OAuth token
validation at the Zuul API gateway (see Figure 5-2).

. OAuth 2.0
cURL client gets an access Rt th
token from the STS, Server (STS)
following an OAuth grant
type
The API gateway talks to
the STS to validate tokens

. Zuul API Order API
AL G () > Gateway () > Implementation

cURL client invokes the |

Order API via the API The API gateway dispatches
gateway, passing the access the request to the Order
token from step-1 API implementation

Figure 5-2. The Zuul API gateway intercepts all the requests going to the Order
API and validates OAuth 2.0 access tokens against the authorization server (STS)

109

CHAPTER 5 EDGE SECURITY WITH AN API GATEWAY

Setting Up an OAuth 2.0 Security Token Service (STS)

The responsibility of the security token service (STS) is to issue tokens to its clients and
respond to the validation requests from the API gateway. There are many open source
OAuth 2.0 authorization servers out there: WSO2 Identity Server, Keycloak, Gluu, and
many more. In a production deployment, you may use one of them, but for this example,
we are setting up a simple OAuth 2.0 authorization server with Spring Boot. It is another
microservice and quite useful in developer testing. The code corresponding to the
authorization server is under ch05/sample03 directory.

Let’s have a look at ch05/sample03/pom. xml for notable Maven dependencies.
These dependencies introduce a new set of annotations (@EnableAuthorizationServer
annotation and @EnableResourceServer annotation), to turn a Spring Boot application
to an OAuth 2.0 authorization server.

<dependency>
<groupld>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-security</artifactId>

</dependency>

<dependency>
<groupld>org.springframework.security.oauth</groupId>
<artifactId>spring-security-oauth2</artifactId>

</dependency>

The class sample03/src/main/java/com/apress/ch05/sample03/TokenServiceApp.
java carries the @EnableAuthorizationServer annotation, which turns the project into
an OAuth 2.0 authorization server. We've added @EnableResourceServer annotation
to the same class, as it also has to act as a resource server, to validate access tokens and
return back the user information. It’s understandable that the terminology here is a little
confusing, but that’s the easiest way to implement the token validation endpoint (in fact
the user info endpoint, which also indirectly does the token validation) in Spring Boot.
When you use self-contained access tokens (JWTs), this token validation endpoint is not
required. If you are new to JWT, please check Chapter 7 for details.

The registration of clients with the Spring Boot authorization server can be done in
multiple ways. This example registers clients in the code itself, in sample03/src/
main/java/com/apress/ch05/sample03/config/AuthorizationServerConfig.
javafile. The AuthorizationServerConfig class extends the
AuthorizationServerConfigurerAdapter class to override its default behavior. Here

110

CHAPTER 5 EDGE SECURITY WITH AN API GATEWAY

we set the value of client id to 10101010, client secret to 11110000, available scope
values to foo and/or bar, authorized grant types to client credentials, password, and
refresh_token, and the validity period of an access token to 6000 seconds. Most of the
terms we use here are from OAuth 2.0 and explained in Chapter 4.

@verride

public void configure(ClientDetailsServiceConfigurer clients) throws

Exception {

clients.inMemory().withClient("10101010")
.secret("11110000").scopes("foo", "bar")
.authorizedGrantTypes("client credentials”, "password",
"refresh_token")

.accessTokenValiditySeconds(6000);

To support password grant type, the authorization server has to connect to a user
store. A user store can be a database or an LDAP server, which stores user credentials
and attributes. Spring Boot supports integration with multiple user stores, but once
again, the most convenient one, which is just good enough for this example, is an in-
memory user store. The following code from sample03/src/main/java/com/apress/
chos5/sample03/config/WebSecurityConfiguration. java file adds a user to the system,
with the role USER.

@verride
public void configure(AuthenticationManagerBuilder auth) throws
Exception {
auth.inMemoryAuthentication()
.withUser("peter").password("peter123").roles("USER");

Once we define the in-memory user store in Spring Boot, we also need to engage that
with the OAuth 2.0 authorization flow, as shown in the following, in the code sample03/
src/main/java/com/apress/ch05/sample03/config/AuthorizationServerConfig.
java.

@Autowired
private AuthenticationManager authenticationManager;
@0verride

111

CHAPTER 5 EDGE SECURITY WITH AN API GATEWAY

public void configure(AuthorizationServerEndpointsConfigurer endpoints)
throws Exception {
endpoints.authenticationManager(authenticationManager);

To start the authorization server, use the following command from ch05/sample03/
directory to spin up the TokenService microservice, and it starts running on HTTPS port
8443.

\> mvn spring-boot:run

Testing OAuth 2.0 Security Token Service (STS)

To get an access token using the OAuth 2.0 client credentials grant type, use the
following command. Make sure to replace the values of $CLIENTID and $CLIENTSECRET
appropriately. The hard-coded values for client id and client secret used in our example
are 10101010 and 11110000, respectively. Also you might have noticed already, the STS
endpoint is protected with Transport Layer Security (TLS). To protect STS with TLS, we
followed the same process we did before while protecting the Zuul API gateway with TLS.

\> curl -v -X POST --basic -u $CLIENTID:$CLIENTSECRET -H "Content-Type:
application/x-www-form-urlencoded;charset=UTF-8" -k -d "grant_type=client_
credentials&scope=foo" https://localhost:8443/0auth/token
{"access_token":"81aad8c4-b021-4742-93a9-e25920587c94", "token

type":"bearer", "expires in":43199,"scope":"foo"}

Note We use the -k option in the preceding cURL command. Since we have
self-signed (untrusted) certificates to secure our HTTPS endpoint, we need to
pass the -k parameter to advise cURL to ignore the trust validation. You can find
more details regarding the parameters used here from the OAuth 2.0 6749 RFC:
https://tools.ietf.org/html/rfc6749 and also explained in Chapter 4.

To get an access token using the password OAuth 2.0 grant type, use the following
command. Make sure to replace the values of $CLIENTID, $CLIENTSECRET, $USERNAME,
and $PASSWORD appropriately. The hard-coded values for client id and client secret

112

https://tools.ietf.org/html/rfc6749

CHAPTER 5 EDGE SECURITY WITH AN API GATEWAY

used in our example are 10101010 and 11110000, respectively; and for username and
password, we use peter and peter123, respectively.

\> curl -v -X POST --basic -u $CLIENTID:$CLIENTSECRET -H "Content-Type:
application/x-www-form-urlencoded;charset=UTF-8" -k -d "grant_type=passwor
d8username=$USERNAME&pas sword=$PASSWORD&scope=Ffoo" https://localhost:8443/
oauth/token

{"access_token":"69ff86a8-eaa2-4490-adda-6ce0f10b9f8b", "token_

type":"bearer","refresh token":"ab3c797b-72e2-4a9a-alc5-
€550b2775f93", "expires in":43199,"scope":"foo"}

Note If you carefully observe the two responses we got for the OAuth 2.0 client
credentials grant type and the password grant type, you might have noticed that
there is no refresh token in the client credentials grant type flow. In OAuth 2.0, the
refresh token is used to obtain a new access token, when the access token has
expired or is closer to expire. This is quite useful, when the user is offline and the
client application has no access to his/her credentials to get a new access token
and the only way is to use a refresh token. For the client credentials grant type,
there is no user involved, and it always has access to its own credentials, so can
be used any time it wants to get a new access token. Hence, a refresh token is not
required.

Now let’s see how to validate an access token, by talking to the authorization server.
The resource server usually does this. An interceptor running on the resource server
intercepts the request, extracts out the access token, and then talks to the authorization
server. In a typical API deployment, this validation happens over a standard endpoint
exposed by the OAuth authorization server. This is called the introspection endpoint,
and in Chapter 9, we discuss OAuth token introspection in detail. However, in this
example, we have not implemented the standard introspection endpoint at the
authorization server (or the STS), but rather use a custom endpoint for token validation.

The following command shows how to directly talk to the authorization server to
validate the access token obtained in the previous command. Make sure to replace the
value of $TOKEN with the corresponding access token appropriately.

113

CHAPTER 5 EDGE SECURITY WITH AN API GATEWAY

\> curl -k -X POST -H "Authorization: Bearer $TOKEN" -H "Content-Type:
application/json" https://localhost:8443/user
{"details":{"remoteAddress":"0:0:0:0:0:0:0:1","sessionId":null, "tokenValue":
"9f3319a1-c6c4-4487-ac3b-51e9e479b4ff", "tokenType": "Bearer"”, "decodedDetails" :
null},"authorities":[],"authenticated":true, "userAuthentication":null,
"credentials":"","oauth2Request”:{"clientId":"10101010","scope":["bar"],
"requestParameters":{"grant type":"client credentials","scope":"bar"},
"resourcelds":[],"authorities":[],"approved":true,"refresh":false,"redirect
Uri":null, "responseTypes":[], "extensions":{}, "grantType":"client credentials",
"refreshTokenRequest":null},"clientOnly":true, "principal”:"10101010",

"name":"10101010"}

The preceding command returns back the metadata associated with the access
token, if the token is valid. The response is built inside the user () method of sample03/
src/main/java/com/apress/ch05/sample03/TokenServiceApp.java class, as shown in
the following code snippet. With the @RequestMapping annotation, we map the /user
context (from the request) to the user () method.

@RequestMapping("/user")
public Principal user(Principal user) {
return user;

Note By default, with no extensions, Spring Boot stores issued tokens in memory.
If you restart the server after issuing a token, and then validate it, it will result in an
error response.

Setting Up Zuul API Gateway for OAuth 2.0 Token
Validation

To enforce token validation at the API gateway, we need to uncomment the following
property in sample02/src/main/resources/application.properties file, as shown in the
following. The value of the security.oauth2.resource.user-info-uri property carries
the endpoint of the OAuth 2.0 security token service, which is used to validate tokens.

security.oauth2.resource.user-info-uri=https://localhost:8443/user

114

CHAPTER5 EDGE SECURITY WITH AN API GATEWAY

The preceding property points to an HTTPs endpoint on the authorization server.
To support the HTTPS connection between the Zuul gateway and the authorization
server, there is one more change we need to do at the Zuul gateway end. When we have
a TLS connection between the Zuul gateway and the authorization server, the Zuul
gateway has to trust the certificate authority associated with the public certificate of
the authorization server. Since we are using self-signed certificate, we need to export
authorization server’s public certificate and import it to Zuul gateway’s keystore.
Let’s use the following keytool command from ch05/sample03 directory to export
authorization server’s public certificate and copy it to ch05/sample02 directory. If you
are using keystores from the samples git repo, then you may skip the following two
keytool commands.

\> keytool -export -alias spring -keystore keystore.jks -storePass
springboot -file sts.crt

Certificate stored in file <sts.crt>

\> cp sts.crt ../sample02

Let’s use the following keytool command from ch05/sample02 directory to import
security token service’s public certificate to Zuul gateway’s keystore.

\> keytool -import -alias sts -keystore keystore.jks -storePass springboot
-file sts.crt

Trust this certificate? [no]:yes

Certificate was added to keystore

We also need to uncomment the following two dependencies in the sample02/pom.
xml file. These dependencies do the autowiring between Spring Boot components to
enforce OAuth 2.0 token validation at the Zuul gateway.

<dependency>
<groupIld>org.springframework.security</groupId>
<artifactId>spring-security-jwt</artifactId>

</dependency>

<dependency>
<groupld>org.springframework.security.oauth</groupId>
<artifactId>spring-security-oauth2</artifactId>

</dependency>

115

CHAPTER 5 EDGE SECURITY WITH AN API GATEWAY

Finally, we need to uncomment the @EnableResourceServer annotation and
the corresponding package import on the GatewayApplication (ch05/sample02/
GatewayApplication.java) class.

Let’s run the following command from the ch05/sample02 directory to start the Zuul
API gateway. In case it is running already, you need to stop it first. Also, please make sure
sample01 (Order service) and sample03 (STS) are still up and running.

\> mvn spring-boot:run

To test the API, which is now proxied through the Zuul API gateway and secured with
OAuth 2.0, let’s use the following cURL. It should fail, because we do not pass an OAuth
2.0 token.

\> curl -k https://localhost:9090/retail/order/11

Now let’s see how to invoke the API properly with a valid access token. First we need
to talk to the security token service and get an access token. Make sure to replace the
values of $CLIENTID, $CLIENTSECRET, $USERNAME, and $PASSWORD appropriately in the
following command. The hard-coded values for client id and client secret used in our
example are 10101010 and 11110000, respectively; and for username and password, we
used peter and peter123, respectively.

\> curl -v -X POST --basic -u $CLIENTID:$CLIENTSECRET -H "Content-Type:
application/x-www-form-urlencoded;charset=UTF-8" -k -d "grant_type=passwor
d&username=$USERNAME&password=$PASSWORD&scope=Ffoo" https://localhost:8443/
oauth/token

{"access_token":"69ff86a8-eaa2-4490-adda-6ce0f10b9f8b" , "token_
type":"bearer","refresh token":"ab3c797b-72e2-4a9a-alc5-

c550b2775f93", "expires_in":43199,"scope":"foo"}

Now let’s use the access token from the preceding response to invoke the Order
API. Make sure to replace the value of $TOKEN with the corresponding access token
appropriately.

\> curl -k -H "Authorization: Bearer $TOKEN" -H "Content-Type: application/
json" https://localhost:9090/retail/order/11

{"customer id":"101021","order id":"11","payment method":{"card type":
"VISA","expiration":"01/22","name":"John Doe","billing address":"201, 1st

116

CHAPTER 5 EDGE SECURITY WITH AN API GATEWAY

Street, San Jose, CA"},"items": [{"code":"101","qty":1},{"code":"103","qty"
:5}],"shipping address":"201, 1st Street, San Jose, CA"}

Enabling Mutual TLS Between Zuul APl Gateway
and Order Service

So far in this chapter, we have protected the communication between the cURL client
and STS, cURL client and Zuul API gateway, and Zuul API gateway and STS over TLS. Still
we have a weak link in our deployment (see Figure 5-3). The communication between
the Zuul gateway and Order service is neither protected with TLS nor authentication. In
other words, if someone can bypass the gateway, they can reach the Order server with no
authentication. To fix this, we need to secure the communication between the gateway
and the Order service over mutual TLS. Then, no other request can reach the Order
service without going through the gateway. Or in other words, the Order service only
accepts requests generated from the gateway.

Communication

protected with TLS I
cURL client gets an access J’__’ ELr il

Authorization
token from the STS,
following an OAuth grant Server (STS)
type

- The API gateway talks to
_ "’ the STS to validate tokens
. Zuul API Order API
AL () > Gateway () > Implementation

A b —

c¢URL client invokes the The API gateway dispatches
Order API via the API the request to the _rdcr
gateway, passing the access API implementation

token from step-1

Figure 5-3. The Zuul API gateway intercepts all the requests going to the Order
API and validates OAuth 2.0 access tokens against the authorization server (STS)

117

CHAPTER 5 EDGE SECURITY WITH AN API GATEWAY

To enable mutual TLS between the gateway and the Order service, first we need to
create a public/private key pair. The following command uses keytool that comes with
the default Java distribution to generate a key pair and stores it in keystore. jks file.
Chapter 3 explains in detail what each parameter in the following command means.

If you are using keystores from the samples git repo, then you may skip the following
keytool commands.

\> keytool -genkey -alias spring -keyalg RSA -keysize 4096 -validity
3650 -dname "CN=order,OU=bar,0=zee,l=sjc,S=ca,C=us" -keypass springboot
-keystore keystore.jks -storeType jks -storepass springboot

To enable mutual TLS for the Order service, copy the keystore file (keystore.
jks), which we created earlier, to the home directory of the Order service (e.g., ch05/
sample01/) and add the following to the [SAMPLE_HOME]/src/main/resources/
application.properties file. The samples that you download from the samples git
repository already have these values (and you only need to uncomment them), and we
are using springboot as the password for both the keystore and the private key. The
server.ssl.client-auth parameter is used to enforce mutual TLS at the Order service.

server.ssl.key-store: keystore.jks
server.ssl.key-store-password: springboot
server.ssl.keyAlias: spring
server.ssl.client-auth:need

There are two more changes we need to do at the Order service end. When we
enforce mutual TLS at the Order service, the Zuul gateway (which acts as a client to the
Order service) has to authenticate itself with an X.509 certificate—and the Order service
must trust the certificate authority associated with Zuul gateway’s X.509 certificate. Since
we are using self-signed certificate, we need to export Zuul gateway’s public certificate
and import it to the Order service’s keystore. Let’s use the following keytool command
from ch05/sample02 directory to export Zuul gateway’s public certificate and copy it to
cho5/sampleo1 directory.

\> keytool -export -alias spring -keystore keystore.jks -storePass
springboot -file zuul.crt

Certificate stored in file <zuul.crt>

\> cp zuul.crt ../sampleo1

118

CHAPTER5 EDGE SECURITY WITH AN API GATEWAY

Let’s use the following keytool command from ch05/sample01 directory to import
Zuul gateway’s public certificate to Order service’s keystore.

\> keytool -import -alias zuul -keystore keystore.jks -storePass springboot
-file zuul.crt

Trust this certificate? [no]:yes

Certificate was added to keystore

Finally, when we have a TLS connection between the Zuul gateway and the Order
service, the Zuul gateway has to trust the certificate authority associated with the public
certificate of the Order service. Even though we do not enable mutual TLS between these
two parties, we still need to satisfy this requirement to enable just TLS. Since we are using
self-signed certificate, we need to export Order service’s public certificate and import it to
Zuul gateway’s keystore. Let’s use the following keytool command from ch05/sample01
directory to export Order service’s public certificate and copy it to ch05/sample02 directory.

\> keytool -export -alias spring -keystore keystore.jks -storePass
springboot -file order.crt

Certificate stored in file <order.crt>

\> cp order.crt ../sample02

Let’s use the following keytool command from ch05/sample02 directory to import
Order service’s public certificate to Zuul gateway’s keystore.

\> keytool -import -alias order -keystore keystore.jks -storePass
springboot -file order.crt

Trust this certificate? [no]:yes

Certificate was added to keystore

To validate that TLS works fine with the Order service, use the following command
from cho5/sample01/ directory to spin up the Order service and notice the line, which
prints the HTTPS port. If you already have the Order service running from the previous
exercise, please shut it down first.

\> mvn spring-boot:run
Tomcat started on port(s): 8080 (https) with context path "

Since we updated the Order service endpoint to use HTTPS instead of HTTP, we
also need to update the Zuul gateway to use the new HTTPS endpoint. These routing
instructions are set in the ch05/sample02/src/main/resources/application.

119

CHAPTER 5 EDGE SECURITY WITH AN API GATEWAY

properties file, as shown in the following. Just update it to use HTTPS instead of

HTTP. Also we need to uncomment the zuul.sslHostnameValidationEnabled
property in the same file and set it to false. This is to ask Spring Boot to ignore hostname
verification. Or in other words, now Spring Boot won'’t check whether the hostname of
the Order service matches the common name of the corresponding public certificate.

zuul.routes.retail.url=https://localhost:8080
zuul.sslHostnameValidationEnabled=false

Restart the Zuul gateway with the following command from ch05/sample02.
\> mvn spring-boot:run

Assuming you have authorization server up and running, on HTTPS port 8443, run
the following command to test the end-to-end flow. First we need to talk to the security
token service and get an access token. Make sure to replace the values of $CLIENTID,
$CLIENTSECRET, $USERNAME, and $PASSWORD appropriately in the following command.
The hard-coded values for client id and client secret used in our example are 10101010
and 11110000, respectively; and for username and password, we used peter and
peter123, respectively.

\> curl -v -X POST --basic -u $CLIENTID:$CLIENTSECRET -H "Content-Type:
application/x-www-form-urlencoded;charset=UTF-8" -k -d "grant_ type=passwor
d8username=$USERNAME&pas sword=$PASSWORD&scope=Ffoo" https://localhost:8443/
oauth/token

{"access_token":"69ff86a8-eaa2-4490-adda-6ce0f10b9f8b", "token

type":"bearer","refresh token":"ab3c797b-72e2-4a9a-alc5-
€550b2775f93", "expires in":43199,"scope”:"foo"}

Now let’s use the access token from the preceding response to invoke the Order
API. Make sure to replace the value of $TOKEN with the corresponding access token
appropriately.

\> curl -k -H "Authorization: Bearer $TOKEN" -H "Content-Type: application/
json" https://localhost:9090/retail/order/11

{"customer id":"101021","order id":"11","payment method":{"card type":"V
ISA","expiration":"01/22","name":"John Doe","billing address":"201, 1st
Street, San Jose, CA"},"items": [{"code":"101","qty":1},{"code":"103","qty"

:5}],"shipping address":"201, 1st Street, San Jose, CA"}

120

CHAPTER 5 EDGE SECURITY WITH AN API GATEWAY

Securing Order API with Self-Contained
Access Tokens

An OAuth 2.0 bearer token can be a reference token or self-contained token. A reference
token is an arbitrary string. An attacker can carry out a brute-force attack to guess

the token. The authorization server must pick the right length and use other possible
measures to prevent brute forcing. A self-contained access token is a JSON Web Token
(JWT), which we discuss in Chapter 7. When the resource server gets an access token,
which is a reference token, then to validate the token, it has to talk to the authorization
server (or the token issuer). When the access token is a JWT, the resource server can
validate the token by itself, by verifying the signature of the JWT. In this section, we
discuss how to obtain a JWT access token from the authorization server and use it to
access the Order service through the Zuul API gateway.

Setting Up an Authorization Server to Issue JWT

In this section, we’ll see how to extend the authorization server we used in the previous
section (ch05/sample03/) to support self-contained access tokens or JWTs. The first
step is to create a new key pair along with a keystore. This key is used to sign the JWTs
issued from our authorization server. The following keytool command will create a new
keystore with a key pair.

\> keytool -genkey -alias jwtkey -keyalg RSA -keysize 2048 -dname
"CN=localhost" -keypass springboot -keystore jwt.jks -storepass springboot

The preceding command creates a keystore with the name jwt. jks, protected
with the password springboot. We need to copy this keystore to sample03/src/main/
resources/. Now to generate self-contained access tokens, we need to set the values of the
following properties in sample03/src/main/resources/application.properties file.

spring.security.oauth.jwt: true
spring.security.oauth.jwt.keystore.password: springboot
spring.security.oauth.jwt.keystore.alias: jwtkey
spring.security.oauth.jwt.keystore.name: jwt.jks

121

CHAPTER 5 EDGE SECURITY WITH AN API GATEWAY

The value of spring.security.oauth. jwt is set to false by default, and it has to be
changed to true to issue JWTs. The other three properties are self-explanatory, and you
need to set them appropriately based on the values you used in creating the keystore.

Let’s go through the notable changes in the source code to support JWTs. First, in the
pom.xml, we need to add the following dependency, which takes care of building JWTs.

<dependency>
<groupld>org.springframework.security</groupId>
<artifactId>spring-security-jwt</artifactId>
</dependency>

In sample03/src/main/java/com/apress/cho5/sample03/config/
AuthorizationServerConfig.java class, we have added the following method, which
takes care of injecting the details about how to retrieve the private key from the jwt. jks
keystore, which we created earlier. This private key is used to sign the JWT.

@Bean

protected JwtAccessTokenConverter jwtConeverter() {
String pwd = environment.getProperty("spring.security.oauth.jwt.
keystore.password");
String alias = environment.getProperty("spring.security.oauth.jwt.
keystore.alias");
String keystore = environment.getProperty("spring.security.oauth.jwt.
keystore.name");
String path = System.getProperty("user.dir");

KeyStoreKeyFactory keyStoreKeyFactory = new KeyStoreKeyFactory(
new FileSystemResource(new File(path + File.separator +
keystore)), pwd.toCharArray());

JwtAccessTokenConverter converter = new JwtAccessTokenConverter();
converter.setKeyPair(keyStoreKeyFactory.getKeyPair(alias));
return converter;

In the same class file, we also set JwtTokenStore as the token store. The following
function does it in a way, we only set the JwtTokenStore as the token store only if
spring.security.oauth.jwt propertyis set to true in the application.properties file

122

CHAPTER5 EDGE SECURITY WITH AN API GATEWAY

@Bean
public TokenStore tokenStore() {
String uselwt = environment.getProperty("spring.security.oauth.jwt");
if (usedwt != null 8& "true".equalsIgnoreCase(useJwt.trim())) {
return new JwtTokenStore(jwtConeverter());
} else {
return new InMemoryTokenStore();

Finally, we need to set the token store to AuthorizationServerEndpointsConfigurer,
which is done in the following method, and once again, only if we want to use JWTs.

@Autowired
private AuthenticationManager authenticationManager;

@verride
public void configure(AuthorizationServerEndpointsConfigurer endpoints)
throws Exception {
String useJwt = environment.getProperty("spring.security.oauth.jwt");
if (usedwt != null && "true".equalsIgnoreCase(uselwt.trim())) {
endpoints.tokenStore(tokenStore()).tokenEnhancer(jwtConeverter())
.authenticationManager(authenticationManager);
} else {
endpoints.authenticationManager (authenticationManager);

To start the authorization server, use the following command from ch05/sample03/
directory, which now issues self-contained access tokens (JWTs).

\> mvn spring-boot:run

To get an access token using the OAuth 2.0 client credentials grant type, use the
following command. Make sure to replace the values of $CLIENTID and $CLIENTSECRET
appropriately. The hard-coded values for client id and client secret used in our example
are 10101010 and 11110000, respectively.

123

CHAPTER 5 EDGE SECURITY WITH AN API GATEWAY

\> curl -v -X POST --basic -u $CLIENTID:$CLIENTSECRET -H "Content-Type:
application/x-www-form-urlencoded;charset=UTF-8" -k -d "grant_type=client_
credentials&scope=foo" https://localhost:8443/0auth/token

The preceding command will return back a base64-url-encoded JWT, and the
following shows the decoded version.

{ llalgll: IIR5256||, ||typ": "Jlel }
{ "scope": ["foo"], "exp": 1524793284, "jti": "6e55840e-886c-46b2-bef7-
1a14b813ddoa", "client_id" : "10101010" }

Only the decoded header and the payload are shown in the output, skipping the
signature (which is the third part of the JWT). Since we used client credentials grant
type, the JWT does not include a subject or username. It also includes the scope value(s)
associated with the token.

Protecting Zuul APl Gateway with JWT

In this section, we’ll see how to enforce self-issued access token or JWT-based token
validation at the Zuul API gateway. We only need to comment out security.oauth2.
resource.user-info-uri property and uncomment security.oauth2.resource. jwt.
keyUri property in sample02/src/main/resources/application.properties file. The
updated application.properties file will look like the following.

#security.oauth2.resource.user-info-uri:https://localhost:8443/user
security.oauth2.resource.jwt.keyUri: https://localhost:8443/oauth/token_key

Here the value of security.oauth2.resource. jwt.keyUri points to the public key
corresponding to the private key, which is used to sign the JWT by the authorization
server. It's an endpoint hosted under the authorization server. If you just type https://
localhost:8443/0auth/token_key on the browser, you will find the public key, as
shown in the following. This is the key the API gateway uses to verify the signature of the
JWT included in the request.

{
"alg":"SHA256withRSA",

"value":"----- BEGIN PUBLIC KEY----- \nMIIBIjANBgkqhkiG9wOBAQEFAAOCAQSAMI
IBCgKCAQEA+WcBjPsrFvGOwqVId8vpV+gNx5onTyLjYx864mtIvUx08D4mwAaYpjXlgsre2dc
XjQ03BOLJdcjY5Nc9Kclea09nhFIEIDG30bwxm9gOw50p1TShCP30Xqf8b71738EHDFT6

124

CHAPTER 5 EDGE SECURITY WITH AN API GATEWAY

qABul7itIxSrz+AqUvjILSUKEw/cdXrJeubb71qHd/YiEIUIAOfjVwlFctbw7REbi3Sy3ndm
9yk7M3GIKka77jxwiMwIBg2klfDIgnE72fPkPi3FmalTIA4+9sKgfniFqdMNTkyLVbOi9E3Dla
0GXEit6TKTI9GR1SWX40FhhgLdTyWdu2z9RS2BOp+3d9WFMTddab8+fd4L2mYCQIDAQ
AB\n----- END PUBLIC KEY----- "

}

Once the changes are made as highlighted earlier, let’s restart the Zuul gateway with
the following command from the sample02 directory.

\> mvn spring-boot:run

Once we have a JWT access token obtained from the OAuth 2.0 authorization server,
in the same way as we did before, with the following cURL command, we can access the
protected resource. Make sure the value of $TOKEN is replaced appropriately with a valid
JWT access token.

\> curl -k -H "Authorization: Bearer $TOKEN" https://localhost:9443/
order/11
{"customer_id":"101021","order id":"11","payment method":{"card type":"VISA",
"expiration":"01/22","name":"John Doe","billing address":"201, 1st Street,
San Jose, CA"},"items":[{"code":"101","qty":1},{"code":"103","qty":5}],"

shipping address":"201, 1st Street, San Jose, CA"}

The Role of a Web Application Firewall (WAF)

As we discussed before, an API gateway is a policy enforcement point (PEP), which
centrally enforces authentication, authorization, and throttling policies. In a public-
facing API deployment, an API gateway is not just sufficient. We also need a web
application firewall (WAF) sitting in front of the API gateway (see Figure 5-4). The
primary role of a WAF is to protect your API deployment from distributed denial of
service (DDoS) attacks—do threat detection and message validation against OpenAPI
Specification (OAS) along with known threats identified by Open Web Application
Security Project (OWASP). Gartner (one of the leading analyst firms) predicts that by
2020, more than 50% of public-facing web applications will be protected by cloud-based
WAF service platforms such Akamai, Imperva, Cloudflare, Amazon Web Services, and so
on, up from less than 20% in December 2018.

125

CHAPTER 5 EDGE SECURITY WITH AN API GATEWAY

Intercepts all the requests
coming to the API
deployment and scans the
message content for known
threats.

Websites[SPAs
> Service Foo
= o | Web Application
l'l > Firewall f——p-| API Gateway
Mobile Apps A - Service Bar
Makes sure all the API

requests are authenticated,
authorized and throttled.

IoT Devices

Figure 5-4. A web application firewall (WAF) intercepts all the traffic coming into
an API deployment

Summary

e OAuth 2.0 s the de facto standard for securing APIs.

e The API gateway is the most common pattern in securing APIs in a
production deployment. In other words, it’s the entry point to your
API deployment.

o There are many open source and proprietary products out there,
which implement the API gateway pattern, which we commonly
identify as API gateways.

e An OAuth 2.0 bearer token can be a reference token or self-contained
token. A reference token is an arbitrary string. An attacker can carry
out a brute-force attack to guess the token. The authorization server
must pick the right length and use other possible measures to prevent
brute forcing.

126

CHAPTER5 EDGE SECURITY WITH AN API GATEWAY

When the resource server gets an access token, which is a reference
token, then to validate the token, it has to talk to the authorization
server (or the token issuer). When the access token is a JWT, the
resource server can validate the token by itself, by verifying the
signature of the JWT.

Zuul is an API gateway that provides dynamic routing, monitoring,
resiliency, security, and more. It is acting as the front door to Netflix’s
server infrastructure, handling traffic from all Netflix users around
the world.

In a public-facing API deployment, an API gateway is not just
sufficient. We also need a web application firewall (WAF) sitting in
front of the API gateway.

127

CHAPTER 6

OpenlD Connect (OIDC)

OpenID Connect provides a lightweight framework for identity interactions in a RESTful
manner and was ratified as a standard by its membership on February 26, 2014." It was
developed under the OpenlID Foundation and has its roots in OpenID, but was greatly
affected by OAuth 2.0. OpenID Connect is the most popular Identity Federation protocol
at the time of this writing. Most of the applications developed in the last few years

are supporting OpenlID Connect. Ninety-two percent of the 8 billion+ authentication
requests Microsoft Azure AD handled in May 2018 were from OpenID Connect-enabled

applications.

From OpenlID to OIDC

OpenlID, which followed in the footsteps of Security Assertion Markup Language (SAML)
in 2005, revolutionized web authentication. Brad Fitzpatrick, the founder of LiveJournal,
came up with the initial idea of OpenID. The basic principle behind both OpenID and
SAML (discussed in Chapter 12) is the same. Both can be used to facilitate web single
sign-on (SSO) and cross-domain identity federation. OpenID is more community-
friendly, user centric, and decentralized. Yahoo! added OpenlID support in January 2008,
MySpace announced its support for OpenlID in July of the same year, and Google joined
the party in October. By December 2009, there were more than 1 billion OpenID-enabled
accounts. It was a huge success as a web SSO protocol.

OpenID and OAuth 1.0 address two different concerns. OpenID is about
authentication, whereas OAuth 1.0 is about delegated authorization. As both of these
standards were gaining popularity in their respective domains, there was an interest in

'The announcement by the OpenID Foundation regarding the launch of the OpenID Connect
standard is available at http://bit.1ly/31PowsS

129
© Prabath Siriwardena 2020

P. Siriwardena, Advanced API Security, https://doi.org/10.1007/978-1-4842-2050-4_6

http://bit.ly/31PowsS

CHAPTER 6 OPENID CONNECT (OIDC)

combining them, so that it would be possible to authenticate a user and also get a token
to access resources on his or her behalf in a single step.

The Google Step 2 project was the first serious effort in this direction. It introduced
an OpenlID extension for OAuth, which basically takes OAuth-related parameters in the
OpenlID request/response. The same people who initiated the Google Step 2 project later
brought it into the OpenID Foundation.

OpenlID has gone through three generations to date. OpenID 1.0/1.1/2.0 was the first
generation, and the OpenlID extension for OAuth is the second. OpenID Connect (OIDC)
is the third generation of OpenlID. Yahoo!, Google, and many other OpenlID providers
discontinued their support for OpenID around mid-2015 and migrated to OpenID
Connect.

OPENID CONNECT IS NOT OPENID, THIS IS HOW OPENID WORKS!

How many profiles do you maintain today at different web sites? Perhaps you have one on
Yahoo!, one on Facebook, one on Google, and so on. Each time you update your mobile number
or home address, either you have to update all your profiles or you risk outdating most of your
profiles. OpenlD solves the problem of scattered profiles on different websites. With OpeniD,
you maintain your profile only at your OpenID provider, and all the other sites become OpenID
relying parties. These relying parties communicate with your OpenlD provider to obtain your
information.

Each time you try to log in to a relying party website, you’re redirected to your OpenID
provider. At the OpenlD provider, you have to authenticate and approve the request from the
relying party for your attributes. Upon approval, you’re redirected back to the relying party
with the requested attributes. This goes beyond simple attribute sharing to facilitate
decentralized SSO.

With SSO, you only log in once at the OpenID provider. That is, when a relying party redirects
you to the OpenlID provider for the first time. After that, for the subsequent redirects by other
relying parties, your OpenlD provider doesn’t ask for credentials but uses the authenticated
session you created before at the OpenlD provider. This authenticated session is maintained
either by a cookie until the browser is closed or with persistent cookies. Figure 6-1 illustrates
how OpenlID works.

130

CHAPTER 6 OPENID CONNECT (OIDC)

OpenID Provider o
Y O
(1) (i0) @
. End-user
RelymgA l;a;)ty (Web
The user enters the

OgenID or picks the
penlD Provider.

\&/

Figure 6-1. OpenlD protocol flow

The end user initiates the OpenID flow by typing his or her OpenID on the relying party web
site (step 1). An OpenlD is a unique URL or an XRI (Extensible Resource Identifier). For example,
http://prabath.myopenid.comis an OpenlD. Once the user types his or her OpeniD,

the relying party has to do a discovery based on it to find out the corresponding OpenID
provider (step 2). The relying party performs an HTTP GET on the OpenID (which is a URL) to
get back the HTML text behind it. For example, if you view the source that is behind http://
prabath.myopenid.com, you'll see the following tag (MyOpenID was taken down some
years back). This is exactly what the relying party sees during the discovery phase. This tag
indicates which OpenlD provider is behind the provided OpeniD:

<link rel="openid2.provider" href="http://www.myopenid.com/server" />

OpenlID has another way of identifying the OpenID provider, other than asking for an OpenID
from the end user. This is known as directed identity, and Yahoo!, Google, and many other
OpenlD providers used it. If a relying party uses directed identity, it already knows who the
OpenlD provider is, so a discovery phase isn’t needed. The relying party lists the set of OpenID
providers it supports, and the user has to pick which one it wants to authenticate against.

Once the OpenlD provider is discovered, the next step depends on the type of the relying party.
If it’s a smart relying party, then it executes step 3 in Figure 6-1 to create an association with

131

http://prabath.myopenid.com
http://prabath.myopenid.com
http://prabath.myopenid.com

CHAPTER 6 OPENID CONNECT (OIDC)

the OpenlD provider. During the association, a shared secret key is established between the
OpenlD provider and the relying party. If a key is already established between the two parties,
this step is skipped, even for a smart relying party. A dumb relying party always ignores step 3.

In step 5, the user is redirected to the discovered OpenID provider. In step 6, the user has to
authenticate and approve the attribute request from the relying party (steps 6 and 7). Upon
approval, the user is redirected back to the relying party (step 9). A key only known to the
OpenID provider and the corresponding relying party signs this response from the OpenID
provider. Once the relying party receives the response, if it’s a smart relying party, it validates
the signature itself. The key shared during the association phase should sign the message.

If it’s a dumb relying party, it directly talks to the OpenID provider in step 10 (not a browser
redirect) and asks to validate the signature. The decision is passed back to the relying party in
step 11, and that concludes the OpenlID protocol flow.

Amazon Still Uses OpenliD 2.0

Few have noticed that Amazon still uses (at the time of this writing) OpenlID for user
authentication. Check it out yourself: go to www.amazon. com, and click the Sign In button.
Then observe the browser address bar. You see something similar to the following, which
is an OpenlID authentication request:

https://www.amazon.com/ap/signin?_encoding=UTF8
&openid.assoc_handle=usflex
&openid.claimed id=
http://specs.openid.net/auth/2.0/identifier select
&openid.identity=
http://specs.openid.net/auth/2.0/identifier_select
&openid.mode=checkid setup
&openid.ns=http://specs.openid.net/auth/2.0
&openid.ns.pape=
http://specs.openid.net/extensions/pape/1.0
&openid.pape.max_auth_age=0
&openid.return_to=https://www.amazon.com/gp/yourstore/home

132

http://www.amazon.com

CHAPTER 6 OPENID CONNECT (OIDC)

Understanding OpeniD Connect

OpenID Connect was built on top of OAuth 2.0. It introduces an identity layer on top of
OAuth 2.0. This identity layer is abstracted into an ID token, which is JSON Web Token
(JWT), and we talk about JWT in detail in Chapter 7. An OAuth 2.0 authorization server
that supports OpenID Connect returns an ID token along with the access token.

OpenID Connect is a profile built on top of OAuth 2.0. OAuth talks about access
delegation, while OpenID Connect talks about authentication. In other words, OpenID
Connect builds an identity layer on top of OAuth 2.0.

Authentication is the act of confirming the truth of an attribute of a datum or
entity. If I say I am Peter, I need to prove that. I can prove that with something I know,
something I have, or with something I am. Once proven who I claim I am, then the
system can trust me. Sometimes systems do not just want to identify end users just by
the name. Name could help to identify uniquely—but how about other attributes? Before
you get through the border control, you need to identify yourself—by name, by picture,
and also by fingerprints and eye retina. Those are validated in real time against the data
from the VISA office, which issued the VISA for you. That check will make sure it’s the
same person who claimed to have the VISA that enters into the country.

That is proving your identity. Proving your identity is authentication. Authorization is
about what you can do or your capabilities.

You could prove your identity at the border control by name, by picture, and also by
fingerprints and eye retina—but it's your visa that decides what you can do. To enter into
the country, you need to have a valid visa that has not expired. A valid visa is not a part of
your identity, but a part of what you can do. What you can do inside the country depends
on the visa type. What you do with a B1 or B2 visa differs from what you can do with an
L1 or L2 visa. That is authorization.

OAuth 2.0 is about authorization—not about authentication. With OAuth 2.0, the
client does not know about the end user (only exception is resource owner password
credentials grant type, which we discussed in Chapter 4). It simply gets an access token
to access a resource on behalf of the user. With OpenID Connect, the client will get an ID
token along with the access token. ID token is a representation of the end user’s identity.
What does it mean by securing an API with OpenID Connect? Or is it totally meaningless?
OpenID Connect is at the application level or at the client level—not at the API level or
at the resource server level. OpenID Connect helps client or the application to find out
who the end user is, but for the API that is meaningless. The only thing API expects is the

133

CHAPTER 6 OPENID CONNECT (OIDC)

access token. If the resource owner or the API wants to find who the end user is, it has to
query the authorization server or rely on a self-contained access token (which is a JWT).

Anatomy of the ID Token

The ID token is the primary add-on to OAuth 2.0 to support OpenID Connect. It’s a JSON
Web Token (JWT) that transports authenticated user information from the authorization
server to the client application. Chapter 7 delves deeper into JWT. The structure of the ID
token is defined by the OpenID Connect specification. The following shows a sample ID

token:

{

134

"iss":"https://auth.server.com”,
"sub":"prabath@apache.org",
"aud":"67jjuyuy7IHk12",
"nonce":"88797jgjg32332",
"exp":1416283970,
"iat":1416281970,
"auth_time":1311280969,

acr

amr

:"urn:mace:incommon:iap:silver",

. n
:"password",

"azp":"67jjuyuy7IHk12"

Let’s examine the definition of each attribute:

iss: The token issuer’s (authorization server or identity provider)
identifier in the format of an HTTPS URL with no query parameters
or URL fragments. In practice, most of the OpenID Provider
implementations or products let you configure an issuer you want—
and also this is mostly being used as an identifier, rather than a URL.
This is a required attribute in the ID token.

sub: The token issuer or the asserting party issues the ID token

for a particular entity, and the claims set embedded into the ID
token normally represents this entity, which is identified by the sub
parameter. The value of the sub parameter is a case-sensitive string
value and is a required attribute in the ID token.

CHAPTER 6 OPENID CONNECT (OIDC)

aud: The audience of the token. This can be an array of identifiers, but
it must have the OAuth client ID in it; otherwise, the client ID should
be added to the azp parameter, which we discuss later in this section.
Prior to any validation check, the OpenlID client must first see
whether the particular ID token is issued for its use and if not should
reject immediately. In other words, you need to check whether the
value of the aud attribute matches with the OpenID client’s identifier.
The value of the aud parameter can be a case-sensitive string value or
an array of strings. This is a required attribute in the ID token.

nonce: A new parameter introduced by the OpenID Connect
specification to the initial authorization grant request. In addition
to the parameters defined in OAuth 2.0, the client application

can optionally include the nonce parameter. This parameter was
introduced to mitigate replay attacks. The authorization server must
reject any request if it finds two requests with the same nonce value.
If a nonce is present in the authorization grant request, then the
authorization server must include the same value in the ID token.
The client application must validate the value of the nonce once it
receives the ID token from the authorization server.

exp: Each ID token carries an expiration time. The recipient of the ID
token must reject it, if that token has expired. The issuer can decide
the value of the expiration time. The value of the exp parameter is
calculated by adding the expiration time (from the token issued time)
in seconds to the time elapsed from 1970-01-01T00:00:00Z UTC to
the current time. If the token issuer’s clock is out of sync with the
recipient’s clock (irrespective of their time zone), then the expiration
time validation could fail. To fix that, each recipient can add a couple
of minutes as the clock skew during the validation process. This is a
required attribute in the ID token.

iat: The iat parameter in the ID token indicates the issued

time of the ID token as calculated by the token issuer. The value
of the iat parameter is the number of seconds elapsed from
1970-01-01T00:00:00Z UTC to the current time, when the token is
issued. This is a required attribute in the ID token.

135

CHAPTER 6 OPENID CONNECT (OIDC)

e auth_time: The time at which the end user authenticates with
the authorization server. If the user is already authenticated, then
the authorization server won't ask the user to authenticate back.
How a given authorization server authenticates the user, and
how it manages the authenticated session, is outside the scope of
OpenID Connect. A user can create an authenticated session with
the authorization server in the first login attempt from a different
application, other than the OpenlD client application. In such cases,
the authorization server must maintain the authenticated time and
include it in the parameter auth_time. This is an optional parameter.

o acr: Stands for authentication context class reference. The value of this
parameter must be understood by both the authorization server and the
client application. It gives an indication of the level of authentication.
For example, if the user authenticates with a long-lived browser cookie,
itis considered as level 0. OpenID Connect specification does not
recommend using an authentication level of 0 to access any resource of
any monetary value. This is an optional parameter.

o amr: Stands for authentication method references. It indicates how the
authorization server authenticates the user. It may consist of an array
of values. Both the authorization server and the client application
must understand the value of this parameter. For example, if the user
authenticates at the authorization server with username/password
and with one-time passcode over SMS, the value of amr parameter
must indicate that. This is an optional parameter.

o azp: Stands for authorized party. It's needed when there is one audience
(aud) and its value is different from the OAuth client ID. The value of
azp must be set to the OAuth client ID. This is an optional parameter.

Note The authorization server must sign the ID token, as defined in JSON

Web Signature (JWS) specification. Optionally, it can also be encrypted. Token
encryption should follow the rules defined in the JSON Web Encryption (JWE)
specification. If the ID token is encrypted, it must be signed first and then
encrypted. This is because signing the encrypted text is questionable in many legal
entities. Chapters 7 and 8 talk about JWT, JWS, and JWE.

136

CHAPTER 6 OPENID CONNECT (OIDC)

OPENID CONNECT WITH WS02 IDENTITY SERVER

In this exercise, you see how to obtain an OpenID Connect ID token along with an OAuth 2.0
access token. Here we run the WS02 Identity Server as the OAuth 2.0 authorization server.

Note WSO2 Identity Server is a free, open source identity and entitlement
management server, released under the Apache 2.0 license. At the time of this
writing, the latest released version is 5.9.0 and runs on Java 8.

Follow these steps to register your application as a service provider in WS02 Identity Server
and then log in to your application via OpenlD Connect:

1.

Download WS02 Identity Server 5.9.0 from http://wso2.com/products/
identity-server/, set up the JAVA_HOME environment variable, and start the
server from the wso2server.sh/wso2server.bat file in the WSO2_IS HOME/
bin directory. If the WS02 Identity Server 5.9.0 isn’t available from the main
download page, you can find it at http://wso2.com/more-downloads/
identity-server/.

By default, the WS02 Identity Server starts on HTTPS port 9443.

Log in to the Identity Server running at https://localhost:9443 with its
default username and password (admin/admin).

To get an OAuth 2.0 client ID and a client secret for a client application, you
need to register it as a service provider on the OAuth 2.0 authorization server.
Choose Main » Service Providers » Add. Enter a name, say, oidc-app, and
click Register.

Choose Inbound Authentication Configuration » OAuth and OpenID Connect
Configuration » Configure.

Uncheck all the grant types except Code. Make sure the OAuth version is
set to 2.0.

Provide a value for the Callback Url text box—say, https://localhost/
callback—and click Add.

Copy the values of OAuth Client Key and the OAuth Client Secret.

137

http://wso2.com/products/identity-server/
http://wso2.com/products/identity-server/
http://wso2.com/more-downloads/identity-server/
http://wso2.com/more-downloads/identity-server/

CHAPTER6 OPENID CONNECT (OIDC)

138

9.

10.

11.

You use cURL here instead of a full-blown web application. First you need to
get an authorization code. Copy the following URL, and paste it into a browser.
Replace the values of client idand redirect uri appropriately. Note that
here we are passing the openid as the value of the scope parameter in the
request. This is a must to use OpenID Connect. You're directed to a login page
where you can authenticate with admin/admin and then approve the request
by the client:

https://localhost:9443/0auth2/authorize?
response_type=code8scope=openid&
client_id=NJOLXcftdOW20EvD6DUOlOpO1U_Ya&
redirect uri=https://localhost/callback

Once approved, you're redirected back to the redirect uri with the
authorization code, as shown here. Copy the value of the authorization code:

https://localhost/callback?code=577fc84a51c2aceac2a9e2f723fof47f

Now you can exchange the authorization code from the previous step

for an ID token and an access token. Replace the value of client_id,
client secret, code, and redirect_uri appropriately. The value of -u is
constructed as client id:client secret:

curl -v -X POST --basic

-u NJOLXcfdOW2...sEsSP5GTY1iU96MO6. . .

-H "Content-Type: application/x-www-form-urlencoded;

charset=UTF-8" -k

-d "client_id=NJOLXcftdOW20EvD6DUOL10OpO1u_Ya&
grant_type=authorization coded
code=577fc84a51c2aceac2a9e2f723f0f47&
redirect_uri=https://localhost/callback"”
https://localhost:9443/0auth2/token

This results in the following JSON response:

{

"scope":"openid",

"token type":"bearer",

"expires_in":3299,
"refresh_token":"1caf88a1351d2d74093f6b84b8751bb",

CHAPTER 6 OPENID CONNECT (OIDC)

"id token":"eyJhbGciOiJub2s...... ",
"access_token":"6cc611211a941cc95c0c5caf1385295"

}

12. The value of id_token is base64url-encoded. Once it’s base64url-decoded, it
looks like the following. Also you can use an online tool like https://jwt.io
to decode the ID token:

{
"alg":"none",
"typ" :"IWT"

}.

{
"exp":1667236118,
"azp" :"NJOLXcfdOW20EvD6DUOLOpO1U_Ya",
"sub":"admin@carbon.super",
"aud" : "NJOLXcfdOW20EvD6DUOLOpO1u_Ya",
"iss":"https://localhost:9443/0auth2endpoints/token”,
"iat":1663636118

}

OpeniD Connect Request

The ID token is the heart of OpenID Connect, but that isn’t the only place where it deviates
from OAuth 2.0. OpenID Connect introduced some optional parameters to the OAuth 2.0
authorization grant request. The previous exercise didn’t use any of those parameters.
Let’s examine a sample authorization grant request with all the optional parameters:

https://localhost:9443/0auth2/authorize?response_type=coded
scope=openid&
client id=NJOLXcfdOW20EvD6DUOLOpO1u_Yad
redirect_uri= https://localhost/callback&
response_mode=..... &
nonce=..... &
display=....&
prompt=....&
max_age=..... &
ui locales=..... &

139

https://jwt.io

CHAPTER 6 OPENID CONNECT (OIDC)

140

id _token_hint=..... &
login_hint=..... &
acr_value=.....

Let’s review the definition of each attribute:

response_mode: Determines how the authorization server sends back
the parameters in the response. This is different from the response
type parameter, defined in the OAuth 2.0 core specification. With the
response_type parameter in the request, the client indicates whether
it expects a code or a token. In the case of an authorization code
grant type, the value of response_type is set to code, whereas with an
implicit grant type, the value of response_type is set to token. The
response_mode parameter addresses a different concern. If the value
of response_mode is set to query, the response parameters are sent
back to the client as query parameters appended to the redirect
uri; and if the value is set to fragment, then the response parameters
are appended to the redirect uri as a URI fragment.

nonce: Mitigates replay attacks. The authorization server must
reject any request if it finds two requests with the same nonce value.
If a nonce is present in the authorization grant request, then the
authorization server must include the same value in the ID token.
The client application must validate the value of the nonce once it
receives the ID token from the authorization server.

display: Indicates how the client application expects the
authorization server to display the login page and the user consent
page. Possible values are page, popup, touch, and wap.

prompt: Indicates whether to display the login or the user consent
page at the authorization server. If the value is none, then neither the
login page nor the user consent page should be presented to the user.
In other words, it expects the user to have an authenticated session
at the authorization server and a preconfigured user consent. If the
value is login, the authorization server must reauthenticate the user.
If the value is consent, the authorization server must display the user
consent page to the end user. The select_account option can be

CHAPTER 6 OPENID CONNECT (OIDC)

used if the user has multiple accounts on the authorization server.
The authorization server must then give the user an option to select
from which account he or she requires attributes.

« max_age: In the ID token there is a parameter that indicates the time
of user authentication (auth_time). The max_age parameter asks the
authorization server to compare that value with max_age. If it’s less
than the gap between the current time and max_age (current time-
max_age), the authorization server must reauthenticate the user.
When the client includes the max_age parameter in the request, the
authorization server must include the auth_time parameter in the
ID token.

o ui locales: Expresses the end user’s preferred language for the user
interface.

o 1id_token_hint: AnID token itself. This could be an ID token
previously obtained by the client application. If the token is
encrypted, it has to be decrypted first and then encrypted back by
the public key of the authorization server and then placed into the
authentication request. If the value of the parameter prompt is set to
none, then the id_token_hint could be present in the request, but it

isn’t a requirement.

o login_hint: This is an indication of the login identifier that the end
user may use at the authorization server. For example, if the client
application already knows the email address or phone number of the
end user, this could be set as the value of the login_hint. This helps
provide a better user experience.

o acr_values: Stands for authentication context reference values.
Itincludes a space-separated set of values that indicates the
level of authentication required at the authorization server. The
authorization server may or may not respect these values.

Note All OpenlID Connect authentication requests must have a scope parameter
with the value openid.

141

CHAPTER 6 OPENID CONNECT (OIDC)

Requesting User Attributes

OpenID Connect defines two ways to request user attributes. The client application can
either use the initial OpenID Connect authentication request to request attributes or else
later talk to a UserInfo endpoint hosted by the authorization server. If it uses the initial
authentication request, then the client application must include the requested claims in
the claims parameter as a JSON message. The following authorization grant request asks
to include the user’s email address and the given name in the ID token:

https://localhost:9443/0auth2/authorize?
response_type=coded
scope=openid&
client id=NJOLXcfdOW20EvD6DUOLOpO1u_Yad
redirect_uri=https://localhost/callback&
claims={ "id_token":
{
"email": {"essential": true},
"given name": {"essential": true},

Note The OpenID Connect core specification defines 20 standard user claims.
These identifiers should be understood by all of the authorization servers and client
applications that support OpenID Connect. The complete set of OpenID Connect
standard claims is defined in Section 5.1 of the OpenID Connect core specification,
available at http://openid.net/specs/openid-connect-core-1_0.html.

The other approach to request user attributes is via the UserInfo endpoint. The
UserInfo endpoint is an OAuth 2.0-protected resource on the authorization server. Any
request to this endpoint must carry a valid OAuth 2.0 token. Once again, there are two
ways to get user attributes from the UserInfo endpoint. The first approach is to use the
OAuth access token. With this approach, the client must specify the corresponding
attribute scope in the authorization grant request. The OpenID Connect specification
defines four scope values to request attributes: profile, email, address, and phone. If
the scope value is set to profile, that implies that the client requests access to a set of

142

http://openid.net/specs/openid-connect-core-1_0.html

CHAPTER 6 OPENID CONNECT (OIDC)

attributes, which includes name, family_name, given_name, middle_name, nickname,
preferred_username, profile, picture, website, gender, birthdate, zoneinfo, locale, and
updated_at.

The following authorization grant request asks permission to access a user’s email
address and phone number:

Note The UserInfo endpoint must support both HTTP GET and POST. All
communication with the UserInfo endpoint must be over Transport Layer
Security (TLS).

https://localhost:9443/0auth2/authorize?
response_type=code
&scope=openid phone email
&client id=NJoLXcfdOW20EvD6DUOlOpO1u Ya
8redirect uri=https://localhost/callback

This results in an authorization code response. Once the client application has
exchanged the authorization code for an access token, by talking to the token endpoint
of the authorization server, it can use the access token it received to talk to the UserInfo
endpoint and get the user attributes corresponding to the access token:

GET /userinfo HTTP/1.1
Host: auth.server.com
Authorization: Bearer SJHkhew870ho0i90

The preceding request to the UserInfo endpoint results in the following JSON
message, which includes the user’s email address and phone number:

HTTP/1.1 200 OK
Content-Type: application/json

{
"phone": "94712841302",
"email": "joe@authserver.com",

}

143

CHAPTER 6 OPENID CONNECT (OIDC)

The other way to retrieve user attributes from the UserInfo endpoint is through the
claims parameter. The following example shows how to retrieve the email address of the
user by talking to the OAuth-protected UserInfo endpoint:

POST /userinfo HTTP/1.1

Host: auth.server.com

Authorization: Bearer SJHkhew870h00i90
claims={ "userinfo":

{

"email": {"essential": true}

Note Signing or encrypting the response message from the UserInfo endpoint
isn’t a requirement. If it’s signed or encrypted, then the response should be
wrapped in a JWT, and the Content-Type of the response should be set to
application/jwt.

OpenlID Connect Flows

All the examples in this chapter so far have used an authorization code grant type to
request an ID token—but it isn’t a requirement. In fact OpenID Connect, independent
of OAuth 2.0 grant types, defined a set of flows: code flow, implicit flow, and hybrid flow.
Each of the flows defines the value of the response_type parameter. The response_type
parameter always goes with the request to the authorize endpoint (in contrast the grant_
type parameter always goes to the token endpoint), and it defines the expected type of
response from the authorize endpoint. If it is set to code, the authorize endpoint of the
authorization server must return a code, and this flow is identified as the authorization
code flow in OpenID Connect.

For implicit flow under the context of OpenID Connect, the value of response_type
can be either id_token or id_token token (separated by a space). If it’s just id_token,
then the authorization server returns an ID token from the authorize endpoint; if it
includes both, then both the ID token and the access token are included in the response.

144

CHAPTER 6 OPENID CONNECT (OIDC)

The hybrid flow can use different combinations. If the value of response_type is set
to code id token (separated by a space), then the response from the authorize endpoint
includes the authorization code as well as the id_token. Ifit’s code token (separated
by a space), then it returns the authorization code along with an access token (for
the UserInfo endpoint). If response_type includes all three (code token id_token),
then the response includes an id_token, an access token, and the authorization code.
Table 6-1 summarizes this discussion.

Table 6-1. OpenID Connect Flows

Type of Flow response_type Tokens Returned

Authorization code code Authorization code

Implicit id_token ID token

Implicit id_token token ID token and access token

Hybrid code id_token ID token and authorization code

Hybrid code id_token token D token, authorization code, and access token
Hybrid code token Access token and authorization code

Note When id_token is being used as the response_type in an OpeniD
Connect flow, the client application never has access to an access token. In such a
scenario, the client application can use the scope parameter to request attributes,
and those are added to the id_token.

Requesting Custom User Attributes

As discussed before, OpenID Connect defines 20 standard claims. These claims can
be requested via the scope parameter or through the claims parameter. The only way
to request custom-defined claims is through the claims parameter. The following is a
sample OpenlID Connect request that asks for custom-defined claims:

https://localhost:9443/o0auth2/authorize?response_type=code
8scope=openid
&client id=NJoLXcfdOW20EvD6DUOlOpO1u_Ya

145

CHAPTER 6 OPENID CONNECT (OIDC)

8redirect uri=https://localhost/callback
&claims=
{ "id_token":
{
"http://apress.com/claims/email”: {"essential": true},
"http://apress.com/claims/phone": {"essential": true},

}
}

OpeniD Connect Discovery

At the beginning of the chapter, we discussed how OpenlID relying parties discover
OpenlID providers through the user-provided OpenID (which is a URL). OpenID Connect
Discovery addresses the same concern, but in a different way (see Figure 6-2). In order to
authenticate users via OpenlD Connect, the OpenID Connect relying party first needs to
figure out what authorization server is behind the end user. OpenID Connect utilizes the
WebFinger (RFC 7033) protocol for this discovery.

Note The OpenID Connect Discovery specification is available at http://
openid.net/specs/openid-connect-discovery-1 0.html.[f a given
OpenID Connect relying party already knows who the authorization server is, it can
simply ignore the discovery phase.

146

http://openid.net/specs/openid-connect-discovery-1_0.html
http://openid.net/specs/openid-connect-discovery-1_0.html

End-user

o

CHAPTER 6 OPENID CONNECT (OIDC)

WebFinger Endpoint

nID Connect
Provider Metadata

Endpoint

Client Registration

Endpoint

Authorization [Token
Endpoint

Figure 6-2. OpenlD Connect Discovery

Let’s assume a user called Peter visits an OpenID Connect relying party and wants

to log in (see Figure 6-2). To authenticate Peter, the OpenID Connect relying party
should know the authorization server corresponding to Peter. To discover this, Peter

has to provide to the relying party some unique identifier that relates to him. Using this

identifier, the relying party should be able to find the WebFinger endpoint corresponding

to Peter.

Let’s say that the identifier Peter provides is his email address, peter@apress.com
(step 1). The relying party should be able to find enough detail about the WebFinger

endpoint using Peter’s email address. In fact, the relying party should be able to derive

the WebFinger endpoint from the email address. The relying party can then send a

query to the WebFinger endpoint to find out which authorization server (or the identity

provider) corresponds to Peter (steps 2 and 3). This query is made according to the

WebFinger specification. The following shows a sample WebFinger request for peter@

apress.com:

GET /.well-known/webfinger?resource=acct:peter@apress.com
&rel=http://openid.net/specs/connect/1.0/issuer HTTP/1.1

Host: apress.com

147

CHAPTER 6 OPENID CONNECT (OIDC)

The WebFinger request has two key parameters: resource and rel. The resource
parameter should uniquely identify the end user, whereas the value of rel is fixed for
OpenlID Connect and must be equal to http://openid.net/specs/connect/1.0/
issuer. The rel (relation-type) parameter acts as a filter to determine the OpenID
Connect issuer corresponding to the given resource.

A WebFinger endpoint can accept many other discovery requests for different
services. If it finds a matching entry, the following response is returned to the OpenID
Connect relying party. The value of the OpenlID identity provider or the authorization
server endpoint is included in the response:

HTTP/1.1 200 OK
Access-Control-Allow-Origin: *
Content-Type: application/jrd+json

{
"subject":"acct:peter@apress.com”,
"links":[
{
"rel":"http://openid.net/specs/connect/1.0/issuer",
"href":"https://auth.apress.com"
}
]
}

Note Neither the WebFinger nor the OpenID Connect Discovery specification
mandates the use of the email address as the resource or the end user identifier. It
must be a URI that conforms to the URI definition in RFC 3986, which can be used
to derive the WebFinger endpoint. If the resource identifier is an email address,
then it must be prefixed with acct.

The acct is a URI scheme as defined in http://tools.ietf.org/html/
draft-ietf-appsawg-acct-uri-07. When the acct URI scheme is being
used, everything after the @ sign is treated as the hostname. The WebFinger
hostname is derived from an email address as per the acct URI scheme, which is
the part after the @ sign.

148

http://openid.net/specs/connect/1.0/issuer
http://openid.net/specs/connect/1.0/issuer
http://tools.ietf.org/html/draft-ietf-appsawg-acct-uri-07
http://tools.ietf.org/html/draft-ietf-appsawg-acct-uri-07

CHAPTER 6 OPENID CONNECT (OIDC)

If a URL is being used as the resource identifier, the hostname (and port number)
of the URL is treated as the WebFinger hostname. If the resource identifier is
https://auth.server.com:9443/prabath, then the WebFinger hostname is
auth.server.com:9443.

Once the endpoint of the identity provider is discovered, that concludes the role of
WebFinger. Yet you don’t have enough data to initiate an OpenID Connect authentication
request with the corresponding identity provider. You can find more information about
the identity provider by talking to its metadata endpoint, which must be a well-known
endpoint (steps 4 and 5 in Figure 6-2). After that, for the client application to talk to the
authorization server, it must be a registered client application. The client application
can talk to the client registration endpoint of the authorization server (steps 6 and 7) to
register itself—and then can access the authorize and token endpoints (steps 8 and 9).

Note Both the WebFinger and OpenlD Connect Discovery specifications use

the Defining Well-Known URIs (http://tools.ietf.org/html/rfc5785)
specification to define endpoint locations. The RFC 5785 specification introduces
a path prefix called /.well-known/ to identify well-known locations. Most of the
time, these locations are metadata endpoints or policy endpoints.

The WebFinger specification has the well-known endpoint /.well-known/
webfinger. The OpenlID Connect Discovery specification has the well-known
endpoint for OpenlID provider configuration metadata, /.well-known/openid-
configuration.

OpenlD Connect Identity Provider Metadata

An OpenlID Connect identity provider, which supports metadata discovery, should host
its configuration at the endpoint /.well-known/openid-configuration. In most cases,
this is a nonsecured endpoint, which can be accessed by anyone. An OpenID Connect
relying party can send an HTTP GET to the metadata endpoint to retrieve the OpenID
provider configuration details as follows:

GET /.well-known/openid-configuration HTTP/1.1
Host: auth.server.com

149

https://auth.server.com:9443/prabath
http://tools.ietf.org/html/rfc5785

CHAPTER 6 OPENID CONNECT (OIDC)

This results in the following JSON response, which includes everything an OpenID
Connect relying party needs to know to talk to the OpenID provider or the OAuth
authorization server:

HTTP/1.1 200 OK

Content-Type: application/json

{
"issuer":"https://auth.server.com",
"authorization_endpoint":"https://auth.server.com/connect/authorize”,
"token_endpoint":"https://auth.server.com/connect/token",
"token_endpoint auth methods supported":["client secret basic", "private
key_jut"],
"token_endpoint_auth signing alg values supported":["RS256", "ES256"],
"userinfo_endpoint":"https://auth.sever.com/connect/userinfo",
"check_session_iframe":"https://auth.server.com/connect/check_session",
"end_session_endpoint":"https://auth.server.com/connect/end session",
"jwks_uri":"https://auth.server.com/jwks.json",
"registration_endpoint":"https://auth.server.com/connect/register”,
"scopes_supported":["openid", "profile", "email", "address", "phone",
"offline access"],
"response types supported”:["code", "code id token", "id token", "token
id token"],
"acr values supported":["urn:mace:incommon:iap:silver", "urn:mace:incommo
n:iap:bronze"],
"subject types supported":["public", "pairwise"],
"userinfo_signing alg values supported":["RS256", "ES256", "HS256"],
"userinfo_encryption alg values supported”:["RSA1 5", "A128KW"],
"userinfo_encryption enc values supported":["A128CBC-HS256", "A128GCM"],
"id_token_signing alg values supported":["RS256", "ES256", "HS256"],
"id_token_encryption_alg values supported":["RSA1 5", "A128KW"],
"id token_encryption_enc _values supported":["A128CBC-HS256", "A128GCM"],
"request object signing alg values supported":["none", "RS256", "ES256"],
"display values_supported":["page", "popup"],
"claim types supported":["normal", "distributed"],
"claims_supported":["sub", "iss", "auth_time", "acr",

"name", "given_name", "family name", "nickname",

150

CHAPTER 6 OPENID CONNECT (OIDC)

"profile", "picture", "website","email",
"email verified",
"locale", "zoneinfo",
"http://example.info/claims/groups"],
"claims_parameter supported":true,
"service_documentation":"http://auth.server.com/connect/service_
documentation.html",
"ui locales supported":["en-US", "fr-CA"]

Note If the endpoint of the discovered identity provider is https://auth.
server.com, then the OpenlID provider metadata should be available at
https://auth.server.com/.well-known/openid-configuration.

If the endpoint is https://auth.server.com/openid, then the metadata
endpoint is https://auth.server.com/openid/.well-known/openid-
configuration.

Dynamic Client Registration

Once the OpenlID provider endpoint is discovered via WebFinger (and all the metadata
related to it through OpenID Connect Discovery), the OpenID Connect relying party still
needs to have a client ID and a client secret (not under the implicit grant type) registered
at the OpenlID provider to initiate the authorization grant request or the OpenID
Connect authentication request. The OpenID Connect Dynamic Client Registration
specification? facilitates a mechanism to register dynamically OpenID Connect relying
parties at the OpenlID provider.

The response from the OpenID provider metadata endpoint includes the endpoint
for client registration under the parameter registration_endpoint. To support dynamic
client registrations, this endpoint should accept open registration requests, with no
authentication requirements.

*http://openid.net/specs/openid-connect-registration-1_0.html

151

https://auth.server.com
https://auth.server.com
https://auth.server.com/.well-known/openid-configuration
https://auth.server.com/openid
https://auth.server.com/openid/.well-known/openid-configuration
https://auth.server.com/openid/.well-known/openid-configuration
http://openid.net/specs/openid-connect-registration-1_0.html

CHAPTER 6 OPENID CONNECT (OIDC)

To fight against denial of service (DoS) attacks, the endpoint can be protected with
rate limits or with a web application firewall (WAF). To initiate client registration, the
OpenlD relying party sends an HTTP POST message to the registration endpoint with its
own metadata.

The following is a sample client registration request:

POST /connect/register HTTP/1.1

Content-Type: application/json

Accept: application/json

Host: auth.server.com

{

"application type":"web",

"redirect uris":["https://app.client.org/callback","https://app.client.org/
callback2"],

"client_name":"Foo",

"logo uri":"https://app.client.org/logo.png",

"subject_type":"pairwise",

"sector_identifier uri":"https://other.client.org /file of redirect uris.
json",

"token_endpoint_auth_method":"client secret basic",
"jwks_uri":"https://app.client.org/public_keys.jwks",
"userinfo_encrypted response alg":"RSA1 5",
"userinfo_encrypted response enc":"A128CBC-HS256",
"contacts": ["prabath@wso2.com", "prabath@apache.org"],
"request_uris":["https://app.client.org/rf.txt#qgpXaRLh_
n93TTR9F252ValdatUQvQili5BDub2BeznA"]

}

In response, the OpenID Connect provider or the authorization server sends back
the following JSON message. It includes a client_id and a client_secret:

HTTP/1.1 201 Created
Content-Type: application/json
Cache-Control: no-store
Pragma: no-cache

{
"client_id":"Gjjhj678jhkh89789ew" ,

152

CHAPTER 6 OPENID CONNECT (OIDC)

"client_secret":"IUi989jkjo_989klkjuk89080kjkuoikjkUIl",
"client_secret expires at":2590858900,

"registration access token":"this.is.an.access.token.value.ffx83",
"registration_client uri":"https://auth.server.com/connect/register?client_
id=Gjjhj678jhkh89789ew ",

"token_endpoint_auth _method":"client secret basic",

"application_type": "web",

"redirect uris":["https://app.client.org/callback","https://app.client.org/
callback2"],

"client_name":"Foo",

"logo_uri":"https://client.example.org/logo.png",

"subject type":"pairwise",

"sector_identifier uri":"https://other.client.org/file of redirect uris.
json",

"jwks_uri":"https://app.client.org/public_keys.jwks",
"userinfo_encrypted response alg":"RSA1 5",
"userinfo_encrypted response enc":"A128CBC-HS256",
"contacts": ["prabath@wso2.com", "prabath@apache.org"],
"request_uris":["https://app.client.org/rf.txt#qgpXaRLh_

n93TTR9F252ValdatUQvQiJi5BDub2BeznA"]
}

Once the OpenID Connect relying party obtains a client ID and a client secret, it
concludes the OpenID Connect Discovery phase. The relying party can now initiate the
OpenID Connect authentication request.

Note Section 2.0 of the OpenID Connect Dynamic Client Registration
specification lists all the attributes that can be included in an OpenlID Connect
client registration request: http://openid.net/specs/openid-connect-
registration-1_0.html.

OpenlD Connect for Securing APIs

So far, you have seen a detailed discussion