
Advanced
API Security

OAuth 2.0 and Beyond
—
Second Edition
—
Prabath Siriwardena

Advanced API Security
OAuth 2.0 and Beyond

Second Edition

Prabath Siriwardena

Advanced API Security: OAuth 2.0 and Beyond

ISBN-13 (pbk): 978-1-4842-2049-8			 ISBN-13 (electronic): 978-1-4842-2050-4	
https://doi.org/10.1007/978-1-4842-2050-4

Copyright © 2020 by Prabath Siriwardena

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Jonathan Gennick
Development Editor: Laura Berendson
Coordinating Editor: Jill Balzano

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484220498. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Prabath Siriwardena
San Jose, CA, USA

www.EBooksWorld.ir

https://doi.org/10.1007/978-1-4842-2050-4

This book is dedicated to my sister Deepani,
who backed me all the time!

v

Chapter 1: APIs Rule!�� 1

API Economy�� 1

Amazon��� 3

Salesforce��� 5

Uber�� 5

Facebook�� 6

Netflix��� 7

Walgreens��� 8

Governments�� 9

IBM Watson��� 9

Open Banking��� 10

Healthcare�� 10

Wearables��� 11

Business Models�� 12

The API Evolution��� 13

API Management�� 20

The Role of APIs in Microservices�� 25

Summary��� 32

Chapter 2: Designing Security for APIs��� 33

Trinity of Trouble��� 34

Design Challenges��� 37

Table of Contents

About the Author��xv

Acknowledgments��xvii

Introduction���xix

vi

User Experience��� 38

Performance��� 39

Weakest Link�� 40

Defense in Depth�� 41

Insider Attacks�� 42

Security by Obscurity��� 44

Design Principles��� 45

Least Privilege�� 45

Fail-Safe Defaults��� 46

Economy of Mechanism��� 48

Complete Mediation��� 49

Open Design��� 49

Separation of Privilege��� 51

Least Common Mechanism�� 52

Psychological Acceptability�� 53

Security Triad��� 54

Confidentiality�� 54

Integrity�� 56

Availability�� 57

Security Control��� 59

Authentication�� 59

Authorization�� 62

Nonrepudiation��� 64

Auditing�� 65

Summary��� 65

Chapter 3: Securing APIs with Transport Layer Security (TLS)������������������������������� 69

Setting Up the Environment��� 69

Deploying Order API��� 71

Securing Order API with Transport Layer Security (TLS)�� 74

Protecting Order API with Mutual TLS�� 76

Table of Contents

vii

Running OpenSSL on Docker��� 78

Summary��� 79

Chapter 4: OAuth 2.0 Fundamentals�� 81

Understanding OAuth 2.0��� 81

OAuth 2.0 Actors�� 83

Grant Types�� 84

Authorization Code Grant Type��� 85

Implicit Grant Type�� 88

Resource Owner Password Credentials Grant Type�� 90

Client Credentials Grant Type��� 91

Refresh Grant Type��� 92

How to Pick the Right Grant Type?��� 93

OAuth 2.0 Token Types��� 94

OAuth 2.0 Bearer Token Profile��� 94

OAuth 2.0 Client Types��� 96

JWT Secured Authorization Request (JAR)�� 97

Pushed Authorization Requests (PAR)�� 99

Summary��� 101

Chapter 5: Edge Security with an API Gateway��� 103

Setting Up Zuul API Gateway�� 103

Running the Order API�� 104

Running the Zuul API Gateway��� 105

What Happens Underneath?��� 107

Enabling TLS for the Zuul API Gateway�� 107

Enforcing OAuth 2.0 Token Validation at the Zuul API Gateway�� 109

Setting Up an OAuth 2.0 Security Token Service (STS)��� 110

Testing OAuth 2.0 Security Token Service (STS)��� 112

Setting Up Zuul API Gateway for OAuth 2.0 Token Validation��� 114

Enabling Mutual TLS Between Zuul API Gateway and Order Service��� 117

Securing Order API with Self-Contained Access Tokens�� 121

Table of Contents

viii

Setting Up an Authorization Server to Issue JWT��� 121

Protecting Zuul API Gateway with JWT��� 124

The Role of a Web Application Firewall (WAF)�� 125

Summary��� 126

Chapter 6: OpenID Connect (OIDC)��� 129

From OpenID to OIDC��� 129

Amazon Still Uses OpenID 2.0�� 132

Understanding OpenID Connect��� 133

Anatomy of the ID Token�� 134

OpenID Connect Request��� 139

Requesting User Attributes�� 142

OpenID Connect Flows��� 144

Requesting Custom User Attributes��� 145

OpenID Connect Discovery��� 146

OpenID Connect Identity Provider Metadata�� 149

Dynamic Client Registration��� 151

OpenID Connect for Securing APIs��� 153

Summary��� 155

Chapter 7: Message-Level Security with JSON Web Signature����������������������������� 157

Understanding JSON Web Token (JWT)�� 157

JOSE Header��� 158

JWT Claims Set�� 160

JWT Signature�� 163

JSON Web Signature (JWS)�� 167

JWS Compact Serialization�� 167

The Process of Signing (Compact Serialization)��� 172

JWS JSON Serialization�� 174

The Process of Signing (JSON Serialization)�� 176

Summary��� 184

Table of Contents

ix

Chapter 8: Message-Level Security with JSON Web Encryption��������������������������� 185

JWE Compact Serialization�� 185

JOSE Header��� 186

JWE Encrypted Key�� 191

JWE Initialization Vector��� 194

JWE Ciphertext��� 194

JWE Authentication Tag�� 194

The Process of Encryption (Compact Serialization)�� 195

JWE JSON Serialization��� 196

JWE Protected Header�� 197

JWE Shared Unprotected Header��� 197

JWE Per-Recipient Unprotected Header��� 198

JWE Initialization Vector��� 198

JWE Ciphertext��� 198

JWE Authentication Tag�� 199

The Process of Encryption (JSON Serialization)��� 199

Nested JWTs�� 201

Summary��� 210

Chapter 9: OAuth 2.0 Profiles�� 211

Token Introspection�� 211

Chain Grant Type�� 215

Token Exchange��� 217

Dynamic Client Registration Profile��� 220

Token Revocation Profile�� 225

Summary��� 226

Chapter 10: Accessing APIs via Native Mobile Apps��� 227

Mobile Single Sign-On (SSO)�� 227

Login with Direct Credentials��� 228

Login with WebView��� 229

Login with a System Browser��� 230

Table of Contents

x

Using OAuth 2.0 in Native Mobile Apps�� 231

Inter-app Communication��� 233

Proof Key for Code Exchange (PKCE)�� 235

Browser-less Apps��� 237

OAuth 2.0 Device Authorization Grant��� 237

Summary��� 241

Chapter 11: OAuth 2.0 Token Binding�� 243

Understanding Token Binding�� 244

Token Binding Negotiation�� 244

TLS Extension for Token Binding Protocol Negotiation�� 246

Key Generation��� 247

Proof of Possession�� 247

Token Binding for OAuth 2.0 Refresh Token��� 249

Token Binding for OAuth 2.0 Authorization Code/Access Token��� 251

TLS Termination��� 254

Summary��� 255

Chapter 12: Federating Access to APIs��� 257

Enabling Federation��� 257

Brokered Authentication�� 258

Security Assertion Markup Language (SAML)�� 261

SAML 2.0 Client Authentication�� 261

SAML Grant Type for OAuth 2.0�� 264

JWT Grant Type for OAuth 2.0�� 267

Applications of JWT Grant Type�� 269

JWT Client Authentication�� 270

Applications of JWT Client Authentication��� 271

Parsing and Validating JWT��� 274

Summary��� 276

Table of Contents

xi

Chapter 13: User-Managed Access�� 277

Use Cases�� 277

UMA 2.0 Roles�� 279

UMA Protocol��� 280

Interactive Claims Gathering�� 284

Summary��� 286

Chapter 14: OAuth 2.0 Security��� 287

Identity Provider Mix-Up�� 287

Cross-Site Request Forgery (CSRF)��� 291

Token Reuse��� 294

Token Leakage/Export�� 296

Open Redirector��� 298

Code Interception Attack�� 300

Security Flaws in Implicit Grant Type��� 301

Google Docs Phishing Attack��� 302

Summary��� 304

Chapter 15: Patterns and Practices��� 305

Direct Authentication with the Trusted Subsystem�� 305

Single Sign-On with the Delegated Access Control��� 306

Single Sign-On with the Integrated Windows Authentication�� 308

Identity Proxy with the Delegated Access Control��� 309

Delegated Access Control with the JSON Web Token�� 310

Nonrepudiation with the JSON Web Signature��� 311

Chained Access Delegation�� 313

Trusted Master Access Delegation��� 315

Resource Security Token Service (STS) with the Delegated Access Control����������������������������� 316

Delegated Access Control with No Credentials over the Wire�� 318

Summary��� 319

Table of Contents

xii

Appendix A: The Evolution of Identity Delegation�� 321

Direct Delegation vs. Brokered Delegation�� 322

The Evolution��� 323

Google ClientLogin�� 325

Google AuthSub�� 326

Flickr Authentication API��� 327

Yahoo! Browser–Based Authentication (BBAuth)��� 327

OAuth�� 328

Appendix B: OAuth 1.0��� �331

The Token Dance�� 331

Temporary-Credential Request Phase�� 333

Resource-Owner Authorization Phase�� 335

Token-Credential Request Phase�� 336

Invoking a Secured Business API with OAuth 1.0��� 338

Demystifying oauth_signature��� 339

Generating the Base String in Temporary-Credential Request Phase���������������������������������� 340

Generating the Base String in Token Credential Request Phase�� 342

Building the Signature�� 343

Generating the Base String in an API Call��� 344

Three-Legged OAuth vs. Two-Legged OAuth�� 346

OAuth WRAP��� 347

Client Account and Password Profile�� 349

Assertion Profile��� 350

Username and Password Profile�� 350

Web App Profile�� 352

Rich App Profile�� 353

Accessing a WRAP-Protected API��� 354

WRAP to OAuth 2.0��� 354

Table of Contents

xiii

Appendix C: How Transport Layer Security Works?�� 355

The Evolution of Transport Layer Security (TLS)�� 356

Transmission Control Protocol (TCP)�� 358

How Transport Layer Security (TLS) Works�� 364

Transport Layer Security (TLS) Handshake��� 365

Application Data Transfer��� 374

Appendix D: UMA Evolution��� 377

ProtectServe�� 377

UMA and OAuth�� 384

UMA 1.0 Architecture��� 384

UMA 1.0 Phases��� 385

UMA Phase 1: Protecting a Resource��� 385

UMA Phase 2: Getting Authorization��� 388

UMA Phase 3: Accessing the Protected Resource�� 394

UMA APIs�� 394

Protection API��� 395

Authorization API�� 396

Appendix E: Base64 URL Encoding�� 397

Appendix F: Basic/Digest Authentication�� 401

HTTP Basic Authentication��� 402

HTTP Digest Authentication�� 406

Appendix G: OAuth 2.0 MAC Token Profile��� 425

Bearer Token vs. MAC Token�� 427

Obtaining a MAC Token�� 428

Invoking an API Protected with the OAuth 2.0 MAC Token Profile�� 432

Calculating the MAC��� 433

Table of Contents

xiv

MAC Validation by the Resource Server��� 435

OAuth Grant Types and the MAC Token Profile��� 436

OAuth 1.0 vs. OAuth 2.0 MAC Token Profile��� 436

Index�� 439

Table of Contents

xv

About the Author

Prabath Siriwardena is an identity evangelist, author,

blogger, and VP of Identity Management and Security at

WSO2. He has more than 12 years of industry experience

in designing and building critical identity and access

management (IAM) infrastructure for global enterprises,

including many Fortune 100/500 companies. As a

technology evangelist, Prabath has published seven books.

He blogs on various topics from blockchain, PSD2, GDPR,

IAM to microservices security. He also runs a YouTube

channel. Prabath has spoken at many conferences, including

RSA Conference, KNOW Identity, Identiverse, European Identity Conference, Consumer

Identity World USA, API World, API Strategy and Practice Conference, QCon, OSCON,

and WSO2Con. He has traveled the world conducting workshops and meetups to

evangelize IAM communities. He is the founder of the Silicon Valley IAM User Group,

which is the largest IAM meetup in the San Francisco Bay Area.

xvii

Acknowledgments

I would first like to thank Jonathan Gennick, Assistant Editorial Director at Apress, for

evaluating and accepting my proposal for this book. Then, I must thank Jill Balzano,

Coordinating Editor at Apress, who was very patient and tolerant of me throughout the

publishing process. Alp Tunc served as the technical reviewer—thanks, Alp, for your

quality review comments, which were quite useful. Also I would like to thank all the

external reviewers of the book, who helped to make the book better.

Dr. Sanjiva Weerawarana, the Founder and former CEO of WSO2, and Paul

Fremantle, the CTO of WSO2, are two constant mentors for me. I am truly grateful to

both Dr. Sanjiva and Paul for everything they have done for me.

My wife, Pavithra, and my little daughter, Dinadi, supported me throughout this

process. Thank you very much, Pavithra and Dinadi.

My parents and my sister are with me all the time. I am grateful to them for

everything they have done for me. Last but not least, my wife’s parents—they were

amazingly helpful.

Although writing a book may sound like a one-man effort, it’s the entire team behind

it who makes it a reality. Thank you to everyone who supported me in many different

ways.

xix

Introduction

Enterprise APIs have become the common way of exposing business functions to the

outside world. Exposing functionality is convenient, but of course comes with a risk of

exploitation. This book is about securing your most important business assets or APIs. As

is the case with any software system design, people tend to ignore the security element

during the API design phase. Only at the deployment or at the time of integration they

start worrying about security. Security should never be an afterthought—it’s an integral

part of any software system design, and it should be well thought out from the design’s

inception. One objective of this book is to educate the reader about the need for security

and the available options for securing APIs.

The book guides you through the process and shares best practices for designing

APIs for better security. API security has evolved a lot in the last few years. The growth of

standards for securing APIs has been exponential. OAuth 2.0 is the most widely adopted

standard. It’s more than just a standard—rather a framework that lets people build

solutions on top of it. The book explains in depth how to secure APIs from traditional

HTTP Basic authentication to OAuth 2.0 and the profiles built around OAuth, such as

OpenID Connect, User-Managed Access (UMA), and many more.

JSON plays a major role in API communication. Most of the APIs developed today

support only JSON, not XML. The book focuses on JSON security. JSON Web Encryption

(JWE) and JSON Web Signature (JWS) are two increasingly popular standards for

securing JSON messages. The latter part of the book covers JWE and JWS in detail.

Another major objective of the book is to not just present concepts and theories

but also to explain concepts and theories with concrete examples. The book presents

a comprehensive set of examples to illustrate how to apply theory in practice. You

will learn about using OAuth 2.0 and related profiles to access APIs securely with web

applications, single-page applications, native mobile applications and browser-less

applications.

I hope this book effectively covers a much-needed subject matter for API developers,

and I hope you enjoy reading it.

1
© Prabath Siriwardena 2020
P. Siriwardena, Advanced API Security, https://doi.org/10.1007/978-1-4842-2050-4_1

CHAPTER 1

APIs Rule!
Enterprise API adoption has exceeded expectations. We see the proliferation of APIs in

almost all the industries. It is not an exaggeration to say a business without an API is like

a computer with no Internet. APIs are also the foundation for building communication

channels in the Internet of Things (IoT) domain. From motor vehicles to kitchen

appliances, countless devices have started communicating with each other via APIs.

The world is more connected than ever. You share photos from Instagram in

Facebook, share a location from Foursquare or Yelp in Twitter, publish tweets to the

Facebook wall, connect to Google Maps via the Uber mobile app, and many more. The

list of connections is limitless. All this is made possible only because of public APIs,

which have proliferated in the last few years. Expedia, Salesforce, eBay, and many other

companies generate a large percentage of their annual revenue via APIs. APIs have

become the coolest way of exposing business functionalities to the outside world.

�API Economy
According to an infographic1 published by the ACI Information Group, at the current

rate of growth, the global Internet economy is around 10 trillion US dollars. In 1984, at

the time the Internet was debuted, it linked 1000 hosts at universities and corporates. In

1998, after almost 15 years, the number of Internet users, globally, reached 50 million.

It took 11 years since then to reach the magic number 1 billion Internet users, in 2009.

It took just three years since then to get doubled, and in 2012 it reached to 2.1 billion.

In 2019, more than half of the world’s population—about 4.3 billion people—use the

Internet. This number could further increase as a result of the initiatives taken by the

Internet giants like Facebook and Google. The Internet.org initiative by Facebook,

1�The History of the Internet, http://aci.info/2014/07/12/the-data-explosion-in-
2014-minute-by-minute-infographic/

http://aci.info/2014/07/12/the-data-explosion-in-2014-minute-by-minute-infographic/
http://aci.info/2014/07/12/the-data-explosion-in-2014-minute-by-minute-infographic/

2

launched in 2013, targets to bring together technology leaders, nonprofits, and local

communities to connect with the rest of the world that does not have Internet access.

Google Loon is a project initiated by Google to connect people in rural and remote areas.

It is based on a network of balloons traveling on the edge of space and aims to improve

the connectivity of 250 million people in Southeast Asia.2

Not just humans, according to a report3 on the Internet of Things by Cisco,

during 2008, the number of things connected to the Internet exceeded the number

of people on earth. Over 12.5 billion devices were connected to the Internet in 2012

and 25 billion devices by the end of 2015. It is estimated that by the end of 2020, 50

billion devices will be connected. Connected devices are nothing new. They’ve been

there since the introduction of the first computer networks and consumer electronics.

However, if not for the explosion of the Internet adoption, the idea of a globally

connected planet would never take off. In the early 1990s, computer scientists theorized

how a marriage between humans and machines could give birth to a completely new

form of communication and interaction via machines. That reality is now unfolding

before our eyes.

There are two key enablers behind the success of the Internet of Things. One is the

APIs and the other is Big Data. According to a report4 by Wipro Council for Industry

Research, a six-hour flight on a Boeing 737 from New York to Los Angeles generates

120 terabytes of data that is collected and stored on the plane. With the explosion of

sensors and devices taking over the world, there needs to be a proper way of storing,

managing, and analyzing data. By 2014, an estimated 4 zettabytes of information was

held globally, and it’s estimated, by 2020, that number will climb up to 35 zettabytes.5

Most interestingly, 90% of the data we have in hand today is generated just during the

last couple of years. The role of APIs under the context of the Internet of Things is equally

important as Big Data. APIs are the glue which connect devices to other devices and to

the cloud.

2�Google Loon, http://fortune.com/2015/10/29/google-indonesia-internet-helium-
balloons/

3�The Internet of Things: How the Next Evolution of the Internet Is Changing Everything,
www.iotsworldcongress.com/documents/4643185/3e968a44-2d12-4b73-9691-17ec508ff67b

4�Big Data: Catalyzing Performance in Manufacturing, www.wipro.com/documents/Big%20Data.pdf
5�Big data explosion: 90% of existing data globally created in the past two years alone,
http://bit.ly/1WajrG2

Chapter 1 APIs Rule!

http://fortune.com/2015/10/29/google-indonesia-internet-helium-balloons/
http://fortune.com/2015/10/29/google-indonesia-internet-helium-balloons/
http://www.iotsworldcongress.com/documents/4643185/3e968a44-2d12-4b73-9691-17ec508ff67b
http://www.wipro.com/documents/Big%20Data.pdf
http://bit.ly/1WajrG2

3

The API economy talks about how an organization can become profitable or

successful in their corresponding business domain with APIs. IBM estimated the API

economy to become a $2.2 trillion market by 2018,6 and the IBM Redbook, The Power

of the API Economy,7 defines API economy as the commercial exchange of business

functions, capabilities, or competencies as services using web APIs. It further finds

five main reasons why enterprises should embrace web APIs and become an active

participant in the API economy:

•	 Grow your customer base by attracting customers to your products

and services through API ecosystems.

•	 Drive innovation by capitalizing on the composition of different APIs,

yours and third parties.

•	 Improve the time-to-value and time-to-market for new products.

•	 Improve integration with web APIs.

•	 Open up more possibilities for a new era of computing and prepare

for a flexible future.

�Amazon
Amazon, Salesforce, Facebook, and Twitter are few very good examples for early

entrants into the API economy, by building platforms for their respective capabilities.

Today, all of them hugely benefit from the widespread ecosystems built around these

platforms. Amazon was one of the very first enterprises to adopt APIs to expose its

business functionalities to the rest. In 2006 it started to offer IT infrastructure services to

businesses in the form of web APIs or web services. Amazon Web Services (AWS), which

initially included EC2 (Elastic Compute Cloud) and S3 (Simple Storage Service), was a

result of the thought process initiated in 2002 to lead Amazon’s internal infrastructure in

a service-oriented manner.

6�IBM announces new solutions for the API economy, http://betanews.com/2015/11/05/
ibm-announces-new-solutions-for-the-api-economy/

7�The Power of the API Economy, www.redbooks.ibm.com/redpapers/pdfs/redp5096.pdf

Chapter 1 APIs Rule!

http://betanews.com/2015/11/05/ibm-announces-new-solutions-for-the-api-economy/
http://betanews.com/2015/11/05/ibm-announces-new-solutions-for-the-api-economy/
http://www.redbooks.ibm.com/redpapers/pdfs/redp5096.pdf

4

The former Amazon employee, Steve Yegge, shared accidentally an Amazon internal

discussion via his Google+ post, which became popular later. According to Yegge’s

post,8 it all began with a letter from Jeff Bezos to the Amazon engineering team, which

highlighted five key points to transform Amazon into a highly effective service-oriented

infrastructure.

•	 All teams will henceforth expose their data and functionality through

service interfaces.

•	 Teams must communicate with each other through these interfaces.

•	 There will be no other form of interprocess communication

allowed: no direct linking, no direct reads of another team's data

store, no shared memory model, no backdoors whatsoever. The

only communication allowed is via service interface calls over the

network.

•	 It doesn't matter what technology is used. HTTP, Corba, Pubsub,

custom protocols—doesn't matter.

•	 All service interfaces, without exception, must be designed from the

ground up to be externalizable. That is to say, the team must plan and

design to be able to expose the interface to developers in the outside

world. No exceptions.

This service-based approach leads Amazon to easily expand its business model from

being a bookseller to a global retailer in selling IT services or cloud services. Amazon

started exposing both EC2 and S3 capabilities as APIs, both in SOAP and REST (JSON

over HTTP).

8�Steve Yegge on Amazon, https://plus.google.com/+RipRowan/posts/eVeouesvaVX

Chapter 1 APIs Rule!

https://plus.google.com/+RipRowan/posts/eVeouesvaVX

5

�Salesforce
Salesforce, which was launched in February 1999, is a leader in the software-as-a-service

space today. The web API built around Salesforce capabilities and exposing it to the rest

was a key success factor which took the company to the state where it is today. Salesforce

kept on using platforms and APIs to fuel the innovation and to build a larger ecosystem

around it.

�Uber
Google exposes most of its services via APIs. The Google Maps API, which was introduced

in 2005 as a free service, lets many developers consume Google Maps to create much

useful mashups by integrating with other data streams. Best example is the Uber. Uber

is a transportation network company based out of San Francisco, USA, which also offers

its services globally in many countries outside the United States. With the Uber mobile

application on iOS or Android (see Figure 1-1), its customers, who set a pickup location

and request a ride, can see on Google Maps where the corresponding taxi is. Also, from

the Uber driver’s application, the driver can exactly pinpoint where the customer is. This

is a great selling point for Uber, and Uber as a business hugely benefits from the Google

Maps public API. At the same time, Google gets track of all the Uber rides. They know

exactly the places of interests and the routes Uber customers take, which can be pumped

into Google’s ad engine. Not just Uber, according to a report9 by Google, by 2013 more

than 1 million active sites and applications were using Google Maps API.

9�A fresh new look for the Maps API, for all one million sites, http://bit.ly/1NPH12z

Chapter 1 APIs Rule!

http://bit.ly/1NPH12z

6

�Facebook
Facebook in 2007 launched the Facebook platform. The Facebook platform made most

of the Facebook’s core capabilities available publicly to the application developers.

According to the builtwith.com,10 the Facebook Graph API was used by 1 million web

sites across the Internet, by October 2019. Figure 1-2 shows the Facebook Graph API

usage over time. Most of the popular applications like Foursquare, Yelp, Instagram, and

many more consume Facebook API to publish data to the user’s Facebook wall. Both

parties mutually benefit from this, by expanding the adaptation and building a strong

ecosystem.

Figure 1-1.  Uber mobile app uses Google Maps

10�Facebook Graph API Usage Statistics, http://trends.builtwith.com/javascript/
Facebook-Graph-API

Chapter 1 APIs Rule!

http://trends.builtwith.com/javascript/Facebook-Graph-API
http://trends.builtwith.com/javascript/Facebook-Graph-API

7

�Netflix
Netflix, a popular media streaming service in the United States with more than 150

million subscribers, announced its very first public API in 2008.11 During the launch,

Daniel Jacobson, the Vice President of Edge Engineering at Netflix, explained the role of

this public API as a broker, which mediates data between internal services and public

developers. Netflix has come a long way since its first public API launch, and today it

has more than a thousand types of devices supporting its streaming API.12 By mid-2014,

there were 5 billion API requests generated internally (via devices used to stream the

content) and 2 million public API requests daily.

Figure 1-2.  Facebook Graph API usage statistics, the number of web sites over
time

11�Netflix added record number of subscribers, www.cnn.com/2019/04/16/media/netflix-
earnings-2019-first-quarter/index.html

12�API Economy: From systems to business services, http://bit.ly/1GxmZe6

Chapter 1 APIs Rule!

http://www.cnn.com/2019/04/16/media/netflix-earnings-2019-first-quarter/index.html
http://www.cnn.com/2019/04/16/media/netflix-earnings-2019-first-quarter/index.html
http://bit.ly/1GxmZe6

8

�Walgreens
Walgreens, the largest drug retailing chain in the United States, opened up its photo

printing and pharmacies to the public in 2012/2013, via an API.13 They started with

two APIs, a QuickPrints API and a Prescription API. This attracted many developers,

and dozens of applications were developed to consume Walgreens’ API. Printicular is

one such application developed by MEA Labs, which can be used to print photos from

Facebook, Twitter, Instagram, Google+, Picasa, and Flickr (see Figure 1-3). Once you pick

your photos from any of these connected sites to be printed, you have the option to pick

the printed photos from the closest Walgreens store or also can request to deliver. With

the large number of applications built against its API, Walgreens was able to meet its

expectations by enhancing customer engagements.

Figure 1-3.  Printicular application written against the Walgreens API

13�Walgreens API, https://developer.walgreens.com/apis

Chapter 1 APIs Rule!

https://developer.walgreens.com/apis

9

�Governments
Not just the private enterprises but also governments started exposing its capabilities

via APIs. On May 22, 2013, Data.gov (an initiative managed by the US General Services

Administration, with the aim to improve public access to high-value, machine-readable

datasets generated by the executive branch of the federal government) launched two

initiatives to mark both the anniversary of the Digital Government Strategy and the

fourth anniversary of Data.gov. First is a comprehensive listing of APIs that were released

from across the federal government as part of the Digital Government Strategy. These

APIs accelerated the development of new applications on everything from health, public

safety, education, consumer protection, and many more topics of interest to Americans.

This initiative also helped developers, where they can find all the government’s APIs in

one place (http://api.data.gov), with links to API documentation and other resources.

�IBM Watson
APIs have become the key ingredients in building a successful enterprise. APIs open up

the road to new business ecosystems. Opportunities that never existed before can be

realized with a public API. In November 2013, for the first time, IBM Watson technology

was made available as a development platform in the cloud, to enable a worldwide

community of software developers to build a new generation of applications infused

with Watson's cognitive computing intelligence.14 With the API, IBM also expected to

create multiple ecosystems that will open up new market places. It connected Elsevier

(world-leading provider of scientific, technical, and medical information products and

services) and its expansive archive of studies on oncology care to both the medical

expertise of Sloan Kettering (a cancer treatment and research institution founded

in 1884) and Watson’s cognitive computing prowess. Through these links, IBM now

provides physicians and nurse practitioners with information on symptoms, diagnosis,

and treatment approaches.

14�IBM Watson’s Next Venture, www-03.ibm.com/press/us/en/pressrelease/42451.wss

Chapter 1 APIs Rule!

http://api.data.gov
http://www-03.ibm.com/press/us/en/pressrelease/42451.wss

10

�Open Banking
API adaptation has gone viral across verticals: retail, healthcare, financial, government,

education, and in many more verticals. In the financial sector, the Open Bank15 project

provides an open source API and app store for banks that empower financial institutions

to securely and rapidly enhance their digital offerings using an ecosystem of third-party

applications and services. As per Gartner,16 by 2016, 75% of the top 50 global banks have

launched an API platform, and 25% have launched a customer-facing app store. The aim

of Open Bank project is to provide a uniform interface, abstracting out all the differences

in each banking API. That will help application developers to build applications on top

of the Open Bank API, but still would work against any of the banks that are part of the

Open Bank initiative. At the moment, only four German banks are onboarded, and it is

expected to grow in the future.17 The business model behind the project is to charge an

annual licensing fee from the banks which participate.

�Healthcare
The healthcare industry is also benefiting from the APIs. By November 2015, there were

more than 200 medical APIs registered in ProgrammableWeb.18 One of the interesting

projects among them, the Human API19 project, provides a platform that allows users

to securely share their health data with developers of health applications and systems.

This data network includes activity data recorded by pedometers, blood pressure

measurements captured by digital cuffs, medical records from hospitals, and more.

According to a report20 by GlobalData, the mobile health market was worth $1.2 billion

in 2011, but expected to jump in value to reach $11.8 billion by 2018, climbing at an

impressive compound annual growth rate (CAGR) of 39%. The research2guidance21

15�Open Bank Project, www.openbankproject.com/
16�Gartner: Hype Cycle for Open Banking, www.gartner.com/doc/2556416/
hype-cycle-open-banking

17�Open Bank Project connector status, https://api.openbankproject.com/connectors-status/
18�Medical APIs, www.programmableweb.com/category/medical/apis?&category=19994
19�Human API, http://hub.humanapi.co/docs/overview
20�Healthcare Goes Mobile, http://healthcare.globaldata.com/media-center/
press-releases/medical-devices/mhealth-healthcare-goes-mobile

21�Research2guidance, http://research2guidance.com/the-market-for-mobile-health-
sensors-will-grow-to-5-6-billion-by-2017/

Chapter 1 APIs Rule!

http://www.openbankproject.com/
http://www.gartner.com/doc/2556416/hype-cycle-open-banking
http://www.gartner.com/doc/2556416/hype-cycle-open-banking
https://api.openbankproject.com/connectors-status/
http://www.programmableweb.com/category/medical/apis?&category=19994
http://hub.humanapi.co/docs/overview
http://healthcare.globaldata.com/media-center/press-releases/medical-devices/mhealth-healthcare-goes-mobile
http://healthcare.globaldata.com/media-center/press-releases/medical-devices/mhealth-healthcare-goes-mobile
http://research2guidance.com/the-market-for-mobile-health-sensors-will-grow-to-5-6-billion-by-2017/
http://research2guidance.com/the-market-for-mobile-health-sensors-will-grow-to-5-6-billion-by-2017/

11

estimated the market for mobile health sensors to grow to $5.6 billion by 2017.

Aggregating all these estimated figures, it’s more than obvious that the demand for

medical APIs is only to grow in the near future.

�Wearables
Wearable industry is another sector, which exists today due to the large proliferation

of APIs. The ABI Research22 estimates that the world will have 780 million wearables

by 2019—everything from fitness trackers and smart watches to smart glasses and

even heart monitors, in circulation. Most of the wearables come with low processing

power and storages and talk to the APIs hosted in the cloud for processing and storage.

For example, Microsoft Band, a wrist-worn wearable, which keeps track of your heart

rate, steps taken, calories burned, and sleep quality, comes with the Microsoft Health

mobile application. The wearable itself keeps tracks of the steps, distances, calories

burned, and heart rate in its limited storage for a short period. Once it’s connected to

the mobile application, via Bluetooth, all the data are uploaded to the cloud through the

application. The Microsoft Health Cloud API23 allows you to enhance the experiences

of your apps and services with real-time user data. These RESTful APIs provide

comprehensive user fitness and health data in an easy-to-consume JSON format. This

will enhance the ecosystem around Microsoft Band, as more and more developers

can now develop useful applications around Microsoft Health API, hence will increase

Microsoft Band adaptation. This will also let third-party application developers to

develop a more useful application by mashing up their own data streams with the data

that come from Microsoft Health API. RunKeeper, MyFitnessPal, MyRoundPro, and

many more fitness applications have partnered with Microsoft Band in that effort, for

mutual benefits.

22�The Wearable Future Is Hackable, https://blogs.mcafee.com/consumer/
hacking-wearable-devices/

23�Microsoft Cloud Health API, https://developer.microsoftband.com/cloudAPI

Chapter 1 APIs Rule!

https://blogs.mcafee.com/consumer/hacking-wearable-devices/
https://blogs.mcafee.com/consumer/hacking-wearable-devices/
https://developer.microsoftband.com/cloudAPI

12

�Business Models
Having a proper business model is the key to the success in API economy. The IBM

Redbook, The Power of the API Economy,24 identifies four API business models, as

explained here:

•	 Free model: This model focuses on the business adoption and the

brand loyalty. Facebook, Twitter, and Google Maps APIs are few

examples that fall under this model.

•	 Developer pays model: With this model, the API consumer or the

developer has to pay for the usage. For example, PayPal charges a

transaction fee, and Amazon lets developers pay only for what they

use. This model is similar to the “Direct Revenue” model described

by Wendy Bohner from Intel.25

•	 Developer is paid directly: This is sort of a revenue sharing model. The

best example is the Google AdSense. It pays 20% to developers from

revenue generated from the posted ads. Shopping.com is another

example for revenue sharing business model. With Shopping.

com API developers can integrate relevant product content with

the deepest product catalogue available online and add millions

of unique products and merchant offers to your site. It pays by the

clicks.

•	 Indirect: With this model, enterprises build a larger ecosystem

around it, like Salesforce, Twitter, Facebook, and many more. For

example, Twitter lets developers build applications on top of its

APIs. This benefits Twitter, by displaying sponsored tweets on end

user’s Twitter timeline, on those applications. The same applies to

Salesforce. Salesforce encourages third-party developers to extend its

platform by developing applications on top of its APIs.

24�The Power of the API Economy, www.redbooks.ibm.com/redpapers/pdfs/redp5096.pdf
25�Wendy Bohner’s blog on API Economy: https://blogs.intel.com/api-management/
2013/09/20/the-api-economy/

Chapter 1 APIs Rule!

http://www.redbooks.ibm.com/redpapers/pdfs/redp5096.pdf
https://blogs.intel.com/api-management/2013/09/20/the-api-economy/
https://blogs.intel.com/api-management/2013/09/20/the-api-economy/

13

�The API Evolution
The concept behind APIs has its roots from the beginning of computing. An API of

a component defines how others would interact with it. API stands for application

programming interface, and it’s a technical specification for developers and architects. If

you are familiar with the Unix or Linux operating system, the man command shouldn’t be

something new. It generates the technical specification for each command in the system,

which defines how a user can interact with it. The output from the man command can be

considered as the API definition of the corresponding command. It defines everything

you need to know to execute it, including the synopsis, description with all the valid

input parameters, examples, and many more. The following command on a Unix/Linux

or even on a Mac OS X environment will generate the technical definition of the ls

command.

$ man ls

NAME

 ls -- list directory contents

SYNOPSIS

 ls [-ABCFGHLOPRSTUW@abcdefghiklmnopqrstuwx1] [file ...]

Going little further from there, if you are a computer science graduate or have read

about operating systems, you surely have heard of system calls. System calls provide an

interface to the operating system’s kernel, or a system call is how a program requests a

service from the underlying operating system. Kernel is the core of the operating system,

which wraps the hardware layer from the top-level applications (see Figure 1-4). If you

want to print something from the browser, then the print command, which initiated from

the browser, first has to pass through the kernel to reach the actual printer connected

to the local machine itself, or remotely via the network. Where kernel executes its

operations and provides services is known as the kernel space, while the top-level

applications execute their operations and provide services in the user space. The kernel

space is accessible for applications running in the user space only through system calls.

In other words, system calls are the kernel API for the user space.

Chapter 1 APIs Rule!

14

The Linux kernel has two types of APIs: one for the applications running in the user

space and the other one is for its internal use. The API between the kernel space and user

space can also be called the public API of the kernel, while the other as its private API.

Even at the top-level application, if you’ve worked with Java, .NET, or any other

programming language, you’ve probably written code against an API. Java provides Java

Database Connectivity (JDBC) as an API to talk to different heterogeneous database

management systems (DBMSs), as shown in Figure 1-5. The JDBC API encapsulates the

logic for how your application connects to a database; thus, the application logic doesn’t

need to change whenever it connects to different databases. The database’s connectivity

logic is wrapped in a JDBC driver and exposed as an API. To change the database, you

need to pick the right JDBC driver.

Figure 1-4.  Operating system’s kernel

Figure 1-5.  JDBC API

An API itself is an interface. It’s the interface for clients that interact with the system

or the particular component. Clients should only know about the interface and nothing

about its implementation. A given interface can have more than one implementation,

and a client written against the interface can switch between implementations

Chapter 1 APIs Rule!

15

seamlessly and painlessly. The client application and the API implementation can run

in the same process or in different processes. If they’re running in the same process,

then the call between the client and the API is a local one—if not, it’s a remote call. In

the case of the JDBC API, it’s a local call. The Java client application directly invokes the

JDBC API, implemented by a JDBC driver running in the same process. The following

Java code snippet shows the usage of the JDBC API. This code has no dependency

to the underneath database—it only talks to the JDBC API. In an ideal scenario, the

program reads the name of the Oracle driver and the connection to the Oracle database

from a configuration file, making the code completely clean from any database

implementations.

import java.sql.Connection;

import java.sql.DriverManager;

import java.sql.PreparedStatement;

import java.sql.SQLException;

public class JDBCSample {

public void updataEmpoyee() throws ClassNotFoundException, SQLException {

 Connection con = null;

 PreparedStatement prSt = null;

 try {

 Class.forName("oracle.jdbc.driver.OracleDriver");

 �con = DriverManager.getConnection("jdbc:oracle:thin:@<hostname>:<port

num>:<DB name>", "user", "password");

 String query = "insert into emp(name,salary) values(?,?)";

 prSt = con.prepareStatement(query);

 prSt.setString(1, "John Doe");

 prSt.setInt(2, 1000);

 prSt.executeUpdate();

 } finally {

 try {

 if (prSt != null) prSt.close();

 if (con != null) con.close();

 } catch (Exception ex) {

Chapter 1 APIs Rule!

16

 // log

 }

 }

}

}

We can also access APIs remotely. To invoke an API remotely, you need to

have a protocol defined for interprocess communication. Java RMI, CORBA, .NET

Remoting, SOAP, and REST (over HTTP) are some protocols that facilitate interprocess

communication. Java RMI provides the infrastructure-level support to invoke a Java

API remotely from a nonlocal Java virtual machine (JVM, which runs in a different

process than the one that runs the Java API). The RMI infrastructure at the client side

serializes all the requests from the client into the wire (also known as marshalling) and

deserializes into Java objects at the server side by its RMI infrastructure (also known as

unmarshalling); see Figure 1-6. This marshalling/unmarshalling technique is specific to

Java. It must be a Java client to invoke an API exposed over Java RMI—and it’s language

dependent.

Figure 1-6.  Java RMI

The following code snippet shows how a Java client talks to a remotely running Java

service over RMI. The Hello stub in the following code represents the service. The rmic

tool, which comes with Java SDK, generates the stub against the Java service interface.

We write the RMI client against the API of the RMI service.

import java.rmi.registry.LocateRegistry;

import java.rmi.registry.Registry;

public class RMIClient {

Chapter 1 APIs Rule!

17

public static void main(String[] args) {

 String host = (args.length < 1) ? null : args[0];

 try {

 Registry registry = LocateRegistry.getRegistry(host);

 Hello stub = (Hello) registry.lookup("Hello");

 String response = stub.sayHello();

 System.out.println("response: " + response);

 } catch (Exception e) {

 e.printStackTrace();

 }

}

}

SOAP-based web services provide a way to build and invoke a hosted API in a

language- and platform-neutral manner. It passes a message from one end to the other

as an XML payload. SOAP has a structure, and there are a large number of specifications

to define its structure. The SOAP specification defines the request/response protocol

between the client and the server. Web Services Description Language (WSDL)

specification defines the way you describe a SOAP service. The WS-Security, WS-Trust,

and WS-Federation specifications describe how to secure a SOAP-based service.

WS-Policy provides a framework to build quality-of-service expressions around SOAP

services. WS-SecurityPolicy defines the security requirements of a SOAP service in a

standard way, built on top of the WS-Policy framework. The list goes on and on.

SOAP-based services provide a highly decoupled, standardized architecture with

policy-based governance. They do have all necessary ingredients to build a

service-oriented architecture (SOA).

At least, that was the story a decade ago. The popularity of SOAP-based APIs has

declined, mostly due to the inherent complexity of the WS-∗ standards. SOAP promised

interoperability, but many ambiguities arose among different implementation stacks. To

overcome this issue and promote interoperability between implementation stacks, the

Web Services Interoperability (WS-I)26 organization came up with the Basic Profile for

web services. The Basic Profile helps in removing ambiguities in web service standards.

An API design built on top of SOAP should follow the guidelines Basic Profile defines.

26�The OASIS Web Services Interoperability Organization, www.ws-i.org/

Chapter 1 APIs Rule!

http://www.ws-i.org/

18

Note S OAP was initially an acronym that stood for Simple Object Access
Protocol. From SOAP 1.2 onward, it is no longer an acronym.

In contrast to SOAP, REST is a design paradigm, rather than a rule set. Even though

Roy Fielding, who first described REST in his PhD thesis,27 did not couple REST to HTTP,

99% of RESTful services or APIs today are based on HTTP. For the same reason, we could

easily argue, REST is based on the rule set defined in the HTTP specification.

The Web 2.0 trend emerged in 2006–2007 and set a course to a simpler, less complex

architectural style for building APIs. Web 2.0 is a set of economic, social, and technology

trends that collectively formed the basis for the next generation of Internet computing.

It was built by tens of millions of participants. The platform built around Web 2.0 was

based on the simple, lightweight, yet powerful AJAX-based programming languages and

REST—and it started to move away from SOAP-based services.

Modern APIs have their roots in both SOAP and REST. Salesforce launched its public

API in 2000, and it still has support for both SOAP and REST. Amazon launched its web

services API in 2002 with support for both REST and SOAP, but the early adoption rate

of SOAP was very low. By 2003, it was revealed that 85% of Amazon API usage was on

REST.28 ProgrammableWeb, a registry of web APIs, has tracked APIs since 2005. In 2005,

ProgrammableWeb tracked 105 APIs, including Google, Salesforce, eBay, and Amazon.

The number increased by 2008 to 1000 APIs, with growing interest from social and

traditional media companies to expose data to external parties. There were 2500 APIs by

the end of 2010. The online clothing and shoe shop Zappos published a REST API, and

many government agencies and traditional brick-and-mortar retailers joined the party.

The British multinational grocery and merchandise retailer Tesco allowed ordering via

APIs. The photo-sharing application Instagram became the Twitter for pictures. The Face

introduced facial recognition as a service. Twilio allowed anyone to create telephony

applications in no time. The number of public APIs rose to 5000 by 2011; and in 2014

ProgrammableWeb listed out more than 14,000 APIs. In June 2019, ProgrammableWeb

27�Architectural Styles and the Design of Network-based Software Architectures,
www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

28�REST vs. SOAP In Amazon Web Services, https://developers.slashdot.org/
story/03/04/03/1942235/rest-vs-soap-in-amazon-web-services

Chapter 1 APIs Rule!

http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
https://developers.slashdot.org/story/03/04/03/1942235/rest-vs-soap-in-amazon-web-services
https://developers.slashdot.org/story/03/04/03/1942235/rest-vs-soap-in-amazon-web-services

19

announced that the number of APIs it tracks eclipsed 22,000 (see Figure 1-7). At the same

time, the trend toward SOAP has nearly died: 73% of the APIs on ProgrammableWeb by

2011 used REST, while SOAP was far behind with only 27%.29

Figure 1-7.  The growth of APIs listed on ProgrammableWeb since 2005

The term API has existed for decades, but only recently has it been caught up in

the hype and become a popular buzzword. The modern definition of an API mostly

focused on a hosted, web-centric (over HTTP), public-facing service to expose useful

business functionalities to the rest of the world. According to the Forbes magazine, an

API is the primary customer interface for technology-driven products and services and

a key channel for driving revenue and brand engagements. Salesforce, Amazon, eBay,

Dropbox, Facebook, Twitter, LinkedIn, Google, Flickr, Yahoo, and most of the key players

doing business online have an API platform to expose business functionalities.

29�SOAP is Not Dead, http://readwrite.com/2011/05/26/soap-is-not-dead---its-undead

Chapter 1 APIs Rule!

http://readwrite.com/2011/05/26/soap-is-not-dead%2D%2D-its-undead

20

�API Management
Any HTTP endpoint, with a well-defined interface to accept requests and generate

responses based on certain business logic, can be treated as a naked API. In other words,

a naked API is an unmanaged API. An unmanaged API has its own deficiencies, as listed

here:

•	 There is no way to track properly the business owner of the API or

track how ownership evolves over time.

•	 API versions are not managed properly. Introduction of a new API

could possibly break all the existing consumers of the old API.

•	 No restriction on the audience. Anyone can access the API

anonymously.

•	 No restriction on the number of API calls by time. Anyone can invoke

the API any number of times, which could possibly cause the server

hosting the API to starve all its resources.

•	 No tracking information at all. Naked APIs won’t be monitored and

no stats will be gathered.

•	 Inability to scale properly. Since no stats are gathered based on the

API usage, it would be hard to scale APIs based on the usage patterns.

•	 No discoverability. APIs are mostly consumed by applications. To

build applications, application developers need to find APIs that suit

their requirements.

•	 No proper documentation. Naked APIs will have a proper interface,

but no proper documentation around that.

•	 No elegant business model. It’s hard to build a comprehensive

business model around naked APIs, due to all the eight reasons listed

earlier.

A managed API must address all or most of the preceding concerns. Let’s take an

example, the Twitter API. It can be used to tweet, get timeline updates, list followers,

update the profile, and do many other things. None of these operations can be

Chapter 1 APIs Rule!

21

performed anonymously—you need to authenticate first. Let’s take a concrete example

(you need to have cURL installed to try this, or you can use the Chrome Advanced REST

client browser plug-in). The following API is supposed to list all the tweets published by

the authenticated user and his followers. If you just invoke it, it returns an error code,

specifying that the request isn’t authenticated:

\> curl https://api.twitter.com/1.1/statuses/home_timeline.json

{"errors":[{"message":"Bad Authentication data","code":215}]}

All the Twitter APIs are secured for legitimate access with OAuth 1.0 (which we

discuss in detail in Appendix B). Even with proper access credentials, you can’t invoke

the API as you wish. Twitter enforces a rate limit on each API call: within a given time

window, you can only invoke the Twitter API a fixed number of times. This precaution

is required for all public-facing APIs to minimize any possible denial of service (DoS)

attacks. In addition to securing and rate limiting its APIs, Twitter also closely monitors

them. Twitter API Health30 shows the current status of each API. Twitter manages

versions via the version number (e.g., 1.1) introduced into the URL itself. Any new

version of the Twitter API will carry a new version number, hence won’t break any of the

existing API consumers. Security, rate limiting (throttling), versioning, and monitoring

are key aspects of a managed business API. It also must have the ability to scale up and

down for high availability based on the traffic.

Lifecycle management is another key differentiator between a naked API and a

managed API. A managed API has a lifecycle from its creation to its retirement. A typical

API lifecycle might flow through Created, Published, Deprecated, and Retired stages,

as illustrated in Figure 1-8. To complete each lifecycle stage, there can be a checklist

to be verified. For example, to promote an API from Created to Published, you need

to make sure the API is secured properly, the documentation is ready, throttling rules

are enforced, and so on. A naked business API, which only worries about business

functionalities, can be turned into a managed API by building these quality-of-service

aspects around it.

30�Twitter Health, https://dev.twitter.com/status

Chapter 1 APIs Rule!

https://dev.twitter.com/status

22

The API description and discoverability are two key aspects of a managed API. For an

API, the description has to be extremely useful and meaningful. At the same time, APIs

need to be published somewhere to be discovered. A comprehensive API management

platform needs to have at least three main components: a publisher, a store, and a

gateway (see Figure 1-9). The API store is also known as the developer portal.

The API publisher provides tooling support to create and publish APIs. When an API

is created, it needs to be associated with API documentation and other related quality-

of-service controls. Then it’s published into the API store and deployed into the API

gateway. Application developers can discover APIs from the store. ProgrammableWeb

(www.programmableweb.com) is a popular API store that has more than 22,000 APIs

at the time of this writing. You could also argue that ProgrammableWeb is simply

a directory, rather than a store. A store goes beyond just listing APIs (which is what

ProgrammableWeb does): it lets API consumers or application developers subscribe to

APIs, and it manages API subscriptions. Further, an API store supports social features

like tagging, commenting, and rating APIs. The API gateway is the one which takes all

the traffic in runtime and acts as the policy enforcement point. The gateway checks all

the requests that pass through it against authentication, authorization, and throttling

policies. The statistics needed for monitoring is also gathered at the API gateway level.

There are many open source and proprietary API management products out there that

provide support for comprehensive API store, publisher, and gateway components.

Figure 1-8.  API lifecycle

Chapter 1 APIs Rule!

http://www.programmableweb.com

23

In the SOAP world, there are two major standards for service discovery. Universal

Description, Discovery, and Integration (UDDI) was popular, but it's extremely bulky

and didn’t perform to the level it was expected to. UDDI is almost dead today. The

second standard is WS-Discovery, which provides a much more lightweight approach.

Most modern APIs are REST-friendly. For RESTful services or APIs, there is no widely

accepted standard means of discovery at the time of this writing. Most API stores make

discovery via searching and tagging.

Describing a SOAP-based web service is standardized through the Web Service

Definition Language (WSDL) specification. WSDL describes what operations are

exposed through the web service and how to reach them. For RESTful services and

APIs, there are two popular standards for description: Web Application Description

Language (WADL) and Swagger. WADL is an XML-based standard to describe RESTful

or HTTP-based services. Just as in WSDL, WADL describes the API and its expected

request/response messages. Swagger is a specification and a complete framework

implementation for describing, producing, consuming, and visualizing RESTful web

services. With more than 350,000 downloads per month, of Swagger and Swagger-related

Figure 1-9.  API management platform

Chapter 1 APIs Rule!

24

tooling, the Swagger specification is promising to be the most widely used format for

describing APIs.31 Figure 1-10 shows the Swagger definition of the Swagger Petstore API.32

31�Open API Initiative Specification, https://openapis.org/specification
32�Swagger Petstore API, http://petstore.swagger.io/

Figure 1-10.  Swagger definition of the Swagger Petstore API

Based on the Swagger 2.0 specification, the OpenAPI Initiative (OAI) has developed

an OAI specification involving API consumers, developers, providers, and vendors, to

define a standard, a language-agnostic interface for REST APIs. Google, IBM, PayPal,

Intuit, SmartBear, Capital One, Restlet, 3scale, and Apigee got involved in creating the

OpenAPI Initiative under the Linux foundation.

Chapter 1 APIs Rule!

https://openapis.org/specification
http://petstore.swagger.io/

25

MANAGED APIS AT NETFLIX

Netflix started its journey as a DVD rental service and then evolved into a video streaming

platform and published its first API in 2008. In January 2010, Netflix API recorded 600 million

requests (per month), and in January 2011, the number rose up to 20.7 billion, then again

after a year, in January 2012, Netflix API was hit with 41.7 billion requests.33 Today, at the

time of this writing, Netflix handles more than one third of the entire Internet traffic in North

America. It’s a widespread service globally over 190 countries in 5 continents, with more than

139 million members. Netflix API is accessed by thousands of supported devices, generating

billions of API requests per day.

Even though Netflix API was initially developed as a way for external application developers to

access Netflix’s catalogue, it soon became a key part in exposing internal functionality to living

room devices supported by Netflix. The former is the Netflix’s public API, while the latter is its

private API. The public API, when compared with the private API, only attracted a small number

of traffic. At the time Netflix decided to shut down the public API in November 2011, it only

attracted 0.3% of the total API traffic.34

Netflix uses its own API gateway, Zuul, to manage all its API traffic.35 Zuul is the front door for all

the requests from devices and web sites to the back end of the Netflix streaming application. As an

edge service application, Zuul is built to enable dynamic routing, monitoring, resiliency, and security.

It also has the ability to route requests to multiple Amazon Auto Scaling Groups as appropriate.36

�The Role of APIs in Microservices
Going back to the good old days, there was an unambiguous definition for API

vs. service. An API is the interface between two parties or two components.

These two parties/components can communicate within a single process or

between different processes. A service is a concrete implementation of an API

using one of the technologies/standards available. The implementation of an

33�Growth of Netflix API requests, https://gigaom.com/2012/05/15/
netflix-42-billion-api-requests/

34�Top 10 Lessons Learned from the Netflix API, www.slideshare.net/danieljacobson/
top-10-lessons-learned-from-the-netflix-api-oscon-2014

35�How we use Zuul at Netflix, https://github.com/Netflix/zuul/wiki/
How-We-Use-Zuul-At-Netflix

36�Zuul, https://github.com/Netflix/zuul/wiki

Chapter 1 APIs Rule!

https://gigaom.com/2012/05/15/netflix-42-billion-api-requests/
https://gigaom.com/2012/05/15/netflix-42-billion-api-requests/
http://www.slideshare.net/danieljacobson/top-10-lessons-learned-from-the-netflix-api-oscon-2014
http://www.slideshare.net/danieljacobson/top-10-lessons-learned-from-the-netflix-api-oscon-2014
https://github.com/Netflix/zuul/wiki/How-We-Use-Zuul-At-Netflix
https://github.com/Netflix/zuul/wiki/How-We-Use-Zuul-At-Netflix
https://github.com/Netflix/zuul/wiki

26

API that is exposed over SOAP is a SOAP service. Similarly, the implementation of an API

that is exposed as JSON over HTTP is a RESTful service.

Today, the topic, API vs. service, is debatable, as there are many overlapping areas.

One popular definition is that an API is external facing, whereas a service is internal

facing (see Figure 1-11). An enterprise uses an API whenever it wants to expose useful

business functionality to the outside world through the firewall. This, of course, raises

another question: why would a company want to expose its precious business assets to

the outside world through an API? Twitter once again is the best example. It has a web

site that allows users to log in and tweet from there. At the same time, anything that can

be done through the web site can also be done via Twitter’s API. As a result, third parties

develop applications against the Twitter API; there are mobile apps, browser plug-ins,

and desktop apps. This has drastically reduced traffic to the Twitter web site. Even today,

the web site doesn’t have a single advertisement (but as sponsored tweets on the usual

twitter stream). If there was no public API, Twitter could easily have built an advertising

platform around the web site, just as how Facebook did. However, having a public API

helped to build a strong ecosystem around Twitter.

Figure 1-11.  API vs. service. An API is external facing

Exposing corporate data via an API adds value. It gives access to the data, not just

for corporate stakeholders but also for a larger audience. Limitless innovative ideas may

pop up and, in the end, add value to the data. Say we have a pizza dealer with an API that

returns the number of calories for a given pizza type and the size. You can develop an

application to find out how many pizzas a person would have to eat per day to reach a

body mass index (BMI) in the obesity range.

Even though APIs are known to be public, it’s not a strict requirement. Most of the

APIs started as public APIs and became the public face of the enterprise. At the same

time, private APIs (not exposed to the public) proliferated within enterprises to share

Chapter 1 APIs Rule!

27

functionalities within it, between different components. In that case, the differentiator

between an API and a service is not just its audience. In practice, most of the service

implementations are exposed as APIs. In that case, API defines the contract between the

service and the outside world (not necessarily public).

Microservices is the most trending buzzword at the time of this writing. Everyone

talks about microservices, and everyone wants to have microservices implemented. The

term “microservice” was first discussed at a software architects workshop in Venice,

in May 2011. It’s being used to explain a common architectural style they’ve been

witnessing for some time. Later, after a year in May 2012, the same team agreed that

the “microservice” is the best-suited term to call the previously discussed architectural

style. At the same time, in March 2012, James Lewis went ahead and presented some of

the ideas from the initial discussion in Venice at the 33rd Degree conference in Krakow,

Poland.37

Note T he abstract of James Lewis’ talk on “Microservices – Java, the Unix Way,”
which happened to be the very first public talk on Microservices, in March 2012: 

“Write programs that do one thing and do it well. Write programs to work together”
was accepted 40 years ago, yet we have spent the last decade building monolithic
applications, communicating via bloated middleware and with our fingers crossed
that Moore’s Law keeps helping us out. There is a better way. 

Microservices. In this talk, we will discover a consistent and reinforcing set of tools
and practices rooted in the Unix philosophy of small and simple. Tiny applications,
communicating via the web’s uniform interface with single responsibilities and
installed as well-behaved operating system services. So, are you sick of wading
through tens of thousands of lines of code to make a simple one-line change?
Of all that XML? Come along and check out what the cool kids are up to (and the
cooler gray beards).

37�Microservices – Java, the Unix Way, http://2012.33degree.org/talk/show/67

Chapter 1 APIs Rule!

http://2012.33degree.org/talk/show/67

28

One can easily argue that a microservice is service-oriented architecture (SOA) done

right. Most of the concepts we discussed today, related to microservices, are borrowed

from SOA. SOA talks about an architectural style based on services. According to the

Open Group definition, a service is a logical representation of a repeatable business

activity that has a specified outcome and is self-contained, may be composed of other

services; the implementation acts as a black box to the service consumers.38 SOA brings

the much-needed agility to business to scale and interoperate. However, over the past,

SOA became a hugely overloaded term. Some people defined SOA under the context of

SOAP-based web services, and others used to think SOA is all about an enterprise service

bus (ESB). This led Netflix to call microservices as fine-grained SOA, at the initial stage.

I don’t really care whether it’s public or private. We used to call the things
we were building on the cloud “cloud-native” or “fine-grained SOA,” and
then the ThoughtWorks people came up with the word “microservices.” It’s
just another name for what we were doing anyways, so we just started call-
ing it microservices, as well.39

—Adrian Cockcroft, former cloud architect at Netflix

NINE CHARACTERISTICS OF A MICROSERVICE

Martin Fowler and James Lewis, introducing microservices,40 identify nine characteristics in a

well-designed microservice, as briefly explained in the following:

Componentization via services: In microservices, the primary way of componentizing will be

via services. This is a bit different from the traditional componentizing via libraries. A library

in the Java world is a jar file, and in .NET world, it’s a DLL file. A library can be defined as a

component isolated to perform some specific task and plugged into the main program via

in-memory function calls. In microservices world, these libraries mostly act as a proxy to a

remote service running out of process.

38�Service-Oriented Architecture Defined, www.opengroup.org/soa/source-book/togaf/
soadef.htm

39�Talking microservices with the man who made Netflix’s cloud famous, https://medium.
com/s-c-a-l-e/talking-microservices-with-the-man-who-made-netflix-s-cloud-famous-
1032689afed3

40�Microservices, http://martinfowler.com/articles/microservices.html

Chapter 1 APIs Rule!

http://www.opengroup.org/soa/source-book/togaf/soadef.htm
http://www.opengroup.org/soa/source-book/togaf/soadef.htm
https://medium.com/s-c-a-l-e/talking-microservices-with-the-man-who-made-netflix-s-cloud-famous-1032689afed3
https://medium.com/s-c-a-l-e/talking-microservices-with-the-man-who-made-netflix-s-cloud-famous-1032689afed3
https://medium.com/s-c-a-l-e/talking-microservices-with-the-man-who-made-netflix-s-cloud-famous-1032689afed3
http://martinfowler.com/articles/microservices.html

29

Organized around business capabilities: In most of the monolithic applications we see today,

the layering is based on the technology not around the business capabilities. The user

interface (UI) design team works on building the user interface for the application. They are the

experts on HTML, JavaScript, Ajax, HCI (human-computer interaction), and many more. Then

we have database experts who take care of database schema design and various application

integration technologies, like JDBC, ADO.NET, and Hibernate. Then we have server-side logic

team who write the actual business logic and also are the experts on Java, .NET, and many

more server-side technologies. With the microservices approach, you build cross-functional,

multidisciplined teams around business capabilities.

Products not projects: The objectives of a project team are to work according to a project plan,

meet the set deadlines, and deliver the artifacts at the end of the project. Once the project

is done, the maintenance team takes care of managing the project from there onward. It

is estimated that 29% of an IT budget is spent on new system development, while 71% is

spent on maintaining existing systems and adding capacity to those systems.41 To avoid such

wastage and to improve the efficiency throughout the product lifecycle, Amazon introduced the

concept—you build it, you own it. The team, which builds the product, will own it forever. This

brought in the product mentality and made the product team responsible for a given business

functionality. Netflix, one of the very early promoters of microservices, treats each of their API

as a product.

Smart endpoints and dumb pipes: Each microservice is developed for a well-defined scope.

Once again, the best example is Netflix.42 Netflix started with a single monolithic web

application called netflix.war in 2008, and later in 2012, as a solution to address vertical

scalability concerns, they moved into a microservices-based approach, where they have

hundreds of fine-grained microservices today. The challenge here is how microservices talk

to each other. Since the scope of each microservice is small (or micro), to accomplish a given

business requirement, microservices have to talk to each other. Each microservice would be

a smart endpoint, which exactly knows how to process an incoming request and generate the

response. The communication channels between microservices act as dumb pipes. This is

similar to the Unix pipes and filters architecture. For example, the ps –ax command in Unix

will list out the status of currently running processes. The grep Unix command will search

41�You build it, You run it, www.agilejourneyman.com/2012/05/you-build-it-you-run-it.html
42�Microservice at Netflix, www.youtube.com/watch?v=LEcdWVfbHvc

Chapter 1 APIs Rule!

http://www.agilejourneyman.com/2012/05/you-build-it-you-run-it.html
http://www.youtube.com/watch?v=LEcdWVfbHvc

30

any given input files, selecting lines that match one or more patterns. Each command is smart

enough to do their job. We can combine both the commands with a pipe. For example, ps –ax

| grep 'apache' will only list out the processes that matches the search criteria ‘apache’.

Here the pipe (|) acts as dumb—which basically takes the output from the first command and

hands it over to the other. This is one of the main characteristics of a microservice design.

Decentralized governance: Most of the SOA deployments follow the concept of centralized

governance. The design time governance and the runtime governance are managed and

enforced centrally. The design time governance will look into the aspects such as whether

the services passed all the unit tests, integration tests, and coding conventions, secured with

accepted security policies and many more, before promoting from the developer phase to the

QA (quality assurance) phase. In a similar way, one can enforce more appropriate checklists

to be evaluated before the services are promoted from QA to staging and from staging to

production. The runtime governance will worry about enforcing authentication policies,

access control policies, and throttling policies in the runtime. With the microservices-based

architecture, each service is designed with its own autonomy and highly decoupled from

each other. The team behind each microservice can follow their own standards, tools, and

protocols. This makes a decentralized governance model more meaningful for microservices

architecture.

Decentralized data management: In a monolithic application, all the components in it talk

to a single database. With the microservices design, where each distinguished functional

component is developed into a microservice, based on their business capabilities, will have its

own database—so each such service can scale end to end without having any dependency

on other microservices. This approach can easily add overhead in distributed transaction

management, as data resides in multiple heterogeneous database management systems.

Infrastructure automation: Continuous deployment and continuous delivery are two essential

ingredients in infrastructure automation. Continuous deployment extends continuous delivery

and results in every build that passes automated test gates being deployed into production,

while with continuous delivery, the decision to deploy into the production setup is taken

based on the business need.43 Netflix, one of the pioneers in APIs and microservices, follows

the former approach, the continuous deployment. With the continuous deployment, the new

features need not be sitting on a shelf. Once they have gone through and passed all the

43�Deploying the Netflix API, http://techblog.netflix.com/2013/08/deploying-
netflix-api.html

Chapter 1 APIs Rule!

http://techblog.netflix.com/2013/08/deploying-netflix-api.html
http://techblog.netflix.com/2013/08/deploying-netflix-api.html

31

tests, they are ready to be deployed in production. This also avoids deploying a large set

of new features at one go, hence doing minimal changes to the current setup and the user

experience. Infrastructure automation does not have a considerable difference between

monolithic applications and microservices. Once the infrastructure is ready, it can be used

across all the microservices.

Design for failure: The microservices-based approach is a highly distributed setup. In a

distributed setup, failures are inevitable. No single component can guarantee 100% uptime.

Any service call may fail due to various reasons: the transport channel between the services

could be down, the server instance which hosts the service may be down, or even the service

itself may be down. This is an extra overhead on microservices, compared to monolithic

applications. Each microservice should be designed in a way to handle and tolerate these

failures. In the entire microservices architecture, the failure of one service should ideally have

zero or minimal impact on the rest of the running services. Netflix developed a set of tools

called Simian Army,44 based on the success of its Chaos Monkey, to simulate failure situations

under a controlled environment to make sure the system can gracefully recover.

Evolutionary design: The microservices architecture inherently supports the evolutionary

design. Unlike in monolithic applications, with microservices the cost of upgrading or

replacing an individual component is extremely low, since they’ve been designed to function

independently or in a loosely coupled manner.

Netflix is one of the pioneers in microservices adoption. Not just Netflix, General

Electric (GE), Hewlett-Packard (HP), Equinox Inc, PayPal, Capital One Financial Corp,

Goldman Sachs Group Inc, Airbnb, Medallia, Square, Xoom Corp, and many more

are early adopters of microservices.45 Even though microservices became a buzzword

quite recently, some of the design principles brought forward by the microservices

architecture were there for some time. It’s widely believed that Google, Facebook, and

Amazon were using microservices internally for several years—when you do a Google

search, it calls out roughly 70 microservices before returning back the results.

Just like in the case of API vs. service, the differentiator between an API and a

microservice also relies on the audience. APIs are known to be public facing, while

microservices are used internally. Netflix, for example, has hundreds of microservices,

44�The Netflix Simian Army, http://techblog.netflix.com/2011/07/netflix-simian-army.html
45�Innovate or Die: The Rise of Microservices, http://blogs.wsj.com/cio/2015/10/05/
innovate-or-die-the-rise-of-microservices/

Chapter 1 APIs Rule!

http://techblog.netflix.com/2011/07/netflix-simian-army.html
http://blogs.wsj.com/cio/2015/10/05/innovate-or-die-the-rise-of-microservices/
http://blogs.wsj.com/cio/2015/10/05/innovate-or-die-the-rise-of-microservices/

32

but none of them are exposed outside. The Netflix API still acts as their public-facing

interface, and there is a one-to-many relationship between the Netflix API and its

microservices. In other words, one API could talk to multiple microservices to cater a

request generated by one of the devices supported by Netflix. Microservices have not

substituted APIs—rather they work together.

�Summary
•	 The API adoption has grown rapidly in the last few years, and almost

all the cloud service providers today expose public managed APIs.

•	 In contrast to naked APIs, the managed APIs are secured, throttled,

versioned, and monitored.

•	 An API store (or a developer portal), API publisher, and API gateway

are the three key ingredients in building an API management

solution.

•	 Lifecycle management is a key differentiator between a naked API

and a managed API. A managed API has a lifecycle from its creation

to its retirement. A typical API lifecycle might flow through Created,

Published, Deprecated, and Retired stages.

•	 Microservices have not substituted APIs—rather they work together.

Chapter 1 APIs Rule!

33
© Prabath Siriwardena 2020
P. Siriwardena, Advanced API Security, https://doi.org/10.1007/978-1-4842-2050-4_2

CHAPTER 2

Designing Security
for APIs
Just a few days after everyone celebrated Thanksgiving Day in 2013, someone who fooled

the Target defense system installed a malware in its security and payment system. It was

the peak time in business for any retailer in the United States. While the customers were

busy in getting ready for Christmas, the malware which was sitting in the Target payment

system silently captured all the credit card information from the cashier’s terminal and

stored them in a server, which was under the control of the attacker. Forty million credit

card numbers were stolen in this way from 1797 Target stores around the country.1 It was

a huge breach of trust and credibility from the retailer, and in March 2015 a federal judge

in St. Paul, Minnesota, approved a $10 million offer by Target to settle the lawsuit against

the data breach.2

Not just Target or the retail industry but as a whole, the cybercrime has gained a

lot of momentum in the last few years. Figure 2-1 shows the annual number of data

breaches and exposed records in the United States from 2005 to 2018. The attack on Dyn

DNS in 2016 was one of the largest DDoS (distributed denial of service) attacks that took

many large Internet services down for several hours. Then in February 2018, the largest

recorded DDoS attack happened against GitHub. More than 1.35 terabits per second of

traffic hit the developer platform GitHub all at once.3

1�Target Credit Card Hack, http://money.cnn.com/2013/12/22/news/companies/
target-credit-card-hack/

2�Target Data Hack Settlement, http://money.cnn.com/2015/03/19/technology/security/
target-data-hack-settlement/

3�GitHub Survived the Biggest DDoS Attack Ever Recorded, www.wired.com/story/
github-ddos-memcached/

http://money.cnn.com/2013/12/22/news/companies/target-credit-card-hack/
http://money.cnn.com/2013/12/22/news/companies/target-credit-card-hack/
http://money.cnn.com/2015/03/19/technology/security/target-data-hack-settlement/
http://money.cnn.com/2015/03/19/technology/security/target-data-hack-settlement/
http://www.wired.com/story/github-ddos-memcached/
http://www.wired.com/story/github-ddos-memcached/

34

Identity Theft Resource Center4 defines a data breach as the loss of information

from computers or storage media that could potentially lead to identity theft, including

social security numbers, bank account details, driving license numbers, and medical

information. The most worrisome fact is that, according to an article5 by The Economist

magazine, the average time between an attacker breaching a network and its owner

noticing the intrusion is 205 days.

�Trinity of Trouble
Connectivity, extensibility, and complexity are the three trends behind the rise of data

breaches around the globe in the last few years. Gary McGraw in his book, Software

Security,6 identifies these three trends as the trinity of trouble.

Figure 2-1.  Annual number of data breaches and exposed records in the United
States from 2005 to 2018 (in millions), Statistica, 2019

4�Identity Theft Resource Center, www.idtheftcenter.org/
5�The cost of immaturity, www.economist.com/news/business/21677639-business-protecting-
against-computer-hacking-booming-cost-immaturity

6�Gary McGraw, Software Security: Building Security In, Addison-Wesley Publisher

Chapter 2 Designing Security for APIs

http://www.idtheftcenter.org/
http://www.economist.com/news/business/21677639-business-protecting-against-computer-hacking-booming-cost-immaturity
http://www.economist.com/news/business/21677639-business-protecting-against-computer-hacking-booming-cost-immaturity

35

APIs play a major role in connectivity. As we discussed in detail, in Chapter 1, we live

in a world today where almost everything is connected with each other. Connectivity

exposes many paths of exploitation for attackers, which never existed before. Login to

Yelp, Foursquare, Instagram, and many more via Facebook means an attacker only needs

to worry about compromising one’s Facebook account to get access to his/her all other

connected accounts.

FACEBOOK DATA BREACH ~ SEPTEMBER 2018

In September 2018, Facebook team figured out an attack,7 which put the personal information

of more than 50 million Facebook users at risk. The attackers exploited multiple issues on

Facebook code base around the View As feature and got hold of OAuth 2.0 access tokens that

belong to more than 50 million users. Access token is some kind of a temporary token or a

key, which one can use to access a resource on behalf of someone else. Say, for example, if I

want to share my photos uploaded to Instagram on my Facebook wall, I would give an access

token corresponding to my Facebook wall, which I obtained from Facebook, to Instagram. Now,

at each time when I upload a photo to Instagram, it can use the access token to access my

Facebook account and publish the same on my Facebook wall using the Facebook API. Even

though Instagram can post photos on my Facebook wall using the provided access token,

it cannot do anything else other than that. For example, it cannot see my friend list, cannot

delete my wall posts, or read my messages. Also, this is usually what happens when you log in

to a third-party application via Facebook; you simply share an access token corresponding to

your Facebook account with the third-party web application, so the third-party web application

can use the access token to access the Facebook API to know more about you.

In a connected enterprise, not just the applications developed with modern,

bleeding edge technology get connected but also the legacy systems. These legacy

systems may not support latest security protocols, even Transport Layer Security (TLS)

for securing data in transit. Also, the libraries used in those systems could have many

well-known security vulnerabilities, which are not fixed due to the complexities in

upgrading to the latest versions. All in all, a connected system, not planned/designed

quite well, could easily become a security graveyard.

7�What Went Wrong?, https://medium.facilelogin.com/what-went-wrong-d09b0dc24de4

Chapter 2 Designing Security for APIs

https://medium.facilelogin.com/what-went-wrong-d09b0dc24de4

36

Most of the enterprise software are developed today with great extensibility.

Extensibility over modification is a well-known design philosophy in the software

industry. It talks about building software to evolve with new requirements, without

changing or modifying the current source code, but having the ability to plug in new

software components to the current system. Google Chrome extensions and Firefox

add-ons all follow this concept. The Firefox add-on, Modify Headers, lets you add,

modify, and filter the HTTP request headers sent to web servers. Another Firefox add-

on, SSO Tracer, lets you track all the message flows between identity providers and

service providers (web applications), via the browser. None of these are harmful—but,

then again, if an attacker can fool you to install a malware as a browser plugin, it could

easily bypass all your browser-level security protections, even the TLS, to get hold of

your Facebook, Google, Amazon, or any other web site credentials. It’s not just about

an attacker installing a plugin into the user’s browser, but also when there are many

extensions installed in your browser, each one of them expands the attack surface.

Attackers need not write new plugins; rather they can exploit security vulnerability in an

already installed plugin.

THE STORY OF MAT HONAN

It was a day in August 2012. Mat Honan, a reporter for Wired magazine, San Francisco,

returned home and was playing with his little daughter.8 He had no clue what was going

to happen next. Suddenly his iPhone was powered down. He was expecting a call—so

he plugged it into a wall power socket and rebooted back. What he witnessed next blew

him away. Instead of the iPhone home screen with all the apps, it asked for him to set up

a new phone with a big Apple logo and a welcome screen. Honan thought his iPhone was

misbehaving—but was not that worried since he backed up daily to the iCloud. Restoring

everything from iCloud could simply fix this, he thought. Honan tried to log in to iCloud. Tried

once—failed. Tried again—failed. Again—failed. Thought he was excited. Tried once again for

the last time, and failed. Now he knew something weird has happened. His last hope was his

MacBook. Thought at least he could restore everything from the local backup. Booted up the

MacBook and found nothing in it—and it prompted him to enter a four-digit passcode that he

has never set up before.

8�How Apple and Amazon Security Flaws Led to My Epic Hacking, www.wired.com/2012/08/
apple-amazon-mat-honan-hacking

Chapter 2 Designing Security for APIs

http://www.wired.com/2012/08/apple-amazon-mat-honan-hacking
http://www.wired.com/2012/08/apple-amazon-mat-honan-hacking

37

Honan called Apple tech support to reclaim his iCloud account. Then he learned he has called

Apple, 30 minutes before, to reset his iCloud password. The only information required at that

time to reset an iCloud account was the billing address and the last four digits of the credit

card. The billing address was readily available under the whois Internet domain record Honan

had for his personal web site. The attacker was good enough to get the last four digits of

Honan’s credit card by talking to Amazon helpdesk; he already had Honan’s email address and

the full mailing address—those were more than enough for a social engineering attack.

Honan lost almost everything. The attacker was still desperate—next he broke into Honan’s

Gmail account. Then from there to his Twitter account. One by one—Honan’s connected

identity falls into the hands of the attacker.

The complexity of the source code or the system design is another well-known

source of security vulnerabilities. According to a research, after some point, the number

of defects in an application goes up as the square of the number of the lines of code.9

At the time of this writing, the complete Google codebase to run all its Internet services

was around 2 billion lines of code, while Microsoft Windows operating system had

around 50 million lines of code.10 As the number of lines of code goes high, the number

of tests around the code should grow as well, to make sure that none of the existing

functionalities are broken and the new code works in the expected way. At Nike, 1.5

million lines of test code is run against 400,000 lines of code.11

�Design Challenges
Security isn’t an afterthought. It has to be an integral part of any development project

and also for APIs. It starts with requirements gathering and proceeds through the design,

development, testing, deployment, and monitoring phases. Security brings a plethora

of challenges into the system design. It’s hard to build a 100% secured system. The

only thing you can do is to make the attacker’s job harder. This is in fact the philosophy

followed while designing cryptographic algorithms. The following discusses some of the

key challenges in a security design.

9�Encapsulation and Optimal Module Size, www.catb.org/esr/writings/taoup/html/
ch04s01.html

10�Google Is 2 Billion Lines of Code, www.catb.org/esr/writings/taoup/html/ch04s01.html
11�Nike’s Journey to Microservices, www.youtube.com/watch?v=h30ViSEZzW0

Chapter 2 Designing Security for APIs

http://www.catb.org/esr/writings/taoup/html/ch04s01.html
http://www.catb.org/esr/writings/taoup/html/ch04s01.html
http://www.catb.org/esr/writings/taoup/html/ch04s01.html
http://www.youtube.com/watch?v=h30ViSEZzW0

38

MD5

MD512 algorithm (an algorithm for message hashing), which was designed in 1992, was

accepted to be a strong hashing algorithm. One of key attributes of a hashing algorithm is,

given the text, the hash corresponding to that text can be generated, but, given a hash, the text

corresponding to the hash cannot be derived. In other words, hashes are not reversible. If the

text can be derived from a given hash, then that hashing algorithm is broken.

The other key attribute of a hashing algorithm is that it should be collision-free. In other words,

any two distinct text messages must not result in the same hash. The MD5 design preserved

both of these two properties at the time of its design. With the available computational power,

it was hard to break MD5 in the early 1990s. As the computational power increased and it was

made available to many people via cloud-based infrastructure as a service (IaaS) providers,

like Amazon, MD5 was proven to be insecure. On March 1, 2005, Arjen Lenstra, Xiaoyun Wang,

and Benne de Weger demonstrated that MD5 is susceptible to hash collisions.13

�User Experience
The most challenging thing in any security design is to find and maintain the right

balance between security and the user comfort. Say you have the most complex

password policy ever, which can never be broken by any brute-force attack. A password

has to have more than 20 characters, with mandatory uppercase and lowercase letters,

numbers, and special characters. Who on Earth is going to remember their passwords?

Either you’ll write it on a piece of paper and keep it in your wallet, or you’ll add it as

a note in your mobile device. Either way, you lose the ultimate objective of the strong

password policy. Why would someone carry out a brute-force attack when the password

is written down and kept in a wallet? The principle of psychological acceptability,

discussed later in this chapter, states that security mechanisms should not make the

resource more difficult to access than if the security mechanisms were not present.

We have few good examples from the recent past, where user experience drastically

improved while keeping security intact. Today, with the latest Apple Watch, you can

unlock your MacBook, without retyping the password. Also the face recognition

12�RFC 6156: The MD5 Message-Digest Algorithm, https://tools.ietf.org/html/rfc1321
13�Colliding X.509 Certificates, http://eprint.iacr.org/2005/067.pdf

Chapter 2 Designing Security for APIs

https://tools.ietf.org/html/rfc1321
http://eprint.iacr.org/2005/067.pdf

39

technology introduced in the latest iPhones lets you unlock the phone, just by looking at

it. You never even notice that the phone was locked.

It is essential that the human interface be designed for ease of use, so that
users routinely and automatically apply the protection mechanisms cor-
rectly. Also, to the extent that the user's mental image of his protection goals
matches the mechanisms he must use, mistakes will be minimized. If he
must translate his image of his protection needs into a radically different
specification language, he will make errors.

—Jerome Saltzer and Michael Schroeder

�Performance
Performance is another key criterion. What is the cost of the overhead you add to your

business operations to protect them from intruders? Say you have an API secured with

a key, and each API call must be digitally signed. If the key is compromised, an attacker

can use it to access the API. How do you minimize the impact? You can make the key

valid only for a very short period; so, whatever the attacker can do with the stolen key

is limited to its lifetime. What kind of impact will this have on legitimate day-to-day

business operations? Each client application should first check the validity period of

the key (before doing the API call) and, if it has expired, make a call to the authorization

server (the issuer of the key) to generate a new key. If you make the lifetime too short,

then almost for each API call, there will be a call to the authorization server to generate

a new key. That kills performance—but drastically reduces the impact of an intruder

getting access to the API key.

The use of TLS for transport-level security is another good example. We will be

discussing TLS in Appendix C, in detail. TLS provides protection for data in transit.

When you pass your login credentials to Amazon or eBay, those are passed over a

secured communication channel, or HTTP over TLS, which is in fact the HTTPS. No one

in the middle will be able to see the data passed from your browser to the web server

(assuming there is no room for a man-in-the-middle attack). But this comes at a cost.

TLS adds more overhead over the plain HTTP communication channel, which would

simply slow down things a bit. For the exact same reason, some enterprises follow the

strategy where all of the communication channels open to the public are over HTTPS,

while the communication between internal servers are over plain HTTP. They make sure

Chapter 2 Designing Security for APIs

40

no one can intercept any of those internal channels by enforcing strong network-level

security. The other option is to use optimized hardware to carry out the encryption/

decryption process in the TLS communication. Doing encryption/decryption process

at the dedicated hardware level is far more cost-effective than doing the same at the

application level, in terms of performance.

Even with TLS, the message is only protected while it is in transit. As soon as the

message leaves the transport channel, it’s in cleartext. In other words, the protection

provided by TLS is point to point. When you log in to your banking web site from the

browser, your credentials are only secured from your browser to the web server at your

bank. If the web server talks to a Lightweight Directory Access Protocol (LDAP) server

to validate the credentials, once again if this channel is not explicitly protected, then

the credentials will be passed in cleartext. If anyone logs all the in and out messages to

and from the bank’s web server, then your credentials will be logged in plaintext. In a

highly secured environment, this may not be acceptable. Using message-level security

over transport-level security is the solution. With message-level security, as its name

implies, the message is protected by itself and does not rely on the underlying transport

for security. Since this has no dependency on the transport channel, the message will

be still protected, even after it leaves the transport. This once again comes at a high

performance cost. Using message-level protection is much costlier than simply using

TLS. There is no clear-cut definition on making a choice between the security and the

performance. Always there is a compromise, and the decision has to be taken based on

the context.

�Weakest Link
A proper security design should care about all the communication links in the system.

Any system is no stronger than its weakest link. In 2010, it was discovered that since

2006, a gang of robbers equipped with a powerful vacuum cleaner had stolen more than

600,000 euros from the Monoprix supermarket chain in France.14 The most interesting

thing was the way they did it. They found out the weakest link in the system and attacked

it. To transfer money directly into the store’s cash coffers, cashiers slid tubes filled with

14�“Vacuum Gang” Sucks Up $800,000 From Safeboxes, https://gizmodo.com/
vacuum-gang-sucks-up-800-000-from-safeboxes-5647047

Chapter 2 Designing Security for APIs

https://gizmodo.com/vacuum-gang-sucks-up-800-000-from-safeboxes-5647047
https://gizmodo.com/vacuum-gang-sucks-up-800-000-from-safeboxes-5647047

41

money through pneumatic suction pipes. The robbers realized that it was sufficient to

drill a hole in the pipe near the trunk and then connect a vacuum cleaner to capture the

money. They didn’t have to deal with the coffer shield.

Not always, the weakest link in a system is either a communication channel or an

application. There are many examples which show the humans have turned out to be

the weakest link. The humans are the most underestimated or the overlooked entity in a

security design. Most of the social engineering attacks target humans. In the famous Mat

Honan’s attack, calling to an Amazon helpdesk representative, the attacker was able to

reset Mat Honan’s Amazon credentials. The October 2015 attack on CIA Director John

Brennan’s private email account is another prime example of social engineering.15 The

teen who executed the attack said, he was able to fool a Verizon worker to get Brennan’s

personal information and duping AOL into resetting his password. The worst side of

the story is that Brennan has used his private email account to hold officially sensitive

information—which is again a prime example of a human being the weakest link of the

CIA defense system. Threat modeling is one of the techniques to identify the weakest

links in a security design.

�Defense in Depth
A layered approach is preferred for any system being tightened for security. This is

also known as defense in depth. Most international airports, which are at a high risk of

terrorist attacks, follow a layered approach in their security design. On November 1,

2013, a man dressed in black walked into the Los Angeles International Airport, pulled

a semi-automatic rifle out of his bag, and shot his way through a security checkpoint,

killing a TSA screener and wounding at least two other officers.16 This was the first

layer of defense. In case someone got through it, there has to be another to prevent the

gunman from entering a flight and taking control. If there had been a security layer

before the TSA, maybe just to scan everyone who entered the airport, it would have

detected the weapon and probably saved the life of the TSA officer.

NSA (National Security Agency of the United States) identifies defense in depth as

a practical strategy for achieving information assurance in today’s highly networked

15�Teen says he hacked CIA director’s AOL account, http://nypost.com/2015/10/18/
stoner-high-school-student-says-he-hacked-the-cia/

16�Gunman kills TSA screener at LAX airport, https://wapo.st/2QBfNoI

Chapter 2 Designing Security for APIs

http://nypost.com/2015/10/18/stoner-high-school-student-says-he-hacked-the-cia/
http://nypost.com/2015/10/18/stoner-high-school-student-says-he-hacked-the-cia/
https://wapo.st/2QBfNoI

42

environments.17 It further explains layered defense under five classes of attack: passive

monitoring of communication channels, active network attacks, exploitation of insiders,

close-in attacks, and attacks through various distribution channels. The link and network

layer encryption and traffic flow security is proposed as the first line of defense for

passive attacks, and the second line of defense is the security-enabled applications. For

active attacks, the first line of defense is the enclave boundaries, while the second line

of defense is the computing environment. The insider attacks are prevented by having

physical and personnel security as the first line of defense and having authentication,

authorization, and audits as the second line of defense. The close-in attacks are

prevented by physical and personnel security as the first layer and having technical

surveillance countermeasures as the second line of defense. Adhering to trusted

software development and distribution practices and via runtime integrity controls

prevents the attacks via multiple distributed channels.

The number of layers and the strength of each layer depend on which assets you

want to protect and the threat level associated with them. Why would someone hire a

security officer and also use a burglar alarm system to secure an empty garage?

�Insider Attacks
Insider attacks are less complicated, but highly effective. From the confidential US

diplomatic cables leaked by WikiLeaks to Edward Snowden’s disclosure about the

National Security Agency’s secret operations, all are insider attacks. Both Snowden

and Bradley Manning were insiders who had legitimate access to the information they

disclosed. Most organizations spend the majority of their security budget to protect

their systems from external intruders; but approximately 60% to 80% of network misuse

incidents originate from inside the network, according to the Computer Security

Institute (CSI) in San Francisco.

There are many prominent insider attacks listed down in the computer security

literature. One of them was reported in March 2002 against the UBS Wealth Management

firm in the United States. UBS is a global leader in wealth management having branches

over 50 countries. Roger Duronio, one of the system administrators at UBS, found guilty

of computer sabotage and securities fraud for writing, planting, and disseminating

malicious code that took down up to 2000 servers. The US District Court in Newark,

17�Defense in Depth, www.nsa.gov/ia/_files/support/defenseindepth.pdf

Chapter 2 Designing Security for APIs

http://www.nsa.gov/ia/_files/support/defenseindepth.pdf

43

New Jersey, sentenced him for 97 months in jail.18 The Target data breach that we

discussed at the beginning of the chapter is another prime example for an insider

attack. In that case, even the attackers were not insiders, they gained access to the

Target internal system using the credentials of an insider, who is one of the company’s

refrigeration vendors.

According to an article by Harvard Business Review (HBR),19 at least 80 million

insider attacks take place in the United States each year. HBR further identifies three

causes for the growth of insider attacks over the years:

•	 One is the dramatic increase in the size and the complexity of IT. As

companies grow in size and business, a lot of isolated silos are being

created inside. One department does not know what the other does.

In 2005 call center staffers based in Pune, India, defrauded four

Citibank account holders in New York of nearly $350,000, and later

it was found those call center staffers are outsourced employees of

Citibank itself and had legitimate access to customers’ PINs and

account numbers.

•	 The employees who use their own personal devices for work are

another cause for the growing insider threats. According to a report

released by Alcatel-Lucent in 2014, 11.6 million mobile devices

worldwide are infected at any time.20 An attacker can easily exploit

an infected device of an insider to carry out an attack against the

company.

•	 The third cause for the growth of insider threats, according to the

HBR, is the social media explosion. Social media allow all sorts of

information to leak from a company and spread worldwide, often

without the company’s knowledge.

Undoubtedly, insider attacks are one of the hardest problems to solve in a security

design. These can be prevented to some extent by adopting robust insider policies,

raising awareness, doing employee background checks at the point of hiring them,

18�UBS insider attack, www.informationweek.com/ex-ubs-systems-admin-sentenced-to-
97-months-in-jail/d/d-id/1049873

19�The Danger from Within, https://hbr.org/2014/09/the-danger-from-within
20�Surge in mobile network infections in 2013, http://phys.org/news/2014-01-surge-mobile-
network-infections.html

Chapter 2 Designing Security for APIs

http://www.informationweek.com/ex-ubs-systems-admin-sentenced-to-97-months-in-jail/d/d-id/1049873
http://www.informationweek.com/ex-ubs-systems-admin-sentenced-to-97-months-in-jail/d/d-id/1049873
https://hbr.org/2014/09/the-danger-from-within
http://phys.org/news/2014-01-surge-mobile-network-infections.html
http://phys.org/news/2014-01-surge-mobile-network-infections.html

44

enforcing strict processes and policies on subcontractors, and continuous monitoring of

employees. In addition to these, SANS Institute also published a set of guidelines in 2009

to protect organizations from insider attacks.21

Note I nsider attacks are identified as a growing threat in the military. To address
this concern, the US Defense Advanced Research Projects Agency (DARPA)
launched a project called Cyber Insider Threat (CINDER) in 2010. The objective of
this project was to develop new ways to identify and mitigate insider threats as
soon as possible.

�Security by Obscurity
Kerckhoffs’ principle22 emphasizes that a system should be secured by its design, not

because the design is unknown to an adversary. One common example of security by

obscurity is how we share door keys between family members, when there is only a

single key. Everyone locks the door and hides the key somewhere, which is known to

all the other family members. The hiding place is a secret, and it is assumed only family

members know about it. In case if someone can find the hiding place, the house is no

more secured.

Another example for security by obscurity is Microsoft’s NTLM (an authentication

protocol) design. It was kept secret for some time, but at the point (to support

interoperability between Unix and Windows) Samba engineers reverse-engineered it,

they discovered security vulnerabilities caused by the protocol design itself. Security by

obscurity is widely accepted as a bad practice in computer security industry. However,

one can argue it as another layer of security before someone hits the real security layer.

This can be further explained by extending our first example. Let’s say instead of just

hiding the door key somewhere, we put it to a lock box and hide it. Only the family

members know the place where the lock box is hidden and also the key combination to

21�Protecting Against Insider Attacks, www.sans.org/reading-room/whitepapers/incident/
protecting-insider-attacks-33168

22�In 1883, Auguste Kerckhoffs published two journal articles on La Cryptographie Militaire in
which he emphasized six design principles for military ciphers. This resulted in the well-known
Kerckhoffs’ principle: A cryptosystem should be secured even if everything about the system,
except the key, is public knowledge.

Chapter 2 Designing Security for APIs

http://www.sans.org/reading-room/whitepapers/incident/protecting-insider-attacks-33168
http://www.sans.org/reading-room/whitepapers/incident/protecting-insider-attacks-33168

45

open the lock box. The first layer of defense is the location of the box, and the second

layer is the key combination to open the lock box. In fact in this case, we do not mind

anyone finding the lock box, because finding the lock box itself is not sufficient to open

the door. But, anyone who finds the lock box can break it to get the key out, rather than

trying out the key combination. In that case, security by obscurity adds some value as a

layer of protection—but it’s never good by its own.

�Design Principles
Jerome Saltzer and Michael Schroeder produced one of the most widely cited research

papers in the information security domain.23 According to the paper, irrespective of

the level of functionality provided, the effectiveness of a set of protection mechanisms

depends upon the ability of a system to prevent security violations. In most of the

cases, building a system at any level of functionality that prevents all unauthorized

actions has proved to be extremely difficult. For an advanced user, it is not hard to find

at least one way to crash a system, preventing other authorized users accessing the

system. Penetration tests that involved a large number of different general-purpose

systems have shown that users can build programs to obtain unauthorized access to

information stored within. Even in systems designed and implemented with security

as a top priority, design and implementation flaws could provide ways around the

intended access restrictions. Even though the design and construction techniques that

could systematically exclude flaws are the topic of much research activity, according

to Jerome and Michael, no complete method applicable to the construction of large

general-purpose systems existed during the early 1970s. In this paper, Jerome Saltzer and

Michael Schroeder further highlight eight design principles for securing information in

computer systems, as described in the following sections.

�Least Privilege
The principle of least privilege states that an entity should only have the required set

of permissions to perform the actions for which they are authorized, and no more.

Permissions can be added as needed and should be revoked when no longer in use.

23�The Protection of Information in Computer Systems, http://web.mit.edu/Saltzer/www/
publications/protection/, October 11, 1974.

Chapter 2 Designing Security for APIs

http://web.mit.edu/Saltzer/www/publications/protection/
http://web.mit.edu/Saltzer/www/publications/protection/

46

This limits the damage that can result from an accident or error. The need to know

principle, which follows the least privilege philosophy, is popular in military security.

This states that even if someone has all the necessary security clearance levels to access

information, they should not be granted access unless there is a real/proven need.

Unfortunately, this principle didn’t apply in the case of Edward Snowden,24 or he

was clever enough to work around it. Edward Snowden who worked for NSA (National

Security Agency of the United States) as a contractor in Hawaii used unsophisticated

techniques to access and copy an estimated 1.7 million classified NSA files. He was

an employee of NSA and had legitimate access to all the information he downloaded.

Snowden used a simple web crawler, similar to Google’s Googlebot (which collects

documents from the Web to build a searchable index for the Google Search engine),

to crawl and scrape all the data from NSA’s internal wiki pages. Being a system

administrator, Snowden’s role was to back up the computer systems and move

information to local servers; he had no need to know the content of the data.

ISO 27002 (formerly known as ISO 17799) also emphasizes on the least privilege

principle. ISO 27002 (Information Technology - Code of Practice for Information Security

Management) standard is a well-known, widely used standard in the information

security domain. It was originally developed by the British Standards Institution and

called the BS7799 and subsequently accepted by the International Organization for

Standardization (ISO) and published under their title in December 2000. According to

ISO 27002, privileges should be allocated to individuals on a need-to-use basis and on

an event-by-event basis, that is, the minimum requirement for their functional role only

when needed. It further identifies the concept of “zero access” to start, which suggests

that no access or virtually no access is the default, so that all subsequent access and the

ultimate accumulation can be traced back through an approval process.25

�Fail-Safe Defaults
The fail-safe defaults principle highlights the importance of making a system safe by

default. A user’s default access level to any resource in the system should be “denied”

unless they’ve been granted a “permit” explicitly. A fail-safe design will not endanger the

24�Snowden Used Low-Cost Tool to Best NSA, www.nytimes.com/2014/02/09/us/snowden-used-
low-cost-tool-to-best-nsa.html

25�Implementing Least Privilege at Your Enterprise, www.sans.org/reading-room/whitepapers/
bestprac/implementing-privilege-enterprise-1188

Chapter 2 Designing Security for APIs

http://www.nytimes.com/2014/02/09/us/snowden-used-low-cost-tool-to-best-nsa.html
http://www.nytimes.com/2014/02/09/us/snowden-used-low-cost-tool-to-best-nsa.html
http://www.sans.org/reading-room/whitepapers/bestprac/implementing-privilege-enterprise-1188
http://www.sans.org/reading-room/whitepapers/bestprac/implementing-privilege-enterprise-1188

47

system when it fails. The Java Security Manager implementation follows this principle—

once engaged, none of the components in the system can perform any privileged

operations unless explicitly permitted. Firewall rules are another example. Data packets

are only allowed through a firewall when it’s explicitly allowed; otherwise everything is

denied by default.

Any complex system will have failure modes. Failures are unavoidable and should be

planned for, to make sure that no security risks get immerged as part of a system failure.

Possibility of failures is an assumption made under the security design philosophy,

defense in depth. If no failures are expected, there is no point of having multiple layers

of defense. Let’s go through an example where every one of us is most probably familiar

with: credit card verification. When you swipe your credit card at a retail store, the credit

card machine there connects to the corresponding credit card service to verify the card

details. The credit card verification service will verify the transaction after considering

the available amount in the card, whether the card is reported as lost or blacklisted, and

other context-sensitive information like the location where the transaction is initiated

from, the time of the day, and many other factors. If the credit card machine fails to

connect to the verification service, what would happen? In such case, the merchants are

given a machine to get an imprint of your card manually. Getting an imprint of the card

is not just sufficient, as it does not do any verification. The merchant also has to talk to

his bank over the phone, authenticate by providing the merchant number, and then get

the transaction verified. That’s the fail-safe process for credit card verification, as the

failure of the credit card transaction machine does not lead into any security risks. In

case the merchant’s phone line is also completely down, then according to the fail-safe

defaults principle, the merchant should avoid accepting any credit card payments.

The failure to adhere to fail-safe defaults has resulted in many TLS (Transport Layer

Security)/SSL (Secure Sockets Layer) vulnerabilities. Most of the TLS/SSL vulnerabilities

are based on the TLS/SSL downgrade attack, where the attacker makes the server to

use a cryptographically weak cipher suite (we discuss TLS in depth in Appendix C). In

May 2015, a group from INRIA, Microsoft Research, Johns Hopkins, the University of

Michigan, and the University of Pennsylvania published a deep analysis26 of the Diffie-

Hellman algorithm as used in TLS and other protocols. This analysis included a novel

downgrade attack against the TLS protocol itself called Logjam, which exploits export

cryptography. Export ciphers are weaker ciphers that were intentionally designed to be

26�Imperfect Forward Secrecy: How Diffie-Hellman Fails in Practice, https://weakdh.org/
imperfect-forward-secrecy-ccs15.pdf

Chapter 2 Designing Security for APIs

https://weakdh.org/imperfect-forward-secrecy-ccs15.pdf
https://weakdh.org/imperfect-forward-secrecy-ccs15.pdf

48

weaker to meet certain legal requirements enforced by the US government, in 1990s.

Only weaker ciphers were legally possible to export into other countries outside the

United States. Even though this legal requirement was lifted later on, most of the popular

application servers still support export ciphers. The Logjam attack exploited the servers

having support for export ciphers by altering the TLS handshake and forcing the servers

to use a weaker cipher suite, which can be broken later on. According to the fail-safe

defaults principle, in this scenario, the server should abort the TLS handshake when they

see a cryptographically weaker algorithm is suggested by the client, rather than accepting

and proceeding with it.

�Economy of Mechanism
The economy of mechanism principle highlights the value of simplicity. The design

should be as simple as possible. All the component interfaces and the interactions

between them should be simple enough to understand. If the design and the

implementation were simple, the possibility of bugs would be low, and at the same

time, the effort on testing would be less. A simple and easy-to-understand design and

implementation would also make it easy to modify and maintain, without introducing

bugs exponentially. As discussed earlier in this chapter, Gary McGraw in his book,

Software Security, highlights complexity in both the code and the system design as one

attribute that is responsible for the high rate of data breaches.

The keep it simple, stupid (KISS) principle introduced by the US Navy in 1960 is quite

close to what Jerome Saltzer and Michael Schroeder explained under the economy of

mechanism principle. It states that most systems work best if they are kept simple rather

than made complicated.27 In practice, even though we want to adhere to the KISS principle,

from operating systems to application code, everything is becoming more and more

complex. Microsoft Windows 3.1 in 1990 started with a codebase slightly over 3 million lines

of code. Over time, requirements got complex, and in 2001 Windows XP codebase crossed

40 million lines of code. As we discussed before in this chapter, at the time of this writing, the

complete Google codebase to run all its Internet services was around 2 billion lines of code.

Even though one can easily argue the increased number of lines of code will not directly

reflect the code complexity, in most of the cases, sadly it’s the case.

27�KISS principle, https://en.wikipedia.org/wiki/KISS_principle

Chapter 2 Designing Security for APIs

https://en.wikipedia.org/wiki/KISS_principle

49

�Complete Mediation
With complete mediation principle, a system should validate access rights to all its

resources to ensure whether they’re allowed to access or not. Most systems do access

validation once at the entry point to build a cached permission matrix. Each subsequent

operation will be validated against the cached permission matrix. This pattern is

mostly followed to address performance concerns by reducing the time spent on policy

evaluation, but could quite easily invite attackers to exploit the system. In practice, most

systems cache user permissions and roles, but employ a mechanism to clear the cache in

an event of a permission or role update.

Let’s have a look at an example. When a process running under the UNIX operating

system tries to read a file, the operating system itself determines whether the process

has the appropriate rights to read the file. If that is the case, the process receives a file

descriptor encoded with the allowed level of access. Each time the process reads the file,

it presents the file descriptor to the kernel. The kernel examines the file descriptor and

then allows the access. In case the owner of the file revokes the read permission from

the process after the file descriptor is issued, the kernel still allows access, violating the

principle of complete mediation. According to the principle of complete mediation, any

permission update should immediately reflect in the application runtime (if cached,

then in the cache).

�Open Design
The open design principle highlights the importance of building a system in an open

manner—with no secrets, confidential algorithms. This is the opposite of security by

obscurity, discussed earlier in the section “Design Challenges.” Most of the strong

cryptographic algorithms in use today are designed and implemented openly. One

good example is the AES (Advanced Encryption Standard) symmetric key algorithm.

NIST (National Institute of Standards and Technology, United States) followed an open

process, which expanded from 1997 to 2000 to pick the best cryptographically strong

algorithm for AES, to replace DES (Data Encryption Standard), which by then was

susceptible to brute-force attacks. On January 2, 1997, the initial announcement was

made by NIST regarding the competition to build an algorithm to replace DES. During

the first nine months, after the competition began, there were 15 different proposals

from several countries. All the designs were open, and each one of them was subjected

to thorough cryptanalysis. NIST also held two open conferences to discuss the proposals,

Chapter 2 Designing Security for APIs

50

in August 1998 and March 1999, and then narrowed down all 15 proposals into 5. After

another round of intense analysis during the April 2000 AES conference, the winner was

announced in October 2000, and they picked Rijndael as the AES algorithm. More than

the final outcome, everyone (even the losers of the competition) appreciated NIST for

the open process they carried throughout the AES selection phase.

The open design principle further highlights that the architects or developers of a

particular application should not rely on the design or coding secrets of the application

to make it secure. If you rely on open source software, then this is not even possible at

all. There are no secrets in open source development. Under the open source philosophy

from the design decisions to feature development, all happens openly. One can easily

argue, due to the exact same reason, open source software is bad in security. This is

a very popular argument against open source software, but facts prove otherwise.

According to a report28 by Netcraft published in January 2015, almost 51% of all active

sites in the Internet are hosted on web servers powered by the open source Apache web

server. The OpenSSL library, which is another open source project implementing the

SSL (Secure Sockets Layer) and TLS (Transport Layer Security) protocols, is used by

more than 5.5 million web sites in the Internet, by November 2015.29 If anyone seriously

worries about the security aspects of open source, it’s highly recommended for him

or her to read the white paper published by SANS Institute, under the topic Security

Concerns in Using Open Source Software for Enterprise Requirements.30

Note G artner predicts, by 2020, 98% of IT organizations will leverage open
source software technology in their mission-critical IT portfolios, including many
cases where they will be unaware of it.31

28�Netcraft January 2015 Web Server Survey, http://news.netcraft.com/archives/2015/01/15/
january-2015-web-server-survey.html

29�OpenSSL Usage Statistics, http://trends.builtwith.com/Server/OpenSSL
30�Security Concerns in Using Open Source Software for Enterprise Requirements, www.sans.org/
reading-room/whitepapers/awareness/security-concerns-open-source-software-
enterprise-requirements-1305

31�Middleware Technologies—Enabling Digital Business, www.gartner.com/doc/3163926/
hightech-tuesday-webinar-middleware-technologies

Chapter 2 Designing Security for APIs

http://news.netcraft.com/archives/2015/01/15/january-2015-web-server-survey.html
http://news.netcraft.com/archives/2015/01/15/january-2015-web-server-survey.html
http://trends.builtwith.com/Server/OpenSSL
http://www.sans.org/reading-room/whitepapers/awareness/security-concerns-open-source-software-enterprise-requirements-1305
http://www.sans.org/reading-room/whitepapers/awareness/security-concerns-open-source-software-enterprise-requirements-1305
http://www.sans.org/reading-room/whitepapers/awareness/security-concerns-open-source-software-enterprise-requirements-1305
http://www.gartner.com/doc/3163926/hightech-tuesday-webinar-middleware-technologies
http://www.gartner.com/doc/3163926/hightech-tuesday-webinar-middleware-technologies

51

�Separation of Privilege
The principle of separation of privilege states that a system should not grant permissions

based on a single condition. The same principle is also known as segregation of duties,

and one can look into it from multiple aspects. For example, say a reimbursement claim

can be submitted by any employee but can only be approved by the manager. What if

the manager wants to submit a reimbursement? According to the principle of separation

of privilege, the manager should not be granted the right to approve his or her own

reimbursement claims.

It is interesting to see how Amazon follows the separation of privilege principle in

securing AWS (Amazon Web Services) infrastructure. According to the security white

paper32 published by Amazon, the AWS production network is segregated from the

Amazon Corporate network by means of a complex set of network security/segregation

devices. AWS developers and administrators on the corporate network who need

to access AWS cloud components in order to maintain them must explicitly request

access through the AWS ticketing system. All requests are reviewed and approved

by the applicable service owner. Approved AWS personnel then connect to the AWS

network through a bastion host that restricts access to network devices and other cloud

components, logging all activity for security review. Access to bastion hosts require SSH

public key authentication for all user accounts on the host.

NSA (National Security Agency, United States) too follows a similar strategy. In a fact

sheet33 published by NSA, it highlights the importance of implementing the separation

of privilege principle at the network level. Networks are composed of interconnected

devices with varying functions, purposes, and sensitivity levels. Networks can consist

of multiple segments that may include web servers, database servers, development

environments, and the infrastructure that binds them together. Because these segments

have different purposes as well as different security concerns, segregating them

appropriately is paramount in securing a network from exploitation and malicious

intent.

32�AWS security white paper, https://d0.awsstatic.com/whitepapers/aws-security-
whitepaper.pdf

33�Segregating networks and functions, www.nsa.gov/ia/_files/factsheets/I43V_Slick_
Sheets/Slicksheet_SegregatingNetworksAndFunctions_Web.pdf

Chapter 2 Designing Security for APIs

https://d0.awsstatic.com/whitepapers/aws-security-whitepaper.pdf
https://d0.awsstatic.com/whitepapers/aws-security-whitepaper.pdf
http://www.nsa.gov/ia/_files/factsheets/I43V_Slick_Sheets/Slicksheet_SegregatingNetworksAndFunctions_Web.pdf
http://www.nsa.gov/ia/_files/factsheets/I43V_Slick_Sheets/Slicksheet_SegregatingNetworksAndFunctions_Web.pdf

52

�Least Common Mechanism
The principle of least common mechanism concerns the risk of sharing state

information among different components. In other words, it says that mechanisms

used to access resources should not be shared. This principle can be interpreted in

multiple angles. One good example is to see how Amazon Web Services (AWS) works

as an infrastructure as a service (IaaS) provider. Elastic Compute Cloud, or EC2, is

one of the key services provided by AWS. Netflix, Reddit, Newsweek, and many other

companies run their services on EC2. EC2 provides a cloud environment to spin up and

down server instances of your choice based on the load you get. With this approach,

you do not need to plan before for the highest expected load and let the resources idle

most of the time when there is low load. Even though in this case, each EC2 user gets his

own isolated server instance running its own guest operating system (Linux, Windows,

etc.), ultimately all the servers are running on top of a shared platform maintained

by AWS. This shared platform includes a networking infrastructure, a hardware

infrastructure, and storage. On top of the infrastructure, there runs a special software

called hypervisor. All the guest operating systems are running on top of the hypervisor.

Hypervisor provides a virtualized environment over the hardware infrastructure. Xen

and KVM are two popular hypervisors, and AWS is using Xen internally. Even though a

given virtual server instance running for one customer does not have access to another

virtual server instance running for another customer, if someone can find a security hole

in the hypervisor, then he can get the control of all the virtual server instances running

on EC2. Even though this sounds like nearly impossible, in the past there were many

security vulnerabilities reported against the Xen hypervisor.34

The principle of least common mechanism encourages minimizing common,

shared usage of resources. Even though the usage of common infrastructure cannot be

completely eliminated, its usage can be minimized based on business requirements.

AWS Virtual Private Cloud (VPC) provides a logically isolated infrastructure for each of

its users. Optionally, one can also select to launch dedicated instances, which run on

hardware dedicated to each customer for additional isolation.

The principle of least common mechanism can also be applied to a scenario where

you store and manage data in a shared multitenanted environment. If we follow the

strategy shared everything, then the data from different customers can be stored in

34�Xen Security Advisories, http://xenbits.xen.org/xsa/

Chapter 2 Designing Security for APIs

http://xenbits.xen.org/xsa/

53

the same table of the same database, isolating each customer data by the customer id.

The application, which accesses the database, will make sure that a given customer

can only access his own data. With this approach, if someone finds a security hole in

the application logic, he can access all customer data. The other approach could be to

have an isolated database for each customer. This is a more expensive but much secure

option. With this we can minimize what is being shared between customers.

�Psychological Acceptability
The principle of psychological acceptability states that security mechanisms should not

make the resource more difficult to access than if the security mechanisms were not

present. Accessibility to resources should not be made difficult by security mechanisms.

If security mechanisms kill the usability or accessibility of resources, then users may find

ways to turn off those mechanisms. Wherever possible, security mechanisms should be

transparent to the users of the system or at most introduce minimal distractions. Security

mechanisms should be user-friendly to encourage the users to occupy them more

frequently.

Microsoft introduced information cards in 2005 as a new paradigm for

authentication to fight against phishing. But the user experience was bad, with a high

setup cost, for people who were used to username/password-based authentication. It

went down in history as another unsuccessful initiative from Microsoft.

Most of the web sites out there use CAPTCHA as a way to differentiate human beings

from automated scripts. CAPTCHA is in fact an acronym, which stands for Completely

Automated Public Turing test to tell Computers and Humans Apart. CAPTCHA is

based on a challenge-response model and mostly used along with user registration

and password recovery functions to avoid any automated brute-force attacks. Even

though this tightens up security, this also could easily kill the user experience. Some

of the challenges provided by certain CAPTCHA implementations are not even

readable to humans. Google tries to address this concern with Google reCAPTCHA.35

With reCAPTCHA users can attest they are humans without having to solve a

CAPTCHA. Instead, with just a single click, one can confirm that he is not a robot. This is

also known as No CAPTCHA reCAPTCHA experience.

35�Google reCAPTCHA, www.google.com/recaptcha/intro/index.html

Chapter 2 Designing Security for APIs

http://www.google.com/recaptcha/intro/index.html

54

�Security Triad
Confidentiality, integrity, and availability (CIA), widely known as the triad of information

security, are three key factors used in benchmarking information systems security. This

is also known as CIA triad or AIC triad. The CIA triad helps in both designing a security

model and assessing the strength of an existing security model. In the following sections,

we discuss the three key attributes of the CIA triad in detail.

�Confidentiality
Confidentiality attribute of the CIA triad worries about how to protect data from

unintended recipients, both at rest and in transit. You achieve confidentiality by

protecting transport channels and storage with encryption. For APIs, where the transport

channel is HTTP (most of the time), you can use Transport Layer Security (TLS), which

is in fact known as HTTPS. For storage, you can use disk-level encryption or application-

level encryption. Channel encryption or transport-level encryption only protects a

message while it’s in transit. As soon as the message leaves the transport channel, it’s

no more secure. In other words, transport-level encryption only provides point-to-point

protection and truncates from where the connection ends. In contrast, there is message-

level encryption, which happens at the application level and has no dependency on the

transport channel. In other words, with message-level encryption, the application itself

has to worry about how to encrypt the message, prior to sending it over the wire, and it’s

also known as end-to-end encryption. If you secure data with message-level encryption,

then you can use even an insecure channel (like HTTP) to transport the message.

A TLS connection, when going through a proxy, from the client to the server can

be established in two ways: either with TLS bridging or with TLS tunneling. Almost all

proxy servers support both modes. For a highly secured deployment, TLS tunneling is

recommended. In TLS bridging, the initial connection truncates from the proxy server,

and a new connection to the gateway (or the server) is established from there. That

means the data is in cleartext while inside the proxy server. Any intruder who can plant

malware in the proxy server can intercept traffic that passes through. With TLS tunneling,

the proxy server facilitates creating a direct channel between the client machine and the

gateway (or the server). The data flow through this channel is invisible to the proxy server.

Message-level encryption, on the other hand, is independent from the underlying

transport. It’s the application developers’ responsibility to encrypt and decrypt

messages. Because this is application specific, it hurts interoperability and builds tight

Chapter 2 Designing Security for APIs

55

couplings between the sender and the receiver. Each has to know how to encrypt/

decrypt data beforehand—which will not scale well in a largely distributed system.

To overcome this challenge, there have been some concentrated efforts to build

standards around message-level security. XML Encryption is one such effort, led by the

W3C. It standardizes how to encrypt an XML payload. Similarly, the IETF JavaScript

Object Signing and Encryption (JOSE) working group has built a set of standards for

JSON payloads. In Chapters 7 and 8, we discuss JSON Web Signature and JSON Web

Encryption, respectively—which are two prominent standards in securing JSON

messages.

Note S ecure Sockets Layer (SSL) and Transport Layer Security (TLS) are often
used interchangeably, but in pure technical terms, they aren’t the same. TLS is the
successor of SSL 3.0. TLS 1.0, which is defined under the IETF RFC 2246, is based
on the SSL 3.0 protocol specification, which was published by Netscape. The
differences between TLS 1.0 and SSL 3.0 aren’t dramatic, but they’re significant
enough that TLS 1.0 and SSL 3.0 don’t interoperate.

There are few more key differences between transport-level security and message-

level security, in addition to what were discussed before.

•	 Transport-level security being point to point, it encrypts the entire

message while in transit.

•	 Since transport-level relies on the underlying channel for protection,

application developers have no control over which part of the data to

encrypt and which part not to.

•	 Partial encryption isn’t supported by transport-level security, but it is

supported by message-level security.

•	 Performance is a key factor, which differentiates message-level security

from transport-level security. Message-level encryption is far more

expensive than transport-level encryption, in terms of resource

consumption.

Chapter 2 Designing Security for APIs

56

•	 Message-level encryption happens at the application layer, and it has

to take into consideration the type and the structure of the message

to carry out the encryption process. If it’s an XML message, then the

process defined in the XML Encryption standard has to be followed.

�Integrity
Integrity is a guarantee of data’s correctness and trustworthiness and the ability to detect

any unauthorized modifications. It ensures that data is protected from unauthorized

or unintentional alteration, modification, or deletion. The way to achieve integrity is

twofold: preventive measures and detective measures. Both measures have to take care

of data in transit as well as data at rest.

To prevent data from alteration while in transit, you should use a secure channel that

only intended parties can read or do message-level encryption. TLS (Transport Layer

Security) is the recommended approach for transport-level encryption. TLS itself has a way

of detecting data modifications. It sends a message authentication code in each message

from the first handshake, which can be verified by the receiving party to make sure the

data has not been modified while in transit. If you use message-level encryption to prevent

data alteration, then to detect any modification in the message at the recipient, the sender

has to sign the message, and with the public key of the sender, the recipient can verify the

signature. Similar to what we discussed in the previous section, there are standards based

on the message type and the structure, which define the process of signing. If it’s an XML

message, then the XML Signature standard by W3C defines the process.

For data at rest, you can calculate the message digest periodically and keep it in a

secured place. The audit logs, which can be altered by an intruder to hide suspicious

activities, need to be protected for integrity. Also with the advent of network storage

and new technology trends, which have resulted in new failure modes for storage,

interesting challenges arise in ensuring data integrity. A paper36 published by Gopalan

Sivathanu, Charles P. Wright, and Erez Zadok of Stony Brook University highlights the

causes of integrity violations in storage and presents a survey of integrity assurance

techniques that exist today. It describes several interesting applications of storage

integrity checking, apart from security, and discusses the implementation issues

associated with those techniques.

36�Ensuring Data Integrity in Storage: Techniques and Applications, www.fsl.cs.sunysb.edu/
docs/integrity-storagess05/integrity.html

Chapter 2 Designing Security for APIs

http://www.fsl.cs.sunysb.edu/docs/integrity-storagess05/integrity.html
http://www.fsl.cs.sunysb.edu/docs/integrity-storagess05/integrity.html

57

Note HTTP Digest authentication with the quality of protection (qop) value set to
auth-int can be used to protect messages for integrity. Appendix F discusses
HTTP Digest authentication in depth.

�Availability
Making a system available for legitimate users to access all the time is the ultimate goal

of any system design. Security isn’t the only aspect to look into, but it plays a major

role in keeping the system up and running. The goal of the security design should be to

make the system highly available by protecting it from illegal access attempts. Doing so

is extremely challenging. Attacks, especially on a public API, can vary from an attacker

planting malware in the system to a highly organized distributed denial of service

(DDoS) attack.

DDoS attacks are hard to eliminate fully, but with a careful design, they can be

minimized to reduce their impact. In most cases, DDoS attacks must be detected at the

network perimeter level—so, the application code doesn’t need to worry too much.

But vulnerabilities in the application code can be exploited to bring a system down.

A paper37 published by Christian Mainka, Juraj Somorovsky, Jorg Schwenk, and Andreas

Falkenberg discusses eight types of DoS attacks that can be carried out against SOAP-

based APIs with XML payloads:

•	 Coercive parsing attack: The attacker sends an XML document with a

deeply nested XML structure. When a DOM-based parser processes

the XML document, an out-of-memory exception or a high CPU load

can occur.

•	 SOAP array attack: Forces the attacked web service to declare a very

large SOAP array. This can exhaust the web service’s memory.

•	 XML element count attack: Attacks the server by sending a SOAP

message with a high number of non-nested elements.

37�A New Approach towards DoS Penetration Testing on Web Services, www.nds.rub.de/media/
nds/veroeffentlichungen/2013/07/19/ICWS_DoS.pdf

Chapter 2 Designing Security for APIs

http://www.nds.rub.de/media/nds/veroeffentlichungen/2013/07/19/ICWS_DoS.pdf
http://www.nds.rub.de/media/nds/veroeffentlichungen/2013/07/19/ICWS_DoS.pdf

58

•	 XML attribute count attack: Attacks the server by sending a SOAP

message with a high attribute count.

•	 XML entity expansion attack: Causes a system failure by forcing the

server to recursively resolve entities defined in a document type

definition (DTD). This attack is also known as an XML bomb or a

billion laughs attack.

•	 XML external entity DoS attack: Causes a system failure by forcing

the server to resolve a large external entity defined in a DTD. If an

attacker is able to execute the external entity attack, an additional

attack surface may appear.

•	 XML overlong name attack: Injects overlong XML nodes in the XML

document. Overlong nodes can be overlong element names, attribute

names, attribute values, or namespace definitions.

•	 Hash collision attack (HashDoS): Different keys result in the same

bucket assignments, causing a collision. A collision leads to resource-

intensive computations in the bucket. When a weak hash function is

used, an attacker can intentionally create hash collisions that lead to

a system failure.

Most of these attacks can be prevented at the application level. For CPU- or memory-

intensive operations, you can keep threshold values. For example, to prevent a coercive

parsing attack, the XML parser can enforce a limit on the number of elements. Similarly,

if your application executes a thread for a longer time, you can set a threshold and kill it.

Aborting any further processing of a message as soon as it’s found to be not legitimate is

the best way to fight against DoS attacks. This also highlights the importance of having

authentication/authorization checks closest to the entry point of the flow.

Note A ccording to eSecurity Planet, one of the largest DDoS attacks hit the
Internet in March 2013 and targeted the Cloudflare network with 120 Gbps. The
upstream providers were hit by 300 Gbps DDoS at the peak of the attack.

Chapter 2 Designing Security for APIs

59

There are also DoS attacks carried out against JSON vulnerabilities. CVE-2013-026938

explains a scenario in which a carefully crafted JSON message can be used to trigger the

creation of arbitrary Ruby symbols or certain internal objects, to result in a DoS attack.

�Security Control
The CIA triad (confidentiality, integrity, and availability), which we discussed in detail in

the previous section of this chapter, is one of the core principles of information security.

In achieving CIA, authentication, authorization, nonrepudiation, and auditing are four

prominent controls, which play a vital role. In the following sections, we discuss these

four security controls in detail.

�Authentication
Authentication is the process of identifying a user, a system, or a thing in a unique

manner to prove that it is the one who it claims to be. Authentication can be direct

or brokered, based on how you bring your authentication assertions. If you directly

log in to a system just providing your username and password, it falls under direct

authentication. In other words, under direct authentication, the entity which wants

to authenticate itself presents the authentication assertions to the service it wants to

access. Under brokered authentication, there is a third party involved. This third party

is commonly known as an identity provider. When you log in to your Yelp account via

Facebook, it falls under brokered authentication, and Facebook is the identity provider.

With brokered authentication, the service provider (or the website you want to log in, or

the API you want to access) does not trust you directly. It only trusts an identity provider.

You can access the service only if the trusted identity provider (by the service provider)

passes a positive assertion to the service provider.

Authentication can be done in a single factor or in multiple factors (also known as

multifactor authentication). Something you know, something you are, and something you

have are the well-known three factors of authentication. For multifactor authentication,

a system should use a combination of at least two factors. Combining two techniques

38�CVE-2013-0269, https://nvd.nist.gov/vuln/detail/CVE-2013-0269

Chapter 2 Designing Security for APIs

https://nvd.nist.gov/vuln/detail/CVE-2013-0269

60

that fall under the same category isn’t considered multifactor authentication. For

example, entering a username and a password and then a PIN number isn’t considered

multifactor authentication, because both fall under the something you know category.

Note G oogle two-step verification falls under multifactor authentication. First
you need to provide a username and a password (something you know), and then
a PIN is sent to your mobile phone. Knowing the PIN verifies that the registered
mobile phone is under your possession: it’s something you have. Then again one
can argue this is not multifactor authentication, because you only need to know
the PIN, having the phone with you to get the PIN is not mandatory. This sounds bit
weird, but Grant Blakeman’s incident proved exactly the same thing.39 An attacker
was able to set a call forwarding number into Grant’s cell phone and was able to
receive Google password reset information to the new number (via call forwarding).

�Something You Know

Passwords, passphrases, and PIN numbers belong to the category of something you

know. This has been the most popular form of authentication not just for decades but

also for centuries. It goes back to the eighteenth century. In the Arabian folktale Ali Baba

and the Forty Thieves from One Thousand and One Nights, Ali Baba uses the passphrase

“open sesame” to open the door to a hidden cave. Since then, this has become the

most popular form of authentication. Unfortunately, it’s also the weakest form of

authentication. Password-protected systems can be broken in several ways. Going back

to Ali Baba’s story, his brother-in-law got stuck in the same cave without knowing the

password and tried shouting all the words he knew. This, in modern days, is known as

a brute-force attack. The first known brute-force attack took place in the 18th century.

Since then, it has become a popular way of breaking password-secured systems.

39�The value of a name, https://ello.co/gb/post/knOWk-qeTqfSpJ6f8-arCQ

Chapter 2 Designing Security for APIs

https://ello.co/gb/post/knOWk-qeTqfSpJ6f8-arCQ

61

Note I n April 2013, WordPress was hit with a brute-force attack of massive scale.
The average scans per day in April were more than 100,000.40 There are different
forms of brute-force attacks. The dictionary attack is one of them, where the
brute-force attack is carried out with a limited set of inputs based on a dictionary
of commonly used words. This is why you should have a corporate password policy
that should enforce strong passwords with mixed alphanumeric characters that
aren’t found in dictionaries. Most public web sites enforce a CAPTCHA after few
failed login attempts. This makes automated/tool-based brute-force attacks harder
to execute.

�Something You Have

Certificates and smart card–based authentication fall into the category of something you

have. This is a much stronger form of authentication than something you know. TLS

mutual authentication is the most popular way of securing APIs with client certificates;

this is covered in detail in Chapter 3.

FIDO (Fast IDentity Online) authentication also falls under the something you have

category. FIDO alliance41 has published three open specifications to address certain

concerns in strong authentication: FIDO Universal Second Factor (FIDO U2F), FIDO

Universal Authentication Framework (FIDO UAF) and the Client to Authenticator

Protocol (CTAP). FIDO U2F protocol allows online services to augment the security of

their existing password infrastructure by adding a strong second factor to user login. The

largest deployment of FIDO U2F–based authentication is at Google. Google has been

using FIDO U2F internally for some time to secure its internal services, and in October

2014 Google made FIDO U2F enabled to all its users publicly.42

40�The WordPress Brute Force Attack Timeline, http://blog.sucuri.net/2013/04/the-
wordpress-brute-force-attack-timeline.html

41�FIDO Alliance, https://fidoalliance.org/specifications/overview/
42�Strengthening 2-Step Verification with Security Key, https://googleonlinesecurity.
blogspot.com/2014/10/strengthening-2-step-verification-with.html

Chapter 2 Designing Security for APIs

http://blog.sucuri.net/2013/04/the-wordpress-brute-force-attack-timeline.html
http://blog.sucuri.net/2013/04/the-wordpress-brute-force-attack-timeline.html
https://fidoalliance.org/specifications/overview/
https://googleonlinesecurity.blogspot.com/2014/10/strengthening-2-step-verification-with.html
https://googleonlinesecurity.blogspot.com/2014/10/strengthening-2-step-verification-with.html

62

�Something You Are

Fingerprints, eye retina, facial recognition, and all other biometric-based authentication

techniques fall into the category of something you are. This is the strongest form of

authentication. In most of the cases, biometric authentication is not done on its own,

rather used with another factor to further improve the security.

With the wide adoption of mobile devices, most of the retailers, financial institutes,

and many others have chosen fingerprint-based authentication for their mobile apps. In

the iOS platform, all these applications associate their username- and password-based

authentication with Apple Touch ID (or face recognition). Once the initial association is

done, a user can log in to all the associated applications just by scanning his fingerprint.

Further iPhone also associates Touch ID with App Store login and to authorize Apple Pay

transactions.

�Authorization
Authorization is the process of validating what actions an authenticated user, a system,

or a thing can perform within a well-defined system boundary. Authorization happens

with the assumption that the user is already authenticated. Discretionary Access Control

(DAC) and Mandatory Access Control (MAC) are two prominent models to control

access in a system.

With Discretionary Access Control (DAC), the user who owns the data, at their

discretion, can transfer rights to another user. Most operating systems support DAC,

including Unix, Linux, and Windows. When you create a file in Linux, you can decide

who should be able to read, write to, and execute it. Nothing prevents you from sharing it

with any user or a group of users. There is no centralized control—which can easily bring

security flaws into the system.

With Mandatory Access Control (MAC), only designated users are allowed to grant

rights. Once rights are granted, users can’t transfer them. SELinux, Trusted Solaris, and

TrustedBSD are some of the operating systems that support MAC.

Chapter 2 Designing Security for APIs

63

Note SE Linux is an NSA research project that added the Mandatory Access
Control (MAC) architecture to the Linux kernel, which was then merged into the
mainstream version of Linux in August 2003. It utilizes a Linux 2.6 kernel feature
called the Linux Security Modules (LSM) interface.

The difference between DAC and MAC lies in who owns the right to delegate. In

either case, you need to have a way to represent access control rules or the access matrix.

Authorization tables, access control lists (see Figure 2-2), and capabilities are three ways

of representing access control rules. An authorization table is a three-column table with

subject, action, and resource. The subject can be an individual user or a group. With

access control lists, each resource is associated with a list, indicating, for each subject,

the actions that the subject can exercise on the resource. With capabilities, each subject

has an associated list called a capability list, indicating, for each resource, the actions

that the user is allowed to exercise on the resource. A bank locker key can be considered

a capability: the locker is the resource, and the user holds the key to the resource. At

the time the user tries to open the locker with the key, you only have to worry about the

capabilities of the key—not the capabilities of its owner. An access control list is resource

driven, whereas capabilities are subject driven.

Authorization tables, access control lists and capabilities are very coarse grained. One

alternative is to use policy-based access control. With policy-based access control, you

can have authorization policies with fine granularity. In addition, capabilities and access

control lists can be dynamically derived from policies. eXtensible Access Control Markup

Language (XACML) is one of the OASIS standards for policy-based access control.

Figure 2-2.  Access control list

Chapter 2 Designing Security for APIs

64

Note  XACML is an XML-based open standard for policy-based access control
developed under the OASIS XACML Technical Committee. XACML 3.0, the latest
XACML specification, was standardized in January 2013.43 Then again XACML is
little too complex in defining access control policies, irrespective of how powerful
it is. You can also check the Open Policy Agent (OPA) project, which has become
quite popular recently in building fine-grained access control policies.

�Nonrepudiation
Whenever you do a business transaction via an API by proving your identity, later

you should not be able to reject it or repudiate it. The property that ensures the

inability to repudiate is known as nonrepudiation. You do it once—you own it forever.

Nonrepudiation should provide proof of the origin and the integrity of data, both in an

unforgeable manner, which a third party can verify at any time. Once a transaction is

initiated, none of its content—including the user identity, date and time, and transaction

details—should be altered to maintain the transaction integrity and allow future

verifications. One has to ensure that the transaction is unaltered and logged after it’s

committed and confirmed. Logs must be archived and properly secured to prevent

unauthorized modifications. Whenever there is a repudiation dispute, transaction

logs along with other logs or data can be retrieved to verify the initiator, date and time,

transaction history, and so on.

Note T LS ensures authentication (by verifying the certificates), confidentiality (by
encrypting the data with a secret key), and integrity (by digesting the data), but not
nonrepudiation. In TLS, the Message Authentication Code (MAC) value of the data
transmitted is calculated with a shared secret key, known to both the client and the
server. Shared keys can’t be used for nonrepudiation.

43�XACML 3.0 specification, http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-
os-en.pdf

Chapter 2 Designing Security for APIs

http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.pdf
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.pdf

65

Digital signatures provide a strong binding between the user (who initiates the

transaction) and the transaction the user performs. A key known only to the user should

sign the complete transaction, and the server (or the service) should be able to verify

the signature through a trusted broker that vouches for the legitimacy of the user’s key.

This trusted broker can be a certificate authority (CA). Once the signature is verified,

the server knows the identity of the user and can guarantee the integrity of the data. For

nonrepudiation purposes, the data must be stored securely for any future verification.

Note T he paper44 Non-Repudiation in Practice, by Chii-Ren Tsai of Citigroup,
discusses two potential nonrepudiation architectures for financial transactions
using challenge-response one-time password tokens and digital signatures.

�Auditing
There are two aspects of auditing: keeping track of all legitimate access attempts to

facilitate nonrepudiation, and keeping track of all illegal access attempts to identify

possible threats. There can be cases where you’re permitted to access a resource, but

it should be with a valid purpose. For example, a mobile operator is allowed to access

a user’s call history, but he should not do so without a request from the corresponding

user. If someone frequently accesses a user’s call history, you can detect it with proper

audit trails. Audit trails also play a vital role in fraud detection. An administrator can

define fraud-detection patterns, and the audit logs can be evaluated in near real time to

find any matches.

�Summary
•	 Security isn’t an afterthought. It has to be an integral part of any

development project and also for APIs. It starts with requirements

gathering and proceeds through the design, development, testing,

deployment, and monitoring phases.

44�Non-Repudiation in Practice, www.researchgate.net/publication/240926842_
Non-Repudiation_In_Practice

Chapter 2 Designing Security for APIs

http://www.researchgate.net/publication/240926842_Non-Repudiation_In_Practice
http://www.researchgate.net/publication/240926842_Non-Repudiation_In_Practice

66

•	 Connectivity, extensibility, and complexity are the three trends

behind the rise of data breaches around the globe in the last few

years.

•	 The most challenging thing in any security design is to find and

maintain the right balance between security and the user comfort.

•	 A proper security design should care about all the communication

links in the system. Any system is no stronger than its weakest link.

•	 A layered approach is preferred for any system being tightened for

security. This is also known as defense in depth.

•	 Insider attacks are less complicated, but highly effective.

•	 Kerckhoffs’ principle emphasizes that a system should be secured by

its design, not because the design is unknown to an adversary.

•	 The principle of least privilege states that an entity should only have

the required set of permissions to perform the actions for which they

are authorized, and no more.

•	 The fail-safe defaults principle highlights the importance of making a

system safe by default.

•	 The economy of mechanism principle highlights the value of

simplicity. The design should be as simple as possible.

•	 With complete mediation principle, a system should validate access

rights to all its resources to ensure whether they’re allowed to access

or not.

•	 The open design principle highlights the importance of building a

system in an open manner—with no secrets, confidential algorithms.

•	 The principle of separation of privilege states that a system should

not grant permissions based on a single condition.

•	 The principle of least common mechanism concerns the risk of

sharing state information among different components.

Chapter 2 Designing Security for APIs

67

•	 The principle of psychological acceptability states that security

mechanisms should not make the resource more difficult to access

than if the security mechanisms were not present.

•	 Confidentiality, integrity, and availability (CIA), widely known

as the triad of information security, are three key factors used in

benchmarking information systems security.

Chapter 2 Designing Security for APIs

69
© Prabath Siriwardena 2020
P. Siriwardena, Advanced API Security, https://doi.org/10.1007/978-1-4842-2050-4_3

CHAPTER 3

Securing APIs
with Transport Layer
Security (TLS)
Securing APIs with Transport Layer Security (TLS) is the most common form of

protection we see in any API deployment. If you are new to TLS, please check Appendix C

first, which explains TLS in detail and how it works. In securing APIs, we use TLS to secure

or encrypt the communication—or protect the data in transit—and also we use TLS

mutual authentication to make sure only the legitimate clients can access the APIs.

In this chapter, we discuss how to deploy an API implemented in Java Spring Boot,

enable TLS, and protect an API with mutual TLS.

�Setting Up the Environment
In this section, we’ll see how we can develop an API using Spring Boot from scratch.

Spring Boot (https://projects.spring.io/spring-boot/) is the most popular

microservices development framework for Java developers. To be precise, Spring Boot

offers an opinionated1 runtime for Spring, which takes out a lot of complexities. Even

though Spring Boot is opinionated, it also gives developers to override many of its

default picks. Due to the fact that many Java developers are familiar with Spring, and the

ease of development is a key success factor in the microservices world, many adopted

Spring Boot. Even for Java developers who are not using Spring, still it is a household

name. If you have worked on Spring, you surely would have worried how painful it was

1�An opinionated framework locks or guides its developers into its own way of doing things.

https://projects.spring.io/spring-boot/

70

to deal with large, chunky XML configuration files. Unlike Spring, Spring Boot believes in

convention over configuration—no more XML hell! In this book, we use Spring Boot to

implement our APIs. Even if you are not familiar with Java, you will be able to get started

with no major learning curve, as we provide all the code examples.

To run the samples, you will need Java 8 or latest, Maven 3.2 or latest, and a git

client. Once you are successfully done with the installation, run the following two

commands in the command line to make sure everything is working fine. If you’d like

some help in setting up Java or Maven, there are plenty of online resources out there.

\>java -version

java version "1.8.0_121" Java(TM) SE Runtime Environment

(build 1.8.0_121-b13)

Java HotSpot(TM) 64-Bit Server VM (build 25.121-b13, mixed mode)

\>mvn -version

Apache Maven 3.5.0 (ff8f5e7444045639af65f6095c62210b5713f426; 2017-04-

03T12:39:06-07:00)

Maven home: /usr/local/Cellar/maven/3.5.0/libexec

Java version: 1.8.0_121, vendor: Oracle Corporation

Java home: /Library/Java/JavaVirtualMachines/jdk1.8.0_121.jdk/Contents/

Home/jre Default locale: en_US, platform encoding: UTF-8 OS name: "mac os

x", version: "10.12.6", arch: "x86_64", family: "mac

All the samples used in this book are available in the https://github.com/

apisecurity/samples.git git repository. Use the following git command to clone it. All

the samples related to this chapter are inside the directory ch03.

\> git clone https://github.com/apisecurity/samples.git

\> cd samples/ch03

To anyone who loves Maven, the best way to get started with a Spring Boot project

would be with a Maven archetype. Unfortunately, it is no more supported. One option

we have is to create a template project via https://start.spring.io/ –which is known

as the Spring Initializer. There you can pick which type of project you want to create,

project dependencies, give a name, and download a maven project as a zip file. The

other option is to use the Spring Tool Suite (STS).2 It’s an IDE (integrated development

2�https://spring.io/tools

Chapter 3 Securing APIs with Transport Layer Security (TLS)

https://github.com/apisecurity/samples.git
https://github.com/apisecurity/samples.git
https://start.spring.io/
https://spring.io/tools

71

environment) built on top of the Eclipse platform, with many useful plugins to create

Spring projects. However, in this book, we provide you all the fully coded samples in the

preceding git repository.

Note I f you find any issues in building or running the samples given in this
book, please refer to the README file under the corresponding chapter in the
git repository: https://github.com/apisecurity/samples.git. We will
update the samples and the corresponding README files in the git repository, to
reflect any changes happening, related to the tools, libraries, and frameworks used
in this book.

�Deploying Order API
This is the simplest API ever. You can find the code inside the directory ch03/sample01.

To build the project with Maven, use the following command:

\> cd sample01

\> mvn clean install

Before we delve deep into the code, let’s have a look at some of the notable Maven

dependencies and plugins added into ch03/sample01/pom.xml.

Spring Boot comes with different starter dependencies to integrate with different

Spring modules. The spring-boot-starter-web dependency brings in Tomcat and

Spring MVC and, does all the wiring between the components, making the developer’s

work to a minimum. The spring-boot-starter-actuator dependency helps you

monitor and manage your application.

<dependency>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter-web</artifactId>

</dependency>

<dependency>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter-actuator</artifactId>

</dependency>

Chapter 3 Securing APIs with Transport Layer Security (TLS)

https://github.com/apisecurity/samples.git

72

In the pom.xml file, we also have the spring-boot-maven-plugin plugin, which lets

you start the Spring Boot API from Maven itself.

<plugin>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-maven-plugin</artifactId>

</plugin>

Now let’s have a look at the checkOrderStatus method in the class file src/

main/java/com/apress/ch03/sample01/service/OrderProcessing.java. This

method accepts an order id and returns back the status of the order. There are three

notable annotations used in the following code. The @RestController is a class-level

annotation that marks the corresponding class as a REST endpoint, which accepts and

produces JSON payloads. The @RequestMapping annotation can be defined both at

the class level and the method level. The value attribute at the class-level annotation

defines the path under which the corresponding endpoint is registered. The same

at the method level appends to the class-level path. Anything defined within curly

braces is a placeholder for any variable value in the path. For example, a GET request

on /order/101 and /order/102 (where 101 and 102 are the order ids), both hit the

method checkOrderStatus. In fact, the value of the value attribute is a URI template.3

The annotation @PathVariable extracts the provided variable from the URI template

defined under the value attribute of the @RequestMapping annotation and binds it to the

variable defined in the method signature.

@RestController

@RequestMapping(value = "/order")

public class OrderProcessing {

 @RequestMapping(value = "/{id}", method = RequestMethod.GET)

 public String checkOrderStatus(@PathVariable("id") String orderId)

 {

 return ResponseEntity.ok("{'status' : 'shipped'}");

 }

}

3�https://tools.ietf.org/html/rfc6570

Chapter 3 Securing APIs with Transport Layer Security (TLS)

https://tools.ietf.org/html/rfc6570

73

There is another important class file at src/main/java/com/apress/ch03/sample01/

OrderProcessingApp.java worth having a look at. This is the class which spins up

our API in its own application server, in this case the embedded Tomcat. By default

the API starts on port 8080, and you can change the port by adding, say, for example,

server.port=9000 to the sample01/src/main/resources/application.properties

file. This will set the server port to 9000. The following shows the code snippet from

OrderProcessingApp class, which spins up our API. The @SpringBootApplication

annotation, which is defined at the class level, is being used as a shortcut for four other

annotations defined in Spring: @Configuration, @EnableAutoConfiguration,

@EnableWebMvc, and @ComponentScan.

@SpringBootApplication

public class OrderProcessingApp {

 public static void main(String[] args) {

 SpringApplication.run(OrderProcessingApp.class, args);

 }

}

Now, let’s see how to run our API and talk to it with a cURL client. The following

command executed from ch03/sample01 directory shows how to start our Spring Boot

application with Maven.

\> mvn spring-boot:run

To test the API with a cURL client, use the following command from a different

command console. It will print the output as shown in the following, after the initial

command.

\> curl http://localhost:8080/order/11

{"customer_id":"101021","order_id":"11","payment_method":{"card_type":"V

ISA","expiration":"01/22","name":"John Doe","billing_address":"201, 1st

Street, San Jose, CA"},"items": [{"code":"101","qty":1},{"code":"103","qty"

:5}],"shipping_address":"201, 1st Street, San Jose, CA"}

Chapter 3 Securing APIs with Transport Layer Security (TLS)

74

�Securing Order API with Transport Layer
Security (TLS)
To enable Transport Layer Security (TLS), first we need to create a public/private key

pair. The following command uses keytool that comes with the default Java distribution

to generate a key pair and stores it in keystore.jks file. This file is also known as a

keystore, and it can be in different formats. Two most popular formats are Java KeyStore

(JKS) and PKCS#12. JKS is specific to Java, while PKCS#12 is a standard, which belongs to

the family of standards defined under Public Key Cryptography Standards (PKCS). In the

following command, we specify the keystore type with the storetype argument, which is

set to JKS.

\> keytool -genkey -alias spring -keyalg RSA -keysize 4096 -validity 3650

-dname "CN=foo,OU=bar,O=zee,L=sjc,S=ca,C=us" -keypass springboot -keystore

keystore.jks -storeType jks -storepass springboot

The alias argument in the preceding command specifies how to identify the

generated keys stored in the keystore. There can be multiple keys stored in a given

keystore, and the value of the corresponding alias must be unique. Here we use spring

as the alias. The validity argument specifies that the generated keys are only valid for

10 years or 3650 days. The keysize and keystore arguments specify the length of the

generated key and the name of the keystore, where the keys are stored. The genkey is the

option, which instructs the keytool to generate new keys; instead of genkey, you can

also use genkeypair option. Once the preceding command is executed, it will create a

keystore file called keystore.jks, which is protected with the password springboot.

The certificate created in this example is known as a self-signed certificate. In

other words, there is no external certificate authority (CA). Typically, in a production

deployment, either you will use a public certificate authority or an enterprise-level

certificate authority to sign the public certificate, so any client, who trusts the certificate

authority, can verify it. If you are using certificates to secure service-to-service

communications in a microservices deployment or for an internal API deployment, then

you need not worry about having a public certificate authority; you can have your own

certificate authority. But for APIs, which you expose to external client applications, you

would need to get your certificates signed by a public certificate authority.

To enable TLS for the Spring Boot API, copy the keystore file (keystore.jks), which

we created earlier, to the home directory of the sample (e.g., ch03/sample01/) and add

Chapter 3 Securing APIs with Transport Layer Security (TLS)

75

the following to the sample01/src/main/resources/application.properties file. The

samples that you download from the samples git repository already have these values

(and you only need to uncomment them), and we are using springboot as the password

for both the keystore and the private key.

server.ssl.key-store: keystore.jks

server.ssl.key-store-password: springboot

server.ssl.keyAlias: spring

To validate that everything works fine, use the following command from ch03/

sample01/ directory to spin up the Order API and notice the line which prints the HTTPS

port.

\> mvn spring-boot:run

Tomcat started on port(s): 8080 (https) with context path "

To test the API with a cURL client, use the following command from a different

command console. It will print the output as shown in the following, after the initial

command. Instead of HTTP, we are using HTTPS here.

\> curl –k https://localhost:8080/order/11

{"customer_id":"101021","order_id":"11","payment_method":{"card_type":"V

ISA","expiration":"01/22","name":"John Doe","billing_address":"201, 1st

Street, San Jose, CA"},"items": [{"code":"101","qty":1},{"code":"103","qty"

:5}],"shipping_address":"201, 1st Street, San Jose, CA"}

We used the -k option in the preceding cURL command. Since we have a self-signed

(untrusted) certificate to secure our HTTPS endpoint, we need to pass the –k parameter

to advise cURL to ignore the trust validation. In a production deployment with proper

certificate authority–signed certificates, you do not need to do that. Also, if you have a

self-signed certificate, you can still avoid using –k, by pointing cURL to the corresponding

public certificate.

\> curl --cacert ca.crt https://localhost:8080/order/11

You can use the following keytool command from ch03/sample01/ to export the

public certificate of the Order API to ca.crt file in PEM (with the -rfc argument) format.

\> keytool -export -file ca.crt -alias spring –rfc -keystore keystore.jks

-storePass springboot

Chapter 3 Securing APIs with Transport Layer Security (TLS)

76

The preceding curl command with the ca.crt will result in the following error. It

complains that the common name in the public certificate of the Order API, which is foo,

does not match with the hostname (localhost) in the cURL command.

curl: (51) SSL: certificate subject name 'foo' does not match target host

name 'localhost'

Ideally in a production deployment when you create a certificate, its common name

should match the hostname. In this case, since we do not have a Domain Name Service

(DNS) entry for the foo hostname, you can use the following workaround, with cURL.

\> curl --cacert ca.crt https://foo:8080/order/11 --resolve

foo:8080:127.0.0.1

�Protecting Order API with Mutual TLS
In this section, we’ll see how to enable TLS mutual authentication between the Order API

and the cURL client. In most of the cases, TLS mutual authentication is used to enable

system-to-system authentication. First make sure that we have the keystore at sample01/

keystore.jks, and then to enable TLS mutual authentication, uncomment the following

property in the sample01/src/main/resources/application.properties file.

server.ssl.client-auth:need

Now we can test the flow by invoking the Order API using cURL. First, use the

following command from ch03/sample01/ directory to spin up the Order API and notice

the line which prints the HTTPS port.

\> mvn spring-boot:run

Tomcat started on port(s): 8080 (https) with context path ''

To test the API with a cURL client, use the following command from a different

command console.

\> curl –k https://localhost:8080/order/11

Since we have protected the API with TLS mutual authentication, the preceding

command will result in the following error message, which means the API (or the server)

has refused to connect with the cURL client, because it didn’t present a valid client

certificate.

Chapter 3 Securing APIs with Transport Layer Security (TLS)

77

curl: (35) error:1401E412:SSL routines:CONNECT_CR_FINISHED:sslv3 alert bad

certificate

To fix this, we need to create a key pair (a public key and a private key) for the cURL

client and configure Order API to trust the public key. Then we can use the key pair we

generated along with the cURL command to access the API, which is protected with

mutual TLS.

To generate a private key and a public key for the cURL client, we use the following

OpenSSL command. OpenSSL is a commercial-grade toolkit and cryptographic

library for TLS and available for multiple platforms. You can download and set up the

distribution that fits your platform from www.openssl.org/source. If not, the easiest way

is to use an OpenSSL Docker image. In the next section, we discuss how to run OpenSSL

as a Docker container.

\> openssl genrsa -out privkey.pem 4096

Now, to generate a self-signed certificate, corresponding to the preceding private key

(privkey.pem), use the following OpenSSL command.

\> openssl req -key privkey.pem -new -x509 -sha256 -nodes -out client.crt

-subj "/C=us/ST=ca/L=sjc/O=zee/OU=bar/CN=client"

Let’s take down the Order API, if it is still running, and import the public certificate

(client.crt) we created in the preceding step to sample01/keystore.jks, using the

following command.

\> keytool -import -file client.crt -alias client -keystore keystore.jks

-storepass springboot

Now we can test the flow by invoking the Order API using cURL. First, use the

following command from ch03/sample01/ directory to spin up the Order API.

\> mvn spring-boot:run

Tomcat started on port(s): 8080 (https) with context path ''

To test the API with a cURL client, use the following command from a different

command console.

\> curl -k --key privkey.pem --cert client.crt https://localhost:8080/

order/11

Chapter 3 Securing APIs with Transport Layer Security (TLS)

http://www.openssl.org/source

78

In case we use a key pair, which is not known to the Order API, or in other words not

imported into the sample01/keystore.jks file, you will see the following error, when

you execute the preceding cURL command.

curl: (35) error:1401E416:SSL routines:CONNECT_CR_FINISHED:sslv3 alert

certificate unknown

�Running OpenSSL on Docker
In the last few years, Docker revolutionized the way we distribute software. Docker

provides a containerized environment to run software in self-contained manner. A

complete overview of Docker is out of the scope of this book—and if you are interested

in learning more, we recommend you check out the book Docker in Action (Manning

Publications, 2019) by Jeff Nickoloff and Stephen Kuenzli.

Setting up Docker in your local machine is quite straightforward, following the steps

in Docker documentation available at https://docs.docker.com/install/. Once you

get Docker installed, run the following command to verify the installation, and it will

show the version of Docker engine client and server.

\> docker version

To start OpenSSL as a Docker container, use the following command from the ch03/

sample01 directory.

\> docker run -it -v $(pwd):/export prabath/openssl

#

When you run the preceding command for the first time, it will take a couple of

minutes to execute and ends with a command prompt, where you can execute your

OpenSSL commands to create the keys, which we used toward the end of the previous

sections. The preceding docker run command starts OpenSSL in a Docker container, with

a volume mount, which maps ch03/sample01 (or the current directory, which is indicated

by $(pwd) in the preceding command) directory from the host file system to the /export

directory of the container file system. This volume mount helps you to share part of the

host file system with the container file system. When the OpenSSL container generates

certificates, those are written to the /export directory of the container file system. Since

Chapter 3 Securing APIs with Transport Layer Security (TLS)

https://docs.docker.com/install/

79

we have a volume mount, everything inside the /export directory of the container file

system is also accessible from the ch03/sample01 directory of the host file system.

To generate a private key and a public key for the cURL client, we use the following

OpenSSL command.

openssl genrsa -out /export/privkey.pem 4096

Now, to generate a self-signed certificate, corresponding to the preceding private key

(privkey.pem), use the following OpenSSL command.

openssl req -key /export/privkey.pem -new -x509 -sha256 -nodes -out

client.crt -subj "/C=us/ST=ca/L=sjc/O=zee/OU=bar/CN=client"

�Summary
•	 Transport Layer Security (TLS) is fundamental in securing any API.

•	 Securing APIs with TLS is the most common form of protection we

see in any API deployment.

•	 TLS protects data in transit for confidentiality and integrity, and

mutual TLS (mTLS) protects your APIs from intruders by enforcing

client authentication.

•	 OpenSSL is a commercial-grade toolkit and cryptographic library for

TLS and available for multiple platforms.

Chapter 3 Securing APIs with Transport Layer Security (TLS)

81
© Prabath Siriwardena 2020
P. Siriwardena, Advanced API Security, https://doi.org/10.1007/978-1-4842-2050-4_4

CHAPTER 4

OAuth 2.0 Fundamentals
OAuth 2.0 is a major breakthrough in identity delegation. It has its roots in OAuth 1.0

(see Appendix B), but OAuth Web Resource Authorization Profiles (see Appendix B)

primarily influenced it. The main difference between OAuth 1.0 and 2.0 is that OAuth 1.0

is a standard protocol for identity delegation, whereas OAuth 2.0 is a highly extensible

authorization framework. OAuth 2.0 is already the de facto standard for securing APIs

and is widely used by Facebook, Google, LinkedIn, Microsoft (MSN, Live), PayPal,

Instagram, Foursquare, GitHub, Yammer, Meetup, and many more. There is one popular

exception: Twitter still uses OAuth 1.0.

�Understanding OAuth 2.0
OAuth 2.0 primarily solves the access delegation problem. Let’s say you want a third-

party application to read your status messages on your Facebook wall. In other words,

you want to delegate the third-party application the access to your Facebook wall. One

way to do that is by sharing your Facebook credentials with the third-party application,

so it can directly access your Facebook wall. This is called access delegation by credential

sharing. Even though this solves the access delegation problem, once you share your

Facebook credentials with the third-party application, it can use your credentials to do

anything it wants, which in turns creates more problems! OAuth 2.0 solves this problem

in a way you do not need to share your credentials with third-party applications, but

only share a time-bound temporary token that is only good enough for a well-defined

82

purpose. Figure 4-1 shows at a high level how access delegation works with OAuth 2.0,

and the following explains each step in Figure 4-1:

	 1.	 The user visits the third-party web application and wants to let the

web application publish messages to his/her Facebook wall. To do

that, the web application needs a token from Facebook, and to get

the token, it redirects the user to Facebook.

	 2.	 Facebook prompts the user to authenticate (if not authenticated

already) and requests the consent from the user to give

permissions to the third-party web application to publish

messages to his/her Facebook wall.

	 3.	 User authenticates and provides his/her consent to Facebook, so that

Facebook can share a token with the third-party web application.

This token is only good enough to publish messages to the Facebook

wall for a limited period and cannot do anything else. For example,

the third-party web application cannot send friend requests, delete

status messages, upload photos, and so on with the token.

	 4.	 The third-party web application gets a token from Facebook.

To explain what exactly happens in this step, first we need to

understand how OAuth 2.0 grant types work, and we discuss that

later in the chapter.

	 5.	 The third-party web application accesses the Facebook API with

the token provided to it by Facebook in step 4. Facebook API

makes sure only requests that come along with a valid token can

access it. Then again later in the chapter, we will explain in detail

what happens in this step.

Chapter 4 OAuth 2.0 Fundamentals

83

�OAuth 2.0 Actors
OAuth 2.0 introduces four actors in a typical OAuth flow. The following explains the role

of each of them with respect to Figure 4-1:

	 1.	 Resource owner: One who owns the resources. In our example

earlier, the third-party web application wants to access the

Facebook wall of a Facebook user via the Facebook API and

publish messages on behalf of him/her. In that case, the Facebook

user who owns the Facebook wall is the resource owner.

	 2.	 Resource server: This is the place which hosts protected resources.

In the preceding scenario, the server that hosts the Facebook API

is the resource server, where Facebook API is the resource.

	 3.	 Client: This is the application which wants to access a resource on

behalf of the resource owner. In the preceding use case, the third-

party web application is the client.

Figure 4-1.  OAuth 2.0 solves the access delegation problem by issuing a temporary
time-bound token to a third-party web application that is only good enough for a
well-defined purpose

Chapter 4 OAuth 2.0 Fundamentals

84

	 4.	 Authorization server: This is the entity which acts as a security

token service to issue OAuth 2.0 access tokens to client

applications. In the preceding use case, Facebook itself acts as the

authorization server.

�Grant Types
A grant type in OAuth 2.0 defines how a client can obtain an authorization grant from

a resource owner to access a resource on his/her behalf. The origin of the word grant

comes from the French word granter which carries the meaning consent to support.

In other words, a grant type defines a well-defined process to get the consent from the

resource owner to access a resource on his/her behalf for a well-defined purpose. In

OAuth 2.0, this well-defined purpose is also called scope. Also you can interpret scope

as a permission, or in other words, scope defines what actions the client application can

do on a given resource. In Figure 4-1, the token issued from the Facebook authorization

server is bound to a scope, where the client application can only use the token to post

messages to the corresponding user’s Facebook wall.

The grant types in OAuth 2.0 are very similar to the OAuth profiles in WRAP (see

Appendix B). The OAuth 2.0 core specification introduces four core grant types: the

authorization code grant type, the implicit grant type, the resource owner password

credentials grant type, and the client credentials grant type. Table 4-1 shows how OAuth

2.0 grant types match with WRAP profiles.

Table 4-1.  OAuth 2.0 Grant Types vs. OAuth WRAP Profiles

OAuth 2.0 OAuth WRAP

Authorization code grant type Web App Profile/Rich App Profile

Implicit grant type –

Resource owner password credentials grant type Username and Password Profile

Client credentials grant type Client Account and Password Profile

Chapter 4 OAuth 2.0 Fundamentals

85

�Authorization Code Grant Type
The authorization code grant type in OAuth 2.0 is very similar to the Web App Profile

in WRAP. It’s mostly recommended for applications—either web applications or native

mobile applications—that have the capability to spin up a web browser (see Figure 4-2).

The resource owner who visits the client application initiates the authorization code

grant type. The client application, which must be a registered application at the

authorization server, as shown in step 1 in Figure 4-2, redirects the resource owner to

the authorization server to get the approval. The following shows an HTTP request the

client application generates while redirecting the user to the authorize endpoint of the

authorization server:

https://authz.example.com/oauth2/authorize?

 response_type=code&

 client_id=0rhQErXIX49svVYoXJGt0DWBuFca&

 redirect_uri=https%3A%2F%2Fmycallback

The authorize endpoint is a well-known, published endpoint of an OAuth 2.0

authorization server. The value of response_type parameter must be code. This

indicates to the authorization server that the request is for an authorization code (under

the authorization code grant type). client_id is an identifier for the client application.

Once the client application is registered with the authorization server, the client gets

a client_id and a client_secret. During the client registration phase, the client

application must provide a URL under its control as the redirect_uri, and in the initial

request, the value of the redirect_uri parameter should match with the one registered

with the authorization server. We also call the redirect_uri the callback URL. The

URL-encoded value of the callback URL is added to the request as the redirect_uri

parameter. In addition to these parameters, a client application can also include the

scope parameter. The value of the scope parameter is shown to the resource owner on

the approval screen: it indicates to the authorization server the level of access the client

needs on the target resource/API.

Chapter 4 OAuth 2.0 Fundamentals

86

In step 5 in Figure 4-2, the authorization server returns the requested code to the

registered callback URL (also known as redirect_uri) of the client application. This

code is called the authorization code. Each authorization code should have a lifetime.

A lifetime longer than 1 minute isn’t recommended:

https://callback.example.com/?code=9142d4cad58c66d0a5edfad8952192

The value of the authorization code is delivered to the client application via an HTTP

redirect and is visible to the resource owner. In the next step (step 6), the client must

exchange the authorization code for an OAuth access token by talking to the OAuth

token endpoint exposed by the authorization server.

Note T he ultimate goal of any OAuth 2.0 grant type is to provide a token (which
is known as access token) to the client application. The client application can
use this token to access a resource. An access token is bound to the resource
owner, client application, and one or more scopes. Given an access token, the
authorization server knows who the corresponding resource owner and client
application and also what the attached scopes are.

Figure 4-2.  Authorization code grant type

Chapter 4 OAuth 2.0 Fundamentals

https://callback.example.com/?code=9142d4cad58c66d0a5edfad8952192

87

The token endpoint in most of the cases is a secured endpoint. The client application

can generate the token request along with the corresponding client_id (0rhQErXIX49s

vVYoXJGt0DWBuFca) and the client_secret (eYOFkL756W8usQaVNgCNkz9C2D0a), which

will go in the HTTP Authorization header. In most of the cases, the token endpoint is

secured with HTTP Basic authentication, but it is not a must. For stronger security,

one may use mutual TLS as well, and if you are using the authorization code grant type

from a single-page app or a mobile app, then you may not use any credentials at all.

The following shows a sample request (step 6) to the token endpoint. The value of the

grant_type parameter there must be the authorization_code, and the value of the code

should be the one returned from the previous step (step 5). If the client application sent

a value in the redirect_uri parameter in the previous request (step 1), then it must

include the same value in the token request as well. In case the client application does

not authenticate to the token endpoint, you need to send the corresponding client_id as

a parameter in the HTTP body:

Note T he authorization code returned from the authorization server acts as an
intermediate code. This code is used to map the end user or resource owner to the
OAuth client. The OAuth client may authenticate itself to the token endpoint of the
authorization server. The authorization server should check whether the code is
issued to the authenticated OAuth client prior to exchanging it for an access token.

\> curl -v –k -X POST --basic

 -u 0rhQErXIX49svVYoXJGt0DWBuFca:eYOFkL756W8usQaVNgCNkz9C2D0a

 -H "Content-Type:application/x-www-form-urlencoded;charset=UTF-8"

 -d "grant_type=authorization_code&

 code=9142d4cad58c66d0a5edfad8952192&

 redirect_uri=https://mycallback"

 https://authz.example.com/oauth2/token

Note T he authorization code should be used only once by the client. If the
authorization server detects that it’s been used more than once, it must revoke all
the tokens issued for that particular authorization code.

Chapter 4 OAuth 2.0 Fundamentals

88

The preceding cURL command returns the following response from the

authorization server (step 7). The token_type parameter in the response indicates the

type of the token. (The section “OAuth 2.0 Token Types” talks more about token types.)

In addition to the access token, the authorization server also returns a refresh token,

which is optional. The refresh token can be used by the client application to obtain a new

access token before the refresh token expires. The expires_in parameter indicates the

lifetime of the access token in seconds.

{

 "token_type":"bearer",

 "expires_in":3600,

 "refresh_token":"22b157546b26c2d6c0165c4ef6b3f736",

 "access_token":"cac93e1d29e45bf6d84073dbfb460"

}

Note E ach refresh token has its own lifetime. Compared to the lifetime of the
access token, the refresh token’s is longer: the lifetime of an access token is in
minutes, whereas the lifetime of a refresh token is in days.

�Implicit Grant Type
The implicit grant type to acquire an access token is mostly used by JavaScript clients

running in the web browser (see Figure 4-3). Even for JavaScript clients now, we do not

recommend using implicit grant type, rather use authorization code grant type with no

client authentication. This is mostly due to the inherent security issues in the implicit

grant type, which we discuss in Chapter 14. The following discussion on implicit grant

type will help you understand how it works, but never use it in a production deployment.

Chapter 4 OAuth 2.0 Fundamentals

89

Unlike the authorization code grant type, the implicit grant type doesn’t have any

equivalent profiles in OAuth WRAP. The JavaScript client initiates the implicit grant flow

by redirecting the user to the authorization server. The response_type parameter in the

request indicates to the authorization server that the client expects a token, not a code. The

implicit grant type doesn’t require the authorization server to authenticate the JavaScript

client; it only has to send the client_id in the request. This is for logging and auditing

purposes and also to find out the corresponding redirect_uri. The redirect_uri in the

request is optional; if it’s present, it must match what is provided at the client registration:

https://authz.example.com/oauth2/authorize?

 response_type=token&

 client_id=0rhQErXIX49svVYoXJGt0DWBuFca&

 redirect_uri=https%3A%2F%2Fmycallback

This returns the following response. The implicit grant type sends the access token as

a URI fragment and doesn’t provide any refreshing mechanism:

https://callback.example.com/#access_token=cac93e1d29e45bf6d84073dbfb460&ex

pires_in=3600

Unlike the authorization code grant type, the implicit grant type client receives

the access token in the response to the grant request. When we have something in the

URI fragment of a URL, the browser never sends it to the back end. It only stays on the

browser. So when authorization server sends a redirect to the callback URL of the client

Figure 4-3.  Implicit grant type

Chapter 4 OAuth 2.0 Fundamentals

90

application, the request first comes to the browser, and the browser does an HTTP GET

to the web server that hosts the client application. But in that HTTP GET, you will not

find the URI fragment, and the web server will never see it. To process the access token

that comes in the URI fragment, as a response to HTTP GET from the browser, the web

server of the client application will return back an HTML page with a JavaScript, which

knows how to extract the access_token from the URI fragment, which still remains in the

browser address bar. In general this is how single-page applications work.

Note T he authorization server must treat the authorization code, access token,
refresh token, and client secret key as sensitive data. They should never be sent
over HTTP—the authorization server must use Transport Layer Security (TLS).
These tokens should be stored securely, possibly by encrypting or hashing them.

�Resource Owner Password Credentials Grant Type
Under the resource owner password credentials grant type, the resource owner must

trust the client application. This is equivalent to the Username and Password Profile in

OAuth WRAP. The resource owner has to give his/her credentials directly to the client

application (see Figure 4-4).

The following cURL command talks to the token endpoint of the authorization

server, passing the resource owner’s username and password as parameters. In addition,

Figure 4-4.  Resource owner password credentials grant type

Chapter 4 OAuth 2.0 Fundamentals

91

the client application proves its identity. In most of the cases, the token endpoint is

secured with HTTP Basic authentication (but not a must), and the client application

passes its client_id (0rhQErXIX49svVYoXJGt0DWBuFca) and client_secret

(eYOFkL756W8usQaVNgCNkz9C2D0a) in the HTTP Authorization header. The value of the

grant_type parameter must be set to password:

\> curl -v -k -X POST --basic

 -u 0rhQErXIX49svVYoXJGt0DWBuFca:eYOFkL756W8usQaVNgCNkz9C2D0a

 -H "Content-Type:application/x-www-form-urlencoded;charset=UTF-8"

 -d "grant_type=password&

 username=admin&password=admin"

 https://authz.example.com/oauth2/token

This returns the following response, which includes an access token along with a

refresh token:

{

 "token_type":"bearer",

 "expires_in":685,"

 "refresh_token":"22b157546b26c2d6c0165c4ef6b3f736",

 "access_token":"cac93e1d29e45bf6d84073dbfb460"

}

Note  If using the authorization code grant type is an option, it should be used
over the resource owner password credentials grant type. The resource owner
password credentials grant type was introduced to aid migration from HTTP Basic
authentication and Digest authentication to OAuth 2.0.

�Client Credentials Grant Type
The client credentials grant type is equivalent to the Client Account and Password Profile

in OAuth WRAP and to two-legged OAuth in OAuth 1.0 (see Appendix B). With this

grant type, the client itself becomes the resource owner (see Figure 4-5). The following

cURL command talks to the token endpoint of the authorization server, passing the

client application’s client_id (0rhQErXIX49svVYoXJGt0DWBuFca) and client_secret

(eYOFkL756W8usQaVNgCNkz9C2D0a).

Chapter 4 OAuth 2.0 Fundamentals

92

\> curl –v –k -X POST --basic

 -u 0rhQErXIX49svVYoXJGt0DWBuFca:eYOFkL756W8usQaVNgCNkz9C2D0a

 -H "Content-Type: application/x-www-form-urlencoded;charset=UTF-8"

 -d "grant_type=client_credentials"

 https://authz.example.com/oauth2/token

This returns the following response, which includes an access token. Unlike the

resource owner password credentials grant type, the client credentials grant type doesn’t

return a refresh token:

{ "token_type":"bearer",

 "expires_in":3600,

 "access_token":"4c9a9ae7463ff9bb93ae7f169bd6a"

}

This client credential grant type is mostly used for system-to-system interactions

with no end user. For example, a web application needs to access an OAuth secured API

to get some metadata.

�Refresh Grant Type
Although it’s not the case with the implicit grant type and the client credentials grant

type, with the other two grant types, the OAuth access token comes with a refresh token.

This refresh token can be used to extend the validity of the access token without the

involvement of the resource owner. The following cURL command shows how to get a

new access token from the refresh token:

Figure 4-5.  Client credentials grant type

Chapter 4 OAuth 2.0 Fundamentals

93

\> curl -v -X POST --basic

 -u 0rhQErXIX49svVYoXJGt0DWBuFca:eYOFkL756W8usQaVNgCNkz9C2D0a

 -H "Content-Type: application/x-www-form-urlencoded;charset=UTF-8"

 -k -d "grant_type=refresh_token&

 refresh_token=22b157546b26c2d6c0165c4ef6b3f736"

 https://authz.example.com/oauth2/token

This returns the following response:

{

 "token_type":"bearer",

 "expires_in":3600,

 "refresh_token":"9ecc381836fa5e3baf5a9e86081",

 "access_token":"b574d1ba554c26148f5fca3cceb05e2"

}

Note T he refresh token has a much longer lifetime than the access token. If
the lifetime of the refresh token expires, then the client must initiate the OAuth
token flow from the start and get a new access token and refresh token. The
authorization server also has the option to return a new refresh token each time
the client refreshes the access token. In such cases, the client has to discard the
previously obtained refresh token and begin using the new one.

�How to Pick the Right Grant Type?
As we discussed at the very beginning of the chapter, OAuth 2.0 is an authorization

framework. The nature of a framework is to provide multiple options, and it’s up to the

application developers to pick the best out of those options, based on their use cases.

OAuth can be used with any kind of application. It can be a web application, single-page

application, desktop application, or a native mobile application.

To pick the right grant type for those applications, first we need to think how the

client application is going to invoke the OAuth secured API: whether it is going to access

the API by itself or on behalf of an end user. If the application wants to access the API

just being itself, then we should use client credentials grant type and, if not, should

use authorization code grant type. Both the implicit and password grant types are now

obsolete.

Chapter 4 OAuth 2.0 Fundamentals

94

�OAuth 2.0 Token Types
Neither OAuth 1.0 nor WRAP could support custom token types. OAuth 1.0 always used

signature-based tokens, and OAuth WRAP always used bearer tokens over TLS. OAuth 2.0

isn’t coupled into any token type. In OAuth 2.0, you can introduce your own token type

if needed. Regardless of the token_type returned in the OAuth token response from the

authorization server, the client must understand it before using it. Based on the token_

type, the authorization server can add additional attributes/parameters to the response.

OAuth 2.0 has two main token profiles: OAuth 2.0 Bearer Token Profile and OAuth

2.0 MAC Token Profile. The most popular OAuth token profile is Bearer; almost all OAuth

2.0 deployments today are based on the OAuth 2.0 Bearer Token Profile. The next section

talks about the Bearer Token Profile in detail, and Appendix G discusses the MAC Token

Profile.

�OAuth 2.0 Bearer Token Profile
The OAuth 2.0 Bearer Token Profile was influenced by OAuth WRAP, which only

supported bearer tokens. As its name implies, anyone who bears the token can use

it—don’t lose it! Bearer tokens must always be used over Transport Layer Security

(TLS) to avoid losing them in transit. Once the bearer access token is obtained from the

authorization server, the client can use it in three ways to talk to the resource server.

These three ways are defined in the RFC 6750. The most popular way is to include the

access token in the HTTP Authorization header:

Note A n OAuth 2.0 bearer token can be a reference token or self-contained
token. A reference token is an arbitrary string. An attacker can carry out a brute-
force attack to guess the token. The authorization server must pick the right length
and use other possible measures to prevent brute forcing. A self-contained access
token is a JSON Web Token (JWT), which we discuss in Chapter 7. When the
resource server gets an access token, which is a reference token, then to validate
the token, it has to talk to the authorization server (or the token issuer). When the
access token is a JWT, the resource server can validate the token by itself, by
verifying the signature of the JWT.

Chapter 4 OAuth 2.0 Fundamentals

95

GET /resource HTTP/1.1

Host: rs.example.com

Authorization: Bearer JGjhgyuyibGGjgjkjdlsjkjdsd

The access token can also be included as a query parameter. This approach is mostly

used by the client applications developed in JavaScript:

GET /resource?access_token=JGjhgyuyibGGjgjkjdlsjkjdsd

Host: rs.example.com

Note  When the value of the OAuth access token is sent as a query parameter,
the name of the parameter must be access_token. Both Facebook and Google
use the correct parameter name, but LinkedIn uses oauth2_access_token and
Salesforce uses oauth_token.

It’s also possible to send the access token as a form-encoded body parameter. An

authorization server supporting the Bearer Token Profile should be able to handle any of

these patterns:

POST /resource HTTP/1.1

Host: server.example.com

Content-Type: application/x-www-form-urlencoded

access_token=JGjhgyuyibGGjgjkjdlsjkjdsd

Note T he value of the OAuth bearer token is only meaningful to the authorization
server. The client application should not try to interpret what it says. To make the
processing logic efficient, the authorization server may include some meaningful
but nonconfidential data in the access token. For example, if the authorization
server supports multiple domains with multitenancy, it may include the tenant
domain in the access token and then base64-encode (see Appendix E) it or simply
use a JSON Web Token (JWT).

Chapter 4 OAuth 2.0 Fundamentals

96

�OAuth 2.0 Client Types
OAuth 2.0 identifies two types of clients: confidential clients and public clients.

Confidential clients are capable of protecting their own credentials (the client key and the

client secret), whereas public clients can’t. The OAuth 2.0 specification is built around

three types of client profiles: web applications, user agent–based applications, and native

applications. Web applications are considered to be confidential clients, running on a web

server: end users or resource owners access such applications via a web browser. User

agent–based applications are considered to be public clients: they download the code

from a web server and run it on the user agent, such as JavaScript running in the browser.

These clients are incapable of protecting their credentials—the end user can see anything

in the JavaScript. Native applications are also considered as public clients: these clients are

under the control of the end user, and any confidential data stored in those applications

can be extracted out. Android and iOS native applications are a couple of examples.

Note A ll four grant types defined in the OAuth 2.0 core specification require
the client to preregister with the authorization server, and in return it gets a client
identifier. Under the implicit grant type, the client doesn’t get a client secret. At the
same time, even under other grant types, it’s an option whether to use the client
secret or not.

Table 4-2 lists the key differences between OAuth 1.0 and OAuth 2.0 Bearer Token

Profile.

Table 4-2.  OAuth 1.0 vs. OAuth 2.0

OAuth 1.0 OAuth 2.0 Bearer Token Profile

An access delegation protocol An authorization framework for access delegation

Signature based: HMAC-SHA256/RSA-SHA256 Nonsignature-based, Bearer Token Profile

Less extensibility Highly extensible via grant types and token types

Less developer-friendly

TLS required only during the initial handshake

Secret key never passed on the wire

More developer-friendly

Bearer Token Profile mandates using TLS during

the entire flow

Secret key goes on the wire (Bearer Token Profile)

Chapter 4 OAuth 2.0 Fundamentals

97

Note  OAuth 2.0 introduces a clear separation between the client, the resource
owner, the authorization server, and the resource server. But the core OAuth 2.0
specification doesn’t talk about how the resource server validates an access
token. Most OAuth implementations started doing this by talking to a proprietary
API exposed by the authorization server. The OAuth 2.0 Token Introspection profile
standardized this to some extent, and in Chapter 9, we talk more about it.

�JWT Secured Authorization Request (JAR)
In an OAuth 2.0 request to the authorize endpoint of the authorization server, all the

request parameters flow via the browser as query parameters. The following is an

example of an OAuth 2.0 authorization code grant request:

https://authz.example.com/oauth2/authorize?

 response_type=token&

 client_id=0rhQErXIX49svVYoXJGt0DWBuFca&

 redirect_uri=https%3A%2F%2Fmycallback

There are a couple of issues with this approach. Since these parameters flow via the

browser, the end user or anyone on the browser can change the input parameters that

could result in some unexpected outcomes at the authorization server. At the same time,

since the request is not integrity protected, the authorization server has no means to

validate who initiated the request. With JSON Web Token (JWT) secured authorization

requests, we can overcome these two issues. If you are new to JWT, please check

Chapters 7 and 8. JSON Web Token (JWT) defines a container to transport data between

interested parties in a cryptographically safe manner. The JSON Web Signature (JWS)

specification developed under the IETF JOSE working group, represents a message or

a payload, which is digitally signed or MACed (when a hashing algorithm is used with

HMAC), while the JSON Web Encryption (JWE) specification standardizes a way to

represent an encrypted payload.

One of the draft proposals1 to the IETF OAuth working group suggests to introduce

the ability to send request parameters in a JWT, which allows the request to be signed

1�The OAuth 2.0 Authorization Framework: JWT Secured Authorization Request (JAR).

Chapter 4 OAuth 2.0 Fundamentals

98

with JWS and encrypted with JWE so that the integrity, source authentication, and

confidentiality properties of the authorization request are preserved. At the time of

writing, this proposal is in its very early stage—and if you are familiar with Security

Assertion Markup Language (SAML) Single Sign-On, this is quite analogous to the signed

authentication requests in SAML. The following shows the decoded payload of a sample

authorization request, which ideally goes within a JWT:

{

 "iss": "s6BhdRkqt3",

 "aud": "https://server.example.com",

 "response_type": "code id_token",

 "client_id": "s6BhdRkqt3",

 "redirect_uri": "https://client.example.org/cb",

 "scope": "openid",

 "state": "af0ifjsldkj",

 "nonce": "n-0S6_WzA2Mj",

 "max_age": 86400

}

Once the client application constructs the JWT (a JWS or a JWE—please see Chapters

7 and 8 for the details), it can send the authorization request to the OAuth authorization

server in two ways. One way is called passing by value, and the other is passing by

reference. The following shows an example of passing by value, where the client

application sends the JWT in a query parameter called request. The [jwt_assertion] in

the following request represents either the actual JWS or JWE.

https://server.example.com/authorize?request=[jwt_assertion]

The draft proposal for JWT authorization request introduces the pass by reference

method to overcome some of the limitations in the pass by value method, as listed here:

•	 Many mobile phones in the market as of this writing still do not

accept large payloads. The payload restriction is typically either 512

or 1024 ASCII characters.

•	 The maximum URL length supported by older versions of the

Internet Explorer is 2083 ASCII characters.

Chapter 4 OAuth 2.0 Fundamentals

99

•	 On a slow connection such as a 2G mobile connection, a large

URL would cause a slow response. Therefore the use of such is not

advisable from the user experience point of view.

The following shows an example of pass by reference, where the client application

sends a link in the request, which can be used by the authorization server to fetch the

JWT. This is a typical OAuth 2.0 authorization code request, along with the new request_

uri query parameter. The value of the request_uri parameter carries a link pointing to

the corresponding JWS or JWE.

https://server.example.com/authorize?

 response_type=code&

 client_id=s6BhdRkqt3&

 request_uri=https://tfp.example.org/request.jwt/Schjwew&

 state=af0ifjsldkj

�Pushed Authorization Requests (PAR)
This is another draft proposal being discussed under the IETF OAuth working group

at the moment, which complements the JWT Secured Authorization Request (JAR)

approach we discussed in the previous section. One issue with JAR is each client has

to expose an endpoint directly to the authorization server. This is the endpoint that

hosts the corresponding JWT, which is used by the authorization server. With Pushed

Authorization Requests (PAR) draft proposal, this requirement goes a way. PAR defines

an endpoint at the authorization server end, where each client can directly push (without

going through the browser) all the parameters in a typical OAuth 2.0 authorization

request and then use the normal authorization flow via the browser to pass a reference

to the pushed request. Following is an example, where the client application pushes

authorization request parameters to an endpoint hosted at the authorization server. This

push endpoint on the authorization server can be secured either with mutual Transport

Layer Security (TLS) or with OAuth 2.0 itself (client credentials) or with any other means

as agreed between the client application and the authorization server.

POST /as/par HTTP/1.1

Host: server.example.com

Content-Type: application/x-www-form-urlencoded

Authorization: Basic czZCaGRSa3F0Mzo3RmpmcDBaQnIxS3REUmJuZlZkbUl3

Chapter 4 OAuth 2.0 Fundamentals

100

response_type=code&

state=af0ifjsldkj&

client_id=s6BhdRkqt3&

redirect_uri=https%3A%2F%2Fclient.example.org%2Fcb&

scope=ais

If the client follows the JAR specification which, we discussed in the previous section,

it can also send a JWS or a JWE to the push endpoint in the following way.

POST /as/par HTTP/1.1

Host: server.example.com

Content-Type: application/x-www-form-urlencoded

Authorization: Basic czZCaGRSa3F0Mzo3RmpmcDBaQnIxS3REUmJuZlZkbUl3

request=[jwt_assertion]

Once the push endpoint at the authorization server receives the preceding request,

it has to carry out all the validation checks against the request that it usually performs

against a typical authorization request. If it all looks good, the authorization server

responds with the following. The value of the request_uri parameter in the response

is bound to the client_id in the request and acts as a reference to the authorization

request.

HTTP/1.1 201 Created

Date: Tue, 2 Oct 2019 15:22:31 GMT

Content-Type: application/json

{

 "request_uri": "urn:example:bwc4JK-ESC0w8acc191e-Y1LTC2",

 "expires_in": 3600

}

Upon receiving the push response from the authorization server, the client

application can construct the following request with the request_uri parameter from

the response to redirect the user to the authorization server.

https://server.example.com/authorize?

 request_uri=urn:example:bwc4JK-ESC0w8acc191e-Y1LTC2

Chapter 4 OAuth 2.0 Fundamentals

101

�Summary
•	 OAuth 2.0 is the de facto standard for securing APIs, and it primarily

solves the access delegation problem.

•	 A grant type in OAuth 2.0 defines how a client can obtain an

authorization grant from a resource owner to access a resource on

his/her behalf.

•	 OAuth 2.0 core specification defines five grant types: authorization

code, implicit, password, client credentials, and refresh.

•	 Refresh grant type is a special grant type, which is used by an OAuth

2.0 client application to renew an expired or closer to expiry access

token.

•	 Implicit grant type and client credentials grant types do not return

back any refresh tokens.

•	 Implicit grant type is obsolete and is not recommended to use due to

its own inherent security issues.

•	 OAuth 2.0 supports two types of client applications: public clients

and confidential clients. Single-page applications and native mobile

applications fall under public clients, while web applications fall

under confidential clients.

•	 The OAuth 2.0 Authorization Framework: JWT Secured Authorization

Request (JAR) draft proposal suggests to introduce the ability to send

request parameters in a JWT.

•	 The Pushed Authorization Requests (PAR) draft proposal suggests

to introduce a push endpoint at the authorization server end, so the

client applications can securely push all the authorization request

parameters and then initiate the browser-based login flow.

Chapter 4 OAuth 2.0 Fundamentals

103
© Prabath Siriwardena 2020
P. Siriwardena, Advanced API Security, https://doi.org/10.1007/978-1-4842-2050-4_5

CHAPTER 5

Edge Security with
an API Gateway
The API gateway is the most common pattern in securing APIs in a production

deployment. In other words, it’s the entry point to your API deployment. There are many

open source and proprietary products out there, which implement the API gateway

pattern, which we commonly identify as API gateways. An API gateway is a policy

enforcement point (PEP), which centrally enforces authentication, authorization, and

throttling policies. Further we can use an API gateway to centrally gather all the analytics

related to APIs and publish those to an analytics product for further analysis and

presentation.

�Setting Up Zuul API Gateway
Zuul1 is an API gateway (see Figure 5-1) that provides dynamic routing, monitoring,

resiliency, security, and more. It is acting as the front door to Netflix’s server

infrastructure, handling traffic from all Netflix users around the world. It also routes

requests, supports developers’ testing and debugging, provides deep insight into Netflix’s

overall service health, protects the Netflix deployment from attacks, and channels traffic

to other cloud regions when an Amazon Web Services (AWS) region is in trouble. In this

section, we are going to set up Zuul as an API gateway to front the Order API, which we

developed in Chapter 3.

1�https://github.com/Netflix/zuul

https://github.com/Netflix/zuul

104

All the samples used in this book are available in the https://github.com/

apisecurity/samples.git git repository. Use the following git command to clone it. All

the samples related to this chapter are inside the directory ch05. To run the samples in

the book, we assumed you have installed Java (JDK 1.8+) and Apache Maven 3.2.0+.

\> git clone https://github.com/apisecurity/samples.git

\> cd samples/ch05

�Running the Order API
This is the simplest API implementation ever, which is developed with Java Spring

Boot. In fact one can call it as a microservice as well. You can find the code inside the

directory, ch05/sample01. To build the project with Maven, use the following command

from the sample01 directory:

\> cd sample01

\> mvn clean install

Figure 5-1.  A typical Zuul API gateway deployment at Netflix. All the Netflix
microservices are fronted by an API gateway

Chapter 5 Edge Security with an API Gateway

https://github.com/apisecurity/samples.git
https://github.com/apisecurity/samples.git

105

Now, let’s see how to run our Spring Boot service and talk to it with a cURL client.

Execute the following command from ch05/sample01 directory to start the Spring Boot

service with Maven.

\> mvn spring-boot:run

To test the API with a cURL client, use the following command from a different

command console. It will print the output as shown in the following, after the initial

command.

\> curl http://localhost:8080/order/11

{"customer_id":"101021","order_id":"11","payment_method":{"card_type":

"VISA","expiration":"01/22","name":"John Doe","billing_address":"201, 1st

Street, San Jose, CA"},"items": [{"code":"101","qty":1},{"code":"103","qty"

:5}],"shipping_address":"201, 1st Street, San Jose, CA"}

�Running the Zuul API Gateway
In this section, we are going to build the Zuul API gateway as a Spring Boot project and

run it against the Order service. Or in other words, the Zuul gateway will proxy all the

requests to the Order service. You can find the code inside ch05/sample02 directory. To

build the project with Maven, use the following commands:

\> cd sample02

\> mvn clean install

Before we delve deep into the code, let’s have a look at some of the notable Maven

dependencies and plugins added into ch05/sample02/pom.xml. Spring Boot comes

with different starter dependencies to integrate with different Spring modules. The

spring-cloud-starter-zuul dependency (as shown in the following) brings in Zuul

API gateway dependencies and does all the wiring between the components, making the

developer’s work to a minimum.

<dependency>

 <groupId>org.springframework.cloud</groupId>

 <artifactId>spring-cloud-starter-zuul</artifactId>

</dependency>

Chapter 5 Edge Security with an API Gateway

106

It is important to have a look at the class file src/main/java/com/apress/ch05/

sample02/GatewayApplication.java. This is the class which spins up the Zuul API

gateway. By default it starts on port 8080, and you can change the port by adding, say, for

example, server.port=9000 to the src/main/resources/application.properties file.

This will set the API gateway port to 9000. The following shows the code snippet from

GatewayApplication class, which spins up the API gateway. The @EnableZuulProxy

annotation instructs the Spring framework to start the Spring application as a Zuul

proxy.

@EnableZuulProxy

@SpringBootApplication

public class GatewayApplication {

 public static void main(String[] args) {

 SpringApplication.run(GatewayApplication.class, args);

 }

}

Now, let’s see how to start the API gateway and talk to it with a cURL client. The

following command executed from ch05/sample02 directory shows how to start the API

gateway with Maven. Since the Zuul API gateway is also another Spring Boot application,

the way you start it is the same as how we did before with the Order service.

\> mvn spring-boot:run

To test the Order API, which is now proxied through the Zuul API gateway, let’s use

the following cURL. It will print the output as shown in the following. Also make sure

that the Order service is still up and running on port 8080. Here we add a new context

called retail (which we didn’t see in the direct API call) and talk to the port 9090, where

the API gateway is running.

\> curl http://localhost:9090/retail/order/11

{"customer_id":"101021","order_id":"11","payment_method":{"card_type":

"VISA","expiration":"01/22","name":"John Doe","billing_address":"201, 1st

Street, San Jose, CA"},"items": [{"code":"101","qty":1},{"code":"103","qty"

:5}],"shipping_address":"201, 1st Street, San Jose, CA"}

Chapter 5 Edge Security with an API Gateway

107

�What Happens Underneath?
When the API gateway receives a request to the retail context, it routes the request

to the back-end API. These routing instructions are set in the src/main/resources/

application.properties file, as shown in the following. If you want to use some other

context, instead of retail, then you need to change the property key appropriately.

zuul.routes.retail.url=http://localhost:8080

�Enabling TLS for the Zuul API Gateway
In the previous section, the communication between the cURL client and the Zuul API

gateway happened over HTTP, which is not secure. In this section, let’s see how to enable

Transport Layer Security (TLS) at the Zuul API gateway. In Chapter 3, we discussed

how to secure the Order service with TLS. There the Order service is a Java Spring Boot

application, and we follow the same process here to secure the Zuul API gateway with

TLS, as Zuul is also another Java Spring Boot application.

To enable TLS, first we need to create a public/private key pair. The following

command uses keytool that comes with the default Java distribution to generate a key

pair and stores it in keystore.jks file. If you are to use the keystore.jks file as it is,

which is inside sample02 directory, you can possibly skip this step. Chapter 3 explains in

detail what each parameter in the following command means.

\> keytool -genkey -alias spring -keyalg RSA -keysize 4096 -validity 3650

-dname "CN=zool,OU=bar,O=zee,L=sjc,S=ca,C=us" -keypass springboot -keystore

keystore.jks -storeType jks -storepass springboot

To enable TLS for the Zuul API gateway, copy the keystore file (keystore.jks),

which we created earlier, to the home directory of the gateway (e.g., ch05/sample02/)

and add the following to the [SAMPLE_HOME]/src/main/resources/application.

properties file. The samples that you download from the samples git repository

already have these values (and you only need to uncomment them), and we are using

springboot as the password for both the keystore and the private key.

server.ssl.key-store: keystore.jks

server.ssl.key-store-password: springboot

server.ssl.keyAlias: spring

Chapter 5 Edge Security with an API Gateway

108

To validate that everything works fine, use the following command from

ch05/sample02/ directory to spin up the Zuul API gateway and notice the line, which

prints the HTTPS port. If you already have the Zuul gateway running from the previous

exercise, please shut it down first.

\> mvn spring-boot:run

Tomcat started on port(s): 9090 (https) with context path "

Assuming you already have the Order service still running from the previous section,

run the following cURL command to access the Order service via the Zuul gateway, over

HTTPS.

\> curl –k https://localhost:9090/retail/order/11

{"customer_id":"101021","order_id":"11","payment_method":{"card_type":"V

ISA","expiration":"01/22","name":"John Doe","billing_address":"201, 1st

Street, San Jose, CA"},"items": [{"code":"101","qty":1},{"code":"103","qty"

:5}],"shipping_address":"201, 1st Street, San Jose, CA"}

We used the -k option in the preceding cURL command. Since we have self-signed

(untrusted) certificates to secure our HTTPS endpoint, we need to pass the –k parameter

to advise cURL to ignore the trust validation. In a production deployment with proper

certificate authority–signed certificates, you do not need to do that. Also, if you have

self-signed certificates, you can still avoid using –k, by pointing cURL to the

corresponding public certificate.

\> curl --cacert ca.crt https://localhost:9090/retail/order/11

You can use the following keytool command from ch05/sample02/ to export the

public certificate of the Zuul gateway to ca.crt file in PEM (with the -rfc argument)

format.

\> keytool -export -file ca.crt -alias spring –rfc -keystore keystore.jks

-storePass springboot

The preceding command will result in the following error. This complains that

the common name in certificate, which is zool, does not match with the hostname

(localhost) in the cURL command.

curl: (51) SSL: certificate subject name 'zool' does not match target host

name 'localhost'

Chapter 5 Edge Security with an API Gateway

109

Ideally, in a production deployment when you create a certificate, its common name

should match the hostname. In this case, since we do not have Domain Name Service

(DNS) entry for the zool hostname, you can use the following workaround, with cURL.

\> curl --cacert ca.crt https://zool:9090/retail/order/11 --resolve

zool:9090:127.0.0.1

�Enforcing OAuth 2.0 Token Validation at the Zuul API
Gateway
In the previous section, we explained how to proxy requests to an API, via the Zuul API

gateway. There we didn’t worry about enforcing security. In this section, we will discuss

how to enforce OAuth 2.0 token validation at the Zuul API gateway. There are two parts

in doing that. First we need to have an OAuth 2.0 authorization server (also we can call

it a security token service) to issue tokens, and then we need to enforce OAuth token

validation at the Zuul API gateway (see Figure 5-2).

Figure 5-2.  The Zuul API gateway intercepts all the requests going to the Order
API and validates OAuth 2.0 access tokens against the authorization server (STS)

Chapter 5 Edge Security with an API Gateway

110

�Setting Up an OAuth 2.0 Security Token Service (STS)
The responsibility of the security token service (STS) is to issue tokens to its clients and

respond to the validation requests from the API gateway. There are many open source

OAuth 2.0 authorization servers out there: WSO2 Identity Server, Keycloak, Gluu, and

many more. In a production deployment, you may use one of them, but for this example,

we are setting up a simple OAuth 2.0 authorization server with Spring Boot. It is another

microservice and quite useful in developer testing. The code corresponding to the

authorization server is under ch05/sample03 directory.

Let’s have a look at ch05/sample03/pom.xml for notable Maven dependencies.

These dependencies introduce a new set of annotations (@EnableAuthorizationServer

annotation and @EnableResourceServer annotation), to turn a Spring Boot application

to an OAuth 2.0 authorization server.

<dependency>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter-security</artifactId>

</dependency>

<dependency>

 <groupId>org.springframework.security.oauth</groupId>

 <artifactId>spring-security-oauth2</artifactId>

</dependency>

The class sample03/src/main/java/com/apress/ch05/sample03/TokenServiceApp.

java carries the @EnableAuthorizationServer annotation, which turns the project into

an OAuth 2.0 authorization server. We’ve added @EnableResourceServer annotation

to the same class, as it also has to act as a resource server, to validate access tokens and

return back the user information. It’s understandable that the terminology here is a little

confusing, but that’s the easiest way to implement the token validation endpoint (in fact

the user info endpoint, which also indirectly does the token validation) in Spring Boot.

When you use self-contained access tokens (JWTs), this token validation endpoint is not

required. If you are new to JWT, please check Chapter 7 for details.

The registration of clients with the Spring Boot authorization server can be done in

multiple ways. This example registers clients in the code itself, in sample03/src/

main/java/com/apress/ch05/sample03/config/AuthorizationServerConfig.

java file. The AuthorizationServerConfig class extends the

AuthorizationServerConfigurerAdapter class to override its default behavior. Here

Chapter 5 Edge Security with an API Gateway

111

we set the value of client id to 10101010, client secret to 11110000, available scope

values to foo and/or bar, authorized grant types to client_credentials, password, and

refresh_token, and the validity period of an access token to 6000 seconds. Most of the

terms we use here are from OAuth 2.0 and explained in Chapter 4.

@Override

public void configure(ClientDetailsServiceConfigurer clients) throws

Exception {

 clients.inMemory().withClient("10101010")

 .secret("11110000").scopes("foo", "bar")

 .authorizedGrantTypes("client_credentials", "password",

 "refresh_token")

 .accessTokenValiditySeconds(6000);

}

To support password grant type, the authorization server has to connect to a user

store. A user store can be a database or an LDAP server, which stores user credentials

and attributes. Spring Boot supports integration with multiple user stores, but once

again, the most convenient one, which is just good enough for this example, is an in-

memory user store. The following code from sample03/src/main/java/com/apress/

ch05/sample03/config/WebSecurityConfiguration.java file adds a user to the system,

with the role USER.

@Override

public void configure(AuthenticationManagerBuilder auth) throws

Exception {

 auth.inMemoryAuthentication()

 .withUser("peter").password("peter123").roles("USER");

}

Once we define the in-memory user store in Spring Boot, we also need to engage that

with the OAuth 2.0 authorization flow, as shown in the following, in the code sample03/

src/main/java/com/apress/ch05/sample03/config/AuthorizationServerConfig.

java.

@Autowired

private AuthenticationManager authenticationManager;

@Override

Chapter 5 Edge Security with an API Gateway

112

public void configure(AuthorizationServerEndpointsConfigurer endpoints)

throws Exception {

 endpoints.authenticationManager(authenticationManager);

}

To start the authorization server, use the following command from ch05/sample03/

directory to spin up the TokenService microservice, and it starts running on HTTPS port

8443.

\> mvn spring-boot:run

�Testing OAuth 2.0 Security Token Service (STS)
To get an access token using the OAuth 2.0 client credentials grant type, use the

following command. Make sure to replace the values of $CLIENTID and $CLIENTSECRET

appropriately. The hard-coded values for client id and client secret used in our example

are 10101010 and 11110000, respectively. Also you might have noticed already, the STS

endpoint is protected with Transport Layer Security (TLS). To protect STS with TLS, we

followed the same process we did before while protecting the Zuul API gateway with TLS.

\> curl -v -X POST --basic -u $CLIENTID:$CLIENTSECRET -H "Content-Type:

application/x-www-form-urlencoded;charset=UTF-8" -k -d "grant_type=client_

credentials&scope=foo" https://localhost:8443/oauth/token

{"access_token":"81aad8c4-b021-4742-93a9-e25920587c94","token_

type":"bearer","expires_in":43199,"scope":"foo"}

Note W e use the –k option in the preceding cURL command. Since we have
self-signed (untrusted) certificates to secure our HTTPS endpoint, we need to
pass the –k parameter to advise cURL to ignore the trust validation. You can find
more details regarding the parameters used here from the OAuth 2.0 6749 RFC:
https://tools.ietf.org/html/rfc6749 and also explained in Chapter 4.

To get an access token using the password OAuth 2.0 grant type, use the following

command. Make sure to replace the values of $CLIENTID, $CLIENTSECRET, $USERNAME,

and $PASSWORD appropriately. The hard-coded values for client id and client secret

Chapter 5 Edge Security with an API Gateway

https://tools.ietf.org/html/rfc6749

113

used in our example are 10101010 and 11110000, respectively; and for username and

password, we use peter and peter123, respectively.

\> curl -v -X POST --basic -u $CLIENTID:$CLIENTSECRET -H "Content-Type:

application/x-www-form-urlencoded;charset=UTF-8" -k -d "grant_type=passwor

d&username=$USERNAME&password=$PASSWORD&scope=foo" https://localhost:8443/

oauth/token

{"access_token":"69ff86a8-eaa2-4490-adda-6ce0f10b9f8b","token_

type":"bearer","refresh_token":"ab3c797b-72e2-4a9a-a1c5-

c550b2775f93","expires_in":43199,"scope":"foo"}

Note I f you carefully observe the two responses we got for the OAuth 2.0 client
credentials grant type and the password grant type, you might have noticed that
there is no refresh token in the client credentials grant type flow. In OAuth 2.0, the
refresh token is used to obtain a new access token, when the access token has
expired or is closer to expire. This is quite useful, when the user is offline and the
client application has no access to his/her credentials to get a new access token
and the only way is to use a refresh token. For the client credentials grant type,
there is no user involved, and it always has access to its own credentials, so can
be used any time it wants to get a new access token. Hence, a refresh token is not
required.

Now let’s see how to validate an access token, by talking to the authorization server.

The resource server usually does this. An interceptor running on the resource server

intercepts the request, extracts out the access token, and then talks to the authorization

server. In a typical API deployment, this validation happens over a standard endpoint

exposed by the OAuth authorization server. This is called the introspection endpoint,

and in Chapter 9, we discuss OAuth token introspection in detail. However, in this

example, we have not implemented the standard introspection endpoint at the

authorization server (or the STS), but rather use a custom endpoint for token validation.

The following command shows how to directly talk to the authorization server to

validate the access token obtained in the previous command. Make sure to replace the

value of $TOKEN with the corresponding access token appropriately.

Chapter 5 Edge Security with an API Gateway

114

\> curl -k -X POST -H "Authorization: Bearer $TOKEN" -H "Content-Type:

application/json" https://localhost:8443/user

{"details":{"remoteAddress":"0:0:0:0:0:0:0:1","sessionId":null,"tokenValue":

"9f3319a1-c6c4-4487-ac3b-51e9e479b4ff","tokenType":"Bearer","decodedDetails":

null},"authorities":[],"authenticated":true,"userAuthentication":null,

"credentials":"","oauth2Request":{"clientId":"10101010","scope":["bar"],

"requestParameters":{"grant_type":"client_credentials","scope":"bar"},

"resourceIds":[],"authorities":[],"approved":true,"refresh":false,"redirect

Uri":null,"responseTypes":[],"extensions":{},"grantType":"client_credentials",

"refreshTokenRequest":null},"clientOnly":true,"principal":"10101010",

"name":"10101010"}

The preceding command returns back the metadata associated with the access

token, if the token is valid. The response is built inside the user() method of sample03/

src/main/java/com/apress/ch05/sample03/TokenServiceApp.java class, as shown in

the following code snippet. With the @RequestMapping annotation, we map the /user

context (from the request) to the user() method.

@RequestMapping("/user")

public Principal user(Principal user) {

 return user;

}

Note  By default, with no extensions, Spring Boot stores issued tokens in memory.
If you restart the server after issuing a token, and then validate it, it will result in an
error response.

�Setting Up Zuul API Gateway for OAuth 2.0 Token
Validation
To enforce token validation at the API gateway, we need to uncomment the following

property in sample02/src/main/resources/application.properties file, as shown in the

following. The value of the security.oauth2.resource.user-info-uri property carries

the endpoint of the OAuth 2.0 security token service, which is used to validate tokens.

security.oauth2.resource.user-info-uri=https://localhost:8443/user

Chapter 5 Edge Security with an API Gateway

115

The preceding property points to an HTTPs endpoint on the authorization server.

To support the HTTPS connection between the Zuul gateway and the authorization

server, there is one more change we need to do at the Zuul gateway end. When we have

a TLS connection between the Zuul gateway and the authorization server, the Zuul

gateway has to trust the certificate authority associated with the public certificate of

the authorization server. Since we are using self-signed certificate, we need to export

authorization server’s public certificate and import it to Zuul gateway’s keystore.

Let’s use the following keytool command from ch05/sample03 directory to export

authorization server’s public certificate and copy it to ch05/sample02 directory. If you

are using keystores from the samples git repo, then you may skip the following two

keytool commands.

\> keytool -export -alias spring -keystore keystore.jks -storePass

springboot -file sts.crt

Certificate stored in file <sts.crt>

\> cp sts.crt ../sample02

Let’s use the following keytool command from ch05/sample02 directory to import

security token service’s public certificate to Zuul gateway’s keystore.

\> keytool -import -alias sts -keystore keystore.jks -storePass springboot

-file sts.crt

Trust this certificate? [no]:yes

Certificate was added to keystore

We also need to uncomment the following two dependencies in the sample02/pom.

xml file. These dependencies do the autowiring between Spring Boot components to

enforce OAuth 2.0 token validation at the Zuul gateway.

<dependency>

 <groupId>org.springframework.security</groupId>

 <artifactId>spring-security-jwt</artifactId>

</dependency>

<dependency>

 <groupId>org.springframework.security.oauth</groupId>

 <artifactId>spring-security-oauth2</artifactId>

</dependency>

Chapter 5 Edge Security with an API Gateway

116

Finally, we need to uncomment the @EnableResourceServer annotation and

the corresponding package import on the GatewayApplication (ch05/sample02/

GatewayApplication.java) class.

Let’s run the following command from the ch05/sample02 directory to start the Zuul

API gateway. In case it is running already, you need to stop it first. Also, please make sure

sample01 (Order service) and sample03 (STS) are still up and running.

\> mvn spring-boot:run

To test the API, which is now proxied through the Zuul API gateway and secured with

OAuth 2.0, let’s use the following cURL. It should fail, because we do not pass an OAuth

2.0 token.

\> curl –k https://localhost:9090/retail/order/11

Now let’s see how to invoke the API properly with a valid access token. First we need

to talk to the security token service and get an access token. Make sure to replace the

values of $CLIENTID, $CLIENTSECRET, $USERNAME, and $PASSWORD appropriately in the

following command. The hard-coded values for client id and client secret used in our

example are 10101010 and 11110000, respectively; and for username and password, we

used peter and peter123, respectively.

\> curl -v -X POST --basic -u $CLIENTID:$CLIENTSECRET -H "Content-Type:

application/x-www-form-urlencoded;charset=UTF-8" -k -d "grant_type=passwor

d&username=$USERNAME&password=$PASSWORD&scope=foo" https://localhost:8443/

oauth/token

{"access_token":"69ff86a8-eaa2-4490-adda-6ce0f10b9f8b","token_

type":"bearer","refresh_token":"ab3c797b-72e2-4a9a-a1c5-

c550b2775f93","expires_in":43199,"scope":"foo"}

Now let’s use the access token from the preceding response to invoke the Order

API. Make sure to replace the value of $TOKEN with the corresponding access token

appropriately.

\> curl -k -H "Authorization: Bearer $TOKEN" -H "Content-Type: application/

json" https://localhost:9090/retail/order/11

{"customer_id":"101021","order_id":"11","payment_method":{"card_type":

"VISA","expiration":"01/22","name":"John Doe","billing_address":"201, 1st

Chapter 5 Edge Security with an API Gateway

117

Street, San Jose, CA"},"items": [{"code":"101","qty":1},{"code":"103","qty"

:5}],"shipping_address":"201, 1st Street, San Jose, CA"}

�Enabling Mutual TLS Between Zuul API Gateway
and Order Service
So far in this chapter, we have protected the communication between the cURL client

and STS, cURL client and Zuul API gateway, and Zuul API gateway and STS over TLS. Still

we have a weak link in our deployment (see Figure 5-3). The communication between

the Zuul gateway and Order service is neither protected with TLS nor authentication. In

other words, if someone can bypass the gateway, they can reach the Order server with no

authentication. To fix this, we need to secure the communication between the gateway

and the Order service over mutual TLS. Then, no other request can reach the Order

service without going through the gateway. Or in other words, the Order service only

accepts requests generated from the gateway.

Figure 5-3.  The Zuul API gateway intercepts all the requests going to the Order
API and validates OAuth 2.0 access tokens against the authorization server (STS)

Chapter 5 Edge Security with an API Gateway

118

To enable mutual TLS between the gateway and the Order service, first we need to

create a public/private key pair. The following command uses keytool that comes with

the default Java distribution to generate a key pair and stores it in keystore.jks file.

Chapter 3 explains in detail what each parameter in the following command means.

If you are using keystores from the samples git repo, then you may skip the following

keytool commands.

\> keytool -genkey -alias spring -keyalg RSA -keysize 4096 -validity

3650 -dname "CN=order,OU=bar,O=zee,L=sjc,S=ca,C=us" -keypass springboot

-keystore keystore.jks -storeType jks -storepass springboot

To enable mutual TLS for the Order service, copy the keystore file (keystore.

jks), which we created earlier, to the home directory of the Order service (e.g., ch05/

sample01/) and add the following to the [SAMPLE_HOME]/src/main/resources/

application.properties file. The samples that you download from the samples git

repository already have these values (and you only need to uncomment them), and we

are using springboot as the password for both the keystore and the private key. The

server.ssl.client-auth parameter is used to enforce mutual TLS at the Order service.

server.ssl.key-store: keystore.jks

server.ssl.key-store-password: springboot

server.ssl.keyAlias: spring

server.ssl.client-auth:need

There are two more changes we need to do at the Order service end. When we

enforce mutual TLS at the Order service, the Zuul gateway (which acts as a client to the

Order service) has to authenticate itself with an X.509 certificate—and the Order service

must trust the certificate authority associated with Zuul gateway’s X.509 certificate. Since

we are using self-signed certificate, we need to export Zuul gateway’s public certificate

and import it to the Order service’s keystore. Let’s use the following keytool command

from ch05/sample02 directory to export Zuul gateway’s public certificate and copy it to

ch05/sample01 directory.

\> keytool -export -alias spring -keystore keystore.jks -storePass

springboot -file zuul.crt

Certificate stored in file <zuul.crt>

\> cp zuul.crt ../sample01

Chapter 5 Edge Security with an API Gateway

119

Let’s use the following keytool command from ch05/sample01 directory to import

Zuul gateway’s public certificate to Order service’s keystore.

\> keytool -import -alias zuul -keystore keystore.jks -storePass springboot

-file zuul.crt

Trust this certificate? [no]:yes

Certificate was added to keystore

Finally, when we have a TLS connection between the Zuul gateway and the Order

service, the Zuul gateway has to trust the certificate authority associated with the public

certificate of the Order service. Even though we do not enable mutual TLS between these

two parties, we still need to satisfy this requirement to enable just TLS. Since we are using

self-signed certificate, we need to export Order service’s public certificate and import it to

Zuul gateway’s keystore. Let’s use the following keytool command from ch05/sample01

directory to export Order service’s public certificate and copy it to ch05/sample02 directory.

\> keytool -export -alias spring -keystore keystore.jks -storePass

springboot -file order.crt

Certificate stored in file <order.crt>

\> cp order.crt ../sample02

Let’s use the following keytool command from ch05/sample02 directory to import

Order service’s public certificate to Zuul gateway’s keystore.

\> keytool -import -alias order -keystore keystore.jks -storePass

springboot -file order.crt

Trust this certificate? [no]:yes

Certificate was added to keystore

To validate that TLS works fine with the Order service, use the following command

from ch05/sample01/ directory to spin up the Order service and notice the line, which

prints the HTTPS port. If you already have the Order service running from the previous

exercise, please shut it down first.

\> mvn spring-boot:run

Tomcat started on port(s): 8080 (https) with context path "

Since we updated the Order service endpoint to use HTTPS instead of HTTP, we

also need to update the Zuul gateway to use the new HTTPS endpoint. These routing

instructions are set in the ch05/sample02/src/main/resources/application.

Chapter 5 Edge Security with an API Gateway

120

properties file, as shown in the following. Just update it to use HTTPS instead of

HTTP. Also we need to uncomment the zuul.sslHostnameValidationEnabled

property in the same file and set it to false. This is to ask Spring Boot to ignore hostname

verification. Or in other words, now Spring Boot won’t check whether the hostname of

the Order service matches the common name of the corresponding public certificate.

zuul.routes.retail.url=https://localhost:8080

zuul.sslHostnameValidationEnabled=false

Restart the Zuul gateway with the following command from ch05/sample02.

\> mvn spring-boot:run

Assuming you have authorization server up and running, on HTTPS port 8443, run

the following command to test the end-to-end flow. First we need to talk to the security

token service and get an access token. Make sure to replace the values of $CLIENTID,

$CLIENTSECRET, $USERNAME, and $PASSWORD appropriately in the following command.

The hard-coded values for client id and client secret used in our example are 10101010

and 11110000, respectively; and for username and password, we used peter and

peter123, respectively.

\> curl -v -X POST --basic -u $CLIENTID:$CLIENTSECRET -H "Content-Type:

application/x-www-form-urlencoded;charset=UTF-8" -k -d "grant_type=passwor

d&username=$USERNAME&password=$PASSWORD&scope=foo" https://localhost:8443/

oauth/token

{"access_token":"69ff86a8-eaa2-4490-adda-6ce0f10b9f8b","token_

type":"bearer","refresh_token":"ab3c797b-72e2-4a9a-a1c5-

c550b2775f93","expires_in":43199,"scope":"foo"}

Now let’s use the access token from the preceding response to invoke the Order

API. Make sure to replace the value of $TOKEN with the corresponding access token

appropriately.

\> curl -k -H "Authorization: Bearer $TOKEN" -H "Content-Type: application/

json" https://localhost:9090/retail/order/11

{"customer_id":"101021","order_id":"11","payment_method":{"card_type":"V

ISA","expiration":"01/22","name":"John Doe","billing_address":"201, 1st

Street, San Jose, CA"},"items": [{"code":"101","qty":1},{"code":"103","qty"

:5}],"shipping_address":"201, 1st Street, San Jose, CA"}

Chapter 5 Edge Security with an API Gateway

121

�Securing Order API with Self-Contained
Access Tokens
An OAuth 2.0 bearer token can be a reference token or self-contained token. A reference

token is an arbitrary string. An attacker can carry out a brute-force attack to guess

the token. The authorization server must pick the right length and use other possible

measures to prevent brute forcing. A self-contained access token is a JSON Web Token

(JWT), which we discuss in Chapter 7. When the resource server gets an access token,

which is a reference token, then to validate the token, it has to talk to the authorization

server (or the token issuer). When the access token is a JWT, the resource server can

validate the token by itself, by verifying the signature of the JWT. In this section, we

discuss how to obtain a JWT access token from the authorization server and use it to

access the Order service through the Zuul API gateway.

�Setting Up an Authorization Server to Issue JWT
In this section, we’ll see how to extend the authorization server we used in the previous

section (ch05/sample03/) to support self-contained access tokens or JWTs. The first

step is to create a new key pair along with a keystore. This key is used to sign the JWTs

issued from our authorization server. The following keytool command will create a new

keystore with a key pair.

\> keytool -genkey -alias jwtkey -keyalg RSA -keysize 2048 -dname

"CN=localhost" -keypass springboot -keystore jwt.jks -storepass springboot

The preceding command creates a keystore with the name jwt.jks, protected

with the password springboot. We need to copy this keystore to sample03/src/main/

resources/. Now to generate self-contained access tokens, we need to set the values of the

following properties in sample03/src/main/resources/application.properties file.

spring.security.oauth.jwt: true

spring.security.oauth.jwt.keystore.password: springboot

spring.security.oauth.jwt.keystore.alias: jwtkey

spring.security.oauth.jwt.keystore.name: jwt.jks

Chapter 5 Edge Security with an API Gateway

122

The value of spring.security.oauth.jwt is set to false by default, and it has to be

changed to true to issue JWTs. The other three properties are self-explanatory, and you

need to set them appropriately based on the values you used in creating the keystore.

Let’s go through the notable changes in the source code to support JWTs. First, in the

pom.xml, we need to add the following dependency, which takes care of building JWTs.

<dependency>

 <groupId>org.springframework.security</groupId>

 <artifactId>spring-security-jwt</artifactId>

</dependency>

In sample03/src/main/java/com/apress/ch05/sample03/config/

AuthorizationServerConfig.java class, we have added the following method, which

takes care of injecting the details about how to retrieve the private key from the jwt.jks

keystore, which we created earlier. This private key is used to sign the JWT.

@Bean

protected JwtAccessTokenConverter jwtConeverter() {

 �String pwd = environment.getProperty("spring.security.oauth.jwt.

keystore.password");

 �String alias = environment.getProperty("spring.security.oauth.jwt.

keystore.alias");

 �String keystore = environment.getProperty("spring.security.oauth.jwt.

keystore.name");

 String path = System.getProperty("user.dir");

 �KeyStoreKeyFactory keyStoreKeyFactory = new KeyStoreKeyFactory(

 �new FileSystemResource(new File(path + File.separator +

keystore)), pwd.toCharArray());

 JwtAccessTokenConverter converter = new JwtAccessTokenConverter();

 converter.setKeyPair(keyStoreKeyFactory.getKeyPair(alias));

 return converter;

}

In the same class file, we also set JwtTokenStore as the token store. The following

function does it in a way, we only set the JwtTokenStore as the token store only if

spring.security.oauth.jwt property is set to true in the application.properties file.

Chapter 5 Edge Security with an API Gateway

123

@Bean

public TokenStore tokenStore() {

 String useJwt = environment.getProperty("spring.security.oauth.jwt");

 if (useJwt != null && "true".equalsIgnoreCase(useJwt.trim())) {

 return new JwtTokenStore(jwtConeverter());

 } else {

 return new InMemoryTokenStore();

 }

}

Finally, we need to set the token store to AuthorizationServerEndpointsConfigurer,

which is done in the following method, and once again, only if we want to use JWTs.

@Autowired

private AuthenticationManager authenticationManager;

@Override

public void configure(AuthorizationServerEndpointsConfigurer endpoints)

throws Exception {

 String useJwt = environment.getProperty("spring.security.oauth.jwt");

 if (useJwt != null && "true".equalsIgnoreCase(useJwt.trim())) {

 endpoints.tokenStore(tokenStore()).tokenEnhancer(jwtConeverter())

 .authenticationManager(authenticationManager);

 } else {

 endpoints.authenticationManager(authenticationManager);

 }

}

To start the authorization server, use the following command from ch05/sample03/

directory, which now issues self-contained access tokens (JWTs).

\> mvn spring-boot:run

To get an access token using the OAuth 2.0 client credentials grant type, use the

following command. Make sure to replace the values of $CLIENTID and $CLIENTSECRET

appropriately. The hard-coded values for client id and client secret used in our example

are 10101010 and 11110000, respectively.

Chapter 5 Edge Security with an API Gateway

124

\> curl -v -X POST --basic -u $CLIENTID:$CLIENTSECRET -H "Content-Type:

application/x-www-form-urlencoded;charset=UTF-8" -k -d "grant_type=client_

credentials&scope=foo" https://localhost:8443/oauth/token

The preceding command will return back a base64-url-encoded JWT, and the

following shows the decoded version.

{ "alg": "RS256", "typ": "JWT" }

{ "scope": ["foo"], "exp": 1524793284, "jti": "6e55840e-886c-46b2-bef7-

1a14b813dd0a", "client_id": "10101010" }

Only the decoded header and the payload are shown in the output, skipping the

signature (which is the third part of the JWT). Since we used client_credentials grant

type, the JWT does not include a subject or username. It also includes the scope value(s)

associated with the token.

�Protecting Zuul API Gateway with JWT
In this section, we’ll see how to enforce self-issued access token or JWT-based token

validation at the Zuul API gateway. We only need to comment out security.oauth2.

resource.user-info-uri property and uncomment security.oauth2.resource.jwt.

keyUri property in sample02/src/main/resources/application.properties file. The

updated application.properties file will look like the following.

#security.oauth2.resource.user-info-uri:https://localhost:8443/user

security.oauth2.resource.jwt.keyUri: https://localhost:8443/oauth/token_key

Here the value of security.oauth2.resource.jwt.keyUri points to the public key

corresponding to the private key, which is used to sign the JWT by the authorization

server. It’s an endpoint hosted under the authorization server. If you just type https://

localhost:8443/oauth/token_key on the browser, you will find the public key, as

shown in the following. This is the key the API gateway uses to verify the signature of the

JWT included in the request.

{

 "alg":"SHA256withRSA",

 "value":"-----BEGIN PUBLIC KEY-----\nMIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMI

IBCgKCAQEA+WcBjPsrFvGOwqVJd8vpV+gNx5onTyLjYx864mtIvUxO8D4mwAaYpjXJgsre2dc

XjQ03BOLJdcjY5Nc9Kclea09nhFIEJDG3obwxm9gQw5Op1TShCP30Xqf8b7I738EHDFT6

Chapter 5 Edge Security with an API Gateway

125

qABul7itIxSrz+AqUvj9LSUKEw/cdXrJeu6b71qHd/YiElUIA0fjVwlFctbw7REbi3Sy3nWdm

9yk7M3GIKka77jxw1MwIBg2klfDJgnE72fPkPi3FmaJTJA4+9sKgfniFqdMNfkyLVbOi9E3Dla

oGxEit6fKTI9GR1SWX40FhhgLdTyWdu2z9RS2BOp+3d9WFMTddab8+fd4L2mYCQIDAQ

AB\n-----END PUBLIC KEY-----"

}

Once the changes are made as highlighted earlier, let’s restart the Zuul gateway with

the following command from the sample02 directory.

\> mvn spring-boot:run

Once we have a JWT access token obtained from the OAuth 2.0 authorization server,

in the same way as we did before, with the following cURL command, we can access the

protected resource. Make sure the value of $TOKEN is replaced appropriately with a valid

JWT access token.

\> curl -k -H "Authorization: Bearer $TOKEN" https://localhost:9443/

order/11

{"customer_id":"101021","order_id":"11","payment_method":{"card_type":"VISA",

"expiration":"01/22","name":"John Doe","billing_address":"201, 1st Street,

San Jose, CA"},"items":[{"code":"101","qty":1},{"code":"103","qty":5}],"

shipping_address":"201, 1st Street, San Jose, CA"}

�The Role of a Web Application Firewall (WAF)
As we discussed before, an API gateway is a policy enforcement point (PEP), which

centrally enforces authentication, authorization, and throttling policies. In a public-

facing API deployment, an API gateway is not just sufficient. We also need a web

application firewall (WAF) sitting in front of the API gateway (see Figure 5-4). The

primary role of a WAF is to protect your API deployment from distributed denial of

service (DDoS) attacks—do threat detection and message validation against OpenAPI

Specification (OAS) along with known threats identified by Open Web Application

Security Project (OWASP). Gartner (one of the leading analyst firms) predicts that by

2020, more than 50% of public-facing web applications will be protected by cloud-based

WAF service platforms such Akamai, Imperva, Cloudflare, Amazon Web Services, and so

on, up from less than 20% in December 2018.

Chapter 5 Edge Security with an API Gateway

126

�Summary
•	 OAuth 2.0 is the de facto standard for securing APIs.

•	 The API gateway is the most common pattern in securing APIs in a

production deployment. In other words, it’s the entry point to your

API deployment.

•	 There are many open source and proprietary products out there,

which implement the API gateway pattern, which we commonly

identify as API gateways.

•	 An OAuth 2.0 bearer token can be a reference token or self-contained

token. A reference token is an arbitrary string. An attacker can carry

out a brute-force attack to guess the token. The authorization server

must pick the right length and use other possible measures to prevent

brute forcing.

Figure 5-4.  A web application firewall (WAF) intercepts all the traffic coming into
an API deployment

Chapter 5 Edge Security with an API Gateway

127

•	 When the resource server gets an access token, which is a reference

token, then to validate the token, it has to talk to the authorization

server (or the token issuer). When the access token is a JWT, the

resource server can validate the token by itself, by verifying the

signature of the JWT.

•	 Zuul is an API gateway that provides dynamic routing, monitoring,

resiliency, security, and more. It is acting as the front door to Netflix’s

server infrastructure, handling traffic from all Netflix users around

the world.

•	 In a public-facing API deployment, an API gateway is not just

sufficient. We also need a web application firewall (WAF) sitting in

front of the API gateway.

Chapter 5 Edge Security with an API Gateway

129
© Prabath Siriwardena 2020
P. Siriwardena, Advanced API Security, https://doi.org/10.1007/978-1-4842-2050-4_6

CHAPTER 6

OpenID Connect (OIDC)
OpenID Connect provides a lightweight framework for identity interactions in a RESTful

manner and was ratified as a standard by its membership on February 26, 2014.1 It was

developed under the OpenID Foundation and has its roots in OpenID, but was greatly

affected by OAuth 2.0. OpenID Connect is the most popular Identity Federation protocol

at the time of this writing. Most of the applications developed in the last few years

are supporting OpenID Connect. Ninety-two percent of the 8 billion+ authentication

requests Microsoft Azure AD handled in May 2018 were from OpenID Connect–enabled

applications.

�From OpenID to OIDC
OpenID, which followed in the footsteps of Security Assertion Markup Language (SAML)

in 2005, revolutionized web authentication. Brad Fitzpatrick, the founder of LiveJournal,

came up with the initial idea of OpenID. The basic principle behind both OpenID and

SAML (discussed in Chapter 12) is the same. Both can be used to facilitate web single

sign-on (SSO) and cross-domain identity federation. OpenID is more community-

friendly, user centric, and decentralized. Yahoo! added OpenID support in January 2008,

MySpace announced its support for OpenID in July of the same year, and Google joined

the party in October. By December 2009, there were more than 1 billion OpenID-enabled

accounts. It was a huge success as a web SSO protocol.

OpenID and OAuth 1.0 address two different concerns. OpenID is about

authentication, whereas OAuth 1.0 is about delegated authorization. As both of these

standards were gaining popularity in their respective domains, there was an interest in

1�The announcement by the OpenID Foundation regarding the launch of the OpenID Connect
standard is available at http://bit.ly/31PowsS

http://bit.ly/31PowsS

130

combining them, so that it would be possible to authenticate a user and also get a token

to access resources on his or her behalf in a single step.

The Google Step 2 project was the first serious effort in this direction. It introduced

an OpenID extension for OAuth, which basically takes OAuth-related parameters in the

OpenID request/response. The same people who initiated the Google Step 2 project later

brought it into the OpenID Foundation.

OpenID has gone through three generations to date. OpenID 1.0/1.1/2.0 was the first

generation, and the OpenID extension for OAuth is the second. OpenID Connect (OIDC)

is the third generation of OpenID. Yahoo!, Google, and many other OpenID providers

discontinued their support for OpenID around mid-2015 and migrated to OpenID

Connect.

OPENID CONNECT IS NOT OPENID, THIS IS HOW OPENID WORKS!

How many profiles do you maintain today at different web sites? Perhaps you have one on

Yahoo!, one on Facebook, one on Google, and so on. Each time you update your mobile number

or home address, either you have to update all your profiles or you risk outdating most of your

profiles. OpenID solves the problem of scattered profiles on different websites. With OpenID,

you maintain your profile only at your OpenID provider, and all the other sites become OpenID

relying parties. These relying parties communicate with your OpenID provider to obtain your

information.

Each time you try to log in to a relying party website, you’re redirected to your OpenID

provider. At the OpenID provider, you have to authenticate and approve the request from the

relying party for your attributes. Upon approval, you’re redirected back to the relying party

with the requested attributes. This goes beyond simple attribute sharing to facilitate

decentralized SSO.

With SSO, you only log in once at the OpenID provider. That is, when a relying party redirects

you to the OpenID provider for the first time. After that, for the subsequent redirects by other

relying parties, your OpenID provider doesn’t ask for credentials but uses the authenticated

session you created before at the OpenID provider. This authenticated session is maintained

either by a cookie until the browser is closed or with persistent cookies. Figure 6-1 illustrates

how OpenID works.

Chapter 6 OpenID Connect (OIDC)

131

The end user initiates the OpenID flow by typing his or her OpenID on the relying party web

site (step 1). An OpenID is a unique URL or an XRI (Extensible Resource Identifier). For example,

http://prabath.myopenid.com is an OpenID. Once the user types his or her OpenID,

the relying party has to do a discovery based on it to find out the corresponding OpenID

provider (step 2). The relying party performs an HTTP GET on the OpenID (which is a URL) to

get back the HTML text behind it. For example, if you view the source that is behind http://

prabath.myopenid.com, you’ll see the following tag (MyOpenID was taken down some

years back). This is exactly what the relying party sees during the discovery phase. This tag

indicates which OpenID provider is behind the provided OpenID:

<link rel="openid2.provider" href="http://www.myopenid.com/server" />

OpenID has another way of identifying the OpenID provider, other than asking for an OpenID

from the end user. This is known as directed identity, and Yahoo!, Google, and many other

OpenID providers used it. If a relying party uses directed identity, it already knows who the

OpenID provider is, so a discovery phase isn’t needed. The relying party lists the set of OpenID

providers it supports, and the user has to pick which one it wants to authenticate against.

Once the OpenID provider is discovered, the next step depends on the type of the relying party.

If it’s a smart relying party, then it executes step 3 in Figure 6-1 to create an association with

Figure 6-1.  OpenID protocol flow

Chapter 6 OpenID Connect (OIDC)

http://prabath.myopenid.com
http://prabath.myopenid.com
http://prabath.myopenid.com

132

the OpenID provider. During the association, a shared secret key is established between the

OpenID provider and the relying party. If a key is already established between the two parties,

this step is skipped, even for a smart relying party. A dumb relying party always ignores step 3.

In step 5, the user is redirected to the discovered OpenID provider. In step 6, the user has to

authenticate and approve the attribute request from the relying party (steps 6 and 7). Upon

approval, the user is redirected back to the relying party (step 9). A key only known to the

OpenID provider and the corresponding relying party signs this response from the OpenID

provider. Once the relying party receives the response, if it’s a smart relying party, it validates

the signature itself. The key shared during the association phase should sign the message.

If it’s a dumb relying party, it directly talks to the OpenID provider in step 10 (not a browser

redirect) and asks to validate the signature. The decision is passed back to the relying party in

step 11, and that concludes the OpenID protocol flow.

�Amazon Still Uses OpenID 2.0
Few have noticed that Amazon still uses (at the time of this writing) OpenID for user

authentication. Check it out yourself: go to www.amazon.com, and click the Sign In button.

Then observe the browser address bar. You see something similar to the following, which

is an OpenID authentication request:

https://www.amazon.com/ap/signin?_encoding=UTF8

 &openid.assoc_handle=usflex

 &openid.claimed_id=

 http://specs.openid.net/auth/2.0/identifier_select

 &openid.identity=

 http://specs.openid.net/auth/2.0/identifier_select

 &openid.mode=checkid_setup

 &openid.ns=http://specs.openid.net/auth/2.0

 &openid.ns.pape=

 http://specs.openid.net/extensions/pape/1.0

 &openid.pape.max_auth_age=0

 &openid.return_to=https://www.amazon.com/gp/yourstore/home

Chapter 6 OpenID Connect (OIDC)

http://www.amazon.com

133

�Understanding OpenID Connect
OpenID Connect was built on top of OAuth 2.0. It introduces an identity layer on top of

OAuth 2.0. This identity layer is abstracted into an ID token, which is JSON Web Token

(JWT), and we talk about JWT in detail in Chapter 7. An OAuth 2.0 authorization server

that supports OpenID Connect returns an ID token along with the access token.

OpenID Connect is a profile built on top of OAuth 2.0. OAuth talks about access

delegation, while OpenID Connect talks about authentication. In other words, OpenID

Connect builds an identity layer on top of OAuth 2.0.

Authentication is the act of confirming the truth of an attribute of a datum or

entity. If I say I am Peter, I need to prove that. I can prove that with something I know,

something I have, or with something I am. Once proven who I claim I am, then the

system can trust me. Sometimes systems do not just want to identify end users just by

the name. Name could help to identify uniquely—but how about other attributes? Before

you get through the border control, you need to identify yourself—by name, by picture,

and also by fingerprints and eye retina. Those are validated in real time against the data

from the VISA office, which issued the VISA for you. That check will make sure it’s the

same person who claimed to have the VISA that enters into the country.

That is proving your identity. Proving your identity is authentication. Authorization is

about what you can do or your capabilities.

You could prove your identity at the border control by name, by picture, and also by

fingerprints and eye retina—but it's your visa that decides what you can do. To enter into

the country, you need to have a valid visa that has not expired. A valid visa is not a part of

your identity, but a part of what you can do. What you can do inside the country depends

on the visa type. What you do with a B1 or B2 visa differs from what you can do with an

L1 or L2 visa. That is authorization.

OAuth 2.0 is about authorization—not about authentication. With OAuth 2.0, the

client does not know about the end user (only exception is resource owner password

credentials grant type, which we discussed in Chapter 4). It simply gets an access token

to access a resource on behalf of the user. With OpenID Connect, the client will get an ID

token along with the access token. ID token is a representation of the end user’s identity.

What does it mean by securing an API with OpenID Connect? Or is it totally meaningless?

OpenID Connect is at the application level or at the client level—not at the API level or

at the resource server level. OpenID Connect helps client or the application to find out

who the end user is, but for the API that is meaningless. The only thing API expects is the

Chapter 6 OpenID Connect (OIDC)

134

access token. If the resource owner or the API wants to find who the end user is, it has to

query the authorization server or rely on a self-contained access token (which is a JWT).

�Anatomy of the ID Token
The ID token is the primary add-on to OAuth 2.0 to support OpenID Connect. It’s a JSON

Web Token (JWT) that transports authenticated user information from the authorization

server to the client application. Chapter 7 delves deeper into JWT. The structure of the ID

token is defined by the OpenID Connect specification. The following shows a sample ID

token:

 {

 "iss":"https://auth.server.com",

 "sub":"prabath@apache.org",

 "aud":"67jjuyuy7JHk12",

 "nonce":"88797jgjg32332",

 "exp":1416283970,

 "iat":1416281970,

 "auth_time":1311280969,

 "acr":"urn:mace:incommon:iap:silver",

 "amr":"password",

 "azp":"67jjuyuy7JHk12"

 }

Let’s examine the definition of each attribute:

•	 iss: The token issuer’s (authorization server or identity provider)

identifier in the format of an HTTPS URL with no query parameters

or URL fragments. In practice, most of the OpenID Provider

implementations or products let you configure an issuer you want—

and also this is mostly being used as an identifier, rather than a URL.

This is a required attribute in the ID token.

•	 sub: The token issuer or the asserting party issues the ID token

for a particular entity, and the claims set embedded into the ID

token normally represents this entity, which is identified by the sub

parameter. The value of the sub parameter is a case-sensitive string

value and is a required attribute in the ID token.

Chapter 6 OpenID Connect (OIDC)

135

•	 aud: The audience of the token. This can be an array of identifiers, but

it must have the OAuth client ID in it; otherwise, the client ID should

be added to the azp parameter, which we discuss later in this section.

Prior to any validation check, the OpenID client must first see

whether the particular ID token is issued for its use and if not should

reject immediately. In other words, you need to check whether the

value of the aud attribute matches with the OpenID client’s identifier.

The value of the aud parameter can be a case-sensitive string value or

an array of strings. This is a required attribute in the ID token.

•	 nonce: A new parameter introduced by the OpenID Connect

specification to the initial authorization grant request. In addition

to the parameters defined in OAuth 2.0, the client application

can optionally include the nonce parameter. This parameter was

introduced to mitigate replay attacks. The authorization server must

reject any request if it finds two requests with the same nonce value.

If a nonce is present in the authorization grant request, then the

authorization server must include the same value in the ID token.

The client application must validate the value of the nonce once it

receives the ID token from the authorization server.

•	 exp: Each ID token carries an expiration time. The recipient of the ID

token must reject it, if that token has expired. The issuer can decide

the value of the expiration time. The value of the exp parameter is

calculated by adding the expiration time (from the token issued time)

in seconds to the time elapsed from 1970-01-01T00:00:00Z UTC to

the current time. If the token issuer’s clock is out of sync with the

recipient’s clock (irrespective of their time zone), then the expiration

time validation could fail. To fix that, each recipient can add a couple

of minutes as the clock skew during the validation process. This is a

required attribute in the ID token.

•	 iat: The iat parameter in the ID token indicates the issued

time of the ID token as calculated by the token issuer. The value

of the iat parameter is the number of seconds elapsed from

1970-01-01T00:00:00Z UTC to the current time, when the token is

issued. This is a required attribute in the ID token.

Chapter 6 OpenID Connect (OIDC)

136

•	 auth_time: The time at which the end user authenticates with

the authorization server. If the user is already authenticated, then

the authorization server won’t ask the user to authenticate back.

How a given authorization server authenticates the user, and

how it manages the authenticated session, is outside the scope of

OpenID Connect. A user can create an authenticated session with

the authorization server in the first login attempt from a different

application, other than the OpenID client application. In such cases,

the authorization server must maintain the authenticated time and

include it in the parameter auth_time. This is an optional parameter.

•	 acr: Stands for authentication context class reference. The value of this

parameter must be understood by both the authorization server and the

client application. It gives an indication of the level of authentication.

For example, if the user authenticates with a long-lived browser cookie,

it is considered as level 0. OpenID Connect specification does not

recommend using an authentication level of 0 to access any resource of

any monetary value. This is an optional parameter.

•	 amr: Stands for authentication method references. It indicates how the

authorization server authenticates the user. It may consist of an array

of values. Both the authorization server and the client application

must understand the value of this parameter. For example, if the user

authenticates at the authorization server with username/password

and with one-time passcode over SMS, the value of amr parameter

must indicate that. This is an optional parameter.

•	 azp: Stands for authorized party. It’s needed when there is one audience

(aud) and its value is different from the OAuth client ID. The value of

azp must be set to the OAuth client ID. This is an optional parameter.

Note  The authorization server must sign the ID token, as defined in JSON
Web Signature (JWS) specification. Optionally, it can also be encrypted. Token
encryption should follow the rules defined in the JSON Web Encryption (JWE)
specification. If the ID token is encrypted, it must be signed first and then
encrypted. This is because signing the encrypted text is questionable in many legal
entities. Chapters 7 and 8 talk about JWT, JWS, and JWE.

Chapter 6 OpenID Connect (OIDC)

137

OPENID CONNECT WITH WSO2 IDENTITY SERVER

In this exercise, you see how to obtain an OpenID Connect ID token along with an OAuth 2.0

access token. Here we run the WSO2 Identity Server as the OAuth 2.0 authorization server.

Note  WSO2 Identity Server is a free, open source identity and entitlement
management server, released under the Apache 2.0 license. At the time of this
writing, the latest released version is 5.9.0 and runs on Java 8.

Follow these steps to register your application as a service provider in WSO2 Identity Server

and then log in to your application via OpenID Connect:

	1.	 Download WSO2 Identity Server 5.9.0 from http://wso2.com/products/

identity-server/, set up the JAVA_HOME environment variable, and start the

server from the wso2server.sh/wso2server.bat file in the WSO2_IS_HOME/

bin directory. If the WSO2 Identity Server 5.9.0 isn’t available from the main

download page, you can find it at http://wso2.com/more-downloads/

identity-server/.

	2.	 By default, the WSO2 Identity Server starts on HTTPS port 9443.

	3.	 Log in to the Identity Server running at https://localhost:9443 with its

default username and password (admin/admin).

	4.	 To get an OAuth 2.0 client ID and a client secret for a client application, you

need to register it as a service provider on the OAuth 2.0 authorization server.

Choose Main ➤ Service Providers ➤ Add. Enter a name, say, oidc-app, and

click Register.

	5.	 Choose Inbound Authentication Configuration ➤ OAuth and OpenID Connect

Configuration ➤ Configure.

	6.	 Uncheck all the grant types except Code. Make sure the OAuth version is

set to 2.0.

	7.	 Provide a value for the Callback Url text box—say, https://localhost/

callback—and click Add.

	8.	 Copy the values of OAuth Client Key and the OAuth Client Secret.

Chapter 6 OpenID Connect (OIDC)

http://wso2.com/products/identity-server/
http://wso2.com/products/identity-server/
http://wso2.com/more-downloads/identity-server/
http://wso2.com/more-downloads/identity-server/

138

	9.	 You use cURL here instead of a full-blown web application. First you need to

get an authorization code. Copy the following URL, and paste it into a browser.

Replace the values of client_id and redirect_uri appropriately. Note that

here we are passing the openid as the value of the scope parameter in the

request. This is a must to use OpenID Connect. You’re directed to a login page

where you can authenticate with admin/admin and then approve the request

by the client:

https://localhost:9443/oauth2/authorize?

 response_type=code&scope=openid&

 client_id=NJ0LXcfdOW20EvD6DU0l0p01u_Ya&

 redirect_uri=https://localhost/callback

	10.	 Once approved, you’re redirected back to the redirect_uri with the

authorization code, as shown here. Copy the value of the authorization code:

https://localhost/callback?code=577fc84a51c2aceac2a9e2f723f0f47f

	11.	N ow you can exchange the authorization code from the previous step

for an ID token and an access token. Replace the value of client_id,

client_secret, code, and redirect_uri appropriately. The value of –u is

constructed as client_id:client_secret:

curl -v -X POST --basic

 -u NJ0LXcfdOW2...:EsSP5GfYliU96MQ6...

 �-H "Content-Type: application/x-www-form-urlencoded;

charset=UTF-8" -k

 -d "client_id=NJ0LXcfdOW20EvD6DU0l0p01u_Ya&

 grant_type=authorization_code&

 code=577fc84a51c2aceac2a9e2f723f0f47f&

 redirect_uri=https://localhost/callback"

 https://localhost:9443/oauth2/token

This results in the following JSON response:

{

 "scope":"openid",

 "token_type":"bearer",

 "expires_in":3299,

 "refresh_token":"1caf88a1351d2d74093f6b84b8751bb",

Chapter 6 OpenID Connect (OIDC)

139

 "id_token":"eyJhbGciOiJub25......",

 "access_token":"6cc611211a941cc95c0c5caf1385295"

}

	12.	 The value of id_token is base64url-encoded. Once it’s base64url-decoded, it

looks like the following. Also you can use an online tool like https://jwt.io

to decode the ID token:

{

 "alg":"none",

 "typ":"JWT"

}.

{

 "exp":1667236118,

 "azp":"NJ0LXcfdOW20EvD6DU0l0p01u_Ya",

 "sub":"admin@carbon.super",

 "aud":"NJ0LXcfdOW20EvD6DU0l0p01u_Ya",

 "iss":"https://localhost:9443/oauth2endpoints/token",

 "iat":1663636118

}

�OpenID Connect Request
The ID token is the heart of OpenID Connect, but that isn’t the only place where it deviates

from OAuth 2.0. OpenID Connect introduced some optional parameters to the OAuth 2.0

authorization grant request. The previous exercise didn’t use any of those parameters.

Let’s examine a sample authorization grant request with all the optional parameters:

https://localhost:9443/oauth2/authorize?response_type=code&

 scope=openid&

 client_id=NJ0LXcfdOW20EvD6DU0l0p01u_Ya&

 redirect_uri= https://localhost/callback&

 response_mode=.....&

 nonce=.....&

 display=....&

 prompt=....&

 max_age=.....&

 ui_locales=.....&

Chapter 6 OpenID Connect (OIDC)

https://jwt.io

140

 id_token_hint=.....&

 login_hint=.....&

 acr_value=.....

Let’s review the definition of each attribute:

•	 response_mode: Determines how the authorization server sends back

the parameters in the response. This is different from the response_

type parameter, defined in the OAuth 2.0 core specification. With the

response_type parameter in the request, the client indicates whether

it expects a code or a token. In the case of an authorization code

grant type, the value of response_type is set to code, whereas with an

implicit grant type, the value of response_type is set to token. The

response_mode parameter addresses a different concern. If the value

of response_mode is set to query, the response parameters are sent

back to the client as query parameters appended to the redirect_

uri; and if the value is set to fragment, then the response parameters

are appended to the redirect_uri as a URI fragment.

•	 nonce: Mitigates replay attacks. The authorization server must

reject any request if it finds two requests with the same nonce value.

If a nonce is present in the authorization grant request, then the

authorization server must include the same value in the ID token.

The client application must validate the value of the nonce once it

receives the ID token from the authorization server.

•	 display: Indicates how the client application expects the

authorization server to display the login page and the user consent

page. Possible values are page, popup, touch, and wap.

•	 prompt: Indicates whether to display the login or the user consent

page at the authorization server. If the value is none, then neither the

login page nor the user consent page should be presented to the user.

In other words, it expects the user to have an authenticated session

at the authorization server and a preconfigured user consent. If the

value is login, the authorization server must reauthenticate the user.

If the value is consent, the authorization server must display the user

consent page to the end user. The select_account option can be

Chapter 6 OpenID Connect (OIDC)

141

used if the user has multiple accounts on the authorization server.

The authorization server must then give the user an option to select

from which account he or she requires attributes.

•	 max_age: In the ID token there is a parameter that indicates the time

of user authentication (auth_time). The max_age parameter asks the

authorization server to compare that value with max_age. If it’s less

than the gap between the current time and max_age (current time-

max_age), the authorization server must reauthenticate the user.

When the client includes the max_age parameter in the request, the

authorization server must include the auth_time parameter in the

ID token.

•	 ui_locales: Expresses the end user’s preferred language for the user

interface.

•	 id_token_hint: An ID token itself. This could be an ID token

previously obtained by the client application. If the token is

encrypted, it has to be decrypted first and then encrypted back by

the public key of the authorization server and then placed into the

authentication request. If the value of the parameter prompt is set to

none, then the id_token_hint could be present in the request, but it

isn’t a requirement.

•	 login_hint: This is an indication of the login identifier that the end

user may use at the authorization server. For example, if the client

application already knows the email address or phone number of the

end user, this could be set as the value of the login_hint. This helps

provide a better user experience.

•	 acr_values: Stands for authentication context reference values.

It includes a space-separated set of values that indicates the

level of authentication required at the authorization server. The

authorization server may or may not respect these values.

Note  All OpenID Connect authentication requests must have a scope parameter
with the value openid.

Chapter 6 OpenID Connect (OIDC)

142

�Requesting User Attributes
OpenID Connect defines two ways to request user attributes. The client application can

either use the initial OpenID Connect authentication request to request attributes or else

later talk to a UserInfo endpoint hosted by the authorization server. If it uses the initial

authentication request, then the client application must include the requested claims in

the claims parameter as a JSON message. The following authorization grant request asks

to include the user’s email address and the given name in the ID token:

https://localhost:9443/oauth2/authorize?

 response_type=code&

 scope=openid&

 client_id=NJ0LXcfdOW20EvD6DU0l0p01u_Ya&

 redirect_uri=https://localhost/callback&

 claims={ "id_token":

 {

 "email": {"essential": true},

 "given_name": {"essential": true},

 }

 }

Note  The OpenID Connect core specification defines 20 standard user claims.
These identifiers should be understood by all of the authorization servers and client
applications that support OpenID Connect. The complete set of OpenID Connect
standard claims is defined in Section 5.1 of the OpenID Connect core specification,
available at http://openid.net/specs/openid-connect-core-1_0.html.

The other approach to request user attributes is via the UserInfo endpoint. The

UserInfo endpoint is an OAuth 2.0-protected resource on the authorization server. Any

request to this endpoint must carry a valid OAuth 2.0 token. Once again, there are two

ways to get user attributes from the UserInfo endpoint. The first approach is to use the

OAuth access token. With this approach, the client must specify the corresponding

attribute scope in the authorization grant request. The OpenID Connect specification

defines four scope values to request attributes: profile, email, address, and phone. If

the scope value is set to profile, that implies that the client requests access to a set of

Chapter 6 OpenID Connect (OIDC)

http://openid.net/specs/openid-connect-core-1_0.html

143

attributes, which includes name, family_name, given_name, middle_name, nickname,

preferred_username, profile, picture, website, gender, birthdate, zoneinfo, locale, and

updated_at.

The following authorization grant request asks permission to access a user’s email

address and phone number:

Note  The UserInfo endpoint must support both HTTP GET and POST. All
communication with the UserInfo endpoint must be over Transport Layer
Security (TLS).

https://localhost:9443/oauth2/authorize?

 response_type=code

 &scope=openid phone email

 &client_id=NJ0LXcfdOW20EvD6DU0l0p01u_Ya

 &redirect_uri=https://localhost/callback

This results in an authorization code response. Once the client application has

exchanged the authorization code for an access token, by talking to the token endpoint

of the authorization server, it can use the access token it received to talk to the UserInfo

endpoint and get the user attributes corresponding to the access token:

GET /userinfo HTTP/1.1

Host: auth.server.com

Authorization: Bearer SJHkhew870hooi90

The preceding request to the UserInfo endpoint results in the following JSON

message, which includes the user’s email address and phone number:

HTTP/1.1 200 OK

Content-Type: application/json

 {

 "phone": "94712841302",

 "email": "joe@authserver.com",

 }

Chapter 6 OpenID Connect (OIDC)

144

The other way to retrieve user attributes from the UserInfo endpoint is through the

claims parameter. The following example shows how to retrieve the email address of the

user by talking to the OAuth-protected UserInfo endpoint:

POST /userinfo HTTP/1.1

Host: auth.server.com

Authorization: Bearer SJHkhew870hooi90

claims={ "userinfo":

 {

 "email": {"essential": true}

 }

 }

Note  Signing or encrypting the response message from the UserInfo endpoint
isn’t a requirement. If it’s signed or encrypted, then the response should be
wrapped in a JWT, and the Content-Type of the response should be set to
application/jwt.

�OpenID Connect Flows
All the examples in this chapter so far have used an authorization code grant type to

request an ID token—but it isn’t a requirement. In fact OpenID Connect, independent

of OAuth 2.0 grant types, defined a set of flows: code flow, implicit flow, and hybrid flow.

Each of the flows defines the value of the response_type parameter. The response_type

parameter always goes with the request to the authorize endpoint (in contrast the grant_

type parameter always goes to the token endpoint), and it defines the expected type of

response from the authorize endpoint. If it is set to code, the authorize endpoint of the

authorization server must return a code, and this flow is identified as the authorization

code flow in OpenID Connect.

For implicit flow under the context of OpenID Connect, the value of response_type

can be either id_token or id_token token (separated by a space). If it’s just id_token,

then the authorization server returns an ID token from the authorize endpoint; if it

includes both, then both the ID token and the access token are included in the response.

Chapter 6 OpenID Connect (OIDC)

145

The hybrid flow can use different combinations. If the value of response_type is set

to code id_token (separated by a space), then the response from the authorize endpoint

includes the authorization code as well as the id_token. If it’s code token (separated

by a space), then it returns the authorization code along with an access token (for

the UserInfo endpoint). If response_type includes all three (code token id_token),

then the response includes an id_token, an access token, and the authorization code.

Table 6-1 summarizes this discussion.

Table 6-1.  OpenID Connect Flows

Type of Flow response_type Tokens Returned

Authorization code code Authorization code

Implicit id_token ID token

Implicit id_token token ID token and access token

Hybrid code id_token ID token and authorization code

Hybrid code id_token token ID token, authorization code, and access token

Hybrid code token Access token and authorization code

Note  When id_token is being used as the response_type in an OpenID
Connect flow, the client application never has access to an access token. In such a
scenario, the client application can use the scope parameter to request attributes,
and those are added to the id_token.

�Requesting Custom User Attributes
As discussed before, OpenID Connect defines 20 standard claims. These claims can

be requested via the scope parameter or through the claims parameter. The only way

to request custom-defined claims is through the claims parameter. The following is a

sample OpenID Connect request that asks for custom-defined claims:

https://localhost:9443/oauth2/authorize?response_type=code

 &scope=openid

 &client_id=NJ0LXcfdOW20EvD6DU0l0p01u_Ya

Chapter 6 OpenID Connect (OIDC)

146

 &redirect_uri=https://localhost/callback

 &claims=

 { "id_token":

 {

 "http://apress.com/claims/email": {"essential": true},

 "http://apress.com/claims/phone": {"essential": true},

 }

 }

�OpenID Connect Discovery
At the beginning of the chapter, we discussed how OpenID relying parties discover

OpenID providers through the user-provided OpenID (which is a URL). OpenID Connect

Discovery addresses the same concern, but in a different way (see Figure 6-2). In order to

authenticate users via OpenID Connect, the OpenID Connect relying party first needs to

figure out what authorization server is behind the end user. OpenID Connect utilizes the

WebFinger (RFC 7033) protocol for this discovery.

Note  The OpenID Connect Discovery specification is available at http://
openid.net/specs/openid-connect-discovery-1_0.html. If a given
OpenID Connect relying party already knows who the authorization server is, it can
simply ignore the discovery phase.

Chapter 6 OpenID Connect (OIDC)

http://openid.net/specs/openid-connect-discovery-1_0.html
http://openid.net/specs/openid-connect-discovery-1_0.html

147

Let’s assume a user called Peter visits an OpenID Connect relying party and wants

to log in (see Figure 6-2). To authenticate Peter, the OpenID Connect relying party

should know the authorization server corresponding to Peter. To discover this, Peter

has to provide to the relying party some unique identifier that relates to him. Using this

identifier, the relying party should be able to find the WebFinger endpoint corresponding

to Peter.

Let’s say that the identifier Peter provides is his email address, peter@apress.com

(step 1). The relying party should be able to find enough detail about the WebFinger

endpoint using Peter’s email address. In fact, the relying party should be able to derive

the WebFinger endpoint from the email address. The relying party can then send a

query to the WebFinger endpoint to find out which authorization server (or the identity

provider) corresponds to Peter (steps 2 and 3). This query is made according to the

WebFinger specification. The following shows a sample WebFinger request for peter@

apress.com:

GET /.well-known/webfinger?resource=acct:peter@apress.com

&rel=http://openid.net/specs/connect/1.0/issuer HTTP/1.1

Host: apress.com

Figure 6-2.  OpenID Connect Discovery

Chapter 6 OpenID Connect (OIDC)

148

The WebFinger request has two key parameters: resource and rel. The resource

parameter should uniquely identify the end user, whereas the value of rel is fixed for

OpenID Connect and must be equal to http://openid.net/specs/connect/1.0/

issuer. The rel (relation-type) parameter acts as a filter to determine the OpenID

Connect issuer corresponding to the given resource.

A WebFinger endpoint can accept many other discovery requests for different

services. If it finds a matching entry, the following response is returned to the OpenID

Connect relying party. The value of the OpenID identity provider or the authorization

server endpoint is included in the response:

HTTP/1.1 200 OK

Access-Control-Allow-Origin: *
Content-Type: application/jrd+json

{

 "subject":"acct:peter@apress.com",

 "links":[

 {

 "rel":"http://openid.net/specs/connect/1.0/issuer",

 "href":"https://auth.apress.com"

 }

]

}

Note N either the WebFinger nor the OpenID Connect Discovery specification
mandates the use of the email address as the resource or the end user identifier. It
must be a URI that conforms to the URI definition in RFC 3986, which can be used
to derive the WebFinger endpoint. If the resource identifier is an email address,
then it must be prefixed with acct. 

The acct is a URI scheme as defined in http://tools.ietf.org/html/
draft-ietf-appsawg-acct-uri-07. When the acct URI scheme is being
used, everything after the @ sign is treated as the hostname. The WebFinger
hostname is derived from an email address as per the acct URI scheme, which is
the part after the @ sign. 

Chapter 6 OpenID Connect (OIDC)

http://openid.net/specs/connect/1.0/issuer
http://openid.net/specs/connect/1.0/issuer
http://tools.ietf.org/html/draft-ietf-appsawg-acct-uri-07
http://tools.ietf.org/html/draft-ietf-appsawg-acct-uri-07

149

If a URL is being used as the resource identifier, the hostname (and port number)
of the URL is treated as the WebFinger hostname. If the resource identifier is
https://auth.server.com:9443/prabath, then the WebFinger hostname is
auth.server.com:9443.

Once the endpoint of the identity provider is discovered, that concludes the role of

WebFinger. Yet you don’t have enough data to initiate an OpenID Connect authentication

request with the corresponding identity provider. You can find more information about

the identity provider by talking to its metadata endpoint, which must be a well-known

endpoint (steps 4 and 5 in Figure 6-2). After that, for the client application to talk to the

authorization server, it must be a registered client application. The client application

can talk to the client registration endpoint of the authorization server (steps 6 and 7) to

register itself—and then can access the authorize and token endpoints (steps 8 and 9).

Note  Both the WebFinger and OpenID Connect Discovery specifications use
the Defining Well-Known URIs (http://tools.ietf.org/html/rfc5785)
specification to define endpoint locations. The RFC 5785 specification introduces
a path prefix called /.well-known/ to identify well-known locations. Most of the
time, these locations are metadata endpoints or policy endpoints. 

The WebFinger specification has the well-known endpoint /.well-known/
webfinger. The OpenID Connect Discovery specification has the well-known
endpoint for OpenID provider configuration metadata, /.well-known/openid-
configuration.

�OpenID Connect Identity Provider Metadata
An OpenID Connect identity provider, which supports metadata discovery, should host

its configuration at the endpoint /.well-known/openid-configuration. In most cases,

this is a nonsecured endpoint, which can be accessed by anyone. An OpenID Connect

relying party can send an HTTP GET to the metadata endpoint to retrieve the OpenID

provider configuration details as follows:

GET /.well-known/openid-configuration HTTP/1.1

Host: auth.server.com

Chapter 6 OpenID Connect (OIDC)

https://auth.server.com:9443/prabath
http://tools.ietf.org/html/rfc5785

150

This results in the following JSON response, which includes everything an OpenID

Connect relying party needs to know to talk to the OpenID provider or the OAuth

authorization server:

HTTP/1.1 200 OK

Content-Type: application/json

{

 "issuer":"https://auth.server.com",

 "authorization_endpoint":"https://auth.server.com/connect/authorize",

 "token_endpoint":"https://auth.server.com/connect/token",

 �"token_endpoint_auth_methods_supported":["client_secret_basic", "private_

key_jwt"],

 "token_endpoint_auth_signing_alg_values_supported":["RS256", "ES256"],

 �"userinfo_endpoint":"https://auth.sever.com/connect/userinfo",

 "check_session_iframe":"https://auth.server.com/connect/check_session",

 "end_session_endpoint":"https://auth.server.com/connect/end_session",

 "jwks_uri":"https://auth.server.com/jwks.json",

 "registration_endpoint":"https://auth.server.com/connect/register",

 �"scopes_supported":["openid", "profile", "email", "address", "phone",

"offline_access"],

 �"response_types_supported":["code", "code id_token", "id_token", "token

id_token"],

 �"acr_values_supported":["urn:mace:incommon:iap:silver", "urn:mace:incommo

n:iap:bronze"],

 "subject_types_supported":["public", "pairwise"],

 "userinfo_signing_alg_values_supported":["RS256", "ES256", "HS256"],

 "userinfo_encryption_alg_values_supported":["RSA1_5", "A128KW"],

 "userinfo_encryption_enc_values_supported":["A128CBC-HS256", "A128GCM"],

 "id_token_signing_alg_values_supported":["RS256", "ES256", "HS256"],

 "id_token_encryption_alg_values_supported":["RSA1_5", "A128KW"],

 "id_token_encryption_enc_values_supported":["A128CBC-HS256", "A128GCM"],

 "request_object_signing_alg_values_supported":["none", "RS256", "ES256"],

 "display_values_supported":["page", "popup"],

 "claim_types_supported":["normal", "distributed"],

 "claims_supported":["sub", "iss", "auth_time", "acr",

 "name", "given_name", "family_name", "nickname",

Chapter 6 OpenID Connect (OIDC)

151

 "profile", "picture", "website","email",

 "email_verified",

 "locale", "zoneinfo",

 "http://example.info/claims/groups"],

 �"claims_parameter_supported":true,

 �"service_documentation":"http://auth.server.com/connect/service_

documentation.html",

 "ui_locales_supported":["en-US", "fr-CA"]

}

Note  If the endpoint of the discovered identity provider is https://auth.
server.com, then the OpenID provider metadata should be available at
https://auth.server.com/.well-known/openid-configuration.
If the endpoint is https://auth.server.com/openid, then the metadata
endpoint is https://auth.server.com/openid/.well-known/openid-
configuration.

�Dynamic Client Registration
Once the OpenID provider endpoint is discovered via WebFinger (and all the metadata

related to it through OpenID Connect Discovery), the OpenID Connect relying party still

needs to have a client ID and a client secret (not under the implicit grant type) registered

at the OpenID provider to initiate the authorization grant request or the OpenID

Connect authentication request. The OpenID Connect Dynamic Client Registration

specification2 facilitates a mechanism to register dynamically OpenID Connect relying

parties at the OpenID provider.

The response from the OpenID provider metadata endpoint includes the endpoint

for client registration under the parameter registration_endpoint. To support dynamic

client registrations, this endpoint should accept open registration requests, with no

authentication requirements.

2�http://openid.net/specs/openid-connect-registration-1_0.html

Chapter 6 OpenID Connect (OIDC)

https://auth.server.com
https://auth.server.com
https://auth.server.com/.well-known/openid-configuration
https://auth.server.com/openid
https://auth.server.com/openid/.well-known/openid-configuration
https://auth.server.com/openid/.well-known/openid-configuration
http://openid.net/specs/openid-connect-registration-1_0.html

152

To fight against denial of service (DoS) attacks, the endpoint can be protected with

rate limits or with a web application firewall (WAF). To initiate client registration, the

OpenID relying party sends an HTTP POST message to the registration endpoint with its

own metadata.

The following is a sample client registration request:

POST /connect/register HTTP/1.1

Content-Type: application/json

Accept: application/json

Host: auth.server.com

{

"application_type":"web",

"redirect_uris":["https://app.client.org/callback","https://app.client.org/

callback2"],

"client_name":"Foo",

"logo_uri":"https://app.client.org/logo.png",

"subject_type":"pairwise",

"sector_identifier_uri":"https://other.client.org /file_of_redirect_uris.

json",

"token_endpoint_auth_method":"client_secret_basic",

"jwks_uri":"https://app.client.org/public_keys.jwks",

"userinfo_encrypted_response_alg":"RSA1_5",

"userinfo_encrypted_response_enc":"A128CBC-HS256",

"contacts":["prabath@wso2.com", "prabath@apache.org"],

"request_uris":["https://app.client.org/rf.txt#qpXaRLh_

n93TTR9F252ValdatUQvQiJi5BDub2BeznA"]

}

In response, the OpenID Connect provider or the authorization server sends back

the following JSON message. It includes a client_id and a client_secret:

HTTP/1.1 201 Created

Content-Type: application/json

Cache-Control: no-store

Pragma: no-cache

{

"client_id":"Gjjhj678jhkh89789ew",

Chapter 6 OpenID Connect (OIDC)

153

"client_secret":"IUi989jkjo_989klkjuk89080kjkuoikjkUIl",

"client_secret_expires_at":2590858900,

"registration_access_token":"this.is.an.access.token.value.ffx83",

"registration_client_uri":"https://auth.server.com/connect/register?client_

id=Gjjhj678jhkh89789ew ",

"token_endpoint_auth_method":"client_secret_basic",

"application_type": "web",

"redirect_uris":["https://app.client.org/callback","https://app.client.org/

callback2"],

"client_name":"Foo",

"logo_uri":"https://client.example.org/logo.png",

"subject_type":"pairwise",

"sector_identifier_uri":"https://other.client.org/file_of_redirect_uris.

json",

"jwks_uri":"https://app.client.org/public_keys.jwks",

"userinfo_encrypted_response_alg":"RSA1_5",

"userinfo_encrypted_response_enc":"A128CBC-HS256",

"contacts":["prabath@wso2.com", "prabath@apache.org"],

"request_uris":["https://app.client.org/rf.txt#qpXaRLh_

n93TTR9F252ValdatUQvQiJi5BDub2BeznA"]

}

Once the OpenID Connect relying party obtains a client ID and a client secret, it

concludes the OpenID Connect Discovery phase. The relying party can now initiate the

OpenID Connect authentication request.

Note  Section 2.0 of the OpenID Connect Dynamic Client Registration
specification lists all the attributes that can be included in an OpenID Connect
client registration request: http://openid.net/specs/openid-connect-
registration-1_0.html.

�OpenID Connect for Securing APIs
So far, you have seen a detailed discussion about OpenID Connect. But in reality, how

will it help you in securing APIs? The end users can use OpenID Connect to authenticate

Chapter 6 OpenID Connect (OIDC)

http://openid.net/specs/openid-connect-registration-1_0.html
http://openid.net/specs/openid-connect-registration-1_0.html

154

into web applications, mobile applications, and much more. Nonetheless, why would

you need OpenID Connect to secure a headless API? At the end of the day, all the APIs

are secured with OAuth 2.0, and you need to present an access token to talk to the

API. The API (or the policy enforcement component) validates the access token by

talking to the authorization server. Why would you need to pass an ID token to an API?

OAuth is about delegated authorization, whereas OpenID Connect is about

authentication. An ID token is an assertion about your identity, that is, a proof of your

identity. It can be used to authenticate into an API. As of this writing, no HTTP binding is

defined for JWT.

The following example suggests passing the JWT assertion (or the ID token) to a

protected API as an access token in the HTTP Authorization header. The ID token, or the

signed JWT, is base64-url-encoded in three parts. Each part is separated by a dot (.). The

first part up to the first dot is the JWT header. The second part is the JWT body. The third

part is the signature. Once the JWT is obtained by the client application, it can place it in

the HTTP Authorization header in the manner shown here:

POST /employee HTTP/1.1

Content-Type: application/json

Accept: application/json

Host: resource.server.com

Authorization: Bearer eyJhbGciOiljiuo98kljlk2KJl.

IUojlkoiaos298jkkdksdosiduIUiopo.oioYJ21sajds

{

 "empl_no":"109082",

 "emp_name":"Peter John",

 "emp_address":“Mountain View, CA, USA”

}

To validate the JWT, the API (or the policy enforcement component) has to extract

the JWT assertion from the HTTP Authorization header, base64-url-decode it, and

validate the signature to see whether it’s signed by a trusted issuer. In addition, the

claims in the JWT can be used for authentication and authorization.

Chapter 6 OpenID Connect (OIDC)

155

Note  When an OpenID Connect identity provider issues an ID token, it adds the
aud parameter to the token to indicate the audience of the token. This can be an
array of identifiers. 

When using ID tokens to access APIs, a URI known to the API should also be added
to the aud parameter. Currently this can’t be requested in the OpenID Connect
authentication request, so it must be set out of band at the OpenID Connect identity
provider.

�Summary
•	 OpenID Connect was built on top of OAuth 2.0. It introduces an

identity layer on top of OAuth 2.0. This identity layer is abstracted

into an ID token, which is a JSON Web Token (JWT).

•	 OpenID Connect evolved from OpenID to an OAuth 2.0 profile.

•	 The OpenID Connect Dynamic Client Registration specification

facilitates a mechanism to register dynamically OpenID Connect

relying parties at the OpenID provider.

•	 OpenID Connect defines two ways to request user attributes.

The client application can either use the initial OpenID Connect

authentication request to request attributes or else later talk to the

UserInfo endpoint hosted by the authorization server.

•	 OpenID Connect utilizes the WebFinger protocol in its discovery

process along with OpenID Connect dynamic client registration and

identity provider metadata configuration.

•	 An OpenID Connect identity provider, which supports metadata

discovery, should host its configuration at the endpoint /.well-

known/openid-configuration.

Chapter 6 OpenID Connect (OIDC)

157
© Prabath Siriwardena 2020
P. Siriwardena, Advanced API Security, https://doi.org/10.1007/978-1-4842-2050-4_7

CHAPTER 7

Message-Level Security
with JSON Web Signature
JavaScript Object Notation (JSON) provides a way of exchanging data in a language-

neutral, text-based, and lightweight manner. It was originally derived from the

ECMAScript programming language. JSON and XML are the most commonly used data

exchange formats for APIs. Observing the trend over the last few years, it’s quite obvious

that JSON is replacing XML. Most of the APIs out there have support for JSON, and some

support both JSON and XML. XML-only APIs are quite rare.

�Understanding JSON Web Token (JWT)
JSON Web Token (JWT) defines a container to transport data between interested parties

in JSON. It became an IETF standard in May 2015 with the RFC 7519. The OpenID

Connect specification, which we discussed in Chapter 6, uses a JWT to represent the ID

token. Let’s examine an OpenID Connect ID token returned from the Google API, as an

example (to understand JWT, you do not need to know about OpenID Connect):

eyJhbGciOiJSUzI1NiIsImtpZCI6Ijc4YjRjZjIzNjU2ZGMzOTUzNjRmMWI2YzAyOTA3

NjkxZjJjZGZmZTEifQ.eyJpc3MiOiJhY2NvdW50cy5nb29nbGUuY29tIiwic3ViIjoiMT

EwNTAyMjUxMTU4OTIwMTQ3NzMyIiwiYXpwIjoiODI1MjQ5ODM1NjU5LXRlOHF

nbDcwMWtnb25ub21ucDRzcXY3ZXJodTEyMTFzLmFwcHMuZ29vZ2xldXNlcmNvb

nRlbnQuY29tIiwiZW1haWwiOiJwcmFiYXRoQHdzbzIuY29tIiwiYXRfaGFzaCI6InpmO

DZ2TnVsc0xCOGdGYXFSd2R6WWciLCJlbWFpbF92ZXJpZmllZCI6dHJ1ZSwiYXVkI

joiODI1MjQ5ODM1NjU5LXRlOHFnbDcwMWtnb25ub21ucDRzcXY3ZXJodTEyMTFz

LmFwcHMuZ29vZ2xldXNlcmNvbnRlbnQuY29tIiwiaGQiOiJ3c28yLmNvbSIsImlhdCI6

MTQwMTkwODI3MSwiZXhwIjoxNDAxOTEyMTcxfQ.TVKv-pdyvk2gW8sGsCbsnkq

158

srS0T-H00xnY6ETkIfgIxfotvFn5IwKm3xyBMpy0FFe0Rb5Ht8AEJV6PdWyxz8rMgX

2HROWqSo_RfEfUpBb4iOsq4W28KftW5H0IA44VmNZ6zU4YTqPSt4TPhyFC9fP2D

_Hg7JQozpQRUfbWTJI

Note  Way before JWT, in 2009, Microsoft introduced Simple Web Token (SWT).1
It is neither JSON nor XML. It defined its own token format to carry out a set
of HTML form–encoded name/value pairs. Both JWTs and SWTs define a way
to carry claims between applications. In SWT, both the claim names and claim
values are strings, while in JWT claim names are strings, but claim values can be
any JSON type. Both of these token types offer cryptographic protection for their
content: SWTs with HMAC SHA256 and JWTs with a choice of algorithms, including
signature, MAC, and encryption algorithms. Even though SWT was developed as a
proposal for IETF, it never became an IETF proposed standard. Dick Hardt was the
editor of the SWT specification, who also played a major role later in building the
OAuth WRAP specification, which we discuss in Appendix B.

�JOSE Header
The preceding JWT has three main elements. Each element is base64url-encoded and

separated by a period (.). Appendix E explains how base64url encoding works in detail.

Let’s identify each individual element in the JWT. The first element of the JWT is called

the JavaScript Object Signing and Encryption (JOSE) header. The JOSE header lists out

the properties related to the cryptographic operations applied on the JWT claims set

(which we explain later in this chapter). The following is the base64url-encoded JOSE

header of the preceding JWT:

eyJhbGciOiJSUzI1NiIsImtpZCI6Ijc4YjRjZjIzNjU2ZGMzOTUzNjRmMWI2YzAyOTA3

NjkxZjJjZGZmZTEifQ

To make the JOSE header readable, we need to base64url-decode it. The following

shows the base64url-decoded JOSE header, which defines two attributes, the algorithm

(alg) and key identifier (kid).

{"alg":"RS256","kid":"78b4cf23656dc395364f1b6c02907691f2cdffe1"}

1�Simple Web Token, http://msdn.microsoft.com/en-us/library/hh781551.aspx

Chapter 7 Message-Level Security with JSON Web Signature

http://msdn.microsoft.com/en-us/library/hh781551.aspx

159

Both the alg and kid parameters are not defined in the JWT specification, but

in the JSON Web Signature (JWS) specification. Let’s briefly identify here what these

parameters mean and will discuss in detail when we explain JWS. The JWT specification

is not bound to any specific algorithm. All applicable algorithms are defined under

the JSON Web Algorithms (JWA) specification, which is the RFC 7518. Section 3.1 of

RFC 7518 defines all possible alg parameter values for a JWS token. The value of the

kid parameter provides an indication or a hint about the key, which is used to sign the

message. Looking at the kid, the recipient of the message should know where to look up

for the key and find it. The JWT specification only defines two parameters in the JOSE

header; the following lists out those:

•	 typ (type): The typ parameter is used to define the media type of the

complete JWT. A media type is an identifier, which defines the format

of the content, transmitted over the Internet. There are two types of

components that process a JWT: the JWT implementations and JWT

applications. Nimbus2 is a JWT implementation in Java. The Nimbus

library knows how to build and parse a JWT. A JWT application can

be anything, which uses JWTs internally. A JWT application uses a

JWT implementation to build or parse a JWT. The typ parameter

is just another parameter for the JWT implementation. It will not

try to interpret the value of it, but the JWT application would. The

typ parameter helps JWT applications to differentiate the content

of the JWT when the values that are not JWTs could also be present

in an application data structure along with a JWT object. This is an

optional parameter, and if present for a JWT, it is recommended to

use JWT as the media type.

•	 cty (content type): The cty parameter is used to define the structural

information about the JWT. It is only recommended to use this

parameter in the case of a nested JWT. The nested JWTs are discussed

in Chapter 8, and the definition of the cty parameter is further

explained there.

2�Nimbus JWT Java implementation, http://connect2id.com/products/nimbus-jose-jwt

Chapter 7 Message-Level Security with JSON Web Signature

http://connect2id.com/products/nimbus-jose-jwt

160

�JWT Claims Set
The second element of the JWT is known as either the JWT payload or the JWT claims

set. It is a JSON object, which carries the business data. The following is the base64url-

encoded JWT claims set of the preceding JWT (which is returned from the Google API);

it includes information about the authenticated user:

eyJpc3MiOiJhY2NvdW50cy5nb29nbGUuY29tIiwic3ViIjoiMTEwNTAyMjUxMTU4OT

IwMTQ3NzMyIiwiYXpwIjoiODI1MjQ5ODM1NjU5LXRlOHFnbDcwMWtnb25ub21uc

DRzcXY3ZXJodTEyMTFzLmFwcHMuZ29vZ2xldXNlcmNvbnRlbnQuY29tIiwiZW1ha

WwiOiJwcmFiYXRoQHdzbzIuY29tIiwiYXRfaGFzaCI6InpmODZ2TnVsc0xCOGdGYX

FSd2R6WWciLCJlbWFpbF92ZXJpZmllZCI6dHJ1ZSwiYXVkIjoiODI1MjQ5ODM1NjU

5LXRlOHFnbDcwMWtnb25ub21ucDRzcXY3ZXJodTEyMTFzLmFwcHMuZ29vZ2xld

XNlcmNvbnRlbnQuY29tIiwiaGQiOiJ3c28yLmNvbSIsImlhdCI6MTQwMTkwODI3MS

wiZXhwIjoxNDAxOTEyMTcxfQ

To make the JWT claims set readable, we need to base64url-decode it. The following

shows the base64url-decoded JWT claims set. Whitespaces can be explicitly retained

while building the JWT claims set—no canonicalization is required before base64url-

encoding. Canonicalization is the process of converting different forms of a message

into a single standard form. This is used mostly before signing XML messages. In XML,

the same message can be represented in different forms to carry the same meaning.

For example, <vehicles><car></car></vehicles> and <vehicles><car/></vehicles> are

equivalent in meaning, but have two different canonical forms. Before signing an XML

message, you should follow a canonicalization algorithm to build a standard form.

{

 "iss":"accounts.google.com",

 "sub":"110502251158920147732",

 �"azp":"825249835659-te8qgl701kgonnomnp4sqv7erhu1211s.apps.

googleusercontent.com",

 "email":"prabath@wso2.com",

 "at_hash":"zf86vNulsLB8gFaqRwdzYg",

 "email_verified":true,

 �"aud":"825249835659-te8qgl701kgonnomnp4sqv7erhu1211s.apps.

googleusercontent.com",

Chapter 7 Message-Level Security with JSON Web Signature

161

 "hd":"wso2.com",

 "iat":1401908271,

 "exp":1401912171

}

The JWT claims set represents a JSON object whose members are the claims asserted

by the JWT issuer. Each claim name within a JWT must be unique. If there are duplicate

claim names, then the JWT parser could either return a parsing error or just return back

the claims set with the very last duplicate claim. JWT specification does not explicitly

define what claims are mandatory and what are optional. It’s up to each application of JWT

to define mandatory and optional claims. For example, the OpenID Connect specification,

which we discussed in detail in Chapter 6, defines the mandatory and optional claims.

The JWT specification defines three classes of claims: registered claims, public claims,

and private claims. The registered claims are registered in the Internet Assigned Numbers

Authority (IANA) JSON Web Token Claims registry. Even though these claims are treated

as registered claims, the JWT specification doesn’t mandate their usage. It’s totally up to

the other specifications which are built on top of JWT to decide which are mandatory and

which aren’t. For example, in OpenID Connect specification, iss is a mandatory claim.

The following lists out the registered claims set as defined by the JWT specification:

•	 iss (issuer): The issuer of the JWT. This is treated as a case-sensitive string

value. Ideally, this represents the asserting party of the claims set. If Google

issues the JWT, then the value of iss would be accounts.google.com. This

is an indication to the receiving party who the issuer of the JWT is.

•	 sub (subject): The token issuer or the asserting party issues the JWT for

a particular entity, and the claims set embedded into the JWT normally

represents this entity, which is identified by the sub parameter. The

value of the sub parameter is a case-sensitive string value.

•	 aud (audience): The token issuer issues the JWT to an intended

recipient or a list of recipients, which is represented by the aud

parameter. The recipient or the recipient list should know how to

parse the JWT and validate it. Prior to any validation check, it must

first see whether the particular JWT is issued for its use and if not

should reject immediately. The value of the aud parameter can

be a case-sensitive string value or an array of strings. The token

issuer should know, prior to issuing the token, who the intended

Chapter 7 Message-Level Security with JSON Web Signature

162

recipient (or the recipients) of the token is, and the value of the aud

parameter must be a pre-agreed value between the token issuer

and the recipient. In practice, one can also use a regular expression

to validate the audience of the token. For example, the value of the

aud in the token can be *.apress.com, while each recipient under

the apress.com domain can have its own aud values: foo.apress.

com, bar.apress.com likewise. Instead of finding an exact match for

the aud value, each recipient can just check whether the aud value

matches the regular expression: (?:[a-zA-Z0-9]*|*).apress.com.

This will make sure that any recipient can use a JWT, which is having

any subdomain of apress.com.

•	 exp (expiration time): Each JWT carries an expiration time. The

recipient of the JWT token must reject it, if that token has expired.

The issuer can decide the value of the expiration time. The JWT

specification does not recommend or provide any guidelines on

how to decide the best token expiration time. It’s a responsibility of

the other specifications, which use JWT internally to provide such

recommendations. The value of the exp parameter is calculated by

adding the expiration time (from the token issued time) in seconds

to the time elapsed from 1970-01-01T00:00:00Z UTC to the current

time. If the token issuer’s clock is out of sync with the recipient’s clock

(irrespective of their time zone), then the expiration time validation

could fail. To fix that, each recipient can add a couple of minutes as

the clock skew during the validation process.

•	 nbf (not before): The recipient of the token should reject it, if the

value of the nbf parameter is greater than the current time. The JWT

is not good enough to use prior to the value indicated in the nbf

parameter. The value of the nbf parameter is the number of seconds

elapsed from 1970-01-01T00:00:00Z UTC to the not before time.

•	 iat (issued at): The iat parameter in the JWT indicates the issued

time of the JWT as calculated by the token issuer. The value

of the iat parameter is the number of seconds elapsed from

1970-01-01T00:00:00Z UTC to the current time, when the token is

issued.

Chapter 7 Message-Level Security with JSON Web Signature

163

•	 jti (JWT ID): The jti parameter in the JWT is a unique token

identifier generated by the token issuer. If the token recipient accepts

JWTs from multiple token issuers, then this value may not be unique

across all the issuers. In that case, the token recipient can maintain

the token uniqueness by maintaining the tokens under the token

issuer. The combination of the token issuer identifier + the jti

should produce a unique token identifier.

The public claims are defined by the other specifications, which are built on top

of JWT. To avoid any collisions in such cases, names should either be registered in the

IANA JSON Web Token Claims registry or defined in a collision-resistant manner with a

proper namespace. For example, the OpenID Connect specification defines its own set

of claims, which are included inside the ID token (the ID token itself is a JWT), and those

claims are registered in the IANA JSON Web Token Claims registry.

The private claims should indeed be private and shared only between a given

token issuer and a selected set of recipients. These claims should be used with caution,

because there is a chance for collision. If a given recipient accepts tokens from multiple

token issuers, then the semantics of the same claim may be different from one issuer to

another, if it is a private claim.

�JWT Signature
The third part of the JWT is the signature, which is also base64url-encoded. The

cryptographic parameters related to the signature are defined in the JOSE header. In

this particular example, Google uses RSASSA-PKCS1-V1_53 with the SHA256 hashing

algorithm, which is expressed by value of the alg parameter in the JOSE header: RS256.

The following shows the signature element of the JWT returned back from Google. The

signature itself is not human readable—so there is no point of trying to base64url-decode

the following:

TVKv-pdyvk2gW8sGsCbsnkqsrS0TH00xnY6ETkIfgIxfotvFn5IwKm3xyBMpy0

FFe0Rb5Ht8AEJV6PdWyxz8rMgX2HROWqSo_RfEfUpBb4iOsq4W28KftW5

H0IA44VmNZ6zU4YTqPSt4TPhyFC-9fP2D_Hg7JQozpQRUfbWTJI

3�RSASSA-PKCS1-V1_5 is defined in RFC 3447: www.ietf.org/rfc/rfc3447.txt. It uses the
signer’s RSA private key to sign the message in the way defined by PKCS#1.

Chapter 7 Message-Level Security with JSON Web Signature

http://www.ietf.org/rfc/rfc3447.txt

164

GENERATING A PLAINTEXT JWT

The plaintext JWT doesn’t have a signature. It has only two parts. The value of the alg

parameter in the JOSE header must be set to none. The following Java code generates

a plaintext JWT. You can download the complete Java sample as a Maven project from

https://github.com/apisecurity/samples/tree/master/ch07/sample01.

public static String buildPlainJWT() {

// build audience restriction list.

List<String> aud = new ArrayList<String>();

aud.add("https://app1.foo.com");

aud.add("https://app2.foo.com");

Date currentTime = new Date();

// create a claims set.

JWTClaimsSet jwtClaims = new JWTClaimsSet.Builder().

 // set the value of the issuer.

 issuer("https://apress.com").

 �// set the subject value - JWT belongs to

// this subject.

 subject("john").

 // set values for audience restriction.

 audience(aud).

 // expiration time set to 10 minutes.

 �expirationTime(new Date(new Date().getTime()

+ 1000 * 60 * 10)).

 ��// set the valid from time to current time.

 notBeforeTime(currentTime).

 // set issued time to current time.

 issueTime(currentTime).

 �// set a generated UUID as the JWT

// identifier.

 jwtID(UUID.randomUUID().toString()).

 build();

Chapter 7 Message-Level Security with JSON Web Signature

https://github.com/apisecurity/samples/tree/master/ch07/sample01

165

// create plaintext JWT with the JWT claims.

PlainJWT plainJwt = new PlainJWT(jwtClaims);

// serialize into string.

String jwtInText = plainJwt.serialize();

// print the value of the JWT.

System.out.println(jwtInText);

return jwtInText;

}

To build and run the program, execute the following Maven command from the ch07/

sample01 directory.

\> mvn test -Psample01

The preceding code produces the following output, which is a JWT. If you run the code again

and again, you may not get the same output as the value of the currentTime variable

changes every time you run the program:

eyJhbGciOiJub25lIn0.eyJleHAiOjE0MDIwMzcxNDEsInN1YiI6ImpvaG4iLCJuYm

YiOjE0MDIwMzY1NDEsImF1ZCI6WyJodHRwczpcL1wvYXBwMS5mb28uY29tIi

wiaHR0cHM6XC9cL2FwcDIuZm9vLmNvbSJdLCJpc3MiOiJodHRwczpcL1wvYX

ByZXNzLmNvbSIsImp0aSI6IjVmMmQzM2RmLTEyNDktNGIwMS04MmYxLWJl

MjliM2NhOTY4OSIsImlhdCI6MTQwMjAzNjU0MX0.

The following Java code shows how to parse a base64url-encoded JWT. This code would

ideally run at the JWT recipient end:

public static PlainJWT parsePlainJWT() throws ParseException {

 // get JWT in base64url-encoded text.

 String jwtInText = buildPlainJWT();

 // build a plain JWT from the bade64url-encoded text.

 PlainJWT plainJwt = PlainJWT.parse(jwtInText);

 // print the JOSE header in JSON.

 System.out.println(plainJwt.getHeader().toString());

 // print JWT body in JSON.

 System.out.println(plainJwt.getPayload().toString());

 return plainJwt;

}

Chapter 7 Message-Level Security with JSON Web Signature

166

This code produces the following output, which includes the parsed JOSE header and the

payload:

{"alg":"none"}

{

 "exp":1402038339,

 "sub":"john",

 "nbf":1402037739,

 "aud":["https:\/\/app1.foo.com","https:\/\/app2.foo.com"],

 "iss":"https:\/\/apress.com",

 "jti":"1e41881f-7472-4030-8132-856ccf4cbb25",

 "iat":1402037739

}

JOSE WORKING GROUP

Many working groups within the IETF work directly with JSON, including the OAuth working

group and the System for Cross-domain Identity Management (SCIM) working group. The SCIM

working group is building a provisioning standard based on JSON. Outside the IETF, the OASIS

XACML working group is working on building a JSON profile for XACML 3.0.

The OpenID Connect specification, which is developed under the OpenID Foundation, is also

heavily based on JSON. Due to the rise of standards built around JSON and the heavy usage of

JSON for data exchange in APIs, it has become absolutely necessary to define how to secure

JSON messages at the message level. The use of Transport Layer Security (TLS) only provides

confidentiality and integrity at the transport layer. The JOSE working group, formed under the

IETF, has the goal of standardizing integrity protection and confidentiality as well as the format

for keys and algorithm identifiers to support interoperability of security services for protocols

that use JSON. JSON Web Signature (RFC 7515), JSON Web Encryption (RFC 7516), JSON

Web Key (RFC 7517), and JSON Web Algorithms (RFC 7518) are four IETF proposed standards,

which were developed under the JOSE working group.

Chapter 7 Message-Level Security with JSON Web Signature

167

�JSON Web Signature (JWS)
The JSON Web Signature (JWS) specification, developed under the IETF JOSE working

group, represents a message or a payload, which is digitally signed or MACed (when

a hashing algorithm is used with HMAC). A signed message can be serialized in two

ways by following the JWS specification: the JWS compact serialization and the JWS

JSON serialization. The Google OpenID Connect example discussed at the beginning of

this chapter uses JWS compact serialization. In fact, the OpenID Connect specification

mandates to use JWS compact serialization and JWE compact serialization whenever

necessary (we discuss JWE in Chapter 8). The term JWS token is used to refer to the

serialized form of a payload, following any of the serialization techniques defined in the

JWS specification.

Note  JSON Web Tokens (JWTs) are always serialized with the JWS compact
serialization or the JWE compact serialization. We discuss JWE (JSON Web
Encryption) in Chapter 8.

�JWS Compact Serialization
JWS compact serialization represents a signed JSON payload as a compact URL-safe

string. This compact string has three main elements separated by periods (.): the JOSE

header, the JWS payload, and the JWS signature (see Figure 7-1). If you use compact

serialization against a JSON payload, then you can have only a single signature, which is

computed over the complete JOSE header and JWS payload.

�JOSE Header

The JWS specification introduces 11 parameters to the JOSE header. The following

lists out the parameters carried in a JOSE header, which are related to the message

Figure 7-1.  A JWS token with compact serialization

Chapter 7 Message-Level Security with JSON Web Signature

168

signature. Out of all those parameters, the JWT specification only defines the typ and

cty parameters (as we discussed before); the rest is defined by the JWS specification.

The JOSE header in a JWS token carries all the parameters required by the JWS token

recipient to properly validate its signature:

•	 alg (algorithm): The name of the algorithm, which is used to sign

the JSON payload. This is a required attribute in the JOSE header.

Failure to include this in the header will result in a token parsing

error. The value of the alg parameter is a string, which is picked from

the JSON Web Signature and Encryption Algorithms registry defined

by the JSON Web Algorithms (JWA) specification. If the value of

the alg parameter is not picked from the preceding registry, then it

should be defined in a collision-resistant manner, but that won’t give

any guarantee that the particular algorithm is identified by all JWS

implementations. It’s always better to stick to the algorithms defined

in the JWA specification.

•	 jku: The jku parameter in the JOSE header carries a URL, which

points to a JSON Web Key (JWK) set. This JWK set represents a

collection of JSON-encoded public keys, where one of the keys

is used to sign the JSON payload. Whatever the protocol used to

retrieve the key set should provide the integrity protection. If keys are

retrieved over HTTP, then instead of plain HTTP, HTTPS (or HTTP

over TLS) should be used. We discuss Transport Layer Security (TLS)

in detail in Appendix C. The jku is an optional parameter.

•	 jwk: The jwk parameter in JOSE header represents the public key

corresponding to the key that is used to sign the JSON payload. The

key is encoded as per the JSON Web Key (JWK) specification. The jku

parameter, which we discussed before, points to a link that holds a

set of JWKs, while the jwk parameter embeds the key into the JOSE

header itself. The jwk is an optional parameter.

•	 kid: The kid parameter of the JOSE header represents an identifier

for the key that is used to sign the JSON payload. Using this identifier,

the recipient of the JWS should be able locate the key. If the token

issuer uses the kid parameter in the JOSE header to let the recipient

know about the signing key, then the corresponding key should be

Chapter 7 Message-Level Security with JSON Web Signature

169

exchanged “somehow” between the token issuer and the recipient

beforehand. How this key exchange happens is out of the scope of

the JWS specification. If the value of the kid parameter refers to a

JWK, then the value of this parameter should match the value of the

kid parameter in the JWK. The kid is an optional parameter in the

JOSE header.

•	 x5u: The x5u parameter in the JOSE header is very much similar to

the jku parameter, which we discussed before. Instead of pointing

to a JWK set, the URL here points to an X.509 certificate or a chain

of X.509 certificates. The resource pointed by the URL must hold

the certificate or the chain of certificates in the PEM-encoded form.

Each certificate in the chain must appear between the delimiters4:

-----BEGIN CERTIFICATE----- and -----END CERTIFICATE-----. The

public key corresponding to the key used to sign the JSON payload

should be the very first entry in the certificate chain, and the rest is

the certificates of intermediate CAs (certificate authority) and the

root CA. The x5u is an optional parameter in the JOSE header.

•	 x5c: The x5c parameter in the JOSE header represents the X.509

certificate (or the certificate chain), which corresponds to the private

key, which is used to sign the JSON payload. This is similar to the jwk

parameter we discussed before, but in this case, instead of a JWK, it’s

an X.509 certificate (or a chain of certificates). The certificate or the

certificate chain is represented in a JSON array of certificate value

strings. Each element in the array should be a base64-encoded DER

PKIX certificate value. The public key corresponding to the key used

to sign the JSON payload should be the very first entry in the JSON

array, and the rest is the certificates of intermediate CAs (certificate

authority) and the root CA. The x5c is an optional parameter in the

JOSE header.

4�The Internet IP Security PKI Profile of IKEv1/ISAKMP, IKEv2, and PKIX (RFC 4945) defines the
delimiters for X.509 certificates under Section 6.1, https://tools.ietf.org/html/rfc4945

Chapter 7 Message-Level Security with JSON Web Signature

https://tools.ietf.org/html/rfc4945

170

•	 x5t: The x5t parameter in the JOSE header represents the base64url-

encoded SHA-1 thumbprint of the X.509 certificate corresponding

to the key used to sign the JSON payload. This is similar to the kid

parameter we discussed before. Both these parameters are used

to locate the key. If the token issuer uses the x5t parameter in the

JOSE header to let the recipient know about the signing key, then the

corresponding key should be exchanged “somehow” between the

token issuer and the recipient beforehand. How this key exchange

happens is out of the scope of the JWS specification. The x5t is an

optional parameter in the JOSE header.

•	 x5t#s256: The x5t#s256 parameter in the JOSE header represents

the base64url-encoded SHA256 thumbprint of the X.509 certificate

corresponding to the key used to sign the JSON payload. The only

difference between x5t#s256 and the x5t is the hashing algorithm.

The x5t#s256 is an optional parameter in the JOSE header.

•	 typ: The typ parameter in the JOSE header is used to define the

media type of the complete JWS. There are two types of components

that process a JWS: JWS implementations and JWS applications.

Nimbus5 is a JWS implementation in Java. The Nimbus library

knows how to build and parse a JWS. A JWS application can be

anything, which uses JWS internally. A JWS application uses a

JWS implementation to build or parse a JWS. In this case, the typ

parameter is just another parameter for the JWS implementation. It

will not try to interpret the value of it, but the JWS application would.

The typ parameter will help JWS applications to differentiate the

content when multiple types of objects are present. For a JWS token

using JWS compact serialization and for a JWE token using JWE

compact serialization, the value of the typ parameter is JOSE, and for

a JWS token using JWS JSON serialization and for a JWE token using

JWE JSON serialization, the value is JOSE+JSON. (JWS serialization is

discussed later in this chapter, and JWE serialization is discussed in

Chapter 8). The typ is an optional parameter in the JOSE header.

5�Nimbus JWT Java implementation, http://connect2id.com/products/nimbus-jose-jwt

Chapter 7 Message-Level Security with JSON Web Signature

http://connect2id.com/products/nimbus-jose-jwt

171

•	 cty: The cty parameter in the JOSE header is used to represent

the media type of the secured content in the JWS. It is only

recommended to use this parameter in the case of a nested JWT. The

nested JWT is discussed later in Chapter 8, and the definition of

the cty parameter is further explained there. The cty is an optional

parameter in the JOSE header.

•	 crit: The crit parameter in the JOSE header is used to indicate the

recipient of the JWS that the presence of custom parameters, which

neither defined by the JWS or JWA specifications, in the JOSE header. If

these custom parameters are not understood by the recipient, then the

JWS token will be treated as invalid. The value of the crit parameter

is a JSON array of names, where each entry represents a custom

parameter. The crit is an optional parameter in the JOSE header.

Out of all the 11 parameters defined earlier, 7 talk about how to reference the public

key corresponding to the key, which is used to sign the JSON payload. There are three

ways of referencing a key: external reference, embedded, and key identifier. The jku

and x5u parameters fall under the external reference category. Both of them reference

the key through a URI. The jwk and x5c parameters fall under embedded reference

category. Each one of them defines how to embed the key to the JOSE header itself. The

kid, x5t, and x5t#s256 parameters fall under the key identifier reference category. All

three of them define how to locate the key using an identifier. Then again all the seven

parameters can further divide into two categories based on the representation of the key:

JSON Web Key (JWK) and X.509. The jku, jwk, and kid fall under the JWK category, while

x5u, x5c, x5t, and x5t#s256 fall under the X.509 category. In the JOSE header of a given

JWS token, at a given time, we only need to have one from the preceding parameters.

Note  If any of the jku, jwk, kid, x5u, x5c, x5t, and x5t#s256 are present
in the JOSE header, those must be integrity protected. Failure to do so will let
an attacker modify the key used to sign the message and change the content of
the message payload. After validating the signature of a JWS token, the recipient
application must check whether the key associated with the signature is trusted.
Checking whether the recipient knows the corresponding key can do the trust
validation.

Chapter 7 Message-Level Security with JSON Web Signature

172

The JWS specification does not restrict applications only to use 11 header parameters

defined earlier. There are two ways to introduce new header parameters: public header

names and private header names. Any header parameter that is intended to use in the

public space should be introduced in a collision-resistant manner. It is recommended to

register such public header parameters in the IANA JSON Web Signature and Encryption

Header Parameters registry. The private header parameters are mostly used in a

restricted environment, where both the token issuer and the recipients are well aware

of each other. These parameters should be used with caution, because there is a chance

for collision. If a given recipient accepts tokens from multiple token issuers, then the

semantics of the same parameter may be different from one issuer to another, if it is a

private header. In either case, whether it’s a public or a private header parameter, if it is

not defined in the JWS or the JWA specification, the header name should be included in

the crit header parameter, which we discussed before.

�JWS Payload

The JWS payload is the message that needs to be signed. The message can be anything—

need not be a JSON payload. If it is a JSON payload, then it could contain whitespaces

and/or line breaks before or after any JSON value. The second element of the serialized

JWS token carries the base64url-encoded value of the JWS payload.

�JWS Signature

The JWS signature is the digital signature or the MAC, which is calculated over the JWS

payload and the JOSE header. The third element of the serialized JWS token carries the

base64url-encoded value of the JWS signature.

�The Process of Signing (Compact Serialization)
We discussed about all the ingredients that are required to build a JWS token under

compact serialization. The following discusses the steps involved in building a JWS

token. There are three elements in a JWS token; the first element is produced by step 2,

the second element is produced by step 4, and the third element is produced by step 7.

Chapter 7 Message-Level Security with JSON Web Signature

173

	 1.	 Build a JSON object including all the header parameters, which

express the cryptographic properties of the JWS token—this is

known as the JOSE header. As discussed before in this chapter,

under the section “JOSE Header,” the token issuer should

advertise in the JOSE header the public key corresponding to

the key used to sign the message. This can be expressed via any

of these header parameters: jku, jwk, kid, x5u, x5c, x5t, and

x5t#s256.

	 2.	 Compute the base64url-encoded value against the UTF-8

encoded JOSE header from step 1 to produce the first element of

the JWS token.

	 3.	 Construct the payload or the content to be signed—this is known

as the JWS payload. The payload is not necessarily JSON—it can

be any content.

	 4.	 Compute the base64url-encoded value of the JWS payload from

step 3 to produce the second element of the JWS token.

	 5.	 Build the message to compute the digital signature or the

MAC. The message is constructed as ASCII(BASE64URL-

ENCODE(UTF8(JOSE Header)) . BASE64URL-ENCODE(JWS

Payload)).

	 6.	 Compute the signature over the message constructed in step 5,

following the signature algorithm defined by the JOSE header

parameter alg. The message is signed using the private key

corresponding to the public key advertised in the JOSE header.

	 7.	 Compute the base64url-encoded value of the JWS signature

produced in step 6, which is the third element of the serialized

JWS token.

	 8.	 Now we have all the elements to build the JWS token in the

following manner. The line breaks are introduced only for clarity.

BASE64URL(UTF8(JWS Protected Header)).

BASE64URL(JWS Payload).

BASE64URL(JWS Signature)

Chapter 7 Message-Level Security with JSON Web Signature

174

�JWS JSON Serialization
In contrast to the JWS compact serialization, the JWS JSON serialization can produce

multiple signatures over the same JWS payload along with different JOSE header

parameters. The ultimate serialized form under JWS JSON serialization wraps the

signed payload in a JSON object, with all related metadata. This JSON object includes

two top-level elements, payload and signatures, and three subelements under the

signatures element: protected, header, and signature. The following is an example

of a JWS token, which is serialized with JWS JSON serialization. This is neither URL

safe nor optimized for compactness. It carries two signatures over the same payload,

and each signature and the metadata around it are stored as an element in the JSON

array, under the signatures top-level element. Each signature uses a different key to

sign, represented by the corresponding kid header parameter. The JSON serialization

is also useful in selectively signing JOSE header parameters. In contrast, JWS compact

serialization signs the complete JOSE header:

{

"payload":"eyJpc3MiOiJqb2UiLA0KICJleHAiOjEzMDA4MTkzOD",

"signatures":[

 {

 "protected":"eyJhbGciOiJSUzI1NiJ9",

 "header":{"kid":"2014-06-29"},

 "signature":"cC4hiUPoj9Eetdgtv3hF80EGrhuB"

 },

 {

 "protected":"eyJhbGciOiJFUzI1NiJ9",

 "header":{"kid":"e909097a-ce81-4036-9562-d21d2992db0d"},

 "signature":"DtEhU3ljbEg8L38VWAfUAqOyKAM"

 }

]

}

�JWS Payload

The payload top-level element of the JSON object includes the base64url-encoded value

of the complete JWS payload. The JWS payload necessarily need not be a JSON payload, it

can be of any content type. The payload is a required element in the serialized JWS token.

Chapter 7 Message-Level Security with JSON Web Signature

175

�JWS Protected Header

The JWS Protected Header is a JSON object that includes the header parameters

that have to be integrity protected by the signing or MAC algorithm. The protected

parameter in the serialized JSON form represents the base64url-encoded value of the

JWS Protected Header. The protected is not a top-level element of the serialized JWS

token. It is used to define elements in the signatures JSON array and includes the

base64url-encoded header elements, which should be signed. If you base64url-decode

the value of the first protected element in the preceding code snippet, you will see

{"alg":"RS256"}. The protected parameter must be present, if there are any protected

header parameters. There is one protected element for each entry of the signatures

JSON array.

�JWS Unprotected Header

The JWS Unprotected Header is a JSON object that includes the header parameters that

are not integrity protected by the signing or MAC algorithm. The header parameter in the

serialized JSON form represents the base64url-encoded value of the JWS Unprotected

Header. The header is not a top-level parameter of the JSON object. It is used to define

elements in the signatures JSON array. The header parameter includes unprotected

header elements related to the corresponding signature, and these elements are not

signed. Combining both the protected headers and unprotected headers ultimately

derives the JOSE header corresponding to the signature. In the preceding code snippet,

the complete JOSE header corresponding to the first entry in the signatures JSON array

would be {"alg":"RS256", "kid":"2010-12-29"}. The header element is represented

as a JSON object and must be present if there are any unprotected header parameters.

There is one header element for each entry of the signatures JSON array.

�JWS Signature

The signatures parameter of the JSON object includes an array of JSON objects,

where each element includes a signature or MAC (over the JWS payload and JWS

protected header) and the associated metadata. This is a required parameter. The

signature subelement, which is inside each entry of the signatures array, carries the

base64url-encoded value of the signature computed over the protected header elements

(represented by the protected parameter) and the JWS payload. Both the signatures

and signature are required parameters.

Chapter 7 Message-Level Security with JSON Web Signature

176

Note  Even though JSON serialization provides a way to selectively sign JOSE
header parameters, it does not provide a direct way to selectively sign the
parameters in the JWS payload. Both forms of serialization mentioned in the
JWS specification sign the complete JWS payload. There is a workaround for this
using JSON serialization. You can replicate the payload parameters that need to
be signed selectively in the JOSE header. Then with JSON serialization, header
parameters can be selectively signed.

�The Process of Signing (JSON Serialization)
We discussed about all the ingredients that are required to build a JWS token under

JSON serialization. The following discusses the steps involved in building the JWS token.

	 1.	 Construct the payload or the content to be signed—this is known

as the JWS payload. The payload is not necessarily JSON—it can

be any content. The payload element in the serialized JWS token

carries the base64url-encoded value of the content.

	 2.	 Decide how many signatures you would need against the payload

and for each case which header parameters must be signed and

which are not.

	 3.	 Build a JSON object including all the header parameters that are

to be integrity protected or to be signed. In other words, construct

the JWS Protected Header for each signature. The base64url-

encoded value of the UTF-8 encoded JWS Protected Header

will produce the value of the protected subelement inside the

signatures top-level element of the serialized JWS token.

	 4.	 Build a JSON object including all the header parameters that

need not be integrity protected or not be signed. In other words,

construct the JWS Unprotected Header for each signature. This will

produce the header subelement inside the signatures top-level

element of the serialized JWS token.

Chapter 7 Message-Level Security with JSON Web Signature

177

	 5.	 Both the JWS Protected Header and the JWS Unprotected Header

express the cryptographic properties of the corresponding

signature (there can be more than one signature element)—

this is known as the JOSE header. As discussed before in this

chapter, under the section “JOSE Header,” the token issuer should

advertise in the JOSE header the public key corresponding to

the key used to sign the message. This can be expressed via any

of these header parameters: jku, jwk, kid, x5u, x5c, x5t, and

x5t#s256.

	 6.	 Build the message to compute the digital signature or the MAC

against each entry in the signatures JSON array of the serialized

JWS token. The message is constructed as ASCII(BASE64URL-

ENCODE(UTF8(JWS Protected Header)). BASE64URL-

ENCODE(JWS Payload)).

	 7.	 Compute the signature over the message constructed in step

6, following the signature algorithm defined by the header

parameter alg. This parameter can be either inside the JWS

Protected Header or the JWS Unprotected Header. The message

is signed using the private key corresponding to the public key

advertised in the header.

	 8.	 Compute the base64url-encoded value of the JWS signature

produced in step 7, which will produce the value of the signature

subelement inside the signatures top-level element of the

serialized JWS token.

	 9.	 Once all the signatures are computed, the signatures top-level

element can be constructed and will complete the JWS JSON

serialization.

SIGNATURE TYPES

The XML Signature specification, which was developed under W3C, proposes three types of

signatures: enveloping, enveloped, and detached. These three kinds of signatures are only

discussed under the context of XML.

Chapter 7 Message-Level Security with JSON Web Signature

178

With the enveloping signature, the XML content to be signed is inside the signature itself.

That is, inside the <ds:Signature xmlns:ds="http://www.w3.org/2000/09/xmldsig#">

element.

With the enveloped signature, the signature is inside the XML content to be signed. In other

words, the <ds:Signature xmlns:ds="http://www.w3.org/2000/09/xmldsig#">

element is inside the parent element of the XML payload to be signed.

With the detached signature, there is no parent-child relationship between the XML content to

be signed and the corresponding signature. They are detached from each other.

For anyone who is familiar with XML Signature, all the signatures defined in the JWS

specification can be treated as detached signatures.

Note  The XML Signature specification by W3C only talks about signing an XML
payload. If you have to sign any content, then first you need to embed that within
an XML payload and then sign. In contrast, the JWS specification is not just limited
to JSON. You can sign any content with JWS without wrapping it inside a JSON
payload.

GENERATING A JWS TOKEN WITH HMAC-SHA256 WITH A JSON PAYLOAD

The following Java code generates a JWS token with HMAC-SHA256. You can download the

complete Java sample as a Maven project from https://github.com/apisecurity/

samples/tree/master/ch07/sample02.

The method buildHmacSha256SignedJWT() in the code should be invoked by passing a

secret value that is used as the shared key to sign. The length of the secret value must be at

least 256 bits:

public static String buildHmacSha256SignedJSON(String sharedSecretString)

throws JOSEException {

// build audience restriction list.

List<String> aud = new ArrayList<String>();

aud.add("https://app1.foo.com");

aud.add("https://app2.foo.com");

Chapter 7 Message-Level Security with JSON Web Signature

https://github.com/apisecurity/samples/tree/master/ch07/sample02
https://github.com/apisecurity/samples/tree/master/ch07/sample02

179

Date currentTime = new Date();

// create a claims set.

JWTClaimsSet jwtClaims = new JWTClaimsSet.Builder().

 // set the value of the issuer.

 issuer("https://apress.com").

 �// set the subject value - JWT belongs to

// this subject.

 subject("john").

 // set values for audience restriction.

 audience(aud).

 // expiration time set to 10 minutes.

 �expirationTime(new Date(new Date().getTime()

+ 1000 * 60 * 10)).

 �// set the valid from time to current time.

 notBeforeTime(currentTime).

 // set issued time to current time.

 issueTime(currentTime).

 �// set a generated UUID as the JWT

// identifier.

 jwtID(UUID.randomUUID().toString()).

 build();

// create JWS header with HMAC-SHA256 algorithm.

JWSHeader jswHeader = new JWSHeader(JWSAlgorithm.HS256);

// create signer with the provider shared secret.

JWSSigner signer = new MACSigner(sharedSecretString);

// create the signed JWT with the JWS header and the JWT body.

SignedJWT signedJWT = new SignedJWT(jswHeader, jwtClaims);

// sign the JWT with HMAC-SHA256.

signedJWT.sign(signer);

// serialize into base64url-encoded text.

String jwtInText = signedJWT.serialize();

// print the value of the JWT.

System.out.println(jwtInText);

return jwtInText;

}

Chapter 7 Message-Level Security with JSON Web Signature

180

To build and run the program, execute the following Maven command from the ch07/

sample02 directory.

\> mvn test -Psample02

The preceding code produces the following output, which is a signed JSON payload (a JWS).

If you run the code again and again, you may not get the same output as the value of the

currentTime variable changes every time you run the program:

eyJhbGciOiJIUzI1NiJ9.eyJleHAiOjE0MDIwMzkyOTIsInN1YiI6ImpvaG4iLCJuYm

YiOjE0MDIwMzg2OTIsImF1ZCI6WyJodHRwczpcL1wvYXBwMS5mb28uY29tIiw

iaHR0cHM6XC9cL2FwcDIuZm9vLmNvbSJdLCJpc3MiOiJodHRwczpcL1wvYXBy

ZXNzLmNvbSIsImp0aSI6ImVkNjkwN2YwLWRlOGEtNDMyNi1hZDU2LWE5ZmE

5NjA2YTVhOCIsImlhdCI6MTQwMjAzODY5Mn0.3v_pa-QFCRwoKU0RaP7pLOox

T57okVuZMe_A0UcqQ8

The following Java code shows how to validate the signature of a signed JSON message

with HMAC-SHA256. To do that, you need to know the shared secret used to sign the JSON

payload:

public static boolean isValidHmacSha256Signature()

 throws JOSEException, ParseException {

 String sharedSecretString = "ea9566bd-590d-4fe2-a441-d5f240050dbc";

 // get signed JWT in base64url-encoded text.

 String jwtInText = buildHmacSha256SignedJWT(sharedSecretString);

 // create verifier with the provider shared secret.

 JWSVerifier verifier = new MACVerifier(sharedSecretString);

 // create the signed JWS token with the base64url-encoded text.

 SignedJWT signedJWT = SignedJWT.parse(jwtInText);

 // verify the signature of the JWS token.

 boolean isValid = signedJWT.verify(verifier);

 if (isValid) {

 System.out.println("valid JWT signature");

 } else {

 System.out.println("invalid JWT signature");

 }

 return isValid;

}

Chapter 7 Message-Level Security with JSON Web Signature

181

GENERATING A JWS TOKEN WITH RSA-SHA256 WITH A JSON PAYLOAD

The following Java code generates a JWS token with RSA-SHA256. You can download

the complete Java sample as a Maven project from https://github.com/

apisecurity/samples/tree/master/ch07/sample03. First you need to invoke

the method generateKeyPair() and pass the PrivateKey(generateKeyPair().

getPrivateKey()) into the method buildRsaSha256SignedJSON():

public static KeyPair generateKeyPair()

 throws NoSuchAlgorithmException {

 // instantiate KeyPairGenerate with RSA algorithm.

 KeyPairGenerator keyGenerator = KeyPairGenerator.getInstance("RSA");

 // set the key size to 1024 bits.

 keyGenerator.initialize(1024);

 // generate and return private/public key pair.

 return keyGenerator.genKeyPair();

 }

 public static String buildRsaSha256SignedJSON(PrivateKey privateKey)

 throws JOSEException {

 // build audience restriction list.

 List<String> aud = new ArrayList<String>();

 aud.add("https://app1.foo.com");

 aud.add("https://app2.foo.com");

 Date currentTime = new Date();

 // create a claims set.

 JWTClaimsSet jwtClaims = new JWTClaimsSet.Builder().

 // set the value of the issuer.

 issuer("https://apress.com").

 �// set the subject value - JWT belongs to

// this subject.

 subject("john").

 // set values for audience restriction.

 audience(aud).

 // expiration time set to 10 minutes.

 �expirationTime(new Date(new Date().getTime()

+ 1000 * 60 * 10)).

Chapter 7 Message-Level Security with JSON Web Signature

https://github.com/apisecurity/samples/tree/master/ch07/sample03
https://github.com/apisecurity/samples/tree/master/ch07/sample03

182

 // set the valid from time to current time.

 notBeforeTime(currentTime).

 // set issued time to current time.

 issueTime(currentTime).

 �// set a generated UUID as the JWT identifier.

 jwtID(UUID.randomUUID().toString()).

 build();

 // create JWS header with RSA-SHA256 algorithm.

 JWSHeader jswHeader = new JWSHeader(JWSAlgorithm.RS256);

 // create signer with the RSA private key..

 JWSSigner signer = new RSASSASigner((RSAPrivateKey)privateKey);

 // create the signed JWT with the JWS header and the JWT body.

 SignedJWT signedJWT = new SignedJWT(jswHeader, jwtClaims);

 // sign the JWT with HMAC-SHA256.

 signedJWT.sign(signer);

 // serialize into base64-encoded text.

 String jwtInText = signedJWT.serialize();

 // print the value of the JWT.

 System.out.println(jwtInText);

 return jwtInText;

}

The following Java code shows how to invoke the previous two methods:

KeyPair keyPair = generateKeyPair();

buildRsaSha256SignedJSON(keyPair.getPrivate());

To build and run the program, execute the following Maven command from the ch07/

sample03 directory.

\> mvn test -Psample03

Let’s examine how to validate a JWS token signed by RSA-SHA256. You need to know the

PublicKey corresponding to the PrivateKey used to sign the message:

public static boolean isValidRsaSha256Signature()

 throws NoSuchAlgorithmException,

 �JOSEException,

ParseException {

 // generate private/public key pair.

Chapter 7 Message-Level Security with JSON Web Signature

183

 KeyPair keyPair = generateKeyPair();

 // get the private key - used to sign the message.

 PrivateKey privateKey = keyPair.getPrivate();

 // get public key - used to verify the message signature.

 PublicKey publicKey = keyPair.getPublic();

 // get signed JWT in base64url-encoded text.

 String jwtInText = buildRsaSha256SignedJWT(privateKey);

 // create verifier with the provider shared secret.

 JWSVerifier verifier = new RSASSAVerifier((RSAPublicKey) publicKey);

 // create the signed JWT with the base64url-encoded text.

 SignedJWT signedJWT = SignedJWT.parse(jwtInText);

 // verify the signature of the JWT.

 boolean isValid = signedJWT.verify(verifier);

 if (isValid) {

 System.out.println("valid JWT signature");

 } else {

 System.out.println("invalid JWT signature");

 }

 return isValid;

}

GENERATING A JWS TOKEN WITH HMAC-SHA256 WITH A NON-JSON PAYLOAD

The following Java code generates a JWS token with HMAC-SHA256. You can download the

complete Java sample as a Maven project from https://github.com/apisecurity/

samples/tree/master/ch07/sample04. The method buildHmacSha256Signed

NonJSON() in the code should be invoked by passing a secret value that is used as the

shared key to sign. The length of the secret value must be at least 256 bits:

public static String buildHmacSha256SignedJWT(String sharedSecretString)

 throws JOSEException {

// create an HMAC-protected JWS object with a non-JSON payload

JWSObject jwsObject = new JWSObject(new JWSHeader(JWSAlgorithm.HS256),

 new Payload("Hello world!"));

Chapter 7 Message-Level Security with JSON Web Signature

https://github.com/apisecurity/samples/tree/master/ch07/sample04
https://github.com/apisecurity/samples/tree/master/ch07/sample04

184

// create JWS header with HMAC-SHA256 algorithm.

jwsObject.sign(new MACSigner(sharedSecretString));

// serialize into base64-encoded text.

String jwtInText = jwsObject.serialize();

// print the value of the serialzied JWS token.

System.out.println(jwtInText);

return jwtInText;

}

To build and run the program, execute the following Maven command from the ch07/

sample04 directory.

\> mvn test -Psample04

The preceding code uses the JWS compact serialization and will produce the following output:

eyJhbGciOiJIUzI1NiJ9.SGVsbG8gd29ybGQh.zub7JG0FOh7EIKAgWMzx95w-nFpJdRMvUh_

pMwd6wnA

�Summary
•	 JSON has already become the de facto message exchange format

for APIs.

•	 Understanding JSON security plays a key role in securing APIs.

•	 JSON Web Token (JWT) defines a container to transport data

between interested parties in a cryptographically safe manner.

It became an IETF standard in May 2015 with the RFC 7519.

•	 Both JWS (JSON Web Signature) and JWE (JSON Web Encryption)

standards are built on top of JWT.

•	 There are two types of serialization techniques defined by the JWS

specification: compact serialization and JSON serialization.

•	 The JWS specification is not just limited to JSON. You can sign any

content with JWS without wrapping it inside a JSON payload.

Chapter 7 Message-Level Security with JSON Web Signature

185
© Prabath Siriwardena 2020
P. Siriwardena, Advanced API Security, https://doi.org/10.1007/978-1-4842-2050-4_8

CHAPTER 8

Message-Level
Security with JSON
Web Encryption
In Chapter 7, we discussed in detail the JWT (JSON Web Token) and JWS (JSON Web

Signature) specifications. Both of these specifications are developed under the IETF JOSE

working group. This chapter focuses on another prominent standard developed by the

same IETF working group for encrypting messages (not necessarily JSON payloads): JSON

Web Encryption (JWE). Like in JWS, JWT is the foundation for JWE. The JWE specification

standardizes the way to represent an encrypted content in a JSON-based data structure.

The JWE1 specification defines two serialized forms to represent the encrypted payload:

the JWE compact serialization and JWE JSON serialization. Both of these two serialization

techniques are discussed in detail in the sections to follow. Like in JWS, the message to be

encrypted using JWE standard need not be a JSON payload, it can be any content. The term

JWE token is used to refer to the serialized form of an encrypted message (any message, not

just JSON), following any of the serialization techniques defined in the JWE specification.

�JWE Compact Serialization
With the JWE compact serialization, a JWE token is built with five key components, each

separated by periods (.): JOSE header, JWE Encrypted Key, JWE Initialization Vector,

JWE Ciphertext, and JWE Authentication Tag. Figure 8-1 shows the structure of a JWE

token formed by JWE compact serialization.

1�The JSON Web Encryption specification, https://tools.ietf.org/html/rfc7516

https://tools.ietf.org/html/rfc7516

186

�JOSE Header
The JOSE header is the very first element of the JWE token produced under compact

serialization. The structure of the JOSE header is the same, as we discussed in Chapter 7,

other than few exceptions. The JWE specification introduces two new parameters (enc

and zip), which are included in the JOSE header of a JWE token, in addition to those

introduced by the JSON Web Signature (JWS) specification. The following lists out all the

JOSE header parameters, which are defined by the JWE specification:

•	 alg (algorithm): The name of the algorithm, which is used to encrypt

the Content Encryption Key (CEK). The CEK is a symmetric key,

which encrypts the plaintext JSON payload. Once the plaintext

is encrypted with the CEK, the CEK itself will be encrypted with

another key following the algorithm identified by the value of the

alg parameter. The encrypted CEK will then be included in the JWE

Encrypted Key section of the JWE token. This is a required attribute

in the JOSE header. Failure to include this in the header will result in

a token parsing error. The value of the alg parameter is a string, which

is picked from the JSON Web Signature and Encryption Algorithms

registry defined by the JSON Web Algorithms2 (JWA) specification.

If the value of the alg parameter is not picked from the preceding

registry, then it should be defined in a collision-resistant manner,

but that won’t give any guarantee that the particular algorithm is

identified by all JWE implementations. It’s always better to stick to the

algorithms defined in the JWA specification.

•	 enc: The enc parameter in the JOSE header represents the name of

the algorithm, which is used for content encryption. This algorithm

should be a symmetric Authenticated Encryption with Associated

2�JWS algorithms are defined and explained in the JSON Web Algorithms (JWA) specification,
https://tools.ietf.org/html/rfc7518.

Figure 8-1.  A JWE token with compact serialization

Chapter 8 Message-Level Security with JSON Web Encryption

https://tools.ietf.org/html/rfc7518

187

Data (AEAD) algorithm. This is a required attribute in the JOSE

header. Failure to include this in the header will result in a token

parsing error. The value of the enc parameter is a string, which is

picked from the JSON Web Signature and Encryption Algorithms

registry defined by the JSON Web Algorithms (JWA) specification.

If the value of the enc parameter is not picked from the preceding

registry, then it should be defined in a collision-resistant manner,

but that won’t give any guarantee that the particular algorithm is

identified by all JWE implementations. It’s always better to stick to the

algorithms defined in the JWA specification.

•	 zip: The zip parameter in the JOSE header defines the name of the

compression algorithm. The plaintext JSON payload gets compressed

before the encryption, if the token issuer decides to use compression.

The compression is not a must. The JWE specification defines DEF

as the compression algorithm, but it’s not a must to use it. The token

issuers can define their own compression algorithms. The default

value of the compression algorithm is defined in the JSON Web

Encryption Compression Algorithms registry under the JSON Web

Algorithms (JWA) specification. This is an optional parameter.

•	 jku: The jku parameter in the JOSE header carries a URL, which

points to a JSON Web Key (JWK)3 set. This JWK set represents a

collection of JSON-encoded public keys, where one of the keys is

used to encrypt the Content Encryption Key (CEK). Whatever the

protocol used to retrieve the key set should provide the integrity

protection. If keys are retrieved over HTTP, then instead of plain HTTP,

HTTPS (or HTTP over TLS) should be used. We discuss Transport

Layer Security (TLS) in detail in Appendix C. The jku is an optional

parameter.

•	 jwk: The jwk parameter in JOSE header represents the public

key corresponding to the key that is used to encrypt the Content

Encryption Key (CEK). The key is encoded as per the JSON Web Key

(JWK) specification.3 The jku parameter, which we discussed before,

3�A JSON Web Key (JWK) is a JSON data structure that represents a cryptographic key,
https://tools.ietf.org/html/rfc7517

Chapter 8 Message-Level Security with JSON Web Encryption

https://tools.ietf.org/html/rfc7517

188

points to a link that holds a set of JWKs, while the jwk parameter

embeds the key into the JOSE header itself. The jwk is an optional

parameter.

•	 kid: The kid parameter of the JOSE header represents an identifier

for the key that is used to encrypt the Content Encryption Key

(CEK). Using this identifier, the recipient of the JWE should be able

to locate the key. If the token issuer uses the kid parameter in the

JOSE header to let the recipient know about the signing key, then the

corresponding key should be exchanged “somehow” between the

token issuer and the recipient beforehand. How this key exchange

happens is out of the scope of the JWE specification. If the value of

the kid parameter refers to a JWK, then the value of this parameter

should match the value of the kid parameter in the JWK. The kid is

an optional parameter in the JOSE header.

•	 x5u: The x5u parameter in the JOSE header is very much similar to

the jku parameter, which we discussed before. Instead of pointing

to a JWK set, the URL here points to an X.509 certificate or a chain

of X.509 certificates. The resource pointed by the URL must hold

the certificate or the chain of certificates in the PEM-encoded form.

Each certificate in the chain must appear between the delimiters4:

-----BEGIN CERTIFICATE----- and -----END CERTIFICATE-----.

The public key corresponding to the key used to encrypt the Content

Encryption Key (CEK) should be the very first entry in the certificate

chain, and the rest is the certificates of intermediate CAs (certificate

authority) and the root CA. The x5u is an optional parameter in the

JOSE header.

•	 x5c: The x5c parameter in the JOSE header represents the X.509

certificate (or the certificate chain), which corresponds to the public

key, which is used to encrypt the Content Encryption Key (CEK). This

is similar to the jwk parameter we discussed before, but in this case

instead of a JWK, it’s an X.509 certificate (or a chain of certificates).

The certificate or the certificate chain is represented in a JSON

4�The Internet IP Security PKI Profile of IKEv1/ISAKMP, IKEv2, and PKIX (RFC 4945) defines the
delimiters for X.509 certificates under Section 6.1, https://tools.ietf.org/html/rfc4945

Chapter 8 Message-Level Security with JSON Web Encryption

https://tools.ietf.org/html/rfc4945

189

array of certificate value strings. Each element in the array should

be a base64-encoded DER PKIX certificate value. The public key

corresponding to the key used to encrypt the Content Encryption Key

(CEK) should be the very first entry in the JSON array, and the rest

is the certificates of intermediate CAs (certificate authority) and the

root CA. The x5c is an optional parameter in the JOSE header.

•	 x5t: The x5t parameter in the JOSE header represents the base64url-

encoded SHA-1 thumbprint of the X.509 certificate corresponding

to the key used to encrypt the Content Encryption Key (CEK). This

is similar to the kid parameter we discussed before. Both these

parameters are used to locate the key. If the token issuer uses the

x5t parameter in the JOSE header to let the recipient know about

the signing key, then the corresponding key should be exchanged

“somehow” between the token issuer and the recipient beforehand.

How this key exchange happens is out of the scope of the JWE

specification. The x5t is an optional parameter in the JOSE header.

•	 x5t#s256: The x5t#s256 parameter in the JOSE header represents

the base64url-encoded SHA256 thumbprint of the X.509 certificate

corresponding to the key used to encrypt the Content Encryption

Key (CEK). The only difference between x5t#s256 and the x5t is the

hashing algorithm. The x5t#s256 is an optional parameter in the

JOSE header.

•	 typ: The typ parameter in the JOSE header is used to define the

media type of the complete JWE. There are two types of components

that process a JWE: JWE implementations and JWE applications.

Nimbus5 is a JWE implementation in Java. The Nimbus library

knows how to build and parse a JWE. A JWE application can be

anything, which uses JWE internally. A JWE application uses a

JWE implementation to build or parse a JWE. In this case, the typ

parameter is just another parameter for the JWE implementation. It

will not try to interpret the value of it, but the JWE application would.

The typ parameter will help JWE applications to differentiate the

5�Nimbus JWT Java implementation, http://connect2id.com/products/nimbus-jose-jwt

Chapter 8 Message-Level Security with JSON Web Encryption

http://connect2id.com/products/nimbus-jose-jwt

190

content when multiple types of objects are present. For a JWS token

using JWS compact serialization and for a JWE token using JWE

compact serialization, the value of the typ parameter is JOSE, and for

a JWS token using JWS JSON serialization and for a JWE token using

JWE JSON serialization, the value is JOSE+JSON. (JWS serialization

was discussed in Chapter 7 and JWE serialization is discussed later in

this chapter). The typ is an optional parameter in the JOSE header.

•	 cty: The cty parameter in the JOSE header is used to represent

the media type of the secured content in the JWE. It is only

recommended to use this parameter in the case of a nested JWT. The

nested JWT is discussed later in this chapter, and the definition of

the cty parameter is further explained there. The cty is an optional

parameter in the JOSE header.

•	 crit: The crit parameter in the JOSE header is used to indicate to the

recipient of the JWE that the presence of custom parameters, which

neither defined by the JWE or JWA specifications, in the JOSE header. If

these custom parameters are not understood by the recipient, then the

JWE token will be treated as invalid. The value of the crit parameter

is a JSON array of names, where each entry represents a custom

parameter. The crit is an optional parameter in the JOSE header.

Out of all the 13 parameters defined earlier, 7 talk about how to reference the public

key, which is used to encrypt the Content Encryption Key (CEK). There are three ways

of referencing a key: external reference, embedded, and key identifier. The jku and x5u

parameters fall under the external reference category. Both of them reference the key

through a URI. The jwk and x5c parameters fall under embedded reference category.

Each one of them defines how to embed the key to the JOSE header itself. The kid,

x5t, and x5t#s256 parameters fall under the key identifier reference category. All

three of them define how to locate the key using an identifier. Then again all the seven

parameters can further divide into two categories based on the representation of the

key: JSON Web Key (JWK) and X.509. The jku, jwk, and kid fall under the JWK category,

while x5u, x5c, x5t, and x5t#s256 fall under the X.509 category. In the JOSE header

of a given JWE token, at a given time, we only need to have one from the preceding

parameters.

Chapter 8 Message-Level Security with JSON Web Encryption

191

Note T he JSON payload, which is subject to encryption, could contain
whitespaces and/or line breaks before or after any JSON value.

The JWE specification does not restrict applications only to use 13 header

parameters defined earlier. There are two ways to introduce new header parameters:

public header names and private header names. Any header parameter that is intended

to use in the public space should be introduced in a collision-resistant manner. It

is recommended to register such public header parameters in the IANA JSON Web

Signature and Encryption Header Parameters registry. The private header parameters

are mostly used in a restricted environment, where both the token issuer and the

recipients are well aware of each other. These parameters should be used with caution,

because there is a chance for collision. If a given recipient accepts tokens from multiple

token issuers, then the semantics of the same parameter may be different from one

issuer to another, if it is a private header. In either case, whether it’s a public or a private

header parameter, if it is not defined in the JWE or the JWA specification, the header

name should be included in the crit header parameter, which we discussed before.

�JWE Encrypted Key
To understand JWE Encrypted Key section of the JWE, we first need to understand how a

JSON payload gets encrypted. The enc parameter of the JOSE header defines the content

encryption algorithm, and it should be a symmetric Authenticated Encryption with

Associated Data (AEAD) algorithm. The alg parameter of the JOSE header defines the

encryption algorithm to encrypt the Content Encryption Key (CEK). We can also call this

algorithm a key wrapping algorithm, as it wraps the CEK.

AUTHENTICATED ENCRYPTION

Encryption alone only provides the data confidentiality. Only the intended recipient can decrypt

and view the encrypted data. Even though data is not visible to everyone, anyone having

access to the encrypted data can change the bit stream of it to reflect a different message.

For example, if Alice transfers US $100 from her bank account to Bob’s account and if that

message is encrypted, then Eve in the middle can’t see what’s inside it. But, Eve can modify

the bit stream of the encrypted data to change the message, let’s say from US $100 to US

Chapter 8 Message-Level Security with JSON Web Encryption

192

$150. The bank which controls the transaction would not detect this change done by Eve

in the middle and will treat it as a legitimate transaction. This is why encryption itself is not

always safe, and in the 1970s, this was identified as an issue in the banking industry.

Unlike just encryption, the Authenticated Encryption simultaneously provides a confidentiality,

integrity, and authenticity guarantee for data. ISO/IEC 19772:2009 has standardized six

different authenticated encryption modes: GCM, OCB 2.0, CCM, Key Wrap, EAX, and Encrypt-

then-MAC. Authenticated Encryption with Associated Data (AEAD) extends this model to add

the ability to preserve the integrity and authenticity of Additional Authenticated Data (AAD)

that isn’t encrypted. AAD is also known as Associated Data (AD). AEAD algorithms take two

inputs, plaintext to be encrypted and the Additional Authentication Data (AAD), and result in

two outputs: the ciphertext and the authentication tag. The AAD represents the data to be

authenticated, but not encrypted. The authentication tag ensures the integrity of the ciphertext

and the AAD.

Let’s look at the following JOSE header. For content encryption, it uses A256GCM

algorithm, and for key wrapping, RSA-OAEP:

{"alg":"RSA-OAEP","enc":"A256GCM"}

A256GCM is defined in the JWA specification. It uses the Advanced Encryption

Standard (AES) in Galois/Counter Mode (GCM) algorithm with a 256-bit long key,

and it’s a symmetric key algorithm used for AEAD. Symmetric keys are mostly used

for content encryption. Symmetric key encryption is much faster than asymmetric key

encryption. At the same time, asymmetric key encryption can’t be used to encrypt large

messages. RSA-OAEP is too defined in the JWA specification. During the encryption

process, the token issuer generates a random key, which is 256 bits in size, and encrypts

the message using that key following the AES GCM algorithm. Next, the key used to

encrypt the message is encrypted using RSA-OAEP,6 which is an asymmetric encryption

scheme. The RSA-OAEP encryption scheme uses RSA algorithm with the Optimal

Asymmetric Encryption Padding (OAEP) method. Finally, the encrypted symmetric key

is placed in the JWE Encrypted Header section of the JWE.

6�RSA-OAEP is a public key encryption scheme, which uses the RSA algorithm with the Optimal
Asymmetric Encryption Padding (OAEP) method.

Chapter 8 Message-Level Security with JSON Web Encryption

193

KEY MANAGEMENT MODES

The key management mode defines the method to derive or compute a value to the Content

Encryption Key (CEK). The JWE specification employs five key management modes, as listed

in the following, and the appropriate key management mode is decided based on the alg

parameter, which is defined in the JOSE header:

	1.	 Key encryption: With the key encryption mode, the value of the CEK is encrypted

using an asymmetric encryption algorithm. For example, if the value of the

alg parameter in the JOSE header is RSA-OAEP, then the corresponding key

management algorithm is the RSAES OAEP using the default parameters. This

relationship between the alg parameter and the key management algorithm is

defined in the JWA specification. The RSAES OAEP algorithm occupies the key
encryption as the key management mode to derive the value of the CEK.

	2.	 Key wrapping: With the key wrapping mode, the value of the CEK is encrypted

using a symmetric key wrapping algorithm. For example, if the value of the

alg parameter in the JOSE header is A128KW, then the corresponding key

management algorithm is the AES Key Wrap with the default initial value, which

uses a 128-bit key. The AES Key Wrap algorithm occupies the key wrapping as

the key management mode to derive the value of the CEK.

	3.	 Direct key agreement: With the direct key agreement mode, the value of

the CEK is decided based upon a key agreement algorithm. For example,

if the value of the alg parameter in the JOSE header is ECDH-ES, then the

corresponding key management algorithm is the Elliptic Curve Diffie-Hellman

Ephemeral Static key agreement using Concat KDF. This algorithm occupies the

direct key agreement as the key management mode to derive the value of the

CEK.

	4.	 Key agreement with key wrapping: With the direct key agreement with key

wrapping mode, the value of the CEK is decided based upon a key agreement

algorithm, and it is encrypted using a symmetric key wrapping algorithm.

For example, if the value of the alg parameter in the JOSE header is ECDH-

ES+A128KW, then the corresponding key management algorithm is the ECDH-

ES using Concat KDF and CEK rapped with A128KW. This algorithm occupies

the direct key agreement with key wrapping as the key management mode to

derive the value of the CEK.

Chapter 8 Message-Level Security with JSON Web Encryption

194

	5.	 Direct encryption: With the direct encryption mode, the value of the CEK is

the same as the symmetric key value, which is already shared between the

token issuer and the recipient. For example, if the value of the alg parameter

in the JOSE header is dir, then the direct encryption is occupied as the key

management mode to derive the value of the CEK.

�JWE Initialization Vector
Some encryption algorithms, which are used for content encryption, require an

initialization vector, during the encryption process. Initialization vector is a randomly

generated number, which is used along with a secret key to encrypt data. This will add

randomness to the encrypted data, which will prevent repetition even if the same data

gets encrypted using the same secret key again and again. To decrypt the message at the

token recipient end, it has to know the initialization vector, hence included in the JWE

token, under the JWE Initialization Vector element. If the content encryption algorithm

does not require an initialization vector, then the value of this element should be kept

empty.

�JWE Ciphertext
The fourth element of the JWE token is the base64url-encoded value of the JWE

ciphertext. The JWE ciphertext is computed by encrypting the plaintext JSON payload

using the CEK, the JWE Initialization Vector, and the Additional Authentication Data

(AAD) value, with the encryption algorithm defined by the header parameter enc. The

algorithm defined by the enc header parameter should be a symmetric Authenticated

Encryption with Associated Data (AEAD) algorithm. The AEAD algorithm, which is used

to encrypt the plaintext payload, also allows specifying Additional Authenticated Data

(AAD).

�JWE Authentication Tag
The base64url-encoded value of the JWE Authentication Tag is the final element of the

JWE token. The value of the authentication tag is produced during the AEAD encryption

process, along with the ciphertext. The authentication tag ensures the integrity of the

ciphertext and the Additional Authenticated Data (AAD).

Chapter 8 Message-Level Security with JSON Web Encryption

195

�The Process of Encryption (Compact Serialization)
We have discussed about all the ingredients that are required to build a JWE token under

compact serialization. The following discusses the steps involved in building the JWE

token. There are five elements in a JWE token; the first element is produced by step 6, the

second element is produced by step 3, the third element is produced by step 4, the fourth

element is produced by step 10, and the fifth element is produced by step 11.

	 1.	 Figure out the key management mode by the algorithm used

to determine the Content Encryption Key (CEK) value. This

algorithm is defined by the alg parameter in the JOSE header.

There is only one alg parameter per JWE token.

	 2.	 Compute the CEK and calculate the JWE Encrypted Key based on

the key management mode, picked in step 1. The CEK is later used

to encrypt the JSON payload. There is only one JWE Encrypted

Key element in the JWE token.

	 3.	 Compute the base64url-encoded value of the JWE Encrypted Key,

which is produced by step 2. This is the second element of the JWE

token.

	 4.	 Generate a random value for the JWE Initialization Vector.

Irrespective of the serialization technique, the JWE token carries

the value of the base64url-encoded value of the JWE Initialization

Vector. This is the third element of the JWE token.

	 5.	 If token compression is needed, the JSON payload in plaintext

must be compressed following the compression algorithm defined

under the zip header parameter.

	 6.	 Construct the JSON representation of the JOSE header and find

the base64url-encoded value of the JOSE header with UTF-8

encoding. This is the first element of the JWE token.

	 7.	 To encrypt the JSON payload, we need the CEK (which we already

have), the JWE Initialization Vector (which we already have), and

the Additional Authenticated Data (AAD). Compute ASCII value

of the encoded JOSE header (step 6) and use it as the AAD.

Chapter 8 Message-Level Security with JSON Web Encryption

196

	 8.	 Encrypt the compressed JSON payload (from step 5) using

the CEK, the JWE Initialization Vector, and the Additional

Authenticated Data (AAD), following the content encryption

algorithm defined by the enc header parameter.

	 9.	 The algorithm defined by the enc header parameter is an AEAD

algorithm, and after the encryption process, it produces the

ciphertext and the Authentication Tag.

	 10.	 Compute the base64url-encoded value of the ciphertext, which is

produced by step 9. This is the fourth element of the JWE token.

	 11.	 Compute the base64url-encoded value of the Authentication Tag,

which is produced by step 9. This is the fifth element of the JWE

token.

	 12.	 Now we have all the elements to build the JWE token in the

following manner. The line breaks are introduced only for clarity.

BASE64URL-ENCODE(UTF8(JWE Protected Header)).

BASE64URL-ENCODE(JWE Encrypted Key).

BASE64URL-ENCODE(JWE Initialization Vector).

BASE64URL-ENCODE(JWE Ciphertext).

BASE64URL-ENCODE(JWE Authentication Tag)

�JWE JSON Serialization
Unlike the JWE compact serialization, the JWE JSON serialization can produce

encrypted data targeting at multiple recipients over the same JSON payload. The

ultimate serialized form under JWE JSON serialization represents an encrypted JSON

payload as a JSON object. This JSON object includes six top-level elements: protected,

unprotected, recipients, iv, ciphertext, and tag. The following is an example of a

JWE token, which is serialized with JWE JSON serialization:

Chapter 8 Message-Level Security with JSON Web Encryption

197

{

 "protected":"eyJlbmMiOiJBMTI4Q0JDLUhTMjU2In0",

 "unprotected":{"jku":"https://server.example.com/keys.jwks"},

 "recipients":[

 {

 "header":{"alg":"RSA1_5","kid":"2011-04-29"},

 "encrypted_key":"UGhIOguC7IuEvf_NPVaXsGMoLOmwvc1GyqlIK..."

 },

 {

 "header":{"alg":"A128KW","kid":"7"},

 "encrypted_key":"6KB707dM9YTIgHtLvtgWQ8mKwb..."

 }

],

 "iv":"AxY8DCtDaGlsbGljb3RoZQ",

 "ciphertext":"KDlTtXchhZTGufMYmOYGS4HffxPSUrfmqCHXaI9wOGY",

 "tag":"Mz-VPPyU4RlcuYv1IwIvzw"

}

�JWE Protected Header
The JWE Protected Header is a JSON object that includes the header parameters that

have to be integrity protected by the AEAD algorithm. The parameters inside the JWE

Protected Header are applicable to all the recipients of the JWE token. The protected

parameter in the serialized JSON form represents the base64url-encoded value of the

JWE Protected Header. There is only one protected element in a JWE token at the root

level, and any header parameter that we discussed before under the JOSE header can

also be used under the JWE Protected Header.

�JWE Shared Unprotected Header
The JWE Shared Unprotected Header is a JSON object that includes the header

parameters that are not integrity protected. The unprotected parameter in the

serialized JSON form represents the JWE Shared Unprotected Header. There is only one

unprotected element in a JWE token at the root level, and any header parameter that

we discussed before under the JOSE header can also be used under the JWE Shared

Unprotected Header.

Chapter 8 Message-Level Security with JSON Web Encryption

198

�JWE Per-Recipient Unprotected Header
The JWE Per-Recipient Unprotected Header is a JSON object that includes the header

parameters that are not integrity protected. The parameters inside the JWE Per-Recipient

Unprotected Header are applicable only to a particular recipient of the JWE token. In the

JWE token, these header parameters are grouped under the parameter recipients. The

recipients parameter represents an array of recipients of the JWE token. Each member

consists of a header parameter and an encryptedkey parameter.

•	 header: The header parameter, which is inside the recipients

parameter, represents the value of the JWE header elements that

aren’t protected for integrity by authenticated encryption for each

recipient.

•	 encryptedkey: The encryptedkey parameter represents the

base64url-encoded value of the encrypted key. This is the key used to

encrypt the message payload. The key can be encrypted in different

ways for each recipient.

Any header parameter that we discussed before under the JOSE header can also be

used under the JWE Per-Recipient Unprotected Header.

�JWE Initialization Vector
This carries the same meaning as explained under JWE compact serialization

previously in this chapter. The iv parameter in the JWE token represents the value of the

initialization vector used for encryption.

�JWE Ciphertext
This carries the same meaning as explained under JWE compact serialization previously

in this chapter. The ciphertext parameter in the JWE token carries the base64url-

encoded value of the JWE ciphertext.

Chapter 8 Message-Level Security with JSON Web Encryption

199

�JWE Authentication Tag
This carries the same meaning as explained under JWE compact serialization previously

in this chapter. The tag parameter in the JWE token carries the base64url-encoded value

of the JWE Authentication Tag, which is an outcome of the encryption process using an

AEAD algorithm.

�The Process of Encryption (JSON Serialization)
We have discussed about all the ingredients that are required to build a JWE token

under JSON serialization. The following discusses the steps involved in building the

JWE token.

	 1.	 Figure out the key management mode by the algorithm used

to determine the Content Encryption Key (CEK) value. This

algorithm is defined by the alg parameter in the JOSE header.

Under JWE JSON serialization, the JOSE header is built by the

union of all the parameters defined under the JWE Protected

Header, JWE Shared Unprotected Header, and Per-Recipient

Unprotected Header. Once included in the Per-Recipient

Unprotected Header, the alg parameter can be defined per

recipient.

	 2.	 Compute the CEK and calculate the JWE Encrypted Key based on

the key management mode, picked in step 1. The CEK is later used

to encrypt the JSON payload.

	 3.	 Compute the base64url-encoded value of the JWE Encrypted Key,

which is produced by step 2. Once again, this is computed per

recipient, and the resultant value is included in the Per-Recipient

Unprotected Header parameter, encryptedkey.

	 4.	 Perform steps 1–3 for each recipient of the JWE token. Each

iteration will produce an element in the recipients JSON array of

the JWE token.

Chapter 8 Message-Level Security with JSON Web Encryption

200

	 5.	 Generate a random value for the JWE Initialization Vector.

Irrespective of the serialization technique, the JWE token carries

the value of the base64url-encoded value of the JWE Initialization

Vector.

	 6.	 If token compression is needed, the JSON payload in plaintext

must be compressed following the compression algorithm defined

under the zip header parameter. The value of the zip header

parameter can be defined either in the JWE Protected Header or

JWE Shared Unprotected Header.

	 7.	 Construct the JSON representation of the JWE Protected Header,

JWE Shared Unprotected Header, and Per-Recipient Unprotected

Headers.

	 8.	 Compute the base64url-encoded value of the JWE Protected

Header with UTF-8 encoding. This value is represented by

the protected element in the serialized JWE token. The JWE

Protected Header is optional, and if present there can be only

one header. If no JWE header is present, then the value of the

protected element will be empty.

	 9.	 Generate a value for the Additional Authenticated Data (AAD) and

compute the base64url-encoded value of it. This is an optional

step, and if it’s there, then the base64url-encoded AAD value will

be used as an input parameter to encrypt the JSON payload, as in

step 10.

	 10.	 To encrypt the JSON payload, we need the CEK (which we already

have), the JWE Initialization Vector (which we already have),

and the Additional Authenticated Data (AAD). Compute ASCII

value of the encoded JWE Protected Header (step 8) and use it

as the AAD. In case step 9 is done and then the value of AAD is

computed as ASCII(encoded JWE Protected Header. BASE64URL-

ENCODE(AAD)).

	 11.	 Encrypt the compressed JSON payload (from step 6) using

the CEK, the JWE Initialization Vector, and the Additional

Authenticated Data (AAD from step 10), following the content

encryption algorithm defined by the enc header parameter.

Chapter 8 Message-Level Security with JSON Web Encryption

201

	 12.	 The algorithm defined by the enc header parameter is an AEAD

algorithm, and after the encryption process, it produces the

ciphertext and the Authentication Tag.

	 13.	 Compute the base64url-encoded value of the ciphertext, which is

produced by step 12.

	 14.	 Compute the base64url-encoded value of the Authentication Tag,

which is produced by step 12.

Now we have all the elements to build the JWE token under JSON serialization.

Note T he XML Encryption specification by W3C only talks about encrypting an
XML payload. If you have to encrypt any content, then first you need to embed that
within an XML payload and then encrypt. In contrast, the JWE specification is not
just limited to JSON. You can encrypt any content with JWE without wrapping it
inside a JSON payload.

�Nested JWTs
Both in a JWS token and a JWE token, the payload can be of any content. It can be JSON,

XML, or anything. In a Nested JWT, the payload must be a JWT itself. In other words, a

JWT, which is enclosed in another JWS or JWE token, builds a Nested JWT. A Nested JWT

is used to perform nested signing and encryption. The cty header parameter must be

present and set to the value JWT, in the case of a Nested JWT. The following lists out the

steps in building a Nested JWT, which signs a payload first using JWS and then encrypts

the JWS token using JWE:

	 1.	 Build the JWS token with the payload or the content of your

choice.

	 2.	 Based on the JWS serialization technique you use, step 1 will

produce either a JSON object with JSON serialization or a three-

element string where each element is separated out by a period

(.)—with compact serialization.

	 3.	 Base64url-encode the output from step 2 and use it as the payload

to be encrypted for the JWE token.

Chapter 8 Message-Level Security with JSON Web Encryption

202

	 4.	 Set the value of the cty header parameter of the JWE JOSE header

to JWT.

	 5.	 Build the JWE following any of the two serialization techniques

defined in the JWE specification.

Note S ign first and then encrypt is the preferred approach in building a nested
JWT, instead of sign and then encrypt. The signature binds the ownership of the
content to the signer or the token issuer. It is an industry accepted best practice to
sign the original content, rather than the encrypted content. Also, when sign first
and encrypt the signed payload, the signature itself gets encrypted too, preventing
an attacker in the middle stripping off the signature. Since the signature and all its
related metadata are encrypted, an attacker cannot derive any details about the
token issuer looking at the message. When encrypt first and sign the encrypted
payload, then the signature is visible to anyone and also an attacker can strip it off
from the message.

JWE VS. JWS

From an application developer’s point of view, it may be quite important to identify whether

a given message is a JWE token or a JWS token and start processing based on that. The

following lists out a few techniques that can be used to differentiate a JWS token from a JWE

token:

	1.	W hen compact serialization is used, a JWS token has three base64url-encoded

elements separated by periods (.), while a JWE token has five base64url-

encoded elements separated by periods (.).

	2.	W hen JSON serialization is used, the elements of the JSON object produced

are different in JWS token and JWE token. For example, the JWS token has a

top-level element called payload, which is not in the JWE token, and the JWE

token has a top-level element called ciphertext, which is not in the JWS

token.

	3.	T he JOSE header of a JWE token has the enc header parameter, while it is not

present in the JOSE header of a JWS token.

Chapter 8 Message-Level Security with JSON Web Encryption

203

	4.	T he value of the alg parameter in the JOSE header of a JWS token carries a

digital signature or a MAC algorithm or none, while the same parameter in the

JOSE header of a JWE token carries a key encryption, key wrapping, direct key

agreement, key agreement with key wrapping, or direct encryption algorithm.

GENERATING A JWE TOKEN WITH RSA-OAEP AND AES WITH A JSON PAYLOAD

The following Java code generates a JWE token with RSA-OAEP and AES. You can download

the complete Java sample as a Maven project from https://github.com/apisecurity/

samples/tree/master/ch08/sample01—and it runs on Java 8+. First you need to

invoke the method generateKeyPair() and pass the PublicKey(generateKeyPair().

getPublicKey()) into the method buildEncryptedJWT():

// this method generates a key pair and the corresponding public key is used

// to encrypt the message.

public static KeyPair generateKeyPair() throws NoSuchAlgorithmException {

 // instantiate KeyPairGenerate with RSA algorithm.

 KeyPairGenerator keyGenerator = KeyPairGenerator.getInstance("RSA");

 // set the key size to 1024 bits.

 keyGenerator.initialize(1024);

 // generate and return private/public key pair.

 return keyGenerator.genKeyPair();

}

// this method is used to encrypt a JWT claims set using the provided public

// key.

public static String buildEncryptedJWT(PublicKey publicKey) throws

JOSEException {

 // build audience restriction list.

 List<String> aud = new ArrayList<String>();

 aud.add("https://app1.foo.com");

 aud.add("https://app2.foo.com");

 Date currentTime = new Date();

 // create a claims set.

 JWTClaimsSet jwtClaims = new JWTClaimsSet.Builder().

 // set the value of the issuer.

 issuer("https://apress.com").

 // set the subject value - JWT belongs to this subject.

Chapter 8 Message-Level Security with JSON Web Encryption

https://github.com/apisecurity/samples/tree/master/ch08/sample01
https://github.com/apisecurity/samples/tree/master/ch08/sample01

204

 subject("john").

 // set values for audience restriction.

 audience(aud).

 // expiration time set to 10 minutes.

 �expirationTime(new Date(new Date().getTime() + 1000 ∗
60 ∗ 10)).

 // set the valid from time to current time.

 notBeforeTime(currentTime).

 // set issued time to current time.

 issueTime(currentTime).

 // set a generated UUID as the JWT identifier.

 jwtID(UUID.randomUUID().toString()).build();

 // create JWE header with RSA-OAEP and AES/GCM.

 �JWEHeader jweHeader = new JWEHeader(JWEAlgorithm.RSA_OAEP,

EncryptionMethod.A128GCM);

 // create encrypter with the RSA public key.

 JWEEncrypter encrypter = new RSAEncrypter((RSAPublicKey) publicKey);

 // create the encrypted JWT with the JWE header and the JWT payload.

 EncryptedJWT encryptedJWT = new EncryptedJWT(jweHeader, jwtClaims);

 // encrypt the JWT.

 encryptedJWT.encrypt(encrypter);

 // serialize into base64-encoded text.

 String jwtInText = encryptedJWT.serialize();

 // print the value of the JWT.

 System.out.println(jwtInText);

 return jwtInText;

}

The following Java code shows how to invoke the previous two methods:

KeyPair keyPair = generateKeyPair();

buildEncryptedJWT(keyPair.getPublic());

To build and run the program, execute the following Maven command from the ch08/

sample01 directory.

\> mvn test -Psample01

Chapter 8 Message-Level Security with JSON Web Encryption

205

Let’s see how to decrypt a JWT encrypted by RSA-OAEP. You need to know the PrivateKey

corresponding to the PublicKey used to encrypt the message:

 public static void decryptJWT() throws NoSuchAlgorithmException,

 JOSEException, ParseException {

 // generate private/public key pair.

 KeyPair keyPair = generateKeyPair();

 // get the private key - used to decrypt the message.

 PrivateKey privateKey = keyPair.getPrivate();

 // get the public key - used to encrypt the message.

 PublicKey publicKey = keyPair.getPublic();

 // get encrypted JWT in base64-encoded text.

 String jwtInText = buildEncryptedJWT(publicKey);

 // create a decrypter.

 JWEDecrypter decrypter = new RSADecrypter((RSAPrivateKey) privateKey);

 // create the encrypted JWT with the base64-encoded text.

 EncryptedJWT encryptedJWT = EncryptedJWT.parse(jwtInText);

 // decrypt the JWT.

 encryptedJWT.decrypt(decrypter);

 // print the value of JOSE header.

 System.out.println("JWE Header:" + encryptedJWT.getHeader());

 // JWE content encryption key.

 �System.out.println("JWE Content Encryption Key: " + encryptedJWT.

getEncryptedKey());

 // initialization vector.

 System.out.println("Initialization Vector: " + encryptedJWT.getIV());

 // ciphertext.

 System.out.println("Ciphertext : " + encryptedJWT.getCipherText());

 // authentication tag.

 System.out.println("Authentication Tag: " + encryptedJWT.getAuthTag());

 // print the value of JWT body

 System.out.println("Decrypted Payload: " + encryptedJWT.getPayload());

}

The preceding code produces something similar to the following output:

JWE Header: {"alg":"RSA-OAEP","enc":"A128GCM"}

JWE Content Encryption Key: NbIuAjnNBwmwlbKiIpEzffU1duaQfxJpJaodkxDj

SC2s3tO76ZdUZ6YfPrwSZ6DU8F51pbEw2f2MK_C7kLpgWUl8hMHP7g2_Eh3y

Chapter 8 Message-Level Security with JSON Web Encryption

206

Th5iK6Agx72o8IPwpD4woY7CVvIB_iJqz-cngZgNAikHjHzOC6JF748MwtgSiiyrI

9BsmU

Initialization Vector: JPPFsk6yimrkohJf

Ciphertext: XF2kAcBrAX_4LSOGejsegoxEfb8kV58yFJSQ0_WOONP5wQ07HG

mMLTyR713ufXwannitR6d2eTDMFe1xkTFfF9ZskYj5qJ36rOvhGGhNqNdGEpsB

YK5wmPiRlk3tbUtd_DulQWEUKHqPc_VszWKFOlLQW5UgMeHndVi3JOZgiwN

gy9bvzacWazK8lTpxSQVf-NrD_zu_qPYJRisvbKI8dudv7ayKoE4mnQW_fUY-U10

AMy-7Bg4WQE4j6dfxMlQGoPOo

Authentication Tag: pZWfYyt2kO-VpHSW7btznA

Decrypted Payload:

{

 "exp":1402116034,

 "sub":"john",

 "nbf":1402115434,

 "aud":["https:\/\/app1.foo.com "," https:\/\/app2.foo.com"],

 "iss":"https:\/\/apress.com",

 "jti":"a1b41dd4-ba4a-4584-b06d-8988e8f995bf",

 "iat":1402115434

}

GENERATING A JWE TOKEN WITH RSA-OAEP AND AES WITH A NON-JSON PAYLOAD

The following Java code generates a JWE token with RSA-OAEP and AES for a non-

JSON payload. You can download the complete Java sample as a Maven project from

https://github.com/apisecurity/samples/tree/master/ch08/sample02—

and it runs on Java 8+. First you need to invoke the method generateKeyPair()

and pass the PublicKey(generateKeyPair().getPublicKey()) into the method

buildEncryptedJWT():

// this method generates a key pair and the corresponding public key is used

// to encrypt the message.

public static KeyPair generateKeyPair() throws NoSuchAlgorithmException,

JOSEException {

 // instantiate KeyPairGenerate with RSA algorithm.

 KeyPairGenerator keyGenerator = KeyPairGenerator.getInstance("RSA");

 // set the key size to 1024 bits.

 keyGenerator.initialize(1024);

Chapter 8 Message-Level Security with JSON Web Encryption

https://github.com/apisecurity/samples/tree/master/ch08/sample02

207

 // generate and return private/public key pair.

 return keyGenerator.genKeyPair();

}

// this method is used to encrypt a non-JSON payload using the provided

// public key.

public static String buildEncryptedJWT(PublicKey publicKey) throws

JOSEException {

 // create JWE header with RSA-OAEP and AES/GCM.

 JWEHeader jweHeader = new JWEHeader(JWEAlgorithm.RSA_OAEP,

EncryptionMethod.A128GCM);

 // create encrypter with the RSA public key.

 JWEEncrypter encrypter = new RSAEncrypter((RSAPublicKey) publicKey);

 // create a JWE object with a non-JSON payload

 JWEObject jweObject = new JWEObject(jweHeader, new Payload("Hello

world!"));

 // encrypt the JWT.

 jweObject.encrypt(encrypter);

 // serialize into base64-encoded text.

 String jwtInText = jweObject.serialize();

 // print the value of the JWT.

 System.out.println(jwtInText);

 return jwtInText;

}

To build and run the program, execute the following Maven command from the ch08/

sample02 directory.

\> mvn test -Psample02

GENERATING A NESTED JWT

The following Java code generates a nested JWT with RSA-OAEP and AES for encryption and

HMAC-SHA256 for signing. The nested JWT is constructed by encrypting the signed JWT. You

can download the complete Java sample as a Maven project from https://github.com/

apisecurity/samples/tree/master/ch08/sample03—and it runs on Java 8+. First

you need to invoke the method buildHmacSha256SignedJWT() with a shared secret and

Chapter 8 Message-Level Security with JSON Web Encryption

https://github.com/apisecurity/samples/tree/master/ch08/sample03
https://github.com/apisecurity/samples/tree/master/ch08/sample03

208

pass its output along with the generateKeyPair().getPublicKey() into the method

buildNestedJWT():

// this method generates a key pair and the corresponding public key is used

// to encrypt the message.

public static KeyPair generateKeyPair() throws NoSuchAlgorithmException {

 // instantiate KeyPairGenerate with RSA algorithm.

 KeyPairGenerator keyGenerator = KeyPairGenerator.getInstance("RSA");

 // set the key size to 1024 bits.

 keyGenerator.initialize(1024);

 // generate and return private/public key pair.

 return keyGenerator.genKeyPair();

}

// this method is used to sign a JWT claims set using the provided shared

// secret.

public static SignedJWT buildHmacSha256SignedJWT(String sharedSecretString)

throws JOSEException {

 // build audience restriction list.

 List<String> aud = new ArrayList<String>();

 aud.add("https://app1.foo.com");

 aud.add("https://app2.foo.com");

 Date currentTime = new Date();

 // create a claims set.

 JWTClaimsSet jwtClaims = new JWTClaimsSet.Builder().

 // set the value of the issuer.

 issuer("https://apress.com").

 // set the subject value - JWT belongs to this subject.

 subject("john").

 // set values for audience restriction.

 audience(aud).

 // expiration time set to 10 minutes.

 expirationTime(new Date(new Date().getTime() + 1000 ∗ 60 ∗ 10)).
 // set the valid from time to current time.

 notBeforeTime(currentTime).

 // set issued time to current time.

 issueTime(currentTime).

 // set a generated UUID as the JWT identifier.

 jwtID(UUID.randomUUID().toString()).build();

Chapter 8 Message-Level Security with JSON Web Encryption

209

 // create JWS header with HMAC-SHA256 algorithm.

 JWSHeader jswHeader = new JWSHeader(JWSAlgorithm.HS256);

 // create signer with the provider shared secret.

 JWSSigner signer = new MACSigner(sharedSecretString);

 // create the signed JWT with the JWS header and the JWT body.

 SignedJWT signedJWT = new SignedJWT(jswHeader, jwtClaims);

 // sign the JWT with HMAC-SHA256.

 signedJWT.sign(signer);

 // serialize into base64-encoded text.

 String jwtInText = signedJWT.serialize();

 // print the value of the JWT.

 System.out.println(jwtInText);

 return signedJWT;

}

// this method is used to encrypt the provided signed JWT or the JWS using

// the provided public key.

public static String buildNestedJWT(PublicKey publicKey, SignedJWT signedJwt)

throws JOSEException {

 // create JWE header with RSA-OAEP and AES/GCM.

 �JWEHeader jweHeader = new JWEHeader(JWEAlgorithm.RSA_OAEP,

EncryptionMethod.A128GCM);

 // create encrypter with the RSA public key.

 JWEEncrypter encrypter = new RSAEncrypter((RSAPublicKey) publicKey);

 // create a JWE object with the passed SignedJWT as the payload.

 JWEObject jweObject = new JWEObject(jweHeader, new Payload(signedJwt));

 // encrypt the JWT.

 jweObject.encrypt(encrypter);

 // serialize into base64-encoded text.

 String jwtInText = jweObject.serialize();

 // print the value of the JWT.

 System.out.println(jwtInText);

 return jwtInText;

}

To build and run the program, execute the following Maven command from the ch08/

sample03 directory.

\> mvn test -Psample03

Chapter 8 Message-Level Security with JSON Web Encryption

210

�Summary
•	 The JWE specification standardizes the way to represent encrypted

content in a cryptographically safe manner.

•	 JWE defines two serialized forms to represent the encrypted payload:

the JWE compact serialization and JWE JSON serialization.

•	 In the JWE compact serialization, a JWE token is built with five

components, each separated by a period (.): JOSE header, JWE

Encrypted Key, JWE Initialization Vector, JWE Ciphertext, and JWE

Authentication Tag.

•	 The JWE JSON serialization can produce encrypted data targeting at

multiple recipients over the same payload.

•	 In a Nested JWT, the payload must be a JWT itself. In other words,

a JWT, which is enclosed in another JWS or JWE token, builds a

Nested JWT.

•	 A Nested JWT is used to perform nested signing and encryption.

Chapter 8 Message-Level Security with JSON Web Encryption

211
© Prabath Siriwardena 2020
P. Siriwardena, Advanced API Security, https://doi.org/10.1007/978-1-4842-2050-4_9

CHAPTER 9

OAuth 2.0 Profiles
OAuth 2.0 is a framework for delegated authorization. It doesn’t address all specific

enterprise API security use cases. The OAuth 2.0 profiles built on top of the core

framework build a security ecosystem to make OAuth 2.0 ready for enterprise grade

deployments. OAuth 2.0 introduced two extension points via grant types and token

types. The profiles for OAuth 2.0 are built on top of this extensibility. This chapter talks

about five key OAuth 2.0 profiles for token introspection, chained API invocation,

dynamic client registration, and token revocation.

�Token Introspection
OAuth 2.0 doesn’t define a standard API for communication between the resource server

and the authorization server. As a result, vendor-specific, proprietary APIs have crept

in to couple the resource server to the authorization server. The Token Introspection

profile1 for OAuth 2.0 fills this gap by proposing a standard API to be exposed by the

authorization server (Figure 9-1), allowing the resource server to talk to it and retrieve

token metadata.

1�https://tools.ietf.org/html/rfc7662

https://tools.ietf.org/html/rfc7662

212

Any party in possession of the access token can generate a token introspection

request. The introspection endpoint can be secured and the popular options are mutual

Transport Layer Security (mTLS) and OAuth 2.0 client credentials.

POST /introspection HTTP/1.1

Accept: application/x-www-form-urlencoded

Host: authz.server.com

Authorization: Basic czZCaGRSa3F0Mzo3RmpmcDBaQnIxS3REUmJuZlZkbUl3

 token=X3241Affw.423399JXJ&

 token_type_hint=access_token&

Let’s examine the definition of each parameter:

•	 token: The value of the access_token or the refresh_token. This is

the token where we need to get metadata about.

•	 token_type_hint: The type of the token (either the access_token or

the refresh_token). This is optional and the value passed here could

optimize the authorization server’s operations in generating the

introspection response.

This request returns the following JSON response. The following response does not

show all possible parameters that an introspection response could include:

HTTP/1.1 200 OK

Content-Type: application/json

Cache-Control: no-store

Figure 9-1.  OAuth 2.0 Token Introspection

Chapter 9 OAuth 2.0 Profiles

213

{

 "active": true,

 "client_id":"s6BhdRkqt3",

 "scope": "read write dolphin",

 "sub": "2309fj32kl",

 "aud": "http://my-resource/∗"
 }

Let’s examine the definition of the key parameters that you could expect in an

introspection response:

•	 active: Indicates whether the token is active. To be active, the

token should not be expired or revoked. The authorization server

can define its own criteria for how to define active. This is the only

required parameter the introspection response must include. All the

others are optional.

•	 client_id: The identifier of the client to which the authorization

server issued this token.

•	 scope: Approved scopes associated with the token. The resource

server must validate that the scopes required to access the API are at

least a subset of scopes attached to the token.

•	 sub: The subject identifier of the user who approved the

authorization grant or in other words an identifier for the user

who this token represents. This identifier is not necessarily a

human-readable identifier, but it must carry a unique value all

the time. The authorization server may produce a unique subject

for each authorization server/resource server combination. This

is implementation specific, and to support this, the authorization

server must uniquely identify the resource server. In terms of privacy,

it is essential that the authorization server maintains different subject

identifiers by resource server, and this kind of an identifier is known

as a persistence pseudonym. Since the authorization server issues

different pseudonyms for different resource servers, for a given user,

these resource servers together won’t be able to identify what other

services this user accesses.

Chapter 9 OAuth 2.0 Profiles

214

•	 username: Carries a human-readable identifier of the user who

approved the authorization grant or in other words a human-

readable identifier for the user who this token represents. If you are

to persist anything at the resource server end, with respect to the

user, username is not the right identifier. The value of the username

can change time to time, based on how it is implemented at the

authorization server end.

•	 aud: The allowed audience for the token. Ideally, this should carry an

identifier that represents the corresponding resource server. If it does

not match with your identifier, the resource server must immediately

reject the token. This aud element can carry more than one identifier,

and in that case you need to see whether your resource server’s one

is part of it. Also in some implementations, rather than doing one-to-

one string match, you can also match against a regular expression.

For example, http://∗.my-resource.com will find a match for

both the resource servers carrying the identifiers http://foo.my-

resource.com and http://bar.my-resource.com.

Note T he audience (aud) parameter is defined in the OAuth 2.0: Audience
Information Internet draft available at http://tools.ietf.org/html/draft-
tschofenig-oauth-audience-00. This is a new parameter introduced into the
OAuth token request flow and is independent of the token type.

•	 exp: Defines in seconds from January 1, 1970, in UTC, the expiration

time of the token. This looks like redundant, as the active parameter

is already there in the response. But resource server can utilize

this parameter to optimize how frequently it wants to talk to the

introspection endpoint of the authorization server. Since the call

to the introspection endpoint is remote, there can be performance

issues, and also it can be down due to some reason. In that case,

the resource server can have a cache to carry the introspection

responses, and when it gets the same token again and again, it can

check the cache, and if the token has not expired, it can accept the

token as valid. Also there should be a valid cache expiration time;

Chapter 9 OAuth 2.0 Profiles

http://∗.my-resource.com
http://foo.my-resource.com
http://foo.my-resource.com
http://bar.my-resource.com
http://tools.ietf.org/html/draft-tschofenig-oauth-audience-00
http://tools.ietf.org/html/draft-tschofenig-oauth-audience-00

215

otherwise, even if the token is revoked at the authorization server, the

resource server will not know about it.

•	 iat: Defines in seconds from January 1, 1970, in UTC, the issued time

of the token.

•	 nbf: Defines in seconds from January 1, 1970, in UTC, the time before

the token should not be used.

•	 token_type: Indicates the type of the token. It can be a bearer token,

a MAC token (see Appendix G), or any other type.

•	 iss: Carries an identifier that represents the issuer of the token.

A resource server can accept tokens from multiple issuers (or

authorization servers). If you store the subject of the token at the

resource server end, it becomes unique only with the issuer. So you

need to store it along with the issuer. There can be a case where the

resource server connects to a multitenanted authorization server. In

that case, your introspection endpoint will be the same, but it will be

different issuers who issue tokens under different tenants.

•	 jti: This is a unique identifier for the token, issued by the

authorization server. The jti is mostly used when the access token

the authorization server issues is a JWT or a self-contained access

token. This is useful to avoid replaying access tokens.

While validating the response from the introspection endpoint, the resource server

should first check whether the value of active is set to true. Then it should check whether

the value of aud in the response matches the aud URI associated with the resource

server or the resource. Finally, it can validate the scope. The required scope to access the

resource should be a subset of the scope values returned in the introspection response. If

the resource server wants to do further access control based on the client or the resource

owner, it can do so with respect to the values of sub and client_id.

�Chain Grant Type
Once the audience restriction is enforced on OAuth tokens, they can only be used

against the intended audience. You can access an API with an access token that has

an audience restriction corresponding to that API. If this API wants to talk to another

Chapter 9 OAuth 2.0 Profiles

216

protected API to form the response to the client, the first API must authenticate to the

second API. When it does so, the first API can’t just pass the access token it received

initially from the client. That will fail the audience restriction validation at the second

API. The Chain Grant Type OAuth 2.0 profile defines a standard way to address this

concern.

According to the OAuth Chain Grant Type profile, the API hosted in the first resource

server must talk to the authorization server and exchange the OAuth access token it

received from the client for a new one that can be used to talk to the other API hosted in

the second resource server.

Note T he Chain Grant Type for OAuth 2.0 profile is available at https://
datatracker.ietf.org/doc/draft-hunt-oauth-chain.

The chain grant type request must be generated from the first resource server to

the authorization server. The value of the grant type must be set to http://oauth.

net/grant_type/chain and should include the OAuth access token received from the

client. The scope parameter should express the required scopes for the second resource

in space-delimited strings. Ideally, the scope should be the same as or a subset of the

scopes associated with the original access token. If there is any difference, then the

authorization server can decide whether to issue an access token or not. This decision

can be based on an out-of-band agreement with the resource owner:

POST /token HTTP/1.1

Host: authz.server.net

Content-Type: application/x-www-form-urlencoded

grant_type=http://oauth.net/grant_type/chain

oauth_token=dsddDLJkuiiuieqjhk238khjh

scope=read

This returns the following JSON response. The response includes an access token

with a limited lifetime, but it should not have a refresh token. To get a new access token,

the first resource server once again must present the original access token:

HTTP/1.1 200 OK

Content-Type: application/json;charset=UTF-8

Cache-Control: no-store

Chapter 9 OAuth 2.0 Profiles

https://datatracker.ietf.org/doc/draft-hunt-oauth-chain
https://datatracker.ietf.org/doc/draft-hunt-oauth-chain
http://oauth.net/grant_type/chain
http://oauth.net/grant_type/chain

217

Pragma: no-cache

{

 "access_token":"2YotnFZFEjr1zCsicMWpAA",

 "token_type":"Bearer",

 "expires_in":1800,

}

The first resource server can use the access token from this response to talk to the

second resource server. Then the second resource server talks to the authorization server

to validate the access token (see Figure 9-2).

Figure 9-2.  OAuth 2.0 Token Exchange

We talked about the chain grant type in the first edition of the book as well. But since

then this specification didn’t make any progress. If you are using the chain grant type

already, you should migrate to the OAuth 2.0 Token Exchange specification, which is still

at the draft stage, but closer to being an RFC. In the next section, we talk about OAuth 2.0

Token Exchange draft RFC.

�Token Exchange
The OAuth 2.0 Token Exchange is a draft proposal discussed under the IETF working

group at the moment. It solves a similar problem, which was addressed by the Chain

Grant Type proposal we discussed in the previous section, with some improvements.

Like in the chain grant type, when the first resource server receives an access token

Chapter 9 OAuth 2.0 Profiles

218

from the client application, and when it wants to talk to another resource server, the first

resource server generates the following request to talk to the authorization server—and

exchanges the access token it got from the client application to a new one.

POST /token HTTP/1.1

Host: authz.server.net

Content-Type: application/x-www-form-urlencoded

grant_type=urn:ietf:params:oauth:grant-type:token-exchange

subject_token=dsddDLJkuiiuieqjhk238khjh

subject_token_type=urn:ietf:params:oauth:token-type:access_token

requested_token_type=urn:ietf:params:oauth:token-type:access_token

resource=https://bar.example.com

scope=read

The preceding sample request does not include all possible parameters. Let’s have a

look at the key parameters that you could expect in a token exchange request:

•	 grant_type: Indicates to the token endpoint that, this is a

request related to token exchange and must carry the value

urn:ietf:params:oauth:grant-type:token-exchange. This is a

required parameter.

•	 resource: The value of this parameter carries a reference to the

target resource. For example, if the initial request comes to foo API,

and it wants to talk to the bar API, then the value of the resource

parameter carries the endpoint of the bar API. This is also quite

useful in a microservices deployment, where one microservice has to

authenticate to another microservice. The OAuth 2.0 authorization

server can enforce access control policies against this request to

check whether the foo API can access the bar API. This is an optional

parameter.

•	 audience: The value of this parameter serves the same purpose as

the resource parameter, but in this case the value of the audience

parameter is a reference of the target resource, not an absolute

URL. If you intend to use the same token against multiple target

resources, you can include a list of audience values under the

audience parameter. This is an optional parameter.

Chapter 9 OAuth 2.0 Profiles

219

•	 scope: Indicates the scope values with respect to the new token. This

parameter can carry a list of space-delimited, case-sensitive strings.

This is an optional parameter.

•	 requested_token_type: Indicates the type of request token, which

can be any of urn:ietf:params:oauth:token-type:access_token,

urn:ietf:params:oauth:token-type:refresh_token, urn:ietf:

params:oauth:token-type:id_token, urn:ietf:params:oauth:

token-type:saml1, and urn:ietf:params:oauth:token-type:

saml2. This is an optional parameter, and if it is missing, the token

endpoint can decide the type of the token to return. If you use a

different token type, which is not in the above list, then you can have

your own URI as the requested_token_type.

•	 subject_token: Carries the initial token the first API receives. This

carries the identity of the entity that initially invokes the first API. This

is a required parameter.

•	 subject_token_type: Indicates the type of subject_token,

which can be any of urn:ietf:params:oauth:token-

type:access_token, urn:ietf:params:oauth:token-

type:refresh_token, urn:ietf:params:oauth:token-type:id_

token, urn:ietf:params:oauth:token-type:saml1, and

urn:ietf:params:oauth:token-type:saml2. This is a required

parameter. If you use a different token type, which is not in the above

list, then you can have your own URI as the subject_token_type.

•	 actor_token: Carries a security token, which represents the identity

of the entity that intends to use the requested token. In our case,

when foo API wants to talk to the bar API, actor_token represents

the foo API. This is an optional parameter.

•	 actor_token_type: Indicates the type of actor_token,

which can be any of urn:ietf:params:oauth:token-

type:access_token, urn:ietf:params:oauth:token-

type:refresh_token, urn:ietf:params:oauth:token-type:id_

token, urn:ietf:params:oauth:token-type:saml1, and

urn:ietf:params:oauth:token-type:saml2. This is a required

Chapter 9 OAuth 2.0 Profiles

220

parameter when the actor_token is present in the request.

If you use a different token type, which is not in the above list, then

you can have your own URI as the actor_token_type.

The preceding request returns the following JSON response. The access_token

parameter in the response carries the requested token, while the issued_token_type

indicates its type. The other parameters in the response, token_type, expires_in, scope,

and refresh_token, carry the same meaning as in a typical OAuth 2.0 token response,

which we discussed in Chapter 4.

HTTP/1.1 200 OK

Content-Type: application/json

Cache-Control: no-cache, no-store

{

 "access_token":"eyJhbGciOiJFUzI1NiIsImtpZCI6IjllciJ9 ",

 "issued_token_type":

 "urn:ietf:params:oauth:token-type:access_token",

 "token_type":"Bearer",

 "expires_in":60

}

�Dynamic Client Registration Profile
According to the OAuth 2.0 core specification, all OAuth clients must be registered with

the OAuth authorization server and obtain a client identifier before any interactions. The

aim of the Dynamic Client Registration OAuth 2.0 profile2 is to expose an endpoint for

client registration in a standard manner to facilitate on-the-fly registrations.

The dynamic registration endpoint exposed by the authorization server can be

secured or not. If it’s secured, it can be secured with OAuth, HTTP Basic authentication,

Mutual Transport Layer Security (mTLS), or any other security protocol as desired by

the authorization server. The Dynamic Client Registration profile doesn’t enforce any

authentication protocols over the registration endpoint, but it must be secured with

TLS. If the authorization server decides that it should allow the endpoint to be public

and let anyone be registered, it can do so. For the registration, the client application must

pass all its metadata to the registration endpoint:

2�https://tools.ietf.org/html/rfc7591

Chapter 9 OAuth 2.0 Profiles

https://tools.ietf.org/html/rfc7591

221

POST /register HTTP/1.1

Content-Type: application/json

Accept: application/json

Host: authz.server.com

{

"redirect_uris":["https://client.org/callback","https://client.org/

callback2"],

"token_endpoint_auth_method":"client_secret_basic",

"grant_types": ["authorization_code" , "implicit"],

"response_types": ["code" , "token"],

}

Let’s examine the definition of some of the important parameters in the client

registration request:

•	 redirect_uris: An array of URIs under the control of the client.

The user is redirected to one of these redirect_uris after the

authorization grant. These redirect URIs must be over Transport

Layer Security (TLS).

•	 token_endpoint_auth_method: The supported authentication

scheme when talking to the token endpoint. If the value is client_

secret_basic, the client sends its client ID and the client secret in

the HTTP Basic Authorization header. If it’s client_secret_post,

the client ID and the client secret are in the HTTP POST body. If the

value is none, the client doesn’t want to authenticate, which means

it’s a public client (as in the case of the OAuth implicit grant type

or when you use authorization code grant type with a single-page

application). Even though this RFC only supports three client

authentication methods, the other OAuth profiles can introduce

their own. For example, OAuth 2.0 Mutual-TLS Client Authentication

and Certificate-Bound Access Tokens, a draft RFC which is being

discussed under the IETF OAuth working group at the moment,

introduces a new authentication method called tls_client_auth.

This indicates that client authentication to the token endpoint

happens with mutual TLS.

Chapter 9 OAuth 2.0 Profiles

222

•	 grant_types: An array of grant types supported by the client. It is

always better to limit your client application only to use the grant

types it needs and no more. For example, if your client application is

a single-page application, then you must only use authorization_

code grant type.

•	 response_types: An array of expected response types from the

authorization server. In most of the cases, there is a correlation

between the grant_types and response_types—and if you pick

something inconsistent, the authorization server will reject the

registration request.

•	 client_name: A human-readable name that represents the client

application. The authorization server will display the client name to

the end users during the login flow. This must be informative enough

so that the end users will be able to figure out the client application,

during the login flow.

•	 client_uri: A URL that points to the client application. The

authorization server will display this URL to the end users, during the

login flow in a clickable manner.

•	 logo_uri: A URL pointing to the logo of the client application. The

authorization server will display the logo to the end users, during the

login flow.

•	 scope: A string containing a space-separated list of scope values

where the client intends to request from the authorization server.

•	 contacts: A list of representatives from the client application end.

•	 tos_uri: A URL pointing to the terms of service document of the

client application. The authorization server will display this link to

the end users, during the login flow.

•	 policy_uri: A URL pointing to the privacy policy document of the

client application. The authorization server will display this link to

the end users, during the login flow.

Chapter 9 OAuth 2.0 Profiles

223

•	 jwks_uri: Points to the endpoint, which carries the JSON Web Key

(JWK) Set document with the client’s public key. Authorization server

uses this public key to validate the signature of any of the requests

signed by the client application. If the client application cannot host

its public key via an endpoint, it can share the JWKS document under

the parameter jwks instead of jwks_uri. Both the parameters must

not be present in a single request.

•	 software_id: This is similar to client_id, but there is a major

difference. The client_id is generated by the authorization server

and mostly used to identify the application. But the client_id

can change during the lifetime of an application. In contrast, the

software_id is unique to the application across its lifecycle and

uniquely represents all the metadata associated with it throughout

the application lifecycle.

•	 software_version: The version of the client application, identified

by the software_id.

•	 software_statement: This is a special parameter in the registration

request, which carries a JSON Web Token (JWT). This JWT includes

all the metadata defined earlier with respect to the client. In case the

same parameter is defined in JWT and also in the request outside

the software_statement parameter, then the parameter within the

software_statement will take the precedence.

Based on the policies of the authorization server, it can decide whether it should

proceed with the registration or not. Even if it decides to go ahead with the registration,

the authorization server need not accept all the suggested parameters from the client.

For example, the client may suggest using both authorization_code and implicit as grant

types, but the authorization server can decide what to allow. The same is true for the

token_endpoint_auth_method: the authorization server can decide what to support. The

following is a sample response from the authorization server:

HTTP/1.1 200 OK

Content-Type: application/json

Cache-Control: no-store

Pragma: no-cache

Chapter 9 OAuth 2.0 Profiles

224

{

"client_id":"iuyiSgfgfhffgfh",

"client_secret":"hkjhkiiu89hknhkjhuyjhk",

"client_id_issued_at":2343276600,

"client_secret_expires_at":2503286900,

"redirect_uris":["https://client.org/callback","https://client.org/callback2"],

"grant_types":"authorization_code",

"token_endpoint_auth_method":"client_secret_basic",

}

Let’s examine the definition of each parameter:

•	 client_id: The generated unique identifier for the client.

•	 client_secret: The generated client secret corresponding to the

client_id. This is optional. For example, for public clients the

client_secret isn’t required.

•	 client_id_issued_at: The number of seconds since January 1, 1970.

•	 client_secret_expires_at: The number of seconds since January 1,

1970 or 0 if it does not expire.

•	 redirect_uris: Accepted redirect_uris.

•	 token_endpoint_auth_method: The accepted authentication method

for the token endpoint.

Note T he Dynamic Client Registration OAuth 2.0 profile is quite useful in mobile
applications. Mobile client applications secured with OAuth have the client ID
and the client secret baked into the application. These are the same for all the
installations of a given application. If a given client secret is compromised, that will
affect all the installations, and rogue client applications can be developed using
the stolen keys. These rogue client applications can generate more traffic on the
server and exceed the legitimate throttling limit, hence causing a denial of service
attack. With dynamic client registration, you need not set the same client ID and
client secret for all the installations of a give application. During the installation
process, the application can talk to the authorization server’s registration endpoint
and generate a client ID and a client secret per installation.

Chapter 9 OAuth 2.0 Profiles

225

�Token Revocation Profile
Two parties can perform OAuth token revocation. The resource owner should be able to

revoke an access token issued to a client, and the client should be able to revoke an access

token or a refresh token it has acquired. The Token Revocation OAuth 2.0 profile3 addresses

the latter. It introduces a standard token-revoke endpoint at the authorization server end.

To revoke an access token or a refresh token, the client must notify the revoke endpoint.

Note I n October 2013, there was an attack against Buffer (a social media
management service that can be used to cross-post between Facebook, Twitter,
etc.). Buffer was using OAuth to access user profiles in Facebook and Twitter.
Once Buffer detected that it was under attack, it revoked all its access keys from
Facebook, Twitter, and other social media sites, which prevented attackers from
getting access to users’ Facebook and Twitter accounts.

The client must initiate the token revocation request. The client can authenticate

to the authorization server via HTTP Basic authentication (with its client ID and client

secret), with mutual TLS or with any other authentication mechanism proposed by the

authorization server and then talk to the revoke endpoint. The request should consist

of either the access token or the refresh token and then a token_type_hint that informs

the authorization server about the type of the token (access_token or refresh_token).

This parameter may not be required, but the authorization server can optimize its search

criteria using it.

Here is a sample request:

POST /revoke HTTP/1.1

Host: server.example.com

Content-Type: application/x-www-form-urlencoded

Authorization: Basic czZCaGRSdadsdI9iuiaHk99kjkh

token=dsd0lkjkkljkkllkdsdds&token_type_hint=access_token

3�https://tools.ietf.org/html/rfc7009

Chapter 9 OAuth 2.0 Profiles

https://tools.ietf.org/html/rfc7009

226

In response to this request, the authorization server first must validate the client

credentials and then proceed with the token revocation. If the token is a refresh

token, the authorization server must invalidate all the access tokens issued for the

authorization grant associated with that refresh token. If it’s an access token, it’s up to

the authorization server to decide whether to revoke the refresh token or not. In most

cases, it’s ideal to revoke the refresh token, too. Once the token revocation is completed

successfully, the authorization server must send an HTTP 200 status code back to the

client.

�Summary
•	 The OAuth 2.0 profiles built on top of the core framework build a

security ecosystem to make OAuth 2.0 ready for enterprise grade

deployments.

•	 OAuth 2.0 introduced two extension points via grant types and token

types.

•	 The Token Introspection profile for OAuth 2.0 introduces a standard

API at the authorization server, allowing the resource server to talk to

it and retrieve token metadata.

•	 According to the OAuth Chain Grant Type profile, the API hosted

in the first resource server must talk to the authorization server and

exchange the OAuth access token it received from the client for a

new one that can be used to talk to another API hosted in a second

resource server.

•	 The OAuth 2.0 Token Exchange is a draft proposal discussed under

the IETF working group at the moment, which solves a similar

problem as the Chain Grant Type proposal with some improvements.

•	 The aim of the Dynamic Client Registration OAuth 2.0 profile is to

expose an endpoint for client registration in a standard manner to

facilitate on-the-fly registrations.

•	 The Token Revocation OAuth 2.0 profile introduces a standard token-

revoke endpoint at the authorization server to revoke an access token

or a refresh token by the client.

Chapter 9 OAuth 2.0 Profiles

227
© Prabath Siriwardena 2020
P. Siriwardena, Advanced API Security, https://doi.org/10.1007/978-1-4842-2050-4_10

CHAPTER 10

Accessing APIs via Native
Mobile Apps
The adoption of native mobile apps has increased heavily in the last few years. Within the

first decade of the 21st century, the Internet users worldwide increased from 350 million

to more than 2 billion and mobile phone subscribers from 750 million to 5 billion—and

today it hits 6 billion, where the world population is around 7 billion. Most of the mobile

devices out there–even the cheapest ones—could be used to access the Internet.

We treat a native mobile application as an untrusted or a public client. A client

application, which is not capable of protecting its own keys or credentials, is identified as

a public client under OAuth terminology. Since the native mobile apps run on a device

owned by the user, the user who is having complete access to the mobile device can

figure out any keys the application hides. This is a hard challenge we face in accessing

secured APIs from a native mobile application.

In this chapter, we discuss the best practices in using OAuth 2.0 for native apps, Proof

Key for Code Exchange (PKCE), which is an approach for protecting native apps from

code interception attack and protecting native apps in a browser-less environment.

�Mobile Single Sign-On (SSO)
It takes an average of 20 seconds for a user to log in to an application. Not having to

enter a password each time a user needs to access a resource saves time and makes

users more productive and also reduces the frustration of multiple login events and

forgotten passwords. When we have single sign-on, the users will only have one

password to remember and update and only one set of password rules to remember.

Their initial login provides them with access to all the resources, typically for the entire

day or the week.

228

If you provide multiple mobile applications for your corporate employees

to access from their mobile devices, it’s a pain to ask them to re-login to each

application independently. Possibly all of them may be sharing the same credential

store. This is analogous to a case where Facebook users log in to multiple third-party

mobile applications with their Facebook credentials. With Facebook login, you only

login once to Facebook and will automatically log into the other applications rely on

Facebook login.

In mobile world, login to native apps is done in three different ways: directly asking

for user credentials, using a WebView, and using the system browser.

�Login with Direct Credentials
With this approach, the user directly provides the credentials to the native app itself

(see Figure 10-1). And the app will use an API (or OAuth 2.0 password grant type) to

authenticate the user. This approach assumes the native app is trusted. In case your

native app uses a third-party identity provider for login, we must not use this. Even this

approach may not be possible, unless the third-party identity provider provides a login

API or supports OAuth 2.0 password grant type. Also this approach can make the users

vulnerable for phishing attacks. An attacker can plant a phishing attack by fooling the

user to install a native app with the same look and feel as the original app and then

mislead the user to share his or her credentials with it. In addition to this risk, login

with direct credentials does not help in building a single sign-on experience, when you

have multiple native apps. You need to use your credentials to log in to each individual

application.

Chapter 10 Accessing APIs via Native Mobile Apps

229

�Login with WebView
The native app developers use a WebView in a native app to embed the browser, so that

the app can use web technologies such as HTML, JavaScript, and CSS. During the login

flow, the native app loads the system browser into a WebView and uses HTTP redirects

to get the user to the corresponding identity provider. For example, if you want to

authenticate users with Facebook, to your native app, you load the system browser into a

WebView first and then redirect the user to Facebook. What’s happening in the browser

loaded into the WebView is no different from the flow you see when you log in to a web

app via Facebook using a browser.

The WebView-based approach was popular in building hybrid native apps, because

it provides better user experience. The users won’t notice the browser being loaded into

the WebView. It looks like everything happens in the same native app.

Figure 10-1.  The Chase bank’s mobile app, which users directly provide
credentials for login

Chapter 10 Accessing APIs via Native Mobile Apps

230

It also has some major disadvantages. The web session under the browser loaded

into a WebView of a native app is not shared between multiple native apps. For example,

if you do login with Facebook to one native app, by redirecting the user to facebook.com

via a browser loaded into a WebView, the user has to log in to Facebook again and again,

when multiple native apps follow the same approach. That is because the web session

created under facebook.com in one WebView is not shared with another WebView of a

different native app. So the single sign-on (SSO) between native apps will not work with

the WebView approach.

WebView-based native apps also make the users more vulnerable to phishing

attacks. In the same example we discussed before, when a user gets redirected to

facebook.com via the system browser loaded into a WebView, he or she won’t be able to

figure out whether they are visiting something outside the native app. So, the native app

developer can trick the user by presenting something very similar to facebook.com and

steal user’s Facebook credentials. Due to this reason, most of the developers are now

moving away from using a WebView for login.

�Login with a System Browser
This approach for login into a native app is similar to what we discussed in the previous

section, but instead of the WebView, the native app spins up the system browser

(see Figure 10-2). System browser itself is another native app. User experience in this

approach is not as smooth as with the WebView approach, as the user has to switch

between two native apps during the login process, but in terms of security, this is the

best approach. Also, this is the only approach we can have single sign-on experience in

a mobile environment. Unlike WebView approach, when you use the system browser,

it manages a single web session for the user. Say, for example, when there are multiple

native apps using Facebook login via the same system browser, the users only need to

log in to Facebook once. Once a web session is created under facebook.com domain

with the system browser, for the subsequent login requests from other native apps, users

will be logged in automatically. In the next section, we see how we can use OAuth 2.0

securely to build this use case.

Chapter 10 Accessing APIs via Native Mobile Apps

231

�Using OAuth 2.0 in Native Mobile Apps
OAuth 2.0 has become the de facto standard for mobile application authentication. In

our security design, we need to treat a native app a dumb application. It is very much

similar to a single-page application. The following lists out the sequence of events that

happen in using OAuth 2.0 to log in to a native mobile app.

Figure 10-2.  Login to Foursquare native app using Facebook

Chapter 10 Accessing APIs via Native Mobile Apps

232

	 1.	 Mobile app developer has to register the application with the

corresponding identity provider or the OAuth 2.0 authorization

server and obtain a client_id. The recommendation is to use

OAuth 2.0 authorization code grant type, without a client secret.

Since the native app is an untrusted client, there is no point of

having a client secret. Some were using implicit grant type for

native apps, but it has its own inherent security issues and not

recommended any more.

	 2.	 Instead of WebView, use SFSafariViewController with iOS9+ or

Chrome Custom Tabs for Android. This web controller provides all

the benefits of the native system browser in a control that can be

placed within an application. Then you can embed the client_id

obtained from step 1 into the application. When you embed a

client_id into an app, it will be the same for all the instances of that

native app. If you want to differentiate each instance of the app

(installed in different devices), then we can dynamically generate

a client_id for each instance at the start of the app, following the

protocol defined in OAuth 2.0 Dynamic Client Registration profile,

which we explained in detail in Chapter 9.

Figure 10-3.  A typical login flow for a native mobile app with OAuth 2.0

Chapter 10 Accessing APIs via Native Mobile Apps

233

	 3.	 During the installation of the app, we need to register an app-

specific custom URL scheme with the mobile operating system.

This URL scheme must match the callback URL or redirect URI

you used in step 1, at the time of app registration. A custom URL

scheme lets the mobile operating system to pass back the control to

your app from another external application, for example from the

system browser. If you send some parameters to the app-specific

custom URI scheme on the browser, the mobile operating system

will track that and invoke the corresponding native app with those

parameters.

	 4.	 Once the user clicks login, on the native app, we need to spin up

the system browser and follow the protocol defined in OAuth

2.0 authorization code grant type (see Figure 10-3), which we

discussed in detail in Chapter 4.

	 5.	 After the user authenticates to the identity provider, the browser

redirects the user back to the registered redirect URI, which is in

fact a custom URL scheme registered with the mobile operating

system.

	 6.	 Upon receiving the authorization code to the custom URL scheme

on the system browser, the mobile operating system spins up the

corresponding native app and passes over the control.

	 7.	 The native app will talk to the token endpoint of the authorization

server and exchange the authorization code to an access token.

	 8.	 The native app uses the access token to access APIs.

�Inter-app Communication
The system browser itself is another native app. We used a custom URL scheme as a way

of inter-app communication to receive the authorization code from the authorization

server. There are multiple ways for inter-app communication available in a mobile

environment: private-use URI scheme (also known as custom URL scheme), claimed

HTTPS URL scheme, and loopback URI scheme.

Chapter 10 Accessing APIs via Native Mobile Apps

234

�Private URI Schemes

In the previous section, we already discussed how a private URI scheme works. When

the browser hits with a private URI scheme, it invokes the corresponding native app,

registered for that URI scheme, and hands over the control. The RFC 75951 defines

guidelines and registration procedures for URI schemes, and according to that, it is

recommended to use a domain name that is under your control, in its reverse order

as the private URI scheme. For example, if you own app.foo.com, then the private

URI scheme should be com.foo.app. The complete private URI scheme may look like

com.foo.app:/oauth2/redirect, and there is only one slash that appears right after the

scheme component.

In the same mobile environment, the private URI schemes can collide with each

other. For example, there can be two apps registered for the same URI scheme. Ideally,

this should not happen if you follow the convention we discussed before while choosing

an identifier. But still there is an opportunity that an attacker can use this technique to

carry out a code interception attack. To prevent such attacks, we must use Proof Key

for Code Exchange (PKCE) along with private URI schemes. We discuss PKCE in a later

section.

�Claimed HTTPS URI Scheme

Just like the private URI scheme, which we discussed in the previous section, when a

browser sees a claimed HTTPS URI scheme, instead of loading the corresponding page,

it hands over the control to the corresponding native app. In supported mobile operating

systems, you can claim an HTTPS domain, which you have control. The complete

claimed HTTPS URI scheme may look like https://app.foo.com/oauth2/redirect.

Unlike in private URI scheme, the browser verifies the identity of the claimed HTTPS URI

before redirection, and for the same reason, it is recommended to use claimed HTTPS

URI scheme over others where possible.

�Loopback Interface

With this approach, your native app will listen on a given port in the device itself. In

other words, your native app acts as a simple web server. For example, your redirect

URI will look like http://127.0.0.1:5000/oauth2/redirect. Since we are using the

1�https://tools.ietf.org/html/rfc7595#section-3.8

Chapter 10 Accessing APIs via Native Mobile Apps

https://app.foo.com/oauth2/redirect
https://tools.ietf.org/html/rfc7595#section-3.8

235

loopback interface (127.0.0.1), when the browser sees this URL, it will hand over the

control to the service listening on the mobile device on port 5000. The challenge with

this approach is that your app may not be able to run on the same port on all the devices,

if there are any other apps on the mobile device already using the same port.

�Proof Key for Code Exchange (PKCE)
Proof Key for Code Exchange (PKCE) is defined in the RFC 7636 as a way to mitigate

code interception attack (more details in Chapter 14) in a mobile environment. As we

discussed in the previous section, when you use a custom URL scheme to retrieve the

authorization code from the OAuth authorization server, there can be a case where it

goes to a different app, which is also registered with the mobile device for the same

custom URL scheme as the original app. An attacker can possibly do this with the

intention of stealing the code.

When the authorization code gets to the wrong app, it can exchange it to an access

token and then gets access to the corresponding APIs. Since we use authorization code

with no client secret in mobile environments, and the client id of the original app is

public, the attacker has no issue in exchanging the code to an access token by talking to

the token endpoint of the authorization server.

Figure 10-4.  A typical login flow for a native mobile app with OAuth 2.0 and PKCE

Chapter 10 Accessing APIs via Native Mobile Apps

236

Let’s see how PKCE solves the code interception attack (see Figure 10-4):

	 1.	 The native mobile app, before redirecting the user to the

authorization server, generates a random value, which is called

the code_verifier. The value of the code_verifier must have

a minimum length of 43 characters and a maximum of 128

characters.

	 2.	 Next the app has to calculate the SHA256 of the code_verifier and

find its base64-url-encoded (see Appendix E) representation,

with no padding. Since SHA256 hashing algorithm always results

in a hash of 256 bits, when you base64-url-encode it, there will

be a padding all the time, which is represented by the = sign.

According to the PKCE RFC, we need to remove that padding—

and that value, which is the SHA256-hashed, base64-url-encoded,

unpadded code_verifier, is known as the code_challenge.

	 3.	 Now, when the native app initiates the authorization code

request and redirects the user to the authorization server, it has

to construct the request URL in the following manner, along

with the code_challenge and the code_challenge_method query

parameters. The code_challenge_method carries the name of the

hashing algorithm.

https://idp.foo.com/authorization?client_id=FFGFGOIPI7898778&s

copeopenid&redirect_uri=com.foo.app:/oauth2/redirect&response_

type=code&code_challenge=YzfcdAoRg7rAfj9_Fllh7XZ6BBl4PIHC-

xoMrfqvWUc&code_challenge_method=S256"

	 4.	 At the time of issuing the authorization code, the authorization

server must record the provided code_challenge against the

issued authorization code. Some authorization servers may

embed the code_challenge into the code itself.

	 5.	 Once the native app gets the authorization code, it can exchange

the code to an access token by talking to the authorization server’s

token endpoint. But, when you follow PKCE, you must send the

code_verifier (which is corresponding to the code_challenge)

along with the token request.

Chapter 10 Accessing APIs via Native Mobile Apps

237

curl -k --user "XDFHKKJURJSHJD" -d "code=XDFHKKJURJSHJD&grant_

type=authorization_code&client_id=FFGFGOIPI7898778

&redirect_uri=com.foo.app:/oauth2/redirect&code_

verifier=ewewewoiuojslkdjsd9sadoidjalskdjsdsdewewewoiuojslkd

jsd9sadoidjalskdjsdsd" https://idp.foo.com/token

	 6.	 If the attacker’s app gets the authorization code, it still cannot

exchange it to an access token, because only the original app

knows the code_verifier.

	 7.	 Once the authorization server receives the code_verifier along with the

token request, it will find the SHA256-hashed, base64-url-encoded,

unpadded value of it and compare it with the recorded code_challenge. If

those two match, then it will issue the access token.

�Browser-less Apps
So far in this chapter, we only discussed about mobile devices, which are capable of

spinning up a web browser. There is another growing requirement to use OAuth secured

APIs from applications running on devices with input constraints and no web browser,

such as smart TVs, smart speakers, printers, and so on. In this section, we discuss how

to access OAuth 2.0 protected APIs from browser-less apps using the OAuth 2.0 device

authorization grant. In any case, the device authorization grant does not replace any

of the approaches we discussed earlier with respect to native apps running on capable

mobile devices.

�OAuth 2.0 Device Authorization Grant
The OAuth 2.0 device authorization grant2 is the RFC 8628, which is published by

the IETF OAuth working group. According to this RFC, a device to use the device

authorization grant type must satisfy the following requirements:

•	 The device is already connected to the Internet or to the network,

which has access to the authorization server.

•	 The device is able to make outbound HTTPS requests.

2�https://tools.ietf.org/html/rfc8628

Chapter 10 Accessing APIs via Native Mobile Apps

https://tools.ietf.org/html/rfc8628

238

•	 The device is able to display or otherwise communicate a URI and

code sequence to the user.

•	 The user has a secondary device (e.g., personal computer or

smartphone) from which they can process a request.

Let’s see how device authorization grant works, with an example. Say we have a

YouTube app running on a smart TV, and we need the smart TV to access our YouTube

account on behalf of us. In this case, YouTube acts as both the OAuth authorization

server and the resource server, and the YouTube app running on the smart TV is the

OAuth client application.

	 1.	 The user takes the TV remote and clicks the YouTube app to

associate his/her YouTube account with the app.

	 2.	 The YouTube app running on the smart TV has an embedded

client ID and sends a direct HTTP request over HTTPS to the

authorization server.

POST /device_authorization HTTP/1.1

Host: idp.youtube.com

Content-Type: application/x-www-form-urlencoded

client_id=XDFHKKJURJSHJD

Figure 10-5.  A typical login flow for a browser-less app with OAuth 2.0

Chapter 10 Accessing APIs via Native Mobile Apps

239

	 3.	 In response to the preceding request, the authorization server

returns back a device_code, a user_code, and a verification

URI. Both the device_code and the user_code have an expiration

time associated with them, which is communicated to the client

app via expires_in parameter (in seconds).

HTTP/1.1 200 OK

Content-Type: application/json

Cache-Control: no-store

{

 "device_code": "GmRhmhcxhwAzkoEqiMEg_DnyEysNkuNhszIySk9eS",

 "user_code": "WDJB-MJHT",

 "verification_uri": "https://youtube.com/device",

 "verification_uri_complete":

 "https://youtube.com/device?user_code=WDJB-MJHT",

 "expires_in": 1800,

 "interval": 5

}

	 4.	 The YouTube client app instructs the user to visit the provided

verification URI (from the preceding response) and confirm the

authorization request with the provided user code (from the

preceding response).

	 5.	 Now the user has to use a secondary device (a laptop or mobile

phone) to visit the verification URI. While that action is in

progress, the YouTube app will keep polling the authorization

server to see whether the user has confirmed the authorization

request. The minimum amount of time the client should wait

before polling or the time between polling is specified by the

authorization server in the preceding response under the

interval parameter. The poll request to the token endpoint of the

authorization server includes three parameters. The grant_type

parameter must carry the value urn:ietf:params:oauth:grant-

type:device_code, so the authorization server knows how to

Chapter 10 Accessing APIs via Native Mobile Apps

240

process this request. The device_code parameter carries the

device code issued by the authorization server in its first response,

and the client_id parameter carries the client identifier of the

YouTube app.

POST /token HTTP/1.1

Host: idp.youtube.com

Content-Type: application/x-www-form-urlencoded

grant_type=urn%3Aietf%3Aparams%3Aoauth%3Agrant-type%3Adevice_code

&device_code=GmRhmhcxhwAzkoEqiMEg_DnyEysNkuNhszIySk9eS

&client_id=459691054427

	 6.	 The user visits the provided verification URI, enters the user code,

and confirms the authorization request.

	 7.	 Once the user confirms the authorization request, the

authorization server issues the following response to the request

in step 5. This is the standard response from an OAuth 2.0

authorization server token endpoint.

HTTP/1.1 200 OK

Content-Type: application/json;charset=UTF-8

Cache-Control: no-store

Pragma: no-cache

{

 "access_token":"2YotnFZFEjr1zCsicMWpAA",

 "token_type":"Bearer",

 "expires_in":3600,

 "refresh_token":"tGzv3JOkF0XG5Qx2TlKWIA",

 }

	 8.	 Now the YouTube app can use this access token to access the

YouTube API on behalf of the user.

Chapter 10 Accessing APIs via Native Mobile Apps

241

�Summary
•	 There are multiple grant types in OAuth 2.0; however, while

using OAuth 2.0 to access APIs from a native mobile app, it is

recommended to use authorization code grant type, along with Proof

Key for Code Exchange (PKCE).

•	 PKCE protects the native apps from code interception attack.

•	 The use of browser-less devices such as smart TVs, smart speakers,

printers, and so on is gaining popularity.

•	 The OAuth 2.0 device authorization grant defines a standard flow to

use OAuth 2.0 from a browser-less device and gain access to APIs.

Chapter 10 Accessing APIs via Native Mobile Apps

243
© Prabath Siriwardena 2020
P. Siriwardena, Advanced API Security, https://doi.org/10.1007/978-1-4842-2050-4_11

CHAPTER 11

OAuth 2.0 Token Binding
Most of the OAuth 2.0 deployments do rely upon bearer tokens. A bearer token is like

“cash.” If I steal 10 bucks from you, I can use it at a Starbucks to buy a cup of coffee—no

questions asked. I do not need to prove that I own the ten-dollar note. Unlike cash, if

I use my credit card, I need to prove the possession. I need to prove I own it. I need to

sign to authorize the transaction, and it’s validated against the signature on the card.

The bearer tokens are like cash—once stolen, an attacker can use it to impersonate the

original owner. Credit cards are like proof of possession (PoP) tokens.

OAuth 2.0 recommends using Transport Layer Security (TLS) for all the interactions

between the client, authorization server, and resource server. This makes the OAuth 2.0

model quite simple with no complex cryptography involved—but at the same time, it

carries all the risks associated with a bearer token. There is no second level of defense.

Also not everyone is fully bought into the idea of using OAuth 2.0 bearer tokens—just

trusting the underlying TLS communication. I’ve met several people—mostly from the

financial domain—who are reluctant to use OAuth 2.0, just because of the bearer tokens.

An attacker may attempt to eavesdrop authorization code/access token/refresh

token (see Chapter 4 for details) in transit from the authorization server to the client,

using any of the following means:

•	 Malware installed in the browser (public clients).

•	 Browser history (public clients/URI fragments).

•	 Intercept the TLS communication between the client and the

authorization server or the resource server (exploiting the

vulnerabilities in the TLS layer like Heartbleed and Logjam).

244

•	 TLS is point to point (not end to end)—an attacker having access to a

proxy server could simply log all the tokens. Also, in many production

deployments, the TLS connection is terminated at the edge, and

from there onward, it’s either a new TLS connection or a plain HTTP

connection. In either case, as soon as a token leaves the channel, it’s

no more secure.

�Understanding Token Binding
OAuth 2.0 token binding proposal cryptographically binds security tokens to the TLS

layer, preventing token export and replay attacks. It relies on TLS—and since it binds

the tokens to the TLS connection itself, anyone who steals a token cannot use it over a

different channel.

We can break down the token binding protocol into three main phases (see

Figure 11-1).

Figure 11-1.  Three main phases in the token binding protocol

�Token Binding Negotiation
During the negotiation phase, the client and the server negotiate a set of parameters

to use for token binding between them. This is independent of the application layer

protocols—as it happens during the TLS handshake (see Appendix C). We discuss more

about this in the next section. The token binding negotiation is defined in the RFC 8472.

Keep in mind we do not negotiate any keys in this phase, only the metadata.

Chapter 11 OAuth 2.0 Token Binding

245

�Key Generation

During the key generation phase, the client generates a key pair according to the

parameters negotiated in the negotiation phase. The client will have a key pair for each

host it talks to (in most of the cases).

�Proof of Possession

During the proof of possession phase, the client uses the keys generated in the key

generation phase to prove the possession. Once the keys are agreed upon, in the key

generation phase, the client proves the possession of the key by signing the exported

keying material (EKM) from the TLS connection. The RFC 5705 allows an application to

get additional application-specific keying material derived from the TLS master secret

(see Appendix C). The RFC 8471 defines the structure of the token binding message,

which includes the signature and other key materials, but it does not define how to

carry the token binding message from the client to the server. It’s up to the higher-level

protocols to define it. The RFC 8473 defines how to carry the token binding message over

an HTTP connection (see Figure 11-2).

Figure 11-2.  The responsibilities of each layer in a token binding flow

Chapter 11 OAuth 2.0 Token Binding

246

�TLS Extension for Token Binding Protocol
Negotiation
To bind security tokens to the TLS connection, the client and the server need to first

agree upon the token binding protocol (we’ll discuss about this later) version and

the parameters (signature algorithm, length) related to the token binding key. This

is accomplished by a new TLS extension without introducing additional network

roundtrips in TLS 1.2 and earlier versions.

The token binding protocol version reflects the protocol version defined by the

Token Binding Protocol (RFC 8471)—and the key parameters are defined by the same

specification itself.

The client uses the Token Binding TLS extension to indicate the highest supported

token binding protocol version and key parameters. This happens with the Client Hello

message in the TLS handshake. To support the token binding specification, both the

client and the server should support the token binding protocol negotiation extension.

The server uses the Token Binding TLS extension to indicate the support for the

token binding protocol and to select the protocol version and key parameters. The server

that supports token binding and receives a Client Hello message containing the Token

Binding extension will include the Token Binding extension in the Server Hello if the

required conditions are satisfied.

If the Token Binding extension is included in the Server Hello and the client supports

the token binding protocol version selected by the server, it means that the version

and key parameters have been negotiated between the client and the server and shall

be definitive for the TLS connection. If the client does not support the token binding

protocol version selected by the server, then the connection proceeds without token

binding.

Every time a new TLS connection is negotiated (TLS handshake) between the client

and the server, a token binding negotiation happens too. Even though the negotiation

happens repeatedly by the TLS connection, the token bindings (you will learn more

about this later) are long-lived; they encompass multiple TLS connections and TLS

sessions between a given client and server.

In practice, Nginx (https://github.com/google/ngx_token_binding) and Apache

(https://github.com/zmartzone/mod_token_binding) have support for token binding.

An implementation of Token Binding Protocol Negotiation TLS Extension in Java is

available here: https://github.com/pingidentity/java10-token-binding-negotiation.

Chapter 11 OAuth 2.0 Token Binding

https://github.com/google/ngx_token_binding
https://github.com/zmartzone/mod_token_binding
https://github.com/pingidentity/java10-token-binding-negotiation

247

�Key Generation
The Token Binding Protocol specification (RFC 8471) defines the parameters related to

key generation. These are the ones agreed upon during the negotiation phase.

•	 If rsa2048_pkcs1.5 key parameter is used during the negotiation

phase, then the signature is generated using the RSASSA-PKCS1-v1_5

signature scheme as defined in RFC 3447 with SHA256 as the hash

function.

•	 If rsa2048_pss key parameter is used during the negotiation phase,

then the signature is generated using the RSASSA-PSS signature

scheme as defined in RFC 3447 with SHA256 as the hash function.

•	 If ecdsap256 key parameter is used during the negotiation phase, the

signature is generated with ECDSA using Curve P-256 and SHA256 as

defined in ANSI.X9–62.2005 and FIPS.186–4.2013.

In case a browser acts as the client, then the browser itself has to generate

the keys and maintain them against the hostname of the server. You can find the

status of this feature development for Chrome from here (www.chromestatus.com/

feature/5097603234529280). Then again the token binding is not only for a browser,

it’s useful in all the interactions between a client and a server—irrespective of the client

being thin or thick.

�Proof of Possession
A token binding is established by a user agent (or the client) generating a private/

public key pair (possibly, within a secure hardware module, such as trusted platform

module (TPM)) per target server, providing the public key to the server, and proving

the possession of the corresponding private key, on every TLS connection to the server.

The generated public key is reflected in the token binding ID between the client and the

server. At the server end, the verification happens in two steps.

First, the server receiving the token binding message needs to verify that the key

parameters in the message match with the token binding parameters negotiated

and then validate the signature contained in the token binding message. All the key

parameters and the signature are embedded into the token binding message.

Chapter 11 OAuth 2.0 Token Binding

http://www.chromestatus.com/feature/5097603234529280
http://www.chromestatus.com/feature/5097603234529280

248

The structure of the token binding message is defined in the Token Binding Protocol

specification (RFC 8471). A token binding message can have multiple token bindings

(see Figure 11-3). A given token binding includes the token binding ID, the type of the

token binding (provided or referred—we’ll talk about this later), extensions, and the

signature over the concatenation of exported keying material (EKM) from the TLS layer,

token binding type, and key parameters. The token binding ID reflects the derived public

key along with the key parameters agreed upon the token binding negotiation.

Once the TLS connection is established between a client and a server, the EKM will

be the same—both at the client end and at the server end. So, to verify the signature,

the server can extract the EKM from the underneath TLS connection and use the token

binding type and key parameters embedded into the token binding message itself. The

signature is validated against the embedded public key (see Figure 11-3).

Figure 11-3.  The structure of the token binding message

How to carry the token binding message from the client to the server is not defined

in the Token Binding Protocol specification, but in the Token Binding for HTTP

specification or the RFC 8473. In other words, the core token binding specification

lets the higher-level protocols make the decision on that. The Token Binding for HTTP

specification introduces a new HTTP header called Sec-Token-Binding—and it carries

the base64url-encoded value of the token binding message. The Sec-Token-Binding

Chapter 11 OAuth 2.0 Token Binding

249

header field MUST NOT be included in HTTP responses—MUST include only once in an

HTTP request.

Once the token binding message is accepted as valid, the next step is to make sure

that the security tokens carried in the corresponding HTTP connection are bound to

it. Different security tokens can be transported over HTTP—for example, cookies and

OAuth 2.0 tokens. In the case of OAuth 2.0, how the authorization code, access token,

and refresh token are bound to the HTTP connection is defined in the OAuth 2.0 Token

Binding specification (https://tools.ietf.org/html/draft-ietf-oauth-token-

binding-08).

�Token Binding for OAuth 2.0 Refresh Token
Let’s see how the token binding works for OAuth 2.0 refresh tokens. A refresh token,

unlike authorization code and access token, is only used between the client and the

authorization server. Under the OAuth 2.0 authorization code grant type, the client first

gets the authorization code and then exchanges it to an access token and a refresh token

by talking to the token endpoint of the OAuth 2.0 authorization server (see Chapter 4 for

details). The following flow assumes the client has already got the authorization code

(see Figure 11-4).

Figure 11-4.  OAuth 2.0 refresh grant type

	 1.	 The connection between the client and the authorization server

must be on TLS.

	 2.	 The client which supports OAuth 2.0 token binding, during the

TLS handshake itself, negotiates the required parameters with the

authorization server, which too supports OAuth 2.0 token binding.

Chapter 11 OAuth 2.0 Token Binding

https://tools.ietf.org/html/draft-ietf-oauth-token-binding-08
https://tools.ietf.org/html/draft-ietf-oauth-token-binding-08

250

	 3.	 Once the TLS handshake is completed, the OAuth 2.0 client will

generate a private key and a public key and will sign the exported

keying material (EKM) from the underlying TLS connection

with the private key—and builds the token binding message. (To

be precise, the client will sign EKM + token binding type + key

parameters.)

	 4.	 The base64url-encoded token binding message will be added

as the value to the Sec-Token-Binding HTTP header to the

connection between the client and the OAuth 2.0 authorization

server.

	 5.	 The client will send a standard OAuth request to the token

endpoint along with the Sec-Token-Binding HTTP header.

	 6.	 The authorization server validates the value of Sec-Token-Binding

header, including the signature, and records the token binding

ID (which is also included in the token binding message) against

the issued refresh token. To make the process stateless, the

authorization server can include the hash of the token binding

ID into the refresh token itself—so it does not need to remember/

store it separately.

	 7.	 Later, the OAuth 2.0 client tries to use the refresh token against the

same token endpoint to refresh the access token. Now, the client

has to use the same private key and public key pair used before

to generate the token binding message and, once again, includes

the base64url-encoded value of it to the Sec-Token-Binding HTTP

header. The token binding message has to carry the same token

binding ID as in the case where the refresh token was originally

issued.

	 8.	 The OAuth 2.0 authorization server now must validate the Sec-

Token-Binding HTTP header and then needs to make sure that

the token binding ID in the binding message is the same as the

original token binding ID attached to the refresh token in the

same request. This check will make sure that the refresh token

cannot be used outside the original token binding. In case the

authorization server decides to embed the hashed value of the

Chapter 11 OAuth 2.0 Token Binding

251

token binding ID to the refresh token itself, now it has to calculate

the hash of the token binding ID in the Sec-Token-Binding HTTP

header and compare it with what is embedded into the refresh

token.

	 9.	 If someone steals the refresh token and is desperate to use it

outside the original token binding, then he/she also has to steal

the private/public key pair corresponding to the connection

between the client and the server.

There are two types of token bindings—and what we discussed with respect to the

refresh token is known as provided token binding. This is used when the token exchange

happens directly between the client and the server. The other type is known as referred

token binding, which is used when requesting tokens, which are intended to present

to a different server—for example, the access token. The access token is issued in a

connection between the client and the authorization server—but used in a connection

between the client and the resource server.

�Token Binding for OAuth 2.0 Authorization
Code/Access Token
Let’s see how the token binding works for access tokens, under the authorization code

grant type. Under the OAuth 2.0 authorization code grant type, the client first gets the

authorization code via the browser (user agent) and then exchanges it to an access token

and a refresh token by talking to the token endpoint of the OAuth 2.0 authorization

server (see Figure 11-5).

Chapter 11 OAuth 2.0 Token Binding

252

	 1.	 When the end user clicks the login link on the OAuth 2.0 client

application on the browser, the browser has to do an HTTP GET

to the client application (which is running on a web server), and

the browser has to establish a TLS connection with the OAuth

2.0 client first. The browser, which supports OAuth 2.0 token

binding, during the TLS handshake itself, negotiates the required

parameters with the client application, which too supports OAuth

2.0 token binding. Once the TLS handshake is completed, the

browser will generate a private key and public key (for the client

domain) and will sign the exported keying material (EKM) from

the underlying TLS connection with the private key—and builds

the token binding message. The base64url-encoded token binding

message will be added as the value to the Sec-Token-Binding HTTP

header to the connection between the browser and the OAuth 2.0

client—which is the HTTP GET.

	 2.	 In response to step 1 (assuming all the token binding validations

are done), the client will send a 302 response to the browser, asking

to redirect the user to the OAuth 2.0 authorization server. Also in

the response, the client will include the HTTP header Include-
Referred-Token-Binding-ID, which is set to true. This instructs the

Figure 11-5.  OAuth 2.0 authorization code flow

Chapter 11 OAuth 2.0 Token Binding

253

browser to include the token binding ID established between the

browser and the client in the request to the authorization server.

Also, the client application will include two additional parameters

in the request: code_challenge and code_challenge_method.

These parameters are defined in the Proof Key for Code Exchange

(PKCE) or RFC 7636 for OAuth 2.0. Under token binding, these two

parameters will carry static values, code_challenge=referred_tb

and code_challenge_method=referred_tb.

	 3.	 The browser, during the TLS handshake itself, negotiates the

required parameters with the authorization server. Once the TLS

handshake is completed, the browser will generate a private key

and public key (for the authorization server domain) and will

sign the exported keying material (EKM) from the underlying

TLS connection with the private key—and builds the token

binding message. The client will send the standard OAuth

request to the authorization endpoint along with the Sec-Token-

Binding HTTP header. This Sec-Token-Binding HTTP header now

includes two token bindings (in one token binding message—see

Figure 11-3), one for the connection between the browser and the

authorization server, and the other one is for the browser and the

client application (referred binding).

	 4.	 The authorization server redirects the user back to the OAuth

client application via browser—along with the authorization code.

The authorization code is issued against the token binding ID in

the referred token binding.

	 5.	 The browser will do a POST to the client application, which also

includes the authorization code from the authorization server.

The browser will use the same token binding ID established

between itself and the client application—and adds the Sec-Token-

Binding HTTP header.

	 6.	 Once the client application gets the authorization code (and

given that the Sec-Token-Binding validation is successful), it

will now talk to the authorization server’s token endpoint.

Chapter 11 OAuth 2.0 Token Binding

254

Prior to that, the client has to establish a token binding with the

authorization server. The token request will also include the

code_verifier parameter (defined in the PKCE RFC), which will

carry the provided token binding ID between the client and the

browser—which is also the token binding ID attached to the

authorization code. Since the access token, which will be issued

by the authorization server, is going to be used against a protected

resource, the client has to include the token binding between

itself and the resource server into this token binding message as

a referred binding. Upon receiving the token request, the OAuth

2.0 authorization server now must validate the Sec-Token-Binding

HTTP header and then needs to make sure that the token binding

ID in the code_verifier parameter is the same as the original

token binding ID attached to the authorization code at the point of

issuing it. This check will make sure that the code cannot be used

outside the original token binding. Then the authorization server

will issue an access token, which is bound to the referred token

binding, and a refresh token, which is bound to the connection

between the client and the authorization server.

	 7.	 The client application now invokes an API in the resource server

passing the access token. This will carry the token binding

between the client and the resource server.

	 8.	 The resource server will now talk to the introspection endpoint

of the authorization server—and it will return back the binding

ID attached to the access token, so the resource server can check

whether it’s the same binding ID used between itself and the

client application.

�TLS Termination
Many production deployments do include a reverse proxy—which terminates the TLS

connection. This can be at an Apache or Nginx server sitting between the client and

the server. Once the connection is terminated at the reverse proxy, the server has no

clue what happened at the TLS layer. To make sure the security tokens are bound to the

Chapter 11 OAuth 2.0 Token Binding

255

incoming TLS connection, the server has to know the token binding ID. The HTTPS

Token Binding with TLS Terminating Reverse Proxies, the draft specification (https://

tools.ietf.org/html/draft-ietf-tokbind-ttrp-09), standardizes how the binding

IDs are passed from the reverse proxy to the back-end server, as HTTP headers. The

Provided-Token-Binding-ID and Referred-Token-Binding-ID HTTP headers are

introduced by this specification (see Figure 11-6).

Figure 11-6.  The reverse proxy passes the Provided-Token-Binding-ID and
Referred-Token-Binding-ID HTTP headers to the backend server

�Summary
•	 OAuth 2.0 token binding proposal cryptographically binds security

tokens to the TLS layer, preventing token export and replay attacks.

•	 Token binding relies on TLS—and since it binds the tokens to the

TLS connection itself, anyone who steals a token cannot use it over a

different channel.

•	 We can break down the token binding protocol into three main

phases: negotiation phase, key generation phase, and proof of

possession phase.

•	 During the negotiation phase, the client and the server negotiate a set

of parameters to use for token binding between them.

•	 During the key generation phase, the client generates a key pair

according to the parameters negotiated in the negotiation phase.

•	 During the proof of possession phase, the client uses the keys

generated in the key generation phase to prove the possession.

Chapter 11 OAuth 2.0 Token Binding

https://tools.ietf.org/html/draft-ietf-tokbind-ttrp-09
https://tools.ietf.org/html/draft-ietf-tokbind-ttrp-09

257
© Prabath Siriwardena 2020
P. Siriwardena, Advanced API Security, https://doi.org/10.1007/978-1-4842-2050-4_12

CHAPTER 12

Federating Access to APIs
One of the research performed by Quocirca (analyst and research company) confirms

that many businesses now have more external users who interact with enterprise

applications than internal ones. In Europe, 58% of businesses transact directly with users

from other firms and/or consumers. In the United Kingdom alone, the figure is 65%.

If you look at recent history, most enterprises today grow via acquisitions, mergers,

and partnerships. In the United States alone, the volume of mergers and acquisitions

totaled $865.1 billion in the first nine months of 2013, according to Dealogic. That’s a

39% increase over the same period of the previous year and the highest nine-month total

since 2008. What does this mean for securing APIs? You need to have the ability to deal

with multiple heterogeneous security systems across borders.

�Enabling Federation
Federation, in the context of API security, is about propagating user identities across

distinct identity management systems or distinct enterprises. Let’s start with a simple

use case where you have an API exposed to your partners. How would you authenticate

users for this API from different partners? These users belong to the external partners

and are managed by them. HTTP Basic authentication won’t work. You don’t have access

to the external users’ credentials, and, at the same time, your partners won’t expose

an LDAP or a database connection outside their firewall to external parties. Asking for

usernames and passwords simply doesn’t work in a federation scenario. Would OAuth

2.0 work? To access an API secured with OAuth, the client must present an access token

issued by the owner of the API or issued by an entity that your API trusts. Users from

external parties have to authenticate first with the OAuth authorization server that the

API trusts and then obtain an access token. Ideally, the authorization server the API

trusts is from the same domain as the API.

Neither the authorization code grant type nor the implicit grant type mandates how

to authenticate users at the authorization server. It’s up to the authorization server to

258

decide. If the user is local to the authorization server, then it can use a username and

password or any other direct authentication protocol. If the user is from an external

entity, then you have to use some kind of brokered authentication.

�Brokered Authentication
With brokered authentication, at the time of authentication, the local authorization

server (running in the same domain as the API) does not need to trust each and every

individual user from external parties. Instead, it can trust a broker from a given partner

domain (see Figure 12-1). Each partner should have a trust broker whose responsibility

is to authenticate its own users (possibly through direct authentication) and then pass

the authentication decision back to the local OAuth authorization server in a reliable

and trusted manner. In practice, an identity provider running in the user’s (in our case,

the partner employees’) home domain plays the role of a trust broker.

Figure 12-1.  Brokered authentication for OAuth client applications

Chapter 12 Federating Access to APIs

259

The trust relationship between the brokers from partners and the local OAuth

authorization server (or between two federation domains) must be established out

of band. In other words, it has to be established with a prior agreement between two

parties. In most scenarios, trust between different entities is established through X.509

certificates. Let’s walk through a sample brokered authentication use case.

Going back to OAuth principles, you need to deal with four entities in a federation

scenario: the resource owner, the resource server, the authorization server, and the client

application. All these entities can reside in the same domain or in different ones.

Let’s start with the simplest scenario first. The resource owner (user), resource

server (API gateway), and authorization server are in a single domain, and the client

application (web app) is in a different domain. For example, you’re an employee of Foo

Inc. and want to access a web application hosted by Bar Inc. (see Figure 12-1). Once you

log in to a web application at Bar Inc., it needs to access an API hosted in Foo Inc. on

your behalf. Using OAuth terminology, you’re the resource owner, and the API is hosted

in the resource server. Both you and API are from the Foo domain. The web application

hosted by Bar Inc. is the OAuth client application.

Figure 12-1 illustrates how brokered authentication works for an OAuth client

application.

•	 The resource owner (user) from Foo Inc. visits the web application at

Bar Inc. (step 1).

•	 To authenticate the user, the web application redirects the user

to the OAuth authorization server at Foo Inc., which is also the

home domain of the resource owner (step 2). To use the OAuth

authorization code grant type, the web application also needs to

pass its client ID along with the authorization code grant request

during the redirection. At this time, the authorization server won’t

authenticate the client application but only validates its existence.

In a federation scenario, the authorization server does not need to

trust each and every individual application (or OAuth client); rather,

it trusts the corresponding domain. The authorization server accepts

authorization grant requests from any client that belongs to a trusted

domain. This also avoids the cost of client registration. You don’t

need to register each client application from Bar Inc.—instead, you

can build a trust relationship between the authorization server from

Chapter 12 Federating Access to APIs

260

Foo Inc. and the trust broker from Bar Inc. During the authorization

code grant phase, the authorization server only needs to record the

client ID. It doesn’t need to validate the client’s existence.

Note T he OAuth client identifier (ID) isn’t treated as a secret. It’s publicly visible
to anyone.

•	 Once the client application gets the authorization code from the

authorization server (step 3), the next step is to exchange it for a valid

access token. This step requires client authentication.

•	 Because the authorization server doesn’t trust each individual

application, the web application must first authenticate to its own

trust broker in its own domain (step 4) and get a signed assertion

(step 5). This signed assertion can be used as a token of proof against

the authorization server in Foo Inc.

•	 The authorization server validates the signature of the assertion and,

if it’s signed by an entity it trusts, returns the corresponding access

token to the client application (steps 6 and 7).

•	 The client application can use the access token to access the APIs in

Foo Inc. on behalf of the resource owner (step 8), or it can talk to a

user endpoint at Foo Inc. to get more information about the user.

Note T he definition of assertion, according to the Oxford English Dictionary,
is “a confident and forceful statement of fact or belief.” The fact or belief here
is that the entity that brings this assertion is an authenticated entity at the trust
broker. If the assertion isn’t signed, anyone in the middle can alter it. Once the
trust broker (or the asserting party) signs the assertion with its private key, no
one in the middle can alter it. If it’s altered, any alterations can be detected at the
authorization server during signature validation. The signature is validated using
the corresponding public key of the trust broker.

Chapter 12 Federating Access to APIs

261

�Security Assertion Markup Language (SAML)
Security Assertion Markup Language (SAML) is an OASIS standard for exchanging

authentication, authorization, and identity-related data between interested parties

in an XML-based data format. SAML 1.0 was adopted as an OASIS standard in 2002,

and in 2003 SAML 1.1 was ratified as an OASIS standard. At the same time, the Liberty

Alliance donated its Identity Federation Framework to OASIS. SAML 2.0 became an

OASIS standard in 2005 by converging SAML 1.1, Liberty Alliance’s Identity Federation

Framework, and Shibboleth 1.3. SAML 2.0 has four basic elements:

•	 Assertions: Authentication, Authorization, and Attribute

assertions.

•	 Protocol: Request and Response elements to package SAML

assertions.

•	 Bindings: How to transfer SAML messages between interested

parties. HTTP binding and SOAP binding are two examples. If the

trust broker uses a SOAP message to transfer a SAML assertion, then

it has to use the SOAP binding for SAML.

•	 Profiles: How to aggregate the assertions, protocol, and bindings to

address a specific use case. A SAML 2.0 Web Single Sign-On (SSO)

profile defines a standard way to establish SSO between different

service providers via SAML.

Note T he blog post at http://blog.facilelogin.com/2011/11/depth-
of-saml-saml-summary.html provides a high-level overview of SAML.

�SAML 2.0 Client Authentication
To achieve client authentication with the SAML 2.0 profile for OAuth 2.0, you can use the

parameter client_assertion_type with the value urn:ietf:params:oauth:client-

assertion-type:saml2-bearer in the access token request (see step 6 in Figure 12-1).

The OAuth flow starts from step 2.

Chapter 12 Federating Access to APIs

http://blog.facilelogin.com/2011/11/depth-of-saml-saml-summary.html
http://blog.facilelogin.com/2011/11/depth-of-saml-saml-summary.html

262

Now let’s dig into each step. The following shows a sample authorization code grant

request initiated by the web application at Bar Inc.:

GET /authorize?response_type=code

 &client_id=wiuo879hkjhkjhk3232

 &state=xyz

 &redirect_uri=https://bar.com/cb

HTTP/1.1

Host: auth.foo.com

This results in the following response, which includes the requested authorization

code:

HTTP/1.1 302 Found

Location: https://bar.com/cb?code=SplwqeZQwqwKJjklje&state=xyz

So far it’s the normal OAuth authorization code flow. Now the web application has to

talk to the trust broker in its own domain to obtain a SAML assertion. This step is outside

the scope of OAuth. Because this is machine-to-machine authentication (from the web

application to the trust broker), you can use a SOAP-based WS-Trust protocol to obtain

the SAML assertion or any other protocol like OAuth 2.0 Token Delegation profile, which

we discussed in Chapter 9. The web application does not need to do this each time a

user logs in; it can be one-time operation that is governed by the lifetime of the SAML

assertion. The following is a sample SAML assertion obtained from the trust broker:

<saml:Assertion >

 <saml:Issuer>bar.com</saml:Issuer>

 <ds:Signature>

 <ds:SignedInfo></ds:SignedInfo>

 <ds:SignatureValue></ds:SignatureValue>

 <ds:KeyInfo></ds:KeyInfo>

 </ds:Signature>

 <saml:Subject>

 <saml:NameID>18982198kjk2121</saml:NameID>

 <saml:SubjectConfirmation>

 <saml:SubjectConfirmationData

 NotOnOrAfter="2019-10-05T19:30:14.654Z"

 Recipient="https://foo.com/oauth2/token"/>

Chapter 12 Federating Access to APIs

263

 </saml:SubjectConfirmation>

 </saml:Subject>

 <saml:Conditions

 NotBefore="2019-10-05T19:25:14.654Z"

 NotOnOrAfter="2019-10-05T19:30:14.654Z">

 <saml:AudienceRestriction>

 <saml:Audience>

 https://foo.com/oauth2/token

 </saml:Audience>

 </saml:AudienceRestriction>

 </saml:Conditions>

 <saml:AuthnStatement AuthnInstant="2019-10-05T19:25:14.655Z">

 <saml:AuthnContext>

 <saml:AuthnContextClassRef>

 urn:oasis:names:tc:SAML:2.0:ac:classes:unspecified

 </saml:AuthnContextClassRef>

 </saml:AuthnContext>

 </saml:AuthnStatement>

</saml:Assertion>

To use this SAML assertion in an OAuth flow to authenticate the client, it must

adhere to the following rules:

•	 The assertion must have a unique identifier for the Issuer element,

which identifies the token-issuing entity. In this case, the broker of

the Bar Inc.

•	 The assertion must have a NameID element inside the Subject

element that uniquely identifies the client application (web app).

This is treated as the client ID of the client application at the

authorization server.

•	 The SubjectConfirmation method must be set to urn:oasis:names:

tc:SAML:2.0:cm:bearer.

•	 If the assertion issuer authenticates the client, then the assertion

must have a single AuthnStatement.

Chapter 12 Federating Access to APIs

264

Note  WS-Trust is an OASIS standard for SOAP message security. WS-Trust, which
is built on top of the WS-Security standard, defines a protocol to exchange identity
information that is wrapped in a token (SAML), between two trust domains. The
blog post at http://blog.facilelogin.com/2010/05/ws-trust-with-
fresh-banana-service.html explains WS-Trust at a high level. The latest
WS-Trust specification is available at http://docs.oasis-open.org/ws-sx/
ws-trust/v1.4/errata01/ws-trust-1.4-errata01-complete.html.

Once the client web application gets the SAML assertion from the trust broker, it has

to base64url-encode the assertion and send it to the authorization server along with the

access token request. In the following sample HTTP POST message, client_assertion_

type is set to urn:ietf:params:oauth:client-assertion-type:saml2-bearer, and the

base64url-encoded (see Appendix E) SAML assertion is set to the client_assertion

parameter:

POST /token HTTP/1.1

Host: auth.foo.com

Content-Type: application/x-www-form-urlencoded

grant_type=authorization_code&code=SplwqeZQwqwKJjklje

&client_assertion_type=urn:ietf:params:oauth:client-assertion-type:saml2-

bearer

&client_assertion=HdsjkkbKLew...[omitted for brevity]...OT

Once the authorization server receives the access token request, it validates the

SAML assertion. If it’s valid (signed by a trusted party), an access token is issued, along

with a refresh token.

�SAML Grant Type for OAuth 2.0
The previous section explained how to use a SAML assertion to authenticate a client

application. That is one federation use case that falls under the context of OAuth. There the

trust broker was running inside Bar Inc., where the client application was running. Let’s

consider a use case where the resource server (API), the authorization server, and the client

application run in the same domain (Bar Inc.), while the user is from an outside domain

(Foo Inc.). Here the end user authenticates to the web application with a SAML assertion

Chapter 12 Federating Access to APIs

http://blog.facilelogin.com/2010/05/ws-trust-with-fresh-banana-service.html
http://blog.facilelogin.com/2010/05/ws-trust-with-fresh-banana-service.html
http://docs.oasis-open.org/ws-sx/ws-trust/v1.4/errata01/ws-trust-1.4-errata01-complete.html
http://docs.oasis-open.org/ws-sx/ws-trust/v1.4/errata01/ws-trust-1.4-errata01-complete.html

265

(see Figure 12-2). A trust broker (a SAML identity provider) in the user’s domain issues this

assertion. The client application uses this assertion to talk to the local authorization server

to obtain an access token to access an API on behalf of the logged-in user.

Figure 12-2.  Brokered authentication with the SAML grant type for OAuth 2.0

Figure 12-2 illustrates how brokered authentication with a SAML grant type for

OAuth 2.0 works.

•	 The first three steps are outside the scope of OAuth. The resource

owner first logs in to the web application owned by Bar Inc. via SAML

2.0 Web SSO.

•	 The SAML 2.0 Web SSO flow is initiated by the web application by

redirecting the user to the SAML identity provider at Foo Inc. (step 2).

•	 Once the user authenticates to the SAML identity provider, the

SAML identity provider creates a SAML response (which wraps the

assertion) and sends it back to the web application (step 3). The web

application validates the signature in the SAML assertion and, if a

trusted identity provider signs it, allows the user to log in to the web

application.

Chapter 12 Federating Access to APIs

266

•	 Once the user logs in to the web application, the web application has

to exchange the SAML assertion for an access token by talking to its

own internal authorization server (steps 4 and 5). The way to do this

is defined in the SAML 2.0 Profile for OAuth 2.0 Client Authentication

and Authorization Grants specification (RFC 7522).

The following is a sample POST message from the web application to the

authorization server. There the value of grant_type must be urn:ietf:params:oauth:

grant-type:saml2-bearer, and the base64url-encoded SAML assertion is set as the

value of the assertion parameter:

Note N o refresh tokens are issued under the SAML Bearer grant type. The
lifetime of the access token should not exceed the lifetime of the SAML bearer
assertion by a significant amount.

POST /token HTTP/1.1

Host: auth.bar.com

Content-Type: application/x-www-form-urlencoded

grant_type=urn:ietf:params:oauth:grant-type:saml2-bearer

&assertion=QBNhbWxwOl...[omitted for brevity]...OT4

This request is validated at the authorization server. The SAML assertion is

once again validated via its signature; and, if a trusted identity provider signs it, the

authorization server issues a valid access token.

The scope of the access token issued under the SAML Bearer grant type should be set

out of band by the resource owner. Out of band here indicates that the resource owner

makes a pre-agreement with the resource server/authorization server with respect to

the scope associated with a given resource when the SAML grant type is being used. The

client application can include a scope parameter in the authorization grant request, but

the value of the scope parameter must be a subset of the scope defined out of band by

the resource owner. If no scope parameter is included in the authorization grant request,

then the access token inherits the scope set out of band.

Both federation use cases discussed assume that the resource server and the

authorization server are running in the same domain. If that isn’t the case, the resource

server must invoke an API exposed by the authorization server to validate the access

Chapter 12 Federating Access to APIs

267

token at the time the client tries to access a resource. If the authorization server supports

the OAuth Introspection specification (discussed in Chapter 9), the resource server can

talk to the introspection endpoint and find out whether the token is active or not and

also what scopes are associated with the token. The resource server can then check

whether the token has the required set of scopes to access the resource.

�JWT Grant Type for OAuth 2.0
The JSON Web Token (JWT) profile for OAuth 2.0, which is defined in the RFC 7523,

extends the OAuth 2.0 core specification by defining its own authorization grant type and

a client authentication mechanism. An authorization grant in OAuth 2.0 is an abstract

representation of the temporary credentials granted to the OAuth 2.0 client by the

resource owner to access a resource. The OAuth 2.0 core specification defines four grant

types: authorization code, implicit, resource owner password, and client credentials.

Each of these grant types defines in a unique way how the resource owner can grant

delegated access to a resource he/she owns to an OAuth 2.0 client. The JWT grant type,

which we discuss in this chapter, defines how to exchange a JWT for an OAuth 2.0 access

token. In addition to the JWT grant type, the RFC 7523 also defines a way to authenticate

an OAuth 2.0 client in its interactions with an OAuth 2.0 authorization server. OAuth

2.0 does not define a concrete way for client authentication, even though in most of the

cases it’s the HTTP Basic authentication with client id and the client secret. The RFC

7523 defines a way to authenticate an OAuth 2.0 client using a JWT.

The JWT authorization grant type assumes that the client is in possession

with a JWT. This JWT can be a self-issued JWT or a JWT obtained from an identity

provider. Based on who signs the JWT, one can differentiate a self-issued JWT from

an identity provider–issued JWT. The client itself signs a self-issued JWT, while an

identity provider signs the identity provider–issued JWT. In either case, the OAuth

authorization server must trust the issuer of the JWT. The following shows a sample

JWT authorization grant request, where the value of the grant_type parameter is set to

urn:ietf:params:oauth:grant-type:jwt-bearer.

POST /token HTTP/1.1

Host: auth.bar.com

Content-Type: application/x-www-form-urlencoded

Chapter 12 Federating Access to APIs

268

grant_type=urn%3Aietf%3Aparams%3Aoauth%3Agrant-type%3Ajwt-bearer&assertion=

eyJhbGciOiJFUzI1NiIsImtpZCI6IjE2In0.

eyJpc3Mi[...omitted for brevity...].

J9l-ZhwP[...omitted for brevity...]

The Assertion Framework for OAuth 2.0 Client Authentication and Authorization

Grants specification, which is the RFC 7521, defines the parameters in the JWT

authorization grant request, as listed out in the following:

•	 grant_type: This is a required parameter, which defines the

format of the assertion, as understood by the authorization

server. The value of grant_type is an absolute URI, and it must be

urn:ietf:params:oauth:grant-type:jwt-bearer.

•	 assertion: This is a required parameter, which carries the token. For

example, in the case of JWT authorization grant type, the assertion

parameter will carry the base64url-encoded JWT, and it must only

contain a single JWT. If there are multiple JWTs in the assertion, then

the authorization server will reject the grant request.

•	 scope: This is an optional parameter. Unlike in authorization code

and implicit grant types, the JWT grant type does not have a way to

get the resource owner’s consent for a requested scope. In such case,

the authorization server will establish the resource owner’s consent

via an out-of-band mechanism. If the authorization grant request

carries a value for the scope parameter, then either it should exactly

match the out-of-band established scope or less than that.

Note T he OAuth authorization server will not issue a refresh_token under the
JWT grant type. If the access_token expires, then the OAuth client has to get
a new JWT (if the JWT has expired) or use the same valid JWT to get a new
access_token. The lifetime of the access_token should match the lifetime of the
corresponding JWT.

Chapter 12 Federating Access to APIs

269

�Applications of JWT Grant Type
There are multiple applications of the JWT authorization grant type. Let’s have a look

at one common use case, where the end user or the resource owner logs in to a web

application via OpenID Connect (Chapter 6), then the web application needs to access

an API on behalf of the logged-in user, which is secured with OAuth 2.0. Figure 12-3

shows the key interactions related to this use case.

Figure 12-3.  JWT grant type, a real-world example

The following lists out all the interactions as illustrated in Figure 12-3 by the number:

•	 The end user visits the web application (step 1).

•	 In step 2, the user gets redirected to the OpenID Connect server and

authenticates against the Active Directory connected to it. After the

authentication, the user gets redirected back to the web application,

with an authorization code (assuming that we are using OAuth 2.0

authorization code grant type).

•	 The web application talks directly to the OpenID Connect server

and exchanges the authorization code from the previous step to an

ID token and an access token. The ID token itself is a JWT, which is

signed by the OpenID Connect server (step 3).

Chapter 12 Federating Access to APIs

270

•	 Now the web application needs to invoke an API on behalf of the

logged-in user. It talks to the OAuth authorization server, trusted by

the API, and using the JWT grant type, exchanges the JWT from step

3 to an OAuth access token. The OAuth authorization server validates

the JWT and makes sure that it’s being signed by a trusted identity

provider. In this case, the OAuth authorization server trusts the

OpenID Connect identity provider (step 4).

•	 In step 5, the web application invokes the API with the access token

from step 4.

•	 The application server, which hosts the API, validates the access

token by talking to the OAuth authorization server, which issued the

access token (step 6).

�JWT Client Authentication
The OAuth 2.0 core specification does not define a concrete way to authenticate OAuth

clients to the OAuth authorization server. Mostly it’s the HTTP Basic authentication with

client_id and the client_secret. The RFC 7523 defines a way to authenticate OAuth

clients with a JWT. The JWT client authentication is not just limited to a particular grant

type; it can be used with any OAuth grant types. That’s another beauty in OAuth 2.0—the

OAuth grant types are decoupled from the client authentication. The following shows a

sample request to the OAuth authorization server under the authorization code grant

type, which uses JWT client authentication.

POST /token HTTP/1.1

Host: auth.bar.com

Content-Type: application/x-www-form-urlencoded

grant_type=authorization_code&

code=n0esc3NRze7LTCu7iYzS6a5acc3f0ogp4&

client_assertion_type=urn%3Aietf%3Aparams%3Aoauth%3Aclient-assertion-

type%3Ajwt-bearer&

client_assertion=eyJhbGciOiJSUzI1NiIsImtpZCI6IjIyIn0.

eyJpc3Mi[...omitted for brevity...].

cC4hiUPo[...omitted for brevity...]

Chapter 12 Federating Access to APIs

271

The RFC 7523 uses three additional parameters in the OAuth request to the token

endpoint to do the client authentication: client_assertion_type, client_assertion,

and client_id (optional). The Assertion Framework for OAuth 2.0 Client Authentication

and Authorization Grants specification, which is the RFC 7521, defines these parameters.

The following lists them out along with their definitions:

•	 client_assertion_type: This is a required parameter, which

defines the format of the assertion, as understood by the OAuth

authorization server. The value of client_assertion_type is an

absolute URI. For JWT client authentication, this parameter must

carry the value urn:ietf:params:oauth:client-assertion-

type:jwt-bearer.

•	 client_assertion: This is a required parameter, which carries the

token. For example, in the case of JWT client authentication, the

client_assertion parameter will carry the base64url-encoded JWT,

and it must only contain a single JWT. If there are multiple JWTs

in the assertion, then the authorization server will reject the grant

request.

•	 client_id: This is an optional parameter. Ideally, the client_id

must be present inside the client_assertion itself. If this parameter

carries a value, it must match the value of the client_id inside the

client_assertion. Having the client_id parameter in the request

itself could be useful, as the authorization server does not need to

parse the assertion first to identify the client.

�Applications of JWT Client Authentication
The JWT client authentication is used to authenticate a client to an OAuth authorization

server with a JWT, instead of using HTTP Basic authentication with client_id and

client_secret. Why would someone select JWT client authentication over HTTP Basic

authentication?

Let’s take an example. Say we have two companies called foo and bar. The foo

company hosts a set of APIs, and the bar company has a set of developers who are

developing applications against those APIs. Like in most of the OAuth examples we

discussed in this book, the bar company has to register with the foo company to obtain

Chapter 12 Federating Access to APIs

272

a client_id and client_secret, in order to access its APIs. Since the bar company

develops multiple applications (a web app, a mobile app, a rich client app), the same

client_id and client_secret obtained from the foo company need to be shared

between multiple developers. This is a bit risky as any one of those developers can pass

over the secret keys to anyone else—or even misuse them. To fix this, we can use JWT

client authentication. Instead of sharing the client_id and the client_secret with its

developers, the bar company can create a key pair (a public key and a private key), sign

the public key by the key of the company’s certificate authority (CA), and hand them

over to its developers. Now, instead of the shared client_id and client_secret, each

developer will have its own public key and private key, signed by the company CA. When

talking to the foo company’s OAuth authorization server, the applications will use the

JWT client authentication, where its own private key signs the JWT—and the token will

carry the corresponding public key. The following code snippet shows a sample decoded

JWS header and the payload, which matches the preceding criteria. Chapter 7 explains

JWS in detail and how it relates to JWT.

{

 "alg": "RS256"

 "x5c": [

 "MIIE3jCCA8agAwIBAgICAwEwDQYJKoZIhvcNAQEFBQ......",

 "MIIE3jewlJJMddds9AgICAwEwDQYJKoZIhvUjEcNAQ......",

]

}

{

 "sub": "3MVG9uudbyLbNPZN8rZTCj6IwpJpGBv49",

 "aud": "https://login.foo.com",

 "nbf": 1457330111,

 "iss": "bar.com",

 "exp": 1457330711,

 "iat": 1457330111,

 "jti": "44688e78-2d30-4e88-8b86-a6e25cd411fd"

}

The authorization server at the foo company first needs to verify the JWT with the

attached public key (which is the value of the x5c parameter in the preceding code

snippet) and then needs to check whether the corresponding public key is signed by the

Chapter 12 Federating Access to APIs

273

bar company’s certificate authority. If that is the case, then it’s a valid JWT and would

successfully complete the client authentication. Also note that the value of the original

client_id created for the bar company is set as the subject of the JWT.

Still we have a challenge. How do we revoke a certificate that belongs to a given

developer, in case he/she resigns or it is found that the certificate is misused? To facilitate

this, the authorization server has to maintain a certificate revocation list (CRL) by the

client_id. In other words, each client_id can maintain its own certificate revocation

list. To revoke a certificate, the client (in this case, the bar company) has to talk to the

CRL API hosted in the authorization server. The CRL API is a custom API that must

be hosted at the OAuth authorization server to support this model. This API must be

secured with OAuth 2.0 client credentials grant type. Once it receives a request to update

the CRL, it will update the CRL corresponding to the client who invokes the API, and

each time the client authentication happens, the authorization server must check the

public certificate in the JWT against the CRL. If it finds a match, then the request should

be turned down immediately. Also, at the time the CRL of a particular client is updated,

all the access tokens and refresh tokens issued against a revoked public certificate must

be revoked too. In case you worry about the overhead it takes to support a CRL, you

probably can use short-lived certificates and forget about revocation. Figure 12-4 shows

the interactions between the foo and the bar companies.

Figure 12-4.  JWT client authentication, a real-world example

Chapter 12 Federating Access to APIs

274

�Parsing and Validating JWT
The OAuth authorization server must parse and validate the JWT, both in the JWT

grant type and in the client authentication. The following lists out the criteria for token

validation:

•	 The JWT must have the iss parameter in it. The iss parameter

represents the issuer of the JWT. This is treated as a case-sensitive

string value. Ideally, this represents the asserting party of the

claims set. If Google issues the JWT, then the value of iss would be

accounts.google.com. This is an indication to the receiving party

who the issuer of the JWT is.

•	 The JWT must have the sub parameter in it. The token issuer or the

asserting party issues the JWT for a particular entity, and the claims

set embedded into the JWT normally represents this entity, which

is identified by the sub parameter. The value of the sub parameter is

a case-sensitive string value. For the JWT client authentication, the

value of the sub parameter must carry the corresponding client_id,

while for the authorization grant, it will be the authorized accessor or

the resource server for which the access token is being requested.

•	 The JWT must have the aud parameter. The token issuer issues

the JWT to an intended recipient or a list of recipients, which is

represented by the aud parameter. The recipient or the recipient

list should know how to parse the JWT and validate it. Prior to any

validation check, the recipient of the token must first see whether

the particular JWT is issued for its use and if not should reject

immediately. The value of the aud parameter can be a case-sensitive

string value or an array of strings. The token issuer should know, prior

to issuing the token, who the intended recipient (or the recipients) of

the token is, and the value of the aud parameter must be a pre-agreed

value between the token issuer and the recipient. In practice, one can

also use a regular expression to validate the audience of the token.

For example, the value of the aud in the token can be ∗.apress.com,

while each recipient under the apress.com domain can have its

own aud values: foo.apress.com, bar.apress.com likewise.

Chapter 12 Federating Access to APIs

275

Instead of finding an exact match for the aud value, each recipient

can just check whether the aud value in the token matches a regular

expression: (?:[a-zA-Z0-9]∗|\∗).apress.com. This will make sure

that any recipient can use a JWT, which is having any subdomain of

apress.com.

•	 The JWT must have the exp parameter. Each JWT will carry an

expiration time. The recipient of the JWT token must reject it, if that

token has expired. The issuer can decide the value of the expiration

time. The JWT specification does not recommend or provide any

guidelines on how to decide the best token expiration time. It’s a

responsibility of the other specifications, which use JWT internally,

to provide such recommendations. The value of the exp parameter

is calculated by adding the expiration time (from the token issued

time) in seconds to the time elapsed from 1970-01-01T00:00:00Z UTC

to the current time. If the token issuer’s clock is out of sync with the

recipient’s clock (irrespective of their time zone), then the expiration

time validation could fail. To fix that, each recipient can add a couple

of minutes as the clock skew.

•	 The JWT may have the nbf parameter. In other words, this is not a

must. The recipient of the token should reject it, if the value of the

nbf parameter is greater than the current time. The JWT is not good

enough to use prior to the value indicated in the nbf parameter. The

value of the nbf parameter is calculated by adding the not before

time (from the token issued time) in seconds to the time elapsed

from 1970-01-01T00:00:00Z UTC to the current time.

•	 The JWT may have the iat parameter. The iat parameter in the JWT

indicates the issued time of the JWT as calculated by the token issuer.

The value of the iat parameter is the number of seconds elapsed

from 1970-01-01T00:00:00Z UTC to the current time, when the token

is issued.

•	 The JWT must be digitally signed or carry a Message Authentication

Code (MAC) defined by its issuer.

Chapter 12 Federating Access to APIs

276

�Summary
•	 Identity federation is about propagating user identities across

boundaries. These boundaries can be between distinct enterprises

or even distinct identity management systems within the same

enterprise.

•	 Two OAuth 2.0 profiles—SAML 2.0 grant type and JWT grant type—

focus on building federation scenarios for API security.

•	 The SAML profile for OAuth 2.0, which is defined in the RFC

7522, extends the capabilities of the OAuth 2.0 core specification.

It introduces a new authorization grant type as well as a way of

authenticating OAuth 2.0 clients, based on a SAML assertion.

•	 The JSON Web Token (JWT) profile for OAuth 2.0, which is defined

in the RFC 7523, extends the capabilities of the OAuth 2.0 core

specification. It introduces a new authorization grant type as well as a

way of authenticating OAuth 2.0 clients, based on a JWT.

Chapter 12 Federating Access to APIs

277
© Prabath Siriwardena 2020
P. Siriwardena, Advanced API Security, https://doi.org/10.1007/978-1-4842-2050-4_13

CHAPTER 13

User-Managed Access
OAuth 2.0 introduced an authorization framework for access delegation. It lets Bob

delegate read access to his Facebook wall to a third-party application, without sharing

Facebook credentials. User-Managed Access (UMA, pronounced “OOH-mah”) extends

this model to another level, where Bob can not only delegate access to a third-party

application but also to Peter who uses the same third-party application.

UMA is an OAuth 2.0 profile. OAuth 2.0 decouples the resource server from the

authorization server. UMA takes one step further: it lets you control a distributed set of

resource servers from a centralized authorization server. Also the resource owner can

define a set of policies at the authorization server, which can be evaluated at the time

a client is granted access to a protected resource. This eliminates the need of having

the presence of the resource owner to approve access requests from arbitrary clients or

requesting parties. The authorization server can make the decision based on the policies

defined by the resource owner.

The latest version of UMA, which we discuss in this chapter, is UMA 2.0. If you are

interested in learning more about UMA evolution, please check Appendix D: UMA

Evolution.

�Use Cases
Let’s say you have multiple bank accounts with Chase Bank, Bank of America, and Wells

Fargo. You have hired a financial manager called Peter, who manages all your bank

accounts through a personal financial management (PFM) application, which helps to

budget better and understand the overall financial position, by often pulling information

from multiple bank accounts. Here, you need to give limited access to Peter, to use the

PFM to access your bank accounts. We assume all the banks expose their functionality

over APIs and PFM uses banking APIs to retrieve data.

278

At a very high level, let’s see how UMA solves this problem (see Figure 13-1). First you

need to define an access control policy at the authorization server, which all your banks

trust. This authorization policy would say Peter should be given read access via the PFM

app to Wells Fargo, Chase, and Bank of America bank accounts. Then you also need to

introduce each bank to the authorization server, so whenever Peter tries to access your bank

accounts, each bank talks to the authorization server and asks whether Peter is allowed

to do that. For Peter to access a bank account via PFM app, the PFM app first needs to talk

to the authorization server and gets a token on behalf of Peter. During this process, before

issuing the token, the authorization server evaluates the access control policy you defined.

Let’s take another example. Say you have a Google Doc. You do not want to share this

with everyone, but with anyone from the management team of foo and bar companies

(see Figure 13-2). Let’s see how this works with UMA.

First you have an authorization server, which Google trusts, so whenever someone

wants to access your Google Doc, Google talks to the authorization server to see whether

that person has the rights to do so. You also define a policy at the authorization server,

which says only the managers from foo and bar companies can access your Google Doc.

Figure 13-1.  An account owner delegates the administration of his/her accounts
to a Financial Manager via a Personal Financial Management App

Chapter 13 User-Managed Access

279

When a person (say Peter) tries to access your Google Doc, Google will redirect

you to the authorization server. Then the authorization server will redirect Peter to Foo

identity provider (or the home identity provider of Peter). Foo identity provider will

authenticate Peter and send back Peter’s role as a claim to the authorization server. Now,

since authorization server knows Peter’s role, and also the company Peter belongs to, if

Peter belongs to a manager role, it will issue a token to Google Docs app, which it can use

to retrieve the corresponding Google Doc via the Google Docs API.

�UMA 2.0 Roles
UMA introduces one more role in addition to the four roles (resource owner, resource

server, client, and authorization server) we discussed under OAuth 2.0, in Chapter 4. The

following lists out all five roles involved in UMA:

	 1.	 Resource owner: In the preceding two use cases, you are the

resource owner. In the first case, you owned the bank account,

and in the second use case, you owned the Google Doc.

	 2.	 Resource server: This is the place which hosts protected resources.

In the preceding first use case, each bank is a resource server—

and in the second use case, the server, which hosts Google Docs

API, is the resource server.

Figure 13-2.  A Google Doc owner delegates access to a Google Doc to a third party
from a different company with specific roles

Chapter 13 User-Managed Access

280

	 3.	 Client: This is the application, which wants to access a resource on

behalf of the resource owner. In the preceding first use case, the

personal financial management (PFM) application is the client,

and in the second use case, it is the Google Docs web application.

	 4.	 Authorization server: This is the entity, which acts as the security

token service (STS) to issue OAuth 2.0 access tokens to client

applications.

	 5.	 Requesting party: This is something new in UMA. In the preceding

first use case, Peter, the financial manager, is the requesting

party, and in the second use case, Peter who is a manager at Foo

company is the requesting party. The requesting party accesses a

resource via a client application, on behalf of the resource owner.

�UMA Protocol
There are two specifications developed under Kantara Initiative, which define UMA

protocol. The core specification is called UMA 2.0 Grant for OAuth 2.0 Authorization.

The other one is the Federated Authorization for UMA 2.0, which is optional.

A grant type is an extension point in OAuth 2.0 architecture. UMA 2.0 grant type

extends the OAuth 2.0 to support the requesting party role and defines the flow the client

application should follow to obtain an access token on behalf of the requesting party

from the authorization server.

Let’s see in step by step how UMA 2.0 works, with the first use case we discussed

earlier:

	 1.	 First, the account owner has to introduce each of his banks to the

UMA authorization server. Here we possibly follow OAuth 2.0

authorization code grant type and provision an access token to the

Chase Bank. UMA gives a special name to this token: Protection

API Access Token (PAT).

	 2.	 The Chase Bank uses the provisioned access token or the PAT to

register its resources with the authorization server. Following is

a sample cURL command for resource registration. $PAT in the

following command is a placeholder for the Protection API Access

Chapter 13 User-Managed Access

281

Token. Here we register the account of the account owner as a

resource.

\> curl -v -X POST -H "Authorization:Bearer $PAT"

-H "Content-Type: application/json" -d '{"resource_

scopes":["view"], "description":"bank account details",

"name":"accounts/1112019209", "type":"/accounts"}'

https://as.uma.example.com/uma/resourceregistration

	 3.	 Peter via the personal financial management (PFM) application

tries to access the Chase Bank account with no token.

\> curl –X GET https://chase.com/apis/accounts/1112019209

	 4.	 Since there is no token in the request from PFM, the bank API

responds back with a 401 HTTP error code, along with the endpoint

of the authorization server and a permission ticket. This permission

ticket represents the level of permissions PFM needs to do a GET to

/accounts API of the Chase Bank. In other words, PFM should get

an access token from the provided authorization server, with the

provided permissions in the given permission ticket.

	 5.	 To generate the permission ticket, the Chase Bank has to talk to

the authorization server. As per the following cURL command,

Chase Bank also passes resource_id and the resource_scope.

The permission API is protected via OAuth 2.0, so the Chase Bank

has to pass a valid access token to access it. UMA gives a special

name to this token: Protection API Access Token (PAT), which we

provisioned to Chase Bank in step 1.

\> curl -v -X POST -H "Authorization:Bearer $PAT" -H

"Content-Type: application/json" -d '[{"resource_id":"

accounts/1112019209","resource_scopes":["view"]}]'

https://as.uma.example.com/uma/permission

{"ticket":"1qw32s-2q1e2s-1rt32g-r4wf2e"}

Chapter 13 User-Managed Access

282

	 6.	 Now the Chase Bank will send the following 401 response to the

PFM application.

HTTP/1.1 401 Unauthorized

WWW-Authenticate: UMA realm="chase" as_uri="https://as.uma.

example.com" ticket="1qw32s-2q1e2s-1rt32g-r4wf2e "

	 7.	 The client application or the PFM now has to talk to the

authorization server. By this time, we can assume that Peter, or

the requesting party, has already logged in to the client app. If that

login happens over OpenID Connect, then PFM has an ID token,

which represents Peter. PFM passes both the ID token (as claim_

token) and the permission ticket (as ticket) it got from Chase

Bank to the authorization server, in the following cURL command.

The claim_token is an optional parameter in the request, and if it

is present, then there must be claim_token_format parameter as

well, which defines the format of the claim_token. In the following

cURL command, use a claim_token of the ID token format,

and it can be even a SAML token. Here the $APP_CLIENTID and

$APP_CLIENTSECRET are the OAuth 2.0 client id and client secret,

respectively, you get at the time you register your application

(PFM) with the OAuth 2.0 authorization server. The $IDTOKEN is a

placeholder for the OpenID Connect ID token, while $TICKET is a

placeholder for the permission ticket. The value of the grant_type

parameter must be set to urn:ietf:params:oauth:grant-

type:uma-ticket. The following cURL command is only an

example, and it does not carry all the optional parameters.

\> curl -v -X POST --basic -u $APP_CLIENTID:$APP_

CLIENTSECRET

 -H "Content-Type: application/x-www-form-urlencoded;

 charset=UTF-8" -k -d

 "grant_type=urn:ietf:params:oauth:grant-type:uma-ticket&

 claim_token=$IDTOKEN&

Chapter 13 User-Managed Access

283

 �claim_token_format=http://openid.net/specs/openid-

connect-core-1_0.html#IDToken&

 ticket=$TICKET"

 https://as.uma.example.com/uma/token

	 8.	 As the response to the preceding request, the client application

gets an access token, which UMA calls a requesting party token

(RPT), and before authorization server returns back the access

token, it internally evaluates any authorization policies defined by

the account owner (or the resource owner) to see whether Peter

has access to the corresponding bank account.

{

 "token_type":"bearer",

 "expires_in":3600,

 "refresh_token":"22b157546b26c2d6c0165c4ef6b3f736",

 "access_token":"cac93e1d29e45bf6d84073dbfb460"

}

	 9.	 Now the application (PFM) tries to access the Chase Bank account

with the RPT from the preceding step.

\> curl –X GET –H "Authorization: Bearer

cac93e1d29e45bf6d84073dbfb460" https://chase.com/apis/

accounts/1112019209

	 10.	 The Chase Bank API will now talk to the introspection (see

Chapter 9) endpoint to validate the provided RPT and, if the token

is valid, will respond back with the corresponding data. If the

introspection endpoint is secured, then the Chase Bank API has to

pass the PAT in the HTTP authorization header to authenticate.

\> curl -H "Authorization:Bearer $PAT" -H 'Content-Type:

application/x-www-form-urlencoded' -X POST --data "token=

cac93e1d29e45bf6d84073dbfb460" https://as.uma.example.com/

uma/introspection

HTTP/1.1 200 OK

Content-Type: application/json

Cache-Control: no-store

Chapter 13 User-Managed Access

284

{

 "active": true,

 "client_id":"s6BhdRkqt3",

 "scope": "view",

 "sub": "peter",

 "aud": "accounts/1112019209"

 }

	 11.	 Once the Chase Bank finds the token is valid and carries all

required scopes, it will respond back to the client application

(PFM) with the requested data.

Note A recording of a UMA 2.0 demo done by the author of the book to the
UMA working group with the open source WSO2 Identity Server is available here:
www.youtube.com/watch?v=66aGc5AV7P4.

�Interactive Claims Gathering
In the previous section, in step 7, we assumed that the requesting party is already

logged in to the client application and the client application knows about the requesting

party’s claims, say, for example, in the format of an ID token or a SAML token. The client

application passes these claims in the claim_token parameter along with the permission

ticket to the token endpoint of the authorization server. This request from the client

application to the authorization server is a direct request. In case the client application

finds that it does not have enough claims that are required by the authorization server

to make an authorization decision based on its policies, the client application can

decide to use interactive claim gathering. During the interactive claim gathering, the

client application redirects the requesting party to the UMA authorization server. This

is what we discussed under the second use case at the very beginning of the chapter,

with respect to sharing Google Docs with external companies. The following is a

sample request the client application generates to redirect the requesting party to the

authorization server.

Chapter 13 User-Managed Access

http://www.youtube.com/watch?v=66aGc5AV7P4

285

Host: as.uma.example.com

GET /uma/rqp_claims?client_id=$APP_CLIENTID

&ticket=$TICKET

&claims_redirect_uri=https://client.example.com/redirect_claims

&state=abc

The preceding sample request is an HTTP redirect, which flows through the browser.

Here the $APP_CLIENTID is the OAuth 2.0 client id you get at the time you register your

application with the UMA authorization server, and $TICKET is a placeholder for the

permission ticket the client application gets from the resource server (see step 6 in the

previous section). The value of claim_redirect_uri indicates the authorization server,

where to send the response back, which points to an endpoint hosted in the client

application.

How the authorization server does claim gathering is out of the scope of the UMA

specification. Ideally, it can be by redirecting the requesting party again to his/her own

home identity provider and getting back the requested claims (see Figure 13-2). Once

the claim gathering is completed, the authorization server redirects the user back to the

claim_redirect_uri endpoint with a permission ticket, as shown in the following. The

authorization server tracks all the claims it gathered against this permission ticket.

HTTP/1.1 302 Found

Location: https://client.example.com/redirect_claims?

ticket=cHJpdmFjeSBpcyBjb250ZXh0LCBjb250cm9s&state=abc

The client application will now talk to the token endpoint of the authorization server

with the preceding permission ticket to get a requesting party token (RPT). This is similar

to what we discussed under step 7 in the previous section, but here we do not send a

claim_token.

\> curl -v -X POST --basic -u $APP_CLIENTID:$APP_CLIENTSECRET

 -H "Content-Type: application/x-www-form-urlencoded;

 charset=UTF-8" -k -d

 "grant_type=urn:ietf:params:oauth:grant-type:uma-ticket&

 ticket=$TICKET"

 https://as.uma.example.com/uma/token

As the response to the preceding request, the client application gets an access

token, which UMA calls a requesting party token (RPT), and before authorization server

Chapter 13 User-Managed Access

286

returns back the access token, it internally evaluates any authorization policies defined

by the account owner (or the resource owner) to see whether Peter has access to the

corresponding bank account.

{

 "token_type":"bearer",

 "expires_in":3600,

 "refresh_token":"22b157546b26c2d6c0165c4ef6b3f736",

 "access_token":"cac93e1d29e45bf6d84073dbfb460"

}

�Summary
•	 User-Managed Access (UMA) is an emerging standard built on top of

the OAuth 2.0 core specification as a profile.

•	 UMA still has very few vendor implementations, but it promises to be

a highly recognized standard in the near future.

•	 There are two specifications developed under Kantara Initiative,

which define the UMA protocol. The core specification is called the

UMA 2.0 Grant for OAuth 2.0 Authorization. The other one is the

Federated Authorization for UMA 2.0, which is optional.

•	 UMA introduces a new role called, requesting party, in addition

to the four roles used in OAuth 2.0: the authorization server, the

resource server, the resource owner and the client application.

Chapter 13 User-Managed Access

287
© Prabath Siriwardena 2020
P. Siriwardena, Advanced API Security, https://doi.org/10.1007/978-1-4842-2050-4_14

CHAPTER 14

OAuth 2.0 Security
OAuth 2.0 is an authorization framework, as you know already. Being a framework, it

gives multiple options for application developers. It is up to the application developers

to pick the right options based on their use cases and how they want to use OAuth 2.0.

There are few guideline documents to help you use OAuth 2.0 in a secure way. OAuth 2.0

Threat Model and Security Considerations (RFC 6819) produced by OAuth IETF

working group defines additional security considerations for OAuth 2.0, beyond those

in the OAuth 2.0 specification, based on a comprehensive threat model. The OAuth 2.0

Security Best Current Practice document, which is a draft proposal at the time of writing,

talks about new threats related to OAuth 2.0, since the RFC 6819 was published. Also, the

Financial-grade API (FAPI) working group under the OpenID foundation has published

a set of guidelines on how to use OAuth 2.0 in a secure way to build financial grade

applications. In this chapter, we go through a set of possible attacks against OAuth 2.0

and discuss how to mitigate those.

�Identity Provider Mix-Up
Even though OAuth 2.0 is about access delegation, still people work around it to make it

work for login. That’s how login with Facebook works. Then again, the OpenID Connect

(see Chapter 6), which is built on top of OAuth 2.0, is the right way of using OAuth 2.0 for

authentication. A recent research done by one of the leading vendors in the Identity and

Access Management domain confirmed that most of the new development happened

over the past few years at the enterprise level picked OAuth 2.0/OpenID Connect over

SAML 2.0. All in all, OAuth 2.0 security is a hot topic. In 2016, Daniel Fett, Ralf Küsters,

and Guido Schmitz did a research on OAuth 2.0 security and published a paper.1 Identity

provider mix-up is one of the attacks highlighted in their paper. Identity provider is in

1�A Comprehensive Formal Security Analysis of OAuth 2.0, https://arxiv.org/pdf/1601.01229.pdf

https://arxiv.org/pdf/1601.01229.pdf

288

fact the entity that issues OAuth 2.0 tokens or the OAuth 2.0 authorization server, which

we discussed in Chapter 4.

Let’s try to understand how identity provider mix-up works (see Figure 14-1):

	 1.	 This attack happens with an OAuth 2.0 client application, which

provides multiple identity provider (IdP) options for login. Let’s

say foo.idp and evil.idp. We assume that the client application

does not know that evil.idp is evil. Also it can be a case where evil.

idp is a genuine identity provider, which could possibly be under

an attack itself.

	 2.	 The victim picks foo.idp from the browser and the attacker

intercepts the request and changes the selection to evil.idp. Here

we assume the communication between the browser and the

client application is not protected with Transport Layer Security

(TLS). The OAuth 2.0 specification does not talk about it, and it’s

purely up to the web application developers. Since there is no

confidential data passed in this flow, most of the time the web

application developers may not worry about using TLS. At the

same time, there were few vulnerabilities discovered over the past

on TLS implementations (mostly openssl). So, the attacker could

possibly use such vulnerabilities to intercept the communication

between the browser and the client application (web server), even

if TLS is used.

Chapter 14 OAuth 2.0 Security

289

	 3.	 Since the attacker changed the identity provider selection of the

user, the client application thinks it’s evil.idp (even though the

user picked foo.idp) and redirects the user to evil.idp. The client

application only gets the modified request from the attacker, who

intercepted the communication.

	 4.	 The attacker intercepts the redirection and modifies the

redirection to go to the foo.idp. The way redirection works is

the web server (in this case, the client application) sends back

a response to the browser with a 302 status code—and with

an HTTP Location header. If the communication between

the browser and the client application is not on TLS, then this

response is not protected, even if the HTTP Location header

contains an HTTPS URL. Since we assumed already, the

communication between the browser and the client application

can be intercepted by the attacker, then the attacker can modify

the Location header in the response to go to the foo.idp—which is

the original selection—and no surprise to the user.

Figure 14-1.  Identity provider mix-up attack

Chapter 14 OAuth 2.0 Security

290

	 5.	 The client application gets either the code or the token (based on

the grant type) and now will talk to the evil.idp to validate it. The

authorization server (or the identity provider) will send back the

authorization code (if the code grant type is used) to the callback

URL, which is under the client application. Just looking at the

authorization code, the client application cannot decide to which

identity provider the code belongs to. So we assume it tracks the

identity provider by some session variable—so as per step 3, the

client application thinks it’s the evil.idp and talks to the evil.idp to

validate the token.

	 6.	 The evil.idp gets hold of the user’s access token or the authorization

code from the foo.idp. If it’s the implicit grant type, then it would

be the access token, otherwise the authorization code. In mobile

apps, most of the time, people used to embed the same client id

and the client secret into all the instances—so an attacker having

root access to his own phone can figure it out what the keys are and

then, with the authorization code, can get the access token.

There is no record that the preceding attack is being carried out in practice—but at

the same time, we cannot totally rule it out. There are a couple of options to prevent such

attacks, and our recommendation is to use the option 1 as it is quite straightforward and

solves the problem without much hassle.

	 1.	 Have separate callback URLs by each identity provider. With

this the client application knows to which identity provider the

response belongs to. The legitimate identity provider will always

respect the callback URL associated with the client application

and will use that. The client application will also attach the value

of the callback URL to the browser session and, once the user got

redirected back, will see whether it’s on the right place (or the

right callback URL) by matching with the value of the callback

URL from the browser session.

	 2.	 Follow the mitigation steps defined in the IETF draft specification:

OAuth 2.0 IdP Mix-Up Mitigation (https://tools.ietf.

org/html/draft-ietf-oauth-mix-up-mitigation-01). This

specification proposes to send a set of mitigation data from

Chapter 14 OAuth 2.0 Security

https://tools.ietf.org/html/draft-ietf-oauth-mix-up-mitigation-01
https://tools.ietf.org/html/draft-ietf-oauth-mix-up-mitigation-01

291

the authorization server back to the client, along with the

authorization response. The mitigation data provided by the

authorization server to the client includes an issuer identifier,

which is used to identify the authorization server, and a client
id, which is used to verify that the response is from the correct

authorization server and is intended for the given client. This way

the OAuth 2.0 client can verify from which authorization server

it got the response back and based on that identify the token

endpoint or the endpoint to validate the token.

�Cross-Site Request Forgery (CSRF)
In general, Cross-Site Request Forgery (CSRF) attack forces a logged-in victim’s browser

to send a forged HTTP request, including the victim’s session cookie and any other

automatically included authentication information to a vulnerable web application.

Such an attack allows the attacker to force a victim’s browser to generate requests, where

the vulnerable application thinks are legitimate requests from the victim. OWASP (Open

Web Application Security Project) identifies this as one of the key security risks in web

applications in its 2017 report.2

Let’s see how CSRF can be used with OAuth 2.0 to exploit a vulnerable web

application (see Figure 14-2):

	 1.	 The attacker tries to log in to the target web site (OAuth 2.0 client)

with his account at the corresponding identity provider. Here we

assume the attacker has a valid account at the identity provider,

trusted by the corresponding OAuth 2.0 client application.

	 2.	 The attacker blocks the redirection to the target web site and

captures the authorization code. The target web site never sees the

code. In OAuth 2.0, the authorization code is only good enough for

one-time use. In case the OAuth 2.0 client application sees it and

then exchanges it to an access token, then it’s no more valid—so

the attacker has to make sure that the authorization code never

reaches the client application. Since the authorization code flows

through the attacker’s browser to the client, it can be easily blocked.

2�OWASP Top 10 2017, www.owasp.org/images/7/72/OWASP_Top_10-2017_%28en%29.pdf.pdf

Chapter 14 OAuth 2.0 Security

http://www.owasp.org/images/7/72/OWASP_Top_10-2017_%28en%29.pdf.pdf

292

	 3.	 The attacker constructs the callback URL for the target site—and

makes the victim clicks on it. In fact, it would be the same callback

URL the attacker can copy from step 2. Here the attacker can send the

link to the victim’s email or somehow fool him to click on the link.

	 4.	 The victim clicks on the link and logs in to the target web site,

with the account attached to the attacker—and adds his/her credit

card information. Since the authorization code belongs to the

attacker, the victim logs in to the target web site with the attacker’s

account. This is a pattern many web sites follow to authenticate

users with OAuth 2.0. Login with Facebook works in the same way.

Once the web site gets the authorization code, it will talk to the

authorization server and exchanges it to an access token. Then

using that access token, the web site talks to another endpoint

in the authorization server to find user information. In this case,

since the code belongs to the attacker, the user information

returned back from the authorization server will be related to

Figure 14-2.  Cross-Site Request Forgery (CSRF) attack in the OAuth 2.0 code
flow

Chapter 14 OAuth 2.0 Security

293

him—so the victim now logs in to the target web site with the

attacker’s account.

	 5.	 The attacker too logs in to the target web site with his/her valid

credentials and uses victim’s credit card to purchase goods.

The preceding attack can be mitigated by following these best practices:

•	 Use a short-lived authorization code. Making the authorization code

expires soon gives very little time for the attacker to plant an attack.

For example, the authorization code issued by LinkedIn expires in 30

seconds. Ideally, the lifetime of the authorization code should be in

seconds.

•	 Use the state parameter as defined in the OAuth 2.0 specification.

This is one of the key parameters to use to mitigate CSRF attacks in

general. The client application has to generate a random number

(or a string) and passes it to the authorization server along with the

grant request. Further, the client application has to add the generated

value of the state to the current user session (browser session) before

redirecting the user to the authorization server. According to the

OAuth 2.0 specification, the authorization server has to return back

the same state value with the authorization code to the redirect_uri

(to the client application). The client must validate the state value

returned from the authorization server with the value stored in the

user’s current session—if it mismatches, it rejects moving forward.

Going back to the attack, when the user clicks the crafted link sent

to the victim by the attacker, it won’t carry the same state value

generated before and attached to the victim’s session (or most

probably victim’s session has no state value), or the attacker does not

know how to generate the exact same state value. So, the attack won’t

be successful, and the client application will reject the request.

•	 Use PKCE (Proof Key for Code Exchange). PKCE (RFC 7636) was

introduced to protect OAuth 2.0 client applications from the

authorization code interception attack, mostly targeting native

mobile apps. The use of PKCE will also protect users from CSRF

attacks, once the code_verifier is attached to the user’s browser

session. We talked about PKCE in detail in Chapter 10.

Chapter 14 OAuth 2.0 Security

294

�Token Reuse
OAuth 2.0 tokens are issued by the authorization server to a client application to access

a resource on behalf of the resource owner. This token is to be used by the client—and

the resource server will make sure it’s a valid one. What if the resource server is under

the control of an attacker and wants to reuse the token sent to it to access another

resource, impersonating the original client? Here the basic assumption is there are

multiple resource servers, which trust the same authorization server. For example, in a

microservices deployment, there can be multiple microservices protected with OAuth

2.0, which trust the same authorization server.

How do we make sure at the resource server side that the provided token is only good

enough to access it? One approach is to have properly scoped access tokens. The scopes

are defined by the resource server—and update the authorization server. If we qualify

each scope with a Uniform Resource Name (URN) specific to the corresponding resource

server, then there cannot be any overlapping scopes across all the resource servers—and

each resource server knows how to uniquely identify a scope corresponding to it. Before

accepting a token, it should check whether the token is issued with a scope known to it.

This does not completely solve the problem. If the client decides to get a single

access token (with all the scopes) to access all the resources, then still a malicious client

can use that access token to access another resource by impersonating the original

client. To overcome this, the client can first get an access token with all the scopes, then

it can exchange the access token to get multiple access tokens with different scopes,

following the OAuth 2.0 Token Exchange specification (which we discussed in Chapter

9). A given resource server will only see an access token having scopes only related to

that particular resource server.

Let’s see another example of token reuse. Here assume that you log in to an OAuth

2.0 client application with Facebook. Now the client has an access token, which is

good enough to access the user info endpoint (https://graph.facebook.com/me) of

Facebook and find who the user is. This client application is under an attacker, and now

the attacker tries to access another client application, which uses the implicit grant type,

with the same access token, as shown in the following.

https://target-app/callback?access_token=<access_token>

Chapter 14 OAuth 2.0 Security

https://graph.facebook.com/me

295

The preceding URL will let the attacker log in to the client application as the original

user unless the target client application has proper security checks in place. How do we

overcome this?

There are multiple options:

•	 Avoid using OAuth 2.0 for authentication—instead use OpenID

Connect. The ID token issued by the authorization server (via

OpenID Connect) has an element called aud (audience)—and its

value is the client id corresponding to the client application. Each

application should make sure that the value of the aud is known to it

before accepting the user. If the attacker tries to replay the ID token,

it will not work since the audience validation will fail at the second

client application (as the second application expects a different aud

value).

•	 Facebook login is not using OpenID Connect—and the preceding

attack can be carried out against a Facebook application which

does not have the proper implementation. There are few options

introduced by Facebook to overcome the preceding threat. One way

is to use the undocumented API, https://graph.facebook.com/

app?access_token=<access_token>, to get access token metadata.

This will return back in a JSON message the details of the application

which the corresponding access token is issued to. If it’s not yours,

reject the request.

•	 Use the standard token introspection endpoint of the authorization

server to find the token metadata. The response will have the client_

id corresponding to the OAuth 2.0 application—and if it does not

belong to you, reject the login request.

There is another flavor of token reuse—rather we call it token misuse. When implicit

grant type is used with a single-page application (SPA), the access token is visible to the

end user—as it’s on the browser. It’s the legitimate user—so the user seeing the access

token is no big deal. But the issue is the user would probably take the access token out of

the browser (or the app) and automate or script some API calls, which would generate

more load on the server that would not expect in a normal scenario. Also, there is a cost

Chapter 14 OAuth 2.0 Security

https://graph.facebook.com/app?access_token=<access_token>
https://graph.facebook.com/app?access_token=<access_token>

296

of making API calls. Most of the client applications are given a throttle limit—meaning

a given application can only do n number of calls during a minute or some fixed time

period. If one user tries to invoke APIs with a script, that could possibly eat out the

complete throttle limit of the application—making an undesirable impact on the other

users of the same application. To overcome such scenarios, the recommended approach

is to introduce throttle limits by user by application—not just by the application. In that

way, if a user wants to eat out his own throttle limit, go out and do it! The other solution is

to use Token Binding, which we discussed in Chapter 11. With token binding, the access

token is bound to the underlying Transport Layer Security (TLS) connection, and the

user won’t be able to export it and use it from somewhere else.

�Token Leakage/Export
More than 90% of the OAuth 2.0 deployments are based on bearer tokens—not just the

public/Internet scale ones but also at the enterprise level. The use of a bearer token is

just like using cash. When you buy a cup of coffee from Starbucks, paying by cash, no

one will bother how you got that ten-dollar note—or if you’re the real owner of it. OAuth

2.0 bearer tokens are similar to that. If someone takes the token out of the wire (just like

stealing a ten-dollar note from your pocket), he/she can use it just as the original owner

of it—no questions asked!

Whenever you use OAuth 2.0, it’s not just recommended but a must to use TLS. Even

though TLS is used, still a man-in-the-middle attack can be carried out with various

techniques. Most of the time, the vulnerabilities in TLS implementations are used to

intercept the TLS-protected communication channels. The Logjam attack discovered

in May 2015 allowed a man-in-the-middle attacker to downgrade vulnerable TLS

connections to 512-bit export-grade cryptography. This allowed the attacker to read and

modify any data passed over the connection.

There are few things we need to worry about as precautions to keep the attacker

away from having access to the tokens:

•	 Always be on TLS (use TLS 1.2 or later).

•	 Address all the TLS-level vulnerabilities at the client, authorization

server, and the resource server.

Chapter 14 OAuth 2.0 Security

297

•	 The token value should be >=128 bits long and constructed from

a cryptographically strong random or pseudorandom number

sequence.

•	 Never store tokens in cleartext—but the salted hash.

•	 Never write access/refresh tokens into logs.

•	 Use TLS tunneling over TLS bridging.

•	 Decide the lifetime of each token based on the risk associated with

token leakage, duration of the underlying access grant (SAML grant

(RFC 7522) or JWT grant (RFC 7523)), and the time required for an

attacker to guess or produce a valid token.

•	 Prevent reuse of the authorization code—just once.

•	 Use one-time access tokens. Under the OAuth 2.0 implicit grant

type, access token comes as a URI fragment—which will be in the

browser history. In such cases, it can be immediately invalidated

by exchanging it to a new access token from the client application

(which is an SPA).

•	 Use strong client credentials. Most of the applications just use client

id and client secret to authenticate the client application to the

authorization server. Rather than passing credentials over the wire,

client can use either the SAML or JWT assertion to authenticate.

In addition to the preceding measures, we can also cryptographically bind the OAuth

2.0 access/refresh tokens and authorization codes to a given TLS channel—so those

cannot be exported and used elsewhere. There are few specifications developed under

the IETF Token Binding working group to address this aspect.

The Token Binding Protocol, which we discussed in Chapter 11, allows client/server

applications to create long-lived, uniquely identifiable TLS bindings spanning multiple

TLS sessions and connections. Applications are then enabled to cryptographically bind

security tokens to the TLS layer, preventing token export and replay attacks. To protect

privacy, the Token Binding identifiers are only conveyed over TLS and can be reset by

the user at any time.

Chapter 14 OAuth 2.0 Security

298

The OAuth 2.0 Token Binding specification (which we discussed in Chapter 11)

defines how to apply Token Binding to access tokens, authorization codes, and refresh

tokens. This cryptographically binds OAuth tokens to a client’s Token Binding key pair,

the possession of which is proven on the TLS connections over which the tokens are

intended to be used. The use of Token Binding protects OAuth tokens from man-in-the-

middle, token export, and replay attacks.

�Open Redirector
An open redirector is an endpoint hosted on the resource server (or the OAuth 2.0 client

application) end, which accepts a URL as a query parameter in a request—and then

redirects the user to that URL. An attacker can modify the redirect_uri in the authorization

grant request from the resource server to the authorization server to include an open

redirector URL pointing to an endpoint owned by him. To do this, the attacker has to

intercept the communication channel between the victim’s browser and the authorization

server—or the victim’s browser and the resource server (see Figure 14-3).

Once the request hits the authorization server and after the authentication, the user

will be redirected to the provided redirect_uri, which also carries the open redirector

query parameter pointing to the attacker’s endpoint. To detect any modifications to

the redirect_uri, the authorization server can carry out a check against a preregistered

URL. But then again, some authorization server implementations will only worry about

the domain part of the URL and will ignore doing an exact one-to-one match. So, any

changes to the query parameters will be unnoticed.

Chapter 14 OAuth 2.0 Security

299

Once the user got redirected to the open redirector endpoint, it will again redirect

the user to the value (URL) defined in the open redirector query parameter—which will

take him/her to the attacker’s endpoint. In this request to the attacker’s endpoint, the

HTTP Referer header could carry some confidential data, including the authorization

code (which is sent to the client application by the authorization server as a query

parameter).

How to prevent an open redirector attack:

•	 Enforce strict validations at the authorization server against the

redirect_uri. It can be an exact one-to-one match or regex match.

•	 Validate the redirecting URL at open redirector and make sure you

only redirect to the domains you own.

Figure 14-3.  Open Redirector attack

Chapter 14 OAuth 2.0 Security

300

•	 Use JWT Secured Authorization Request (JAR) or Pushed

Authorization Requests (PAR) as discussed in Chapter 4 to protect the

integrity of the authorization request, so the attacker won’t be able to

modify the request to include the open redirector query parameter to

the redirect_uri.

�Code Interception Attack
Code interception attack could possibly happen in a native mobile app. OAuth 2.0

authorization requests from native apps should only be made through external user

agents, primarily the user’s browser. The OAuth 2.0 for Native Apps specification

(which we discussed in Chapter 10) explains in detail the security and usability

reasons why this is the case and how native apps and authorization servers can

implement this best practice.

The way you do single sign-on in a mobile environment is by spinning up the

system browser from your app and then initiate OAuth 2.0 flow from there. Once the

authorization code is returned back to the redirect_uri (from the authorization server)

on the browser, there should be a way to pass it over to the native app. This is taken care

by the mobile OS—and each app has to register for a URL scheme with the mobile OS.

When the request comes to that particular URL, the mobile OS will pass its control to the

corresponding native app. But, the danger here is, there can be multiple apps that get

registered for the same URL scheme, and there is a chance a malicious app could get hold

of the authorization code. Since many mobile apps embed the same client id and client

secret for all the instances of that particular app, the attacker can also find out what they

are. By knowing the client id and client secret, and then having access to the authorization

code, the malicious app can now get an access token on behalf of the end user.

PKCE (Proof Key for Code Exchange), which we discussed in detail in Chapter 10,

was introduced to mitigate such attacks. Let’s see how it works:

	 1.	 The OAuth 2.0 client app generates a random number (code_

verifier) and finds the SHA256 hash of it—which is called the

code_challenge.

	 2.	 The OAuth 2.0 client app sends the code_challenge along with

the hashing method in the authorization grant request to the

authorization server.

Chapter 14 OAuth 2.0 Security

301

	 3.	 Authorization server records the code_challenge (against the

issued authorization code) and replies back with the code.

	 4.	 The client sends the code_verifier along with the authorization

code to the token endpoint.

	 5.	 The authorization server finds the hash of the provided code_

verifier and matches it against the stored code_challenge. If it does

not match, rejects the request.

With this approach, a malicious app just having access to the authorization code

cannot exchange it to an access token without knowing the value of the code_verifier.

�Security Flaws in Implicit Grant Type
The OAuth 2.0 implicit grant type (see Figure 14-4) is now obsolete. This was mostly used

by single-page applications and native mobile apps—but no more. In both the cases,

the recommendation is to use the authorization code grant type. There are few security

flaws, as listed in the following, identified in the implicit grant type, and the IETF OAuth

working group officially announced that the applications should not use implicit grant

type any more:

•	 With implicit grant type, the access token comes as a URI fragment

and remains in the web browser location bar (step 5 in Figure 14-4).

Since anything the web browser has in the location bar persevered

as browser history, anyone having access to the browser history can

steal the tokens.

•	 Since the access token remains in the web browser location bar, the

API calls initiated from the corresponding web page will carry the

entire URL in the location bar, along with the access token, in the

HTTP Referer header. This will let external API endpoints to figure

out (looking at the HTTP Referer header) what the access token is

and possibly misuse it.

Chapter 14 OAuth 2.0 Security

302

�Google Docs Phishing Attack
An attacker used a fake OAuth 2.0 app called Google Docs as a medium to launch a

massive phishing attack targeting Google users in May 2017. The first target was the

media companies and public relations (PR) agencies. They do have a large amount of

contacts—and the attacker used the email addresses from their contact lists to spread

the attack. It went viral for an hour—before the app was removed by Google.

Is this a flaw in the OAuth 2.0 protocol exploited by the attacker or a flaw in how

Google implemented it? Is there something we could have done better to prevent such

attacks?

Figure 14-4.  OAuth 2.0 implicit grant flow.

Chapter 14 OAuth 2.0 Security

303

Almost all the applications you see on the Web today use the authorization code

grant flow in OAuth 2.0. The attacker exploited step 3 in Figure 14-5 by tricking the user

with an application name (Google Docs) known to them. Also, the attacker used an

email template which is close to what Google uses in sharing docs, to make the user click

on the link. Anyone who carefully looked at the email or even the consent screen could

have caught up something fishy happening—but unfortunately, very few do care.

It’s neither a flaw of OAuth 2.0 nor how Google implemented it. Phishing is a

prominent threat in cybersecurity. Does that mean there is no way to prevent such

attacks other than proper user education? There are basic things Google could do to

prevent such attacks in the future. Looking at the consent screen, “Google Docs” is the

key phrase used there to win user’s trust. When creating an OAuth 2.0 app in Google,

you can pick any name you want. This helps an attacker to misguide users. Google could

easily filter out the known names and prevent app developers from picking names to

trick the users.

Another key issue is Google does not show the domain name of the application (but

just the application name) on the consent page. Having domain name prominently

displayed on the consent page will provide some hint to the user where he is heading to.

Also the image of the application on the consent page misleads the user. The attacker

Figure 14-5.  OAuth 2.0 authorization grant flow.

Chapter 14 OAuth 2.0 Security

304

has intentionally picked the Google Drive image there. If all these OAuth applications

can go through an approval process, before launching into public, such mishaps can be

prevented. Facebook already follows such a process. When you create a Facebook app,

first, only the owner of the application can log in—to launch it to the public, it has to go

through an approval process.

G Suite is widely used in the enterprise. Google can give the domain admins more

control to whitelist, which applications the domain users can access from corporate

credentials. This prevents users under phishing attacks, unknowingly sharing access to

important company docs with third-party apps.

The phishing attack on Google is a good wake-up call to evaluate and think about

how phishing resistance techniques can be occupied in different OAuth flows. For

example, Google Chrome security team has put so much effort when they designed the

Chrome warning page for invalid certificates. They did tons of research even to pick the

color, the alignment of text, and what images to be displayed. Surely, Google will bring

up more bright ideas to the table to fight against phishing.

�Summary
•	 OAuth 2.0 is the de facto standard for access delegation to cater real

production use cases. There is a huge ecosystem building around it—

with a massive adoption rate.

•	 Whenever you use OAuth, you should make sure that you follow and

adhere to security best practices—and always use proven libraries

and products, which already take care of enforcing the best practices.

•	 OAuth 2.0 Threat Model and Security Considerations (RFC 6819)

produced by OAuth IETF working group defines additional security

considerations for OAuth 2.0, beyond those in the OAuth 2.0

specification, based on a comprehensive threat model.

•	 The OAuth 2.0 Security Best Current Practice document, which is a

draft proposal at the time of writing, talks about new threats related

to OAuth 2.0, since the RFC 6819 was published.

•	 The Financial-grade API (FAPI) working group under OpenID

Foundation has published a set of guidelines on how to use OAuth

2.0 in a secure way to build financial-grade applications.

Chapter 14 OAuth 2.0 Security

305
© Prabath Siriwardena 2020
P. Siriwardena, Advanced API Security, https://doi.org/10.1007/978-1-4842-2050-4_15

CHAPTER 15

Patterns and Practices
Throughout the book so far over 14 chapters and 7 appendices, we discussed different

ways of securing APIs and the theoretical background behind those. In this chapter, we

present a set of API security patterns to address some of the most common enterprise

security problems.

�Direct Authentication with the Trusted Subsystem
Suppose a medium-scale enterprise has a number of APIs. Company employees are

allowed to access these APIs via a web application while they’re behind the company

firewall. All user data are stored in Microsoft Active Directory (AD), and the web

application is connected directly to the Active Directory to authenticate users. The web

application passes the logged-in user’s identifier to the back-end APIs to retrieve data

related to the user.

The problem is straightforward, and Figure 15-1 illustrates the solution. You need to

use some kind of direct authentication pattern. User authentication happens at the front-

end web application, and once the user is authenticated, the web application needs to

access the back-end APIs. The catch here is that the web application passes the logged-in

user’s identifier to the APIs. That implies the web application needs to invoke APIs in a

user-aware manner.

Since both the web application and the APIs are in the same trust domain, we only

authenticate the end user at the web application, and the back-end APIs trust whatever

data passed on to those from the web application. This is called the trusted subsystem

pattern. The web application acts as a trusted subsystem. In such case, the best way

to secure APIs is through mutual Transport Layer Security (mTLS). All the requests

generated from the web application are secured with mTLS, and no one but the web

application can access the APIs (see Chapter 3).

306

Some do resist using TLS due to the overhead it adds and rely on building a

controlled environment, where security between the web application and the container

that hosts APIs is governed at the network level. Network-level security must provide

the assurance that no component other than the web application server can talk to the

container that hosts the APIs. This is called the trust-the-network pattern, and over the

time, this has become an antipattern. The opposite of the trust-the-network pattern is

zero-trust network. With the zero-trust network pattern, we do not trust the network.

When we do not trust the network, we need to make sure we have enforced security

checks as much as closer to the resource (or in our case, the APIs). The use of mTLS to

secure the APIs is the most ideal solution here.

�Single Sign-On with the Delegated Access Control
Suppose a medium-scale enterprise has a number of APIs. Company employees are

allowed to access these APIs via web applications while they’re behind the company

firewall. All user data are stored in Microsoft Active Directory, and all the web

applications are connected to an identity provider, which supports Security Assertion

Markup Language (SAML) 2.0 to authenticate users. The web applications need to access

back-end APIs on behalf of the logged-in user.

Figure 15-1.  Direct authentication with the trusted subsystem pattern

Chapter 15 Patterns and Practices

307

The catch here is the last statement: “The web applications need to access back-end

APIs on behalf of the logged-in user.” This suggests the need for an access delegation

protocol: OAuth 2.0. However, users don’t present their credentials directly to the web

application—they authenticate through a SAML 2.0 identity provider.

In this case, you need to find a way to exchange the SAML token a web application

receives via the SAML 2.0 Web SSO protocol for an OAuth access token, which is defined

in the SAML grant type for the OAuth 2.0 specification (see Chapter 12). Once the web

application receives the SAML token, as shown in step 3 of Figure 15-2, it has to exchange

the SAML token to an access token by talking to the OAuth 2.0 authorization server.

Figure 15-2.  Single sign-on with the Delegated Access Control pattern

The authorization server must trust the SAML 2.0 identity provider. Once the web

application gets the access token, it can use it to access back-end APIs. The SAML grant

type for OAuth 2.0 doesn’t provide a refresh token. The lifetime of the access token

issued by the OAuth 2.0 authorization server must match the lifetime of the SAML token

used in the authorization grant.

After the user logs in to the web application with a valid SAML token, the web

application creates a session for the user from then onward, and it doesn’t worry about

the lifetime of the SAML token. This can lead to some issues. Say, for example, the

SAML token expires, but the user still has a valid browser session in the web application.

Because the SAML token has expired, you can expect that the corresponding OAuth

Chapter 15 Patterns and Practices

308

2.0 access token obtained at the time of user login has expired as well. Now, if the web

application tries to access a back-end API, the request will be rejected because the access

token is expired. In such a scenario, the web application has to redirect the user back

to the SAML 2.0 identity provider, get a new SAML token, and exchange that token for

a new access token. If the session at the SAML 2.0 identity provider is still live, then this

redirection can be made transparent to the end user.

�Single Sign-On with the Integrated Windows
Authentication
Suppose a medium-scale enterprise that has a number of APIs. Company employees

are allowed to access these APIs via multiple web applications while they’re behind the

company firewall. All user data are stored in Microsoft Active Directory, and all the web

applications are connected to a SAML 2.0 identity provider to authenticate users. The

web applications need to access back-end APIs on behalf of the logged-in user. All the

users are in a Windows domain, and once they’re logged in to their workstations, they

shouldn’t be asked to provide credentials at any point for any other application.

The catch here is the statement, “All the users are in a Windows domain, and once

they’re logged in to their workstations, they shouldn’t be asked to provide credentials at

any point for any other application.”

You need to extend the solution we provided using single sign-on (SSO) with the

Delegated Access Control pattern (the second pattern). In that case, the user logs in

to the SAML 2.0 identity provider with their Active Directory username and password.

Here, this isn’t acceptable. Instead, you can use Integrated Windows Authentication

(IWA) to secure the SAML 2.0 identity provider. When you configure the SAML 2.0

identity provider to use IWA, then once the user is redirected to the identity provider for

authentication, the user is automatically authenticated; as in the case of SSO with the

Delegated Access Control pattern, a SAML response is passed to the web application.

The rest of the flow remains unchanged.

Chapter 15 Patterns and Practices

309

�Identity Proxy with the Delegated Access Control
Suppose a medium-scale enterprise has a number of APIs. Company employees, as

well as employees from trusted partners, are allowed to access these APIs via web

applications. All the internal user data are stored in Microsoft Active Directory, and

all the web applications are connected to a SAML 2.0 identity provider to authenticate

users. The web applications need to access back-end APIs on behalf of logged-in users.

Figure 15-3.  Identity proxy with the Delegated Access Control pattern

This use case is an extension of using SSO with the Delegated Access Control pattern.

The catch here is the statement, “company employees, as well as employees from trusted

partners, are allowed to access these APIs via web applications.” You now have to go

beyond the company domain. Everything in Figure 15-2 remains unchanged. The only

thing you need to do is to change the authentication mechanism at the SAML 2.0 identity

provider (see Figure 15-3).

Regardless of the end user’s domain, the client web application only trusts the

identity provider in its own domain. Internal as well as external users are first redirected

to the internal (or local) SAML identity provider. The local identity provider should offer

the user the option to pick whether to authenticate with their username and password

Chapter 15 Patterns and Practices

310

(for internal users) or to pick their corresponding domain. Then the identity provider

can redirect the user to the corresponding identity provider running in the external

user’s home domain. Now the external identity provider returns a SAML response to the

internal identity provider.

The external identity provider signs this SAML token. If the signature is valid, and if

it’s from a trusted external identity provider, the internal identity provider issues a new

SAML token signed by itself to the calling application. The flow then continues as shown

in Figure 15-2.

Note  One benefit of this approach is that the internal applications only need to
trust their own identity provider. The identity provider handles the brokering of trust
between other identity providers outside its domain. In this scenario, the external
identity provider also talks SAML, but that can’t be expected all the time. There are
also identity providers that support other protocols. In such scenarios, the internal
identity provider must be able to transform identity assertions between different
protocols.

�Delegated Access Control with the JSON Web Token
Suppose a medium-scale enterprise that has a number of APIs. Company employees

are allowed to access these APIs via web applications while they’re behind the

company firewall. All user data are stored in Microsoft Active Directory, and all the web

applications are connected to an OpenID Connect identity provider to authenticate

users. The web applications need to access back-end APIs on behalf of the logged-in user.

This use case is also an extension of the SSO with the Delegated Access Control pattern.

The catch here is the statement, “all the web applications are connected to an OpenID

Connect identity provider to authenticate users.” You need to replace the SAML identity

provider shown in Figure 15-2 with an OpenID Connect identity provider, as illustrated in

Figure 15-4. This also suggests the need for an access delegation protocol (OAuth).

In this case, however, users don’t present their credentials directly to the web

application; rather, they authenticate through an OpenID Connect identity provider.

Thus, you need to find a way to exchange the ID token received in OpenID Connect

authentication for an OAuth access token, which is defined in the JWT grant type for

Chapter 15 Patterns and Practices

311

OAuth 2.0 specification (Chapter 12). Once the web application receives the ID token

in step 3, which is also a JWT, it has to exchange it for an access token by talking to the

OAuth 2.0 authorization server. The authorization server must trust the OpenID Connect

identity provider. When the web application gets the access token, it can use it to access

back-end APIs.

Figure 15-4.  Delegated Access Control with the JWT pattern

Note  Why would someone exchange the ID token obtained in OpenID Connect
for an access token when it directly gets an access token along with the ID
token? This is not required when both the OpenID Connect server and the OAuth
authorization server are the same. If they aren’t, you have to use the JWT Bearer
grant type for OAuth 2.0 and exchange the ID token for an access token. The
access token issuer must trust the OpenID Connect identity provider.

�Nonrepudiation with the JSON Web Signature
Suppose a medium-scale enterprise in the finance industry needs to expose an API to

its customers through a mobile application, as illustrated in Figure 15-5. One major

requirement is that all the API calls should support nonrepudiation.

Chapter 15 Patterns and Practices

312

The catch here is the statement, “all the API calls should support nonrepudiation.”

When you do a business transaction via an API by proving your identity, you shouldn’t

be able to reject it later or repudiate it. The property that ensures the inability to

repudiate is known as nonrepudiation. Basically, you do it once, and you own it forever

(see Chapter 2 for details).

Nonrepudiation should provide proof of the origin and the integrity of data in an

unforgeable manner, which a third party can verify at any time. Once a transaction is

initiated, none of its content, including the user identity, date, time, and transaction

details, should be altered while in transit, in order to maintain transaction integrity and

to allow for future verifications. Nonrepudiation has to ensure that the transaction is

unaltered and logged after it’s committed and confirmed.

Logs must be archived and properly secured to prevent unauthorized modifications.

Whenever there is a repudiation dispute, transaction logs, along with other logs or data,

can be retrieved to verify the initiator, date, time, transaction history, and so on. The way

to achieve nonrepudiation is via signature. A key known only to the end user should sign

each message.

In this case, the financial institution must issue a key pair to each of its customers,

signed by a certificate authority under its control. It should only store the corresponding

public certificate, not the private key. The customer can install the private key in his

or her mobile device and make it available to the mobile application. All API calls

generated from the mobile application must be signed by the private key of the user and

encrypted by the public key of the financial institution.

To sign the message, the mobile application can use JSON Web Signature (see

Chapter 7); and for encryption, it can use JSON Web Encryption (see Chapter 8). When

using both the signature and encryption on the same payload, the message must be

signed first, and then the signed payload must be encrypted for legal acceptance.

Figure 15-5.  Nonrepudiation with the JSON Web Signature pattern

Chapter 15 Patterns and Practices

313

�Chained Access Delegation
Suppose a medium-scale enterprise that sells bottled water has an API (Water API)

that can be used to update the amount of water consumed by a registered user. Any

registered user can access the API via any client application. It could be an Android app,

an iOS app, or even a web application.

The company only provides the API—anyone can develop client applications

to consume it. All the user data of the Water API are stored in Microsoft Active

Directory. The client applications shouldn’t be able to access the API directly to find

out information about users. Only the registered users of the Water API can access it.

These users should only be able to see their own information. At the same time, for

each update made by a user, the Water API must update the user’s healthcare record

maintained at MyHealth.org. The user also has a personal record at MyHealth.org, and

it too exposes an API (MyHealth API). The Water API has to invoke the MyHealth API to

update the user record on the user’s behalf.

In summary, a mobile application accesses the Water API on behalf of the end user,

and then the Water API has to access the MyHealth API on behalf of the end user. The

Water API and the MyHealth API are in two independent domains. This suggests the

need for an access delegation protocol.

Figure 15-6.  Chained Access Delegation pattern

Chapter 15 Patterns and Practices

314

Again, the catch here is the statement, “the Water API must also update the user’s

healthcare record maintained at MyHealth.org.” This has two solutions. In the first

solution, the end user must get an access token from MyHealth.org for the Water API

(the Water API acts as the OAuth client), and then the Water API must store the token

internally against the user’s name. Whenever the user sends an update through a

mobile application to the Water API, the Water API first updates its own record and then

finds the MyHealth access token corresponding to the end user and uses it to access

the MyHealth API. With this approach, the Water API has the overhead of storing the

MyHealth API access token, and it should refresh the access token whenever needed.

The second solution is explained in Figure 15-6. It’s built around the OAuth 2.0

Token Delegation profile (see Chapter 9). The mobile application must carry a valid

access token to access the Water API on behalf of the end user. In step 3, the Water API

talks to its own authorization server to validate the access token. Then, in step 4, the

Water API exchanges the access token it got from the mobile application for a JWT access

token. The JWT access token is a special access token that carries some meaningful

data, and the authorization server in the Water API’s domain signs it. The JWT includes

the end user’s local identifier (corresponding to the Water API) as well as its mapped

identifier in the MyHealth domain. The end user must permit this action at the Water

API domain.

In step 6, the Water API accesses the MyHealth API using the JWT access token. The

MyHealth API validates the JWT access token by talking to its own authorization server.

It verifies the signature; and, if it’s signed by a trusted entity, the access token is treated

as valid.

Because the JWT includes the mapped username from the MyHealth domain,

it can identify the corresponding local user record. However, this raises a security

concern. If you let users update their profiles in the Water API domain with the mapped

MyHealth identifier, they can map it to any user identifier, and this leads to a security

hole. To avoid this, the account mapping step must be secured with OpenID Connect

authentication. When the user wants to add his or her MyHealth account identifier, the

Water API domain initiates the OpenID Connect authentication flow and receives the

corresponding ID token. Then the account mapping is done with the user identifier in

the ID token.

Chapter 15 Patterns and Practices

315

�Trusted Master Access Delegation
Suppose a large-scale enterprise that has a number of APIs. The APIs are hosted in

different departments, and each department runs its own OAuth 2.0 authorization

server due to vendor incompatibilities in different deployments. Company employees

are allowed to access these APIs via web applications while they’re behind the company

firewall, regardless of the department which they belong to.

Figure 15-7.  Trusted Master Access Delegation pattern

All user data are stored in a centralized Active Directory, and all the web applications

are connected to a centralized OAuth 2.0 authorization server (which also supports

OpenID Connect) to authenticate users. The web applications need to access back-

end APIs on behalf of the logged-in user. These APIs may come from different

departments, each of which has its own authorization server. The company also has a

centralized OAuth 2.0 authorization server, and an employee having an access token

from the centralized authorization server must be able to access any API hosted in any

department.

Chapter 15 Patterns and Practices

316

Once again, this is an extended version of using SSO with the Delegated Access

Control pattern. You have a master OAuth 2.0 authorization server and a set of secondary

authorization servers. An access token issued from the master authorization server

should be good enough to access any of the APIs under the control of the secondary

authorization servers. In other words, the access token returned to the web application,

as shown in step 3 of Figure 15-7, should be good enough to access any of the APIs.

To make this possible, you need to make the access token self-contained. Ideally,

you should make the access token a JWT with the iss (issuer) field. In step 4, the web

application accesses the API using the access token; and in step 5, the API talks to its

own authorization server to validate the token. The authorization server can look at the

JWT header and find out whether it issued this token or if a different server issued it. If

the master authorization server issued it, then the secondary authorization server can

talk to the master authorization server’s OAuth introspection endpoint to find out more

about the token. The introspection response specifies whether the token is active and

identifies the scopes associated with the access token. Using the introspection response,

the secondary authorization server can build an eXtensible Access Control Markup

Language (XACML) request and call a XACML policy decision point (PDP). If the XACML

response is evaluated to permit, then the web application can access the API. Then

again XACML is a little too complex in defining access control policies, irrespective of

how powerful it is. You can also check the Open Policy Agent (OPA) project, which has

become quite popular recently in building fine-grained access control policies.

�Resource Security Token Service (STS)
with the Delegated Access Control
Suppose a global organization has APIs and API clients are distributed across different

regions. Each region operates independently from the others. Currently, both clients and

APIs are nonsecured. You need to secure the APIs without making any changes either at

the API or the client end.

The solution is based on a simple theory in software engineering: introducing a

layer of indirection can solve any problem. You need to introduce two interceptors.

One sits in the client region, and all the nonsecured messages generated from the client

are intercepted. The other interceptor sits in the API region, and all the API requests

are intercepted. No other component except this interceptor can access the APIs in a

nonsecured manner.

Chapter 15 Patterns and Practices

317

This restriction can be enforced at the network level. Any request generated from

outside has no path to the API other than through the API interceptor. Probably you

deploy both API interceptor and the API in the same physical machine. You can also call

this component a policy enforcement point (PEP) or API gateway. The PEP validates

the security of all incoming API requests. The interceptor’s responsibility, sitting in the

client region, is to add the necessary security parameters to the nonsecured messages

generated from the client and to send it to the API. In this way, you can secure the API

without making changes at either the client or the API end.

Still, you have a challenge. How do you secure the API at the API gateway? This is

a cross-domain scenario, and the obvious choice is to use JWT grant type for OAuth

2.0. Figure 15-8 explains how the solution is implemented. Nonsecured requests from

the client application are captured by the interceptor component in step 1. Then it has

to talk to its own security token service (STS). In step 2, the interceptor uses a default

user account to access the STS using OAuth 2.0 client credentials grant type. The STS

authenticates the request and issues a self-contained access token (a JWT), having the

STS in the API region as the audience of the token.

In step 3, the client-side interceptor authenticates to the STS at the API region

with the JWT token and gets a new JWT token, following OAuth 2.0 Token Delegation

profile, which we discussed in Chapter 9. The audience of the new JWT is the OAuth 2.0

Figure 15-8.  Resource STS with the Delegated Access Control pattern

Chapter 15 Patterns and Practices

318

authorization server running in the API region. Before issuing the new JWT, the STS at the

API region must validate its signature and check whether a trusted entity has signed it.

To make this scenario happen, the STS in the API region must trust the STS on the

client side. The OAuth 2.0 authorization server only trusts its own STS. That is why step

4 is required. Step 4 initiates the JWT grant type for OAuth 2.0, and the client interceptor

exchanges the JWT issued by the STS of the API region for an access token. Then it uses

that access token to access the API in step 5.

The PEP in the API region intercepts the request and calls the authorization server to

validate the access token. If the token is valid, the PEP lets the request hit the API (step 7).

�Delegated Access Control with No Credentials
over the Wire
Suppose a company wants to expose an API to its employees. However, user

credentials must never go over the wire. This is a straightforward problem with an

equally straightforward solution. Both OAuth 2.0 bearer tokens and HTTP Basic

authentication take user credentials over the wire. Even though both these approaches

use TLS for protection, still some companies worry about passing user credentials over

communication channels—or in other words passing bearer tokens over the wire.

You have few options: use either HTTP Digest authentication or OAuth 2.0 MAC

tokens (Appendix G). Using OAuth 2.0 MAC tokens is the better approach because

the access token is generated for each API, and the user can also revoke the token if

needed without changing the password. However, the OAuth 2.0 MAC token profile is

not matured yet. The other approach is to use OAuth 2.0 with Token Binding, which we

discussed in Chapter 11. Even though we use bearer tokens there, with Token Binding,

we bind the token to the underneath TLS channel—so no one can export the token and

use it somewhere else.

There are few more draft proposals discussed under the IETF OAuth working

group to address this concern. The OAuth 2.0 Mutual-TLS Client Authentication and

Certificate-Bound Access Tokens is one of them, available at https://tools.ietf.org/

html/draft-ietf-oauth-mtls-17.

Chapter 15 Patterns and Practices

https://tools.ietf.org/html/draft-ietf-oauth-mtls-17
https://tools.ietf.org/html/draft-ietf-oauth-mtls-17

319

�Summary
•	 API security is an ever-evolving subject.

•	 More and more standards and specifications are popping up, and

most of them are built around the core OAuth 2.0 specification.

•	 Security around JSON is another evolving area, and the IETF JOSE

working group is currently working on it.

•	 It’s highly recommended that if you wish to continue beyond this

book, you should keep an eye on the IETF OAuth working group, the

IETF JOSE working group, the OpenID Foundation, and the Kantara

Initiative.

Chapter 15 Patterns and Practices

321
© Prabath Siriwardena 2020
P. Siriwardena, Advanced API Security, https://doi.org/10.1007/978-1-4842-2050-4_16

APPENDIX A

The Evolution of Identity
Delegation
Identity delegation plays a key role in securing APIs. Most of the resources on the Web

today are exposed over APIs. The Facebook API exposes your Facebook wall, the Twitter

API exposes your Twitter feed, Flickr API exposes your Flickr photos, Google Calendar

API exposes your Google Calendar, and so on. You could be the owner of a certain

resource (Facebook wall, Twitter feed, etc.) but not the direct consumer of an API. There

may be a third party who wants to access an API on your behalf. For example, a Facebook

app may want to import your Flickr photos on behalf of you. Sharing credentials with

a third party who wants to access a resource you own on your behalf is an antipattern.

Most web-based applications and APIs developed prior to 2006 utilized credential

sharing to facilitate identity delegation. Post 2006, many vendors started developing

their own proprietary ways to address this concern without credential sharing. Yahoo!

BBAuth, Google AuthSub, and Flickr Authentication are some of the implementations

that became popular.

A typical identity delegation model has three main roles: delegator, delegate, and

service provider. The delegator owns the resource and is also known as the resource

owner. The delegate wants to access a service on behalf of the delegator. The delegator

delegates a limited set of privileges to the delegate to access the service. The service

provider hosts the protected service and validates the legitimacy of the delegate. The

service provider is also known as the resource server.

322

�Direct Delegation vs. Brokered Delegation
Let’s take a step back and look at a real-world example (see Figure A-1). Flickr is a

popular cloud-based service for storing and sharing photos. Photos stored in Flickr are

the resources, and Flickr is the resource server or the service provider. Say you have a

Flickr account: you’re the resource owner (or the delegator) of the photos under your

account. You also have a Snapfish account. Snapfish is a web-based photo-sharing and

photo-printing service that is owned by Hewlett-Packard. How can you print your Flickr

photos from Snapfish? To do so, Snapfish has to first import those photos from Flickr and

should have the privilege to do so, which should be delegated to Snapfish by you. You’re

the delegator, and Snapfish is the delegate. Other than the privilege to import photos,

Snapfish won’t be able to do any of the following with your Flickr photos:

•	 Access your Flickr account (including private content)

•	 Upload, edit, and replace photos and videos in the account

•	 Interact with other members’ photos and videos (comment, add

notes, favorite)

Figure A-1.  Direct delegation. The resource owner delegates privileges to the client
application

Snapfish can now access your Flickr account on your behalf with the delegated

privileges. This model is called direct delegation: the delegator directly delegates a subset

of his or her privileges to a delegate. The other model is called indirect delegation: the

delegator first delegates to an intermediate delegate, and that delegate delegates to

another delegate. This is also known as brokered delegation (see Figure A-2).

Appendix A The Evolution of Identity Delegation

323

Let’s say you have a Lucidchart account. Lucidchart is a cloud-based design tool

that you can use to draw a wide variety of diagrams. It also integrates with Google Drive.

From your Lucidchart account, you have the option to publish completed diagrams to

your Google Drive. To do that, Lucidchart needs privileges to access the Google Drive

API on your behalf, and you need to delegate the relevant permissions to Lucidchart.

If you want to print something from Lucidchart, it invokes the Snapfish printing

API. Snapfish needs to access the diagrams stored in your Google Drive. Lucidchart has

to delegate a subset of the permissions you delegated to it to Snapfish. Even though you

granted read/write permissions to Lucidchart, it only has to delegate read permission to

Snapfish to access your Google Drive and print the selected drawings.

�The Evolution
The modern history of identity delegation can be divided into two eras: pre-2006 and

post-2006. Credential sharing mostly drove identity delegation prior to 2006. Twitter,

SlideShare, and almost all the web applications used credential sharing to access third-

party APIs. As shown in Figure A-3, when you created a Twitter account prior to 2006,

Twitter asked for your email account credentials so it could access your email address

book and invite your friends to join Twitter. Interestingly, it displayed the message “We

don’t store your login, your password is submitted securely, and we don’t email without

your permission” to win user confidence. But who knows—if Twitter wanted to read all

your emails or do whatever it wanted to your email account, it could have done so quite

easily.

Figure A-2.  Brokered delegation. The resource owner delegates privileges to an
intermediate application and that application delegates privileges to another
application

Appendix A The Evolution of Identity Delegation

324

SlideShare did the same thing. SlideShare is a cloud-based service for hosting and

sharing slides. Prior to 2006, if you wanted to publish a slide deck from SlideShare to a

Blogger blog, you had to give your Blogger username and password to SlideShare, as

shown in Figure A-4. SlideShare used Blogger credentials to access its API to post the

selected slide deck to your blog. If SlideShare had wanted to, it could have modified

published blog posts, removed them, and so on.

Figure A-3.  Twitter, pre-2006

Figure A-4.  SlideShare, pre-2006

Appendix A The Evolution of Identity Delegation

325

These are just two examples. The pre-2006 era was full of such applications. Google

Calendar, introduced in April 2006, followed a similar approach. Any third-party

application that wanted to create an event in your Google Calendar first had to request

your Google credentials and use them to access the Google Calendar API. This wasn’t

tolerable in the Internet community, and Google was pushed to invent a new and, of

course, better way of securing its APIs. Google AuthSub was introduced toward the end

of 2006 as a result. This was the start of the post-2006 era of identity delegation.

�Google ClientLogin
In the very early stages of its deployment, the Google Data API was secured with two

nonstandard security protocols: ClientLogin and AuthSub. ClientLogin was intended

to be used by installed applications. An installed application can vary from a simple

desktop application to a mobile application—but it can’t be a web application. For web

applications, the recommended way was to use AuthSub.

Note  The complete Google ClientLogin documentation is available at https://
developers.google.com/accounts/docs/AuthForInstalledApps. The
ClientLogin API was deprecated as of April 20, 2012. According to the Google
deprecation policy, it operated the same until April 20, 2015.

As shown in Figure A-5, Google ClientLogin uses identity delegation with password

sharing. The user has to share his Google credentials with the installed application in the

first step. Then the installed application creates a request token out of the credentials,

and it calls the Google Accounts Authorization service. After the validation, a CAPTCHA

challenge is sent back as the response. The user must respond to the CAPTCHA and

is validated again against the Google Accounts Authorization service. Once the user is

validated successfully, a token is issued to the application. Then the application can use

the token to access Google services.

Appendix A The Evolution of Identity Delegation

https://developers.google.com/accounts/docs/AuthForInstalledApps
https://developers.google.com/accounts/docs/AuthForInstalledApps

326

�Google AuthSub
Google AuthSub was the recommended authentication protocol to access Google

APIs via web applications in the post-2006 era. Unlike ClientLogin, AuthSub doesn’t

require credential sharing. Users don’t need to provide credentials for a third-party web

application—instead, they provide credentials directly to Google, and Google shares a

temporary token with a limited set of privileges with the third-party web application.

The third-party application uses the temporary token to access Google APIs. Figure A-6

explains the protocol flow in detail.

Figure A-5.  Google ClientLogin

Figure A-6.  Google AuthSub

Appendix A The Evolution of Identity Delegation

327

The end user initiates the protocol flow by visiting the web application. The web

application redirects the user to the Google Accounts Authorization service with

an AuthSub request. Google notifies the user of the access rights (or the privileges)

requested by the application, and the user can approve the request by login. Once

approved by the user, Google Accounts Authorization service provides a temporary

token to the web application. Now the web application can use that temporary token to

access Google APIs.

Note  The complete Google AuthSub documentation is available at https://
developers.google.com/accounts/docs/AuthSub. How to use AuthSub
with the Google Data API is explained at https://developers.google.com/
gdata/docs/auth/authsub. The AuthSub API was deprecated as of April 20,
2012. According to the Google deprecation policy, it operated the same until April
20, 2015.

�Flickr Authentication API
Flickr is a popular image/video hosting service owned by Yahoo!. Flickr was launched in

2004 (before the acquisition by Yahoo! in 2005), and toward 2005 it exposed its services

via a public API. It was one of the very few companies at that time that had a public API;

this was even before the Google Calendar API. Flickr was one of the very few applications

that followed an identity delegation model without credential sharing prior to 2006.

Most of the implementations that came after that were highly influenced by the Flickr

Authentication API. Unlike in Google AuthSub or ClientLogin, the Flickr model was

signature based. Each request should be signed by the application from its application

secret.

�Yahoo! Browser–Based Authentication (BBAuth)
Yahoo! BBAuth was launched in September 2006 as a generic way of granting third-party

applications access to Yahoo! data with a limited set of privileges. Yahoo! Photos and

Yahoo! Mail were the first two services to support BBAuth. BBAuth, like Google AuthSub,

borrowed the same concept used in Flickr (see Figure A-7).

Appendix A The Evolution of Identity Delegation

https://developers.google.com/accounts/docs/AuthSub
https://developers.google.com/accounts/docs/AuthSub
https://developers.google.com/gdata/docs/auth/authsub
https://developers.google.com/gdata/docs/auth/authsub

328

The user first initiates the flow by visiting the third-party web application. The web

application redirects the user to Yahoo!, where the user has to log in and approve the

access request from the third-party application. Once approved by the user, Yahoo!

redirects the user to the web application with a temporary token. Now the third-party

web application can use the temporary token to access user’s data in Yahoo! with limited

privileges.

Note  The complete guide to Yahoo! BBAuth is available at http://developer.
yahoo.com/bbauth/.

�OAuth
Google AuthSub, Yahoo! BBAuth, and Flickr Authentication all made considerable

contributions to initiate a dialog to build a common standardized delegation model.

OAuth 1.0 was the first step toward identity delegation standardization. The roots of

OAuth go back to November 2006, when Blaine Cook started developing an OpenID

implementation for Twitter. In parallel, Larry Halff of Magnolia (a social bookmarking

site) was thinking about integrating an authorization model with OpenID (around this

time, OpenID began gaining more traction in the Web 2.0 community). Larry started

discussing the use of OpenID for Magnolia with Twitter and found out there is no way to

delegate access to Twitter APIs through OpenID. Blaine and Larry, together with Chris

Messina, DeWitt Clinton, and Eran Hammer, started a discussion group in April 2007 to

Figure A-7.  Yahoo! BBAuth

Appendix A The Evolution of Identity Delegation

http://developer.yahoo.com/bbauth/
http://developer.yahoo.com/bbauth/

329

build a standardized access delegation protocol—which later became OAuth. The access

delegation model proposed in OAuth 1.0 wasn’t drastically different from what Google,

Yahoo!, and Flickr already had.

Note O penID is a standard developed by the OpenID Foundation for decentralized
single sign-on. The OpenID 2.0 final specification is available at http://openid.
net/specs/openid-authentication-2_0.html.

The OAuth 1.0 core specification was released in December 2007. Later, in 2008,

during the 73rd Internet Engineering Task Force (IETF) meeting, a decision was made

to develop OAuth under the IETF. It took some time to be established in the IETF, and

OAuth 1.0a was released as a community specification in June 2009 to fix a security issue

related to a session fixation attack.1 In April 2010, OAuth 1.0 was released as RFC 5849

under the IETF.

Note  The OAuth 1.0 community specification is available at http://oauth.
net/core/1.0/, and OAuth 1.0a is at http://oauth.net/core/1.0a/.
Appendix B explains OAuth 1.0 in detail.

In November 2009, during the Internet Identity Workshop (IIW), Dick Hardt of

Microsoft, Brian Eaton of Google, and Allen Tom of Yahoo! presented a new draft

specification for access delegation. It was called Web Resource Authorization Profiles

(WRAP), and it was built on top of the OAuth 1.0 model to address some of its

limitations. In December 2009, WRAP was deprecated in favor of OAuth 2.0.

Note  The WRAP specification contributed to the IETF OAuth working group is
available at http://tools.ietf.org/html/draft-hardt-oauth-01.

While OAuth was being developed under the OAuth community and the IETF

working group, the OpenID community also began to discuss a model to integrate OAuth

with OpenID. This effort, initiated in 2009, was called OpenID/OAuth hybrid extension

1�Session fixation, www.owasp.org/index.php/Session_fixation

Appendix A The Evolution of Identity Delegation

http://openid.net/specs/openid-authentication-2_0.html
http://openid.net/specs/openid-authentication-2_0.html
http://oauth.net/core/1.0/
http://oauth.net/core/1.0/
http://oauth.net/core/1.0a/
http://tools.ietf.org/html/draft-hardt-oauth-01
http://www.owasp.org/index.php/Session_fixation

330

(see Figure A-8). This extension describes how to embed an OAuth approval request

into an OpenID authentication request to allow combined user approval. For security

reasons, the OAuth access token isn’t returned in the OpenID authentication response.

Instead, a mechanism to obtain the access token is provided.

Note  The finalized specification for OpenID/OAuth extension is available at
http://step2.googlecode.com/svn/spec/openid_oauth_extension/
latest/openid_oauth_extension.html.

Figure A-8.  The evolution of identity protocols from OpenID to OpenID Connect

OAuth 1.0 provided a good foundation for access delegation. However, criticism

arose against OAuth 1.0, mainly targeting its usability and extensibility. As a result,

OAuth 2.0 was developed as an authorization framework, rather than a standard

protocol. OAuth 2.0 became the RFC 6749 in October 2012 under the IETF.

Appendix A The Evolution of Identity Delegation

http://step2.googlecode.com/svn/spec/openid_oauth_extension/latest/openid_oauth_extension.html
http://step2.googlecode.com/svn/spec/openid_oauth_extension/latest/openid_oauth_extension.html

331
© Prabath Siriwardena 2020
P. Siriwardena, Advanced API Security, https://doi.org/10.1007/978-1-4842-2050-4_17

APPENDIX B

OAuth 1.0
OAuth 1.0 was the first step toward the standardization of identity delegation. OAuth

involves three parties in an identity delegation transaction. The delegator, also known as

the user, assigns access to his or her resources to a third party. The delegate, also known

as the consumer, accesses a resource on behalf of its user. The application that hosts the

actual resource is known as the service provider. This terminology was introduced in the

first release of the OAuth 1.0 specification under oauth.net. It changed a bit when the

OAuth specification was brought into the IETF working group. In OAuth 1.0, RFC 5849,

the user (delegator) is known as the resource owner, the consumer (delegate) is known as

the client, and the service provider is known as the server.

Note  The OAuth 1.0 community specification is available at http://oauth.
net/core/1.0/, and OAuth 1.0a is at http://oauth.net/core/1.0a/.
OAuth 1.0, RFC 5849, made OAuth 1.0 (community version) and 1.0a obsolete.
RFC 5849 is available at http://tools.ietf.org/html/rfc5849.

�The Token Dance
Token-based authentication goes back to 1994, when the Mosaic Netscape 0.9 beta

version added support for cookies. For the first time, cookies were used to identify

whether the same user was revisiting a given web site. Even though it’s not a strong

form of authentication, this was the first time in history that a cookie was used for

identification. Later, most browsers added support for cookies and started using them as

a form of authentication. To log in to a web site, the user gives his or her username and

password. Once the user is successfully authenticated, the web server creates a session

for that user, and the session identifier is written into a cookie. To reuse the already

http://oauth.net/core/1.0/
http://oauth.net/core/1.0/
http://oauth.net/core/1.0a/
http://tools.ietf.org/html/rfc5849

332

authenticated session for each request from then onward, the user must attach the

cookie. This is the most widely used form of token-based authentication.

Note  RFC 6265 defines the cookie specification in the context of HTTP:
see http://tools.ietf.org/html/rfc6265.

Figure B-1.  OAuth 1.0 token dance

Token: A unique identifier issued by the server and used by the client to
associate authenticated requests with the resource owner whose authoriza-
tion is requested or has been obtained by the client. Tokens have a matching
shared-secret that is used by the client to establish its ownership of the token,
and its authority to represent the resource owner.

—OAuth 1.0 RFC 5849

Appendix B OAuth 1.0

http://tools.ietf.org/html/rfc6265

333

This appendix helps you digest the formal definition given for token by RFC 5849.

OAuth uses tokens at different phases in its protocol flow (see Figure B-1). Three main

phases are defined in the OAuth 1.0 handshake: the temporary-credential request phase,

the resource-owner authorization phase, and the token-credential request phase.

Note  All three phases in the OAuth 1.0 token dance must happen over Transport
Layer Security (TLS). These are bearer tokens, so anyone who steals them can use
them. A bearer token is like cash. If you steal 10 bucks from someone, you can still
use it at a Starbucks to buy a coffee, and the cashier will not question whether you
own or how you earned that 10 bucks.

�Temporary-Credential Request Phase
During the temporary-credential request phase, the OAuth client sends an HTTP POST to

the temporary-credential request endpoint hosted in the resource server:

POST /oauth/request-token HTTP/1.1

Host: server.com

Authorization: OAuth realm="simple",

oauth_consumer_key="dsdsddDdsdsds",

oauth_signature_method="HMAC-SHA1",

oauth_callback="http://client.net/client_cb",

oauth_signature="dsDSdsdsdsdddsdsdsd"

The authorization header in the request is constructed with the following

parameters:

•	 OAuth: The keyword used to identify the type of the authorization

header. It must have the value OAuth.

•	 realm: An identifier known to the resource server. Looking at the

realm value, the resource server can find out how to authenticate the

OAuth client. The value of realm here serves the same purpose as in

HTTP Basic authentication, which we discuss in Appendix F.

Appendix B OAuth 1.0

334

•	 oauth_consumer_key: A unique identifier issued to the OAuth client

by the resource server. This key is associated with a secret key that is

known both to the client and to the resource server.

•	 oauth_signature_method: The method used to generate the

oauth_signature. This can be PLAINTEXT, HMAC-SHA1, or RSA-SHA1.

PLAINTEXT means no signature, HMAC-SHA1 means a shared key has

been used for the signature, and RSA-SHA1 means an RSA private key

has been used for the signature. The OAuth specification doesn’t

mandate any signature method. The resource server can enforce any

signature method, based on its requirements.

•	 oauth_signature: The signature, which is calculated according to the

method defined in oauth_signature_method.

Note  With PLAINTEXT as the oauth_signature_method, the
oauth_signature is the consumer secret followed by &. For example, if
the consumer secret associated with the corresponding consumer_key
is Ddedkljlj878dskjds, then the value of oauth_signature is
Ddedkljlj878dskjds&.

•	 oauth_callback: An absolute URI that is under the control of the

client. In the next phase, once the resource owner has authorized the

access request, the resource server has to redirect the resource owner

back to the oauth_callback URI. If this is preestablished between the

client and the resource server, the value of oauth_callback should be

set to oob to indicate that it is out of band.

The temporary-credential request authenticates the client. The client must be a

registered entity at the resource server. The client registration process is outside the

scope of the OAuth specification. The temporary-credential request is a direct HTTP

POST from the client to the resource server, and the user isn’t aware of this phase. The

client gets the following in response to the temporary-credential request. Both the

temporary-credential request and the response must be over TLS:

Appendix B OAuth 1.0

335

HTTP/1.1 200 OK

Content-Type: application/x-www-form-urlencoded

oauth_token=bhgdjgdds&

oauth_token_secret=dsdasdasdse&

oauth_callback_confirmed=true

Let’s examine the definition of each parameter:

•	 oauth_token: An identifier generated by the resource server. This

is used to identify the value of the oauth_token_secret in future

requests made by the client to the resource server. This identifier

links the oauth_token_secret to the oauth_consumer_key.

•	 oauth_token_secret: A shared secret generated by the resource

server. The client will use this in the future requests to generate the

oauth_signature.

•	 oauth_callback_confirmed: This must be present and set to true.

It helps the client to confirm that the resource server received the

oauth_callback sent in the request.

To initiate the temporary-credential request phase, the client must first be registered

with the resource server and have a consumer key/consumer secret pair. At the end of

this phase, the client will have an oauth_token and an oauth_token_secret.

�Resource-Owner Authorization Phase
During the resource-owner authorization phase, the client must get the oauth_token

received in the previous phase authorized by the user or the resource owner. The client

redirects the user to the resource server with the following HTTP GET request. The

oauth_token received in the previous phase is added as a query parameter. Once the

request hits the resource server, the resource server knows the client corresponding to

the provided token and displays the name of the client to the user on its login page. The

user must authenticate first and then authorize the token:

GET /authorize_token?oauth_token= bhgdjgdds HTTP/1.1

Host: server.com

Appendix B OAuth 1.0

336

After the resource owner’s approval, the resource server redirects the user to the

oauth_callback URL corresponding to the client:

GET /client_cb?x=1&oauth_token=dsdsdsdd&oauth_verifier=dsdsdsds HTTP/1.1

Host: client.net

Let’s examine the definition of each parameter:

•	 oauth_token: An identifier generated by the resource server. It’s used

to identify the value of the oauth_verifier in future requests made

by the client to the resource server. This identifier links the oauth_

verifier to the oauth_consumer_key.

•	 oauth_verifier: A shared verification code generated by the

resource server. The client will use this in the future requests to

generate the oauth_signature.

Note I f no oauth_callback URL is registered by the client, the resource server
displays a verification code to the resource owner. The resource owner must
take it and provide it to the client manually. The process by which the resource
owner provides the verification code to the client is outside the scope of the OAuth
specification.

To initiate the resource-owner authorization phase, the client must have access to

the oauth_token and the oauth_token_secret. At the end of this phase, the client has a

new oauth_token and an oauth_verifier.

�Token-Credential Request Phase
During the token-credential request phase, the client makes a direct HTTP POST or a GET

request to the access token endpoint hosted at the resource server:

POST /access_token HTTP/1.1

Host: server.com

Authorization: OAuth realm="simple",

oauth_consumer_key="dsdsddDdsdsds",

oauth_token="bhgdjgdds",

Appendix B OAuth 1.0

337

oauth_signature_method="PLAINTEXT",

oauth_verifier="dsdsdsds",

oauth_signature="fdfsdfdfdfdfsfffdf"

The authorization header in the request is constructed with the following

parameters:

•	 OAuth: The keyword used to identify the type of the authorization

header. It must have the value OAuth.

•	 realm: An identifier known to the resource server. Looking at the

realm value, the resource server can decide how to authenticate the

OAuth client. The value of realm here serves the same purpose as in

HTTP Basic authentication.

•	 oauth_consumer_key: A unique identifier issued to the OAuth client

by the resource server. This key is associated with a secret key that is

known to both the client and the resource server.

•	 oauth_signature_method: The method used to generate the

oauth_signature. This can be PLAINTEXT, HMAC-SHA1, or RSA-SHA1.

PLAINTEXT means no signature, HMAC-SHA1 means a shared key has

been used for the signature, and RSA-SHA1 means an RSA private key

has been used for the signature. The OAuth specification doesn’t

mandate any signature method. The resource server can enforce any

signature method, based on its requirements.

•	 oauth_signature: The signature, which is calculated according to the

method defined in oauth_signature_method.

•	 oauth_token: The temporary-credential identifier returned in the

temporary-credential request phase.

•	 oauth_verifier: The verification code returned in the resource-

owner authorization phase.

After the resource server validates the access token request, it sends back the

following response to the client:

HTTP/1.1 200 OK

Content-Type: application/x-www-form-urlencoded

oauth_token=dsdsdsdsdweoio998s&oauth_token_secret=ioui789kjhk

Appendix B OAuth 1.0

338

Let’s examine the definition of each parameter:

•	 oauth_token: An identifier generated by the resource server. In future

requests made by the client, this will be used to identify the value

of oauth_token_secret to the resource server. This identifier links

oauth_token_secret to the oauth_consumer_key.

•	 oauth_token_secret: A shared secret generated by the resource

server. The client will use this in future requests to generate the

oauth_signature.

To initiate the token-credential request phase, the client must have access to the

oauth_token from the first phase and the oauth_verifier from the second phase. At

the end of this phase, the client will have a new oauth_token and a new oauth_token_

secret.

�Invoking a Secured Business API with OAuth 1.0
At the end of the OAuth token dance, the following tokens should be retained at the

OAuth client end:

•	 oauth_consumer_key: An identifier generated by the resource

server to uniquely identify the client. The client gets the oauth_

consumer_key at the time of registration with the resource server. The

registration process is outside the scope of the OAuth specification.

•	 oauth_consumer_secret: A shared secret generated by the resource

server. The client will get the oauth_consumer_secret at the time

of registration, with the resource server. The registration process is

outside the scope of the OAuth specification. The oauth_consumer_

secret is never sent over the wire.

•	 oauth_token: An identifier generated by the resource server at the

end of the token-credential request phase.

•	 oauth_token_secret: A shared secret generated by the resource

server at the end of the token-credential request phase.

Appendix B OAuth 1.0

339

Following is a sample HTTP request to access a secured API with OAuth 1.0. Here we

send an HTTP POST to the student API with one argument called name. In addition to

the previously described parameters, it also has oauth_timestamp and oauth_nonce.

An API gateway (or any kind of an interceptor) intercepts the request and talks to the

token issuer to validate the authorization header. If all looks good, the API gateway

routes the request to the business service (behind the API) and then sends back the

corresponding response:

POST /student?name=pavithra HTTP/1.1

Host: server.com

Content-Type: application/x-www-form-urlencoded

Authorization: OAuth realm="simple",

oauth_consumer_key="dsdsddDdsdsds ",

oauth_token="dsdsdsdsdweoio998s",

oauth_signature_method="HMAC-SHA1",

oauth_timestamp="1474343201",

oauth_nonce="rerwerweJHKjhkdsjhkhj",

oauth_signature="bYT5CMsGcbgUdFHObYMEfcx6bsw%3D"

Let’s examine the definition of the oauth_timestamp and oauth_nonce parameters:

•	 oauth_timestamp: A positive integer that is the number of seconds

counted since January 1, 1970, 00:00:00 GMT.

•	 oauth_nonce: A randomly generated unique value added to the

request by the client. It’s used to avoid replay attacks. The resource

server must reject any request with a nonce that it has seen before.

�Demystifying oauth_signature
Out of the three phases we discussed in the section “The Token Dance,” oauth_

signature is required in two: the temporary-credential request phase and the token-

credential request phase. In addition, oauth_signature is required in all client requests

to the protected resource or to the secured API. The OAuth specification defines three

kinds of signature methods: PLAINTEXT, HMAC-SHA1, and RSA-SHA1. As explained earlier,

PLAINTEXT means no signature, HMAC-SHA1 means a shared key has been used for the

signature, and RSA-SHA1 means an RSA private key has been used for the signature.

Appendix B OAuth 1.0

340

The OAuth specification doesn’t mandate any signature method. The resource server

can enforce a signature method, based on its requirements. The challenge in each

signature method is how to generate the base string to sign. Let’s start with the simplest

case, PLAINTEXT (see Table B-1).

Table B-1.  Signature Calculation with the PLAINTEXT Signature Method

Phase oauth_signature

Temporary-credential request phase consumer_secret&

Token-credential request phase consumer_secret&oauth_token_secret

With the PLAINTEXT oauth_signature_method, the oauth_signature is the encoded

consumer secret followed by &. For example, if the consumer secret associated with the

corresponding consumer_key is Ddedkljlj878dskjds, the value of oauth_signature

is Ddedkljlj878dskjds&. In this case, TLS must be used to protect the secret key going

over the wire. This calculation of oauth_signature with PLAINTEXT is valid only for the

temporary-credential request phase. For the token-credential request phase, oauth_

signature also includes the shared token secret after the encoded consumer secret.

For example, if the consumer secret associated with the corresponding consumer_key is

Ddedkljlj878dskjds and the value of the shared token secret is ekhjkhkhrure, then the

value of oauth_signature is Ddedkljlj878dskjds&ekhjkhkhrure. The shared token secret

in this case is the oauth_token_secret returned in the temporary-credential request phase.

For both HMAC-SHA1 and RSA-SHA1 signature methods, first you need to generate a

base string for signing, which we discuss in the next section.

�Generating the Base String in Temporary-Credential
Request Phase
Let’s start with the temporary-credential request phase. The following is a sample OAuth

request generated in this phase:

POST /oauth/request-token HTTP/1.1

Host: server.com

Authorization: OAuth realm="simple",

oauth_consumer_key="dsdsddDdsdsds",

oauth_signature_method="HMAC-SHA1",

Appendix B OAuth 1.0

341

oauth_callback="http://client.net/client_cb",

oauth_signature="dsDSdsdsdsdddsdsdsd"

Step 1: Get the uppercase value of the HTTP request header (GET or POST):

POST

Step 2: Get the value of the scheme and the HTTP host header in lowercase. If the

port has a nondefault value, it needs to be included as well:

http://server.com

Step 3: Get the path and the query components in the request resource URI:

/oauth/request-token

Step 4: Get all the OAuth protocol parameters, excluding oauth_signature,

concatenated by & (no line breaks):

oauth_consumer_key="dsdsddDdsdsds"&

oauth_signature_method="HMAC-SHA1"&

oauth_callback="http://client.net/client_cb"

Step 5: Concatenate the outputs from steps 2 and 3:

http://server.com/oauth/request-token

Step 6: Concatenate the output from steps 5 and 4 with & (no line breaks):

http://server.com/oauth/access-token&

oauth_consumer_key="dsdsddDdsdsds"&

oauth_signature_method="HMAC-SHA1"&

oauth_callback="http://client.net/client_cb"

Step 7: URL-encode the output from step 6 (no line breaks):

http%3A%2F%2Fserver.com%2Foauth%2F

access-token&%26%20oauth_consumer_key%3D%22dsdsddDdsdsds%22%26

oauth_signature_method%3D%22HMAC-SHA1%22%26

oauth_callback%3D%22http%3A%2F%2Fclient.net%2Fclient_cb%22

Appendix B OAuth 1.0

342

Step 8: Concatenate the output from steps 1 and 7 with &. This produces the final

base string to calculate the oauth_signature (no line breaks):

POST&http%3A%2F%2Fserver.com%2Foauth%2F

access-token&%26%20oauth_consumer_key%3D%22dsdsddDdsdsds%22%26

oauth_signature_method%3D%22HMAC-SHA1%22%26

oauth_callback%3D%22http%3A%2F%2Fclient.net%2Fclient_cb%22

�Generating the Base String in Token Credential
Request Phase
Now, let’s see how to calculate the base string in the token-credential request phase. The

following is a sample OAuth request generated in this phase:

POST /access_token HTTP/1.1

Host: server.com

Authorization: OAuth realm="simple",

oauth_consumer_key="dsdsddDdsdsds",

oauth_token="bhgdjgdds",

oauth_signature_method="HMAC-SHA1",

oauth_verifier="dsdsdsds",

oauth_signature="fdfsdfdfdfdfsfffdf"

Step 1: Get the uppercase value of the HTTP request header (GET or POST):

POST

Step 2: Get the value of the scheme and the HTTP host header in lowercase. If the

port has a nondefault value, it needs to be included as well:

http://server.com

Step 3: Get the path and the query components in the request resource URI:

/oauth/access-token

Step 4: Get all the OAuth protocol parameters, excluding oauth_signature,

concatenated by & (no line breaks):

oauth_consumer_key="dsdsddDdsdsds"&

oauth_token="bhgdjgdds"&

Appendix B OAuth 1.0

343

oauth_signature_method="HMAC-SHA1"&

oauth_verifier="dsdsdsds"

Step 5: Concatenate the output from steps 2 and 3:

http://server.com/oauth/access-token

Step 6: Concatenate the output from steps 5 and 4 with & (no line breaks):

http://server.com/oauth/request-token&

oauth_consumer_key="dsdsddDdsdsds"&

oauth_token="bhgdjgdds"&

oauth_signature_method="HMAC-SHA1"&

oauth_verifier="dsdsdsds"

Step 7: URL-encode the output from step 6 (no line breaks):

http%3A%2F%2Fserver.com%2Foauth%2F

request-token%26oauth_consumer_key%3D%22dsdsddDdsdsds%22%26

oauth_token%3D%22%20bhgdjgdds%22%26

oauth_signature_method%3D%22HMAC-SHA1%22%26

oauth_verifier%3D%22%20dsdsdsds%22%20

Step 8: Concatenate the output from steps 1 and 7 with &. This produces the final

base string to calculate the oauth_signature (no line breaks):

POST&http%3A%2F%2Fserver.com%2Foauth%2F

request-token%26oauth_consumer_key%3D%22dsdsddDdsdsds%22%26

oauth_token%3D%22%20bhgdjgdds%22%26

oauth_signature_method%3D%22HMAC-SHA1%22%26

oauth_verifier%3D%22%20dsdsdsds%22%20

�Building the Signature
Once you’ve calculated the base string for each phase, the next step is to build the signature

based on the signature method. For the temporary-credential request phase, if you use

HMAC-SHA1 as the signature method, the signature is derived in the following manner:

oauth_signature= HMAC-SHA1(key, text)

oauth_signature= HMAC-SHA1(consumer_secret&, base-string)

Appendix B OAuth 1.0

344

For the token-credential request phase, the key also includes the shared token

secret after the consumer secret. For example, if the consumer secret associated with

the corresponding consumer_key is Ddedkljlj878dskjds and the value of the shared

token secret is ekhjkhkhrure, then the value of the key is Ddedkljlj878dskjds&ekhjkh

khrure. The shared token secret in this case is the oauth_token_secret returned in the

temporary-credential request phase:

oauth_signature= HMAC-SHA1(consumer_secret&oauth_token_secret, base-string)

In either phase, if you want to use RSA-SHA1 as the oauth_signature_method, the

OAuth client must register an RSA public key corresponding to its consumer key, at the

resource server. For RSA-SHA1, you calculate the signature in the following manner,

regardless of the phase:

oauth_signature= RSA-SHA1(RSA private key, base-string)

�Generating the Base String in an API Call
In addition to the token dance, you also need to build the oauth_signature in each

business API invocation. In the following sample request, the OAuth client invokes the

student API with a query parameter. Let’s see how to calculate the base string in this case:

POST /student?name=pavithra HTTP/1.1

Host: server.com

Content-Type: application/x-www-form-urlencoded

Authorization: OAuth realm="simple",

oauth_consumer_key="dsdsddDdsdsds ",

oauth_token="dsdsdsdsdweoio998s",

oauth_signature_method="HMAC-SHA1",

oauth_timestamp="1474343201",

oauth_nonce="rerwerweJHKjhkdsjhkhj",

oauth_signature="bYT5CMsGcbgUdFHObYMEfcx6bsw%3D"

Step 1: Get the uppercase value of the HTTP request header (GET or POST):

POST

Appendix B OAuth 1.0

345

Step 2: Get the value of the scheme and the HTTP host header in lowercase. If the

port has a nondefault value, it needs to be included as well:

http://server.com

Step 3: Get the path and the query components in the request resource URI:

/student?name=pavithra

Step 4: Get all the OAuth protocol parameters, excluding oauth_signature,

concatenated by & (no line breaks):

oauth_consumer_key="dsdsddDdsdsds"&

oauth_token="dsdsdsdsdweoio998s"&

oauth_signature_method="HMAC-SHA1"&

oauth_timestamp="1474343201"&

oauth_nonce="rerwerweJHKjhkdsjhkhj"

Step 5: Concatenate the output from steps 2 and 3 (no line breaks):

http://server.com/student?name=pavithra

Step 6: Concatenate the output from steps 5 and 4 with & (no line breaks):

http://server.com/student?name=pavithra&

oauth_consumer_key="dsdsddDdsdsds"&

oauth_token="dsdsdsdsdweoio998s"&

oauth_signature_method="HMAC-SHA1"&

oauth_timestamp="1474343201"&

oauth_nonce="rerwerweJHKjhkdsjhkhj"

Step 7: URL-encode the output from step 6 (no line breaks):

http%3A%2F%2Fserver.com%2Fstudent%3Fname%3Dpavithra%26

oauth_consumer_key%3D%22dsdsddDdsdsds%20%22%26

oauth_token%3D%22dsdsdsdsdweoio998s%22%26

oauth_signature_method%3D%22HMAC-SHA1%22%26

oauth_timestamp%3D%221474343201%22%26

oauth_nonce%3D%22rerwerweJHKjhkdsjhkhj%22

Appendix B OAuth 1.0

346

Step 8: Concatenate the output from steps 1 and 7 with &. This produces the final

base string to calculate the oauth_signature (no line breaks):

POST& http%3A%2F%2Fserver.com%2Fstudent%3Fname%3Dpavithra%26

oauth_consumer_key%3D%22dsdsddDdsdsds%20%22%26

oauth_token%3D%22dsdsdsdsdweoio998s%22%26

oauth_signature_method%3D%22HMAC-SHA1%22%26

oauth_timestamp%3D%221474343201%22%26

oauth_nonce%3D%22rerwerweJHKjhkdsjhkhj%22

Once you have the base string, the OAuth signature is calculated in the following

manner with the HMAC-SHA1 and RSA-SHA1 signature methods. The value of oauth_

token_secret is from the token-credential request phase:

oauth_signature= HMAC-SHA1(consumer_secret&oauth_token_secret,

base-string)

oauth_signature= RSA-SHA1(RSA private key, base-string)

�Three-Legged OAuth vs. Two-Legged OAuth
The OAuth flow discussed so far involves three parties: the resource owner, the client,

and the resource server. The client accesses a resource hosted in the resource server on

behalf of the resource owner. This is the most common pattern in OAuth, and it’s also

known as three-legged OAuth (three parties involved). In two-legged OAuth, you have

only two parties: the client becomes the resource owner. There is no access delegation in

two-legged OAuth.

Note  Two-legged OAuth never made it to the IETF. The initial draft specification
is available at http://oauth.googlecode.com/svn/spec/ext/consumer_
request/1.0/drafts/2/spec.html.

If the same student API discussed earlier is secured with two-legged OAuth, the

request from the client looks like the following. The value of oauth_token is an empty

string. There is no token dance in two-legged OAuth. You only need oauth_consumer_

key and consumer_secret. The HMAC-SHA1 signature is generated using consumer_

secret as the key:

Appendix B OAuth 1.0

http://oauth.googlecode.com/svn/spec/ext/consumer_request/1.0/drafts/2/spec.html
http://oauth.googlecode.com/svn/spec/ext/consumer_request/1.0/drafts/2/spec.html

347

POST /student?name=pavithra HTTP/1.1

Host: server.com

Content-Type: application/x-www-form-urlencoded

Authorization: OAuth realm="simple",

oauth_consumer_key="dsdsddDdsdsds ",

oauth_token="",

oauth_signature_method="HMAC-SHA1",

oauth_timestamp="1474343201",

oauth_nonce="rerwerweJHKjhkdsjhkhj",

oauth_signature="bYT5CMsGcbgUdFHObYMEfcx6bsw%3D"

Note I n both HTTP Basic authentication and two-legged OAuth, the resource
owner acts as the client and directly invokes the API. With HTTP Basic
authentication, you pass the credentials over the wire; this must be over TLS. With
two-legged OAuth, you never pass the consumer_secret over the wire, so it
need not be on TLS. 

HTTP Digest authentication looks very similar to two-legged OAuth. In both cases,
you never pass credentials over the wire. The difference is that HTTP Digest
authentication authenticates the user, whereas two-legged OAuth authenticates
the application on behalf of the resource owner. A given resource owner can own
multiple applications, and each application can have its own consumer key and
consumer secret.

�OAuth WRAP
In November 2009, a new draft specification for access delegation called Web Resource

Authorization Profiles (WRAP) was proposed, built on top of the OAuth 1.0 model.

WRAP was later deprecated in favor of OAuth 2.0.

Appendix B OAuth 1.0

348

Note  The initial draft of the WRAP profile submitted to the IETF is available at
http://tools.ietf.org/html/draft-hardt-oauth-01.

Unlike OAuth 1.0, WRAP didn’t depend on a signature scheme. At a high level, the

user experience was the same as in OAuth 1.0, but WRAP introduced a new component

into the access delegation flow: the authorization server. Unlike in OAuth 1.0, all the

communications with respect to obtaining a token now happens between the client

and the authorization server (not with the resource server). The client first redirects the

user to the authorization server with its consumer key and the callback URL. Once the

user authorized the access rights to the client, the user is redirected back to the callback

URL with a verification code. Then the client has to do a direct call to the access token

endpoint of the authorization server with the verification code to get the access token.

Thereafter, the client only needs to include the access token in all API calls (all API calls

must be on TLS):

https://friendfeed-api.com/v2/feed/home?wrap_access_token=dsdsdrwerwr

Note I n November 2009, Facebook joined the Open Web Foundation, together
with Microsoft, Google, Yahoo!, and many others, with a commitment to support
open standards for web authentication. Keeping that promise, in December 2009,
Facebook added OAuth WRAP support to FriendFeed, which it had acquired a few
months earlier.

OAuth WRAP was one of the initial steps toward OAuth 2.0. WRAP introduced two

types of profiles for acquiring an access token: autonomous client profiles and user

delegation profiles. In autonomous client profiles, the client becomes the resource

owner, or the client is acting on behalf of itself. In other words, the resource owner is

the one who accesses the resource. This is equivalent to the two-legged OAuth model

in OAuth 1.0. In user delegation profiles, the client acts on behalf of the resource

owner. OAuth 1.0 didn’t have this profile concept, and was limited to a single flow. This

extensibility introduced by OAuth WRAP later became a key part of OAuth 2.0.

Appendix B OAuth 1.0

http://tools.ietf.org/html/draft-hardt-oauth-01

349

�Client Account and Password Profile
The OAuth WRAP specification introduced two autonomous client profiles: the Client

Account and Password Profile and the Assertion Profile. The Client Account and

Password Profile uses the client’s or the resource owner’s credentials at the authorization

server to obtain an access token. This pattern is mostly used for server-to-server

authentication where no end user is involved. The following cURL command does

an HTTP POST to the WRAP token endpoint of the authorization server, with three

attributes: wrap_name is the username, wrap_password is the password corresponding

to the username, and wrap_scope is the expected level of access required by the client.

wrap_scope is an optional parameter:

\> curl –v –k –X POST

 –H "Content-Type: application/x-www-form-urlencoded;charset=UTF-8"

 –d "wrap_name=admin&

 wrap_password=admin&

 wrap_scope=read_profile"

 https://authorization-server/wrap/token

This returns wrap_access_token, wrap_refresh_token, and wrap_access_token_

expires_in parameters. wrap_access_token_expires_in is an optional parameter that

indicates the lifetime of wrap_access_token in seconds. When wrap_access_token

expires, wrap_refresh_token can be used to get a new access token. OAuth WRAP

introduced for the first time this token-refreshing functionality. The access token refresh

request only needs wrap_refresh_token as a parameter, as shown next, and it returns

a new wrap_access_token. It doesn’t return a new wrap_refresh_token. The same

wrap_refresh_token obtained in the first access token request can be used to refresh

subsequent access tokens:

\> curl –v –k –X POST

 –H "Content-Type: application/x-www-form-urlencoded;charset=UTF-8"

 –d "wrap_refresh_token=Xkjk78iuiuh876jhhkwkjhewew"

 https://authorization-server/wrap/token

Appendix B OAuth 1.0

350

�Assertion Profile
The Assertion Profile is another profile introduced by OAuth WRAP that falls under

the autonomous client profiles. This assumes that the client somehow obtains an

assertion—say, for example, a SAML token—and uses it to acquire a wrap_access_token.

The following example cURL command does an HTTP POST to the WRAP token

endpoint of the authorization server, with three attributes: wrap_assertion_format is the

type of the assertion included in the request in a way known to the authorization server,

wrap_assertion is the encoded assertion, and wrap_scope is the expected level of access

required by the client. wrap_scope is an optional parameter:

\> curl –v –k –X POST

 –H "Content-Type: application/x-www-form-urlencoded;charset=UTF-8"

 –d "wrap_assertion_format=saml20&

 wrap_assertion=encoded-assertion&

 wrap_scope=read_profile"

 https://authorization-server/wrap/token

The response is the same as in the Client Account and Password Profile, except that

in the Assertion Profile, there is no wrap_refresh_token.

�Username and Password Profile
The WRAP user delegation profiles introduced three profiles: the Username and

Password Profile, the Web App Profile, and the Rich App Profile. The Username

and Password Profile is mostly recommended for installed trusted applications.

The application is the client, and the end user or the resource owner must provide

their username and password to the application. Then the application exchanges

the username and password for an access token and stores the access token in the

application.

The following cURL command does an HTTP POST to the WRAP token endpoint

of the authorization server, with four attributes: wrap_client_id is an identifier for the

application, wrap_username is the username of the end user, wrap_password is the

Appendix B OAuth 1.0

351

password corresponding to the username, and wrap_scope is the expected level of

access required by the client (wrap_scope is an optional parameter):

\> curl –v –k –X POST

 –H "Content-Type: application/x-www-form-urlencoded;charset=UTF-8"

 –d "wrap_client_id=app1&

 wrap_username=admin&

 wrap_password=admin&

 wrap_scope=read_profile"

 https://authorization-server/wrap/token

This returns wrap_access_token and wrap_access_token_expires_in parameters.

wrap_access_token_expires_in is an optional parameter that indicates the lifetime

of wrap_access_token in seconds. If the authorization server detects any malicious

access patterns, then instead of sending wrap_access_token to the client application,

it returns a wrap_verification_url. It’s the responsibility of the client application to load

this URL into the user’s browser or advise them to visit that URL. Once the user has

completed that step, the user must indicate to the client application that verification is

complete. Then the client application can initiate the token request once again. Instead

of sending a verification URL, the authorization server can also enforce a CAPTCHA

verification through the client application. There the authorization server sends back

a wrap_captcha_url, which points to the location where the client application can load

the CAPTCHA. Once it’s loaded and has the response from the end user, the client

application must POST it back to the authorization server along with the token request:

\> curl –v –k –X POST

 –H "Content-Type: application/x-www-form-urlencoded;charset=UTF-8"

 –d "wrap_captcha_url=url-encoded-captcha-url&

 wrap_captch_solution-solution&

 wrap_client_id=app1&

 wrap_username=admin&

 wrap_password=admin&

 wrap_scope=read_profile"

 https://authorization-server/wrap/token

Appendix B OAuth 1.0

352

�Web App Profile
The Web App Profile defined under the WRAP user delegation profiles is mostly

recommended for web applications, where the web application must access a resource

belonging to an end user on his or her behalf. The web application follows a two-step

process to acquire an access token: it gets a verification code from the authorization

server and then exchanges that for an access token. The end user must initiate the

first step by visiting the client web application. Then the user is redirected to the

authorization server. The following example shows how the user is redirected to the

authorization server with appropriate WRAP parameters:

https://authorization-server/wrap/authorize?

 wrap_client_id=0rhQErXIX49svVYoXJGt0DWBuFca&

 wrap_callback=https%3A%2F%2Fmycallback&

 wrap_client_state=client-state&

 wrap_scope=read_profile

wrap_client_id is an identifier for the client web application. wrap_callback is the

URL where the user is redirected after a successful authentication at the authorization

server. Both wrap_client_state and wrap_scope are optional parameters. Any value in

wrap_client_state must be returned back to the client web application. After the end

user’s approval, a wrap_verification_code and other related parameters are returned to

the callback URL associated with the client web application as query parameters.

The next step is to exchange this verification code to an access token:

\> curl –v –k –X POST

 –H "Content-Type: application/x-www-form-urlencoded;charset=UTF-8"

 –d "wrap_client_id=0rhQErXIX49svVYoXJGt0DWBuFca &

 wrap_client_secret=weqeKJHjhkhkihjk&

 wrap_verification_code=dsadkjljljrrer&

 wrap_callback=https://mycallback"

 https://authorization-server/wrap/token

This cURL command does an HTTP POST to the WRAP token endpoint of the

authorization server, with four attributes: wrap_client_id is an identifier for the

application, wrap_client_secret is the password corresponding to wrap_client_id,

wrap_verification_code is the verification code returned in the previous step, and

wrap_callback is the callback URL where the verification code was sent. This returns

Appendix B OAuth 1.0

353

wrap_access_token, wrap_refresh_token, and wrap_access_token_expires_in

parameters. wrap_access_token_expires_in is an optional parameter that indicates

the lifetime of wrap_access_token in seconds. When wrap_access_token expires,

wrap_refresh_token can be used to get a new access token.

�Rich App Profile
The Rich App Profile defined under the WRAP user delegation profiles is most

commonly used in scenarios where the OAuth client application is an installed

application that can also work with a browser. Hybrid mobile apps are the best

example. The protocol flow is very similar to that of the Web App Profile. The rich client

application follows a two-step process to acquire an access token: it gets a verification

code from the authorization server and then exchanges that for an access token. The

end user must initiate the first step by visiting the rich client application. Then the

application spawns a browser and redirects the user to the authorization server:

https://authorization-server/wrap/authorize?

 wrap_client_id=0rhQErXIX49svVYoXJGt0DWBuFca&

 wrap_callback=https%3A%2F%2Fmycallback&

 wrap_client_state=client-state&

 wrap_scope=read_profile

wrap_client_id is an identifier for the rich client application. wrap_callback is the

URL where the user is redirected after a successful authentication at the authorization

server. Both wrap_client_state and wrap_scope are optional parameters. Any value in

wrap_client_state is returned back to the callback URL. After the end user’s approval, a

wrap_verification_code is returned to the rich client application.

The next step is to exchange this verification code for an access token:

\> curl –v –k –X POST

 –H "Content-Type: application/x-www-form-urlencoded;charset=UTF-8"

 –d "wrap_client_id=0rhQErXIX49svVYoXJGt0DWBuFca&

 wrap_verification_code=dsadkjljljrrer&

 wrap_callback=https://mycallback"

 https://authorization-server/wrap/token

Appendix B OAuth 1.0

354

This cURL command does an HTTP POST to the WRAP token endpoint of the

authorization server, with three attributes: wrap_client_id is an identifier for the

application, wrap_verification_code is the verification code returned in the previous

step, and wrap_callback is the callback URL where the verification code was sent. This

returns wrap_access_token, wrap_refresh_token, and wrap_access_token_expires_in

parameters. wrap_access_token_expires_in is an optional parameter that indicates

the lifetime of wrap_access_token in seconds. When wrap_access_token expires,

wrap_refresh_token can be used to get a new access token. Unlike in the Web App Profile,

the Rich App Profile doesn’t need to send wrap_client_secret in the access token request.

�Accessing a WRAP-Protected API
All the previous profiles talk about how to get an access token. Once you have the access

token, the rest of the flow is independent of the WRAP profile. The following cURL

command shows how to access a WRAP-protected resource or an API, and it must

happen over TLS:

\> curl –H "Authorization: WRAP

 access_token=cac93e1d29e45bf6d84073dbfb460"

 https://localhost:8080/recipe

�WRAP to OAuth 2.0
OAuth WRAP was able to sort out many of the limitations and drawbacks found in OAuth

1.0: primarily, extensibility. OAuth 1.0 is a concrete protocol for identity delegation that

has its roots in Flickr Authentication, Google AuthSub, and Yahoo! BBAuth. Another

key difference between OAuth 1.0 and WRAP is the dependency on signatures: OAuth

WRAP eliminated the need for signatures and mandated using TLS for all types of

communications.

OAuth 2.0 is a big step forward from OAuth WRAP. It further improved the

extensibility features introduced in OAuth WRAP and introduced two major extension

points: grant types and token types.

Appendix B OAuth 1.0

355
© Prabath Siriwardena 2020
P. Siriwardena, Advanced API Security, https://doi.org/10.1007/978-1-4842-2050-4_18

APPENDIX C

How Transport Layer
Security Works?
After the exposure of certain secret operations carried out by the National Security

Agency (NSA) of the United States, by its former contractor, Edward Snowden, most of the

governments, corporations, and even individuals started to think more about security.

Edward Snowden is a traitor for some while a whistle-blower for others. The Washington

Post newspaper published details from a document revealed by Edward Snowden

on October 30, 2013. This was a disturbing news for two Silicon Valley tech giants,

Google and Yahoo!. This highly confidential document revealed how NSA intercepted

communication links between data centers of Google and Yahoo! to carry out a massive

surveillance on its hundreds of millions of users. Further, according to the document,

NSA sends millions of records every day from the Yahoo! and Google internal networks

to data warehouses at the agency’s headquarters in Fort Meade, Md. After that, field

collectors process these data records to extract out metadata, which indicate who sent or

received emails and when, as well as the content such as text, audio, and video.1

How is this possible? How come an intruder (in this case, it’s the government)

intercepts the communication channels between two data centers and gets access to

the data? Even though Google used a secured communication channel from the user’s

browser to the Google front-end servers, from there onward, and between the data

centers, the communication was in cleartext. As a response to this incident, Google

started securing all its communication links between data centers with encryption.

Transport Layer Security (TLS) plays a major role in securing data transferred over

1�NSA infiltrates links to Yahoo, Google data centers worldwide, Snowden documents say,
www.washingtonpost.com/world/national-security/nsa-infiltrates-links-to-yahoo-
google-data-centers-worldwide-snowden-documents-say/2013/10/30/e51d661e-4166-11e3-
8b74-d89d714ca4dd_story.html

http://www.washingtonpost.com/world/national-security/nsa-infiltrates-links-to-yahoo-google-data-centers-worldwide-snowden-documents-say/2013/10/30/e51d661e-4166-11e3-8b74-d89d714ca4dd_story.html
http://www.washingtonpost.com/world/national-security/nsa-infiltrates-links-to-yahoo-google-data-centers-worldwide-snowden-documents-say/2013/10/30/e51d661e-4166-11e3-8b74-d89d714ca4dd_story.html
http://www.washingtonpost.com/world/national-security/nsa-infiltrates-links-to-yahoo-google-data-centers-worldwide-snowden-documents-say/2013/10/30/e51d661e-4166-11e3-8b74-d89d714ca4dd_story.html

356

communication links. In fact, Google is one of the first out of all tech giants to realize

the value of TLS. Google made TLS the default setting in Gmail in January 2010 to

secure all Gmail communications and four months later introduced an encrypted

search service located at https://encrypted.google.com. In October 2011, Google

further enhanced its encrypted search and made google.com available on HTTPS, and

all Google search queries and the result pages were delivered over HTTPS. HTTPS is in

fact the HTTP over TLS.

In addition to establishing a protected communication channel between the client

and the server, TLS also allows both the parties to identify each other. In the most

popular form of TLS, which everyone knows and uses in day-to-day life on the Internet,

only the server authenticates to the client—this is also known as one-way TLS. In other

words, the client can identify exactly the server it communicates with. This is done by

observing and matching the server’s certificate with the server URL, which the user hits

on the browser. As we proceed in this appendix, we will further discuss how exactly this

is done in detail. In contrast to one-way TLS, mutual authentication identifies both the

parties—the client and the server. The client knows exactly the server it communicates

with, and the server knows who the client is.

�The Evolution of Transport Layer Security (TLS)
TLS has its roots in SSL (Secure Sockets Layer). Netscape Communications (then Mosaic

Communications) introduced SSL in 1994 to build a secured channel between the

Netscape browser and the web server it connects to. This was an important need at that

time, just prior to the dot-com bubble.2 The SSL 1.0 specification was never released

to the public, because it was heavily criticized for the weak cryptographic algorithms

that were used. In February 1995, Netscape released the SSL 2.0 specification with

many improvements.3 Most of its design was done by Kipp Hickman, with much less

participation from the public community. Even though it had its own vulnerabilities, it

2�Dot-com bubble refers to the rapid rise in equity markets fueled by investments in Internet-
based companies. During the dot-com bubble of the late 1990s, the value of equity markets grew
exponentially, with the technology-dominated Nasdaq index rising from under 1,000 to 5,000
between 1995 and 2000.

3�Adam Shostack, the well-known author of The New School of Information Security, provides an
overview of SSL 2.0 at www.homeport.org/~adam/ssl.html

Appendix C How Transport Layer Security Works?

https://encrypted.google.com
http://google.com
http://www.homeport.org/~adam/ssl.html

357

earned the trust and respect of the public as a strong protocol. The very first deployment

of SSL 2.0 was in Netscape Navigator 1.1. In late 1995, Ian Goldberg and David Wagner

discovered a vulnerability in the random number generation logic in SSL 2.0.4 Mostly

due to US export regulations, Netscape had to weaken its encryption scheme to use

40-bit long keys. This limited all possible key combinations to a million million, which

were tried by a set of researchers in 30 hours with many spare CPU cycles; they were able

to recover the encrypted data.

SSL 2.0 was completely under the control of Netscape and was developed with

no or minimal inputs from others. This encouraged many other vendors including

Microsoft to come up with their own security implementations. As a result, Microsoft

developed its own variant of SSL in 1995, called Private Communication Technology

(PCT).5 PCT fixed many security vulnerabilities uncovered in SSL 2.0 and simplified

the SSL handshake with fewer round trips required in establishing a connection.

Among the differences between SSL 2.0 and PCT, the non-encrypted operational mode

introduced in PCT was quite prominent. With non-encrypted operational mode, PCT

only provides authentication—no data encryption. As discussed before, due to the

US export regulation laws, SSL 2.0 had to use weak cryptographic keys for encryption.

Even though the regulations did not mandate to use weak cryptographic keys for

authentication, SSL 2.0 used the same weak cryptographic keys used for encryption, also

for authentication. PCT fixed this limitation in SSL 2.0 by introducing a separate strong

key for authentication.

Netscape released SSL 3.0 in 1996 having Paul Kocher as the key architect. This was

after an attempt to introduce SSL 2.1 as a fix for the SSL 2.0. But it never went pass the

draft stage, and Netscape decided it was the time to design everything from ground up.

In fact, Netscape hired Paul Kocher to work with its own Phil Karlton and Allan Freier to

build SSL 3.0 from scratch. SSL 3.0 introduced a new specification language as well as a

new record type and a new data encoding technique, which made it incompatible with

the SSL 2.0. It fixed issues in its predecessor, introduced due to MD5 hashing. The new

version used a combination of the MD5 and SHA-1 algorithms to build a hybrid hash.

SSL 3.0 was the most stable of all. Even some of the issues found in Microsoft PCT were

fixed in SSL 3.0, and it further added a set of new features that were not in PCT. In 1996,

4�Ian Goldberg and David Wagner, “Randomness and the Netscape Browser: How Secure Is the
World Wide Web?” www.cs.berkeley.edu/~daw/papers/ddj-netscape.html, January 1996.

5�Microsoft proposed PCT to the IETF in October 1995: http://tools.ietf.org/html/draft-
benaloh-pct-00. This was later superseded by SSL 3.0 and TLS.

Appendix C How Transport Layer Security Works?

http://www.cs.berkeley.edu/~daw/papers/ddj-netscape.html
http://tools.ietf.org/html/draft-benaloh-pct-00
http://tools.ietf.org/html/draft-benaloh-pct-00

358

Microsoft came up with a new proposal to merge SSL 3.0 and its own SSL variant PCT 2.0

to build a new standard called Secure Transport Layer Protocol (STLP).6

Due to the interest shown by many vendors in solving the same problem in

different ways, in 1996 the IETF initiated the Transport Layer Security working group

to standardize all vendor-specific implementations. All the major vendors, including

Netscape and Microsoft, met under the chairmanship of Bruce Schneier in a series of

IETF meetings to decide the future of TLS. TLS 1.0 (RFC 2246) was the result; it was

released by the IETF in January 1999. The differences between TLS 1.0 and SSL 3.0 aren’t

dramatic, but they’re significant enough that TLS 1.0 and SSL 3.0 don’t interoperate. TLS

1.0 was quite stable and stayed unchanged for seven years, until 2006. In April 2006, RFC

4346 introduced TLS 1.1, which made few major changes to TLS 1.0. Two years later, RFC

5246 introduced TLS 1.2, and in August 2018, almost 10 years after TLS 1.2, RFC 8446

introduced TLS 1.3.

�Transmission Control Protocol (TCP)
Understanding how Transmission Control Protocol (TCP) works provides a good

background to understand how TLS works. TCP is a layer of abstraction of a reliable

network running over an unreliable channel. IP (Internet Protocol) provides host-to-

host routing and addressing. TCP/IP is collectively known as the Internet Protocol Suite,

which was initially proposed by Vint Cerf and Bob Kahn.7 The original proposal became

the RFC 675 under the network working group of IETF in December 1974. After a series

of refinements, the version 4 of this specification was published as two RFCs: RFC 791

and RFC 793. The former talks about the Internet Protocol (IP), while the latter is about

the Transmission Control Protocol (TCP).

The TCP/IP protocol suite presents a four-layered model for network communication

as shown in Figure C-1. Each layer has its own responsibilities and communicates with

each other using a well-defined interface. For example, the Hypertext Transfer Protocol

(HTTP) is an application layer protocol, which is transport layer protocol agnostic. HTTP

does not care how the packets are transported from one host to another. It can be over

TCP or UDP (User Datagram Protocol), which are defined at the transport layer. But

6�Microsoft Strawman Proposal for a Secure Transport Layer Protocol (“STLP”), http://cseweb.
ucsd.edu/~bsy/stlp.ps

7�A Protocol for Packet Network Intercommunication, www.cs.princeton.edu/courses/archive/
fall06/cos561/papers/cerf74.pdf

Appendix C How Transport Layer Security Works?

http://cseweb.ucsd.edu/~bsy/stlp.ps
http://cseweb.ucsd.edu/~bsy/stlp.ps
http://www.cs.princeton.edu/courses/archive/fall06/cos561/papers/cerf74.pdf
http://www.cs.princeton.edu/courses/archive/fall06/cos561/papers/cerf74.pdf

359

in practice, most of the HTTP traffic goes over TCP. This is mostly due to the inherent

characteristics of TCP. During the data transmission, TCP takes care of retransmission of

lost data, ordered delivery of packets, congestion control and avoidance, data integrity,

and many more. Almost all the HTTP traffic is benefitted from these characteristics of

TCP. Neither the TCP nor the UDP takes care of how the Internet layer operates. The

Internet Protocol (IP) functions at the Internet layer. Its responsibility is to provide a

hardware-independent addressing scheme to the messages pass-through. Finally, it

becomes the responsibility of the network access layer to transport the messages via the

physical network. The network access layer interacts directly with the physical network

and provides an addressing scheme to identify each device the messages pass through.

The Ethernet protocol operates at the network access layer.

Our discussion from here onward focuses only on TCP, which operates at the

transport layer. Any TCP connection bootstraps with a three-way handshake. In

other words, TCP is a connection-oriented protocol, and the client has to establish a

connection with the server prior to the data transmission. Before the data transmission

begins between the client and the server, each party has to exchange with each other

a set of parameters. These parameters include the starting packet sequence numbers

and many other connection-specific parameters. The client initiates the TCP three-

way handshake by sending a TCP packet to the server. This packet is known as the SYN

packet. SYN is a flag set in the TCP packet. The SYN packet includes a randomly picked

sequence number by the client, the source (client) port number, destination (server)

port number, and many other fields as shown in Figure C-2. If you look closely at

Figure C-2, you will notice that the source (client) IP address and the destination (server)

IP address are outside the TCP packet and are included as part of the IP packet. As

discussed before, IP operates at the network layer, and the IP addresses are defined to be

hardware independent. Another important field here that requires our attention is the

TCP Segment Len field. This field indicates the length of the application data this packet

carries. For all the messages sent during the TCP three-way handshake, the value of the

TCP Segment Len field will be zero, as no exchange has started yet.

Appendix C How Transport Layer Security Works?

360

Once the server receives the initial message from the client, it too picks its own

random sequence number and passes it back in the response to the client. This packet

is known as the SYN ACK packet. The two main characteristics of TCP, error control

(recover from lost packets) and ordered delivery, require each TCP packet to be

identified uniquely. The exchange of sequence numbers between the client and the

server helps to keep that promise. Once the packets are numbered, both sides of the

communication channel know which packets get lost during the transmission and

duplicate packets and how to order a set of packets, which are delivered in a random

order. Figure C-3 shows a sample TCP SYN ACK packet captured by Wireshark. This

includes the source (server) port, destination (client) port, server sequence number, and

Figure C-2.  TCP SYN packet captured by Wireshark, which is an open source
packet analyzer

Figure C-1.  TCP/IP stack: protocol layer

Appendix C How Transport Layer Security Works?

361

the acknowledgement number. Adding one to the client sequence number found in the

SYN packet derives the acknowledgement number. Since we are still in the three-way

handshake, the value of the TCP Segment Len field is zero.

Figure C-3.  TCP SYN ACK packet captured by Wireshark

Figure C-4.  TCP ACK packet captured by Wireshark

To complete the handshake, the client will once again send a TCP packet to the

server to acknowledge the SYN ACK packet it received from the server. This is known

as the ACK packet. Figure C-4 shows a sample TCP ACK packet captured by Wireshark.

This includes the source (client) port, destination (server) port, initial client sequence

number + 1 as the new sequence number, and the acknowledgement number.

Adding one to the server sequence number found in the SYN ACK packet derives the

Appendix C How Transport Layer Security Works?

362

acknowledgement number. Since we are still in the three-way handshake, the value of

the TCP Segment Len field is zero.

Once the handshake is complete, the application data transmission between the

client and the server can begin. The client sends the application data packets to the

server immediately after it sends the ACK packet. The transport layer gets the application

data from the application layer. Figure C-5 is a captured message from Wireshark,

which shows the TCP packet corresponding to an HTTP GET request to download an

image. The HTTP, which operates at the application layer, takes care of building the

HTTP message with all relevant headers and passes it to the TCP at the transport layer.

Whatever the data it receives from the application layer, the TCP encapsulates with its

own headers and passes it through the rest of the layers in the TCP/IP stack. How TCP

derives the sequence number for the first TCP packet, which carries the application data,

is explained under the side bar “How does TCP sequence numbering work?” If you look

closely at the value of the TCP Segment Len field in Figure C-5, you will notice that it is

now set to a nonzero value.

Figure C-5.  TCP packet corresponding to an HTTP GET request to download an
image captured by Wireshark

Appendix C How Transport Layer Security Works?

363

Once the application data transmission between the client and the server begins,

the other should acknowledge each data packet sent by either party. As a response to the

first TCP packet sent by the client, which carries application data, the server will respond

with a TCP ACK packet, as shown in Figure C-6. How TCP derives the sequence number

and the acknowledgement number for this TCP ACK packet is explained under the side

bar “How does TCP sequence numbering work?”

Figure C-6.  TCP ACK from the server to the client captured by Wireshark

HOW DOES TCP SEQUENCE NUMBERING WORK?

Whenever either of the two parties at either end of the communication channel wants to send

a message to the other, it sends a packet with the ACK flag as an acknowledgement to the

last received sequence number from that party. If you look at the very first SYN packet

(Figure C-2) sent from the client to the server, it does not have an ACK flag, because prior to

the SYN packet, the client didn’t receive anything from the server. From there onward, every

packet sent either by the server or the client has the ACK flag and the Acknowledgement
Number field in the TCP packet.

In the SYN ACK packet (Figure C-3) from the server to the client, the value of the

Acknowledgement Number is derived by adding one to the sequence number of the last

packet received by the server (from the client). In other words, the Acknowledgement Number
field here, from the server to the client, represents the sequence number of the next expected

packet. Also if you closely look at the TCP Segment Len field in each TCP packet of the

three-way handshake, the value of it is set to zero. Even though we mentioned before that the

Appendix C How Transport Layer Security Works?

364

Acknowledgement Number field in SYN ACK is derived by adding one to the sequence number

found in the SYN packet from the client, precisely what happens is the server adds 1 + the

value of the TCP Segment Len field from the client to the current sequence number to derive the

value of the Acknowledgement Number field. The same applies to the ACK packet (Figure C-4)

sent from the client to the server. Adding 1 + the value of the TCP Segment Len field from

the server to the sequence number of the last packet received by the client (from the server)

derives the Acknowledgement Number field there. The value of the sequence number in the

ACK packet is the same as the value of the Acknowledgement Number in the SYN ACK packet

from the server.

The client starts sending real application data only after the three-way handshake is

completed. Figure C-5 shows the first TCP packet, which carries application data from the

client to the server. If you look at the sequence number in that TCP packet, it’s the same from

the previous packet (ACK packet as shown in Figure C-4) sent from the client to the server.

After client sends the ACK packet to the server, it receives nothing from the server. That

implies the server still expects a packet with a sequence number, which matches the value of

the Acknowledgement Number in the last packet it sent to the client. If you look at Figure C-5,

which is the first TCP packet with application data, the value of the TCP Segment Len field

is set to a nonzero value, and as per Figure C-6, which is the ACK to the first packet with the

application data sent by the client, the value of Acknowledgement Number is set correctly to

the value of the TCP Segment Len field + 1 + the current sequence number from the client.

�How Transport Layer Security (TLS) Works
Transport Layer Security (TLS) protocol can be divided into two phases: the handshake

and the data transfer. During the handshake phase, both the client and the server get

to know about each other’s cryptographic capabilities and establish cryptographic keys

to protect the data transfer. The data transfer happens at the end of the handshake.

The data is broken down into a set of records, protected with the cryptographic keys

established in the first phase, and transferred between the client and the server.

Figure C-7 shows how TLS fits in between other transport and application layer

protocols. TLS was initially designed to work on top of a reliable transport protocol like

TCP (Transmission Control Protocol). However, TLS is also being used with unreliable

transport layer protocols like UDP (User Datagram Protocol). The RFC 6347 defines the

Appendix C How Transport Layer Security Works?

365

Datagram Transport Layer Security (DTLS) 1.2, which is the TLS equivalent in the UDP

world. The DTLS protocol is based on the TLS protocol and provides equivalent security

guarantees. This chapter only focuses on TLS.

Figure C-7.  TLS protocol layers

�Transport Layer Security (TLS) Handshake
Similar to the three-way TCP handshake (see Figure C-8), TLS too introduces its

own handshake. The TLS handshake includes three subprotocols: the Handshake

protocol, the Change Cipher Spec protocol, and the Alert protocol (see Figure C-7).

The Handshake protocol is responsible for building an agreement between the

client and the server on cryptographic keys to be used to protect the application

data. Both the client and the server use the Change Cipher Spec protocol to indicate

to each other that it’s going to switch to a cryptographically secured channel for

further communication. The Alert protocol is responsible for generating alerts and

communicating them to the parties involved in the TLS connection. For example,

if the server certificate the client receives during the TLS handshake is a revoked one,

the client generates the certificate_revoked alert.

Appendix C How Transport Layer Security Works?

366

The TLS handshake happens after the TCP handshake. For the TCP or for the

transport layer, everything in the TLS handshake is just application data. Once the

TCP handshake is completed, the TLS layer will initiate the TLS handshake. The Client

Hello is the first message in the TLS handshake from the client to the server. As you can

see in Figure C-9, the sequence number of the TCP packet is 1, as expected, since this

is the very first TCP packet, which carries application data. The Client Hello message

includes the highest version of the TLS protocol the client supports, a random number

generated by the client, cipher suites and the compression algorithm supported by the

client, and an optional session identifier (see Figure C-9). The session identifier is used

to resume an existing session rather than doing the handshake again from scratch. The

TLS handshake is very CPU intensive, but with the support for session resumption, this

overhead can be minimized.

Figure C-8.  TLS handshake

Appendix C How Transport Layer Security Works?

367

Note  TLS session resumption has a direct impact on performance. The master
key generation process in the TLS handshake is extremely costly. With session
resumption, the same master secret from the previous session is reused. It has
been proven through several academic studies that the performance enhancement
resulting from TLS session resumption can be up to 20%. Session resumption also
has a cost, which is mostly handled by servers. Each server has to maintain the
TLS state of all its clients and also to address high-availability aspects; it needs to
replicate this state across different nodes in the cluster.

Figure C-9.  TLS Client Hello captured by Wireshark

Appendix C How Transport Layer Security Works?

368

One key field in the Client Hello message is the Cipher Suites. Figure C-12 expands

the Cipher Suites field of Figure C-10. The Cipher Suites field in the Client Hello message

carries all the cryptographic algorithms supported by the client. The message captured

in Figure C-12 shows the cryptographic capabilities of the Firefox browser version

43.0.2 (64-bit). A given cipher suite defines the server authentication algorithm, the key

exchange algorithm, the bulk encryption algorithm, and the message integrity algorithm.

For example, in TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 cipher suite, RSA

is the authentication algorithm, ECDHE is the key exchange algorithm, AES_128_GCM

is the bulk encryption algorithm, and SHA256 is the message integrity algorithm. Any

cipher suite that starts with TLS is only supported by the TLS protocols. As we proceed in

this appendix, we will learn the purpose of each algorithm.

Once the server receives the Client Hello message from the client, it responds back

with the Server Hello message. The Server Hello is the first message from the server to

the client. To be precise, the Server Hello is the first message from the server to the client,

which is generated at the TLS layer. Prior to that, the TCP layer of the server responds

back to the client with a TCP ACK message (see Figure C-11). All TLS layer messages are

Figure C-10.  TLS Client Hello expanded version captured by Wireshark

Appendix C How Transport Layer Security Works?

369

treated as application data by the TCP layer, and each message will be acknowledged

either by the client or the server. From here onward, we will not talk about TCP ACK

messages.

Figure C-11.  TCP ACK message from the server to the client

The Server Hello message includes the highest version of TLS protocol that both

the client and the server can support, a random number generated by the server, the

strongest cipher suite, and the compression algorithm that both the client and the

server can support (see Figure C-13). Both parties use the random numbers generated

by each other (the client and the server) independently to generate the master secret.

This master secret will be used later to derive encryption keys. To generate a session

identifier, the server has several options. If no session identifier is included in the Client

Hello message, the server generates a new one. Even the client includes one; but if the

server can’t resume that session, then once again a new identifier is generated. If the

server is capable of resuming the TLS session corresponding to the session identifier

specified in the Client Hello message, then the server includes it in the Server Hello

message. The server may also decide not to include any session identifiers for any new

sessions that it’s not willing to resume in the future.

Appendix C How Transport Layer Security Works?

370

Note I n the history of TLS, several attacks have been reported against the TLS
handshake. Cipher suite rollback and version rollback are a couple of them. This
could be a result of a man-in-the-middle attack, where the attacker intercepts
the TLS handshake and downgrades either the cipher suite or the TLS version,
or both. The problem was fixed from SSL 3.0 onward with the introduction of the
Change Cipher Spec message. This requires both parties to share the hash of all
TLS handshake messages up to the Change Cipher Spec message exactly as each
party read them. Each has to confirm that they read the messages from each other
in the same way.

Figure C-12.  Cipher suites supported by the TLS client captured by Wireshark

Appendix C How Transport Layer Security Works?

371

After the Server Hello message is sent to the client, the server sends its public

certificate, along with other certificates, up to the root certificate authority (CA) in the

certificate chain (see Figure C-14). The client must validate these certificates to accept

the identity of the server. It uses the public key from the server certificate to encrypt

the premaster secret key later. The premaster key is a shared secret between the client

and the server to generate the master secret. If the public key in the server certificate

isn’t capable of encrypting the premaster secret key, then the TLS protocol mandates

another extra step, known as the Server Key Exchange (see Figure C-14). During this step,

the server has to create a new key and send it to the client. Later the client will use it to

encrypt its premaster secret key.

If the server demands TLS mutual authentication, then the next step is for the

server to request the client certificate. The client certificate request message from the

server includes a list of certificate authorities trusted by the server and the type of the

certificate. After the last two optional steps, the server sends the Server Hello Done

message to the client (see Figure C-14). This is an empty message that only indicates to

the client that the server has completed its initial phase in the handshake.

If the server demands the client certificate, now the client sends its public certificate

along with all other certificates in the chain up to the root certificate authority (CA)

required to validate the client certificate. Next is the Client Key Exchange message,

which includes the TLS protocol version as well as the premaster secret key

Figure C-13.  TLS Server Hello captured by Wireshark

Appendix C How Transport Layer Security Works?

372

(see Figure C-15). The TLS protocol version must be the same as specified in the initial

Client Hello message. This is a guard against any rollback attacks to force the server to

use an unsecured TLS/SSL version. The premaster secret key included in the message

should be encrypted with the server’s public key obtained from the server certificate or

with the key passed in the Server Key Exchange message.

The Certificate Verify message is the next in line. This is optional and is needed

only if the server demands client authentication. The client has to sign the entire set of

TLS handshake messages that have taken place so far with its private key and send the

signature to the server. The server validates the signature using the client’s public key,

which was shared in a previous step. The signature generation process varies depending

on which signing algorithm picked during the handshake. If RSA is being used, then the

hash of all the previous handshake messages is calculated with both MD5 and SHA-1.

Then the concatenated hash is encrypted using the client’s private key. If the signing

algorithm picked during the handshake is DSS (Digital Signature Standard), only a SHA-

1 hash is used, and it’s encrypted using the client’s private key.

Figure C-14.  Certificate, Server Key Exchange, and Server Hello Done captured by
Wireshark

Appendix C How Transport Layer Security Works?

373

At this point, the client and the server have exchanged all the required materials

to generate the master secret. The master secret is generated using the client random

number, the server random number, and the premaster secret. The client now sends the

Change Cipher Spec message to the server to indicate that all messages generated from

here onward are protected with the keys already established (see Figure C-15).

The Finished message is the last one from the client to the server. It’s the hash of the

complete message flow in the TLS handshake encrypted by the already established keys.

Once the server receives the Finished message from the client, it responds back with

the Change Cipher Spec message (see Figure C-16). This indicates to the client that the

server is ready to start communicating with the secret keys already established. Finally,

the server will send the Finished message to the client. This is similar to the Finished

message generated by the client and includes the hash of the complete message flow

in the handshake encrypted by the generated cryptographic keys. This completes the

TLS handshake, and here onward both the client and the server can send data over an

encrypted channel.

Figure C-15.  Client Key Exchange and Change Cipher Spec captured by
Wireshark

Appendix C How Transport Layer Security Works?

374

TLS VS. HTTPS

HTTP operates at the application layer of the TCP/IP stack, while the TLS operates between the

application layer and the transport layer (see Figure C-1). The agent (e.g., the browser) acting

as the HTTP client should also act as the TLS client to initiate the TLS handshake, by opening

a connection to a specific port (default 443) at the server. Only after the TLS handshake is

completed, the agent should initiate the application data exchange. All HTTP data are sent

as TLS application data. HTTP over TLS was initially defined by the RFC 2818, under the IETF

network working group. The RFC 2818 further defines a URI format for HTTP over TLS traffic,

to differentiate it from plain HTTP traffic. HTTP over TLS is differentiated from HTTP URIs by

using the https protocol identifier in place of the http protocol identifier. The RFC 2818 was

later updated by two RFCs: RFC 5785 and RFC 7230.

�Application Data Transfer
After the TLS handshake phase is complete, sensitive application data can be exchanged

between the client and the server using the TLS Record protocol (Figure C-18). This

protocol is responsible for breaking all outgoing messages into blocks and assembling all

incoming messages. Each outgoing block is compressed; Message Authentication Code

(MAC) is calculated and encrypted. Each incoming block is decrypted, decompressed,

Figure C-16.  Server Change Cipher Spec captured by Wireshark

Appendix C How Transport Layer Security Works?

375

and MAC verified. Figure C-17 summarizes all the key messages exchanged in the TLS

handshake.

Figure C-17.  TLS handshake

During the TLS handshake, each side derives a master secret using the client-

generated random key, the server-generated random key, and the client-generated

premaster secret. All these three keys are shared between each other during the TLS

handshake. The master secret is never transferred over the wire. Using the master

secret, each side generates four more keys. The client uses the first key to calculate the

MAC for each outgoing message. The server uses the same key to validate the MAC of

all incoming messages from the client. The server uses the second key to calculate the

MAC for each outgoing message. The client uses the same key to validate the MAC of all

incoming messages from the server. The client uses the third key to encrypt outgoing

messages, and the server uses the same key to decrypt all incoming messages. The server

uses the fourth key to encrypt outgoing messages, and the client uses the same key to

decrypt all incoming messages.

Appendix C How Transport Layer Security Works?

376

REVERSE-ENGINEERING TLS

For each session, TLS creates a master secret and derives four keys from it for hashing and

encryption. What if the private key of the server leaked out? If all the data transferred between

clients and the server is being recorded, can it be decrypted? Yes, it can. If the TLS handshake

is recorded, you can decrypt the premaster secret if you know the server’s private key. Then,

using the client-generated random number and the server-generated random number, you can

derive the master secret—and then the other four keys. Using these keys, you can decrypt the

entire set of recorded conversations.

Using perfect forward secrecy (PFS) can prevent this. With PFS, just as in TLS, a session key

is generated, but the session key can’t later be derived back from the server’s master secret.

This eliminates the risk of losing the confidentiality of the data if a private key leaks out. To

add support for PFS, both the server and the client participating in the TLS handshake should

support a cipher suite with Ephemeral Diffie-Hellman (DHE) or the elliptic-curve variant

(ECDHE).

Note  Google enabled forward secrecy for Gmail, Google+, and Search in
November 2011.

Figure C-18.  Server Change Cipher Spec captured by Wireshark

Appendix C How Transport Layer Security Works?

377
© Prabath Siriwardena 2020
P. Siriwardena, Advanced API Security, https://doi.org/10.1007/978-1-4842-2050-4_19

APPENDIX D

UMA Evolution
User-Managed Access (UMA, pronounced “OOH-mah”) is an OAuth 2.0 profile. OAuth

2.0 decouples the resource server from the authorization server. UMA takes one step

forward: it lets you control a distributed set of resource servers from a centralized

authorization server. It also enables the resource owner to define a set of policies at

the authorization server, which can be evaluated at the time a client is granted access

to a protected resource. This eliminates the need for the resource owner’s presence to

approve access requests from arbitrary clients or requesting parties. The authorization

server can make the decision based on the policies defined by the resource owner.

�ProtectServe
UMA has its roots in the Kantara Initiative. The Kantara Initiative is a nonprofit

professional association focused on building digital identity management standards.

The first meeting of the UMA working group was held on August 6, 2009. There were two

driving forces behind UMA: ProtectServe and vendor relationship management (VRM).

ProtectServe is a standard that was heavily influenced by VRM. The goal of ProtectServe

was to build a permission-based data-sharing model that was simple, secure, efficient,

RESTful, powerful, OAuth-based, and system identity agnostic. ProtectServe defines four

parties in its protocol flow: the user, the authorization manager, the service provider, and

the consumer.

The service provider (SP) manages the user’s resources and exposes them to the

rest of the world. The authorization manager (AM) keeps track of all service providers

associated with a given user. The user is the resource owner, who introduces all the

service providers (or the applications he or she works with) to the authorization manager

and builds access control policies that define the basis on which to share resources with

others. The consumer consumes the user’s resources via the SP. Before consuming any

services or resources, the consumer must request an access grant from the AM.

378

The requested access grant is evaluated against the policies defined on the associated

service by its owner, at the AM. ProtectServe uses OAuth 1.0 (see Appendix B) as the

protocol for access delegation.

The steps in the ProtectServe protocol flow are as follows:

Step 1: The user or the resource owner introduces the SP to the AM (see Figure D-1).

	 1.	 The user provides the metadata URL of the AM to the SP.

	 2.	 The SP talks to the metadata endpoint of the AM and gets details

related to the consumer key issuer, the request token issuer,

the access token issuer, and the associated policies (OAuth 1.0

specification defines consumer key, request token, and access

token).

	 3.	 The SP initiates an OAuth 1.0 flow by requesting an OAuth request

token from the request token issuer (which could be the same

AM).

	 4.	 The AM generates an authorization request token and sends it

back to the SP along with other parameters defined under OAuth

1.0 specification.

	 5.	 The SP redirects the user to the AM with a token reference along

with other parameters defined under OAuth 1.0 specification, to

get it authorized.

	 6.	 Once authorized by the user, the authorization manager returns

the authorized request token along with other parameters defined

under OAuth 1.0 specification to the SP.

	 7.	 To complete the OAuth 1.0 flow, the SP exchanges the authorized

request token for an access token, with the AM.

	 8.	 Once the OAuth flow is completed, the SP talks to the AM

endpoint (which is secured with OAuth 1.0) to get an SP handle.

	 9.	 The AM validates the OAuth signature and, once verified, issues

an SP handle to the SP. An SP handle is a unique identifier

generated by the AM to identify the SP in future communications.

That completes the initial step in the ProtectServe protocol flow.

Appendix D UMA Evolution

379

Note T he service provider handle is a key that uniquely identifies the service
provider at the authorization manager. This information is publicly available. A
given service provider can have multiple service provider handles—one for each
associated authorization manager.

Step 2: Each consumer who wants to get access to protected resources must be

provisioned with corresponding consumer keys:

	 1.	 The consumer tries to access a protected resource hosted in an SP.

	 2.	 The SP detects the unauthenticated access attempt and returns an

HTTP 401 status code with required details to get the SP metadata

(see Figure D-2).

Figure D-1.  The service provider bootstraps trust with the authorization manager

Appendix D UMA Evolution

380

	 3.	 With the details in the 401 response, the consumer talks to the SP’s

metadata endpoint (see Figure D-2).

	 4.	 The SP metadata endpoint returns the SP handle (which is

registered at the AM) and the corresponding AM endpoint.

	 5.	 The consumer talks to the AM endpoint to obtain a consumer key

and a consumer secret (see Figure D-3).

	 6.	 The consumer requests an access token from the AM, with its

consumer key and the SP handle. The request must be digitally

signed by the corresponding consumer secret.

	 7.	 The AM validates the parameters in the access token request and

issues an access token and a token secret to the consumer.

Figure D-2.  The consumer is rejected by the service provider with a 401 response.
R1 represents a resource

Appendix D UMA Evolution

381

Figure D-3.  The consumer gets an access token from the authorization manager

Step 3: A consumer with a valid access token can access the protected resource

hosted in the SP (see Figure D-4):

	 1.	 The consumer tries to access the protected resource in the SP with

its access token, signed with the access token secret.

	 2.	 The SP talks to the AM and gets the secret key corresponding

to the consumer’s access token. If required, the SP can store it

locally.

	 3.	 The SP validates the signature of the request using the access

token secret.

	 4.	 If the signature is valid, the SP talks to the policy decision

endpoint of the AM, passing the access token and the SP handle.

The request must be digitally signed by the corresponding access

token secret.

	 5.	 The AM first validates the request, next evaluates the

corresponding policies set by the user or the resource owner, and

then sends the decision to the SP.

	 6.	 If the decision is a Deny, the location of the terms is returned to

the SP, and the SP returns the location to the consumer with a 403

HTTP status code.

Appendix D UMA Evolution

382

	 7.	 The consumer requests the terms by talking to the terms endpoint

hosted in the AM. The request includes the consumer key, signed

with the consumer secret.

	 8.	 When the consumer receives the terms, it evaluates them and

talks to the AM with additional information to prove its legitimacy.

This request includes the consumer key and is signed with the

consumer secret.

	 9.	 The AM evaluates the additional information and claims provided

by the consumer. If those meet the required criteria, the AM

creates an agreement resource and sends the location of the

agreement resource to the consumer.

	 10.	 If this requires the user’s consent, the AM must send it for the

user’s approval before sending the location of the agreement

resource.

	 11.	 Once the consumer receives the location of the agreement

resource, it can talk to the corresponding endpoint hosted in the

AM and get the agreement resource to see the status.

Figure D-4.  The consumer accesses a resource hosted at the service provider with
valid OAuth credentials, but with limited privileges

Appendix D UMA Evolution

383

 Step 4: Once approved by the authorization manager, the consumer can access

the protected resource with its access token and the corresponding secret key (see

Figure D-5):

	 1.	 The consumer tries to access the protected resource at the SP with

its access token, signed with the access token secret.

	 2.	 The SP talks to the AM and gets the secret key corresponding

to the consumer’s access token. If required, the SP can store it

locally.

	 3.	 The SP validates the signature of the request using the access

token secret.

	 4.	 If the signature is valid, the SP talks to the policy decision

endpoint of the AM, passing the access token and SP handle,

signed with the corresponding access token secret.

	 5.	 The AM first validates the request, next evaluates the

corresponding policies set by the user or the resource owner, and

then sends the decision to the SP.

	 6.	 If the decision is an Allow from the AM, the SP returns the

requested resource to the corresponding consumer.

	 7.	 The SP can cache the decision from the AM. Subsequent calls by

the same consumer for the resource can utilize the cache instead

of going to the AM.

Figure D-5.  The consumer accesses a resource hosted at the SP with valid OAuth
credentials and with required privileges

Appendix D UMA Evolution

384

�UMA and OAuth
Over the years, ProtectServe evolved into UMA. ProtectServe used OAuth 1.0 to

protect its APIs, and UMA moved from OAuth 1.0 to OAuth WRAP to OAuth 2.0. The

UMA specification, which was developed under the Kantara Initiative for almost

three years, was submitted to the IETF OAuth working group on July 9, 2011, as a draft

recommendation for a user-managed data access protocol.

�UMA 1.0 Architecture
The UMA architecture has five main components (see Figure D-6): the resource owner

(analogous to the user in ProtectServe), the resource server (analogous to the service

provider in ProtectServe), the authorization server (analogous to the authorization

manager in ProtectServe), the client (analogous to the consumer in ProtectServe), and

the requesting party. These five components interact with each other during the three

phases as defined in the UMA core specification.

Figure D-6.  UMA high-level architecture

Appendix D UMA Evolution

385

�UMA 1.0 Phases
The first phase of UMA1 is to protect the resource. The resource owner initiates this

phase by introducing the resource servers associated with him or her to a centralized

authorization server.

The client initiates the second phase when it wants to access a protected

resource. The client talks to the authorization server and obtains the required level

of authorization to access the protected resource that’s hosted in the resource server.

Finally, in the third phase, the client directly accesses the protected resource.

�UMA Phase 1: Protecting a Resource
Resources are owned by the resource owner and may be at different resource servers.

Let’s look at an example. Suppose my photos are with Flickr, my calendar is with Google,

and my friend list is with Facebook. How can I protect all these resources, which are

distributed across different resource servers, with a centralized authorization server?

The first step is to introduce the centralized authorization server to Flickr, Google,

and Facebook—to all the resource servers. The resource owner must do this. The

resource owner can log in to each resource server and provide the authorization server

configuration endpoint to each of them. The authorization server must provide its

configuration data in JSON format.

The following is a set of sample configuration data related to the authorization

server. The data in this JSON format should be understood by any of the resource servers

that support UMA. This section digs into the details of each configuration element as you

proceed:

{

 "version":"1.0",

 "issuer":"https://auth.server.com",

 "pat_profiles_supported":["bearer"],

 "aat_profiles_supported":["bearer"],

 "rpt_profiles_supported":["bearer"],

 "pat_grant_types_supported":["authorization_code"],

 "aat_grant_types_supported":["authorization_code"],

1�https://docs.kantarainitiative.org/uma/rec-uma-core.html

Appendix D UMA Evolution

https://docs.kantarainitiative.org/uma/rec-uma-core.html

386

 "claim_profiles_supported":["openid"],

 "dynamic_client_endpoint":"https://auth.server.com/dyn_client_reg_uri",

 "token_endpoint":"https://auth.server.com/token_uri",

 "user_endpoint":"https://auth.server.com/user_uri",

 �"resource_set_registration_endpoint":"https://auth.server.com/rs/rsrc_uri",

 "introspection_endpoint":"https://auth.server.com/rs/status_uri",

 "permission_registration_endpoint":"https://auth.server.com/perm_uri",

 "rpt_endpoint":"https://auth.server.com/rpt",

 "authorization_request_endpoint":"https://auth.server.com/authorize"

}

Once the resource server is introduced to the authorization server via its

configuration data endpoint, the resource server can talk to the dynamic client

registration (RFC 7591) endpoint (dynamic_client_endpoint) to register it at the

authorization server.

The client registration endpoint exposed by the authorization server can be secured

or not. It can be secured with OAuth, HTTP Basic authentication, Mutual TLS, or any

other security protocol as desired by the authorization server. Even if the Dynamic Client

Registration profile (RFC 7591) doesn’t enforce any authentication protocols over the

registration endpoint, it must be secured with TLS. If the authorization server decides

to allow the endpoint to be public and let anyone be registered, it can do so. To register

a client, you have to pass all its metadata to the registration endpoint. Here’s a sample

JSON message for client registration:

POST /register HTTP/1.1

Content-Type: application/json

Accept: application/json

Host: authz.server.com

{

 �"redirect_uris":["https://client.org/callback","https://client.org/

callback2"],

 "token_endpoint_auth_method":"client_secret_basic",

 "grant_types": ["authorization_code" , "implicit"],

 "response_types": ["code" , "token"],

}

Appendix D UMA Evolution

387

A successful client registration results in the following JSON response, which

includes the client identifier and the client secret to be used by the resource server:

HTTP/1.1 200 OK

Content-Type: application/json

Cache-Control: no-store

Pragma: no-cache

{

 "client_id":"iuyiSgfgfhffgfh",

 "client_secret": "hkjhkiiu89hknhkjhuyjhk",

 "client_id_issued_at":2343276600,

 "client_secret_expires_at":2503286900,

 �"redirect_uris":["https://client.org/callback","https://client.org/

callback2"],

 "grant_types": "authorization_code",

 "token_endpoint_auth_method": "client_secret_basic",

}

Note  You aren’t required to use the Dynamic Client Registration API. Resource
servers can use any method they prefer to register at the authorization server. The
registration at the authorization server is one-time operation, not per resource
owner. If a given resource server has already been registered with a given
authorization server, then it doesn’t need to register again at the authorization
server when the same authorization server is introduced by a different resource
owner.

Once the initial resource server registration process is complete, the next step in

the first phase is for the resource server to obtain a Protection API token (PAT) to access

the Protection API exposed by the authorization server. (You learn more on PAT in

the section “Protection API,” later in the appendix.) PAT is issued per resource server,

per resource owner. In other words, each resource owner must authorize a PAT so the

resource server can use it to protect resources with the centralized authorization server.

The authorization server configuration file declares the types of PATs it supports. In the

previous example, the authorization server supports OAuth 2.0 bearer tokens:

Appendix D UMA Evolution

388

pat_profiles_supported":["bearer"]

In addition to the PAT token type, the authorization server configuration file

also declares the way to obtain the PAT. In this case, it should be via the OAuth 2.0

authorization code grant type. The resource server must initiate an OAuth flow with the

authorization code grant type to obtain the PAT in bearer format:

"pat_grant_types_supported":["authorization_code"]

Note T he scope of the PAT token must be http://docs.
kantarainitiative.org/uma/scopes/prot.json. This must be included in
the scope value of the authorization code grant request.

The following is a sample authorization code grant request to obtain a PAT:

GET /authorize?response_type=code

 &client_id=dsdasDdsdsdsdsdas

 &state=xyz

 &redirect_uri=https://flickr.com/callback

 &scope=http://docs.kantarainitiative.org/uma/scopes/prot.json

HTTP/1.1 Host: auth.server.com

Once the resource server gets the PAT, it can be used to access the Resource Set

Registration API exposed by the authorization server, to register a set of resources that

needs to be protected by the given authorization server. The endpoint of the Resource

Set Registration API is defined under the authorization server configuration file (you

learn more about the Resource Set Registration API in the section “Protection API”):

"resource_set_registration_endpoint":"https://auth.server.com/rs/rsrc_uri",

�UMA Phase 2: Getting Authorization
According to the UMA specification, phase 2 begins after a failed access attempt by the

client. The client tries to access a resource hosted in the resource server and gets an

HTTP 403 status code (see Figure D-7). In addition to the 403 response, the resource

server includes the endpoint (as_uri) of the corresponding authorization server where

the client can obtain a requesting party token (RPT):

Appendix D UMA Evolution

http://docs.kantarainitiative.org/uma/scopes/prot.json
http://docs.kantarainitiative.org/uma/scopes/prot.json

389

HTTP/1.1 403 Forbidden

WWW-Authenticate: UMA realm="my-realm",

 host_id="photos.flickr.com",

 as_uri=https://auth.server.com

According to UMA, to access a protected resource, the client must present a valid

RPT. (You learn more about RPT in the section “Authorization API.") The RPT endpoint

that must be included in the 403 response is declared in the authorization server

configuration file:

"rpt_endpoint":"https://auth.server.com/rpt”

Once rejected by the resource server with a 403, the client has to talk to the RPT

endpoint of the authorization server. To do so, the client must have an Authorization

API token (AAT). To get an AAT, the client must be registered at the corresponding

authorization server. The client can use the OAuth Dynamic Client Registration API or

any other way it prefers to register. After it’s registered with the authorization server, the

client gets a client key and a client secret. The requesting party can be a different entity

from the client. For example, the client can be a mobile application or a web application,

whereas the requesting party could be a human user who uses either the mobile

application or the web application. The ultimate goal is for the requesting party to access

an API owned by a resource owner, hosted in a resource server, via a client application.

To achieve this, the requesting party should get an RPT from an authorization server

trusted by the resource server. To get an RPT, the requesting party should first get an

AAT via the client application. To get an AAT, the client must follow an OAuth grant

type supported by the authorization server to issue AATs. That is declared in the

authorization server’s configuration file. In this case, the authorization server supports

the authorization code grant type to issue AATs:

"aat_grant_types_supported":["authorization_code"]

Appendix D UMA Evolution

390

Once the client is registered at the authorization server, to get an AAT on behalf

of the requesting party, it must initiate the OAuth authorization code grant type flow,

with the scope: http://docs.kantarainitiative.org/uma/scopes/authz.json. The

following is a sample authorization code grant request to obtain an AAT:

GET /authorize?response_type=code

 &client_id=dsdasDdsdsdsdsdas

 &state=xyz

 &redirect_uri=https://flickr.com/callback

 &scope=http://docs.kantarainitiative.org/uma/scopes/authz.json

HTTP/1.1 Host: auth.server.com

Note  You aren’t required to use the Dynamic Client Registration API. The
client can use any method it prefers to register at the authorization server. The
registration at the authorization server is one-time operation and not per resource
server or per requesting party. If a given client has already been registered with a
given authorization server, then it doesn’t need to register again when a different
requesting party uses the same authorization server. The AAT is per client per
requesting party per authorization server and is independent from the resource
server.

Once you have the AAT, upon the 403 response from the resource server, the client

can talk to the authorization server’s RPT endpoint and get the corresponding RPT (see

Figure D-8). To get an RPT, the client must authenticate with the AAT. In the following

Figure D-7.  The resource server rejects any request without an RPT

Appendix D UMA Evolution

http://docs.kantarainitiative.org/uma/scopes/authz.json

391

example, the AAT is used in the HTTP Authorization header as an OAuth 2.0 bearer

token:

POST /rpt HTTP/1.1

Host: as.example.com

Authorization: Bearer GghgjhsuyuE8heweds

Note T he RPT endpoint is defined under the rpt_endpoint attribute of the
authorization server’s configuration.

The following shows a sample response from the RPT endpoint of the authorization

server. If this is the first issuance of the RPT, it doesn’t have any authorization rights

attached. It can only be used as a temporary token to get the “real” RPT:

HTTP/1.1 201 Created

Content-Type: application/json

{

 "rpt": "dsdsJKhkiuiuoiwewjewkej"

}

When the client is in possession of the initial RPT, it can once again try to access

the resource. In this case, the RPT goes as an OAuth 2.0 bearer token in the HTTP

Authorization header. Now the resource server extracts the RPT from the resource

request and talks to the Introspection API exposed by the authorization server.

The Introspection API can tell whether the RPT is valid and, if it is, the permissions

associated with it. In this case, because you’re still using the initial RPT, there are no

permissions associated with it, even though it’s a valid token.

Note T he Introspection API exposed by the authorization server is OAuth 2.0
protected. The resource server must present a valid PAT to access it. The PAT is
another bearer token that goes in the HTTP Authorization header.

If the RPT doesn’t have enough permission to access the resource, the resource

server talks to the Client Requested Permission Registration API exposed by the

authorization server and registers the required set of permissions to access the desired

Appendix D UMA Evolution

392

resource. When permission registration is successfully completed, the authorization

server returns a permission ticket identifier.

Note T he Client Requested Permission Registration endpoint is defined under the
permission_registration_endpoint attribute in the authorization server’s
configuration. This endpoint, which is part of the UMA Protection API, is secured
with OAuth 2.0. The resource server must present a valid PAT to access the API.

The following is a sample request to the permission registration endpoint of the

authorization server. It must include a unique resource_set_id corresponding to the

requested resource and the required set of scopes associated with it:

POST /perm_uri HTTP/1.1

Content-Type: application/json

Host: auth.server.com

{

 "resource_set_id": "1122wqwq23398100",

 "scopes": [

 "http://photoz.flickr.com/dev/actions/view",

 "http://photoz.flickr.com/dev/actions/all"

]

}

In response to this request, the authorization server generates a permission ticket:

HTTP/1.1 201 Created

Content-Type: application/json

{"ticket": "016f88989-f9b9-11e0-bd6f-0cc66c6004de"}

When the permission ticket is created at the authorization server, the resource server

sends the following response to the client:

HTTP/1.1 403 Forbidden

WWW-Authenticate: UMA realm="my-realm",

 host_id=" photos.flickr.com ",

 as_uri="https://auth.server.com"

 error="insufficient_scope"

Appendix D UMA Evolution

393

{"ticket": "016f88989-f9b9-11e0-bd6f-0cc66c6004de"}

Now the client has to get a new RPT with the required set of permissions. Unlike in

the previous case, this time the RPT request also includes the ticket attribute from the

previous 403 response:

POST /rpt HTTP/1.1

Host: as.example.com

Authorization: Bearer GghgjhsuyuE8heweds

{

 "rpt": "dsdsJKhkiuiuoiwewjewkej",

 "ticket": "016f88989-f9b9-11e0-bd6f-0cc66c6004de"

}

Note T he RPT endpoint of the authorization server is secured with OAuth 2.0. To
access the RPT endpoint, the client must use an AAT in the HTTP Authorization
header as the OAuth bearer token.

At this point, prior to issuing the new RPT to satisfy the requested set of permissions,

the authorization server evaluates the authorization policies set by the resource owner

against the client and the requesting party. If the authorization server needs more

information regarding the requesting party while evaluating the policies, it can interact

directly with the requesting party to gather the required details. Also, if it needs further

approval by the resource owner, the authorization server must notify the resource owner

and wait for a response. In any of these cases, once the authorization server decides to

associate permissions with the RPT, it creates a new RPT and sends it to the client:

HTTP/1.1 201 Created

Content-Type: application/json

{"rpt": "dsdJhkjhkhk879dshkjhkj877979"}

Appendix D UMA Evolution

394

�UMA Phase 3: Accessing the Protected Resource
At the end of phase 2, the client got access to a valid RPT with the required set of

permissions. Now the client can use it to access the protected resource. The resource

server again uses the Introspection API exposed by the authorization server to check

the validity of the RPT. If the token is valid and has the required set of permissions, the

corresponding resource is returned to the client.

�UMA APIs
UMA defines two main APIs: the Protection API and the Authorization API (see Figure D-9).

The Protection API sits between the resource server and the authorization server, and

the Authorization API sits between the client and the authorization server. Both APIs are

secured with OAuth 2.0. To access the Protection API, the resource server must present a

PAT as the bearer token; and to access the Authorization API, the client must present an

AAT as the bearer token.

Figure D-8.  The client gets an authorized RPT from the authorization server

Appendix D UMA Evolution

395

�Protection API
The Protection API is the interface exposed to the resource server by the authorization

server. It consists of three subelements: the OAuth Resource Set Registration endpoint,2

the Client Requested Permission Registration endpoint, and the OAuth Token

Introspection (RFC 7662) endpoint.

These three APIs that fall under the Protection API address different concerns.

The resource server uses the Resource Set Registration API to publish semantics and

discovery properties of its resources to the authorization server. The resource server does

this in an ongoing manner. Whenever it finds a resource set that needs to be protected by

an external authorization server, it talks to the corresponding Resource Set Registration

endpoint to register new resources. This action can be initiated by the resource server

itself or by the resource owner. The following example shows a JSON request to the

Resource Set Registration API of the authorization server. The value of the name attribute

should be human-readable text, and the optional icon_uri can point to any image that

represents this resource set. The scope array should list all the scope values required to

2�The latest draft of the OAuth Resource Set Registration specification is available at
https://tools.ietf.org/html/draft-hardjono-oauth-resource-reg-07

Figure D-9.  UMA APIs

Appendix D UMA Evolution

https://tools.ietf.org/html/draft-hardjono-oauth-resource-reg-07

396

access the resource set. The type attribute describes the semantics associated with the

resource set; the value of this attribute is meaningful only to the resource server and can

be used to process the associated resources:

{

 "name": "John’s Family Photos",

 "icon_uri": "http://www.flickr.com/icons/flower.png",

 "scopes": [

 "http://photoz. flickr.com/dev/scopes/view",

 "http://photoz. flickr.com/dev/scopes/all"

],

 "type": "http://www. flickr.com/rsets/photoalbum"

}

This JSON message is also known as the resource description. Each UMA

authorization server must present a REST API to create (POST), update (PUT), list (GET),

and delete (DELETE) resource set descriptions. The resource server can utilize this

endpoint either during phase 1 or in an ongoing manner.

The resource server accesses the Client Requested Permission Registration

endpoint during phase 2 of UMA flow. The resource server uses this API to inform the

authorization server about the level of permissions required for the client to access the

desired resource. The resource server uses the Introspection API to check the validity of

the RPT.

�Authorization API
The Authorization API is the interface between the client and the authorization server.

The main responsibility of this API is to issue RPTs.

Appendix D UMA Evolution

397
© Prabath Siriwardena 2020
P. Siriwardena, Advanced API Security, https://doi.org/10.1007/978-1-4842-2050-4_20

APPENDIX E

Base64 URL Encoding
Base64 encoding defines how to represent binary data in an ASCII string format. The

objective of base64 encoding is to transmit binary data such as keys or digital certificates

in a printable format. This type of encoding is needed if these objects are transported as

part of an email body, a web page, an XML document, or a JSON document.

To do base64 encoding, first the binary data are grouped into 24-bit groups.

Then each 24-bit group is divided into four 6-bit groups. Now, a printable character

can represent each 6-bit group based on its bit value in decimal (see Figure E-1).

For example, the decimal value of the 6-bit group 000111 is 7. As per Figure E-1, the

character H represents this 6-bit group. Apart from the characters shown in Figure E-1,

the character = is used to specify a special processing function, which is to pad. If the

length of the original binary data is not an exact multiple of 24, then we need padding.

Let’s say the length is 232, which is not a multiple of 24. Now we need to pad this binary

data to make its length equal to the very next multiple of the 24, which is 240. In other

words, we need to pad this binary data by 8 to make its length 240. In this case, padding

is done by adding eight 0s to the end of the binary data. Now, when we divide this 240

bits by 6 to build 6-bit groups, the last 6-bit group will be of all zeros—and this complete

group will be represented by the padding character =.

398

The following example shows how to base64-encode/decode binary data with Java 8.

The java.util.Base64 class was introduced from Java 8.

byte[] binaryData = // load binary data to this variable

// encode

String encodedString = Base64.getEncoder().encodeToString(binaryData);

// decode

binary[] decodedBinary = Base64.getDecoder().decode(encodedString);

One issue with base64 encoding is that it does not work quite well with URLs. The +

and / characters in base64 encoding (see Figure E-1) have a special meaning when used

within a URL. If we try to send a base64-encoded image as a URL query parameter and if

the base64-encoded string carries any of the preceding two characters, then the browser

will interpret the URL in a wrong way. The base64url encoding was introduced to

address this problem. The way base64url encoding works is exactly the same as base64

encoding other than two exceptions: the character - is used in base64url encoding

instead of the character + in base64 encoding, and the character _ is used in base64url

encoding instead of the character / in base64 encoding.

Figure E-1.  Base64 encoding

Appendix E Base64 URL Encoding

399

The following example shows how to base64url-encode/decode binary data with

Java 8. The java.util.Base64 class was introduced from Java 8.

byte[] binaryData = // load binary data to this variable

// encode

String encodedString = Base64.getUrlEncoder().encodeToString(binaryData);

// decode

binary[] decodedBinary = Base64.getUrlEncoder().decode(encodedString);

Appendix E Base64 URL Encoding

401
© Prabath Siriwardena 2020
P. Siriwardena, Advanced API Security, https://doi.org/10.1007/978-1-4842-2050-4_21

APPENDIX F

Basic/Digest
Authentication
HTTP Basic authentication and Digest authentication are two authentication schemes,

used for protecting resources on the Web. Both are based on username- and password-

based credentials. When trying to log in to a web site, if the browser presents you a dialog

box asking your username and password, then most probably this web site is protected

with HTTP Basic or Digest authentication. Asking the browser to challenge the user

to authenticate is one of the quick and dirty ways of protecting a web site. None or at

least very few web sites on the Internet today use HTTP Basic or Digest authentication.

Instead, they use a nice form-based authentication or their own custom authentication

schemes. But still some use HTTP Basic/Digest authentication to secure direct API-level

access to resources on the Web.

HTTP Basic authentication is first standardized through the HTTP/1.0 RFC (Request

For Comments)1 by IETF (Internet Engineering Task Force). It takes the username and

password over the network as an HTTP header in cleartext. Passing user credentials over

the wire in cleartext is not secure, unless it’s used over a secured transport channel, like

HTTP over TLS (Transport Layer Security). This limitation was addressed in the RFC

2617, which defined two authentication schemes for HTTP: Basic Access Authentication

and Digest Access Authentication. Unlike Basic authentication, the Digest authentication

is based on cryptographic hashes and never sends user credentials over the wire in

cleartext.

1�Hypertext Transfer Protocol—HTTP/1.0, www.rfc-base.org/txt/rfc-1945.txt

http://www.rfc-base.org/txt/rfc-1945.txt

402

�HTTP Basic Authentication
The HTTP/1.0 specification first defined the scheme for HTTP Basic authentication

and got further refined by RFC 2617. The RFC 2617 was proposed as a companion

to the HTTP 1.1 specification or the RFC 2616.2 Then again in 2015, the RFC 2617

was obsoleted by the new RFC 7617. It’s a challenge-response-based authentication

scheme, where the server challenges the user to provide valid credentials to access a

protected resource. With this model, the user has to authenticate him for each realm.

The realm can be considered as a protection domain. A realm allows the protected

resources on a server to be partitioned into a set of protection spaces, each with its own

authentication scheme and/or authorization database.3 A given user can belong to

multiple realms simultaneously. The value of the realm is shown to the user at the time

of authentication—it’s part of the authentication challenge sent by the server. The realm

value is a string, which is assigned by the authentication server. Once the request hits the

server with Basic authentication credentials, the server will authenticate the request only

if it can validate the username and the password, for the protected resource, against the

corresponding realm.

ACCESSING THE GITHUB API WITH HTTP BASIC AUTHENTICATION

GitHub is a web-based git repository hosting service. Its REST API4 is protected with HTTP

Basic authentication. This exercise shows you how to access the secured GitHub API to create

a git repository. You need to have a GitHub account to try out the following, and in case you do

not have one, you can create an account from https://github.com.

Let’s try to invoke the following GitHub API with cURL. It’s an open API that doesn’t require any

authentication and returns pointers to all available resources, corresponding to the provided

GitHub username.

\> curl -v https://api.github.com/users/{github-user}

For example:

\> curl -v https://api.github.com/users/prabath

2�Hypertext Transfer Protocol—HTTP/1.1, www.ietf.org/rfc/rfc2616.txt
3�HTTP Authentication: Basic and Digest Access Authentication, www.ietf.org/rfc/rfc2617.txt
4�GitHub REST API, http://developer.github.com/v3/

Appendix F Basic/Digest Authentication

https://github.com
http://www.ietf.org/rfc/rfc2616.txt
http://www.ietf.org/rfc/rfc2617.txt
http://developer.github.com/v3/

403

The preceding command returns back the following JSON response.

{

 "login":"prabath",

 "id":1422563,

 "avatar_url":"https://avatars.githubusercontent.com/u/1422563?v=3",

 "gravatar_id":"",

 "url":"https://api.github.com/users/prabath",

 "html_url":"https://github.com/prabath",

 "followers_url":"https://api.github.com/users/prabath/followers",

 �"following_url":"https://api.github.com/users/prabath/following

{/other_user}",

 "gists_url":"https://api.github.com/users/prabath/gists{/gist_id}",

 �"starred_url":"https://api.github.com/users/prabath/starred{/owner}

{/repo}",

 "subscriptions_url":"https://api.github.com/users/prabath/subscriptions",

 "organizations_url":"https://api.github.com/users/prabath/orgs",

 "repos_url":"https://api.github.com/users/prabath/repos",

 "events_url":"https://api.github.com/users/prabath/events{/privacy}",

 �"received_events_url":"https://api.github.com/users/prabath/received_

events",

 "type":"User",

 "site_admin":false,

 "name":"Prabath Siriwardena",

 "company":"WSO2",

 "blog":"http://blog.faciellogin.com",

 "location":"San Jose, CA, USA",

 "email":"prabath@apache.org",

 "hireable":null,

 "bio":null,

 "public_repos":3,

 "public_gists":1,

 "followers":0,

 "following":0,

 "created_at":"2012-02-09T10:18:26Z",

 "updated_at":"2015-11-23T12:57:36Z"

}

Appendix F Basic/Digest Authentication

404

Note  All the cURL commands used in this book are broken into multiple lines just
for clarity. When you execute them, make sure to have it as a single line, with no
line breaks.

Now let’s try out another API. Here you create a GitHub repository with the following API call.

This returns a negative response with the HTTP status code 401 Unauthorized. The API is

secured with HTTP Basic authentication, and you need to provide credentials to access it:

\> curl -i -X POST -H 'Content-Type: application/x-www-form-urlencoded'

 -d '{"name": "my_github_repo"}' https://api.github.com/user/repos

The preceding command returns back the following HTTP response, indicating that the request

is not authenticated. Observing the response from GitHub for the unauthenticated API call to

create a repository, it looks as though the GitHub API isn’t fully compliant with the HTTP 1.1

specification. According to the HTTP 1.1 specification, whenever the server returns a 401

status code, it also must return the HTTP header WWW-Authenticate.

HTTP/1.1 401 Unauthorized

Content-Type: application/json; charset=utf-8

Content-Length: 115

Server: GitHub.com

Status: 401 Unauthorized

{

 "message": "Requires authentication",

 "documentation_url": "https://developer.github.com/v3/repos/#create"

}

Let’s invoke the same API with proper GitHub credentials. Replace $GitHubUserName and

$GitHubPassword with your credentials:

curl -i –v -u $GitHubUserName:$GitHubPassword

 -X POST -H 'Content-Type: application/x-www-form-urlencoded'

 -d '{"name": "my_github_repo"}' https://api.github.com/user/repos

Next, let’s look at the HTTP request generated from the cURL client:

POST /user/repos HTTP/1.1

Authorization: Basic cHJhYmF0aDpwcmFiYXRoMTIz

Appendix F Basic/Digest Authentication

405

The HTTP Authorization header in the request is generated from the username and password

you provided. The formula is simple: Basic Base64Encode(username:password). Any

base64-encoded text is no better than cleartext—it can be decoded quite easily back to the

cleartext. That is why Basic authentication on plain HTTP isn’t secured. It must be used in

conjunction with a secured transport channel, like HTTPS.

The preceding command returns back the following HTTP response (truncated for clarity),

indicating that the git repository was created successfully.

HTTP/1.1 201 Created

Server: GitHub.com

Content-Type: application/json; charset=utf-8

Content-Length: 5261

Status: 201 Created

{

 "id": 47273092,

 "name": "my_github_repo",

 "full_name": "prabath/my_github_repo"

}

Note  To add HTTP Basic authentication credentials to a request generated from
a cURL client, you can use the option –u username:password. This creates the
base64-encoded HTTP basic authorization header. –i is used to include HTTP
headers in the output, and –v is used to run cURL in verbose mode. –H is used
to set HTTP headers in the outgoing request, and –d is used to post data to the
endpoint.

Appendix F Basic/Digest Authentication

406

�HTTP Digest Authentication
HTTP Digest authentication was initially proposed by the RFC 20695 as an extension

to the HTTP/1.0 specification to overcome certain limitations in HTTP Basic

authentication. Later this specification was made obsolete by the RFC 2617. The RFC

2617 removed some optional elements specified by the RFC 2069 due to problems found

since its publication and introduced a set of new elements for compatibility, and those

new elements have been made optional. Digest authentication is an authentication

scheme based on a challenge-response model, which never sends the user credentials

over the wire. Because the credentials are never sent over the wire with the request,

Transport Layer Security (TLS) isn’t a must. Anyone intercepting the traffic won’t be able

to discover the password in cleartext.

To initiate Digest authentication, the client has to send a request to the protected

resource with no authentication information, which results in a challenge (in the

response). The following example shows how to initiate a Digest authentication

handshake from cURL (this is just an example, don’t try it till we set up the cute-cupcake

sample later in this appendix):

\> curl -k –-digest –u userName:password -v https://localhost:8443/recipe

Note  To add HTTP Digest authentication credentials to a request generated from
a cURL client, use the option –-digest –u username: password.

Let’s look at the HTTP headers in the response. The first response is a 4016 with the

HTTP header WWW-Authenticate, which in fact is the challenge:

HTTP/1.1 401 Unauthorized

WWW-Authenticate: Digest realm="cute-cupcakes.com", qop="auth",

nonce="1390781967182:c2db4ebb26207f6ed38bb08eeffc7422",

opaque="F5288F4526B8EAFFC4AC79F04CA8A6ED"

5�An Extension to HTTP: Digest Access Authentication, www.ietf.org/rfc/rfc2069.txt
6�The 401 HTTP status code is returned back in the HTTP response when the request is not
authenticated to access the corresponding resource. All HTTP/1.1 status codes are defined here:
www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

Appendix F Basic/Digest Authentication

http://www.ietf.org/rfc/rfc2069.txt
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

407

Note  You learn more about the Recipe API and how to deploy it locally as you
proceed through this appendix. The “Securing the Recipe API with HTTP Digest
Authentication” exercise at the end of the appendix explains how to secure an API
with Digest authentication.

The challenge from the server consists of the following key elements. Each of these

elements is defined in the RFC 2617:

•	 realm: A string to be displayed to users so they know which username

and password to use. This string should contain at least the name of

the host performing the authentication and may additionally indicate

the collection of users who may have access.

•	 domain: This is an optional element, not present in the preceding

response. It’s a comma-separated list of URIs. The intent is that the

client could use this information to know the set of URIs for which

the same authentication information should be sent. The URIs in this

list may exist on different servers. If this keyword is omitted or empty,

the client should assume that the domain consists of all URIs on the

responding server.

•	 nonce: A server-specified data string, which should be uniquely

generated each time a 401 response is made. The value of the nonce

is implementation dependent and is opaque to the client. The client

should not try to interpret the value of nonce.

•	 opaque: A string of data, specified by the server, that should be

returned by the client unchanged in the Authorization header of

subsequent requests with URIs in the same protection space (which

is the realm). Because the client is returning back the value of the

opaque element given to it by the server for the duration of a session,

the opaque data can be used to transport authentication session state

information or can be used as a session identifier.

•	 stale: A flag, indicating that the previous request from the client was

rejected because the nonce value was stale. If stale is TRUE (case

insensitive), the client may wish to simply retry the request with a

Appendix F Basic/Digest Authentication

408

new nonce value, without reprompting the user for a new username

and password. The server should only set stale to TRUE if it receives

a request for which the nonce is invalid but with a valid digest for

that nonce (indicating that the client knows the correct username/

password). If stale is FALSE, or anything other than TRUE, or the stale

directive is not present, the username and/or password are invalid,

and new values must be obtained. This flag is not shown in the

preceding response.

•	 algorithm: This is an optional element, not shown in the preceding

response. The value of algorithm is a string indicating a pair of

algorithms used to produce the digest and a checksum. If the client

does not understand the algorithm, the challenge should be ignored,

and if it is not present, it is assumed to be MD5.

•	 qop: The quality of protection options applied to the response by

the server. The value auth indicates authentication; while the value

auth-int indicates authentication with integrity protection. This is an

optional element and introduced to be backward compatible with the

RFC 2069.

Once the client gets the response from the server, it has to respond back. Here’s the

HTTP request with the response to the challenge:

Authorization: Digest username="prabath", realm="cute-cupcakes.com",

nonce="1390781967182:c2db4ebb26207f6ed38bb08eeffc7422", uri="/recipe",

cnonce="MTM5MDc4", nc=00000001, qop="auth",

response="f5bfb64ba8596d1b9ad1514702f5a062",

opaque="F5288F4526B8EAFFC4AC79F04CA8A6ED"

The following are the key elements in the response from the client:

•	 username: The unique identifier of the user who’s going to invoke the

API.

•	 realm/qop/nonce/opaque: The same as in the initial challenge from

the server. The value of qop indicates what quality of protection the

client has applied to the message. If present, its value MUST be one

of the alternatives the server indicated it supports in the WWW-

Authenticate header.

Appendix F Basic/Digest Authentication

409

•	 cnonce: This MUST be specified if a qop directive is sent and MUST

NOT be specified if the server did not send a qop directive in the

WWW-Authenticate header field. The value of cnonce is an opaque

quoted string value provided by the client and used by both the client

and the server to avoid chosen plaintext attacks,7 to provide mutual

authentication, and to provide some message integrity protection.

This is not shown in the preceding response.

•	 nc: This MUST be specified if a qop directive is sent and MUST NOT

be specified if the server did not send a qop directive in the WWW-

Authenticate header field. The value of nc is the hexadecimal count

of the number of requests (including the current request) that the

client has sent with the same nonce value. For example, in the first

request sent in response to a given nonce value, the client sends

"nc=00000001". The purpose of this directive is to allow the server to

detect request replays by maintaining its own copy of this count—if

the same nc value is seen twice for the same nonce value, then the

request is a replay.

•	 digest-uri: The request URI from the request line. Duplicated

here because proxies are allowed to change the Request-Line in

transit. The value of the digest-uri is used to calculate the value of the

response element, as explained later in the chapter.

•	 auth-param: This is an optional element not shown in the preceding

response. It allows for future extensions. The server MUST ignore any

unrecognized directive.

•	 response: The response to the challenge sent by the server,

calculated by the client. The following section explains how the value

of response is calculated.

7�Chosen plaintext attack is an attack model where the attacker has access to both the encrypted
text and the corresponding plaintext. The attacker can specify his own plaintext and get
it encrypted or signed by the server. Further he can carefully craft the plaintext to learn
characteristics about the encryption/signing algorithm. For example, he can start with an empty
text, a text with one letter, with two letters likewise, and get corresponding encrypted/signed text.
This kind of an analysis on encrypted/signed text is known as cryptanalysis.

Appendix F Basic/Digest Authentication

410

The value of response is calculated in the following manner. Digest authentication

supports multiple algorithms. RFC 2617 recommends using MD5 or MD5-sess (MD5-

session). If no algorithm is specified in the server challenge, MD5 is used. Digest

calculation is done with two types of data: security-related data (A1) and message-

related data (A2). If you use MD5 as the hashing algorithm or if it is not specified, then

you define security-related data (A1) in the following manner:

A1 = username:realm:password

If you use MD5-sess as the hashing algorithm, then you define security-related data

(A1) in the following manner. cnonce is an opaque quoted string value provided by

the client and used by both the client and the server to avoid chosen plaintext attacks.

The value of nonce is the same as in the server challenge. If the MD5-sess is picked as

the hashing algorithm, then A1 is calculated only once on the first request by the client

following receipt of a WWW-Authenticate challenge from the server:

A1 = MD5 (username:realm:password):nonce:cnonce

RFC 2617 defines message-related data (A2) in two ways, based on the value of qop

in the server challenge. If the value is auth or undefined, then the message-related data

(A2) is defined in the following manner. The value of the request-method element can

be GET, POST, PUT, DELETE, or any HTTP verb, and the value of the uri-directive-value

element is the request URI from the request line:

A2 = request-method:uri-directive-value

If the value of qop is auth-int, then you need to protect the integrity of the message,

in addition to authenticating. A2 is derived in the following manner. When you have

MD5 or MD5-sess as the hashing algorithm, the value of H is MD5:

A2 = request-method:uri-directive-value:H(request-entity-body)

The final value of the digest is calculated in the following way, based on the value of

qop. If qop is set to auth or auth-int, then the final digest value is as shown next. The nc

value is the hexadecimal count of the number of requests (including the current request)

that the client has sent with the nonce value in this request. This directive helps the

server detect replay attacks. The server maintains its own copy of nonce and the nonce

count (nc); if any are seen twice, that indicates a possible replay attack:

MD5(MD5(A1):nonce:nc:cnonce:qop:MD5(A2))

Appendix F Basic/Digest Authentication

411

If qop is undefined, then the final digest value is

MD5(MD5(A1):<nonce>:MD5(A2))

This final digest value will be set as the value of the response element in the HTTP

request from the client to the server. Once the client responds back to the server’s initial

challenge, the subsequent requests from there onward do not need all the preceding

three message flows (the initial unauthenticated request from the client, the challenge

from the server, and the response to the challenge from the client). The server will send a

challenge to the client only if there is no valid authorization header in the request. Once

the client gets the initial challenge, for the subsequent requests, the same parameters

from the challenge will be used. In other words, the response by the client to a WWW-

Authenticate challenge from the server for a protection space starts an authentication

session with that protection space. The authentication session lasts until the client

receives another WWW-Authenticate challenge from any server in the protection space.

The client should remember the username, password, nonce, nonce count, and opaque

values associated with the authentication session to use to construct the authorization

header in the subsequent requests within that protection space. For example, the

authorization header from the client should have the nonce value in each request. This

nonce value is picked from the initial challenge from the server, but the value of the nc

element will be increased by one, for each request. Table F-1 provides a comparison

between HTTP Basic authentication and Digest authentication.

Table F-1.  HTTP Basic Authentication vs. HTTP Digest Authentication

HTTP Basic Authentication HTTP Digest Authentication

Sends credentials in cleartext over the

wire.

Credentials are never sent in cleartext. A digest derived

from the cleartext password is sent over the wire.

Should be used in conjunction with a

secured transport channel, like HTTPS.

Doesn’t depend on the security of the underneath

transport channel.

Only performs authentication. Can be used to protect the integrity of the message, in

addition to authentication (with qop=auth-int).

User store can store passwords as a salted

hash.

User store should store passwords in cleartext or

should store the hash value of username:realm:

password.

Appendix F Basic/Digest Authentication

412

Note  With HTTP Digest authentication, a user store has to store passwords
either in cleartext or as the hashed value of username:password:realm. This is
required because the server has to validate the digest sent from the client, which is
derived from the cleartext password (or the hash of username:realm:password).

CUTE-CUPCAKE FACTORY: DEPLOYING THE RECIPE API IN APACHE TOMCAT

In this example, you deploy a prebuilt web application with the Recipe API in Apache Tomcat.

The Recipe API is hosted and maintained by the Cute-Cupcake factory. It’s a public API with

which the customers of Cute-Cupcake factory can interact. The Recipe API supports the

following five operations:

•	 GET /recipe: Returns all the recipes in the system

•	 GET /recipe/{$recipeNo}: Returns the recipe with the given recipe number

•	 POST /recipe: Creates a new recipe in the system

•	 PUT /recipe: Updates the recipe in the system with the given details

•	 DELETE /recipe/{$recipeNo}: Deletes the recipe from the system with

the provided recipe number

You can download the latest version of Apache Tomcat from http://tomcat.apache.org.

All the examples discussed in this book use Tomcat 9.0.20.

To deploy the API, download the recipe.war file from https://github.com/

apisecurity/samples/blob/master/appendix-f/recipe.war and copy it to

[TOMCAT_HOME]\webapps. To start Tomcat, run the following from the [TOMCAT_HOME]\

bin directory:

[Linux] sh catalina.sh run

[Windows] catalina.bat run

Once the server is started, use cURL to execute the following command. Here it’s assumed

that Tomcat is running on its default HTTP port 8080:

\> curl http://localhost:8080/recipe

Appendix F Basic/Digest Authentication

http://tomcat.apache.org
https://github.com/apisecurity/samples/blob/master/appendix-f/recipe.war
https://github.com/apisecurity/samples/blob/master/appendix-f/recipe.war

413

This returns all the recipes in the system as a JSON payload:

{

 "recipes":[

 {

 "recipeId":"10001",

 "name":"Lemon Cupcake",

 �"ingredients":"lemon zest, white sugar,unsalted butter, flour,salt,

milk",

 �"directions":"Preheat oven to 375 degrees F (190 degrees C). Line 30

cupcake pan cups with paper liners...."

 },

 {

 "recipeId":"10002",

 "name":"Red Velvet Cupcake",

 �"ingredients":"cocoa powder, eggs, white sugar,unsalted butter,

flour,salt, milk",

 �"directions":" Preheat oven to 350 degrees F. Mix flour, cocoa

powder,

 �baking soda and salt in medium bowl. Set

aside...."

 }

]

}

To get the recipe of any given cupcake, use the following cURL command, where 10001 is the

ID of the cupcake you just created:

\> curl http://localhost:8080/recipe/10001

This returns the following JSON response:

{

 "recipeId":"10001",

 "name":"Lemon Cupcake",

 �"ingredients":"lemon zest, white sugar,unsalted butter, flour,salt,

milk",

 �"directions":"Preheat oven to 375 degrees F (190 degrees C). Line 30

cupcake pan cups with paper liners...."

}

Appendix F Basic/Digest Authentication

414

To create a new recipe, use the following cURL command:

curl -X POST -H 'Content-Type: application/json'

 -d '{"name":"Peanut Butter Cupcake",

 �"ingredients":"peanut butter, eggs, sugar,unsalted butter,

flour,salt, milk",

 "directions":"Preheat the oven to 350 degrees F (175 degrees C).

 �Line a cupcake pan with paper liners, or grease and flour

cups..."

 }' http://localhost:8080/recipe

This returns the following JSON response:

{

 "recipeId":"10003",

 "location":"http://localhost:8080/recipe/10003",

}

To update an existing recipe, use the following cURL command:

curl -X PUT -H 'Content-Type: application/json'

 -d '{"name":"Peanut Butter Cupcake",

 �"ingredients":"peanut butter, eggs, sugar,unsalted butter,

flour,salt, milk",

 �"directions":"Preheat the oven to 350 degrees F (175 degrees C).

Line a cupcake pan with

 paper liners, or grease and flour cups..."

 }' http://localhost:8080/recipe/10003

This returns the following JSON response:

{

 "recipeId":"10003",

 "location":"http://localhost:8080/recipe/10003",

}

To delete an existing recipe, use the following cURL command:

\> curl -X DELETE http://localhost:8080/recipe/10001

Appendix F Basic/Digest Authentication

415

Note  To do remote debugging with Apache Tomcat, start the server under Linux
operating system as sh catalina.sh jpda run or under Windows operating system as
catalina.bat jpda run. This opens port 8000 for remote debugging connections.

CONFIGURING APACHE DIRECTORY SERVER (LDAP)

Apache Directory Server is an open source LDAP server distributed under Apache 2.0 license.

You can download the latest version from http://directory.apache.org/studio/. It’s

recommended that you download the Apache Directory Studio8 itself, as it comes with a set

of very useful tools to configure LDAP. We use Apache Directory Studio 2.0.0 in the following

example.

The following steps are needed only if you don’t have an LDAP server set up to run. First you

need to start Apache Directory Studio. This provides a management console to create and

manage LDAP servers and connections. Then proceed with the following steps:

	1.	 From Apache Directory Studio, go to the LDAP Servers view. If it’s not there

already, go to Window ➤ Show View ➤ LDAP Servers.

	2.	 Right-click LDAP Servers View, choose New ➤ New Server, and select

ApacheDS 2.0.0. Give any name to the server in the Server Name text box, and

click Finish.

	3.	 The server you created appears in the LDAP Servers view. Right-click the

server, and select Run. If it’s started properly, State is updated to Started.

	4.	 To view or edit the configuration of the server, right-click it and select Open

Configuration. By default, the server starts on LDAP port 10389 and LDAPS port

10696.

8�Apache Directory Studio user guide for setting up and getting started is available at http://
directory.apache.org/studio/users-guide/apache_directory_studio/

Appendix F Basic/Digest Authentication

http://directory.apache.org/studio/
http://directory.apache.org/studio/users-guide/apache_directory_studio/
http://directory.apache.org/studio/users-guide/apache_directory_studio/

416

Now you have an LDAP server up and running. Before you proceed any further, let’s create a

test connection to it from the Apache Directory Studio:

	1.	 From Apache Directory Studio, get to the Connections view. If it’s not there

already, go to Window ➤ Show View ➤ Connections.

	2.	 Right-click Connections View, and select New Connection.

	3.	 In the Connection Name text box, give a name to the connection.

	4.	 The Host Name field should point to the server where you started the LDAP

server. In this case, it’s localhost.

	5.	 The Port field should point to the port of your LDAP server, which is 10389 in

this case.

	6.	 Keep Encryption Method set to No Encryption for the time being. Click Next.

	7.	 Type uid=admin,ou=system as the Bind DN and secret as the Bind

Password, and click Finish. These are the default Bind DN and password values

for Apache Directory Server.

	8.	 The connection you just created appears in the Connections view. Double-click

it, and the data retrieved from the underlying LDAP server appears in the LDAP

Browser view.

In the sections that follow, you need some users and groups in the LDAP server. Let’s create

a user and a group. First you need to create an organizational unit (OU) structure under the

dc=example,dc=com domain in Apache Directory Server:

	1.	 In Apache Directory Studio, get to the LDAP browser by clicking the appropriate

LDAP connection in the Connections view.

	2.	 Right-click dc=example,dc=com, and choose New ➤ New Entry ➤ Create

Entry From Scratch. Pick organizationalUnit from Available Object Classes, click

Add, and then click Next. Select ou for the RDN, and give it the value groups.

Click Next and then Finish.

	3.	 Right-click dc=example,dc=com, and choose New ➤ New Entry ➤ Create

Entry From Scratch. Pick organizationalUnit from Available Object Class, click

Add, and then click Next. Select ou for the RDN, and give it the value users.

Click Next and then Finish.

Appendix F Basic/Digest Authentication

417

	4.	 Right-click dc=example,dc=com/ou=users, and choose New ➤ New Entry

➤ Create Entry From Scratch. Pick inetOrgPerson from Available Object Class,

click Add, and then click Next. Select uid for the RDN, give it a value, and click

Next. Complete the empty fields with appropriate values. Right-click the same

pane, and choose New Attribute. Select userPassword as the Attribute Type, and

click Finish. Enter a password, select SSHA-256 as the hashing method, and

click OK.

	5.	 The user you created appears under dc=example,dc=com/ou=users in the

LDAP browser.

	6.	 To create a group, right-click dc=example,dc=com/ou=groups ➤ New

➤ New Entry ➤ Create Entry From Scratch. Pick groupOfUniqueNames from

Available Object Class, click Add, and click Next. Select cn for the RDN, give it

a value, and click Next. Give the DN of the user created in the previous step as

the uniqueMember (e.g., uid=prabath,ou=users,ou=system), and click

Finish.

	7.	 The group you created appears under dc=example,dc=com/ou=groups in

the LDAP browser.

CONNECTING APACHE TOMCAT TO APACHE DIRECTORY SERVER (LDAP)

You’ve already deployed the Recipe API in Apache Tomcat. Let’s see how you can configure

Apache Tomcat to talk to the LDAP server you configured, following these steps:

	1.	 Shut down the Tomcat server if it’s running.

	2.	 By default, Tomcat finds users from the conf/tomcat-users.xml file via

org.apache.catalina.realm.UserDatabaseRealm.

	3.	O pen [TOMCAT_HOME]\conf\server.xml, and comment out the following

line in it:

<Resource

 name="UserDatabase" auth="Container"

 type="org.apache.catalina.UserDatabase"

 description="User database that can be updated and saved"

Appendix F Basic/Digest Authentication

418

 factory="org.apache.catalina.users.MemoryUserDatabaseFactory"

 pathname="conf/tomcat-users.xml" />

	4.	 In [TOMCAT_HOME]\conf\server.xml, comment out the following line,

which points to the UserDatabaseRealm:

<Realm className="org.apache.catalina.realm.UserDatabaseRealm"

 resourceName="UserDatabase"/>

	5.	 To connect to the LDAP server, you should use the JNDIRealm. Copy and paste

the following configuration into [TOMCAT_HOME]\conf\server.xml just after

<Realm className="org.apache.catalina.realm.LockOutRealm">:

<Realm className="org.apache.catalina.realm.JNDIRealm"

 debug="99"

 connectionURL="ldap://localhost:10389"

 roleBase="ou=groups , dc=example, dc=com"

 roleSearch="(uniqueMember={0})"

 roleName="cn"

 userBase="ou=users, dc=example, dc=com"

 userSearch="(uid={0})"/>

SECURING AN API WITH HTTP BASIC AUTHENTICATION

The Recipe API that you deployed in Apache Tomcat is still an open API. Let’s see how to

secure it with HTTP Basic authentication. You want to authenticate users against the corporate

LDAP server and also use access control based on HTTP operations (GET, POST, DELETE,

PUT). The following steps guide you on how to secure the Recipe API with HTTP Basic

authentication:

	1.	 Shut down the Tomcat server if it’s running, and make sure connectivity to the

LDAP server works correctly.

	2.	O pen [TOMCAT_HOME]\webapps\recipe\WEB-INF\web.xml and add the

following under the root element <web-app>. The security-role element

at the bottom of the following configuration lists all the roles allowed to use this

web application:

Appendix F Basic/Digest Authentication

419

 <security-constraint>

 <web-resource-collection>

 <web-resource-name>Secured Recipe API</web-resource-name>

 <url-pattern>/∗</url-pattern>
 </web-resource-collection>

 <auth-constraint>

 <role-name>admin</role-name>

 </auth-constraint>

 </security-constraint>

 <login-config>

 <auth-method>BASIC</auth-method>

 <realm-name>cute-cupcakes.com</realm-name>

 </login-config>

 <security-role>

 <role-name>admin</role-name>

 </security-role>

This configuration will protect the complete Recipe API from unauthenticated

access attempts. A legitimate user should have an account in the corporate

LDAP server and also should be in the admin group. If you don’t have a group

called admin, change the preceding configuration appropriately.

	3.	 You can further enable fine-grained access control to the Recipe API by HTTP

operation. You need to have a <security-constraint> element defined

for each scenario. The following two configuration blocks will let any user that

belongs to the admin group perform GET/POST/PUT/DELETE on the Recipe API,

whereas a user that belongs to the user group can only do a GET. When you

define an http-method inside a web-resource-collection element, only

those methods are protected. The rest can be invoked by anyone if no other

security constraint has any restrictions on those methods. For example, if you

only had the second block, then any user would be able to do a POST. Having

the first block that controls POST will allow only the legitimate user to do a

POST to the Recipe API. The security-role element at the bottom of the

following configuration lists all the roles allowed to use this web application:

<security-constraint>

 <web-resource-collection>

 <web-resource-name>Secured Recipe API</web-resource-name>

Appendix F Basic/Digest Authentication

420

 <url-pattern>/∗</url-pattern>
 <http-method>GET</http-method>

 <http-method>PUT</http-method>

 <http-method>POST</http-method>

 <http-method>DELETE</http-method>

 </web-resource-collection>

 <auth-constraint>

 <role-name>admin</role-name>

 </auth-constraint>

</security-constraint>

<security-constraint>

 <web-resource-collection>

 <web-resource-name>Secured Recipe API</web-resource-name>

 <url-pattern>/∗</url-pattern>
 <http-method>GET</http-method>

 </web-resource-collection>

 <auth-constraint>

 <role-name>user</role-name>

 </auth-constraint>

</security-constraint>

<login-config>

 <auth-method>BASIC</auth-method>

 <realm-name>cute-cupcakes.com</realm-name>

</login-config>

<security-role>

 <role-name>admin</role-name>

 <role-name>user</role-name>

</security-role>

ENABLING TLS IN APACHE TOMCAT

The way you configured HTTP Basic authentication in the previous exercise isn’t secure

enough. It uses HTTP to transfer credentials. Anyone who can intercept the channel can see

the credentials in cleartext. Let’s see how to enable Transport Layer Security (TLS) in Apache

Tomcat and restrict access to the Recipe API only via TLS:

Appendix F Basic/Digest Authentication

421

	1.	 To enable TLS, first you need to have a keystore with a public/private key

pair. You can create a keystore using Java keytool. It comes with the JDK

distribution, and you can find it in [JAVA_HOME]\bin. The following command

creates a Java keystore with the name catalina-keystore.jks. This command

uses catalina123 as the keystore password as well as the private key

password.

Note  JAVA_HOME refers to the directory where you’ve installed the JDK. To run
the keytool, you need to have Java installed in your system.

\> keytool -genkey -alias localhost -keyalg RSA -keysize 1024

 -dname "CN=localhost"

 -keypass catalina123

 -keystore catalina-keystore.jks

 -storepass catalina123

	2.	C opy catalina-keystore.jks to [TOMCAT_HOME]\conf, and add

the following element to [TOMCAT_HOME]\conf\server.xml under the

<Service> parent element. Replace the values of keyStoreFile and

keystorePass elements appropriately:

<Connector

 port="8443"

 maxThreads="200"

 scheme="https"

 secure="true"

 SSLEnabled="true"

 keystoreFile="absolute/path/to/catalina-keystore.jks"

 keystorePass="catalina123"

 clientAuth="false"

 sslProtocol="TLS"/>

	3.	 Start the Tomcat server, and execute the following cURL command to validate

the TLS connectivity. Make sure you replace the values of username and

password appropriately. They must come from the underlying user store:

\> curl -k -u username:password https://localhost:8443/recipe

Appendix F Basic/Digest Authentication

422

You’ve configured Apache Tomcat to work with TLS. Next you need to make sure that

the Recipe API only accepts connections over TLS.

Open [TOMCAT_HOME]\webapps\recipe\WEB-INF\web.xml, and add the

following under each <security-constraint> element. This makes sure only

TLS connections are accepted:

<user-data-constraint>

 <transport-guarantee>CONFIDENTIAL</transport-guarantee>

</user-data-constraint>

SECURING THE RECIPE API WITH HTTP DIGEST AUTHENTICATION

The Tomcat JNDIRealm that you used previously to connect to the LDAP server doesn’t

support HTTP Digest authentication. If you need HTTP Digest authentication support, you have

to write your own Realm, extending Tomcat JNDIRealm, and override the getPassword()

method. To see how to secure an API with Digest authentication, we need to switch back to the

Tomcat UserDatabaseRealm:

	1.	O pen [TOMCAT_HOME]\conf\server.xml, and make sure that the following

line is there. If you commented this out during a previous exercise, revert it

back:

<Resource

 name="UserDatabase"

 auth="Container"

 type="org.apache.catalina.UserDatabase"

 description="User database that can be updated and saved"

 factory="org.apache.catalina.users.MemoryUserDatabaseFactory"

 pathname="conf/tomcat-users.xml" />

	2.	 In [TOMCAT_HOME]\conf\server.xml, make sure that the following line,

which points to UserDatabaseRealm, is there. If you commented it out during

a previous exercise, revert it back:

<Realm className="org.apache.catalina.realm.UserDatabaseRealm"

 resourceName="UserDatabase"/>

Appendix F Basic/Digest Authentication

423

	3.	O pen [TOMCAT_HOME]\webapps\recipe\WEB-INF\web.xml, and add the

following under the root element <web-app>:

<security-constraint>

 <web-resource-collection>

 �<web-resource-name>Secured Recipe API</web-resource-

name>

 <url-pattern>/∗ </url-pattern>
 </web-resource-collection>

 <auth-constraint>

 <role-name>admin</role-name>

 </auth-constraint>

</security-constraint>

<login-config>

 <auth-method>DIGEST</auth-method>

 <realm-name>cute-cupcakes.com</realm-name>

</login-config>

<security-role>

 <role-name>admin</role-name>

</security-role>

	4.	O pen [TOMCAT_HOME]\conf\tomcat-users.xml, and add the following

under the root element. This adds a role and a user to Tomcat’s default file

system–based user store:

 <role rolename="admin"/>

 <user username="prabath" password="prabath123" roles="admin"/>

	5.	 Invoke the API with the cURL command shown next. The --digest -u

username:password option used here generates the password in digest

mode and adds it to the HTTP request. Replace username:password with

appropriate values:

\> curl -k -v --digest -u username:password https://localhost:8443/

recipe

Appendix F Basic/Digest Authentication

425
© Prabath Siriwardena 2020
P. Siriwardena, Advanced API Security, https://doi.org/10.1007/978-1-4842-2050-4_22

APPENDIX G

OAuth 2.0 MAC
Token Profile
The OAuth 2.0 core specification doesn’t mandate any specific token type. It’s one of

the extension points introduced in OAuth 2.0. Almost all public implementations use

the OAuth 2.0 Bearer Token Profile. This came up with the OAuth 2.0 core specification,

but as an independent profile, documented under RFC 6750. Eran Hammer, who was

the lead editor of the OAuth 2.0 specification by that time, introduced the Message

Authentication Code (MAC) Token Profile for OAuth 2.0. (Hammer also led the OAuth

1.0 specification.) Since its introduction to the OAuth 2.0 IETF working group in

November 2011, the MAC Token Profile has made a slow progress. The slow progress was

mostly due to the fact that the working group was interested in building a complete stack

around bearer tokens before moving into another token type. In this chapter, we will take

a deeper look into the OAuth 2.0 MAC Token Profile and its applications.

OAUTH 2.0 AND THE ROAD TO HELL

One of the defining moments of OAuth 2.0 history was the resignation of OAuth 2.0

specification lead editor Eran Hammer. On July 26, 2012, he wrote a famous blog post titled

“OAuth 2.0 and the Road to Hell”1 after announcing his resignation from the OAuth 2.0 IETF

working group. As highlighted in the blog post, Hammer thinks OAuth 2.0 is a bad protocol,

just like any WS-* (web services) standard. In his comparison, OAuth 1.0 is much better than

OAuth 2.0 in terms of complexity, interoperability, usefulness, completeness, and security.

Hammer was worried about the direction in which OAuth 2.0 was heading, because it was not

what was intended by the web community that initially formed the OAuth 2.0 working group.

1�Available at http://hueniverse.com/2012/07/oauth-2-0-and-the-road-to-hell/

http://hueniverse.com/2012/07/oauth-2-0-and-the-road-to-hell/

426

According to Hammer, the following were the initial objectives of the OAuth 2.0 working group:

•	 Build a protocol very similar to OAuth 1.0.

•	 Simplify the signing process.

•	 Add a light identity layer.

•	 Address native applications.

•	 Add more flows to accommodate more client types.

•	 Improve security.

In his blog post, Hammer highlighted the following architectural changes from OAuth 1.0 to 2.0

(extracted from http://hueniverse.com/2012/07/oauth-2-0-and-the-road-to-hell/):

•	 Unbounded tokens: In 1.0, the client has to present two sets of credentials

on each protected resource request, the token credentials and the client

credentials. In 2.0, the client credentials are no longer used. This means

that tokens are no longer bound to any particular client type or instance.

This has introduced limits on the usefulness of access tokens as a form of

authentication and increased the likelihood of security issues.

•	 Bearer tokens: 2.0 got rid of all signatures and cryptography at the protocol

level. Instead, it relies solely on TLS. This means that 2.0 tokens are inherently

less secure as specified. Any improvement in token security requires additional

specifications, and as the current proposals demonstrate, the group is solely

focused on enterprise use cases.

•	 Expiring tokens: 2.0 tokens can expire and must be refreshed. This is the

most significant change for client developers from 1.0, as they now need

to implement token state management. The reason for token expiration is

to accommodate self-encoded tokens—encrypted tokens, which can be

authenticated by the server without a database look-up. Because such tokens

are self-encoded, they cannot be revoked and therefore must be short-lived to

reduce their exposure. Whatever is gained from the removal of the signature is

lost twice in the introduction of the token state management requirement.

•	 Grant types: In 2.0, authorization grants are exchanged for access tokens.

Grant is an abstract concept representing the end user approval. It can be a

code received after the user clicks “Approve” on an access request, or the

Appendix G OAuth 2.0 MAC Token Profile

http://hueniverse.com/2012/07/oauth-2-0-and-the-road-to-hell/

427

user’s actual username and password. The original idea behind grants was to

enable multiple flows. 1.0 provides a single flow, which aims to accommodate

multiple client types. 2.0 adds significant amount of specialization for different

client types.

Most of all, Hammer wasn’t in favor of the authorization framework built by OAuth

2.0 and the extensibility introduced. His argument was that the Web doesn’t need

another security framework: what it needs is a simple, well-defined security protocol.

Regardless of these arguments, over the years OAuth 2.0 has become the de facto

standard for API security—and the extensibility introduced by OAuth 2.0 is paying off.

�Bearer Token vs. MAC Token
Bearer tokens are just like cash. Whoever owns one can use it. At the time you use it, you

don’t need to prove you’re the legitimate owner. It’s similar to the way you could use

stolen cash with no problem; what matters is the validity of the cash, not the owner.

MAC tokens, on the other hand, are like credit cards. Whenever you use a credit card,

you have to authorize the payment with your signature. If someone steals your card, the

thief can’t use it unless they know how to sign exactly like you. That’s the main advantage

of MAC tokens.

With bearer tokens, you always have to pass the token secret over the wire. But with

MAC tokens, you never pass the token secret over the wire. The key difference between

bearer tokens and MAC tokens is very similar to the difference between HTTP Basic

authentication and HTTP Digest authentication, which we discussed in Appendix F.

Note D raft 5 of the OAuth 2.0 MAC Token Profile is available at http://
tools.ietf.org/html/draft-ietf-oauth-v2-http-mac-05. This chapter
is based on draft 5, but this is an evolving specification. The objective of this
chapter is to introduce the MAC Token Profile as an extension of OAuth token
types. The request/response parameters discussed in this chapter may change
as the specification evolves, but the basic concepts will remain the same. It’s
recommended that you keep an eye on https://datatracker.ietf.org/
doc/draft-ietf-oauth-v2-http-mac/ to find out the latest changes taking
place.

Appendix G OAuth 2.0 MAC Token Profile

http://tools.ietf.org/html/draft-ietf-oauth-v2-http-mac-05
http://tools.ietf.org/html/draft-ietf-oauth-v2-http-mac-05
https://datatracker.ietf.org/doc/draft-ietf-oauth-v2-http-mac/
https://datatracker.ietf.org/doc/draft-ietf-oauth-v2-http-mac/

428

�Obtaining a MAC Token
The OAuth 2.0 core specification isn’t coupled with any of the token profiles. The OAuth

flows discussed in Chapter 4 applies in the same way for MAC tokens. OAuth grant types

don’t have any dependency on the token type. A client can obtain a MAC token by using

any grant type. Under the authorization code grant type, the resource owner that visits

the application initiates the flow. The client, which must be a registered application at

the authorization server, redirects the resource owner to the authorization server to get

the approval. The following is a sample HTTP redirect, which takes the resource owner

to the OAuth authorization server:

https://authz.server.com/oauth2/authorize?response_type=code&

client_id=0rhQErXIX49svVYoXJGt0DWBuFca&

redirect_uri=https%3A%2F%2Fmycallback

The value of response_type must be code. This indicates to the authorization server

that the request is for an authorization code. client_id is an identifier for the client

application. Once the client application is registered with the authorization server, the

client gets a client_id and a client_secret. The value of redirect_uri should be same as the

value registered with the authorization server. During the client registration phase, the

client application must provide a URL under its control as the redirect_uri. The URL-

encoded value of the callback URL is added to the request as the redirect_uri parameter.

In addition to these parameters, a client application can also include a scope parameter.

The value of the scope parameter is shown to the resource owner on the approval screen.

It indicates to the authorization server the level of access the client needs on the target

resource/API. The previous HTTP redirect returns the requested code to the registered

callback URL:

https://mycallback/?code=9142d4cad58c66d0a5edfad8952192

The value of the authorization code is delivered to the client application via an HTTP

redirect and is visible to the resource owner. In the next step, the client must exchange

the authorization code for an OAuth access token by talking to the OAuth token

endpoint exposed by the authorization server. This can be an authenticated request with

the client_id and the client_secret of the client application in the HTTP authorization

header, if the token endpoint is secured with HTTP Basic authentication. The value of

the grant_type parameter must be the authorization_code, and the value of the code

Appendix G OAuth 2.0 MAC Token Profile

429

should be the one returned from the previous step. If the client application set a value

for the redirect_uri parameter in the previous request, then it must include the same

value in the token request. The client can’t suggest to the authorization server the type of

token it expects: it’s entirely up to the authorization server to decide, or it can be based

on a pre-agreement between the client and the authorization server at the time of client

registration, which is outside the scope of OAuth.

The following cURL command to exchange the authorization code for a MAC token

is very similar to what you saw for the Bearer Token Profile (in Chapter 4). The only

difference is that this introduces a new parameter called audience, which is a must for a

MAC token request:

\> curl -v -X POST --basic

 -u 0rhQErXIX49svVYoXJGt0DWBuFca:eYOFkL756W8usQaVNgCNkz9C2D0a

 -H "Content-Type: application/x-www-form-urlencoded;charset=UTF-8"

 -k -d "grant_type=authorization_code&

 code=9142d4cad58c66d0a5edfad8952192&

 redirect_uri=https://mycallback&

 audience=https://resource-server-URI"

 https://authz.server.com/oauth2/token

The previous cURL command returns the following response:

HTTP/1.1 200 OK

Content-Type: application/json

Cache-Control: no-store

 {

 "access_token": "eyJhbGciOiJSU0ExXzUiLCJlbmMiOiJBM",

 "token_type":"mac",

 "expires_in":3600,

 "refresh_token":"8xLOxBtZp8",

 "kid":"22BIjxU93h/IgwEb4zCRu5WF37s=",

 "mac_key":"adijq39jdlaska9asud",

 "mac_algorithm":"hmac-sha-256"

}

Appendix G OAuth 2.0 MAC Token Profile

430

Let’s examine the definition of each parameter:

access_token: The OAuth 2.0 access token, which binds the client, the resource

owner, and the authorization server together. With the introduction of the audience

parameter, this now binds all of those with the resource server as well. Under the MAC

Token Profile, by decoding the access token, you should be able to find the audience of

the access token. If someone tampers with the access token to change the audience, that

will make the token validation fail automatically at the authorization server.

token_type: Type of the token returned from the authorization server. The client

should first try to understand the value of this parameter and begin processing

accordingly. The processing rules differ from one token type to another. Under the MAC

Token Profile, the value of the token type must be mac.

expires_in: The lifetime of the access token in seconds.

refresh_token: The refresh token associated with the access token. The refresh

token can be used to acquire a new access token.

kid: Stands for key identifier. This is an identifier generated by the authorization

server. It’s recommended that you generate the key identifier by base64 encoding the

hashed access token: kid = base64encode (sha-1 (access_token)). This identifier

uniquely identifies the mac_key used later to generate the MAC while invoking the

resource APIs.

mac_key: A session key generated by the authorization server, having the same

lifetime as the access token. The mac_key is a shared secret used later to generate the

MAC while invoking the resource APIs. The authorization server should never reissue

the same mac_key or the same kid.

mac_algorithm: The algorithm to generate the MAC during API invocation. The

value of the mac_algorithm should be well understood by the client, authorization

server, and resource server.

The OAuth 2.0 access token is opaque to anyone outside the authorization server.

It may or may not carry meaningful data, but no one outside the authorization server

should try to interpret it. The OAuth 2.0 MAC Token Profile defines a more meaningful

structure for the access token; it’s no longer an arbitrary string. The resource server

should understand the structure of the access token generated by the authorization

server. Still, the client should not try to interpret it.

Appendix G OAuth 2.0 MAC Token Profile

431

The access token returned from the authorization server to the client is encoded

with the audience, key identifier, and encrypted value of the mac_key. The mac_key

must be encrypted with the public key of the resource server or with a shared key

established between the resource server and the authorization server via a prior

agreement outside the scope of OAuth. When accessing a protected API, the client must

send the access token along with the request. The resource server can decode the access

token and get the encrypted mac_key, which it can later decrypt from its own private key

or the shared key.

OAUTH 2.0 AUDIENCE INFORMATION

The audience parameter is defined in the OAuth 2.0: Audience Information Internet

draft available at http://tools.ietf.org/html/draft-tschofenig-oauth-

audience-00. This is a new parameter introduced into the OAuth token request flow and is

independent of the token type. Once it’s approved as an IETF proposed standard, the Bearer

Token Profile also will be updated to include this in the access token request.

The objective of the audience parameter introduced by the OAuth 2.0: Audience Information

Internet draft is to identify the audience of an issued access token. With this, the access token

issued by the authorization server is for a specific client, to be used against a specific resource

server or a specific set of resource servers. All resource servers should validate the audience

of the access token before considering it valid.

After completing the authorization-granting phase, the client must decide which resource

server to access and should find the corresponding audience URI. That must be included in

the access token request to the token endpoint. Then the authorization server must check

whether it has any associated resource servers that can be identified by the provided audience

URI. If not, it must send back the error code invalid_request. If all validations pass at the

authorization server, the new Internet draft suggests including the allowed audience in the

access token. While invoking an API hosted in the resource server, it can decode the access

token and find out whether the allowed audience matches its own.

Appendix G OAuth 2.0 MAC Token Profile

http://tools.ietf.org/html/draft-tschofenig-oauth-audience-00
http://tools.ietf.org/html/draft-tschofenig-oauth-audience-00

432

�Invoking an API Protected with the OAuth 2.0
MAC Token Profile
Following any of the grant types, you can obtain a MAC token from the authorization

server. Unlike with the Bearer Token Profile, this needs more processing at the client end

before you invoke an API protected with the MAC Token Profile. Prior to invoking the

protected API, the client must construct an authenticator. The value of the authenticator

is then added to the HTTP authorization header of the outgoing request. The

authenticator is constructed from the following parameters:

kid: The key identifier from the authorization grant response.

ts: Timestamp, in milliseconds, since January 1, 1970.

seq-nr: Indicates the initial sequence number to be used during the message

exchange between the client and the resource server, from client to server.

access_token: The value of the access token from the authorization grant response.

mac: The value of the MAC for the request message. Later, this appendix discusses

how to calculate the MAC.

h: Colon-separated header fields, used to calculate the MAC.

cb: Specifies the channel binding. Channel bindings are defined in “Channel

Bindings for TLS,” RFC 5929, available at http://tools.ietf.org/html/rfc5929. The

Channel Bindings for TLS RFC defines three bindings: tls-unique, tls-server-end-

point, and tls-unique-for-telnet.

The following is a sample request to access an API secured with an OAuth 2.0 MAC

Token Profile.

GET /patient?name=peter&id=10909HTTP/1.1

Host: medicare.com

Authorization: MAC kid="22BIjxU93h/IgwEb4zCRu5WF37s=",

 ts="1336363200",

 seq-nr="12323",

 access_token="eyJhbGciOiJSU0ExXzUiLCJlbmMiOiJBM",

 mac="bhCQXTVyfj5cmA9uKkPFx1zeOXM=",

 h="host",

 cb="tls-unique:9382c93673d814579ed1610d3"

Appendix G OAuth 2.0 MAC Token Profile

http://tools.ietf.org/html/rfc5929

433

�Calculating the MAC
The OAuth 2.0 MAC Token Profile defines two algorithms to calculate the MAC: HMAC-

SHA1 and HMAC-SHA256. It also provides an extension for additional algorithms.

The Message Authentication Code (MAC) provides integrity and authenticity

assurance for the associated message. The MAC algorithm accepts a message and a

secret key to produce the associated MAC. To verify the MAC, the receiving party should

have the same key and calculate the MAC of the received message. If the calculated MAC

is equal to the MAC in the message, that guarantees integrity and authenticity.

A Hash-based Message Authentication Code (HMAC) is a specific way of calculating

the MAC using a hashing algorithm. If the hashing algorithm is SHA-1, it’s called

HMAC-SHA1. If the hashing algorithm is SHA256, then it’s called HMAC-SHA256.

More information about HMAC is available at http://tools.ietf.org/html/rfc2104.

The HMAC-SHA1 and HMAC-SHA256 functions need to be implemented in the

corresponding programming language.

Here’s the calculation with HMAC-SHA1:

mac = HMAC-SHA1(mac_key, input-string)

And here it is with HMAC-SHA256:

mac = HMAC-SHA256(mac_key, input-string)

For an API invocation request, the value of input-string is the Request-Line from

the HTTP request, the timestamp, the value of seq-nr, and the concatenated values of

the headers specified under the parameter h.

HTTP REQUEST-LINE

The HTTP Request-Line is defined in Section 5 of the HTTP RFC, available at www.w3.org/

Protocols/rfc2616/rfc2616-sec5.html. The request line is defined as follows:

Request-Line = Method SP Request-URI SP HTTP-Version CRLF

The value of Method can be OPTIONS, GET, HEAD, POST, PUT, DELETE, TRACE, CONNECT,

or any extension method. SP stands for space—to be technically accurate, it’s ASCII code

32. Request-URI identifies the representation of the resource where the request is sent.

According to the HTTP specification, there are four ways to construct a Request-URI:

Appendix G OAuth 2.0 MAC Token Profile

http://tools.ietf.org/html/rfc2104
http://www.w3.org/Protocols/rfc2616/rfc2616-sec5.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec5.html

434

Request-URI = "∗" | absoluteURI | abs_path | authority

The asterisk (*) means the request targets not a specific resource but the server itself, for

example, OPTIONS * HTTP/1.1.

The absoluteURI must be used when the request is made through a proxy, for example, GET

https://resource-server/myresource HTTP/1.1.

abs_path is the most common form of a Request-URI. In this case, the absolute path with

respect to the host server is used. The URI or the network location of the server is transmitted

in the HTTP Host header. For example:

GET /myresource HTTP/1.1

Host: resource-server

The authority form of the Request-URI is only used with HTTP CONNECT method. This

method is used to make a connection through a proxy with tunneling, as in the case of TLS

tunneling.

After the Request-URI must be a space and then the HTTP version, followed by a carriage

return and a line feed.

Let’s take the following example:

POST /patient?name=peter&id=10909&blodgroup=bpositive HTTP/1.1

Host: medicare.com

The value of the input-string is

POST /patient?name=peter&id=10909&blodgroup=bpositive HTTP/1.1 \n

1336363200 \n

12323 \n

medicare.com \n

1336363200 is the timestamp, 12323 is the sequence number, and medicare.com is

the value of the Host header. The value of the Host header is included here because it is

set in the h parameter of the API request under the HTTP Authorization header. All of

these entries should be separated by a newline separator character, denoted by \n in the

example. Once the input string is derived, the MAC is calculated on it using the mac_key

and the MAC algorithm specified under mac_algorithm.

Appendix G OAuth 2.0 MAC Token Profile

435

�MAC Validation by the Resource Server
To access any API secured with the OAuth 2.0 MAC Token Profile, the client should send

the relevant parameters with the API invocation request. If any of the parameters are

lacking in the request or the provided values are invalid, the resource server will respond

with an HTTP 401 status code. The value of the WWW-Authenticate header should be set

to MAC, and the value of the error parameter should explain the nature of the error:

HTTP/1.1 401 Unauthorized

WWW-Authenticate: MAC error="Invalid credentials"

Let’s consider the following valid API request, which comes with a

MAC header:

GET /patient?name=peter&id=10909HTTP/1.1

Host: medicare.com

Authorization: MAC kid="22BIjxU93h/IgwEb4zCRu5WF37s=",

 ts="1336363200",

 seq-nr="12323",

 access_token="eyJhbGciOiJSU0ExXzUiLCJlbmMiOiJBM",

 mac="bhCQXTVyfj5cmA9uKkPFx1zeOXM=",

 h="host",

 cb="tls-unique:9382c93673d814579ed1610d3"

To validate the MAC of the request, the resource server has to know the mac_key.

The client must pass the mac_key to the resource server, encoded in the access_token.

The first step in validation is to extract the mac_key from the access_token in the request.

Once the access_token is decoded, the resource server has to verify its audience. The

authorization server encodes the audience of the access_token into the access_token.

Once the access_token is verified and the scopes associated with it are validated, the

resource server can cache the mac_key by the kid. The cached mac_key can be used in

future message exchanges.

According to the MAC Token Profile, the access_token needs to be included only

in the first request from the client to the resource server. The resource server must use

the cached mac_key (against the kid) to validate subsequent messages in the message

exchange. If the initial access_token doesn’t have enough privileges to invoke a later

Appendix G OAuth 2.0 MAC Token Profile

436

API, the resource server can request a new access_token or a complete authenticator by

responding with an HTTP WWW-Authenticate header.

The resource server must calculate the MAC of the message the same way the client

did before and compare the calculated MAC with the value included in the request. If

the two match, the request can be considered a valid, legitimate one. But you still need

to make sure there are no replay attacks. To do that, the resource server must verify the

timestamp in the message by comparing it with its local timestamp.

An attacker that can eavesdrop on the communication channel between the client

and the resource server can record messages and replay them at a different time to gain

access to the protected resource. The OAuth 2.0 MAC Token Profile uses timestamps as a

way of detecting and mitigating replay attacks.

�OAuth Grant Types and the MAC Token Profile
OAuth grant types and token types are two independent extension points introduced in

the OAuth 2.0 core specification. They don’t have any direct dependency between each

other. This chapter only talks about the authorization code grant type, but all the other

grant types work in the same manner: the structure of the access token returning from

the implicit grant type, the resource owner password credentials grant type, and the

client credentials grant type is the same.

�OAuth 1.0 vs. OAuth 2.0 MAC Token Profile
Eran Hammer (who was initially the lead editor of the OAuth 2.0 specification)

submitted the initial OAuth 2.0 MAC Token Profile draft to the OAuth working group

in May 2011, and the first draft (also submitted by Hammer) followed with some

improvements in February 2012. Both drafts were mostly influenced by the OAuth 1.0

architecture. After a long break, and after Hammer’s resignation from the OAuth working

group, the Internet draft 4 of the MAC Token Profile introduced a revamped architecture.

This architecture, which was discussed in this chapter, has many architectural

differences from OAuth 1.0 (see Table G-1).

Appendix G OAuth 2.0 MAC Token Profile

437

Table G-1.  OAuth 1.0 vs. OAuth 2.0 MAC Token Profile

OAuth 1.0 OAuth 2.0 MAC Token Profile

Requires a signature both during the initial

handshake and during the business API

invocation.

Requires a signature only for the business API

invocation.

The resource server must know the secret

key used to sign the message beforehand.

The shared secret doesn’t have an

associated lifetime.

Doesn’t have any audience restrictions.

Tokens can be used against any resource

server.

The encrypted shared secret used to sign the message

is passed to the resource server, embedded in the

access_token.

A lifetime is associated with the mac_key, which is

used as the key to sign.

The authorization server enforces an audience

restriction on the issued access_tokens, so that

those access tokens can’t be used against any

resource server.

Appendix G OAuth 2.0 MAC Token Profile

439
© Prabath Siriwardena 2020
P. Siriwardena, Advanced API Security, https://doi.org/10.1007/978-1-4842-2050-4

Index

A
Access delegation problem, 81
Access token, 86, 93, 251
access_token parameter, 220
Additional authentication data (AAD),

185, 192, 194, 200
Advanced encryption standard

(AES), 49, 192
Alert protocol, 365
alias argument, 74
Amazon Web Services (AWS), 3, 51, 52, 103
Apache Directory Server (LDAP)

connections, 415
connecting Apache Tomcat, 417
organizational unit structure,

creation, 416
test connection, 416

Application programming interface (API)
Amazon, 3, 4
Big Data, 2
Business models, 12
database implementations, 15
definition, 13
Facebook, 6, 7
governments, 9
healthcare industry, 10
IBM Watson technology, 9
IoT, 2
Java RMI, 16
JDBC, 14

kernel, 13, 14
lifecycle, 22
management platform, 23
marshalling/unmarshalling

technique, 16
Netflix, 7
Open Bank, 10
ProgrammableWeb, 19
reasons, 3
Salesforce, 5
SOAP, 17
swagger, 24
Uber, 5, 6
UDDI, 23
Walgreens, 8
wearable industry, 11

Auditing, 65, 89
Authenticated Encryption with Associated

Data (AEAD), 191, 192, 194
Authentication, 59

biometric-based, 62
brute-force attack, 60
certificates and smart card–based, 61
identity provider, 59

Authorization, 62
access control list, 63
DAC, 62
MAC, 63

Authorization API, 389, 394, 396
Authorization API token (AAT), 389–391

https://doi.org/10.1007/978-1-4842-2050-4

440

Authorization code grant type
authorize endpoint, 85
callback URL, 85
lifetime, 86
token endpoint, 87

Availability, security triad, 57–58

B
Base64 encoding, 397, 398
Bearer tokens, 427
Brokered authentication

client applications, 258–260
OAuth authorization server, 258
OAuth principles, 259

Brokered delegation, 322–323
Browser-less apps, 237–240

C
Certificate authority (CA), 65, 74
Chained access delegation

API, 313
end user, 314
JWT access token, 314
OAuth 2.0 Token Delegation profile, 314
OpenID Connect, 314

Chain grant type profile, 216, 226
authorization server, 216, 226
resource server, 216
scope parameter, 216

Change Cipher Spec protocol, 365
Claim gathering

authorization policies, 286
claim_redirect_uri, 285
claim_token parameter, 284
HTTP redirect, 285
RPT, 285

client_assertion_type, 271
Client credentials grant type, 91, 92
client_id, 271
Code interception attack, 300, 301
Complete mediation principle, 49, 66
Computer Security Institute (CSI), 42
Content Encryption Key

(CEK), 189–191
Cross-Site Request Forgery (CSRF)

OAuth 2.0
attacker, 291
authorization code, 291, 293
callback URL, 292
PKCE, 293
state parameter, 293
target web site, 293
victim, 292

victim’s browser, 291
cURL command, 429

D
Database management systems

(DBMSs), 14
Data breaches, 34, 48, 66
Data Encryption Standard (DES), 49
Delegated access control

identity provider, 309, 310
JWT, 310, 311
no credentials, 318
OAuth 2.0 MAC tokens, 318
resource STS, 316–318

Denial of service (DoS), 21
Design challenges, 37

defense in depth, 41, 42
insider attacks, 42, 43
performance, 39, 40
security by obscurity, 44, 45

Index

441

user experience, 38
weakest links, 40, 41

Design principles, 45
Direct authentication, trusted

subsystem, 305, 306
Direct vs. brokered delegation, 322, 323
Direct encryption, 194, 203
Direct key agreement, 193, 203
Discretionary Access Control (DAC), 62, 63
Distributed denial of service

(DDoS), 33, 57, 125
Docker in Action, 78
docker run command, 78
Document type definition (DTD), 58
Domain Name Service (DNS), 76, 109
Dynamic client registration,

220–224, 226, 227

E
Economy of mechanism

principle, 48, 66
encryptedkey parameter, 198
Export ciphers, 47, 48
Exported keying material (EKM),

248, 250, 253
eXtensible Access Control Markup

Language (XACML), 63, 316

F
Facebook, 6–7, 35
Fail-safe defaults principle, 46–48
Federation

access token, 257
authorization code, 257
identity management systems, 257

Financial-grade API (FAPI), 287

Flickr, 8, 322, 327
Fraud-detection patterns, 65

G
Galois/Counter Mode (GCM), 192
GitHub, 402
Google AuthSub, 326–327
Google Docs, 279, 284, 302
grant_type parameter, 87, 91, 144
G Suite, 304

H
Handshake protocol, 365

Alert protocol, 365
Certificate Verify message, 372
Change Cipher Spec protocol, 365
Cipher suites, 370
Client Hello message, 367, 368
Client Key Exchange, 373
premaster key, 371
Server Change Cipher Spec, 374
Server Hello message, 369

Harvard Business Review (HBR), 43
Hash-based Message Authentication

Code (HMAC), 97, 158, 433
Hash collision attack (HashDoS), 58
HMAC-SHA256

JSON payload, 178, 180
non-JSON payload, 183, 184

HTTP basic authentication
GitHub API, accessing, 402–405
vs. HTTP digest authentication, 411
1.0 specification, 402
Recipe API, 418, 419

HTTP digest authentication
client key elements, 408, 410
MD5-sess, 410

Index

442

1.0 specification, 406
Recipe API, 422
RFC 2617, 410
server key elements, RFC 2617, 407
WWW-Authenticate challenge, 411

HTTP Request-Line, 433
Hypertext Transfer Protocol

(HTTP), 18, 358
Hypervisor, 52

I
iCloud password, 37
Identity delegation model, 321

evolution
Flickr, 327
Google AuthSub, 326, 327
Google client login, 325
history, 323
OAuth, 328–330
protocols, 330
SlideShare, pre-2006, 324
Twitter, pre-2006, 324
Yahoo! BBAuth, 327, 328

Identity provider mix-up, 287
attack, 289
authorization server, 290
callback URLs, 290
grant type, 290
IdP options, 288
IETF draft specification, 290
redirection, 289
TLS, 288

Identity theft resource center, 34
Implicit grant type, 88–90, 301, 302
Indirect delegation, 322
Infrastructure as a service (IaaS), 38, 52

Integrated development
environment (IDE), 70

Integrated Windows
Authentication (IWA), 308

Integrity, 56
Inter-app communication

HTTPS URI scheme, 234
loopback interface, 234
private URI scheme, 234

Internet of Things (IoT), 1
Internet Protocol (IP), 359

J
Java Database Connectivity (JDBC), 14, 15
Java KeyStore (JKS), 74
JavaScript object signing and

encryption (JOSE)
claims set, 160, 161

specification, 161–163
header, 158
parameters, 159
signature, 163–166
working groups, 166

JSON Web Encryption (JWE), 136, 185
JSON Web Signature (JWS), 56, 136, 167

compact serialization (see JWS
compact serialization)

JWS JSON serialization (see JWS JSON
serialization)

JSON Web Signature,
nonrepudiation, 311, 312

JSON Web Token (JWT), 97, 121,
134, 157, 267

aud parameter, 274
authorization server, 121, 123, 124
exp parameter, 275
MAC, 275

HTTP digest authentication (cont.)

Index

443

nbf parameter, 275
token validation, 274

JWE compact serialization, 185
ciphertext, 194
initialization vector, 194
JOSE header, 186, 188–191
JWE Encrypted Key, 191
process of encryption, 195, 196

JWE JSON serialization, 196
authentication tag, 199
ciphertext, 198
encryption process, 199, 200
initialization vector, 198
per-recipient unprotected header, 198
protected header, 197
unprotected header, 197

JWE vs. JWS, 202, 203
JWS compact serialization

JOSE header, 167, 169–172
JWS payload, 172
JWS signature, 172
process of signing, 172, 173

JWS JSON serialization, 174
building ingredients, 176, 177
payload, 174
protected header, 175
signature, 175
unprotected header, 175

JWT client authentication
application, 271–273
OAuth authorization server, 270
parameters, 271
RFC 7523, 271

JWT grant type
applications, 269, 270
assertion, 268
grant_type, 268
identity provider, 267

OAuth 2.0, grant types, 267
RFC 7521, 268
scope parameter, 268

JWT Secured Authorization Request
(JAR), 97, 98

K
Keep it simple, stupid (KISS)

principle, 48
Kerckhoffs’ principle, 44, 66
Key agreement, key wrapping, 193
Key encryption, 193
Key generation, 247
Key wrapping, 193

L
Least common mechanism, 52, 53
Lightweight directory access protocol

(LDAP), 40
Linux Security Modules (LSM), 63

M
MD5 algorithm, 38
Message Authentication Code

(MAC), 64, 275
Message Authentication Code

(MAC) Token Profile, 425
Microservices

business capabilities, 29
componentization, 28
decentralized governance, 30
design for failure, 31
infrastructure automation, 30
products, 29
smart endpoints, 29

Index

444

Microsoft Active Directory (AD), 305
Mobile Single Sign-On (SSO), login

direct credentials, 228, 229
system browser, 230, 231
WebView, 229, 230

Multifactor authentication, 59, 60
Mutual Transport Layer Security

(mTLS), 220, 305

N
National Security Agency (NSA), 41, 46, 355
Nested JWT, 201, 207, 209
Netflix API, 25
Nginx, 246, 254
Nonrepudiation, 64, 65, 312

O
OAuth 1.0

oauth signature
building signature, 343
business API invocation, 344, 346
PLAINTEXT method, 340
temporary-credential request

phase, 340, 342
token credential request

phase, 342
three-legges vs. two-legged

oauth, 346
token dance

business API, invoking, 338, 339
resource-owner authorization

phase, 335
temporary-credential request

endpoint, 333, 334
token-credential request

phase, 336, 337

OAuth 1.0 vs. OAuth 2.0, 96
OAuth 2.0

access delegation problem, 81, 83
actors role, 83
client types

confidential clients, 96
public clients, 96

MAC Token Profile
access token, 431
audience parameter, 431
vs. Bearer token, 427
cURL command, 429
grant types, 436
HMAC-SHA1, 433
HMAC-SHA256, 433
parameter, 430
protected API invocation, 432
HTTP Request-Line, 433, 434
resource server, validation, 435, 436
response_type value, 428

refresh token, 92
WRAP (see Web resource authorization

profiles (WRAP))
OAuth 2.0 device authorization grant

authorization request, 239, 240
authorization server, 238
draft proposal, 237
expires_in parameter, 239
grant_type parameter, 239
login flow, 238

OAuth 2.0 Grant Types vs. OAuth
WRAP Profiles, 84

OAuth 2.0 MAC Token Profile vs.
OAuth 2.0, 437

OAuth 2.0, native mobile app
access token, 233
authorization, 233
Client Registration profile, 232

Index

445

identity provider, 232
inter-app (see Inter-app

communication)
login flow, 232
PKCE, 235–237
URL scheme, 233

OAuth 2.0 refresh tokens, 249
OAuth 2.0 token validation, 109
OAuth bearer token, 95
Open design principle, 49, 50
OpenID connect

Amazon, 132
API security, 154
directed identity, 131
dynamic client

registration, 151, 155
flow chart representation, 148
identity provider metadata, 149
ID token, 134

attributes, 134
JWE, 136
JWS, 136
JWT, 134

overview, 129
protocol flow, 131
relying party, 130
request attributes, 139
user attributes, 142, 145
WebFinger protocol, 146

identity provider, 149
rel parameter, 148
resource parameter, 148

Open policy agent (OPA), 64
Open redirector

attack, 299
attack, prevention, 299, 300
query parameter, 298
redirect_uri, 298

OpenSSL on Docker, 78, 79
Optimal asymmetric encryption padding

(OAEP) method, 192

P, Q
@PathVariable, 72
Perfect forward secrecy (PFS), 376
Personal financial management (PFM)

application, 277, 281
Phishing attack

domain name, 303
Facebook, 304
Google Docs, 302, 303
G Suite, 304

PLAINTEXT oauth_signature_method, 340
Principle of psychological acceptability, 53
Principle of separation of privilege

states, 51
Principles of least privilege, 45, 46
Profiles

chain grant type, 216–218
dynamic client registration

profile, 220–224
token introspection (see Token

introspection profile)
token revocation, 225, 226

Proof key for code exchange
(PKCE), 253, 293

authorization code, 235, 236
code_challenge, 236
code_verifier, 236, 237
defined, 235
login flow, 235

Proof of possession, 247–249
Protection API, 395
Protection API token (PAT), 387
ProtectServe protocol, 377, 378

Index

446

Public Key Cryptography Standards
(PKCS), 74

Pushed Authorization Requests
(PAR), 99, 100

R
Recipe API, 412, 413
Reference token, 121
Referred token binding, 251
Refresh grant type, 92
Refresh token, 88
Requesting party token (RPT), 283, 285
@RequestMapping, 72
Resource owner, 331
Resource owner password credentials

grant type, 90, 91
Resource security token service (STS),

316–318
@RestController, 72
RFC 2617, 406, 410
RFC 7523, 267, 270
Role of APIs

Netflix, 32
SOA, 28
vs. service, 25, 26

RPT endpoint, 391
RSA-OAEP and AES

JSON payload, 203–205
non-JSON payload, 206, 207

RSA-SHA256, JSON payload, 181, 182

S
SAML grant type

brokered authentication, 265, 266
OAuth Introspection specification, 267
out of band, 266

POST message, 266
trust broker, 265

SAML 2.0 client authentication
client_assertion parameter, 264
client_assertion_type, 261
SAML assertion, 262, 263

SAML 2.0 identity provider, 309
scope, 84
Sec-Token-Binding, 248
Secure Sockets Layer (SSL), 47
Security assertion markup language

(SAML), 98, 261
Security assertion markup language

(SAML) 2.0, 306
Security token service (STS)

OAuth 2.0 authorization
setting up, 110–112
testing, 112–114
Zuul API Gateway, 114–116

Self-contained token, 94, 121
Service-oriented architecture (SOA), 17, 28
SFSafariViewController, 232
Simple Web Token (SWT), 158
Single-page application (SPA), 295
Single Sign-On

delegated access control, 306–308
IWA, 308

Spring-boot-starter-actuator
dependency, 71

Spring initializer, 70
Spring tool suite (STS), 70
SYN ACK packet, 360, 361

T
TCP ACK packet, 361
TLS termination, 254, 255
Token-based authentication, 331

Index

447

Token binding, 248
key generation phase, 245
message, 248
negotiation phase, 244
OAuth 2.0 Authorization code/access

token, 251–254
OAuth 2.0 refresh tokens, 249–251
phases, 244
proof of possession phase, 245
TLS, 244

Token Binding Protocol specification
(RFC 8471), 248

Token Binding TLS extension, 246
token_endpoint_auth_method, 221
Token exchange

IETF working group, 217
JSON response, 220
parameters, 218, 219

Token introspection profile, 212, 226
HTTP authentication, 212
JSON response, 212
validation, 215

Token leakage/export, 296, 298
Token reuse

access token, 294
OAuth 2.0 client application, 294
OpenID Connect, 295
resource server, 294
security checks, 295
SPA, 295

Token revocation profile, 225, 226
Transmission control protocol

(TCP), 358–363
Transport Layer Security (TLS), 35, 47, 90,

107, 243, 406
Apache Tomcat, 420, 421
deploying order API, 71–73
directory, 70

Handshake (see Handshake protocol)
microservices development

framework, 69
mutual authentication, 376
Netscape communications, 356–358
online resources, 70
protecting order API, 76–78
role, 355
securing order API, 74–76
spring boot, 70
TCP, 358

HTTP, 358
IP functions, 359
layers, 359, 360
SYN ACK packet, 360, 361
TCP packet, 361, 362

working
application data transfer, 374, 375
layers, 365

Trinity of trouble, 34
extensibility, 36
system design, 37
TLS, 35

Trusted master access delegation
access token, 316
centralized Active Directory, 315
SSO, 316
web applications, 315
XACML, 316

Trusted platform module (TPM), 247

U
UMA 1.0

architecture, 384
phases

authorization, getting,
388–390, 392–394

Index

448

resources, accessing, 394
resources, protecting, 385, 387, 388

UMA 2.0, bank use case
cURL command, 280
introspection, 283
OpenID Connect, 282
PFM, 281, 282, 284
RPT, 283
UMA authorization server, 280

Uniform resource name (URN), 294
Universal 2nd Factor (U2F), 61
Universal description, discovery, and

integration (UDDI), 23
Unmanaged API, 20
User-Managed Access (UMA)

APIs
authorization, 396
protection, 395
Protection API, 394

authorization server, 279
OAuth, 384
bank accounts, 277, 278
defined, 277
Google Doc, 278, 279
ProtectServe protocol

authorization manager, 377
consumer, 380–383
flow, 378
service provider, 377
steps, 378

roles, 279
UMA 2.0 Grant, 280

V
Validity argument, 74
Virtual private cloud (VPC), 52

W
Web application description language

(WADL), 23
Web application firewall

(WAF), 125, 126
Web resource authorization profiles

(WRAP), 347
autonomous client

profiles, 348
Assertion profile, 350
client account profile, 349
Password profile, 349

grant types, 84, 354
authorization code, 85
client credentials, 92
implicit code, 89
resource owner, 90

protected resource, 354
token types, 94, 354

Bearer token profile, 94
MAC token profile, 94

user delegation profiles, 348
Rich APP profile, 353
username and password

profile, 350, 351
Web APP profile, 352

Web services description language
(WSDL), 17

Web services interoperability
(WS-I), 17

WebView, 229
WS-Trust, 262, 264

X
XACML, 64, 166
XML signature, 178

UMA 1.0 (cont.)

Index

449

Y
Yahoo! Browser–Based Authentication

(BBAuth), 327

Z
Zero-trust network pattern, 306
Zuul API gateway, 103

cURL client, 105
enable TLS, 107–109
JWT, 124, 125
OAuth 2.0 token

validation, 109
run, 105, 106
STS over TLS, 117–120

Index

	Table of Contents
	About the Author
	Acknowledgments
	Introduction
	Chapter 1: APIs Rule!
	API Economy
	Amazon
	Salesforce
	Uber
	Facebook
	Netflix
	Walgreens
	Governments
	IBM Watson
	Open Banking
	Healthcare
	Wearables
	Business Models

	The API Evolution
	API Management
	The Role of APIs in Microservices
	Summary

	Chapter 2: Designing Security for APIs
	Trinity of Trouble
	Design Challenges
	User Experience
	Performance
	Weakest Link
	Defense in Depth
	Insider Attacks
	Security by Obscurity

	Design Principles
	Least Privilege
	Fail-Safe Defaults
	Economy of Mechanism
	Complete Mediation
	Open Design
	Separation of Privilege
	Least Common Mechanism
	Psychological Acceptability

	Security Triad
	Confidentiality
	Integrity
	Availability

	Security Control
	Authentication
	Something You Know
	Something You Have
	Something You Are

	Authorization
	Nonrepudiation
	Auditing

	Summary

	Chapter 3: Securing APIs with Transport Layer Security (TLS)
	Setting Up the Environment
	Deploying Order API
	Securing Order API with Transport Layer Security (TLS)
	Protecting Order API with Mutual TLS
	Running OpenSSL on Docker
	Summary

	Chapter 4: OAuth 2.0 Fundamentals
	Understanding OAuth 2.0
	OAuth 2.0 Actors
	Grant Types
	Authorization Code Grant Type
	Implicit Grant Type
	Resource Owner Password Credentials Grant Type
	Client Credentials Grant Type
	Refresh Grant Type
	How to Pick the Right Grant Type?

	OAuth 2.0 Token Types
	OAuth 2.0 Bearer Token Profile

	OAuth 2.0 Client Types
	JWT Secured Authorization Request (JAR)
	Pushed Authorization Requests (PAR)
	Summary

	Chapter 5: Edge Security with an API Gateway
	Setting Up Zuul API Gateway
	Running the Order API
	Running the Zuul API Gateway
	What Happens Underneath?

	Enabling TLS for the Zuul API Gateway
	Enforcing OAuth 2.0 Token Validation at the Zuul API Gateway
	Setting Up an OAuth 2.0 Security Token Service (STS)
	Testing OAuth 2.0 Security Token Service (STS)
	Setting Up Zuul API Gateway for OAuth 2.0 Token Validation

	Enabling Mutual TLS Between Zuul API Gateway and Order Service
	Securing Order API with Self-Contained Access Tokens
	Setting Up an Authorization Server to Issue JWT
	Protecting Zuul API Gateway with JWT

	The Role of a Web Application Firewall (WAF)
	Summary

	Chapter 6: OpenID Connect (OIDC)
	From OpenID to OIDC
	Amazon Still Uses OpenID 2.0
	Understanding OpenID Connect
	Anatomy of the ID Token
	OpenID Connect Request
	Requesting User Attributes
	OpenID Connect Flows
	Requesting Custom User Attributes
	OpenID Connect Discovery
	OpenID Connect Identity Provider Metadata
	Dynamic Client Registration
	OpenID Connect for Securing APIs
	Summary

	Chapter 7: Message-Level Security with JSON Web Signature
	Understanding JSON Web Token (JWT)
	JOSE Header
	JWT Claims Set
	JWT Signature

	JSON Web Signature (JWS)
	JWS Compact Serialization
	JOSE Header
	JWS Payload
	JWS Signature

	The Process of Signing (Compact Serialization)
	JWS JSON Serialization
	JWS Payload
	JWS Protected Header
	JWS Unprotected Header
	JWS Signature

	The Process of Signing (JSON Serialization)

	Summary

	Chapter 8: Message-Level Security with JSON Web Encryption
	JWE Compact Serialization
	JOSE Header
	JWE Encrypted Key
	JWE Initialization Vector
	JWE Ciphertext
	JWE Authentication Tag
	The Process of Encryption (Compact Serialization)

	JWE JSON Serialization
	JWE Protected Header
	JWE Shared Unprotected Header
	JWE Per-Recipient Unprotected Header
	JWE Initialization Vector
	JWE Ciphertext
	JWE Authentication Tag

	The Process of Encryption (JSON Serialization)
	Nested JWTs
	Summary

	Chapter 9: OAuth 2.0 Profiles
	Token Introspection
	Chain Grant Type
	Token Exchange
	Dynamic Client Registration Profile
	Token Revocation Profile
	Summary

	Chapter 10: Accessing APIs via Native Mobile Apps
	Mobile Single Sign-On (SSO)
	Login with Direct Credentials
	Login with WebView
	Login with a System Browser

	Using OAuth 2.0 in Native Mobile Apps
	Inter-app Communication
	Private URI Schemes
	Claimed HTTPS URI Scheme
	Loopback Interface

	Proof Key for Code Exchange (PKCE)

	Browser-less Apps
	OAuth 2.0 Device Authorization Grant

	Summary

	Chapter 11: OAuth 2.0 Token Binding
	Understanding Token Binding
	Token Binding Negotiation
	Key Generation
	Proof of Possession

	TLS Extension for Token Binding Protocol Negotiation
	Key Generation
	Proof of Possession
	Token Binding for OAuth 2.0 Refresh Token
	Token Binding for OAuth 2.0 Authorization Code/Access Token
	TLS Termination
	Summary

	Chapter 12: Federating Access to APIs
	Enabling Federation
	Brokered Authentication
	Security Assertion Markup Language (SAML)
	SAML 2.0 Client Authentication
	SAML Grant Type for OAuth 2.0
	JWT Grant Type for OAuth 2.0
	Applications of JWT Grant Type
	JWT Client Authentication
	Applications of JWT Client Authentication
	Parsing and Validating JWT
	Summary

	Chapter 13: User-Managed Access
	Use Cases
	UMA 2.0 Roles
	UMA Protocol
	Interactive Claims Gathering
	Summary

	Chapter 14: OAuth 2.0 Security
	Identity Provider Mix-Up
	Cross-Site Request Forgery (CSRF)
	Token Reuse
	Token Leakage/Export
	Open Redirector
	Code Interception Attack
	Security Flaws in Implicit Grant Type
	Google Docs Phishing Attack
	Summary

	Chapter 15: Patterns and Practices
	Direct Authentication with the Trusted Subsystem
	Single Sign-On with the Delegated Access Control
	Single Sign-On with the Integrated Windows Authentication
	Identity Proxy with the Delegated Access Control
	Delegated Access Control with the JSON Web Token
	Nonrepudiation with the JSON Web Signature
	Chained Access Delegation
	Trusted Master Access Delegation
	Resource Security Token Service (STS) with the Delegated Access Control
	Delegated Access Control with No Credentials over the Wire
	Summary

	Appendix A: The Evolution of Identity Delegation
	Direct Delegation vs. Brokered Delegation
	The Evolution
	Google ClientLogin
	Google AuthSub
	Flickr Authentication API
	Yahoo! Browser–Based Authentication (BBAuth)
	OAuth

	Appendix B: OAuth 1.0
	The Token Dance
	Temporary-Credential Request Phase
	Resource-Owner Authorization Phase
	Token-Credential Request Phase
	Invoking a Secured Business API with OAuth 1.0

	Demystifying oauth_signature
	Generating the Base String in Temporary-Credential Request Phase
	Generating the Base String in Token Credential Request Phase
	Building the Signature
	Generating the Base String in an API Call

	Three-Legged OAuth vs. Two-Legged OAuth
	OAuth WRAP
	Client Account and Password Profile
	Assertion Profile
	Username and Password Profile
	Web App Profile
	Rich App Profile
	Accessing a WRAP-Protected API
	WRAP to OAuth 2.0

	Appendix C: How Transport Layer Security Works?
	The Evolution of Transport Layer Security (TLS)
	Transmission Control Protocol (TCP)
	How Transport Layer Security (TLS) Works
	Transport Layer Security (TLS) Handshake
	Application Data Transfer

	Appendix D: UMA Evolution
	ProtectServe
	UMA and OAuth

	UMA 1.0 Architecture
	UMA 1.0 Phases
	UMA Phase 1: Protecting a Resource
	UMA Phase 2: Getting Authorization
	UMA Phase 3: Accessing the Protected Resource

	UMA APIs
	Protection API
	Authorization API

	Appendix E: Base64 URL Encoding
	Appendix F: Basic/Digest Authentication
	HTTP Basic Authentication
	HTTP Digest Authentication

	Appendix G: OAuth 2.0 MAC Token Profile
	Bearer Token vs. MAC Token
	Obtaining a MAC Token
	Invoking an API Protected with the OAuth 2.0 MAC Token Profile
	Calculating the MAC
	MAC Validation by the Resource Server
	OAuth Grant Types and the MAC Token Profile
	OAuth 1.0 vs. OAuth 2.0 MAC Token Profile

	Index

