

Principles behind the Agile Manifesto

We follow these principles:

Our highest priority is to satisfy the customer through early and
continuous delivery of valuable software.

Welcome changing requirements, even late in development. Agile
processes harness change for the customer’s competitive advantage.

Deliver working software frequently, from a couple of weeks to a couple
of months, with a preference to the shorter timescale.

Business people and developers must work together daily throughout the
project.

Build projects around motivated individuals. Give them the environment
and support they need, and trust them to get the job done.

The most efficient and effective method of conveying information to and
within a development team is face-to-face conversation.

Working software is the primary measure of progress.

Agile processes promote sustainable development. The sponsors,
developers, and users should be able to maintain a constant pace
indefinitely.

Continuous attention to technical excellence and good design enhances
agility.

Simplicity—the art of maximizing the amount of work not done—is
essential.

The best architectures, requirements, and designs emerge from self-
organizing teams.

At regular intervals, the team reflects on how to become more effective,
then tunes and adjusts its behavior accordingly.

Manifesto for Agile Software Development

We are uncovering better ways of developing
software by doing it and helping others do it.
Through this work we have come to value:

Individuals and interactions over processes and tools
Working software over comprehensive documentation
Customer collaboration over contract negotiation
Responding to change over following a plan

That is, while there 1s value in the items on
the right, we value the items on the left more.

Kent Beck James Grenning Robert C. Martin
Mike Beedle Jim Highsmith Steve Mellor
Arie van Bennekum Andrew Hunt Ken Schwaber
Alistair Cockburn Ron Jeffries Jeff Sutherland
Ward Cunningham Jon Kern Dave Thomas

Martin Fowler Brian Marick

Agile Software
Development

Principles, Patterns, and Practices

Robert Cecil Martin

Alan Apt Series

Pearson Education, Inc.
Upper Saddle River, New Jersey 07458

Library of Congress Cataloging-in-Publication Data

Martin, Robert C.
Agile software development: principles, patterns, and practices / Robert Martin.
p. cm.
Includes bibliographical references and index.
ISBN 0-13-597444-5
1. Computer software—Development. 2. eXtreme programming. I. Title.

QA76.76.D47 M362 2002
005.1—dc21 2002070056

Vice President and Editorial Director, ECS: Marcia J. Horton
Publisher: Alan R Apt

Assistant Editor: Toni D. Holm

Editorial Assistant: Patrick Lindner

Vice President and Director of Production and Manufacturing, ESM: David W. Riccardi
Executive Managing Editor: Vince O’Brien

Assistant Managing Editor: Camille Trentacoste

Production Editor: Fran Daniele

Director of Creative Services: Paul Belfanti

Creative Director: Carole Anson

Cover Designer: Bruce Kenselaar

Art Editor: Greg Dulles

Manufacturing Manager: Trudy Pisciotti

Manufacturing Buyer: Lynda Castillo

Marketing Manager: Pamela Shaffer

Assistant Marketing Manager: Barrie Reinhold

Prentice © 2003 by Pearson Education, Inc.
Hall Pearson Education, Inc.
- Upper Saddle River, NJ 07458

—

The author and publisher of this book have used their best efforts in preparing this book.
These efforts include the development, research, and testing of the theories and programs

to determine their effectiveness. The author and publisher shall not be liable in any event
for incidental or consequential damages in connection with, or arising out of, the furnishing,
performance, or use of these programs.

All rights reserved. No part of this book may be reproduced, in any form or by any means,
without permission in writing from the publisher.

Printed in the United States of America

20 19 18 17 16 15 14
ISBN 0-13-597444-5

Pearson Education LTD., London

Pearson Education Australia PTY, Limited, Sydney
Pearson Education Singapore, Pte. Ltd.

Pearson Education North Asia Ltd., Hong Kong
Pearson Education Canada, Ltd., Toronto

Pearson Educacion de Mexico, S.A. de C.V.
Pearson Education—Japan, Tokyo

Pearson Education Malaysia, Pte. Ltd.

Pearson Education, Upper Saddle River, New Jersey

www. EBooksWerl d.ir

Foreword

I'm writing this foreword right after having shipped a major release of the Eclipse open source project. I'm still in
recovery mode, and my mind is bleary. But one thing remains clearer than ever: that people, not processes, are the
key to shipping a product. Our recipe for success is simple: work with individuals obsessed with shipping soft-
ware, develop with lightweight processes that are tuned to each team, and adapt constantly.

Double-clicking on developers from our teams reveals individuals who consider programming the focus of
development. Not only do they write code; they digest it constantly to maintain an understanding of the system.
Validating designs with code provides feedback that's crucial for getting confidence in a design. At the same time,
our developers understand the importance of patterns, refactoring, testing, incremental delivery, frequent builds,
and other best-practices of XP that have altered the way we view methodologies today.

Skill in this style of development is a prerequisite for success in projects with high technical risk and chang-
ing requirements. Agile development is low-key on ceremony and project documentation, but it's intense when it
comes to the day-to-day development practices that count. Putting these practices to work is the focus of this book.

Robert is a longtime activist in the object-oriented community, with contributions to C++ practice, design
patterns, and object-oriented design principles in general. He was an early and vocal advocate of XP and agile
methods. This book builds on these contributions, covering the full spectrum of agile development practice. It's an
ambitious effort. Robert makes it more so by demonstrating everything through case studies and lots of code, as
befits agile practice. He explains programming and design by actually doing it.

This book is crammed with sensible advice for software development. It's equally good whether you want to
become an agile developer or improve the skills you already have. I was looking forward to this book, and I wasn't
disappointed.

Erich Gamma
Object Technology International

For Ann Marie, Angela, Micah, Gina, Justin, Angelique, Matt, and Alexis . . .

There is no greater treasure,
Nor any wealthier trove,
Than the company of my family,
And the comfort of their love.

Preface

But Bob, you said you’d be done with the book last year.
—Claudia Frers, UML World, 1999

Agile development is the ability to develop software quickly, in the face of rapidly changing requirements. In order
to achieve this agility, we need to employ practices that provide the necessary discipline and feedback. We need to
employ design principles that keep our software flexible and maintainable, and we need to know the design pat-
terns that have been shown to balance those principles for specific problems. This book is an attempt to knit all
three of these concepts together into a functioning whole.

This book describes those principles, patterns, and practices and then demonstrates, how they are applied by
walking through dozens of different case studies. More importantly, the case studies are not presented as complete
works. Rather, they are designs in progress. You will see the designers make mistakes, and you will observe how
they identify the mistakes and eventually correct them. You will see them puzzle over conundrums and worry over
ambiguities and trade-offs. You will see the act of design.

The Devil Is in the Details

This book contains a lot of Java and C++ code. I hope you will carefully read that code since, to
a large degree, the code is the point of the book. The code is the actualization of what this book
has to say.

There is a repeating pattern to this book. It consists of a series of case studies of varying sizes.
Some are very small, and some require several chapters to describe. Each case study is preceded by
material that is meant to prepare you for it. For example, the Payroll case study is preceded by chap-
ters describing the object-oriented design principles and patterns used in the case study.

The book begins with a discussion of development practices and processes. That discussion is punctuated by
a number of small case studies and examples. From there, the book moves on to the topic of design and design
principles, and then to some design patterns, more design principles that govern packages, and more patterns. All
of these topics are accompanied by case studies.

Preface v

So prepare yourself to read some code and to pore over some UML diagrams. The book you are about to
read is very technical, and its lessons, like the devil, are in the details.

A Little History

Over six years ago, I wrote a book entitled Designing Object-Oriented C++ Applications using the Booch Method.
It was something of magnum opus for me, and I was very pleased with the result and with the sales.

This book started out as a second edition to Designing, but that’s not how it turned out. Very little remains of
the original book in these pages. Little more than three chapters have been carried through, and those chapters
have been massively changed. The intent, spirit, and many of the lessons of the book are the same. And yet, I've
learned a tremendous amount about software design and development in the six years since Designing came out.
This book reflects that learning.

What a half-decade! Designing came out just before the Internet collided with the planet. Since then, the
number of abbreviations we have to deal with has doubled. We have Design Patterns, Java, EJB, RMI, J2EE,
XML, XSLT, HTML, ASP, JSP, Servlets, Application Servers, ZOPE, SOAP, C#, .NET, etc., etc. Let me tell you,
it’s been hard to keep the chapters of this book reasonably current!

The Booch Connection

In 1997, I was approached by Grady Booch to help write the third edition of his amazingly successful Object-
Oriented Analysis and Design with Applications. | had worked with Grady before on some projects, and I had been
an avid reader and contributor to his various works, including UML. So I accepted with glee. I asked my good
friend Jim Newkirk to help out with the project.

Over the next two years, Jim and I wrote a number of chapters for the Booch book. Of course, that effort
meant that I could not put as much effort into this book as I would have liked, but I felt that the Booch book was
worth the contribution. Besides, this book was really just a second edition of Designing at the time, and my heart
wasn’t in it. If I was going to say something, I wanted to say something new and different.

Unfortunately, that version of the Booch book was not to be. It is hard to find the time to write a book during
normal times. During the heady days of the “.com” bubble, it was nearly impossible. Grady got ever busier with
Rational and with new ventures like Catapulse. So the project stalled. Eventually, I asked Grady and Addison—
Wesley if I could have the chapters that Jim and I wrote to include in this book. They graciously agreed. So several
of the case study and UML chapters came from that source.

The Impact of Extreme Programming

In late 1998, XP reared its head and challenged our cherished beliefs about software development. Should we cre-
ate lots of UML diagrams prior to writing any code, or should we eschew any kind of diagrams and just write lots
of code? Should we write lots of narrative documents that describe our design, or should we try to make the code
narrative and expressive so that ancillary documents aren’t necessary? Should we program in pairs? Should we
write tests before we write production code? What should we do?

This revolution came at an opportune time for me. During the middle to late 90s, Object Mentor was helping
quite a few companies with object-oriented (OO) design and project management issues. We were helping compa-
nies get their projects done. As part of that help, we instilled our own attitudes and practices into the teams.
Unfortunately, these attitudes and practices were not written down. Rather, they were an oral tradition that was
passed from us to our customers.

By 1998, I realized that we needed to write down our process and practices so that we could better articulate
them to our customers. So, I wrote many articles about process in the C++ Report.l These articles missed the
mark. They were informative, and in some cases entertaining, but instead of codifying the practices and attitudes

1. These articles are available in the “publications” section of http: / /www.objectmentor . com. There are four of them. The first
three are entitled “Iterative and Incremental Development” (I, II, III). The last is entitled “C.O.D.E Culled Object Development
procEss.”

vi Preface

that we actually used in our projects, they were an unwitting compromise to values that had been imposed upon me
for decades. It took Kent Beck to show me that.

The Beck Connection

In late 1998, as I was fretting over codifying the Object-Mentor process, I ran into Kent’s work on Extreme Pro-
gramming (XP). The work was scattered through Ward Cunningham’s wiki? and was mixed with the writings of
many others. Still, with some work and diligence I was able to get the gist of what Kent was talking about. I was
intrigued, but skeptical. Some of the things that XP talked about were exactly on target for my concept of a devel-
opment process. Other things, however, like the lack of an articulated design step, left me puzzled.

Kent and I could not have come from more disparate software circumstances. He was a recognized Smalltalk
consultant, and I was a recognized C++ consultant. Those two worlds found it difficult to communicate with one
another. There was an almost Kuhnian? paradigm gulf between them.

Under other circumstances, I would never have asked Kent to write an article for the C++ Report. But the
congruence of our thinking about process was able to breech the language gulf. In February of 1999, I met Kent in
Munich at the OOP conference. He was giving a talk on XP in the room across from where I was giving a talk on
principles of OOD. Being unable to hear that talk, I sought Kent out at lunch. We talked about XP, and I asked him
to write an article for the C++ Report. It was a great article about an incident in which Kent and a coworker had
been able to make a sweeping design change in a live system in a matter of an hour or so.

Over the next several months, I went through the slow process of sorting out my own fears about XP. My
greatest fear was in adopting a process in which there is no explicit up-front design step. I found myself balking at
that. Didn’t I have an obligation to my clients, and to the industry as a whole, to teach them that design is impor-
tant enough to spend time on?

Eventually, I realized that I did not really practice such a step myself. Even in all the articles and books I had
written about design, Booch diagrams, and UML diagrams, I had always used code as a way to verify that the dia-
grams were meaningful. In all my customer consulting, I would spend an hour or two helping them to draw dia-
grams and then I would direct them to explore those diagrams with code. I came to understand that though XP’s
words about design were foreign (in a Kuhnian®* sense), the practices behind the words were familiar to me.

My other fears about XP were easier to deal with. I had always been a closet pair programmer. XP gave me
a way to come out of the closet and revel in my desire to program with a partner. Refactoring, continuous integra-
tion, and customer on-site were all very easy for me to accept. They were very close to the way I already advised
my customers to work.

One practice of XP was a revelation for me. Test-first design sounds innocuous when you first hear it. It says
to write test cases before you write production code. All production code is written to make failing test cases pass.
I was not prepared for the profound ramifications that writing code this way would have. This practice has
completely transformed the way I write software, and transformed it for the better. You can see that transformation
in this book. Some of the code written in this book was written before 1999. You won’t find test cases for that code.
On the other hand, all of the code written after 1999 is presented with test cases, and the test cases are typically
presented first. I’'m sure you’ll note the difference.

So, by the fall of 1999 I was convinced that Object Mentor should adopt XP as its process of choice and that
I should let go of my desire to write my own process. Kent had done an excellent job of articulating the practices
and process of XP, and my own feeble attempts paled in comparison.

2. http://c2.com/cgi/wiki. This website contains a vast number of articles on an immense variety of subjects. Its authors number
in the hundreds or thousands. It has been said that only Ward Cunningham could instigate a social revolution using a few lines of Perl.

3. Any credible intellectual work written between 1995 and 2001 must use the term “Kuhnian.” It refers to the book, The Structure of Sci-
entific Revolutions, by Thomas S. Kuhn, The University of Chicago Press, 1962.

4. If you mention Kuhn twice in a paper, you get extra credit.

Preface vii

Organization
This book is organized into six major sections followed by several appendices.

* Section 1: Agile Development.
This section describes the concept of agile development. It starts with the Manifesto of the Agile Alliance, provides
an overview of Extreme Programming (XP), and then goes into many small case studies that illuminate some of the
individual XP practices—especially those that have an impact upon the way we design and write code.

* Section 2: Agile Design
The chapters in this section talk about object-oriented software design. The first chapter asks the question,
What is Design? It discusses the problem of, and techniques for, managing complexity. Finally, the section
culminates with the principles of object-oriented class design.

e Section 3: The Payroll Case Study
This is the largest and most complete case study in the book. It describes the object-oriented design and C++
implementation of a simple batch payroll system. The first few chapters in this section describe the design
patterns that the case study encounters. The final two chapters contain the full case study.

» Section 4: Packaging the Payroll System
This section begins by describing the principles of object-oriented package design. It then goes on to illus-
trate those principles by incrementally packaging the classes from the previous section.

* Section 5: The Weather Station Case Study
This section contains one of the case studies that was originally planned for the Booch book. The Weather
Station study describes a company that has made a significant business decision and explains how the Java
development team responds to it. As usual, the section begins with a description of the design patterns that
will be used and then culminates in the description of the design and implementation.

* Section 6: The ETS Case Study
This section contains a description of an actual project that the author participated in. This project has been
in production since 1999. It is the automated test system used to deliver and score the registry examination
for the National Council of Architectural Registration Boards.

* UML Notation Appendices
The first two appendices contains several small case studies that are used to describe the UML notation.

* Miscellaneous Appendices

How to Use This Book

If You are a Developer...
Read the book cover to cover. This book was written primarily for developers, and it contains the information you
need to develop software in an agile manner. Reading the book cover to cover introduces practices, then principles,
then patterns, and then it provides case studies that tie them all together. Integrating all this knowledge will help
you get your projects done.

If You Are a Manager or Business Analyst...
Read Section 1, Agile Development. The chapters in this section provide an in-depth discussion of agile principles
and practices. They’ll take you from requirements to planning to testing, refactoring, and programming. It will
give you guidance on how to build teams and manage projects. It will help you get your projects done.

If You Want to Learn UML...
First read Appendix A, UML Notation I: The CGI Example. Then read Appendix B, UML Notation II: The
STATMUX. Then, read all the chapters in Section 3, The Payroll Case Study. This course of reading will give you a
good grounding in both the syntax and use of UML. It will also help you translate between UML and a program-
ming language like Java or C++.

viii Preface

If You Want to Learn Design Patterns...

To find a particular pattern, use the “List of Design Patterns” on page xxii to find the pattern you are
interested in.

To learn about patterns in general, read Section 2, Agile Design to first learn about design principles, and
then read Section 3, The Payroll Case Study;, Section 4, Packaging the Payroll System; Section 5, The Weather Sta-
tion Case Study; and Section 6, The ETS Case Study. These sections define all the patterns and show how to use
them in typical situations.

If You Want to Learn about Object-Oriented Design Principles...

Read Section 2, Agile Design; Section 3, The Payroll Case Study; and Section 4, Packaging the Payroll System.
These chapters will describe the principles of object-oriented design and will show you how to use them.

If You Want to Learn about Agile Development Methods...

Read Section 1, Agile Development. This section describes agile development from requirements to planning, test-
ing, refactoring, and programming.

If You Want a Chuckle or Two...
Read Appendix C, A Satire of Two Companies.

Acknowledgments

A heartfelt thanks to:

Lowell Lindstrom, Brian Button, Erik Meade, Mike Hill, Michael Feathers, Jim Newkirk, Micah Martin,
Angelique Thouvenin Martin, Susan Rosso, Talisha Jefferson, Ron Jeffries, Kent Beck, Jeff Langr, David Farber,
Bob Koss, James Grenning, Lance Welter, Pascal Roy, Martin Fowler, John Goodsen, Alan Apt, Paul Hodgetts,
Phil Markgraf, Pete McBreen, H. S. Lahman, Dave Harris, James Kanze, Mark Webster, Chris Biegay, Alan
Francis, Fran Daniele, Patrick Lindner, Jake Warde, Amy Todd, Laura Steele, William Pietr, Camille Trentacoste,
Vince O’Brien, Gregory Dulles, Lynda Castillo, Craig Larman, Tim Ottinger, Chris Lopez, Phil Goodwin, Charles
Toland, Robert Evans, John Roth, Debbie Utley, John Brewer, Russ Ruter, David Vydra, Ian Smith, Eric Evans,
everyone in the Silicon Valley Patterns group, Pete Brittingham, Graham Perkins, Phlip, and Richard MacDonald.

The books reviewers:

Pete McBreen / McBreen Consulting Bjarne Stroustrup / AT & T Research
Stephen J. Mellor / Projtech.com Micah Martin / Object Mentor Inc.
Brian Button / Object Mentor Inc. James Grenning / Object Mentor Inc.

A very special thanks to Grady Booch and Paul Becker for allowing me to include chapters that were origi-
nally slated for Grady’s third edition of Object Oriented Analysis and Design with Applications.

A special thanks to Jack Reeves for graciously allowing me to reproduce his “What is Design?” article.

Another special thanks to Erich Gamma, for writing the forward to this book. I hope the fonts are better this
time Erich!

The wonderful and sometimes dazzling illustrations at the head of each chapter were drawn by Jennifer
Kohnke. The decorative illustrations scattered throughout the midst of the chapters are the lovely product of
Angela Dawn Martin Brooks, my daughter, and one of the joys of my life.

Resources

All the source code in this book can be downlcaded from www . objectmentor . com/PPP.

About the Authors

Robert C. Martin

Robert C. Martin (Uncle Bob) has been a software professional since 1970 and an international software consult-
ant since 1990. He is founder and president of Object Mentor Inc., a team of experienced consultants who mentor
their clients worldwide in the fields of C++, Java, .NET, OO, Patterns, UML, Agile Methodologies, and Extreme
Programming. In 1995, Robert authored the best-selling book: Designing Object Oriented C++ Applications
using the Booch Method, published by Prentice Hall. From 1996 to 1999 he was the editor-in-chief of the C++
Report. In 1997, he was chief editor of the book: Pattern Languages of Program Design 3, published by Addison—
Wesley. In 1999, he was the editor of More C++ Gems published by Cambridge Press. He is co-author, with James
Newkirk, of XP in Practice, Addision—Wesley, 2001. In 2002, he wrote the long awaited Agile Software Develop-
ment: Principles, Patterns, and Practices, Prentice Hall, 2002. He has published dozens of articles in various trade
journals, and is a regular speaker at international conferences and trade shows. And he's as happy as a clam.

James W. Newkirk

James Newkirk is a Software Development Manager/Architect. His eighteen years of experience ranges from pro-
gramming real-time micro-controllers to web services. He co-wrote Extreme Programming in Practice, published
by Addison—Wesley, 2001. Since August of 2000 he has been working with the .NET Framework and has contrib-
uted to the development of NUnit, a unit-testing tool for .NET.

Robert S. Koss

Robert S. Koss, Ph.D., has been writing software for 29 years. He has applied the principles of Object Oriented
Design to many projects where he has served in roles ranging from programmer to senior architect. Dr. Koss has
taught hundreds of OOD and programming language courses to thousands of students throughout the world. He is
currently employed as a Senior Consultant at Object Mentor, Inc.

Brief Contents

Section 1 Agile Development 1
Chapter 1 Agile Practices 3
Chapter 2 Overview of Extreme Programming 11
Chapter 3 Planning 19
Chapter 4 Testing 23
Chapter 5 Refactoring 31
Chapter 6 A Programming Episode 43
Section 2 Agile Design 85
Chapter 7 What Is Agile Design? 87
Chapter 8 SRP: The Single-Responsibility Principle 95
Chapter 9 OCP: The Open—Closed Principle 99
Chapter 10 LSP: The Liskov Substitution Principle 111
Chapter 11 DIP: The Dependency-Inversion Principle 127
Chapter 12 1SP: The Interface-Segregation Principle 135
Section 3 The Payroll Case Study 147
Chapter 13 COMMAND and ACTIVE OBJECT 151
Chapter 14 TEMPLATE METHOD & STRATEGY: Inheritance vs. Delegation 161
Chapter 15 FACADE and MEDIATOR 173

Chapter 16 SINGLETON and MONOSTATE 177

Brief Contents

xi

Chapter 17 NULL OBJECT 189
Chapter 18 The Payroll Case Study: Iteration One Begins 193
Chapter 19 The Payroll Case Study: Implementation 205
Section 4 Packaging the Payroll System 251
Chapter 20 Principles of Package Design 253
Chapter 21 FACTORY 269
Chapter 22 The Payroll Case Study (Part 2) 275
Section 5 The Weather Station Case Study 291
Chapter 23 COMPOSITE 293
Chapter 24 OBSERVER—Backing into a Pattern 297
Chapter 25 ABSTRACT SERVER, ADAPTER, and BRIDGE 317
Chapter 26 PROXY and STAIRWAY TO HEAVEN: Managing Third Party APIs 327
Chapter 27 Case Study: Weather Station 355
Section 6 'The ETS Case Study 385
Chapter 28 VISITOR 387
Chapter 29 STATE 419
Chapter 30 The ETS Framework 443
Appendix A UML Notation I: The CGI Example 467
Appendix B UML Notation II: The STATMUX 489
Appendix C A Satire of Two Companies 507
Appendix D The Source Code Is the Design 517

Index

525

Contents

Foreword iii
Preface iv
About the Authors ix
List of Design Patterns xxii
Section 1 Agile Development 1
Chapter 1 Agile Practices 3
The Agile Alliance 4

The Manifesto of the Agile Alliance 4

Principles 6

Conclusion 8
Bibliography 9

Chapter 2 Overview of Extreme Programming 11
The Practices of Extreme Programming 11

Customer Team Member 11

User Stories 12

Short Cycles 12

Acceptance Tests 13

Pair Programming 13

Test-Driven Development 14

Collective Ownership 14

Continuous Integration 14

Sustainable Pace 15

Open Workspace 15

The Planning Game 15

Simple Design 15

Refactoring 16

Metaphor 16

Conclusion 17
Bibliography 17

Xii

Contents

xiii

Chapter 3 Planning 19
Initial Exploration 20

Spiking, Splitting, and Velocity 20

Release Planning 20

Iteration Planning 21

Task Planning 21

The Halfway Point 22

Iterating 22

Conclusion 22
Bibliography 22

Chapter 4 Testing 23
Test Driven Development 23

An Example of Test-First Design 24

Test Isolation 25

Serendipitous Decoupling 26

Acceptance Tests 27

Example of Acceptance Testing 27

Serendipitous Architecture 29

Conclusion 29
Bibliography 29

Chapter 5 Refactoring 31
Generating Primes: A Simple Example of Refactoring 32

The Final Reread 38

Conclusion 42
Bibliography 42

Chapter 6 A Programming Episode 43
The Bowling Game 44

Conclusion 82

Section 2 Agile Design 85
Symptoms of Poor Design 85

Principles 86

Smells and Principles 86

Bibliography 86

Chapter 7 What Is Agile Design? 87
What Goes Wrong with Software? 87

Design Smells—The Odors of Rotting Software 88

What Stimulates the Software to Rot? 89

Agile Teams Don’t Allow the Software to Rot 90

The “Copy” Program 90

Agile Design of the Copy Example 93

How Did the Agile Developers Know What to Do? 94

Keeping the Design As Good As It Can Be 94

Conclusion 94
Bibliography 94

xiv

Chapter 8

Chapter 9

Chapter 10

Contents

SRP: The Single-Responsibility Principle 95
A CLASS SHOULD HAVE ONLY ONE REASON TO CHANGE.

SRP: The Single-Responsibility Principle 95
What Is a Responsibility? 97
Separating Coupled Responsibilities 97
Persistence 98

Conclusion 98

Bibliography 98

OCP: The Open-Closed Principle 99

SOFTWARE ENTITIES (CLASSES, MODULES, FUNCTIONS, ETC.) SHOULD BE OPEN
FOR EXTENSION, BUT CLOSED FOR MODIFICATION.

OCP: The Open—Closed Principle 99

Description 100

Abstraction Is the Key 100

The shape Application 101
Violating the OCP 101
Conforming to the OCP 103
OK, I Lied 104
Anticipation and “Natural” Structure 105
Putting the “Hooks” In 105
Using Abstraction to Gain Explicit Closure 106
Using a “Data-Driven” Approach to Achieve Closure 107

Conclusion 108

Bibliography 109

LSP: The Liskov Substitution Principle 111

SUBTYPES MUST BE SUBSTITUTABLE FOR THEIR BASE TYPES.

LSP: The Liskov Substitution Principle 111

A Simple Example of a Violation of the LSP 112

Square and Rectangle, a More Subtle Violation 113
The Real Problem 115
Validity Is Not Intrinsic 116
ISA Ts about Behavior 116
Design by Contract 117
Specifying Contracts in Unit Tests 117

A Real Example 117
Motivation 118
Problem 119
A Solution That Does Not Conform to the LSP 120
An LSP-Compliant Solution 120

Factoring Instead of Deriving 121

Heuristics and Conventions 124
Degenerate Functions in Derivatives 124
Throwing Exceptions from Derivatives 124

Conclusion 125

Bibliography 125

Contents

Xv

Chapter 11 DIP: The Dependency-Inversion Principle 127
A. HIGH-LEVEL MODULES SHOULD NOT DEPEND UPON LOW-LEVEL MODULES.
BOTH SHOULD DEPEND ON ABSTRACTIONS.
B. ABSTRACTIONS SHOULD NOT DEPEND ON DETAILS. DETAILS SHOULD
DEPEND ON ABSTRACTIONS.
DIP: The Dependency-Inversion Principle 127
Layering 128
An Inversion of Ownership 128
Depend on Abstractions 129
A Simple Example 130
Finding the Underlying Abstraction 131
The Furnace Example 132
Dynamic v. Static Polymorphism 133
Conclusion 134
Bibliography 134
Chapter 12 1SP: The Interface-Segregation Principle 135
Interface Pollution 135
Separate Clients Mean Separate Interfaces 137
The Backwards Force Applied by Clients Upon Interfaces 137
CLIENTS SHOULD NOT BE FORCED TO DEPEND ON METHODS THAT THEY DO
NOT USE.
ISP: The Interface-Segregation Principle 137
Class Interfaces v. Object Interfaces 138
Separation through Delegation 138
Separation through Multiple Inheritance 139
The ATM User Interface Example 139
The Polyad v. the Monad 144
Conclusion 145
Bibliography 145
Section 3 The Payroll Case Study 147
Rudimentary Specification of the Payroll System 148
Exercise 148
Use Case 1: Add New Employee 148
Use Case 2: Deleting an Employee 149
Use Case 3: Post a Time Card 149
Use Case 4: Posting a Sales Receipt 149
Use Case 5: Posting a Union Service Charge 150
Use Case 6: Changing Employee Details 150
Use Case 7: Run the Payroll for Today 150
Chapter 13 COMMAND and ACTIVE OBJECT 151
Simple Commands 152
Transactions 153
Physical and Temporal Decoupling 154
Temporal Decoupling 154

UNDO

154

xvi

Chapter 14

Chapter 15

Chapter 16

Chapter 17

Chapter 18

Contents

ACTIVE OBJECT 155

Conclusion 159
Bibliography 159
TEMPLATE METHOD & STRATEGY: Inheritance vs. Delegation 161
TEMPLATE METHOD 162
Pattern Abuse 164
Bubble Sort 165
STRATEGY 168
Sorting Again 170
Conclusion 172
Bibliography 172
FACADE and MEDIATOR 173
FACADE 173
MEDIATOR 174
Conclusion 176
Bibliography 176
SINGLETON and MONOSTATE 177
SINGLETON 178
Benefits of the SINGLETON 179
Costs of the SINGLETON 179
SINGLETON in Action 179
MONOSTATE 180
Benefits of MONOSTATE 182
Costs of MONOSTATE 182
MONOSTATE in Action 182
Conclusion 187
Bibliography 187
NULL OBJECT 189
Conclusion 192
Bibliography 192
The Payroll Case Study: Iteration One Begins 193
Introduction 193
Specification 193
Analysis by Use Cases 194
Adding Employees 195
Deleting Employees 196
Posting Time Cards 196
Posting Sales Receipts 197
Posting a Union Service Charge 197
Changing Employee Details 198
Payday 199
Reflection: What Have We Learned? 201
Finding the Underlying Abstractions 201

The Schedule Abstraction 201

Contents

xvii

Payment Methods 202
Affiliations 202
Conclusion 203
Bibliography 203
Chapter 19 The Payroll Case Study: Implementation 205
Adding Employees 206
The Payroll Database 207
Using TEMPLATE METHOD to Add Employees 209
Deleting Employees 212
Global Variables 213
Time Cards, Sales Receipts, and Service Charges 214
Changing Employees 220
Changing Classification 224
What Was I Smoking? 229
Paying Employees 233
Do We Want Developers Making Business Decisions? 235
Paying Salaried Employees 235
Paying Hourly Employees 237
Pay Periods: A Design Problem 241
Main Program 248
The Database 248
Summary of Payroll Design 249
History 249
Resources 250
Bibliography 250
Section 4 Packaging the Payroll System 251
Chapter 20 Principles of Package Design 253
Designing with Packages? 253
Granularity: The Principles of Package Cohesion 254
The Reuse—Release Equivalence Principle (REP) 254
THE GRANULE OF REUSE IS THE GRANULE OF RELEASE.
The Common-Reuse Principle (CRP) 255
THE CLASSES IN A PACKAGE ARE REUSED TOGETHER. IF YOU REUSE ONE OF THE
CLASSES IN A PACKAGE, YOU REUSE THEM ALL.
The Common-Closure Principle (CCP) 256
THE CLASSES IN A PACKAGE SHOULD BE CLOSED TOGETHER AGAINST THE SAME
KINDS OF CHANGES. A CHANGE THAT AFFECTS A PACKAGE AFFECTS ALL THE
CLASSES IN THAT PACKAGE AND NO OTHER PACKAGES.
Summary of Package Cohesion 256
Stability: The Principles of Package Coupling 256
The Acyclic-Dependencies Principle (ADP) 256
ALLOW NO CYCLES IN THE PACKAGE DEPENDENCY GRAPH.
The Weekly Build 257
Eliminating Dependency Cycles 257
The Effect of a Cycle in the Package Dependency Graph 258

xviii

Contents

Breaking the Cycle 259

The “Jitters” 259

Top-Down Design 260

The Stable-Dependencies Principle (SDP) 261

DEPEND IN THE DIRECTION OF STABILITY.

Stability 261

Stability Metrics 262

Not All Packages Should Be Stable 263

Where Do We Put the High-level Design? 264

The Stable-Abstractions Principle (SAP) 264

A PACKAGE SHOULD BE AS ABSTRACT AS IT IS STABLE.

Measuring Abstraction 265

The Main Sequence 265

Distance from the Main Sequence 266

Conclusion 268

Chapter 21 FACTORY 269
A Dependency Cycle 271
Substitutable Factories 272

Using Factories for Test Fixtures 273

How Important Is It to Use Factories? 274

Conclusion 274
Bibliography 274

Chapter 22 The Payroll Case Study (Part 2) 275
Package Structure and Notation 276

Applying the Common Closure Principle (CCP) 277

Applying the Reuse—Release Equivalency Principle (REP) 278

Coupling and Encapsulation 279

Metrics 281

Applying the Metrics to the Payroll Application 282

Object Factories 285

The Object Factory for TransactionImplementation 286

Initializing the Factories 286

Rethinking the Cohesion Boundaries 287

The Final Package Structure 287

Conclusion 290
Bibliography 290

Section 5 The Weather Station Case Study 291
Chapter 23 COMPOSITE 293
Example: Composite Commands 294

Multiplicity or Not Multiplicity 295

Chapter 24 OBSERVER—Backing into a Pattern 297
The Digital Clock 297

Contents

Chapter 25

Chapter 26

Chapter 27

Conclusion

The Use of Diagrams in this Chapter
The OBSERVER Pattern

How OBSERVER Manages the Principles of OOD
Bibliography

ABSTRACT SERVER, ADAPTER, and BRIDGE
ABSTRACT SERVER

Who Owns the Interface?
Adapter

The Class Form of ADAPTER

The Modem Problem, ADAPTERS and LSP
BRIDGE
Conclusion
Bibliography

PROXY and STAIRWAY TO HEAVEN: Managing Third Party APIs

PrROXY
Proxifying the Shopping Cart
Summary of PROXY

Dealing with Databases, Middleware, and Other Third Party Interfaces

STAIRWAY TO HEAVEN
Example of STAIRWAY TO HEAVEN
Other Patterns That Can Be Used with Databases
Conclusion
Bibliography

Case Study: Weather Station

The Cloud Company
The WMS-LC Software
Language Selection
Nimbus-LC Software Design
24-Hour History and Persistence
Implementing the HiL.o Algorithms
Conclusion
Bibliography
Nimbus-LC Requirements Overview
Usage Requirements
24-Hour History
User Setup
Administrative Requirements
Nimbus-LC Use Cases
Actors
Use Cases
Measurement History
Setup
Administration
Nimbus-LC Release Plan
Introduction
Release I

xix

314
314
315
316
316

317

318
318
319
319
320
322
324
325

327

327
332
344
345
347
348
353
354
354

355

355
356
357
357
368
371
379
379
379
379
379
379
380
380
380
380
380
381
381
381
381
381

XX

Contents

Risks 382

Deliverable(s) 382
Release II 382

Use Cases Implemented 382

Risks 383
Deliverable(s) 383
Release I1I 383

Use Cases Implemented 383

Risks 383
Deliverable(s) 383
Section 6 The ETS Case Study 385
Chapter 28 VISITOR 387
The VISITOR Family of Design Patterns 388
VISITOR 388
VISITOR is Like a Matrix 391
ACYCLIC VISITOR 391
ACYCLIC VISITOR Is Like a Sparse Matrix 396
Using VISITOR in Report Generators 396
Other Uses of VISITOR 402
DECORATOR 403
Multiple Decorators 406
EXTENSION OBJECT 408
Conclusion 418
Reminder 418
Bibliography 418
Chapter 29 STATE 419
Overview of Finite State Automata 419
Implementation Techniques 421
Nested Switch/Case Statements 421
Interpreting Transition Tables 424

The STATE Pattern 426
SMC—The State-Machine Compiler 429
Where Should State Machines be Used? 432
High-Level Application Policies for GUIs 432
GUI Interaction Controllers 433
Distributed Processing 433
Conclusion 434
Listings 434
Turnstile.java Using Table Interpretation 434
Turnstile.java Generated by SMC, and Other Support Files 437
Bibliography 441
Chapter 30 The ETS Framework 443
Introduction 443

Project Overview 443

Contents XXi

Early History 1993-1994 445
Framework? 445
Framework! 446
The 1994 Team 446
The Deadline 446
The Strategy 446
Results 447
Framework Design 448
The Common Requirements of the Scoring Applications 448
The Design of the Scoring Framework 450
A Case for TEMPLATE METHOD 453
Write a Loop Once 454
The Common Requirements of the Delivery Applications 456
The Design of the Delivery Framework 457
The Taskmaster Architecture 462
Conclusion 465
Bibliography 466
Appendix A UML Notation I: The CGI Example 467
Course Enrollment System: Problem Description 468
Actors 469
Use Cases 469
The Domain Model 472
The Architecture 476
Abstract Classes and Interfaces in Sequence Diagrams 485
Summary 486
Bibliography 487
Appendix B UML Notation II: The STATMUX 489
The Statistical Multiplexor Definition 489
The Software Environment 490
The Real-time Constraints 490
The Input Interrupt Service Routine 491
The Output Service Interrupt Routine 495
The Communications Protocol 496
Conclusion 506
Bibliography 506
Appendix C A Satire of Two Companies 507
Rufus, Inc.
Project Kickoff 507
Rupert Industries
Project: ~Alpha~ 507
Appendix D The Source Code Is the Design 517
What Is Software Design? 517
Afterword 523

Index 525

List of Design Patterns

ABSTRACT SERVER
ACTIVE OBJECT
ACYCLIC VISITOR
ADAPTER

BRIDGE

COMMAND
COMPOSITE
DECORATOR
EXTENSION OBJECT
FACADE

FACTORY
MEDIATOR
MONOSTATE

NULL OBJECT
OBSERVER

PROXY

SINGLETON
STAIRWAY TO HEAVEN
STATE

STRATEGY
TASKMASTER
TEMPLATE METHOD
VISITOR

xxii

318
155
391
319
322
151
293
403
408
173
269
174
180
189
315
327
178
347
426
168
462
162
388

Agile Practices

The weather-cock on the church spire, though made of iron, would soon be broken
by the storm-wind if it did not understand the noble art of turning to every wind.

—Heinrich Heine

Many of us have lived through the nightmare of a project with no practices to guide it. The lack of effective prac-
tices leads to unpredictability, repeated error, and wasted effort. Customers are disappointed by slipping schedules,
growing budgets, and poor quality. Developers are disheartened by working ever longer hours to produce ever
poorer software.

Once we have experienced such a fiasco, we become afraid of repeating the experience. Our fears motivate
us to create a process that constrains our activities and demands certain outputs and artifacts. We draw these con-
straints and outputs from past experience, choosing things that appeared to work well in previous projects. Our
hope is that they will work again and take away our fears.

However, projects are not so simple that a few constraints and artifacts can reliably prevent error. As errors
continue to be made, we diagnose those errors and put in place even more constraints and artifacts in order to pre-
vent those errors in the future. After many, projects we may find ourselves overloaded with a huge cumbersome
process that greatly impedes our ability to get anything done.

A big cumbersome process can create the very problems that it is designed to prevent. It can slow the team to
the extent that schedules slip and budgets bloat. It can reduce responsiveness of the team to the point where they

4 Chapter 1 ¢ Agile Practices

are always creating the wrong product. Unfortunately, this leads many teams to believe that they don’t have
enough process. So, in a kind of runaway-process inflation, they make their process ever larger.

Runaway-process inflation is a good description of the state of affairs in many software companies circa
2000 A.D. Though there were still many teams operating without a process, the adoption of very large, heavy-
weight processes is rapidly growing, especially in large corporations. (See Appendix C.)

The Agile Alliance

In early 2001, motivated by the observation that software teams in many corporations were stuck in a quagmire of
ever-increasing process, a group of industry experts met to outline the values and principles that would allow soft-
ware teams to work quickly and respond to change. They called themselves the Agile Alliance.' Over the next sev-
eral months, they worked to create a statement of values. The result was The Manifesto of the Agile Alliance.

The Manifesto of the Agile Alliance

Manifesto for Agile Software Development

We are uncovering better ways of developing
software by doing it and helping others do it.
Through this work we have come to value

* Individuals and interactions over processes and tools
» Working software over comprehensive documentation
* Customer collaboration over contract negotiation

* Responding to change over following a plan

That is, while there is value in the items on
the right, we value the items on the left more.

Kent Beck Mike Beedle Arie van Bennekum Alistair Cockburn
Ward Cunningham Martin Fowler James Grenning Jim Highsmith
Andrew Hunt Ron Jeffries Jon Kern Brian Marick
Robert C. Martin Steve Mellor Ken Schwaber Jeff Sutherland
Dave Thomas

Individuals and interactions over processes and tools. People are the most important ingredient of suc-
cess. A good process will not save the project from failure if the team doesn’t have strong players, but a bad pro-
cess can make even the strongest of players ineffective. Even a group of strong players can fail badly if they don’t
work as a team.

A strong player is not necessarily an ace programmer. A strong player may be an average programmer, but
someone who works well with others. Working well with others, communicating and interacting, is more impor-
tant than raw programming talent. A team of average programmers who communicate well are more likely to suc-
ceed than a group of superstars who fail to interact as a team.

The right tools can be very important to success. Compilers, IDEs, source-code control systems, etc. are all
vital to the proper functioning of a team of developers. However, tools can be overemphasized. An overabundance
of big, unwieldy tools is just as bad as a lack of tools.

My advice is to start small. Don’t assume you’ve outgrown a tool until you’ve tried it and found you can’t
use it. Instead of buying the top-of-the-line, megaexpensive, source-code control system, find a free one and use it

1. agilealliance.org

The Agile Alliance 5

until you can demonstrate that you’ve outgrown it. Before you buy team licenses for the best of all CASE tools,
use white boards and graph paper until you can reasonably show that you need more. Before you commit to the
top-shelf behemoth database system, try flat files. Don’t assume that bigger and better tools will automatically help
you do better. Often they hinder more than they help.

Remember, building the team is more important than building the environment. Many teams and managers
make the mistake of building the environment first and expecting the team to gel automatically. Instead, work to
create the team, and then let the team configure the environment on the basis of need.

Working software over comprehensive documentation. Software without documentation is a disaster.
Code is not the ideal medium for communicating the rationale and structure of a system. Rather, the team needs to
produce human-readable documents that describe the system and the rationale for their design decisions.

However, too much documentation is worse than too little. Huge software documents take a great deal of
time to produce and even more time to keep in sync with the code. If they are not kept in sync, then they turn into
large, complicated lies and become a significant source of misdirection.

It is always a good idea for the team to write and maintain a rationale and structure document, but that docu-
ment needs to be short and salient. By “short,” I mean one or two dozen pages at most. By “salient,” I mean it
should discuss the overall design rationale and only the highest-level structures in the system.

If all we have is a short rationale and structure document, how do we train new team members to work on the
system? We work closely with them. We transfer our knowledge to them by sitting next to them and helping them.
We make them part of the team through close training and interaction.

The two documents that are the best at transferring information to new team members are the code and the
team. The code does not lie about what it does. It may be hard to extract rationale and intent from the code, but
the code is the only unambiguous source of information. The team members hold the ever-changing road map of
the system in their heads. There is no faster and more efficient way to transfer that road map to others than human-
to-human interaction.

Many teams have gotten hung up in the pursuit of documentation instead of software. This is often a fatal
flaw. There is a simple rule called Martin’s first law of documentation that prevents it:

Produce no document unless its need is immediate and significant.

Customer collaboration over contract negotiation. Software cannot be ordered like a commodity. You
cannot write a description of the software you want and then have someone develop it on a fixed schedule for a
fixed price. Time and time again, attempts to treat software projects in this manner have failed. Sometimes the fail-
ures are spectacular.

It is tempting for the managers of a company to tell their development staff what their needs are, and then
expect that staff to go away for a while and return with a system that satisfies those needs. However, this mode of
operation leads to poor quality and failure.

Successful projects involve customer feedback on a regular and frequent basis. Rather than depending on a
contract or a statement of work, the customer of the software works closely with the development team, providing
frequent feedback on their efforts.

A contract that specifies the requirements, schedule, and cost of a project is fundamentally flawed. In most
cases, the terms it specifies become meaningless long before the project is complete.2 The best contracts are those
that govern the way the development team and the customer will work together.

As an example of a successful contract, take one I negotiated in 1994 for a large, multiyear, half-million-line
project. We, the development team, were paid a relatively low monthly rate. Large payouts were made to us when
we delivered certain large blocks of functionality. Those blocks were not specified in detail by the contract. Rather,

2. Sometimes long before the contract is signed!

6 Chapter 1 » Agile Practices

the contract stated that the payout would be made for a block when the block passed the customer’s acceptance
test. The details of those acceptance tests were not specified in the contract.

During the course of this project, we worked very closely with the customer. We released the software to him
almost every Friday. By Monday or Tuesday of the following week, he would have a list of changes for us to put
into the software. We would prioritize those changes together and then schedule them into subsequent weeks. The
customer worked so closely with us that acceptance tests were never an issue. He knew when a block of function-
ality satisfied his needs because he watched it evolve from week to week.

The requirements for this project were in a constant state of flux. Major changes were not uncommon. There
were whole blocks of functionality that were removed and others that were inserted. Yet the contract, and the
project, survived and succeeded. The key to this success was the intense collaboration with the customer and a
contract that governed that collaboration rather than trying to specify the details of scope and schedule for a
fixed cost.

Responding to change over following a plan. It is the ability to respond to change that often determines
the success or failure of a software project. When we build plans, we need to make sure that our plans are flexible
and ready to adapt to changes in the business and technology.

The course of a software project cannot be planned very far into the future. First of all, the business environ-
ment is likely to change, causing the requirements to shift. Second, customers are likely to alter the requirements
once they see the system start to function. Finally, even if we know the requirements, and we are sure they won’t
change, we are not very good at estimating how long it will take to develop them.

It is tempting for novice managers to create a nice PERT or Gantt chart of the whole project and tape it to the
wall. They may feel that this chart gives them control over the project. They can track the individual tasks and
cross them off the chart as they are completed. They can compare the actual dates with the planned dates on the
chart and react to any discrepancies.

What really happens is that the structure of the chart degrades. As the team gains knowledge about the sys-
tem, and as the customers gain knowledge about their needs, certain tasks on the chart become unnecessary. Other
tasks will be discovered and will need to be added. In short, the plan will undergo changes in shape, not just
changes in dates.

A better planning strategy is to make detailed plans for the next two weeks, very rough plans for the next
three months, and extremely crude plans beyond that. We should know the tasks we will be working on for the next
two weeks. We should roughly know the requirements we will be working on for the next three months. And we
should have only a vague idea what the system will do after a year.

This decreasing resolution of the plan means that we are only investing in a detailed plan for those tasks that
are immediate. Once the detailed plan is made, it is hard to change since the team will have a lot of momentum and
commitment. However, since that plan only governs a few weeks’ worth of time, the rest of the plan remains
flexible.

Principles

The above values inspired the following 12 principles, which are the characteristics that differentiate a set of agile
practices from a heavyweight process:

® Qur highest priority is to satisfy the customer through early and continuous delivery of valuable software.
The MIT Sloan Management Review published an analysis of software development practices that help
companies build high-quality products.3 The article found a number of practices that had a significant impact
on the quality of the final system. One practice was a strong correlation between quality and the early deliv-

3. Product-Development Practices That Work: How Internet Companies Build Software, MIT Sloan Management Review, Winter 2001,
Reprint number 4226.

Principles 7

ery of a partially functioning system. The article reported that the less functional the initial delivery, the
higher the quality in the final delivery.

Another finding of this article is a strong correlation between final quality and frequent deliveries of
increasing functionality. The more frequent the deliveries, the higher the final quality.

An agile set of practices delivers early and often. We strive to deliver a rudimentary system within the
first few weeks of the start of the project. Then, we strive to continue to deliver systems of increasing func-
tionality every two weeks.

Customers may choose to put these systems into production if they think that they are functional
enough. Or they may choose simply to review the existing functionality and report on changes they want
made.

® Welcome changing requirements, even late in development. Agile processes harness change for the cus-
tomer's competitive advantage.

This is a statement of attitude. The participants in an agile process are not afraid of change. They view
changes to the requirements as good things, because those changes mean that the team has learned more
about what it will take to satisfy the market.

An agile team works very hard to keep the structure of its software flexible so that when requirements
change, the impact to the system is minimal. Later in this book we will learn the principles and patterns of
object-oriented design that help us to maintain this kind of flexibility.

* Deliver working software frequently, from a couple of weeks to a couple of months, with a preference to the
shorter time scale.
We deliver working software, and we delivery it early (after the first few weeks) and often (every few
weeks thereafter). We are not content with delivering bundles of documents or plans. We don’t count those
as true deliveries. Our eye is on the goal of delivering software that satisfies the customer’s needs.

® Business people and developers must work together daily throughout the project.
In order for a project to be agile, there must be significant and frequent interaction between the cus-
tomers, developers, and stakeholders. A software project is not like a fire-and-forget weapon. A software
project must be continuously guided.

* Build projects around motivated individuals. Give them the environment and support they need, and trust
them to get the job done.

An agile project is one in which people are considered the most important factor of success. All other
factors—process, environment, management, etc.—are considered to be second order effects, and they are
subject to change if they are having an adverse effect upon the people.

For example, if the office environment is an obstacle to the team, the office environment must be
changed. If certain process steps are an obstacle to the team, the process steps must be changed.

® The most efficient and effective method of conveying information to and within a development team is face-
to-face conversation.

In an agile project, people talk to each other. The primary mode of communication is conversation.
Documents may be created, but there is no attempt to capture all project information in writing. An agile
project team does not demand written specs, written plans, or written designs. Team members may create
them if they perceive an immediate and significant need, but they are not the default. The default is
conversation.

® Working software is the primary measure of progress.

Agile projects measure their progress by measuring the amount of software that is currently meeting
the customer’s need. They don’t measure their progress in terms of the phase that they are in or by the vol-
ume of documentation that has been produced or by the amount of infrastructure code they have created.
They are 30% done when 30% of the necessary functionality is working.

8 Chapter 1 » Agile Practices

® Agile processes promote sustainable development. The sponsors, developers, and users should be able to
maintain a constant pace indefinitely.

An agile project is not run like a 50-yard dash; it is run like a marathon. The team does not take off at
full speed and try to maintain that speed for the duration. Rather, they run at a fast, but sustainable, pace.

Running too fast leads to burnout, shortcuts, and debacle. Agile teams pace themselves. They don’t
allow themselves to get too tired. They don’t borrow tomorrow’s energy to get a bit more done today. They
work at a rate that allows them to maintain the highest quality standards for the duration of the project.

* Continuous attention to technical excellence and good design enhances agility.

High quality is the key to high speed. The way to go fast is to keep the software as clean and robust as
possible. Thus, all agile team members are committed to producing only the highest quality code they can.
They do not make messes and then tell themselves they’ll clean it up when they have more time. If they
make a mess, they clean it up before they finish for the day.

* Simplicity—the art of maximizing the amount of work not done—is essential.

Agile teams do not try to build the grand system in the sky. Rather, they always take the simplest path
that is consistent with their goals. They don’t put a lot of importance on anticipating tomorrow’s problems,
nor do they try to defend against all of them today. Instead, they do the simplest and highest-quality work
today, confident that it will be easy to change if and when tomorrow’s problems arise.

¢ The best architectures, requirements, and designs emerge from self-organizing teams.

An agile team is a self-organizing team. Responsibilities are not handed to individual team members
from the outside. Responsibilities are communicated to the team as a whole, and the team determines the
best way to fulfill them.

Agile team members work together on all aspects of the project. Each is allowed input into the whole.
No single team member is responsible for the architecture or the requirements or the tests. The team shares
those responsibilities, and each team member has influence over them.

® At regular intervals, the team reflects on how to become more effective, then tunes and adjusts its behavior
accordingly.

An agile team continually adjusts its organization, rules, conventions, relationships, etc. An agile team
knows that its environment is continuously changing and knows that they must change with that environ-
ment to remain agile.

Conclusion

The professional goal of every software developer and every development team is to deliver the highest possible
value to their employers and customers. And yet our projects fail, or fail to deliver value, at a dismaying rate.
Though well intentioned, the upward spiral of process inflation is culpable for at least some of this failure. The
principles and values of agile software development were formed as a way to help teams break the cycle of process
inflation and to focus on simple techniques for reaching their goals.

At the time of this writing, there were many agile processes to choose from. These include SCRUM,*
Crystal, Feature Driven Development,6 Adaptive Software Development (ADP),” and most significantly, Extreme
Progra\mming.8

4. www .controlchaos.com
crystalmethodologies.org

Java Modeling In Color With UML: Enterprise Components and Process, Peter Coad, Eric Lefebvre, and Jeff De Luca, Prentice Hall,
1999.

[Highsmith2000].
[Beck1999], [Newkirk2001].

Conclusion 9

Bibliography

1. Beck, Kent. Extreme Programming Explained: Embracing Change. Reading, MA: Addison-Wesley, 1999.

2. Newkirk, James, and Robert C. Martin. Extreme Programming in Practice. Upper Saddle River, NJ: Addison-Wesley, 2001.

3. Highsmith, James A. Adaptive Software Development: A Collaborative Approach to Managing Complex Systems. New York, NY: Dorset
House, 2000.

12 Chapter 2 » Overview of Extreme Programming

Who is the customer? The customer of an XP team is the person or group who defines and prioritizes fea-
tures. Sometimes, the customer is a group of business analysts or marketing specialists working in the same com-
pany as the developers. Sometimes, the customer is a user representative commissioned by the body of users.
Sometimes the customer is in fact the paying customer. But in an XP project, whoever the customers are, they are
members of, and available to, the team.

The best case is for the customer to work in the same room as the developers. Next best is if the customer
works in within 100 feet of the developers. The larger the distance, the harder it is for the customer to be a true
team member. If the customer is in another building or another state, it is very difficult to integrate him or her into
the team.

What do you do if the customer simply cannot be close by? My advice is to find someone who can be close
by and who is willing and able to stand in for the true customer.

User Stories

In order to plan a project, we must know something about the requirements, but we don’t need to know very much.
For planning purposes, we only need to know enough about a requirement to estimate it. You may think that in
order to estimate a requirement you need to know all its details, but that’s not quite true. You have to know that
there are details, and you have to know roughly the kinds of details there are, but you don’t have to know the
specifics.

The specific details of a requirement are likely to change with time, especially once the customer begins to
see the system come together. There is nothing that focuses requirements better than seeing the nascent system
come to life. Therefore, capturing the specific details about a requirement long before it is implemented is likely to
result in wasted effort and premature focusing.

When using XP, we get the sense of the details of the requirements by talking them over with the customer,
but we do not capture that detail. Rather, the customer writes a few words on an index card that we agree will remind
us of the conversation. The developers write an estimate on the card at roughly the same time that the customer
writes it. They base that estimate on the sense of detail they got during their conversations with the customer.

A user story is a mnemonic token of an ongoing conversation about a requirement. It is a planning tool that
the customer uses to schedule the implementation of a requirement based upon its priority and estimated cost.

Short Cycles

An XP project delivers working software every two weeks. Each of these two-week iterations produces working
software that addresses some of the needs of the stakeholders. At the end of each iteration, the system is demon-
strated to the stakeholders in order to get their feedback.

The Iteration Plan. An iteration is usually two weeks in length. It represents a minor delivery that may or
may not be put into production. It is a collection of user stories selected by the customer according to a budget
established by the developers.

The developers set the budget for an iteration by measuring how much they got done in the previous itera-
tion. The customer may select any number of stories for the iteration, so long as the total of their estimates does
not exceed that budget.

Once an iteration has been started, the customer agrees not to change the definition or priority of the stories
in that iteration. During this time, the developers are free to cut the stories up in to zasks and to develop the tasks in
the order that makes the most technical and business sense.

The Release Plan. XP teams often create a release plan that maps out the next six iterations or so. That
plan is known as a release plan. A release is usually three months worth of work. It represents a major delivery that
can usually be put into production. A release plan consists of prioritized collections of user stories that have been
selected by the customer according to a budget given by the developers.

The Practices of Extreme Programming 13

The developers set the budget for the release by measuring how much they got done in the previous release.
The customer may select any number of stories for the release so long as the total of the estimates does not exceed
that budget. The customer also determines the order in which the stories will be implemented in the release. If the
team so desires, they can map out the first few iterations of the release by showing which stories will be completed
in which iterations.

Releases are not cast in stone. The customer can change the content at any time. He or she can cancel stories,
write new stories, or change the priority of a story.

Acceptance Tests

The details about the user stories are captured in the form of acceptance tests specified by the customer. The accep-
tance tests for a story are written immediately preceding, or even concurrent with, the implementation of that story.
They are written in some kind of scripting language that allows them to be run automatically and repeatedly.
Together, they act to verify that the system is behaving as the customers have specified.

The language of the acceptance tests grows and evolves with the system. The customers may recruit the
developers to create a simple scripting system, or they may have a separate quality assurance (QA) department that
can develop it. Many customers enlist the help of QA in developing the acceptance-testing tool and with writing
the acceptance tests themselves.

Once an acceptance test passes, it is added to the body of passing acceptance tests and is never allowed to
fail again. This growing body of acceptance tests is run several times per day, every time the system is built. If an
acceptance tests fails, the build is declared a failure. Thus, once a requirement is implemented, it is never broken.
The system migrates from one working state to another and is never allowed to be inoperative for longer than a few
hours.

Pair Programming

All production code is written by pairs of programmers working together at the same workstation. One member of
each pair drives the keyboard and types the code. The other member of the pair watches the code being typed,
looking for errors and improvements.! The two interact intensely. Both are completely engaged in the act of writ-
ing software.

The roles change frequently. The driver may get tired or stuck, and his pair partner will grab the keyboard
and start to drive. The keyboard will move back and forth between them several times in an hour. The resultant
code is designed and authored by both members. Neither can take more than half the credit.

Pair membership changes at least once per day so that every programmer works in two different pairs each
day. Over the course of an iteration, every member of the team should have worked with every other member of the
team, and they should have worked on just about everything that was going on in the iteration.

This dramatically increases the spread of knowledge through the team. While specialties remain and tasks
that require certain specialties will usually belong to the appropriate specialists, those specialists will pair with
nearly everyone else on the team. This will spread the specialty out through the team such that other team mem-
bers can fill in for the specialists in a pinch.

Studies by Laurie Williams? and Nosek> have suggested that pairing does not reduce the efficiency of the
programming staff, yet it significantly reduces the defect rate.

1. I have seen pairs in which one member controls the keyboard and the other controls the mouse.
2. [Williams2000], [Cockburn2001].
3. [Nosek].

14 Chapter 2 Overview of Extreme Programming

Test-Driven Development

Chapter 4, which is on testing, discusses test-driven development in great detail. The following paragraphs provide
a quick overview.

All production code is written in order to make failing unit tests pass. First we write a unit test that fails
because the functionality for which it is testing doesn’t exist. Then we write the code that makes that test pass.

This iteration between writing test cases and code is very rapid, on the order of a minute or so. The test cases
and code evolve together, with the test cases leading the code by a very small fraction. (See “A Programming Epi-
sode” in Chapter 6 for an example.)

As aresult, a very complete body of test cases grows along with the code. These tests allow the programmers
to check whether the program works. If a pair makes a small change, they can run the tests to ensure that they
haven’t broken anything. This greatly facilitates refactoring (discussed later).

When you write code in order to make test cases pass, that code is, by definition, testable. In addition, there
is a strong motivation to decouple modules from each other so that they can be independently tested. Thus, the
design of code that is written in this fashion tends to be much less coupled. The principles of object-oriented
design play a powerful role in helping you with this decoupling.*

Collective Ownership

A pair has the right to check out any module and improve it. No programmers are individually responsible for any
one particular module or technology. Everybody works on the GUI? Everybody works on the middleware. Every-
body works on the database. Nobody has more authority over a module or a technology than anybody else.

This doesn’t mean that XP denies specialties. If your specialty is the GUI, you are most likely to work on
GUI tasks, but you will also be asked to pair on middleware and database tasks. If you decide to learn a second
specialty, you can sign up for tasks and work with specialists who will teach it to you. You are not confined to your
specialty.

Continuous Integration

The programmers check in their code and integrate several times per day. The rule is simple. The first one to check
in wins, everybody else merges.

XP teams use nonblocking source control. This means that programmers are allowed to check any module
out at any time, regardless of who else may have it checked out. When the programmer checks the module back in
after modifying it, he must be prepared to merge it with any changes made by anyone who checked the module in
ahead of him. To avoid long merge sessions, the members of the team check in their modules very frequently.

A pair will work for an hour or two on a task. They create test cases and production code. At some conve-
nient breaking point, probably long before the task is complete, the pair decides to check the code back in. They
first make sure that all the tests run. They integrate their new code into the existing code base. If there is a merge to
do, they do it. If necessary, they consult with the programmers who beat them to the check in. Once their changes
are integrated, they build the new system. They run every test in the system, including all currently running accep-
tance tests. If they broke anything that used to work, they fix it. Once all the tests run, they finish the check in.

Thus, XP teams will build the system many times each day. They build the whole system from end to end.S If
the final result of a system is a CD, they cut the CD. If the final result of the system is an active Web site, they
install that Web site, probably on a testing server.

4. See Section II.
5. I’'m not advocating a three-tiered architecture here. I just chose three common partitions of software technology.

6. Ron Jeffries says, “End to end is farther than you think.”

16 Chapter 2 » Overview of Extreme Programming

The following three XP mantras guide the developer:

Consider the Simplest Thing That Could Possibly Work. XP teams always try to find the simplest pos-
sible design option for the current batch of stories. If we can make the current stories work with flat files, we might
not use a database or EJB. If we can make the current stories work with a simple socket connection, we might not
use an ORB or RMI. If we can make the current stories work without multithreading, we might not include
mutithreading. We try to consider the simplest way to implement the current stories. Then we choose a solution
that is as close to that simplicity as we can practically get.

You Aren’t Going to Need It. Yeah, but we know we’re going to need that database one day. We know
we’re going to need an ORB one day. We know we’re going to have to support multiple users one day. So we need
to put the hooks in for those things now, don’t we?

An XP team seriously considers what will happen if they resist the temptation to add infrastructure before it
is strictly needed. They start from the assumption that they aren’t going to need that infrastructure. The team puts
in the infrastructure, only if they have proof, or at least very compelling evidence, that putting in the infrastructure
now will be more cost effective than waiting.

Once and Only Once. XPers don’t tolerate code duplication. Wherever they find it, they eliminate it.

There are many sources of code duplication. The most obvious are those stretches of code that were captured
with a mouse and plopped down in multiple places. When we find those, we eliminate them by creating a function
or a base class. Sometimes two or more algorithms may be remarkably similar, and yet they differ in subtle ways.
We turn those into functions or employ the TEMPLATE METHOD pattem.8 Whatever the source of duplication, once
discovered, we won'’t tolerate it.

The best way to eliminate redundancy is to create abstractions. After all, if two things are similar, there must
be some abstraction that unifies them. Thus, the act of eliminating redundancy forces the team to create many
abstractions and further reduce coupling.

Refactoring®

I cover this topic in more detail in Chapter 5. What follows is a brief overview.

Code tends to rot. As we add feature after feature and deal with bug after bug, the structure of the code
degrades. Left unchecked, this degradation leads to a tangled, unmaintainable mess.

XP teams reverse this degradation through frequent refactoring. Refactoring is the practice of making a
series of tiny transformations that improve the structure of the system without affecting its behavior. Each transfor-
mation is trivial, hardly worth doing. But together, they combine into significant transformations of the design and
architecture of the system.

After each tiny transformation, we run the unit tests to make sure we haven’t broken anything. Then we do
the next transformation and the next and the next, running the tests after each. In this manner we keep the system
working while transforming its design.

Refactoring is done continuously rather than at the end of the project, the end of the release, the end of the
iteration, or even the end of the day. Refactoring is something we do every hour or every half hour. Through refac-
toring, we continuously keep the code as clean, simple, and expressive as possible.

Metaphor

Metaphor is the least understood of all the practices of XP. XPers are pragmatists at heart, and this lack of concrete
definition makes us uncomfortable. Indeed, the proponents of XP have often discussed removing metaphor as a
practice. And yet, in some sense, metaphor is one of the most important practices of all.

8. See Chapter 14, “Template Method & Strategy: Inheritance v. Delegation.”
9. [Fowler99].

Conclusion 17

Think of a jigsaw puzzle. How do you know how the pieces go together? Clearly, each piece abuts others,
and its shape must be perfectly complimentary to the pieces it touches. If you were blind and you had a very good
sense of touch, you could put the puzzle together by diligently sifting through each piece and trying it in position
after position.

But there is something more powerful than the shape of the pieces binding the puzzle together. There is a
picture. The picture is the true guide. The picture is so powerful that if two adjacent pieces of the picture do not
have complementary shapes, then you know that the puzzle maker made a mistake.

That is the metaphor. It’s the big picture that ties the whole system together. It’s the vision of the system that
makes the location and shape of all the individual modules obvious. If a module’s shape is inconsistent with the
metaphor, then you know it is the module that is wrong.

Often a metaphor boils down to a system of names. The names provide a vocabulary for elements in the sys-
tem and help to define their relationships.

For example, I once worked on a system that transmitted text to a screen at 60 characters per second. At that
rate, a screen fill could take some time. So we’d allow the program that was generating the text to fill a buffer.
When the buffer was full, we’d swap the program out to disk. When the buffer got close to empty, we’d swap the
program back in and let it run more.

We spoke about this system in terms of dump trucks hauling garbage. The buffers were little trucks. The dis-
play screen was the dump. The program was the garbage producer. The names all fit together and helped us think
about the system as a whole.

As another example, I once worked on a system that analyzed network traffic. Every thirty minutes, it would
poll dozens of network adapters and pull down the monitoring data from them. Each network adapter gave us a
small block of data composed of several individual variables. We called these blocks “slices.” The slices were raw
data that needed to be analyzed. The analysis program “cooked” the slices, so it was called “The Toaster.” We
called the individual variables within the slices, “crumbs.” All in all, it was a useful and entertaining metaphor.

Conclusion

Extreme programming is a set of simple and concrete practices that combines into an agile development process.
That process has been used on many teams with good results.

XP is a good general-purpose method for developing software. Many project teams will be able to adopt it as
is. Many others will be able to adapt it by adding or modifying practices.

Bibliography

1. Dahl, Dijkstra. Structured Programming. New York: Hoare, Academic Press, 1972.

2. Conner, Daryl R. Leading at the Edge of Chaos. Wiley, 1998.

3. Cockburn, Alistair. The Methodology Space. Humans and Technology technical report HaT TR.97.03 (dated 97.10.03),
http://members.aol.com/acockburn/papers/methyspace/methyspace.htm.

. Beck, Kent. Extreme Programming Explained: Embracing Change. Reading, MA: Addison-Wesley, 1999.

5. Newkirk, James, and Robert C. Martin. Extreme Programming in Practice. Upper Saddle River, NJ: Addison—-Wesley, 2001.
Williams, Laurie, Robert R. Kessler, Ward Cunningham, Ron Jeffries. Strengthening the Case for Pair Programming. IEEE Software,
July—Aug. 2000.

7. Cockburn, Alistair, and Laurie Williams. The Costs and Benefits of Pair Programming. XP2000 Conference in Sardinia, reproduced in
Extreme Programming Examined, Giancarlo Succi, Michele Marchesi. Addison-Wesley, 2001.

8. Nosek, J. T. The Case for Collaborative Programming. Communications of the ACM (1998): 105-108.

9. Fowler, Martin. Refactoring: Improving the Design of Existing Code. Reading, MA: Addison-Wesley, 1999.

20 Chapter 3 ¢ Planning

Initial Exploration

At the start of the project, the developers and customers try to identify all the really significant user stories they
can. However, they don’t try to identify all user stories. As the project proceeds, the customers will continue to
write new user stories. The flow of user stories will not shut off until the project is over.

The developers work together to estimate the stories. The estimates are relative, not absolute. We write a
number of “points” on a story card to represent the relative cost of the story. We may not be sure just how much
time a story point represents, but we do know that a story with eight points will take twice as long as a story with
four points.

Spiking, Splitting, and Velocity
Stories that are too large or too small are hard to estimate. Developers tend to underestimate large stories and over-
estimate small ones. Any story that is too big should be split into pieces that aren’t too big. Any story that is too
small should be merged with other small stories.

For example, consider the story, “Users can securely transfer money into, out of, and between their
accounts.” This is a big story. Estimating will be hard and probably inaccurate. However, we can split it as follow,
into many stories that are much easier to estimate:

* Users can log in.

* Users can log out.

* Users can deposit money into their account.

* Users can withdraw money from their account.

* Users can transfer money from their account to another account.

When a story is split or merged, it should be reestimated. It is not wise to simply add or subtract the estimate.
The main reason to split or merge a story is to get it to a size where estimation is accurate. It is not surprising to
find that a story estimated at five points breaks up into stories that add up to ten! Ten is the more accurate estimate.

Relative estimates don’t tell us the absolute size of the stories, so they don’t help us determine when to split
or merge them. In order to know the true size of a story, we need a factor that we call velocity. If we have an accu-
rate velocity, we can multiply the estimate of any story by the velocity to get the actual time estimate for that story.
For example, if our velocity is ‘2 days per story point,” and we have a story with a relative estimate of four points,
then the story should take eight days to implement.

As the project proceeds, the measure of velocity will become ever more accurate because we’ll be able to
measure the number of story points completed per iteration. However, the developers will probably not have a very
good idea of their velocity at the start. They must create an initial guess by whatever means they feel will give the
best results. The need for accuracy at this point is not particularly grave, so they don’t need to spend an inordinate
amount of time on it. Often, it is sufficient to spend a few days prototyping a story or two to get an idea of the
team’s velocity. Such a prototype session is called a spike.

Release Planning

Given a velocity, the customers can get an idea of the cost of each of the stories. They also know the business value
and priority of each story. This allows them to choose the stories they want done first. This choice is not purely a
matter of priority. Something that is important, but also expensive, may be delayed in favor of something that is
less important but much less expensive. Choices like this are business decisions. The business folks decide which
stories give them the most bang for the buck.

The developers and customers agree on a date for the first release of the project. This is usually a matter of
2—4 months in the future. The customers pick the stories they want implemented within that release and the rough

Task Planning 21

order in which they want them implemented. The customers cannot choose more stories than will fit according to
the current velocity. Since the velocity is initially inaccurate, this selection is crude. But accuracy is not very
important at this point in time. The release plan can be adjusted as velocity becomes more accurate.

lteration Planning

Next, the developers and customers choose an iteration size. This is typically two weeks long. Once again, the cus-
tomers choose the stories that they want implemented in the first iteration. They cannot choose more stories than
will fit according to the current velocity.

The order of the stories within the iteration is a technical decision. The developers implement the stories in
the order that makes the most technical sense. They may work on the stories serially, finishing each one after the
next, or they may divvy up the stories and work on them all concurrently. It’s entirely up to them.

The customers cannot change the stories in the iteration once the iteration has begun. They are free to change
or reorder any other story in the project, but not the ones that the developers are currently working on.

The iteration ends on the specified date, even if all the stories aren’t done. The estimates for all the com-
pleted stories are totaled, and the velocity for that iteration is calculated. This measure of velocity is then used to
plan the next iteration. The rule is very simple. The planned velocity for each iteration is the measured velocity of
the previous iteration. If the team got 31 story points done last iteration, then they should plan to get 31 story
points done in the next. Their velocity is 31 points per iteration.

This feedback of velocity helps to keep the planning in sync with the team. If the team gains in expertise and
skill, the velocity will rise commensurately. If someone is lost from the team, the velocity will fall. If an architec-
ture evolves that facilitates development, the velocity will rise.

Task Planning

At the start of a new iteration, the developers and customers get together to plan. The developers break the stories
down into development tasks. A task is something that one developer can implement in 4-16 hours. The stories are
analyzed, with the customers’ help, and the tasks are enumerated as completely as possible.

A list of the tasks is created on a flip chart, whiteboard, or some other convenient medium. Then, one by one,
the developers sign up for the tasks they want to implement. As each developer signs up for a task, he or she esti-
mates that task in arbitrary task points.7

Developers may sign up for any kind of task. Database guys are not constrained to sign up for database
tasks. GUI guys can sign up for database tasks if they like. This may seem inefficient, but as you’ll see, there is a
mechanism that manages this. The benefit is obvious. The more the developers know about the whole project, the
healthier and more informed the project team is. We want knowledge of the project to spread through the team irre-
spective of specialty.

Each developer knows how many task points he or she managed to implement in the last iteration. This num-
ber is their personal budget. No one signs up for more points than they have in their budget.

Task selection continues until either all tasks are assigned or all developers have used their budgets. If there
are tasks remaining, then the developers negotiate with each other, trading tasks based on their various skills. If
this doesn’t make enough room to get all the tasks assigned, then the developers ask the customers to remove tasks
or stories from the iteration. If all the tasks are signed up and the developers still have room in their budgets for
more work, they ask the customers for more stories.

7. Many developers find it helpful to use “perfect programming hours” as their task points.

Testing

Fire is the test of gold; adversity, of strong men.

—Seneca (c. 3 B.C.—A.D. 65)

The act of writing a unit test is more an act of design than of verification. It is also more an act of documentation
than of verification. The act of writing a unit test closes a remarkable number of feedback loops, the least of which
is the one pertaining to verification of function.

Test Driven Development

What if we designed our tests before we designed our programs? What if we refused to implement a function in
our programs until there was a test that failed because that function wasn’t present? What if we refused to add even
a single line of code to our programs unless there were a test that was failing because of its absence? What if we
incrementally added functionality to our programs by first writing failing tests that asserted the existence of that
functionality, and then made the test pass? What effect would this have on the design of the software we were writ-
ing? What benefits would we derive from the existence of such a comprehensive bevy of tests?

The first and most obvious effect is that every single function of the program has tests that verify its opera-
tion. This suite of tests acts as a backstop for further development. It tells us whenever we inadvertently break
some existing functionality. We can add functions to the program, or change the structure of the program, without

23

24 Chapter 4 « Testing

fear that we will break something important in the process. The tests tell us that the program is still behaving prop-
erly. We are thus much freer to make changes and improvement to our program.

A more important, but less obvious, effect is that the act of writing the test first forces us into a different
point of view. We must view the program we are about to write from the vantage point of a caller of that program.
Thus, we are immediately concerned with the interface of the program as well as its function. By writing the test
first, we design the software to be conveniently callable.

What’s more, by writing the test first, we force ourselves to design the program to be testable. Designing the
program to be callable and testable is remarkably important. In order to be callable and testable, the software has
to be decoupled from its surroundings. Thus, the act of writing tests first forces us to decouple the software!

Another important effect of writing tests first is that the tests act as an invaluable form of documentation. If
you want to know how to call a function or create an object, there is a test that shows you. The tests act as a suite
of examples that help other programmers figure out how to work with the code. This documentation is compileable
and executable. It will stay current. It cannot lie.

An Example of Test-First Design

I recently wrote a version of Hunt the Wumpus, just for fun. This program is a simple adventure game in which the
player moves through a cave trying to kill the Wumpus before the Wumpus eats him. The cave is a set of rooms
that are connected to each other by passageways. Each room may have passages to the north, south, east, or west.
The player moves about by telling the computer which direction to go.

One of the first tests I wrote for this program was testMove in Listing 4-1. This function creates a new
WumpusGame, connects room 4 to room 5 via an east passage, places the player in room 4, issues the command to
move east, and then asserts that the player should be in room 5.

Listing 4-1
public void testMove()
{
WumpusGame g = new WumpusGame () ;
g.connect (4,5, "E") ;
g.setPlayerRoom(4) ;
g.east();
assertEquals (5, g.getPlayerRoom()) ;
}

All this code was written before any part of WwumpusGame was written. I took Ward Cunningham’s advice
and wrote the test the way I wanted it to read. I trusted that I could make the test pass by writing the code that con-
formed to the structure implied by the test. This is called intentional programming. You state your intent in a test
before you implement it, making your intent as simple and readable as possible. You trust that this simplicity and
clarity points to a good structure for the program.

Programming by intent immediately led me to an interesting design decision. The test makes no use of a
Room class. The action of connecting one room to another communicates my intent. I don’t seem to need a Room
class to facilitate that communication. Instead, I can just use integers to represent the rooms.

This may seem counter intuitive to you. After all, this program may appear to you to be all about rooms;
moving between rooms; finding out what rooms contain; etc. Is the design implied by my intent flawed because it
lacks a Room class?

I could argue that the concept of connections is far more central to the Wwumpus game than the concept of
room. I could argue that this initial test pointed out a good way to solve the problem. Indeed, I think that is the
case, but it is not the point I'm trying to make. The point is that the test illuminated a central design issue at a very
early stage. The act of writing tests first is an act of discerning between design decisions.

Test Driven Development 25

Notice that the test tells you how the program works. Most of us could easily write the four named methods
of WumpusGame from this simple specification. We could also name and write the three other direction commands
without much trouble. If later we want to know how to connect two rooms or move in a particular direction, this
test will show us how to do it in no uncertain terms. This test acts as a compileable and executable document that
describes the program.

Test Isolation

The act of writing tests before production code often exposes areas in the software that ought to be decoupled. For
example, Figure 4-1 shows a simple UML diagram1 of a payroll application. The Payroll class uses the
EmployeeDatabase class to fetch an Employee object. It asks the Employee to calculate its pay. Then it passes
that pay to the CheckWriter object to produce a check. Finally, it posts the payment to the Employee object and
writes the object back to the database.

CheckWriter Employee
+ writeCheck() Payroll + calculatePay()
+ postPayment()
A
I
Employee
Database I

+ getEmployee
+ putEmployee

Figure 4-1 Coupled Payroll Model

Presume that we haven’t written any of this code yet. So far, this diagram is just sitting on a whiteboard after
a quick design session.Z Now, we need to write the tests that specify the behavior of the Payroll object. There are
a number of problems associated with writing these tests. First, what database do we use? Payroll needs to read
from some kind of database. Must we write a fully functioning database before we can test the Payroll class?
What data do we load into it? Second, how do we verify that the appropriate check got printed? We can’t write an
automated test that looks on the printer for a check and verifies the amount on it!

The solution to these problems is to use the MOCK OBJECT pattem.3 We can insert interfaces between all the
collaborators of Payroll and create test stubs that implement these interfaces.

Figure 4-2 shows the structure. The Payroll class now uses interfaces to communicate with the
EmployeeDatabase, CheckWriter, and Employee. Three MOCK OBJECTS have been created that implement
these interfaces. These MOCK OBJECTS are queried by the PayrollTest object to see if the Payroll object man-
ages them correctly.

Listing 4-2 shows the intent of the test. It creates the appropriate mock objects, passes them to the Payroll
object, tells the Payroll object to pay all the employees, and then asks the mock objects to verify that all the
checks were written correctly and that all the payments were posted correctly.

1. If you don’t know UML, there are two appendices that describes it in great detail. See Appendices A and B, starting on page 467.
2. [Jeffries2001].
3. [Mackinnon2000].

Chapter 4 Testing

Mock Mock
CheckWriter PayroliTest Employee
«interface» «interface»
CheckWriter Payroll Employee
] + calculatePay()
+ writeCheck() + postPaymont)

«interface»
Employee
Database

+ getEmployee
+ putEmployee

Mock
Employee
Database

Figure 4-2 Decoupled Payroll using Mock Obijects for testing

Listing 4-2
TestPayroll
public void testPayroll ()
{
MockEmployeeDatabase db = new MockEmployeeDatabase() ;
MockCheckWriter w = new MockCheckWriter();
Payroll p = new Payroll(db, w);
p.payEmployees () ;
assert (w.checksWereWrittenCorrectly());
assert (db.paymentsWerePostedCorrectly());

Of course all this test is checking is that Payro11 called all the right functions with all the right data. It’s not
actually checking that checks were written. It’s not actually checking that a true database was properly updated.
Rather, it is checking that the Payrol1 class is behaving as it should in isolation.

You might wonder what the MockEmployee is for. It seems feasible that the real Employee class could be
used instead of a mock. If that were so, then I would have no compunction about using it. In this case, I presumed
that the Employee class was more complex than needed to check the function of Payroll.

Serendipitous Decoupling

The decoupling of Payrol1l is a good thing. It allows us to swap in different databases and check writers, both for
the purpose of testing and for extension of the application. I think it is interesting that this decoupling was driven
by the need to test. Apparently, the need to isolate the module under test forces us to decouple in ways that are ben-
eficial to the overall structure of the program. Writing tests before code improves our designs.

A large part of this book is about design principles for managing dependencies. Those principles give you
some guidelines and techniques for decoupling classes and packages. You will find these principles most beneficial
if you practice them as part of your unit testing strategy. It is the unit tests that will provide much of the impetus
and direction for decoupling.

28 Chapter 4 ¢ Testing
The following is an example of an acceptance-test script:

AddEmp 1429 “Robert Martin” 3215.88
Payday
Verify Paycheck EmpId 1429 GrossPay 3215.88

In this example, we add employee number 1429 to the database. His name is “Robert Martin,” and his
monthly pay is $3215.88. Next, we tell the system that it is payday and that it needs to pay all the employees.
Finally, we verify that a paycheck was generated for employee 1429 with a GrossPay field of $3215.88.

Clearly, this kind of script will be very easy for customers to write. Also, it will be easy to add new function-
ality to this kind of script. However, think about what it implies about the structure of the system.

The first two lines of the script are functions of the payroll application. We might call these lines payroll
transactions. These are functions that payroll users expect. However, the Verify line is not a transaction that the
users of payroll would expect. This line is a directive that is specific to the acceptance test.

Thus, our acceptance testing framework will have to parse this text file, separating the payroll transactions
from the acceptance-testing directives. It must send the payroll transactions to the payroll application and then use
the acceptance-testing directives to query the payroll application in order to verify data.

This already puts architectural stress on the payroll program. The payroll program is going to have to accept
input directly from users and also from the acceptance-testing framework. We want to bring those two paths of
input together as early as possible. So, it looks as if the payroll program will need a transaction processor that can
deal with transactions of the form AddEmp and Payday coming from more than one source. We need to find some
common form for those transactions so that the amount of specialized code is kept to a minimum.

One solution would be to feed the transactions into the payroll application in XML. The acceptance-testing
framework could certainly generate XML, and it seems likely that the UI of the payroll system could also generate
XML. Thus, we might see transactions that looked like the following:

<AddEmp PayType=Salaried>
<EmpId>1429</EmpId>
<Name>Robert Martin</Name>
<Salary>3215.88</Salary>
</AddEmp>

These transactions might enter the payroll application through a subroutine call, a socket, or even a batch
input file. Indeed, it would be a trivial matter to change from one to the other during the course of development. So
during the early iterations, we could decide to read transactions from a file, migrating to an API or socket much
later.

How does the acceptance-test framework invoke the Verify directive? Clearly it must have some way to
access the data produced by the payroll application. Once again, we don’t want the acceptance-testing framework
to have to try to read the writing on a printed check, but we can do the next best thing.

We can have the payroll application produce its paychecks in XML. The acceptance-testing framework can
then catch this XML and query it for the appropriate data. The final step of printing the check from the XML may
be trivial enough to handle through manual acceptance tests.

Therefore, the payroll application can create an XML document that contains all the paychecks. It might
look like this:

<Paycheck>
<EmpId>1429</EmpId>
<Name>Robert Martin</Name>
<GrossPay>3215.88</GrossPay>
</Paycheck>

Conclusion 29

Clearly, the acceptance-testing framework can execute the Verify directive when supplied with this XML.

Once again, we can spit the XML out through a socket, through an API, or into a file. For the initial itera-
tions, a file is probably easiest. Therefore, the payroll application will begin its life reading XML transactions in
from a file and outputting XML paychecks to a file. The acceptance-testing framework will read transactions in
text form, translating them to XML and writing them to a file. It will then invoke the payroll program. Finally, it
will read the output XML from the payroll program and invoke the Verify directives.

Serendipitous Architecture

Notice the pressure that the acceptance tests placed upon the architecture of the payroll system. The very fact that
we considered the tests first led us to the notion of XML input and output very quickly. This architecture has
decoupled the transaction sources from the payroll application. It has also decoupled the paycheck printing mech-
anism from the payroll application. These are good architectural decisions.

Conclusion

The simpler it is to run a suite of tests, the more often those tests will be run. The more the tests are run, the faster
any deviation from those tests will be found. If we can run all the tests several times a day, then the system will
never be broken for more than a few minutes. This is a reasonable goal. We simply don’t allow the system to back-
slide. Once it works to a certain level, it never backslides to a lower level.

Yet verification is just one of the benefits of writing tests. Both unit tests and acceptance tests are a form of
documentation. That documentation is compileable and executable; therefore, it is accurate and reliable. More-
over, these tests are written in unambiguous languages that are made to be readable by their audience. Program-
mers can read unit tests because they are written in their programming language. Customers can read acceptance
tests because they are written in a language that they themselves designed.

Possibly the most important benefit of all this testing is the impact it has on architecture and design. To make
a module or an application testable, it must also be decoupled. The more testable it is, the more decoupled it is.
The act of considering comprehensive acceptance and unit tests has a profoundly positive effect upon the structure
of the software.

Bibliography

1. Mackinnon, Tim, Steve Freeman, and Philip Craig. Endo-Testing: Unit Testing with Mock Objects. Extreme Programming Examined.
Addison-Wesley, 2001.
2. Jeffries, Ron, et al., Extreme Programming Installed. Upper Saddle River, NJ: Addison-Wesley, 2001.

Refactoring

The only factor becoming scarce in a world of abundance is human attention.

—Kevin Kelly, in Wired

This chapter is about human attention. It is about paying attention to what you are doing and making sure you are
doing your best. It is about the difference between getting something to work and getting something right. It is
about the value we place in the structure of our code.

In his classic book, Refactoring, Martin Fowler defines refactoring as “...the process of changing a software
system in such a way that it does not alter the external behavior of the code yet improves its internal structure.”!
But why would we want to improve the structure of working code? What about the old saw, “if it’s not broken,
don’t fix it!”?

Every software module has three functions. First, there is the function it performs while executing. This
function is the reason for the module’s existence. The second function of a module is to afford change. Almost all
modules will change in the course of their lives, and it is the responsibility of the developers to make sure that such
changes are as simple as possible to make. A module that is hard to change is broken and needs fixing, even though
it works. The third function of a module is to communicate to its readers. Developers unfamiliar with the module
should be able to read and understand it without undue mental gymnastics. A module that does not communicate is
broken and needs to be fixed.

1. [Fowler99], p. xvi.

31

32 Chapter 5 ¢ Refactoring

What does it take to make a module easy to read and easy to change? Much of this book is dedicated to prin-
ciples and patterns whose primary goal is to help you create modules that are flexible and adaptable. However, it
takes something more than just principles and patterns to make a module that is easy to read and change. It takes
attention. It takes discipline. It takes a passion for creating beauty.

Generating Primes: A Simple Example of Refactoring?

Consider the code in Listing 5-1. This program generates prime numbers. It is one big function with many single
letter variables and comments to help us read it.

Listing 5-1

GeneratePrimes.java version 1

/**

*

This class generates prime numbers up to a user-specified

* maximum. The algorithm used is the Sieve of Eratosthenes.

* <p>

* Eratosthenes of Cyrene, b. c. 276 BC, Cyrene, Libya --

* d. c. 194, Alexandria. The first man to calculate the

* circumference of the Earth. Also known for working on

* calendars with leap years, he ran the library at Alexandria.
* <p>

* The algorithm is quite simple. Given an array of integers

* gtarting at 2. Cross out all multiples of 2. Find the next
* uncrossed integer, and cross out all of its multiples.

* Repeat until you have passed the square root of the maximum

* value.

*

* @author Robert C. Martin

* @version 9 Dec 1999 rcm

*

/
import java.util.*;

public class GeneratePrimes

{
/ * *
* @param maxValue is the generation limit.
*/
public static int[] generatePrimes (int maxValue)
{
if (maxvValue >= 2) // the only valid case
{
// declarations
int s = maxValue + 1; // size of array
boolean[] f = new boolean(s];
int 1i;
// initialize array to true.
for (i = 0; i < s; i++)
fl[i] = true;
2. I initially wrote this program for XP Immersion I using tests written by Jim Newkirk. Kent Beck and Jim Newkirk refactored it in front

of the students. I have tried to recreate that refactoring here.

Generating Primes: A Simple Example of Refactoring 33

// get rid of known non-primes
f[0] = f[1] = false;

// sieve
int j;
for (i = 2; 1 < Math.sqgrt(s) + 1; i++)
{

if (£[1i]) // if i is uncrossed, cross its multiples.

{

for (j =2 * i; j < s; j += 1)
f[j] = false; // multiple is not prime

// how many primes are there?
int count = 0;
for (i = 0; i < s; i++)
{
if (£[1])
count++; // bump count.

int[] primes = new int[count];

// move the primes into the result

for (1 =0, j = 0; i < s; i++)
{
if (£[1]) // if prime
primes([j++] = 1i;

return primes; // return the primes
}
else // maxValue < 2
return new int[0]; // return null array if bad input.

The unit test for GeneratePrimes is shown in Listing 5-2. It takes a statistical approach, checking to see if
the generator can generate primes up to 0, 2, 3, and 100. In the first case there should be no primes. In the second
there should be one prime, and it should be 2. In the third there should be two primes, and they should be 2 and 3.
In the last case there should be 25 primes, the last of which is 97. If all these tests pass, then I make the assumption
that the generator is working. I doubt this is foolproof, but I can’t think of a reasonable scenario where these tests
would pass and yet the function would fail.

Listing 5-2
TestGeneratePrimes.java

import junit.framework.*;
import java.util.*;

public class TestGeneratePrimes extends TestCase
{

public static void main(String argsl|[])

34 Chapter 5 « Refactoring

junit.swingui.TestRunner.main (
new String([] {"TestGeneratePrimes"});
}

public TestGeneratePrimes (String name)

{

super (name) ;

public void testPrimes()

{
int[] nullArray = GeneratePrimes.generatePrimes (0) ;
assertEquals(nullArray.length, 0);

int[] minArray = GeneratePrimes.generatePrimes(2);
assertEquals (minArray.length, 1);
assertEquals (minArray([0], 2);

int[] threeArray = GeneratePrimes.generatePrimes(3);
assertEquals (threeArray.length, 2);

assertEquals (threeArray[0], 2);

assertEquals (threeArray[1l], 3);

int[] centArray = GeneratePrimes.generatePrimes(100);
assertEquals (centArray.length, 25);
assertEquals (centArray[24], 97);

To help me refactor this program, I am using the Idea refactoring browser from IntelliJ. This tool makes it
trivial to extract methods and rename variables and classes.

It seems pretty clear that the main function wants to be three separate functions. The first initializes all the
variables and sets up the sieve. The second actually executes the sieve, and the third loads the sieved results into an
integer array. To expose this structure more clearly in Listing 5-3, I extracted those functions into three separate
methods. I also removed a few unnecessary comments and changed the name of the class to PrimeGenerator.
The tests all still ran.

Extracting the three functions forced me to promote some of the variables of the function to static fields of
the class. I think this clarifies which variables are local and which have wider influence.

Listing 5-3
PrimeGenerator.java, version 2

/ * %

* This class generates prime numbers up to a user-specified
maximum. The algorithm used is the Sieve of Eratosthenes.
Given an array of integers starting at 2:

Find the first uncrossed integer, and cross out all its
multiples. Repeat until the first uncrossed integer exceeds
the square root of the maximum value.
/
import java.util.*;

* O * * O *

Generating Primes: A Simple Example of Refactoring

public class PrimeGenerator

{
private static int s;
private static boolean|[] £;
private static int[] primes;

public static int[] generatePrimes(int maxValue)
{
if (maxvValue < 2)
return new int[0];
else
{
initializeSieve (maxvValue);
sieve();
loadPrimes();
return primes; // return the primes

}

private static void loadPrimes()
{

int 1i;

int j;

// how many primes are there?

int count = 0;
for (i1 = 0; i < s; 1i++)
{

if (£[41))

count++; // bump count.

}

primes = new int[count];

// move the primes into the result

for (1 =0, j = 0; 1 < s; i++)
{
if (£[1]) // if prime
primes([j++] = i;
}
}
private static void sieve()
{
int 1i;
int j;
for (i = 2; i < Math.sqgrt(s) + 1; i++)
{
if (f£[i]) // if i is uncrossed, cross out its multiples.
{
for (j =2 * 1i; j < s; j += 1)
f[j] = false; // multiple is not prime
}
}

35

36

Chapter 5 ¢ Refactoring

private static void initializeSieve(int maxValue)
{

// declarations

s = maxValue + 1; // size of array

f = new boolean([s];

int i;

// initialize array to true.

for (i = 0; 1 < s; i++)

f[i] = true;

// get rid of known non-primes
f[0] = f[1] = false;

The initializeSieve function is a little messy, so in Listing 5-4, I cleaned it up considerably. First, I

replaced all usages of the s variable with £.length. Then, I changed the names of the three functions to
something a bit more expressive. Finally, I rearranged the innards of initializeArrayOfIntegers (née
initializeSieve) to be a little nicer to read. The tests all still ran.

Listing 5-4
PrimeGenerator.java, version 3 (partial)

public class PrimeGenerator

{

private static boolean[] f;
private static int[] result;

public static int[] generatePrimes (int maxValue)
{
if (maxvValue < 2)
return new int[0];
else
{
initializeArrayOfIntegers(maxValue);
crossOutMultiples();
putUncrossedIntegersIntoResult();
return result;

}

private static void initializeArrayOfIntegers(int maxValue)
{
f = new boolean[maxValue + 1];

f[0] = f[1] = false; //neither primes nor multiples.
for (int i = 2; i < f.length; i++)
f[i] = true;

Next, I looked at crossoutMultiples. There were a number of statements in this function, and in others,

of the form if (£[i]) == true). The intent was to check to see if i was uncrossed, so I changed the name of £ to
unCrossed. But this lead to ugly statements like unCrossed[i] = false. I found the double negative confus-
ing. So I changed the name of the array to isCrossed and changed the sense of all the booleans. The tests all
still ran.

Generating Primes: A Simple Example of Refactoring 37

I got rid of the initialization that set isCrossed[0] and isCrossed[1] to true and just made sure that no
part of the function used the isCrossed array for indexes less than 2. I extracted the inner loop of the
crossOutMultiples function and called it crossOutMultiplesOf. I also thought that if (isCrossed[i]
== false) was confusing, so I created a function called notCrossed and changed the if statement to if
(notCrossed (i)). The tests all still ran.

I spent a bit of time writing a comment that tried to explain why you only have to iterate up to the square root
of the array size. This led me to extract the calculation into a function, where I could put the explanatory comment.
In writing the comment, I realized that the square root is the maximum prime factor of any integer in the array. So
I chose that name for the variables and functions that dealt with it. The result of all these refactorings are in Listing
5-5. The tests all still ran.

Listing 5-5
PrimeGenerator.java version 4 (partial)

public class PrimeGenerator

{
private static boolean[] isCrossed;
private static int[] result;

public static int[] generatePrimes(int maxValue)
{
if (maxvalue < 2)
return new int[0];
else
{
initializeArrayOfIntegers (maxValue) ;
crossOutMultiples() ;
putUncrossedIntegersIntoResult () ;
return result;

}

private static void initializeArrayOfIntegers(int maxValue)
{
isCrossed = new boolean[maxValue + 1];
for (int i = 2; i < isCrossed.length; i++)
isCrossed[i] = false;

}

private static void crossOutMultiples()
{
int maxPrimeFactor = calcMaxPrimeFactor();
for (int i = 2; i <= maxPrimeFactor; i++)
if (notCrossed(i))
crossOutMultiplesOf(i);
}

private static int calcMaxPrimeFactor ()

{
// We cross out all multiples of p, where p is prime.
// Thus, all crossed out multiples have p and q for
// factors. If p > sqgrt of the size of the array, then
// @ will never be greater than 1. Thus p is the
// largest prime factor in the array, and is also
// the iteration limit.

Generating Primes: A Simple Example of Refactoring 39

One might think I’m being frivolous with these name changes, but with a refactoring browser you can afford
to do these kinds of tweaks—they cost virtually nothing. Even without a refactoring browser, a simple search and
replace is pretty cheap. And the tests strongly mitigate any chance that we might unknowingly break something.

I don’t know what I was smoking when I wrote all that maxPrimeFactor stuff. Yikes! The square root of
the size of the array is not necessarily prime. That method did not calculate the maximum prime factor. The
explanatory comment was just wrong. So I rewrote the comment to better explain the rationale behind the square
root and renamed all the variables appropriately.3 The tests all still run.

What the devil is that +1 doing in there? I think it must have been paranoia. I was afraid that a fractional
square root would convert to an integer that was too small to serve as the iteration limit. But that’s silly. The true
iteration limit is the largest prime less than or equal to the square root of the size of the array. I'll get rid of the +1.

The tests all run, but that last change makes me pretty nervous. I understand the rationale behind the square
root, but I’ve got a nagging feeling that there may be some corner cases that aren’t being covered. So I'll write
another test to check that there are no multiples in any of the prime lists between 2 and 500. (See the
testExhaustive function in Listing 5-8.) The new test passes, and my fears are allayed.

The rest of the code reads pretty nicely. So I think we’re done. The final version is shown in Listings 5-7
and 5-8.

Listing 5-7

PrimeGenerator.java (final)
/ * *

* This class generates prime numbers up to a user specified
maximum. The algorithm used is the Sieve of Eratosthenes.
Given an array of integers starting at 2:

Find the first uncrossed integer, and cross out all its
multiples. Repeat until there are no more multiples
in the array.

L S

public class PrimeGenerator

{
private static boolean[] crossedOut;
private static int[] result;

public static int[] generatePrimes(int maxValue)
{
if (maxValue < 2)
return new int[0];
else
{
uncrossIntegersUpTo (maxValue) ;
crossOutMultiples() ;
putUncrossedIntegersIntoResult () ;
return result;

private static void uncrossIntegersUpTo (int maxValue)

{

3. When Kent Beck and Jim Newkirk refactored this program, they did away with the square root altogether. Kent’s rationale was that the
square root was hard to understand, and there was no test that failed if you iterated right up to the size of the array. I can’t bring myself
to give up the efficiency. I guess that shows my assembly-language roots.

crossedOut = new boolean[maxValue + 1];
for (int i = 2; 1 < crossedOut.length; i++)
crossedOut[i] = false;

private static void crossOutMultiples()
{
int limit = determinelterationLimit () ;
for (int i = 2; i <= limit; i++)
if (notCrossed(i))
crossOutMultiplesOf (i) ;

private static int determinelterationLimit ()

{
// Every multiple in the array has a prime factor that
// is less than or equal to the sqgrt of the array size,
// so we don't have to cross out multiples of numbers
// larger than that root.
double iterationLimit = Math.sqgrt (crossedOut.length);
return (int) iterationLimit;

private static void crossOutMultiplesOf (int i)
{
for (int multiple = 2*i;
multiple < crossedOut.length;
multiple += i)

crossedOut [multiple] = true;
}
private static boolean notCrossed(int i)
{
return crossedOut[i] == false;
}

private static void putUncrossedIntegersIntoResult ()
{
result = new int[numberOfUncrossedIntegers()];
for (int j = 0, 1 = 2; i < crossedOut.length; i++)
if (notCrossed(i))
result[j++] = 1i;

private static int numberOfUncrossedIntegers|()
{
int count = 0;
for (int i = 2; i < crossedOut.length; i++)
if (notCrossed(i))
count++;

return count;

Chapter 5 * Refactoring

Generating Primes: A Simple Example of Refactoring

Listing 5-8
TestGeneratePrimes.java (final)

import junit.framework. *;

public class TestGeneratePrimes extends TestCase
{

public static void main(String args|[])

{

junit.swingui.TestRunner.main (
new String[] {"TestGeneratePrimes"});
}
public TestGeneratePrimes (String name)

{

super (name) ;

public void testPrimes()

{
int[] nullArray = PrimeGenerator.generatePrimes(0);
assertEquals (nullArray.length, 0);

int[] minArray = PrimeGenerator.generatePrimes (2);
assertEquals (minArray.length, 1);
assertEquals (minArray([0], 2);

int[] threeArray = PrimeGenerator.generatePrimes(3);
assertEquals (threeArray.length, 2);

assertEquals (threeArray (0], 2);

assertEquals (threeArray(1], 3);

int[] centArray = PrimeGenerator.generatePrimes(100);
assertEquals (centArray.length, 25);
assertEquals (centArray(24], 97);

public void testExhaustive()
{
for (int i = 2; 1i<500; i++)
verifyPrimeList (PrimeGenerator.generatePrimes(i));

private void verifyPrimeList (int[] list)
{
for (int i=0; i<list.length; i++)
verifyPrime(list([i]);

private void verifyPrime(int n)
{
for (int factor=2; factor<n; factor++)
assert (n%factor != 0);

42 Chapter 5 » Refactoring

Conclusion

The end result of this program reads much better than it did at the start. The program also works a bit better. I'm
pretty pleased with the outcome. The program is much easier to understand and is therefore much easier to change.
Also, the structure of the program has isolated its parts from one another. This also makes the program much easier
to change.

You might be worried that extracting functions that are only called once might adversely affect performance.
I think the increased readability is worth a few extra nanoseconds in most cases. However, there may be deep inner
loops where those few nanoseconds will be costly. My advice is to assume that the cost will be negligible and wait
to be proven wrong.

Was this worth the time we invested in it? After all, the function worked when we started. I strongly recom-
mend that you always practice such refactoring for every module you write and for every module you maintain.
The time investment is very small compare