
ptg

ptg

Praise for agile software requirements

“ In my opinion, there is no book out there that more artfully addresses the specific
needs of agile teams, programs, and portfolios all in one. I believe this book is an
organizational necessity for any enterprise.”

—Sarah Edrie, Director of Quality Engineering, Harvard Business School

“ Agile Software Requirements and Mr. Leffingwell’s teachings have been very influ-
ential and inspiring to our organization. They have allowed us to make critical
cultural changes to the way we approach software development by following the
framework he’s outlined here. It has been an extraordinary experience.”

—Chris Chapman, Software Development Manager, Discount Tire

“ This book supplies empirical wisdom connected with strong and very well-
structured theory of succeeding with software projects of different scales. People
new to agile, practitioners, or accomplished agilists—we all were waiting for such
a book.”

—Oleksandr (Alex) Yakyma, Agile Consultant, www.enter-Agile.com

“ This book presents practical and proven agile approaches for managing software
requirements for a team, collaborating teams of teams, and all across the enter-
prise. However, this is not only a great book on agile requirements engineering;
rather, Leffingwell describes the bigger picture of how the enterprise can achieve
the benefits of business agility by implementing lean product development flow.
His ‘Big Picture’ of agile requirements is an excellent reference for any organization
pursuing an intrinsically lean software development operational mode. Best of all,
we’ve applied many of these principles and practices at Nokia (and even helped
create some of them), and therefore we know they work.

—Juha-Markus Aalto, Agile Change Program Manager, Nokia Corporation

“ This pragmatic, easy-to-understand, yet thought-provoking book provides a
hands-on guide to addressing a key problem that enterprises face: How to make
requirements practices work effectively in large-scale agile environments. Dean
Leffingwell’s focus on lean principles is refreshing and much needed!”

—Per Kroll, author, and Chief Architect for Measured Improvements, IBM

Wow! eBook <WoweBook.Com>

www.enter-Agile.com

ptg

“ Agile programming is a fluid development environment. This book serves as a
good starting point for learning.”

—Brad Jackson, SAS Institute Inc.

“ Dean Leffingwell captures the essence of agile in its entirety, all the way from the
discrete user story in the ‘trenches’ to complex software portfolios at the enterprise
level. The narrative balances software engineering theory with pragmatic imple-
mentation aspects in an easy-to-understand manner. It is a book that demands to
be read in a single sitting.”

—Israel Gat, http://theAgileexecutive.com, @Agile_exec on Twitter

“ An incredibly complete, clear, concise, and pragmatic reference for agile software
development. Much more than mere guidelines for creating requirements, build-
ing teams, and managing projects, this reference work belongs on the bookshelf of
anyone and everyone involved with not only agile processes but software develop-
ment in general.”

—R.L. Bogetti, Lead System Designer, Baxter Healthcare

“ This book covers software requirements from the team level to program and port-
folio levels, including the architecture management and a consistent framework
for the whole enterprise. We have practiced the multi-team release planning and
the enterprise-level architecture work with kanban and achieved instant success
in our organization. Combining the principles of the product development flow
with the current large-scale agile and lean software development is a really novel
concept. Well worth reading and trying out the ideas here.”

—Santeri Kangas, Chief Software Architect, and
Gabor Gunyho, Lean Change Agent, F-Secure Corp

“ Dean Leffingwell and his Agile Release Train (ART) concept guides us from team-
level agile to enterprise-level agile. The ART concept is a very powerful tool in
planning and managing large software programs and helps to identify and solve
potential organizational roadblocks—early.”

—Markku Lukkarinen, Head of Programs, Nokia Siemens Networks

Wow! eBook <WoweBook.Com>

http://theAgileexecutive.com

Andre
Typewritten Text
This Page Intentionally Left Blank

ptg

agile software requirements

Wow! eBook <WoweBook.Com>

ptg

agile software

requirements

Lean RequiRements PRactices foR teams,
PRogRams, and the enteRPRise

Dean Leffingwell

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco

New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

Wow! eBook <WoweBook.Com>

ptg

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations
have been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or implied warranty
of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or conse-
quential damages in connection with or arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special sales,
which may include electronic versions and/or custom covers and content particular to your business, training goals,
marketing focus, and branding interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

International Sales
international@pearson.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data

Leffingwell, Dean.
 Agile software requirements : lean requirements practices for teams,
programs, and the enterprise / Dean Leffingwell.
 p. cm.
 Includes bibliographical references and index.
 ISBN-13: 978-0-321-63584-6 (hardcover : alk. paper)
 ISBN-10: 0-321-63584-1 (hardcover : alk. paper)
 1. Agile software development. I. Title.
 QA76.76.D47L4386 2011
 005.1—dc22
 2010041221

Copyright © 2011 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and
permission must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system,
or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For infor-
mation regarding permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax: (617) 671-3447

ISBN-13: 978-0-321-63584-6
ISBN-10: 0-321-63584-1
Text printed in the United States on recycled paper at Courier in Westford, Massachusetts.
First printing, December 2010

To Jenny and Marcy

Wow! eBook <WoweBook.Com>

www.EBooksWorld.ir

ptg

To Jenny and Marcy

Wow! eBook <WoweBook.Com>

ptg

This page intentionally left blank

Wow! eBook <WoweBook.Com>

ptg

 ix

Contents

Foreword xxiii

Preface xxvii

Acknowledgments xxxiii

About the Author xxxv

Overview: The Big Picture Part I 1

A Brief History of Software Requirements MethodsChapter 1 3
Software Requirements in Context: Decades of

Advancing Software Process Models 3
Predictive, Waterfall-Like Processes 5

Problems with the Model 6
Requirements in the Waterfall Model: The Iron Triangle 6
And Yet, the Waterfall Model Is Still Amongst Us 8

Iterative and Incremental Processes 9
Spiral Model 10
Rapid Application Development 10
Rational Unified Process 11
Requirements in Iterative Processes 11

Adaptive (Agile) Processes 12
The Agile Manifesto 12
Extreme Programming (XP) 14
Scrum 15

Wow! eBook <WoweBook.Com>

ptg

x contents

Requirements Management in Agile Is Fundamentally Different 16
Goodbye Iron Triangle 16
Agile Optimizes ROI Through Incremental Value Delivery 17

Enterprise-Scale Adaptive Processes 19
Introduction to Lean Software 20

The House of Lean Software 20
A Systems View of Software Requirements 27
Kanban: Another Software Method Emerges 28

Summary 28

The Big Picture of Agile Requirements 3Chapter 2 1
The Big Picture Explained 32

Big-Picture Highlights 33
Big Picture: Team Level 34

The Agile Team 34
Roles in the Agile Team 36
Iterations 36
User Stories and the Team Backlog 37

Big Picture: Program Level 38
Releases and Potentially Shippable Increments 39
Vision, Features, and the Program Backlog 40
Release Planning 41
The Roadmap 41
Product Management 42

Big-Picture Elements: Portfolio Level 43
Investment Themes 43
Epics and the Portfolio Backlog 43
Architectural Runway 44

Summary 45

Agile Requirements for the Team 4Chapter 3 7
Introduction to the Team Level 47

Why the Discussion on Teams? 47
Eliminating the Functional Silos 50

Agile Team Roles and Responsibilities 50
Product Owner 51
Scrum Master/Agile Master 51
Developers 52
Testers 53
Other Team/Program Roles 54

User Stories and the Team Backlog 55

Wow! eBook <WoweBook.Com>

ptg

 contents xi

Backlog 55
User Stories 56
User Story Basics 57
Tasks 57

Acceptance Tests 58
Unit Tests 60

Real Quality in Real Time 60
Summary 61

Agile Requirements for the Program 6Chapter 4 3
Introduction to the Program Level 63
Organizing Agile Teams at Scale 64

Feature and Component Teams 65
The System Team 71
The Release Management Team 73
Product Management 74

Vision 74
Features 75

New Features Build the Program Backlog 76
Testing Features 77

Nonfunctional Requirements 77
Nonfunctional Requirements as Backlog Constraints 78
Testing Nonfunctional Requirements 79

The Agile Release Train 80
Releases and Potentially Shippable Increments 80
Release Planning 80

Roadmap 81
Summary 82

Agile Requirements for the Portfolio 8Chapter 5 3
Introduction to the Portfolio Level 83
Investment Themes 84
Portfolio Management Team 85
Epics and the Portfolio Backlog 85

Portfolio Backlog 86
Epics, Features, and Stories 87
Architectural Runway and Architectural Epics 88

Implementing Architectural Epics 89
Architectural Runway: Portfolio, Program, and Project 90

Summary 91
Summary of the Full, Enterprise Requirements Information Model 91

Wow! eBook <WoweBook.Com>

ptg

xii contents

Interlude Case Study: Tendril Platform 93
Background for the Case Study 93
System Context Diagram 95

Agile Requirements for the Team 9Part II 7

User Stories 9Chapter 6 9
Introduction 99

User Story Overview 100
User Stories Help Bridge the Developer–Customer

Communication Gap 101
User Stories Are Not Requirements 101

User Story Form 102
Card, Conversation, and Confirmation 102
User Story Voice 103
User Story Detail 104
User Story Acceptance Criteria 104

INVEST in Good User Stories 105
Independent 106
Negotiable . . . and Negotiated 107
Valuable 107
Estimable 108
Small 109
Testable 111

Splitting User Stories 111
Spikes 114

Technical Spikes and Functional Spikes 114
Guidelines for Spikes 115

Story Modeling with Index Cards 116
Summary 117

Stakeholders, User Personas, and User Experiences 11Chapter 7 9
Stakeholders 119

System Stakeholders 120
Project Stakeholders 120
Voice of the Stakeholder: Product Owner 120
Levels of Stakeholder Involvement 121
Building Stakeholder Trust 122
Stakeholder Interactions 122

Wow! eBook <WoweBook.Com>

ptg

 contents xiii

Identifying Stakeholders 122
Identifying Project Stakeholders 123
Identifying System Stakeholders 124
Classifying System Stakeholders 125
Understanding System Stakeholder Needs 125
Stakeholder/Product Owner Team? 126

User Personas 126
Primary and Secondary User Personas 127
Finding Personas with User Story Role Modeling 127

Agile and User Experience Development 129
The User Experience Problem 129
Low-Fidelity Options for User Interface Development 130
User Experience Story Spikes 130
Centralized User Experience Development 131
Distributed, Governed User Experience Development Model 131

Summary 133

Agile Estimating and Velocity 13Chapter 8 5
Introduction 135

There’s a Method to This Madness 135
The Goal Is the Same: More Reliable Estimates 136

Why Estimate? The Business Value of Estimating 137
Estimating Scope with Story Points 138
Understanding Story Points: An Exercise 138

Exercise Part 1: Relative Estimating 138
Exercise Part 2: Estimating Real Work with Planning Poker 139
How Much Time Should We Spend Estimating? 142
A Parable of Estimating Caution: A Story within a Story 144
Distributed Estimating with Online Planning Poker 144

An Alternate Technique: Tabletop Relative Estimation 145
From Scope Estimates to Team Velocity 146

Exercise Part 3: Establishing Velocity 146
Caveats on the Relative Estimating Model 147

Another Parable: Increasing Velocity, Be Careful
What You Ask For 148

From Velocity to Schedule and Cost 148
Estimating Schedule 149
Estimating Cost 149

Estimating with Ideal Developer Days 149
A Hybrid Model 151

Normalizing Velocity 152
Summary 152

Wow! eBook <WoweBook.Com>

ptg

xiv contents

Iterating, Backlog, Throughput, and Kanban 15Chapter 9 5
Iterating: The Heartbeat of Agility 155

Iteration Length 156
Iteration Pattern: Plan, Execute, Review, and Retrospective 157
Team Backlog 157
Planning the Iteration 158
Iteration Commitment 159
Executing the Iteration 164
Tracking and Adjustment 164
Review and Retrospective 167
Feature Preview 169

Backlog, Lean, and Throughput 169
Backlog Maturity, Lean, and Little’s Law 170
A Blog Story: Is That Well–Formed Product Backlog

Decreasing Your Team’s Agility? 170
Little’s Law and an Agile Team’s Backlog 171
Applying Little’s Law to Increase Agility and Decrease

Time to Market 172
Readers React 176
Managing Throughput by Controlling Backlog Queue Length 177

Software Kanban Systems 179
Kanban System Properties 179
Classes of Service in Kanban 180

Summary 180

Acceptance Testing 18Chapter 10 3
Why Write About Testing in an Agile Requirements Book? 183
Agile Testing Overview 184
What Is Acceptance Testing? 187

Story Acceptance Tests 187
Characteristics of Good Story Acceptance Tests 188

They Test Good User Stories 188
They Are Relatively Unambiguous and Test All the Scenarios 189
They Persist 190

Acceptance Test-Driven Development 190
Acceptance Test Template 192
Automated Acceptance Testing 193

Automated Acceptance Testing Example: The FIT Approach 194
Unit and Component Testing 196

Unit Testing 196
Component Testing 198

Summary 199

Wow! eBook <WoweBook.Com>

ptg

 contents xv

Role of the Product Owner 20Chapter 11 1
Is This a New Role? 201
Perspectives on Dual Roles of Product Owner and Product Manager 202

The Name Game: Experimenting with the
Product Owner Role/Title 206

Our Conclusion: Apply the Dual Roles 207
Responsibilities of the Product Owner in the Enterprise 207

Managing the Backlog 208
Just-in-Time Story Elaboration 211
Driving the Iteration 212
The Problem of Technical Debt and the Value Stream 216
Co-planning the Release 217

Five Essential Attributes of a Good Product Owner 218
Collaboration with Product Managers 220
Product Owner Bottlenecks: Part-Time Product Owners,

Product Owner Proxies, Product Owner Teams 221
Product Owner Proxies 221
Product Owner Teams 221

Seeding the Product Owner Role in the Enterprise 222
TradeStation Technologies 222
CSG Systems 223
Symbian Software Limited 223
Discount Tire 224

Summary 224

Requirements Discovery Toolkit 22Chapter 12 7
The Requirements Workshop 228

Preparing for the Workshop 229
Setting the Agenda 231
Running the Workshop 232

Brainstorming 232
Idea Generation 233
Idea Reduction 235
Idea Prioritization 236

Interviews and Questionnaires 237
Context-Free Questions 238
Solutions-Context Questions 238
The Moment of Truth: The Interview 239
Compiling the Needs Data 239
A Note on Questionnaires 240

User Experience Mock-Ups 241

Wow! eBook <WoweBook.Com>

ptg

xvi contents

Forming a Product Council 243
Competitive Analysis 244
Customer Change Request Systems 245

Defect Logs 246
Use-Case Modeling 247
Summary 247

Agile Requirements for the Program 24Part III 9

Vision, Features, and Roadmap 25Chapter 13 1
Vision 251
Expressing the Vision 252

A Vision Document 252
The Advanced Data Sheet Approach 253
The Preliminary Press Release Approach 254
The “Feature Backlog with Briefing” Approach 255
Communicating Nonfunctional Requirements (System Qualities) 255

Features 255
Expressing Features in User Voice Form 257

Estimating Features 257
Estimating Effort 258
Estimating Cost 259
Estimating Development Time 260

Testing Features 260
Prioritizing Features 261

Value/Effort as an ROI Proxy: A First Approximation 262
What’s Wrong with Our Value/Effort ROI Proxy? 262
Prioritizing Features Based on the Cost of Delay 263
Introducing Cost of Delay (CoD) 263
Estimating the Cost of Delay 266
Feature Prioritization Evaluation Matrix 267
All Prioritizations Are Local and Temporal 268
Achieving Differential Value: The Kano Model of

Customer Satisfaction 269
The Roadmap 271

On Confidence and Commitments for Release Next,
Next +1, and More 273

Summary 273

Wow! eBook <WoweBook.Com>

ptg

 contents xvii

Role of the Product Manager 27Chapter 14 5
Product Manager, Business Analyst? 276
Responsibilities of the Product Manager in a Product Company 276
Business Responsibilities of the Role in the IT/IS Shop 278
Responsibility Summary 279
Phases of Product Management Disillusionment in the Pre-Agile

Enterprise 280
Phase 1: Unbridled Enthusiasm 281
Phase 2: False Sense of Security 281
Phase 3: Rude Awakening 281
Phase 4: Resetting Expectations 282
Phase 5: The Season of Perpetual Mistrust 282
Exiting the Season of Perpetual Mistrust 282

Evolving Product Management in the Agile Enterprise 283
Understanding Customer Need 284
Documenting Requirements 284
Scheduling 285
Prioritizing Requirements 285
Validating Requirements 286
Managing Change 286
Assessing Status 287

Responsibilities of the Agile Product Manager 287
Own the Vision and Release Backlog 288
Managing Release Content 290
Maintaining the Roadmap 295
Building an Effective Product Manager/Product Owner Team 295

Summary 297

The Agile Release Train 29Chapter 15 9
Introduction to the Agile Release Train 300

Rationale for the Agile Release Train 301
Principles of the Agile Release Train 303

Driving Strategic Alignment 304
Institutionalizing Product Development Flow 305
Designing the Agile Release Train 308
Planning the Release 308

Release Objectives 308
Tracking and Managing the Release 309
Release Retrospective 310

Wow! eBook <WoweBook.Com>

ptg

xviii contents

Measuring Release Predictability 310
Release Objectives Process Control Band 312

Releasing 313
Releasing on the ART Cadence 313
Releasing Less Frequently Than the ART Cadence 314
Releasing More Frequently Than the ART Cadence 316

Summary 317

Release Planning 31Chapter 16 9
Preparing for Release Planning 319

Release Planning Domain 320
Planning Attendance 320
Release Planning Facilitator 320
Release Planning Checklist 321

Release Planning Narrative, Day 1 322
Opening 323
Business Context 323
Solution Vision 324
Architecture Vision 324
Team Planning Breakouts 325
Draft Plan Review 327
Managers’ Review and Problem Solving Meeting 328

Release Planning Narrative, Day 2 328
Opening 330
Planning Adjustments: A United Front 330
Planning Continues: Team Planning Breakouts Session II 330
Establishing Release Objectives 330
Final Release Plans Review 332
Addressing Risks and Impediments 333
The Commitment 334
Planning Retrospective 335
Final Instructions to Teams 336

Stretch Goals 336
Summary 338

Nonfunctional Requirements 33Chapter 17 9
Modeling Nonfunctional Requirements 340

Expressing Nonfunctional Requirements as User Stories 342
Exploring Nonfunctional Requirements 342

Usability 343
Reliability 344

Wow! eBook <WoweBook.Com>

ptg

 contents xix

Performance 345
Supportability (Maintainability) 345
Design Constraints 345

Persisting Nonfunctional Requirements 347
Testing Nonfunctional Requirements 348

Usability 350
Reliability 350
Security 351
Performance 352
Supportability and Design Constraints 352

Template for an NFR Specification 352
Summary 354

Requirements Analysis Toolkit 35Chapter 18 5
Activity Diagrams 357
Sample Reports 358
Pseudocode 358
Decision Tables and Decision Trees 359
Finite State Machines 361
Message Sequence Diagrams 364

Limitations of MSDs 364
Entity-Relationship Diagrams 365
Use-Case Modeling 366
Summary 366

Use Cases 36Chapter 19 7
The Problems with User Stories and Backlog Items 368
Five Good Reason to Still Use Use Cases 368
Use Case Basics 369

Use Case Actors 370
Use Case Structure 370
A Step-by-Step Guide to Building the Use Case Model 372

A Use Case Example 375
Applying Use Cases 377

Tips for Applying Use Cases in Agile 378
Use Cases in the Agile Requirements Information Model 378
Summary 379

Wow! eBook <WoweBook.Com>

ptg

xx contents

Agile Requirements for the Portfolio 38Part IV 1

Agile Architecture 38Chapter 20 3
Introduction to the Portfolio Level of the Big Picture 383
Systems Architecture in Enterprise-Class Systems 384

Does All Architecture Emerge in Agile? 385
The Need for Intentional Architecture 386
Business Drivers for Architectural Epics 387
Role of the System Architect in the Agile Enterprise 388

Eight Principles of Agile Architecture 390
Principle #1: The Teams That Code the System Design the System 390
Principle #2: Build the Simplest Architecture That Can

Possibly Work 391
Principle #3: When in Doubt, Code or Model It Out 392
Principle #4: They Build It, They Test It 395
Principle #5: The Bigger the System, the Longer the Runway 395
Principle #6: System Architecture Is a Role Collaboration 396
Principle #7: There Is No Monopoly on Innovation 397
Principle #8: Implement Architectural Flow 399

Implementing Architectural Epics 399
Case A: Big, but Incremental; the System Always Runs 400
Case B: Big, but Not Entirely Incremental; the System Takes

an Occasional Break 401
Case C: Really Big and Not Incremental; the System Runs

When Needed; Do No Harm 402
Splitting Architecture Epics 403
Summary 405

Rearchitecting with Flow 40Chapter 21 7
Architectural Epic Kanban System 408

Objectives of the Kanban System 408
Overview of the Architectural Epic Kanban System 409

Queue Descriptions 410
Architecture Epic State Descriptions 411

1. The Funnel: Problem/Solution Needs Identification 412
Sources of New Architectural Epics 413
Activities: Ranking the Epic 414
Work-in-Process Limits 415
Decision Authority 415

Wow! eBook <WoweBook.Com>

ptg

 contents xxi

2. Backlog 415
Activities: Cadence-Based Review, Discussion, and Peer Rating 415
Prioritization and Rating System 417
Weighted Rating and Decision Criteria 417
Pull from Transition to Analysis 418
Work-in-Process Limits 418

3. Analysis 418
Activities 418
Collaboration with Development 419
Collaboration with the Business: Solution Management,

Product Management, Business Analysts 420
Work-in-Process Limits 420
Architectural Epic Business Case Template 420
Decision Authority 422

4. Implementation 423
Implementation Path A: Transition to Development 423
Implementation Path B: Create a New Team 424
Implementation Path C: Outsourced Development 425
Implementation Path D: Purchase a Solution 425
Work in Process Limits 426

Summary 427

Moving to Agile Portfolio Management 42Chapter 22 9
Portfolio Management 429
When Agile Teams Meet the PMO: Two Ships Pass in the Night 431
Legacy Mind-Sets Inhibit Enterprise Agility 432

The Problem Is Not “Theirs”; It Is “Ours” 432
Legacy Mind-Sets in Portfolio Management 433
Eight Recommendations for Moving to Agile Portfolio

Management 436
Rethinking Investment Funding 436
Rethinking Change Management 440
Rethinking Governance and Oversight 442

Summary: On to Agile Portfolio Planning 447

Investment Themes, Epics, and Portfolio Planning 44Chapter 23 9
Investment Themes 450

Communicating Investment Themes 451
Why Investment Mix Rather Than Backlog Priority? 451

Epics 452
Subepics 453

Wow! eBook <WoweBook.Com>

ptg

xxii contents

Expressing Epics 453
Discriminating Epics, Features, and Stories 454
Types of Epics 456

Identifying and Prioritizing Business Epics: A Kanban System
for Portfolio Planning 456

Overview 457
State Diagram View 458
The Funnel: Problem/Solution Needs Identification 459
Backlog 461
Analysis 463
Implementation 467

Summary 467

Conclusion 46Chapter 24 9
Further Information 470

Appendix A Context-Free Interview 471

Appendix B Vision Document Template 475

Appendix C Release Planning Readiness Checklist 485

Appendix D Agile Requirements Enterprise Backlog Meta-model 489

Bibliography 491

Index 495

Wow! eBook <WoweBook.Com>

ptg

 xxiii

foreword

Why do product development projects miss their economic objectives? Studies
show that 80 to 85 percent of project failures are due to incorrect requirements.

Experienced developers know that managing requirements is a greater challenge than
technical execution. And, although we have known this for decades, we really haven’t
gotten much better at it. Why? At first, we were functionally organized, so we simply
displaced the problem outside the boundary of engineering—we blamed marketing
and product management. Later, as we adopted cross-functional teams, we told these
teams to listen to the voice of the customer and assumed that this would solve the
problem.

It didn’t. We never challenged the idea that it was feasible to develop valid require-
ments up front—we just told people to try harder. We just told them to pay more
attention to what the customer was asking for. We ignored the fact that many cus-
tomers don’t know what they want. We ignored that fact that even when they know
what they want, they can’t describe it. We ignored the fact that even when they
can describe it, they often describe a proposed solution rather than the real need.
For example, customers told us that they wanted suitcases that were easy to carry,
and asked us to make them lightweight. We did this, but they rejected our elegant
designs and bought the heavier designs of our competitors—the ones with wheels
on them!

The sad truth is that there is no one “voice of the customer.” It is a cacophony of
voices asking for different things. Even at a single customer, we need to balance
the needs of technical decision makers, end users, system operators, and financial
decision makers. All of these actors weigh different attributes differently, and they
change their weighting as they acquire more experience using the product. We also
need to understand the needs of distributors, regulators, manufacturing, and field
service. If we focus only on the user, we could miss what Dean calls the “nonfunc-
tional requirements.”

Wow! eBook <WoweBook.Com>

ptg

xxiv foRewoRd

And this problem is dynamic, not static. In the course of our development effort, the
context constantly changes—competitors introduce new products and customer
needs evolve. If it is not feasible to develop valid requirements before we begin
design, what is our alternative? In my opinion, we should start with the belief that
even the best requirements will contain major errors, and that these errors grow
exponentially with time. This shifts our focus. Instead of believing that we are hear-
ing a high-fidelity signal coming from the customer, we need to recognize that it is
a noisy, low-fidelity signal—a signal that must be continually checked for errors.
Rather than using heavy front-end investment to create perfect requirements, we
invest in creating processes and infrastructure that can rapidly detect and correct
poor fits between our solution and the customer’s evolving needs.

What better test for this alternative approach than the development of large sys-
tems? Many of the methods that work superbly on small projects break down on
large ones. For example, in small systems, costs and benefits are typically local. Sys-
tem performance does not suffer when a team makes locally optimal decisions. This
is not true for large systems where we must deal with economic effects that are dis-
persed physically, temporally, and organizationally.

We need better approaches to understanding and managing software requirements,
and Dean provides them in this book. He draws ideas from three very useful intel-
lectual pools: classical management practices, agile methods, and lean product
development. By combining the strengths of these three approaches, he has pro-
duced something that works better than any one approach in isolation.

First, although it might be unfashionable to say this, classic management practices
still offer us some very useful methods. Not all of our predecessors were stupid dolts,
incapable of recognizing a working solution. For decades I have seen relatively sim-
ple concepts like technology and product roadmaps producing great results. They
ensure that work on technology begins early enough to keep it off the critical path.
They create strong logical links between technology efforts and the programs that
they serve. We don’t need to blindly accept all traditional practices, but we’d be fool-
ish to discard everything our predecessors already learned. Dean shows you how to
apply some of these great ideas at the program and portfolio level.

Second, the agile community has developed a very powerful set of ideas that has
already produced impressive results. These methods have grown rapidly for a very
good reason—they work. Agile decomposes the large batches of the waterfall model
into a series of time-boxed iterations. These smaller batches dramatically accelerate
feedback, producing enormous benefits.

Wow! eBook <WoweBook.Com>

ptg

 foRewoRd xxv

Since much of agile’s success has occurred in smaller projects, it is natural to ask
whether it is equally useful in large systems. While I deeply respect the value of
agile methods, I think Dean is correct in recognizing that these methods must be
extended to meet the needs of large system development. It is quite risky to assume
that large system architectures will naturally emerge and that any shortcomings can
be refactored away. For example, a naval warship is designed for a 30-year operating
life. Good naval architects anticipate evolving threats, emerging technologies, and
changing missions. We do not create such systems by letting architecture “emerge.”
Once we recognize the unique challenge of managing at the system level, we can
start investing in the organizational infrastructure needed to meet this challenge.
Dean shows you how to do this with agile method extensions such as architectural
runways.

Dean also draws upon the ideas of what I call “second-generation lean product
development.” Many of the initial attempts to use lean in product development
focused on ideas such as standardization of work and variability reduction. They
lacked agile’s intrinsic appreciation that developing great new solutions requires
learning to thrive in the presence of uncertainty. These lean product development
methods have now evolved, and the results are impressive. For example, today’s
“kanban” approaches are limiting WIP, accelerating feedback, and making flow vis-
ible to all participants. You can see the influence of these ideas on Dean’s approaches
at the program and portfolio levels. Dean has also recognized the importance of the
new emphasis on economics. This emphasis helps us make better decisions and it
enables us to explain our choices to management in terms they readily understand.

As you read this book, I suggest paying attention to several things. First, try to under-
stand the reasons why certain of these approaches work, not just what they are. If
you understand why things work, then you can more easily adapt them to your own
unique context. Second, treat these ideas as a portfolio of useful patterns rather than
a rigid set of practices that must be adopted as a group. This will reduce the batch
size of your adoption process, produce less resistance, and provide faster results.
Finally, as you use these ideas, strive for balance. You will have a natural tendency to
prefer certain ideas—they address issues you feel are important, and they feel com-
fortable. You may have given other areas little attention for a long time. Often the
areas that have received little attention hold great untapped opportunity.

—Don Reinertsen
Author of The Principles of Product Development Flow:

Second Generation Lean Product Development

Wow! eBook <WoweBook.Com>

ptg

This page intentionally left blank

Wow! eBook <WoweBook.Com>

ptg

 xxvii

PrefaCe

introduCtion to the Book

In the past decade, the movement to lighter-weight and increasingly agile meth-
ods has been the most significant change to affect the software enterprise since the
advent of the waterfall model in the 1970s. Originated by a variety of thought and
practice leaders and proven in real-world, successful experiments, the methods
have proven themselves to deliver outstanding benefits on the “big four” measures:
productivity, quality, morale, and time to market.

In the past five years, the methods spread virally. Within the larger enterprise,
the initiatives usually started out with individual teams adopting some or all of the
practices espoused by the various methods, primarily XP, Scrum, Lean, Kanban
(later), and various combinations and variants.

However, as the methods spread to the enterprise level, a number of extensions to
the basic agile methods were necessary to address the larger process, organizational,
application scope, and governance challenges of the larger enterprise.

Not the least of these is the challenge of agile requirements, which is the necessity to
scale the basic, lightweight practices of team agile—product backlogs, user stories,
and the like—to the needs of the enterprise’s Program and Portfolio levels. For exam-
ple, agile development practices introduced, adopted, and extended the XP- originated
“user story” as the primary currency for expressing application requirements. The
just-in-time application of the user story provided a much leaner approach and
helped eliminate many waterfall-like practices, such as imposing overly detailed and
constraining requirements specifications on development teams.

However, as powerful as this innovative concept is, the user story by itself does not
provide an adequate, nor sufficiently lean, construct for reasoning about investment,

Wow! eBook <WoweBook.Com>

ptg

xxviii PReface

system-level requirements, and acceptance testing across the larger software enter-
prise’s project Team, Program, and Portfolio organizational levels. That is the pur-
pose of this book.

This book describes an agile requirements artifact model, corresponding practices,
suggested roles, and an organizational model that provides a quintessentially lean
and agile requirements subset for the agile project teams that write and test the code.
Yet this model also scales to the full needs of the largest software enterprise.

why write this Book?
In 2000, after about 25 years of managing software development as an entrepre-
neur and executive, along with my coauthor Don Widrig, I published my first book:
Managing Software Requirements: A Unified Approach. In 2003, we updated the book
with a second edition: Managing Software Requirements: A Use Case Approach. These
are considered to be definitive texts on managing application requirements—a lot
of copies were sold, and the books have been translated into five languages. More
importantly, many individuals, teams, and companies told me that these works
helped them achieve better software outcomes. That was always the goal.

In the following years, I turned my attention to agile development methods. I con-
tinue to be more and more impressed with the power of these innovative methods,
the quality and productivity results they delivered, and the way in which they reen-
ergized and empowered software teams. Though the methods were developed and
proven in small team environments, the challenges of building software at scale is
a more fascinating puzzle—part science, part art, part engineering, part organiza-
tional psychology. As a result, I became engaged in helping a number of larger enter-
prises in adopting and adapting these methods in projects affecting hundreds—and
then thousands—of software practitioners. Fortunately, with some extensions, the
methods did scale to the challenge. Based on these experiences, in 2007 I published
Scaling Software Agility: Best Practices for Large Enterprises, a book designed to help
larger enterprises achieve the benefits of agile development.

Scaling Software Agility took a broad view of software methods and didn’t focus
much on software requirements. Even though the management of requirements
continued to be a struggle for many agile teams, there were bigger organizational
and cultural challenges, as well as a number of emerging agile technical practices,
that needed to be addressed.

In the past couple of years, the movement to lean thinking in software development
captured my interest, in part because I have some background in lean manufacturing

Wow! eBook <WoweBook.Com>

ptg

PReface xxix

from earlier days. Generally, lean provides a comprehensive, deeply principled, rig-
orous, and mathematical framework for reasoning about product development
economics and the increasingly important subset, software development.

So, my thinking, along with that of many others, evolved further. Many of us started
to see agile development, especially agile at scale, as a “software instance of lean.”
In addition, lean scales beyond the software development labs and provides tools
to address changes in other departments such as deployment, IT, distribution, and
program and portfolio management. Simply put, lean provides a broader frame-
work for organizational change, and it helps us address these larger challenges. I’m
a big fan of lean thinking.

At its core, lean focuses on the value stream and provides philosophies, principles,
and tools to continually decrease time to market, enhance value delivery, and elimi-
nate waste and delays. As enterprises head down the lean path, it is again beneficial
to focus on optimizing the understanding and implementation of software require-
ments, because they are the unique carriers—or at least the best proxy—for that
value stream.

Lean thinking brings us full circle. Once again, it is useful to focus on requirements
management practices in our agile—and increasingly lean—software development
paradigm. That’s why I wrote this book.

My hope is that the book will help the individual software practitioner, project
team, program, and enterprise adopt and adapt agile and lean practices, deliver bet-
ter solutions to their users and stakeholders, and thereby achieve the personal and
business benefits that success engenders. After all, you can never be to too rich or
too lean.

how to read this Book

With this book, I’m hoping to tell a somewhat complex story—how to address
the challenge of managing software requirements in an agile enterprise that may
employ just a few developers building a single product to those employing hun-
dreds or even thousands of software practitioners building systems of previously
unseen complexity—in a practical, straightforward, and understandable manner.

To do so, the book is written in four parts, the last three of which are dedicated to
describing specific agile requirement practices at increasing levels of sophistication
and scale.

Wow! eBook <WoweBook.Com>

ptg

xxx PReface

Part I, Overview: The Big Picture of Agile Requirements in the
Enterprise

In Part I, we describe an overall process model intended to communicate the “Big
Picture” of how to apply agile requirements practices at the project Team, Program,
and Portfolio levels.

We provide a brief history of software methods, describing the evolution from water-
fall through iterative and incremental development, to agile and lean. We describe
the big picture of agile requirements—an organization, requirements, and process
model that works for the team and yet scales to the full needs of the enterprise.

We then provide an overview of the model and illustrate how it can be applied
in agile requirements for the team, agile requirements for the program, and agile
requirements for the portfolio.

If you need an introduction and orientation to the concepts, terms, and general prac-
tices of managing agile requirements, this part is intended to stand alone.

Part II, Agile Requirements for the Team

In Part II, we describe a simple yet comprehensive model for managing require-
ments for agile project teams. This portion of the model is designed to be as light-
weight as possible, quintessentially agile, and to not encumber the agile teams with
any unnecessary complexity and overhead. We introduce the agile team, user sto-
ries, stakeholders, users and user personas, iterating, agile estimating and velocity,
acceptance testing, the role of the product owner, and, finally, methods for discover-
ing requirements.

If your teams are using agile, this comprehensive, explanatory guide to applying agile
requirements is intended for you.

Part III, Agile Requirements for the Program

Part III is intended for those involved in building more complex systems that often
require the cooperation of a number of agile teams. We expand the picture and
introduce additional requirements artifacts, roles, organizational constructs, and
effective practices designed for this purpose. We describe Vision, product and system
features, the product Roadmap, the role of the product manager, the Agile Release
Train, release planning, nonfunctional requirements, techniques for requirements
analysis, and use cases.

Wow! eBook <WoweBook.Com>

ptg

PReface xxxi

If you are a developer, tester, manager, team lead, QA, architect, project or program
manager, or development director/executive involved in building systems of this scope,
this part is intended for you.

Part IV, Agile Requirements for the Portfolio

In Part IV, we describe the final, Portfolio level, of requirements practices. This level
is intended to guide enterprises building ever-larger systems of systems, applica-
tion suites, and product portfolios. These often require the coordination and
cooperation of large numbers (20 or 50 or 100 or more) of agile project teams. We
introduce additional requirements artifacts, roles, organizational constructs, and
practices designed for this purpose. We describe the role that larger-scale, inten-
tional, system-level architectures play in agile development. We introduce a kanban
system for reasoning about how to evolve and, when necessary, rearchitect, such sys-
tems in an agile manner. We also describe some of the legacy thinking in portfolio
and project management and give some suggestions as to what to do about it. We
conclude with a chapter describing investment themes, epics, and, finally, one of the
ultimate objectives—agile portfolio planning.

If you are a program manager, development director, system architect, executive, or
portfolio manager or planner who is involved in managing investments for a portfolio
of products, systems, software services, or IT applications, this part is intended for you.

Wow! eBook <WoweBook.Com>

ptg

This page intentionally left blank

Wow! eBook <WoweBook.Com>

ptg

 xxxiii

aCknowledgments

I t’s a humbling process to acknowledge all the contributions of others who have col-
laborated on this book.

I’d like to thank Don Reinertsen, who provided permission to use elements of
his breakthrough text, Principles of Product Development Flow: Second Generation
Lean Product Development. The principles from his book helped me truly under-
stand things I thought I understood before (even if it did cause me to rework some
chapters). Thanks to Alistair Cockburn, who contributed directly to the use-case
chapter, and other agile thought leaders whose work I have, I hope, acknowledged
appropriately.

I am particularly appreciative of those individuals who contributed so much to
the intellectual content in the book. They—and their employers—allowed me to
develop and publish what were, at that time, experiments-in-process. These include
my Finnish collaborators. Juha-Markus Aalto of Nokia Corporation was instru-
mental in the development of the lean and scalable requirements model and had
the courage to put the Agile Release Train to work at theretofore unprecedented
scale. The agilists and architects at F-Secure Corporation—Santeri Kangas, Gabor
Gunyho, Kuan Eeik Tan, and others—contributed to the architecture chapters.
Their enthusiasm and commitment to rethinking the roles of system architecture in
large-scale systems development was lean, agile, and practical.

Don Widrig, coauthor of our earlier Managing Software Requirements texts, con-
tributed heavily and drafted the requirements discovery and analysis chapters.
Mauricio Zamora of CSG Systems was always ready to test an idea, read an early
chapter, or “try this at work.” Pete Behrens helped me see user stories, stakehold-
ers, and personas more clearly and was instrumental in drafting those chapters.
Jennifer Fawcett extended my understanding of the agile product owner and prod-
uct manager roles and contributed extensive case study examples from her work

Wow! eBook <WoweBook.Com>

ptg

xxxiv acknowLedgments

at Tendril Inc. Stephen Baker and Joseph Thomas of DTE Energy provided the
mental model for legacy mind-sets of portfolio management. Israel Gat contrib-
uted to the portfolio chapters. Oleksandr (Alex) Yakyma reviewed various works in
process and translated pieces to his Russian and Ukrainian audience.

Even that list is not exhaustive. So many others—Mike Cottmeyer, Ryan Shriver,
Keith Black, John Bartholomew, Chris Chapman, Craig Larman, Mike Cohn, Maarit
Laanti, Ryan Martens, Matthew Balchin, and Richard Lawrence—directly contrib-
uted words, thoughts, critiques, or encouragement.

My Addison-Wesley editor Chris Guzikowski kept faith when the manuscript was
lagging. Editorial assistant Raina Chrobak, along with full-service production man-
ager Julie Nahil, helped turn the manuscript into a suitable production. Thanks to
copyeditor Kim Wimpsett and production editor Molly Sharp for the great pro-
duction support. And thanks to my Addison-Wesley reviewers, Robert Bogetti,
Sarah Edrie, Alexander Yakima, Brad Jackson, and Gabor Gunyho. A special thanks
is due Gabor Gunyho, who contributed directly to the intellectual content of the
architecture chapters and who also provided an incredibly thorough concept, text,
and methodology review.

If there is any quality to be found in this resulting product, much of the credit goes
to these collaborators. I hope the book meets your requirements.

Wow! eBook <WoweBook.Com>

ptg

 xxxv

aBout the author

Dean Leffingwell, a 30-year veteran of the software industry, is an entrepreneur, soft-
ware executive, consultant, and author.

Mr. Leffingwell was cofounder and CEO of a number of software companies
including publicly traded RELA/Colorado Medtech; Requisite, Inc., makers of
RequisitePro and now part of IBM’s Rational Division; and consumer Internet
identity company ProQuo, Inc. Mr. Leffingwell formerly served as chief meth-
odologist to Rally Software. Prior to that, he served as Vice President of Rational
Software, now IBM’s Rational Division, where his responsibilities included the
Rational Unified Process and promulgation of the UML.

Mr. Leffingwell has been a student, coach, and author of contemporary software
engineering and management practices throughout his career. He is the author of
Scaling Software Agility: Best Practices for Large Enterprises (Addison-Wesley, 2007).
He is also the lead author of the first and second editions of Managing Software
Requirements, both from Addison-Wesley, which have been translated into five
languages.

Mr. Leffingwell has a bachelor’s degree in engineering from the University of Illinois
and a master’s degree in engineering from the University of Colorado. He has served
as advisor and board member to a number of private and publicly held companies
throughout his career.

Wow! eBook <WoweBook.Com>

ptg

This page intentionally left blank

Wow! eBook <WoweBook.Com>

ptg

PART I

overview: the Big PiCture

If you can’t describe what you are doing as a process, you don’t know what
you’re doing.

—W. Edwards Deming

Chapter 1 �� A Brief History of Software Requirements Methods
Chapter 2�� The Big Picture of Agile Requirements
Chapter 3�� Agile Requirements for the Team
Chapter 4�� Agile Requirements for the Program
Chapter 5�� Agile Requirements for the Portfolio

Systems, Applications, Products

Te
am

 B
ac

kl
og

System Team

Re
le

as
e

Pl
an

ni
ng

Nonfunctional
Requirements

Feature 1

Feature 2

Release Planning

Arch 1

Re
le

as
e

(o
r P

SI
)

Features
Fit in

Releases

Epics Span
Releases

Architecture
Evolves

Continuously

Re
le

as
e

Pl
an

ni
ng

Pr
og

ra
m

Po
rt

fo
lio

Re
le

as
e

(o
r P

SI
)

Pr
og

ra
m

 B
ac

kl
og

Po
rt

fo
lio

 B
ac

kl
og

Release Theme and Objectives

Features and Components
Stories Fit in
Iterations

(Implemented by)
Tasks

Te
am

NFRs

Spikes Are
Research,
Design,
Refactor
Stories

H

H

H

H

Product
Owner

Scrum/Agile
Master

Te
am

 B
ac

kl
og

Te
am

 B
ac

kl
og

Agile Teams

Developers and Testers

Pl
an

D
em

o

Pl
an

D
em

o

Stories

Iterations lterations

Stories

Release Management

Product
Management

Investment
Themes

PortfolioManagement

Portfolio Vision
Epic 1

Epic 3
Architectural Runway

Epic 4

Epic 2

Feature 3

Feature 4

doc

doc

Roadmap

kl

Roadmap mapadm Roa pmap pa adm dRoa

Vision

Wow! eBook <WoweBook.Com>

ptg

This page intentionally left blank

Wow! eBook <WoweBook.Com>

ptg

 3

Chapter 1

a Brief history of software

requirements methods

Inertia is the residue of past innovation efforts. Left unmanaged, it consumes the
resources required to fund next generation innovation.

—Geoffrey Moore, Dealing with Darwin

software requirements in Context: deCades of
advanCing software ProCess models

Software development has become one of the world’s most important technologies.
The software we produce today is rapidly becoming the embodiment of much of the
world’s intellectual property. Simply put, our modern world depends on software.

In support of our efforts over the past 40 to 50 years, we have implemented vari-
ous software development methodologies—process frameworks we use to struc-
ture, manage, and control our work. Early on, it was a “cut-and-try” approach—ad
hoc—as and where necessary. In large part, that worked.

Over time, the scope and reach of our endeavors, along with the power of the com-
puters we programmed, increased by 10,000 fold. It seems like very quickly we
went from simple simulations to flying commercial airliners internationally. So, the
consequences of success or failure—whether measured in potential economic or
human cost—increased exponentially as well. To mitigate all this new risk and help
us produce only intended, rather than unintended, outcomes, we developed more
structured and controlled methodologies.

Because what we produce is not physical goods but intangible ideas reflected in
binary code, our methods all had a primary focus on “managing software require-
ments.” Software requirements was the label we applied to the abstractions we use
to carry the value stream into development and on to delivery to our customers. In
large part, these newer practices worked too, and we owe much of our successes to
these methods. Indeed, we shipped a lot of software.

But over time, the applications we developed became larger and larger still, and the
methods we used to control our work became heavier and heavier. As an unintended

Wow! eBook <WoweBook.Com>

ptg

4 chaPteR 1 � a BRief histoRy of softwaRe RequiRements methods

consequence, we started slowing down the very thing we were trying to speed up—
our ability to deliver higher-value, higher-quality software at faster and faster rates.

So, in the past two decades, the movement to more “agile” and “leaner” software
development methodologies, including lighter weight but still safe and effective
treatment of application requirements, has been one of the most significant factors
affecting the industry. Simply, we need processes that provide even better safety and
governance than we have experienced but without the burden. We want the best of
both worlds.

So, this migration to more rapidly exploratory and lighter-weight processes has
been a consistent theme over time, as Figure 1–1 shows.

Enterprise-Scale Adaptive
(Lean & Agile) Processes

Adaptive (Agile) Processes

Iterative
Processes

Predictive
Processes

1970 1980 1990 2000 2010

Crystal, Scrum, XP, FDD, Lean, DSDM, Open UP, Kanban

Spiral RAD RUP...

Requirements

Design

Implementation

Verification

Deployment

Scrum
XP Extreme Programming Project

Figure 1–1 Software process movements over the past few decades
Adapted from Trail Ridge Consulting, LLC

Wow! eBook <WoweBook.Com>

ptg

 PRedictive, wateRfaLL-Like PRocesses 5

A brief look at each of these mega-software process trends will tell us where we’ve
been, where we are today, and perhaps a bit about where we are likely headed in the
future.

PrediCtive, waterfall-like ProCesses

The software industry advanced quickly after its inception in the 1950s and 1960s.
As it did so, the need to be able to better predict and control ever larger-scale soft-
ware project outcomes somehow led us to what has become known as the sequen-
tial, stage-gated “waterfall” software process model, usually typified by a graphic
such as Figure 1–2.

In this model, software development occurred in an orderly series of sequential
stages. Requirements were agreed to, a design was created, and code followed there-
after. Lastly, the software was tested to verify its conformance to its requirements
and design.

Winston Royce, who was at TRW at the time, is often credited with the creation of
this model. Ironically, however, Royce actually described it as a model that could not
be recommended for large-scale software development. In his seminal paper [Royce
1970], he wrote this:

In my experience, the simpler model . . . [such as the one pictured in
Figure 1–2] has never worked on large software development efforts.

Requirements

Design

Implementation

Verification

Deployment

Figure 1–2 Simplified “waterfall” model. Progress flows top to bottom, like a
waterfall.

Wow! eBook <WoweBook.Com>

ptg

6 chaPteR 1 � a BRief histoRy of softwaRe RequiRements methods

He then went on to describe an enhanced model, which included building a proto-
type first and then using the prototype plus feedback between phases to build a final
deployment. Unfortunately, his actual guidance is lost to history, or perhaps to the
beguiling, construction-like thinking and oversimplification of the simple graphic
in Figure 1–2. So, what came into common usage was not what Royce intended.

Problems with the Model

As Royce would have likely predicted, the model hasn’t worked all that well for
large software projects, and we have all struggled under the burden. Within just a
decade or two, the resulting statistics were not very pretty. For example, the oft-cited
Standish Group’s Chaos report survey [Standish 19941] noted the following.

31% of projects will be canceled before they are completed.��
53% of the projects will cost more than 189% of their estimates.��
Only 16% of projects were completed on time and on budget.��
For the largest companies, completed projects delivered only 42% of the ��
original features and functions.

In addition, it appears that an ineffective treatment of requirements was a primary
root cause, because these were the three most common factors that caused projects
to be “challenged”:

Lack of user input:�� 13% of all projects
Incomplete requirements and specifications:�� 12% of all projects
Changing requirements and specifications:�� 12% percent of all projects

Requirements in the Waterfall Model: The Iron Triangle

Of course, we can’t say for certain that applying a rigid waterfall-based
requirements process was the root cause, but in any case it’s clear that
misunderstood and changing requirements had a huge impact on proj-
ect success, and the waterfall model was the dominant process model in

effect at the time. Moreover, as generally applied, the deceptively simply “require-
ments box” pictured in the waterfall model implies that there is a set of require-
ments that can be reasonably determined “up front” and that these can then be used
as a basis to estimate the schedule and budget of the project, as Figure 1–3 shows.

1. This often-cited report does have its critics. See www.few.vu.nl/~x/chaos/chaos.pdf. However,
the general conclusions correlate pretty well to the author’s experiences.

Requirements

Wow! eBook <WoweBook.Com>

www.few.vu.nl/~x/chaos/chaos.pdf

ptg

 PRedictive, wateRfaLL-Like PRocesses 7

Plan
Driven

Fixed Requirements

Estimates Cost Schedule

Figure 1–3 Once requirements are “known,” you can estimate the cost and
schedule.

Of course, from that point forward, the schedule and budget were likely also fixed
(after all, what business could possibly plan for highly variable resources and project
costing?). So, from a more realistic perspective, that led us to a simple “iron triangle”
trap, as Figure 1–4 illustrates.

This “fixed requirements scope” assumption has indeed been found to be a root
cause of project failure. For example, one key study of 1,027 IT projects in the United
Kingdom [Thomas 2001] reported this: “Scope management related to attempting
waterfall practices was the single largest contributing factor for failure.” Here’s the
study’s conclusion:

This suggests that . . . the approach of full requirements definition,
followed by a long gap before those requirements are delivered, is no
longer appropriate. The high ranking of changing business requirements
suggests that any assumption that there will be little significant change to
requirements once they have been documented is fundamentally flawed.

Plan
Driven

Requirements

Cost Schedule

Figure 1–4 The iron triangle trap of the waterfall model

Wow! eBook <WoweBook.Com>

ptg

8 chaPteR 1 � a BRief histoRy of softwaRe RequiRements methods

And What About Quality?

There is another critical, implicit deficit of the model as well. Software veterans
reading this book will likely note that there is another critical dimension, quality,
which does not even appear in the iron triangle diagram. Since cost, schedule, and
requirements were all fixed, quality was the only variable the teams could access. We
all know how well that worked out.

So, it certainly does appear from the data that attempting to fix the requirements up
front and then carefully control change and use quality as the team’s variable was a
fundamentally flawed set of assumptions on which to base a software process model.
This kind of hard data, plus our aggregate personal experiences, led us to a “tipping
point” that warranted serious consideration of substantially different process mod-
els for the industry, and indeed they did evolve in due course.

And Yet, the Waterfall Model Is Still Amongst Us

Even in light of this evidence, however, the waterfall model is still in widespread use
today, as Figure 1–5 implies.

Given its deficiencies, one wonders why that may be the case in 2010 and beyond.
Perhaps there are a number of understandable reasons.

The model was itself born as a fix to an earlier problem, which was the “code ��
it, fix-it, code-it-some-more-until-it’s-quickly-not-maintainable” tendency
of prior practices.
It appears to be extremely logical and prescriptive. Understand require-��
ments. Design a system that conforms. Code it. Test it. What could be more
sensible and logical than that?
It worked to a point (we did and still do ship a �� lot of software using the model).
As a result, companies built their project and program governance models,
including business case and investment approvals, project review and quality
assurance milestones, and the like, around its flawed software life cycle.
It reflects a continuing market reality—customers still do impose fixed-date/��
fixed-requirements agreements on suppliers, and they will likely continue to
do so for years to come. (And, yes, sometimes we impose them on ourselves.)

So, we belabor it here, not to further “beat a dead horse” but to recognize that this
particular horse is likely to be still alive and kicking in many business contexts. No
matter how agile we want to be, we will have to avoid its flailing hooves well into the
future. In turn, this can severely impact our operating freedom in implementing
agile requirements practices. The bigger the opportunity for gain in the larger set-
ting, the more likely the old model still exists—and the bigger the obstacles we are
likely to encounter!

Wow! eBook <WoweBook.Com>

ptg

 iteRative and incRementaL PRocesses 9

Predictive
Processes

1970 1980 1990 2000 2010

Requirements

Design

Implementation

Verification

Deployment

Figure 1–5 The model may have originated in the 1970s, but it is still in use today.

As agilists, our job is to help the business migrate to the new agile paradigm as effi-
ciently as possible. Therefore, although we can agree that we don’t want to support
the waterfall model any longer than we absolutely have to, we do have to understand
it and recognize that it still exists.

iterative and inCremental ProCesses

In the decades that followed, failures of the waterfall model, along with increasing
time-to-market pressures and advances in software development tools and technol-
ogies, drove the need for more innovative, discovery-based models, which led us to
the iterative processes of the 1980s and 1990s, as illustrated in Figure 1–6.

Generally, these can be seen as a continuum of increasingly iterative methods that
used the following:

Rapid development of understanding via experimental discovery (spiral)��
Rapid build of models, prototypes, and initial systems using more advanced ��
tools (RAD)
Iterative and incremental development of ever larger and more complex ��
systems (RUP)

Iterative
Processes

Spiral RAD RUP...

Figure 1–6 Iterative processes: spiral, RAD, and RUP

Wow! eBook <WoweBook.Com>

ptg

10 chaPteR 1 � a BRief histoRy of softwaRe RequiRements methods

Spiral Model

One trendsetter in this continuum [Boehm 1988]
is widely credited for initiating this trend with
what has been described as the “spiral model of
development.”

In the spiral model, requirements still have a strong
early placeholder. An initial pass around the spiral
is intended primarily to understand requirements
and perform some validation of the requirements
before more serious development begins. There-
after, the model assumed another, larger “spiral”
intended to develop the solution in largely sequen-
tial steps of design, coding, integration, and test-

ing. As such, this was the first published model based on a more discovery-based
requirements process (albeit followed by a fairly traditional sequential, waterfall-
like process, but one that incorporated constant feedback). Most give credit to this
thinking as the starting point to the iterative and incremental (and now, increas-
ingly agile) software development methods movement.

Rapid Application Development

Rapid Application Development (RAD) is now considered to be a
more generic term for a type of development process introduced
by James Martin in the early 1990s. Although it was originally a
fairly well-defined software process model focusing on the itera-
tive development and construction of an increasingly capable
series of prototypes, today it generally stands for any number of
lighter-weight approaches, using fourth-generation languages
and frameworks (such as web application frameworks), which
accelerate the availability of working software. These frame-
works and higher-level approaches often emphasize speed of
deployment and feedback over performance and scalability.
From a requirements perspective, the assumption was that if you
could build it fast enough before the requirements changed, you
would be more successful. And if you did get it wrong, the tools

are sufficiently facile and lightweight that you could build it again faster than you
could use traditional, paper-based requirements discovery methods. This thinking
was indeed a harbinger of methods to come.

Plan the next
iteration

Review
Partition

Commit to an
approach for
the next
iteration

Identify and
resolve risks

Evaluate
alternatives

Develop the
deliverables for the
iteration and verify
that they are correct

Spiral

Development plan

Integration
and test plan

Requirements
plan, lifecycle
plan

Concept of
operation

Risk
analyses

Risk
analyses

Risk
analyses

Risk
analyses

Prototype 3

Operational
prototype

Prototype 2

Simulations
Models

Detailed
design

Code
Unit
test

Integration
and testAcceptance

testRelease

Prototype 1

Cumulative costDetermine
objectives,
alternatives, and
constraints

Benchmarks

START

Source: B.W. Boehm, “A Spiral Model of Software Development
and Enhancement,” IEEE Computer, Vol. 21, No. 5, 1988, pp. 61–72

Design

Develop

Test

User
Review

JAD

Document
Requirements

RAD

Iterative Development

Planning DeployCompress

Wow! eBook <WoweBook.Com>

ptg

 iteRative and incRementaL PRocesses 11

Rational Unified Process

Based more on the spiral model than RAD and
intended for large-scale applications where robust-
ness, scalability, and extensibility were mandatory, the
Rational Unified Process (RUP) was launched in the
late 1990s. RUP is a widely adopted iterative and incre-
mental software process model, actively marketed
and supported by the Rational Software Division of
IBM. RUP has proven to be an effective framework
for the practice guidance and management of large-
scale application development. It has seen widespread
industry use (more than a million practitioners) and
has been applied with success on thousands of projects
of all types, including projects at the very largest scale.

RUP was the first widely adopted software process that recognized the necessary
overlap of the various activities that occurred during the life cycle phases of inception,
elaboration, construction, and transition. For example, activities such as “require-
ments” were no longer relegated to a single phase. Although requirements activi-
ties were particularly intensive during the early inception and elaboration phases
(as illustrated by the size of the “humps” in the diagram), requirements elabora-
tion and requirements change are considered to be a continuous process that occurs
throughout the life cycle.

More recently, a number of lighter-weight and more agile instantiations of RUP,
including Agile RUP and OpenUP (an open source process under the auspices of
the Eclipse foundation2), have become available.

Requirements in Iterative Processes

In iterative processes, we see a purposeful move away from the traditional big, up-
front design (BUFD) requirements and design artifacts, such as software require-
ments specifications, design specifications, and the like, which served to define and
govern implementations in waterfall implementations. In its place, we see a “dis-
covery-based” approach. In the iterative model, we applied lighter-weight docu-
ments and models such as vision documents, use-case models, and so on, which
are used to initially define what is to be built. Based on these initial understand-
ings, the iterative process itself is then applied to more quickly discover the “real
user requirements” in early iterations, thus substantially reducing the overall risk
profile of the project.

2. www.eclipse.org/epf/

Configuration and
Change Management

Project Management

Disciplines

Phases

Iterations

Elaboration Construction TransitionInception

Initial Elab #1 Elab #2 Const
#N

Tran
#1

Tran
#2

Const
#1

Const
#2

Requirements

Analysis and Design

Implementation

Test

Deployment

Source: Leffingwell, Scaling Software Agility: Best Practices
for Large Enterprises, Figure “RUP,” © 2007 Pearson Educa-
tion, Inc. Reproduced by permission of Pearson Education, Inc.

Wow! eBook <WoweBook.Com>

www.eclipse.org/epf/

ptg

12 chaPteR 1 � a BRief histoRy of softwaRe RequiRements methods

Once better defined in early iterations, these requirements were then implemented
in a fairly robust but mostly traditional build-out of code, tests, and so on, to imple-
ment the requirements and provide assurances that the system conformed to the
agreed-to behaviors.

Clearly, this was a giant step forward for the industry and one that started to soften
the boundaries of the iron triangle.

adaPtive (agile) ProCesses

Starting in the late 1990s and through the current decade, software process has seen
an explosion of lighter-weight and ever-more-adaptive models. Based on some fun-
damental changing software implementation paradigms such as object orientation,
3G languages, and test-driven development, these models were based on a different
economic foundation. These models assumed that—with the right development
tools and practices—it was simply more cost effective to write the code quickly, have
it evaluated by customers in actual use, be “wrong” (if necessary), and quickly refac-
tor it than it was to try to anticipate and document all the requirements up front.

Indeed, the number of methods—including Dynamic Systems Development
Method (DSDM), Feature-Driven Development (FDD), Adaptive Software Devel-
opment, Scrum, Extreme Programming (XP), Open Unified Process (Open UP),
Agile RUP, Kanban, Lean, Crystal Methods, and so on—speaks to the industry’s
thirst and constant drive for more effective and lighter-weight processes.

The Agile Manifesto

In 2001, the creators of many of the agile software development methodologies
came together with others who were also implementing various agile methods in
the field and created an Agile Manifesto3 summarizing their belief that there is a bet-
ter way to produce software. Even today it does an excellent job of synthesizing and
defining the core beliefs underlying the movement:

We are uncovering better ways of developing software by doing it and helping
others do it. Through this work we have come to value:

Individuals and interactions over processes and tools

Customer collaboration over contract negotiation

3. www.agilemanifesto.org

Wow! eBook <WoweBook.Com>

www.agilemanifesto.org

ptg

 adaPtive (agiLe) PRocesses 13

Working software over comprehensive documentation

Responding to change over following a plan

That is, while there is value in the items on the right, we value the items on
the left more.

Behind the manifesto itself are a set of core principles that serve as a common
framework for all agile methods.

Our highest priority is to satisfy the customer through early and continuous ��
delivery of valuable software.
Welcome changing requirements, even late in development. Agile processes har-��
ness change for the customer's competitive advantage.
Working software is the primary measure of progress.��
Deliver working software frequently, from a couple of weeks to a couple of ��
months, with a preference to the shorter timescale.
Business people and developers must work together daily throughout the ��
project.
Build projects around motivated individuals. Give them the environment and ��
support they need, and trust them to get the job done.
The most efficient and effective method of conveying information to and within ��
a development team is face-to-face conversation.
Agile processes promote sustainable development. The sponsors, developers, and ��
users should be able to maintain a constant pace indefinitely.
Continuous attention to technical excellence and good design enhances agility. ��
Simplicity—the art of maximizing the amount of work not done—is essential. ��
The best architectures, requirements, and designs emerge from self-organizing ��
teams.
At regular intervals, the team reflects on how to become more effective, then ��
tunes and adjusts its behavior accordingly.

Given the number of agile methods, a reasonable treatment of each is outside our
scope. However, according to a recent survey, it looks like these “method wars” have
settled a bit, at least with respect to market share (for now), as Figure 1–7 shows.4

4. www.versionone.com

Wow! eBook <WoweBook.Com>

www.versionone.com

ptg

14 chaPteR 1 � a BRief histoRy of softwaRe RequiRements methods

Agile Methodology
Most Closely Followed

Scrum or a variant was by
far the most common agile
methodology employed.

Scrum

Scrum/XP Hybrid

Extreme Programming (XP)

Custom Hybrid

Lean Development

Don’t Know/Other

12%

5% 6%

24%

50%

3%

Figure 1–7 Survey of most widely adopted agile methods. Fourth Annual State of
Agile Development Survey 2009. Courtesy of VersionOne, Inc.
Source: VersionOne’s 2009 Agile Methodology Survey

The survey reflects that, currently, the most widely adopted agile methods are
Scrum and XP. According to this survey, Scrum (with or without combination with
XP) is now applied in 74% of agile implementations, and this has been our experi-
ence as well.

Based on their predominance, we’ll be using these two methods as base practices for
much of what we discuss in our agile requirements practices in this book, so a brief
description of these is in order.

Extreme Programming (XP)

XP is a widely used agile software develop-
ment method that is described in a number
of books by Beck and others [Beck 2000; Beck
and Andres 2005]. Key practices of XP include
the following.

A team of five to ten programmers work ��
at one location with customer represen-
tation on-site.
Development occurs in frequent builds ��
or iterations, which may or may not
be releasable, and delivers incremental
functionality.

Requirements are specified as user stories, each a chunk of new functionality ��
the user requires.

Uncertain
Estimates

Confident
Estimates

New User Story
Project Velocity Bugs

Next Iteration

CustomerLatest
Approval Version

Test Scenarios

Requirements

Architectural
Spike

Release
Planning Iteration Acceptance

Tests
Small

Releases

User
Stories

Spike

Release
Plan

Source: Leffingwell, Scaling Software Agility: Best Practices for
Large Enterprises, Figure “Extreme Programming Project” © 2007
Pearson Education, Inc. Reproduced by permission of Pearson Educa-
tion, Inc.

Wow! eBook <WoweBook.Com>

ptg

 adaPtive (agiLe) PRocesses 15

Programmers work in pairs, follow strict coding standards, and do their own ��
unit testing. Customers participate in acceptance testing.
Requirements, architecture, and design emerge over the course of the ��
project.

XP is prescriptive in scope and is typically applied in small teams of less than ten
developers, where the customer is integral to the team or readily accessible. In
addition, the P in XP stands for programming, and as opposed to other methods,
XP describes some strict practices for coding that have been shown to produce
extremely high-quality output.

Scrum

Scrum is an agile project management method
[Schwaber 2004] that is enjoying increasing wide-
spread use. Key Scrum practices include the
following.

Work is done in “sprints,” which are timeboxed ��
iterations of a fixed 30 days or fewer duration.
 Work within a sprint is fixed. Once the scope ��
of a sprint is committed, no additional func-
tionality can be added, except by the develop-
ment team.

All work to be done is characterized as product backlog, which includes new ��
requirements to be delivered, the defect workload, and infrastructure and
design activities.
A �� Scrum Master mentors the empowered, self-organizing, and self- accountable
teams that are responsible for delivery of successful outcomes at each sprint.
A �� product owner plays the role of the customer proxy.
A daily stand-up meeting is a primary communication method.��
A heavy focus is placed on timeboxing. Sprints, stand-up meetings, release ��
review meetings, and the like are all completed in prescribed times.
Typical Scrum guidance calls for fixed 30-day sprints, with approximately 3 ��
sprints per release, thus supporting incremental market releases on a 90-day
time frame.

Scrum is achieving widespread use because it is a lightweight framework, and—
more importantly—it works. It also has the added benefit of a training certification
process, administered by the Scrum Alliance,5 which is also a good source for ongo-
ing discussions about the Scrum method, its application, and adoption.

5. www.scrumalliance.org

Product
Backlog

Sprint
Backlog

Sprint

Scrum

Working
Increment of

Software

30
Days

24
Hours

Wow! eBook <WoweBook.Com>

www.scrumalliance.org

ptg

16 chaPteR 1 � a BRief histoRy of softwaRe RequiRements methods

requirements management in agile is fundamentally
different

No matter the specific method, agile’s treatment of requirements is fundamentally
different. We see it immediately in the core principles:

Manifesto principle #1—Our highest priority is to satisfy the customer through
early and continuous delivery of valuable software.

Manifesto principle #2—Welcome changing requirements, even late in
development. Agile processes harness change for the customer's competitive
advantage.

Overall, the impact on the industry is dramatic and material. As described in Scaling
Software Agility [Leffingwell 2007]:

(with agile) instead of investing months in building detailed software
requirements specifications . . . teams focus on delivering early, value-
added stories into an integrated baseline. Early delivery serves to test
the requirements and architectural assumptions, and it drives risk out
by proving or disproving assumptions about integration of features and
components.

No longer do management and the user community wait breathlessly
for months, hoping the team is building the right thing. At worst, the next
checkpoint is only a week or so away, and . . . users may be able to deploy even
the earliest iterations in their own working environment.

So, with agile, we take a far more flexible approach to requirements management:
one that is far more temporal, interactive, and just-in-time. Gone are the traditional
software requirements specifications, design specifications, and the like, and, along
with them, the implied commitment to deliver “all that stuff” on a fixed schedule
and fixed resource basis.

Goodbye Iron Triangle

The net effect of this change is to eliminate the iron triangle that has kept us from
achieving our quality and dependability objectives. In the agile battle of date ver-
sus scope, the date wins. In other words, with agile methods, we’ll fix two things,
schedule and resources, and we’ll float the remainder, scope (requirements), as the
DSDM-inspired Figure 1–8 illustrates.6

6. Dynamic System Development Method: An agile method with roots in RAD

Wow! eBook <WoweBook.Com>

ptg

 RequiRements management in agiLe is fundamentaLLy diffeRent 17

Waterfall/Traditional Agile

Resources Date

ResourcesRequirements Date

Requirements
Estimated

Plan
Driven

Fixed

Value
Driven

Figure 1–8 Agile fixes the date and resources and varies the scope.

Also, as we apply the appropriate agile technical practices, quality is also fixed. So,
now we have a truly virtuous software cycle:

Fix quality—deliver a small increment in a timebox—repeat.

Agile Optimizes ROI Through Incremental Value Delivery

Agile is also based on a simplistically sound economic principle—the sooner we
deliver a feature, the sooner our customers will pay us for it. This improves the
return on investment for the cost of development, as Figure 1–9 illustrates.

Requirements

Design

Implementation

Verification

Deployment

Time

Figure 1–9a. Waterfall Return on Investment Figure 1–9b. Agile Return on Investment

Time

Deadline

Return on Investment
Starts Here

$$$$$ In

$$$$ In

$$$ In

$$ In

$ In

Va
lu

e
D

el
iv

er
y

Va
lu

e
D

el
iv

er
y

Return on Investment
Starts Here (If You Are
on Time)

Figure 1–9 Value delivery and ROI in waterfall versus agile

Wow! eBook <WoweBook.Com>

ptg

18 chaPteR 1 � a BRief histoRy of softwaRe RequiRements methods

In waterfall (Figure 1–9a), investment (cost) starts immediately and continues until
delivery is reached. No return on investment is possible until such time as all commit-
ted requirements have been delivered to the customer, or the deadline is reached.

In agile (Figure 1–9b), value delivery starts with the first shippable increment.
Therefore, whether business value is measured in customer retention or incremen-
tal pricing, return on investment starts then too.

If we assume the investment is constant (though, as we’ll see later, the actual invest-
ment will actually be much lower in agile), then this is true:

ROI $$ (agile) > ROI $ (waterfall)

Wait, It Gets Even Better

However, even this simple example understates the case for increased ROI because
it doesn’t take into account the differential value of early market features. For exam-
ple, when I bought my first iPhone, the initial price was an eye-popping $600. As an
early adopter, I purchased mine within just a few months of launch and paid the full
price. I did so because it was the only product on the market at that time that offered
the feature set of a full-touch UI, integration with iTunes, and the promise of the
future applications store. And I wanted it! Twenty-four months later, you could buy
a much more powerful version, with 3G data network, integral GPS, video, and a
host of other features, for about $199, which is one-third the price I paid just two
years earlier for about half the capability.

Anyone entering the market later with a “me too” product had to compete at a much
lower price. Moreover, they had to invest heavily to disrupt an incumbent market of
early adopters who are unlikely to switch as the iPhone makes its way into its users’
daily lives.

What this story describes is a well-known causal market ROI behavior:

The value of any marketable feature decreases over time.

Therefore, to capture the maximum gross profit, you have to be in the market first,
or at least early enough to where the value/pricing differential is still in effect. When
you superimpose that phenomenon on the curves of Figure 1–9, you get a truly star-
tling effect. ROI actually increases at a rate even faster than the linear rate implied by
Figure 1–9a, as is illustrated in Figure 1–10.

Taking this into account, the following becomes clear:

ROI $$$ (agile) >> ROI $ (waterfall)

Wow! eBook <WoweBook.Com>

ptg

 enteRPRise-scaLe adaPtive PRocesses 19

Time

Va
lu

e
D

el
iv

er
y

Market Value of a
Feature Over Time

Cumulative
Gross Margins

Figure 1–10 Agile ROI, taking into account differential feature value over time

Now we see why an already successful enterprise may be willing to transform itself
to more agile practices, even in the face of serious political, operational, governance,
and organizational impediments:

Because it makes economic sense to do so.

enterPrise-sCale adaPtive ProCesses

The compelling nature of this ROI data, coupled with
the increases in productivity, quality, and morale
achieved by agile teams, is incenting larger software
enterprises to adopt agile methods. Although the
methods we’ve described so far were developed in
smaller team contexts, they are now being actively
applied and extended in larger enterprises world-
wide. Books such as Scaling Software Agility: Best
Practices for Large Enterprises [Leffingwell 2007] and
Scaling Lean and Agile Development [Larman and
Vodde 2009] are adding momentum to this move-

ment by providing additional practice guidance around the broader enterprise topic
areas including organization, product line and systems architectures, governance,
and portfolio management.

Enterprise-Scale Adaptive
(Lean & Agile) Processes

Wow! eBook <WoweBook.Com>

ptg

20 chaPteR 1 � a BRief histoRy of softwaRe RequiRements methods

introduCtion to lean software
In a parallel universe, the roots of the lean software movement were evolving pri-
marily from the successes of Toyota and the Toyota Production System (TPS), an
alternative to the mass production systems in use at the time. TPS is a set of lean,
economically-based manufacturing philosophies, principles, and practices used to
vault Toyota to become the world’s leading car manufacturer by 2007. This method
has been described in a number of books, including classics such as The Toyota Way
[Liker 2004].

In turn, this has spawned a growing lean software movement, (note: “lean” appears
with about 3% market share in Figure 1–7) which is being promulgated by thought
leaders in books such as Implementing Lean Software Development [Poppendieck
and Poppendieck 2007], Lean Software Strategies [Middleton and Sutton 2005],
and Lean-Agile Software Development [Shalloway 2010]. In addition, lean thinking
has been applied successfully in product development in books such as Managing
the Design Factory [Reinertsen 1997] and Principles of Product Development Flow
[Reinertsen 2009]. The move to lean thinking in software and systems development
is now also being actively supported by a body of knowledge and certification body,
the Lean Software and Systems Consortium.7

With respect to product development, lean thinking is based on an extensive set
of proven economic and mathematical principles that describe the flow of prod-
uct information within the enterprise but that apply equally well to the supplier
and customer elements of the larger business value chain. As such, it is broader and
deeper than the specific agile software methods we have described so far.

Indeed, it is easy to view XP, Scrum, and others as “software instances of lean,” and
as such, lean provides an even broader framework for improving the economics of
new product development in those enterprises dependent on software.

The impact of lean thinking is only beginning to be felt in the industry today, but
it seems likely that the impact of lean over time will be as great or greater than the
effect of the agile software development methods we have described so far. There-
fore, we’ll take some time to establish the framework for lean software thinking in
the following sections, because this set of principles also underlies the premise for
our approach to lean requirements practices for teams, programs, and the enterprise.

The House of Lean Software

As we mentioned, the principles and practices as applied to lean manufacturing, lean
product development, lean services, and lean thinking in general are deep and extensive.

7. www.leanssc.com

Wow! eBook <WoweBook.Com>

www.leanssc.com

ptg

 intRoduction to Lean softwaRe 21

Although the general body of work is enormous, Larman and Vodde8 have described
a framework for lean software thinking that translates many of the core principles and
practices into a manageable software context. In so doing, they also reintroduced a
“house of lean thinking” graphic, inspired by earlier houses of lean from Toyota and
others. Perhaps because I’m a visual learner, I’ve always liked that graphic, so I’ve cre-
ated a variant for our “house of lean software,” which is illustrated in Figure 1–11.

Our house of lean software has five elements:

Roof, the Goal:�� Sustainably delivering value fast
Pillar 1:�� Respect for people
Pillar 2:�� Continuous improvement
Foundation:�� Management support
Contents:�� Product development flow

The Goal: Value

Pillar 1: Respect For
 People

Product
Development Flow
1. Take an Economic
 View.

5. Apply WIP
 Constraints.
6. Control Flow:
 Cadence and
 Synchronization.

2. Actively Manage
 Queues.
3. Exploit Variability.
4. Reduce Batch Size.

7. Apply Fast Feedback.
8. Decentralize
 Control.

Pillar 2: Continuous
 Improvement

Sustainable Shortest Lead Time. Best Quality and Value (to People and Society). Most
Customer Delight, Lowest Cost, High Morale, Safety.

Management Applies and Teaches Lean Thinking, Bases Decisions on This Long-Term Philosophy.
Foundation: Management Support

Figure 1–11 House of lean software
Adapted from Toyota Production System [Liker 2004], www.leanprimer.org [Larman and Vodde], Reinertsen 2009

8. www.leanprimer.com/downloads/lean_primer.pdf

Wow! eBook <WoweBook.Com>

www.leanprimer.org
www.leanprimer.com/downloads/lean_primer.pdf

ptg

22 chaPteR 1 � a BRief histoRy of softwaRe RequiRements methods

The first four elements—the roof, pillars 1 and 2, and the foundation—provide
the philosophical framework for lean software thinking. The fifth element, the
product development flow, describes the specific lean principles we’ll apply
throughout this book.

We’ll describe each of the elements of the house of lean in the following sections.

Roof, the Goal: Sustainably Delivering Value Fast

The goal of lean is unarguable: to deliver the maximum amount of value to the cus-
tomer in the shortest possible time frame. Here’s how others put it:

All we are doing is looking at the timeline, from the moment the customer gives us
an order to the point where we collect the cash. And we are reducing the timeline
by reducing the non-value-added wastes.”

—Taiichi Ohno

“We need to figure out a way to deliver software so fast that our customers don’t
have time to change their minds.”

—Poppendieck

“Focus on the baton, not the runners.”

—Larman and Vodde9

So in our requirements work, we are reminded to do the following.

Focus on customer requirements as they move through the system, rather ��
than the people and organizations who manage them.
Search for, and actively minimize, delays, handoffs, and other non-value-��
added activities.

9. Craig Larman commented: “In the Scrum-origins paper [The New, New Product Develop-
ment Game, Harvard Business Review, 1986] the authors emphasize the importance of no
handoff, and refer to the best approach as *not* handing off a ball or baton to other (specialist)
teams, but rather, a cross-functional team that ‘moves the ball down the field together’ (rugby
metaphor). [however] realistically today, there are still going to be handoffs—between sales,
product mgmt, R&D, manufacturing, and operational support. Given this large-scale chal-
lenge, the ‘watch the baton’ (focus on the value flow and value/waste ratio, not the busy-ness of
people or local optimization) viewpoint is still relevant to ‘get’ the lean-thinking viewpoint.”

Wow! eBook <WoweBook.Com>

ptg

 intRoduction to Lean softwaRe 23

In addition, we must remember that requirements are not an end unto themselves.
We don’t really care if we’ve done a good job of discovering, organizing, prioritiz-
ing, and managing them. We only care how they ultimately serve us as the carriers
of value delivery through the enterprise, from “concept to cash” [Poppendieck and
Poppendieck 2007]—a proxy if you will—for what the customer needs and wants.
In turn, all the associated process mechanisms we use to deliver value in our prod-
uct, system, or service must serve that ultimate purpose.

From a software requirements perspective, we can visualize our enterprise’s soft-
ware delivery value chain as in Figure 1–12.

To optimize delivery time and increase ROI, we’ll need to optimize the value chain
of requirements-to-code-test-delivery by optimizing each of these functions. And to
really accelerate value delivery, we will also need to minimize all the delays implied
by the whitespace between.

Pillar 1: Respect for People

Although it is fair to “focus on the baton” (requirements), we must constantly be
aware that it is our people who actually do all the value-added work, and respect for
people is a comforting and fundamental principle of lean and agile.10

In addition, people are empowered in lean to evolve their own practices and
improvements. Management challenges people to change and may even ask what
to improve, but workers learn problem-solving and reflection skills and decide for
themselves how to make the appropriate improvements.

Understand
Customer

Needs

Formulate
Solution

Requirements
Get Work Into
Development

Build and
Test Solution

Deliver to
Customer

Co
nc

ep
t

Ca
sh

Total Time for Value Delivery

Figure 1–12 A software delivery value chain

10. Agile Manifesto synonym: Build projects around motivated individuals. Give them the environ-
ment and support they need, and trust them to get the job done.

Wow! eBook <WoweBook.Com>

ptg

24 chaPteR 1 � a BRief histoRy of softwaRe RequiRements methods

Pillar 2: Continuous Improvement

This leads to the second pillar of lean, continuous improvement, or kaizen. With
kaizen, we are guided to “become a learning organization through relentless reflec-
tion and continuous improvement.” [Liker 2004]11

Solve problems and improve processes by going to the source and personally ��
observing and verifying data.
Make decisions slowly by consensus, thoroughly considering all options; ��
implement decisions rapidly.
Use continuous improvement to determine the root cause of inefficiencies ��
and apply effective countermeasures.
Protect the organizational knowledge base by developing stable personnel, ��
slow promotion, and careful succession systems.
Reflect at key milestones and after you finish a project to openly identify all ��
the shortcomings of the project.

Foundation: Management Support

The foundation of lean thinking is management support. In fact, support is an inad-
equate word to describe the key and active role that management takes in imple-
menting and driving lean. Leadership would be a better word. In lean, management
is trained in the practices and tools of lean thinking and continuous improvement,
applies them routinely, and teaches employees how to use them as well.

In this case, lean deviates from much of our experience with agile development. In
our experience, agile has often been promoted as a team-based process that, in the
worst case, tends to exclude management from key process and practices.12 Of course,
excluding management from participation and problem solving does not scale very
well, and here is a key differentiator between agile and lean that we can leverage.

In agile, it has been our expectation that management supports us and helps ��
eliminates impediments.
In lean, the expectation is that management leads us, is competent in the ��
basic practices, and takes an active role in driving continuous improvement.

11. Agile Manifesto synonym: At regular intervals, the team reflects on how to become more effective,
then tunes and adjusts its behavior accordingly.

12. In the Scrum story, there are “chickens” and “pigs.” Those who actively write and test the
software are pigs (fully “committed” to the “ham and eggs restaurant partnership”). Others,
including management, are “chickens” and are only “involved.” This otherwise cute story has
led to a tendency in agile to assume that management is somehow not as committed as the
team and is therefore not as necessary; perhaps they are not needed at all This is not helpful
because it exacerbates organizational silos and inhibits successful adoption.

Wow! eBook <WoweBook.Com>

ptg

 intRoduction to Lean softwaRe 25

This key principle is one of the major drivers for lean in the software enterprise.
Managers and executives lead, rather than follow, and are accountable for continu-
ously advancing practices.

Contents: Principles of Product Development Flow

In the center of the house of lean software are the various principles and practices
teams use to actually develop and deliver software to their end users. Of course,
there is no one right way to do this, and the reference books mentioned earlier pro-
vide varying perspectives.

In his latest book, Principles of Product Development Flow, Reinertsen [2009]
calls out eight key themes, each supported by a number of supporting principles.
Together, the themes and principles provide comprehensive guidance for lean, flow-
based product development. In my view, this is the best and most general descrip-
tion of lean principles as applied to product development, and by extension, they
provide excellent, though nontrivial, guidance to the software development team.
Reinertsen’s book is a rigorous treatment, which contains more than 175 support-
ing lean and flow principles, so we can’t possibly describe them here.

What we can do, however, is introduce the eight high-level themes and then apply
various supporting principles throughout this book. The eight themes are as
follows.

Take an economic view.��
Actively manage queues.��
Understand and exploit variability.��
Reduce batch sizes.��
Apply work-in-process (WIP) constraints.��
Control flow under uncertainty—cadence and synchronization.��
Get feedback as fast as possible.��
Decentralize control.��

Because these provide much of the underlying lean philosophy in this book, we’ll
describe each here.

Take an economic view:�� Take an economic view to establish the decision
framework for your specific context, whether it is at the team, program, or
enterprise level. Understand the full value chain. Do not consider money
already spent. Sequence high-risk, low-cost activities first. If you quantify
only one thing, quantify the cost of delay.
Actively manage queues:�� Long queues are universally bad because they create
longer cycle times, increase risk, lower quality, and decrease motivation.

Wow! eBook <WoweBook.Com>

ptg

26 chaPteR 1 � a BRief histoRy of softwaRe RequiRements methods

Actively manage queue lengths and provide predictable wait times by
applying Little’s law.13 Operate at below-peak levels of utilization to increase
responsiveness to change. Use cumulative flow diagrams to manage
throughput.
Understand and exploit variability:�� In manufacturing, variability must be
minimized to create predictable results, efficiency, and quality. In software
development, variability is inherent. Instead of eliminating variability, we
must design systems that expect and address variability and even exploit it
when appropriate.
Reduce batch sizes:�� Large batch sizes create unnecessary variability and
cause severe delays in delivery and quality. The most important batch is
the transport (handoff) batch between teams and between roles within a
team. Optimize proximity (co-location) to enable small batch sizes. Good
infrastructure (test automation, continuous integration, and so on) and
loose architectural coupling enable delivery of software in small increments
(batches).
Apply WIP constraints: �� The easiest way to control queue length is to apply
constraints to work in process. Limiting work in process helps force the
input rate to match available capacity. Timebox deliveries to help prevent
uncontrolled expansion of work. Constrain global WIP pools by constrain-
ing local WIP pools. When WIP is too high, purge lower-value projects.
Make WIP continuously visible (whiteboards and sticky notes).
Control flow under uncertainty—cadence and synchronization:�� Even in the
presence of variability and uncertainty, we can keep our software process in
control with cadence and synchronization. Cadence is a predictable rhythm
that helps us transform unpredictable events into predictable events. This
makes waiting times predictable, lowers transaction costs, and increases
dependability and reliability of the product development process. Periodic
resynchronization allows us to limit variance and misalignment to a single
time interval. Regular, system-wide integration (component synchroniza-
tion) provides high-fidelity system tests and objective assessment of project
status. Regular synchronization also facilitates cross-functional trade-offs
and high-bandwidth information transfer.
Get feedback as fast as possible:�� Software development cannot innovate
without taking risks, and we need fast feedback to take fast corrective action.
Fast feedback (short iterations, short release time frames, fast continuous
integration, minimal delays between code and test, and so on) has many

13. Little’s law tells us that the average waiting time in a queue is equal to the average length of
the queue divided by the average processing rate. Long queues and slow cycle times beget
long waits.

Wow! eBook <WoweBook.Com>

ptg

 intRoduction to Lean softwaRe 27

benefits: truncates unsuccessful paths quickly, reduces the inherent cost of
failure in risk taking, and improves the efficiency of learning by reducing the
time between cause and effect. Fast feedback is facilitated by small batch sizes
but often requires increased investment in the development environment to
understand smaller changes.
Decentralize control�� : The faster we go, the less practical it is to have decisions
move up and then back down the chain of command. Delays in decision
making slow feedback and simultaneously decrease the fidelity of the deci-
sion, because of the decay in fact patterns that occur in the waiting time.
Teams must be empowered to make decisions and act quickly and efficiently.
There is little danger because the faster the feedback, the faster even a poor
decision can be corrected.

These eight themes provide an economic, quantitative, and mathematically proven
substrate for lean and agile software lean requirements management. However,
there is one final theme that must be explored before we get on the work at hand.

A Systems View of Software Requirements

What we need to do is learn to work in the system, by which I mean that
everybody, every team, every platform, every division, every component is there
not for individual competitive profit or recognition, but for contribution to the
system as a whole on a win-win basis.

—W. Edwards Deming

Lean thinking requires a systemic approach to managing operations throughout and
across all the components (departments, artifacts, practices and processes, individu-
als, and so on) of the enterprise. Optimizing the behavior of any one function, such
as requirements management or of a role such as the product owner or product
manager or even an entire agile team or business unit—will not produce an opti-
mum, system-level result. Rather, we must look beyond the project team and recog-
nize and optimize all the facets of our requirements process in a comprehensive and
systematic way.

For example, we must understand how our new agile requirements model impacts
the definition and development of the enterprise-class systems architectures that are
necessary to host the new value proposition. In addition, we’ll need to understand
the impact of requirements practices on departmental and organizational activi-
ties—not just at the individual project or team level but all the way to the enterprise
portfolio—because that is where the new projects are formed.

We’ll cover these perspectives in Part IV of this book.

Wow! eBook <WoweBook.Com>

ptg

28 chaPteR 1 � a BRief histoRy of softwaRe RequiRements methods

Kanban: Another Software Method Emerges

Not surprisingly, the movement to lean has already inspired at least one software
process that is based exclusively on lean principles. Kanban (the word means “sig-
nal” in Japanese) is the label for a way of scheduling and managing software work
that is seeing increasing use in the agile community. As defined by the Limited WIP
Society,14 a software kanban system has the following characteristics.

Visualizes some unit of value. This unit of value could be a user story, mini-��
mal marketable feature, requirement, or something else. This is different
from a taskboard, which generally focuses on visualizing the current tasks.
Manages the flow of these units of value, through the use of WIP limits.��
Deals with these units of value through the whole system, from when they ��
enter a team’s control until they leave it.
By putting these three properties of a kanban system together, kanban allows ��
value to flow through the whole system using WIP limits to create a sustain-
able pipeline of work.
Further, the WIP limits provide a mechanism for the kanban system to dem-��
onstrate when there is capacity for new work to be added, thereby creating a
pull system.
Finally, the WIP Limits can be adjusted and their effect measured as the ��
kanban system is continuously improved.

The pull system of kanban tends to quickly expose impediments, blocking issues,
and bottlenecks in the flow (which may result from either a capacity constraint or
noninstant availability of a resource). The team can then change their process for
the better. As compared to a more traditional, prescriptive approach to change, this
visible, adaptive approach can lower resistance and accelerate capability improve-
ment. Therefore, it seems likely that this relatively lighter-weight method will be
seeing increasing use in the software development community over time. The kan-
ban method will be discussed further in Chapter 9. In addition, we’ll be seeing many
of these same kanban-based practices at work throughout this book.

summary

In this introductory chapter, we provided a brief history of requirements methods
as they have evolved over the past 20 to 30 years. We did so for two reasons: to pro-
vide context for advancing methods based on lessons learned in the past, and since
all these methods are still at work in the industry today, to help us understand the
existing practices before we attempt to improve them.

14. www.limitedwipsociety.org

Wow! eBook <WoweBook.Com>

www.limitedwipsociety.org

ptg

 summaRy 29

We introduced agile development methods that are being successfully applied
at the team and enterprise levels. We noted how these methods are being further
advanced, and further scaled, through the application of lean and flow principles.
In understanding lean, we concluded that requirements management is not solely a
local, team-based problem. Rather, we must also understand the impact of applying
these methods to the development of enterprise-class architectures and enterprise
project and portfolio management.

To address these challenges, we’ll need to provide a systematic approach to applying
lean and agile requirements practices that work efficiently for small teams and can
also be scaled to the full needs of the enterprise. Our objective must be to help the
enterprise achieve the full benefits of lean and agile development. In doing so, we
must be careful to not encumber the agile teams that write and test all the new code,
lest we risk killing the “goose that laid this golden egg.”

Wow! eBook <WoweBook.Com>

ptg

This page intentionally left blank

Wow! eBook <WoweBook.Com>

ptg

 31

Chapter 2

the Big PiCture of agile requirements

This would all be a lot easier to understand if you could just draw me a picture.

—Anonymous senior executive

Effectively implementing a new set of lean and agile requirements principles and
practices in a project team, program, or enterprise is no small feat. Even the lan-

guage is different and seemingly odd (user stories, sprints, velocity, story points, epics,
backlog?). In addition, further “leaning” the organization often requires eliminating
or reducing requirements specifications, design specifications, stage-gated governance
models (with incumbent requirements reviews), sign-offs (with incumbent delays . . .),
implementing work-in-process limits (which may seem counterproductive to those
who measure “utilization”), and so on. So, there will likely be many challenges.

Even for the fully committed, it can take six months to a year to introduce and imple-
ment the basic practices and even more time to achieve the multiples of produc-
tivity and quality results that pay the ultimate dividends in customer satisfaction,
revenue, or market share. To achieve these benefits, we must change many things,
including virtually all of our former requirements management practices. However,
many of the existing required artifacts, milestones, and so on, serve as safeguards to
“help” avoid the types of project problems that software has often experienced. So,
we have a dilemma—how do we practice this new high-wire act without a safety
net, when the safety net itself is a big part of the problem?

Fortunately, we are now at the point in time where a number of organizations have
made the transition before us and some common patterns for lean and agile soft-
ware process success have started to emerge. In our discussions with teams, manag-
ers, and executives during this transition, we often struggled to find a language for
discussion, a set of abstractions, and an appropriate graphic that we could use to
quickly describe “what your enterprise would look like and how it would work after
such an agile transformation.”

To do so, we need to be able to describe the new software development and delivery
process mechanisms, the new teams and organizational units, and some of the roles
key individuals play in the new agile paradigm. In addition, any such�Big Picture

Wow! eBook <WoweBook.Com>

ptg

32 chaPteR 2 � the Big PictuRe of agiLe RequiRements

should highlight the requirements practices of the model, because those artifacts
are the proxy for the value stream.

Eventually, and with help from others, we arrived at something that worked reason-
ably well for its purpose.1 We call it the Agile Enterprise Big Picture, and it appears in
Figure 2–1.

the Big PiCture exPlained

In this chapter, we’ll explain the Big Picture in a summary format intended to pro-
vide the reader with a quick gestalt of this new, agile, leaner, and yet fully scalable
software requirements model.

Systems, applications, products

Te
am

 B
ac

kl
og

System Team

Re
le

as
e

Pl
an

ni
ng

Nonfunctional
Requirements

Feature 1

Feature 2

Release Planning

Arch 1

Re
le

as
e

(o
r P

SI
)

Features
Fit in

Releases

Epics Span
Releases

Architecture
Evolves

Continuously

Re
le

as
e

Pl
an

ni
ng

Pr
og

ra
m

Po
rt

fo
lio

Re
le

as
e

(o
r P

SI
)

Pr
og

ra
m

 B
ac

kl
og

Po
rt

fo
lio

 B
ac

kl
og

Release Theme and Objectives

Features and Components
Stories Fit in
Iterations

(Implemented by)
Tasks

Te
am

NFRs

Spikes Are
Research,
Design,
Refactor
Stories

H

H

H

H

Product
Owner

Scrum/Agile
Master

Te
am

 B
ac

kl
og

Te

am
 B

ac
kl

og

Agile Teams

Developers and Testers

Pl
an

D
em

o

Pl
an

D
em

o

Stories

Iterations lterations

Stories

Release Management

Product
Management

Investment
Themes

PortfolioManagement

Portfolio Vision
Epic 1

Epic 3
Architectural Runway

Epic 4

Epic 2

Feature 3

Feature 4

doc

doc

kl

Vision

Figure 2–1 The Agile Enterprise Big Picture

1. Special thanks to Matthew Balchin and others at Symbian Software, Ltd., and Juha-Markus
Aalto of Nokia Corporation.

Wow! eBook <WoweBook.Com>

ptg

 the Big PictuRe exPLained 33

In the remaining chapters of Part I of this book, we’ll describe the basic big-picture
requirements management practices for the individual Team, Program, and Portfolio
levels. In Parts II, III, and IV, we’ll further elaborate on the requirements manage-
ment artifacts, roles, and activities at a level of detail suitable for implementation
and action.

Big-Picture Highlights

Because this picture serves as both the organizational and process model for our agile
requirements practices, we’ll have time throughout this book to explore its many
nuances. However, from an overview perspective, the following highlights emerge.

The Team Level

At the Team level, agile teams of 7±2 team members define, build, and test user sto-
ries in a series of iterations and releases. In the smallest enterprise, there may be only
a few such teams. In larger enterprises, groups, or pods, of agile teams work together
to support building up larger functionality into complete products, features, archi-
tectural components, subsystems, and so on. The responsibility for managing the
backlog of user stories and other things the team needs to do belongs to the team’s
product owner.

The Program Level

At the Program level, the development of larger-scale systems functionality is
accomplished via multiple teams in a synchronized Agile Release Train (ART). The
ART is a standard cadence of timeboxed iterations and milestones that are date- and
quality-fixed, but scope is variable (no iron triangle). The ART produces releases or
potentially shippable increments (PSIs) at frequent, typically fixed, 60- to 120-day
time boundaries. These evaluable increments can be released to the customer, or
not, depending on the customer’s capacity to absorb new product as well as external
events that can drive timing.

We’ll use the generic product manager label as the title for those who are responsible
for defining the features of the system at this level, though we’ll also see that many
other titles can be applied to this role.

The Portfolio Level

At the Portfolio level, we’ll talk about a mix of investment themes that are used to
drive the investment priorities for the enterprise. We’ll use that construct to assure
that the work being performed is the work necessary for the enterprise to deliver on
its chosen business strategy. Investment themes drive the portfolio vision, which
will be expressed in as a series of larger, epic-scale initiatives, which will be allocated
to various release trains over time.

Wow! eBook <WoweBook.Com>

ptg

34 chaPteR 2 � the Big PictuRe of agiLe RequiRements

In the rest of this chapter, we’ll walk through the various elements of the Big Picture
to describe how it works. While we’ll highlight the requirements value delivery stream,
we’ll also expose the rest of the picture including the roles, teams, and processes that are
necessary to deliver value. In this way, we’ll provide a systemic view of our lean and agile
requirements process that works for teams and yet scales to the full needs of the enterprise.

Big PiCture: team level

Figure 2–2 summarizes the Team level of the Big Picture.

The Agile Team

The “front line” of software development consists of some number of
agile teams that implement and test code and collaborate on building
the larger system. It’s appropriate to start with the team, because in agile,
the team is the thing, because they write and test all the code that deliv-
ers value to the end user. Since it’s an agile team, each has a maximum
of seven to nine members and includes all the roles necessary to define/

build/test2 the software for their feature or component. The roles include a Scrum/
Agile Master, product owner, and a small team of dedicated developers, testers and
(ideally) test automation experts, and maybe a tech lead.

In its daily work, the team is supported by architects, external QA resources, docu-
mentation specialists, database specialists, source code management (SCM)/build/
infrastructure support personnel, internal IT, and whoever else it takes such that the
core team is fully capable of defining, developing, testing, and delivering working and
tested software into the system baseline.

Features and Components
Stories Fit in
Iterations

(Implemented by)
Tasks

Te
am

Spikes Are
Research,
Design,
Refactor
Stories

H

H

H

H

Te
am

 B
ac

kl
og

Te

am
 B

ac
kl

og

Agile Teams

NFRs

Pl
an

D
em

o

Pl
an

D
em

o

Stories

lterations lterations

Stories
Product
Owner

Scrum/Agile
Master

Developers and Testers

Figure 2–2 Team level of the Big Picture

2. See Chapter 6 of Scaling Software Agility: Best Practices for Large Enterprises [Leffingwell 2007].

Developers and Testers
(Four to Six)

Agile Team
Product
Owner

Scrum/Agile
Master

Wow! eBook <WoweBook.Com>

ptg

 Big PictuRe: team LeveL 35

Since testing software is integral to value delivery (teams get no credit for untested
code), testers are integral to the team. Often the testers are logically part of the QA
organization but are physically assigned and dedicated to an agile team. In this
matrix fashion, their primary allegiance is to the team, but as members of the QA
organization, they can leverage other QA teammates and managers for skills devel-
opment, automation expertise, and any specialty testing capabilities that may be
necessary at the system level. In any case, it must be clear that the agile team itself is
responsible for the quality of their work product and that responsibility cannot be
delegated (or abrogated!) to any other organization, in or out of house.

Teams are typically organized to deliver software features or components. Most enter-
prises will have a mix of both types—some component teams focused on shared infra-
structure, subsystems, and persistent, service-oriented architectural components and
some feature teams focused on vertical, user-facing, value-delivery initiatives. Agile
teams are self-organizing and reorganize when necessary based on the work in the
program backlog. Over time, the makeup of the teams themselves is more dynamic
than static—static enough to “norm, storm, and perform”3 for reasonable periods of
time and dynamic enough to flex to the organization’s changing priorities.

Pods of Agile Teams

In addition, within the larger enterprise, there are typically some
number (three to ten) or so of such teams that cooperate to build
a larger feature, system, or subsystem (the program domain in
the Big Picture). Although this isn’t a hard or fast rule, experi-
ence has shown that even for very large systems, the logical par-
titions defined by system or product family architecture tend to
cause “pods” of developers to be organized around the various
implementation domains. This implies that perhaps 50 to 100
people must intensely collaborate on building their “next bigger
thing” in the hierarchy, which we’ll call a program. As we’ll dis-
cover later, this is also about the maximum size for face-to-face,
collaborative release planning.

Of course, even that’s an oversimplification for a really large system,
because there are likely to be a number of such programs, each contributing to the
portfolio (product portfolio, application suite, systems of system).

3. See the Forming–Storming–Norming–Performing model of group development proposed by
Bruce Tuckman at http://en.wikipedia.org/wiki/Forming-storming-norming-performing.

Product
Owner

Scrum/Agile
Master

Agile Teams

Developers and Testers

Wow! eBook <WoweBook.Com>

http://en.wikipedia.org/wiki/Forming-storming-norming-performing

ptg

36 chaPteR 2 � the Big PictuRe of agiLe RequiRements

Roles in the Agile Team

Product Owner

As we have described, Scrum is the dominant agile method in use, and the product
owner role is uniquely, if arbitrarily, defined therein. In Scrum, the product owner
is responsible for determining and prioritizing user requirements and maintain-
ing the product backlog. Moreover, even if a team is not using Scrum, it has been
our experience that implementing the product owner role—as largely defined by

Scrum—can deliver a real breakthrough in simplifying the team’s work and organizing
the entire team around a single, prioritized backlog.

But the product owner’s responsibilities don’t end there. In support of Agile
Manifesto principle #4—Business people and developers must work together daily
throughout the project—the product owner is ideally co-located with the team and
participates daily with the team and its activities.

Scrum/Agile Master

For teams implementing Scrum, the Scrum Master is an important (though
sometimes transitional4) role. The Scrum Master is the team-based man-
agement/leadership proxy whose role is to assist the team in its transition
to the new method and continuously facilitate a team dynamic intended to
maximize performance of the team.

In teams that do not adopt Scrum, a comparable leadership role typically falls to a
team lead, an internal or external coach, or the team’s line manager. As their skills
develop, many of these Agile Masters become future leaders by illustrating their abil-
ity to deliver user value and by driving continuously improving agile practices.

Developers and Testers

The rest of the core team includes the developers and testers who write and test
the code. Since this is an agile team, the team size is typically limited to about
three to four developers plus one to two testers, who are (ideally) co-located and
work together to define, build, test, and deliver stories into the code baseline.

Iterations

In agile development, new functionality is built in short timeboxed events called
iterations (sprints in Scrum). In larger enterprises, agile teams typically adopt a

4. As the teams master the agile process, the role becomes less critical. Some very agile teams,
even those who have adopted Scrum, no longer have a Scrum Master per se. Everybody knows
the rules, and they are self-enforced.

Product
Owner

Scrum/Agile
Master

Developers and Testers
(Four to Six)

Wow! eBook <WoweBook.Com>

ptg

 Big PictuRe: team LeveL 37

standard iteration length and share start and stop boundaries so that code maturity
is comparable at each iteration-boundary system integration point.

Each iteration represents a valuable increment of new functionality, accomplished
via a constantly repeating standard pattern: plan the iteration, build and test stories,
demonstrate the new functionality to stakeholders, inspect and adapt, repeat.

The iteration is the “heartbeat of agility” for the team, and teams are almost entirely
focused on developing new functionality in these short timeboxes. In the Big Pic-
ture, the iteration lengths for all teams are the same since that is the simplest organi-
zational and management model. Although there is no mandated length, most have
converged on a recommended length of two weeks.

Number of Iterations per “Release”

A series of iterations is used to aggregate larger, system-wide, functionality for
release (or potential release) to the external users. In the Big Picture, we’ve illus-
trated four development iterations (indicated by a full iteration backlog) followed by
one hardening (or stabilization) iteration (indicated by an empty backlog) prior to
each release increment.

This pattern is arbitrary, and there is no fixed rule for how many times a team iter-
ates prior to a potentially shippable increment (PSI). Many teams apply this model
with four to five development iterations and one hardening iteration per release,
creating a cadence of a potentially shippable increment about every 90 days. This is
a fairly natural production rhythm that corresponds to a reasonable external release
frequency for customers, and it also provides a nice quarterly planning cadence for
the enterprise itself.

In any case, the length and number of iterations per release increment, and the decision
as to when to actually release an increment, are left to the judgment of the enterprise.

User Stories and the Team Backlog

User stories (stories for short) are the general-purpose agile
substitute for what traditionally has been referred to as
software requirements (the stuff in the middle of the iron
triangle of Chapter 1).

Originally developed within the constructs of XP, user sto-
ries are now endemic to agile development in general and are
typically taught in Scrum, XP, and most other agile imple-
mentations. In agile, user stories are the primary objects that
carry the customer’s requirements through the value stream—
from needs analysis though code and implementation.

Te
am

Te
am

 B
ac

kl
og

Te

am
 B

ac
kl

og

Agile Teams

NFRs

Stories

Stories
Product
Owner

Scrum/Agile
Master

Developers and Testers

Wow! eBook <WoweBook.Com>

ptg

38 chaPteR 2 � the Big PictuRe of agiLe RequiRements

As opposed to requirements (which by common definition represent something the
system must do to fulfill a business need or contractual obligation), user stories are
brief statements of intent that describe something the system needs to do for some
user. As commonly taught, the user story often takes a standard user-voice form of
the following:

As a <user role>, I can <activity> so that <business value>.

With this form, the team learns to focus on both the user’s role and the business ben-
efit that the new functionality provides. This construct is integral to agile’s intense
focus on value delivery.

Team Backlog

The team’s backlog (typically called a project or product backlog) consists of all the
user stories the team has identified for implementation. Each team has its own back-
log, which is maintained and prioritized by the team’s product owner. Although
there may be other things in the team’s backlog as well—defects, refactors, infra-
structure work, and so on—the yet-to-be-implemented user stories are the primary
focus of the team.

Identifying, maintaining, prioritizing, scheduling, elaborating,
implementing, testing, and accepting user stories is the primary
requirements management process at work in the agile enterprise.

Therefore, we will spend much of the rest of this book further describing processes
and practices around user stories.

Tasks

For more detailed tracking of the activities involved in delivering stories, teams typ-
ically decompose stories into tasks that must be accomplished by individual team
members in order to complete the story. Indeed, some agile training uses the task
object as the basic estimating and tracking metaphor.

However, the iteration tracking focus should be at the story level, because this keeps
the team focused on business value, rather than individual tasks. Tasks provide a
micro–work breakdown structure that teams can use (or not) to facilitate coordi-
nating, estimating, tracking status, and assigning individual responsibilities to help
assure completion of the stories—and thereby—the iteration.

Big PiCture: Program level

Figure 2–3 summarizes the Program level of the Big Picture.

Wow! eBook <WoweBook.Com>

ptg

 Big PictuRe: PRogRam LeveL 39

Systems, Applications, Products

Te
am

 B
ac

kl
og

System Team

Re
le

as
e

Pl
an

ni
ng

Nonfunctional
Requirements

Feature 1

Feature 2

Release Planning

Arch 1

Re
le

as
e

(o
r P

SI
)

Features
Fit in

Releases

Re
le

as
e

Pl
an

ni
ng

Pr
og

ra
m

Re
le

as
e

(o
r P

SI
)

Pr
og

ra
m

 B
ac

kl
og

Release Theme and Objectives

Feature 3

Feature 4

Roadmap

Vision

Release Management

Product
Management

Figure 2–3 The Program level of the Big Picture

Here, we find additional organizational constructs, roles, processes, and require-
ments artifacts suited for building larger-scale systems, applications, products, and
suites of products.

Releases and Potentially Shippable Increments

Although the goal of every iteration is to pro-
duce a shippable increment of software, teams
(especially larger-scale enterprise teams) find
that it may simply not be practical or appropri-
ate to ship an increment at each iteration bound-
ary. For example, during the course of a series of
iterations, the team may accumulate some tech-
nical debt that needs to be addressed before ship-
ment. Technical debt may include things such as
defects to be resolved, minor code refactoring,

deferred system-wide testing for performance, reliability, or standards compliance,
or finalization of user documentation. Hardening iterations (indicated by an itera-
tion with an empty backlog) are included in the Big Picture to provide the time
necessary for these additional activities.

Moreover, there are legitimate business reasons why not every increment should be
shipped to the customer. These include the following:

Potential interference with a customer’s licensing and service agreements��
Potential for customer overhead and business disruption for installation, ��
user training, and so on
Potential for disrupting customer’s existing operations with minor regres-��
sions or defects

Te
am

 B
ac

kl
og

System Team

Re
le

as
e

Pl
an

ni
ng

Nonfunctional
Requirements

Feature 1

Feature 2

Release Planning

Arch 1

Re
le

as
e

(o
r P

SI
)

Pr
og

ra
m

 B
ac

kl
og

Release Theme and Objectives

Wow! eBook <WoweBook.Com>

ptg

40 chaPteR 2 � the Big PictuRe of agiLe RequiRements

For these and other reasons, most programs aggregate a series of iterations into a
potentially shippable increment, which can be released, or not, based on the then-
current business context.

Vision, Features, and the Program Backlog

Within the enterprise, the product manage-
ment (or possibly program management
or business analyst) function is primar-
ily responsible for maintaining the Vision
of the products, systems, or application in
their domain of influence.

The Vision answers the big questions for
the system, application, or product, includ-
ing the following.

What problem does this particular solution solve?��
What features and benefits does it provide?��
For whom does it provide it?��
What performance, reliability, and so on, does it deliver?��
What platforms, standards, applications, and so on, will it support?��

The Primary Content of the Vision Is a Set of Features

A Vision may be maintained in a document, in a backlog repository, or even in a
simple briefing or presentation form. But no matter the form, the prime content
of the Vision document is a prioritized set of features intended to deliver benefits to
the users.

Nonfunctional Requirements

In addition, the Vision must also contain the various nonfunctional requirements,
such as reliability, accuracy, performance, quality, compatibility standards, and so
on, that are necessary for the system to meet its objectives.

Undelivered Features Fill the Program Backlog

In a manner similar to the team’s backlog, which contains primarily stories, the pro-
gram (or release) backlog contains the set of desired and prioritized features that
have not yet been implemented. The program backlog may or may not also contain

Te
am

 B
ac

kl
og

System Team

Re
le

as
e

Pl
an

ni
ng

Nonfunctional
Requirements

Feature 1

Feature 2

Release Planning

Arch 1
Re

le
as

e
(o

r P
SI

)

Pr
og

ra
m

 B
ac

kl
og

Release Theme and Objectives

Roadmap

Vision

Wow! eBook <WoweBook.Com>

ptg

 Big PictuRe: PRogRam LeveL 41

estimates for the features. However, any estimates at this scale are coarse-grained
and imprecise, which prevents any temptation to over-invest in inventory of too-
early feature elaboration and estimation.

Release Planning

In accordance with emerging agile enterprise practices, each release increment time-
box has a kickoff release planning session that the enterprise uses to set the company
context and to align the teams to common business objectives for the release. The
input to the release planning session is the current Vision, along with a set of objec-
tives and a desired, prioritized feature set for the upcoming release.

By breaking the features into stories and applying the agreed-to iteration cadence
and knowledge of their velocity, the teams plan the release, typically in a group set-
ting. During this process, the teams work out their interdependencies and design
the release by laying stories into the iterations available within the PSI timebox.
They also negotiate scope trade-offs with product management, using the physics
of their known velocity and estimates for the new stories to determine what can
and can’t be done. In addition to the plan itself, another primary result of this
process is a commitment to a set of release objectives, along with a prioritized
feature set.

Thereafter, the teams endeavor to meet their commitment by satisfying the primary
objectives of the release, even if it turns out that not every feature makes the deadline.

The Roadmap

The results of release planning are used
to update the (product or solution) Road-
map, which provides a sense of how the
enterprise hopes to deliver increasing
value over time.

The Roadmap consists of a series of
planned release dates, each of which has
a theme, a set of objectives, and a priori-
tized feature set. The “next” release on
the Roadmap is committed to the enter-
prise, based on the work done in the most
recent release planning session. Releases
beyond the next one are not committed,
and their scope is fuzzy at best.

November

Release 1 Release 2 Release 3

• First Distributed Game

August

Release 2

• First Two Games Available

Release 2

May

Release 1

• Feasibility Proof on Mobile
 Platform

An Updated, Themed, and Prioritized “Plan of Intent”

• Brickyard Port Started
(Stretch Goal to Complete)

• Distributed Platform
Demo

• All GUIs for Both Games
Demonstrable

• New Features (See
Prioritized List)

• Demo of Beemer Game

• Road Rage Ported (part I)
Features

• Beemer Game in Alpha

• Road Rage Completed
Features

• (Single User)
• Brickyard Ported (Single

User)
• Road Rage Multiuser

Demonstrable
• First Multiuser Game

Feature for Road Rage
• New Features (See

Prioritized List)

Features
• Multiuser Road Rage First

Release
• Brickyard Ported
 Multiuser Demo
• New Features for Both

Games (See Prioritized
List)

• Beemer Game to E3
Tradeshow?

Wow! eBook <WoweBook.Com>

ptg

42 chaPteR 2 � the Big PictuRe of agiLe RequiRements

The Roadmap, then, represents the enterprise’s current “plan of intent” for the next
and future releases. However, it is subject to change—as development facts, business
priorities, and customers need change—and therefore release plans beyond the next
release should not generally be used to create any external commitments.

Product Management

In agile, there can be a challenge with the apparently overlapping
responsibilities of the product manager and the product owner.
For example, in Scrum, the product owner is responsible for the
following:

representing the interests of everyone with a stake in the
resulting project . . . achieves initial and ongoing funding
by creating the initial requirements, return on investment
objectives, and release plans.5

In some smaller organizational contexts, that definition works adequately, and
one or two product owners are all that are needed to define and prioritize software
requirements. However, in the larger software enterprise, the set of responsibilities
imbued in the Scrum product owner is more typically a much broader set of respon-
sibilities shared between team and technology-based product owners and market or
program-based product managers, who carry out their traditional responsibilities of
both defining the product and presenting the solution to the marketplace.

However, we also note that the title of the person who plays this role may vary by
industry segment, as shown in Table 2–1.

Responsibilities of the Agile Product Manager in the Enterprise

No matter the title (we’ll continue to use product manager generically), when an
agile transition is afoot, the person playing that role must fulfill the following pri-
mary responsibilities:

Own the Vision and program (release) backlog��
Manage release content��
Maintain the product Roadmap��
Build an effective product manager/product owner team��

5. [Schwaber 2007]

Pr
og

ra
m

 B
ac

kl
og

Product
Management

Vision

Wow! eBook <WoweBook.Com>

ptg

 Big-Picture elements: Portfolio level 43

Table 2–1 Product Manager Role May Have Different Titles

Industry Segment Common Title for the Role

Information systems/information technology
(IS/IT)

Business owner, business analyst, project or program
manager

Embedded systems Product, project, or program manager

Independent software vendor Product manager

Big-Picture elements: Portfolio level

Figure 2–4 summarizes the Portfolio level of the Big Picture.

At the top of the Big Picture, we find the portfolio management function, which
includes those individuals, teams, and organizations dedicated to managing the
investments of the enterprise in accordance with the enterprise business strategy.
We also find two new artifact types, investment themes and epics, which together cre-
ate the portfolio vision.

Investment Themes

A set of investment themes establishes the relative investment objectives for
the enterprise or business unit. These themes drive the vision for all pro-
grams, and new epics are derived from these themes. The derivation of these
decisions is the responsibility of the portfolio managers, either line-of-busi-
ness owners, product councils, or others who have fiduciary responsibilities
to their stakeholders.

The result of the decision process is a set of themes—key product value proposi-
tions that provide marketplace differentiation and competitive advantage. Themes have
a much longer life span than epics, and a set of themes may be largely unchanged for
up to a year or more.

Epics and the Portfolio Backlog

Epics represent the highest-level expression of a customer need. Epics are develop-
ment initiatives that are intended to deliver the value of an investment theme and
are identified, prioritized, estimated, and maintained in the portfolio backlog. Prior
to release planning, epics are decomposed into specific features, which in turn are
converted into more detailed stories for implementation.

Po
rt

fo
lio

 B
ac

kl
og

Investment
Themes

PortfolioManagement

Wow! eBook <WoweBook.Com>

ptg

44 chaPteR 2 � the Big PictuRe of agiLe RequiRements

Epics Span
Releases

Architecture
Evolves

Continuously

Po
rt

fo
lio

Po
rt

fo
lio

 B
ac

kl
og

Investment
Themes

PortfolioManagement

Portfolio Vision
Epic 1

Epic 3
Architectural Runway

Epic 4

Epic 2

doc

doc

Figure 2–4 Portfolio level of the Big Picture

Epics may be expressed in bullet form, in user-voice story form, as a sentence
or two, in video, in a prototype, or indeed in any form of expression suitable to
express the intent of the product initiative. With epics, clearly, the objective is
strategic intent, not specificity. In other words, the epic need only be described in
detail sufficient to initiate a further discussion about what types of features an epic
implies.

Architectural Runway

In Chapter 1, we described how design
(architecture) and requirements are sim-
ply two sides of the same coin—the “what”
and the “how.” In this book, we’ll have time

to explore this topic in more detail, and we’ll provide some discriminators that
help us think about the differences in architecture and requirements, as well as the
commonalities. However, even though this book focuses on requirements, we can’t
ignore architecture, because experience tells us that teams that build some amount
of architectural runway, which is the ability to implement new features without
excessive refactoring, will eventually emerge as the winners in the marketplace. So,
any effective treatment of agile requirements must address the topic of architecture
as well.

Therefore, system architecture is a first-class citizen of the Big Picture and is a rou-
tine portfolio investment consideration for the agile enterprise.

Epic 3
Architectural Runway

Epic 4

Wow! eBook <WoweBook.Com>

ptg

 summaRy 45

summary

In this chapter, we introduced the Big Picture as the basic requirements artifact,
process, and organizational model for managing software requirements in a lean
and agile manner. For agile teams, the model uses the minimum number of arti-
facts, roles, and practices that are necessary for a team to be effective. However, the
model expands as needed to the Program and Portfolio levels, in each case provid-
ing the leanest possible approach to managing software requirements, even as teams
of teams build larger and larger systems of systems. In the next few chapters, we’ll
elaborate on each of these levels.

Wow! eBook <WoweBook.Com>

ptg

This page intentionally left blank

Wow! eBook <WoweBook.Com>

ptg

 47

Chapter 3

agile requirements for the team

When you’re part of a team, you stand up for your teammates. Your loyalty is to
them. You protect them through good and bad, because they’d do the same for you.

—Yogi Berra

introduCtion to the team level

In the previous chapter, we provided an overview of the basic organization, process,
and requirements artifacts model we’ll use to implement software agility. Of course,
we won’t get very far without first understanding the basic nature of the agile team
itself and how it organizes its work to deliver the value stream to its customer. In
this chapter, we’ll elaborate on the Team level of the Big Picture, as illustrated in
Figure 3–1.

Why the Discussion on Teams?

One might wonder why a book on software requirements leads with a discussion of
the organization, roles and responsibilities, and activities of the agile project team.
As we described in the previous chapters, the nature of agile development is so fun-
damentally different from that of traditional models that, by necessity, we must
rethink many of the basic practices of software development. For many, adopting

Features and Components
Stories Fit in
Iterations

(Implemented by)
Tasks

Te
am

Spikes Are
Research,
Design,
Refactor
Stories

H

H

H

H

Te
am

 B
ac

kl
og

Te

am
 B

ac
kl

og

Agile Teams

NFRs

Pl
an

D
em

o

Pl
an

D
em

o

Stories

lterations lterations

Stories
Product
Owner

Scrum/Agile
Master

Developers and Testers

Figure 3–1 The Team level of the Big Picture

Wow! eBook <WoweBook.Com>

ptg

48 chaPteR 3 � agiLe RequiRements foR the team

agile challenges the existing organizational structure, the assumptions about the
relationships among team members, and even personnel reporting structures.

More importantly, in agile, the organization of the requirements and the organiza-
tion of the team itself are not independent things. No longer do large batches of
predetermined requirements defined by others get thrown “over the transom” to a
set of developers for implementation—individuals that are organized, via matrix or
other, for whatever purposes.

Rather, the teams organize around the requirements so as to optimize the
efficiency of defining, building, and testing code that delivers value to the
end users.

The entire team is integrally involved in defining requirements, optimizing require-
ments and design trade-offs, implementing them, testing them, integrating them
into a new baseline, and then seeing to it that they get delivered to the customers.
That is the sole purpose of the team.

To understand the team organization challenge better, let’s consider the challenge
of “producing working code in a timebox” and see what type of organization might
best accomplish this.

The basic unit of work for the team is the user story (the topic of Chapter 6). The
team’s objective is to define, build, and test some number of user stories in the scope
of an iteration and thereby achieve some even larger value pile in the course of a
release. Each story has a short, incredibly intense development life cycle, ideally fol-
lowed by long-term residence in a software baseline that delivers user value for years
to come. Pictorially, Figure 3–2 shows the life cycle of a story.

Story 1

Timebox

Define Test

Build

Figure 3–2 Defining/building/testing a user story

Wow! eBook <WoweBook.Com>

ptg

 intRoduction to the team LeveL 49

At the time of arrival, the story will likely have some amount of elaboration done
during one or more prior iterations, or it may simply be a labeled placeholder for a
“thing to do that we’ll figure out later.” At the iteration boundary, however, later is
now. In essence, each story operates in the same pattern: Define the story, write the
code and the test, and run the test against the code. These are all done in parallel so
we call that sequence define/build/test. In so doing, we use the sequence as a verb to
illustrate the fact that the process is concurrent, collaborative, and atomic. It is done
completely, or it isn’t done. However, even an atom has its constituent parts, and
ours are as follows.

Define:�� Even if the story is well-elaborated, the developer will likely still
interact with the product owner to understand what is meant by the story.
Also, some design will likely be present in the developer’s mind, and if not,
one will quickly be created and communicated to the product owner, peer
developers, and testers. We use the word define to communicate that this
function is a combination of both requirements and design. They are insepa-
rable; neither has any meaning without the other. (If you don’t know how to
do IT, then you don’t really know what IT is!)
Build:�� The actual coding of the story provides an opportunity for new dis-
covery as well. Conversations will again ensue between developer/product
owner, developer/other developers, and developer/tester. Story understand-
ing evolves during the coding process.
Test:�� A “story” is not considered complete until it has passed an acceptance
test (the topic of Chapter 10), which assures that the code meets the intent
of the story. Building functional acceptance tests (plus unit tests) before, or
in parallel with the code, again tests the team’s understanding of the subject
story.

Of course, this process happens every day; it happens in real time, and it happens
multiple times a day for each story in the iteration!

How could such a process work in a traditional environment where a product owner
or manager may not exist or has been be called away on another mission? How could
it work if the developer is multiplexed across multiple projects or is working part-
time “on assignment” from a resource pool? How could it work if the test resources
are not dedicated and available at the same time that the code is written? The answer
is, it doesn’t.

Clearly, we are going to have refactor our organization to achieve this agile effi-
ciency. We are going to have to organize around the requirements stream and build
teams that have the full capability to define, build, test, and accept stories into the
baseline—every day.

Wow! eBook <WoweBook.Com>

ptg

50 chaPteR 3 � agiLe RequiRements foR the team

Eliminating the Functional Silos

Unfortunately, for many of us, we are not organized that way now. Instead, we are
likely to be organized in functional silos, as illustrated in Figure 3–3.

Developers sit with, and communicate with, other developers. Product manage-
ment, business analysts, and program managers are co-located with each other and
often report to different departments entirely. For the larger organizations, archi-
tects may work together so as to help induce common architectures across business
units, and so on, but may have little affinity or association with the development
teams themselves. Product owners may not even exist, or if the function is filled
by product managers, they are so multiplexed and/or unavailable that the team is
constantly frozen, awaiting answers. Testers probably report to—and are co-located
with—a separate QA organization, rather than development.

In agile, we must redefine what makes a team a team and eliminate the silos that
separate the functions, as Figure 3–4 illustrates.

agile team roles and resPonsiBilities

Fortunately, although it is no small matter to reorganize this way, the basic organi-
zational structure of each agile team is largely the same, so at least we have a well-
defined objective to achieve.

Pr
od

uc
t M

an
ag

em
en

t

D
ev

el
op

m
en

t

Te
st

 a
nd

 Q
A

Optimized for Vertical Communication

Friction Across Silos

Location via Function

Political Boundaries Between Functions

Figure 3–3 Typical functional silos

Wow! eBook <WoweBook.Com>

ptg

 agiLe team RoLes and ResPonsiBiLities 51

Pr
od

uc
t M

an
ag

em
en

t

D
ev

el
op

m
en

t

Team A

Team B

Te
st

 a
nd

 Q
A

Figure 3–4 Reorganizing into agile teams

With Scrum, for example, there are three roles on an agile project team: the product
owner, the Scrum Master, and the rest of the team, consisting primarily of the devel-
opers and testers who write and test the code.

Product Owner

Since the product owner is primarily responsible for defining and prioritizing
requirements, it is clear why it is such a critical role in the agile project team. Chap-
ter 11 is devoted to this topic.

In summary form, the product owner role is responsible for the following:

Working with product managers, business analysts, customers, and other ��
stakeholders to determine the requirements
Maintaining the backlog and setting priorities based on relative user value��
Setting objectives for the iteration��
Elaborating stories, participating in progress reviews, and accepting new ��
stories

Scrum Master/Agile Master

Scrum is quite specific about this role and provides specialized training and a spe-
cific title (Scrum Master) for those who assume this role. Although not every team

Wow! eBook <WoweBook.Com>

ptg

52 chaPteR 3 � agiLe RequiRements foR the team

will have a Scrum Master or apply Scrum per se, the method serves as a good
example for all agile teams, and most agile teams have a Scrum Master or agile
team lead, at least initially, who has some agile training and takes the initiative
to fill this role. No matter the method, the Scrum/Agile Master is responsible for
four things.

Facilitating the team’s progress toward the goal:�� Scrum/Agile Masters are
trained as team facilitators and are constantly engaged in challenging the old
norms of development while keeping the team focused on the goals of the
iteration.
Leading the team’s efforts in continuous improvement:�� This includes helping
the team improve, helping the team take responsibility for their actions, and
helping the team become problem solvers for themselves.
Enforcing the rules of the agile process:�� The rules of agile are lightweight and
flexible, but they are rules nonetheless, and this role is responsible for rein-
forcing the rules with the team.
Eliminating impediments:�� Many blocking issues will be beyond the team’s
authority or will require support from other teams. This role actively
addresses these issues so that the team can remain focused on achieving the
objectives of the iteration.

Developers

Developers write the code for the story. In so doing, they may work in a pair-
programming model with another developer, they may be paired with a tester, or
they may operate more independently and have interfaces to multiple testers and
other developers. In any case, the responsibility is the same, and it includes the
following:

Collaborating with product owners and testers to make sure the right code is ��
being developed
Writing the code��
Writing and executing the unit test for the code��
Writing methods as necessary to support automated acceptance tests and ��
other testing automation
Checking new code into the shared repository every day��

In addition, developers actively participate in improving the development
environment.

Wow! eBook <WoweBook.Com>

ptg

 agiLe team RoLes and ResPonsiBiLities 53

Testers

Testers are an integral part of every agile team. They become part of the team just as
soon as new code starts to be laid down, and they continue with the team through-
out the release process. Their cycle is the same as the development cycle. Every new
story that reaches an iteration boundary is subject to immediate review and analysis
for acceptance testability. The tester’s workflow in the course of the iteration paral-
lels that of the developer:

Writing the acceptance test case while the code is being written��
Interfacing with the developer and product owner to make sure the story is ��
understood and that the acceptance tests track the desired functionality of
the story
Testing the code against the acceptance test��
Checking the test cases into the shared repository every day��
Developing ongoing test automation to integrate acceptance and compo-��
nent tests into the continuous testing environment

These are the primary roles on the agile team. At this level, that’s all the understand-
ing we will need to move forward with defining requirements practices for the team.
In summary, Figure 3–5 illustrates an “ideal” agile team.

Ideal Agile Team
(7±2 Dedicated)

Developers

Product
Owner

Scrum/Agile
Master

Testers

Typical Program InterfacesTypical Shared Resources

Docs

Infrastructure

UI
Architecture

Product/Program
Management

Quality

Figure 3–5 Ideal agile team with shared resources and typical interfaces

Wow! eBook <WoweBook.Com>

ptg

54 chaPteR 3 � agiLe RequiRements foR the team

Other Team/Program Roles

You’ll also note some shared resources and interfaces to other roles, including the
following.

Architects:�� Many agile teams do not contain people with titles containing
the word architect,1 and yet architecture does matter to agile teams. In these
cases, the local architecture (that of the component, service, or feature that
the team is accountable for) is most often determined by the local teams in
a collaborative model. In this way, it can be said that “architecture emerges”
from the activities of those teams.

At the system level, however, architecture is often coordinated among system
architects and business analysts who are responsible for determining the
overall structure (components and services) of the system, as well as the
system-level use cases and performance criteria that are to be imposed on
the system as a whole. For this reason, it is likely that the agile team has a key
interface to one or more architects who may live outside the team. (We’ll
discuss this in depth in Chapter 20.)

The role of quality assurance:�� Quality assurance also plays a different role in
agile. Since the primary responsibility for quality moves to the agile team
(developers and testers), many QA personnel can typically reassume the role
that was originally intended—that of overseeing overall, system-level quality
by remaining “one step removed” from the daily team activities.

Some of these QA personnel will live outside the team, while others (primar-
ily testers) will have likely been dispatched to live with the product team.
There, they work daily with developers to test new code and thereby help
assure new code quality on a real-time basis.

In addition, as we’ll see later, QA personnel are involved with the develop-
ment of the system-level testing required to assure overall system quality and
conformance to nonfunctional, as well as functional, requirements.

Other specialists and supporting personnel:�� Other supporting roles may
include user-experience designers, documentation specialists, database
designers and administrators, configuration management, build and deploy-
ment specialists, and whomever else is necessary to develop and deploy a
whole product solution.

1. Agile Manifesto principle #11—The best architectures, requirements, and designs emerge from
self-organizing teams.

Wow! eBook <WoweBook.Com>

ptg

 useR stoRies and the team BackLog 55

user stories and the team BaCklog

Since the efficiency of these agile teams is paramount to the overall organizational
efficiency, we need to assure that the agile teams apply the simplest and leanest pos-
sible requirements model. To build a lean and scalable model, we need to make sure
that the team’s requirements artifacts are the simplest thing that could possibly sup-
port the needs of all stakeholders and particularly sensitive to the needs of the team
members. Moreover, that subset must be quintessentially agile so that the artifacts
described are consistent with most agile training as well as common practice. (In
other words, it isn’t mucked up with administrative overhead, manual traceability,
reporting, detailed requirements cram down, or any of the other ways enterprises
can unnecessarily burden the teams!)

Backlog

The term backlog was first introduced by Scrum, where it was described as a product
backlog. However, in our enterprise model, product can be a pretty nebulous thing
because various teams may be working at various levels, so there are multiple types
of backlogs in the Big Picture. Therefore, our use of the term backlog is more gener-
alized than in Scrum. In the Big Picture, we identified the particular backlog we are
describing here as the team’s local backlog, as shown in Figure 3–6.

This backlog is the one and only definitive source of work for the team. It holds all
the work (primarily user stories) that needs to be done. It is local to them and is
managed by them. It is their repository for all identified work items, and the con-
tents are typically of little concern to others in the enterprise. They manage it, tool
it, and put things in and out of it as it suits their needs in order to meet their itera-
tion objectives. If “a thing to do” is in there, then it is likely to happen. If it isn’t, then
it won’t.

Within the team, maintenance and prioritization of the backlog are the responsibil-
ity of the product owner, who is a resident of the team.

Te
am

 B
ac

kl
og

Stories
Product
Owner

Scrum/Agile
Master

Figure 3–6 Stories and the team backlog

Wow! eBook <WoweBook.Com>

ptg

56 chaPteR 3 � agiLe RequiRements foR the team

The team’s backlog consists of all the work items the team has identified. In the
meta-model, we generically call these work items stories2 (some call them backlogs
or backlog items) because that’s what most agile teams and tools call them. For our
purposes, we’ll define a story simply as follows:

A story is a work item contained in the team’s backlog.

From a model perspective, a story is a kind of backlog item, as Figure 3–7 illustrates.3

User Stories

Although that definition is simple, it belies the underlying strength of agile in that
it is a special kind of story, the user story, that agile teams use to define the system
behavior and value for the user. Indeed, the user story is inseparable from agile’s
focus on value delivery. To make the user story explicit, we need to extend the model
a little, as shown in Figure 3–8.

Story

Is one of

Backlog Item

Figure 3–7 A story is a kind of backlog item.

Story

User Story
Other

Work Item

Is one of

Figure 3–8 A story may be a user story or other work item.

2. Many Scrum teams call these backlogs because they are items in the product backlog. Strictly
speaking, work items is probably a better term than story or backlogs, but we are trying to fol-
low the most common usage as well as encouraging the use of the user story format.

3. The triangle indicator connecting the Story to Backlog item is the UML generalization rela-
tionship, indicating that the thing the arrow points to is a generalization of the special case of
the pointing thing. In other words, in this case, story is a special kind of backlog item.

Wow! eBook <WoweBook.Com>

ptg

 useR stoRies and the team BackLog 57

With this small addition, we now see that the backlog is composed of user stories and
other work items. Other work items include things such as refactors, defects, support
and maintenance, and tooling and infrastructure work. We’ll discuss the rationale for
specifically calling out these other work items later, but for now we just need to know
that they help the team keep track of all the work they have to do to deliver value. They
also help the team better estimate the time it will take to actually deliver the user stories.

User Story Basics

User stories are the agile replacement for most of what has been traditionally
expressed as software requirements statements (or use cases in RUP and UML), and
they are the workhorses of agile development. Developed initially within the con-
structs of XP, they are now endemic to agile development in general and are taught
in most Scrum classes as well. We’ll define a user story as follows:

A user story is a brief statement of intent that describes something the
system needs to do for the user.

As commonly taught, the user story takes a standard (user voice) form:

As a <role>, I can <activity> so that <business value>.

In this form, user stories can be seen to incorporate elements of the problem space
(the business value delivered), the user’s role (or persona), and the solution space
(the activity that the user does with the system). Here’s an example:

“As a Salesperson (<role>), I want to paginate my leads when I send mass e-mails
(<what I do with the system>) so that I can quickly select a large number of leads
(<business value I receive>).”

User stories are so important that Chapter 6 is devoted entirely to this seminal agile
construct.

Tasks

To assure that the teams really understand the work to be done and to assure that
they can meet their commitments, many agile teams take a very detailed approach
to estimating and coordinating the individual work activities necessary to complete
a story. They do this via the task, which we’ll represent as an additional model ele-
ment, as is illustrated in Figure 3–9.

Implemented by
Story Task

1..* 0,1

Figure 3–9 Stories are implemented by tasks.

Wow! eBook <WoweBook.Com>

ptg

58 chaPteR 3 � agiLe RequiRements foR the team

Stories are implemented by tasks. Tasks are the lowest-granularity thing in the
model and represent activities that must be performed by specific team members to
accomplish the story. In our context:

A task is a small unit of work that is necessary for the completion of a story.

Tasks have an owner (the person who has taken responsibility for the task) and are
estimated in hours (typically four to eight). The burndown (completion) of task
hours represents one form of iteration status. As implied by the one-to-many rela-
tionship expressed in the model, there is often more than one task necessary to
deliver even a small story, and it’s common to see a mini life cycle coded into the
tasks of a story. Here’s an example:

Story 51: Select photo for upload

Task 51.1: Define acceptance test—Juha, Don, Bill

Task 51.2: Code story—Juha

Task 51.3: Code acceptance test—Bill

Task 51.4: Get it to pass—Juha and Bill

Task 51.5: Document in user help—Cindy

In most cases, tasks are “children” to their associated story (deleting the story par-
ent deletes the task). However, for flexibility, the model also supports stand-alone
tasks and tasks that support other team objectives. With this construct, a team
need not create a story simply to parent an item such as “install more memory in the
file server.”

aCCePtanCe tests

Ron Jeffries, one of the creators of XP, described what has become our favorite way
to think about user stories. He used the neat alliteration card, conversation, and con-
firmation4 to describe the three elements of a user story.

Card�� represents the two to three sentences used to describe the intent of the
story.
Conversation�� represents fleshing out the details of the intent of the card in a
conversation with the customer or product owner. In other words, the card
also represents a “promise for a conversation” about the intent.

4. www.xprogramming.com/xpmag/expCardConversationConfirmation.htm

Wow! eBook <WoweBook.Com>

www.xprogramming.com/xpmag/expCardConversationConfirmation.htm

ptg

 accePtance tests 59

Confirmation�� represents how the team, via the customer or customer proxy,
comes to understand that the code meets the full intent of the story.

NOTE�³ In XP and agile, stories are often written manually on physical index cards. More typically in the
enterprise, the “card” element is captured as text and attachments in agile project management
tooling, but teams often still use physical cards for planning, estimating, prioritizing, and visibility
in the daily stand-up.

With this simple alliteration and agile’s zealousness for “all code is tested code,” we
have an object lesson in how quality is achieved during, rather than after, actual
code development.

In our model, we represent the confirmation function as a type of acceptance test,
one that confirms the story has been implemented correctly. To separate it from
other types of acceptance tests (an overloaded term in software), we’ll call them
story acceptance tests and treat them as an artifact distinct from the (user) story itself,
as shown in Figure 3–10.

There are many reasons why we did this, which we won’t belabor here. In any case,
the model is explicit in its insistence on the relationship between the story and the
story acceptance test as follows.

In the one-to-many (1..*) relationship, every story has one (or more) accep-��
tance tests.
It’s �� done when it passes. A story cannot be considered complete until it has
passed the acceptance test(s).

Acceptance tests are functional tests that verify that the system implements the
story as intended. To avoid creating a large volume of manual tests, which would
quickly limit the velocity of the team, story acceptance tests are automated wherever
possible.

Story

Done when passes
1

Story
Acceptance Test

1..*

Story

Figure 3–10 Every story has one or more story acceptance tests.

Wow! eBook <WoweBook.Com>

ptg

60 chaPteR 3 � agiLe RequiRements foR the team

unit tests

To further assure quality, we can augment the acceptance with unit tests, as Figure 3–11
illustrates.

Unit tests are used to confirm that the lowest-level module of an application (a class
or method in object-oriented programming; a function or procedure in procedural
programming) works as intended. Unit tests are written by the developer to test
that the code executes the logic of the subject module. In test-driven development
(TDD), the test is written before the code. In any case, the test should be written,
passed, and built into an automated testing framework before a story can be consid-
ered done.

Mature agile teams provide comprehensive practices for unit testing and automated
functional (story acceptance) testing. Also, for those in the process of tooling their
agile project, implementing this meta-model can provide inherent traceability of
story-to-test, without any overhead on the part of the team.

Real Quality in Real Time

The combination of creating a lightweight story description, having a conversa-
tion about the story, elaborating the story into functional tests, augmenting the
acceptance of the story with unit tests, and then automating testing is how agile
teams achieve high quality in the course of each iteration. In this way:

Quality is built in, one story at a time. Continued assurance of quality
is achieved by continuous and automated execution of the aggregated
functional and unit tests.

Story

1..*

Story
Acceptance Test

Unit Test

0..*

Done when passes
1

Figure 3–11 The code that implements the story should also be unit tested.

Wow! eBook <WoweBook.Com>

ptg

 summaRy 61

summary

In summary, we identified an organizational unit—the agile team—that eliminates
functional silos and is optimized for the sole purpose of defining, building, and test-
ing new functionality. We also described a set of requirements artifacts and relation-
ships, including the user story, that are optimized to support the fast delivery of
valuable requirements to the software baseline for release to the customers. We’ve
also shown how agile teams achieve the highest-possible quality through compre-
hensive functional and unit testing and test automation.

In doing so, we’ve introduced a number of agile requirements artifacts. At the
Team level, the requirements model isn’t trivial, but it isn’t that complex either, as
Figure 3–12 summarizes.

In the next chapter, we’ll move higher in the Big Picture and describe requirements
practices for larger groups of teams, who work within agile programs. In later parts
of this book, we’ll describe how teams go about identifying, prioritizing, imple-
menting, and delivering value using these artifacts.

Implemented by
Story

Is one of

Backlog Item

Task
0,1 1..*

User Story Other
Work Item

Is one of

1..*

Story
Acceptance Test

Unit Test

1

0..*

Done when passes

1

Figure 3–12 Agile team-level requirements artifacts and relationships

Wow! eBook <WoweBook.Com>

ptg

This page intentionally left blank

Wow! eBook <WoweBook.Com>

ptg

 63

Chapter 4

agile requirements for the Program

More relative than this—the play’s the thing

—Shakespeare, Hamlet, Act 2, scene 2

introduCtion to the Program level

In the previous chapter, we introduced the Team level in the Big Picture, the place
where the software teams define, develop, and test the software for the solution. As
illustrated in Figure 4–1, at the next higher Program level, we see an organizational,
process, and requirements model that provides mechanisms to harness some num-
ber of agile teams to a larger enterprise purpose—the delivery of an entire product,
system, or application suite to the customers.

At the Team level, teams are empowered and are largely self-organizing and self-
managing. They work from a local backlog that is under the purview of the team’s
product owners. They have control of their local destiny and can define, build, and
test their feature or component. In accordance with the principles of the Agile Man-
ifesto, that is the optimum mechanism for incentivizing and motivating a team to
produce the best possible results.

Systems, Applications, Products

Te
am

 B
ac

kl
og

System Team

Re
le

as
e

Pl
an

ni
ng

Nonfunctional
Requirements

Feature 1

Feature 2

Release Planning

Arch 1

Re
le

as
e

(o
r P

SI
)

Features
Fit in

Releases

Re
le

as
e

Pl
an

ni
ng

Pr
og

ra
m

Re
le

as
e

(o
r P

SI
)

Pr
og

ra
m

 B
ac

kl
og

Release Theme and Objectives

Feature 3

Feature 4
Release Management

Product
Management

Roadmap

Vision

Figure 4–1 The Program level of the Big Picture

Wow! eBook <WoweBook.Com>

ptg

64 chaPteR 4 � agiLe RequiRements foR the PRogRam

At the Program level, however, the problem changes, and the enterprise faces an
additional set of challenges to successfully execute agility at this next level of scale.
The objectives at this level include the following.

Maintaining Vision and Roadmap:�� Continually defining and communicat-
ing the Vision for the program and maintaining a Roadmap so the teams are
working to a common purpose.
Release management:�� Coordinating the activities of some number of teams
to build release increments on the enterprise’s chosen development cadence.
Quality management:�� Assuring that the aggregate results (the system) of
the teams are routinely integrated; that performance, security, reliability
requirements; and that any imposed external standards are met.
Deployment:�� As the teams are unlikely to have the ability, purview, or author-
ity to actually deploy systems to end users, this critical activity must be man-
aged at the Program level.
Resource management:�� Adjusting resources as necessary to address con-
straints and bottlenecks in the program’s ability to deliver the needed value
in a timely manner.
Eliminating impediments:�� Program leaders and managers are also respon-
sible for eliminating impediments that bubble up from the teams—those
critical issues that are outside the team’s control.

So, at this level, we’ll need to deploy some additional resources and processes to
accomplish this larger purpose. We’ll describe these practices in this chapter.

organizing agile teams at sCale

One of the first questions that arises at this level seems like a basic one: how to organize
the agile teams in order to optimize value delivery of requirements. For the smaller
enterprise, this is usually no issue at all; they will organize naturally around the few
products or applications that reflect the mission. The silos that tend to separate devel-
opment, product management, and test in the larger enterprise do not exist (ideally!).
The teams are probably already co-located, rather than being distributed across dispa-
rate geographies. Creating an agile team in this context is mostly a matter of deciding
what roles the individuals will play and rolling out some standard training.

At scale, however, like most other things agile, the problem is different, and the
challenge is to understand who works on what and where. Do we organize around
features, components, product lines, services, or what? Although there is no easy
answer to this question, the question must be explored because so many agile prac-
tices—how many backlogs there are and who manages them, how the vision and
features are communicated to groups of teams, and how the teams coordinate their
activities to produce a larger solution—must be reflected in that decision.

Wow! eBook <WoweBook.Com>

ptg

 oRganizing agiLe teams at scaLe 65

Feature and Component Teams

This section compares and contrasts the feature and component approaches to
organizing teams.

Component Teams

In Scaling Software Agility [Leffingwell 2007], we described a typical organizational
model whereby many of the agile teams are organized around the architecture of a
larger-scale system. There, they leverage their technical skills and interest and focus
on building robust components, making them as reliable and extensible as possible,
leveraging common technologies and usage models, and facilitating reuse. We even
called the team’s define/build/test “component” teams, which is (perhaps) an unfor-
tunate label. However, we also noted the following:

We use the word component as an organizing and labeling metaphor Other
agile methods . . . stress that the team may be oriented around features

We weren’t particularly emphatic about it but noted that a component-based orga-
nization is likely to already exist in the enterprise, and that isn’t such a bad thing,
given the critical role of architecture in these largest, enterprise-class systems. In any
case, in a component-based approach, the development of a new feature is imple-
mented by the affected component teams, as Figure 4–2 illustrates.

Presentation Layer

Business Logic

Teams

Database

Linux Kernel

N
ew

 F
ea

tu
re

 A

N
ew

 F
ea

tu
re

 B

Component

Figure 4–2 Component teams often have responsibility for a single layer in an
architectural stack.

Wow! eBook <WoweBook.Com>

ptg

66 chaPteR 4 � agiLe RequiRements foR the PRogRam

In this case, a new feature requires the creation of new backlog items for each team
that contributes to the feature. Component teams minimize multiplexing across
features by implementing them in series, rather than parallel. Some advantages are
obvious, because each team is able to aggregate the needs of multiple features into
the architecture for their component and can focus on building the best-possible,
long-lived component or service for their layer. Their component does not get
“sliced and diced” by each new feature; rather, it evolves as a set of services to imple-
ment current and, ideally, future features.

This approach may be reflective of an architecture-centric bias when building these
largest-of-all-known software systems. That is because if you don’t get the architec-
ture reasonably right, you are unlikely to achieve the reliability, performance, and
longer-term feature velocity delivery goals of the enterprise.

In addition, there are other reasons why component-based organizations can be
effective in the agile enterprise.

Based on its past successes, the enterprise may already organized that way, ��
with specialists who know large-scale databases, web services, embed-
ded operating systems, and the like, working together. Individuals—their
skills, interests, residency, friendships, cultures, and lifestyles—are not
interchangeable.
These teams may already be co-located, simplifying communication and ��
reducing the batch handoff of requirements, design, and test data.
Technologies and programming languages may differ across components, ��
making it difficult for feature teams to do pairing, collective ownership,
continuous integration, test automation, and other factors.
And finally, at scale, a single user feature can be an awfully big thing that ��
could easily affect hundreds of practitioners. For example, a feature like
“share my new phone video to YouTube” could affect dozens of agile teams,
so organizing by feature can be nebulous when multiple teams are required
for implementation.

Feature Teams

However, the very premise of this book, that agile teams do a better job of focusing
on value delivery, creates a contrary vector on this topic. Indeed, the almost univer-
sally accepted approach for organizing agile teams is to organize around features, as
Figure 4–3 illustrates.

Wow! eBook <WoweBook.Com>

ptg

 oRganizing agiLe teams at scaLe 67

Feature
Team B

Feature
Team A

Presentation Layer

Business Logic

Database

Linux Kernel

N
ew

 F
ea

tu
re

 A

N
ew

 F
ea

tu
re

 B
Figure 4–3 Feature team approach across an architectural stack

The advantages to a feature team approach are also obvious: Teams build expertise
in the actual domain and usage mode of the system and can typically accelerate
value delivery of any one feature. There is less overhead, because teams don’t have to
pass backlog items back and forth to see that a feature is implemented; there are far
fewer interdependencies across teams. Planning and execution are leaner.

The team’s core competence becomes the feature (or set of features), as opposed to
one element of the technology stack. The team’s backlog is simplified, just one or
two features at a time. That has to promote the fast delivery of high value-added
features!

Other authors support the feature-focused approach as well. For example, High-
smith [2004] states this:

Feature-based delivery means that the engineering teams build features of
the final product.

Of course, that doesn’t mean to say that the teams themselves must be “organized by
feature,” because all engineering teams in the end build features for the final prod-
uct, though perhaps that is a logical inference. Others, including Larman and Vodde

Wow! eBook <WoweBook.Com>

ptg

68 chaPteR 4 � agiLe RequiRements foR the PRogRam

[2009], have more directly (and adamantly) promoted the concept of feature teams
as the best way to organize agile teams. They note the following:

A feature team is a long-lived, cross-functional team that completes many
end-to-end customer features, one by one. Advantages include increased
value throughput, increased learning, simplified planning, reduced waste

Larman and Vodde state that you should “avoid component teams.” 1 However, they
also point out several challenges with the feature team approach, including the need
for broader skills and product knowledge, concurrent access to code, shared respon-
sibility for design, and difficulties in achieving reuse and infrastructure work, not
to mention the potential for dislocation of some team members as the organization
aligns around these boundaries.

Sometimes the Line Is Blurry

Even in light of this advice, we must also recognize that features and components are
both abstractions, and the line is not so clear. One person’s feature may be another’s
component. And sometimes a single feature may best be implemented as a stand-
alone, service-oriented component.

For example, TradeStation Securities builds an online trading system where “chart-
ing” is a key capability for the trader. A few co-located agile teams work together on
the charting function. On the surface, that looks like an excellent example of a fea-
ture team, because charting certainly is a major feature of the system.

When new online trading capabilities are developed, such as “trading foreign
exchange currencies (Forex),” new chart functionality must be added. However,
driving this new chart functionality are major components such as streaming
data, account management, and interfaces with Forex exchanges. Is the new fea-
ture value stream described as “trading Forex all the way through the specialty
chart function?” If so, that would make an obvious vertical feature stream, and the
teams might reorganize by taking some members of each component team and
creating a new vertical feature team for Forex trading. Or is the feature “trading of
Forex” plus “charting Forex,” in which case the charting team is already organized

1. In comments on the author’s blog, Craig Larman noted: “We did not intend to write that fea-
ture teams are the only rational way to organize teams. Rather, the choice of any organizational
design (including team structure) can be evaluated in terms of the global goal for optimiza-
tion . . . early/fast delivery of value to real customers. In the context of that measure, if [organi-
zational] design 1 has more delay and handoff and design 2 has less, design 2 is ‘better’—with
respect to that particular measure. The ideal cross-functional cross-component feature team
minimizes delay and handoff, whereas component teams have more delay and handoff and
create mini-waterfalls with single-specialist groups passing WIP items to each other.”

Wow! eBook <WoweBook.Com>

ptg

 oRganizing agiLe teams at scaLe 69

appropriately? Is the charting capability a feature set or a component? Both? Does
it matter what you call it?

Even in the case where it is clear what you call it, is a feature team always the best
choice? Keith Black, VP of TradeStation Technologies, notes this:

Online trading requires a great depth of technical expertise and industry
knowledge at many different levels. We could not reasonably form feature
teams that included members from every component area.

Therefore, for our transition to agile, we organized around component
teams and, through maturity, we are now in special cases putting together
feature teams where it makes sense. While feature teams are excellent at
driving an initiative through completion, in some cases they simply don’t
make sense. For example, if you have twenty feature teams and they all
rely on a common component, such as a time-critical online transactional
processing engine, it may be unadvisable to have 20 different teams sticking
their hands into this critical component. Rather, you might choose to have
these changes controlled by a single team that can broker the needs of the 20
teams and make sure they don’t jeopardize areas they don’t understand by
making changes for their particular features.

Lean Toward Feature Teams

Given the advantages and disadvantages to each approach, the answer is not always
obvious. But with agile’s focus on immediate value delivery, there is an appropriate
leaning toward feature teams. Mike Cottmeyer2 points out this:

I tend to start with the feature team approach and only move toward
components if I have to . . . but the decision is situation-specific.

To make this decision, you’ll have to explore the diversity of your
technology . . . how well your system is designed . . . what tools you have to
manage your code base . . . the size and competence of your team . . . how and
where your teams are distributed . . . and the quality of your infrastructure
automation.

You need to take a hard look at what scale your feature teams WILL break
down . . . at some scale they WILL break down. Is scaling to this level
something we need to address now or can it wait?

2. www.leadingagile.com

Wow! eBook <WoweBook.Com>

www.leadingagile.com

ptg

70 chaPteR 4 � agiLe RequiRements foR the PRogRam

The Best Answer Is Likely a Mix

In the larger enterprise where there are many teams and many, many features, one
should consider the previous factors and then select the best strategy for your spe-
cific context. In most cases, as you can see, the answer will likely be a mix of feature
teams and component teams.

Indeed, even in the modest-sized agile shop, a mix is likely to be appropriate. Ryan
Martens, founder and CTO of Rally Software, sketched a five-team agile org chart
and its “feature paths” for us, as shown in Figure 4–4.

Ryan noted the following:

While we don’t think of it in these terms as such, three of these teams (ALM1,
ALM2, and PPM in the top) would be readily identifiable as feature teams.
One (I&O on the bottom) is clearly a component team. I don’t know what
you’d call the one (Platform and Integration) in the middle, because it
sometimes originates its own features and sometimes is simply a supportive
component for other features.

Given that a mix is most likely appropriate, there are two main factors that drive the
mix: the practical limitation of the degree of specialization required and the eco-
nomics of potential reuse. Figure 4–5 illustrates these parameters and the decision
points that drive the choice of one over another.

A
gi

le
 L

ife
 C

yc
le

 M
an

ag
em

en
t

(A
LM

1)

A
gi

le
 L

ife
 C

yc
le

 M
an

ag
em

en
t

(A
LM

2)

Pr
oj

ec
t a

nd
 P

or
tfo

lio
 M

an
ag

em
en

t
(P

PM
)

Platform and
Integration

Infrastructure and Operations

Figure 4–4 Five-team agile organization with various feature paths noted

Wow! eBook <WoweBook.Com>

ptg

 oRganizing agiLe teams at scaLe 71

Medium

High

Te
ch

no
lo

gy
 S

pe
ci

al
iz

at
io

n

Low

Few Some
Number of Teams Who Can Use It

Many

Feature Teams

Component Teams

Figure 4–5 Organizing around feature and component teams

Consider Co-location

If it still isn’t obvious which way you might want to organize, then you may want
to optimize around co-location, because the communication, team dynamics, and
velocity benefits of co-location may well exceed the benefits of the perfect com-
ponent or feature organization. First, apply feature teams if they are, or can readily
become, co-located. If not, and you find yourselves on the outer edges of the curve
in Figure 4–5, then apply component teams, especially since it is likely that the teams
are already organized that way.

As the organization evolves, you’ll have lots of opportunity to inspect and adapt
your model and evolve your organization in a way that makes sense to you. But, in
the meantime, maybe nobody will have to move.

The System Team

As we have described, agile teams are the software production
engines that create and test the code. Each team should have the
requisite skills and assets necessary to specify, design, code, and
test the component or feature of their domain.

At the Program level, however, these individual teams may not
have all the capabilities to integrate, test, and deploy a full solu-
tion. Therefore, we often observe an additional team that com-
plements the feature/component teams. The name of the team
varies; it could be called system integration, QA and deployment,

release team, or, perhaps generically, a system team as our chosen label describes.
No matter the name, this team shares the same mission, works on the same release

Te
am

 B
ac

kl
og

System Team

Nonfunctional
Requirements

Release Planning

Pr
og

ra
m

 B
ac

kl
og

Roadmap

Vision

Wow! eBook <WoweBook.Com>

ptg

72 chaPteR 4 � agiLe RequiRements foR the PRogRam

train cadence, and typically has a set of specific, system-level set of responsibilities,
highlighted in the following sections.

System-Level Testing

Ideally, each team would have the ability to test all the features at the system level.
Many feature teams do have such capabilities, and that’s one of the reasons why
feature teams work so well. However, the fact is that it is often not practical for an
individual feature or component team to be able to test a feature in its full system
context. Many teams may not have the local resources (test bed, hardware configu-
ration items, other applications, access to third-party data feeds, production simu-
lation environment) necessary to test a full system. Moreover, at scale, many teams
are developing interfaces, infrastructure components, drivers, and the like, and they
may not even have an understanding of the full scope of the system feature that
drove their new functionality to exist. In this case, the system team builds the skills
and capabilities to perform the more extensive end-to-end behavior of the larger
features and use cases that deliver the ultimate value.

System Quality Assurance

Similarly, many teams do not have the specialty skills and resources necessary to test
some of the nonfunctional and other quality requirements for the system. This may
include load and performance testing, reliability testing, conformance to industry
compliance standards, and so on. Indeed, simply running a full validation suite on
a large-scale system may even require a small but dedicated team who constantly
updates the full system verification and test platforms and runs the validation. The
system team may also be the only practical means to test against the “matrix of
death”—the umpteen odd variants that occur in the customer’s various, supported
platform and application environments.

System-Level Continuous Integration

In addition, the larger the system, the less likely it is that the teams and their exist-
ing build and configuration management infrastructure environments can pull all
aspects of the solution into place on their own to provide utility for a full system
build on a daily basis.

Building Development Infrastructure

The transition to agile methods typically involves a significant investment in the
environment to support configuration management, automated builds and deploy-
ment, and automated build verification tests (faster feedback). This may involve
analysis, procurement of tools and systems, deployment, scripting, ongoing main-
tenance, and so on. This is a complicated and technical set of tasks that takes time

Wow! eBook <WoweBook.Com>

ptg

 oRganizing agiLe teams at scaLe 73

and dedicated software development–capable resources. Building an initial infra-
structure (system) team that is integral to the system release train process is one way
to assure the commitment, visibility, and accountability of those resources. More
importantly, it helps assure that the job will actually get done, because the program
depends upon its success.

The Release Management Team

In addition to the agile teams and the system team,
there is typically another significant organizational unit.
Again, there is no standard convention for its name, but
it takes on a release management team or steering com-
mittee function [Leffingwell 2007].

This team exists because, even though empowered, the
agile teams do not necessarily have the requisite visibil-
ity, quality assurance, or release governance authority to
decide when and how the solution should be delivered

to the end users. Members of this team may include key stakeholders of the Pro-
gram level of the enterprise, such as the following:

Line-of-business owners and product managers who focus on the content ��
and market impact of the release
Senior representatives from sales and marketing��
Senior line managers who have responsibility for the teams and are typically ��
ultimately accountable for developing the solution for the marketplace
Internal IT and production deployment resources��
Senior and system-level QA personnel who are responsible for the final ��
assessment of the solution’s system-level quality, performance, and suitabil-
ity for use
System architects, CTOs, and others who oversee architectural integrity��

In many agile enterprises, this team meets weekly to address the following
questions.

Do the teams still clearly understand their mission?��
Do we understand what they are building?��
What is the status of the current release?��
What impediments must we address to facilitate progress?��
Are we likely to meet the release schedule, and if not, how do we adjust the ��
scope to assure that we can meet the release dates?

System Team

Release Planning

Pr
og

ra
m

 B
ac

kl
og

Release Management

Roadmap

Vision

Wow! eBook <WoweBook.Com>

ptg

74 chaPteR 4 � agiLe RequiRements foR the PRogRam

This forum provides weekly senior management visibility into the release status.
This team also has the requisite authority to make any scope, timing, or resource
adjustments necessary to help assure the release. In this manner, the release man-
agement team represents the final authority on all release governance issues and is
an integral part of the agile enterprise.

Product Management

In the prior chapter, we introduced the product owner as the individual respon-
sible for defining what stories the team implements, and the order in which they
are implemented, in order to deliver end-user value. At the Program level, we find
another set of stakeholders who have the same responsibility, but for the solution as
a whole. These stakeholders may have different titles, such as product manager, pro-
gram manager, solution manager, business analyst, area or line product owner, or
whatever, but the responsibility is clear: They are ultimately responsible for the end-
to-end solution. This includes not only the content of the release but the additional
requirements for the “whole-product surrounds” such as distribution, documenta-
tion, support, messaging, release governance, and so on. In this book, we’ll use the
generic term product manager for this role, and we’ll define these responsibilities, as
well as their relationship to the product owners, in Chapters 11 and 14.

vision

With the organizational questions behind us, we can move on to describing the
requirements-specific artifacts and activities that are specific to the Program level.
The first of these is Vision. Generally, the Vision addresses the larger questions,
including the following.

What is the strategic intent of this program?��
What problem will the application, product, or system solve?��
What features and benefits will it provide?��
For whom does it provide it?��
What performance, reliability, and so on, will it deliver?��
What platforms, standards, applications, and so on, will it support?��

Since the product requirements and software requirements specification documents
and the like are unlikely to exist, directly communicating the Vision for the program
must take on a different form. Agile teams take a variety of approaches to commu-
nicating the Vision [Leffingwell 2007]. These include the following:

Vision document��
Draft press release��

Wow! eBook <WoweBook.Com>

ptg

 featuRes 75

Preliminary data sheet ��
Backlog and Vision briefing��

Since the Vision plays such a critical role in defining what is to be built and aligning
the teams to a common objective, we’ll describe the Vision further in Chapter 13.

features

No matter the form, the primary content of the Vision is a set of features that
describe what new things the system will do for its users and the benefits the user
will derive.

In describing the features of a product or system, we take a more abstract and higher-
level view of the system of interest. In so doing, we have the security of returning to
a more traditional description of system behavior, the feature.

In Leffingwell [2003], features were described in the following way:

Features are services provided by the system that fulfill stakeholder needs.

Features live at a level above software requirements and bridge the gap from the
problem domain (understanding the needs of the users and stakeholders in the tar-
get market) to the solution domain (specific requirements intended to address the
user needs), as Figure 4–6 shows.

Needs

Features

Software Requirements

Solution Domain

Problem Domain

Figure 4–6 Traditional requirements pyramid

Wow! eBook <WoweBook.Com>

ptg

76 chaPteR 4 � agiLe RequiRements foR the PRogRam

We also posited in that text that a system of arbitrary complexity can be described
with a list of 25 to 50 features (just like a program backlog). This simple rule of
thumb allows us to keep our high-level descriptions exactly that—high level—and
simplifies our attempts to describe complex systems in a short form while still com-
municating the full scope and intent of the proposed solution.

And as we just described, features also give us the ability to organize agile teams in a
way that optimizes value delivery.

New Features Build the Program Backlog

Features, then, are first-class citizens of our agile requirements model. They are a
“kind of backlog item,” and the list of proposed features constitutes the program
backlog, as we illustrate in Figure 4–7.

Features are realized by stories. At release planning time, features are decomposed
into stories, which the teams use to implement the functionality of the feature.

Features are typically expressed in bullet form or, at most, in a sentence or two. For
example, you might describe a few features of an online e-mail service something
like this:

Provide “Stars” for special conversations or messages, as a visual reminder that you
need to follow up on a message or conversation later.

Introduce “Labels” as a “folder-like” conversation-organizing metaphor.

Backlog Item

Is one of

Realized by

0,1 1..*
Feature Story

Pr
og

ra
m

 B
ac

kl
og

Roadmappp

Vision Feature A

Feature B

Product
Management

Figure 4–7 Features are program backlog items.

Wow! eBook <WoweBook.Com>

ptg

 nonfunctionaL RequiRements 77

Testing Features

In the previous chapter, we also introduced the agile mantra “all code is tested code”
and noted a story cannot be considered done until it has passed one or more accep-
tance tests.

At the Program level, the question arises as to whether features also deserve (or
require) acceptance tests. The answer is, most typically, yes. Although story level
testing should assure that the methods and classes are reliable (unit testing) and the
stories suit their intended purpose (functional testing), the feature may span mul-
tiple teams and tens to hundreds of stories. As such, it is as important to test feature
functionality as it is to test story implementation.

In addition, there are also a myriad of system-level “what if” considerations (think
alternate use-case scenarios) that must be tested to assure the overall system reliabil-
ity. Some of these can be tested only at the full system level. So indeed, features, like
stories, require acceptance tests as well, as we illustrate in Figure 4–8.

In this manner, we see that every feature requires one or more acceptance tests, and
a feature can also not be considered done until it passes.

nonfunCtional requirements
From a requirements perspective so far, we’ve used the feature and user story forms
of expression to describe the functional requirements of the system—those system
behaviors whereby some combination of inputs produces a meaningful output
(result) for the user. However, we have yet to describe how to capture and express
the nonfunctional requirements (NFRs) for the system.

Realized by

0,1 1..*
1 1

1..* 1..*

Feature

Feature
Acceptance Test

Done
when
passes

Story
Acceptance Test

Story

Figure 4–8 Features are acceptance tested.

Wow! eBook <WoweBook.Com>

ptg

78 chaPteR 4 � agiLe RequiRements foR the PRogRam

Traditionally, these were often described as the system qualities—quality, reliability,
scalability, and so on—and they are critical elements of system behavior. Indeed,
they are as important as the sum total of all the other functionality. If a system isn’t
reliable (crashes) or marketable (failure to meet some imposed regulatory standard)
or scalable (doesn’t support the number of users required), then, agile or not, we
will fail just as badly as if we forgot some critical functional requirement.

This is an important topic that we will cover thoroughly in Chapter 17, but for now,
let’s see how NFRs affect our requirements model.

Nonfunctional Requirements as Backlog Constraints

From a requirements modeling perspective, we could just throw the NFRs into the
program backlog, but they tend to behave a little differently. New features tend to
enter the backlog, get implemented and tested, and then are simply deleted (though
persistent functional tests serve to assure the features remain working well into
the future). NFRs constrain new development, thereby eliminating some degree of
design freedom that the teams might otherwise have. Here’s an example:

For partner compatibility, implement SAML-based single-sign-on (NFR) for all
products in the suite.

In other cases, when new features are implemented, existing NFRs must be revis-
ited, and system tests that were previously adequate may need to be extended. Here’s
an example:

The new touch UI (new feature) must still meet our accessibility standards (NFR).

So, in the requirements model, we modeled NFRs as backlog constraints, as illus-
trated in Figure 4–9.

In Figure 4–9, we see first that some backlog items may be constrained by nonfunc-
tional requirements, and some are not. We also see also that some nonfunctional
requirements may apply to no backlog items, meaning that they stand indepen-
dently and apply to the system as a whole.

Constrained by

0..* 0..*
Backlog Item Nonfunctional

Requirement

Figure 4–9 Relationship between backlog items and nonfunctional requirements

Wow! eBook <WoweBook.Com>

ptg

 nonfunctionaL RequiRements 79

No matter how we think about them, nonfunctional requirements must be cap-
tured and communicated to the affected teams. Some NFRs apply to the system as a
whole, and others apply only to the feature or component of the team’s domain, as
illustrated in Figure 4–10.

Testing Nonfunctional Requirements

These types of requirements—usability, reliability, performance, supportability, and
so on—are often described as the “ilities” or qualities of a system. It should be obvi-
ous that these requirements must also be tested, as illustrated with the simple model
extension of Figure 4–11.

Te
am

 B
ac

kl
og

Pr
og

ra
m

 B
ac

kl
og

Roadmap

Vision

Program (System Level)
Nonfunctional
Requirements

Feature/Component
Nonfunctional
Requirements

Figure 4–10 Nonfunctional requirements at the system and feature/component levels

Constrained by

0..*

1..*

0..*

0..*
Backlog Item

Compliant
when passes

System Qualities
Tests

Nonfunctional
Requirement

Figure 4–11 Nonfunctional requirements are tested with system “qualities” tests.

Wow! eBook <WoweBook.Com>

ptg

80 chaPteR 4 � agiLe RequiRements foR the PRogRam

Most nonfunctional (0 . . . *) requirements require one more or more tests. Rather
than calling these tests another type of acceptance tests and further overloading that
term, we’ve called them system qualities tests. This term indicates that these tests
must be run at periodic intervals to validate that the system still exhibits the quali-
ties expressed by the nonfunctional requirements.

the agile release train

Now that we have discussed the organization of the program teams and the Vision,
features, and nonfunctional requirements that define the strategic intent of the
program, we can move on to a discussion about how the Vision is implemented
over time.

Releases and Potentially Shippable Increments

As we described earlier, the development of system functionality is accomplished
via multiple teams in a synchronized Agile Release Train (ART), a standard cadence
of timeboxed iterations and milestones that are date- and quality-fixed but scope-
variable. The ART produces releases or potentially shippable increments (PSIs) at fre-
quent, typically fixed, 60- to 120-day time boundaries.

The PSI is to the enterprise what iterations are to the team, in other words, the
basic iterative and incremental cadence and delivery mechanism for the program
(an “ubersprint”). For many programs, release increments can be released to the
customers at this chosen cadence; for other programs, the milestone represents
achievement of a valuable and evaluable system-level increment. These increments
can then be delivered to the customer, or not, based on the business context.

Designing and implementing an Agile Release Train is the topic of Chapter 15.

Release Planning

Release planning is the periodic program activity that aligns the teams to a common
mission. During release planning, teams translate the Vision into the features and
stories they will need to accomplish the objectives.

However, as we approach release planning, with its cost and overhead, we are
reminded of some Agile Manifesto3 principles.

The most efficient form of communication is face-to-face.��
The best requirements, architecture, and designs emerge from self-organizing ��
teams.

3. www.agilemanifesto.org

Wow! eBook <WoweBook.Com>

www.agilemanifesto.org

ptg

 RoadmaP 81

At regular intervals, the team reflects on how to become more effective and then ��
tunes and adjusts its behavior accordingly.

These principles, plus the need to assure that the teams are on a common mission,
drive enterprises to engage in periodic, face-to-face release planning events. These
events gather the stakeholders to address the following objectives.

Build and share a common Vision.��
Communicate market expectations, features, and relative priorities for the ��
next release.
Plan and commit to the content of the next release.��
Adjust resources to match current program priorities. ��
Evolve the product Roadmap.��
Reflect and apply lessons learned from prior releases.��

The frequency of the event depends upon the company’s required responsiveness
to market conditions and the iteration and release cadence it has adopted. In most
enterprises, it occurs every 60 to 120 days with a 90-day cadence being typical.

Release planning will be covered in depth in Chapter 16.

roadmaP

When we described the Vision, it was presented as time-independent; in other words,
the Vision describes the objectives of the product or system without any binding to
time. This is appropriate when the objective is to communicate the gestalt of “what
this thing is we are about to build.” Overloading that discussion of timelines, the
“when,” will likely derail the discussion of the “what.”

However, to set priorities and plan for implementation, we need a perspective that
includes time. This is the purpose of the Roadmap. The Roadmap is not a par-
ticularly complicated thing, nor is the mechanical maintenance of it difficult. For
example, a typical Roadmap might be communicated in a single graphic such as
Figure 4–12.

The Roadmap consists of a series of planned release dates, each of which has a theme
and a prioritized feature set. Although it is a simple thing mechanically to represent
the Roadmap, figuring out the content is another matter entirely and we’ll cover
that also in Chapter 16.

Wow! eBook <WoweBook.Com>

ptg

82 chaPteR 4 � agiLe RequiRements foR the PRogRam

November

Release 1 Release 2 Release 3

• First Distributed Game

August

Release 2

• First Two Games Available

Release 2

May

Release 1

• Feasibility Proof on Mobile
 Platform

An Updated, Themed, and Prioritized “Plan of Intent”

• Brickyard Port Started
(Stretch Goal to Complete)

• Distributed Platform
Demo

• All GUIs for Both Games
Demonstrable

• New Features (See
Prioritized List)

• Demo of Beemer Game

• Road Rage Ported (Part I)
Features

• Beemer Game in Alpha

• Road Rage Completed
Features

• (Single User)
• Brickyard Ported (Single

User)
• Road Rage Multiuser

Demonstrable
• First Multiuser Game

Feature for Road Rage
• New Features (See

Prioritized List)

Features
• Multiuser Road Rage First

Release
• Brickyard Ported
 Multiuser Demo
• New Features for Both

Games (See Prioritized
List)

• Beemer Game to E3
Trade Show?

Figure 4–12 Example product roadmap for a hypothetical gaming company

summary

In this chapter, we introduced new requirements roles, artifacts, and processes that
are necessary to apply agile development in programs that require many teams. We
described how to organize the teams to optimize value delivery. We introduced a
number of new requirements artifacts—Vision, features, nonfunctional require-
ments, and Roadmap—and described how teams use these artifacts to communi-
cate the larger purpose of the product, system, or application they are developing.
We also described how teams aggregate a series of iterations to build PSIs, or incre-
mental releases, via an Agile Release Train, which incrementally delivers value to the
users and customers. In the next and final chapter of Part I, we’ll increase our level
of abstraction one last time and introduce a set of requirements practices suited
to building a portfolio of products and services suitable to the needs of the larger
enterprise.

Wow! eBook <WoweBook.Com>

ptg

 83

Chapter 5

agile requirements for the Portfolio

At enterprise scale, things get a little more complicated.

introduCtion to the Portfolio level
For many software enterprises, including those of modest scope of 100 or so prac-
titioners and those that develop and manage only one or two products, the team
model (with its user stories, tasks, and acceptance tests) plus the program model
(adding features and nonfunctional requirements) may be all that the teams need
to manage system requirements in an agile manner. In this context, driving releases
with a feature-based vision and driving iterations with stories created by the teams
may be all that is required.

However, there is another class of enterprises—enterprises employing hundreds to
thousands of practitioners and those that have many products—wherein the gov-
ernance and management model for new software asset development needs addi-
tional artifacts and still higher levels of abstraction. In the Big Picture, this is the
Portfolio level, as Figure 5–1 illustrates.

Of course, we also note that the Team, Program, and Portfolio “level” boundaries we
defined here are arbitrary and are intended to serve more as a mental model—a way
to reason about things at higher and higher levels of abstraction, scope, and scale—
rather than a particular prescription for a particular enterprise. Having said that,

Epics Span
Releases

Architecture
Evolves

Continuously

Po
rt

fo
lio

Po
rt

fo
lio

 B
ac

kl
og

Investment
Themes

PortfolioManagement

Portfolio Vision
Epic 1

Epic 3
Architectural Runway

Epic 4

Epic 2

doc

doc

Figure 5–1 The Portfolio level of the Big Picture

Wow! eBook <WoweBook.Com>

ptg

84 chaPteR 5 � agiLe RequiRements foR the PoRtfoLio

however, this level does mimic some actual large and very large-scale agile imple-
mentations that have applied the model in variants of the form described here.1

The Portfolio level introduces two new artifact types: investment themes and epics,
a new backlog (the portfolio backlog), a new team (the portfolio management team),
and the container concepts of portfolio vision and architectural runway.

We’ll start by describing investment themes, because that’s where everything starts.

investment themes

Investment themes (or product themes) represent the set of initiatives that drive the
enterprise’s investment in systems, products, applications, and services.

Investment themes represent key product or service value propositions that
provide marketplace differentiation and competitive advantage.

The set of strategic investment themes for an enterprise, or business unit within an
enterprise, establishes the relative investment objectives for the entity, as the exam-
ple in Figure 5–2 illustrates.

Each “partition” in the graphic represents a specific development initiative and an
associated budget. Within the partition (budget allocation), managers are empow-
ered to develop the initiative in whatever way makes the most economic and busi-
ness sense for the enterprise. However, they generally may not exceed the budget
or borrow resources from other themes without agreement with those stakehold-
ers. With this process, the enterprise exercises its fiduciary responsibility by driving
investment to the agreed-to business priorities.

16%

18%

7%
22%

17%

13%
7%

Cloud Computing Business Unit
Strategic Investment Themes

2HF11
Customer Relationship
Management

Employee Data Backup

Social Intranet

E-commerce

Back-Office Storage

User Authentication

Computing Resources

Figure 5–2 A set of strategic investment themes for an enterprise

1. The requirements model in the Big Picture was developed with the help of Juha-Markus Aalto
of Nokia Corporation.

Wow! eBook <WoweBook.Com>

ptg

 ePics and the PoRtfoLio BackLog 85

Portfolio management team

The derivation of these decisions is the responsibility of the portfolio
management function, those individuals who have ultimate responsibil-
ity for the individual lines of business. In larger enterprises, this typically
happens at the business unit level based on an annual or twice-annual
budgeting process.2

The portfolio management team makes its decisions based on some
combination of the following:

Investment in �� existing product offerings—enhancements, support, and
maintenance
Investment in �� new products and services—products that will enhance
revenue and/or gain new market share in the current or near-term budget
period
Investment in �� futures—advanced product and service offerings that require
investment today but will not contribute to revenue until outlying years
Reducing investment (sunset strategy) for existing offers that are nearing the ��
end of their useful life

Themes have a much longer life span than epics, and a set of investment themes may
be largely unchanged for up to a year or more. To provide ongoing governance and
visibility into the investments, the portfolio management team may be assisted by a
project management office (PMO).

The role and activities of the portfolio management team and PMO are explored in
depth in Chapter 22, Moving to Agile Portfolio Management.

ePiCs and the Portfolio BaCklog

The set of strategic investment themes drive all new development, and requirements
epics are derived from these decisions.

Epics are large-scale development initiatives that realize the value of investment
themes.

Epics are the highest-level requirements artifact that we will use to coordinate
development. In the requirements model, they sit between investment themes and
features, as Figure 5–3 shows.

2. It’s important to note here that this “traditional budgeting process” can be one of the impedi-
ments to enterprise agility. We’ll discuss that in Chapter 22, Moving to Agile Portfolio
Management.

Po
rt

fo
lio

 B
ac

kl
og

Investment
Themes

PortfolioManagement

Wow! eBook <WoweBook.Com>

ptg

86 chaPteR 5 � agiLe RequiRements foR the PoRtfoLio

StoryEpic Feature
Realized by Realized by

0,1 1..*

Is one of

Backlog Item

Investment Theme
0,1 1..* 0,1 1..*
Realized by

Figure 5–3 Investment themes and epics in the requirements information model

A number of observations can be derived from the figure.

Epics are typically driven (parented by) investment themes. But some epics ��
can be independent (they do not require a parent in order to exist).
Epics are not implemented directly. Instead, they are broken into features, ��
which, in turn, are broken into user stories, which are the primitives used by
the teams for actual coding and testing.
Epics are not directly testable. Instead, they are tested by the acceptance tests ��
associated with the features and stories that implement them.

Portfolio Backlog

Epics deliver the value implied by the theme, and they are identified, prioritized,
estimated, and maintained in the portfolio backlog. Prior to release planning, epics
are decomposed into features, which in turn drive release planning, as we illustrate
in Figure 5–4.

Epics may be expressed in bullet form, as a sentence or two, in video, in a prototype,
in user interface mock-ups, or indeed in any form of expression suitable to express

Te
am

 B
ac

kl
og Feature 1

Feature 2

Release Planning

Arch 1

Re
le

as
e

(o
r P

SI
)

Epic

Feature 1

Feature 2

Feature 3

Po
rt

fo
lio

 B
ac

kl
og

Release Theme and Objectives

Investment
Themes

PortfolioManagement

Pr
og

ra
m

 B
ac

kl
og

Figure 5–4 Epics are split into features prior to release planning.

Wow! eBook <WoweBook.Com>

ptg

 ePics, featuRes, and stoRies 87

the intent of the product initiative. With epics, the objective is vision, not specificity.
In other words, the epic need only be described in detail sufficient to initiate a fur-
ther discussion about what types of features an epic implies.

ePiCs, features, and stories

It’s apparent by now that epics, features, and stories are all forms of expressing user
need and implied benefit but at different levels of abstraction, as the hierarchical
representation in Figure 5–5 illustrates.

This reduces the level of too-early specificity and decreases the overhead of man-
aging these artifacts for larger systems. (Imagine a program or product manager
attempting to maintain, estimate, and prioritize a single-level backlog of 5,000
requirements . . . it has happened!)

Even more importantly, the reduced specificity of the features and epics increase the
team’s agility by allowing them to interpret requirements in ways that are the easiest to
implement and most consistent with the current constructs of the implementation.

Returning to our e-mail example from the previous chapter, we might find the fol-
lowing epic-feature story hierarchy.

Investment Theme: Personalization

Epic: Customizable Desktop Themes

Story: As a power user, I can select a standard
 desktop theme from a catalog so that
 I can customize it further.

Epics

Features

Stories

Figure 5–5 Hierarchical view of epics, features, and stories

Wow! eBook <WoweBook.Com>

ptg

88 chaPteR 5 � agiLe RequiRements foR the PoRtfoLio

arChiteCtural runway and arChiteCtural ePiCs

At the Portfolio level, we also find a last big block of interesting things to talk about,
architectural runway and architectural epics, as illustrated in Figure 5–6.

In Scaling Software Agility [Leffingwell 2007], we defined architectural runway as
following:

A system that has architectural runway contains existing or planned
infrastructure sufficient to allow incorporation of current and anticipated
requirements without excessive refactoring.

In the context of the enterprise’s portfolio of products and in the face of a series of
shorter, incremental releases, architectural runway is the answer to a big question:

What technology initiatives need to be underway now so that we can reliably
deliver a new class of features in the next year or so?

Here, we are not talking about side R&D projects that an enterprise may use to
determine technology strategies, establish feasibility, and so on. Those are local-
ized efforts and can be managed fairly easily by the teams or the system architects.
Rather, we are talking about large-scale changes to the code base that will be neces-
sary to support features on the current roadmap and changes that could affect most,
or even all, of the development teams. Here are some examples.

Implement a common install, licensing, and user authentication model across each product in ��
the suite.
Convert the transaction server to a SOA-based architecture.��
Redesign the operating system to support symmetrical multiprocessing.��

Epics Span
Releases

Architecture
Evolves

Continuously

Po
rt

fo
lio

Po
rt

fo
lio

 B
ac

kl
og

Investment
Themes

PortfolioManagement

Portfolio Vision
Epic 1

Epic 3
Architectural Runway

Epic 4

Epic 2

doc

doc

Figure 5–6 Architectural runway and architectural epics in the Big Picture

Wow! eBook <WoweBook.Com>

ptg

 aRchitectuRaL Runway and aRchitectuRaL ePics 89

Epic
0,1 1..*

Realized by

Is one of

Business
Epic

Architecture
Epic

Investment
Theme

Figure 5–7 Business and architecture epics

Clearly, these are not simple refactors. These changes will involve significant, struc-
tural changes that could affect millions of line of code and require tens (or even
hundreds) of man-years. And, if the enterprise wants to see it accomplished next
year, or even the year after, they have to start now.

To start now, this work has to be defined and communicated to the team, like any other
major initiative, even though the end-user value may be a year or so down the road.

So, in Figure 5–7, we see two kinds of epics: business epics, which are functional
or user-experience epics such as those we have already described, and architecture
epics, which are used to implement the technological changes that must be made to
significant elements of the portfolio.

Within the enterprise, such initiatives must be elevated to the Portfolio level so that
the appropriate teams can start laying in the foundation now. After all, they require
significant investment. A simple “We’ll refactor it later” approach is not economi-
cally viable. No enterprise wants to “do over” the last x00 man-years of work, par-
ticularly when they always knew they needed to evolve certain core technologies,
platforms, security models, and so on, in a coordinated fashion.

Implementing Architectural Epics

However, since the agile enterprise no longer has the big bang, waterfall, “branch-
merge-and-crash-next-year” strategies to fall back on, what’s an enterprise to do?
The answer is easy to say and hard to do, but it is a key agile enterprise ability:

Architectural epics will be implemented in the main code line, incrementally,
just like any other epic.

In so doing, development teams commit to a “do no harm” refactoring approach.
In other words, they implement these large-scale refactors in small increments. At
each PSI, they commit to “do no harm” to the systems or its users, and they roll out
the architectural changes piecemeal and surface the new capabilities to the users

Wow! eBook <WoweBook.Com>

ptg

90 chaPteR 5 � agiLe RequiRements foR the PoRtfoLio

only whenever there is sufficient infrastructure to do so. It isn’t easy. It is agile. And
it does work.3

Architectural Runway: Portfolio, Program, and Team

The continuous build out and maintenance of new architectural runway is the
responsibility of all mature agile teams. Failing to do so will cause one of two bad
things to happen.

Release dates will be missed because large-scale, just-in-time, infrastructure ��
refactoring adds unacceptable risk to scheduling.
Failure to extend the architecture systematically means that the teams will ��
eventually run out of runway. New features cannot be added without major
refactoring. Velocity slows. The system eventually becomes so brittle and
unstable that it has to be entirely rewritten.

This work must happen continuously at each of the Portfolio, Program, and Team
levels.

Portfolio:�� Portfolio-level architectural runway is achieved by defining, com-
municating, and implementing architecture epics that drive the company’s
technology vision. Some will require significant levels of investment and
consume substantial resources. In the near term, some may even reduce
the velocity of current and new feature implementations. Because failing to
implement them will eventually compromise the company’s position in the
market, architectural epics must be visible, estimated, and planned just like
any other epic.
Program:�� At the Program level, product managers, system teams, project
teams, and architects translate the architectural epics into architectural
features that are relevant to each release. They are prioritized, estimated, and
resourced like any other feature. And, like features, each architectural initia-
tive must also be conceptually complete at each release boundary so as to not
compromise the new release.
Team:�� At the Team level, refactors and design spikes are often necessary to
extend the runway, and they are prioritized along with user stories. In this
way, architectural work is visible, accountable, and demonstrable at every

3. As an example, Rally Software Development built and launched a successful software as a service
(SaaS) application but decided a year later that they had picked the wrong choice of underlying
platform technology. They had built in a dependency on a vendor that was slow to develop the
new features they needed to build a richer experience for their users, and licensing costs were
an issue as well. They refactored their application, one module and one feature at a time, in the
course of eight to ten releases over a two-year period, gradually decreasing their usage of the
underlying platform. At the end, they just “switched off” the vendor’s product. Their users expe-
rienced no usage paradigm change at any point. Patience is still a virtue in agile development.

Wow! eBook <WoweBook.Com>

ptg

 summaRy of the fuLL enteRPRise RequiRements infoRmation modeL 91

iteration boundary. This is accomplished by agreement and collaboration
with the system architects, product owners, and agile tech leads that deter-
mine what spikes need to happen and when.

Strategies for accomplishing incremental “rearchitecting” of larger-scale systems in
an agile manner are a primary topic of Chapters 21 and 22.

summary

In this chapter, we described the highest, Portfolio level of the Big Picture. We intro-
duced strategic investment themes, epics, the portfolio backlog, and the concept of
architectural runway as necessary elements of managing agile requirements at scale.
We also introduced the portfolio management team as the functional unit that estab-
lishes the strategic direction of the products and services the enterprise develops.
Of course, we’ve only touched the surface of these important topics, and that is why
Part IV of the book is dedicated to agile requirements for the portfolio.

summary of the full enterPrise requirements information
model
As we conclude Part I of this book, we note that we’ve introduced a fairly extensive
requirements model in an incremental fashion. We’ve introduced each requirements
element—user stories, features, and the like—at the appropriate time based on the
team, project, or portfolio context. Perhaps now is the time to take a broader look at
the totality of the model we have built incrementally. So, in summary, the full lean
and scalable requirements model for the agile enterprise appears in Figure 5–8.

Implemented by
StoryEpic

Realized by
Feature

Realized by

Is one of

Backlog Item Nonfunctional
Requirement

Constrained by

Investment
Theme 0,1 0,1 0,1 0,1 1..* 1..* 1..* 1..*

Realized by
Task

Done when passes
1

1..*

0..*

0..* 0..*

System Qualities
Tests

Compliant
when passes

1..*

Story
Acceptance Test

1

1..*

Feature
Acceptance Test

Figure 5–8 Full enterprise requirements model

Wow! eBook <WoweBook.Com>

ptg

92 chaPteR 5 � agiLe RequiRements foR the PoRtfoLio

Although this model may appear to be more complex than most agilists have typi-
cally applied to date, it scales directly to the needs of the full enterprise without bur-
dening the agile teams or adding unnecessary administrative, tracking, or reporting
overhead. In this manner, the enterprise can extend the benefits of agility—from the
Team to the Program to the Portfolio level—and thereby achieve the full productiv-
ity and quality benefits available to the increasingly agile enterprise.

Besides, your enterprise can and should use only what it needs from this model;
otherwise, it isn’t the simplest thing that can possibly work.

Wow! eBook <WoweBook.Com>

ptg

 93

Interlude

Case study: tendril Platform

M anaging requirements in a significant agile development project is a complex
task, and the requirements concepts, practices, and artifacts have to scale to the

task at hand.

We introduce this case study, Tendril, as an example of a company that is actively
applying agile in the development of an innovative and complex hardware and
software system. As the book progresses, we’ll use some real artifacts from this case
study to help illustrate the practices we are describing.

BaCkground for the Case study

The green revolution is upon us in many varied fields. For our case study, we have
selected a Boulder, Colorado, company that is one of the leaders in the green energy
field. Tendril has embraced the emerging technologies of the “smart grid” move-
ment as its basis for the development of new energy-saving products for commer-
cial and home use.

The nation’s electricity grid was built and regulated for reliability and ubiquitous
availability. Those were admirable goals for 20th-century infrastructure, but as we
move into the 21st century, electricity and energy needs have gone beyond mere
reliability and ubiquity. We now need to reduce/eliminate global warming and to use
energy efficiency to increase our energy independence. Enter the smart grid.

The term smart grid covers a range of initiatives, including upgrades to the
following:

The long-haul transmission grid to enable movement of renewable and non-��
renewable energy to places that can consume them
The short-haul distribution grids so that they are more efficient with energy ��
delivery
Electricity meters with two-way communications infrastructure between the ��
customer and the generator/provider

Wow! eBook <WoweBook.Com>

ptg

94 inteRLude � case study: tendRiL PLatfoRm

As it is currently defined, the smart grid solves only part of the problem. It is meant
to reach consumer’s homes, but the existing infrastructure falls short, ending at the
meter. The Tendril technology infrastructure moves inside the home and completes
the smart grid in the new Information Age.

By using networking technology, the end-consuming devices can know the
following:

When environmental friendliness is high��
When grid reliability is low��
When the price is cheap��
When and where energy is needed more or less and the overall consumption ��
“profile” that each consumer desires

Similarly, the points between the generation and consuming devices can know the
following:

Where demand is high versus low��
Where outages may have occurred and the nature of the outage��
Whether meters ought to be connected or disconnected��
Where renewable supply is and how to route it to the right demand locations��
When the long-haul or short-haul grids are inefficient (and why)��

Of the many smart grid components, the consumer-oriented elements deserve as
much attention as the alternatives. After all, it is only when consumers use renew-
able energy or cheap energy, or when distributed generation in their homes can be
effectively sold, that our nation will achieve the results it seeks—true 21st-century
energy efficiency.

As a contributing part of the smart grid solutions, Tendril offers a comprehensive
line of residential energy management products, collectively known as the Tendril
end-to-end solution. These products combine a significant array of firmware and
software engineering challenges and are the focal point of a large-scale series of agile
development efforts both on the firmware side and on the software side. As this
book progresses, we will be examining various artifacts of these engineering proj-
ects as part of our case study.

In some cases, it will also be necessary to look at agile lean requirements that fall
outside the practices used by Tendril. Never fear, these practices will also be dis-
cussed with other artifacts of other case studies.

Wow! eBook <WoweBook.Com>

ptg

 system context diagRam 95

system Context diagram

Tendril offers a variety of products that further the smart grid initiative. For our
purposes, we will consider only a representative selection of the product offerings,
Tendril Vantage. This subset will typify many of the agile development techniques
and challenges that are used for the entire range of product offerings.

Tendril Vantage is a browser-based Internet application that provides consumers
with the tools and information they need to better understand, manage, and control
their energy consumption and each of the smart devices in their homes. With Ten-
dril Vantage, users can register their home, electric appliances, and devices. Users
can also set rules, personal alerts, and notifications; track their consumption in real
time; review historical usage patterns; and compare their household energy expen-
diture against other homes in their area with similar demographics.

As Figure I–1 illustrates, the Tendril platform consists of three major subsystems:

The electric utility��
The energy management servers��
The consumer’s home and devices��

We will describe the use of agile requirements techniques in support of develop-
ment of the Tendril Vantage application, as well as other products in the Tendril
platform and end-to-end solution. We will start by using the case study in the con-
text of the next chapter, User Stories.

ENERGY AWARENESS

LOAD CONTROL

DEMAND RESPONSE

ELECTRIC VEHICLE

DISTRIBUTED GENERATION

UTILITY APPLICATIONS

ENERGY AWARENESS

LOAD CONTROL

DEMAND RESPONSE

ELECTRIC VEHICLE

DISTRIBUTED GENERATION

CONSUMER APPLICATIONS

AMR
METER

GATEWAY

HAN

INSIGHT VANTAGE SET POINT

VANTAGE MOBILE VOLT LCS

DISTRIBUTED
GENERATION

CV CONSUMER
ELECTRONICS

DRYER /REFRIG BATTERY
STORAGE

GENERIC J™
PARTY DEVICE

IP NETWORK

OPEN API
(CIM)

PORTAL

3rd PARTY
APPS

UTILITY

TENDRIL PLATFORM

AMI
HEAD END

IP NETWORKBACK
OFFICE

TENDRIL
RETAIL APP

METER NETWORK COMMUNICATION

AMI
METER

Figure I–1 Tendril platform simplified system diagram

Wow! eBook <WoweBook.Com>

ptg

This page intentionally left blank

Wow! eBook <WoweBook.Com>

ptg

PART II

agile requirements for the team
Eliminate numerical quotas, including Management by Objectives.

—W. Edwards Deming

Chapter 6�� User Stories
Chapter 7�� Stakeholders, User Personas, and User Experiences
Chapter 8�� Estimating and Velocity
Chapter 9�� Iterating
Chapter 10�� Acceptance Testing
Chapter 11�� Role of the Product Owner
Chapter 12�� Requirements Discovery Toolkit

Systems, Applications, Products

Te
am

 B
ac

kl
og

System Team

Re
le

as
e

Pl
an

ni
ng

Nonfunctional
Requirements

Feature 1

Feature 2

Release Planning

Arch 1

Re
le

as
e

(o
r P

SI
)

Features
Fit in

Releases

Epics Span
Releases

Architecture
Evolves

Continuously

Re
le

as
e

Pl
an

ni
ng

Pr
og

ra
m

Po
rt

fo
lio

Re
le

as
e

(o
r P

SI
)

Pr
og

ra
m

 B
ac

kl
og

Po
rt

fo
lio

 B
ac

kl
og

Release Theme and Objectives

Features and Components
Stories Fit in
Iterations

(Implemented by)
Tasks

Te
am

NFRs

Spikes Are
Research,
Design,
Refactor
Stories

H

H

H

H

Product
Owner

Scrum/Agile
Master

Te
am

 B
ac

kl
og

Te

am
 B

ac
kl

og

Agile Teams

Developers and Testers

Pl
an

D
em

o

Pl
an

D
em

o

Stories

Iterations lterations

Stories

Release Management

Product
Management

Investment
Themes

PortfolioManagement

Portfolio Vision
Epic 1

Epic 3
Architectural Runway

Epic 4

Epic 2

Feature 3

Feature 4

doc

doc

Roadmap

kl

Roadma pmap admRoa pp ma pa adm dRoa

Vision

Wow! eBook <WoweBook.Com>

ptg

This page intentionally left blank

Wow! eBook <WoweBook.Com>

ptg

 99

Chapter 6

user stories
with Pete Behrens

They have been at a great feast of languages, and stol’n the scraps.

—Shakespeare, Love’s Labour’s Lost, Act 5, scene 1

introduCtion

In Chapter 3, Agile Requirements for the Team, we introduced the concepts and
relationships among the key artifacts—backlogs, user stories, tasks, and so on—
used by agile teams to define, build, and test the system of interest. We noted that
the user story is the workhorse of agile development, and it is the container that
carries the value stream to the user. It also serves as a metaphor for our entire incre-
mental value delivery approach, that is:

Define a user value story, implement and test it in a short iteration,
demonstrate/and or deliver it to the user, repeat forever!

We summarize the requirements artifacts involved in fulfilling this mission in
Figure 6–1.

Implemented by
Story

Is one of

Backlog Item

Task
1 1..*

1..*

Story
Acceptance Test

1..*
Done when passes

Figure 6–1 Requirements model for teams

Wow! eBook <WoweBook.Com>

ptg

100 chaPteR 6 � useR stoRies

From the figure, we see that stories come from the backlog and are implemented via
whatever design, coding, and testing tasks are needed to complete the story. Further,
stories cannot be considered to be done until they pass an associated acceptance test.

In this chapter, we’ll describe the user story in more detail, because it is there that we
will find the agile practices that help us conform our solution directly to the user’s
specific needs and help assure quality at the same time.

User Story Overview

We have noted many of the contributions of Scrum to enterprise agile practices,
including, for example, the definition of the product owner role, which is integral
to our requirements practices. But it is to XP that we owe the invention of the user
story, and it is the proponents of XP who have developed the breadth and depth of
this artifact. As Beck and Fowler [2005] explain:

The story is the unit of functionality in an XP project. We demonstrate progress
by delivering tested, integrated code that implements a story. A story should be
understandable to customers, developer-testable, valuable to the customer, and
small enough that the programmers can build half a dozen in an iteration.

However, though the user story originated in XP, this is less of a “methodological
fork in the road” than it might appear, because user stories are now routinely taught
within the constructs of Scrum training as a tool for building product backlogs and
defining Sprint content. We have Mike Cohn to thank for much of this integration;
he has developed user stories extensively in his book User Stories Applied [Cohn
2004], and he has been very active in the Scrum community.

For our purposes, we’ll define a user story simply as follows:

A user story is a brief statement of intent that describes something the
system needs to do for the user.

In XP, user stories are often written by the customer, thus integrating the customer
directly in the development process. In Scrum, the product owner often writes the
user stories, with input from the customers, the stakeholders, and the team. How-
ever, in actual practice, any team member with sufficient domain knowledge can
write user stories, but it is up to the product owner to accept and prioritize these
potential stories into the product backlog.

User stories are a tool for defining a system’s behavior in a way that is understand-
able to both the developers and the users. User stories focus the work on the value
defined by the user rather than a functional breakdown structure, which is the
way work has traditionally been tasked. They provide a lightweight and effective
approach to managing requirements for a system.

Wow! eBook <WoweBook.Com>

ptg

 intRoduction 101

A user story captures a short statement of function on an index card or perhaps
with an online tool. In simple backlog form, stories can just be a list of things the
system needs to do for the user. Here’s an example:

Log in to my web energy-monitoring portal.

See my daily energy usage.

Check my current electricity billing rate.

Details of system behavior do not appear in the brief statement; these are left to
be developed later through conversations and acceptance criteria between the team
and the product owner.

User Stories Help Bridge the Developer–Customer
Communication Gap

In agile development, it is the developer’s job to speak the language of the user, not
the user’s job to speak the language of developers. Effective communication is the
key, and we need a common language. The user story provides the common lan-
guage to build understanding between the user and the technical team.

Bill Wake, one of the creators of XP, describes it this way:1

A pidgin language is a simplified language, usually used for trade that allows
people who can’t communicate in their native language to nonetheless work
together. User stories act like this. We don’t expect customers or users to
view the system the same way that programmers do; stories act as a pidgin
language where both sides can agree enough to work together effectively.

With user stories, we don’t have to understand each other’s language with the degree
of proficiency necessary to craft a sonnet; we just need to understand each other
enough to know when we have struck a proper bargain!

User Stories Are Not Requirements

Although user stories do most of the work previously done by software require-
ments specifications, use cases, and the like, they are materially different in a number
of subtle yet critical ways.

They are not detailed requirements specifications (something a system shall ��
do) but are rather negotiable expressions of intent (it needs to do something
about like this).

1. xp123.com/xplor/xp0308/index.shtml

Wow! eBook <WoweBook.Com>

ptg

102 chaPteR 6 � useR stoRies

They are short, easy to read, and understandable to developers, stakeholders, ��
and users.
They represent small increments of valued functionality that can be devel-��
oped in a period of days to weeks.
They are relatively easy to estimate, so effort to implement the functionality ��
can be rapidly determined.
They are not carried in large, unwieldy documents but rather organized in ��
lists that can be more easily arranged and rearranged as new information is
discovered.
They are not detailed at the outset of the project but are elaborated on a just-��
in-time basis, thereby avoiding too-early specificity, delays in development,
requirements inventory, and an over-constrained statement of the solution
They need little or no maintenance and can be safely discarded after ��
implementation.2,3
User stories, and the code that is created quickly thereafter, serve as inputs to ��
documentation, which is then developed incrementally as well.

user story form

This section addresses formats for user stories.

Card, Conversation, and Confirmation

Ron Jeffries, another creator of XP, described what has become our favor-
ite way to think about user stories. He used the alliteration card, conver-
sation, and confirmation to describe the three elements of a user story.4

Card represents two to three sentences used to describe the intent of the
story. The card serves as a memorable token, which summarizes intent
and represents a more detailed requirement, whose details remain to be
determined.

2. This is subject to the development and persistence of acceptance tests, which define the behav-
ior of the system in regression-testable detail.

3. There can be a negative psychological effect to simply discarding the paper cards. One reviewer
commented: “Sometimes when we look back at what we’d achieved recently, we don’t see visu-
ally anything if all the done stories are discarded. So we actually keep all of them, piling them
up in the “done” section. It’s a bit messy but still it gives a good feeling, we did achieve quite a
lot actually”

4. xprogramming.com/xpmag/expcardconversationconfirmation/

As a <role>,
I can <activity>

So that <business value>

Details in discussion
between PO and team

A list of what will make
the story acceptable
to the product owner

Wow! eBook <WoweBook.Com>

ptg

 useR stoRy foRm 103

NOTE�³ In XP and agile, stories are often written manually on physical index cards. More typically in the
enterprise, the “card” element is captured as text and attachments in a spreadsheet or agile proj-
ect management tooling, but teams often still use cards for early planning and brainstorming, as
we will see later.

Conversation represents a discussion between the team, customer, product owner,
and other stakeholders, which is necessary to determine the more detailed behavior
required to implement the intent. In other words, the card also represents a “prom-
ise for a conversation” about the intent.

Confirmation represents the acceptance test, which is how the customer or prod-
uct owner will confirm that the story has been implemented to their satisfaction.
In other words, confirmation represents the conditions of satisfaction that will be
applied to determine whether the story fulfills the intent as well as the more detailed
requirements.

With this simple alliteration, we have an object lesson in how quality in agile is
achieved during, rather than after, actual code development. We do that by simply
making sure that every new user story is discussed and refined in whatever detail is
necessary and is tested to the satisfaction of the key stakeholders.

User Story Voice

In the last few years, a newer, fairly standardized form has been applied that strength-
ens the user story construct significantly. The form is as follows:

As a <role>, I can <activity> so that <business value>.

where:

<role> represents who is performing the action or perhaps one who is ��
receiving the value from the activity. It may even be another system, if that is
what is initiating the activity.
<activity> represents the action to be performed by the system.��
<business value> represents the value achieved by the activity.��

We call this the user voice form of user story expression and find it an exceedingly
useful construct5 because it spans the problem space (<business value> delivered)
and the solution space (<activity> the user performs with the system). It also

5. While looking for the origin of this form, I received the following note from Mike Cohn: “It
started with a team at Connextra in London and was mentioned at XP2003. I started using it
then and wrote about it in my 2004 book, User Stories Applied.”

Wow! eBook <WoweBook.Com>

ptg

104 chaPteR 6 � useR stoRies

provides a user-first (<role>) perspective to the team, which keeps them focused on
business value and solving real problems for real people.

This user story form greatly enhances the “why” and “how” understanding that
developers need to implement a system that truly meets the needs of the users.

For example, a user of a home energy-management system might want to do the
following:

As a Consumer (<role>), I want to be able to see my daily energy usage (<what I do
with the system>) so that I can lower my energy costs and usage (<business value I
receive>).”

Each element provides important expansionary context. The role allows a segmen-
tation of the product functionality and typically draws out other role-based needs
and context for the activity. The activity typically represents the “system require-
ment” needed by the role. And the value communicates why the activity is needed,
which can often lead the team to finding possible alternative activities that could
provide the same value for less effort.

User Story Detail

The details for user stories are conveyed primarily through conversations between
the product owner and the team, keeping the team involved from the outset. How-
ever, if more details are needed about the story, they can be provided in the form of
an attachment (mock-up, spreadsheet, algorithm, or whatever), which is attached to
the user story. In that case, the user story serves as the “token” that also carries the
more specific behavior to the team. The additional user story detail should be col-
lected over time (just-in-time) through discussions and collaboration with the team
and other stakeholders before and during development.

User Story Acceptance Criteria

In addition to the statement of the user story, additional notes, assumptions, and
acceptance criteria can be kept with a user story. Many discussions about a story
between the team and customers will likely take place while the story is being coded.
The alternate flows in the activity, acceptance boundaries, and other clarifications
should be captured along with the story. Many of these can be turned into accep-
tance test cases, or other functional test cases, for the story.

Here’s an example:

As a consumer, I want to be able to see my daily energy usage so that I can lower my
energy costs and usage.

Wow! eBook <WoweBook.Com>

ptg

invest in good useR stoRies 105

Acceptance Criteria:

Read DecaWatt meter data every 10 seconds and display on portal in 15-minute ��
increments and display on in-home display every read.
Read KiloWatt meters for new data as available and display on the portal every ��
hour and on the in-home display after every read.
No multiday trending for now (another story).��

Etc

Acceptance criteria are not functional or unit tests; rather, they are the conditions of
satisfaction being placed on the system. Functional and unit tests go much deeper
in testing all functional flows, exception flows, boundary conditions, and related
functionality associated with the story.

invest in good user stories

Agile teams spend a significant amount of time in discovering, elaborating, and
understanding user stories and writing acceptance tests for them. This is as it should
be, because it represents the following conclusion:

Writing the code for an understood objective is not necessarily the hardest
part of software development; rather, it is understanding what the real
objective for the code is.

Therefore, investing in good user stories, albeit at the last responsible moment, is a
worthy effort for the team. Bill Wake coined the acronym INVEST6 to describe the
attributes of a good user story.

Independent

Negotiable

Valuable

Estimable

Small

Testable

The INVEST model is now fairly ubiquitous, and many agile teams evaluate their
stories with respect to these attributes. Here’s our view of the value of the team’s
INVESTment.

6. Bill Wake. www.XP123.org.

Wow! eBook <WoweBook.Com>

www.XP123.org

ptg

106 chaPteR 6 � useR stoRies

Independent

Independence means that a story can be developed, tested, and potentially even
delivered on its own. Therefore, it can also be independently valued.

Many stories will have some natural sequential dependencies as the product func-
tionality builds, and yet each piece can deliver value independently. For example,
a product might display a single record and then a list, then sort the list, filter the
list, prepare a multipage list, export the list, edit items in the list, and so on. Many
of these items have sequential dependencies, yet each item provides independent
value, and the product can be potentially shipped through any stopping point of
development.

However, many nonvalued dependencies, either technical or functional, also tend to
find their way into backlogs, and these we need to find and eliminate. For example,
the following might be a nonvalued functional dependency:

As an administrator, I can set the consumer’s password security rules so that users
are required to create and retain secure passwords, keeping the system secure.

As a consumer, I am required to follow the password security rules set by the
administrator so that I can maintain high security to my account.

In this example, the consumer story depends on the administrator story. The admin-
istrator story is testable only in setting, clearing, and preserving the policy, but it is
not testable as enforced on the consumer. In addition, completing the administrator
story does not leave the product in a potentially shippable state—therefore, it’s not
independently valuable.

By reconsidering the stories (and the design of the system), we can remove the
dependency by splitting the stories in a different manner, in this case through the
types of security policies applied and by combining the setup with enforcement in
each story:

As an administrator, I can set the password expiration period so that users are forced
to change their passwords periodically.

As an administrator, I can set the password strength characteristics so that users
are required to create difficult-to-hack passwords.

Now, each story can stand on its own and can be developed, tested, and delivered
independently.

Wow! eBook <WoweBook.Com>

ptg

invest in good useR stoRies 107

Negotiable . . . and Negotiated

Unlike traditional requirements, a user story is not a contract for specific function-
ality but rather a placeholder for requirements to be discussed, developed, tested,
and accepted. This process of negotiation between the business and the team rec-
ognizes the legitimacy and primacy of the business inputs but allows for discovery
through collaboration and feedback.

In our prior, siloed organizations, written requirements were generally required to
facilitate the limited communication bandwidth between departments and to serve
as a record of past agreements. Agile, however, is founded on the concept that a
team-based approach is more effective at solving problems in a dynamic collabora-
tive environment. A user story is real-time and structured to leverage this effective
and direct communication and collaboration approach.

Finally, the negotiability of user stories helps teams achieve predictability. The lack
of overly constraining and too-detailed requirements enhances the team’s and busi-
ness’s ability to make trade-offs between functionality and delivery dates. Because
each story has flexibility, the team has more flexibility to meet release objectives,
which increases dependability and fosters trust.

Valuable

An agile team’s goal is simple: to deliver the most value given their existing time
and resource constraints. Therefore, value is the most important attribute in the
INVEST model, and every user story must provide some value to the user, customer,
or stakeholder of the product. Backlogs are prioritized by value, and businesses suc-
ceed or fail based on the value the teams can deliver.

A typical challenge facing teams is learning how to write small, incremental user
stories that can effectively deliver value. Traditional approaches have taught us to
create functional breakdown structures based on technical components. This tech-
nical layering approach to building software delays the value delivery until all the
layers are brought together after multiple iterations. Wake7 provides his perspective
of vertical, rather than technical, layering:

Think of a whole story as a multi-layer cake, e.g., a network layer, a
persistence layer, a logic layer, and a presentation layer. When we split a story
[horizontally], we’re serving up only part of that cake. We want to give the
customer the essence of the whole cake, and the best way is to slice vertically
through the layers. Developers often have an inclination to work on only one
layer at a time (and get it “right”); but a full database layer (for example) has
little value to the customer if there’s no presentation layer.

7. Bill Wake. www.XP123.org.

Wow! eBook <WoweBook.Com>

www.XP123.org

ptg

108 chaPteR 6 � useR stoRies

Creating valuable stories requires us to reorient our functional breakdown struc-
tures from a horizontal to a vertical approach. We create stories that slice through
the architecture so that we can present value to the user and seek their feedback as
early and often as possible.

Although normally the value is focused on the user interacting with the system,
sometimes the value is more appropriately focused on a customer representative or
key stakeholder. For example, perhaps a marketing director is requesting a higher
click-through rate on ads presented on the Web site. Although the story could be
written from the perspective of the end user . . .

As a consumer, I can see other energy pricing programs that appeal to me so that I
can enroll in a program that better suits my lifestyle.

. . . to provide a clearer perspective on the real value, it would be more appropriately
written from the marketing director’s perspective:

As a utility marketing director, I can present users with new pricing programs so
that they are more likely to continue purchasing energy from me.

Another challenge faced by teams is to articulate value from technical stories such
as code refactoring, component upgrades, and so on. For example, how would the
product owner determine the value of the following?

Refactor the error logging system.

Articulating the value of a technical solution as a user story will help communicate
to the business its relative importance. Here’s an example:

As a consumer, I can receive a consistent and clear error message anywhere in the
product so that I know how to address the issue. OR

As a technical support member, I want the user to receive a consistent and clear
message anywhere in the application so they can fix the issue without calling support.

In these latter examples, the value is clear to the user, to the product owner, to the
stakeholders, and to the team.

Estimable

A good user story is estimable. Although a story of any size can be in the backlog,
in order for it to be developed and tested in an iteration, the team should be able to
provide an approximate estimation of its complexity and amount of work required
to complete it. The minimal investment in estimation is to determine whether it can
be completed within a single iteration. Additional estimation accuracy will increase
the team’s predictability.

Wow! eBook <WoweBook.Com>

ptg

invest in good useR stoRies 109

If the team is unable to estimate a user story, it generally indicates that the story
is too large or uncertain. If it is too large to estimate, it should be split into smaller
stories. If the story is too uncertain to estimate, then a technical or functional spike
story can be used to reduce uncertainty so that one or more estimable user stories
result. (Each of these topics is discussed in more detail in the following sections.)

One of the primary benefits of estimating user stories is not simply to derive a pre-
cise size but rather to draw out any hidden assumptions and missing acceptance
criteria and to clarify the team’s shared understanding of the story. Thus, the con-
versation surrounding the estimation process is as (or more) important than the
actual estimate. The ability to estimate a user story is highly influenced by the size of
the story, as we’ll see shortly.

Small

User stories should be small enough to be able to be completed in an iteration. Oth-
erwise, they can’t provide any value or be considered done at that point. However,
even smaller user stories provide more agility and productivity. There are two pri-
mary reasons for this: increased throughput and decreased complexity.

Increased Throughput

From queuing theory, we know that smaller batch sizes go through a system faster.
This is one of the primary principles of lean flow and is captured in Little’s law:

Cycle Time =
Work In Process

Throughput

In a stable system (where throughput, the amount of work that can be done in a
unit of time, is constant), we have to decrease work in process (the amount of things
we are working on) in order to decrease cycle time (the time elapsed between the
beginning and end of the process). In our case, that means fewer, smaller stories in
process will come out faster.

Moreover, when a system is loaded to capacity, it can become unstable, and the
problem is compounded. In heavily loaded systems, larger batches move dispro-
portionately slower (throughput decreases) through the system. (Think of a high-
way system at rush hour. Motorcycles and bicycles have a much higher throughput
than do cars and trucks. There is more space to maneuver smaller things through a
loaded system.) Because development teams are typically fully allocated at or above
capacity (80% to 120%), they fall in the “rush-hour highway” category.

When utilization hits 80% or so, larger objects increase cycle time (slow down) much
more than smaller objects. Worse, the variation in cycle time increases, meaning

Wow! eBook <WoweBook.Com>

ptg

110 chaPteR 6 � useR stoRies

that it becomes harder to predict when a batch might actually exit the system, as
shown in Figure 6–2. In turn, this lower predictability wreaks havoc with schedules,
commitments, and the credibility of the team.

Decreased Complexity

Smaller stories not only go through faster because of their raw, proportional size,
but they go through faster yet because of their decreased complexity, and complex-
ity has a nonlinear relationship to size. This is seen most readily in testing, where the
permutations of tests required to validate the functionality increase at an exponen-
tial rate with the complexity of the function itself. This correlates to the advice we
receive about developing clean code, as Robert Martin [2009] notes on his rules for
writing software functions.

Rule 1: Do one thing.��
Rule 2: Keep them small.��
Rule 3: Make them smaller than that.��

This is one of the primary reasons that the Fibonacci estimating sequence (that is,
1, 2, 3, 5, 8, 13, 21 . . .) is so effective in estimating user stories. The effort estimate
grows nonlinearly with increasing story size.

On the Relationship of Size and Independence

A fair question arises as to the relationship between size and independence, because
it seems logical that smaller stories increase the number of dependencies. However,
smaller stories, even with some increased dependency, deliver higher value through-

Utilization

Cy
cl

e
Ti

m
e

La
rg

e
Ba

tc
he

s

M
ed

ium
 B

atc
he

s
Small B

atches

High Variation

Low Variation

40% 50% 60% 70% 80% 90% 100%

Figure 6–2 Large batches have higher cycle times and higher cycle time variability
[Poppendieck and Poppendieck 2007].

Wow! eBook <WoweBook.Com>

ptg

 sPLitting useR stoRies 111

put and provide faster user feedback than larger stories. So, the agilist always leans
to smaller stories and then makes them smaller still.

Testable

In proper agile, all code is tested code, so it follows that stories must be testable. If
a story does not appear to be testable, then the story is probably ill-formed, overly
complex, or perhaps dependent on other stories in the backlog.

To assure that stories don’t get into an iteration if they can’t get out (be successfully
tested), many agile teams today take a “write-the-test-first” approach. This started
in the XP community using test-driven development, a practice of writing auto-
mated unit tests prior to writing the code to pass the test.

Since then, this philosophy of approach is being applied to development of story
acceptance criteria and the necessary functional tests prior to coding the story
itself. If a team really knows how to test a story, then they likely know how to code
it as well.

To assure testability, user stories share some common testability pitfalls with require-
ments. Vague words such as quickly, manage, nice, clean, and so on, are easy to write
but very difficult to test because they mean different things to different people and
therefore should be avoided. And although these words do provide negotiability,
framing them with some clear boundaries will help the team and the business share
expectations of the output and avoid big surprises.

sPlitting user stories

User stories are often driven by epics and features—a large, vague concept
of something we want to do for a user. We often find these big-value sto-
ries during our discovery process and capture them in the backlog. However,
these are compound stories, as pictured on the left, and are usually far too big
to be implemented within an iteration. To prepare the work for iterations, a
team must break them down into smaller stories.

There is no set routine for splitting user stories into iteration-sized bites, other
than the general guidance to make each story provide a vertical slice, some
piece of user value, through the system. However, we recommend applying an
appropriate selection of ten common patterns to split a user story, as Table 6–1
indicates.8

8. Adapted from Richard Lawrence, www.richardlawrence.info/2009/10/28/patterns-for-splitting-
user-stories/

Split Story

Compound Problem

Wow! eBook <WoweBook.Com>

www.richardlawrence.info/2009/10/28/patterns-for-splitting-user-stories/
www.richardlawrence.info/2009/10/28/patterns-for-splitting-user-stories/

ptg

112 chaPteR 6 � useR stoRies

Table 6–1 Ten Patterns for Splitting a User Story

1. Workflow Steps
Identify specific steps that a user takes to accomplish a specific workflow, and then implement the workflow in
incremental stages.

As a utility, I want to update and publish pricing programs
to my customer.

. . . I can publish pricing programs to the customer’s
in-home display.

. . . I can send a message to the customer’s web portal.

. . . I can publish the pricing table to a customer’s smart
thermostat.

2. Business Rule Variations
At first glance, some stories seem fairly simple. However, sometimes the business rules are more complex or
extensive than the first glance revealed. In this case, it might be useful to break the story into several stories to
handle the business rule complexity.

As a utility, I can sort customers by different
demographics.

. . . sort by ZIP code.

. . . sort by home demographics.

. . . sort by energy consumption.

3. Major Effort
Sometimes a story can be split into several parts where most of the effort will go toward implementing the first
one. In the example shown next, processing infrastructure should be built to support the first story; adding
more functionality should be relatively trivial later.

As a user, I want to be able to select/change my pricing
program with my utility through my web portal.

. . . I want to use time-of-use pricing.

. . . I want to prepay for my energy.

. . . I want to enroll in critical-peak pricing.

4. Simple/Complex
When the team is discussing a story and the story seems to be getting larger and larger (“What about x? Have
you considered y?”), stop and ask, “What’s the simplest version that can possibly work?” Capture that simple
version as its own story, and then break out all the variations and complexities into their own stories.

As a user, I basically want a fixed price, but I also want
to be notified of critical-peak pricing events.

. . . respond to the time and the duration of the critical-
peak pricing event.

. . . respond to emergency events.

5. Variations in Data
Data variations and data sources are another source of scope and complexity. Consider adding stories just-in-
time after building the simplest version. A localization example is shown here:

As a utility, I can send messages to customers. . . . customers who want their messages:

. . . in Spanish

. . . in Arabic, and so on.

Wow! eBook <WoweBook.Com>

ptg

 sPLitting useR stoRies 113

6. Data Entry Methods
Sometimes complexity is in the user interface rather than the functionality itself. In that case, split the story to
build it with the simplest possible UI, and then build the richer UI later.

As a user, I can view my energy consumption in various
graphs.

. . . using bar charts that compare weekly consumption.

. . . in a comparison chart, so I can compare my usage to those
who have the same or similar household demographics.

7. Defer System Qualities
Sometimes, the initial implementation isn’t all that hard, and the major part of the effort is in making it fast or
reliable or more precise or more scalable. However, the team can learn a lot from the base implementation, and
it should have some value to a user, who wouldn’t otherwise be able to do it all. In this case, break the story into
successive “ilities.”

As a user, I want to see real-time consumption from my
meter.

. . . interpolate data from the last known reading.

. . . display real-time data from the meter.

8. Operations (Example: Create Read Update Delete (CRUD))
Words like manage or control are a giveaway that the story covers multiple operations, which can offer a
natural way to split the story.

As a user, I can manage my account. . . . I can sign up for an account.

. . . I can edit my account settings.

. . . I can cancel my account.

. . . I can add more devices to my account.

9. Use-Case Scenarios
If use cases have been developed to represent complex user-to-system or system-to-system interaction, then
the story can often be split according to the individual scenarios of the use case.*

I want to enroll in the energy savings program through
a retail distributor.

Use case/story #1 (happy path): Notify utility that
consumer has equipment.

Use case/story #2: Utility provisions equipment and
data and notifies consumer.

Use case/story #3 (alternate scenario): Handle data
validation errors.

10. Break Out a Spike
In some cases, a story may be too large or overly complex, or perhaps the implementation is poorly under-
stood. In that case, build a technical or functional spike to figure it out; then split the stories based on that
result. (See the “Spikes” section.)

*The application of use cases in agile development is the entire topic of Chapter 19.

Wow! eBook <WoweBook.Com>

ptg

114 chaPteR 6 � useR stoRies

When splitting stories, the team should use an appropriate combination of the pre-
vious techniques to consider means of decomposition or multiple patterns in com-
bination. With this skill, the team will be able to move forward at a more rapid pace,
splitting user stories at release- and iteration-planning boundaries into bite-size
chunks for implementation.

sPikes

Spikes, another invention of XP, are a special type of story used to drive out risk and
uncertainty in a user story or other project facet. Spikes may be used for a number
of reasons.

Spikes may be used for basic research to familiarize the team with a new ��
technology or domain.
The story may be too big to be estimated appropriately, and the team may ��
use a spike to analyze the implied behavior so they can split the story into
estimable pieces.
The story may contain significant technical risk, and the team may have ��
to do some research or prototyping to gain confidence in a technologi-
cal approach that will allow them to commit the user story to some future
timebox.
The story may contain significant functional risk, in that although the intent ��
of the story may be understood, it’s not clear how the system needs to inter-
act with the user to achieve the benefit implied.

Technical Spikes and Functional Spikes

Technical spikes are used to research various technical approaches in the
solution domain. For example, a technical spike may be used to deter-
mine a build-versus-buy decision, to evaluate potential performance
or load impact of a new user story, to evaluate specific implementation
technologies that can be applied to a solution, or for any reason when
the team needs to develop a more confident understanding of a desired
approach before committing new functionality to a timebox.

Functional spikes are used whenever there is significant uncertainty as to
how a user might interact with the system. Functional spikes are often
best evaluated through some level of prototyping, whether it be user
interface mock-ups, wireframes, page flows, or whatever techniques are
best suited to get feedback from the customer or stakeholders. Some
user stories may require both types of spikes. Here’s an example:

Technical Spike Functional Spike

Complex Problem

Wow! eBook <WoweBook.Com>

ptg

 sPikes 115

As a consumer, I want to see my daily energy use in a histogram so that I can quickly
understand my past, current, and projected energy consumption.

In this case, a team might create two spikes:

Technical spike: Research how long it takes to update a customer display to current
usage, determining communication requirements, bandwidth, and whether to push or
pull the data.

Functional spike: Prototype a histogram in the web portal and get some user feedback
on presentation size, style, and charting attributes.

Guidelines for Spikes

Since spikes do not directly deliver user value, they should be used sparingly and
with caution. The following are some guidelines for applying user spikes.

Estimable, Demonstrable, and Acceptable

Like other stories, spikes are put in the backlog, estimated, and sized to fit in an
iteration. Spike results are different from a story, because they generally produce
information, rather than working code. A spike may result in a decision, proto-
type, storyboard, proof of concept, or some other partial solution to help drive the
final results. In any case, the spike should develop just the information sufficient to
resolve the uncertainty in being able to identify and size the stories hidden beneath
the spike.

The output of a spike is demonstrable, both to the team and to any other stake-
holders. This brings visibility to the research and architectural efforts and also helps
build collective ownership and shared responsibility for the key decisions that are
being taken.

And, like any other story, spikes are accepted by the product owner when the accep-
tance criteria for the spike have been fulfilled.

The Exception, Not the Rule

Every user story has uncertainty and risk—this is the nature of agile development.
The team discovers the right solution through discussion, collaboration, experi-
mentation, and negotiation. Thus, in one sense, every user story contains spike-level
activities to flush out the technical and functional risk. The goal of an agile team is
to learn how to embrace and effectively address this uncertainty in each iteration.
A spike story, on the other hand, should be reserved for the more critical and larger
unknowns.

Wow! eBook <WoweBook.Com>

ptg

116 chaPteR 6 � useR stoRies

When considering a spike for future work, first consider ways to split the story
through the strategies discussed earlier. Use a spike as a last option.

Implement the Spike in a Separate Iteration from the Resulting Stories

Since a spike represents uncertainty in one or more potential stories, planning for
both the spike and the resultant stories in the same iteration is risky and should
generally be avoided. However, if the spike is small and straightforward and a quick
solution is likely to be found, there is nothing wrong with completing the stories in
the same iteration. Just be careful.

story modeling with index Cards

Writing and modeling user stories using physical index
cards provides a powerful visual and kinesthetic means
for engaging the entire team in backlog development.
This interactive approach has a number of advantages.

The physical size of index cards forces a text length ��
limit, requiring the writer to articulate their ideas in
just a sentence or two. This helps keep user stories
small and focused, which is a key attribute. Also, the
tangible and physical nature of the cards gives teams
the ability to visually and spatially arrange them in
various configurations to help define the backlog.

Cards may be arranged by feature (or epic) and may be written on the same ��
colored cards as the feature for visual differentiation.
Cards can also be arranged by size to help developers “see” the size relation-��
ships between different stories.
Cards can be arranged by time or iteration to help evaluate dependencies, ��
understand logical sequencing, see the impact on team velocity, and better
align and communicate differing stakeholder priorities.
The more cards you have, the more work you see, so scoping is a more natu-��
ral process.

Any team member can write a story card, and the physical act of moving these
small, tangible “value objects” around the table creates an interactive learning set-
ting where participants “see and touch” the value they are about to create for their
stakeholders.

Experience has shown that teams with a shared vision are more committed to
implementing that vision. Modeling value delivery with physical story cards pro-

Wow! eBook <WoweBook.Com>

ptg

 summaRy 117

vides a natural engagement model for all team members and stakeholders—one
that results in a shared, tangible vision for all to see and experience.

summary

In this chapter, we provided an overview of the derivation and application of
user stories as the primary requirements proxy used by agile teams. Along with
background and history, we described the alliteration card, conversation, and
confirmation, which defines the key elements of a user story. We provided some rec-
ommendations for developing good user stories in accordance with the INVEST
model and specifically described how small stories increase throughput and quality.
We also described a set of patterns for splitting large stories into smaller stories so
that each resultant story can independently deliver value in an iteration. We also
provided guidelines for creating spikes as story-like backlog items for understand-
ing and managing development risk. In conclusion, we suggested that teams apply
visual modeling using physical index cards for developing user stories and create a
shared vision for implementing user value using this uniquely agile requirements
construct.

In the next chapter, we’ll strive for a deeper understanding of the users and user per-
sonas for whom these user stories are intended.

Wow! eBook <WoweBook.Com>

ptg

This page intentionally left blank

Wow! eBook <WoweBook.Com>

ptg

 119

Chapter 7

stakeholders, user Personas, and user

exPerienCes
with Pete Behrens

Simple things should be simple, complex things should be possible.

—Ward Cunningham, XP contributor and inventor of the wiki

In the previous chapter, we introduced the user story as the primary artifact for
identifying system behaviors that deliver value to the customer. We implied that

engaging a user in a dialogue about how they use the system, and what benefit they
derive, is a straightforward process. And it certainly can be if your solution is already
in use and you have access to those users.

But what if you are building a new application or service? Who are the users then?
And what about those key stakeholders who use the results of a system but don’t
actually use the system themselves? How do we know who they are, and how do we
design for them? And if we design a system that works for our direct and indirect
users, are there still other stakeholders whose needs must be met?

And what about the project sponsors? If we develop a system that meets the needs of
those mentioned, are we on solid footing? What about these other stakeholders who
have a material interest in how the system is developed, what it costs, and how and
when it is deployed?

stakeholders

Although it is clear that users are indeed key project stakeholders and we must, in
large part, design for them, the issues are much deeper than that. To help assure
success, we will have to take a much broader look at who all the stakeholders of our
proposed system are. In so doing, we find it helpful to think about two different
classes of stakeholders: system stakeholders and project stakeholders.

Wow! eBook <WoweBook.Com>

ptg

120 chaPteR 7 � stakehoLdeRs, useR PeRsonas, and useR exPeRiences

System Stakeholders

If the system is to be successful, the development teams must be certain to address
the needs of the direct users, as well as the needs of the indirect users and other
stakeholders who will be affected by the system. These are the system stakeholders:

A system stakeholder is anyone who
–directly uses the system
–works with the results of those who use the system
–will be impacted by the deployment and operation of a system

These stakeholders include users and operators, as well as users of reports, data, sig-
nals, and other outputs of the system; managers, purchasers, and administrators for
those users; support and help-desk staff; developers working on other systems that
integrate or interact with the system; installation and maintenance professionals;
and more.

These system stakeholders will be the primary drivers for the requirements of the
system, and, as such, they will be the main subjects of our requirements discovery
activities, as we’ll describe in Chapter 12.

Project Stakeholders

In addition to the system stakeholders, we’ll also need to identify everyone who may
have substantial, vested interest in the project that is developing the system. These
include the project sponsors, project management, portfolio management, execu-
tives, financial governance staff, and so on.

A project stakeholder is anyone who
–has a vested interest in the budget and schedule
–has a vested interest in understanding how the product/system/solution is
–developed
–will be involved in marketing, selling, installing, or maintaining the system

From this definition, you can see that direct and indirect users aren’t the only stake-
holders of a project. Indeed, there is an even wider range of people potentially
affected by a new system. In order to succeed, the team must first understand, and
then synthesize, their requirements into one cohesive vision.

Voice of the Stakeholder: Product Owner

Each project stakeholder will have their own vision, requirements, and priorities.
As the primary representative to all those stakeholders, this provides a particular

Wow! eBook <WoweBook.Com>

ptg

 stakehoLdeRs 121

challenge to product owners—because all those requirements must be aligned and
expectations must be managed toward a single solution.

The product owner’s primary job is to merge these diverse stakeholder voices into a
single prioritized backlog for the team. They can do this by facilitating or leading, or
some appropriate mix of each.

Facilitating:�� Oftentimes, the product owner is the facilitator of a process
intended to converge diverse opinions into a single product vision. There are
often no clear-cut, black-and-white answers as to which potential solution
is more valued or important than the other; each has pros and cons. The
product owner works to help each stakeholder find common ground so they
can accept a combined—and from each individual perspective, a potentially
compromised—solution.
Leading:�� Other times, the product owner makes decisions for stakehold-
ers based on their personal, expert knowledge or experience in the indus-
try. These decisions may not be advocated by any particular stakeholder
but rather are driven from a move in markets, a change in competition,
or other trends that the product owner feels are material to the solution
requirements.

Levels of Stakeholder Involvement

Like the earlier example, most projects have a fairly diverse set of stakeholders, all of
whose needs must be met at some level. Understanding the degree of their involve-
ment is one key to building consensus, while still making fast, agile, forward prog-
ress. For example, the following list applies to some stakeholders.

They should be kept informed:�� Some stakeholders simply need to know the
status of the project and be informed of decisions that impact it. They may
or may not have input on those decisions but may influence those that do.
They should be consulted:�� Some stakeholders, such as subject-matter experts,
marketing analysts, architects, and user-interface designers, have a specific
area of expertise that aids in the definition or building of the product. They
should be involved in decisions within their area of expertise.
They are partners in development:�� Some stakeholders are partners in the
process. These may include other product or business owners, other devel-
opment teams, business or requirements analysts, and providers of solutions
that the system interacts with.
They are in control of outcomes:�� Some stakeholders make final decisions for
the solution. These may include executives, release managers, business own-
ers, and key customers who will be using the solution.

Wow! eBook <WoweBook.Com>

ptg

122 chaPteR 7 � stakehoLdeRs, useR PeRsonas, and useR exPeRiences

Building Stakeholder Trust

Projects run a lot smoother when the stakeholders trust the product owners and the
teams and when that trust is reciprocated. The easiest way to build trust is to com-
municate all aspects of the project, clearly and without prejudice, to all stakehold-
ers. Visibility and transparency are key. When different stakeholders understand the
competing demands on the systems and the development resources, they can better
judge what is most important to them and where they are able to compromise to
allow some other stakeholder to get what is most important to them as well.

In addition, the product owner should describe the rationale behind any key deci-
sions, should explain any weightings or factors used to arrive at a decision, and
should conduct all activities in an open and honest manner. No hidden agendas—
just the current facts of the market, system, and development context.

Stakeholder Interactions

To be successful, all project stakeholders must actively work with the team to achieve
the team’s goals. This creates a number of expectations and implications.

Timely decisions are needed:�� Stakeholders must to be prepared to share busi-
ness knowledge with the team and to make both pertinent and timely deci-
sions regarding project scope and requirement priorities.
Active participation is needed:�� Stakeholders must be included in initial
solution-modeling efforts to achieve alignment across their diverse needs
and gain their buy-in.
Teams must take an enterprise view:�� Teams may also need to work with other
teams to integrate their system with other systems. Integration will go much
smoother with the active participation of these co-developers.
Production and support staff should be involved from the start:�� Operations
and support organizations must invest the resources required to understand
the system and its new technologies. Teams may even choose to include one
or two operations engineers on the development team or to invest project
resources to train operations staff as required.
Plan for system maintenance:�� If the intention is to eventually have software
maintenance done by another team, it will be useful to engage them in the
development process. The development team must allow time to work with
these people so they can take eventual ownership.

identifying stakeholders

Identifying all the stakeholders and understanding their respective needs is clearly
one key to success.

Wow! eBook <WoweBook.Com>

ptg

 identifying stakehoLdeRs 123

Identifying Project Stakeholders

One of the first steps is to make sure we understand the internal project stakehold-
ers. Many times, these are obvious to the teams, but the following questions can be
used to help identify them.

Who needs to be consulted on the scope of this project?��
Who has input to the budget and schedule?��
Who ultimately manages the business relationship between the teams and ��
the customer?
Who will determine how and when the system is released to customers?��
Who can support or harm this project politically?��
What partners are dependent on our system?��
Who cares about the process we use to develop the system?��

Once they have been identified, it can be helpful to understand their expectations for
the system as well as for the project being used to develop the system. Table 7–1 pro-
vides some guidelines for considering the needs of the various project stakeholders.

Table 7–1 Guidelines for Understanding Project Stakeholder Needs

Project
Stakeholder Product Characteristics Project Characteristics

Partner Expects the product interfaces will remain
the same or as agreed to

Expects a stable product integration

Expects backward compatibility

Wants input in the prioritization of
features

Expects to be notified with changes in
the project schedule or prioritization
changes that impact their product

Sales/marketing Expects new features to be available as
promised

Wants to have many new checks to select on
request for proposal (RFP) responses

Wants an understanding of the roadmap

Wants input into when and how the system
will be released

Wants to be able to intelligently articulate
product benefits

Wants input in the prioritization of
features

Expects to be notified when prioritiza-
tion changes, especially when it impacts
their customers

Wants to know whether there any delays
in the project schedule

Operations Expects detailed documentation about how
to install the product and dependencies on
the product

Has clear expectations for system reliability
and performance

Wants to be informed about the project
status

Wants to be more involved toward the
end of the project as details of the instal-
lation and dependencies are known

Continues

Wow! eBook <WoweBook.Com>

ptg

124 chaPteR 7 � stakehoLdeRs, useR PeRsonas, and useR exPeRiences

Project
Stakeholder Product Characteristics Project Characteristics

Support Expects a high-quality product that can be
easily supported

Wants the error management system
to help the customer resolve their own
problem

Wants to be able to resolve issues quickly
when there is a problem

Wants to be informed about project
status, especially when it relates to
support

Expects to have input in prioritization of
support issues

Sponsor Wants to understand the team has effective
processes for understanding requirements

Wants to be continually apprised of
schedule, budget, and status

Wants to know development is in accor-
dance with governance

Development
management

Wants to know system will be fit for
intended purpose

Expects system to be developed in
accordance with budget and schedule
guidelines

Wants to know resources stay in line with
strategic investment themes

Security Expects the system to be secure through
following security coding and testing
practices

Expects all relevant security standards to be
adhered to

Consulted about security issues

Reviews designs for security flaws

Expects to have input in security
prioritization

Identifying System Stakeholders

Although understanding the set of project stakeholders is important, most of the
requirements for the system will be driven by the people who actually use the sys-
tem in their environment. The following questions can help the team understand
who all these system stakeholders are.

Who will be directly using the system?��
Who will be using the results of those who use the system?��
Who will be responsible for supporting the system?��
What other systems will our system interact with?��
What interfaces must it provide?��
Who can provide guidance on the functionality and system qualities (usabil-��
ity, reliability, performance, and supportability) for the system?

Table 7–1 Guidelines for Understanding Project Stakeholder Needs (Continued)

Wow! eBook <WoweBook.Com>

ptg

 identifying stakehoLdeRs 125

Classifying System Stakeholders

It can also be helpful to categorize system stakeholders in one of three categories:

First degree:�� Direct users of the system
Second degree:�� People who work with the results of those who work with the
system
Third degree:�� People who install, deploy, or support the system

This categorization gives the product owner and team a way to reason about who
uses the system the most, and for what purpose, as well as what other stakeholder
needs must be accommodated in the solution.

For example, we can see in Figure 7–1 that the Tendril system has a broad group of
stakeholders and users, each of whose needs must be considered.

Understanding System Stakeholder Needs

Once the stakeholders have been identified and classified, we need to establish the
high-level expectations for the system and to start to identify some of the activities
they will be doing with the system. By way of illustration, Table 7–2 demonstrates a
few such considerations from our case study.

Third Degree:
(People Who Install, Deploy, or Support the System)

Second Degree:
(People Who Work with Results from Those Who Use the Product)

First Degree:
(People Who Use the Product)

Consumer

Utility Company Admin

Third-Party Installers

Consumer
Installer

Utility Meter Data
Management System

Smart Appliance
Manufacturer

Tendril Support Tendril Contract
Manufacturer

Tendril Admin

Utility Demand
Response Admin

Tendril Installers

Meter
Manufacturers

Figure 7–1 Tendril system stakeholders

Wow! eBook <WoweBook.Com>

ptg

126 chaPteR 7 � stakehoLdeRs, useR PeRsonas, and useR exPeRiences

Table 7–2 Case Study System Stakeholder Needs

Stakeholder Role

System Characteristics
(What Do They Expect from the
System?)

System Activities
(What Do They Need to Do with the
System?)

Consumer (user) I want to have daily visibility into my
energy consumption so I can lower the
cost of my electric bill and help save the
planet.

View daily/hourly consumption.

Respond to demand response events.

View my consumption history.

Utility I want to notify customers of pending
demand response events so I can free
up load to the grid.

Sort customers by grid demographics.

Communicate with customers via their
in-home devices.

Appliance
Manufacturer

I want to develop appliances that are
smart energy–compliant so that I can
integrate with open smart grid applica-
tions that utilities will use.

Integrate with smart energy modules.

Provide consumer with easy-to-use UI.

Respond to demand response events by shed-
ding load (reducing consumption).

Utility meter
vendor

I want to provide consumers with
smart meters that will interact with
smart devices in the home so they
can have real-time visibility into their
energy consumption.

Communicate price changes to the meter and
home devices through the backhaul.

Update firmware via backhaul.

Provide reporting on consumer usage.

Electric vehicle
manufacturer

I want to provide the consumer with
convenient charging stations so that I
can sell more electric vehicles.

Track consumer usage information.

Provide the utility and the consumer with
billing information.

Stakeholder/Product Owner Team?

Given the diversity of inputs and the need to gain continuous agreement on the
priorities, the product owner may even want to build a small team (product owner
team or product council) to help guide the solution. We’ll describe this further in
Chapter 12, Requirements Discovery Toolkit, and Chapter 22, Moving to Agile Port-
folio Management.

user Personas

Designing systems that make simple things simple and complex things possible is an
important skill for any teams whose systems have significant interaction with users.
In addition to thinking of the user generically (“As a user, I can . . . ”), user personas
provide a means of further refining the approach to the user to make sure that the
needs of different types of users are met.

Wow! eBook <WoweBook.Com>

ptg

 useR PeRsonas 127

Primary and Secondary User Personas

In Alan Cooper’s human factors/computer interface design book, The Inmates are
Running the Asylum [1999], he describes two primary types of personas to consider.

Primary personas�� represent users with specific needs that can be satisfied
only with a user interface designed specifically for them.
Secondary personas�� are people who also use the system but can use an inter-
face that was designed for a primary persona.

Identifying personas helps development teams create user experiences that are
optimum for a certain class of user. User stories provide clues as to where we
might find them.

Finding Personas with User Story Role Modeling

In the user voice form of expression that we described in the previous chapter (“As a
<role>, I can <activity> so that <benefit>.”), the <role> element identifies the role
the user is playing as they interact with the system. In some systems, there is only
one role (for example, a laser pointer likely has just one generic user, the person
doing the pointing), and the role element of this form doesn’t add much value.

In other systems, many user roles can interact with a system, or a subsystem of a
larger system. Developing a set of user stories helps us identify roles, which in turn
helps identify personas. For example, our case study system has a plethora of user
roles, as illustrated in Figure 7–2.

As a consumer , I want to be
notified of any planned outages
that could affect my home.

As a consumer , I want to see my daily
usage history so I can manage my
consumption and estimate my costs. As a refrigerator , I need to accept load

commands from the utility so I can adjust
the duty cycle and lower consumption.

As an installer , I want to run
the test program so I can
know the system is working.

As a utility , I want to send notices of
new energy programs to the consumer.

As a thermostat , I need to respond to
commands from the utility so I can adjust
heating/cooling and save my homeowner
money.

As a Tendril support person , I need to be
able to access the consumer’s portal to
provide support.

Figure 7–2 Examples of user stories and roles for the case study

Wow! eBook <WoweBook.Com>

ptg

128 chaPteR 7 � stakehoLdeRs, useR PeRsonas, and useR exPeRiences

Analyzing the roles and the stories give us clues as to where the personas might lie.

For example, consumer and utility use the system for totally different types of activities,
so these are primary personas. We’ll have to design and implement different user
interfaces for each of these.

However, if Tendril support person and installer can use the same portal presentation as
the consumer, then although we need to be aware of their needs, we should focus the
design for ease of use by the consumer, our primary persona. In that case, we con-
sider the needs of the installer and Tendril support person as secondary. They can
use the system we design for the consumer.

Personas simply provide a finer discrimination of users and their needs, and we
needn’t go overboard in trying to understand them. Cooper provides a number of
additional guidelines for thinking about personas.

Don’t “make up” personas out of thin air. Rather, discover them as a byprod-��
uct of your requirements discovery and user story writing process.
Develop a specific, individual persona—an actual person who you can ��
interview, interact with, and come to understand. Understand their abilities,
background, environment, and usage of the system.
Identify the persona’s goals so that you can see what your system needs to do ��
and not do.
Design your system to make it easy for �� that one person to use your system. If
you’ve defined your primary personas well, that individual will be a specific
“representative of a class.” However, they will be more tangible, and their
needs more understandable, than attempting to design for the general case.
Secondary personas are just that, secondary. You do not have to design spe-��
cifically for them. They will bend and stretch to use the system. Even then,
however, the goal should be to develop software that bends and stretches to
them. But you must do it in such a way as to not make the system harder for
the primary persona to use.
There shouldn’t be a large number of personas; the goal is to narrow ��
down the people you are designing the system for. If you identify more
than three primary personas, the scope of your system is likely too large.
If that is the case, then break the system it into subsystems, and identify
personas from there.

And finally, after you’ve identified each persona, attempt to first understand both
what they expect from the system and what they need to do with the system, as the
example in Table 7–3 indicates.

Wow! eBook <WoweBook.Com>

ptg

 agiLe and useR exPeRience deveLoPment 129

Table 7–3 User and Device Personas from the Case Study

Primary Persona Category Expect from the System Do with the System

Consumer Primary persona (user) Interact and establish
energy management.

Control and shed load.
Be informed of
pending events.

Tendril support person Secondary persona
(user)

Run maintenance routines.
Query system status.

Support consumers via
portal.

Installer Secondary persona
(user)

Installation instructions
and utilities.

Install and test devices.
Run system diagnostics.

Tendril-compatible
energy device

Primary persona Standard protocols and
commands.

Send and receive
commands.

Refrigerator Secondary persona
(device)

Relevant protocols and
commands.

Implement energy
management policies.

Thermostat Secondary persona
(device)

Relevant protocols and
commands.

Report on conditions.
Allow user control.

Utility Primary persona (other
system)

Manage energy distri-
bution via consumer
interaction.

Send and receive
messages.

With these primary and user personas identified and some expectations and actions
identified, the team is ready to proceed with the story writing and any additional
requirements discovery work. That will be the subject of Chapter 12, where we
introduce a requirements discovery toolkit.

agile and user exPerienCe develoPment

A common problem in agile is how to incorporate the visual design of the prod-
uct into the rapid iteration structure. When teams attempt to resolve complex
user interactions while trying to code and test that system at the same time, they
can often end up “churning” through many iterations. Teams feel that this creates
waste—thrashing through many design alternatives but doing so in code. Sure, it’s
OK to iterate and refactor, but why do it more than might otherwise be necessary?

The User Experience Problem

User experience (UX) design is further complicated when user experience testing is
required. The scheduling and running of multiple experience tests typically cannot

Wow! eBook <WoweBook.Com>

ptg

130 chaPteR 7 � stakehoLdeRs, useR PeRsonas, and useR exPeRiences

occur within an iteration that is also attempting to complete the story. The teams
should assume that all usability tests will have an impact on design and implemen-
tation; otherwise, there’s really no reason to do them. However, the result of this
process is delayed feedback loops that complicate productivity and introduce delays
in delivering the value.

Of course, this is not just a user interface or prototyping problem. This is a meta-
problem with the design and architecture in agile—a result of the elimination of
big up-front design (BUFD). Fortunately, teams have found a number of practices
practical for addressing these design elements. The common key is to leverage the
iterations to drive out uncertainty and risk through fast feedback.

Low-Fidelity Options for User Interface Development

Feedback does not have to come only from writ-
ing code. Teams must also consider simpler
alternatives that can generate feedback such as
low-fidelity paper prototypes, simple HTML
or PowerPoint prototypes, wireframes, mock
objects, or coded skeletons and stubs.

Often the easiest solution is the simplest—sketch
ideas on paper, and work with your users and
stakeholders to determine how it should look.
This can be done by working just-in-time ahead
of the iteration and then by using the mock-ups
as reference for story acceptance criteria in the

implementation iteration. In Chapter 12, Requirements Discovery Toolkit, we’ll
explore this topic further.

User Experience Story Spikes

As we discussed in the previous chapter, user experience story spikes can be used to
develop alternative user interfaces and test them through actual or representative
users. These stories are put in the backlog, sized, developed, and tested as any other
story. The only difference is that they may not end with working software. The act
of scheduling them in the iteration has the effect of deferring the code development
until after the tests are complete. This can improve efficiency immensely.

NOTE �³ These story spikes represent risks in your backlog because they are hiding other implementation
stories that may increase the scope of the plan. Consider prioritizing them ahead of other less
risky items to drive out risk early in the release plan.

Wow! eBook <WoweBook.Com>

ptg

 agiLe and useR exPeRience deveLoPment 131

Centralized User Experience Development

Although it might appear attractive from the perspective of empowerment and
velocity of the agile team, fully distributing UX development to the team can actu-
ally be quite problematic. Velocity may seem high at first, because the teams are able
to move quickly through the initial iterations to value delivery. Later, however, prob-
lems start to occur as users use different parts of the system for similar purposes but
may be presented with different style, presentation, and interaction selection para-
digms. The net result is a system that has disconcertingly different implementations
of like functions. User confusion and dissatisfaction are the likely results.

Repairing this work is problematic too, because many teams will then have to refac-
tor their code to some new, common standard. Adopting common style, presenta-
tion, and user action standards can help immensely, but the devil is in the details,
and that alone may still not create a comprehensive and holistic solution. This is not
a very productive process.

To address this, some organizations create a central user interface design team that
iterates somewhat independently from the development teams. They run a common
cadence and iteration model, but their backlog will contain user experience story
spikes, user experience testing, prototyping, and implementation activities that are
used to define a common user experience. They typically work one or two iterations
ahead to discover upcoming functionality and define how it should be implemented.

The central team implements these designs across many features and system com-
ponents throughout the course of the release. While the central team has interde-
pendencies with the feature and component teams, centralizing the activity has the
advantage of increasing core competence in the UX domain and prevents “wagging”
the teams as designs inevitably change. Figure 7–3 illustrates this model.

Distributed, Governed User Experience Development Model

Of course, it’s not unlikely that the central team becomes a bottleneck for the devel-
opment teams, and worse, the problem gets larger at scale, because there are a larger
number of dependencies that must be addressed. To mitigate this problem, we’ve
seen a hybrid model effectively applied for larger systems.

In the “distributed but governed” model, there is a small, centralized UX design author-
ity who provides the basic design standards and preliminary mock-ups for each UI,
but the teams have team-based UX implementation experts for the implementation. In
this case, the UX experts are distributed among the teams, but the centralized authority
provides HTML designs, CSS style sheets, brand control, mock-ups, usability guide-
lines, and other artifacts that provide conceptual integrity of the UX across the entire
solution. The central team also typically attends iteration and PSI/release demos to see
how the overall system design is progressing. Figure 7–4 illustrates this model.

Wow! eBook <WoweBook.Com>

ptg

132 chaPteR 7 � stakehoLdeRs, useR PeRsonas, and useR exPeRiences

H

H
Te

am
 B

ac
kl

og

Te
am

 B
ac

kl
og

Pl
an

D
em

o

Pl
an

D
em

o

UX Implementations

Iterations

Stories

Dev Teams

UX Team

UX Developers

Developers and Testers

Figure 7–3 Centralized UX development

H

Te
am

 B
ac

kl
og

Pl
an

D
em

o

Iterations

UX Implementations

UX Developer

Dev Teams

Developers and Testers

UX Governance

Figure 7–4 Distributed, governed UX development

Wow! eBook <WoweBook.Com>

ptg

 summaRy 133

This doesn’t prevent refactoring, because there are still likely UX testing projects
occurring on a different timeline that can alter results, but it is a fairly efficient pro-
cess, and we have seen some good and consistent designs emerge in this model.

summary

In this chapter, we described how there is far more to designing a system than sim-
ply understanding user needs. We introduced project and system stakeholders and
provided guidance as to how to find them, classify them, and start to get an under-
standing of their expectations and specific needs. Of course, we already identified
users as one such important stakeholder, but in this chapter we described how to
refine that further by developing primary and secondary user personas. Designing
a system to these personas will help produce a system that is inherently easier and
more pleasant to use.

We’ve concluded with a discussion of the challenge of creating effective user experi-
ence designs in rapid, iterative development. This is indeed a nontrivial problem
that agile teams have evolved various means of addressing. We’ve provided a couple
of suggestions as to how to approach this tricky problem as well.

In the next chapters, we’ll move on to other important aspects of agile team require-
ments practices, starting with the next chapter, Estimating and Velocity.

Wow! eBook <WoweBook.Com>

ptg

This page intentionally left blank

Wow! eBook <WoweBook.Com>

ptg

 135

Chapter 8

agile estimating and veloCity

Though this be madness, yet there is method in’t.

—Hamlet, Act 2, scene 2, Shakespeare

introduCtion

One of the misperceptions about agile development is that it is a Dilbert-esque prac-
tice of software teams coding away without requirements, little or no planning, no
intra-team coordination, and no documentation. Indeed, the myths of agile often
prevent agile to be applied in circumstances where the benefits would otherwise be
substantial. As we hope to illustrate throughout this book, nothing could be further
from the truth because agile is the most disciplined and quality-driven set of devel-
opment practices the industry has invented to date. But the myths remain.

When it comes to estimating and scheduling work, for example, the myth is prop-
agated by misunderstandings of the apparent silliness (or the perceived unpro-
fessional and unscientific nature) of the agile estimating process. Agile teams
compound this because they (often rightly) refuse to make any long-term com-
mitments about deliverables. Worse, they talk about their team’s abilities in funny
words such as velocity, velocipacity, story points, modified Fibonacci series estimating,
and our all-time personal favorite velocity in gummy bears per sprint.

In the realm of agile mythology, agile estimating and its companion, team veloc-
ity, stand out as two of the oddest brethren. These also baffle outsiders, creating an
unnecessary barrier between the language of the team and the language of the man-
agers, executives, and other stakeholders who are dependent on the team’s output.
This is not helpful.

There’s a Method to This Madness

Underneath that communication gap, however, is a proven estimating heuris-
tic. Indeed, solid estimating skills are critical to an agile team’s productivity and
reliability.

Wow! eBook <WoweBook.Com>

ptg

136 chaPteR 8 � agiLe estimating and veLocity

This problem arose because the traditional project estimating means (use a work
breakdown structure to identify every last task, estimate each task, add the tasks up,
build a Gantt chart, and predict the cost and schedule) never actually worked for
software projects. So, in a matter of self-defense, the teams invented something that
does work, at least for them. By first understanding it and then extending it, we can
also make it work for the enterprise.

In this chapter, we’ll explore these two topics, estimating and velocity, to come to an
understanding of just how useful and practical the method is. With such an under-
standing, we can put the enterprise on a path to higher reliability and predictability
than we have ever had before.

The Goal Is the Same: More Reliable Estimates

Everyone wants more reliable estimates. Otherwise, there is no way to predict how
much value a team can deliver in a time period. Plus, if an agile team can reliably
predict what it can do in a short timebox, then we can more reliably predict what
a few teams working together can deliver in the next month or two. Although that
may seem like a modest goal, in fact it represents two breakthroughs that should set
executive offices buzzing:

#1: Know where you are now: The agile project knows exactly where it is at every
point in time because it is based on a subjective evaluation of working code (really
working, as in coded, integrated, tested, evaluated, and running). Even without esti-
mating, that is a breakthrough of significant proportions. A while back, Israel Gat
commented the following:1

I’ve spent over 30 years in the software development industry in increasingly
high levels of management, and up until this (first agile) project and this
very day (a sprint review), I have never ever really known exactly where my
teams actually are on any significant project.

But the goodness doesn’t end there, because once a team has mastered agile estimat-
ing, we can leverage another breakthrough:

#2: More accurately predict where you will be next: With effective agile estimating,
teams have a fairly reliable predictor of what will be working in the next few weeks.
Per the previous, they know what is working now, and they can predict what they
will deliver next based on the velocity they have achieved in prior iterations.

1. Formerly of IBM Tivoli and BMC Software, now a Cutter Consortium Agile Enterprise
consultant

Wow! eBook <WoweBook.Com>

ptg

 why estimate? the Business vaLue of estimating 137

Moreover, if we could fast-forward mentally through Part III of this book (or
six months or so of agile deployment), an executive might be able to understand
(exactly) where a larger program is, what software (exactly) is working today, and
what software (exactly) is not, even in a program that affects dozens of teams. And,
perhaps, a manager can even reliably predict where the program will be in a few
weeks—perhaps even in 90 days and maybe more. But that’s a subject for later
chapters.

why estimate? the Business value of estimating

For now, we’ll get back to the first principles of agile estimating. As compared to
coding and testing at least, estimating is overhead, so first we must understand why
we bother to do it at all. From a lean perspective, some might even look at esti-
mating as a form of waste. Indeed, in some kanban implementations, teams don’t
bother much at all with estimating. However, estimating provides substantial value
added for several reasons.

Determining cost:�� Effort is our proxy for cost. If we can’t estimate effort, we
can’t estimate cost. If we have no way to estimate cost, then we have no rea-
sonable basis for going about our business at all.
Establishing prioritization:�� In Chapter 13, we’ll introduce the cost of delay
(CoD) as the primary prioritization factor for implementing features.
Development effort predicts time, which is in turn a primary factor in cost
of delay.
Scheduling and commitment:�� It is unreasonable to ask a team to commit
to delivering an unknown thing in a certain time frame, especially longer
term. However, gaining commitment to near-term deliverables is important
because it materially affects the planning and business objectives of our cus-
tomers. It also impacts our internal customers—those who document, train,
deploy, and support the system.

In other words, estimating is the key to unlocking the ability to commit. The ability to
commit to near-term deliverables is the key to building a reliable, agile enterprise.
So, there are good business reasons why we need to take a harder look at this funny
agile estimating thing.

To do so, we’ll take a more experiential approach in this chapter, because that is the
best way to understand what the method in’t actually is.

Wow! eBook <WoweBook.Com>

ptg

138 chaPteR 8 � agiLe estimating and veLocity

estimating sCoPe with story Points

We’ll start with understanding how teams estimate the work they do in an iteration.
Fortunately, we have small, independent “objects” to estimate—the user story—and
we know they deliver value because we designed them that way. If a team can esti-
mate stories, then they can estimate the things of value they can deliver to a cus-
tomer and about when they can deliver it.

There are a number of approaches to agile estimating, some of which we’ll describe
later in this chapter, but we’ll start our discussion with the most common method,
the one recommended by most agile trainers. This is the art of relative estimating
with story points.

A story point is an integer number that represents an aggregation of a number of
aspects, each of which contributes to the potential “bigness” of a story.

Knowledge:�� Do we understand what the story does?
Complexity:�� How hard is it to implement?
Volume:�� How much of it is there? How long is it likely to take?
Uncertainty:�� What isn’t known, and how might that affect our estimate?

A story point estimate combines all these facets into one number, which estimates
the size of a story compared to other stories of a similar type. Story points are unit-
less but numerically relevant (that is, a two-point story should expect to take twice
as long as a one-point story).

NOTE:�³ This method is largely derived from Mike Cohn’s Agile Estimating and Planning [2006], and we
recommend that book as the best source for readers who want to know about this topic. Also,
because of the popularity of the text and Mike’s involvement with the Scrum community, much
of his work has made its way into various Scrum courses. This has been beneficial because it pro-
vides a fairly common estimating baseline for many agile teams.

understanding story Points: an exerCise

In the following sections, we’ll describe this method from the perspective of a team
being newly trained, in the hope that their training experience will help us under-
stand this abstract concept in more concrete terms.

Exercise Part 1: Relative Estimating

During training, many Scrum/agile trainers run a simple exercise with their teams
to get them thinking about the relative “bigness of things.” The exercise itself, along
with the results from one team, appears in Figure 8–1.

Wow! eBook <WoweBook.Com>

ptg

 undeRstanding stoRy Points: an exeRcise 139

Exercise: Assign “dog points” to each of the
following types of dog to compare their
“bigness”

6 Labrador Retriever
3 2 Dachshund
7 Great Dane
3 4 Terrier
7 German Shepherd
1 Poodle
8 St. Bernard
2 3 Bulldog

Figure 8–1 A simple relative estimating exercise, with results from one agile team

In this deceptively simple exercise, teams immediately struggle with ambiguity.

What does the instructor mean by bigness? Height, weight, mass, muscle, ��
bite, attitude?
What the heck kind of poodle is it? Standard poodle? Toy poodle? “Hey, it ��
makes a big difference!”
What scale should we use?��

The instructor can either remain silent through this process, illustrating to the team
that there will always be ambiguity in the estimating process, or act as the product
owner and answer any questions, illustrating that when in doubt, ask the product
owner for clarification. Either way, it’s a fun exercise, and it takes only a few minutes.

Exercise Part 2: Estimating Real Work with Planning Poker

With this somewhat trivial, relative estimating experience in hand, the teams might
then be given a more meaningful “class backlog” to estimate, like the one I have used
in Table 8–1.

Table 8–1 Sample Class Estimating Backlog

Example Sprint Backlog

1. Estimate the pages in the student workbook.

2. Accurately count the pages in the workbook.

3. Calculate the square root of 54289 without a computer or calculator.

4. Add the following ten numbers with a calculator and be certain the answer is correct: 1, 2, 3, 5, 8, 13, 21,
34, 55, 89.

Continues

Wow! eBook <WoweBook.Com>

ptg

140 chaPteR 8 � agiLe estimating and veLocity

Example Sprint Backlog

5. Add the following ten numbers without a calculator and be certain the answer is correct: 1, 2, 3, 5, 8, 13,
20, 50, 100.

6. Introduce yourself to every person in your team, and write down their children’s names.

7. Write a program, without Excel, that accepts 10 numbers from a user and displays the total as each
number is entered.

8. Estimate the cubic volume of the room to within approximately 30%.

9. Estimate the cubic volume of the room to within approximately 5%.

10. Estimate the snowfall in Oulu this winter in centimeters, inches, meters, and feet.

11. Estimate the snowfall in Oulu this winter in centimeters.

12. Estimate the number of words in the workbook.

13. Estimate the cubic meters of snowfall in Oulu this winter.

14. Obtain an accurate count of the number of words in the workbook.

The teams may then be introduced to the rules of an agile method called planning
poker,2 with a set of rules, as shown in Table 8–2.

Table 8–2 Rules for Planning Poker

Rules for Planning Poker

Participants include all agile team members.

The product owner participates but does not estimate (the product owner is briefed on role and content prior
to exercise).

Each estimator is given a deck of cards with 0, 1, 2, 3, 5, 8, 13, 20, 40, and 100 as their “value.”
(Note: some instructors coach an optional calibrations step: calibrate size, such as pick one story that is agreed
to be small and agree that the story would be say of size 2 and perhaps pick one more, such as a larger one that
would be of size 8.)

For each story, the product owner reads the description.

Questions are asked and answered.

Each estimator privately selects a card representing his or her estimate.

All cards are simultaneously turned over so that all participants can see each estimate.

High and low estimators explain their estimates.

After discussion, each estimator reestimates, and the cards are turned over for a second time.

The estimates will likely converge. If not, the process for that story is repeated until it does.

Repeat until all stories are estimated.

2. Seems like “Estimating Poker” would be a better name. As we’ll see in later chapters, planning
is another kind of poker altogether!

Table 8–1 Sample Class Estimating Backlog (Continued)

Wow! eBook <WoweBook.Com>

ptg

 undeRstanding stoRy Points: an exeRcise 141

Some amount of preliminary design discussion is appropriate. However, spending
too much time on design discussions is often wasted effort.

The teams will be given a short timebox (maybe 30 minutes) and are instructed to
estimate all the items on the list within the timebox.

Although apparently simple on the surface, there are a number of subtle aspects
built into this estimating technique.

The estimate comes from the �� team as a whole. The product owner explains
the stories to the team, which commits to a group estimate. This prevents
the product owner from biasing the estimates and also provides the best
estimate possible, based on the collective judgment of the team.

Since the team includes developers and testers, the estimate is a mix of
efforts from these two perspectives. Teams quickly discover that some things
are fairly easy to code but really hard to test, and the reverse can also be true.

The range of numbers (Cohn’s modified Fibonacci series, that is, 0, 1, 3, ��
5, 8, 13, 20, 40, 100) is cleverly designed. The lower range (0, 1, 2, 3, 5, 8) is
designed to help teams more precisely estimate small things they understand
well. However, the gaps in the sequence become larger as the size of the esti-
mate increases, reflecting greater uncertainty.
The expanded range (20, 40, 100) at the end of the series indicates that even ��
larger items have even greater uncertainty. If the estimates reach this range, the
story is too big for an iteration anyway and probably represents a feature or
epic. If the item is that big, it represents substantial risk and needs to be split.
Zero gives the teams a way to ignore small stories that can be implemented in ��
just a few hours. Although they represent important things, they aren’t mate-
rial to the team’s scoping efforts unless there are a lot of them.
A consensus must be achieved before a final estimate is reached. By discuss-��
ing only the high and low estimates, teams discover assumptions behind the
estimates. For example, “It’s a 20, I’ve built histogram software before, and it
is a tedious job with lots of back and forth on the graphic images” versus “It’s
a 3; I just used the Open Flash Chart library, and it has built-in histograms
with animated tips.”
Since the cards are turned over all at once, this prevents individual estimators ��
from being biased by the opinions of others prior to “showing their card.”
It happens pretty fast. Guidance is to allow at most two to five minutes ��
of discussion per item, so a team should be able to estimate ten to twenty
stories in an hour or so, which is about the maximum amount of time a team
should spend estimating. (If an iteration is two weeks, even one hour repre-
sents 1.25% of the total available time!)

Wow! eBook <WoweBook.Com>

ptg

142 chaPteR 8 � agiLe estimating and veLocity

Returning to our training exercise, once estimated, the teams spend a few moments
to reflect on their estimating process and results. One such set of results appears in
Figure 8–2.

In this case, given comparable instructions, the teams tended to estimate the total
work to be fairly similar. This correlates with other practical experiences as well. If
the teams are given comparable starting instructions, teams tend to estimate like
things in like ways. However, it is also the case that other teams may estimate bigness
quite differently, and that is a factor we will need to take into account a little later.

How Much Time Should We Spend Estimating?

In our experience, there is a rapidly diminishing value in the time spent estimating a
backlog, as Figure 8–3 illustrates.

S. No. Sprint Exercise Team 1 Estimates Estimates

1. Estimate workbook page count. 1

2. Accurately count workbook pages. 2

3. Calculate square root of 54289. 5

4. Add ten numbers with a calculator. 1

5. Add ten numbers without a calculator. 3

6. Introduce yourself. 1

7. Write a program. 5

8. Estimate cubic volume (within 30%). 5

9. Estimate cubic volume (within 5%). 8

10. Estimate snowfall in centimeters, inches, meters, and feet. 3

11. Estimate snowfall in centimeters. 3

12. Estimate workbook word count. 3

13. Estimate the cubic meters of snowfall. 5

14. Accurately count workbook words. 2

Totals

S. No. Sprint Exercise Team 2 Estimates Estimates

1. Estimate workbook page count. 1

2. Accurately count workbook pages. 3

3. Calculate square root of 54289. 5

4. Add ten numbers with a calculator. 1

5. Add ten numbers without a calculator. 2

6. Introduce yourself. 1

7. Write a program. 5

8. Estimate cubic volume (within 30%). 4

9. Estimate cubic volume (within 5%). 9

10. Estimate snowfall in centimeters, inches, meters, and feet. 3

11. Estimate snowfall in centimeters. 3

12. Estimate workbook word count. 8

13. Estimate the cubic meters of snowfall. 3

14. Accurately count workbook words. 2

Totals 47 50

Figure 8–2 Teams 1 and 2 sprint estimates

Effort

Ac
cu

ra
cy

Figure 8–3 A little effort in estimating produces the most accurate results.

Wow! eBook <WoweBook.Com>

ptg

 undeRstanding stoRy Points: an exeRcise 143

Spending too much time does not generally increase the accuracy of the estimates
(and it bores the team!). Indeed, given too much time, the team may start to talk
themselves out of the original estimates as the stories become seemingly more
familiar. And yet, oftentimes, the first estimates were better because they reflected a
healthier respect for the unknowns.

In addition, more investment in estimating time rarely has a material effect on
the actual estimates. For example, in one short experiment,3 a team estimated
the same backlog repeatedly in three equal timeboxes. The results appear in
Table 8–3.

Table 8–3 A Single Team’s Estimates After Three Iterations

Example Sprint Worklist After 3 Rounds of
Estimating

Round 1
Estimates

Round 2
Estimates

Round 3
Estimates

1. Estimate workbook page count. 1 1 1

2. Accurately count workbook pages. 2 2.5 2

3. Calculate square root of 54289. 9 10 9

4. Add ten numbers with a calculator. 2 2 1

5. Add ten numbers without a calculator. 3 2 2

6. Introduce yourself. 1 1 1

7. Write a program. 5 5 6

8. Estimate cubic volume (within 30%). 7 6 6

9. Estimate cubic volume (within 5%). 40 40 40

10. Estimate snowfall in centimeters, inches,
meters, and feet.

4 5 3

11. Estimate snowfall in centimeters. 3 4 3

12. Estimate workbook word count. 3.5 3.5 4

13. Estimate the cubic meters of snowfall. 4 3 3

14. Accurately count workbook words. 2 2 2

Totals 86.5 87 83

3. This was not a statistically significant experiment. But I learned enough to not ask another
team to do it.

Wow! eBook <WoweBook.Com>

ptg

144 chaPteR 8 � agiLe estimating and veLocity

The results indicate that all three estimates were within a few percentage points of
each other. Spending too much time estimating is truly a form of waste—additional
effort expended with no more meaningful output—so teams must be careful to time-
box their estimating and not attempt to turn this heuristic into a pseudoscience.

A Parable of Estimating Caution: A Story within a Story

What’s up with the estimates for “estimate the cubic volume of the room”?

A careful reader might note that the first two team’s estimates (see Figure 8–2) for
measuring the cubic volume of the room were very close to each other (5/8, 4/9).
However, the third team’s estimate was 40 (which in planning poker really means
too big to be estimated at all!).

They were given the same normalized estimating instructions from the same
instructor. Why the big difference?

Simply, the three teams were in two different rooms. Teams 1 and 2 were in a mod-
est-sized, cubic conference room with low ceilings. Team 3 was in a much larger
space with high vaulted ceilings and a very complex geometry. Without a ladder, it
wasn’t even clear how they could come up with the 30% estimate, much less 5%.

The lesson learned in this example is that when it comes to comparing “apparently”
like things from “apparently like teams,” one must fully understand the context of
that team. The moral is as follows:

Before you compare team estimates for theoretically comparable user stories,
you must first understand what kind of room (software platform, programming
languages, new team versus experienced team, computing resources, legacy
versus green-field development, and so on) each team is in.

Distributed Estimating with Online Planning Poker

The estimating exercise we described earlier assumes the team is together. However,
when face-to-face isn’t practical, there are online tools that support planning poker
with distributed teams. Teams log into a planning poker Web site4 and play the game
from their own desktop, no matter where they are located. A moderator (usually the
product owner) facilitates the session and presents the stories to the team. The team
has a separate teleconference or chat session set up for collaboration and discussion.
After discussion, which can be timeboxed with a timer from the Web site, the teams
vote independently, and the results of all votes are displayed simultaneously.

4. For an example, see www.planningpoker.com, from Mountain Goat Software (Mike Cohn).

Wow! eBook <WoweBook.Com>

www.planningpoker.com

ptg

 an aLteRnate technique: taBLetoP ReLative estimation 145

After each vote converges, the moderator presents the next story, and the process
continues until the backlog has been estimated. Results are easily exported for use
by the teams.

an alternate teChnique: taBletoP relative estimation

Planning poker is but one of a number of techniques used by agile teams to estimate
size in relative story points. An alternate technique, one that drives to a similar result
in a different way, is tabletop relative estimation.5 Like planning poker, this technique
involves the entire team but clearly requires face-to-face communication.

In tabletop estimation, the team discusses each story in the backlog and places the
story on the table in a size position relative to other stories—small stories to the left,
bigger stories to the right. Stories of about the same size are stacked in columns. As
the stories accumulate, the tabletop appears as shown in Figure 8–4.

As the stories are discussed, it’s likely that there will be some second thoughts and
shuffling of stories. That is to be expected. The process is fast and visual; each story
can be seen with respect to all the other stories. As the prospective iteration unfolds,
the team gains a sense of the work ahead.

Of course, the stories aren’t really estimated yet; they are just placed in relative
sizes. To create the actual estimates, points can be assigned to columns, as shown
in Figure 8–5.

Story 31 Story 19 Story 13 Story 36

Story 27 Story 28

Story 14

First: Lay Out the
Stories Relatively

Story 24

Story 22 Story 12

Figure 8–4 Stories placed on the tabletop in order

5. Thanks to Pete Behrens for describing this model.

Wow! eBook <WoweBook.Com>

ptg

146 chaPteR 8 � agiLe estimating and veLocity

Story 31 Story 19 Story 13 Story 36

Story 27 Story 28

Story 14

First: Lay Out the
Stories Relatively

Second: Lay Out the
Point Values

Story 24

Story 22 Story 12

1 2 3 5 8 13

Figure 8–5 Assigning point values to columns of stories

Proponents of this technique note that it can be faster than planning poker. In addi-
tion, visualization of the entire iteration enhances the team’s understanding of the
work ahead.

from sCoPe estimates to team veloCity

This is how most agile teams estimate stories. However, nothing we’ve described so far
tells anyone how long it will take the team to deliver anything. For that, we need the
other half of the agile estimating paradigm. We need to know the team’s velocity.

Exercise Part 3: Establishing Velocity

In the final exercise, the teams execute the iteration by completing as many stories as
they can in the allotted timebox.

NOTE�³ The exercise is not intended solely to understand estimating and velocity but rather to experi-
ence an example sprint, replete with planning, breaking stories into tasks, taking responsibility,
implementing and testing, demo, acceptance, and retrospective—all within a few hours. Feel
free to “try this at home.”

Figure 8–6 illustrates the result of one such exercise.

Wow! eBook <WoweBook.Com>

ptg

 caveats on the ReLative estimating modeL 147

S. No. Sprint Exercise Team 1 Actuals Actuals

1. Estimate workbook page count. 1

2. Accurately count workbook pages. 2

3. Calculate square root of 54289. -

4. Add ten numbers with a calculator. 1

5. Add ten numbers without a calculator. 3

6. Introduce yourself. 1

7. Write a program. 5

8. Estimate cubic volume (within 30%). 5

9. Estimate cubic volume (within 5%). -

10. Estimate snowfall in centimeters, inches, meters, and feet. -

11. Estimate snowfall in centimeters. -

12. Estimate workbook word count. 3

13. Estimate the cubic meters of snowfall. 5

14. Accurately count workbook words. 2

Totals

S. No. Sprint Exercise Team 2 Actuals Actuals

1. Estimate workbook page count. 1

2. Accurately count workbook pages. 3

3. Calculate square root of 54289. 5

4. Add ten numbers with a calculator. 1

5. Add ten numbers without a calculator. 2

6. Introduce yourself. 1

7. Write a program. -

8. Estimate cubic volume (within 30%). -

9. Estimate cubic volume (within 5%). -

10. Estimate snowfall in centimeters, inches, meters, and feet. 3

11. Estimate snowfall in centimeters. 3

12. Estimate workbook word count. 8

13. Estimate the cubic meters of snowfall. 3

14. Accurately count workbook words. 2

Totals 28 32

Figure 8–6 Team accomplishments during the iteration

The shaded areas represent stories that the team was unable to complete in the time-
box. Team 1 completed 28 story points in their iteration, and team 2 completed 32.
In other words, team 1’s velocity is 28 points/iteration, and team 2’s velocity is 32
points per iteration.

A team’s velocity is simply how many points that team can complete in a
standard iteration.

Given a team’s known historical velocity in a given domain, they can now predict
how long it will take them (how many iterations) to complete an arbitrary amount
of work. It is also a valuable calibration that will help them bid the next round of
stories more accurately.

Caveats on the relative estimating model

This is a simple and reliable process that works quite well, subject to some serious
caveats.

It is based on historical data and is predictive only to the extent that the ��
future (new stories) looks like the past (stories already completed).
It is valid only to the extent that the team continues to have the same individ-��
uals. If you change the team members (imagine, for example, if we doubled
the size of team 2 in the exercise), velocity will change dramatically, but it
should stabilize after a few iterations.
A team’s velocity cannot be compared to any other team. (Imagine if team ��
1 had used 2 as the smallest story and compared everything to that. Their
apparent velocity would be twice as large, but the actual productivity would
be the same.)

Wow! eBook <WoweBook.Com>

ptg

148 chaPteR 8 � agiLe estimating and veLocity

Another Parable: Increasing Velocity, Be Careful What You Ask For

The goal of every agile team is the same—to continuously increase velocity
while improving quality at the same time. However, even though it is predictive
and even though it measures the team’s ability to achieve a certain amount of
functionality in a time period, it is not a true (or at least complete) measure of
productivity.

As such, velocity can be a fairly reliable predictor of short-term future events, but
it is not a tool for managing teams. It is only a tool by which teams manage and
measure themselves. If management attempts to use velocity as a measure of team
performance, the team will respond in one of three ways.

Continuously improve the team’s true productivity and agility in all ��
aspects: apply retrospection, problem solving, corrective action, imple-
ment advanced agile practices, improve technical practices (continuous
integration, unit testing, test automation, test-driven development, coding
standards), increase individual performance and productivity, move less
productive members into different roles on (or off) the team, adopt better
technologies, and so on and so on.

Or, for more immediate impact:

Cut back on quality, building technical debt for a future period. This will ��
increase the apparent measured velocity for implementing functional-
ity (maybe earn a current MBO) but will decrease the actual productivity
(which is a product of quality and functionality).
Simply increase the size of the estimates.�� 6

If you were a team member facing a management challenge to “increase your veloc-
ity” and if failing to do so could affect the team’s standing within the organization,
your incentives, or perhaps even your job security, what would you do? So, be care-
ful what you ask for.

from veloCity to sChedule and Cost

Next we make the connections between velocity, estimating schedule, and estimat-
ing cost.

6. In the previous exercise, I often do an “abusive manager” role play with the team that has the
lowest velocity. I give them two minutes to tell me what they are going to do to dramatically
increase their velocity for the next exercise. Within about one minute, they tell me, “We’ll dou-
ble the size of our estimates.”

Wow! eBook <WoweBook.Com>

ptg

 estimating with ideaL deveLoPeR days 149

Velocity

30 Sp/iteration
6

Iterations

VelocityScope

180 Story
Points

Time/Schedule

Figure 8–7 Converting story points to time

Estimating Schedule

Given a team’s velocity, determining a schedule to achieve some amount of func-
tionality is straightforward. If we know size and velocity, we can calculate how long
it will take to do something, as Figure 8–7 shows.

First, teams estimate each individual story in the backlog they are trying to sched-
ule. Then they add those estimates together. Then, since they also know the length
of their iterations, they use the following simple formula to estimate how many days
it might take to work an arbitrary backlog:

days to do the work = # days per iteration * (backlog size estimate/velocity)

As we’ll see in Part III, this even scales to the Program level, as long as each team
estimates their own backlog items. (What else would be sensible? Well we won’t go
into that now.)

Estimating Cost

At this point, estimating cost to work down a backlog is also fairly readily calculable;
simply take the average burdened cost for a team and divide it by their velocity. That
provides the cost per story point for that team. Then when the team estimates an
arbitrary backlog, just multiply the cost per story point for that team by the total
estimate for the backlog.

estimating with ideal develoPer days

Although we hope we have effectively described the relative estimating method
to your satisfaction, to those with a background in traditional project estimating,
this may seem to be quite a roundabout approach (at best). Indeed, as we strug-
gled to explain it as simply as we could in this chapter, it took quite a few pages to
do so, and there were some not-so-obvious twists and turns. Although the model
works quite well and is the most generally applied, it isn’t the only model that
agile teams use.

Wow! eBook <WoweBook.Com>

ptg

150 chaPteR 8 � agiLe estimating and veLocity

The next model we’ll describe estimates stories in ideal developer days (IDDs),
which is a fancy way of saying that the story is simply estimated based on the num-
ber of total person days, including development and test, that the team thinks they
will need to accomplish the story. IDDs are conceptually simpler than story points,
and they bring into focus some problems with the story point method we just
described.

It isn’t so easy to understand by the team, and it’s even less easy to under-��
stand by their outside stakeholders, including those who provide project
management assistance and financial governance.
It’s hard to get started. Until teams have done a few iterations, they have no ��
idea how to predict what they can accomplish. That gets even trickier at the
Program level, where we need to aggregate these estimates to attempt to
predict when some larger functionality will be available.
Getting to schedule and cost estimates is very indirect. You have to work ��
through relative estimates, establish velocity, and so on, and you have to
understand the burden cost of each individual team, before you can translate
a story point into a cost.
Teams occasionally struggle to adjust their velocity based on the availability ��
of team members. For example, if a team member is only part-time for a
sprint or a key resource is not available for a period, what is the anticipated
velocity then?
Team velocities are not normalized. It’s not unusual for one small team to ��
have a velocity of 40 points per iteration, while a team twice that size has a
velocity of half that. That makes for some pretty uncomfortable discussions.

Instead, with IDDs, the team returns to a more traditional way to estimate their
work. In this technique, the team looks at each story, discusses it with respect to the
same complexity factors we described earlier, and then estimates how many IDDs it
will take to do the story. The reason the estimates are called “ideal” developer days is
that the team typically deprecates their capacity for planning, demos, management
meetings, and other team and company overhead items. There are many advantages
to this method.

Teams have always done it that way.��
Management needs schedule and cost estimates anyway.��
It’s far easier to understand and explain.��
It’s easy to adjust velocity for sick leave, vacations, training, and so on.��

Wow! eBook <WoweBook.Com>

ptg

a hyBRid modeL 151

However, before we rush to attempt to retrain any story point teams to IDDs, we
have to mention the serious disadvantages as well.

Teams tend to get caught up when estimating in times. It’s too tangible ��
and too meaningful. They feel they have to get it right, and they don’t have
the law of large relative numbers to average each story into a total velocity
for them.
It’s far more personal and can be politically loaded. One developer might say ��
a story takes two days, another four. Either could be correct—for them—
but again, more interesting discussions result. And these discussions are not
likely to be supportive of the team spirit we work so hard to achieve. That’s
because they tend to highlight the lower velocity contribution of new team
members, as well as other valuable team members, who are simply slower.
That’s just reality. But it’s not a reality we want to shove in people’s faces
every sprint. Worse, if this information finds its way to personnel reviews,
then you have major problems.
It’s the way we used to do it, and heaven knows, that didn’t work very well.��

Given these disadvantages, in balance, we prefer the relative estimating model, and
that’s why we described it first. Besides, the point may be moot anyway because if
your team has already rolled out agile training, they are already off and running
with story points. Try to change that, and you’ll look like a cog in their newly agile
works, and an ossified one at that. You may even be promoted to “impediment.”

However, there is a third way—a way to blend these worlds—and one way we have
found to be quite effective. That’s because it has many advantages of both and far
fewer disadvantages.

a hyBrid model
The third model is a hybrid model. With this model, teams can proceed in large part
with the relative estimating model. But we add two simple rules.

Each team is guided to estimate the smallest story, one that can be done by ��
one person in about a day, as a 1.
Each team is also guided to initially estimate that they have eight IDDS per ��
team member per two-week iteration (or adjust accordingly). This leaves
about 20% for planning, demoing, company functions, training, and other
overhead.

Wow! eBook <WoweBook.Com>

ptg

152 chaPteR 8 � agiLe estimating and veLocity

Thereafter, they do everything else in relative fashion just like they were likely taught
with Scrum. There are many advantages to this approach.

The teams can still use planning poker, as well as the modified Fibonacci ��
series, and gain most all those tangible benefits.
The estimate is still a consensus, and it doesn’t say who is doing it. It’s not so ��
political.
They can start immediately. They have their first velocity estimate (8 * team ��
members) on day one.
The relative methods still avoid any tendency to overinvest in estimating; if ��
your choices are only 1, 2, 3, 5, and 8, you can’t be breaking things down into
hours. So, it goes just as fast.
The translation to cost is obvious. Average the daily cost across all practitio-��
ners, including burden. The cost for one point is equal to that number, mul-
tiplied by 1.25 (because we also have to pay for the days that are not included
in the IDD).

Normalizing Velocity

Perhaps most importantly, this technique has the effect of normalizing all teams to a
common model. This means that a team of X people has a definitive, starting veloc-
ity of Y points, and so does every other team of the same size. Bigger and smaller
teams have more or less velocity accordingly. We can create new teams and not be
blind to estimating. While they will wander off fairly quickly from the model (some
teams estimate better than others, some are newer, and some are simply more pro-
ductive), they don’t typically wander too far, and we again remind our management
selves that these numbers are meaningful only in the context of that one team. But
more broadly, we have estimates in units of measure that have meaning throughout
the enterprise.

We’ve used this hybrid model to good effect in teams that are new to agile, as well
as teams that have some degree of maturity. It usually works quite well. With this
approach, you can have the advantage of both models, with fewer of the downsides.
Generally, we recommend this approach, especially as we start to discuss teams
developing software for larger programs, as we’ll see in Part III.

summary

In this chapter, we introduced the models for agile estimating and how to use those
models to estimate cost and schedule and to improve the team’s ability to make
and meet commitments. We described the story point–based relative model first,

Wow! eBook <WoweBook.Com>

ptg

 summaRy 153

because it is the most common and it works. We also described an alternate in ideal
developer days and pointed out many of the advantages and disadvantages to this
approach. Generally, if given the choice of the two, we lean toward the story point
approach, because there is absolutely “a solid method to that apparent madness.”

However, we don’t have to choose from just those two, so finally, we introduced a
third, hybrid model, which combines the best of the two approaches. We leave this
chapter with that as our primary recommendation.

With the overhead of estimating and velocity behind us, we can now have those
tools as part of our newfound agile software “work physics.” With that, we can move
on to challenges and opportunities of other areas of our agile requirements practice,
continuing with the next chapter, Iterating, Backlog, Throughput, and Kanban.

Wow! eBook <WoweBook.Com>

ptg

This page intentionally left blank

Wow! eBook <WoweBook.Com>

ptg

 155

Chapter 9

iterating, BaCklog, throughPut,
and kanBan

We place the highest value on actual implementation and taking action. There are
many things one doesn’t understand; therefore, we ask them, why don’t you just go
ahead and take action?

—Fuijo Cho, Chairman, Toyota Motor Corporation

Apply fast feedback Control queue size.

—Don Reinertsen

In the previous chapters, we introduced the user story as the primary carrier of
requirements through the value stream; described sources of requirements through

understanding project and system stakeholders, user needs, and user personas; and
described the estimating and velocity mechanisms teams use to plan their work.

In this chapter, we’ll cover the closely related topics of iterating, backlog, through-
put, and kanban systems. These describe the way teams go about managing those
requirements, stories, and ideas and how they convert them to code. We’ll start by
describing the basic iteration pattern, discuss product backlogs for a bit, and then
move on to a discussion of some of the interesting perspectives that come into play
when we think about product backlogs from a lean perspective as a queue of work
for the teams. We’ll conclude with a brief introduction to software kanban systems,
which provide another organized way to manage the sequencing and flow of work.

iterating: the heartBeat of agility

The basic unit of agile development is the iteration—the ability to take a set of user
stories from the backlog and refine, code, test, and accept those stories into a new
integrated baseline within a fixed timebox. The goal of each iteration is the same:
to build an increment of potentially shippable code that is of value to the users.
This is a significant challenge for the team, and mastering the process takes time.
Figure 9–1 illustrates the basic iteration framework.

Wow! eBook <WoweBook.Com>

ptg

156 chaPteR 9 � iteRating, BackLog, thRoughPut, and kanBan

Iteration Backlog

Story A

Story A

A

D

B

Story C

A

D

B

Story E

A

D

B

Fixed Time (Iteration)

Story B

Story C

Story D

Story E

Legend:
D = Define
B = Build
A = Accept

Re
vi

ew

Pl
an

Fi
xe

d
Re

so
ur

ce
s

Story B

A

D

B

Story D

A

D

B

Figure 9–1 The basic iteration framework

Iteration Length

Before we begin, however, we must first entertain another small debate—the opti-
mal iteration length. Most agree that iterations are a fixed, constant length, but the
length of the iteration in the literature is a variable.

In practice, however, most teams have come to a common conclusion: a week is too
short and 30 days is too long,1 so they standardize on two weeks. This choice has a
number of advantages.

Two weeks is enough time to create meaningful incremental value.��
It is the fastest feedback they feel they can afford given the transaction costs ��
of planning and other overhead.
Short iterations force breaking stories into bite-size chunks, and define/��
build/test has to be concurrent, avoiding the tendency to “waterfall” the
iteration.

To facilitate coordination with other teams and larger releases, we also recommend
that all teams on a project apply this same iteration timebox. (We’ll see more of this
in Chapter 15, The Agile Release Train).

NOTE�³ In support of our recommendation and for simplicity, we’ll assume a two-week iteration length in
this book, but the requirements practices are independent of iteration length.

1. In our current experience, about 90% of the teams use two weeks. A few use one week, and a
few use three weeks.

Wow! eBook <WoweBook.Com>

ptg

 iteRating: the heaRtBeat of agiLity 157

Iteration Pattern: Plan, Execute, Review, and Retrospective

No matter the length, all iterations have the same pattern: plan, execute, review, and
retrospective, as Figure 9–2 illustrates.

The first phase is a short planning session (two to four hours) during which the back-
log is reviewed and prioritized, estimates are established, and the team commits to
an amount of work for the upcoming iteration. The second is the execution phase,
when the iteration backlog items are implemented in code and tests. The final phase
involves review and evaluation of the new system increment followed by a retrospec-
tive on the iteration process and results.

Team Backlog

The team’s backlog serves as a “to-do” list for the team. It references or contains the
identified new stories that must be done in order to release the product.

Unlike a traditional product or software requirements specification, the backlog is
not designed to contain all the elaborated requirements for the solution. Rather, it
contains a list of reminders of what must be done in order to complete the proj-
ect. Prior to implementing a backlog item, more detailed requirements will likely be

Refine Stories
Design

Code

Integrate
and Build

Test

Take
Responsibility

Estimate
Tasks

Negotiate/
Commit

Prioritize

Execute

Accept

Plan

Ite
ra

tio
n

B
ac

kl
og

Demo

Retrospective

Track and Adjust

Done

Te
am

 B
ac

kl
og

Figure 9–2 Iteration pattern

Wow! eBook <WoweBook.Com>

ptg

158 chaPteR 9 � iteRating, BackLog, thRoughPut, and kanBan

required. They may be detailed by elaborating the item itself, they may be detailed
by providing attachments referenced by the backlog, or they may be developed as
more detailed acceptance criteria for the backlog item.

Backlog items can take on many forms, but most are represented as user stories.
However, the backlog may contain items of any size; it may even include larger-
grained objects such as features and/or epics that will be done some time in the
future. However, these larger items are placeholders only; they will eventually need
to be split into smaller stories prior to implementation.

Backlog items should be focused on user functionality. More detailed requirements
and acceptance criteria are typically not elaborated until just prior to, or within, the
iterations in which they are implemented.

The backlog may also contain other to-do items, including defects, infrastructure
work, and the like.

Planning the Iteration

The team begins the iteration with a planning session during which it reviews the
backlog, selects and reviews the stories for the current iteration, and defines and
estimates the tasks necessary to deliver the stories. When complete, the team makes
a commitment to deliver a certain number of user stories and other backlog items
to the baseline; that set of things is the team’s iteration backlog.

Refining Backlog Stories

For mature teams, stories will likely have been elaborated, estimated, and priori-
tized prior to the planning meeting. However, the items may be a few weeks old, or
even older, so it is likely that the stories must be reconsidered in light of the current
project state and current project priorities, so some reestimating and reprioritiza-
tion may occur. In addition, stories will be split as necessary, and new stories may be
discovered.

Preparation for the Iteration Planning Meeting

Because the planning meeting is short and timeboxed, team members must be pre-
pared as summarized in Table 9–1.

Everyone who will be involved in the iteration should attend. Required attendees
typically include the Agile/Scrum Master, product owner, developers, test, QA, doc-
umentation personnel, and maybe a tech lead or architect. Other project stakehold-
ers may also attend, but the meeting is for the team.

Wow! eBook <WoweBook.Com>

ptg

 iteRating: the heaRtBeat of agiLity 159

Table 9–1 Iteration Planning Meeting Preparation Responsibilities

Product Owner Responsibilities Development Team Responsibilities

Review the release plan to make sure the Vision
and goals are still appropriate.

Review the top-priority items in the backlog and prepare
any questions.

Review and reprioritize items in the backlog,
including stories that (a) were already there, (b)
failed acceptance in a prior iteration, and (c) are
newly generated from defects or other stories.

Consider technical issues, constraints, and dependencies,
and be prepared to share these concerns.

Understand how the reprioritization may affect
other teams who are dependent on commitments
made during release planning.

Think about the work involved in delivering the func-
tionality in the stories in order to be better prepared to
make estimates in the meeting.

Understand the customer needs and the business
value that each story is to deliver.

Understand what the team’s capacity should be for the
upcoming iteration, based on team discussions at the last
review.

Be prepared to further elaborate the story.

The objective of planning is to define and accept a reasonable scope for the iter-
ation. The product owner and the development team may add or reduce stories,
defects, and other infrastructure work on the basis of the current project context.
Stories may be split, combined, estimated, and reestimated as necessary. The prod-
uct owner then reranks the work items, and the team selects an initial scope of work
based on the estimates and the team’s velocity. The product owner may adjust cer-
tain backlog items in ways that make them less costly to develop or trade out entire
backlog items for others.

The final scope of the iteration, on which the commitment is based, is the result of
a negotiation between product owners and the development team. At the end of
the iteration planning meeting, the product owners and development team jointly
commit to the iteration plan. After that, the scope of the work must remain fixed;
otherwise, the commitment cannot remain meaningful.

Iteration Commitment

Perhaps surprisingly, whether a team makes a commitment to the objectives of an
iteration is a topic of some debate. Some argue that making commitments and then
allowing the team the freedom to fail fast are incompatible objectives. Some argue
that, in the absence of enlightened management, a team’s commitments will just be
a big, self-imposed stick with which they will be beaten about the head every time
they fail to meet the objective. Some argue that a team will take whatever shortcuts
it takes to meet commitments, cutting quality as necessary.

Wow! eBook <WoweBook.Com>

ptg

160 chaPteR 9 � iteRating, BackLog, thRoughPut, and kanBan

We, and many others, however, argue differently. The ability to make and meet one’s
own commitments is as much an element of professionalism as it ever was. Even
though this is R&D, our new agile tools, our maturity, and our willingness to admit
that not every iteration can, or even should, be a success allows us to make the major-
ity of our commitments to each other, to the other teams, and to the enterprise. So, we
are in the camp of those who believe that small, tangible objectives—that the teams
commit themselves to—are an important building block of the agile enterprise.

If we have problems with management maturity in our new model, we should fix
that. If we have problems with teams cutting quality corners, the team should self-
correct itself to define objectives that can be met with quality.

Even more importantly, we’ll use the team’s ability to meet their iteration commit-
ments as an important building block of a new organizational ability to meet near-
term release objectives, as we will see in later chapters. And we can guess how critical
that is to the enterprise.

Is This a Return of the Iron Triangle, Albeit a Little One?

If we are reasoned in our approach, we needn’t fear a return to the iron triangle
(fixed scope/schedule/resources) in iteration.

This commitment is made �� by the teams, not for the teams.
The objectives should allow a degree of freedom as to how to meet them and ��
can also include a few stretch objectives (goals beyond the commitment) in
case things go really well.
Understand that not �� every commitment can be met. A good team may miss
committing to an occasional stretch goal or fall into a short-lived technical
abyss. Even then, we didn’t lose two weeks; we gained two weeks of knowledge.

This is one of the main reasons why we keep our iterations short. So, we continue to
coach teams and enterprises to these “commitments-in-the-small” so that our agile
enterprises can start to achieve reliability in the large. It is still software R&D, but we
can be masters of our own destiny.

There are a variety of ways in which teams commit to the content of an iteration.
There isn’t one right way, though there are many entertaining debates about which
model is best.

Velocity-Based Commitment

Some teams simply pull stories into the iteration backlog in priority order (as
adjusted for sequencing, dependencies, and so on) and then stop when the estimate
reaches their target velocity. This is a broad brushstroke approach, because the teams

Wow! eBook <WoweBook.Com>

ptg

 iteRating: the heaRtBeat of agiLity 161

know only that “it is about the right amount of work,” but the work is not further
analyzed with respect to available resources, task breakouts, and assignments. In this
model, teams are counting on their experience, constant communication, tag-team-
ing stories, and, where necessary, “covering each other’s backsides,” for stories that
may overload some individuals.

The commitment, then, is just the set of stories in the iteration backlog. Many teams
assign a chief engineer to each story, whose job is to wrangle the story to completion,
independent of their particular role in that particular story. In this way, every story
has an owner whose job is to understand status, eliminate impediments, and, to
generally, just help get the job done for that story.

Objective-Based Commitment

In an even broader brushstroke approach, some teams who have been working
together for some time make their commitment based on the broader objectives
negotiated with the product owner. In this model, the stories themselves are just a
means to the end, and the statement of the objective trumps all. Thereafter, some
teams use a pull/kanban style approach, whereby they pull items from the backlog
and complete them serially. Few stories, if any, are committed up front. The team
simply starts work, pulls stories from the backlog, creates new stories where neces-
sary, communicates vociferously, and attempts to meet the objectives of the itera-
tion “on the fly.” Figure 9–3 shows an example of an objective-based commitment.

Objective1– Update and Support Beta 1.1.41

Finalize and push last name search This iteration has two objectives:
one to support the beta
product, the second for new
development.

Finalize and push first name morphology
Add request an invitation (see Rally)
GUI/login nits and nats (see defect list)
Augmented user tracking

Get balance of 80% data to Canada
Start new code development on EC2 Objective?
Full text indexing (part 3 of 4). Objective:?
Develop Quofile Storyboard for 0.9

Other Stories

Objective 2 – Version 1.2 Index 75% of Web Data
These are not the actual stories,
just the PO view of objectives.
Stories are either in the backlog or
will be created by the teams
during planning.

In addition to the two objectives
above, these stories are also
targeted for completion, in priority
order.

US 51 Establish search replication validation protocol
RE 102 Refactor artifact dictionary schema
US 53 Affiliates II (depending on what we discover
tomorrow)
SP 67: Search layer optimization/testing continues

Figure 9–3 Objective-based commitment

Wow! eBook <WoweBook.Com>

ptg

162 chaPteR 9 � iteRating, BackLog, thRoughPut, and kanBan

Task-Based Commitment

At a much finer-grained scale, many XP and Scrum teams are rigor-
ous in their use of task-based commitments. XP, in particular, tends
to task stories in fine-grained detail. In this case, each story is broken

into tasks that individual team members take responsibility for.

Tasks have an owner (the person who is going to do the task) and are estimated in
hours (not points). The burndown chart of task hours applied versus task hours
remaining represents one form of iteration status. As implied by the one-to-many
relationship expressed in the model, there is often more than one task necessary to
deliver even a small story.

It’s common to see a mini life cycle coded into the tasks of a story. Here’s an
example:

Story 51: Select photo for upload

Task 51.1: Define acceptance test Juha, Don, Bill

Task 51.2: Code story Juha

Task 51.3: Code acceptance test Bill

Task 51.4: Get it to pass Juha and Bill

Task 51.5: Document in user help Cindy

When teams use the task-based commitment model, the flow for achieving an itera-
tion commitment is as follows:

Take the top story from the backlog.1.
Break it into tasks.2.
Individuals take responsibilities for tasks and estimate hours.3.
Repeat until teams run out of hours.4.

The team then makes the commitment to the stories that fit and to the objectives
the stories imply.

Tasks

Bill Wake (the inventor of INVEST for user stories) uses the acronym SMART2 to
describe tasks. He describes the meaning behind each letter acronym in Table 9–2.

2. http://xp123.com/xplor/xp0308/

Implemented by
Story Task

1 1..*

Wow! eBook <WoweBook.Com>

http://xp123.com/xplor/xp0308/

ptg

 iteRating: the heaRtBeat of agiLity 163

Table 9–2 SMART Tasks Elaborated

Specific A task needs to be specific enough that everyone can understand what’s involved in it.
This helps keep other tasks from overlapping and helps people understand whether the
tasks add up to the full story.

Measurable The key measure is, “Can we mark it as done?” The team needs to agree on what that
means, but it should include “Does what it is intended to,” “Tests are included,” and “The
code has been refactored.”

Achievable The task owner should expect to be able to achieve a task. XP teams have a rule that
anybody can ask for help whenever they need it; this certainly includes ensuring that task
owners are up to the job.

Relevant Every task should be relevant, contributing to the story at hand. Stories are broken into
tasks for the benefit of developers, but a customer should still be able to expect that every
task can be explained and justified.

Timeboxed A task should be timeboxed (limited to a specific duration). This doesn’t need to be a
formal estimate in hours or days, but there should be an expectation so people know
when they should seek help. If a task is harder than expected, the team needs to know it
must split the task, change players, or do something to help the task get done.

In this task-based approach to commitment, individuals are accountable to com-
plete their tasks, communicate with others when their task is complete or impeded,
and then move on to the next task without additional supervision. It is highly granu-
lar and highly accountable. If the tasks are all completed, the stories will be accepted,
and the goals of the iteration will be met.

Result: The Iteration Plan

No matter the approach to the commitment, the result of the planning meeting is
an iteration plan that contains a number of key elements:

An objective—a statement of what the iteration is intended to accomplish��
A prioritized list of stories to work on for the iteration��
The stories’ estimated tasks and owners��
A commitment by the team to the objectives of the iteration��
Documentation of the plan in a visible place or in a widely accessible tool��

Planning with Distributed Teams

It is far preferable to bring the team together in one location for planning sessions.
However, if this isn’t always feasible, teams can use shared agile project management
tools to host their discussions and persist the stories, tasks, commitments, and so on.

Wow! eBook <WoweBook.Com>

ptg

164 chaPteR 9 � iteRating, BackLog, thRoughPut, and kanBan

Executing the Iteration

Having committed to the iteration plan, the team is faced with the question of how
to allocate and adjust work for the members of the development team. The pre-
ferred approach is that developers simply pick the work they would like to do.

When things are happening quickly, there is not enough time for
information to travel up the chain of command and then come back down
as directives [Poppendieck and Poppendieck 2003].

Taking responsibility for work must be supported by a visible indicator showing
who is responsible for what work and by the daily status meetings during which
status and issues can be discussed.

Each developer (or perhaps developer pair or developer/tester pair) will follow the
same basic process repeatedly throughout the iteration:

Take responsibility1. for an assigned backlog item (for example, user story,
defect fix, other).
Develop2. (refine, design, code, integrate, and test) the backlog item.
Deliver 3. the backlog item by integrating it into a system build.
Declare4. the backlog item as developed, signaling that it is ready for accep-
tance testing.
Get the backlog item 5. accepted by the product owner.

This cycle repeats as someone ultimately takes responsibility for all the backlog
items in the queue. In most organizations, developers also support management of
the process by estimating effort expended so far and remaining effort for the back-
log items that they are responsible for. This creates a burndown chart that the teams
use to track the overall status of the iteration.

As described earlier, because the story is pliable, these activities happen in parallel,
and the objective is to deliver a working story (as it evolves) into the baseline. (Defi-
nition affects design, design affects test, test affects design, and so on.)

Tracking and Adjustment

Even within the course of a short iteration, scope must be managed, and deviations
from the plan will occur, so tracking status and adjusting course is necessary.

Tracking Progress with the Big Visible Information Radiator

Tracking progress requires having visibility into the status of the stories, defects, and
other tasks that are being worked on during the iteration.

Wow! eBook <WoweBook.Com>

ptg

 iteRating: the heaRtBeat of agiLity 165

Most teams use a big visible information radiator (BVIR, or sprint status board) on a
wall in the team room for this purpose. Figure 9–4 shows an example.

In the deceptively simple radiator shown in Figure 9–4, the team simply moves the
ribbon to the current day before each daily stand-up. This gives the entire team an
instant assessment of where they are in the iteration (note how you can tell that the
iteration in Figure 9–4 is at risk) and, more importantly, what they need to do to
complete it successfully. If a manager or remote participant needs status informa-
tion, all the team needs to do is to snap a picture and send it off!

Tracking in Daily Stand-Ups

One of the key rhythms of agile development is the practice of daily, 15-minute
stand-up meetings, an event that all team members attend. The stand-up’s pur-
pose is to share information about the progress, to communicate, and to coordinate
activities daily. Ideally, the team performs the daily stand-up in front of the BVIR. A
typical round-robin format is as follows:3

What stories I worked on yesterday and their status��
What stories I will be able to complete today��
What is getting in my way (am I blocked?)��

Wednesday Thursday Friday Monday Tuesday Wednesday Thursday Friday Monday Tuesday

Not Started

dsd
s

dsd
s

In Process Done Accepted

dsd
s

dsd
s dsd

s

dsd
s

dsd
s

dsd
s

dsd
s

dsd
s

Figure 9–4 Example of an iteration BVIR

3. Note: This differs slightly from the standard “What I did yesterday,” “What I’m doing today,”
and “Am I blocked” Scrum training and is more focused on the team communicating about
how to get the user value to the finish line.

Wow! eBook <WoweBook.Com>

ptg

166 chaPteR 9 � iteRating, BackLog, thRoughPut, and kanBan

The Meet After

Daily stand-ups often trigger meaningful design discussions and discussions
between developers, testers, and product owners about the objective of a piece of
code or a test. To keep the meetings short, the Scrum Master simply notes those
discussion items on a meet after board, and the involved parties are free to stay after-
ward as long as needed to complete their discussion, while the uninterested team
members are free to leave the meeting on time.

Tracking with Agile Project Management Tooling

For larger and distributed teams, status is usually tracked using an automated agile
project management tool, as Figure 9–5 illustrates.

With a tool like this, any stakeholder can see the current status of the iteration
including the state of each story (an example of such a state model is as follows:
Backlog, Defined, In-Progress, Completed, Accepted, Blocked), the remaining task-
based work estimates (to-do hours remaining), and the overall burndown for the
iteration.

Figure 9–5 Iteration status in an agile project management tool
Courtesy of Rally Software Development Corp.

Wow! eBook <WoweBook.Com>

ptg

 iteRating: the heaRtBeat of agiLity 167

Many teams use both. The agile project management tool is the information master
for stories and story state and also contains attachments and acceptance criteria that
further define the detailed requirements for the story. This creates the “one central
version of the truth” that is so valuable when multiple teams must cooperate on
a project. Even then, however, many teams use the BVIR for visual status, but the
story card on the wall is then just a token representing the real object in the tool or
repository.

Completing the Iteration

This part is simple. When the timebox is over, the iteration is done, no matter the
actual status of the stories in the iteration! From there, the team moves into the
review and retrospective. These are conducted on time, and as scheduled, no matter
the actual accomplishments of the team in the timebox.

Review and Retrospective

The final activity has two parts, the product demonstration and review and the iter-
ation retrospective.

Review and Demonstration

The reality of software development is that the customer’s understanding of the
requirements for a system evolves as they see and use the software. Every iteration
is an opportunity for the team to get feedback and guidance from the customer
or product owner (customer proxy) about how to make the system more valuable.
This feedback is typically structured as a somewhat formal, one-hour demonstra-
tion of new functionality.

Attendees include the key stakeholders, such as product managers, business owners,
executive sponsors, other teams, customers, and, of course, the product owner and
team. The format for this meeting is as follows:

Demonstration of each story that was committed to be delivered at the itera-��
tion planning by the responsible party
Discussion and feedback of each with stakeholders��

Afterward, the teams review the results of the iteration from two perspectives.

Did we accomplish the objectives for the iteration?��
If so, or if not, how might that impact the upcoming release?��

Wow! eBook <WoweBook.Com>

ptg

168 chaPteR 9 � iteRating, BackLog, thRoughPut, and kanBan

Iteration Retrospective

The goal of the retrospective assessment is to mine the lessons learned during the itera-
tion and then adapt the development process accordingly. The assessment allows the
team to continually improve the throughput of the development process and the qual-
ity of the resulting system. Typically, the team conducts the retrospective in two parts.

Quantitative (metrics) review�� : The team assesses whether the team met the
objectives of the sprint (yes or no). They also collect any metrics they have
agreed to analyze, which must include velocity—both the portion that is
available for new development and the portion devoted to maintenance.
Subjective (process) review:�� In the subjective review, the team analyzes its own
process, with a focus on finding one or two things they can do better in the
next iteration. A simple whiteboard format is often used:

What Went Well? What Didn’t? What (One Thing) Can We Do Better Next Time?

The whole team participates, and the Scrum Master facilitates the retrospective,
which is timeboxed to about 30 to 45 minutes.

Iteration Calendar

As part of establishing a rhythm of agile development timeboxes, meetings, and check-
points, teams typically establish a standard “cadence calendar” at the start of each
program. The cadence calendar (an example of which is shown in Figure 9-6) helps
the team set its schedules so that members can set aside time for planning meetings,
daily stand-ups, demos, reviews, and retrospectives. Thereafter, no meeting notices are
required, because the schedule for each day is fixed.

8:00 8:00

9:00 9:00 Daily Stand-up (15 min)

Demo
Retrospective

Daily Stand-up (15 min)

(Mid-Iteration Only)
Feature Preview

Iteration Planning (PO
Presents Stories)

Planning: Team
Breakouts, Elaborate,
Task, and Estimate
Stories

Reconvene, Negotiate
Scope, Commit

Day 1 Day 2–9 Day 10

10:00 10:00
11:00
12:00
1:00
2:00
3:00

4:00

8:00

9:00

10:00
11:00
12:00
1:00
2:00
3:00

4:004:00

Figure 9–6 Sample iteration calendar

Wow! eBook <WoweBook.Com>

ptg

 BackLog, Lean, and thRoughPut 169

Feature Preview

One challenging aspect of agile is what we call the “tyranny of the urgent iteration.”
The team’s commitment to the current iteration causes an intensity of focus that
is unparalleled in prior development models. That is mostly good, because focus
increases productivity and quality, in part by eliminating task switching and over-
head. Moreover, working in a highly productive team, coupled with peer pressure,
drives the team to new levels of performance. During this process, the teams tend to
operate in a “heads-down” mode, and there is a danger that they could make tacti-
cal, near-term decisions in the code that could complicate future stories.

One way to address this is with a weekly (or every other week) meeting where the
product owner discusses upcoming features or user stories (this meeting is some-
times called story time or backlog grooming). The meeting can include brainstorming
new ideas, having short implementation discussions, and refining and estimating
backlog items.

This scheduled meeting gives the team a “timeout” from the current iteration and
time to think a bit about the future. It also gives the product owner a way to meet
with the team and discuss upcoming stories and perhaps estimate some features
that a new customer is requesting, without interfering with the team’s cadence or
velocity.

BaCklog, lean, and throughPut

The invention of the simple backlog construct in agile is one of those deceivingly
simple constructs that can radically improve the performance of a software team.
Indeed, it’s hard to overstate the importance of this construct in organizing and
unifying the mission of the team. Benefits include the following.

It prevents the team from getting instructions from a variety of sources.��
Since the backlog has a single owner, teams always know what the current ��
priorities are and who to ask for clarification.
The fact that “if it isn’t in there, it isn’t going to happen,” communicates to all ��
the stakeholders how the team does their work. It also informs stakeholders
how to influence that work (that is, by working with the product owner to
get their item in the backlog).
The fact that the backlog is prioritized at iteration boundaries (and as we ��
will see later, the feature backlog is prioritized at release boundaries) means
that priorities are current and local.

Therefore, agile software teams spend a significant portion of their time identifying,
estimating, and elaborating items in their backlog. Indeed, it isn’t too much of an

Wow! eBook <WoweBook.Com>

ptg

170 Chapter 9 IteratIng, BaCklog, throughput, and kanBan

oversimplification to say that managing the team’s backlog is their basic require-
ments management process.

For some teams, a nice, well-formed, and deep backlog gives them a sense of control
of their destiny. They can see the work ahead, they can plan for current and future
work, and they have a sense of comfort in knowing that they are always working on
the next higher-prioritized thing.

Before we conclude, however, that a deep, well-considered, estimated, and elabo-
rated backlog is our silver bullet for managing development, we must take a look at
the backlog from another perspective—the perspective of lean and how backlogs
affect time to market for new ideas and initiatives. After all, a backlog is nothing less
than a queue of work, and long queues of work, well, are not so good.

Note ³³ Although the discussion here focuses on the team’s local backlog, it describes a general set
of principles that we’ll also apply to the program and portfolio backlogs in Parts III and IV of
the book.

Backlog Maturity, Lean, and Little’s Law

We’ll introduce this discussion in the form of an author’s blog thread, because it
tells the story in the (somewhat exaggerated4) perspective from which it developed.

A Blog Story: Is that Well-Formed Product Backlog Decreasing
Your team’s Agility?

I was sitting at a Starbucks in Munich—a rainy, snowy Saturday morning—watch-
ing the queue of people looking for their caffeine kick-start (the same reason I was
there). For some reason, the queue of people ordering coffee reminded me of the
question teams ask about “how big” and “how well formed” (or how well elabo-
rated) their product backlog needs to be.

The size of the team’s backlog, the rate of backlog processing, and the ultimate rate
of value delivery is really a problem of queuing theory, just like at Starbucks. At
Starbucks, I was trying to do Little’s law in my head, but to not very good effect, so
I had to write it out when I came back to my hotel. Little’s law, the general-purpose
theory for queuing and processing problems, is one of the fundamental laws of lean.
It states the following:

Wq =
λ

Lq

4. As is sometimes the case with such blogs, this blog thread represents a somewhat exaggerated
view of the problem, in part as an attention-getting device.

Wow! eBook <WoweBook.Com>

ptg

 BackLog, Lean, and thRoughPut 171

where the following is true.

Wq�� is the average waiting time in the queue for a standard job.
Lq�� is the average number of things in the queue to be processed.
Lambda�� is the average processing rate for jobs in the queue.

While I was drinking my latte, I noticed that the queue at the ordering counter var-
ied from 0 to as many as 12 people in line. With my iPhone timer, I was methodically
trying to time the average time that it took the single barista to serve each customer.
However, when the queue got long, as if by magic, another barista appeared from
the back somewhere (Starbucks likely understands queuing theory). That confused
my timing, and I lost track.

However, let’s assume it takes about 45 seconds on average to serve a customer
(a service rate of 1.33 customers per minute). We can use Little’s law to calculate
the average wait of someone in the queue on this particular Saturday morning as
follows:

Wq =
1.33

6 (Average Queue Length)
(# Customers Processed per Minute)

So, the average wait time is 4.5 minutes in this case (not too bad, even if you do need
that quick fix).

It’s important to note that this is the average case, and your wait could be shorter
(I was the third person when I went in, and I had to wait only a minute or two to
order) or longer (the person at the back of the 12-person queue had to wait about 9
minutes; yikes, he could easily go somewhere else).

Little’s Law and an Agile Team’s Backlog

Fair enough, but what does the line at Starbucks have to do with agile development
and the team’s requirements backlog? They are similar problems of queuing theory.

For example, let’s assume the following.

A single agile/Scrum team, working in two-week iterations.��
The team averages about 25 to 30 story points per iteration, or a story ��
completion rate of about 8 stories per iteration.
The team is justifiably proud of how well they are maintaining their backlog, ��
and the backlog averages about 100 stories, most of which are committed to
near-term releases.

Wow! eBook <WoweBook.Com>

ptg

172 chaPteR 9 � iteRating, BackLog, thRoughPut, and kanBan

Wq = 100 Stories = 12.5 Iterations
8 Stories

1 Iteration()

The answer is 12.5 iterations to get into the sprint, plus 2 weeks to get out, or 27
weeks on the average. More than half of a year! And, if your item is in the back of the
backlog, it could take even longer (remember the guy who had to wait 9 minutes).

Wow. If it takes a team on average half a year to deliver a new requirement to the
customer, that doesn’t seem very responsive.

Plus, in the enterprise, there are multiple teams with interdependencies, and the
individual results of the teams have to be aggregated, packaged, and validated in
some kind of release envelope before distribution, so it can take longer still. There-
fore, it’s understandable when we see an enterprise with 20, 50, or even 100 reason-
ably agile teams that it still takes 300 to 500 days to move a new requirement from
customer request to delivery.

So although this may be an exaggerated case (as we’ll see in the comments shortly),
it is not at all unusual to see these types of delays in the enterprise. So yes, it may be
understandable, but no, it’s not acceptable. Let’s see what we can do about it.

Applying Little’s Law to Increase Agility
and Decrease Time to Market

The formula is not complicated. If we are going to improve (decrease) time to mar-
ket, we have to either increase the denominator or decrease the numerator (or both).
And of course, if we can do both, we will achieve even better results. Let’s look at
each opportunity.

Increasing Lambda, the Rate of Story Completion

Increasing the rate of story completion, and thereby the overall rate of value delivery,
is the legitimate goal of every agile team. Of course, if we could simply add resources,
we could probably increase Lambda, but for the purpose of this discussion, let’s
assume that is impractical. Besides, although it’s the easy way out of the argument,
it increases the cost of the value created and decreases return on investment (ROI).

Wow! eBook <WoweBook.Com>

ptg

 BackLog, Lean, and thRoughPut 173

So although you might get there faster, you may not make any money when you do.
Let’s work within the fixed resource constraints of our archetypical team and see
what we can do.

The primary mechanism for increasing the rate of story completion is the team’s
inspect and adapt process, whereby the teams review the results of each iteration
and pick one or two things they can do to improve the velocity of the next. This is
the long-term mission; it is a journey measured in small steps, and there is no easy
mathematical substitute for such improvements. These improvements include bet-
ter coding practices, unit testing and unit testing coverage, functional test automa-
tion, continuous integration, and other enhanced agile project management and
software engineering practices.

In my experience, however, two primary areas stand out as the place where teams
can get the fastest increase in Lambda: first, gaining a better understanding of the
story itself before coding begins, and second, decreasing the size of the user stories
contained in the backlog.

Gaining a Better Understanding of the Story:
Acceptance Test-Driven Development

The fact is that the overall velocity of the team is not typically limited by the team’s
ability to write, or even integrate, code. Instead, it is gated by the team’s ability to
understand what specific code they need to write, as well as to avoid code they do
not need to write. Doing so involves having a better understanding of the require-
ments of the story, before coding it.

However, this must be done on a just-in-time basis, just prior to the iteration
boundary, or else the team’s backlog will get wider, and the team will have too much
requirements inventory. Some of it will likely decay before they get to it. However,
a wider backlog (small numbers of well-elaborated stories) is not nearly as bad as a
deeper backlog (larger numbers). The worst case is that a few team members have
gone too far, too early, in elaborating a few backlog items, but it won’t slow value
delivery nearly so badly as would a deeper backlog. It’s a bit of waste, but it doesn’t
really drive Little’s law.

Therefore, once a story has reached a priority whereby it will be implemented in the
next iteration or two, time spent in elaborating the story will pay dividends. Often,
this is described as Acceptance Test-Driven Development (ATDD), and, fortunately,
it’s a little easier for teams to intellectualize and adopt than code-level TDD. ATDD
involves two things: writing better stories and establishing the acceptance tests for
the story before coding begins. We’ll cover that in the next chapter.

Wow! eBook <WoweBook.Com>

ptg

174 chaPteR 9 � iteRating, BackLog, thRoughPut, and kanBan

Increasing Lambda with Smaller Stories

If all the people ordering at Starbucks had ordered a tall, black coffee, rather than a
Venti, nonfat, double shot, half-caff, no foam, vanilla latte, with a heated bagel on
the side, the length of the queue and the wait from the back of the line would have
been much shorter. Small jobs just go through a system faster than large ones.

In Chapter 6, we described the benefits of smaller user stories at length, and I won’t
repeat them here. However, it’s worth pointing out that decreasing the size of user
stories has both a linear and exponential effect on Lambda, both of which are
positive.

Linear effect:�� Smaller user stories are just that, smaller. They go through the
iteration faster so teams can implement and test more small user stories in
an iteration than large ones. And, although the total value of a small story
can’t be as big as a large story, the incremental delivery hastens the feedback
loop, improving quality and fitness for use.
Exponential effect:�� Because they are smaller and less complex, small user
stories decrease the coding and testing implementation effort. The coded
functions are smaller and less complex, and the number of new paths that
must be tested also decreases exponentially with story size. (However, some
of this is offset by the additional overhead of managing more stories.)

So, even if the length of the backlog remains the same, a combination of better-
defined and smaller user stories has a very positive effect on value delivery time.

Clearly, increasing Lambda, the denominator of Little’s law, is a prime opportunity
for the team to increase agility and time to market. Every truly agile team continu-
ously commits to doing so.

Decreasing Lq, the Length of the Queue

Now that we’ve seen two ways to decrease time to market (Wq) by increasing the
denominator (Lambda) of our equation, let’s look at the other half of our equa-
tion and see what opportunities we find there.

Fortunately, there are even faster ways to decrease time to market while the team
is working on continuously improving development practices. That is by forcing a
limit on the length of the queue.

Decreasing queue size causes a directly proportional decrease in the wait time.
Therefore, if we cut our queue size in half, we can halve our time to market without

Wow! eBook <WoweBook.Com>

ptg

 BackLog, Lean, and thRoughPut 175

taking any further action. As if this weren’t enough motivation, Reinertsen [2009]
points out that there are a number of additional reasons why long queues are fun-
damentally bad in the product development process.

Increased risk:�� While a story is in the queue, there is some probability that
the market or customer has changed their mind and the story is no longer
valuable. The longer the queue, the higher the probability. When we invest
in an unneeded story, we waste valuable resources. Worse, the unneeded
story has displaced some other story that would have had economic
benefit.
Increased variability:�� With a long queue, there is always way more than
enough work to do, so the team takes on everything they possibly can.
Management supports this by driving teams to high utilizations (95% or
better). In turn, high utilization drives thrashing and high variability, as we
saw in Chapter 6. High variability decreases reliability, causes stress in the
organization, and, perversely, drives even higher utilization because of fire
fighting—a deadly spiral.
Increased costs:�� Every story in the team’s queue was put in there somehow
by someone. That takes labor. Once it’s in there, the team has to continue
to account for it, prioritize it, and rearrange it as higher-priority items
come into the queue.
Reduced quality:�� The longer the queue, the longer it is before we get
feedback on new items from the customer (or product owner proxy). The
longer the feedback, the more other developers may have invested in the
nonconforming story, and the more expensive it is to rework.
Reduced motivation and initiative:�� If it’s going to be a long time before a
customer sees a story in the middle of the queue, there is little sense of
urgency. But if the customer is going to see it soon, we better worry about
getting it right, right now.

This summarized the initial blog post on the topic. Prior to this discussion, I sus-
pect that many teams believe that a lengthy, well-articulated product backlog was
an asset that increased, rather than decreased, the team’s agility and the rate of
value delivery to the customer. Common sense and intuition may have led us to
believe that was the case.

But the economics and math behind queuing theory and lean product develop-
ment teach us otherwise. Instead, we’ve learned that agile teams need short back-
logs of small items, a number of which are quite well-articulated and socialized,
but only just prior to the iteration boundary in which they will be implemented.

Wow! eBook <WoweBook.Com>

ptg

176 chaPteR 9 � iteRating, BackLog, thRoughPut, and kanBan

Readers React

Of course, agile teams are proud of their backlogs, and the post generated some
interesting reactions—some supportive, some critical, but all pretty perceptive.
Here are a few samples:

Lengthy backlog is not a disease. It shows that there’s lots of work waiting to be
prioritized and worked on! This is all about prioritizing. Either customer or the
team—they have to decide what to implement first. You can’t force release time
with the single aim to make your backlog shorter. Backlog is a tool for work, not
the absolute indicator of team’s agility or capability.

—Olga Kouzina, Product Specialist at TargetProcess, Inc.

All of your suggestions are good. However, the underlying assumption that the
entire backlog must be completed is flawed. People do indeed halve their time to
market (or better) by having a reasonably long backlog, and producing a viable
release after less than half that backlog has been completed.

—Bjorn Gustafsson

I agree: managing requirements and increasing throughput and value on
agile projects means having a dynamic, yet sparse—or at least reasonably-
populated—backlog (one containing items in varying sizes; including MMF-
sized items—minimal marketable features—is fine). It’s crucial to analyze the
requirements/stories to derive very slim/right-sized stories with sharply and
clearly defined “doneness” criteria. Exploring the requirements—doing this
“work ahead”—gets you what Jeff Sutherland calls “ready” backlog items.

—Ellen Gottesdiener

I wholly agree that the length of a product Backlog is an indication of how agile
a team really is. Even if you are able to release every day, an item that is on
the backlog for months carries risk and cost. Fortunately, unlike at Starbucks,
features can push to the front of the queue. But this is just Class of Service,
which should be made explicit, and can sometimes be a smell in itself (e.g. too
much expediting).

—Karl Scotland

The Product Backlog is NOT scope. Although some organizations and teams
treat it as scope, that is not a healthy way to manage a backlog. This approach
asserts that we can think of the most important items in order of their

Wow! eBook <WoweBook.Com>

ptg

 BackLog, Lean, and thRoughPut 177

importance over time. Prioritization is key in product backlog management
and therefore 6 months to deliver an item should not be part of the equation.

—Chris Sterling

Managing Throughput by Controlling Backlog Queue Length

Given these comments and many more, coming from both camps, I reflected on
what drove me to write that lengthy post (and to include it in this book). It wasn’t
the boredom of the wait at Starbucks on that dreary Saturday. Rather, I wanted to
make a few, fundamental points about agile and lean and address a few things I have
seen in practice that inhibit team agility and program responsiveness.

Point #1: Little’s Law Doesn’t Lie

Little’s law5 tells a fundamental truth: The longer the queue and the slower the pro-
cessing time, the longer the (mathematically predictable) wait. This core law of
queuing theory is irrefutable.

From lean, we also understand that long queues of work in process are fundamen-
tally bad. Whether it be elaborated user stories in a backlog that won’t see the light
of day, code that has been written but not tested, hundreds of manual tests awaiting
automation, blobs of new code that haven’t been checked back into the baseline, a
long set of Portfolio-level projects awaiting resources, and so on, they are all univer-
sally bad, because they all decrease agility and time to market. (It’s hard to respond
quickly to an order for fenders with a metallic finish if you have stacks of fenders
primed for regular finish in front of the paint shop.)

However, we also understand that, at least when it comes to backlog, Little’s law isn’t
a perfect analogy because a story can jump the queue in agile (I recommend that
you do not try that at Starbucks, because those people in front of you likely really
need that caffeine), and a system can decide not to process all items in the queue
(Starbucks could do that to decrease queue length, but the long-term economics
would be unfavorable).

So when it comes to the backlog post, as some readers pointed out, we are not forced
to assume that all backlog items will make their way into processing in an orderly
fashion. We are smarter than that. And therefore Little’s law cannot be blindly and
universally applied. However, the fact that we are smarter than that does not prevent
some undesirable behaviors that we often see in practice. This brings me to points
#2 and #3.

5. Actually, Little did the formal proof, rather than inventing the law.

Wow! eBook <WoweBook.Com>

ptg

178 chaPteR 9 � iteRating, BackLog, thRoughPut, and kanBan

#2: Don’t Be Hostage to Your Own Backlog

In many sprint reviews, I ask teams how they are doing with respect to the release
objectives. Surprise, many times they are behind (and that’s one of the reasons we
like agile—we are likely behind less than we would have been, we actually know it,
and it’s not too late to take corrective action).

When I ask them how they can “jump the queue” and meet the release objectives
though they are behind, they often say, “Well, we have all these backlog items we
have to finish first. We have elaborated them, we understand them, we have invested
in them, we have committed them to others, they are important, and they are ready
to go.”

However, I then comment, “As true as that may be, those are sunk costs, and that
doesn’t make those backlog items necessary per se. If the backlog you have isn’t the
one you need to meet the release objectives, ignore the sunk costs and flush it!”

#3: The Enterprise Can’t Be Held Hostage to the Team’s Backlog Either

As we’ll see in Parts II and III of this book, at enterprise scale this problem is badly
compounded. Often, we approach release-planning boundaries with 10 to 20 agile
teams having detailed and well-structured backlogs for the existing work in process,
3 to 6 months of committed customer work. In that case, the enterprise has little
or no agility, because nothing can really be changed. After all, if the teams must
first work through their committed backlog, then Little’s law is in your face, and the
result is immutable. You can’t do much of anything quickly at the enterprise level
unless you do the following.

You wait the (potentially) infinite amount of time it takes teams to work ��
their local backlogs down to near zero. It’s (potentially) infinite because
other laws—the law of “teams don’t like having empty backlogs,” the law of
“we have too much technical debt,” and the law of “our current users will
drive us to expand our work to consume the time allotted to it”—come
into play.
The enterprise must override the teams—or kill entire projects—or abro-��
gate commitments in order to move forward with more globally aligned
objectives.

Either choice will be painful and suboptimal. Wouldn’t it be far better if the system
were leaner, if the team’s backlogs were really short and lightweight, and if the back-
logs didn’t represent fixed commitments based on too-long-a-term thinking?

Backlogs are great, as long as you keep them short, lightweight, and negotiable.
Remember, never overinvest in some stories you may just not do.

Wow! eBook <WoweBook.Com>

ptg

 softwaRe kanBan systems 179

And never, ever be held hostage by your own backlog.

software kanBan systems

For these reasons, driven by lean thinking, many teams have decided to place work-
in-process limits on the size of the backlog, which are sized and adjusted as neces-
sary to create the desired time to market, response time, or internal feedback loop.
Once the queue is full, they quit even thinking about new stories until there is room
for more stories in the queue.

Indeed, the negative effect of long software queue sizes is a primary economic and
philosophical principle that drives the current lean software Kanban movement,
which we introduced briefly in Chapter 1.

The Limited WIP Society6 describes the following.

Kanban manages the flow of units of value through the use of work-in-��
process (WIP) limits.
Kanban manages these units of value through the whole system, from when ��
they enter until they leave.
By limiting WIP, kanban creates a sustainable pipeline of value flow.��
Further, limiting WIP provides a mechanism to demonstrate when there is ��
capacity for new work to be added, thereby creating a pull system.
Finally, the WIP limits can be adjusted and their effect measured as the kan-��
ban system is continuously improved.

Kanban System Properties

David Anderson, one of the thought leaders behind the movement, further describes
five core properties of a kanban implementation as follows.7

Visualize workflow:�� Highlights the mechanisms, interactions, handoffs,
queues, buffers, waiting, and delays that are involved in the production of a
piece of valuable software.
Limit work in progress:�� Implies the introduction of a pull system from a fam-
ily of possible solutions.
Measure and manage flow:�� Highlights a focus on keeping work moving and
using the need for flow as the driver for improvement. A focus on flow rather

6. www.limitedwipsociety.org
7. www.limitedwipsociety.org/2010/04/11/five-core-properties-of-a-kanban-implementation

Wow! eBook <WoweBook.Com>

www.limitedwipsociety.org
www.limitedwipsociety.org/2010/04/11/five-core-properties-of-a-kanban-implementation

ptg

180 chaPteR 9 � iteRating, BackLog, thRoughPut, and kanBan

than on waste removal is a higher mastery of lean and much less likely to
lead to “Lean and Mean” antipatterns and dysfunction.
Make process policies explicit:�� It’s about holding up a mirror to the working
reality and encouraging the whole team and its leadership to reflect on its
effectiveness. Thinking of a process as a set of policies rather than a workflow
is a very powerful technique.
Use models to recognize improvement opportunities:�� Kanban is quantita-
tive and takes a scientific approach to improvements. Focus on the theory
of constraints, an understanding of variation and the system of profound
knowledge, and the lean models of waste and flow.

Classes of Service in Kanban

To assure that a kanban system is responsive to the business needs, Anderson8

describes utilizing various classes of service, which allow flexibility and enhanced
velocity of delivery based on the cost of delay for each backlog item. For example, he
recommends four classes of service to help manage the queuing problem:

Expedite:�� Unacceptable cost of delay
Fixed delivery date:�� Step function cost of delay
Standard class:�� Linear cost of delay
Intangible:�� Intangible cost of delay

Each class of service has its own work-in-process limits, which can be adjusted
based on current context and associated with different management policies. With
a kanban system, teams have a structurally sound basis for decreasing Lq, the length
of the backlog, and can thereby reap the throughput benefits accordingly.

We’ll see kanban systems such as this at work later, in Chapters 21 and 23.

summary

In this chapter, we first described the iteration, the basic, time-based building block
of agile development whereby the teams build an increment of user functionality
in a short timebox. Each iteration delivers some new requirements into the new
baseline. With this mechanism, we have a reliable and predictable way to address
building larger and larger amounts of user value in these small, demonstrable incre-
ments, thereby mitigating technical risk while also assuring that the users come
along with us for the ride.

8. www.agilemanagement.net

Wow! eBook <WoweBook.Com>

www.agilemanagement.net

ptg

 summaRy 181

We also discussed the unique role the product backlog (and by extension program
and portfolio backlogs) play in managing work in process and controlling the rate
of value delivery. We found a little controversy here—some weighted on the side of
“well-formed backlogs increase throughput” and others on the side of “the bigger
the backlog, the slower the team.” Neither side is right or wrong. Instead, we must
strive for a sense of balance—right-sized backlogs with near-term items elaborated
and implementation ready. Everything else is just a “notion” held in a low-cost hold-
ing pattern.

Perhaps most importantly, however, as the programs and epics get bigger in the later
chapters, we’ll have to keep in mind that simply stacking all these well-formed back-
logs end to end will create a large and unresponsive system, even if we think we
are agile. We will have to be much smarter than that. One way to address this is by
introducing a kanban system, which many have adopted ether stand-alone or in
combination with Scrum (see Kniberg and Skarin [2010] and Ladas [2008]). We’ll
also see an implementation of a kanban system for architectural and business epics
in Chapters 21 and 23.

But for now we can move on to a more tactical consideration—how can we know
that backlog item is actually done so we can move our attention to the next one. To
understand whether the requirements we’ve just implemented really meet the needs
of our users, we’ll need to make sure that each passes an acceptance test. That is the
subject of the next chapter, Acceptance Testing.

Wow! eBook <WoweBook.Com>

ptg

This page intentionally left blank

Wow! eBook <WoweBook.Com>

ptg

 183

Chapter 10

aCCePtanCe testing

What’s done, is done.

—Shakespeare, Macbeth, Act 3, scene 2

If it isn’t tested, it doesn’t exist.

—Anonymous agile master

We recently transitioned to agile. But all our testers quit.

—Vignette from Crispin and Gregory [2009]

why write aBout testing in an agile requirements Book?
As a sanity check in preparing for this chapter, I went to my bookshelf and looked at
a number of texts on software requirements management, including my own [Lef-
fingwell and Widrig 2003], for guidance on testing whether an application meets
its requirements. Of course, I knew I wouldn’t find much on testing there, if for
no other reason than I knew I hadn’t written much. I wasn’t surprised that other
requirements authors haven’t written much of anything on testing either.

So, the question naturally arises: Why do we feel compelled to write about test-
ing now, in a book on agile requirements? The question itself reflects a traditional
view, that historically, software requirements were somehow independent of their
implementation. They lived a separate life—you could get them (reasonably right)
at some point, mostly up front; the developers could actually implement them
as intended; they would be tested somewhat independently to assure the system
worked as intended; and the customers and users would be happy with the result.
Of course, it never really worked that way, but it sure was easier to write about it.

In thinking in lean and agile terms, however, we must take a much more systemic
and holistic view. We understand that stories (requirements), implementation
(code), and validation (acceptance tests, unit tests, and others) are not separate

Wow! eBook <WoweBook.Com>

ptg

184 chaPteR 10 � accePtance testing

activities but a continuous refinement of a much deeper understanding; therefore,
our thinking is different:

No matter what we thought earlier in the project, this functionality is what
the user really needs, and it’s now implemented, working, and tested in
accordance with the continuous discussions and agreements we have forged
during development.

Just as importantly, we have instrumented the system (with automated
regression tests) such that we can assure this functionality will continue to
work as we make future changes and enhancements to the system. Then, and
only then, can we declare that our work is complete for this increment.

That is the reason that we have taken a much more systemic view of “requirements”
in this book—discussing users, agile teams, agile process, roles, product owners, and
whatever else is necessary for a team to develop an application that, in the end, actu-
ally solves the user’s problem.

However, when describing requirements in book form, the subject is fuzzier and
more tangible at the same time. It’s fuzzier because you can’t really tell where a
story ends and its acceptance test begins. Are the data elements in a user entry
field included in the story, or are they implied requirements attached to the
story? Are they really details left for the acceptance test? Or are they perhaps so
fine-grained that they may be covered solely in the unit tests for the method that
implements it?

And yet, the subject is more tangible, because the precise answers to these questions
aren’t so important. What is important is that we worked through a cycle of incre-
mental information discovery; we collaborated, we negotiated, we refined, we com-
promised, and we ended up with something that actually works. In addition, we
have captured the details of system behavior in a set of tests that will persist for all
the time the software continues to provide value to its users. So, the requirements
are implemented, complete, and tested.

In this chapter, we’ll provide guidance to these questions and an overview of how we
achieve quality in our agile requirements practices. In agile, we simply can’t do that
without a discussion of testing.

agile testing overview

Given that we are taking a systemic view to requirements, across the team, program,
and portfolio, we must also take a broader view of agile testing in general, so we’ll
know the context in which a discussion of acceptance testing can make sense.

Wow! eBook <WoweBook.Com>

ptg

 agiLe testing oveRview 185

Brian Marick, an early XP proponent (and a signer of the Agile Manifesto), has pro-
vided much of the thought leadership in this area and has developed a framework
that many agilists use to think about testing in an agile paradigm. His philosophy of
agile testing is as follows:1

Agile testing is a style of testing, one with lessened reliance on documentation,
increased acceptance of change, and the notion that a project is an ongoing
conversation about quality.

He goes on to describe two main categories of testing: business-facing and technol-
ogy-facing tests:2

A business-facing test is one you could describe to a business expert in
terms that would (or should) interest her You use words drawn from
the business domain: “If you withdraw more money than you have in your
account, does the system automatically extend you a loan?”

A technology-facing test is one you describe with words drawn from the
domain of the programmers: “Different browsers implement JavaScript
differently, so we test whether our product works with the most important
ones.”

He further categorizes tests, whether business-facing or technology-facing, as being
used primarily to either support programming or to critique the product.

Tests that support programming mean that the programmers use them
as an integral part . . . of programming. For example, some programmers
write a test to tell them what code to write next Running the test after the
[code] change reassures them that they changed what they wanted. Running
all the other tests reassures them that they didn't change behavior they
intended to leave alone.

Tests that critique the product are not focused on the act of programming.
Instead, they look at a finished product with the intent of discovering
inadequacies.

In Agile Testing, Crispin and Gregory developed these concepts further [2009].
With a few minor adaptations for our context, we find an agile testing matrix in
Figure 10–1.

1. agilemanifesto.org/authors.html
2. www.exampler.com/old-blog/2003/08/21/

Wow! eBook <WoweBook.Com>

www.exampler.com/old-blog/2003/08/21/

ptg

186 chaPteR 10 � accePtance testing

Business-Facing

Q2

Q1

Q3

Q4

Technology-Facing

Su
pp

or
tin

g
D

ev
el

op
m

en
t

Cr
iti

qu
e

Pr
od

uc
t

Automated
and Manual

Functional Tests
Story Acceptance Testing

Feature Acceptance Testing

System Acceptance Tests
Exploratory Testing

Scenario Testing
Usability Testing

User Acceptance Testing (UAT)
Alpha/Beta Testing

System Qualities Tests
Performance and Load Testing

Security Testing
“ility” Testing

Unit Tests
Component Tests

Automated Tools

Manual

Figure 10–1 The agile testing matrix

In quadrant 1, we find unit tests and component tests, which are the tests written by
developers to test whether the system does what they intended it to do. As indicated
on the matrix, these tests are primarily automated, because there will be a very large
number of them, and they can be implemented in the unit testing environment of
choice.

In quadrant 2, we find functional tests. In our case, these consist primarily of the
story-level acceptance tests that the teams use to validate that each new story works
the way the product owner (customer, user) intended. Feature-level acceptance test-
ing is referenced in this quadrant as well. Many of these tests can be automated, as
we’ll see later, but some of these tests are likely to be manual.

In quadrant 3, we find system acceptance tests, which are system-level tests to deter-
mine whether the aggregate behavior of the system meets its usability and func-
tionality requirements, including the many variations (scenarios) that may be
encountered in actual use. These tests are largely manual in nature, because they
involve users and testers using the system in actual or simulated deployment and
usage scenarios.

In quadrant 4, we find system qualities tests, which are used to determine whether
the system meets its nonfunctional requirements. Such tests are typically supported

Wow! eBook <WoweBook.Com>

ptg

 what is accePtance testing? 187

by a class of testing tools, such as load and performance testing tools, which are
designed specifically for this purpose.

With this perspective, we have a way to think about the different types of testing
we’ll need to do to assure that a system performs as expected.

what is aCCePtanCe testing?
The language around testing is as overloaded as any other domain in software
development, so the words acceptance testing mean different things to different peo-
ple. Indeed, there are two different uses of the term in the agile testing matrix. In
Figure 10–1, quadrant 2, we see functional and story and feature acceptance tests, and
in quadrant 3, we see system-level acceptance tests. In this chapter, we’ll focus on two
of these quadrants, Q2 and Q1. In Chapter 17, Nonfunctional Requirements, we’ll
revisit the testing process to look at testing practices that support the tests indicated
in quadrants 3 and 4.

In quadrant 2, we find both feature and story acceptance tests, which are used to
assure that features and stories, respectively, are done, as we illustrate in our model
in Figure 10–2.

Story Acceptance Tests

The majority of the testing work done by agile teams is in the development, exe-
cution, and regression testing of story acceptance tests (SATs), so we will focus on
those first. Story acceptance tests are functional tests intended to assure that the
implementation of each new user story (or other story type) delivers the intended

Realized by

0,1 1..*
1 1

1..* 1..*

Feature

Feature
Acceptance Test

Done
when
passes

Story
Acceptance Test

Story

Figure 10–2 Features and stories cannot be considered done until they pass one
or more acceptance tests.

Wow! eBook <WoweBook.Com>

ptg

188 chaPteR 10 � accePtance testing

behavior. If all the new stories work as intended, then each new increment of soft-
ware is delivering value and provides assurances that the project is progressing in a
way that will ultimately satisfy the needs of the users and business owners. Gener-
ally, the following is true.

They are written in the language of the business domain (they are business-��
facing tests from quadrant 2).
They are developed in a conversation between the developers, testers, and ��
product owner.
Although anyone can write tests, the product owner, as business owner/cus-��
tomer proxy, is the primary owner of the tests.
They are black-box tests in that they verify only that the outputs of the sys-��
tem meet the conditions of satisfaction, without concern for how the result
is achieved.
They are implemented during the course of the iteration in which the story ��
itself is implemented.

This means that new acceptance tests are developed for every new story. If a story
does not pass its test, the teams get no credit for the story, and the story is carried
over into the next iteration, where the code or the test, or both, are reworked until
the test passes.

CharaCteristiCs of good story aCCePtanCe tests

If stories are the workhorse of agile development—the key proxy artifact that car-
ries the value stream to the customer—then story acceptance tests are the work-
horse of agile testing, so teams spend much time defining, refining, and negotiating
the details of these tests. That’s because, in the end, it is the details of these tests that
define the final, agreed-to behavior of the system. Therefore, writing good story accep-
tance tests is a prime factor in delivering a quality system. Good story acceptance
tests exhibit the characteristics described in the following sections.

They Test Good User Stories

An attribute of a good SAT is that it is associated with a good user story. In Chap-
ter 6, we described the INVEST model for user stories and the quality of our
acceptance tests are fully dependent on the native quality of the story itself. In
particular, the user story to which a test is associated has to be independent, small,
and testable. If the development of an acceptance test illustrates that the story is

Wow! eBook <WoweBook.Com>

ptg

 chaRacteRistics of good stoRy accePtance tests 189

otherwise, then the story itself must be refactored until it meets these criteria. To
get a good acceptance test, we may need to refactor the story first. For example,
the following:

As a consumer, I am always aware of my current energy costs.

becomes this:

As a consumer, I always see current energy pricing reflected on my portal and
on-premise devices so that I know that my energy usage costs are accurate and
reflect any utility pricing changes.

They Are Relatively Unambiguous and Test All the Scenarios

Since the story itself is a lightweight (even potentially throwaway) expression of
intent, the acceptance test carries the detailed requirements for the story, now and
into the future. As such, there can be little ambiguity about the details in the story
acceptance test. In addition, the acceptance test must test all the scenarios implied
by the story. Otherwise, the team won’t know when the story is sufficiently complete
in order to be able to be presented to the product owner for acceptance. Here’s an
example:

Story:

As a consumer, I always see current energy pricing reflected on my portal and
on-premise devices so that I know that my energy usage costs are accurate and
reflect any utility pricing changes.

Acceptance test:

1. Verify the current pricing is always used and the calculated numbers are
displayed correctly on the portal and each on-premise device (see attachment
for formats).

2. Verify the pricing and the calculated numbers are updated correctly when the
price changes.

3. Verify the “current price” field itself is updated according to the scheduled time.

4. Verify the info/error messages when there is a fault in the pricing (see
approved error messages attached).

Wow! eBook <WoweBook.Com>

ptg

190 chaPteR 10 � accePtance testing

They Persist

One of the mysteries about agile, and indeed a key impediment to adoption, is a
commonsense question: “If developers don’t document much and there are no
software requirements specifications as such, how are we supposed to keep track of
what the system actually does? After all, we are the ones responsible for assuring that
it actually works, now and in the future. Isn’t that something we have to know, not
just once, but in perpetuity?”

The answer is yes, indeed, we do have to know how it works, and we have to rou-
tinely regression test it to make sure it continues to work. We do that primarily by
persisting and automating (wherever possible) acceptance tests and unit tests (dis-
cussed later).

User stories can be safely thrown away after implementation. That keeps them light-
weight, keeps them team friendly, and fosters negotiation, but acceptance tests per-
sist for the life of the application. We have to know that the current price field didn’t
just get updated once when we tested it but that it gets updated every time the price
changes, even when the application itself has been modified.

aCCePtanCe test-driven develoPment

Beck [2003] and others have defined a set of XP practices for agility described under
the umbrella label of test-driven development (TDD). In TDD, the focus is on writ-
ing the unit test before writing the code. For many, TDD is an assumed part of agile
development and is straightforward in principle.

Write the test first. Writing the test first forces the developer to understand 1.
the required behavior of the new code.
Run the test, and watch it fail. Because there is as yet no code to be tested, this 2.
may seem silly initially, but this accomplishes two useful objectives: it tests
the test itself and any test harnesses that hold the test in place, and it illus-
trates how the system will fail if the code is incorrect.
Write the minimum amount of code that is necessary to pass the test. If the 3.
test fails, rework the code or the test as necessary until a module is created that
routinely passes the test.

In XP, this practice was primarily designed to operate in the context of unit tests,
which are developer-written tests (also code) that test the classes and methods that
are used. These are a form of “white-box testing” because they test the internals of
the system and the various code paths that may be executed.

Wow! eBook <WoweBook.Com>

ptg

 accePtance test-dRiven deveLoPment 191

However, the philosophy of TDD applies equally well to story acceptance testing as
it does to unit testing. This is called acceptance test-driven development, and whether
it is adopted formally or informally, many teams write the story acceptance test first,
before developing the code. The acceptance tests serve to record the decisions made
in the conversation (card, conversation, confirmation) so that the team under-
stands the specifics of the behavior the card represents. The code follows logically
thereafter.

Proponents argue (correctly, we believe) that writing the acceptance test first is lean
thinking that reduces waste and substantially increases the productivity of the team.
This was illustrated best in the simple equation that Amir Kolsky, of NetObjectives,
showed on a whiteboard. As shown in Figure 10–3, Amir wrote this:3

If R
t
 is 0, of course, then there is no savings. However, we all know that R

t
 isn’t always

zero, and since finalizing the test finalizes our understanding of the required behav-
ior, why not write the test first, just to be sure?

Where:
Ct is the time to write code
Tt is the time to write test
Ht is the time to hook test

Time to complete story if you write test first

= Tt + Ct + Ht

Time to complete the story if you don’t

= Ct + Tt + Ht + Rt

Where Rt is the rework time necessary to
pass the test once the test is understood
and available.

Figure 10–3 The simple math behind acceptance test-driven development

3. Personal interaction between Kolsky and Leffingwell

Wow! eBook <WoweBook.Com>

ptg

192 chaPteR 10 � accePtance testing

aCCePtanCe test temPlate

At each iteration boundary or whenever a story is to be implemented, it comes as no
surprise to the team that they need to create an acceptance test that further refines
the details of a new story and defines the conditions of satisfaction that will tell the
team when the story is ready for acceptance by the product owner. In addition, in
the context of a team and a current iteration, the domain of the story is pretty well-
established, and certain patterns of activities result, which can guide the team to the
work necessary to get the story accepted into the baseline.

To assist in this process, it can be convenient to the team to have a checklist—a sim-
ple list of things to consider—to fill out, review, and discuss each time a new story
appears. Crispin and Gregory [2009] provide an example of such a story acceptance
testing checklist in their book. Based on our experience using this checklist, we pro-
vide an example from the case study in Table 10–1.

Table 10–1 An Acceptance Testing Example from the Case Study

Story

Story ID: US123

As a consumer, I always see current energy pricing reflected on my portal and on-premise
devices so that I know that my energy usage costs are accurate and reflect any utility pricing
changes.

Conditions of Satisfaction

1. Verify the current pricing is always used and the calculated numbers are displayed correctly on the portal and other
on-premise devices (see attachment for formats).

2. Verify the pricing and the calculated numbers are updated correctly when the price changes.

3. Verify the “current price” field itself is updated according the scheduled time.

4. Verify the info/error messages when there is a fault in the pricing (see approved error messages attached).

Modules Impacted

Pricing RESTlet API Impact: Amend protocol to allow pricing data.

In-home display Impact: Refactor pricing schedule to support pricing programs to display on the
in-home display.

Portal Impact: Refactor pricing schedule to support pricing programs to display on the
portal.

Wow! eBook <WoweBook.Com>

ptg

 automated accePtance testing 193

Documents Impacted

User guide Impact: Add new section on pricing.

Online help Impact: Update online help to reflect pricing programs.

Release notes Impact: Document defects in release notes.

Utility guide Impact: Document pricing schedule changes.

Test Case Outline

Test ID:
x Manual
® Automatic

Outline:
1. Check pricing: When there is no pricing info for a user:
2. Change of pricing:

• When there is a pricing change in all allowed ways.
• Effective in the future.
• Effective in the past before the current pricing.
• Effective in the past but later than the current pricing.

3. Our current release does not support pricing change in the middle of a billing
cycle.

4. Check the dashboard billing period consumption and the current bill to date.

Communications

Internal Involved parties: marketing, sales,
product management.

Message: This is a new marketable
feature.

External Involved parties: utilities. Message: This is a new feature to
support new programs.

Since each team is in a different context, their templates will differ, but the simple
act of creating a template as a reminder of all the things to think about benefits the
team and increases the velocity with which they can further elaborate and accep-
tance test a new story.

automated aCCePtanCe testing
Because acceptance tests run at a level above the code, there are a variety of
approaches to executing these tests, including manual tests. However, manual tests
pile up very quickly (the faster you go, the faster they grow), and eventually, the
number of manual tests required to run a regression slows down the team and
introduces delays in the value stream.

Wow! eBook <WoweBook.Com>

ptg

194 chaPteR 10 � accePtance testing

To avoid this problem, most teams know that they have to automate most of their
acceptance tests. They use a variety of tools to do so, including database-driven tests,
Web UI testing tools, and automated tools for record and playback.4 However, many
agile teams have discovered that some of these methods are labor-intensive and can
be somewhat brittle and difficult to maintain because they often couple so tightly to
the specific implementation.

A better approach is to take a higher level of abstraction that works directly against
the business logic of the application and one that is not encumbered by the presen-
tation layer or other implementation details.

Automated Acceptance Testing Example: The FIT Approach

One such method is the Framework for Integrated Tests (FIT) method created by
Ward Cunningham [Mugridge and Cunningham 2005]. This open source frame-
work was designed to help with the automation of acceptance testing in a fast-mov-
ing agile context.

The FIT approach mirrors the unit testing approach in that the tests are created and
run against the system under test, but they are not part of the system itself. FIT is a
scriptable framework that supports tests being written in table form (any text tool
will work) and saved for input as HTML. Therefore, these tests can be constructed
in the business language (input and expected results) and can be written by devel-
opers, product owners, testers, or anyone on the team capable of building the neces-
sary scripts.

Another open source component, FitNesse, is a wiki/web-based front end for creat-
ing text tables for FIT that also provides some test management capability. FIT uses
data-driven tables for individual tests, coupled with fixtures or methods written by
the developers to drive the system under test, as Figure 10–4 illustrates.

During the course of each iteration, new acceptance tests are developed and vali-
dated for each new story in the iteration, and these tests are then added to the
regression test suite. These suites of acceptance tests can be run automatically
against the system under test at any time to assure that the build is not broken by
the new code.

4. Many agilists consider the record and playback model obsolete. Elizabeth Hendrickson
notes three key reasons why traditional record and playback test automation solutions are
not agile: “(1) The test-last workflow encouraged by such tools is all wrong for agile teams.
(2) The unmaintainable scripts created with such tools become an impediment to change.
(3) Such specialized tools create a need for Test Automation Specialists and thus foster silos.”
www.infoq.com/news/2008/05/testobsessed-agile-auto-testing

Wow! eBook <WoweBook.Com>

www.infoq.com/news/2008/05/testobsessed-agile-auto-testing

ptg

 automated accePtance testing 195

Developer-
Written

Java, C++, .NET,
Python,

and So On

Developer-
Written

Java, C++, .Net,
Python,

and So On

Table 1

Input

Expected Output

Table 2

Input

Expected Output

Table 3

Input

Expected Output

Acceptance Tester Written

Energy Cost Processor

Plain-English Date Tables

System Under Test

Acceptance Test Fixtures for System Under Test

Fixture 2Fixture 1

Figure 10–4 Acceptance test framework for the costing processor

As with unit tests, the FIT approach requires continuous involvement by the devel-
opers in establishing the acceptance test strategy and then writing the fixtures to
support the test, illustrating yet again that the define/build/test team is the necessary
structure for effective agile development. As always, the team’s goal is to develop and
automate tests within the course of the iteration in which the new functionality is
introduced.

In some application domains, FIT does not provide an appropriately configurable
framework. Sometimes, teams must build custom frameworks that mirror this
approach but work in the technologies of their implementation.

In any case, whatever can’t be automated eventually slows the team down, so contin-
uous investments in testing automation infrastructure are routine items on a team’s
backlog, and like any other backlog item, they must be appropriately prioritized by
the product owner to achieve sustainable high velocity.

Wow! eBook <WoweBook.Com>

ptg

196 chaPteR 10 � accePtance testing

unit and ComPonent testing

Before we leave this chapter, we must drill down one more level into testing and dis-
cuss quadrant 1 in the agile testing picture. In quadrant 1, we see unit tests and com-
ponent tests, which are technology-facing tests as they are implemented and executed
by the development team. Together with feature and story acceptance tests, they also
complete the support development side of the agile testing picture, as Figure 10–5
illustrates.

Unit Testing

Unit testing is the white-box testing whereby developers write test code to test the
production code they developed for the system. In so doing, the understanding of
the user story is further refined, and additional details about a user story can be
found in the unit tests that accompany the code. For example, the presentation syn-
tax and range of legal values for current price field can likely be found in the unit tests,
rather than the acceptance tests, because otherwise the acceptance tests are long, are
unwieldy, and cause attention to the wrong level of detail.

A comprehensive unit test strategy prevents QA and test personnel from spending
most of their time finding and reporting on code-level bugs and allows the team to
move its focus to more system-level testing challenges. Indeed, for many agile teams,
the addition of a comprehensive unit test strategy is a key pivot point in their move

Business-Facing

Q2

Q1

Q3

Q4

Technology-Facing

Su
pp

or
tin

g
D

ev
el

op
m

en
t

Cr
iti

qu
e

Pr
od

uc
t

Automated
and Manual

Functional Tests
Story Acceptance Testing

Feature Acceptance Testing

System Acceptance Tests
Exploratory Testing

Scenario Testing
Usability Testing

User Acceptance Testing (UAT)
Alpha/Beta Testing

System Qualities Tests
Performance and Load Testing

Security Testing
“ility” Testing

Unit Tests
Component Tests

Automated Tools

Manual

Figure 10–5 Unit testing in quadrant 1

Wow! eBook <WoweBook.Com>

ptg

 unit and comPonent testing 197

toward true agility—and one that delivers the “best bang for the buck” in determin-
ing overall system quality.

The history of agile unit testing closely follows the development of XP, because XP’s
test-first practices drove developers to create low-level tests for their code prior to,
or concurrent with, the development of the code itself. The open source community
has built unit testing frameworks to cover most forms of testing, including Java, C,
C++, XML, HTTP, and Python, so there are unit testing frameworks for most lan-
guages and coding constructs an agile developer is likely to encounter.

These frameworks provide a harness for the development and maintenance of unit
tests and for automatically executing unit tests against the system under develop-
ment. Unit testing the energy cost calculator might be a matter of writing unit tests
against every object in the component, as Figure 10–6 illustrates.

The unit tests themselves are not part of the system under test and therefore do not
affect the performance of the system at runtime.

Unit Testing in the Course of the Iteration

Because the unit tests are written before or concurrently with the code and because
the unit testing frameworks include test execution automation, all unit testing can
be accomplished within the iteration. Moreover, the unit test frameworks hold and
manage the accumulated unit tests, so regression testing automation for unit tests
is largely free for the team. Unit testing is a cornerstone practice of software agility,
and any investments a team makes toward more comprehensive unit testing will be
well rewarded in quality and productivity.

Figure 10–7 shows an example of a unit test for Tendril’s energy costing module that
takes the consumer’s time-based pricing structure and runs a small sample that will
exercise many of the costing module’s pathways. This test ensures that the costing

Energy Cost
Calculator Component

Unit Test

Test

Test

Object 1

Object 2

Object Test 1

Object Test 2

Figure 10–6 Unit testing the energy cost calculator

Wow! eBook <WoweBook.Com>

ptg

198 chaPteR 10 � accePtance testing

algorithm effectively accommodates price changes that may occur at times other than
standard day boundaries. Note that many more unit tests will be required before the
costing module can be considered done. This is just one of many unit tests using the
JUnit testing platform. This unit test example is one of many associated with calcu-
lating current costing, but it is automated and is an integral part of the regression
testing package. The sample shows another useful feature in that there are comments
embedded in the test to explain what the test results are supposed to be.

Component Testing

In a like manner, component testing is used to test larger-scale components of the
system. Many of these are present in various architectural layers, where they provide
services needed by features or other components.

Testing tools and practices for implementing component tests vary according to the
nature of the component. For example, unit testing frameworks can hold arbitrarily
complex tests written in the framework language (Java, C, and so on), so many
teams use their unit testing frameworks to build component tests. They may not
even think of them differently.

Acceptance testing frameworks, especially those at the level of http Unit and XML
Unit, are also employed. In other cases, developers may use testing tools or write
fully custom tests in any language or environment that is most productive for them.

 @Test

 public void testDailyCost_MultiplePrices() {

 List<ConsumptionValue> consumptionValues = new ArrayList<ConsumptionValue>();

 consumptionValues.add(new ConsumptionValue(TUESDAY_NOON, new Double(100)));

 consumptionValues.add(new ConsumptionValue(THURSDAY_NOON, new Double(200)));

 List<TemporalPrice> prices = new ArrayList<TemporalPrice>();

 prices.add(new TemporalPrice(new BigDecimal(".10"), SUNDAY, FIXED_PRICE));

 prices.add(new TemporalPrice(new BigDecimal(".25"), WEDNESDAY_NOON, FIXED_PRICE));

 DailyConsumptionHistory dailyConsumptionHistory =

 new DailyConsumptionHistory(new DayRange(SUNDAY, 7), consumptionValues, prices);

 DailyCost dailyCost = dailyConsumptionHistory.getDailyCost(new Day(WEDNESDAY_NOON));

 assertNotNull(dailyCost);

 /* First half of Wednesday is .10 / kWh, second half is .25 / kWh */

 /* 50 kWh burned that day = 25 * .10 + 25 * .25 = 2.50 + 6.25 = 8.75 */

 assertEquals(new BigDecimal("8.75"), dailyCost.getCost());

}

Figure 10–7 A sample unit test from the case study
Thanks to Ben Hoyt of Tendril for this example.

Wow! eBook <WoweBook.Com>

ptg

 summaRy 199

summary

In this chapter, we described acceptance testing as an integral part of agile require-
ments management. If a requirement (feature or story) is not tested, unless it’s sim-
ply work in process, which we indeed try to minimize, it doesn’t really have any
value to the team or to the user. With this discussion, we described the agile testing
approach to assure that each new story works as intended, as it is implemented. This
covers quadrant 2, functional testing of the agile testing matrix.

We also described the testing necessary to assure systematic quality from the per-
spective of quadrant 1, unit and component tests. Unit tests are the lowest level of
tests written by the developer to assure that the actual code (methods, classes, and
functions) works as intended. Component tests are higher-level tests that are writ-
ten by the team to assure that the larger components of the system, which aggre-
gate functionality along architectural boundaries, also work as intended. We also
described how the team must endeavor to automate all the testing that is possible
or else they will simply build a pile of manual regression tests that will eventually
decrease velocity and slow down value delivery.

In Chapter 17, Nonfunctional Requirements, we’ll describe acceptance testing prac-
tices associated with quadrant 4—system qualities tests.

Wow! eBook <WoweBook.Com>

ptg

This page intentionally left blank

Wow! eBook <WoweBook.Com>

ptg

 201

Chapter 11

role of the ProduCt owner

What’s in a name? That which we call a rose, by any other name would smell
as sweet.

—Shakespeare, Romeo and Juliet, Act 2, scene 2

is this a new role?
In Chapter 1, we described the evolution of agile methods over the past decade or
so, noting that when it comes to market share at least, the market is currently domi-
nated by Scrum, followed by a Scrum/XP hybrid, then XP, then custom methods,
then agile unified process, and so on. We are also seeing a growing influence of lean-
agile hybrids and lean-kanban (and Scrum+Kanban) implementations. So, while
the market is maturing, agile methods continue to flourish. That has both positives
(advancing practices, new methods, increasing scale) and negatives (differing prac-
tices hinder standardized adoption) for the industry.

In all these methods, as well as in traditional requirements practices, it has always
been clear that someone, or some small group of someones, must have a definitive say
as to what the relative priorities for the solution requirements are. This focuses the
team on the highest-value work and minimizes thrashing, wherein team members
receive conflicting inputs from multiple sources.1 In that case, they can’t possibly sat-
isfy all the stakeholders, so frustration and dissatisfaction are the likely outcomes.

In Scrum, the responsibility for these activities falls on the role of the product owner,
and these responsibilities are well articulated in Scrum trainings. However, we also
recognize there are various other titles ascribed to this role. For example, it has been
called a product champion [Leffingwell and Widrig 2000, 2003, Shalloway 2010]. In
XP, the role is the responsibility of the on-site customer. In IT shops, it’s typically the
business analyst who has those responsibilities.

The product owner title and responsibilities, as largely defined by Scrum, are emerg-
ing as the default standard for the role and function in many agile implementations.

1. In one pre-agile implementation, we asked a developer where they got their input for what
to do. The answer was, the project manager, tech lead, system architect, engineering man-
ager, product manager, and program manager. Six sources, one developer. What’s wrong
with this picture?

Wow! eBook <WoweBook.Com>

ptg

202 chaPteR 11 � RoLe of the PRoduct owneR

This is a healthy trend because it simplifies agile adoption. Also, the availability of
specialty training for that role improves the team’s skills in prioritizing and elabo-
rating requirements. In turn, this empowers teams to take stronger control of their
destiny and ultimately increases the velocity of the team by accelerating local deci-
sion making. However, as agile scales to larger programs and to the enterprise, there
are some challenges with the role as defined in Scrum, and some modifications are
typically necessary.

PersPeCtives on dual roles of ProduCt owner and ProduCt
manager

As we described, the Scrum product owner is responsible for the following:

Representing the interests of everyone with a stake in the resulting
project . . . achieves initial and ongoing funding by creating the initial
requirements, return on investment objectives and release plans
[Schwaber 2007].

But the product owner’s responsibilities don’t end with the previous broad state-
ment. At the same time, the product owner is a resident of the ideal Scrum team, as
Figure 11–1 illustrates.

Developer Developer
7 ± 2 Members

Co-located

Dedicated

Focused

Cross-functional

Self-organizing

Ideal Team Characteristics

Developer

Tester

Tester

Product
Owner

Scrum Master

Figure 11–1 An ideal Scrum team

Wow! eBook <WoweBook.Com>

ptg

 PeRsPectives on duaL RoLes of PRoduct owneR and PRoduct manageR 203

As shown in the figure and as it follows in support of Agile Manifesto principle #4
(Businesspeople and developers must work together daily throughout the project),2 the
product owner is ideally co-located with the team and participates daily with the
team and its activities.

We also note the “7 ± 2 members” recommendation for the ideal team. Having
experimented with larger teams, mostly unsuccessfully, we support this recommen-
dation as well. Further, the Scrum product owner has additional tactical activities:

Setting objectives for the sprint (or iteration)��
Prioritizing and maintaining the backlog��
Participating in the sprint planning meeting��
Elaborating stories on a just-in-time basis with the team��
Accepting stories into the baseline��
Accepting the sprint��
Driving release planning��

In summary, there are two primary sets of responsibilities that can be implied from
the previous.

Responsibility set #1:�� The product owner sets the Vision and product objec-
tives, manages the ROI, defines pricing and licensing policies (which can
impact the implementation), and works with marketing to position the
product in the marketplace.
Responsibility set #2:�� The product owner is a member of the team and works
daily with developers and testers to elaborate stories and help the team meet
its objectives.

Given these responsibilities, when Scrum is introduced into a larger enterprise con-
text, there often occurs a role and paradigm mismatch between the Scrum teachings
and the existing organization’s structure. Specifically, the enterprise is certain to
already employ product managers or business analysts who have the requisite skills,
training, and existing responsibilities for responsibility #1.

They work directly with customers; their responsibilities include product ��
definition, and their reward system may contain an ROI element.
They are trained professionals.�� 3 They have experience in the broader domain
of defining and launching successful products.
They have extensive domain and marketing knowledge.��
They have influence and authority over what gets built and why.��

2. Agile Manifesto, http://agilemanifesto.org
3. See, for example, the Pragmatic Marketing Institute: www.pragmaticmarketing.com.

Wow! eBook <WoweBook.Com>

www.pragmaticmarketing.com
http://agilemanifesto.org

ptg

204 chaPteR 11 � RoLe of the PRoduct owneR

This can create a significant conflict with a Scrum rollout, a conundrum that is now
being addressed by both sides.

From the Scrum community:�� As Scrum advances into enterprise settings, the
Scrum community is expanding its view of Scrum to include more of the
outbound nature of the role, including market research, defining pricing
and licensing policies, and so on. This can be seen in books such as Pichler’s
Agile Product Management with Scrum [2010] and the newer Scrum Certi-
fied Product Owner courses. There, we are also seeing the introduction of a
new Scrum product owner hierarchy, including the newly invented roles of
product line owner and chief product owner.
From the professional software product management community:�� To those in
the independent software vendor (ISV) product management and product
marketing community, this looks like a new version of “barbarians at the
gate,” whereby the development community is attempting to extend their
control into areas where they lack competence, background, and training. To
them, Scrum is a process, built by developers for developers. Who says that
these processes and new roles will now be used to drive product definition
and policy? In one pointed article, for example, Rich Mironov says this:4

Product Managers are responsible for the overall market success of their
products, not just delivery of software. In the agile world, a new title is
emerging—the Product Owner—which covers a small subset of the Product
Management role. While this makes sense for internal IT groups that have
traditionally gone without Product Managementagile product com-
panies need full-fledged Product Managers to drive strategic activities and
manage organizational/external participation.

Given this dichotomy, the enterprise appears to have two choices: Option #1 is
that product management will pick up the additional, tactical responsibilities of
the Scrum product owner, and option #2 is that individuals from the development
teams will be trained to become product owners and assume ROI and product defi-
nition of responsibilities. Experience has shown that neither of these is options par-
ticularly effective.

Option #1:�� When product managers assume the roles of product owners,
there are many issues.

It doesn’t scale. There may be a significant number of agile teams that ��
now require this intense, daily tactical support. There are typically not

4. www.enthiosys.com/insights-tools/pm-prod-owner/

Wow! eBook <WoweBook.Com>

www.enthiosys.com/insights-tools/pm-prod-owner/

ptg

 PeRsPectives on duaL RoLes of PRoduct owneR and PRoduct manageR 205

nearly enough product managers to go around.5 And they were quite
busy before agile came to their enterprise. Current Scrum guidance is
“one team-one product owner” [Cohn 2010], so where would all these
new product owners come from?
Even if you had enough product managers to fill the roles, they may be ��
ill-suited, ill-inclined, and downright uninterested in these increasingly
technical and development team-bound responsibilities. For those with
a thicker skin, see the footnote from the Cranky Product Manager blog
(but remember, we did say “cranky”).6

Product managers often have insufficient technical depth and interest to ��
add significant value to the team’s highly technical language, activities,
and responsibilities.

In summary, option #1 doesn’t always work, so let’s try option #2.

Option #2:�� Newly provisioned team-based product owners assume some of
the responsibilities of the product managers. Again, there are issues.

There is now an overlapping set of responsibilities, including the most ��
important one, “Who decides what the product is supposed to do?”
What a fun place to foster more conflict in the enterprise!
Team-based product owners are unlikely to be trained or skilled in the ��
other aspects of the traditional product manager role. What makes us
think they would be very good at it? If they wanted to live with market-
ing and customers, wouldn’t they already be in another role?

Option #3:�� Fortunately, there is another choice: dual agile roles. Many enter-
prises take a more refined approach, one that supports dual roles of agile
product manager and agile product owner, as Figure 11–2 illustrates.

5. In one project, prior to agile, there were six product managers supporting approximately 250
developers, which became about 30 agile teams. That didn’t work very well to begin with.
Then, when one of the most talented product managers went on maternity leave, it didn’t
work at all.

6. “[Some] argue that in Scrum the product manager is the same as the Product Owner, and
therefore the Cranky Product Manager needs to be constantly available to the team in order
to make on-the-spot decisions within minutes of the asking. Ergo, you demand the Cranky
Product Manager sit in that sticky-note-encrusted, windowless tomb with you all . . . day. Uh,
no way. Not gonna happen. Why not? Because the Cranky Product Manager needs to be the
Voice of the Customer and the Voice of the Market. How is she to do that without actually
VISITING some customers and prospects? And VISITING means that she actually needs
to leave the office, hop on airplanes, and fly far, far away.” http://crankypm.com/category/
agile-scrum/

Wow! eBook <WoweBook.Com>

http://crankypm.com/category/agile-scrum/
http://crankypm.com/category/agile-scrum/

ptg

206 chaPteR 11 � RoLe of the PRoduct owneR

Market-Facing

Solution-Facing

Product
Owner

Product Manager

Figure 11–2 Dual roles of product owner and product manager

The �� market/customer-facing product managers continue in their role along
with most of their existing responsibilities, but they also evolve a far more
agile set of practices, including taking on a tighter relationship with the devel-
opment teams.
The �� solution/product/technology-facing product owner role is assumed either
by the more technically inclined product managers or business analysts or
by development team members who are interested in that new role; they
assume the agile team product owner responsibilities but also take on a
tighter relationship with product management.

We strongly advocate option #3. We believe that this puts the right people in the
right roles—team-based product owners who work their wonders with the technol-
ogy; market-based product managers who work their wonders in the market—and
it does so with minimum disruption to the enterprise’s existing organization.

The Name Game: Experimenting with
the Product Owner Role/Title

Given this bit of confusion, the loaded role/title and implied responsibilities of a new
“product owner” can portend a small crisis in the prospective agile enterprise adopt-
ing Scrum. One way to address this problem is by changing the title of the person
assuming the role. For example, the product owner role may be assumed by the exist-
ing role and title of the business systems analyst. Or, the historical title of requirements
analyst may be assigned to the role. In another case, a new title/role of requirements
architect was invented, primarily to avoid conflict with existing titles role and respon-
sibilities. In still other cases, a small product owner team may be created.

Of course, none of these fits every context perfectly, and changing the title of the
product owner role is probably more trouble than it’s worth, since it isn’t reflected
in agile literature or trainings.

Wow! eBook <WoweBook.Com>

ptg

 ResPonsiBiLities of the PRoduct owneR in the enteRPRise 207

Table 11–1 Agile Product Manager and Product Owner Roles and Responsibilities

Agile Product Owner Agile Product Manager

Product/technology-facing Market/customer-facing

Co-located and reports into development/technology Co-located and reports into marketing/business

Focuses on product and implementation technology Focuses on market segments, portfolio, ROI

Owns the implementation Owns the Vision and Roadmap

Drives the iterations Drives the release

Our Conclusion: Apply the Dual Roles

Throughout this book, we’ll operate under the “option #3, dual role” assumption,
and we’ll use the generic term product owner for the development team–based role
and ascribe a subset of the Scrum product owner responsibilities to it.

We’ll also use the generic, traditional role and title of product manager (you can sub-
stitute business analyst for IT shops), but we’ll also describe how this traditional role
has to assume a new set of responsibilities to enable the agile enterprise.

However, no matter the choice of labels, enterprises should assign the people they
think will be most effective in fulfilling the responsibilities and call them whatever
makes the most sense in their context.

Given our assumption, we suggest that Table 11–1 is a reasonable division of respon-
sibilities for the dual roles to support the agile development.

In this fashion, the agile product manager assumes (or continues) most of the out-
bound and ROI responsibilities; the agile product owner assumes the product/tech-
nology/development team-facing responsibilities.

In this chapter, we’ll describe the responsibilities and activities of our generic prod-
uct owner. In Chapter 14, we’ll do the same for the product manager role.

resPonsiBilities of the ProduCt owner in the enterPrise

Within this context, the responsibilities of the product owner can be divided into
five primary areas:

Managing the backlog��
Performing just-in-time story elaboration��

Wow! eBook <WoweBook.Com>

ptg

208 chaPteR 11 � RoLe of the PRoduct owneR

Driving the iteration��
Co-planning the release��
Collaborating with product management��

We’ll describe each of these in the following sections.

Managing the Backlog

In Chapter 3, we described the team’s (project) backlog as the primary organizing
technique for all the to-do work. Because it is the primary artifact that helps the
team control and prioritize their work, it’s hard to overstate the value of this sim-
ple construct. Although the backlog primarily contains user stories, it also contains
other work that the team needs to do to complete the current release as well as build
architectural runway for future releases.

Building the Backlog

With input from the stakeholders (Chapter 7), the product owner has the primary
responsibility to build, prune, and maintain the backlog. Since teams use the backlog to
capture and manage all their work, any team member can put something in the back-
log, so the resultant backlog is likely to include a number of different types of things.

User stories:�� The primary content consists of the user stories that have been
defined to deliver value. As such, the user story content constitutes the prod-
uct definition, and it can be sourced a number of ways:

Teams work directly with stakeholders to understand solution require-��
ments. Product owners and product managers use a variety of discovery
techniques to determine these requirements; that is the subject of the
next chapter.
User stories will be defined during release planning. Features are pre-��
sented at release planning boundaries; teams decompose features into
the various stories they will need so that the feature, in aggregate, can be
implemented.

Defects:�� Defects are generally obvious to the team; they may have found the
defects themselves in their testing, or they may have been reported from sup-
port or from the customers. They are kept in the backlog so as to be priori-
tized with all the other work.
Refactors and technical debt:�� The backlog will also typically contain a list of
refactors (rework) items that need to be done to improve the quality, main-
tainability, and extensibility.
Infrastructure work:�� The teams may also have responsibility for building the
internal tooling and infrastructure they need for their agile development prac-
tices. Since this takes capacity, this work must also be visible in the backlog.

Wow! eBook <WoweBook.Com>

ptg

 ResPonsiBiLities of the PRoduct owneR in the enteRPRise 209

Prioritizing the Backlog

In general, the topic of prioritizing the backlog is a tricky one, because many nonquan-
titative and (many times, arguable) factors potentially enter into determining priorities.
These can include the user value of a thing, the penalty for not doing the thing, the risk
of doing the thing, the cost of doing the thing, and the potential financial return for doing
the thing. When it comes to prioritizing the program-level features that drive the project
teams and ultimately determine the overall fitness for use, we’ll need a way to prioritize
features based on economic value. We’ll provide a method for doing so in Chapter 13.

However, in the context of a product owner facing a near-term iteration boundary,
the problem of prioritizing stories for an iteration is less daunting. This is because
there is current context to help in the decision making.

The goals for the next iteration should be clear (from the release plan).��
The results of the last iteration are known.��
The backlog contains things that are roughly the same size (that is, small ��
enough to fit a few of them into an iteration). Therefore, we don’t have to
prioritize huge things against small things (in other words, the size of the
story doesn’t really matter in this context).
The scope of the prioritization problem is limited to just the next iteration; the ��
team doesn’t have to be right forever, just right enough for the next iteration.

In other words, the team has localized, current context in which to make priority deci-
sions. The product owner can probably set these priorities fairly easily with knowledge
of this context and a Vision of where the team needs to be a few iterations later.

For example, as is illustrated in Figure 11–3, we see a backlog that has defects at a
high priority, user stories ranked on a relative basis, and then more defects, and so
on, further down the priorities list.

Figure 11–3 A prioritized iteration backlog

Wow! eBook <WoweBook.Com>

ptg

210 chaPteR 11 � RoLe of the PRoduct owneR

A Richer Scheme for Prioritizing the Backlog

However, when the situation is a little more complex and the decisions are not so
obvious, we suggest a simple rating system that rates each backlog story on three
factors.7

Independent user value:�� This attribute rates the value of the story to the user,
relative to other stories in the backlog. The product owner can usually just
set this from domain knowledge.
Iteration/(time) value:�� Another consideration is how the story will help the
team meet its objectives for the current iteration. Also, because program
commitments are dependent on individual teams meeting their itera-
tion objectives and there are interdependencies among teams, this value is
important both to the team and to the program.
Risk reduction:�� The final factor is the value of the information that may be
discovered—information that reduces risk in future development activities.

With this system, coming up with the total value (weighted priority) of a backlog
item can be as simple as, for example, adding the values assigned to each of these
factors, as Table 11–2 shows (the scale is 1 to 9).8

Table 11–2 Rated, unsorted, and sorted backlog items

Unsorted Independent Iteration Risk Reduction Weight

Story US17 6 4 2 12

Story US32 8 2 1 11

Spike 43 2 5 7 14

Defect DE311 6 2 1 9

Story US53 5 5 6 16

Sorted

Story US53 5 5 6 16

Spike S43 2 5 7 14

Story US17 6 4 2 12

Story US32 8 2 1 11

Defect DE311 6 2 1 9

7. These are all elements of the “cost of delay,” which we’ll introduce more formally when we pri-
oritize features in Chapter 13.

8. We used a simple sum, but each attribute can be weighted as well.

Wow! eBook <WoweBook.Com>

ptg

 ResPonsiBiLities of the PRoduct owneR in the enteRPRise 211

From the table, we can see that story US53, which was lowest on the ordinal list,
became the highest-ranked story for the next iteration. Spike S43, which doesn’t
deliver much user value, was elevated to the second position, based on the high
value the team placed on risk reduction.

Just-in-Time Story Elaboration

In the context of an iteration timebox with a set of priorities and an iter-
ation objective, developers and testers take their objectives seriously, and
they do not like it when they fail to meet them. In practice, countless
iteration retrospectives have surfaced this common feedback:

We failed to deliver the stories that weren’t understood before we
committed.9

Therefore, once the priorities are clear, it’s likely that some of the stories
in the backlog are going to need additional work before the team is com-
fortable putting them in the iteration. In other words, it’s time for the
conversation and confirmation parts of our card, conversation, and confir-
mation metaphor.

From a timing perspective, there are three opportunities to do this.

Prior to the iteration:�� These can often be discussed during a regular feature
preview meeting (see Chapter 9) wherein the product owner discusses stories
that are anticipated for upcoming iterations.
During the iteration planning meeting:�� The team can take the time during
planning to discuss the story itself and to understand the acceptance criteria.
Some teams spend significant time in order to do this. If a team cannot be
comfortable enough to commit to the story before the meeting is over, then
there are two options: postpone the story and have the product owner take
the action to clarify the story before the next iteration, or put in a spike to
“figure out the story” in the current iteration so that the story can be imple-
mented in a later iteration.
During the iteration:�� Lastly, if the team is sufficiently confident that the story
can be implemented within the iteration or if the story is a relatively lower
priority, then the conversation can happen during the iteration. Of course,

9. We once had the experience of working with a proud and capable developer, new to agile,
who took his personal commitments seriously. In one iteration, he wrote a detailed, four-page
narrative of how an apparently simple story blew up on him to take most of an entire itera-
tion. His point was, “I couldn’t possibly have anticipated this; how am I supposed to estimate
anything?”

As a <role>,
I can <activity>

So that <business value>

Details in discussion
between PO and team

A list of what will make
the story acceptable
to the product owner

Wow! eBook <WoweBook.Com>

ptg

212 chaPteR 11 � RoLe of the PRoduct owneR

at that point, the risk of not completing the story is material; however, that is
often an acceptable case for teams that have good knowledge of the domain.

In any case, how the team addresses story maturity on a just-in-time basis depends
on the risk of the particular story and how the team addresses risk, as shown in
Figure 11–4.

You can see from this figure that the probability of completing a story is propor-
tional to how well the story is understood by the team prior to including the story
in an iteration commitment. However, the story can’t be too well elaborated prior
to meeting a likely iteration boundary, since the team can’t be certain it will actu-
ally be implemented. Instead, it could be “trumped” by a higher-priority story, or
the nature of the story itself may have evolved after it was elaborated, which creates
waste. In this case, just-in-time is just agile common sense.

Driving the Iteration

In Chapter 9, we described the iteration itself at length. For context, the basic itera-
tion pattern is repeated here in Figure 11–5.

Scenarios:
A) Story Not Elaborated Prior to Iteration Boundary
B) Story Discussed at Iteration Preview
C) Story Pre-elaborated and Discussed at Iteration Preview

Iter n − x Iter n − 1 Iter n Iter n + 1

Pl
an

ni
ng

Ite
ra

tio
n

Pr
ev

ie
w

Pl
an

ni
ng

Co
m

pl
et

io
n

Pr
ob

ab
ili

ty

0%

100%

C

B

A

Very Likely to
complete

Likely to
Complete

Less Likely to
Complete

Figure 11–4 Probability of completion as a function of story maturity

Wow! eBook <WoweBook.Com>

ptg

 ResPonsiBiLities of the PRoduct owneR in the enteRPRise 213

Iteration Backlog

Story A

Story A

A

D

B

Story C

A

D

B

Story E

A

D

B

Fixed Time (Iteration)

Story B

Story C

Story D

Story E

Legend:
D = Define
B = Build
A = Accept

Re
vi

ew

Pl
an

Fi
xe

d
Re

so
ur

ce
s

Story B

A

D

B

Story D

A

D

B

Figure 11–5 Basic iteration pattern

Since every iteration delivers some incremental value and value is in the eye of the
beholder (in this case, the product owner), the product owner will be integrally
involved in this process.

Preparation for Iteration Planning

The planning meeting is an important ceremony for the team. Given that the
objective is to agree on the content for the upcoming iteration, some preparation is
required.

Further elaborate higher-priority stories as necessary. ��
Prepare a draft objective.��
Coordinate any common objectives and dependencies with other product ��
owners and product managers.
Review and reprioritize the backlog. This includes stories that ��

Were already in the backlog��
Failed acceptance in the prior iteration��
Are generated from defects or bugs��

Consider necessary refactorings, defects, constraints, and dependencies.��
Understand the team’s velocity for the upcoming iteration.��

With this preparation in hand, the product owner is ready to participate in an
intense, productive, and timeboxed planning meeting.

Wow! eBook <WoweBook.Com>

ptg

214 chaPteR 11 � RoLe of the PRoduct owneR

The Planning Meeting

The product owner begins the meeting by reviewing the objective for the iteration.
Thereafter, the process is as follows.

The product owner presents a backlog item for discussion.��
The team discusses each item until it is well enough understood for the ��
development team to detail and estimate the engineering tasks necessary to
implement the story.

As we described in the previous chapter, this process is repeated for each story on
the backlog until the team runs out of capacity.

At that point, the team reviews the stories against the objectives and revises the
objectives or the stories as necessary. Therefore, the final, agreed-to scope of the
iteration is typically the result of some negotiation between the product owner and
the development team.

Iteration Commitment

The result of the meeting is an iteration plan that contains the following:

A committed iteration objective��
A prioritized list of stories with estimated tasks and owners��

In any case, however, the product owner’s primary role and goal is to help position
the development team for success in the iteration. For if they fail, they fail together.

Executing the Iteration

Thereafter, the primary responsibility for successfully executing (“landing”) the
iteration lies with the development team. The team members deliver the stories to
the code baseline in priority order.

Define:1. Elaborate the story and its acceptance test.
Build:2. Build the code and the test.
Test:3. Get the code to pass the test and ready for final acceptance.
Accept:4. As soon as a story is ready, it should be reviewed by the product owner.
If accepted, the story is done. If not, the story definition, code, or acceptance
test must be revised, and then the story is presented again.

NOTE�³ Whenever possible, do this serially; otherwise, the entire acceptance process is deferred until
the end of the iteration. The result is that the team may tend to “waterfall” the iteration, leaving

Wow! eBook <WoweBook.Com>

ptg

 ResPonsiBiLities of the PRoduct owneR in the enteRPRise 215

all stories for acceptance on the last day, and nasty surprises are a likely result. Occasionally,
however, there are stakeholders in addition to the product owner who may need to provide final
acceptance of the story, so this is not always practical.

This cycle repeats until the end of the timebox, with an objective of getting all sto-
ries completed and accepted. During this time, the primary responsibility for com-
pleting all the stories rests with the development team members. As a member of
the team, the product owner has a critical daily role as well.

Work with developers and testers to elaborate each story.��
Re-scope where necessary to better meet the iteration objectives.��
Attend the daily stand-ups.��
Review stories that are ready for acceptance.��
Accept those stories that pass the acceptance criteria.��

Iteration Review

At the end of the iteration, a demo of the working, integrated software is held for all
interested stakeholders. The format is as follows:

Presentation of each story by the responsible party��
Discussion and feedback with stakeholders��

Based on stakeholder review and team feedback, the product owner may move the
story to “accepted state” (if it wasn’t already) or leave the story in the backlog if
incomplete.

At the end of the review process, the product owner reviews the objectives of the
iteration and decides whether to accept the iteration or not based on how well the
team (inclusive of the product owner) did against the stated objectives.

Retrospective

The final activity is the retrospective, where the team takes the time to reflect on and
assess the results and then adapts the development process accordingly. The prod-
uct owner participates, just like every other team member.

A Product Owner's Iteration Calendar

Taken together, the activities and meeting commitments can fill up a product own-
er’s daily diary pretty well, as Figure 11–6 indicates.

Wow! eBook <WoweBook.Com>

ptg

216 chaPteR 11 � RoLe of the PRoduct owneR

Iteration N − 1 Iteration N (Two Weeks)
Day 1 Day 2–9 Day 10

Commitment Demo
Retrospective

Iteration Planning

Prioritize and
Elaborate the

Backlog

Daily Stand-up Daily Stand-up

Collaborate: Define
and Accept Stories

Day 6
Feature Preview

Figure 11–6 A product owner’s typical schedule

The Problem of Technical Debt and the Value Stream

Agile is an empowering software development model, and it often creates a sense
of excitement and reward for rapidly delivering value. However, this energy level—
coupled with an “insane focus on value delivery”—can become problematic over
time. This can happen when the team feels intense pressure to continually meet new
value delivery commitments. In doing so, they may slip (or fail to improve) their
quality engineering practices. This is the “tyranny of the urgent, iteration style.” In
the process, the team may accumulate technical debt, as illustrated in Figure 11–7.

For example, some new code may not have automated test coverage or adequate
documentation. Perhaps it is more complex than it needs to be because the team
couldn’t afford the time to clean it up.

Iteration 1 Iteration 2 Iteration 3

Technical
Debt

Technical
DebtTechnical

Debt

Figure 11–7 Accruing technical debt from iteration to iteration

Wow! eBook <WoweBook.Com>

ptg

 ResPonsiBiLities of the PRoduct owneR in the enteRPRise 217

Now, because it’s inadequately documented and complex, it’s going to be harder to
maintain. It’s also hard to refactor without introducing bugs because there aren’t
automated tests to determine whether the system still works as required. Systemi-
cally, the development process will become less lean as more time is spent on over-
head, defects, and other forms of development waste.

Just like credit card debt, if you keep racking it up, it could eventually cause the
project to default.10 Because the team is now working slower, the team may be falling
further and further behind. And if they are not able to finish everything by the end
of the iteration, they rack up even more debt. Product owners see this as the team
getting less done in each iteration than they were earlier, even though they may have
had fewer people back then.

Paying Down the Debt

Reducing technical debt is similar to getting out of credit card debt and is psycho-
logically just as hard. The first step is cut up the credit cards—simply refuse to accrue
any more technical debt from this time forward. Instead, demo only things that meet
the real definition of done, even if this means the team can’t claim credit for every-
thing they thought they would. This takes a certain degree of courage and is prob-
ably something to do right after a major release, rather than just in front of one.

What’s a Product Owner to Do?

Since the product owner sets the priorities, they must be part of the solution. When
a team pushes back on getting stories done “right,” the product owner has to listen
and adapt. After all, velocity may now be decreasing—so it is in the product owner’s
best interests to take corrective action and start allowing additional investment in
defects, infrastructure, refactors, and so on.

When the team says “We could do it the fast way, or we could do it the right way,”
listen. Discuss what it means in terms of building more technical debt. Generally, a
team should be able to devote as much as 15% of its ongoing capacity to work that
accelerates future, rather than current, velocity.

Co-planning the Release

Of course, the iterations serve a larger purpose—frequent, reliable, and continu-
ous release of value-added software to the customer or marketplace, as Figure 11–8
indicates.

10. Thanks to Pete Behrens for the credit card analogy.

Wow! eBook <WoweBook.Com>

ptg

218 chaPteR 11 � RoLe of the PRoduct owneR

Systems, Applications, Products

Te
am

 B
ac

kl
og

System Team

Re
le

as
e

Pl
an

ni
ng

Nonfunctional
Requirements

Feature 1

Feature 2

Release Planning

Arch 1

Re
le

as
e

(o
r P

SI
)

Pr
og

ra
m

 B
ac

kl
og

Release Theme and Objectives

Roadmap

Vision

Release Management

Product
Management

Figure 11–8 The objective is to “release”

As we will discuss in Chapter 16, release planning is the seminal enterprise event that
regularly aligns the teams to a common Vision. The product owner must be well
prepared for that event by

Updating the team’s local backlog��
Meeting with other product owners to understand overall system status��
Meeting with product managers to understand the Vision for the upcoming ��
release
Briefing the team on the upcoming release objectives��

During the release planning event, the product owner will typically

Help identify, prioritize, and estimate stories that will be necessary to achieve ��
the release objectives
Help design the release plan by laying the stories into iterations��
Participate in the team’s discussion, impediment, and risk identification��
Identify and coordinate dependencies to ensure a cohesive solution��
Participate in refining the release objectives and making a commitment to ��
the release

Once the release plan is committed, the product owner assumes the responsibility
with the team to deliver on each iteration’s objectives. If all teams meet their itera-
tion objectives, then the release will go out on time.

five essential attriButes of a good ProduCt owner

In this chapter, we’ve seen that the product owner, whether as applied in Scrum per
se or as we have applied it more generically, is a key figure in our agile requirements

Wow! eBook <WoweBook.Com>

ptg

 five essentiaL attRiButes of a good PRoduct owneR 219

process. While the ultimate velocity of the team depends on many factors, the ability
for the team to quickly determine what the system is supposed to do hinges on this
important role. Given that importance, we’ll take a moment to characterize the key
skills and attributes of someone who is likely to be successful in this role.11

 �� Communication skills: The product owner
is the “glue” that binds the product man-
agement function and all the other project
stakeholders to the development team.
Doing so requires good communication

skills because the product owner translates user and business objectives into
the level of detail suitable for implementation. Moreover, the product owner
will almost certainly be involved in customer demonstrations, sales support,
and other outbound activities, so customer skills are beneficial.

Good business sense:�� Agile’s focus on value delivery also demands that prod-
uct owners have working knowledge of the business domain. In this way,
the product owner can better understand and define user stories that deliver
real value to the end users and establish priorities and appropriate trade-offs
for system functionality and performance. In addition, they have their own
business’s best interests at heart, and with this knowledge, they can make
decisions that balance the customers’ and business’s needs.
Technical foundation:�� Effective scope triage requires the constant evaluation
of technical, functional, performance, and user-value trade-offs. In turn, this
requires a degree of technical competence, because the foundation for effec-
tive decision making is an understanding of the technology. In addition, the
ability to intelligently prioritize refactors, defects, and technical debt versus
new value stories requires empathy and respect for the technical challenges
the team faces.
Decisive:�� At the pace of agile development, no decision (even if the decision
is a clear “no decision for now”) is worse than any other kind. The product
owner must be able to make decisions, every day, in the presence of far-
from-perfect knowledge. This requires empowerment, courage, and the
ability to admit when one is wrong. This is agile after all—you’ll get another
whack at it if you need it.
Trustworthy:�� Since the primary responsibility for prioritizing and managing
the backlog (that is, what will and will not be done) falls to this role, the most
essential attribute of the product owner is trustworthiness. The teams have to

11. In Succeeding with Agile: Software Development Using Scrum [Cohn 2010], Mike describes a
similar set of five attributes as “ABCDE”: available, business-savvy, communicative, decisive,
and empowered. We’ve assumed availability and empowerment throughout, by virtue of the
one product owner–one team design.

Product Owner

Collaboration

Product Manager

Wow! eBook <WoweBook.Com>

ptg

220 chaPteR 11 � RoLe of the PRoduct owneR

trust the product owner to make the hard calls on scope triage and to defend
their interest in quality and functionality; the product managers have to trust
the product owner to faithfully represent their feature priorities to the teams.
The keys to building trust in this role include transparency, honesty, meeting
commitments, and admitting when you are wrong.

CollaBoration with ProduCt managers

Although the release planning event is one structured and routine collabora-
tion opportunity, enterprise agility is most effective when product owners have a
far more closely coupled relationship with product management. To help address
this problem, we often recommend that product owners “report on a fat dotted
line” into the product management team, even if they are in the development line
organization.

From a line-management perspective, product owners

Are co-located with the team��
Share managers, incentives, and culture with development��
Should be rewarded based on how the team as a whole performs��

But they are also honorary members of the product management organization.
Here, they

Receive overall product direction��
Attend most relevant PM meetings, functions, and planning sessions��
Receive input with respect to career growth and performance��

In fact, product owners live in two teams—the development team and the extended
product management team. Neither team is less or more important than the other.
And for either to succeed, they must both succeed, so there can be little or no politi-
cal infighting within the system. It’s not an easy job.

Making this work fairly seamlessly creates its own set of challenges but is a worthy
endeavor for the enterprise. Jennifer Fawcett notes this:12

Creating the ultimate product team does not come without emotional
challenges of adopting, coaching, and nurturing this high-performing team.
Past processes, roles, and behaviors do not change overnight.

12. www.agileproductowner.com

Wow! eBook <WoweBook.Com>

www.agileproductowner.com

ptg

 PRoduct owneR BottLenecks 221

ProduCt owner BottleneCks: Part-time ProduCt
owners, ProduCt owner Proxies, ProduCt owner teams

The product owner is the linchpin to the timely flow of value, the overall productiv-
ity of the team, and the overall quality of the solution. If a story can’t be elaborated,
then implementation will be poor or delayed. If it is elaborated badly, then it will
need to be reworked before it fulfills the real user need. If the product owner is
unavailable, then stories can’t be reviewed and accepted into the baseline.

In situation after situation, we’ve discovered a common, limiting factor, a root cause
of agile development challenges: insufficient depth and competence in the critical
product owner role.

Product Owner Proxies

In these situations, we often find a single product owner supporting as many as
three to five teams, a line manager as a product owner proxy (and sometimes, unfor-
tunately, telling people both what to do and how to do it), product managers flexing
“down” to the technical details of the role (often doing a poor job because of inter-
est, experience, or inclination, and sometimes failing in their other responsibilities
at the same time), and a variety of other workarounds.

Product Owner Teams

In some organizations, the bottleneck is so severe or the decision-making process is
so broken that a product owner team is formed. This can help, because it adds capac-
ity, but it can hurt just as easily—decisions bounce from team member to team
member, or individual developers get different answers from different members. As
Schwaber and Beedle [2002] pointed out, “The product owner is one person, not a
committee.”

As an industry, I believe we have concluded that none of these ad hoc approaches
work very well. So, as Cohn [2010] points out, our objective is clear:

Each team needs exactly one product owner.

It’s not that these other solutions don’t work at all, and in some cases, they are nec-
essary as an initial means to an end. But the interim results will be mixed at best, and
the teams should evolve, with few exceptions, as quickly as possible to one product
owner per team.13

13. In the case of smaller teams, teams of three to five total members, we have seen a single product
owner support two, or even three teams, with some success.

Wow! eBook <WoweBook.Com>

ptg

222 chaPteR 11 � RoLe of the PRoduct owneR

seeding the ProduCt owner role in the enterPrise

Of course, the product owner role probably didn’t exist prior to the agile rollout.
But in the smaller project context, finding someone for the role is usually not too
hard. Indeed, someone has probably already been playing the role, if not the title;
management and the team will likely recognize them fairly quickly. Throw in some
product owner training and coaching, and you should be well on your way.

However, in the larger organizations, finding and growing some number of indi-
viduals (5 or 10 or 20, even up to 100 in the largest cases) to assume this key, but
previously underserved and undeclared, role is a significant challenge unto itself.
Moreover, since the enterprise has probably grown into various silos, the solution
requirements may have been historically “handed off” from product management
to development, and there may be no natural interpreter on each team to gravitate
to the role. But find them we must, because if the product owners aren’t there, the
requirements won’t flow, and if the requirements don’t flow, value delivery will suf-
fer. It’s not a trivial undertaking, so in the following sections, we’ll describe how
some real enterprises have handled it.

TradeStation Technologies

TradeStation is a premier brokerage-trading platform for rule-based securities trad-
ing. At TradeStation, Keith Black, John Bartleman, and their teams have been driv-
ing a comprehensive, all-in agile transformation that affects 100+ practitioners.
John described their approach to filling the product owner role as follows:

Before transitioning to agile, our product management team was made
up of ten product managers who reported into development. When we
transitioned to agile, seven of the ten product managers became full-time
product owners; the other three now focus on the market-facing product
manager role. This separation of labor and concerns has helped us bring
additional focus to both the market and technical aspects of our solution.

John then comments on the staffing challenge:

When staffing the product owner role, I would have preferred to use a few
lead developers and/or testers, since they have the domain knowledge and
technical expertise; however, we are reluctant to do this because of the
impact on development resources. Therefore, we hired a few additional
product owners from outside the company. These people need to be
technical but also need to have good industry-specific experience, and
that is a difficult combination to find. So far, former developers/tech leads
with business sense and good project management skills seem to be the

Wow! eBook <WoweBook.Com>

ptg

 seeding the PRoduct owneR RoLe in the enteRPRise 223

best fit . . . in my view at least, technical skills are mandatory, and domain
experience is a plus whenever I can get it.

CSG Systems

CSG Systems is a customer interaction management company that provides soft-
ware and services-based solutions that help clients engage and transact with their
customers. In 2007, CSG began transforming its ACPx product development (more
than 100 practitioners) efforts using enterprise agility best practices. Mauricio
Zamora noted that they established product owners through a series of phases:

We first had to leverage a combination of product analysts originally
responsible for waterfall requirements, architects originally responsible for
designing our software, and a few product owners already experienced in
agile execution. Over the course of a few releases, we used the really good
product owners to set the standard for others. In the process, we discovered
candidate product owners that weren’t a good fit for the role, moved them to
other slots, and replaced them with more appropriate internal resources and
a few additional external hires.

Mauricio went on to note that the transformation wasn’t easy, and it took time to
help people see all that needed to change:

We first educated everyone on the differences between the traditional
product management, agile product owner, and architect roles. We had to
convince management that the product owner role required dedicated focus.
The visibility agile provides made the increasingly obvious gaps in product
ownership easier to see and address. Finally, we had to revisit and revise
organizational titles and compensation, because the new product owner role
didn’t map well into our existing organization.

Symbian Software Limited

When it comes to embedded systems and an even much larger enterprise scale,
Symbian Software (now part of Nokia) develops and licenses Symbian OS, the mar-
ket-leading open operating system for mobile phones. Symbian initiated an agile
transformation in 2008 that affected thousands of practitioners. The development
of a mobile phone operating system is a highly technical endeavor and one where
the ultimate user (mobile device user) is fairly far removed from the major tech-
nologies (OS, device drivers, media players, and so on), which are the primary focus
of the implementation. As such, the development process does not lend itself quite
so easily to the traditional customer/user-facing agile product manager/product
owner roles.

Wow! eBook <WoweBook.Com>

ptg

224 chaPteR 11 � RoLe of the PRoduct owneR

Mathew Balchin described their approach this way:

We identified the product owner role as a pivotal role for success. We
recruited them primarily from the ranks of engineering teams, and most are
senior engineers with product or customer experience. We typically have a
mapping of one PO to every 1–2 teams. We also identified the need for soft
skills training in addition to the standard agile training.

Discount Tire

Discount Tire is America’s largest independent tire dealer. Chris Chapman and his
teams develop the internal software that keeps Discount Tire’s corporate and store
operations (more than 750 stores in 21 states) running. In 2008, they implemented
an agile transformation that affected the entire information systems team. Chris
noted how they addressed the product owner challenge:

Our Business Systems Analysts in IT are filling the role of product owner.
They are the liaison to the business and in many cases speak for the business.
Their previous responsibility of documenting detailed business requirements
and rules now falls to the entire team in the form of user stories and
acceptance tests (which is still a major “cheese moving” event for us).

summary

In this chapter, we described the product owner, the individual who has the highest
impact on the flow of value stream to and through an agile team. We described how,
at least on the context of the larger program or enterprise, the role of the product
owner, as originally defined by Scrum, is more likely to be shared between some
number of product owners and product managers, whose activities and behaviors
will also have to adapt to the new agile paradigm.

We described the responsibilities and activities of the product owner in driving the
content and priorities of the iteration and the role they play there in helping the
team build small increments of value in a timebox. We also described the problem
of technical debt and the role the product owner can play in increasing or decreas-
ing it.

Since it is such a critical role, we also described the essential attributes of an indi-
vidual who can effectively fill the role and the part they play in building an effective
product owner and product manager team. Finally, since the role is likely to be new

Wow! eBook <WoweBook.Com>

ptg

 summaRy 225

to a team and enterprise, we provided some case studies of how a number of agile
enterprises have found the right people they need to fill the role.

In so doing, we’ve elaborated on the “how” (the activities and role the product
owner plays in the agile process) but not the “what” (the requirements content that
the product owner feeds into the system). In the next chapter, Requirements Dis-
covery Toolkit, we’ll describe a set of tools that the product owner and team can use
to discover the “what.”

Wow! eBook <WoweBook.Com>

ptg

This page intentionally left blank

Wow! eBook <WoweBook.Com>

ptg

 227

Chapter 12

requirements disCovery toolkit
with don widrig1

So, ummm, how many undiscovered ruins are there?

—Anonymous tourist, winner of the
“stupidest question asked by a tourist award,”

Mesa Verde, Colorado tour guides

In Chapter 6, we introduced the user story as the primary carrier of customer
requirements through the value stream. Assuming your system is already in use

and you have access to users, that may be all you need. If you don’t know what the
system needs to do next, you can always just ask them.

However, that simple explanation makes light of a significant challenge in software
development, which is how teams should go about understanding—on a more sys-
tematic basis—what problems their solution is intended to address, what markets
or types of customers it is intended to serve, and what the functional and nonfunc-
tional requirements for such a system need to be. Agile or not, most teams face this
challenge at one or more stages of a project’s life cycle.

This is the challenge of requirements discovery, and it represents one of the most
critical competences required in the industry. Get it right, and you can be a winner;
get it wrong, and you won’t be successful no matter how good your skills at writing
user stories or coding and testing the implementation.

Given the variety of circumstances, markets, consumers, uses, products, systems,
services, and so on, that many teams face, they will likely need a variety of tech-

1. Don Widrig was instrumental in reformulating and updating this chapter, in part from our
earlier works [Leffingwell and Widrig 2000, 2003].

Wow! eBook <WoweBook.Com>

ptg

228 chaPteR 12 � RequiRements discoveRy tooLkit

niques to discover requirements, each suited for one or more types, times, or aspects
of the discovery process. And they’ll need to be good at applying them, too.

In this chapter, we’ll introduce techniques that teams can use to discover require-
ments. We’ll describe a variety of techniques that teams can use for this purpose:

Requirements workshops��
Brainstorming��
Interviews and questionnaires��
User experience mock-ups��
Product council��
Competitive analysis��
Customer change request systems��
Use-case modeling��

Of course, there is no “one-size-fits-all” approach to this critical front-end challenge,
and development teams will likely find that a combination of these techniques may
be required for any particular circumstance. In the following sections, we’ll describe
each of these techniques so that a team can have them available in their requirements
discovery toolkit.

the requirements workshoP

The requirements workshop is one such tool. Its purpose is to drive consensus on
the requirements of the system or application and to gain rapid agreement on a
course of action from the key stakeholders, in a very short time. Key stakeholders
of the project are gathered together for a short, intensive period, typically no more
than a day or two. The workshop may be facilitated by a product owner, product
manager, team member, or outside facilitator.

A properly run requirements workshop has many benefits:

It forges an agreement between the stakeholders, the product owners, and ��
the development team as to what the application must do.
It assists in building an effective team of these stakeholders, all committed to ��
a common vision.
All stakeholders get their say; no one is left out.��
It can expose and resolve political issues that may otherwise interfere with ��
project success.

Wow! eBook <WoweBook.Com>

ptg

 the RequiRements woRkshoP 229

In the following sections, we’ll provide some guidelines as to how to plan and run a
successful requirements workshop.

Preparing for the Workshop

These sections lay out the steps to follow to prepare for the workshop.

Selling the Concept

First, it may be necessary to sell the concept by communicating the benefits of the
workshop to prospective participants. This is typically not a difficult process, but
surprisingly it’s not unusual to encounter resistance: “We can’t possibly get all these
critical people together for one day.” “You’ll never get [name your favorite stake-
holder] to attend.” Don’t be discouraged; if you hold it, they will come.

Ensuring the Participation of the Right Stakeholders

Second, preparation involves identifying the particular stakeholders who can con-
tribute to the process and whose needs must be met in order to ensure a successful
outcome. Although we described how to identify these key stakeholders in Chap-
ter 7 (Stakeholders, User Personas, and User Experiences), now is the time for one
last review to make sure that all critical stakeholders have been identified.

As we described, the team should consider the following.

Who needs to be consulted on the scope of this project?��
Who has an input to the budget?��
Who can provide guidance on the functionality and required qualities (reli-��
ability, safety, lifetime, maintainability, and so on) of the new system?
Who will use it?��
Who can support or harm this project politically?��
Who else could be impacted by the new system?��

Attending to Logistics

Third, a conscientious approach to logistics is necessary. Logistics involve every-
thing from reserving proper facilities to arranging travel to managing breaks and
refreshments. Murphy’s law—“Whatever can go wrong will go wrong”—should be
your guideline, because the team may have only one chance to get it right. If you
approach logistics with a high degree of professionalism, it will be obvious to the
attendees that this is an important event, and they will act accordingly. You’ll also
have a more successful workshop.

Wow! eBook <WoweBook.Com>

ptg

230 chaPteR 12 � RequiRements discoveRy tooLkit

Providing Warm-up Materials

Fourth, send warm-up materials in advance to prepare the attendees and to increase
productivity of the actual session. These materials set each attendee’s frame of mind
and context for the session. We recommend that you provide two types of warm-up
materials.

Project-specific information:�� This might include lists of suggested features,
results of interviews with prospective users, analysts’ reports on trends in the
industry, material from the product council (covered later in this chapter),
new management directives, new marketing data, and so on. Although it’s
important not to bury the prospective attendees in data, it’s also important
to make sure they have context.
Out-of-the-box thinking information:�� This can include thought-provoking
and stimulating articles about the process of creativity, rules for brainstorm-
ing, requirements management, managing scope, and so on.

TIP�³ Do not send the data out too far in advance. You don’t want the attendees to read it and forget it,
and you don’t want an extended planning cycle to decrease the sense of urgency. Send the data
out anywhere from two days to one week in advance.

Role of the Facilitator

You may want to have the workshop run by an outside facilitator, one who has expe-
rience with the unique challenges and charged atmosphere of the requirements
scoping process. However, if this is not practical, the workshop could be facili-
tated by the product owner or other team member if that person has the following
characteristics:

Has solid consensus-building or team-building skills��
Is personable and respected by the internal and external team members��
Is strong enough to chair a challenging meeting��

Generally, however, if the workshop is to be facilitated by a team member, that per-
son should not contribute to the ideas and issues at the meeting. Otherwise, the
workshop is in danger of losing the objectivity that is necessary to foster an open
environment in which a new consensus can emerge. This can be especially challeng-
ing for a product owner, who, after all, is supposed to have strong opinions about
what the system is supposed to do.

Wow! eBook <WoweBook.Com>

ptg

 the RequiRements woRkshoP 231

In any case, the facilitator plays a pivotal role in making the workshop a success.
After all, the team has all the key stakeholders gathered together, perhaps for the first
and last time on the project, and they cannot afford a misfire. Some of the responsi-
bilities of the facilitator include the following:

Establishing a professional and objective tone��
Starting and stopping the meeting on time��
Establishing and enforcing the meeting “rules”��
Introducing the goals and agenda��
Managing the meeting and keeping the team “on track”��
Facilitating decision and consensus making��
Managing any facilities and logistics issues to ensure that the focus remains ��
on the agenda
Making certain that all stakeholders participate and their input is heard��
Controlling disruptive or unproductive behavior��

Setting the Agenda

The agenda for the workshop will be based on the length, the needs of the particular
project, and the content that needs to be developed. However, we provide a sample
starting agenda in Table 12–1.

Table 12–1 Sample Agenda for the Requirements Workshop

Time Agenda Item Description

8–8:30 Introduction Review agenda, facilities, and rules.

8:30–10 Context Present project status, market needs, results of user
interviews, and so on.

10–12 Brainstorming Brainstorm features of the application.

12–1 Lunch (Some work though lunch to avoid loss of
momentum. Other times a break is sorely needed.)

1–2 Brainstorming Continue brainstorming.

2–3 Feature definition Write two- or three-sentence definitions for
features.

3–4 Idea reduction and prioritization Consolidate and prioritize features.

4–5 Wrap-up Summarize and assign action items; address
“parking lot” items.

Wow! eBook <WoweBook.Com>

ptg

232 chaPteR 12 � RequiRements discoveRy tooLkit

Running the Workshop

These decision-making workshops are often characterized by a highly charged atmo-
sphere. In fact, there are reasons why it can be difficult to get consensus, including
differing opinions and expectations for the solution requirements and the impact
on resources and budgets; nearly all these reasons will be present at the workshop.

So, the setting may be politically charged, confrontational, or both. This is yet
another reason for having a facilitator who is not a team member. Let the facilitator
take the heat and manage the meeting so as to not exacerbate any problems—past,
present, or future—among key stakeholders.

Brainstorming and Idea Reduction

The most important part of the workshop is the brainstorming process. This
technique is ideally suited for the workshop setting. It fosters a creative and posi-
tive atmosphere and gets input from all stakeholders. We’ll cover brainstorming
below.

Production and Follow-Up

After the workshop, the facilitator records conclusions and distributes them after
the meeting. Then the facilitator’s job is over, and responsibility for success is again
in the hands of the development team.

Typically, it’s the product owner’s job to follow up on any open action items that
were recorded at the meeting. Often, the output of the meeting will be a simple
list of ideas or suggested product features that can be turned over to the develop-
ment team for user story development and implementation. In some cases, addi-
tional workshops with other stakeholders will be scheduled, or additional research
or other efforts will be necessary to gain a better understanding of the ideas fostered
at the workshop.

So far, we’ve primarily described the mechanics of the workshop, yet it is the cre-
ative part of the workshop that delivers the real value. There, new ideas are gener-
ated, and a clearer vision for the new project begins to emerge.

Brainstorming

Whether you are in the workshop setting, whether you are in an informal setting
with some team members or stakeholders, or indeed whenever you find yourself
needing new ideas or creative solutions to problems, brainstorming is a simple, fun,
and easy way to get stakeholders to contribute.

Wow! eBook <WoweBook.Com>

ptg

 BRainstoRming 233

In the requirements workshop setting, you probably already have a pretty good
idea of the features of the new product. After all, few projects begin with a totally
clean slate. However, in addition to reviewing the suggested features for the prod-
uct, the workshop provides the opportunity to solicit new input and to mutate and
combine these new features with those already under consideration. This process
will also help in the goal of “finding the undiscovered ruins” and thereby making
sure that you have sufficient input and that all stakeholder needs are addressed,
or at least understood. Typically, a major portion of the workshop is devoted to
brainstorming new ideas and features for the application. Brainstorming does the
following:

Encourages participation by all parties present��
Allows participants to “piggyback” on one another’s ideas��
Has high bandwidth—many ideas can be generated in a short period��
Identifies multiple potential solutions to whatever problem is posed��
Encourages out-of-the-box thinking—unlimited by the usual constraints��

Brainstorming has two phases: idea generation and idea reduction. Idea genera-
tion identifies as many ideas as possible, focusing on breadth of ideas, not depth.
The goal during idea reduction is to analyze and reduce the ideas generated. This
includes pruning, organizing, ranking, expanding, grouping, refining, and so on.

Idea Generation

The first objective is the generation of as many ideas as possible in a short time
frame. Typically, the facilitator first explains the rules for brainstorming, as illus-
trated in Figure 12–1.

Rules for Brainstorming

Mutate and combine ideas.

Generate as many ideas as possible.

Let your imagination soar.

Do not allow criticism or debate.

Figure 12–1 Rules for brainstorming

Wow! eBook <WoweBook.Com>

ptg

234 chaPteR 12 � RequiRements discoveRy tooLkit

The facilitator also explains the objective of the process. For example, the following
questions may be used for this purpose.

What features would you like to see in the product?��
What services should the product provide?��
What opportunities are we missing in the product or the market?��

After stating the objective of the process, the facilitator asks participants to share
their ideas aloud and to also write them down, one per card. Ideas are spoken out
loud to enable others in the room to piggyback on the ideas, that is, to think of
related ideas and to mutate and combine ideas. In this process, however, the first
rule—no criticism or debate—must be foremost. If this rule is not enforced, the
process will be squelched, and people who are sensitive to criticism may not feel
comfortable putting forth more ideas.

TIP�³ In our experience, the most creative and innovative ideas (those that truly revolutionized the
product concept) did not result from any one person’s idea but, instead, from the combination
of multiple and perhaps even seemingly unrelated ideas. Any process that fosters these types of
breakthroughs in ideation is a worthy process.

When a person comes up with an idea, he or she writes also writes it down in order
to assure the following:

Ideas are not lost��
Ideas are captured in that person’s own words��
Ideas can be posted for later piggybacking��
There are no stalls in the creative process that could be caused by a single ��
scribe trying to capture all ideas

As ideas are generated, the facilitator collects them and posts them on a wall. Idea
generation should proceed until all parties feel it has reached a natural end.

It is common for lulls to occur during idea generation. These are not necessarily times
to stop the process. Lulls tend to correct themselves as soon as the next idea is gener-
ated. Longer lulls might be cause for the facilitator to state the objective again or to ask
stimulating questions. Most idea generation sessions last around an hour, but some
last two to three hours. The number of ideas generated will be a function of how fer-
tile the subject being discussed is, but it is common to generate 50 to 100 ideas.

The process tends to have a natural end; at some point, the stakeholders will simply
run out of ideas. This is typified by longer and longer gaps between idea submis-
sions. At this point, the facilitator ends that portion of the session.

Wow! eBook <WoweBook.Com>

ptg

 BRainstoRming 235

Idea Reduction

Of course, not all ideas are worthy of consideration for the solution. (If they were,
the idea generation process was deficient; see the following tip). When the idea gen-
eration phase ends with a sufficiently large number of ideas, it is time to initiate idea
reduction and to bring focus on a set of ideas that can drive the next increment of
solution development. Several steps are involved in idea reduction.

Pruning Ideas

The first step is to “prune” those ideas that are not worthy of further investment
by the group. The facilitator starts by visiting each idea briefly and asking for con-
currence from the group that the idea is basically valid. There is no reason for any
participant to be defensive or to claim authorship for any idea; any participant may
support or refute any idea.

TIP�³ The presence of ideas that can be easily pruned is an indicator of a quality process. The absence
of a fair number of wild and crazy ideas indicates that the participants were not thinking far
enough “out of the box.”

The facilitator asks the participants whether each idea is worthy of further consider-
ation and then removes an invalid idea, but if there is any disagreement among the
participants, the idea stays on the list. If participants find two sheets with the same
idea, group them together on the wall.

Grouping Ideas

It may be helpful during this process to start grouping similar ideas. Doing so is
most effective when participants go to the wall and do the grouping themselves.
Grouping might be as follows:

New features��
Enhancements to current features��
Usability, user interface, and ease-of-use issues��
Reliability, performance, and supportability issues��

Idea generation can be reinitiated now for any one of these groups if the participants
think the grouping process has spurred development of new ideas or that some area
of key functionality has been left out.

Defining Features

At this point, ideas can be converted to prospective feature descriptions by draft-
ing a short description of what the idea means. This gives the contributor the

Wow! eBook <WoweBook.Com>

ptg

236 chaPteR 12 � RequiRements discoveRy tooLkit

opportunity to further describe the feature and helps ensure that the participants
have a common understanding. This way, everyone understands what was meant
by the idea, thus avoiding a fundamentally flawed prioritization. In this process, the
facilitator walks through each idea that has not been pruned and asks the submitter
to provide a one-sentence description.

Idea Prioritization

In some situations, the generation of ideas is the only goal, and the process is then com-
plete. However, it is often useful to prioritize the remaining ideas. After all, no develop-
ment team can do “everything that anybody can think of,” and the key stakeholders are
still present. A variety of techniques can be used for prioritization; we’ll describe two.

Cumulative Voting: The $100 Test

This simple test is fun, fair, and easy to do. Each person is given $100 of “virtual
idea money” to be spent on “purchasing ideas.” Each participant decides how much
money to spend on each idea. Then votes are tabulated, and the results are rank
ordered. A quick histogram of the result can help participants see the visual impact
of their decisions.

This process is straightforward and usually works quite well. However, there are a
few caveats.

First, it may work only once, because once the results are known, participants may
bias their input for the second vote.

Similarly, it may be necessary to limit the amount anyone spends on one feature.
Otherwise, a participant, knowing that other important features will make the cut
to the top of the list, might put all of their money on a single feature in order to
elevate it to a higher priority.

“Critical, Important, Useful” Categorization

Another technique is prioritization by value category. Each participant is given a
number of votes equal to the number of ideas, but each vote must be categorized
“critical,” “important,” or “useful.” The trick is that each stakeholder is given only
one-third of the votes from each category.

Critical features are mandatory; a system deployed without this feature ��
could not fulfill its primary mission or meet the market need.
Important means that failure to include the feature could cause a loss of ��
customer utility, market share, or revenue.
Useful means nice to have. Useful features make the system more appealing ��
to use or deliver higher utility to some class of users.

Wow! eBook <WoweBook.Com>

ptg

 inteRviews and questionnaiRes 237

After voting, each feature will probably have a mix of categories. Simply multiply
“critical” votes times 9, “important” by 3, and “useful” by 1; then add up the score.
This tends to spread the results to heavily favor the “critical” votes, and thus every
stakeholder’s “critical” need will tend to bubble toward the top.

Online Brainstorming

The process we described works effectively when all stakeholders can be gathered
together at the same time, the participants are proactive, and the facilitator is expe-
rienced. Indeed, there is no substitute for the developers and outside stakeholders
spending this time together.2 Each will remember the various priorities, concerns,
and issues raised by the others, and perspective and mutual respect are often by-
products of the process. Therefore, the face-to-face requirements workshop and
brainstorming are the preferred approaches.

However, sometimes face-to-face brainstorming is simply not possible. In these
situations, an alternative is to facilitate the process in a collaborative online environ-
ment. This technique may be particularly suited for developing advanced applica-
tions for which research is required or a long-term view is critical, the concept is
initially fuzzy, and a wide variety and significant number of user and other stake-
holders inputs are involved.

With this technique, the product owner sponsors an online service for recording
and commenting on product features. An advantage of this technique is its persis-
tence; ideas and comments can be circulated over a long period of time, with full
recording of all threads for each idea. Perhaps most importantly, ideas can grow and
mature with the passage of time.

On the other hand, it may be the case that there is no time to contemplate the issues,
and the team needs resolution now! In such cases, distributive, immediate collabo-
ration is still possible through any number of online meeting/collaboration tools.

Summary of Requirements Workshop and Brainstorming

The goal of these techniques is to maximize the contribution of each team member
in harmony with the objectives of the project and its mission. We are constantly
impressed by the unique and creative talents our local and extended team members
exhibit in these forums. We encourage your teams to try them.

interviews and questionnaires

Another requirements-gathering technique is the user/stakeholder interview, a sim-
ple and direct technique that can be used in virtually every situation. This section

2. Agile Manifesto principle # 6—The most efficient and effective method of conveying information
to and within a development team is face-to-face conversation.

Wow! eBook <WoweBook.Com>

ptg

238 chaPteR 12 � RequiRements discoveRy tooLkit

describes the interviewing process and provides a generic template for conducting
interviews.

One of the key goals of interviewing is to make sure that the biases and predisposi-
tions of the interviewer do not interfere with a free exchange of information. This is
a subtle and pernicious problem. Sociology (a class most of our developers missed)
teaches us that it is extremely difficult to truly understand others because we are all
biased by our own conceptual filter, one that results from our own environment and
cumulative experiences.

In addition, as solution providers, we rarely find ourselves in a situation in which we
have no idea what types of potential solutions would address the problem. Indeed,
in most cases, we operate within a repetitive domain or context in which certain ele-
ments of the solution are, or at least appear to be, obvious. We may even be experts.
(“We have solved this type of problem before, and we fully expect that our experi-
ence will apply in this new case.”) Of course, this is not all bad because having con-
text is part of what we get paid for. However, we must not let our current context
interfere with a better understanding of a new problem to be solved.

Context-Free Questions

How do we avoid prejudicing the user’s responses to our questions? We do so by
asking questions about the nature of the user’s problem without context for a
potential solution. In a classical requirements text, Exploring Requirements: Quality
Before Design, Gause and Weinberg [1989] introduced the concept of the “context-
free question.” Examples of such questions include the following.

Who is the user?��
Who is the customer?��
Are their needs different?��
What other stakeholders will be impacted by this product or project?��
Where else can a solution to this problem be found?��

These questions force us to listen before attempting to invent or describe a potential
solution. Listening gives us a better understanding of the customer’s problem and
any problems behind the problem.

Solutions-Context Questions

After the context-free questions have been asked and answered, it may be appropri-
ate to begin exploring solutions. After all, we are not generally rewarded for simply
understanding the problem but rather for providing solutions. The solution context
may also give the interviewee new insights. And, of course, our users depend on us

Wow! eBook <WoweBook.Com>

ptg

 inteRviews and questionnaiRes 239

to have context; otherwise, they would have to teach us everything they know about
the subject.

As an aid to building this skill within the development team, we have combined
these techniques into a “generic, almost context-free interview,” a structured inter-
view that can be used to elicit user or stakeholder requirements. Appendix A pro-
vides the template for this interview. The interview consists of both context-free
and context-rich sections. It also provides questions designed to make certain that
all aspects of requirements, including nonfunctional requirements, such as usabil-
ity, reliability, supportability, and so on, are explored.

The Moment of Truth: The Interview

With a little preparation and the structured interview template, the product owner
(or any other member of the team) can do an adequate job of interviewing a user or
customer. Here are some tips for a successful interview.

Prepare an appropriate context-free interview.��
Understand the background of the stakeholder to be interviewed.��
During the interview, jot down answers in your notebook (don’t attempt to ��
capture the data electronically at this time).
Refer to the template during the interview to make certain you’re asking the ��
right questions and that you have covered all you intended.

Make sure that the script is not overly constraining. Once rapport has been estab-
lished, the interview is likely to take on a life of its own. The customer may well
launch into a stream-of-consciousness dialogue, describing in detail the horrors of
the current situation. This is exactly the behavior you are looking for. If this happens,
do not cut it off prematurely with another question; rather, write down everything
as quickly as you can, letting the user exhaust that particular stream of thought. Ask
follow-up questions about the information that has just been provided. Then, after
this thread has run to its logical end, get back to other questions on the list.

After even a couple of such interviews, the product owner/developer/analyst will
have gained some knowledge of the problem domain and will have an enhanced
understanding of both the problem being solved and the user’s insights on the char-
acteristics of a successful solution.

Compiling the Needs Data

Your problem analysis will have identified the key stakeholders and users you will
need to interview to gain an understanding of the stakeholder’s needs. Typically, it
does not take many interviews to get a convergent understanding of the issues.

Wow! eBook <WoweBook.Com>

ptg

240 chaPteR 12 � RequiRements discoveRy tooLkit

The Analyst’s Summary

The last section of the interview form in the appendix, the Analyst’s Summary, is
used for recording the three most important needs or problems uncovered in the
interview. In many cases, after just a few interviews, these highest-priority needs will
start to be repeated. This means you may be starting to get convergence on some
common needs. This is the start of your feature backlog, a set of assets you will build
and use to good advantage over the course of your project.

A Note on Questionnaires

We are sometimes asked whether the team can substitute a questionnaire for this
interviewing process. In some cases, the need expressed is perhaps a simple desire
for efficiency (“I could do 100 questionnaires in the time it takes to do one inter-
view”). In other cases, the need may come under suspicion (“Do I really have to talk
to these people? Couldn’t I just send them a letter?”).

No matter the motivation, the answer is generally no. Although questionnaires are
often used and appear scientific because of the opportunity for statistical analysis,
a questionnaire is not a substitute for interviewing in the requirements discovery
context because it has some fundamental problems.

Relevant questions cannot all be decided in advance.��
The assumptions behind the questions bias the answers.��
It is difficult to explore new domains (“What you really should be asking ��
about is . . .”).
It is difficult to follow up on ambiguous user responses.��

Indeed, some have concluded that the questionnaire technique suppresses almost
everything good about requirements discovery, and we do not generally recom-
mend it for this purpose.

There is no substitute for the personal contact, rapport building, and free-form
interaction of the interview. After one or two interviews, your worldview will prob-
ably change, and the vision for the solution will change along with it. Our advice is,
do the interview first and do it for every new class of problem.

However, questionnaires can be applied as a corroborating technique after the ini-
tial interviewing and analysis activity. For example, if the application has a large
number of existing or potential users and if the goal is to provide statistical input
about user or customer preferences among a limited set of choices, a questionnaire
can gather a significant amount of focused data in a short period of time. In short,
the questionnaire technique, like all elicitation techniques, is suited to a subset of
the requirements challenges that an organization may face.

Wow! eBook <WoweBook.Com>

ptg

 useR exPeRience mock-uPs 241

When all is said and done, one of the easiest ways to find out what a system needs to
do is to simply ask the prospective stakeholders! If we approach this requirements-
gathering activity in a structured way—that is, we know who the stakeholders are
likely to be and what questions we need to ask of them—then we are likely to dis-
cover the real requirements.

user exPerienCe moCk-uPs

As we described Chapter 7, developing user experience interfaces in agile (or nonag-
ile for that matter) is always a challenge. In some ways, agile makes it easier; teams
have lots of chances at it, iteration by iteration. But in other ways, agile makes it
harder because it’s unlikely that much big, up-front design (BUFD) has happened.
So, all the aspects of the presentations, dialogues, and flows that make a user inter-
face easy to navigate are likely to be largely unexplored prior to beginning imple-
mentation. That can make for a lot of churn—and real frustration often results.
In that chapter, we also described various organizational approaches, including a
dedicated UX team that can mitigate the churns.

In any case, the lighter the representation, the quicker the feedback, and the lower
the churn in code, so we’ll look at some lighter-weight approaches to defining user
interfaces here.

Of course, a “picture is indeed worth a thousand words,” so a soft and fuzzy, easy-to-
change drawing or mock-up is an early and effective means of communicating ele-
ments of user presentation. Mock-ups can cover a wide spectrum of techniques and
sophistication. At the low end, we can simply make a quick pencil sketch of what we
want, as Figure 12–2 illustrates.

Figure 12–2 A simple sketch

Wow! eBook <WoweBook.Com>

ptg

242 chaPteR 12 � RequiRements discoveRy tooLkit

A step up from there is to use a simple drawing tool to illustrate preliminary page
design and also flow between pages, as is illustrated in Figure 12–3.

A further step up in sophistication is the use of tools to create wireframe models of
the desired story. Wireframes usually start as a static drawing using any number of
drawing tools, like we illustrated in Figure 12–3. Once the general shape of the story
begins to jell, it is helpful to animate the model to illustrate the important interac-
tions with the user. Figure 12–4 illustrates a wireframe model for a fairly complex
web interface. This model was animated in HTML so it was interactive with the
user. This gives a semblance of life to the UI and the users’ interaction, all before the
code was cut.

Today

Monitor

Daily Cost

Cost Menu Monitor

8/20/09

Used: 27 kWh

Price: 10 c/kWh

3.60 kW

Current Condition

37°F

Initial/Backhaul

$2.70
$3.50

Today Yesterday

10:13a

If Backhaul “Monitor” remains
Else
Show Broadband Screen.

Today

Current Condition

Daily Cost

Cost Menu Monitor

8/20/09

Used: 27 kWh

Price: 10 c/kWh

Requesting
Weather Data...

Broadband

$2.70
$3.50

Today Yesterday

10:13a

Figure 12–3 Preliminary flow design

Wow! eBook <WoweBook.Com>

ptg

 foRming a PRoduct counciL 243

Figure 12–4 A web wireframe model animated with HTML design tools

forming a ProduCt CounCil

In some circumstances, the challenge is less one of building a backlog of prospec-
tive requirements than it is to understand how to prioritize a long list of existing
requirements (or even whole projects). In the next chapter, we’ll provide concrete
suggestions for prioritizing features based on the cost of implementation and the
cost of delay. Even that method, however, doesn’t necessarily tell a product owner
which business segments deserve the most attention from limited IT resources or
how to align a diverse set of stakeholders around an agreement to a common set
of objectives.

Often, the product owner is in a tough situation. It all can’t be done, but each
executive stakeholder thinks their stuff should (or must) be done. So, any deci-
sion the product owner makes is likely to be criticized, and some of the executives
carry a pretty heavy club with their criticism. It can be a hazardous job.

In these cases, we recommend that the product owner organize a product council,
which is empowered to act as the approval body on the key decisions. The product

Wow! eBook <WoweBook.Com>

ptg

244 chaPteR 12 � RequiRements discoveRy tooLkit

council should consist of the key stakeholders in the enterprise or business unit.
If the constitution of the group is not obvious, the product owner may need to do
a stakeholder analysis (as described in Chapter 7). For example, in one IT shop
that served a large retail organization, a product council was formed that included
representatives from each line of business, the CFO, a CTO, a few enterprise busi-
ness analysts, and the most senior development manager. This group meets peri-
odically to review the backlog of projects and decide what projects get funded and
how many resources they deserve.

In Chapter 22, we’ll describe the product council’s big brother, the portfolio manage-
ment team, in more detail. For now, it’s sufficient to understand that such a group
can help the product owner make the hard decisions and stand up to each other as
necessary to defend and support the decisions that the group has made (“Yes, there
were multiple opinions on the topic, but these are the decision we have agreed to in
product council”).

ComPetitive analysis

Product companies always face the question, “Who is our competition, and what
features are they offering?” It is possible to hire market survey companies that will
research a domain and produce reports outlining prospective benefits of a product
proposition. But most companies do their own competitive analysis; that way, they
gain the knowledge directly, and it helps create their own distinctive competence
over time.

In its simplest form, a competitive analysis consists of the following:

Refining the domain of interest/product category��
Identifying competitors��
Studying competitive offerings��
Preparing an analysis of the finding for evaluation��

A competitive analysis is usually presented as a matrix. The columns on the top of
the matrix provide a listing of the various features that are important to the prod-
uct. The rows of the matrix list the potential (perhaps “top ten”) competitors. The
first row of the matrix is dedicated to the features offered by the company’s own
proposed product.

Table 12–2 shows an example of competitive analysis for a company offering a new
product in the web search and browsing domain.

Wow! eBook <WoweBook.Com>

ptg

 customeR change Request systems 245

Table 12–2 A Sample Competitive Analysis Comparison Matrix

Product Web Approach Content Transparency Page Commenting “Stumbling”

Our product plans Collects every page
visited.

Toolbar tags give
“flavor” of a page;
embedded tags in
search pages allow users
to jump to selected
pages.

Instant messaging,
“sticky notes” on
pages

Based on
similar useful
pages.

Search Engines

Google, MSN,
Yahoo

Finds “all” pages
based on search.

Short abstract of
discovered pages.

None The user must
supply topic.

Social Networks

YouLicit The user must
bookmark page.

Poor. None Based on
similar pages.

StumbleUpon The user must
bookmark page.

Embedded categories
(not actually a tag);
rating into Google
search pages.

Offline comments Stumbling on
category of
interest.

Del.icio.us The user must
bookmark page.

Click bookmark button
to see community tags.

Offline comments No.

Yoono The user must
bookmark page.

No tagging. None User-suggested
links.

In more complete analyses, such as those generated using the technique of Qual-
ity Function Deployment,3 analysts assign weights to each of the features, assign
numerical values to each competitor’s features, and then sum the weighted values to
figure out which features provide the best competitive differentiation.

Customer Change request systems

In addition, as our industry has matured and our users’ online access has become
ubiquitous, our customer’s expectations for direct and unfiltered input have grown
as well. To this end, many companies maintain a customer-facing enhancement
request system for just this purpose. For example, Rally Software provides one such
system, as is illustrated in Figure 12–5.

3. For more on Quality Function Deployment, see, for example, www.qfdi.org/index.htm.

Wow! eBook <WoweBook.Com>

www.qfdi.org/index.htm

ptg

246 chaPteR 12 � RequiRements discoveRy tooLkit

Figure 12–5 Example customer-facing feature request system
Source: Rally Software © 2010

Here’s how Rally describes its system:

Customers provide feedback on our roadmaps and generate new concepts
for products and features. Members can build on ideas and crowd-source
priorities through voting. Product managers pull ideas from the community
into their life-cycle management system. They weave customer-created
concepts directly into their real-time roadmap—without having to run
traditional focus groups, use off-line surveys, or wait for an annual user
conference. It all happens 24x7. Developers can then more efficiently
develop the right features, already vetted by customers. In fact, by last
count, nearly half of the features recently released were attributed entirely
to community participation. Customers can participate through the entire
process—they track the features they care about, and are notified when they
are released. Full cycle.

Defect Logs

Also, lest we forget, defect logs provide a rich source of product requirements,
because typically many of the reported “defects” are really enhancement requests. A
high number of enhancement requests for a particular capability item is a relatively
unbiased form of prioritization (at least from the perspective of existing customers).

Wow! eBook <WoweBook.Com>

ptg

 summaRy 247

use-Case modeling

In Chapter 6, we introduced and described the user story as the primary technique
used by agile teams to understand and communicate customer requirements. It’s
certainly a handy construct, and small user stories help us drive the extreme instru-
mentalism that characterizes agile development.

However, when it comes to systems of complexity—systems that are composed of
other systems, systems that contain hardware devices and software components, and
suites of applications that work together to provide even higher value to the user—
we have overstated the case. Here, neither features nor user stories are sufficiently
capable constructs to describe this complex, aggregate behavior. For these systems,
we need a construct that describes the interplay among the actors (users, devices,
subsystems) and the various systems that work together to deliver this behavior.
Here we suggest applying use cases and use case modeling as a primary requirements
discovery technique. It’s such an important tool that we’ll devote Chapter 19 entirely
to this method.

We mention the topic here because when building complex systems or systems of
serious scale, our requirements discovery toolkit cannot be complete without it.

summary

Agile development is often characterized, rightly or wrongly, as an entirely “heads-
down,” immediate value-driven process that delivers value in small increments. The
user story is the primary tool agile teams use to capture the behavior, and value is
achieved one user story at a time. However, we all understand that the systems we
are building with agile methods today are more and more complex. In many cir-
cumstances, we need to take a step back and do a little more up-front (yes, we said
up-front) analysis to better understand what we are about to build and why. To this
end, this chapter provided a variety of requirements discovery techniques that teams
can use to address this larger challenge. No one tool is perfect or comprehensive in
itself. But no intelligent agile team would settle for any one tool anyway. That’s why
we have provided a more complete requirements discovery toolkit.

Wow! eBook <WoweBook.Com>

ptg

This page intentionally left blank

Wow! eBook <WoweBook.Com>

ptg

Part III

agile requirements for the Program
I mean that everybody, every team, every platform, every division, every
component is there, not for individual competitive profit or recognition, but for
contribution to the system as a whole on a win-win basis.

—W. Edwards Deming

Chapter 13�� Vision, Features, and Roadmap
Chapter 14�� Role of the Product Manager
Chapter 15�� The Agile Release Train
Chapter 16�� Release Planning
Chapter 17�� Nonfunctional Requirements
Chapter 18�� Requirements Analysis Toolkit
Chapter 19�� Use Cases

Systems, Applications, Products

Te
am

 B
ac

kl
og

System Team

Re
le

as
e

Pl
an

ni
ng

Nonfunctional
Requirements

Feature 1

Feature 2

Release Planning

Arch 1

Re
le

as
e

(o
r P

SI
)

Features
Fit in

Releases

Epics Span
Releases

Architecture
Evolves

Continuously

Re
le

as
e

Pl
an

ni
ng

Pr
og

ra
m

Po
rt

fo
lio

Re
le

as
e

(o
r P

SI
)

Pr
og

ra
m

 B
ac

kl
og

Po
rt

fo
lio

 B
ac

kl
og

Release Theme and Objectives

Features and Components
Stories Fit in
Iterations

(Implemented by)
Tasks

Te
am

NFRs

Spikes Are
Research,
Design,
Refactor
Stories

H

H

H

H

Product
Owner

Scrum/Agile
Master

Te
am

 B
ac

kl
og

Te

am
 B

ac
kl

og

Agile Teams

Developers and Testers

Pl
an

D
em

o

Pl
an

D
em

o

Stories

Iterations lterations

Stories

Release Management

Product
Management

Investment
Themes

PortfolioManagement

Portfolio Vision
Epic 1

Epic 3
Architectural Runway

Epic 4

Epic 2

Feature 3

Feature 4

doc

doc

kl

Vision

Wow! eBook <WoweBook.Com>

ptg

This page intentionally left blank

Wow! eBook <WoweBook.Com>

ptg

 251

Chapter 13

vision, features, and roadmaP

The best way to predict the future is to invent it.

—Alan Kay, American computer scientist

In this chapter, we’ll introduce three different but closely related topics—the Vision,
features, and the Roadmap. First, we’ll describe how the Vision is used to continu-

ously communicate the strategic intent of the program, and we’ll describe a number
of approaches for communicating and documenting this critical information. Then,
as the primary content of the Vision is a set of features, we’ll describe how to for-
mulate, estimate, and prioritize features to deliver the maximum value to our users.
Lastly, we’ll discuss the product Roadmap, which is a tool we’ll use to communicate
how we see the future of the program unfolding, at least insofar as we can predict it.

vision

Traditionally, the intended requirements for a product, system, or application were
captured and communicated in document form. And, when properly applied, the
good news is that documents still work great, even in agile, and we can continue to
use them for this purpose.

As we have noted, however, the investment in up-front requirements analysis is
greatly reduced in agile, and therefore the traditional marketing requirements doc-
uments (MRDs), product requirements documents (PRDs), software requirements
specifications (SRSs), and the like are unlikely to appear. In their place, agile enter-
prises take a leaner approach better suited to the last-responsible-moment, delayed
decision-making, and artifact-light development practices. This prevents overin-
vestment in things we are unlikely to understand very well anyway and prevents the
too-early binding of resources to a set of fixed commitments that are likely to haunt
us later. In turn, this keeps the program agile and light on its feet.

Wow! eBook <WoweBook.Com>

ptg

252 chaPteR 13 � vision, featuRes, and RoadmaP

However, since the MRD, PRD, and SRS documents may no longer exist to specify
intended system behavior, communicating the Vision directly to the agile develop-
ment teams is even more critical. Otherwise, how would they know what it is they
are supposed to build?

This is generally executive’s and product management’s responsibility, because the
Vision is an outcome of the company’s business and portfolio investment strategy.

Generally, the Vision communicates the strategic intent for the program and answers
some of the big questions.

Why are we building this product, system, or application?��
What problem will it solve?��
What features and benefits will it provide?��
For whom does it provide these features and benefits?��
What performance, reliability, and scalability must it deliver?��
What platforms, standards, applications, and so on, will it support?��

exPressing the vision

How the Vision is communicated to the teams is a matter of the organization’s pref-
erence, and the mechanisms vary greatly. In the next section, we’ll look at a number
of options agile teams are using for this purpose.

A Vision Document

Writing things down is still the best way to communicate when face-to-face is
impractical and when key decisions and discoveries need to persist over time. For
example, in the Rational Unified Process (RUP), the Vision document is a key, well-
defined artifact that teams used to communicate the components of the Vision.
Many teams have had good success with this document in their RUP-based prac-
tices, and it is an easy carryover to a team’s agile practices. Indeed, we’ve seen this
approach used to good effect on relatively small teams of 10 to 15 team members.
Their belief is that “We document the Vision to test our own understanding of what
we think we know.”

No matter the form of approach, this template should serve as a prompt of the
things that need to be described to the teams to gain an understanding of what they
are about to build, who uses it, and how they use it to do their jobs.

Often, it is developed in parallel with the advanced data sheet (discussed next),
which provides a summary from a more market-based perspective.

Product
Vision

Document

Wow! eBook <WoweBook.Com>

ptg

 exPRessing the vision 253

In larger programs, the Vision document plays an even greater role, serving as the
“umbrella” document for a large system initiative. With respect to agility, it is impor-
tant to note that typically only one such document of 5 to 10 pages (20 maximum
for a large system) is needed, even for a large green-field program, so developing
and updating this document is not a burdensome overhead.

A generic template can serve as a starting point; such a template appears in Appen-
dix B of this book.

The Advanced Data Sheet Approach

For product-oriented companies, the development of the business case
for a new product requires an understanding of the user’s needs; the
key benefits a proposed solution is to provide; the platforms and oper-
ating environments that must be supported in the user’s environment;
and the key labeling claims for performance, compatibility, and so on.

Moreover, the need for the product team to be able to articulate the
business case in a concise manner to prospective buyers is also impera-
tive: If this cannot be done effectively, the product value proposition is
likely to be lost on the marketplace, regardless of the team’s ability to
produce a worthy offering.

Also, since the role of product management is well understood by these
teams, one or more individuals on that team will eventually need to com-
municate the product boundaries and features, so why not start now?1

One way to do that is with the development of a “very preliminary, advanced data
sheet,” which isn’t an actual data sheet per se, but it uses a data sheet template to start
to define, at a high level, what the product does and for whom it is intended to do it.

Since the data sheet, by definition, is an extremely concise document (two pages
front and back are typical), it must focus on what is critical to communicate.
Figure 13–1 provides a template for such a two-page data sheet that has been used to
good effect by a number of teams.

Although this data sheet appears to be very simple on the surface, teams will quickly
discover that drafting the data sheet is, in fact, a fairly difficult exercise but one that
forces development of an early and concise common Vision for the team.

1. Some agilists might argue that starting a data sheet at this point violates the principle of last
responsible moment (LRM), but when making the business case, that LRM may need to occur
before the substantive investment in the product begins.

Source: Ping Identity, Ping Feder-
ate Data Sheet

Wow! eBook <WoweBook.Com>

ptg

254 chaPteR 13 � vision, featuRes, and RoadmaP

Main Message: Product Position or
Primary Benefit Statement

Product Description Text

Company/
Product Logo

Introducing:

Block Diagram
(System Context)

Secondary
Graphic

Page 2Page 1

Brand New
Product Name

Representative
Graphic

Feature Label
Description
Feature Label
Description
Feature Label
Description
Feature Label
Description
Feature Label
Description
Feature Label
Description
Feature Label
Description
Feature Label
Description

Product Features

Performance
Specifications

Spec 1
Spec 2
Spec 3
Spec 4
Spec 15

Platform
Specifications

Spec 1
Spec 2
Spec 3
Spec 4
Spec 15

Figure 13–1 Template for a product data sheet

The Preliminary Press Release Approach

In a manner similar to the advanced data sheet, some teams
have found that drafting a preliminary, hypothetical press
release causes them to think through the Vision from the
standpoint of the way the solution will be described to the
market. Teams understand that a press release has to tell a
complex story in a simple and compelling way, a way that
clearly articulates the benefits to the prospective customers,
and they also know that they have only two pages to do it in.

Having the team work with their marketing partners to draft a preliminary press
release is a way to foster early collaboration, illustrate that the development team
can speak in the language of the customer community, and also paint the Vision in
the minds of those key internal stakeholders who will become involved as the prod-
uct approaches market readiness.

Source: Ping Identity, Ping Federate Data Sheet

Wow! eBook <WoweBook.Com>

ptg

 featuRes 255

The “Feature Backlog with Briefing” Approach

In even lighter-weight approaches, the backlog alone may be sufficient to communi-
cate much or all of the Vision to the team. In this case, product managers elaborate
far enough ahead to show the team where the project is headed, while simultane-
ously laying in priorities and estimates for future scoping of work.

A reasonably well-formed and maintained backlog—in conjunction with a face-to-
face Vision briefing by the product managers or other business stakeholders to the
development team—can be an adequate way to communicate the Vision. We’ll see
more of that approach in Chapter 16, Release Planning.

Communicating Nonfunctional Requirements (System Qualities)

Before we leave this topic, however, we note that many nonfunctional require-
ments, which are qualities of the system in use—as opposed to specific functional
behaviors—may be equally important to the Vision. These NFRs communicate
attributes such as the usability, performance, reliability and supportability require-
ments, imposed standards, compatibility requirements, and so on. In some fash-
ion, these items must also be communicated to the teams as part of the Vision and
captured for future consideration. Chapter 17 is devoted exclusively to the topic of
these nonfunctional requirements, or systems qualities.

features

No matter the form, the primary content of the Vision is a set of prioritized features,
which describe what new things the system will do for its users, and the benefits the
user will derive from them.

In describing the features of a product or system, we take a more abstract and higher-
level view of the system of interest. In so doing, we have the security of returning to
a more traditional description of system behavior, the feature.

In Managing Software Requirements, Second Edition: A Use Case Approach [Leffingwell
and Widrig 2003], features were described as follows:

Services provided by the system that fulfill one or more stakeholder needs.

They lived at a level above software requirements and bridged the gap from the
problem domain (understanding the needs of the users and stakeholders in the tar-
get market) to the solution domain (specific requirements intended to address the
user needs), as Figure 13–2 shows.

Wow! eBook <WoweBook.Com>

ptg

256 chaPteR 13 � vision, featuRes, and RoadmaP

Needs

Features

Software Requirements

Solution Domain

Problem Domain

Figure 13–2 Requirements pyramid

We also posited in that text that a system of arbitrary complexity can be described
with a list of 25 to 50 such features. That simple rule of thumb allowed us to keep
our high-level descriptions exactly that—high level—and simplified our attempts
to describe complex systems in a shorter form while still communicating the full
scope and intent of the proposed solution.

Of course, in so doing, we didn’t invent either the word feature or the usage of the
word in that text. Rather, we simply fell back on industry-standard norms to describe
products in terms of features and benefits, the language typically used by marketing
to describe the capabilities and benefits provided by a new system.

By applying this familiar construct in agile development, we also bridge the lan-
guage gap from the agile project team/product owner to the system/program/prod-
uct manager level and give those who have traditionally operated outside our agile
teams a traditional label (feature) to use to do their traditional work (describe the
thing they’d like us to build).

Of course, features also provide a focus to organize agile teams around—as the fea-
ture team, as we described in Chapter 4. The ability to describe a system in terms of
its proposed features and the ability to organize agile teams around those same fea-
tures gives us a straightforward method to approach building systems with a value
delivery focus.

NOTE�³ In some agile usage, the things that a story is grouped under, that is, the higher-level value state-
ment, is often called a theme. In other texts, such as Lean-Agile Software Development: Achiev-
ing Enterprise Agility [Shalloway 2010], they are called features as we use the word here.

Wow! eBook <WoweBook.Com>

ptg

 estimating featuRes 257

We used the word feature in the requirements model and in this text for two reasons: first, we
didn’t see any reason to invent a new term, and second, it is in common use, and people have
a natural affinity to the word. Users know that a feature of a word processor is spell checking
as you type.

Expressing Features in User Voice Form

It is also natural for an agilist to want to express a feature in user story voice form, so
a feature such as automatic spell checking becomes the following:

As a writer, I can get automatic notification of spelling errors as I write so that I
can correct them immediately.

There is nothing right or wrong about this. There is certainly an advantage in this
approach, because the user role and benefit are more clearly described. However, in
that form, they do look just like user stories, although they are written at a higher
level of abstraction—but in a sense, that’s what they really are!

estimating features

In Chapter 8, Estimating and Velocity, we described how teams estimate user stories.
Since we’ll build on that model to help us estimate features here, a brief recap may
be useful.

Teams typically estimate user stories using an abstract, relative estimating ��
model based on story points. Story points can be measured in the abstract
(unit-less but numerically relevant) or as ideal developer days (IDDs), with
the abstract measure being the most common.
The aggregate amount of story points that a team can deliver in the course of ��
an iteration is the team’s velocity.
When a team’s size changes or vacations or holidays occur, the team adjusts ��
the expected velocity accordingly.

If the system (no large-scale architectural refactoring at work) and organizations
are largely stable (no large-scale personnel changes in process), after some number
of iterations, teams will generally have a fairly reliable velocity. That allows them to
make intelligent commitments for each iteration. It also provides the basic mecha-
nism we need for estimating at the program/release level.

Depending on where the item is in the program backlog and how important the
estimate is, the estimate for a feature may go through a series of preliminary, refined,
and final estimates, as Figure 13–3 shows.

Wow! eBook <WoweBook.Com>

ptg

258 chaPteR 13 � vision, featuRes, and RoadmaP

Preliminary
(Relative) Size Estimate

A >B >C

Refined
Historical Story Points
B ≅ F ≅X Story Points

Final
Bottom-up, Team-Based

B ≈Y Story Points

Development Teams

Team Cost per
Story Point

Delivery
History Data

Effort History
Data

Velocity

Product Management

Product Management

Product Management

Cost Estimate Delivery Estimate

Figure 13–3 Feature estimate refinement and conversion to cost and schedule estimates

We’ll describe this process further in the following sections.

Estimating Effort

Estimating the amount of effort needed to implement a feature typically goes
through a series of successive refinements, as we describe in the following sections.

Preliminary: Gross, Relative Estimating

For initial backlog prioritization, the product management team may simply need a
rough estimate of the effort to implement a feature, even before discussion with the
teams. If so, they can simply use the same, relative estimating model—the “bigness”
of each backlog item is simply estimated relative to others of the same type. This
provides a simple and fast estimating heuristic that can be used for the initial (but
again, only relative) scoping and prioritization of work.

Wow! eBook <WoweBook.Com>

ptg

 estimating featuRes 259

Refined: Estimate in Story Points

At some point, it may be useful to refine the effort estimate by converting the feature
effort estimate into story points. With story points, the teams can start to reason
about potential cost and schedule impact. For this, we need tracking information
that allows us to convert the effort estimate for features into story points. Fortu-
nately, many agile project management tools support the feature-to-story hierarchy,
and the teams can leverage this to build some historical data. A simple comparison
of the new feature to the expended story points for a similar size feature provides
this first refinement. This is still a fairly gross estimate, because it depends on com-
paring the new feature to like features for which there is historical data, but at least
it’s in a currency that can be used for further analysis.

Final: Bottom-up, Team-Based Estimating

The estimates so far require only a minor time investment and can be done by the
product management team in isolation. That can be appropriate, based on the stage
of the feature. However, for any meaningful estimate, the fidelity of the estimate can
be significantly improved by having the estimating done by the teams. In any mate-
rial program, there will be multiple teams, and they may or may not be affected by
the new feature. Sometimes, only they know whether their module, feature, or com-
ponent is impacted. Therefore, only they can actually determine a more responsible
estimate. They will typically have their own history of like features—and the story
points required to complete them—in their project management repository.

However, since ad hoc requests for estimating interrupts the team from their daily
iteration activities, the estimating task is most efficiently done on a cadence. In
Chapter 9 (Iterating, Backlog, Throughput, and Kanban), we described the semi-
weekly feature preview meeting, which is designed, in part, for just this purpose.

Estimating Cost

Once the feature has been estimated in the currency of story points, a cost estimate
can be quickly derived. Although the development teams themselves may not have
ready knowledge of the cost of a story point, at the Program level it is fairly straight-
forward to calculate one. Simply look at the burdened cost per iteration timebox for
the teams that provided the estimates, and divide that by their velocity. This gives an
estimate of the cost per story point for the subject teams affected by the new feature.

Additional work may be necessary when teams are distributed in differing geo-
graphic locations, because that can result in a highly varying cost per story point for
individual teams.

Wow! eBook <WoweBook.Com>

ptg

260 chaPteR 13 � vision, featuRes, and RoadmaP

Estimating Development Time

Finally, given an understanding of what percentage of the team’s time the program
is willing to devote to the new feature, we can also use historical data to predict how
long it will take to deliver. For example, if feature A was implemented in about 1,000
story points and took three months and feature B is a little bigger, then feature B
will take a little more than three months, assuming similar resource allocations and
availability.

As a further refinement, the program can also look at the current available velocity
of the affected teams, make some assumptions about percentage time allocation,
and derive a better time and schedule estimate from there.

testing features

As we described in Chapters 4 and 10, features, like stories, are business-facing
behaviors that are subject to functional testing to assure that the aggregate behavior
of the system is in accordance with the objectives. Feature testing is referenced in
quadrant 2 of the agile testing matrix, and features cannot be considered done until
they pass an acceptance test, as Figure 13–4 illustrates.

For teams that are organized by feature, this testing can be done by the team that
implements the feature. If the teams are organized around components, then much
of this testing is likely to be done by the system team. In either case, however, there
are likely to be some spanning features that touch multiple feature and component
teams; testing of those features is often done under the purview of the system team.

Business-Facing

Q2

Q1

Q3

Q4

Technology-Facing

Su
pp

or
tin

g
D

ev
el

op
m

en
t

Cr
iti

qu
e

Pr
od

uc
t

Automated
and Manual

Functional Tests

Story Acceptance Testing
Feature Acceptance Testing

System Acceptance Tests

Exploratory Testing
Scenario Testing
Usability Testing

User Acceptance Testing (UAT)
Alpha/Beta Testing

System Qualities Tests

Performance and Load Testing
Security Testing

“ility” Testing

Unit Tests
Component Tests

Automated Tools

Manual

Realized by

0,1 1..*
1 1

1..* 1..*

Feature

Feature
Acceptance Test

Done
when
passes

Story
Acceptance Test

Story

Figure 13–4 Feature testing in the agile testing matrix and the agile requirements model

Wow! eBook <WoweBook.Com>

ptg

 PRioRitizing featuRes 261

As with stories, feature tests may be manual or automated, with automation being
the preferred approach.

Prioritizing features

One of the biggest challenges that all software teams face is prioritizing requirements
for implementation and delivery to the customers. This is certainly a challenge for
every agile team at iteration boundaries, and it rises to even greater importance
when prioritizing features at the Program level. Here, small decisions can have big
impacts on implementation cost and timeliness of value delivery.

There are a number of reasons why prioritization is such a hard problem.

Customers are seemingly reluctant to prioritize features. Perhaps this is ��
because they simply “want them all,” which is understandable; or perhaps
they are uncertain as to what the relative priorities are; or perhaps they can-
not gain internal agreement.
Product managers are often even more reluctant. Perhaps this is because that ��
if they could only get them all, they wouldn’t have to prioritize anything, and
more importantly, they would be assured of receiving all the ultimate value.2

Quantifying value is extremely difficult. Some features are simple “must ��
haves” to remain competitive or keep market share. How does one quantify
the impact of keeping market share, one feature at a time?

It is often necessary to compare and prioritize very unlike things. For exam-
ple, how does one prioritize a entirely new initiative that could take many
months against a minor feature that can be delivered in just a few weeks?

To assist us, we often attempt to provide a return on investment (ROI) per feature,
by predicting the likely increase in revenue if a feature is available. Of course, deter-
mining feature ROI is most likely a false science, because no one’s crystal ball is an
adequate predictor of future revenue, especially when you attempt to allocate rev-
enue on a per-feature basis. This is compounded because the analyst who does the
work is likely to develop a vested, personal interest in seeing that the feature is devel-
oped. Plus, any product manager or business analyst worth their salt can probably
make a case for a great ROI for their feature; otherwise, they wouldn’t have worked
on it to begin with.

In agile, however, the challenge of prioritization is immutable. We admit up front
that we can’t implement (nor even discover) all potential requirements. After all, we

2. I once saw a cartoon on this topic. The developer says to the product manager, “Please tell me
what your priorities are so I’ll know what I don’t have to work on.”

Wow! eBook <WoweBook.Com>

ptg

262 chaPteR 13 � vision, featuRes, and RoadmaP

typically have fixed quality, resources, and delivery schedules. Therefore, the only
variable we have is scope. Effective prioritization becomes a mandatory practice and
art—one that must be mastered by every agile team and program.

Of course, prioritizing requirements is not a new problem. A number of authors
have described reasonable mechanisms for prioritization. Our favorites include the
following:

Agile Estimating and Planning�� [Cohn 2006]
Software Requirements�� [Wiegers 1999]
Software by Numbers�� [Denne and Cleland-Huang 2004]

For those for whom this topic is potentially a determinant of program success or
failure of the program, we refer you to these bodies of work. Although we will take a
different approach in this book, there is certainly no one right way to prioritize, and
teams will benefit from differing perspectives on this unique problem.

Relative Priority = Relative ROI = Relative Value
Cost

If we could simply establish value and cost (if not in absolute terms, then at least rel-
ative to other features), then we have a way to prioritize based on economics. After
all, who wouldn’t want to deliver a higher ROI feature before a lower ROI feature?
That seemed to make totally intuitive and (apparently) economical common sense.

What’s Wrong with Our Value/Effort ROI Proxy?

However, based on more complete economic framework, it turns out that relative
ROI (as we’ve too simply defined it earlier) is not an adequate proxy for prioritizing
value delivery. Recently, one of the more thoughtful and rigorous economic views to
prioritizing value delivery (sequencing work in flow terms) is Reinertsen’s Principles
of Product Development Flow [2009], which we introduced in Chapter 1. These prin-
ciples describe methods of sequencing work based on the mathematics and under-
lying economics of lean product development.

We’ll use those principles to describe an enhanced method for prioritizing fea-
tures. As we do so, we’ll discover a deeply seated flaw in our first assumption—the

Wow! eBook <WoweBook.Com>

ptg

 PRioRitizing featuRes 263

assumption that a high relative ROI feature should naturally have precedence over
a lower ROI feature.

Instead, what we need to understand is the way in which the economics of our pro-
gram may be dramatically affected by sequence. For example, the potential profit for
a particular high ROI feature could be less sensitive to a schedule delay than a lower
ROI feature. In this case, the lower ROI feature should be implemented first, followed
by the higher ROI feature. This may not make intuitive sense, but we’ll see that it
does make economic sense.

Prioritizing Features Based on the Cost of Delay

Since prioritizing value delivery is the key economic driver for a program, we’ll need
a more sophisticated model to produce better returns. As we described in Chapter 9
(Iterating, Backlog, Throughput, and Kanban), prioritizing value delivery in soft-
ware development is an application of queuing theory. Applying those principles
will create a solid economic foundation for critical decision making around feature
priorities.

Introducing Cost of Delay (CoD)

As Reinertsen points out, “If you only quantify one thing, quantify the cost of
delay,”3 so we’ll need to be able to estimate the CoD as part of our more economi-
cally grounded approach (more on that shortly). Fortunately, however, we don’t
have to quantify only one thing, and because we have already outlined an estimating
strategy, we’ll actually be able to quantify two things, the feature effort estimate, as we
have described earlier, and the cost of delay. Together, we should have what we need.

Reinertsen describes three methods for prioritizing work based on the economics
of CoD.

Shortest Job First

When the cost of delay for two features is equal, doing the Shortest (in our case, small-
est4) Job First, produces the best economic returns, as is illustrated in Figure 13–5.

3. Principle of Product Development Flow E3—If you only quantify one thing, quantify the CoD.
4. Although duration (the time to do a job in Reinertsen’s term) is not the same as effort (the

size estimate for the feature in our terms), all else being equal, a bigger feature will take longer
to implement than a smaller one. If, for whatever reason, a bigger feature can go through the
system faster (availability of resources, or whatever), then the rating system must be adjusted
accordingly.

Wow! eBook <WoweBook.Com>

ptg

264 chaPteR 13 � vision, featuRes, and RoadmaP

Time

3

Time

3
2

1

Longest Job First

Shortest Job First

Co
st

 o
f D

el
ay

Co

st
 o

f D
el

ay

1
2

Delay Cost

Feature Effort Cost of
Delay

1 3
2 3
3

1
3

10 3

Figure 13–5 Shortest Job First. When the cost of delays are the same, do the
smallest feature first.
Source: Donald G. Reinertsen, The Principles of Product Development Flow, Celeritas Publishing, 2009

In Figure 13–5, the black area represents the total cost of delay of the two scenarios.
The impact can be dramatic, as we can see that delivering the smallest feature first
substantially decreases the overall cost of delay in this case. So, we arrive at our first
conclusion:

If two features have the same CoD, do the smallest feature first.

High Delay Cost First

If the effort to do two new features is about the same, then the second approach,
High Delay Cost First, illustrates the effect of prioritizing the features with the high-
est cost of delay. Again, the economics can be compelling, as Figure 13–6 illustrates.

Of course, this makes intuitive sense in this case as well (not that intuition has
always led us to the correct conclusion). In other words, if CoD is a proxy for value
and if one feature has more value than another and if it’s the same effort (and takes
the same amount of time), we do the higher value feature first; we knew that already
from our ROI value/effort proxy. So, we have our second conclusion:

If two features have the same effort, do the feature with the highest CoD first.

Wow! eBook <WoweBook.Com>

ptg

 PRioRitizing featuRes 265

Feature Effort Cost of
Delay

1 3
2 3
3 3

10
3
1

Time

Time
Co

st
 o

f D
el

ay

Low Delay Cost First

High Delay Cost First

Co
st

 o
f D

el
ay

Delay Cost
1

23

1
2

3

Figure 13–6 High Delay Cost First. When effort is the same, do the high delay cost
feature first.
Source: Donald G. Reinertsen, The Principles of Product Development Flow, Celeritas Publishing, 2009

Weighted Shortest Job First

Now that we have seen the impact, we understand that these two conclusions are
quite sensible when the effort or CoD of two features are comparable. Of course, we
are not manufacturing widgets here. The CoD and implementation effort for differ-
ent software features are likely to be highly variable. Plus, they often have weak or
no correlations (that is, some valuable jobs are easy to do, and some are hard); that’s
just the way it is with software. In the case where the CoD and effort for a feature are
highly variable, then the best economics are achieved when we implement them in
order of the Weighted Shortest Job First.

In this case, we calculate the relative priority weighting by dividing the CoD by the
effort (time proxy) estimate. This favors the jobs with the best ratio of value to deliv-
ery time. If the CoD and job sizes vary greatly, then the differential economics can
be even more dramatic, as is illustrated in Figure 13–7.

This, then, is our preferred approach for software development:

If two features have different efforts and CoD (and they almost always do), do the
weighted, smallest effort feature first.

Wow! eBook <WoweBook.Com>

ptg

266 chaPteR 13 � vision, featuRes, and RoadmaP

Time

Time

Co
st

 o
f D

el
ay

Low Weight First

High Weight First
Co

st
 o

f D
el

ay

Delay Cost
1

2

3

2
3

1

Feature Effort Cost of
Delay

Weight =
CoD/Effort

1
2
3

1
3

10

10
3
1

10
1
0.1

Figure 13–7 Weighted Shortest Job First. When job effort and delay costs differ,
prioritize by dividing the job’s cost of delay by its effort.
Source: Donald G. Reinertsen, The Principles of Product Development Flow, Celeritas Publishing, 2009

We’ll apply this prioritization scheme, Weighted Shorted Job First (WSJF), through-
out this book, and we’ll see it again when prioritizing architectural (Chapter 21)
and business (Chapter 23) epics.

Estimating the Cost of Delay

This seems like a promising decision model for prioritizing features. It is based on
solid economics and is quite rational once you understand it. However, we have
excluded one small item: How does one go about calculating the cost of delay for a
feature? If we aren’t careful, we could fall into the analysis trap we mentioned ear-
lier; overinvestment in calculating size estimates for features plus overinvestment
in calculating CoD could lead to too much overhead plus a potential bias by those
doing the work. We need something simpler.

We suggest that CoD—so critical to our decision-making criteria—is, in turn, an
aggregation of three attributes of a feature, each of which can be estimated fairly
readily, when compared to other features. They are user value, time value, and risk
reduction value.

User value�� is simply the potential value of the feature in the eyes of the user.
Product managers often have a good sense of the relative value of a feature (“they

Wow! eBook <WoweBook.Com>

ptg

 PRioRitizing featuRes 267

prefer this over that”), even when it is impossible to determine the absolute
value. And since we are prioritizing like things, relative user value is all we need.
Time value�� is another relative estimate, one based on how the user value
decays over time. Many features provide higher value when they are delivered
early and differentiated in the market and provide lower value as features
become commoditized. In some cases, time value is modest at best (implement
the new UI standard with new corporate branding). In other cases, time value is
extreme (implement the new testing protocol prior to the school year buying season), and
of course there are in-between cases as well (support 64-bit architectures as soon
as our competitors do).
Risk reduction/opportunity enablement �� value adds a final dimension—one
that acknowledges that what we are really doing is software research and
development. Our world is laden with both risk and opportunity. Some fea-
tures are more or less valuable to us based on how they help us unlock these
mysteries, mitigate risk, and help us exploit new opportunities. For example,
move user authentication to a new web service could be a risky effort for a shrink-
wrapped software provider that has done nothing like that in the past, but
imagine the opportunities that such a new feature could engender.

With these three value factors—user value, time value, and risk reduction value—
we have the final pieces to our prioritization puzzle.

Feature Prioritization Evaluation Matrix

Now, we can integrate all this information into an evaluation spreadsheet that we
can use to establish the relative priorities for a feature, based on WSJF, which incor-
porates effort and CoD. Table 13–1 shows an example of such a feature prioritiza-
tion matrix.

Table 13–1 WSJF Feature Prioritization Example

Cost of Delay

Effort WSJFUser Time Risk Red. Total

Feature A 4 9 8 21 4 5.3

Feature B 8 4 3 15 6 2.5

Feature C 6 6 6 18 5 3.6

Legend:
Scale: 10 is highest, 1 is lowest.
Total is sum of individual CoD.
WSJF (weighted result) is calculated as Total (Cost of Delay) divided by Effort.

Wow! eBook <WoweBook.Com>

ptg

268 chaPteR 13 � vision, featuRes, and RoadmaP

In our example, it is interesting to note that feature B—the job with the highest user
value (8) and the highest feature/effort (raw ROI) rating (8/6 =1.3)—is actually the
job that has the lowest WSJF and therefore should be implemented last, not first. The
job that has the lowest feature value (feature A) actually produces the highest actual
return on investment, so long as it is implemented first (because it has an extremely
high time value). So much for our intuition!

NOTE�³ In this simple example, the individual attributes are not weighted relative to each other. Teams
may apply a rating scale to their specific context. For example, if immediate, incremental revenue
can be gained from delivering customer-specific features, then user and/or time value may be
weighted higher accordingly.

All Prioritizations Are Local and Temporal

Reinertsen points out another subtle implication of WSJF scheduling. Priority
should be based on delay cost, which is a global property of the feature, and effort,
which is a local property of the team that is implementing the feature. In other
words, a job with a lower relative feature value may require little resource from
a specific team and therefore should be implemented ahead of another, higher-
priority feature, if that feature requires more resources for that team. This means
that all priorities are indeed inherently local.5

This applies to entire projects, as well as to specific features within a project. This
occasionally flies in the face of the way we often do things, whereby management
sets a global priority for a project, which is to be applied across all teams. In that
case, a lower-priority task for a high-priority project may take precedence over a
high-priority task for a lower-priority feature that could have otherwise delivered
value immediately. And availability of scarce resources doesn’t even enter into the
equation. We see now that this approach simply doesn’t make economic sense.

In addition, we note that our model is highly sensitive to the time element—priori-
ties change rapidly as deadlines approach. For example, implement the new testing protocol
in time for the school year buying season could have a time value of “1 to 2” in the winter
prior to the next school year start but could easily be a “10” in May of the next year.

One conclusion of the previous is that priorities have to be determined locally and
at the last responsible moment. That is the time when we can best assess the CoD
and the resources available to work on the feature.

5. Principle of Product Development Flow F18—Prioritizations are inherently local.

Wow! eBook <WoweBook.Com>

ptg

 PRioRitizing featuRes 269

Fortunately, in our Big Picture model, we prioritize features frequently on release
planning boundaries. The rapid cadence we have established for our release train
serves us well here, so long as we take the time to reprioritize at each such boundary.

When we do so, we can be confident that our priorities are current—taking into
account then-current availability of resources and then-current cost of delay, as well
as being based on solid economic fundamentals.

Achieving Differential Value:
The Kano Model of Customer Satisfaction

Along with his colleagues, Noriaki Kano, an expert on the field of quality manage-
ment and customer satisfaction, developed a model for customer satisfaction that
also challenged some traditional beliefs. Specifically, the Kano model challenges the
assumption that customer satisfaction is achieved by balancing investment across
the various attributes of a product or service. Rather, customer satisfaction can be
optimized by focusing on differential features, those “exciters” and “delighters” that
increase customer satisfaction and loyalty beyond that which a proportional invest-
ment would otherwise merit. Figure 13–8 shows the Kano model.

Feature

Cu
st

om
er

 S
at

is
fa

ct
io

n

Absent Present Enhanced

Lo
w

M
ed

iu
m

H
ig

h

Exciters and
Delighters

Basic Features

Linear
Performance

Figure 13–8 Kano model of customer satisfaction

Wow! eBook <WoweBook.Com>

ptg

270 chaPteR 13 � vision, featuRes, and RoadmaP

The model illustrates three types of features.

Basic (must-have) features:�� Features that must be present to have a viable
solution. Without them, your solution cannot compete in the marketplace.
Linear features:�� Features for which the capability of the feature is directly
proportional to the result. Generally, the more you invest in those features,
the higher the satisfaction.
Exciters and delighters:�� These are the features that differentiate the solution
from the competition. They provide the highest opportunity for customer
satisfaction and loyalty.

The primary insight from the Kano model is the position and shape of the lower
and upper curves.

The shape of the basic curve is telling. Until a feature is simply “present,” satisfac-
tion remains low until a threshold is achieved. Thereafter, however, enhancing the
feature produces a less than proportional reward.. The center point (the present line)
of this basic curve gives rise to what is often described as the minimum marketable
feature (MMF), which is the smallest set of functionality that must exist in order for
the users to perceive value in that feature. For a solution to be considered viable, it
must contain some requisite set of MMFs. However, enhancing or “gold plating”
any MMF will not produce a proportional economic return.

The position and shape of the exciters and delighters curve tells the opposite story. Because
these features are unique, compelling, and differentiated, even a small investment (the
area on the left) still produces high customer interest and potential satisfaction. Addi-
tional investment produces still more, and proportionally more investment produces
still higher satisfaction. This is where we get the greatest leverage for our investment.

Prioritizing Features for Differential Value

Given that we have already described a full-fledged Weighted Shortest Job First pri-
oritization model, the question arises as to what additional benefit we can derive
from Kano’s thinking. There are three takeaways.

First, when competing on features in an existing marketplace, teams should place
relatively high user value (and therefore a relatively high cost of delay) on features
required to reach minimal parity. This leads us to rule #1:

Differential value rule #1: Invest in MMFs, but never overinvest in a feature that is
already commoditized.

Thereafter, the strategic focus should move to placing higher user value on dif-
ferentiating features—those that will excite and delight the users, those for which

Wow! eBook <WoweBook.Com>

ptg

 the RoadmaP 271

competitive solutions have no answer, and those for which an incremental invest-
ment produces a nonlinear return. This leads us to rule #2:

Differential value rule #2: Drive innovation by having the courage to invest in exciters.

Finally and most subtly, when we are forced to engage in feature wars with competi-
tors that may already be ahead of us, it may not make sense to put all our investment
into MMFs. After all, our competitors will keep investing too; what makes us think
we can catch up (they are likely becoming more agile, too)? Instead, it may be bet-
ter to slight some narrow category of MMFs and, instead, focus some amount of
investment on exciters, even if we have not reached full basic feature parity.

Experience has shown that customers can be relatively patient with suppliers when
they can reasonably anticipate the appearance of adequate MMFs and see the prom-
ise of the differential value of the exciters that the team is bringing forward from the
backlog. This leads us to our third and final rule of feature prioritization:

Differential value rule #3: If resources do not allow you to compete on the current play-
ing field, change the playing field.

the roadmaP

The Vision we described earlier was presented as time-independent. That was appro-
priate, because the objective there was to just communicate the strategic intent of
“what this thing is we are about to build.” Overloading the Vision with prospective
timelines will likely quickly derail the discussion of the “what.”

However, in order to set priorities and plan for implementation, we need an additional
perspective, a product Roadmap that provides a view we can use to communicate
future objectives to our outside stakeholders. An agile Roadmap is not a particularly
complicated artifact, nor is the mechanical maintenance of it difficult. For example, a
typical Roadmap might be communicated in a single graphic, as Figure 13–9 shows.

Each vertical box represents an upcoming release (or PSI). The label at the bottom
represents the theme or primary objective of the release. The features are listed in
prioritized order.

The Roadmap consists of a series of planned release dates, each of which has a theme
and a prioritized feature set. Although it is a simple thing mechanically to represent
the Roadmap, figuring out the content for anything beyond the next release is another
matter entirely. The topic of what the business plans to ship and when can be a fas-
cinating and contentious topic in agile. However, the easiest way to think about the
Roadmap is that it is an output, rather than an input to the release planning process,
as we will describe in the next few chapters.

Wow! eBook <WoweBook.Com>

ptg

272 chaPteR 13 � vision, featuRes, and RoadmaP

November

Release 1 Release 2 Release 3

• First Distributed Game

August

Release 2

• First Two Games Available

Release 2

May

Release 1

• Feasibility Proof on Mobile
 Platform

An Updated, Themed, and Prioritized “Plan of Intent”

• Brickyard Port Started
(Stretch Goal to Complete)

• Distributed Platform
Demo

• All GUIs for Both Games
Demonstrable

• New Features (See
Prioritized List)

• Demo of Beemer Game

• Road Rage Ported (part I)
Features

• Beemer Game in Alpha

• Road Rage Completed
Features

• (Single User)
• Brickyard Ported (Single

User)
• Road Rage Multiuser

Demonstrable
• First Multiuser Game

Feature for Road Rage
• New Features (See

Prioritized List)

Features
• Multiuser Road Rage First

Release
• Brickyard Ported
 Multiuser Demo
• New Features for Both

Games (See Prioritized
List)

• Beemer Game to E3
Trade Show?

Figure 13–9 Roadmap—a themed, prioritized “plan of intent”

To avoid the iron triangle, the dates, themes, and quality for the next release are
fixed. The features are prioritized and variable. The teams can commit only to the
features in the next upcoming release. Releases beyond the next represent only a
best estimate. The Roadmap, then, is a “plan of intent” and is subject to change as
development facts, business context, and customer needs change.

With respect to the upcoming release, perhaps the most important guidance is this:

Even though the team has committed to the objectives and we have agreed that the fea-
ture set cannot be guaranteed, it is a reasonable expectation that the agile teams will

Meet the date��
Deliver on the promise of the theme��
Deliver most of the features, and certainly the highest-priority ones, with the ��
requisite quality

Anything less would be unprofessional and belie the power, discipline, and account-
ability of our agile model. Moreover, it will eventually threaten our own empower-
ment, because failure to deliver will inevitably cause the implementation of various
management controls to “help us”!

Wow! eBook <WoweBook.Com>

ptg

 summaRy 273

On Confidence and Commitments for Release Next,
Next +1, and More

As we will see in Chapter 16, Release Planning, the objectives and prioritized feature set
for “Release Next” should be a high confidence plan of intent. And to be flippant for a
second, it’s often true that release Next +1 has a pretty clear definition as well, if for no
other reason than it usually “must” contain all the stuff that didn’t fit in Release Next!

Anything after that, however, is likely to be a somewhat futile attempt to predict the
future. In any case, it is important to keep any such future commitments abstract
so that at least the intent can be met under most normal circumstances. After all,
if long-term commitments are fixed, then we have essentially reentered a waterfall
model of fixed resources, time, and scope. Even worse, in so doing, the program will
lose its ability to exploit any new market opportunities that present themselves in
the meantime. You can’t have it both ways.

We’ll revisit this topic again in Chapter 15, The Agile Release Train, and Chapter 16,
Release Planning.

summary

We covered three different but closely related topics in this chapter: Vision, features,
and Roadmap. We described how the Vision is used to continuously communicate
the strategic intent of the program, and we provided a number of mechanisms for
documenting and communicating this critical aspect of the program.

We also described features as the artifact we’ll use to carry the value stream from the
Vision to the user. We illustrated models for estimating the amount of effort (work)
involved in implementing a feature, as well as how to convert the effort estimate
into cost and schedule estimates. We also described how to prioritize features, based
on the lean-flow economics of cost of delay. In so doing, we illustrated how many of
our prior assumptions about prioritizing work were flawed, or at least insufficient
to produce the optimum economic outcomes. We concluded the estimating section
with an example spreadsheet that teams or programs can use to do a better job of
prioritizing features at release planning boundaries.

Finally, we included the intended delivery time element for features in a Roadmap,
which is a statement of intent that describes how we intend to implement the fea-
tures over time. We ended with a note of caution to make sure that the Roadmap
is used for its intended purpose—a preliminary, general, statement of intent—and
how it should not be used to make fixed, longer-term, program commitments.

In the next few chapters, we’ll highlight the role of product management in defin-
ing and prioritizing features. Then we’ll move on to discussion of the Agile Release
Train, and its partner, release planning.

Wow! eBook <WoweBook.Com>

ptg

This page intentionally left blank

Wow! eBook <WoweBook.Com>

ptg

 275

Chapter 14

role of the ProduCt manager

It is clear to me that you need serious professional help.

—Author’s ex-wife

In earlier chapters, we described why the responsibilities of the agile product owner,
as primarily defined by Scrum, are more typically a set of responsibilities that are

shared between a number of agile product owners and a smaller number of agile prod-
uct managers in the mid- to larger software enterprise. In Chapter 11, we described
the specific activities of the product owner role—a relatively new role that is tightly
coupled to the team and the implementation. We also described how this modest
separation of concerns and responsibilities can improve the value stream by avoiding
bottlenecks in decision making relative to priorities and product definition.

In this chapter, we’ll describe the other half of that equation, which is the role of the
product manager in the agile enterprise.

In the Big Picture, product managers operate a little above the fray of the itera-
tions and the tactical work the teams do to actually develop and deliver the code.
Instead, they operate primarily at the Program and Release level, where they focus
on vision for the overall solution, its features, and the plans for PSIs and releases, as
Figure 14–1 indicates.

Systems, Applications, Products

Te
am

 B
ac

kl
og

System Team

Re
le

as
e

Pl
an

ni
ng

Nonfunctional
Requirements

Feature 1

Feature 2

Release Planning

Arch 1

Re
le

as
e

(o
r P

SI
)

Pr
og

ra
m

 B
ac

kl
og

Release Theme and Objectives

Roadmap

Vision

Release Management

Product
Management

Figure 14–1 Product managers operate at the Program and Release level.

Wow! eBook <WoweBook.Com>

ptg

276 chaPteR 14 � RoLe of the PRoduct manageR

ProduCt manager, Business analyst?
Before we proceed, however, we pause for a second to reflect on the title of the role.
In different industries and organizations, the role can be responsible for a variety of
activities, from strategic to tactical. Individuals with a variety of different titles, who
may come for marketing, development, or IT operations, can fulfill the role.

In addition, the titles associated with these responsibilities tend to differ based on
industry segment.

In product-oriented companies, including independent software vendors ��
(ISVs) and product and system manufacturers, product manager is a com-
mon role and a title that usually has a fairly clear set of responsibilities for
defining and positioning the product in the marketplace. However, we’ve
also seen other titles carry that same responsibility within product compa-
nies, including such titles as solutions manager and even program manager.
In information systems/information technology (IS/IT) departments, the ��
title is most typically business analyst.

The function of this role varies by industry segment, which we will highlight briefly
below.

resPonsiBilities of the ProduCt manager in a ProduCt
ComPany

The Product Development and Management Association has published a body of
knowledge, which suggests the responsibilities of those who perform the various func-
tions of product management in a product-oriented company.1 The body of knowl-
edge is organized into three lifecycle phases and six knowledge (competency) areas:

The lifecycle phases are as follows.

Discovery Phase: Discovery covers the process of searching for and identifying
opportunities—whether market-based or technology-based—and all of the
planning and strategy to accomplish this. It requires the identification of
customer needs, problems, and benefits, and the conceptual features that are
envisioned for the products it wishes to build.

Development Phase: The second phase is primarily about realization. It
covers the process of converting specifications into designs—whether for an
individual product or a complete portfolio of products—and all of the processes

1. http://pdmabok.arcstone.com/description.php

Wow! eBook <WoweBook.Com>

http://pdmabok.arcstone.com/description.php

ptg

 ResPonsiBiLities of the PRoduct manageR in a PRoduct comPany 277

to accomplish this. It usually requires detailed resource management, creative
engineering and process design capabilities, and sophisticated information
technology. It ends when the products or services achieve their first commercial
availability.

Commercialization Phase: The third phase is primarily about fulfillment. It
covers the entire process of new product introduction and the organization’s
management of its product and service portfolio as it attempts to fulfill its
financial potential. It ends when the products or services have reached the end
of their useful life cycle and are to be considered as candidates for retirement,
renewal, and regeneration. At this stage, the process begins anew with the
undertaking of a new product development initiative and a return to the
Discovery Phase.

The six knowledge areas are as follows.

Customer and Market Research: Bringing external insight into product
innovation, development, and growth, especially insight about customers
(buyers and end users) but also information about channels, competitors,
markets, alternatives, etc.

Technology and Intellectual Property: The invention, development,
acquisition, licensing, and management of technologies and intellectual
property that enable and become part of products.

Strategy, Planning, and Decision Making: Strategies, plans, and decision-
making around product innovation, development, and growth. These would
include strategies, plans, and decision making at the business level (as relates
to product innovation, development, and growth), as well as for platforms,
product lines or product families, and products.

People, Teams, and Culture: The people side of product development across
the life cycle, including organization/team structures, people management, skills
development, culture, organization change management, human interaction, etc.

Co-development and Alliances: Innovation, development, and growth
activities that take place in unison with external partners, including customers,
suppliers, service providers, and channels. This would include co-development
or development chain strategy, partner management, co-development
execution processes, co-development teams, etc.

Process, Execution, and Metrics (including Financial): Pricing, positioning,
promotion, channel management, financial management, the customer support

Wow! eBook <WoweBook.Com>

ptg

278 chaPteR 14 � RoLe of the PRoduct manageR

operational dimension of product innovation, development, and growth
including: processes and tools for requirements development and management,
design, manufacturing, supply chain (engineering), and change management.

Although there are many viewpoints on the role of product management in a prod-
uct company, this description is generally reflective of a typical set of responsibili-
ties for people who fill the role.2

Business resPonsiBilities of the role in the it/is shoP

In the IS/IT shop, the focus is on helping the enterprise meet its business objectives
through the following:

Developing new systems for internal use��
Installing and configuring commercial, off-the-shelf software��
Integrating internal development capabilities with acquired solutions��
Supporting and maintaining these systems��

The business analyst plays a product manager-like role in needs assessment, defin-
ing solutions, build-versus-buy decisions, and so on.

The International Institute of Business Analysts (IIBA) has developed a Guide to
the Business Analysis Body of Knowledge (BABOK Guide) to guide practitioners who
fulfill this role.3 BABOK consists of six knowledge areas and eight underlying com-
petencies. The six knowledge areas are the most relevant here, because they describe
the activities of a business analyst.

Business Analysis Planning and Monitoring . . . covers how business analysts
determine which activities are necessary in order to complete a business analysis
effort. It covers identification of stakeholders, selection of business analysis
techniques, the process that will be used to manage requirements, and how to
assess the progress of the work.

Elicitation (requirements discovery techniques) describes how business
analysts work with stakeholders to identify and understand their needs and
concerns, and understand the environment in which they work. The purpose
of elicitation is to ensure that a stakeholder’s actual underlying needs are
understood, rather than their stated or superficial desires.

2. Some of this language, when taken literally, reflects some of the historical mind-sets of water-
fall development, a problem we’ll address in later sections of this chapter.

3. IIBA Guide to the Business Analysis Body of Knowledge

Wow! eBook <WoweBook.Com>

ptg

 ResPonsiBiLity summaRy 279

Requirements Management and Communication describes how business
analysts manage conflicts, issues, and changes in order to ensure that
stakeholders and the project team remain in agreement on the solution scope,
how requirements are communicated to stakeholders, and how knowledge
gained by the business analyst is maintained for future use.

Enterprise Analysis describes how business analysts identify a business need,
refine and clarify the definition of that need, and define a solution scope that
can feasibly be implemented by the business. This knowledge area describes
problem definition and analysis, business case development, feasibility studies,
and the definition of solution scope.

Requirements Analysis describes how business analysts prioritize and
progressively elaborate stakeholder and solution requirements in order to
enable the project team to implement a solution that will meet the needs of the
sponsoring organization and stakeholders. It involves analyzing stakeholder
needs to define solutions that meet those needs, assessing the current state of the
business to identify and recommend improvements, and the verification and
validation of the resulting requirements.

Solution Assessment and Validation describes how business analysts
assess proposed solutions to determine which solution best fits the business
need, identify gaps and shortcomings in solutions, and determine necessary
workarounds or changes to the solution. It also describes how business analysts
assess deployed solutions to see how well they met the original need so that the
sponsoring organization can assess the performance and effectiveness of the
solution.

The underlying competencies describe the expectations for an individual’s skills and
abilities in analytical thinking and problem solving, behavioral characteristics, busi-
ness knowledge, communication skills, interaction skills, and software applications.

resPonsiBility summary

Fortunately, from the standpoint of an agile software development process, this is
probably more than we need to know. However, in our agile context, the business
analyst/product managers have the primary organizational responsibility to do the
following:

Understand solution needs, gaps, and opportunities��
Define products and solutions to address those needs��

Wow! eBook <WoweBook.Com>

ptg

280 chaPteR 14 � RoLe of the PRoduct manageR

Work within the organization to address all the other issues (internal and ��
external) that are necessary for successful deployment
Work with the development team to define requirements and help assure the ��
solution evolves to meet the real needs of the stakeholders

Given this set of responsibilities, it is clear that—even with a staff of competent
product owners—product management remains an important function in agile
development and one that must be well executed to assure enterprise success.
Indeed, the criticality of the relationship with development is implied directly in
Agile Manifesto principle #4—Businesspeople and developers must work together
daily throughout the project. However, the question we must address here is not the
role itself—for there is a large body of work on that; rather, we’ll need to describe
how the role changes when the team moves to an agile development paradigm.

Phases of ProduCt management disillusionment
in the Pre-agile enterPrise

Before we move on to making these changes, however, it’s important to set the cul-
tural context, because the relationship between product management and develop-
ment may already be quite challenging.

As we described in Chapter 1, the legacy of waterfall development still influences
much of the work we have to do to successfully implement agile development. In
the case of the product management organization, it’s likely that the product man-
ager’s mind-set has evolved through a series of increasingly foreboding attitudes, as
is illustrated in Figure 14–2.

Requirements

Design

Implementation

Big Delay

Planned
Ship Date

Actual Ship Date………….

Unbridled
Enthusiasm

False Sense of Security Rude
Awakening

Resetting
Expectations

Persistent
Mistrust

e

System
Integration

Figure 14–2 Phases of disillusionment in the pre-agile enterprise

Wow! eBook <WoweBook.Com>

ptg

Phases of PRoduct management disiLLusionment in the PRe-agiLe enteRPRise 281

Phase 1: Unbridled Enthusiasm

In this phase, the product manager spent time with customers, interviewing, running
workshops, and using whatever other tools were available to define and document
the requirements for the prospective new system. These requirements were typically
captured in a marketing requirements document (MRD) or product requirements
document (PRD). After that, the development team typically responded with a soft-
ware requirements specification or system design specification (SDS), which further
refines and documents the intent of the PRD.

At the end of this phase, which could take from three to six months to document,
review, and gain the requisite approvals, the development effort was launched, and
there was a handoff to engineering.

Phase 2: False Sense of Security

This initial, upbeat phase was followed by a period of relative calm—the period of a
false sense of security. During this phase, development proceeded apace. The prod-
uct manager was likely uninvolved or perhaps attended periodic milestone reviews
where models, documents, and project plans were reviewed and inspected. Toward
the end of this period, which typically lasted from 8 to 12 months, the software was
declared to be 90% complete and launch plans were put into place. Customers were
notified that the release was impending. External and internal release commitments
were solidified.

Phase 3: Rude Awakening

Of course, as we’ve discussed, the next phase was a painful one. During system inte-
gration, many defects were discovered, some design-related (think: uh-oh, lots of
rework . . .), and the dreaded defect triage process began.

Now it became obvious that the schedule would not be met, and communication of
that prospect began. Worse, in the early period, the defect “find rate” exceeded the
“fix rate,” the schedule became less and less certain, and product delivery looked fur-
ther and further out. Even worse, the customer typically now had their first oppor-
tunity to see the actual software, and they discovered that it was not exactly what
they currently needed. This is because either they didn’t know what they wanted
back then or their needs changed in the past year. No matter the cause, substantive,
additional rework would be required before it could be deployed.

This was a period of substantial pain for product managers and for all key stake-
holders, including development.

Wow! eBook <WoweBook.Com>

ptg

282 chaPteR 14 � RoLe of the PRoduct manageR

Phase 4: Resetting Expectations

Fortunately, we didn’t get this far in the software industry without most teams
eventually figuring out how to deliver software, so a period of rework and recov-
ery inevitably followed. The scope was typically slashed dramatically, and commit-
ments for schedule and functionality were renegotiated. Of course, credibility was
lost throughout the enterprise—the development team to its stakeholders—as well
as the product managers to their external stakeholders.

Phase 5: The Season of Perpetual Mistrust

What follows was, for many, the period we are in now—an enduring, persistent
period of mistrust between the development and product management organiza-
tions. This is often characterized by inter-department distance, hostility, reduced
communication, and, occasionally, complete dysfunction.

Worse, as the product managers learn that they get only about half what they ask
for in the each delivery, they often resolve to ask for twice as much in the next go-
around. So, the vicious cycle feeds on itself.

Exiting the Season of Perpetual Mistrust

We describe this not to belabor the pain, but to point out that this may well be the
environment in which the enterprise finds itself as we reach the threshold of
the agile transformation. Oftentimes at this point, the development teams spon-
sor the agile change initiative and deliver a few key messages to the product man-
agement organization:

Message 1: “We are heading down a new path, and this type of thing won’t
happen again.”

Message 2: “But in order for us all to be successful, you’ll need to change
many of your behaviors, too.”

And perhaps implicitly (and sometimes tactlessly—we are developers,
after all . . .):

Message 3: “With the new agile model, we are going to stop predicting what
will be delivered and when, and we probably won’t need those marketing
requirements documents anymore, and we also won’t be creating those
software design specs you’ve been reviewing, either.”

Wow! eBook <WoweBook.Com>

ptg

 evoLving PRoduct management in the agiLe enteRPRise 283

And now, finally, we ask those leading such a transformation to perform the follow-
ing thought experiment:

If you were a product manager operating in this environment, how would you
react to such a message?

Clearly, we’ll need a somewhat more mature thought process and a credible strategy
to get these key stakeholders on board with our new model.

evolving ProduCt management in the agile enterPrise

But change they must. The reality is that the role, behaviors, and activities of the
people who fill the product management function will need to undergo a substan-
tial transformation, as we summarize in Table 14–1.

Adapting to all the behaviors in the right column in Table 14–1 is a substantial
change for the newly agile product manager, so we’ll discuss each of these briefly.

Table 14–1 The Product Manager’s Changing Role in the Agile Enterprise

PM Responsibility Traditional Agile

Understand customer
need

Up-front and
discontinuous

➞ Constant interaction

Document requirements Fully elaborated in
documents

➞ Constant communication
with team

Scheduling Plan a one-time delivery,
way later

➞ Continuous near-term roadmap

Prioritize requirements Not at all or one time
only in PRD

➞ Reprioritize every release and
iteration

Validate requirements Not applicable; QA
responsibility

➞ Involved with iterations and
each release; smaller, more
frequent releases

Manage change Prohibit change; weekly
CCB meetings

➞ Adjust at every release and itera-
tion boundary

Assess likelihood of
release date

Milestone document
review

➞ Release dates are fixed, reliable;
manage scope expectations

Wow! eBook <WoweBook.Com>

ptg

284 chaPteR 14 � RoLe of the PRoduct manageR

Understanding Customer Need

Understand
Customer Need Up-Front and Discontinuous ➞ Constant Interaction

May be developed over many months,
perhaps annually.

Write it all down. Hope for the best.

Continuous and incremental discovery

Continuous communication to customer
and team

The traditional months and months spent up front to determine customer needs are
largely eliminated because they cause big delays in the value stream. Instead, we start
by implementing what we do know, and we evolve the system from there. Interac-
tions with customers are continuous. Constant, face-to-face communication—cus-
tomer > product manager > product owner > development team—replaces much
of the documentation.

Documenting Requirements

Document
Requirements Fully Elaborated in Documents ➞ Constant Communication with Team

Marketing requirements documents.

Product requirement documents.

Sign-offs, approvals, and feature “freeze.”

Throw over the transom to development.
Hope they build something like it.

Vision statements

Release planning briefings

Mock-ups, screen shots, videos, light-
weight tools

Daily to weekly meetings

Traditional marketing requirements and product requirements documents are
often eliminated, reduced in scope, or replaced by lightweight substitutes such
as briefings, videos, mock-ups, and so on. Product managers communicate at the
feature level, stating intent and avoiding unnecessary specificity (requirements).
Intense communication with development teams occurs at iteration and release
boundaries, coupled with constant, daily communication with product owners.

Wow! eBook <WoweBook.Com>

ptg

 evoLving PRoduct management in the agiLe enteRPRise 285

Scheduling

Scheduling Plan a One-Time Delivery, Way Later ➞ Continuous Near-Term Roadmap

Annual release schedule (at most)

Date and feature fixed

Quality variable

Hope they meet the date but doubt
they will

Date and quality fixed; content
variable

Rolling wave planning

Potentially shippable increments
every quarter

Scheduling is continuous; deliverable plans are updated frequently. Quality is fixed,
not variable. Teams will always have a high confidence in the current plan of intent
for the next release increment. Longer-term deliverables are more vague.

Prioritizing Requirements

Prioritize
Requirements Not at All or One-Time Only in PRD ➞

Reprioritize Every Release and
Iteration

All features created equal.

All “must haves.”

No prioritization.

Constant reprioritization (Weighted
Shortest Job First)

Not “What is the highest priority?”
but “What do you want next to see
delivered next?”

It has always been difficult to prioritize requirements in document form. Spread-
sheets and requirements management tools work better mechanically, but even then,
it can be difficult to get product managers to prioritize. Perhaps this is because we’ve
taught them that what “prioritization” really means to developers is this: “Here’s the
stuff I really need you to do, and here’s the stuff I invested all these words in that you
probably will never do anyway.” In agile, we break that deadlock with the availability
of near-term incremental releases. It’s far easier to get a product manager to commit
to “what we should deliver next” than to say, “These features are not so important.”
Plus, we can apply Weighted Shortest Job First (WSJF) prioritization to product opti-
mal economic outcomes. To do that, we must continually revisit the current CoD.

Wow! eBook <WoweBook.Com>

ptg

286 chaPteR 14 � RoLe of the PRoduct manageR

Validating Requirements

Validate
Requirements Not Applicable; QA responsibility ➞

Involved with Iterations and Each
Release; Smaller, More Frequent
Releases

Hand off to development and QA.

Assume system will meet requirements.

Pretend they haven’t changed in the last
year or so.

Hope for the best.

Attend feature demos.

See, validate, and adjust at every
iteration.

Reset priorities at rolling wave
release planning cadence.

Validating requirements was never a responsibility ascribed to the product manage-
ment role. Delivery was late anyway, and we always came up short on requirements.
Therefore, it was easy to hide behind “what didn’t get done,” so it was impossible to
say if it would have satisfied the customer. Now, with rapid delivery of code incre-
ments that can be externally validated, product managers have the opportunity and
responsibility to help the team evolve requirements to better meet the customer’s
need, no matter what we thought they were back when the project started. Everyone
is accountable. Status is objective and visible.

Managing Change

Manage Change Prohibit Change; Weekly CCB Meetings ➞
Adjust at Every Release and
Iteration Boundary

Manage and try to control change.

Feature “freeze” date.

Defect and feature triage as the
end game.

Embrace change.

Dev team commits to continuous
code quality.

Can add new things up to last
responsible moment.

In some ways, managing change was conceptually easier in the old days. Simply,
we would freeze the requirements at some point and then minimize, or even try
to eliminate, change in order to assure we could deliver something. Of course, the
customer’s needs were changing whether the code was changing or not, so value
decayed while we rejected change. Now, we are engaged in a constant process of
embracing change, refactoring code, and trusting our automated test assets to help
keep us out of trouble. If it isn’t right, we can still change it.

Wow! eBook <WoweBook.Com>

ptg

 ResPonsiBiLities of the agiLe PRoduct manageR 287

Assessing Status

Assess Likelihood
of Release Date Milestone Document Review ➞

Release Dates Are Fixed, Reliable;
Manage Scope Expectations

Attend milestone reviews.

Look at indirect artifacts.

Pretend the data presented is under-
standable and can actually help
predict delivery.

Look in crystal ball; what does 90%
complete mean?

Lean on the project office to “get this
program back on track.”

Attend iteration demos.

See iteration goal progress.

Evaluate working code in PSI.

Get interim customer feedback.

Know velocity and actual feature status.

Release predictability measure (RPM)
improves forecasting.

Since product managers interface directly with customers, they are usually quite curi-
ous about delivery dates. Although the agile truth is to “admit what we don’t know,”
customers ask, even demand, to know what we don’t know, and that puts the product
manager in the hot seat. (“Hmmm . . . we don’t really know, but ‘we don’t know’ is not
an answer.”)

So if necessary, they might even make something up. Thereafter, they hope that devel-
opers will deliver something a lot like they said, a lot like when we said they would. Unfor-
tunately, however, our historical means to know—milestone reviews, status reports,
documents, and the like—didn’t really tell them much, except “No, it isn’t done yet.”

Instead, now we have real working code, and our release predictability measure
(RPM; see next chapter), which improves forecasting. So, instead of making some-
thing up, we can tell our customers, “Here’s what’s working now, and here’s what’s
going to be working in the next PSI.” It still isn’t perfect, and it isn’t long range, but
it’s far better than what we had before.

resPonsiBilities of the agile ProduCt manager

We must recognize that this is a lot of change for a product management organiza-
tion to address, initiated just because we changed our development model. Fortu-
nately, however, others have gone before us, and there are some fairly well-defined
patterns for effective product management in the agile enterprise.

In Chapter 11, Role of the Product Owner, we suggested a responsibility split
between the project manager and product owner roles. We repeat that table as
Table 14–2 for context.

Wow! eBook <WoweBook.Com>

ptg

288 chaPteR 14 � RoLe of the PRoduct manageR

Table 14–2 Agile Product Manager and Product Owner Roles and Responsibilities

Agile Product Owner Agile Product Manager

Product/technology-facing Market/customer-facing

Co-located and reports into development/technology Co-located and reports into marketing/business

Focuses on product and implementation technology Focuses on market segments, portfolio, ROI

Owns the implementation Owns the Vision and Roadmap

Drives the iterations Drives the release

More specifically, the product manager’s role evolves in agile to fulfill the following
primary responsibilities:

Own the Vision and release backlog��
Manage release content ��
Maintain the product Roadmap��
Build an effective product manager/product owner team��

We’ll define each of these responsibilities in the following sections.

Own the Vision and Release Backlog

As was the case with traditional development, it all starts with a vision of what it is
that we need to build.

The Agile Vision

Though the instantiation and delivery models (Vision versus product requirements
document) are different, the responsibility for owning the product or solution
vision is not new to the role. After all, if the product manager does the following,
then building a Vision, which articulates a clear direction for addressing gaps and
opportunities, is a logical outcome:

Has a continuous, in-depth understanding of the current solution��
Stays abreast of the latest industry trends��
Understands the changing needs of the market and the customer base��
Articulates a clear direction for addressing gaps and opportunities��

We described a variety of methods for documenting and communicating the Vision
in Chapter 13.

Wow! eBook <WoweBook.Com>

ptg

 ResPonsiBiLities of the agiLe PRoduct manageR 289

Communicating the Vision Doesn’t Have to be Formal

Each of the methods we described has proven their worth, but it doesn’t even have to
be that well structured. For example, in one release planning session, there wasn’t an
opportunity for the four product mangers to collaborate prior to the release plan-
ning session. Even if there was an opportunity, it’s doubtful that they could have
necessarily come up with a harmonized, force-ranked feature set anyway. (Ques-
tion: Which product manager wants their number-one feature to be placed fourth
on the release backlog?) Instead, each product manager was given 45 minutes to
present. Each presented a briefing, including a list of the “top ten new” features pro-
posed for the next PSI. Based on this context, the teams then went into the more
detailed planning session.

Clearly, this was not an ideal forced-rank prioritization, and it was left up to the
teams to understand how the various priorities affected their specific, local plans.
But software, like life, can be a little messy. But it worked—in part because the prod-
uct managers were part of the process, in part because they had visibility into what
the teams could and could not achieve in the timebox, and in part because they were
able to see and empathize with the other product managers’ priorities.

Undelivered Features Fill the Program (Release) Backlog

In the Big Picture and in Chapter 11, Role of the Product Owner, we noted that the
primary currency of requirements expressions for the agile teams is the user story,
which is contained in the team’s (product) backlog, as illustrated in Figure 14–3.

In a like manner, the program backlog contains the prioritized set of features that
have not yet been implemented, as is illustrated in Figure 14–4.

Features and Components
Stories Fit in
Iterations

(Implemented by)
Tasks

Te
am

Spikes Are
Research,
Design,
Refactor
Stories

H

H

H

H

Te
am

 B
ac

kl
og

Te

am
 B

ac
kl

og

Agile Teams

NFRs

Pl
an

D
em

o

Pl
an

D
em

o

Stories

lterations lterations

Stories
Product
Owner

Scrum/Agile
Master

Developers and Testers

Figure 14–3 Teams and their backlog

Wow! eBook <WoweBook.Com>

ptg

290 chaPteR 14 � RoLe of the PRoduct manageR

Pr
og

ra
m

 B
ac

kl
og

Product
Management

Roadmapp p

Vision

Feature 4

Feature 17

Figure 14–4 Features fill the program backlog.

Like stories, features can be scheduled (in a release) or unscheduled (waiting for
future attention). They are estimated and prioritized with WSJF. Even then, esti-
mates at this scale are coarse-grained and imprecise, which prevents any temptation
to over-invest in feature elaboration and estimating.

If and when a feature reaches a priority such that it hits a release-planning bound-
ary, it will be broken into user stories prior to implementation.

Nonfunctional Requirements

In addition, the enterprise is too large to assume that all the development teams
will naturally understand the various constraints and “ilities,” such as reliability,
accuracy, performance, quality, and so on, that reflect system quality as a whole.
Therefore, the nonfunctional requirements must also be known and communicated
as part of the Vision.

Managing Release Content

The Vision for the product is delivered to the market in a stream of continuous and
frequent small releases (typically, every 60 to 120 days). Each release is defined by a
fixed date, theme, planned feature set, and fixed quality requirements—scope is the
variable. Product managers deliver the Vision to the development teams face-to-
face in the periodic release planning events (Chapter 16).

Preparing for Release Planning

We suggest that agile teams that build cooperative subsystems operate on a
synchronized Agile Release Train model (Chapter 15). In this model, periodic
release planning is the seminal event that aligns the individual teams to the

Wow! eBook <WoweBook.Com>

ptg

 ResPonsiBiLities of the agiLe PRoduct manageR 291

overall strategy of the business unit and enterprise. As such, the release planning
event is to the enterprise what iteration planning is to the team, the fixed pacemaker
that drives the enterprise’s delivery cadence. Therefore, release planning is the focus
of much preparation, communication, and coordination by the product manag-
ers. Product managers should be well prepared for each such event by doing the
following:

Understand the status of the current (in process) release��
Update the release backlog and priorities��
Meet with other business owners and other product managers to coordinate ��
initiatives and priorities
Meet with product owners and discuss the preliminary Vision for the ��
upcoming release
Update any vision artifacts and prepare a Vision briefing��

The Release Planning Event: Day 1

The event is typically a full day minimum, more likely two, and often follows a pat-
tern as illustrated in Figure 14–5 and Figure 14–6.

• State of the Business
• Objectives for Upcoming Periods

• Objectives for Release

• Each Team Presents Plans to Group
• Issues/Impediments Noted

• Issues/Impediments Assigned
• Release Commitment Vote?

9–10

10–11

11–12

12–1

1–2

2–3

3–4

4–6

Product Vision

Team
Breakouts

Draft Release
Plan Review

Problem
Solving/Scope
Management

Business
Context

• Prioritized Feature Set

Architects and PMs

• Teams Plan Stories for Iterations
• Work Out Dependencies
• Architects and PMs, POs Circulate

Managers

Product Managers

Executives

i1

i1

i2 i3 i4

i2 i3 i4

Figure 14–5 Release planning, typical day 1

Wow! eBook <WoweBook.Com>

ptg

292 chaPteR 14 � RoLe of the PRoduct manageR

Day 1 is focused on delivery of the Vision, which the product managers deliver via
whatever medium suits them best, followed by initial planning by the teams. Prod-
uct managers participate in this planning by answering questions, describing fea-
tures in more detail, and triaging scope as the plans unfold.

Teams present their draft plans at the end of day 1.

The Release Planning Event: Day 2

In most cases, the Vision doesn’t “fit” in the release time frame provided (after all, no
self-respecting product manager would bring less Vision than the teams could likely
accomplish). Thus, some day 2 scope management triage and out-of-box thinking
is required.

Release Objectives and Commitment

During day 2, the process should start to converge on a set of release (or PSI) objec-
tives, one set for each project team. As we’ll describe in Chapter 16, each objective
should have a business value, which is set by the business owner, typically the prod-
uct manager, business analysis, or sales/marketing stakeholder. An example of such
a set appears in Figure 14–7.

10–11

11–12

12–1

1–2

2–3

Plan/Replan
as Necessary

Final Plan
Review

Commitment

• What Did We Learn?
• Update Product Roadmap

Product Managers

• All Issues/Impediments Assigned
• Release Commitment Vote

9–10 Revise
Objectives?

• Objectives for Release
• Prioritized Feature Set

Engineer
Managers/PMs

Engineer
Managers

Dev teams

i1

i1

i2 i3 i4

i2 i3 i4

Figure 14–6 Release planning, typical day 2

Wow! eBook <WoweBook.Com>

ptg

 ResPonsiBiLities of the agiLe PRoduct manageR 293

Objective
10

4

10
6

10
9

4
8

4. Trade show demo by 3/15
5. Release v3.1 upgrade
 to channel

Stretch goals
All thermostat versions
Pricing program 2

--

2. First pricing programs
3. Gateway Pointing
 Rearchitecture

1. Thermostat
 Over-the-Air Update
2. Next generation
 thermostat firmware
 (V300x only)

Bus Value

Figure 14–7 Example release objectives

The total set of goals established by each team creates a prioritized, aggregate set of
objectives for the next release increment. If the release planning session converges,
as it should, the goals will be defined and committed to by the teams. At this point,
all teams and product managers are in alignment. They have agreed to a set of tan-
gible set of objectives, which have been created by the teams based on their known
velocity, and risks have been addressed. Now the program has a clear, common tar-
get for the next PSI.

Tracking the Release

All the hard work the enterprise has put into the agile transformation should now
start paying dividends. Once a commitment is achieved, the primary responsibil-
ity for delivering the release in a series of short iterations resides within the project
teams. After all, they write and test all the code, and in agile they are both empowered
and accountable to achieve the agreed-to objectives.

Even then, however, the agile enterprise recognizes that continuous trade-offs of
changing requirements and scope is inevitable, so the product manager also plays
a pivotal role in helping the teams meet the release objectives. Doing so requires
ongoing tracking and managing of the release and adjusting its content. Fortu-
nately, the agile enterprise model is replete with visibility, so understanding the
actual versus planned status of a release is no longer a crystal-ball activity. Instead,

Wow! eBook <WoweBook.Com>

ptg

294 chaPteR 14 � RoLe of the PRoduct manageR

there are a number of mechanisms product managers use to keep the Agile Release
Train on its rails.

Constant informal communication with the product owners:�� The product
manager has a direct liaison to the teams via the teams’ product owners. The
fan-out is not too extreme; a single product manager may typically interact
with some small number (three to six) of product owners and thereby have
ready status from all the project teams that must collaborate in meeting the
release objectives.
Participation in the release management team:�� Earlier, we introduced the
release management team (RMT) that has the primary responsibility for
shepherding the release to market. Product managers participate on this
team. The RMT typically meets weekly to assess release status and adjust
scope where necessary.
Attendance at iteration demos:�� Agile’s visibility also provides an inherent
opportunity to see the working code as it develops. This happens in the context
of the iteration review, which includes a product demo. The every-other-
week demo provides product managers with objective status and progress.
This one- to two-hour weekly forum is a not-to-be missed opportunity to
see the product, interact with the teams, provide feedback, and make mid-
course adjustments where necessary.
Status via agile project management tooling:�� As we’ll see in Chapter 15, The
Agile Release Train, based on the physics of agile software development
(teams’ known velocities, hierarchical feature-to-story breakdown, story
point estimates and burndown, and so on) the teams’ agile tooling should
provide a solid, quantitative basis with which to assess release progress.
Product management should routinely be able to see reports that can help
answer the following questions.

What is the overall release burndown (probability to bring the entire ��
release in on time)?
What is the status of each feature of interest?��
How are the teams tracking to the release objectives?��

Together, this information gives the RMT and product managers real, objective
knowledge of where they are. Even more importantly, they’ll have the data they need
to reason about what scope or resourcing changes might be necessary to “land” the
release on time.

Wow! eBook <WoweBook.Com>

ptg

 ResPonsiBiLities of the agiLe PRoduct manageR 295

Maintaining the Roadmap

In the previous chapter, we discussed the
Roadmap, which consists of a series of planned
release dates, each of which has a theme and a
prioritized feature set.

This is the primary artifact that agile teams use
to communicate the way in which the teams
intend to implement the Vision over time. At
the conclusion of each release planning ses-
sion, the product managers typically meet
to consolidate the objectives and update the
Roadmap. At that time, the plan for Release

Next is clear, and there is also good visibility into Release Next+1. Beyond that, how-
ever, it is, at best, an educated guess based on the relative backlog priorities and an
understanding of the team’s release predictability measure. The Roadmap serves as
the primary communication vehicle, particularly to outside stakeholders, as to the
current plan of intent for the program.

Building an Effective Product Manager/Product Owner Team

The product manager/product owner team provides the “steering wheel” that guides
the enterprise to its solution outcomes. From a reporting standpoint, we described
the typical relationship as a “fat dotted line” and noted the following:

Product managers typically report into marketing or business, and product
owners typically report into development. However, product owners are also
honorary members of the product management organization from whence they
receive overall product direction.

Of course, there is a natural ten-
sion in this relationship because
the needs of the key constituents
(development team capacity ver-
sus business/customers/market)
are different. The product man-
agers naturally want more product

more quickly, and there is no upper limit to their demands. Product owners and
development teams want that too but are sensitized to the inevitable technology,
resource, architectural, and quality constraints endemic to every software project.
And there is no upper limit to their demands.

November

Release 1 Release 2 Release 3

• First Distributed Game

August

Release 2

• First Two Games Available

Release 2

May

Release 1

• Feasibility Proof on Mobile
 Platform

An Updated, Themed, and Prioritized “Plan of Intent”

• Brickyard Port Started
(Stretch Goal to Complete)

• Distributed Platform
Demo

• All GUIs for Both Games
Demonstrable

• New Features (See
Prioritized List)

• Demo of Beemer Game

• Road Rage Ported (Part I)
Features

• Beemer Game in Alpha

• Road Rage Completed
Features

• (Single User)
• Brickyard Ported (Single

User)
• Road Rage Multiuser

Demonstrable
• First Multiuser Game

Feature for Road Rage
• New Features (See

Prioritized List)

Features
• Multiuser Road Rage First

Release
• Brickyard Ported
 Multiuser Demo
• New Features for Both

Games (See Prioritized
List)

• Beemer Game to E3
Trade Show?

Market-Facing

Solution-Facing

Product
Owner

Product Manager

Wow! eBook <WoweBook.Com>

ptg

296 chaPteR 14 � RoLe of the PRoduct manageR

Needed: A Sense of Balance

This natural tension is a direct delegation of the larger business-versus-technol-
ogy enterprise-balancing act, as is illustrated in Figure 14–8.

If the business (product management) solely has its way, it’s possible that expedi-
ency of value delivery will rule, and technology might get the short stick. After
all, what business owner would not want to accelerate value delivery at every
opportunity?

If technology (product owner/team) solely has its way, there can be little doubt
that the product will be built on sound (and the latest!) technology without
shortcuts or quality compromises. But the business value delivery may get the
short stick. After all, what technologist wouldn’t want to build the most exten-
sible and reliable platform to support future customer needs?

So, the best we can do is to first recognize and then balance these competing
interests. Occasionally we can purposefully tip it a little this way or that (refac-
toring versus new features) based on the current business context. Perhaps more
importantly, it is in the heat of this natural friction and its constant resource
constraints that the sparks of true innovation and creativity are born. If it were
easy, anybody could do it.

Essential Ingredients: Collaboration, Partnership, and Trust

It is clear that building an effective relationship between these teams is critical. In
a series of blog posts,4 Jennifer Fawcett describes how to go about it, noting the

What We’d
Like to Do

Product
Management

Development Teams

What We
Can Do

Figure 14–8 The balancing act—what we’d like to do versus what we think we
can do

4. www.agileproductowner.com

Wow! eBook <WoweBook.Com>

www.agileproductowner.com

ptg

 summaRy 297

essential ingredients of collaboration, partnership, and trust. Together, we provide a
few tips for building these essential ingredients.

Collaboration:�� Synchronize and communicate the ever-changing priorities
daily. Invite product managers to attend daily stand-ups. Politely insist on
attendance at most/all demos. Have an “open door” policy for all develop-
ment and product management meetings. If one party cannot attend, sum-
marize results in minutes or email.
Partnership:�� Ask each other, “How can I help?” Create and participate in
after-hour events to eliminate any “us versus them” thinking. Prepare for
release planning together. Operate under the “never surprise each other in
front of others” rule.
Trust:�� Trust each other to make the right decisions. When (not if!) your
product manager/product owner partner makes a decision that conflicts
with yours, support that decision. Teams will know you are both empow-
ered, will “cover each other’s backside,” and will also know that you can both
be trusted with business decisions and authority.

summary

In this chapter, we described the role of the product manager in the agile enter-
prise. We started by highlighting the traditional responsibilities of product manag-
ers within software and system vendors and the similar role of the business analyst
in IT shops. We then noted that, although many of the larger responsibilities are the
same in the traditional and agile enterprise, the manner in which these responsi-
bilities are fulfilled must undergo some pretty significant changes. We described a
challenging organizational context for the transformation, one that is often char-
acterized by a season of perpetual mistrust. We then described the specific activities
of the agile product manager and how they participate in driving release content
and helping assure release success. Finally, we provided some guidance as to how
to build effective relationships between the product manager and product owner/
development teams. It is that relationship that will determine the ultimate velocity
of value delivery, and too much friction there will slow down the gears of our lean
software machine.

We also highlighted the fact that the product manager is the driving force behind
the Agile Release Train and the cadence-based release planning events that drive the
trains. We’ll discuss these two topics in the next two chapters.

Wow! eBook <WoweBook.Com>

ptg

This page intentionally left blank

Wow! eBook <WoweBook.Com>

ptg

 299

Chapter 15

the agile release train

Today’s development processes typically deliver information asynchronously in
large batches. Flow-based processes deliver information in a regular cadence in
small batches. Cadence lowers transaction costs and makes small batches more
economically feasible.

—Don Reinertsen

The original title for this chapter was to be “The Release” or perhaps “Releasing” or
“Release Planning and Execution.” But none of these titles, nor others that I toyed

with, communicated the essence of what I intended to communicate. Each of them
implied a thing that was historically true—that the release event or the release plan-
ning event, or both, were a “really big deal” in the enterprise. It represented either the
beginning (release planning) or the end (the release) of some significant project—a
major milestone in the history of the company. But that didn’t resonate for me, and
it harkened back to the psychology of the waterfall, whereby achieving a release was
some giant milestone—a cause for celebration, write the press releases, schedule an
all-hands event, get your CEO on stage, or whatever.

None of these notions reflects life in the agile enterprise. Instead, we see a continu-
ous flow of releasing value to the users in small, frequent increments—a continuous
build of value added to the marketplace. Releasing often, yet typically with little fan-
fare. Properly done, it’s a big win in the market, but it’s hard to look backward and
determine exactly when the successful tipping point was reached.

That’s not to say that releasing a product to the market with traditional fanfare is no
longer apropos, and enterprises learn how to make newsworthy events out of steady,
incremental progress. But this chapter will focus primarily on how to make each
product release a successful and routine event—an event that is indeed planned and
eagerly anticipated yet one that happens almost on autopilot. We call this process
the Agile Release Train (ART).

Wow! eBook <WoweBook.Com>

ptg

300 chaPteR 15 � the agiLe ReLease tRain

introduCtion to the agile release train

In Part I of this book, we introduced the Program level of the Big Picture with
an overview graphic and an explanation. A portion of the graphic is provided in
Figure 15–1 for context.

In the figure, we see that at the Program level, teams and activities are organized
around an ongoing series of incremental releases. The releases may be internal
and used for evaluating the system as a whole (in which case we call them PSIs, or
potentially shippable increments). The releases may be made external, in that they are
made generally available to our customers (in which case the Release label is more
appropriate).

In any case, the development of the software asset base occurs with a standard
cadence of iterations that has been established by the enterprise. In the Big Picture,
we’ve illustrated four development iterations (indicated by a full iteration backlog),
followed by one hardening iteration (indicated by an empty backlog) prior to each
release increment.

Systems, Applications, Products

Te
am

 B
ac

kl
og

System Team

Re
le

as
e

Pl
an

ni
ng

Nonfunctional
Requirements

Feature 1

Feature 2

Release Planning

Arch 1

Re
le

as
e

(o
r P

SI
)

Features
Fit in

Releases

Re
le

as
e

Pl
an

ni
ng

Pr
og

ra
m

Re
le

as
e

(o
r P

SI
)

Pr
og

ra
m

 B
ac

kl
og

Release Theme and Objectives

Features and Components
Stories Fit in
Iterations

(Implemented by)
Tasks

Te
am

NFRs

Spikes Are
Research,
Design,
Refactor
Stories

H

H

H

H

Product
Owner

Scrum/Agile
Master

Te
am

 B
ac

kl
og

Te

am
 B

ac
kl

og

Agile Teams

Developers and Testers

Pl
an

D
em

o

Pl
an

D
em

o

Stories

Iterations lterations

Stories

Release Management

Product
Management

Feature 3

Feature 4

kl

Vision

Figure 15–1 The Big Picture implying the Agile Release Train

Wow! eBook <WoweBook.Com>

ptg

 intRoduction to the agiLe ReLease tRain 301

This pattern is arbitrary, and there is no fixed rule for how many times a team iter-
ates prior to a PSI or how much, if any, time or investment in hardening is required.
However, many enterprises apply this model with a repeating pattern of 4 to 5
development iterations, followed by a hardening iteration, creating a cadence of a
shippable increment about every 90 days. This is a fairly natural production rhythm
that corresponds to a reasonable external release frequency for customers and also
provides a nice quarterly planning cadence for the enterprise.

In any case, the length and number of iterations per release increment and the deci-
sion as to when to actually release a PSI are left to the judgment of each enterprise.
However, the planning of an external release requires special care and attention, as
we’ll cover later.

Rationale for the Agile Release Train

While we introduced the Agile Release Train early in Part I of the book, we didn’t
take the time to justify its existence or use. We simply posited it as an answer to some
set of problems or unasked questions. However, because implementing the ART is
no small feat for the enterprise and because its use can be quite instrumental in
achieving enterprise success, it seems reasonable to introduce the rationale before
we go any further.

Like much of the guidance in this book, many of us did not start out with the ART
when we headed down the agile path. More typically, we rolled out Scrum/XP/hybrid
variants and focused on getting the teams successfully building small increments of
working, tested functionality in a short timebox. Moreover, if we were working with
only one or a few teams, releasing the product did not create many additional chal-
lenges. We could release it when we felt like it and whenever the market required it.
Coordinating our efforts wasn’t extraordinarily complicated either—we could do
that by just talking among ourselves in the hallways, or maybe we’d have to reserve
a conference room to meet with other stakeholders; quality, sales, marketing, and so
on, would all be present.

This was appropriate and was the simplest thing that could possibly work.

However, as the number of teams engaged in agile development in the company
increased, as the enterprise grew with its successes, as we acquired new teams and
new products, or as our customers drove us to higher levels of integration among
the various components of our solution, a substantial problem began to emerge.
This became the problem:

How do we harness all that new, empowered, but potentially entropic, energy into a
cohesive team of teams that can deliver ever larger and more integrated piles of value to
our customers?

Wow! eBook <WoweBook.Com>

ptg

302 chaPteR 15 � the agiLe ReLease tRain

For many, the first temptation was to reimplement some of the former planning and
governance models we had abandoned when we “went agile.” “That should get things
on track,” we thought. The results of that approach are pretty obvious—the teams
fought back hard against the new overhead and governance and lack of empower-
ment that it implied. Worse, those who attempted to implement, or reimplement,
those governance practices became impediments to be avoided (“Careful, don’t make
eye contact with the program manager”). Simply stated, that didn’t work.

That left many companies in an in-between state—improving performance of agile
teams but still very hard to build an integrated solution. Whether we understood it
or not, the “process model” we had implemented for larger-scale system releases was
starting to look something like Figure 15–2.

Teams were iterating with some degree of success; indeed, some were now mania-
cally focused and committed to their specific product, feature, or component. That
seemed like real progress.

Time Spent Thinking You Are On Track…….

Time When You Discover
You Have Only Built a
“Bunch of Pieces”

Team A

Team B

Team C

System

Planned System
Release Date

Intergrate and
Slip!

Internal Release

Iterate Iterate Iterate Harden Iterate Iterate Iterate

Release Docs

Port, Certs

Harden

Internal Release

Release Docs

Iterate Iterate IterateHarden Harden

The Slowest Component
Drags the Train

Internal Release

Iterate Iterate Iterate Harden Iterate Iterate Iterate

Release Docs

Port, Certs

Harden

Iterate

Figure 15–2 Three agile teams building a system, before the release train
Adapted from Scaling Software Agility: Best Practices for Large Enterprises [Leffingwell 2007]

Wow! eBook <WoweBook.Com>

ptg

 intRoduction to the agiLe ReLease tRain 303

But their iteration lengths were different; continuous integration at the system
level was unachievable, and the vision for the larger system was hard to decipher or
even infer. As a result, as newly agile as we believed ourselves to be, our releases and
release quality still suffered from some of the same deferred risk practices as the
waterfall model that we had just so recently abandoned!

To address this problem, the Agile Release Train evolved.

Principles of the Agile Release Train

The Agile Release Train provides alignment and helps manage risk by providing
Program-level cadence and synchronization. It is based on agreement and adoption
of a set of common operating principles (OK, rules) that are followed by all teams
that will be placing cargo (user value) on their particular train. These rules include
the following.

Frequent, periodic planning and release (or PSI) dates for the solution are ��
fixed (dates are fixed, quality is fixed, scope is variable).
Teams apply common iteration lengths.��
Intermediate, global, objective milestones are established.��
Continuous system integration is implemented at the top, system level, as ��
well as at the feature and component levels.
Release increments (PSIs) are available at regular (60- to 120-day typical) ��
intervals for customer preview, internal review, and system-level QA.
System-level �� hardening iterations are used to reduce technical debt and to
provide time for specialty release-level validation and testing.
For teams to build on top of like constructs, certain infrastructure compo-��
nents—common interfaces, system development kits, common installs, user
stores, licensing utilities, and the like—must typically track ahead.

Constraining teams to the dates and fixed quality criteria means that the systems,
feature, and component functionality must be flexible (or we will quickly find our-
selves back inside the iron triangle).

Although these rules may not seem that constraining, the fact is that this model
requires an additional degree of agility and flexibility on all teams and stakeholders
who participate.

From the perspective of the team�� : To be assured of meeting a date, a team
might need a primary plan and a fallback plan (or perhaps a set of options)
they can deploy as necessary to make sure they can “get their cargo on
the train.” In some cases, the fallback plan can be as simple as planning to
ship the old version. Even then, the team must support any new interfaces,

Wow! eBook <WoweBook.Com>

ptg

304 chaPteR 15 � the agiLe ReLease tRain

provide backward compatibility, and be certain to not violate any other
common requirements (regulatory compliance, localizations, and so on)
that may be imposed on the cargo.
From the perspective of product, program, and executive management:�� The
plan is a result of a collaboration, which weighs the input of all stakehold-
ers and also matches input (release requirements) to capacity (development
team velocities) so that flow can be achieved. Rarely, if ever, do expectations
of input and output match. Compromise is required. Moreover, the result of
the plan is just that, a plan, and the exact scope of the final achievement can
still not be known for certain up front.

Although implementing the Agile Release Train is a far from trivial task, implemen-
tation is a must for the agile enterprise. It addresses two imperatives that are neces-
sary to achieve success within the enterprise:

Driving strategic alignment across the teams��
Institutionalizing product development flow��

We’ll look at each of these in the following sections.

driving strategiC alignment

Empowering individual agile teams to truly focus on rapid value delivery typically
unlocks the raw energy, motivation, and innovation that has likely been stilted by
our pre-agile process and governance models. That’s why we do it. However, that
alone is not enough, because the teams will naturally tend toward local optimization.
They’ll do what they can to deliver requirements to their customer constituency, but
they have less interest (or perhaps awareness and ability) in taking a more global
view.1 After all, having two masters is more complicated.

However, in the lean enterprise, the highest benefit is achieved when we achieve
global optimization.2 To do this, we must implement systems, like the ART for prod-
uct programs, that purposefully drive the teams toward the global targets, as illus-
trated in Figure 15–3.

In this way, we can align our mass to a common direction and achieve far more force
to address the targets of opportunity. We can have both local and global alignment
to a common goal.

1. One VP, who had responsibility for a dozen such agile teams, called this his “12 tribes of Israel”
problem—all empowered, all agile, yet each wandering independently toward their own ver-
sion of the promised land.

2. Product Development Flow Principle 8.7—There is more value created with overall alignment
than with local excellence.

Wow! eBook <WoweBook.Com>

ptg

 institutionaLizing PRoduct deveLoPment fLow 305

Not Aligned Aligned

A

E

D

C

B

T1

F

T3

T4

T5

T6

T2

Teams

Team
Targets

A

E

D

C

B

F

Enterprise Target

Teams

Figure 15–3 Aligning agile teams to a common target

institutionalizing ProduCt develoPment flow

In addition to driving alignment, the Agile Release Train is instrumental in insti-
tutionalizing product development flow. In so doing, the ART supports the eight
primary product development flow themes that we described in Chapter 1. Under-
standing this mapping is the key to understanding the criticality and motivation for
the ART itself.

Theme 1, Take an economic view:�� Make trade-off decisions based on eco-
nomic rationale. One such trade-off is how we frequently we release the
product. Smaller releases substantially improve the ROI of software develop-
ment by accelerating the release of value to the customer. This helps capture
early market share and drives gross margins by delivering features to the
market at the time when the market values them most highly. In addition,
we can reprioritize features at every planning boundary, based on the then-
current cost of delay.

Wow! eBook <WoweBook.Com>

ptg

306 chaPteR 15 � the agiLe ReLease tRain

Theme 2, Actively manage queues:�� The short, frequent planning cycles of the
Agile Release Train help actively manage queue lengths across the enterprise.

Team backlogs:�� These queues of waiting stories are generally limited
to about the amount of work that can be accomplished in a single PSI.
Planning much beyond that is generally not very productive for the
teams, because strategic priorities could change at any release boundary.
Release (Program) backlogs:�� These queues of waiting features are typi-
cally limited to those features that can realistically be implemented in
the next release or two. Beyond that, product managers understand that
they may be overinvesting in elaboration of features that will never see
the light of day.
Portfolio backlogs:�� These queues of waiting epics and future projects are
typically limited to those epics that could likely find their way to release
planning in the next six months or so. Too early, or too in-depth, invest-
ment in business cases for projects that will not be implemented is a
form of waste.

Theme 3, Understand and exploit variability:�� Since a high degree of variability
is inherent in software development, frequent, cadence-based re-planning
provides the opportunity to adjust and adapt to circumstances as fact pat-
terns change. New, unanticipated opportunities can be exploited by quickly
adapting plans. Critical paths and bottlenecks become clear. Resources can
be adjusted to optimize throughput and better avoid unanticipated delays.
Theme 4, Reduce batch sizes:�� Large batch sizes create unnecessary variability
and cause delays in delivery and quality. ART reduces batch sizes by releas-
ing to development only those features that are prioritized, are elaborated
sufficiently for development, and are sized to fit within the next release cycle.
This helps avoids overloading the development teams with multiple devel-
opment projects, which otherwise causes multiplexing, thrashing, and loss
of productivity. Face-to-face planning provides high-bandwidth communi-
cation and instant feedback, so the transport (handoff) batch delay between
teams is minimized.
Theme 5, Apply WIP constraints:�� Teams plan their own work and take on
only the amount of features that their velocity indicates they can achieve.
This forces the input rate (agreed-to, negotiated release objectives) to
match capacity (what the teams can do in the release). The current release
timebox prevents uncontrolled expansion of work so that the current
release does not become a “feature magnet” for new ideas. The global WIP
pool, consisting of features and epics in the enterprise backlog, is con-
strained by the local WIP pools, which reflects the team’s current backlog

Wow! eBook <WoweBook.Com>

ptg

 institutionaLizing PRoduct deveLoPment fLow 307

as driven by the current PSI. Limiting WIP increases response time to new,
higher-priority activities.
Theme 6, Control flow under uncertainty—cadence and synchronization:��
Cadence and synchronization help us manage uncertainty and variability by
keeping accumulated variances to single interval. In the ART, we achieve this
through periodic planning (cadence) and integrating (synchronization).

Planning:�� The release train planning cadence makes planning predict-
able and lowers transaction costs (facilities, overhead, travel). Planning
can be scheduled well in advance, allowing participation by all key
stakeholders in most planning events and making face-to-face informa-
tion transport reliable, efficient, and predictable. Periodic re-planning
(resynchronization) allows us to limit variance and misalignment to a
single planning interval.
Integrating:�� The regular, system-wide integration provides high-fidelity
system tests and objective assessment of project status at regular inter-
vals. Transaction costs are lowered as teams prioritize investment in the
infrastructure necessary for continuous integration, automated test-
ing, and more automated deployment. Since planning is bottom-up,
(performed by the teams and based on team’s actual known velocity)
and short-term, delivery becomes predictable. Most all that has been
planned should be reliably available as scheduled.

Theme 7, Get feedback as fast as possible:�� The fast feedback of the iteration
and release cycle allows us to take fast corrective action. Even within the
course of a PSI, feedback is no more than two weeks (or the iteration length)
away. Small incremental releases to customers allow us to track more quickly
to their actual, rather than anticipated, needs. Incorrect paths can be aban-
doned more quickly (at worst, at the next planning cycle).
Theme 8, Decentralize control:�� Release plans are prepared by the teams that
are doing the actual implementation, rather than by a planning office or
project management function. Commitments to the plans are bottom-up
based on each individual’s commitment to teammates and team-to-team
commitments reached during the planning cycle. Once planned, the teams
are responsible for execution, albeit subject to appropriate lightweight
governance and release management. Agile project management tooling
automates routine reporting; management does not have to slow down and
annoy the teams to assess actual status.

So, as we see, the ART is fundamental in achieving strategic alignment and Pro-
gram-level, product development flow. In the next sections, we’ll describe how to
implement and manage the Agile Release Train.

Wow! eBook <WoweBook.Com>

ptg

308 chaPteR 15 � the agiLe ReLease tRain

designing the agile release train

One initial activity is to determine the release train domain, that is, who will be plan-
ning and working together and what products, services, features, or components
the train will deliver. In the Big Picture, we’ve indicated that there is some collection
(or pod) of agile teams that constitute a program. That is often the case, and in the
smaller enterprise or business unit, the ART domain consists of everyone on the
team who will participate in the outcome. If the assets you are building can be built
with five to eight agile teams, then the planning domain is the program, and not
much more thought is required.

However, in the larger enterprise, there may be dozens (or more) of such teams, and
planning everything together is not feasible. In that case, we must first determine
who will be on the train. Considerations should include the following.

Trains should be focused on a single, primary product, solution, or value ��
theme objective.
Trains work best when between 50 to 100 people, including stakeholders ��
outside the team, contribute to the train.
Teams with features and components that have a high degree of interdepen-��
dencies should plan and work together.
Locale is a major consideration. Wherever possible, train teams should be ��
co-located, or at least geographic distribution should be as limited as feasible,
because that simplifies planning logistics and cooperation among the teams.

Planning the release

Once the parameters and the cadence for the ART have been established, the teams can
establish a release-planning schedule for the train. Since the dates for the PSIs are fixed,
the release planning dates can be fixed as much as a year in advance. This helps lowers
facility, travel, overhead, and other transaction costs associated with the event.

Given the importance of the event in driving strategic alignment, planning and
executing the release event is a project unto itself. We’ll cover release planning thor-
oughly in the next chapter.

Release Objectives

As we will see in the next chapter, one important result of the release planning pro-
cess is a set of release objectives, which define the individual team and aggregate
goals of the release. These quantitative objectives are a key artifact of the release
planning session and provide us with an important baseline for release governance
and tracking. Each objective will have been ranked by business value, as the example
in Figure 15–4 illustrates.

Wow! eBook <WoweBook.Com>

ptg

 tRacking and managing the ReLease 309

Objective
10

4

10
6

10
9

4
8

4. Trade show demo by 3/15
5. Release v3.1 upgrade
 to channel

Stretch goals
All thermostat versions
Pricing program 2

--

2. First pricing programs
3. Gateway Pointing
 Rearchitecture

1. Thermostat
 Over-the-Air Update
2. Next generation
 thermostat firmware
 (V300x only)

Bus Value

Figure 15–4 An example of release objectives, ranked by business value

Most of the objectives will be features from the backlog, and this gives us the targets
we need to track and manage the release.

traCking and managing the release

With the quality and date fixed, it is certain that some amount of adjustment to
content will be needed during the course of the PSI. In support of this need, the
enterprise will likely have implemented some form of agile requirements/proj-
ect management tooling, which provides support for the higher-level status views
needed by product managers and other stakeholders. Such tooling should provide
hierarchical, release-level burndown so that the program can assess, on an aggregate
basis, exactly where they stand within the release, as Figure 15–5 shows.

2 31 5 64

500

400

300

200

100

H

Actual

Plan

Figure 15–5 Release-level burndown

Wow! eBook <WoweBook.Com>

ptg

310 chaPteR 15 � the agiLe ReLease tRain

This chart provides a sense of the probability of “landing” (delivering the expected
value) of the release. However, by itself, it doesn’t provide any information as to
which features may or may not be delivered. For that, the tooling should also pro-
vide reports on the status of each individual feature, which is in turn based on per-
centage of story points completion for that feature, relative to plan. Such a chart
might look something like Figure 15–6.

Together, this information provides the objective knowledge of where it is and,
even more importantly, what changes might be necessary to successfully deliver the
release. After all, content (scope and feature) management is continuous in agile,
and an in-flight ART is no exception.

release retrosPeCtive

Each PSI boundary also provides the opportunity for a Program-level release ret-
rospective, wherein the teams assess how well they did and take corrective action to
increase the velocity, quality, and reliability of the next release increment. This ret-
rospective can also include a quantitative measure of predictability, as we’ll describe
in the following section.

measuring release PrediCtaBility

If you ask top executives what they would most like to see out of the software devel-
opment process, many will answer “predictability.” And that is one of the many chal-
lenges in agile. We can reliably predict quality (by fixing it and adopting effective
technical practices) and date (by fixing it) and cost (by fixing the team size and the

Feature 1

Feature 2

Feature 3

Feature 4

Feature 5

Feature 6

0% 20% 40% 60%

Release Feature Status

80% 100%

Plan

Actual

Figure 15–6 Release status by feature

Wow! eBook <WoweBook.Com>

ptg

 measuRing ReLease PRedictaBiLity 311

PSI date), but we can’t actually predict functionality, at least in the longer term. If we
did, we’d be right back in the iron triangle that has served us so poorly in the past.
Moreover, if we predicted and controlled functionality long term, then we’d have to
temporarily ignore the new opportunities the market presents. That isn’t agile.

However, as professionals, we must be able to provide our enterprise with a reason-
ably reliable predictor of upcoming events, at least near term, as well as some sense
of the future product Roadmap that we intend to execute.

When implemented properly, the ART can provide just such a predictability mea-
sure, at least for the next PSI (or maybe two). That gives the enterprise from three
to six months of visibility into upcoming release content—enough to plan, strat-
egize, and support with market communications, release launches, and so on.
The release objectives that we established during release planning are our primary
means to do this.

During each release retrospective, the teams can meet with their business owners to
self-assess the percentage of business values they achieved for each objective. This
can be done both at the Team and Program levels. For example, a program might
rate its accomplishments as in Figure 15–7.

Objective Bus Value

1. Thermostat
 Over-the-Air Update

4. Trade show demo by 3/15

Totals
% achievement: 79%

5. Release v3.1 upgrade
 to channel

2. Next generation
 thermostat firmware
2. First pricing programs
3. Gateway Pointing
 Rearchitecture

(plan) actual
10

4

10
6

10
9

49

8

0

8
4

10
9

39

Figure 15–7 Plan versus actual release accomplishments

Wow! eBook <WoweBook.Com>

ptg

312 chaPteR 15 � the agiLe ReLease tRain

Release Objectives Process Control Band

In the example shown in Figure 15–7, the program accomplished 79% of its release
objectives. The questions arises, how good, or bad, is that? To answer this, we must
return to our lean principles and the context for the enterprise program.

On the surface, at least, it might appear that accomplishing 100% of release objectives
is the only worthy goal. Closer analysis, however, tells us differently. For a team to rou-
tinely accomplish 100% of its release objectives, they must do either of the following:

Drive all risk out of the plan by eliminating or curtailing innovation and risk ��
taking
Back off on objectives so as to assure completion��

Neither of these optimizes the economic impact of our efforts. To achieve that, we
need to operate successfully in some acceptable process control band so that the pro-
gram has reasonable predictability and yet allows for the variability, “optionality,”
and stretch goals inherent with software development.

In our experience, a program that can reliability achieve most of its release objec-
tives is a trusted program that is an extraordinary asset to the enterprise. In this case,
the release predictability measure should fall in a process control band something
like that in Figure 15–8 over time.

In this figure, while team B, the controlled team, does not routinely hit 100% of
its release objectives—leaving room for innovation, stretch objectives, and respon-
sible risk taking—it is still fairly predictable because it typically achieves most of its
objectives. Team A, the out-of-control team, however, is all over the map. It’s hard

PSI 2 PSI 3 PSI 4PSI 1

120

100

80

60

40

20Pe
rc

en
t O

bj
ec

tiv
es

 A
ch

ie
ve

d

0
PSI 5

Effective
Control
Range

Team A (Out-of-Control Development)

Team B (Controlled Development)

Figure 15–8 Release predictability process control band

Wow! eBook <WoweBook.Com>

ptg

 ReLeasing 313

to manage any program or enterprise with the characteristics of team A. You simply
can’t depend on them to do anything like they said they would and that will cause
real difficulties in delivering the program.

By creating and measuring this predictability measure for the program at every PSI,
the enterprise can eventually achieve the right balance of predictability and risk tak-
ing, thereby achieving the optimum economic outcomes.

releasing

That is all well and good, but there is still work ahead. The Agile Release Train sim-
plifies software development by “making routine that which can be routine.” Plan-
ning and team coordination are simplified. Work in process is limited. Flow is
achieved. In describing it so far, however, we have oversimplified one of the more
complicated challenges, which is an understanding of when to actually release a set
of assets to the customers, distribution, or marketplace. To coordinate the ART with
actual releases of products, we must consider three separate cases: releasing on the
same cadence as the ART, releasing less frequently, and releasing more frequently. We’ll
look at each of these in the following sections.

Releasing on the ART Cadence

When you look simplistically at the Big Picture, it tends to imply that the planning
and release cadences are identical, as Figure 15–9 illustrates.

This is the simplest case, because planning, releasing, and release retrospectives are
coordinated by the same cadence and same calendar dates. In addition, the harden-
ing iterations are timed nicely to support the more extensive release activities, which
can include everything from preparation of release notes and customer documenta-
tion, standards validation, load and performance testing, built-in demos and tutori-
als, updating user documentation, and the like.

Re
le

as
e

Pl
an

ni
ng

Feature 1

Feature 2Re
le

as
e

Pl
an

ni
ng

Arch 1

Re
le

as
e

(o
r P

SI
)

Re
le

as
e

Pl
an

ni
ng

Re
le

as
e

(o
r P

SI
)

Pr
og

ra
m

 B
ac

kl
og

Feature 3

Feature 4

Figure 15–9 Releasing on the ART cadence

Wow! eBook <WoweBook.Com>

ptg

314 chaPteR 15 � the agiLe ReLease tRain

This is the model used by a number of Software as a Service (SaaS) companies. In that
case, the Agile Release Train is conceptually simple because they release frequently and
have only a single platform to support. All customers are migrated to the new release
at the same time. There is one planning session and only one release per PSI.

This is incredibly convenient to the program because all activities—internal support-
ing functions as well as customer-facing activities—can be driven by the same cadence
and synchronization as the development of the assets themselves. Program planning
is harmonized. The model is conceptually simple. Life is good and lean.

However, this is not always a practical case, so other models come into play.

Releasing Less Frequently Than the ART Cadence

In many cases, releasing on a fast PSI cadence may not be possible. For example,
in some enterprise settings, deployed systems constitute critical infrastructure of
a customer’s operating environment. Even if the customers would like to have the
new software, service-level and license agreements may be prohibitive, and there is
the overhead and disruption of installation. Plus, there is always the fear of regres-
sive bugs affecting customer operations, potentially on a large scale. Scary stuff.

In other cases, the timelines of an enterprise’s building systems that contain both
software and hardware, such as mobile phones and other devices, are often driven
by long-lead hardware items—displays, chipsets, keyboards, cases, and the like.
Here, there are actual laws of physics involved that must be obeyed. You have to have
the new hardware first, so releasing early and incrementally is not an option.

In these cases, releasing on a PSI cadence is simply not an option, and the planning
and releasing activities must be decoupled.

There are other reasons to decouple the PSI cadence from the release cadence as
well. For example, while the sales and marketing and development teams are headed
to the same end goal—that is, more and higher-quality product released to the mar-
ket more quickly—their intermediate objectives may be quite different.

For development�� , the goal is to deliver more value to the market more quickly
on a cadence that provides the highest productivity and fastest market
feedback. Indeed, you often see development teams pushing for ever-shorter
release cycles to put pressure on themselves to fix the major impediments in
their own internal processes. Agile development practices such as concur-
rent testing and continuous integration are best implemented and mastered
under these intense pressures. Also, the more routine the operations of
daily build, release retrospectives, iteration acceptance testing, and the like,
become, the easier it is to manage their daily and weekly activities and to

Wow! eBook <WoweBook.Com>

ptg

 ReLeasing 315

thereby avoid the “death-march” experiences at the end of each release cycle.
So, development likes to push for very fast release cycles.
For sales and marketing�� , the goal is also to deliver more software as rapidly as
possible, but they also strive to optimize the market impact of their efforts. This
means release frequency may be limited by practicalities such as the following:

Not disrupting customers with too-frequent upgrades��
Not complicating any big deals in process that are based on the current ��
released product
Having worthy (bigger) news to take to the market, typically in synchro-��
nization with analyst tours, trade shows, and so on
Avoiding overloading internal support infrastructures for marketing ��
communication, sales and support training, and so on

Separation of Development from Release and Marketing Concerns

Although the goals are the same, the perspectives and concerns of these two depart-
ments may be quite different. Therefore, we need to provide a model that allows
for separation of those concerns to achieve a higher degree of flexibility and greater
market impact. Figure 15–10 illustrates such a model.

Asynchronous Release Frequency

Release to Market Processes

Asynchronous

July 1 Sep 1 Nov 1
Synchronous Development Cadence

Jan 1 Mar 1

Collaborative

Version 2.0General Availability

Customer
Upgrade

Version 1.0
Analyst Tours
Customer Ship
Comprehensive Upgrade

Analyst Tours
Customer Ship
Comprehensive Upgrade

Marketing Controlled
Announcement Window

Customer
Preview

Docs and
Certs

Docs and
Certs

Possible
New Product !

Upgr ade Upgrade

PSI1 PSI2 PSI3 PSI4 PSI5

Figure 15–10 Separation of development, release, and marketing concerns
Source: Scaling Software Agility: Best Practices for Large Enterprises [Leffingwell 2007]

Wow! eBook <WoweBook.Com>

ptg

316 chaPteR 15 � the agiLe ReLease tRain

This model decouples asset development from product release via a “general avail-
ability firewall.” The firewall allows “just the right number of releases” to reach the
market at “just the right time.”

The process is flexible, asynchronous, and collaborative among the development,
operations, and sales and marketing teams. Figure 15–10 illustrates the following
characteristics.

PSI1 is an internal release, suitable for customer previews.��
PSI2 is preannounced and released to the market as version 1.0.��
PSI3 is a quiet release, perhaps just deployed to customers under mainte-��
nance, but it may not be newsworthy because it follows version 1.0 by only
60 days.
PSI4 is positioned to the market as a major new release because it incorpo-��
rates two releases of new functionality (PSI 3 and 4).
PSI5 may even be positioned as a new product, rather than a continuum of ��
the existing product line.

Of course, this release schedule is just an example that shows the flexibility of the
model, and your train will address different objectives. There is no need to predict
in advance exactly how an Agile Release Train will evolve; just build it and figure out
what to do with it later.

The Firewall Can Be Opaque or Transparent

The firewall can be as opaque or transparent as the enterprise needs. In other words,
the development of new functionality can be kept confidential, or customers can be
told about the availability of new releases or even the product Roadmap. The devel-
opment team is free to establish the best production rhythm it can master, con-
tinuously building incremental product functionality. Marketing is free to deliver
external releases on an ad hoc basis, responding contemporaneously to current
market conditions, competitive responses, and so on, or on a planned, program-
matic basis—whatever meets their needs.

Releasing More Frequently Than the ART Cadence

For programs and enterprises that are building systems of systems, either of the pre-
vious two cases can still appear to be overly simplistic. In these cases, although the
larger system may lend itself to either of these models, various components of the
system may have to serve different masters.

For example, in a securities trading system, back-office transaction servers may need
to be updated for ongoing securities compliance on their own independent sched-
ule. Client-side software may be gated by availability of new types of securities to be
traded or access to new securities marketplaces.

Wow! eBook <WoweBook.Com>

ptg

 summaRy 317

2.1 Thermostat
Firmware

Pr
og

ra
m

 B
ac

kl
og

Re
le

as
e

B
ac

kl
og

Release Planning

Re
le

as
e

Pl
an

ni
ng

Re
le

as
e

Pl
an

ni
ng

Trade Show
POC

Consumer
Control Smart Energy

Certification
Load Control

Rules TOU Pricing

Figure 15–11 Releasing more frequently than ART cadence

In our case study example, the Tendril platform is composed of a number of differ-
ent components. For various business reasons, these components often need to be
released to the market at various times, as Figure 15–11 shows.

In this third case, releasing more frequently, the PSI cadence becomes a planning
cadence, rather than a release cadence. The periodic planning function still provides
the cadence, synchronization, and alignment the enterprise needs to manage vari-
ability, but forcing the development of all assets to the same cadence is unnecessary
and over-constrains the ability to deliver value, as and where necessary.

summary

This chapter introduced the Agile Release Train as a mechanism to drive strategic
alignment and institutionalize product development flow. We described the ratio-
nale behind the model, along with the mechanics for implementing a release train.
We also used the ART to introduce a predictability measure the enterprise can use to
help predict near-term deliverables. Finally, we showed how the ART is highly flex-
ible and how it can be used to provide enterprise alignment, synchronization, and
cadence, even if release requirements do not align perfectly with the ART cadence
itself. We hope that this introduction will provide the motivation and background
you need to implement a release train in your program so that you too can achieve
the steady drumbeat of value delivery that characterizes truly agile programs.

In the next chapter, we’ll describe a thorough approach to release planning, which
you can use to put your own train firmly on the tracks.

Wow! eBook <WoweBook.Com>

ptg

This page intentionally left blank

Wow! eBook <WoweBook.Com>

ptg

 319

Chapter 16

release Planning

Worldly affairs do not always go according to a plan and orders have to change
rapidly in response to a change in circumstances. If one sticks to the idea that once
set, a plan should not be changed, a business cannot exist for long.

—Taiichi Ohno, widely considered to be the father of lean manufacturing

We Plan to Re-plan.

—A T-shirt seen at the Agile Alliance Conference

In the previous chapter, we saw how the Agile Release Train
implements systemic product development flow at the Program

level. This is the primary tool programs use to align the teams to
a common vision and to provide cadence and synchronization
of the software assets the program is developing. We also intro-
duced release planning as the seminal event—the heartbeat—of
the release train itself.

In this chapter, we’ll provide a detailed description of a proto-
typical release planning event. Although individual program
circumstances will vary, the format we are describing here has

been well-tested in many such events, including some with as many as 14 teams and
well over 100 attendees.

PreParing for release Planning

Given the importance of the event, the number of attendees, the input, and the
expected outcomes, planning for a successful event is a small project unto itself. For
the first such event, there is typically much to do to assure that cadence and release
plans are well understood, teams know what they need to plan together, solution
Vision is ready for presentation, and the logistics are prepared. Over time, however,
planning becomes routine as people come to better understand their roles and the
necessary preparation; the program should expect that the transaction costs and
preparation overhead will decrease over time.

Pr
oj

ec
t B

ac
kl

og

Re
le

as
e

(o
r P

SI
)

Release Planning

Pr
og

ra
m

 B
ac

kl
og

Release Management Team

Product
Managers

Roadmap

Vision

Wow! eBook <WoweBook.Com>

ptg

320 chaPteR 16 � ReLease PLanning

Release Planning Domain

As we described in the previous chapter, some thought must be given to the makeup
of who participates on the Agile Release Train. Trains work best when they consti-
tute 50 to 100 team members (5 to 10 agile teams) who collaborate on a product
or system. And of course, geographic co-location is a prime consideration, because
that dramatically simplifies planning and execution.

Planning Attendance

Planning should be done face-to-face. This is consistent with both the Agile Manifesto�
and lean principles, because face-to-face communication is, by far, the most efficient
way to make the batch transfer of information from product management to the
development teams.1 (One such planning session can replace thousands of e-mails,
and it happens 10 to 20 times faster; imagine the impact on program efficiency.)

Therefore, to make it feasible for as many members as possible to plan together, pro-
gram travel budgets should be optimized around release planning sessions. Gener-
ally speaking, it isn’t “new travel money” anyway, because it likely replaces a host of
ad hoc, asynchronous meetings that would have otherwise been necessary.

In the event that the teams that need to plan together are so widely distributed that
meeting face-to-face is impossible because of travel costs or restrictions, then it’s
likely that you have a highly inefficient organizational structure to support new devel-
opment anyway. In that case, the enterprise should do the following:

Continually refactor teams and assignments to support ever higher degrees ��
of co-location
Move entire projects, features, components, or subsystems to locales where a ��
critical mass already exists or can quickly be assembled

In doing so, the enterprise will continuously lower the transaction costs of the plan-
ning event as well as decrease the costs and accelerate the feedback of the ongoing,
and continuous, information transfer that is vital to development.

However, in the likely event that all team members cannot be assembled in one place
for release planning, then the program must make plans for communication with
remote teammates so that planning is still simultaneous, though not to face-to-face.

Release Planning Facilitator

Release planning is a strategic event. As such, it is replete with the challenges and
inherent conflicts of Vision (what we’d like to accomplish) versus reality (what we

1. Agile Manifesto principle # 6—The most efficient and effective method of conveying information
to and within a development team is face-to-face conversation.

Wow! eBook <WoweBook.Com>

ptg

 PRePaRing foR ReLease PLanning 321

actually can accomplish). However, this potential for conflict is not bad, per se.
Rather, when properly managed, the inherent mismatch of expectations engenders
a creative friction between product management and development. If a team could
do everything product management wanted them to do, then either product man-
agement isn’t stretching far enough or the team is overcapacity. Rarely (never?) is
either of these true.

And although it’s true that we want absolutely need to create product flow, where
input does match output, we can’t simply achieve flow by just “backing off the
accelerator,” or fewer cars will go down the freeway than it has capacity for. Yes, it’s
flowing, but it’s too slow. Rather, we want to accelerate to the point of most efficient
productivity, the point just below which congestion (in this case as witnessed by a
combination of overloaded, multiplexed teams and badly matched expectations)
occurs.

We can do this by mining this creative friction during release planning and watch-
ing for those sparks where real innovation can often be found. In other words, in the
midst of a potential overload, it behooves all team members to find simpler ways to
achieve the maximum potential value delivery. A few animated discussions along
the way are likely and appropriate.

Like we said, it’s a strategic event. Experience has shown that these events are more
successful when a facilitator—someone who is not bound solely in product man-
agement or development—runs the event. It can be someone from inside or outside
the company.

Often, it can be a project or program manager who may well be struggling to find
their role in the new agile enterprise anyway. These specialists often have many of
the valuable skills necessary to plan and run such an event. However, they must not
conflate that objective with the need to plan and run the program. The Agile Release
Train largely manages itself; we don’t “program manage” it. However, we do have to
facilitate and manage the process effectively.

In any case, from here forward, we’ll use the word facilitator to describe the person
who is largely responsible for running the actual release planning event.

Release Planning Checklist

In preparing for a successful event, there are three primary areas of concern:

Strategic alignment and organizational readiness for planning��
Management and development team preparedness for the event itself��
The actual logistics for the event��

Wow! eBook <WoweBook.Com>

ptg

322 chaPteR 16 � ReLease PLanning

Since any one of these can interfere with the potential outcome—an actual, spe-
cific, and committed release plan—careful consideration of all three factors is
warranted. In support of this, we have developed a set of checklists to assist those
who are responsible for planning such an event. Since the lists are somewhat long
and detailed, we have placed them in Appendix C, Release Planning Readiness
Checklist.

release Planning narrative, day 1
Although the agenda for the planning event itself will, of course, vary based on the
current context of the company, Table 16–1 provides a typical agenda as a starting
template for a standard release planning event.

Table 16–1 Agenda for Day 1 Release Planning

Release Planning Day 1 Agenda

Time Subject Description Presenter

8–8:30 Opening Introductions. Schedule
and objectives for the day.
Review of release cadence
(iterations and PSI).

Release planning facilitator.

8:30–9 Business context State of the business.
Objectives for upcoming
periods.

Executive.

9–10:30 Solution Vision Vision for content of solu-
tion, product, or service.

Vision of solution compo-
nents, features, and so on.

Product management.

Individual product,
component, feature content
managers.

10:30–10:45 Break

10:45–11:30 Architecture Vision Vision for architecture.
New architecture epics.
Common frameworks.
Security, usability,
performance, reliability,
requirements.

Technology office, system
architects.

11:30–12 Development practices Updates on project setup,
agile tooling and infra-
structure, engineering
practice improvements.

Development management.

Wow! eBook <WoweBook.Com>

ptg

 ReLease PLanning naRRative, day 1 323

Release Planning Day 1 Agenda

Time Subject Description Presenter

12–1 Lunch break

1–4 Team planning breakouts I

(Scrum of Scrums plan-
ning checkpoints every
hour to assess progress,
interdependencies)

Teams break out and plan
iterations. Break features
into stories. Plan release.

Architects and product
managers circulate with
teams.

4–5 Draft plan review Each team presents plan to
group: logic of plan work
in process, draft objec-
tives, identified risks, and
impediments.

Individual teams.

5–6 Manager’s review and
problem solving

Discussion of scope, chal-
lenges to plan, impedi-
ments, and risks. Decision
making. Resource and
scope adjustments as
necessary.

Line management, product
management, architects,
team representatives.

We’ll describe each of these sessions in the following sections.

Opening

The release planning facilitator opens the meeting, provides any necessary intro-
ductions, reviews the objectives and agenda, reviews planning rules and expecta-
tions, and reviews amenities and other logistics items. The facilitator also presents
the upcoming calendar of events, including the iteration and release cadence, future
PSI/planning dates, and any scheduled releases, as well as any company holidays or
other events that may affect planning objectives or team capacity.

Business Context

Next, a senior executive or line-of-business owner typically sets the business con-
text for the planning session. This may include discussion of current business
performance, revenue or market share, measures of customer satisfaction, and so
on. It may also include updates to operating plans; organizational developments;
strengths, weakness, opportunities, threats (SWOT) analysis; strategies; and com-
petitive context. The presenter will typically conclude with a discussion of the cur-
rent strategic investment themes and business objectives for the upcoming periods.

Wow! eBook <WoweBook.Com>

ptg

324 chaPteR 16 � ReLease PLanning

The meeting organizers should reach as high into the organization as possible for
this opening speaker, because it is an important opportunity to align the entire
development team to a common Vision for the business. It also gives the teams the
opportunity to meet and interact with some of the executives who drive the busi-
ness Vision.

Solution Vision

Next, the product managers, solution managers, or program managers responsible
for the planning domain present the current Vision for the product and the tenta-
tive Roadmap going forward. The briefing includes the objectives (or themes) for
the upcoming PSIs as well as the specific feature priorities.

If there are multiple product managers, each may need some time in this slot to
present the Vision for their particular aspect (product, feature, component) of the
solution, but presentation time is rigorously timeboxed.

At the conclusion of this session, product managers will often provide a handout,
provide pointers to where the release backlog can be found, or otherwise make their
feature priorities and descriptions fully visible to the teams, because those features
are the driving elements for the breakout planning sessions.

Architecture Vision

In small to medium-sized projects, the architecture for the system is the responsi-
bility of the development teams themselves, and no special time or consideration
for architecture discussion may be necessary in planning. However, as we will dis-
cuss in Chapter 20, Agile Architecture, in the larger program or enterprise setting,
system-level architecture (and system-level architects) often play an important role
in defining cross-cutting aspects of the solution.

In this next session, the CTO or senior system architects typically present the Vision
for architecture in this session. This may include descriptions of new architectural
epics for common infrastructure, any large-scale refactors under consideration, new
system-level frameworks, or emerging new technologies or platforms, and so on,
that must be addressed in the solution.

In addition, any system-level nonfunctional requirements—such as operating plat-
forms; governing regulatory or industry standards; and usability, performance, reli-
ability, and security requirements—are also highlighted in this session.

Wow! eBook <WoweBook.Com>

ptg

 ReLease PLanning naRRative, day 1 325

Team Planning Breakouts

The next session is the longest and most critical session of the two-day event. In
this session, the teams break out into separate meetings and draft their initial plan
to achieve the objectives of the next PSI.

NOTE�³ Some enterprises plan for “1+1” PSIs. The first PSI is planned in detail and is the subject of the
commitment at the end of the meeting. The second PSI is a rough plan, intended primarily to
help fill out the product Roadmap and to catch those priority features that did not fit the scope
of the upcoming PSI. However, for most programs, time and visibility does not usually allow
planning more than one PSI.

In this session, the teams iterate through a process that proceeds roughly as follows.

Meet with product managers to better understand features and feature 1.
priorities.
Estimate the capacity (velocity) the teams will have during each iteration.2.
Brainstorm and identify the user and other stories that are necessary to meet 3.
the input objectives and prioritized features of the release. Stories are kept
at “backlog-level detail.” The objective is to get a first, high-level feel for how
the plans unfold. There is no time for story elaboration or discussion of
acceptance criteria. Too much detail bogs down the process and creates false
precision and excessive WIP.
Understand the impact of architectural initiatives on the plan, and identify 4.
stories for those initiatives as well.
Factor in local dependencies as well as interdependencies with other teams.5.
Estimate the stories and place them on iterations in sequenced order until 6.
capacity (velocity for each iteration, excluding maintenance allocation) is
exhausted.
Create a backlog of things that can’t be accomplished in the period and that 7.
will have to be postponed.
Itemize objectives of things the team can accomplish during the PSI period.8.

During this process, there will also be variety of interactive discussions with prod-
uct managers, system architects, and other teams to understand scope, priorities,
necessary infrastructure development, interdependencies, potential for common
code, and so on. It is a very intense and active time.

Plans are created visually, with wall charts and story cards so that all plans are visible
for all to see. Teams build their plans with one wall chart sheet per iteration, another
sheet for objectives, and one final sheet to capture risks and impediments.

For example, a plan might appear as in Figure 16–1.

Wow! eBook <WoweBook.Com>

ptg

326 chaPteR 16 � ReLease PLanning

Objectives

1.
2.
3.
4.

Iteration 1 Iteration 2 Iteration 3 Iteration 5

Hardening

Iteration 4

Risks

Velocity: 34
Load: 30

Velocity: 34
Load: 30

Velocity: 34
Load: 30

Velocity: 34
Load: 30

Velocity: 34
Load: 0

Figure 16–1 Example visual release plan

Note that the hardening iteration should not contain any user value stories, though
the teams may identify some stories dedicated to special hardening activities, such
as load and performance testing, system documentation, and so on.

Teams may also use color-coded story cards (sticky notes) to help identify various
types of stories. These often include colors for new user value stories, maintenance
stories, interdependencies, spikes, help needed, and so on.

Hourly Scrum of Scrums Planning Checkpoints

Typically, teams will have a variety of interdependencies that must be worked out
with other teams during the planning process. To avoid some of the constant inter-
ruptions implied by such a process, many programs have adopted an hourly, five- to
ten-minute “Scrum of Scrums” planning checkpoint. In this short stand-up meet-
ing, Scrum Masters work out interdependencies, report status, and state any loom-
ing impediments. The facilitator uses this meeting as a clocking mechanism to keep
release planning moving at an acceptable pace.

Line management, product management, and other key stakeholders typically also
attend this short meeting. It will often turn into a problem-solving meeting with line
managers involving themselves with resource adjustments, impediment removal,
adjustments to release scope, or ad hoc modifications to the planning agenda, based
on progress. Although the meeting is intended to be short and timeboxed, the time
for problem solving is now—or else the plans may not converge.

Wow! eBook <WoweBook.Com>

ptg

 ReLease PLanning naRRative, day 1 327

Draft Plan Review

At the designated time, the group reconvenes in plenary session to
review each of the plans. Many of the plans will not be complete;
however, the preliminary review is still held on time so the groups
can see the planning process and get an initial look at the assump-
tions, dependencies, and initial objectives that their counterpart
teams are putting together. Each team presentation is strictly time-
boxed, with five to ten minutes per team, based on the size of the
planning domain.

NOTE�³ Many executives, managers, and other key stakeholders in the company may be invited to this
portion of the event. This allows for total program visibility and shared business and develop-
ment context. In addition, the unfolding plans may well affect their department or area of inter-
est, and they may have input or adjustments to the plan, based on their perspective. In turn, the
development teams may also have dependencies on these functions (such as marketing, sales,
customers, distribution deployment, or IT).

SPECIAL NOTE�³ Teams do not worry that these key stakeholders, including executives and managers of
other departments, are present while they are in the middle of the “sausage making”
portion of our planning. Agile is based on trust,2 and nothing engenders trust faster
than transparency.

To keep the sessions focused and comprehensive in the team presentations, the
facilitator might tell the teams to be certain to address the following items.

Where are you in the planning process?��
Describe your plan in brief.��
Highlight any identified draft objectives.��
Highlight any major impediments and risks discovered so far.��
When do you think your plan will be complete?��

There will typically be a minute or two left for Q&A. During Q&A, the facilitator
has to walk a fine line between abruptly cutting off important discussions about
interdependencies, trade-offs, misunderstandings, and so on, and keeping the plan
review sessions within the allocated timebox.

2. Agile Manifesto principle #5—Build projects around motivated individuals. Give them the envi-
ronment and support they need, and trust them to get the job done.

Reprinted by permission of Discount
Tire Company

Wow! eBook <WoweBook.Com>

ptg

328 chaPteR 16 � ReLease PLanning

The session proceeds until all teams have presented their draft plans (even at the
risk of slipping out of the allocated timebox a bit). For most attendees, this is often
the end of day 1, and they may be dismissed from the meeting room at that time.

Managers’ Review and Problem Solving Meeting

For others, however, day 1 planning is not yet over. In all likelihood, the draft plans
present substantial challenges to the management team, product management, and
other key stakeholders. Challenges may come from a number of directions.

The input expectations for the PSI will likely be over-scoped. After all, what ��
self-respecting product manager would under-scope a set of target release
objectives?
Critical paths, resource constraints, and bottlenecks should now be obvious.��
Team dynamics and inter-team dynamics are obvious as well.��

To this end, line managers, Scrum Masters, product owners, and product manag-
ers will typically meet to address the larger challenges identified in the draft review
session. If these issues are allowed to persist, day 2 may come out badly for either of
two reasons.

The process will not converge on agreed-to release objectives because of ��
these unresolved issues.
Convergence will appear to happen, but the release is at risk because under-��
lying problems have not been addressed.

Action is necessary. This may involve cuts to scope, rethinking prior commitments,
coming to understand that some critical date will not be met, or moving resources
(or even entire projects) from team to team.

The facilitator plays an important role, because many of the challenges noted may
be politically charged or historical in nature. The facilitator holds the key stake-
holders together as long as necessary to make the decisions necessary to improve
the probability of a successful outcome of the next PSI (or at least the next day’s
planning session). Any such decisions reached should be carefully and clearly stated,
because they will serve as input to the day 2 session.

release Planning narrative, day 2
In day 2, the program must get to a committed plan of action, one that fits the
team’s capacity and that achieves the maximum value delivery possible in the next
PSI timebox.

Wow! eBook <WoweBook.Com>

ptg

 ReLease PLanning naRRative, day 2 329

Table 16–2 describes the typical agenda for day 2.

Table 16–2 Sample Release Planning Day 2 Agenda

Release Planning Day 2 Agenda

Time Subject Description Presenter

8–8:15 Opening Schedule and objectives for the day. Release planning
facilitator.

8:15–9 Planning adjustments Managers discuss any revisions to
plan, adjustment to scope, resources,
and so on.

Line management
and product
management.

9–11 Team planning
breakouts II

(Scrum of Scrums
planning checkpoints
every hour to
assess progress,
interdependencies)

Teams continue planning based on
status of their plan from the day
before and any planning adjustments.
Objectives for the PSI are finalized.

11–12 Final plan review All teams present plans to group.
Present objectives, risks, and
impediments.

Teams.

12–1 Lunch break

1–2 Risks and impediments Remaining risks and impediments are
discussed and “ROAMed” (resolved,
owned, accepted, mitigated).

Management at
front of room.
Facilitator
presents each item.

2–2:15 Release confidence vote Facilitator asks for fist of five
“confidence factor” (commitment).

Facilitator.

2:15–?? If high confidence is achieved, continue to the planning retrospective. If not, scope is
adjusted and planning continues until commitment is achieved.

When
commitment
is achieved

Planning retrospective Planning retrospective.
What went well?
What didn’t?
What can we do better next time?

Facilitator.

Final instructions Any final instructions, capturing
release plans in project tooling,
facilities cleanup, and so on.

Management/
facilitator.

Adjournment

Wow! eBook <WoweBook.Com>

ptg

330 chaPteR 16 � ReLease PLanning

Opening

In the day 2 opening session, the facilitator provides an overview of the agenda and
the objectives for the final day, including the timeboxes in which the teams should
complete their plan and be ready for presentation.

Planning Adjustments: A United Front

Even though management will have attempted to communicate most of the key
decisions prior to the day 2 opening, it is inevitable that in this “frenzy of the last
responsible moment,” some of the decisions reached in the prior day will come as
a surprise to some team members. Many decisions will be greeted with enthusi-
asm, since they often simplify scope, assign additional resources to critical bottle-
necks, or resolve key impediments. Some decisions, however, may be received less
enthusiastically, because many are the results of compromises among key stake-
holders or even between teams.

To make management’s full support for the key decisions unambiguously clear, a
senior manager, or perhaps the management team as a group, takes the responsibil-
ity for describing the results of the review meeting at the end of day 1, highlighting
those decisions that may affect the planning process, organization, or objectives.
This presents a united front in support of the key decisions and changes, controver-
sial or not. After all, we are going to need a united effort from the development teams
to accomplish the release. The least we can do is know that management stands
behind them, also united as a team.

Planning Continues: Team Planning Breakouts Session II

With planning adjustments in hand, this next session is a continuation of the prior
day’s team breakouts. By now the teams should be planning smoothly. The facilita-
tor’s role is the same as the day before—keep the teams moving forward; keep the
business owners, product managers, engineering managers, and architects circling;
watch for new developments that require additional decision making, provide assis-
tance to the team members whose work is being refactored, are still struggling with
estimating, or are still over-scoped; and so on.

And, like the day before, the planning Scrum of Scrums convenes hourly to assure
that plans and timelines converge for the final review.

Establishing Release Objectives

Sometime during this second breakout session, the teams will start to final-
ize their individual objectives for the release. Although they do not appear in the

Wow! eBook <WoweBook.Com>

ptg

 ReLease PLanning naRRative, day 2 331

requirements meta-model, release objectives are a key artifact of the release plan-
ning session, and they provide the primary mechanism the program will need to
track and assess progress and manage scope.3

Release objectives are brief summaries, in business terms, of the specific
features the teams intend to deliver in the upcoming PSI.

Many of these objectives will simply be features taken directly from the backlog.
As such, their importance and the value they deliver are immediately recognizable.
Others may be aggregations of a set of features but stated in more convenient, and
more concise, terms.

Some, however, may not represent user value delivery directly but may represent
some milestone (trade show demo by 3/15) or infrastructure or architectural epic
(gateway pointing rearchitecture) the team must achieve. Still others are clarifications or
mitigations—perhaps things the teams will not be able to accomplish (the thermostat
upgrade will support only model 300X).

Whatever they are, they are negotiated outputs, rather than inputs, to the release
planning session. They represent an important commitment from the team: They
understand the Vision, they understand their velocity, and they understand what
the business would like to do, but these are the things they can and will do.

Business Owners Rank Release Objectives by Business Value

To assure alignment and to help the teams understand the relative value, objectives
should be ranked by business value by the team’s business owner (typically a prod-
uct or solution manager, program manager, or executive). Each individual objective
could be ranked on a scale of 1 to 10, as illustrated in Figure 16–2.

This is an important two-way, face-to-face dialogue between the team and their
most important stakeholders. It is an opportunity to develop a personal relation-
ship upon which a mutual commitment can be based and to better understand the
business objectives and their relative value. Most importantly, it is an opportunity
to extend the boundaries of the “team” to include these key stakeholders.

During the ranking process, the user-facing features (pricing programs) will typically be
ranked most highly by the business owners. That’s as it should be. But mature busi-
ness owners know that architectural and other concerns (for example, gateway pointing
rearchitecture) will also increase the velocity of the team in producing future business
value, so placing some business value on those items helps drive ultimate velocity
and is a sign of support for the team’s legitimate, technical challenges.

3. The requirements model artifacts—epics, features, stories—define intended system behavior.
They are not coupled to the dimension of “when that behavior will be implemented.” Release
objectives do that.

Wow! eBook <WoweBook.Com>

ptg

332 chaPteR 16 � ReLease PLanning

Objective
10

4

10
6

10
9

4
8

4. Trade show demo by 3/15
5. Release v3.1 upgrade
 to channel

Stretch goals
All thermostat versions
Pricing program 2

--

2. First pricing programs
3. Gateway Pointing
 Rearchitecture

1. Thermostat
 Over-the-Air Update
2. Next generation
 thermostat firmware
 (V300x only)

Bus Value

Figure 16–2 An example of release objectives, ranked by business value

In addition, because the road after PSI planning takes its inevitable twists and turns,
having objectives ranked by business value gives the teams guidance in making
trade-offs and minor scope adjustments in a manner that allows the team to deliver
the maximum possible business benefits.

Final Release Plans Review

This session is a repeat of the session of the prior day, but by now the teams should
have completed their plans and are able to present them in final form.

All iterations are planned. Hardening iterations have only hardening ��
stories. Work fits in the time (team velocity) available.
 Out-of-scope work has been identified on a backlog sheet.��
Team has a final set of release objectives.��
Business owners have reviewed and agreed to the team’s objectives and ��
ranked them by business value.
 Teams have also identified all critical dates.��
Teams have identified the key risks and impediments that are outside ��
of their local control but have the potential to cause the team to fail to
meet the objectives.

In a manner similar to the day before, each team presents their plan to the group in
the allotted timebox. While so doing, the facilitator is looking for agreement—within

Reprinted by permission of
Discount Tire Company

Wow! eBook <WoweBook.Com>

ptg

 ReLease PLanning naRRative, day 2 333

the teams, across the teams, and with management and other stakeholders—as to
the sensibility and appropriateness of the plan. Questions from the reviewers are
asked and answered.

Then, at the end of each team’s time slot, the team states their
risks and impediments. There is no attempt to resolve them in
this short time slot. The facilitator captures those on a central,
visible sheet.

The team also brings their release objective sheet to the front
of the room so that all can see the aggregate release objectives
unfold in real time.

In addition, the facilitator, or perhaps a project or program
manager, often collects critical dates—releases, dependencies,
milestone events, and the like—on a master schedule sheet at
the front of the room.

This process continues until all teams have had a chance to present their plan.

Addressing Risks and Impediments

Even though the plans are complete, there is still work to do. During the planning,
teams have been asked to identify the most critical risks and impediments—those
issues they identify that could affect their ability to meet the agreed-to objectives.
Addressing these is a must for the agile program, because they typically represent
those things that can (and if not addressed, likely would) interfere with the success
of the next PSI.

By now, the teams should have been coached to
address those risks that are under their control; other-
wise, they couldn’t be responsible for their own plan.
The risks and impediments that remain in the final
review will need to be addressed in a broader, man-
agement context.

This is an important time for the management team
and the facilitator. Every impediment or risk that
has been identified by the team will be discussed and
addressed in front of the full group as is illustrated in
the figure.

Reprinted by permission of Discount Tire
Company

Reprinted by permission of Discount Tire Company

Wow! eBook <WoweBook.Com>

ptg

334 chaPteR 16 � ReLease PLanning

Each item is discussed until the group agrees that the item can be categorized in one
of the following (ROAM) categories.

Resolved:�� The teams agree that the issue is no longer a concern, and the item
moves to the Resolved sheet.
Owned:�� The item cannot be resolved in the course of the meeting, but
someone (usually a manager or a specific team) takes ownership of the item.
Ownership means that the responsible party will take whatever action is
necessary to assure that the issue will not negatively affect the release com-
mitment. An owned item is moved to the owned sheet, and its ownership is
recorded.
Accepted:�� Some risks are simply facts or potential occurrences that must be
understood and accepted. For example, extraordinary support requirements for
a prior release or late delivery of a component from a supplier often appear on
the list and could potentially cause a team to miss a future commitment.
However, allocating excessive resources just to assure that these risks will
not affect the release will lower value delivery and may not be economically
prudent. Some risks just have to be accepted.
Mitigated:�� However, we want to accept as few as possible. Often, the teams can
identify a plan to mitigate the impact of a risk. This may be a workaround
plan, a minor descoping, or other such actions that the teams can take to
lessen the impact of a potential problem. If so, the mitigation plan is identi-
fied as notes on the back of the risk card as it is moved to the Mitigated sheet.

NOTE�³ The facilitator’s role depends on the management team’s strength, cohesiveness, and culture.
Sometimes the facilitator must be very active in order to drive consensus between managers
among themselves, teams to managers, or teams to teams. In other cases, the facilitator can step
back and let management do the work. This is the preferred outcome because the teams then
see that one of management’s primary roles in the agile enterprise is the elimination of impedi-
ments and the mitigation of risks.

In any case, the facilitator should assure that the issues are being addressed in a
clear, honest, and visible manner, or the commitment, which (ideally) follows, will
be flawed.

The Commitment

At some point, the “backlog of risks and impediments” sheet is empty, because
they have all been moved into a ROAM category. The consolidated statement of
release objectives is apparent and visible in the front of the room. Risks have been
addressed.

Now is the time to ask for a commitment.

Wow! eBook <WoweBook.Com>

ptg

 ReLease PLanning naRRative, day 2 335

However, a commitment, per se, is actually not quite the right
thing to ask for, because no intelligent participant is going to indi-
cate that they are not committed to the team’s release objectives in
front of their managers. Instead, we create a commitment by ask-
ing teams to vote on their confidence in their team’s ability to meet
the release objectives.

For example, the question is often stated as “how confident are
you that you and your teams will be able to meet the objectives of
this release.”

A public, “show of hands, five-finger vote” is then prompted, with the meaning as
follows:

1 = No confidence; will not happen

2 = Little confidence; probably will not happen

3 = Good confidence; the team should be able to meet the objectives

4 = High confidence; should happen

5 = Very high confidence; will happen

If the average is three to four fingers or more, that’s about as good as it gets, and
management should accept the commitment.

If the average is fewer than three fingers, then the work is not yet complete. Scope
and resources are adjusted again as necessary and planning continues—that day,
into the evening, or even rolling over into the next morning—until a commitment
can be reached.

NOTE�³ Many agile planners allocate 1.5 or 2.5 days to planning, with the final half day being reserved for
continuing education, training, iteration planning, or whatever. In the case of the commitment not
being achieved (which can happen), those activities are canceled in order to take a third cut at
the plan.

Assuming, however, that commitment has been achieved, the facilitator and man-
agers should thank the attendees for their participation in planning, because a com-
mitment represents a job well done.

Planning Retrospective

The next session is a brief retrospective led by the facilitator. Figure 16–3 shows a
simple format to capture such data, along with a few example comments.

Wow! eBook <WoweBook.Com>

ptg

336 chaPteR 16 � ReLease PLanning

What went well
• Good time box
management

• Teams collaboration
• Group review of plans
• Management of
interdependencies

• Hourly Scrum of
Scrums

• Risks being addressed
• Scope management

What didn’t
• Key stakeholders not
present

• Backlog not clear for
 Team A
• Couldn’t hear well enough
• Not enough time for
lunch

• Scope management
• Didn’t restart on time

Do better next time
• Get key stakeholders
here for plan review

• Pass out vision briefing
ahead of meeting

• Better backlog grooming
prior

• Better audio
• More time for lunch
• Restart on time

Figure 16–3 Retrospective format with example comments

This session should last no longer than about 15 to 20 minutes. Toward the end of
the timebox, the facilitator may ask the teams to rank the items in the third column
(what we could do better) in order to focus on the process improvement steps that
can be taken before the next planning session.

Final Instructions to Teams

The last session is typically a brief set of final instructions to the teams. Such instruc-
tions often include the following:

Capturing the objectives and stories in the agile project management tool��
Updating the Roadmap��
Cleaning up the room��
Scheduling key events and activities in the next few days��

Thereafter, the meeting is (thankfully) adjourned.

stretCh goals

Before we leave this chapter, there is one more topic to discuss. Gaining a meaning-
ful commitment from the team is a tricky proposition culturally. Without it, no one
is committed to anything, and it’s all on a “best-effort” basis. Some prefer that. After
all, one can argue that a fixed set of release commitments puts the team back in
the iron triangle. Moreover, if teams are castigated for failing to meet commitments
over time, their most natural defense is to back way down on their commitments.
From the team’s perspective, it beats a beating, but from the enterprise’s perspective,

Wow! eBook <WoweBook.Com>

ptg

 stRetch goaLs 337

it drives undesirable economics because the teams are not motivated to stretch to
their maximum potential.

To this end, mature programs have learned to make commitments meaningful in
two ways.

As we discussed in the previous chapter, the expectation is that teams will ��
meet “most” of their objectives. A yield of anywhere greater than 80% should
be acceptable. This gives the teams the flex they need to stretch and commit,
without negative consequences.4

Mature teams will soon learn that they need a set of committed goals ��
(because the enterprise has to depend on something), but given the variabil-
ity of R&D, the teams will also establish a set of stretch goals. These goals are
also ranked by business value, as illustrated in Figure 16–4.

This latter case is usually the best case. This gives the teams the opportunity to meet
or exceed 100%, without fear of being in the penalty box for stretching their objec-
tives to the maximum. In addition, if we want teams to operate reliability in the 80%
plus process control range as we described in the previous chapter, then the ability
to achieve more than 100% on occasion is a means to help achieve that.

Objective
10

4

10
6

10
9

4
8

4. Trade show demo by 3/15
5. Release v3.1 upgrade
 to channel

Stretch goals
All thermostat versions
Pricing program 2

--

2. First pricing programs
3. Gateway Pointing
 Rearchitecture

1. Thermostat
 Over-the-Air Update
2. Next generation
 thermostat firmware
 (V300x only)

Bus Value

Figure 16–4 Objectives with stretch goals

4. We must be careful what we wish for. In my experience, teams that reliably meet 100% of their
commitments without stretch goals are often not very high-performing teams in the aggre-
gate. After all, they couldn’t afford to take any risks, could they?

Wow! eBook <WoweBook.Com>

ptg

338 chaPteR 16 � ReLease PLanning

summary

In the previous chapter, we described the motivation and mechanics of the Agile
Release Train, which we use to drive strategic alignment and institutionalize prod-
uct development flow. Integral to that is a series of rolling wave release planning
events, which are used to communicate the Vision to the teams and gain commit-
ments from the teams to a set of release objectives. In this chapter, we introduced
the release planning event, a seminal event that is the pacemaker for every agile pro-
gram. We provided a sample agenda and process for running this event, which have
been used with good results in a wide variety of software enterprises.

The net result of the event is a set of release objectives for each team, which aggre-
gates into a set of release objectives for the program. We described how to make
these release objectives simultaneously ambitious and yet practical and manageable.
Risks are actively recognized and addressed as well.

With these tools in hand, the enterprise can look forward to series of programs that
stretch for the maximum feasible accomplishments and yet routinely address the
variability inherent in software research and development. In this way, each program
operates with a continuous flow of value delivery, predictable within acceptable lim-
its. That’s about as good as we know how to make it. This is software development
after all.

Wow! eBook <WoweBook.Com>

ptg

 339

Chapter 17

nonfunCtional requirements
with don widrig

The first 90% of the software takes 90% of the development time. The remaining
10% of the code takes up the other 90% of the time.

—Tom Cargill, Bell Labs

So far in this text, we have used user stories and features to describe the functional
requirements of the system—those system behaviors whereby some combina-

tion of inputs (action) produces a meaningful output (result) for the user. We have
invested many pages in exploring how to discover, organize, and manage, in an agile
manner, the requirements that we must understand in order to build the system
functionality our users need to go about their business or pleasure.

However, we haven’t yet described how to discover, understand, or deliver the
other class of requirements, the nonfunctional requirements (NFRs), that the users
require of our system. These are the “ilities”—security, reliability, scalability, and so
on—and other system qualities that affect the overall usefulness and, ultimately, the
actual viability of the solution. Because if a system isn’t reliable (crashes) or market-
able (failure to meet some imposed regulatory standard) or scalable (doesn’t sup-
port the number of users required), then, agile or not, we will fail just as badly as if
we forgot some critical functional requirement.

Traditionally, one way to think about all the types of requirements that affect overall
fitness for use has been the acronym FURPS, which stands for Functionality, Usabil-
ity, Reliability, Performance, and Supportability [Grady 1992, Leffingwell and Wid-
rig 2003].

The FURPS acronym reminds us that we must build and manage the behavior of
the system from a number of different perspectives:

Functionality:�� What the system does for the user
Usability:�� How easy it is for a user to get the system to do it

Wow! eBook <WoweBook.Com>

ptg

340 chaPteR 17 � nonfunctionaL RequiRements

Reliability:�� How reliably the system does it
Performance:�� How often, or how many of it, it can do
Supportability:�� How easy it is for us to maintain and extend the system that
does it

We’ve discussed functionality at length in the prior chapters. The “URPS” part of
FURPS is a placeholder for organizing the NFRs, which serves as a reminder that
we must also consider these other types of requirements in our system design, even
when we approach implementation in a just-in-time agile manner.

In addition, in Managing Software Requirements, Second Edition: A Use Case
Approach [Leffingwell and Widrig 2003], we found it useful to think about one
additional requirements perspective, the perspective of design constraints. Each of
these three types of requirements is defined in Table 17–1.

modeling nonfunCtional requirements

In one perspective, all of these items can be considered to be constraints on new
development, in that each eliminates some degree of design freedom on the part of
those building the system. Here’s an example:

“ For compatibility with our partners, we have agreed to implement SAML-
based Single Sign On (SSO is a functional requirement, basing it on SAML is a
constraint) for all products in the suite.”

“ Every product in the suite has to be internationalized (constraint), but only the
Order Entry module must be localized to Korean (functional requirement) for this
release. ”

Table 17–1 Requirement Types and Descriptions

Requirement Type Description Examples

Functional
requirements

Express how the system interacts with
its users—its inputs, its outputs, and the
functions and features it provides.

Display a pop-up on the TV when the
utility sends a brownout warning.

Nonfunctional
requirements

Criteria used to judge the operation or
qualities of a system.

The system must be available to its users at
least 99.99% of the time.
The systems should support 100 concur-
rent users with no degradation in
performance.

Design constraints Restrictions on the design of a system, or
the process by which a system is developed,
but that must be fulfilled to meet technical,
business, or contractual obligations.

Use Python for all client applications.
Don’t use any open source software that
doesn’t conform to the GNU General
Public License.

Wow! eBook <WoweBook.Com>

ptg

 modeLing nonfunctionaL RequiRements 341

So, in the information model, we have modeled NFRs as backlog constraints, as illus-
trated in Figure 17–1.

From the diagram, we see that a backlog item may be constrained by (zero, one,
or more) nonfunctional requirements. An example from the case study appears in
Figure 17–2.

Also, nonfunctional requirements apply to zero or more backlog items. For exam-
ple, a nonfunctional requirement such as support 100 concurrent users might apply to
zero, one, or many backlog items.

Once identified, relevant nonfunctional requirements must be captured and com-
municated to all teams who may be affected by the constraints. In agile, with its
focus on the backlog, there is no obvious place to model them, so in the Big Picture,
we just call them backlog constraints and represent them as shown in Figure 17–3.

Backlog Item Nonfunctional
Requirement

Constrained by
0..* 0..*

Figure 17–1 Association between backlog items and nonfunctional requirements

As a consumer, I want to be
notified of any planned brownouts
that could affect my home.

All utility notifications shall
be displayed within one minute
of event.

Nonfunctional RequirementBacklog Item

Constrained by

Figure 17–2 User story constrained by a nonfunctional requirement

Nonfunctional
Requirements Are
Constraints on the
Backlog

Pr
og

ra
m

 B
ac

kl
og

NFR

Figure 17–3 A backlog with backlog constraints in the Big Picture

Wow! eBook <WoweBook.Com>

ptg

342 chaPteR 17 � nonfunctionaL RequiRements

Expressing Nonfunctional Requirements as User Stories

Given the predominance of user stories in agile and the more recent user voice form
(as a <user role>, I can . . .), there may be value in expressing nonfunctional require-
ments in user voice story form. Often, it can clarify the source (<user role>) and the
business benefit to the user or the solution provider. Sometimes it’s worth this little
extra effort to communicate a nonfunctional requirement more clearly, but some-
times it isn’t. Figure 17–4 provides some examples.

Using the user voice form makes good sense for NFRs when it adds value, and it
makes equally good sense not to when it doesn’t.

exPloring nonfunCtional requirements

Understandably, there’s a fairly long list of potential NFRs that may apply to a par-
ticular project context. Table 17–2 shows a superset of these considerations.

However, to think about them in a more organized way, we’ll return to our URPS
(usability, reliability, performance, and supportability) acronym. In the next sec-
tions, we’ll use URPS (along with design constraints) as our categorization and pro-
vide some guidelines to help discover and record NFRs.

NFR: Traditional
Expression

All messages shall be displayed
in less than one minute.

User Voice Form

All open source software must
be approved by the CFO.

Works, Adds Value

As a consumer, I want to be
notified of any messages from
the utility in less than one
minute of arrival so that I can
take appropriate action quickly.

Adds Some Value

As your CFO, I need to make
sure we don’t use any open
source software that I
haven’t approved, so we
don’t have license exposure.

Update mobile app with new
logo.

Doesn’t Add Much Value

As a product manager,
I need to make sure we
update the logo to satisfy
marketing.

Figure 17–4 Expressing nonfunctional requirements in user voice form

Wow! eBook <WoweBook.Com>

ptg

 exPLoRing nonfunctionaL RequiRements 343

Table 17–2 Examples of Nonfunctional Requirements

Accessibility Extensibility Quality

Audit and control Failure management Recovery

Availability Legal and licensing issues Reliability

Backup Interoperability Resilience

Capacity: current and forecast Maintainability Resource constraints

Certification Modifiability Response time

Compatibility compliance Open Source Robustness

Configuration management Operability Scalability

Dependency on other parties Patent-infringement-avoidability Security

Documentation Performance/response time Software, tools, standards

Disaster recovery Platform compatibility Stability

Efficiency Price Safety

Effectiveness Privacy Supportability

Escrow Portability Testability

Usability

Source: Wikipedia

Usability

In today’s software products, ease of use ranks as one of the top criteria for com-
mercial success and/or successful user adoption. However, since usability tends to
be in the eye of the beholder, specifying usability can present a challenge. There is
no simple solution to this problem, but here are some things to think about.

Specify the training time objective for a user to become minimally produc-��
tive (able to accomplish simple tasks) and operationally productive (able to
accomplish normal day-to-day tasks). This may need to be further described
in terms of personas, such as novice users, who may have never used an
application of this type before, and power users.
Specify measurable task times for typical tasks or transactions that the end ��
user will be carrying out. Although this could be affected by performance
issues in the system (such as network speed, network capacity, memory, and
so on), task performance times are also strongly affected by the usability of
the system, and we should be able to specify that separately.
Compare the user’s experiences with other comparable systems that the user ��
community knows and likes.
Specify any required user assistance features such as online help, wizards, ��
tool tips, context-sensitive help, user manuals, and other forms of documen-
tation and assistance.

Wow! eBook <WoweBook.Com>

ptg

344 chaPteR 17 � nonfunctionaL RequiRements

Follow conventions and standards that have been developed for the human-��
to-machine interface. Having a system work “just like what I’m used to”
can be accomplished by following consistent standards from application
to application. For example, you can specify a requirement to conform to
common usability standards, such as IBM’s Common User Access (CUA)
standards or the Windows applications standards published by Microsoft.

Reliability

Obviously, reliability is an absolute requirement for customer satisfaction. To
achieve acceptable system behavior, we must give some thought to what require-
ments and performance measures we would ascribe to this aspect. Under the cat-
egory of Reliability, we might want to consider the following issues.

Availability:�� The system must be available for operational use during a speci-
fied percentage of the time. In the extreme case, the requirement(s) might
specify “nonstop” availability, that is, 24 hours a day, 365 days a year. It’s
more common to see a stipulation of 99.9% availability or a stipulation of
99.99% availability between the hours of 8 a.m. and midnight.
Mean time between failures (MTBF):�� This is usually specified in hours, but it
also could be specified in days, months, or years.
Mean time to repair (MTTR):�� How long is the system allowed to be out of
operation after it has failed? A range of MTTR values may be appropriate;
for example, the user might stipulate that 90% of all system failures must be
repairable within five minutes and that 99.9% of all failures must be repair-
able within one hour.
Accuracy:�� What accuracy is required in systems that produce numerical out-
puts? Must the results in a financial system, for example, be accurate to the
nearest penny or to the nearest dollar?
Defects:�� Defects may be categorized in terms of minor, significant, and criti-
cal. Eliminating all critical defects is always the goal, but large numbers of
lower-priority defects can also substantially reduce the usability and users’
satisfaction with the system. Total defects by type are a pretty good indicator
of a user’s likely experience with the system.
Security:�� Application security is of paramount importance, and it is a critical
business priority to design security into the system. Some security issues
can be addressed in functional requirements (require strong passwords). How-
ever, security can also be specified with nonfunctional requirements such as
detect denial-of-service attacks, as well as certain design and coding principles
such as verify controls for buffer over-runs. Also, in mature markets, published
security standards are likely to exist.

Wow! eBook <WoweBook.Com>

ptg

 exPLoRing nonfunctionaL RequiRements 345

Performance

Performance is another broad category of NFRs that specify how responsive a sys-
tem is to users or other systems and how a system is likely to degrade with increasing
load. Types of NFRs in the performance category might include the following.

Response time:�� Specify for transactions of a given type, average and
worst case.
Throughput:�� Specify in transactions per second, latency, overhead, data
transmission rates, and so on.
Capacity:�� Specify the number of customers, transactions, data, and so on, the
system can accommodate.
Scalability:�� Specify the ability of the system to be extended to accommodate
more interactions and/or users.
Degradation modes:�� Define an acceptable behavior for when the system has
been degraded. For example, it may be permissible for a system to become
slower with load, or even deny users access to certain services, as opposed to
a system crash.
Resource utilization:�� If the new system has to share hardware resources with
other systems or applications, it may also be necessary to stipulate the degree
to which the implementation will make “civilized” use of such resources as
the CPU, memory, channels, disk storage, and bandwidth.

Supportability (Maintainability)

Supportability (maintainability) includes the ability of the software to be eas-
ily modified to accommodate enhancements and repairs. For some application
domains, the likely nature and even timing of future enhancements can be antici-
pated (protocol changes, annual tax rule changes, standards compliance response
timelines, availability of new data sources, and so on), and there may be a man-
date for a team to be able to respond to these anticipated changes. Customers may
also require service-level agreements for various types of defect fixes and system
enhancements.

Design Constraints

As we mentioned earlier, design constraints are often treated as another class of non-
functional requirements. Most typically, these are created to enhance supportability.
Design constraints typically originate from one of three sources: some necessary
restriction of design options, conditions imposed on the development process itself,
and regulations and imposed standards.

Wow! eBook <WoweBook.Com>

ptg

346 chaPteR 17 � nonfunctionaL RequiRements

Restriction of Design Options

Most stories allow for more than one design option. Whenever possible, we want to
leave that choice to the developers or user experience experts rather than specify-
ing it in the story, because they are in the best position to evaluate the technical and
economic merits of each option. Whenever we do not allow a choice to be made
(use Oracle DBMS), a degree of flexibility and development freedom has been lost.
However, sometimes this is necessary to improve supportability. (Imagine the chal-
lenges that an internal support team or customer database administrator would face
if each product in a multiple product suite chose a separate database to persist cus-
tomer data.)

Conditions Imposed on the Development Process

Also, to assure systemic productivity in the agile teams, support the principle of col-
lective ownership, and enhance the ability of team members to move from one proj-
ect team to another (a key measure of business agility), teams will typically adopt
common programming languages, unit testing tools, agile project management
tooling, coding standards, configuration management, build environments, and so
on. Examples include the following:

Application standards:�� Use the class library from Developer’s Library 09-724 on the
corporate IT server
Corporate best practices and standards:�� Compatibility with the legacy database must
be maintained
Development standards:�� Use our Java coding standards

With respect to coding standards, for example, agile teams take pride in their code.
This is a prudent development practice that makes good economic sense. In addi-
tion to improving inherent code quality, coding standards improve the ability to
refactor and maintain the code, improving the overall velocity of the team. To
achieve this, good teams make the software as simple as possible, easy to read (more
time is spent reading code than writing code), and easy to refactor. For guidance on
this topic, we refer you to Bob Martin’s Clean Code: A Handbook of Agile Software
Craftsmanship [2009].

Regulations and Imposed Standards

Some industries, such as the medical device industry, have bodies of regulations
and standards that govern development practices. Typically, these are too lengthy to
incorporate directly and are therefore just included by reference (application must fail
safely per the provisions of TüV Software Standard, Sections 3.1–3.4).

Wow! eBook <WoweBook.Com>

ptg

 PeRsisting nonfunctionaL RequiRements 347

Incorporation by reference has its hazards, however. For example, a reference of the
form The product must conform to ISO 601 effectively binds your product to all the stan-
dards in the entire document, so teams should be careful to incorporate specific and
relevant references instead of more general references.

Managing Design Constraints

Design constraints are unique and may deserve a special treatment. You may want
to include them in a special section of your backlog or perhaps even create a supple-
mental specification for that purpose. In addition, you may want to identify the
source and rationale. This serves as a reminder of the derivation and motivation
for the design constraint, so it can be appropriately applied in the individual team’s
context. That way, it can potentially be modified or eliminated if the business con-
text changes.

Persisting nonfunCtional requirements

Another difference between user stories and nonfunctional requirements is that they
typically need to persist differently in the development life cycle. We’ve described
how user stories are lightweight and generally don’t have to be maintained, which is
one of the key benefits. We’ve also shown that the details of a user story are captured
in the acceptance test, which persist inside the team’s automated or manual regres-
sion test environment. That is why we can throw the user story away after imple-
mentation—because we have memorialized the important details in our test cases.

That can work for some NFRs, too, but it gets a bit riskier. For example, if a system
must support 1000 concurrent users, we could develop an automated test that simu-
lated that load and build it in the regression test suite. That would be an excellent
practice because we could refactor the code at will, and if we accidentally created
a performance bottleneck, it would be quickly discovered. In that case, we could
forget about the NFR once we have seen it the first time, because the automated test
remembers it for us.

There are other types of NFRs, however, that must be treated quite differently. Here
are some examples:

Maintain PCI compliance (credit card industry user security standards) in all applications��
Localize the application in all then-current, supported languages prior to release in any ��
language
No open source without a CFO license review��

Wow! eBook <WoweBook.Com>

ptg

348 chaPteR 17 � nonfunctionaL RequiRements

We surely can’t forget these, and we can’t write automated test cases for them, either.
So, the teams must have an organized way to save them, find them, and review them
when necessary. In practice, we’ve seen agile teams take a number of approaches to
persisting NFRs.

Create a separate backlog in the agile project management tool. Most enter-��
prises will adopt agile project management tooling as a central repository for
stories and tasks, as well as iteration and release objects that support sched-
uling, burndown, and feature status reporting. Teams can create a special
project/product backlog to hold and maintain the NFRs within the tool.
Access privileges must be granted to all team members who are working on
the program.
Store and manage them in a wiki. This method works well because it pro-��
vides continuous visibility; is available to all team members; is persistent;
fosters communication, comments, and interaction; and doesn’t require any
special tooling.
Maintain a supplementary specification. This label/document was origi-��
nally developed as an auxiliary document to RUP’s use case models and use
case specifications and served exactly this role (organizing nonfunctional
requirements). Remember, as agilists, we “favor working software over
comprehensive documentation,” but that doesn’t mean we can’t create the
documentation we need. Even more importantly, we like to do the simplest
thing that can possibly work, and when we know something is important,
it makes sense to write it down. Table 17–3 later in this chapter provides an
example template for a supplemental specification.
Build the NFRs into the definition of done, and point to the special back-��
log, wiki, or supplemental specification that contains the details. In this
approach, a team can’t be done until the NFRs are satisfied as well. Differ-
ent definitions of done, requiring different amounts of regression testing,
inspection, and so on, can be established for various iteration, potentially
shippable increment, and release milestones.

No matter the approach, it is mandatory that the teams do something to maintain
and manage these specifications, because they could make the difference between
success and failure.

testing nonfunCtional requirements

The question arises as to whether these nonfunctional requirements are testable.
The answer is assuredly yes, because most all of these constraints (performance, for
example) can and should be objectively tested.

Wow! eBook <WoweBook.Com>

ptg

 testing nonfunctionaL RequiRements 349

Recalling the agile testing matrix diagram in Chapter 10, we find ourselves in quad-
rant 4, the domain of system qualities testing, as shown in Figure 17–5.

Indeed, compliance to these requirements is just as critical as it is to meeting func-
tional requirements, and we provide explicit support for this in the model, as illus-
trated in Figure 17–6.

Business-Facing

Q2

Q1

Q3

Q4

Technology-Facing

Su
pp

or
tin

g
De

ve
lo

pm
en

t

Cr
iti

qu
e

Pr
od

uc
t

Automated
and Manual

Functional Tests
Story Acceptance Testing

Feature Acceptance Testing

System Acceptance Tests
Exploratory Testing

Scenario Testing
Usability Testing

User Acceptance Testing (UAT)
Alpha/Beta Testing

System Qualities Tests
Performance and Load Testing

Security Testing
“ility” Testing

Unit Tests
Component Tests

Automated Tools

Manual

Figure 17–5 Quadrant 4, system qualities tests

Nonfunctional
Requirement

1..*

0..*

System Qualities
Tests

Compliant
when passes

Figure 17–6 A system is compliant with its nonfunctional requirements when it
passes its system qualities tests.

Wow! eBook <WoweBook.Com>

ptg

350 chaPteR 17 � nonfunctionaL RequiRements

This is intended to better describe how this set of tests help assure that the system is
in continuous compliance with its nonfunctional quality requirements. The multi-
plicity (1..* and 0..*) further indicates the following.

Not every NFR has a qualities test (0..). For example, some design con-��
straints (program in Python) simply aren’t worth testing (other than perhaps by
one-time inspection or acknowledgment).
However, most NFRs (..*) should have at least one objective test associated ��
with them. Moreover, some NFRs (for example, runs on IE 8) might require
an entire test suite to assure conformance.
Every system qualities test should be associated with some NFR (1..*) (oth-��
erwise there would be no way to tell whether it passes!), and some system
qualities tests could assure compliance with more than one NFR.

Testing in quadrant 4 is quite different, because it doesn’t tie directly to a functional
implementation of a story or feature in a timebox. Some of the qualities tests (no open
source without approval) will be more in the nature of a one-shot test at some appropri-
ate milestone. Other tests will be recurring tests at critical release points (PCI Credit
Card Handling Compliance). Regardless of the schedule, these tests are vital to the success
of the product and must be factored into the team’s thinking at iteration and release
planning. Of course, the tests must respond to the type of NFR at issue. We’ll pro-
vide some examples in the following sections.

Usability

Usability testing is a black-box testing technique, which tests how easy it is for users
to achieve their objectives with the system. Typically, usability testing involves gath-
ering a small number of users (three to five) together and then having them exe-
cute scripts that use the system in predetermined ways. During this process, those
administering the tests typically focus on measuring four aspects of the user’s inter-
action with the system.

Productivity:�� How long does it take a user to perform a particular task?
Accuracy:�� How many errors or missteps does the user experience along the way?
Recall:�� How easily can a user recall how to use the system if they have been
away from the system for a while?
Emotional response:�� How does the user react to the experience of using the
system—drudgery, acceptable, interesting, or fun?

Reliability

Reliability is somewhat easier to test because the objectives may be clearer, especially
if the team has stated any service-level requirements such as availability, mean time

Wow! eBook <WoweBook.Com>

ptg

 testing nonfunctionaL RequiRements 351

between failures, and so on. In addition, there are many language-specific profiling
tools that assist developers in performing low-level tests such as testing for memory
leaks, potential race, and other code conditions that have shown to be typical root
causes of reliability problems. However, there are still challenges.

It may not be possible to test the product for the amount of time that would ��
be required to collect such data. Instead, stress and load testing may be nec-
essary to accelerate potential failure conditions.
It can be difficult to simulate the user’s real operating environment, because ��
there could be many factors, such as other systems, environment, types of
users, and so on, that affect the long-term results.

The team must develop a reasonable balance of reliability tests to operate the system
under load, possibly with heightened environmental stress factors.

Security

Security is a special type of reliability testing, and it can be approached from two
perspectives, white-box testing and black-box testing.

White-Box Testing

In white-box testing, the testing regime examines the actual code to look for poten-
tial coding practices and paths through the code that can allow security breaches.
However, it is not generally practical to examine all possible pathways and com-
binations. Instead, the number of potential combinations must be pruned to a
manageable set of tests, usually by deciding on the most likely and most important
pathways through the code. The comprehensiveness of the testing is determined by
the criticality of the product and its financial and legal impact. For example, a bank-
ing application for international wire transfers would require extreme rigor as com-
pared to a web application for purchasing ring-back tones from a mobile operator.

Black-Box Testing

Black-box testing mimics the way in which real-life hackers try to defeat a system.
Using scripts and tools, the test regime can inject various faulty inputs into the sys-
tem and try to “break the system.”

Story-level black-box testing can be performed in the course of the iteration because
unit tests are comparatively easy to perform by the individual developer because of
the limited scope of the required tests. For example, it is fairly easy to inject faulty
data into a low-level routine at the time the code is written, observe its behavior, and
correct any resultant security flaws in the design at that early stage.

Wow! eBook <WoweBook.Com>

ptg

352 chaPteR 17 � nonfunctionaL RequiRements

Things get more complicated as the system evolves into higher levels of functional-
ity. As the level of sophistication evolves, the unit tests, component tests, scripts, and
tools will necessarily have to evolve too.

Performance

Performance testing is usually done with the assistance of specialized tools. At the
scope of system-level testing, user and other system load simulators, measuring, and
monitoring tools are available. These are used to simulate a heavy load on a server,
network, system component, or other object to test its resilience and to analyze
overall performance under different load types.

Open source and commercial tools offer differing capabilities, and the teams need to
select an appropriate set. Custom, purpose-built tools may also be required for com-
plex systems. To assure that each increment of the new system works as intended,
this type of testing should be started in early iterations, and the tests need to be
added to the daily build, iteration, or release-level regression testing criteria.

Supportability and Design Constraints

Supportability and design constraint testing involves testing adherence to any sup-
portability requirements that may be imposed on the team by outside stakeholders
or that teams have imposed on themselves. Typically, this may be done by inspec-
tion or retrospection, applying lessons learned from prior iterations to improve
future outcomes.

In many cases, design constraints are one-shot tests that are performed by inspec-
tion early on. At a later stage, reconfirmation of the constraint might be in order,
just to ensure that things haven’t changed.

A more complex set of testing practices may be necessary if regulatory bodies are
involved. For example, in the United States, developing a software-controlled medical
device will likely be subject to a large body of process and product regulations from
the U.S. Food & Drug Administration. If regulation is involved, it is critical to have
these constraints made known at the beginning of the project, because many such
regulations place demands on how certain things must be implemented, and redoing
a process the team has already done could generate a significant amount of waste.

temPlate for an nfr sPeCifiCation

As we have described, there are many ways for a team to capture, organize, and com-
municate nonfunctional requirements. One such way is via a supplemental specifi-
cation (document, database, or wiki), a template for which appears in Table 17–3.

Wow! eBook <WoweBook.Com>

ptg

 temPLate foR an nfR sPecification 353

Table 17–3 Template for a Supplemental (Nonfunctional Requirements) Specification

1. Introduction

1.1. Purpose

To record all nonfunctional requirements for the system.

1.2. Scope

1.3. Definitions, Acronyms, and Abbreviations

1.4. References

2. Usability

State any requirements that affect usability, and link them to specific domains of functionality where
applicable.

3. Reliability

State any requirements for reliability, quantitatively wherever possible.

4. Performance

State any performance requirements of the system, expressed quantitatively where possible, and link to
specific features or user stories where applicable.

6. Supportability

State any requirements for system supportability or maintainability.

7. Design Constraints

State any design or development constraints imposed on the system or development process.

8. Documentation Requirements

State the requirements for user and/or administrator documentation.

9. Purchased Components

List any purchased components used with the system, licensing or usage restrictions, and compatibility/
interoperability requirements.

10. Interfaces

Define any third-party interfaces that must be supported by the system.

10.1. Software Interfaces and Communication Protocols

10.2. Hardware Interfaces, Operating Platforms

11. Licensing and Security Requirements

Describe the licensing and usage enforcement requirements or other restrictions for usage, security, and
accessibility.

12. Legal, Copyright, and Other Notices

State any required legal disclaimers, warranties, copyright notices, patent notices, trademarks, or logo
compliance issues.

Continues

Wow! eBook <WoweBook.Com>

ptg

354 chaPteR 17 � nonfunctionaL RequiRements

13. Applicable Standards

Reference any applicable standards and the specific sections of any such standards that apply.

14. Internationalization and Localization

State any requirements for support of internationalization, user languages, and dialects.

15. Physical Deliverables

Define any specific deliverable artifacts required by the user or customer.

16. Installation and Deployment

Describe any specific configuration or target system preparation required to support installation and
deployment of the system.

17. Other Requirements

Describe any other issues and requirements not covered elsewhere.

summary

In this chapter, we introduced that important software system bugaboo of nonfunc-
tional requirements. We described how to think about them, how to discover them,
and how to organize them so that the teams can build systems that meet the requi-
site functionality, usability, reliability, performance, and supportability requirements.
We do so in the hope that with this guidance, that last 10% of the code might take
only the remaining 10% of the time. That way, teams can complete their work on
time and meet the objectives they have established during release planning.

Table 17–3 Template for a Supplemental (Nonfunctional Requirements) Specification (Continued)

Wow! eBook <WoweBook.Com>

ptg

 355

Chapter 18

requirements analysis toolkit

There is no sense in being precise about something, when you don’t even know
what you are talking about.

—John Von Neumann

Smaller projects, such as those that can operate solely at the Team level, are usually
so well contained that communication among the stakeholders is not a big issue.

The team usually has easy access to each other, and it’s easy to resolve ambiguities
and confusion. Just lean over to the next workstation, and ask the product owner
what they meant with a story!

However, as projects grow in scope and size, the communication pathways become
more and more complex, and opportunities for misunderstandings arise. Indeed, as
projects grow to the Program level, it’s pretty much a given that different means of
communication become necessary. In addition, there are cases in which the ambigu-
ity of imperfect requirements communication is simply not tolerable, particularly
when the stories deal with life-and-death issues or when the erroneous behavior of
a system could have extreme financial or legal consequences.

Communication has always been an imperfect vehicle. Misunderstandings abound,
and it’s common to say or hear, “This story is perfectly clear. Why don’t you under-
stand it?” Indeed, it may be clear to the story writer, but others may not find it so
obvious at all. For example, think back to the “estimating” exercise in Chapter 8 for
an “obvious” statement of requirements, such as “count the pages in the workbook,”
and look at all the confusions that arise within the scope of that simple exercise.
Now, consider your real world.

Even with user stories, so helpful in bridging the gap between developer and user
communities, our pidgin language may be able to communicate fairly simple
things in a simple way, sufficient to buy some beads or build a software widget, but

Wow! eBook <WoweBook.Com>

ptg

356 chaPteR 18 � RequiRements anaLysis tooLkit

sometimes far more precision is required (How exactly is that cardiac pacemaker
algorithm supposed to work . . . ?).

In other words, when we are building complex systems, there are clearly times when
we need alternate and far more precise communication mechanisms.

If the description of the story is too complex for natural language and if the
business cannot afford to have the specification misunderstood, the team
should augment the story with a more precise specification method.

In this chapter, we’ll describe a number of requirements analysis techniques, more
technical methods for specifying system behavior that the team can use to resolve
ambiguity and build more assuredly safe and reliable systems. Such methods include
the following:

Activity diagrams (flowcharts)��
Sample reports��
Pseudocode��
Decision tables and decision trees��
Finite state machines��
Message sequence diagrams��
Entity-relationship diagrams��
Use cases��

And there are many others.

We won’t attempt to describe any of these techniques in detail since each is worthy
of a chapter of its own. But we can provide a brief introduction to each so that you’ll
have a sense of what to use and when to use it.

Where possible, only one or two of these technical methods should be used to aug-
ment natural-language stories for a system. This simplifies the nontechnical review-
er’s task of reading and understanding these special elements. If all the systems
developed by an organization fall into one application domain, such as telephone
switching systems, perhaps the same technical method can be used for all the sys-
tems. But in most organizations, it’s unrealistic to mandate a single technique for all
stories in all systems. Story writers and analysts need to select an approach that best
suits the individual situation and help the users and reviewers understand how the
technique expresses system behavior.

In this chapter, we’ll describe each of these methods in summary form.

Wow! eBook <WoweBook.Com>

ptg

 activity diagRams 357

aCtivity diagrams

Flowcharts and their new and more precise incarnation, the UML activity diagram,
have the advantage of reasonable familiarity. Even people with no computer-related
training or background generally know what a flowchart is. Teams apply activity dia-
grams, such as the Tendril one in Figure 18–1, that specify the major steps and pro-
cess steps necessary to provision a new release of a product. They could have written
a long and involved text-based procedure, or they could simplify the steps into a sin-
gle understandable flow diagram as in Figure 18–1. Although the same information
could have been presented in a number of other forms, the UML notation provides a
visual representation that is fairly easy to understand and relatively unambiguous.

Tendril Platform
Provisioning Process
Release v1.8
This diagram shows the order of
tasks performed during the
provisioning prrocess.

Create the
Virtualized Image

Provision Customer Virtual
Environment in Tendril NOC

Deploy Virtual Machine(s)
into Customer Environment

Deploy Virtual Machine(s)
into Appliance

Configure Appliance with
Network and Storage

Configure Platform for Either
Broadband or Backhaul

Install Backhaul Server

Performed by Utility

Point Platform at the
Backhaul Server

Point Platform Server to Platform
for Callbacks

Launch Platform in
Production

Ingest Users

Open Physical Network
Port in Firewall

Setup OTI Server

Optional

Procure Appliance Hardware

[New Deployment]

[Hosted Model] [Appliance Model]

[Backhaul][Broadband]

[Have Users to Add]

[Existing Deployment]

Figure 18–1 Tendril provisioning diagram in activity diagram format

Wow! eBook <WoweBook.Com>

ptg

358 chaPteR 18 � RequiRements anaLysis tooLkit

samPle rePorts

Like the UI challenge we described in Chapter 7, users often don’t know what they
want to see in a report or other output until they see the report. Many times, teams
churn code through a series of iterations, trying to get the right data presented in
the right way, without simply stepping back and asking themselves, “What is it that
they really want to see, and how do they want to see it?”

In these cases, a sample report format with mock data, generated by any number of
desktop tools, might be all that is necessary to resolve most of the ambiguity. If the
system is algorithmically intensive and the user cannot evaluate the report format
without some real data and results, the team may need to invest some time in pro-
ducing some real data. Figure 18–2 shows an example of a mock-up report.

Spikes are frequently invoked as research items to develop and validate sample
reports with the product owner and users.

Figure 18–2 Sample event report format from case study

PseudoCode

As the term implies, pseudocode is a “quasi” programming language, which combines
the informality of natural language with the strict syntax and control structures of a

Wow! eBook <WoweBook.Com>

ptg

 decision taBLes and decision tRees 359

programming language. In the extreme form, pseudocode consists of combinations
of the following:

Imperative sentences with a single verb and a single object��
A limited set, typically not more than 40 to 50, of “action-oriented” verbs ��
from which the sentences must be constructed
Decisions represented with a formal IF-ELSE-ENDIF structure��
Iterative activities represented with DO-WHILE or FOR-NEXT structures��

Figure 18–3 shows an example of a pseudocode specification of an algorithm for
calculating deferred-service revenue earned within a given month in a business
application. The text of the pseudocode is indented in an outline-style format in
order to show “blocks” of logic. The combination of the syntax restrictions and
the format and layout of the text greatly reduces the ambiguity of what could
otherwise be a very difficult and error-prone story. (It certainly was before we
wrote this pseudocode.) At the same time, it should be possible for a nonpro-
gramming person to read and understand the story’s function in the form shown
in Figure 18–3.

deCision taBles and deCision trees

It’s common to see a story that deals with a combination of inputs; different com-
binations of those inputs lead to different actions or outputs. Suppose, for exam-
ple, that we have a system with three inputs—A, B, and C—and we see a story that
starts with a pseudocode-like statement: “If A is true, then if B is also true, do action
X, unless C is true, in which case the required action is Y.” The combination of

Set SUM (x) =0
FOR each customer X
 IF customer purchased paid support
 AND ((Current month) >= (2 months after ship date))
 AND ((Current month) <= (14 months after ship date))
 THEN Sum (X)=Sum (X) + (amount customer paid)/12
END

Figure 18–3 Example of pseudocode

Wow! eBook <WoweBook.Com>

ptg

360 chaPteR 18 � RequiRements anaLysis tooLkit

IF-THEN-ELSE clauses quickly becomes tangled, especially if, as in this example, it
involves nested IFs. Typically, nontechnical users are not sure that they understand
any of it, and nobody is sure whether all the possible combinations and permuta-
tions of A, B, and C have been covered.

The solution in this case is to enumerate all the combinations of inputs and to
describe each one explicitly in a decision table. In our example, if the only permis-
sible values of the inputs are “true” and “false,” we have 23, or eight, combinations.
These can be represented in a table containing eight columns. We would then list
the actions for each of those eight combinations. Figure 18–4 illustrates a real-life
problem that many users encounter, a printer malfunction.

Alternatively, a decision tree can be drawn to portray decisions in a more graphical
form. Figure 18–5 shows a decision tree used to describe a hypothetical emergency
sequence.

Rules

Printer does
not print. Y Y Y N N NY N

A red light is
flashing. Y Y N N Y Y N NConditions

Printer is
unrecognized. Y N Y N Y N Y N

Check the
power cable. X

Check the
printer-computer
cable.

X X

Ensure printer
software is
installed.

X X X X

Check/replace
ink. X X X X

Actions

Check for
paper jam. X X

Figure 18–4 Decision table for debugging a printer failure
Source: Wikipedia (en.wikipedia.org/wiki/Decision_table)

Wow! eBook <WoweBook.Com>

ptg

 finite state machines 361

Has Emergency
Sequence
Occurred?

Is Remote
Notification

Enabled?

Initiate
Emergency
Message

Is Local
Alarm

Enabled?

Did Remote
Security

Respond?

Do Nothing

Activate Siren

Do Nothing
No

No

Do Nothing

Activate Siren

No

Yes

Yes

No

Yes

Yes

Figure 18–5 Example of a graphical decision tree
Source: Managing Software Requirements: A Unified Approach [Leffingwell and Widrig 2000]

finite state maChines

In some cases, it’s convenient to model a complex system as a “hypothetical machine
that can be in only one of a given number of ‘states’ at any specific time” [Davis
1993]. In response to an input, such as data entry from the user or an input from an
external device, the machine changes its state and then generates an output or car-
ries out an action. Both the output and the next state can be determined solely on
the basis of understanding the current state and the event that caused the transition.
In that way, a system’s behavior can be said to be deterministic; we can mathemati-
cally determine every possible state and, therefore, the outputs of the system, based
on any set of inputs provided.

Hardware designers have used finite state machines (FSMs) for decades, and a large
body of literature describes the creation and analysis of such machines. Indeed, the
mathematical nature of the FSM notation lends itself to formal and rigorous analy-
sis so that the problems of consistency, completeness, and ambiguity can be largely
mitigated using this technique.

Let’s suppose that we have a light box with two lights (Even and Odd) and three but-
tons, On, Off, and Count, as shown in Figure 18–6.

Wow! eBook <WoweBook.Com>

ptg

362 chaPteR 18 � RequiRements anaLysis tooLkit

Even Odd

Power
On Off

Features
• Microprocessor Controlled
• Keeps Track of Whether Count
 Button Has Been Pressed an Even
 or Odd Number of Times
• Burned-Out-Bulb Detector

Flashes Remaining Bulb

Count

Figure 18–6 Light box
Source: Managing Software Requirements: A Unified Approach [Leffingwell and Widrig 2000]

In natural language, we could express the desired story thusly [Davis 1993,
Leffingwell and Widrig 2000].

After On is pushed but before Off is pushed, system is termed “powered on.”��
After Off is pushed but before On is pushed, system is termed “powered off,” ��
and no lights shall be lit.
Since the most recent On press, if Count has been pressed an odd number of ��
times, Odd shall be lit.
Since the most recent On press, if Count has been pressed an even number of ��
times, Even shall be lit.
If either light burns out, the other light shall flash every one second.��

A popular notation for FSMs is the state transition diagram (Figure 18–7). In this
notation, the boxes represent the state the device is in, and the arrows represent
actions that transition the device to alternative states. We might note that the nat-
ural-language expression listed previously of “the other light shall flash every one
second” is ambiguous. The state transition diagram in Figure 18–7 is not ambiguous

Even Lit/LOUT

OFF

Even Lit

Odd Lit Odd Lit/LOUT

Light Burned Out

Light Burned Out

Count Count 1 sec 1 sec

OffOff

OffOff

On

Figure 18–7 Example of a state transition diagram

Wow! eBook <WoweBook.Com>

ptg

 finite state machines 363

and it illustrates exactly what the product owner desired. If a bulb burns out, the
device alternates between attempting to light the Even light and attempting to light
the Odd light, each for a period of one second.

An even more precise form of representing an FSM is the state transition matrix,
which is represented as a table that shows every possible state the device can be in,
the output of the system for each state, and the effect of every possible stimulus or
event on every possible state. This ensures a higher degree of specificity, because
every state and the effect of every possible event must be represented in the table.
Figure 18–8 defines the behavior of our light box in the form of a state transition
matrix.

With this technique, we can resolve additional ambiguities that may have been pres-
ent in our attempt to understand the behavior of the device.

What happens if the user presses the On switch and the device is already on? ��
Answer: Nothing.
What happens if both bulbs are burned out? Answer: The device powers ��
itself off.

FSMs are popular for certain categories of systems programming applications,
such as message-switching systems, operating systems, and process control systems.
FSMs also provide a rigorous way to describe the interaction between an external
human user and a system (consider, for example, the interaction between a bank
customer and an automated teller machine when the customer wants to withdraw
money). However, FSMs can become unwieldy, particularly if we need to represent
the system’s behavior as a function of several inputs. In such cases, the required sys-
tem behavior is typically a function of all current conditions and stimuli rather than
the current stimulus or a history of stimuli.

State

Off

Even Lit

Odd Lit

Light Out/Even Lit

Light Out/Odd Lit

On Press

Even Lit

Off Press

Off

Off

Off

Off

Both Off

Even Lit

Even Lit

Odd Lit

Odd Lit

Off

Off

Count Press

Event

Odd Lit

Even Lit

Bulb Burns Out

LO/Even Lit

LO/Odd Lit

Every Second

LO/Even Lit

LO/Odd Lit

Output

Figure 18–8 Example of a state transition matrix

Wow! eBook <WoweBook.Com>

ptg

364 chaPteR 18 � RequiRements anaLysis tooLkit

message sequenCe diagrams

A message sequence diagram is a kind of interaction diagram that shows how processes
operate with one another and in what order. Message sequence diagrams (MSDs) are
a convenient way to express a transactional relationship between two or more par-
ties. Typically, MSDs are used to express relationships such as “A sends this message
to B. B responds with this message to A.” Figure 18–9 illustrates a typical MSD from
the Tendril case study. MSDs identify the interested parties (subsystems in this case)
across the top of the diagram, and the interactions proceed down the diagram as time
evolves. In this case, the HAN initiates the action, and the messages flow from there.1

Limitations of MSDs2

Some systems have simple dynamic behavior that can be expressed in terms of spe-
cific sequences of messages between a small, fixed number of objects or processes.
In such cases, MSDs can completely specify the system’s behavior. Often, behavior

Collect “Actual” Meter Reads

Collect “Actual” Meter Reads

Generate “Raw” Export (Actual Reads)

Generate “Raw” Export (Actual Reads)

Generate “Completed” Export (Actuals/Estimates–96 Intervals)

Generate “TOU bucket” Export (Actual Reads)

Download “TOU Bucket” Export

Download “Raw” Export

Invoke Core Service

Trigger File

Billing Determinants

Download “Completed” Export

Download/Transmit “Raw” Export

Estimation (Fill in Gaps and Align)
Fill in “Estimated” Meter Reads

Validation

Midnight

4 a.m.

4 p.m.

HAN Platform

PS

Bill

Exportation

Estimation

Collection

EE

Client

Validation

Midnight

Figure 18–9 Case study example message sequence diagram

1. Thanks to Oliver Johnson of Tendril for this example.
2. See en.wikipedia.org/wiki/Sequence_diagram for further explanations.

Wow! eBook <WoweBook.Com>

ptg

 entity-ReLationshiP diagRams 365

is more complex, such as when the set of communicating objects is large or highly
variable, when there are many branch points (for example, exceptions), when there
are complex iterations, or when there are synchronization issues such as resource
contention. In such cases, MSDs cannot easily describe the system’s behavior, but
they can specify typical use cases for the system, small details in its behavior, and
simplified overviews of its behavior.

entity-relationshiP diagrams

If the stories within a set involve a description of the structure and relationships
among data within the system, it’s often convenient to represent that information in
an entity-relationship diagram (ERD). Figure 18–10 shows a typical ERD.

Note that the ERD provides a high-level “architectural” view of the data represented
by customers, invoices, packing lists, and so on; it would be further augmented
with appropriate details about the required information to describe a customer.
The ERD does correctly focus on the external behaviors of the system and allows
us to define such questions as “Can there be more than one billing address per
invoice?” Answer: No.

Although an ERD is a capable modeling technique, it has the potential disadvantage
of being difficult for a nontechnical reader to understand.

Receives

Customer
Places

Pays

Order

Invoice

Billing
Address

Sent to Contains Contains

Filed by

Shipping
Department

Packing List
Used to Generate

Accounts
Receivable

In
iti

at
e

Shipping
Address

Ordered
Items

Figure 18–10 Example of an entity-relationship diagram
Source: Managing Software Requirements: A Unified Approach [Leffingwell and Widrig 2000]

Wow! eBook <WoweBook.Com>

ptg

366 chaPteR 18 � RequiRements anaLysis tooLkit

use-Case modeling

So far, our agile requirements story hasn’t introduced use cases, which are a tradi-
tional way to express system behavior in complex systems. Use cases are the primary
means to represent requirements with the UML. They are well described there as
well as in a variety of texts on the subject. Use cases can be used for both specifica-
tion and analysis. They are especially useful when the system of interest is in turn
composed of other subsystems. But we won’t ignore them any longer, because they
are the entire subject of the next chapter.

summary

Agile development avoids big, up-front design (BUFD) and analysis wherever pos-
sible. However, your system still has to work and deliver the requisite reliability.
When user stories and natural language aren’t good enough, your team will need to
apply more technical methods to reduce the risk of misunderstanding and to pro-
vide additional safety, security, and reliability for your system.

In this chapter, we introduced a number of specification techniques that can reduce
ambiguity in specifying system behavior. In general, these technical methods should
be used sparingly, and common sense should guide the decision as to which formal
technique will be used in a project. If you’re building a pacemaker or nuclear reac-
tor control system, perhaps every aspect of the system is critical; in most systems,
however, it’s unlikely that more than 10 percent of the stories will require this degree
of rigor. Choose the method that suits your team best, and apply it only where it is
really needed.

Wow! eBook <WoweBook.Com>

ptg

 367

Chapter 19

use Cases

A user story is to a use case as a gazelle is to a gazebo.

—Alistair Cockburn

In Chapter 1, we provided a brief history of requirements methods and briefly
mentioned the role of use cases as a form of requirements capture and expression.

Popularized originally within the context of the Rational Unified Process (RUP),
which was use case–driven and architecture-centric, for many, use cases have been the
requirements analysis and communication expression of choice. Even outside RUP,
they appeared in most contemporary works on software requirements and systems
analysis. Use cases were also the container for functional requirements capture, anal-
ysis, and behavioral specification within the context of the Unified Modeling Lan-
guage (UML). Those who used the UML most likely used use cases. If you have been
doing iterative development, you are probably using use cases too.

In agile development, however, the picture changed as the user story (or even more
simply, the backlog item in Scrum) became the predominant form. As we have
described throughout this book, there can be no doubt of their value in lightening
requirements expression, driving more and more incremental thinking, and gener-
ally increasing the agility of the teams that use them. User stories are good require-
ments tools. Use cases were largely banned from the agile tribes.1

As agile methods started to be applied to larger systems, however, something was
missing: context. Simply put, although a nice itemized list of backlog items is easy
to look at, tool, prioritize, and manage, it is inadequate to do the more complex
analysis work that larger systems require. And even though we’ve called our back-
log items user stories, they don’t really tell much of a story after all, at least not one
much beyond what any casual reader might understand.

1. One Certified Scrum Product Owner course stated, “Don’t use use cases. They are too hard to
write, and users don’t understand them.”

Wow! eBook <WoweBook.Com>

ptg

368 chaPteR 19 � use cases

To this end, this chapter describes how to apply use cases in the development of
complex software systems being developed in an agile manner. After all, who is
building a simple software system with agile these days?

the ProBlems with user stories and BaCklog items

Alistair Cockburn is one agile thought leader with his foot in both of these camps.
As both an authority on use cases [Cockburn 2001] and a respected agilist and
signer of the Agile Manifesto, he bemoans the apparent loss of use cases from agile
development. He notes that there are many problems with the user story and back-
log forms of requirements expression:2

User stories and backlog items don’t give the designers a context to work
from—when is the user doing this, what is the context of their operation,
and what is their larger goal at this moment?

User stories and backlog items don’t give the project team any sense
of scope or potential “completeness”—a development team estimates a
project at (e.g.) 270 story points, and then as soon as they start working, that
number keeps increasing, seemingly without bound. The developers and
sponsors are equally depressed. How big is this project, really?

User stories and backlog items don’t provide a mechanism for looking
ahead at upcoming work. Seeing a set of extension conditions (alternate
flows) in a use case lets the analysts understand which ones will be easy and
which will be difficult so they can stage the work accordingly. With user
stories, the extension conditions are usually detected mid-sprint, when it is
too late.

five good reasons to still use use Cases

Use cases help explore the deeper interactions among users, the systems, and
the subsystems of the solution. The use case also helps identify all the alternate
scenarios that trip us up so often when it comes to system-level quality. This is
especially the case when the team is building complex hardware and software

systems, where system-spanning epics, features, and stories bob in and out of hard-
ware and software like a surfacing porpoise. Cockburn notes “five good reasons to
use use cases in agile development.”

The list of goal names provides executives with a short summary of what the ��
system will contribute to the business and the users. It also provides a project
planning skeleton, to be used to build initial priorities, estimates, team alloca-
tion, and timing. It is the first part of the completeness question.

2. See http://alistair.cockburn.us/A+user+story+is+to+a+use+case+as+a+gazelle+is+to+a+gazebo.
Portions reproduced here with permission. Minor edits by the author.

Use Case

Wow! eBook <WoweBook.Com>

http://alistair.cockburn.us/A+user+story+is+to+a+use+case+as+a+gazelle+is+to+a+gazebo

ptg

 use case Basics 369

The main success scenario of the use case provides everyone with an agreement ��
as to what the system will . . . and will not do. It provides the context for each
requirement, a context that is hard to get any other way.
The extension conditions of the use case provide a framework for investigating all ��
the little, niggling things that somehow take up 80% of the development time and
budget. It provides a look-ahead mechanism, so the customer/product owner/
business analyst can spot issues that are likely to take a long time to get answers for.
The use case extension conditions are the second part of the completeness question.
The use case extension scenarios provide answers to the many detailed, tricky ��
business questions programmers ask: “What are we supposed to do in this case?”
(normally answered by, “I don’t know, I’ve never thought about that case”). It
is a thinking/documentation framework that matches the if . . . then . . . else state-
ment that helps programmers think through such issues.
The full use case set (use case model) shows that the developers/analysts have ��
thought through every user’s needs, every goal they have with respect to the
system, and every business variant involved. This is the final part of the com-
pleteness question.

Since use cases can play such a beneficial role in agile development, this chapter will
provide a basic grounding in use cases so an agile team or enterprise can understand
how to apply them. For additional background and depth on use cases, we refer you
to other texts on the subject.3

use Case BasiCs

We’ll start with a definition:

A use case describes a sequence of actions between an actor and a system that
produces a result of value for that actor.

In other words, each use case describes a series of events in which a particular actor,
such as Mark the consumer, interacts with a system, such as the Tendril platform, to
achieve a result of value to Mark, such as shed some energy load in his area.

To further our understanding, let’s look closer at this definition.

Sequence of actions:�� The sequence of actions describes a set of interactions
between the actor and the system. The sequence is invoked when the actor
provides some input to the system. Each action is atomic; that is, it is per-
formed either entirely or not at all.

3. There are dozens of books on the topic, including Cockburn’s Writing Effective Use Cases
[2001] and Leffingwell and Widrig’s Managing Software Requirements, Second Edition: A Use
Case Approach [2003].

Wow! eBook <WoweBook.Com>

ptg

370 chaPteR 19 � use cases

System:�� The system works for the actor. It executes some function, algorith-
mic procedure, or other activity. The system takes its orders from the actor as
to when to do what.
A result of value:�� Like a user story, the use case must deliver value to a user.
Therefore, the resident pushes the opt-in button is not a good use case (the system
didn’t do anything obvious for the user). But the resident pushes the “opt-in”
button and the system starts to shed load is a meaningful use case.
Actor:�� The particular actor is the individual or device (Mark, the resident;
a message from the utility) that initiates the action (shed some load; create a
message on the user’s TV).

Use Case Actors

An actor is someone or something that interacts with the system.

There are generally three types of actors to be considered.

Users:�� Users act on the system; this is the type of actor most people think of
when they think of a use case. For example, I am an actor on the word pro-
cessing system I’m using to write this chapter.
Other systems or applications:�� Most software interacts with other systems
or other applications. This is another primary source of actors. Here’s an
example: The author’s word processing application interacts with a Web
service to access and insert clip art. The author’s word processing application
is an actor on the Web service.
A device:�� Many applications interface to a variety of input and output
devices. For example, the consumer’s refrigerator is an actor on the Tendril
platform.

Use Case Structure

The use case itself is a text-based structure of logical elements that work together to
define the use case. Figure 19–1 provides a standard template.

A use case has four mandatory elements.

Name:�� The name describes the goal, that is, what is achieved by the inter-
action with the actor. The name should be a few words in length, and it
must be unique. Names such as pop up an emergency warning message and shed

Actor

Wow! eBook <WoweBook.Com>

ptg

 use case Basics 371

refrigerator load are good examples. They are short, are descriptive, and
define the goal.
Brief description:�� The purpose of the use case should be described in one or
two sentences. Here’s an example: this use case describes what happens when the
Tendril system receives an event notification from the utility.
Actor(s):�� A use case has no meaning outside the context of its use by an actor,
so each actor who participates in the use case is listed with the use case.
Flow of events:�� The main body of the use case is the event flow, usually a
textual description of the interactions between the actor and the system.
The flow of events can consist of both the basic flow, which is the main path
through the use case, and alternate flows, which are executed only under
certain circumstances.

It is the alternate flows (or alternate scenarios) that provide much of value
to the agile system builder. It is here where they are forced to think through
all the “what ifs” that might affect our user story. Here’s an example: “what
happens if the device does not respond to the message?” or “if I’m programming the
system, and an event happens—what happens then?” Understanding all the alternate
flows of a use case defines the various (usually less likely but equally impor-
tant) scenarios that the system must handle with grace in order to assure
reliability and quality.

Use Case Name

Description
Actor(s)
Flow of Events

Basic Flow
Event 1
Event 2
………

Alternate Flow

Preconditions

Exit Conditions
Success Guarantee

 Minimum Guarantee

Figure 19–1 Use case template

Wow! eBook <WoweBook.Com>

ptg

372 chaPteR 19 � use cases

In addition to the mandatory elements, a use case may have optional elements.

Preconditions:�� Preconditions are those conditions that must be present in
order for a use case to start. They usually represent some system state that
must be present before the use case can be used. For example, a precondition
of the set thermostat to shed load use case is that the system must have opt-in
for load shedding enabled.
Exit conditions:�� Exit conditions describe the state of the system after a use
case has run its course. These can include both a success guarantee, which
describes the state of the system after a successful execution, and a mini-
mum guarantee, which describes the state of the system if the execution of
the use case fails for some reason. For example, a success guarantee of the set
thermostat to shed load use case is that the system remains in the load shedding
state. A minimum guarantee might be that load shedding is not initiated but
an error message is displayed.
System or subsystem:�� In a system of subsystems, it may be necessary to iden-
tify whether a use case is a system-level use case (one that causes multiple
subsystems to interact) or a subsystem use case. In either case, the team
needs to identify what system or subsystem a use case is identified with.
Other stakeholders:�� It may also be useful to identify other key stakehold-
ers who may be affected by the use case. For example, a manager may use
a report from the system, and yet the manager may not personally interact
with the system and would therefore not appear as an actor.
Special requirements:�� The use case may also have special requirements that
apply to that specific use case. Often these are nonfunctional requirements
(support 10,000 homes without performance degradation) that apply to the specific
use case.

A Step-by-Step Guide to Building the Use Case Model

An individual use case describes how a particular actor interacts with the system
to achieve a result of value for that specific actor. The set of all use cases together
describes the complete behavior of the system. The complete set of use cases, actors,
and their interactions constitutes the use case model for the system.

Building the use case model for the system is an important analysis step, one that
will become the basis for understanding, communicating, and refining the behav-
ior of the system over the course of the project. We have found a simple five-step
approach to be an effective way to build the use case model. However, these steps do
not all happen at the same point in the project life cycle, and some steps will likely
be revisited.

Wow! eBook <WoweBook.Com>

ptg

 use case Basics 373

Step 1: Identify and Describe the Actors

First, identify all the actors that interact with the system. This is a matter of dividing
the world into two classes of interesting things: the system we are building and those
things (actors) that interact with the system.

The following questions will help identify actors.

Who uses the system?��
Who gets information from this system?��
Who provides information to the system?��
Where is the system used?��
Who supports and maintains the system?��
What other systems or devices use this system?��

Step 2: Identify the Use Cases

Once the actors are identified, the next step is to identify the various use cases that
the actors need to accomplish their jobs. We can do this by determining the specific
goals for each actor in turn.

What will the actor use the system for?��
Will the actor create, store, change, remove, or read data in the system?��
Will the actor need to inform the system about external events or changes?��
Will the actor need to be informed about certain occurrences in the system?��

We might discover use cases such as send consumers a notification of pending event as
something that a power utility’s network operations center (the actor) might want
to do to the Tendril platform. Graphically, we could construct a simple diagram of
use cases and actors as illustrated in Figure 19–2.

Utility
Network

Operations

Send Brownout
Warning

Update User
Billing Schedule

Change
Password

Send News
Update

Figure 19–2 Use cases for the utility network operations center

Wow! eBook <WoweBook.Com>

ptg

374 chaPteR 19 � use cases

Each use case has a name that represents the goal of the use case. The name is a few
words or short phrase that starts with an action verb and communicates what the
actor achieves. Names help communicate what the system does and create context.

Along with the name, there is a brief description that further describes the intent of
the use case.

Step 3: Identify the Actor and Use Case Relationships

Although only one actor can initiate a use case, some use cases involve the partici-
pation of multiple actors. When the actors and use cases interact in concert, that’s
when the system becomes a system. In this step, each use case is analyzed to see what
actors interact with it, and each actor’s anticipated behavior is reviewed to verify
that the actor participates in all the necessary use cases.

Step 4: Outline the Flow of the Use Cases

The next step is to outline the flow of each use case to start to gain an understanding of
required system behavior at the next level of detail. Of particular interest at this time is
the flow of events, including the basic and alternate flows, as Figure 19–3 illustrates.

Outline the basic flow first. This is the flow that represents the most common path
(the “happy path”) from start to finish through the use case.

Start Use Case

Basic Flow

Alternate Flow 1

Alternate Flow 3

Alternate Flow 4

End Use Case End Use Case

End Use Case

Alternate Flow 2

Figure 19–3 A use case has one main flow and some number of alternate flows.

Wow! eBook <WoweBook.Com>

ptg

a use case examPLe 375

In addition to the basic flow, the use case will have a number of alternate flows based
on both regular circumstances and exceptional events. The following questions can
help discover these paths.

Basic flow��

What actor’s event starts the use case?��
How does the use case end?��
How does the use case repeat some behavior?��

Alternate flow��

What else can the actor do?��
How will the actor react to optional situations?��
What variants might happen?��
What exceptions to the usual behavior may occur?��

Step 5: Refine the Use Cases

Later, the use case may be refined to another level of detail, or perhaps the team
will move directly to the stories that implement the use case. There are a number of
additional factors to be considered.

Consider all alternate flows, including unusual exception conditions:�� It is
usually straightforward to identify the primary alternate flows of a use case
since these are driven by explicit actor choices. However, the “what ifs” are
a primary source of concern, and these must be fully explored in alternate
flows. “What if the resident is programming the system when an energy event occurs?”
All these exceptions must be understood, coded, and tested, or the applica-
tion may not behave as expected.
Preconditions:�� The refinement process will identify state information that
controls the behavior of the system. Preconditions describe the things
that must be true before a use case starts. For example, a precondition to
programming vacation settings might be that the user has set the time zone. If that
has not been done, the use case cannot be successfully executed.
Exit conditions:�� These describe the persistent states the use case leaves
behind. They can include the success guarantee (state after successful execu-
tion) and the minimum guarantee (state after unsuccessful execution).

a use Case examPle

As an example, we’ll describe a use case from the Tendril platform. One of the system
features is the capability of the power utilities to notify their consumers of pending
changes in power distribution. Suppose a utility is about to go into a “brownout.”
The utility would like to notify its consumers of the impending brownout event so
they could plan accordingly. Figure 19–4 illustrates a use case for this.

Wow! eBook <WoweBook.Com>

ptg

376 chaPteR 19 � use cases

Use Case Name: Issue brownout notification

Brief Description: Upon determining that a brownout condition is pending, the utility sends a message to all registered
devices in the utility’s Tendril domain. This will include notification to all the utility’s registered on-premise displays,
mobile devices, and portals.

Actors:

• Utility Network Operating Center operators (UNOC) (primary actor)

• Tendril customers

Basic Flow of Events:

1. A UNOC operator determines that a brownout event is pending.

2. The operator composes a broadcast message in TUP.

3. TUP sends the message to all affected customers, either over the utility backhaul or through an Internet (IP)
connection, to all registered Tendril devices in the consumer’s home, and logs that the message has been sent.

4. Each Tendril device in the home returns to TUP a confirmation of successful message receipt and presents the
upcoming brownout message to the homeowner in its device-specific format.

5. TUP adds each confirmation to its record of confirmations received.

Alternate Flows:

• 4a. Home Tendril device fails to confirm (initially): At established intervals, TUP resends the brownout event notice
 to all Tendril devices that did not reply.

• 4b. Home Tendril device fails to confirm after the specified number of retries: TUP notifies the UNOC operator of
 the situation of the nonacknowledging Tendril home device.

Preconditions:

• Receipt of overload conditions pending on the utility grid.

• Determination of areas to be affected by brownout and matching areas to preset Tendril notification zones.

Success Guarantee:

• The brownout notice has been sent.

• Every home device has been accounted for, through either confirmation or total failure to confirm.

• The UNOC operator as been notified of all home devices that failed to confirm.

Minimal Guarantee:

• In the worst case, the TUP log has captured the state of all notification-confirmation pairs for every home device on
the subscription list.

Figure 19–4 A sample use case

Wow! eBook <WoweBook.Com>

ptg

 aPPLying use cases 377

We can see from the example that a use case is not a trivial thing. Rather, it is an
appropriate requirements artifact used to capture and define the behavior of non-
trivial systems. One could imagine that a single use case like the one in Figure 19–4
could create dozens, or more, individual user stories. But the use case spawns these
stories within a system usage context. That can be a tremendous aid to understand-
ing for the customer, user, development team, and other key stakeholders alike.

aPPlying use Cases

If your system is complex and is composed of subsystems (what complex system
isn’t?), use cases provide a mechanism to help developers think about all the pos-
sible paths through the system and subsystems that the users may encounter.

In turn, this helps the team understand where user stories are likely to be needed to
implement the required functionality. Every time a new use case touches a subsys-
tem, there are probably new stories that must be developed for that subsystem, as is
shown in Figure 19–5.

Once identified, the use cases can then be used to drive incremental development,
one story at a time, as Kroll and MacIsaac [2006] illustrate in Figure 19–6.

In this graphic, one can see how use case–spawned user stories can be implemented
in iterations over time (story 1 in iteration 1, stories 2 and 3 in iteration 2, and so
on). To the agile developer or product owner, this can be helpful in understanding
the larger context that can be lost when the teams focus on understanding “just one
user story at a time.”

Subsystem 2 Subsystem 4

Actor B

Use Case
A

A Big System

Use Case
B

Actor A

Subsystem 1 Subsystem 3

Story
“Pockets”

Figure 19–5 Use cases traversing a system identify where stories are needed.

Wow! eBook <WoweBook.Com>

ptg

378 chaPteR 19 � use cases

Main
Scenario

Use Case Stories

Scenario CScenario B

Story 4:
Thin Slice
of Main
Scenario

Story 4:
First Half
of Main
Scenario

Story 4:
Second
Half of
Main
Scenario

Story 4:
Scenario B

Iterations

Story 5:
Scenario C

Main
Scenario

Figure 19–6 Sequencing user stories in iterations
Source: Kroll/MacIsaac, Agility and Discipline Made Easy, © 2006

Tips for Applying Use Cases in Agile

Finally, here are a few tips to keep in mind when you apply use cases in agile
development.

Keep them lightweight—no design details, GUI specs, and so on.��
Don’t treat them like fixed requirements. Like user stories, they are merely ��
statements of intended system behavior.
Don’t worry about maintaining them; they are primarily thinking tools.��
Model them informally—use whiteboards, lightweight tools, and so on.��

Remember, you don’t have to use use cases, but no one can tell you not to use them
either. And if your system is complex, you’ll likely be quite happy if you do.

use Cases in the agile requirements information model

As we have described, use cases are an optional technique, which teams can use to
better understand desired system behaviors. We haven’t yet introduced them in the
agile requirements meta-model.

Since functional system behaviors are captured as backlog items, we’ll associate use
cases there, as an optional requirements modeling and elaboration artifact. We illus-
trate this in Figure 19–7.

Wow! eBook <WoweBook.Com>

ptg

 summaRy 379

StoryEpic Feature
Realized by Realized by

Is one of

Backlog ItemUse Case

Optionally
elaborated by
0..* 1..*

0,1 0..* 0,1 0..*

Figure 19–7 Use cases may be used to elaborate desired system behavior.

As the model indicates, you can apply use cases to describe more complex system
behavior, most typically at the feature and epic levels, where they serve to better
illustrate what we mean by that big thing.

summary

Throughout most of this book, we’ve used user stories, features, and epics to define
the behavior of the systems we are building. They work well, and they have earned
their place in the forefront of agilists’ minds. As convenient as they are, however,
they can do a poor job of helping teams define and understand the behavior of more
complex systems, where we need to understand the user and the system in context,
not to mention thinking through all the “what if” scenarios that happen with sys-
tems of any scale. For this we can apply use cases, which are a well-understood and
proven tool that was invented for just this purpose.

Even though use cases aren’t generally promoted in agile, as professionals we need
to keep an open mind about these things. Ignoring techniques that have helped us
manage complexity before is stupid. And being stupid isn’t lean, agile, professional,
or economically sound.

Wow! eBook <WoweBook.Com>

ptg

This page intentionally left blank

Wow! eBook <WoweBook.Com>

ptg

PART IV

agile requirements for the Portfolio
A system is a network of interdependent components that work together to try to
accomplish the aim of the system. A system must have an aim. Without the aim,
there is no system.

—W. Edwards Deming

Chapter 20�� Agile Architecture
Chapter 21�� Rearchitecting with Flow
Chapter 22�� Moving to Agile Portfolio Management
Chapter 23�� Investment Themes, Epics, and Portfolio Planning
Chapter 24�� Conclusion

Systems, Applications, Products

Te
am

 B
ac

kl
og

System Team

Re
le

as
e

Pl
an

ni
ng

Nonfunctional
Requirements

Feature 1

Feature 2

Release Planning

Arch 1

Re
le

as
e

(o
r P

SI
)

Features
Fit in

Releases

Epics Span
Releases

Architecture
Evolves

Continuously

Re
le

as
e

Pl
an

ni
ng

Pr
og

ra
m

Po
rt

fo
lio

Re
le

as
e

(o
r P

SI
)

Pr
og

ra
m

 B
ac

kl
og

Po
rt

fo
lio

 B
ac

kl
og

Release Theme and Objectives

Features and Components
Stories Fit in
Iterations

(Implemented by)
Tasks

Te
am

NFRs

Spikes Are
Research,
Design,
Refactor
Stories

H

H

H

H

Product
Owner

Scrum/Agile
Master

Te
am

 B
ac

kl
og

Te

am
 B

ac
kl

og

Agile Teams

Developers and Testers

Pl
an

D
em

o

Pl
an

D
em

o

Stories

Iterations lterations

Stories

Release Management

Product
Management

Investment
Themes

PortfolioManagement

Portfolio Vision
Epic 1

Epic 3
Architectural Runway

Epic 4

Epic 2

Feature 3

Feature 4

doc

doc

Roadmap

kl

maRoadmap p admRoa pmap pa adm dRoa

Vision

Wow! eBook <WoweBook.Com>

ptg

This page intentionally left blank

Wow! eBook <WoweBook.Com>

ptg

 383

Chapter 20

agile arChiteCture

Evolving big systems requires big thoughts.

introduCtion to the Portfolio level of the Big PiCture

As we reach the�Portfolio level of the Big Picture (see Figure 20–1), the things we
need to describe get bigger and more complex, so in order to keep our thinking
crisp, we’ll need to discuss them at a higher level of abstraction.

At this level, we’ll need to understand the strategic investment themes that drive our
decisions and resource allocations, the portfolio backlog (where new products, ser-
vices, and systems arise), and the epics that we’ll use to define, elaborate, and imple-
ment these bigger things.

In this chapter, we’ll discuss the critical role that system architecture plays in helping
us build robust, reliable, and scalable systems. We’ll also describe how larger teams
build and extend the architectural runway they use to host all those new features we
need in order to keep our solutions competitive.

Epics Span
Releases

Architecture
Evolves

Continuously

Po
rt

fo
lio

Po
rt

fo
lio

 B
ac

kl
og

Investment
Themes

PortfolioManagement

Portfolio Vision
Epic 1

Epic 3
Architectural Runway

Epic 4

Epic 2

doc

doc

Figure 20–1 The Portfolio level of the Big Picture

Wow! eBook <WoweBook.Com>

ptg

384 chaPteR 20 � agiLe aRchitectuRe

We’ll also elaborate on the concept of architectural epics. These are the larger-scale
technology initiatives, or infrastructure enablers, that describe how we need to evolve
our system so that it meets the needs we have identified today, as well as allows us to
exploit new opportunities that present themselves in the future:

Architectural epics are large, technology development initiatives that cut
across one or more of three dimensions.

Time—affecting multiple releases of our products, systems, services,
or solutions
Scope—affecting multiple products, systems, services, or solutions
Organization—affecting multiple teams, programs, business units

Examples of such epics include the following.

Build a UI framework for porting all existing applications to mobile devices.��
Build a common installer and licensing mechanism for all products in a suite.��
Implement an industry security standard to lower our data purchasing costs. ��
Refactor back-office transaction applications to run 64-bit servers.��
Support latest version of the customer’s desktop OS, database, or platform.��
Implement the new UI standard with new corporate branding.��
Replace the search engine’s underlying database with MySQL.��

Of course, we wouldn’t invest in these epics if they didn’t deliver any value, but it
isn’t only user value that we must consider. There are other forms of value, includ-
ing the value to our business in efficiency, operating, or transaction costs (. . . lower our
data purchasing costs, corporate branding). More typically they drive user value, whether
the value is obvious (support latest desktop OS) or not so obvious (run on 64-bit servers).
In either case, there is often no user directly involved in the process, so we need to
think about them, plan for them, and implement them differently. The one thing
they do have in common is that they are typically really big.

Although these architecture (technology) epics aren’t requirements per se, we’ll see
that they behave as if they are, and they play an equally important role. To keep the
entire system lean and agile, in the chapter after this one, we’ll describe a system that
can be used to help achieve architectural flow.

systems arChiteCture in enterPrise-Class systems

So far in this text, we’ve discussed requirements in a sort of “value-stream-only
vacuum.” That is, we’ve intentionally expressed requirements so as to focus solely
on “what the system does” to deliver value to our users. In so doing, we consciously
avoided overloading our users’ thinking with “how the system goes about doing it.”

Wow! eBook <WoweBook.Com>

ptg

 SyStemS Architecture in enterpriSe-clASS SyStemS 385

This was reasonable and purposeful—trying to understand real value is hard
enough—and the last thing we needed to do was to confuse the customer or our-
selves with discussions of frameworks, technologies, and technical jargon about all
the infrastructure we’ll need to host those nifty new features.

However, in doing so, we must also be conscious of the fact that requirements and
design (we’ll just generalize that to architecture at this level) represent two sides of
the same coin, the “what the system needs to do” as reflected in requirements expres-
sions and the “how the system will be built to do it” as reflected in architectural con-
structs. And they are not independent.

In previous texts [Leffingwell and Widrig 2003], we’ve described the continuous
give-and-take between design and requirements as follows:

The requirements versus design activities must be iterative. Requirements
discovery and definition and design decisions are circular. The process is a
continuous give-and-take:

Current Requirements Cause Us to Select
Certain Design Options

Selected Design Options May Initiate New
Requirements, or Constrain Existing Requirements

So, the discriminator between “what a system is supposed to do” and “how it is sup-
posed to do it” is really not so clear. In any case, as system developers, we need to
understand both.

Does All Architecture Emerge in Agile?

At the level of the teams and programs, we didn’t fuss about architecture and design
decisions at all. After all, user stories and features were negotiable, so if we discov-
ered that a story as stated was unnecessarily hard to implement, we negotiated one
that delivered comparable value but was easier and more cost effective. That makes
good economic sense. Indeed, that’s a primary reason that negotiable lives in the
INVEST model.

Some Does

We have also trusted in Agile Manifesto principle #11 (The best architectures, require-
ments, and designs emerge from self-organizing teams) as well as principle #5 (. . . Trust
them to get the job done). Moreover, if we do worry a bit, as we probably should,

Wow! eBook <WoweBook.Com>

ptg

386 chaPteR 20 � agiLe aRchitectuRe

we always have that working software (principles #1 and #3) to satisfy our curiosity
about status. With the fast give-and-take between users, product owners, testers,
and developers, we trust them to produce a system that is robust and reliable and
meets current needs. They certainly don’t need someone else to design it for them,
and they trust us not to meddle in their business.

In addition, when it comes to evolving software, agile teams have their refactoring
skills to rely on; they constantly improve the quality and performance of the sys-
tem by continuously refactoring the design. This is an important skill, because with
minimal “up-front” requirements and design, teams know they can’t possibly get it
right the first time. However, continuously refactoring and redesigning large-scale,
emerging architectures becomes less economical as the size of the system grows.
Even minor, system-level redesigns can cause substantial rework for large numbers
of teams, some of whom would otherwise not have to refactor their module. It is
one thing for one team to redesign their code based on lessons they have learned; it’s
quite another to require ten teams to do so based on another team’s lessons learned.

But Some Doesn’t

For developers, architects, and businesspeople who have experience building large-
scale systems and portfolios consisting of systems, products, and services—with
the extensibility and scalability a successful solution demands—a solely emergent
architecture is counter to our experience. We know that some amount of architec-
tural planning and governance is necessary to reliably produce and maintain such
systems. Individual teams, products, and programs may not even have the visibility
necessary to see how the larger, enterprise system needs to evolve. It can’t simply
emerge. Something has to tie it all together.

In addition, sometimes our architectural “evolution” is driven in spasms by unpre-
dictable events. These can include the following.

Mergers or acquisitions from which new product or system harmonization ��
is needed.
State changes in the business life cycle; for example, the need to compete ��
with suites and solution offerings as opposed to point products.
Maturity phases; moving from selling to innovators and early adopters to ��
selling to the early and late majority requires more product maturity, and
higher reliability, stability, and predictability. This, in turn, requires stronger
architectural governance.

The Need for Intentional Architecture

But as we consider architecture at this level of the enterprise, we also are cognizant of
the fact that it is the “lighter-weight” agile methods, specifically Scrum and XP, that

Wow! eBook <WoweBook.Com>

ptg

 systems aRchitectuRe in enteRPRise-cLass systems 387

are seeing the broadest adoption in the enterprise and that these methods provide
virtually no guidance (at least as compared to FDD, DSDM, OpenUP, and others1)
on the topic of architecture. They didn’t have to—the methods weren’t designed to
be applied at the scale that we now apply them.

And that is one of our big challenges. The methods are based on the assumption
that architecture emerges as a natural outcome of a rapid iteration cycle, imple-
mentation of prioritized value-driven user requests, and a continuous refactoring
process. That works fine, up to a point. This is that point.

So, architecture can indeed emerge, but some of it needs to emerge intentionally.
And because all software systems age and grow fragmented by competing demands
over time, it will eventually be necessary to rearchitect major portions of the system.
To do that, we’ll also need a common architectural vision, strategy, and governance
model.

So, our challenge is again to carry the desirable and qualitative agile benefits from indi-
vidual teams to multiple teams and ever-larger systems but still do so in a lean and
agile manner.

Business Drivers for Architectural Epics

It is the economics of the business itself that drive us to build the best possible soft-
ware systems, because that is how we build our revenue and market share. Some of
these business factors drive us to new technological solutions, which we objectify as
architectural epics. These business drivers can include the following.

New product or service opportunities:�� Many architectural initiatives are driven
from the portfolio backlog (big things the company would like to do). They
provide opportunity for growth of revenue, market share, or increased end
user satisfaction, but they are not feasible in the context of the existing sys-
tem’s architecture.
Changes in technologies that affect multiple products and services:�� Often the
need is driven by evolving technologies—things that weren’t feasible or even
invented “back when” the initial system was built. Examples include new
platforms and operating systems, mobile technologies, 64-bit chipsets, and
so on.
Problems within the existing solution set:�� Sometimes the change is driven
by problems in the existing solution. For example, unanticipated market
success can drive heavier user loads and highlight system-level bottlenecks.

1. For a deeper discussion on the methods themselves and their treatments of architecture more
specifically, refer to Chapter 16 of Scaling Software Agility: Best Practices for Large Enterprises
[Leffingwell 2007].

Wow! eBook <WoweBook.Com>

ptg

388 chaPteR 20 � agiLe aRchitectuRe

Examples include performance, size (runtime and download footprint), new
security requirements, usability, upgradability, compatibility, and so on.
Architectural governance:�� Some common, imposed constructs can ease
usability, extensibility, performance, and maintenance. For example,
something as simple as a common presentation design can result in higher
end-user satisfaction. In addition, as stewards of many of the system-level
nonfunctional requirements, architecture must also address needs such as
internationalization, security, common platforms, and so on. This gover-
nance provides a balanced, focused long-term business and portfolio inter-
est over near-term project and product interest.
Common infrastructure and avoidance of duplication of effort:�� Sometimes the
driver is simple software development economics, whereby it makes more
sense to build a component only once and then have it be reused by many
teams. Even if in agile “time to market trumps potential for reuse,” some
common, reusable components can provide substantial long-term user
(usability, fitness for use) and business (economic) benefits.
Driving innovation:�� Although agile development can certainly foster innova-
tion by quickly driving solutions to meet real, rather than perceived, user
needs, it can sometimes inhibit it, too. This can occur when the “tyranny of
the urgent”—rapid iteration cycles and continuous commitment to value
delivery—drives teams to avoid risky or innovative experiments. When
everyone is committed and accountable to a near-term deliverable, who is
scouting the next curve in the road?
Cost:�� And finally, sometimes revising systems architecture can simply help
lower the costs of the products and services the business provides. Examples
include following security standards to lower data purchasing costs, supply
chain investments, and so on. And operating cost affects business economics.

Role of the System Architect in the Agile Enterprise

Historically, within the larger enterprise, defining a system-level architecture was a
primary function of some number of system architects. But here we have three small
problems.

The most common agile methods don’t define (or even imply support for) ��
such a role. This made some sense in the smaller context, because agile
focuses on harnessing the power of the collective team, rather than any one
individual. Clearly you can’t have an omniscient system architect dictate
technical direction to empowered agile teams.2

2. “Things are usually easier said than done, and software architects are notoriously good at com-
ing up with things to say.” —Timothy High

Wow! eBook <WoweBook.Com>

ptg

 systems aRchitectuRe in enteRPRise-cLass systems 389

Although these system architects have decades of experience, their expertise ��
has likely grown outside of the agile process. They may not even be comfort-
able with agile in general because it seems less technically well-planned and
more ad hoc. And they become even more uncomfortable when they no
longer see a role for themselves!
System architects may also be concerned about the potential architectural ��
entropy of all the newly empowered and energized agile teams. They may
also have strong opinions about the software development practices teams
employ.

First: Relegitimize the Role

Clearly, if we fail to bring these key stakeholders on board to the agile paradigm,
they could limit or kill the entire initiative. And most importantly, when building
enterprise-class systems, we need them, their experience, and their expertise. There-
fore, it is in the enterprise’s best interest to include system architects in the agile
enterprise process, where their input is highly valued. In any case, we must relegiti-
mize the role and avoid a battle between agile teams and system architects, because all
will be losers in that fight.

What System Architects Do

With that behind us, when you ask system architects what they do, they will typi-
cally respond with a number of common answers.

Build enterprise architectural “blueprints” to help the team understand the ��
broader enterprise picture.
Fight unnecessary duplication at the system level.��
Define boundary conditions and constraints (including nonfunctional ��
requirements) for the system. Help teams understand and work within those
constraints.
Define architectural governance rules and help teams apply them.��
Drive in-house use of industry standards and practices. Influence the indus-��
try and participate in development of emerging standards.
Help teams find and implement common interfaces to increase system com-��
patibility, flexibility, and separation of concerns.
Define common vocabulary and terminology across multiple products, sys-��
tems, and organizations. Help the team’s interpretation and understanding.
Collaborate with all stakeholders from business to technical. Serve as an ��
interface (and translator) between the business owners and the development
teams.

Wow! eBook <WoweBook.Com>

ptg

390 chaPteR 20 � agiLe aRchitectuRe

Given that these all appear to be sensible, high-value functions in the enterprise,
let’s see whether we can understand how that works in the context of agility.

eight PrinCiPles of agile arChiteCture3

As we extend and apply lean and agile requirements practices in the larger enter-
prise and incorporate systems architects in the process, we must constantly remind
ourselves of our first principles, as driven primarily by the principles of the Agile
Manifesto and product development flow.

However, although the spirit of these principles guides us, they are silent on the top-
ics of enterprise-class systems and architecture in general. To help us reach the next
level, we propose eight governing principles for the development and maintenance
of intentional, enterprise-class architectures in the lean and agile enterprise.

These principles are as follows.

Principle #1:�� The teams that code the system also design the system.
Principle #2:�� Build the simplest architecture that can possibly work.
Principle #3:�� When in doubt, code it or model it out.
Principle #4:�� They build it, they test it.
Principle #5:�� The bigger the system, the longer the runway.
Principle #6:�� System architecture is a role collaboration.
Principle #7:�� There is no monopoly on innovation.
Principle #8:�� Implement architectural flow.

We’ll describe each of these principles in the sections that follow.

Principle #1: The Teams That Code the System Design the System

This first principle is driven by the manifesto itself (the best architectures, require-
ments, and designs emerge from self-organizing teams), as well as the fact that agile
teams are both empowered to deliver software and are accountable for the results.

For teams to be accountable, they must be allowed to make the decisions required to
support that accountability. If not, they will be held accountable for decisions made
by others, and that is an ineffective and demotivating model for team performance.
Although this may now seem axiomatic, in our pre-agile world that was often the
case, as Table 20–1 shows.

3. Thanks to Mauricio Zamora and Ryan Martens for contributing to an earlier white paper on
this topic.

Wow! eBook <WoweBook.Com>

ptg

 eight PRinciPLes of agiLe aRchitectuRe 391

Table 20–1 Architecture Responsibility and Accountability in the Pre- and Agile World

Pre-agile Practices Agile Practices

A
rc

hi
te

ct
’s

 R
es

p
o

ns
ib

ili
ty

Analyze and define requirements.
Design the system.
Interface to key business stakeholders and
customers.
Bid the work for teams.
Only ones who understand how the whole
system works.

Analyze architectural epics.
Collaborate with business stakeholders and develop-
ment teams.
Get implementation feedback and development esti-
mates from teams.
Prevent the team from being “wagged” by changing
business priorities. Filter potential changes through an
analysis funnel (Chapter 21).
Maintain system models and model future state based
on new epics.

Te
am

 R
es

p
o

ns
ib

ili
ty

Inherits the plan and work estimates.
Inherits the architecture.
Left “holding the bag” and executes on a
“best-efforts” basis.

Interface to business and customers via product owner
role.
Tech leads participate in virtual, extended system archi-
tecture team.
Responsible for subsystem design.
Estimates work for their area of concern.
Commits on behalf of themselves.
Accountable for the results.

Because they are closest to the implementation, local design and architectural deci-
sions are most optimally made by the coders, tech leads, and team-based architects.
Moving the primary responsibilities for design and architecture to the teams is a
triple-win for the enterprise.

A more optimum decision is likely to be made.��
Once a decision is made, the team will likely work very hard to make its deci-��
sion work. If it doesn’t work as planned, they will fix it.
Regardless, the team is empowered, responsible, and accountable for its ��
decisions.

Principle #2: Build the Simplest Architecture
That Can Possibly Work

Agile is known for its focus on simplicity: Agile Manifesto principle #10 (Simplicity—the
art of maximizing the amount of work not done—is essential). It’s further characterized
in the culture and lore:

What is the simplest thing that can possibly work?

—Attributed to Ward Cunningham

Wow! eBook <WoweBook.Com>

ptg

392 chaPteR 20 � agiLe aRchitectuRe

If simplicity is good, we’ll leave the system with the simplest design that
supports its current functionality.

—Kent Beck

YAGNI, You Ain’t Gonna Need It.
—An XP mantra

Simplicity remains an essential attribute as complexity increases. For example,
Amazon used agile and organically grew a system to handle 55 million customer
accounts. Werner Vogels, Amazon’s CTO, commented this:4

The only way to manage a large distributed system is to keep things as
simple as possible. Keep things simple by making sure there are no hidden
requirements and hidden dependencies in the design. Cut technology to the
minimum you need to solve the problem you have.

Simplicity wins. Even at scale.

Principle #3: When in Doubt, Code or Model It Out

Agile, with its highly iterative experience and code-based emphasis, allows devel-
opers to rely on their coding skills to move quickly through the decision-making
process via fast feedback. This is helpful when selecting a design alternative or a
high-impact infrastructure implementation choice. Even then, we may still occa-
sionally find ourselves mired in technical debate, either within the team or between
the team and the architects.

This third principle reminds us that when we have to make a tough choice, we
can usually turn to a rapid evaluation in code. One- or two-week iterations give
us fast feedback, and the demos at the end of the iteration provide objective evi-
dence of results. The inherent visibility of the process through stories and demos
allows all impacted stakeholders to see the reasoning and experimental results as
they develop.

In addition, principle #2 reminds us that if a design alternative can’t be coded and
evaluated within a few iterations, it probably isn’t the simplest choice. In practice,
many decisions are usually fairly obvious after a few short technical spikes.

Here’s another lesson learned from the Amazon Architecture:

Use measurement and objective debate to separate the good from the
bad . . . expose real customers to a choice and see which one works best . . . get

4. http://highscalability.com/amazon-architecture

Wow! eBook <WoweBook.Com>

http://highscalability.com/amazon-architecture

ptg

 eight PRinciPLes of agiLe aRchitectuRe 393

rid of the influence of the HiPPos, the (Highest Paid People) in the room. If
you have a question about what you should do, code it up, let people use it,
and see which alternative gives you the results you want.

If It’s Too Big to Code, Model It

But these are big, complex systems, and we are faced with big, complex problems.
If the epic is really large and crosscutting, a few weeks in a coding exercise may be
inadequate because the impact of the epic may touch many different systems in dif-
ferent ways. Fortunately, although we are agile, modeling is another tool in our tool-
kit, and agile (and nonagile) architects who use models to understand and reflect
system behavior visually are valuable assets to the teams.

One set of consistent advice for modeling complex systems in iterative development
comes from the Rational Unified Process and its companion modeling language,
the Unified Modeling Language (UML). The views of architecture within the UML
were derived in part from some of Kruchten’s work on the “4+1 views of architec-
ture” [2005].5 Kruchten comments on the evolution of the importance of architec-
ture for systems of scale:

[Initially] many software systems weren’t complex, the architecture could
remain an implicit understanding among software developers. However, as
systems evolve and grow to accommodate new requirements, things break
in a strange fashion, and the systems do not scale up Moreover, designers
lack the intellectual tools to reason about parts of the system. Not having
an architecture, or using a poor architecture, is a major technical risk for
software projects.

Architecture in UML is typically represented in a set of views, each view describ-
ing the system from the perspective of various stakeholders. There are two man-
datory views.

Use-case (requirements) view:�� The use-case view of the system illustrates the
use cases and scenarios that encompass architecturally significant behavior,
classes, or technical risks. More generally, this is the requirements “view”
that is really not a view so much as it as an understanding of the imposed
requirements. If the teams do apply use cases (Chapter 19), then it can be a
graphical view, which summarizes the use-case model. Otherwise, in agile,
this “view” is simply a pointer to the backlog.

5. Philippe Kruchten also gave me the best definition of software architecture I have seen:
“ Architecture is what you have left when you take away everything you don’t need to explain
how the system works.”

Wow! eBook <WoweBook.Com>

ptg

394 chaPteR 20 � agiLe aRchitectuRe

Logical view:�� At the enterprise level, this view defines the relationship of the
main entities in the system and their relationships. At the subsystem level,
it illustrates packages and classes that encompass architecturally significant
entities.

In addition, there are four additional, optional views that can be used depending on
the importance of these aspects to the type of system being deployed.

Process view:�� This view is recommended when the system has more than
one thread of control and the threads interact with one another. This view
illustrates the process decomposition of the system, from mapping classes
and subsystems to processes and threads.
Deployment view:�� This view is recommended when the run-time system is
distributed across more than one node and when the distribution has archi-
tectural implications. The deployment view illustrates the distribution of
processing across a set of nodes in the system, including the physical distri-
bution of processes and threads.
Implementation view:�� This view is recommended when the implementa-
tion (source code, binaries, libraries, and so on) is not strictly driven from
the design, that is, where there is a different distribution of responsibilities
between corresponding packages in the design and implementation mod-
els. The implementation view is useful for assigning implementation work
to individuals and teams. A proper implementation structure will support
effective continuous integration, which is mandatory in agile.
Data view:�� This view is recommended when persistent data is a key aspect
of the system, such as a system that contains schema, data definition,
algorithms, and so on. At the enterprise level, this view illustrates the data
relationships among the primary entities in the system.

The Model Documents the As-Built and Future State

Generally, the software teams themselves get to decide what documents to produce,
so long as they follow any required standards or governance requirements. And of
course, agile teams usually invest primarily in documents that provide only direct
customer value. Modeling is informal, often sketched on whiteboards or on dia-
grams posted in the team’s working area. The design is in the code.

However, at the enterprise level, modeling often takes on a more formal structure,
because “the model is to the architects what the code is to the developer,” that is, the
way they think and reason about the system. So, system architects typically produce
and maintain these model documents more formally and use them to communicate
the as-built and future states to the teams, based on impending architectural epics.

Wow! eBook <WoweBook.Com>

ptg

 eight PRinciPLes of agiLe aRchitectuRe 395

Principle #4: They Build It, They Test It

Testing system architecture involves testing the system’s ability to meet its larger-
scale functional, operational, performance, and reliability requirements. To do this,
teams must typically build a testing infrastructure that enables ongoing system-level
testing. After all, if it can’t be tested, it is assumed not to work.

Even when applying the simplicity principle, we are building systems that are ever
more complex in nature. Who can possibly deal with testing systems that are so
complex? Simply,

It is the responsibility of the development teams themselves to develop,
test, and maintain a system-testing framework that continually assesses the
system’s ability to meet its functional and nonfunctional requirements.

If the architecture is evolving, the testing framework must evolve with it. This respon-
sibility cannot be given to any other testing resource or outsourced function. If they
design and build it, they have to test it too. Anything else would be irresponsible.

Principle #5: The Bigger the System, the Longer the Runway

Value delivery focuses on delivering the features that customers need. The ability
to deliver planned functionality predictably in a near-term (60 to 120 days) release
is a hallmark of mature agile teams. That ability, in turn, allows agile enterprises to
communicate near-term expectations to customers, whose businesses depend on
this information.

Even experienced agile teams occasionally have trouble completing planned work.
In general, that can be acceptable, because a team that reliably completes 100 per-
cent of the commitment for each timebox may not be stretching enough to meet the
demands of the marketplace. Furthermore, so long as the team is able to self-correct
effectively, it also encourages a level of acceptable risk taking.

However, occasionally we see an iteration, or even a release, that is badly missed. In
retrospectives, we usually find that some architectural work was at play, causing the
team to underestimate the time it would take for a significant redesign or to lay in a
new foundation. This leads us to the conclusion that an agile team’s ability to meet
value delivery commitments is far more reliable when the foundation for the new fea-
tures is already in place.

Although we can’t predict the future, we do stress the need for the continuous
buildout of architectural runway—the system infrastructure that must be in place
to deliver features on the nearer-term product Roadmap. Building this architectural
runway is our primary mechanism for decreasing the risk of missed commitments.

Wow! eBook <WoweBook.Com>

ptg

396 chaPteR 20 � agiLe aRchitectuRe

Small Systems Don’t Need Much Runway

For smaller teams, infrastructure sufficient to support a single iteration or release
cycle may be all the runway that’s needed. If it breaks, they’ll fix it. Simply, it may
be more efficient for those teams to be wrong initially and then quickly refac-
tor the application than it is to invest more time up front trying to discover the
undiscoverable.

Bigger Systems Need More

For larger teams of teams building larger systems, they will need substantially more
runway so that they can “land” (successfully implement) larger features and epics
in the course of the next PSI or so. Building this runway takes time, often far lon-
ger than a single short release cycle. Without such runway, the team won’t be able
to reliably “land” each release on schedule. This requires some additional foresight
and investment and more careful planning. We’ll discuss how to do that later in this
chapter.

Principle #6: System Architecture Is a Role Collaboration

As we have described, system architects play an important role in the development
of these large systems. After all, we are building systems of enormous complexity
(even when we keep them as simple as possible), so it makes good economic and
technical sense to leverage the skills of those who have the experience to match the
challenges the teams face.

But how do we incorporate them into our team-centric agile model? As a metaphor,
in object-oriented systems development, we learned to design systems of collaborat-
ing objects, structured around well-defined interfaces, which work together to create an
output that is greater than the sum of its parts. We can apply this same approach to
developing a system architecture, as we illustrate in Figure 20–2.

In a manner similar to how product managers and product owners collaborate to
define the user value features and stories, system architects work with team-based
tech leads and architects to define the design spikes they will use to collaboratively
develop an agreed-to system architecture.

And when in doubt, they code or model it out (principle #3), using a series of techni-
cal spikes and architectural models to drive out risks.

In addition, leveraging the thoughts and strengths of development team members
in this collaboration carries two strong messages for the teams: “the technical input
of all development team members is respected” and “you do not have to be an archi-
tect to make a big contribution to design.”

Wow! eBook <WoweBook.Com>

ptg

 eight PRinciPLes of agiLe aRchitectuRe 397

Product
Manager

System
Architect

Stakeholders

Product
Vision

Product
Owner

Tech Lead/
Architect

Development Team
Value Stories

Architecture
Vision

Design Spikes

Figure 20–2 System architecture results from a role collaboration.

Principle #7: There Is No Monopoly on Innovation

We have seen how agile practices provide a disciplined, production-like ability to
reliably meet commitments and rapidly evolve a system to meet customer require-
ments. But we’ve also described the “tyranny of the urgent,” which may keep us
overly focused on near-term deliverables. How do we stretch, identify, and take
and manage risks, especially those that are longer term and extend beyond current
project scope and team boundaries? Where does innovation come from in such a
model?

Some of the innovation comes from empowering system architects as part of our
advanced guard—exploring new technologies, patterns, and techniques that will
help us innovate while we are building the existing solution.

But ours is a team-centric model, so we don’t rely on architects as the sole source of
such innovation. In fact, the team-centric model can foster innovation at an even
greater pace than that generally seen in traditional software organizations. That’s
because innovators innovate at all stages of their career, and the team-centric model
enables these people to flourish and contribute beyond what their level of experi-
ence may imply.

One way to foster innovation at the team level is by judicious backlog management
that includes spikes for redesign and exploration of new ideas. This can work quite
well, but given the tyranny of the urgent, even more purposeful and explicit models
have been developed. For example, some teams have evolved an advanced develop-
ment cadence, as illustrated in Figure 20–3.

Wow! eBook <WoweBook.Com>

ptg

398 chaPteR 20 � agiLe aRchitectuRe

2 Weeks

Re
le

as
e

Pl
an

ni
ng

2 Weeks 2 Weeks

Release
Candidate

Release

1 Week

Legend:
 i – Development Iteration
h – Hardening Iteration
k – Innovation Sprint

1 Week

8 Weeks

Figure 20–3 A cadence with one innovation “hackathon” per release

This figure illustrates a standard release cycle.

“�� i” is a standard development iteration, providing new functionality for an
upcoming release.
“�� h” is a one-week hardening iteration to eliminate any remaining technical
debt and assure quality meets the release-to-manufacturing criteria.
“�� k” is an “innovation sprint.” (Note: the “k” symbol comes from the
informal, somewhat pejorative, and perhaps ill-advised use of the word
hackathon for this purpose.6)

The innovation sprint (hackathon) is the interesting part, because it is specifically
designed to foster innovation at the team level. The rules of this special iteration are
simple: Any team member can explore any technology in any way they want, so long
as there is a correlation to the company’s mission.

This gives the team some regular time to reflect, think, and experiment outside
the everyday rigor and pressures of the iteration and release cycle. They are free
to take risks, explore new technologies, and experiment in ways that are not con-
ducive to the normal iteration value delivery cadence. Experience has shown that,

6. As we described earlier, management has a key role in driving lean and agile behavior at scale;
we assuredly need their support for this key innovation mechanism. So, be careful what word
you pick!

Wow! eBook <WoweBook.Com>

ptg

 imPLementing aRchitectuRaL ePics 399

over time, many new product innovations will arise from this process.7 And the
teams love it too.

With a model like this, innovation is expected and programmatic, and there can be
no ambiguity to the point of principle #7: There is no monopoly on innovation.

Principle #8: Implement Architectural Flow

The final principle on our list reminds us that even with agile principles at work, we
must continually improve our process to achieve enterprise-level product develop-
ment flow and thereby avoid the delays and overhead introduced by starting and
stopping projects every time there is a new initiative. This means that we’ll need to
provide visibility and transparency, provide work-in-process limits, actively manage
queue lengths, and do the other work necessary to build and control a continuous
stream of architectural updates—just like we do with features and stories. Because
the Agile Release Train is our synchronized and cadence-based implementation
flow mechanism, the architects will need to interact with that mechanism in order
to continuously extend the architectural runway.

This is such an important topic that is the subject of the next chapter, Rearchitecting
with Flow.

imPlementing arChiteCtural ePiCs

Historically, implementing wholesale architectural changes to a large system was
conceptually simple: Make a new branch, start the new development, and merge
it to the baseline down the road somewhere. However, it was extremely difficult in
practice: Make code changes in both branches, merge later, discover nasty errors in
assumptions, rework, delay, continue maintaining two branches longer than antici-
pated, disappoint stakeholders It was an easy mental model but a really hard
physical one.

In agile development, we don’t do it that way. Instead, we commit to a continuous
refactoring of the existing system, and we branch rarely, if at all, and even then only
for very short periods. This creates a more complex conceptual model, and not a
trivial physical one, but it dramatically reduces the risk of new development by pro-
viding fast feedback and leaving us with a system that always runs.

7. I once witnessed a product sales demo where the salesperson highlighted innovation after
innovation that came from their use of the hackathon cadence.

Wow! eBook <WoweBook.Com>

ptg

400 chaPteR 20 � agiLe aRchitectuRe

Achieving this in the face of significant architectural changes is an art form—the
art of the truly lean and agile software enterprise. In describing how to do this, we’ll
break the large-scale refactoring problem into three separate cases.

Case A:�� The epic is big,8 but there is an incremental approach to implemen-
tation. The system always runs.
Case B:�� The epic is big, but it can’t be implemented entirely incrementally.
The system will need to take an occasional break.
Case C:�� The epic is really big, and it cannot be implemented incrementally.
The system runs when needed; do no harm.

Case A: Big, but Incremental; the System Always Runs

Building incrementally reduces risk, controls WIP, and avoids big-bang system
integrations. Therefore, this is the best case by far for an agile program. The epic is
split into architectural features at release planning boundaries (enablers, subepics,
smaller chunks of stuff), and the full epic is realized over whatever course of time is
necessary or feasible, as Figure 20–4 shows.

With this approach, the system always runs. Risk is mitigated, and each PSI is really
potentially shippable. Moreover, each iteration has conceptual integrity as well, pro-
viding fast feedback and potential for deployment to alpha or beta customers. Value
delivery (features) continues while the rearchitecting is done. This is the lowest-risk
and lowest-cost approach and the most favorable model.

System Continuity

Architectural work

Release Train

Re
le

as
e

Pl
an

ni
ng

Re
le

as
e

Pl
an

ni
ng

PS
I

PS
I

Arch
Epic 1

Arch
Epic 2

A
rc

hi
te

ct
ur

al
 E

pi
c

B
ac

kl
og

Architects

Teams

Release Planning

Feature 3

Feature 3 Feature 3

Feature 4

Figure 20–4 Case A: The system always runs.

8. Epics are big by definition. Smaller architectural changes can be done by the teams in the
course of normal business, so long as they are prioritized in the backlog accordingly.

Wow! eBook <WoweBook.Com>

ptg

 imPLementing aRchitectuRaL ePics 401

Case B: Big, but Not Entirely Incremental; the System Takes an
Occasional Break

But what if you can’t do it incrementally? First, if you find yourself in this case, stop
and rethink the problem. In most of the cases, there is a way to retrench, redefine the
epic if necessary, and return to case A, the optimum path. Typically, this requires
some out-of-box thinking and perhaps a few seemingly unnatural software acts—
extra stubs, temporary frameworks, and so on—but it is worth it because of the
lower risk and faster feedback.

However, in other cases, I’ve been convinced by the teams, and by the apparent
economics, that they can break the system down, do the refactoring work, and put
it all back together before the next PSI boundary. If so, it’s potentially more effi-
cient than incremental refactoring. They don’t have to do the extra work required
to break it down further or any other unnatural acts—all hands on deck, one mis-
sion, one code line, no investment in stubs, and so on. In this case, the model
looks like Figure 20–5.

Risk is increased during this time because there is no working system for a while.
Plus, there may or may not be much additional value delivery in the PSI; given the
risks the team has taken, it’s better to lower expectations for value delivery during
one PSI and be sure to complete it than it is to pass a PSI boundary with a nonfunc-
tioning system.

Although this is not the preferred approach, we have seen it work in practice (exam-
ple: wholesale replacement of an underlying database within a PSI), and the risk-
versus-efficiency outcome was quite favorable.

System Continuity

Release Train

Re
le

as
e

Pl
an

ni
ng

Re
le

as
e

Pl
an

ni
ng

PS
I

PS
IArch

Epic 1

A
rc

hi
te

ct
ur

al
 E

pi
c

B
ac

kl
og

Architects

Teams

Release Planning Architectural work

PS
IArch

Epic 2
Arch

Epic 1

Feature 3

Feature 3 Feature 3

Feature 4

Figure 20–5 Case B: The system takes a break.

Wow! eBook <WoweBook.Com>

ptg

402 chaPteR 20 � agiLe aRchitectuRe

Of course, we’ve seen it fail too, causing missed PSIs. However, even that can still
be acceptable, so long as it doesn’t affect the external release commitments. Again,
we must return to the economic basis for the decision. In this case, it’s the trade-off
between the potential cost of delay of a missed PSI versus a) the cost of longer and
slower, incremental refactors, b) the risk of making a big system branch, or c) the
additional investment required to use a set-based (multiple options) approach.

Case C: Really Big and Not Incremental; the System Runs When
Needed; Do No Harm

There is a third and most challenging case, which occurs on occasion in the larger
system context. In this case, the legacy system has reached some boundary where
redesigning it incrementally, or even within a PSI, is impractical. A longer-term
architectural initiative is required, and the product still has to be shippable in
the meantime. This is the most complicated case and requires the most care and
planning.

In this case, the teams can deploy a combination of case A and case B approaches,
along with a third practice.

The team builds architectural epics in situ (in the main branch). But since a release
cannot be missed and since some chunks of work cannot be completed in PSI
boundaries, the new epics are built in and then isolated so as to do no harm to the
running system. In other words, the architecture is redesigned and implemented in
place, even though it is incomplete and not yet usable. It evolves slowly to the new
technology paradigm.

At release time, much of the work may be hidden from the user via stubs and special
scaffolding, until such time as all the pieces have come together and the new archi-
tecture can be safely exposed. This plan is represented in Figure 20–6.

This may appear to be a somewhat complex approach, one that requires teams to
build and validate the extra scaffolding necessary to hide internal changes. That is
true. However, it addresses a complex problem and helps manage the risk of really
large rearchitecting projects. As such, it is still highly preferable to the big branch –
big bang – big crash, waterfall approach of the past.

Feedback to the teams is still provided in fast iteration cycles; the system is always
available at PSI dates; and the longer-term, large-scale refactoring objective is still
accomplished, incrementally, as it should be, just so long as they do no harm.

Wow! eBook <WoweBook.Com>

ptg

 sPLitting aRchitectuRe ePics 403

System Continuity

Release Train

Re
le

as
e

Pl
an

ni
ng

PS
I

PS
IArch

Epic 1

A
rc

hi
te

ct
ur

al
 E

pi
c

B
ac

kl
og

Architects

Teams

Release Planning Architectural Work

PS
I Arch

Epic 3

Scaffolding

Feature 3

Arch
Epic 1

Feature 3

Arch
Epic 2

Feature 3

Feature 4

Figure 20–6 The system runs when needed: Do no harm.

sPlitting arChiteCture ePiCs

No matter the approach, it is likely that it will be necessary to split architecture epics
into smaller pieces, just as it is necessary to split user stories and features to fit in
iterations and PSIs. Indeed, many of the patterns we applied for splitting user sto-
ries in Chapter 6 are equally applicable here. Plus, because of their technical nature,
there are additional patterns for splitting architectural epics that we can leverage.
Table 20–2 describes eight ways to split architectural epics into iteration, or PSI-
sized, chunks.

Table 20–2 Eight Patterns for Splitting Architectural Epics

1. Partition by subsystem or product.
One opportunity, which is not so common when splitting user value stories, is the ability to split the epic into
subepics or features that can be implemented one component of the system at a time.

All applications must run in native 64-bit mode. . . . do one application each PSI.

. . . do client side to support labeling claims to consumer first,
defer server side for performance until later.

2. System qualities incrementally.
Technology epics are often used to address systemic performance, reliability, or security challenges, or some-
times just to make sure the system can handle the load brought about by market success. These can often be
broken down in increments.

Support 10,000 homes per server deployment. 5,000 in PSI 1.

10,000 in PSI 2.

Continues

Wow! eBook <WoweBook.Com>

ptg

404 chaPteR 20 � agiLe aRchitectuRe

3. Incremental functionality.
Architectural epics can often be done incrementally, by staging the features of an architectural solution over time.

Provide over-the-air software update for the
thermostat.

Enable OTA capability on device bootloader.

Enable OTA capability on the radio.

Integrate with server side.

4. Build some scaffolding.
Sometimes we need to build some software scaffolding to take us to the next step up. It might be a throwaway
code, or something we can build on later, so long as it does no harm.

Build an API to support a third-party integration. Build some resets into the system, and mock up the data, so our
partners can test integrations.

5. Major/minor effort.
Sometimes an epic can be split into several parts where most of the effort will go toward implementing the first one.

Major: Productize the APIs. First (major) epic: separate identified APIs from core service,
use them internally.

Then . . .

(minor epics) Refactor to support standards and third-party use.

6. Complex/simple.
When the team is discussing an epic and complexity is constantly increasing, stop and ask, “Is this the simplest
architecture we can envision?” Capture that simple version as its own epic, and worry about all the variations
and complexities later.

Complex: Productize the APIs. Simple: Build an adapter to expose only the meter API.

7. Variations in data.
As with user stories, data variations and data sources are another source of scope and complexity that can often
be split by data type.

Implement consumer home energy management devices
through the new backhaul grid infrastructure.

Implement on meter and backhaul vendor A protocol.

Implement on meter and backhaul vendor B protocol.

8. Break out a spike.
Some architectural epics require a spike, or a series of spikes, to establish feasibility, estimate impact, and effort,
or perhaps even determine how to split the epic!

Support the new Zigbee radio chip. Get chips in house and run interoperability analysis.

Test SE compliance.

Validate feasibility and initial effort estimate.

Table 20–2 Eight Patterns for Splitting Architectural Epics (Continued)

Wow! eBook <WoweBook.Com>

ptg

 summaRy 405

Each of these patterns is likely to find use in splitting architecture into incremental
pieces. In point of fact, technology epics are often so large that they typically require
a significant combination of these patterns to achieve our objective. That’s fine. These
are big systems. Rearchitecting them incrementally is not a trivial problem, so we’ll
need all the tools we can find at our disposal.

summary

In this chapter, we described how system architecture helps teams of teams build
reliable, extensible, enterprise-class systems in an agile manner. To implement this
practice, we empowered the role of the system architect as an integral part of “what
makes an agile team of teams a team.” To guide the process further, we’ve provided
a set of guiding principles, Eight Principles of Agile Architecture, intended to be
quintessentially agile and lean and yet provide guidance in an area where most agile
practices have remained largely silent.

And since architectural epics are, by definition, big, we provided a set of patterns
that teams can use to break down these large projects into manageable, incremental,
PSI-sized pieces.

In the next chapter, we’ll describe how to continuously prioritize and implement
these pieces, by rearchitecting with flow.

Wow! eBook <WoweBook.Com>

ptg

This page intentionally left blank

Wow! eBook <WoweBook.Com>

ptg

 407

Chapter 21

rearChiteCting with flow

If you accept this fact—that the choices you make today will most certainly be
wrong in the future—then it relieves you of the burden of trying to future-proof
your architectures.

—Richard Monson-Haefel, author of
97 Things Every Software Architect Should Know

In the previous chapter, we introduced the role of system architects, as well as sys-
tem architecture, in helping teams evolve reliable, robust, and scalable enterprise-

class systems in an agile manner. We described a set of principles that enterprises can
use to govern this activity, while keeping the teams agile and the enterprise lean. We
also described the business need for some amount of architectural runway, which is
system infrastructure that exists to host features on the near-term product map. Even
then, however, it’s economic folly to attempt to future-proof our solution, so occa-
sionally, we run out of runway entirely, or our system becomes so unsuitable for the
new market demands that we find ourselves needing to rearchitect the system.

Whether extending runway or rearchitecting the system, the eighth principle of
agile architecture—Implement architectural flow—reminds us of the constant need
to keep all of our practices lean and flowing. In doing so, we can achieve the maxi-
mum velocity of value delivery and avoid the negative economic impacts of long
queues, project fits and starts, and thrashing across too many initiatives.

In this chapter, we’ll describe a system that supports architectural flow and helps us
match our wishes (new architectural initiatives) to our constraints (capacity of the
development teams).

Before we do so, however, it’s worth repeating here that agile teams and agile pro-
grams are fully empowered to handle those significant architectural refactors and

Wow! eBook <WoweBook.Com>

ptg

408 chaPteR 21 � ReaRchitecting with fLow

redesigns that are under their local control.1 We don’t need this additional layer of
architectural drivers and governance (or even this chapter) for that.

Therefore, the focus of this chapter is on large, crosscutting architectural epics (as
we defined in the previous chapter) that are likely to affect some combination of
multiple teams, multiple products, multiple components, multiple services, and,
occasionally, even multiple product lines and business units. They imply a signifi-
cant investment, and they will impact a significant number of teams. They are a
pretty big deal.

arChiteCtural ePiC kanBan system2

To rearchitect such systems and manage architectural epics that rise to this global
impact level, we need a process for reasoning about scope and return on investment,
for performing analysis and prioritization, and for analyzing capacity and assess-
ing impact. We also need to keep all that activity visible to the stakeholders so they
will know what we are working on, why, and when to expect results. We also need a
systematic way to implement these large initiatives incrementally, in support of our
basic agile and lean framework. To accomplish all this, we’ll describe an architectural
epic kanban system.

Objectives of the Kanban System

A lean, flow-based model for moving from architecture to implementation must
accomplish four objectives.

Make architectural work in process (AWIP) visible:�� Lean thinking drives us to
make sure that all work is visible. As Reinertsen [2009] points out, invisible
development work in process is WIP nonetheless.3 Worse, since it can’t be
seen, it has “no natural predators,” and therefore there is a natural tendency
to overload those involved in such work. (Since we can’t see it or quantify it
and it seems like important stuff to do, why not do some more of it?)

Our kanban system must make AWIP visible so that it can be owned and
managed responsibly. Architectural backlogs, queues, and analysis work in

1. Agile Manifesto principle #11—The best architectures, requirements, and designs emerge from
self-organizing teams.

2. Special thanks to the system architects and enterprise agilists at F-Secure Corporation for their
substantial contributions to this chapter.

3. Principle of Product Development Flow Q1—The principle of invisible inventory: Product
development inventory is physically and financially invisible.

Wow! eBook <WoweBook.Com>

ptg

 oveRview of the aRchitectuRaL ePic kanBan system 409

process must all be visible, creating a shared understanding of current and
future workload.

Establish AWIP limits to control queue sizes and help assure product develop-��
ment flow: Limiting WIP helps us avoid the economic damage of large queue
sizes, large delays, and the thrashing costs and inefficiencies of overloaded
resources.

First, we’ll limit local AWIP to only that work that the architecture teams
can actually do, thereby assuring that the architects are not thrashing across
too broad a workload—starting many projects but finishing far fewer. That
will increase the efficiency, productivity, and quality outputs of the archi-
tecture team.

Second, in doing so, we will also be consciously limiting global WIP. This
includes upstream, portfolio WIP (projects that drive new architectures), and
downstream, development WIP (projects that build new architecture). In
this manner, we’ll match input objectives to implementation constraints, all
across the enterprise.

Drive an effective collaboration with the development teams:�� The tension
between architecture and development is obvious. Eventually, architectural
epics are going to be implemented by the development teams. It won’t be
helpful to surprise them with new stuff (“If we would only have known that
sooner, we wouldn’t have spent all this time . . .”) or hold them accountable
for implementing plans that they don’t feel are actually workable. F-Secure’s
James Cooper notes the following:

Listen to developers—if they say there is a problem with the design,
there probably is.

If our model drives effective communication between these teams, things
will naturally flow more smoothly.

Provide a quantitative basis for economic decision making:�� Then we’ll know
that we are doing the right things in the right order.

overview of the arChiteCtural ePiC kanBan system

We’ll need to implement a system that accomplishes these objectives with as much
transparency and as little overhead as possible. Visually, such a system might appear
as in Figure 21–1.

Wow! eBook <WoweBook.Com>

ptg

410 chaPteR 21 � ReaRchitecting with fLow

4. Implementation

Problem/Solution Needs
Identification

Evaluation
Architecture Team Ownership

Implementation
Development Team Ownership

Agile Release Trains

WIP
Limit

Release
Planning
Boundary

Innovation Feedback

1. Funnel 2. Backlog 3. Analysis

WIP
Limit

PSI 1 PSI 2 PSI 3 PSI 4

WIP
Limit

PSI 1 PSI 2 PSI 3 PSI 4

No WIP Limit
(List Detail Only)

H
G
D
C
A A

C

G

D

A1

C1

A2

WIP
LimitC2

• Technology Roadmap
• Disruptive Technology
• Solution Problem: Compatibility

Speed, Size, Security, Usability
• Common Infrastructure/Duplicate

Investment

Activities:
• Effort Size Estimate
• Value Size Estimate
• Investment Theme

Alignment

Authority
Approves Epic
• Meets

Threshold
Criteria

Architect Team Pulls
Epic
• Lead Architect

Assigned

Product/
Technology
Council
Approval

• Refine
Understanding

• Estimate Cost of
 Delay
• Refine Effort
 Estimate
• Relative Ranking

• Ownership Transitions
• Teams Begin Implementing

at Release Planning
Boundaries

• Teams Break Epics into
Features

• Architect Support on “Pull”
Basis

• Design Alternatives
• Modeling
• Development

Collaboration
• Solution/Product Management

Collaboration
• Business Case

Figure 21–1 Graphic overview of the architectural epic kanban system

Queue Descriptions

The kanban system we’ll describe processes epics through a series of four queues,
each characterized by different activities on the part of the architecture and devel-
opment teams, along with correspondingly increasing levels of investment. The
queues are as follows.

1. The Funnel: Problem/Solution Needs Identification

The funnel queue is the “capture” queue. In this queue, all new “big ideas” are wel-
come. They can come from any source. They need no business case or estimates.
Tooling is trivial—a document, spreadsheet, or simple list on the wall will suffice.

Since the investment of effort of items in this queue is minor, this queue is not WIP
limited; all ideas are captured for consideration. Funnel epics are discussed on a
periodic cadence established by the architecture team. Epics that meet the decision
criteria are promoted to the backlog queue.

Wow! eBook <WoweBook.Com>

ptg

 oveRview of the aRchitectuRaL ePic kanBan system 411

2. Backlog

Epics that reach the backlog queue warrant further investment of time. In this queue,
epics are roughly sized, and some estimate of value is established. Time investment
is controlled to discussion level and perhaps some very preliminary investigation.
The epic may be elaborated to a paragraph or two.

Since the investment is increasing, this queue is WIP-limited to limit the number of
active items in process. Backlog epics are discussed periodically. Epics are assigned a
cost of delay (CoD). Epics that rise to the top of the queue are pulled into analysis as
soon as space is available.

3. Analysis

Epics that make it to this queue deserve a more rigorous analysis and require fur-
ther investment. An architect is typically assigned as the epic owner. An active col-
laboration with development is initiated. Design alternatives are explored. Options
for internal development and/or outsourcing are considered. A lightweight business
case, with a go or no-go recommendation, is developed.

Items in this queue use scarce resources, so it is WIP-limited based on the capac-
ity of the architecture and development teams and the desired throughput rates
for items in this queue. Promotion from analysis to implementation is an impor-
tant economic decision for the enterprise that can be made only by the appropriate
authority, based on the developed business case. Epics that meet the go criteria are
promoted to implementation.

4. Implementation

In this queue, the primary responsibility for the epic is passed to the development
teams. Architect resources remain available on a “pull” basis: The responsibility for
implementation rests with the development teams, but the architect assists the teams
and shares responsibility until the team has developed a sufficient understanding of
the work required.

This queue is WIP-limited, in this case primarily by the capacity of the development
teams and the amount of investment in architecture that is required.

Architecture Epic State Descriptions

Although the overview description provides a broad sense of how the system works,
it does leave some questions. To better understand the system, we describe the vari-
ous states that an epic goes through in Figure 21–2.

Wow! eBook <WoweBook.Com>

ptg

412 chaPteR 21 � ReaRchitecting with fLow

Trash

A
C
D
G
H

Rejected

Further
review

PSI 1

PSI 1

A1 A2

C1

C2

PSI 2

PSI 2

PSI 3

PSI 3

PSI 4

PSI 4

WIP
Limit

WIP
Limit

Agile Release Trains

Logical View

Process View Physical View

Development
View

Scenarios

Epic A

Epic C

Epic D

Not ready

Criteria met;
slot available

Value/effort >X;
slot available

Business case approved
and resource available

Solution
Problem

Common
Usage Model

Portfolio
Roadmap

Disruptive
Technology

2
Backlog

3
Analysis

4
Implementation

1
Funnel

Technology
Roadmap

Rejected Rejected

Figure 21–2 State transition diagram for architectural epics in the kanban system

The state diagram illustrates all the paths for an epic and the decision gates that
drive the epics down these paths. Figure 21–3 summarizes the details of the activi-
ties for items in each queue, the decision criteria, and the decision authority.

Given this state model for the epics, we’ll now describe each queue in additional
detail.

1. the funnel: ProBlem/solution needs identifiCation

The “funnel” is the simplest queue. In this queue, all ideas are welcome; any-
one can contribute. As with all future queues, when an item enters this queue,
it is date stamped so the teams will be able to tell how long it has been in the
queue.

Wow! eBook <WoweBook.Com>

ptg

1. the funneL: PRoBLem/soLution needs identification 413

Sources of New Architectural Epics

Business drivers for new architectural epics come from a variety of sources both
within and outside the enterprise. These include factors such as the following.

Technology Roadmap:�� Driven by the portfolio Vision and Roadmap
(Chapter 23), the system architects typically manage a technology roadmap
that they use to monitor and implement key new technologies over time.
Examples include converting back-office systems to service-oriented archi-
tectures, “webifying” current customer-facing applications, and so on.
Disruptive technology:�� Some disruptive technologies may appear fairly sud-
denly and make their way to the roadmap in an expedited fashion. Examples
include 64-bit chipsets, Single Sign On standards, Bluetooth, rapidly evolv-
ing wireless standards, and so on.
Common usage model and avoidance of duplicate investment:�� In the larger
enterprise, it is likely that a significant number of teams are developing code
to solve the same problem for customers. This can be as simple as installa-
tion utilities, licensing mechanisms, access to common data sets, and so on.

State Activities to Transition Transition Criteria Next Authority

→ Trash

Architectural
Authority

→ Escalate
 or Trash

Pull System

Architectural
Authority

→ Trash

Product/
Technology
Council

→ Backlog

→ Analysis

→ Implementation

→ Stay in
 Queue

Funnel • Estimate Value
• Estimate Effort
• Test Against Investment

Themes

Backlog • Assign Cost of Delay
• Effort Estimate Refined
• Establish Relative Rank

Analysis • Workshops, Modeling, Design
Alternatives

• Development Collaboration and
Cost Estimates

• Develop Design Spikes
• Product/Solution Management

Review
• Implementation Options
• Market Validation of Value
• Business Case

1. Rank > Threshold
2. WHEN Slot Available
3. Fails Criteria

Ranked Relative to Other
Items Highest Ranked
Item Pulled

When Age of Item > Limit

Business Case
with GO/NO GO
Recommendation

GO > Implementation

NO GO 1 > More
Elaboration
Needed

No GO 2 > Reject

Figure 21–3 Architectural epic kanban activities and decisions

Wow! eBook <WoweBook.Com>

ptg

414 chaPteR 21 � ReaRchitecting with fLow

If left to their own initiative, the teams will solve these problems in a way
that suits the local team and their customers. However, that same customer
is likely to be a user of a different product or service from the same company
that will have implemented the same utility but in a different way. In this
case, we have two significant economic problems:

The enterprise is duplicating investment in common technologies and ��
common code. Multiple teams are writing the same lines of code but in
a different way. That doesn’t always make economic sense.
Worse, while simply trying to do the same function, customers are expe-��
riencing a wide range of user experiences. This causes confusion, higher
training costs, lack of seamlessness for the user, and ultimately lower
perception of quality and loss of customer confidence in the solution
provider.

In these cases, architectural epics are used to drive common initiatives that decrease
investment costs and improve product quality.

Problem with the existing solution:�� Some architectural epics are driven by
known problems with an existing solution. Examples include increasing
performance and reliability, enhancing scalability to support market success,
or even building workarounds for a patent challenge.

Activities: Ranking the Epic

The primary activity of the architect teams for epics in this queue is a periodic
review and analysis of the item, establishing three relevant parameters.

A preliminary estimate of the �� size (the relative “bigness”) of the epic. The
effort estimate is an aggregation of a number of factors that may include the
following:

Estimate of the cost and time to implement��
Number of teams, programs, products potentially affected��
Technical risk��
Complexity��

A preliminary estimate of the potential value of the epic, whether measured ��
in customer retention, revenue, or market share value.
A quick test to match the epic with the enterprise’s current investment themes.��

Once the teams have agreed on a set of metrics that work in their context, it’s a fairly
easy matter to create a calculation spreadsheet to rank a funnel epic relative to its
peers. Table 21–1 provides one such example.

Wow! eBook <WoweBook.Com>

ptg

2. BackLog 415

Table 21–1 Ranking Criteria for Epics in the Funnel State

Ranking Item Scale

Effort size 1, 2, 3, 5, 8, 13, 20, 40†

Potential value 1, 2, 3, 5, 8, 13, 20, 40

Alignment to investment theme 0, .25, .5, .75, 1

Epic weight = (Potential value/effort) * alignment

† We’ve used the modified Fibonacci series to indicate that uncertainty gets larger as the estimates get larger, but
any appropriate scale can be used.

Once an item has been ranked and its value exceeds some threshold (or perhaps
simply shows greater value than each of its ranked peers), it can be moved to the
backlog queue, assuming space is available, because that queue is WIP-limited.

If the item fails some threshold test, it is deleted. Items can also be deleted from
the funnel when they have been in the queue too long (perhaps six months). This
indicates that the item was either too ambiguous for investment or perhaps simply
didn’t have high enough importance to warrant the attention of the team.

Work-in-Process Limits

Since this is the “capture” queue, there is no strict WIP limit associated with this
queue, although periodic pruning may be necessary to keep the list to a workable
size (perhaps 50 to 75 items).

Decision Authority

The funnel queue, and the final decision to move an item to the backlog, is managed
by the appropriate architectural authority—often a chief architect or CTO.

2. BaCklog

Epics in the backlog queue justify a little more time investment, so they are treated
with additional rigor.

Activities: Cadence-Based Review, Discussion, and Peer Rating

The architecture team, working as a group, reviews and discusses all epics on the
backlog on a regular cadence (typically every few weeks). During this review pro-
cess, epics receive additional consideration and are further elaborated to advance
understanding.

Wow! eBook <WoweBook.Com>

ptg

416 chaPteR 21 � ReaRchitecting with fLow

This includes the diligence required to further understand the epic, refine the esti-
mates of effort and value, and measure alignment with the current strategic invest-
ment themes.

To rank the epic relative to its peers, epics may be placed into a quantitative evalua-
tion matrix, based on whatever rating system the team establishes for items in this
queue. Table 21–2 provides one such example of a template and rating system.

Table 21–2 Template and Rating System for Backlog Queue Epics

Name Date entered backlog

Version Changes

Description

Stakeholder sponsors

Prerequisites (if any)

Teams, products, programs,
markets affected

Notes

Ratings Weight Net Comments

Effort size 1 (Scale 1, 3, 5, 8, 13, 20, 40)

Cost of delay

Business value 1 (same scale)

Time value 1 (same scale)

Risk reduction
value

1 (same scale)

Length of time in
queue

.5 (see below)

Weighted rating† = example:
(BV+TV+RRV+(LT*.5)) / Size

† In the example, we’ve simply added these together, applied the weights, and then divided by size. Other schemes
may also be used.

Wow! eBook <WoweBook.Com>

ptg

2. BackLog 417

Prioritization and Rating System

In Chapter 13, Vision, Features, and Product Roadmap, we described a Weighted
Shortest Job First (WSJF) scheduling system for rating features, which optimizes
delivery value based on the economics of the CoD. In the template in Table 21–2,
we’ve applied WSJF again with a few minor differences. The prioritization param-
eters include the following.

Estimated size:�� See funnel queue size estimate.
Cost of delay:�� An estimate for the cost of delay. As with features, the cost of
delay includes three components.

Business value—an estimate of the size of the potential return for the ��
business.

NOTE�³ This parameter is stated as business value, rather than as user value (as we applied to features),
because many system-level architectural refactors are driven by internal cost savings, mainte-
nance concerns, performance and scalability, and new business opportunities, or otherwise
have a more indirect relationship to near-term user value.

Time value—the way in which the value decays over time. A low rating ��
indicates a stable situation; a high rating indicates a rapid potential
decay on the business value.
Risk reduction/opportunity enablement value—the value associated ��
with risk reduction and enablement of opportunities for new types of
future features and services.

Length of time in the queue:�� We’ve added this optional parameter to the list as
a reflection on how long this epic has been in the system. This is intended to
accelerate consideration and decision making on items that have been in the
queue too long, because they continue to require review and investment and
therefore drive overhead by some incremental amount.

Example: 0–30 days = 2, 30–60 days = 5, 60–120 days = 8, over 120 = 13.

Weighted Rating and Decision Criteria

These attributes are combined into a single weighted rating, which can be used
to prioritize the epics relative to each other based on the economics of a WSJF.
Table 21–2 also applies an optional weighting system for the various attributes
(we’ve weighted time in queue at 0.5).

Items with the highest rating rise to the top of the backlog for promotion to the next
state.

Wow! eBook <WoweBook.Com>

ptg

418 chaPteR 21 � ReaRchitecting with fLow

Pull from Transition to Analysis

Since the next queue is WIP-limited, there may be no further decision criteria
beyond the mature rating, and a pull system may be applied. In other words, so long
as there is room in the analysis queue, any available architect can pull the highest-
rated epic into the next queue.

Work-in-Process Limits

Since items in this backlog queue require additional investment, the queue is WIP-
limited to some integer number of epics (perhaps 20 to 25). Like all WIP limits, the
limit can be adjusted over time based on the capacity of the architecture team and
the response time desired for items to move through the queue.

3. analysis

In the two queues we have described so far, work is limited to discussions and pre-
liminary analysis only. Investment is minimal. The artifacts are lightweight. A fairly
large number of epics are manageable.

In the analysis queue, however, material use of scarce resources (architects, team
leads, product and solution managers, marketing/business analysts, development
team members) is required.

Activities

When an item is pulled into this queue by the architect team, the epic is time
stamped, and an architect is assigned to be the “epic owner.” The epic owner is
the “chief engineer” for the epic and is responsible for defining and spearheading
the analysis work that follows. Work in this state may include some or all of the
following:

Consideration of design alternatives��
Requirements workshops and other discovery techniques (Chapter 12)��
Impact analysis: development, distribution, and deployment��
Evaluating internal resourcing versus outsourcing options��
Buy or build evaluation��
Architectural analysis and modeling�� 4

4. Yes, architects still model in agile development, though lighter-weight approaches are often
applied. More on this topic can be found at, for example, www.agilemodeling.com.

Wow! eBook <WoweBook.Com>

www.agilemodeling.com

ptg

3. anaLysis 419

Refined scoping of market potential��
Collaboration with development��
Collaboration with business analysts, solution managers, and/or product ��
managers
Market validation of value��
Business case (discussed later in this chapter)��

Collaboration with Development

In the previous chapter, we described “intentionally emergent
system architecture” as a result of a role collaboration between
the system architects and the development team. That collabo-
ration is initiated when an epic appears in this state. Typically,
this involves engaging tech leads and architects associated with
the agile teams in the analysis and design alternatives work. In
addition, the development teams themselves estimate the develop-
ment cost for each area impacted. This provides higher-fidelity
estimates and a greater sense of buy-in from the teams.

In addition, some number of development teams will likely be involved in tech-
nical spikes designed to determine feasibility and reduce risk of the initiative. In
a mature state, it is not unusual to see teams investing as much as 5% to 10%
of their resources in technical spikes.5 Of course, architects are also likely to be
doing technical spikes and evaluating various design trade-offs in code. However,
having the development teams perform the majority of the technical spikes has a
number of benefits.

There are far more resources in the development teams than in the archi-��
tecture team.
The development teams are closest to the current implementation; they ��
have the best understanding of how to integrate the new architecture.
The spikes give the teams time to explore the upcoming work and to ��
socialize and integrate the new concepts into their backlogs, Vision,
designs, and thinking.

5. Agile Architecture principle #3: When in doubt, code it out.

System
Architect Design

Spike

Tech
Lead/

Architect
S

Wow! eBook <WoweBook.Com>

ptg

420 chaPteR 21 � ReaRchitecting with fLow

Collaboration with the Business: Solution Management, Product
Management, Business Analysts

In a like manner, the impact on the marketplace and on the business must also
be understood. Therefore, a second active collaboration is initiated with those in
the business who can best assess these factors. In addition, the final value estimate
should come from the solution manager, product manager, or business owner—
whoever is in the best position to judge the potential value. More importantly, this
engages these key stakeholders in helping manage the impact of the epic so as to
best achieve that value. Without their active support and buy-in, the epic is likely
doomed anyway and should be dropped from the queue.

Work-in-Process Limits

As we mentioned, epics in this queue consume scarce and valuable resources;
therefore, this state is subject to rigorous work-in-process limits. The limit may be
simply some number of epics (or the number and size of the analysis work) and
may be adjusted over time. However, in our experience, the size of the epics is less
material to this WIP limit; the number of epics undergoing simultaneous evalua-
tion is a more controlling factor. Typically, some small number of epics (perhaps
five to seven) would be manageable in this queue.

Architectural Epic Business Case Template

As we have described, the types of epics that have reached this queue are assumed
to be large and crosscutting; in other words, they typically affect multiple teams,
products, components, and services. They imply a significant investment, and
they will impact a significant number of teams. Therefore, it is incumbent on the
architects—in collaboration with the development teams and their product/solu-
tion manager-partners—to make a go or no-go recommendation to the business.
In addition, the recommendation should be presented in such a way that the busi-
ness owners have the background data they need to make a final decision.

To do so, we recommend that the primary artifact of an epic in this state is a light-
weight business case, of one or two pages in length. As an example, an annotated
template for such an artifact appears in Table 21–3.

When the architects think the analysis has been sufficiently thorough and that
the business case is “ready enough,” it is presented to the decision authority for
action.

Wow! eBook <WoweBook.Com>

ptg

3. anaLysis 421

Table 21–3 Lightweight Business Case Template for Architectural Epics

Epic name: Go or no-go
recommendation:

Date entered
backlog:

Architect
epic owner:

Version Changes

Description

Stakeholder sponsors (Identifies key business sponsors who will be supporting the initiative.)

Products, programs, services affected (Identifies products, programs, services, teams,
departments, and so on, that will be impacted by this epic.)

Impact on sales, distribution, deployment (Describes any impact on how the product is sold,
distributed, or deployed.)

Estimated investment Story points: Cost:

Weighted rating (WSJF rating
from analysis)

Type of
return:

(Nature and amount of potential return.
Markets impacted, revenue, customer
satisfaction, product line extension,
customer retention, and so on.)

In-house, outsource PR
purchase

(Describes recommendations for where the epic is to be developed.)

Estimated development
timeline

Start date: Completion date:
(Estimated calendar date or number of PSIs.)

Incremental
implementation
strategy

(Breaks initiative down into preliminary epics or subepics that fit the company’s
PSI cadence.)

Reevaluation
checkpoints

(If the epic is large, identifies potential milestones or checkpoints for reevaluation.)

Analysis summary (Brief summary of the analysis that has been formed to create the business case.
Pointers to other data, architectural models, market analysis, and so on, that were
used in the creation of the business case.)

Other notes and
comments

Wow! eBook <WoweBook.Com>

ptg

422 chaPteR 21 � ReaRchitecting with fLow

Decision Authority

Because of the scope of the effort, the stakeholders who have the ultimate fiduciary
responsibility for the product line, business unit, or enterprise must make the final
decision about to whether to proceed with implementation. Typically, this respon-
sibility rests with a portfolio management team (Chapter 22) or product/technology
council, whether a formal or informal construct. Such councils typically include the
chief executive for the domain, senior solution managers, line-of-business owners,
sales and marketing representatives, the CTO, and senior development managers.

“No” Is an Acceptable Answer

However, even in the presence of a go recommendation case, the product council
must take a broader view. For example, they must also consider the opportunity
cost of the initiative (the opportunities lost to the business while this epic is being
implemented) along with any other business cases at the same state of maturity. For
example, if a product council is presented with 5, 10, or even 20 business cases with
an estimated positive ROI (those with a negative ROI will not make it this far), that
doesn’t mean they could or should approve them all. After all, the I (investment)
comes before the R (return), and the business must always work within its invest-
ment limits. In addition, the target is optimization of the overall portfolio, so indi-
vidual epics must be considered in that light. So, no is an acceptable answer.

Indeed, one would hope that the business is managed in such a way that it is always
presented with many opportunities for new investment, and picking the right ones
means saying no to many others. That is one of the many reasons we keep the busi-
ness cases lightweight, lest the personal time investment of those who developed
the case may be prejudicial to the decision. The enterprise should consider only the
marginal, forward-looking investment, ignoring any sunk costs and personal biases
that may have occurred in analysis.6

Reasonable decisions include not initiating the project or, in the marginal case, per-
haps asking for some additional analysis. In this case, the business must recognize
that because of the WIP limits in the analysis queue, there is also an opportunity
cost (other epics cannot enter analysis) in leaving the initiative in that queue.

“Yes” Is Too

However, many such initiatives will be approved or the organization will fail to inno-
vate or keep the technology platform current for the longer view. When approved,
the epic is moved to implementation.

6. Product Development Flow Principle E17—The sunk cost principle. Do not consider money
already spent.

Wow! eBook <WoweBook.Com>

ptg

4. imPLementation 423

4. imPlementation

Although the analysis work of the prior two queues uses scarce resources, the real
cost begins once an architecture epic has been committed to implementation.

One major challenge in broaching this next state is an obvious one: “This new thing
is big and no one is working on it now, so how, exactly, do we intend to actually do
it?” That drives the enterprise to a serious consideration of resources and imple-
mentation paths as part of the business case in the last state. In practice, there are
four implementation paths to be considered:

Path A—internal development��
Path B—create a new team to build some runway��
Path C—outsourced development��
Path D—purchase a solution��

Implementation Path A: Transition to Development

In this case, ownership of the epic moves to the development teams for implemen-
tation in the affected release trains, as Figure 21–4 illustrates.

The sponsoring architect remains on the team in a “pull “ state, meaning that they
provide whatever support the teams need to fully understand and implement the
epic, but the responsibility now rests with the development teams.

Agile Release Trains

WIP
Limit

Release
Planning

PSI 1 PSI 2 PSI 3 PSI 4

WIP
Limit

PSI 1 PSI 2 PSI 3 PSI 4

Epic C C1

WIP
LimitC2

Figure 21–4 Epic C moves to development in two release trains.

Wow! eBook <WoweBook.Com>

ptg

424 chaPteR 21 � ReaRchitecting with fLow

Transitioning to development is the preferred case for a number of reasons.

New development starts as soon as feasible within the context of the ongoing ��
release trains for the affected products.
Responsibility transitions immediately. Architects are freed up (except for ��
the pull commitment) to work on other epics.
Work remains in-house, the team’s knowledge increases, and the company’s ��
core competence grows.

In this case, the new epics will be presented as part of the Vision and architecture
overview at the next release planning session. There, epics are likely to be split, and
the teams consume the smaller epics by subdividing them into the architectural fea-
tures and stories they will use for implementation.

Thereafter, it is simply business as usual, and the architectural epic flow system is
complete for that epic.

Implementation Path B: Create a New Team

Though the previous path is the preferred case, it is not always practical for a num-
ber of potential reasons.

Sometimes the architectural epics represent a new technology or frame-��
work that must be built from scratch, or perhaps it still has significant risk
associated or is otherwise too immature or uncertain to warrant immediate
disruption of the teams.
The development teams are so consumed by existing commitments that they ��
cannot take on the new epic in a timely manner.
The epic may implement new technologies that are unfamiliar to the teams ��
and/or may require creation of some new infrastructure (continuous inte-
gration, and so on) that must be in place before development begins.

In this case, it may be beneficial to form a new team—consisting of the epic archi-
tect owner and some set of development resources—and charter that team to build
some initial architectural runway in support of this epic, as Figure 21–5 illustrates.

Over time, the team may evolve to become a full-fledged development team that
supports the new epic. Perhaps more likely is that the new framework will eventu-
ally be transitioned to development teams for ongoing development and mainte-
nance, as in path A.

Wow! eBook <WoweBook.Com>

ptg

4. imPLementation 425

Architect

A
rc

hi
te

ct
ur

al
 R

un
w

ay

i i i i

Development
and Prototyping

Resources

Initial Epic
Team

Figure 21–5 Building architectural runway for a new epic

Implementation Path C: Outsourced Development

There is a third path that must be considered as well. There are situations in which
outsourcing can be the most effective path to implementation of new technology.
This can occur when

There is simply insufficient internal capacity to take on the epic��
There are outside sources who have more core competence in the new tech-��
nology and can therefore more quickly build the needed runway

However, because the epic likely represents some new core intellectual property—
one that the development teams themselves must eventually understand and mas-
ter—internal development or architect resources should be assigned to the project
so that knowledge transfer begins immediately.

Implementation Path D: Purchase a Solution

Purchasing a solution may also be a viable option under any of the following
conditions.

The product/service is needed to enable business, but it is not the company’s ��
core business.
There is a solution available in the marketplace that is cheaper to buy than build.��
The enterprise can leverage the competence of the solution provider.��
Time to market is so critical that a more immediate solution must be ��
delivered.

Wow! eBook <WoweBook.Com>

ptg

426 chaPteR 21 � ReaRchitecting with fLow

Work-in-Process Limits

The potential application of work-in-process limits for the implementation stage is
not so obvious and is highly dependent on the path chosen. We’ll look at each in the
following sections.

WIP Limits for Path A: Transition to Development

In this path, WIP limits are highly subjective to the company’s competitive and cus-
tomer satisfaction context at the time of implementation. Rather than strict lim-
its, it may be sufficient for the enterprise to know how much it is investing in new
technology infrastructure for the near- to mid-term versus ongoing investment in
feature delivery on the existing runway. That can usually be accomplished in the
agile project management tooling, where features and stories driven by architec-
tural epics can be categorized accordingly.

As a rule of thumb, we often see enterprises limiting new technology development
to 10% to 15% of total investment. Yet there are times when we have seen a program
devote as much as 60% of the effort, spread across multiple PSIs. This decision must
be based solely on the company’s context in the market at that time. It doesn’t really
matter how the company measures or limits it, so long as the WIP is visible.

WIP Limits for Path B: Create a New Team

WIP limits for this path are more obvious. Initiatives on this path consume scarce
resources (architects, tech leads, senior developers) for substantial periods of
time and, after that, still require a transition back to development for longer-term
support.

Therefore, a typical business unit, product line, program, or smaller enterprise can
typically support only one or two such initiatives at a time.

WIP Limits for Paths C and D: Outsourced Development and Purchased Solution

WIP limits on these parts are controlled by two factors: the availability of funding
and the availability of architects or others to effectively manage the projects and to
provide for information transfer.

Like path B, a limit of only one or two such concurrent projects may be suitable for
the typical program.

Wow! eBook <WoweBook.Com>

ptg

 summaRy 427

summary

In this chapter, we described an architectural epic kanban system as an example of a
lean process that can be used to reason about, analyze, and make go/no-go recom-
mendations for large-scale architectural initiatives.

This system is designed to make all architectural work in process visible, manage
queue sizes of work awaiting implementation, and provide a quantitative way to
evaluate epics relative to each other. The final output of this system is a lightweight
business case for the architectural epics that can be used by the appropriate authori-
ties to make a final decision on any individual epic. Those epics that make the cut will
move to implementation, and the system architect’s work is largely complete, subject
to whatever support may be required based on the chosen implementation path.

These previous two chapters complete our discussion of agile system architecture.
In the next two chapters, we’ll move on to discussing agile approaches to managing
the enterprise’s full portfolio.

Wow! eBook <WoweBook.Com>

ptg

This page intentionally left blank

Wow! eBook <WoweBook.Com>

ptg

 429

Chapter 22

moving to agile Portfolio

management

To succeed with agile, management’s need for results must be greater than their
need for control.

—Israel Gat, formerly of BMC Software

In the previous two chapters, we described the role that system architects and sys-
tem architecture play in building robust and scalable enterprise-class systems. We

did so because architecture is the “yin to our requirements yang”—the balancing
force that keeps our systems evolving steadily and, ideally, ever-ready to meet cus-
tomer’s needs.

However, evolving architecture is not the only consideration at the Portfolio level,
nor even the most important one. For here we find the executives and managers
who are ultimately responsible for portfolio management, which is the function that
ultimately makes the decisions as to what we build and why. They establish business
and technical initiatives, priorities, and budgets. As fiduciaries, they are responsible
for the ultimate success or failure of the business venture or business unit that they
represent. These are serious folks with serious business challenges, and they too
must evolve if our enterprise is to succeed with its lean and agile renovation.

Portfolio management

Mikko Parkolla describes portfolio management this way:1

Portfolio management is a top-level authority that makes long-term
investment decisions on strategic areas that affect the business performance
of the company. In order to do this properly, deep knowledge of the market,
environment, technology and financial landscape at a macro level are

1. Excerpt from Mikko Parkolla’s master’s thesis: Product Management and Product Owner Role in
Large Scale Agile Software Development

Wow! eBook <WoweBook.Com>

ptg

430 Chapter 22 Moving to agile portfolio ManageMent

needed. Implicitly, this responsibility requires high-level rank and rests with
a vice president, executive team, or a business unit top management level
decision making forum, depending on where these decisions are typically
made within the company.

The main responsibility of portfolio management is to set the investment
levels between business areas, product lines, different products, and strategic
portfolio investment themes; these are a collection of related strategic
initiatives. In an enterprise environment, these decisions can be also made
at different levels as appropriate: for example, on an executive team level
between business units, at a business unit level between product lines, for
product lines between products. The investment level is the granted budget
for the specific area, which cannot be moved, borrowed or used for another
area. It is the fixed investment into this area for the defined amount of time,
in terms of monetary budget, head count or allocation over the planned mid
and long-term time interval.

Typically, the portfolio management function controls (or heavily influences) three
sets of activities that are important to the financial and product development health
of the business entity. These include the following.

Investment funding:� Determining the allocation of the company’s scarce
R&D resources to various products and services.
Change management:� Fact patterns change over time, and the business must
react with new plans, budgets, and expectations.
Governance and oversight:� Assuring that the programs remain on track and
that they follow the applicable corporate rules, guidelines, and relevant stan-
dards. As we will see shortly, this function is often under the auspices of the
project management office (PMO).

So far in this book, we have spent most our time describing requirements prac-
tices and project-related issues that primarily affect the teams—and the teams of
teams—that build the product, services, and solutions than we have discussing any
issues at the Portfolio or governance level. That makes sense, because agile practices
were designed by and for those in the trenches—those developers, architects, testers,
product managers, and product owners who actually define, build, and test all the
software assets the enterprise deploys to the market.

To achieve the next levels of agility in the enterprise, however, we must eventually
come face-to-face with some of the existing, higher-level principles and practices that
control projects, requirements, software development processes, and other aspects
of the team’s behavior. So, there comes a time when many of the “impediments” that

Wow! eBook <WoweBook.Com>

ptg

 When agile teaMs Meet the pMo: tWo ships pass in the night 431

arise from the lean-agile transformation rise to a ceiling that is beyond the control
of the teams.

It could be a portfolio management function that creates fixed (and potentially
impossible) requirements and delivery commitments. It could be a PMO that man-
ages the teams with traditional project management practices and reports to execu-
tive management on that basis. It could be internal software process “police” that
holds the teams accountable to waterfall-based software development mandates.
Most of the time, it’s some combination of these. Worse, the belief systems and
practices they instantiate are so conflated and intertwined that it is exceedingly dif-
ficult for the teams to make changes on their own or even know how to go about
influencing the key stakeholders that control them.

But change we must, or our enterprise will not achieve the full economic and moti-
vational benefits of the lean/agile transformation. This chapter is dedicated to that
challenge.

When Agile TeAms meeT The PmO:
TWO shiPs PAss in The nighT
Sometimes the ceiling is represented by the project management office (PMO), a
place many agilists perceive to be “the mother ship of impediments.” Indeed, if you
mention the words project office or PMO among a group of agilists in the trenches,
reactions will vary, but probably only from negative . . . to very negative.

I mention this not to stoke the fire but to simply acknowledge that for many enter-
prises these are “two ships that pass in the night.” They may hear each other’s
foghorns and begrudgingly acknowledge each other’s presence, but they hope to
simply pass without damage and go on about their business. Doing so, however,
will ultimately deny the enterprise its ultimate agile benefits—the ability to make
a fast midcourse correction (even though it is a mighty big ship). It might be the
ability to avoid a competitor’s new obstacle or to find a slipstream to a major new
opportunity—if only they could turn that ship, say 90 degrees to the right, and do
so right now.

Ultimately, there comes a time when these two ships must meet and agree on a
common course and direction. However, you don’t want this time to come too
soon. Rather, it should come at a time when the agile teams are standing on the
credibility of their achievements, not promises, when some of the next impedi-
ments rest clearly at the door of the PMO, and when the PMO recognizes that
becoming an agile enterprise is no longer business as usual. They too must recog-
nize that the PMO must change, and change dramatically, to survive in an increas-
ingly agile world.

Wow! eBook <WoweBook.Com>

ptg

432 chaPteR 22 � moving to agiLe PoRtfoLio management

legaCy mind-sets inhiBit enterPrise agility

Some time back, I was researching the industry trends in this area in order to help an
enterprise adapt its portfolio planning and PMO to agile ways. While doing so, I ran
across a case study from DTE Energy called Establishing an Agile Portfolio to Align IT
Investments with Business Needs [Baker and Thomas 2008]. Here is the introductory
“grabber” that piqued my interest:

Those who implement agile software development and agile project
management in a traditional corporate environment may encounter legacy
corporate processes that reflect legacy mindsets and cultures. These remnant
processes, mindsets, and cultures represent opportunities to improve the
systemic value that agile approaches are capable of enabling.

As we described earlier, this is a reminder that team agility does not automatically
engender enterprise agility, and, in most all cases, the team is just the beginning. The
DTE case study is an example of how one such agile enterprise first recognized and
then began to address the significant changes necessary to allow the emergence of
true enterprise agility.

The white paper describes a number of legacy mind-sets that can inhibit achieve-
ment of the full benefits of the agile enterprise. These include pithy descriptions
such as “widget engineering,” “control through data,” “order-taker mentality,” and
more. Recognizing these mind-sets is an important underpinning for the enterprise
transformation, because one can’t recognize solutions to a problem if one doesn’t
believe there is a problem to begin with.

The Problem Is Not “Theirs”; It Is “Ours”

Let’s first admit that any enterprise that is fortunate enough to have lots of develop-
ment teams, a portfolio management function, and probably a PMO is, almost by
definition, a successful enterprise. Otherwise, how could they have grown to have
all these teams and assets to manage—and all these project and program managers
around to help manage them? It’s hard to argue with success.

Let’s also recognize that there are professionals on both of these teams—experienced
project teams that have been willing to change and adopt agile methods and expe-
rienced portfolio and project managers with decades of experience in shepherding
these programs to market. How, then, can these ships be at such risk of crashing in
the fog?

Wow! eBook <WoweBook.Com>

ptg

 Legacy mind-sets in PoRtfoLio management 433

We Taught Them Much of What They Know

In our earlier history of software development methods, we noted that the water-
fall method was the most predominant for the last 20 to 30 years. “We”—devel-
opers, methodologists, thought leaders, executives, and managers—invented and
applied that method. Naturally, governance evolved around that method as well.
In addition, those with project management responsibility applied the traditional
project management practices to manage software development. It should come
as no surprise that our agile teams and programs are being held accountable to
legacy waterfall practices for governance and traditional methods of project man-
agement. That was all there was. We have met the enemy that started all this, and
he is us.

In the following sections, we’ll take a critical look at those legacy mind-sets, but we
do so with the humility that “we” are not smarter than “they.” Indeed, we are they, so
let’s see what we can learn about our other selves.

legaCy mind-sets in Portfolio management

I once imagined that I would eventually expound on the legacy mind-sets described
in the DTE white paper, but they are so well expressed and so symptomatic that I
decided just to repeat them (with permission) here. However, the accompanying
descriptions and paraphrasing are my own. These are based on my experience from
two perspectives; then, as one of “them” (an executive, managing portfolios, and car-
rying some elements of these mind-sets) and now, as one of “us” (an agile executive
attempting to change those mind-sets). The following mind-sets are often endemic,
and they require immediate attention.

Widget engineering:�� This mind-set is based on the belief that software devel-
opment is a repetitive, readily controlled, and manufacturing-like business,
rather than research and development with the incredible variability, risk,
and opportunity that such implies. “Draw it up and build it like you drew it,”
goes the thinking.
Order-taker mentality:�� Also known as “You build what we tell you to build.”
Founded on the belief that they—the customer (or portfolio or program or
product manager or business owner; substitute your word here)—is always
right, is all-knowing, and actually knows what the requirements for a never-
as-yet-built-system really are. And, of course, they have already spent six
months researching the requirements and writing them down. The develop-
ment teams should “just build it.”

Wow! eBook <WoweBook.Com>

ptg

434 chaPteR 22 � moving to agiLe PoRtfoLio management

Maximize utilization:�� The belief that if all resources aren’t fully utilized on
paper, then they won’t be fully utilized in practice. “Unless we keep them fully
loaded, they’ll just be idlers,” goes the thinking. “Fully assign them to tasks
well into the future or lose them in the next budget cycle,” and “The more
projects people work on, the higher the utilizations, the more efficient our
enterprise becomes.”
Control through milestones:�� The belief that by asking for the right kind of
data at project milestones—earned value metrics, design reviews, require-
ments, and test plans—we can tell where we are on the project. And then,
“If we still can’t tell where we are, we’ll just ask for more detailed data.” The
belief that milestones are great program review markers, ignoring the fact
that the later and slower the project is, the less frequent they are!
We can plan a full year of projects:�� Conveniently disregarding our past 20
years or so of experience in failing to predict projects a year in advance,
we assume it’s a failure of our planning, not a failure of the basic paradigm.
“If we only planned in more detail, we could really get it right this year.”
So, on we go to more and more detailed planning—tighter requirements,
more analysis, and tighter commitments—the very problem that led to our
predicament.
Just get it done:�� The belief that our best case plans can be reality if the teams
would only try hard enough. This is also known as “This is the plan we agreed
to; now execute it,” and “When the going gets tough, the tough get going.”
And lastly, the infamous “We know it’s impossible; that’s why we want you
on this project.”

In practice, the manifestation of these mind-sets creates huge problems for agile
development teams, as Table 22–1 shows.

Table 22–1 The Problems Legacy Mind-Sets Create in Agile Development

Mind-Set Manifestation Problems Caused

“Widget
engineering”

Fixed schedule, fixed requirements.

Big, up-front design (BUFD).

No allowance for innovation.

Unrealistic expectations.

Detailed commitments made a year in advance.

Analysis paralysis. Project is late when it’s
started.

Detailed specs and designs “handed off” to
development.

“Order-taker
mentality”

Do what you are told.

We are the boss of you.

False agreements. No buy-in.

Misses innovation from development.

Failure to meet expectations—mistrust.

No empowerment, low motivation.

Wow! eBook <WoweBook.Com>

ptg

 Legacy mind-sets in PoRtfoLio management 435

Mind-Set Manifestation Problems Caused

“Maximize
utilization”

Resources committed long range.

100% allocation before “what if.”

Key resources assigned to multiple
projects.

No time to think or innovate.

Dedicate resources to tasks or lose them.

No resources for new, higher-priority projects.

Thrashing. Low productivity. Burnout.

“Get it done” Belief that best case plans must
succeed.

Deferred recognition of plan versus actual.

Late discovery and renegotiation.

Loss of credibility, mistrust.

“Control through
milestones”

Teams held to waterfall-based project
milestones.

Unproductive artifacts.

Fine grain reporting and overhead.

Start-wait-start-wait-start-wait projects.

Teams produce artifacts they don’t need or
want.

Teams pretend not to work ahead of
milestones.

Slow value delivery.

“We can plan a full
year of projects”

Detailed work breakdown structures,
earned value metrics, Gantt charts.

Reporting overhead. Annoying the team.

Metrics don’t reflect actual progress.

Plans are obsolete but not treated that way.

It’s also obvious that these mind-sets are directly opposite to so many principles of
product development flow, as Table 22–2 illustrates.

Table 22–2 Legacy Mind-Sets Are Contrary to Lean Principles

Mind-Set Contra Lean Product Development Principles [Reinertsen 2009]

“Widget engineering” V1: The Principle of Beneficial Variability—Variability can create
economic value.

V3: The Principle of Optimum Variability—Variability should
neither be minimized nor maximized.

“Order-taker mentality” D1: The Second Perishability Principle—Decentralize control for
problems and opportunities that age poorly.

“Maximize utilization” F1: The Principle of Congestion Collapse—When loading becomes
too high, we will see a sudden and catastrophic drop in output.

F6: The Cadence Capacity Margin Principle—Provide sufficient
capacity margin to enable cadence.

Continues

Wow! eBook <WoweBook.Com>

ptg

436 chaPteR 22 � moving to agiLe PoRtfoLio management

Mind-Set Contra Lean Product Development Principles [Reinertsen 2009]

“Get it done” W8: The Principle of Flexible Requirements—Control WIP by shed-
ding requirements.

“Control through milestones” D8: The Principle of Mission—Specify the end state, its purpose, and
the minimum possible constraints.

D3: The Principle of Layered Control—Adapt the control approach to
emerging information about the problem.

“We can plan a full year of projects” B7: The Psychology Principle of Batch Size—Large batches inherently
lower motivation and urgency.

V6: The Principle of Short-Term Forecasting—Forecasting becomes
exponentially easier at short time horizons.

D4: The Opportunistic Principle—Adjust the plan for unplanned
obstacles and variances.

eight reCommendations for moving to agile Portfolio
management

Well, enough carping about the current state; it’s time to move on to some spe-
cific recommendations that can help a portfolio management team think, act, and
be lean and agile. We’ll divide these change recommendations into the three main
activities we described earlier: investment funding, investment change manage-
ment, and governance and oversight.

Rethinking Investment Funding

First, we’ll provide some recommendations to assist in that critical up-front
problem—determining what projects get funded and why.

#1: From “Too Many Projects” to Controlling Work In Process

In virtually every lean agile transformation I’ve been engaged in, many (or all) key
resources are flitting like butterflies from project to project, rarely alighting long
enough to make a meaningful contribution to anyone. Plus, every day they suffer
the multiplexing tax, that 20% or so time penalty it takes to get “back in the flow”
on each new project they touch that day. However, that’s just the symptom. The root
cause is “too many projects in flight at the same time.”

When working with executives, one exercise that I use to help communicate this
basic flaw in thinking is shown in Figure 22–1.

Table 22–2 Legacy Mind-Sets Are Contrary to Lean Principles (Continued)

Wow! eBook <WoweBook.Com>

ptg

 eight Recommendations foR moving to agiLe PoRtfoLio management 437

Your team has three projects. Each will take the entire team one month
and delivers value of one unit.

Plot value delivery curves over time of doing the projects in scenario A
serially and scenario B in parallel (simultaneously).

(Assume 20% task switching overhead for each team member in
scenario B.)

What is the efficiency of the team in scenario A versus B?

Scenario B—Start and
Deliver in Parallel

Project A

Project B

Project C

Project A Project B Project C

Scenario A—Start and Deliver Them Serially

Time

Time

Figure 22–1 An exercise to show the negative economic effects of doing multiple projects in
parallel

For the exercise, I have the executives plot the curve of value delivery for each
approach, taking the projects on in parallel (which is their natural tendency; “We
have to show progress, you know . . .”) and then reconsidering the results if the proj-
ects were executed serially instead. Usually they ponder on it for a while, make a
few scratches, and then the lightbulb goes on. The results are striking, as shown in
Figure 22–2.

Va
lu

e

Time in Months

Scenario A—Projects Done Serially

Va
lu

e

Time in Months

Scenario B—Projects Done in Parallel

1 2 3 1 2 3

Note: Shaded Area Represents Cumulative Value Delivery

Figure 22–2 Value delivery results—serial versus parallel delivery

Wow! eBook <WoweBook.Com>

ptg

438 chaPteR 22 � moving to agiLe PoRtfoLio management

It can be seen from the figure that finishing one project before you start another
produces economics (earlier value delivery) that are far superior. The advantages
are obvious and compelling, as we further describe in Table 22–3.

There is another, more subtle implication as well. In the serial case, each project
starts with a fresh set of requirements. For example, project C starts with require-
ments that are current at the start of the second month. In the parallel case, all proj-
ects suffer a three-month requirements decay, meaning that by the time of delivery,
the requirements are stale, and the newly delivered project is less fit for the intended
purpose.

When executives see the objective evidence of this simple exercise, they are inclined
to learn about more actively managing work in process, keeping WIP visible, and
releasing smaller blocks of content for implementation. We’ll revisit that in the next
chapter.

#2: From Detailed Business/Project Plans to Lightweight Business Cases

Funding for new programs has been traditionally justified by a business and project
plan. These reflect the analysis that has been done, the potential return on invest-
ment, and, usually, a set of requirements for the program. The bigger the program,
the bigger the document. This seemed sensible historically, but we note that it is a
direct parallel to the software requirement specifications that we have largely aban-
doned in agile. The context is somewhat different, but the problem is the same:
too-early commitment to requirements, a business case that has been developed by
a business analysis team or individual who has become committed to the program
(but who isn’t going to actually do the work), and a detailed project plan with tasks
forecast long into the future.

Instead, we want to evolve to a lighter-weight and more flexible model, as
Figure 22–3 shows.

Table 22–3 Advantages of Serial Over Parallel Project Execution

Serial Parallel

Value delivery begins after the first month, when the
first project is completed.

Value delivery does not even begin until after three
months.

Value accumulates rapidly as each project completes.
The integration of value represents the potential profit
over time.

The thrashing “tax” (caused when a team member
switches projects) is estimated at from 20% to 60%
and delays value delivery even further.

By the end of the third month, all projects are delivered. Nothing is delivered at the end of three months.

Cost of delay is minimized. All projects suffer a three-month+ cost of delay.

Wow! eBook <WoweBook.Com>

ptg

 eight Recommendations foR moving to agiLe PoRtfoLio management 439

From Traditional, Document-Based To Agile Model

• Long, Overly Detailed Business Case
 Justifications
• Evolve to Become Project Plans
• False precision —Detailed Requirements
 Over-Constrain Solution Implementation
• Investment in the Business Case Causes
 Resistance to Changing the Case and Plan
• Too Much Overhead for Quarterly Update

• 2-Page Lightweight Business Case Form
• Not Much Detail
• Early Collaboration with Development
• Business Cases That Make the Cut Get

Exploratory Iterations Funding
• Easily Canceled If Progress Not

Acceptable
• Fast ROI If It Is
• Updated Quarterly—Changes Only

Figure 22–3 Replace detailed business and project plans with a lightweight busi-
ness case.

The resulting artifact is a lightweight business case template that can be updated
quarterly. (An example template appears in the next chapter.)

Although some might worry that a lightweight document reflects lightweight think-
ing and therefore has the potential to inflict economic damage, there is little danger.
As we will see, funding will be done incrementally, so there will be lots of opportuni-
ties to evaluate programs in process. At those standard intervals, funding (resources)
can be moved to whatever projects, new or old, that are more deserving.

#3: From Work Breakdown Structure to Agile Estimating and Planning

To determine what projects get funded, there must be some means of determining
the estimated cost of a project. Traditionally, this is done via a work breakdown
structure, which decomposes the large initiative into a series of tasks in fine enough
granularity so that they can be estimated with reasonably accuracy. The estimates
for the task are summed up to provide the final cost estimate. This works reasonably
well if you are trying to estimate the costs of building a bridge. However, it doesn’t
work very well at all for software. The results are often quite poor; estimates are
typically off by 50% to 100%, with 200% to 300% not uncommon.

Instead, as we described in Chapter 13, agile brings new laws of software physics
(maybe heuristics would be a better term), and we can apply those at the Portfolio
level. Figure 22–4 summarizes the traditional versus agile estimating approaches.

Wow! eBook <WoweBook.Com>

ptg

440 chaPteR 22 � moving to agiLe PoRtfoLio management

From Traditional, WBS Estimating To Agile Estimating

8

500

15,000

Epic

Feature

Story

Garage
Project

Tool Shed
RearrangeRearrange

ShelvesHang Bikes Clean Floor

Prep Power Washer−15

Power Wash Floor−45

Pre-Scrub Oil Spots−30

Move Everything−30

Install Hangers−30

Buy Hangers−30

Hang Bikes−10

Add New Shelf−30

Tidy Up−30

Take All Out−30

Wipe Clean−10

Put All Back−10

• Traditional Project Estimates Tasks at
the Lowest Leaf

• Requiring All Leafs Be Identified
Before Estimate Is Given

• Forces Big Up Front Analysis
• Estimates Based on False Precision
• Force-Fits Later Activities into Flawed

WBS

• Agile Teams Maintain Velocity Based on Story
Points

• Story Points Can Be Normalized Across Teams
• Relative Estimating Can Be Applied for Epics and

Features
• Epic Estimating Used for Gross, Portfolio-Level

Planning
• Feature Estimates Used for Release (Product) Level

Planning
• Feature Estimates Maintained in Program Backlog

Figure 22–4 From WBS-based estimating to agile estimating

In addition, as the team’s maturity increases, they will naturally start to keep current
estimates for work remaining, or new features that are anticipated, in the backlog.
This provides management with the forward look they need to understand esti-
mated costs for completion.

Rethinking Change Management

In addition to rethinking investment funding, we must also reconsider the way in
which we approach managing the inevitable twists and turns of a software endeavor.
Again, the traditional approaches are not well suited to the objectives of the lean
and agile software enterprise.

#4: From Annual to Incremental Funding

Another pernicious aspect of the legacy model is the tendency for “all-or-none”
funding. This means that once funds are committed, they become virtually impos-
sible to deallocate. Instead, they become inexorably bound to external commitments
as well as dedicated, internal resources. Further, the commitments are included in the
annual budget planning process, whereby every department needs to justify the con-
tinued use of resources throughout a fiscal year. To do that, managers often need to
show how the individuals are dedicated to tasks well into the future. To do that, they
need to create more detailed plans that justify the annual budget. This vicious cycle
continues to result in just the exact opposite of the behavior we are trying to achieve.

Instead, funding should be done incrementally so bad paths can be truncated
more quickly and resources can be moved to the best opportunities throughout
the fiscal year.

Wow! eBook <WoweBook.Com>

ptg

 Eight REcommEndations foR moving to agilE PoRtfolio managEmEnt 441

When we base future, incremental funding on objective demonstrations of working
software—instead of on milestones based on proxy documentation—then we have
continuous opportunities to assess and adjust. And teams have real motivation to
deliver immediate value.

5: From “Projects” to Continuous Content Delivery

We start with a dramatic suggestion: eliminate the basic construct of the “project”
itself.2 Here’s why: Traditionally, based on a construction-like metaphor, a “project”
gathered some resources together, a set of requirements, a mission, start and end
dates, and a project manager. The project then binds these things to together in a
package that tends to become fixed and immutable. Every project develops its own
antibodies to change. No one wants to be part of a canceled project; jobs may be on
the line, even if the result was a “successful early failure” of a new product or tech-
nology. How does one innovate in that environment?

Instead, we need to move to a mode of project-free, continuous content delivery.
Figure 22–5 illustrates the many downsides of the traditional “project” approach
and contrasts it to continuous content delivery.

Project, Portfolio Mix:
Size, Risk, Reward

From Traditional To Continuous Content

Sys 1 Sys 2 Sys 3 Sys 4 Sys 5

First PSI

Iterate Iterate Iterate IterateHarden HardenIterate Iterate

Iterate Iterate Iterate IterateHarden HardenIterate Iterate

Iterate Iterate Iterate IterateHarden HardenIterate Iterate

External Release

External Release

External Release

Ports certs

Release Docs

Second System
PSI or Release

Sys 6 Sys 7 Sys 8

Continuous
Integration

Continuous
Integration

Internal
Release

Release docs

ts certs

Agile Release Train Content
Management

Internal
Release

Release Docs

Ports certs

• Dedicated Teams Stop Multiplexing – No
One Works on More Than One Team

• Project Overhead Is Replaced by Standard
Iteration and Release Cadence

• New Initiatives Appear as New Content
and Are Prioritized at Each
Iteration/Release Boundary

• Work in an Iteration/Release Is Fixed
• Team Resources Are Adjusted Only at

Periodic Release Boundaries

• Getting Anything Done (New Feature or Epic) Requires
Creation of a New Project

• Projects Have Significant Overhead, Planning, Resourcing,
Execution, Closure

• Once Started, Projects Take On a Life of Their Own; They
Develop Antibodies to Change and Closure

• Many Small Projects Cause People to Multiplex Between
Projects
– Each Project Switch Takes 20% Overhead
– Working on Three Projects Means People Only Deliver

 Value 40% of the Time

Figure 22–5 From projects to continuous content management

2. Perhaps the project word is simply reused from the “construction world” and was meant
for building and completing “one-off” things. But when you build a house, you don’t have a
release six of it that could be 100x bigger than the original. Software grows continuously, so the
“project construct” doesn’t imply the right things.

Wow! eBook <WoweBook.Com>

ptg

442 chaPteR 22 � moving to agiLe PoRtfoLio management

Moreover, in the project model, it was typically necessary to have individuals work
on a number of projects at the same time (after all, we were doing them all in paral-
lel and we had to show progress). This causes the thrashing (context switching) tax
to be applied to most individuals on the project team, thereby significantly decreas-
ing overall productivity.3

In the new model, new content is presented at fixed-cadence planning boundaries.
Teams flex to the new content. Resources are adjusted at the same cadence. Mul-
tiplexing decreases. Portfolio management becomes “content management”—con-
tinuously prioritizing new content for the ongoing programs. No more “fits and
starts” of building a new project every time we want to get something done.

Rethinking Governance and Oversight

No matter how empowered the teams and programs have become, the portfolio and
project managers still have accountability to the business for understanding pro-
gram progress, status of critical external deliverables and releases, and development
cost accounting. We respect that. Governance and oversight is still important, even
in the agile enterprise. But here again, the methods must evolve.

#6: From PMBOK to Agile Project Management

Of course, dispensing with the notion of a project is a cathartic event that must
be considered in its full context. Part of the context is what to do with those who
played the traditional role of project manager. If there are no projects, what hap-
pens to them? Indeed, if you look at what Project Management Body of Knowledge
(PMBOK) trained project managers traditionally do, there is no obvious place-
holder for many of their prior activities, as Figure 22–6 illustrates.

Most of the traditional activities performed by project managers on behalf of the
teams, including “managing” them, are now gone. Instead, the teams themselves
own these responsibilities. Because of these problems, many organizations have
eliminated the project management role (and sometimes even the entire PMO) in
their agile transformation, with mixed degrees of success. Moving the responsibility
to the team to manage their own projects is one thing; having them actually know
how to do that successfully is another matter entirely.

However, Figure 22–6 overstates the case somewhat. Although many of the recog-
nizable activities are no longer necessary (WBS, PERT, Gantt, and so on), many
traditional project management activities remain, and there are new, project-like
activities to manage as well.

3. For example, during its transition to agile, one company diagnosed the “failures” of the first
agile team’s first few iterations. Their conclusion was that no one worked on the team long
enough to accomplish anything!

Wow! eBook <WoweBook.Com>

ptg

 eight Recommendations foR moving to agiLe PoRtfoLio management 443

Work Breakdown
Structure Estimating

From Traditional: Performed by
the Project Manager

Gantt Charts
Scheduling

Critical Path
Analysis

Reporting

To Agile:
Performed by the Team

Garage
project

RearrangeRearrange
tool shed shelvesHang BikesClean Floor

Prep power washer − 15

Power wash floor − 45

Pre-scrub oil spots − 30

Move everything − 30

Install hangers − 30

Buy hangers − 30

Hang bikes − 10

Add new shelf − 30

Tidy up − 30

Take all out − 30

Wipe clean − 10

Put all back − 10

Iteration Planning

Release
Planning and
Roadmap

Release/Iteration
Review/Retrospective

2 pts
4 pts
2 pts

High-
Priority
Feature

Story 1

Story 2

Story 3

Story 1

| 1 | 2 | 3 | 4Story 2

Story 3

Actual Velocity-
Based Estimating

B
1

E
3

C
5

A
2

F
2

D
4

G
3

Figure 22–6 From traditional project management to self-management

We favor a model whereby project managers are retrained and repurposed as agile
project managers and thereby fulfill a number of important responsibilities, some
traditional and some new to the agile paradigm. These include the following:

Organizing and facilitating release planning events, running release ��
retrospectives
Attending the Scrum of Scrums; working with the teams to resolve blocks ��
and impediments
Coordinating outside dependencies and suppliers; managing, packaging, ��
and distributing team’s deliverables
Working in the existing accounting system to provide whatever adaptation is ��
needed for existing cost accounting
Facilitating Program-level demos and progress reviews��
Helping with backlog estimating and working with the portfolio manage-��
ment team to estimate and plan

All of these activities tend to fall somewhere outside the team’s normal experience
and competence (and sometimes interest). An able, agile project manager is a val-
ued assistant to any agile program. For more on this topic, we refer you to The
Software Project Manager’s Bridge to Agility [Sliger and Broderick 2008].

Wow! eBook <WoweBook.Com>

ptg

444 chaPteR 22 � moving to agiLe PoRtfoLio management

7: From Milestone to Fact-Based Governance

Traditionally, we instituted various waterfall-legacy milestones to measure and
assess project status. But milestones such as “design complete,” “requirements sign-
off,” “test plan complete,” and the like, no longer have any positive meaning to agile
teams. Instead, agile governance is based upon routine, objective, fact, and code-
based status, as Figure 22–7 illustrates.

These document-based milestone proxies for real progress were never very good
anyway. Moreover, from a governance standpoint, the slower and later the program
became, the less frequent the touch points. So, we had a double whammy—largely
ineffective reviews that became less frequent as the program ran into more trouble!

In its place, the agile program has objective evidence of working code, with demon-
strable quality at every, regular PSI checkpoint. And if content needs to be adjusted
(correlated to a project being canceled or accelerated), resource adjustments can be
made readily at the next release planning session.

Using Agile Milestones to Drive Incremental Delivery

However, for a number of reasons, the agile program is not necessarily milestone
free. Indeed, a proper application of agile milestones can be used to drive incremen-
tal delivery in those parts of the organization that still tend to waterfall thinking. For
example, an agile set of milestones might appear as in Figure 22–8.

From Traditional: Milestone-Based To Agile: Fact-Based

• Teams Report Milestones with Document-Based
Reviews

• Subjective, Milestone Reports Do Not Correlate
to Actual Project Status

• Teams “Report to” Project Office (Leader as
Conductor/Boss)

• Teams Cannot Proceed Until and Unless They
Pass Milestones (Start-Wait-Start-Wait Waste
Cycle)

• Scheduling Delays and Overhead
• Process Changes Dictated by “Those Who Know

Best”

• Primary Milestone: Working Code at Each PSI
• Status and Quality Are Objective, Not

Subjective
• Project Office “Comes to Teams” (Enabling

Leadership Model)
• Teams Default Model Is to Proceed Unless

Stopped by Business Case (No Process-Driven
Delays/Waste)

• No Scheduling Delays and Overhead
• Process Changes Applied and Harvested from

Team’s Retrospectives

Figure 22–7 Moving from milestone-based to fact-based governance

Wow! eBook <WoweBook.Com>

ptg

 eight Recommendations foR moving to agiLe PoRtfoLio management 445

Commit to
Maintenance

Program
Approved

1.1 − 1.n
Potentially Shippable Increments

2.1 − 2.n
Incremental Releases

Quality/GA Firewall

Figure 22–8 Agile milestones can drive incremental delivery.

In this figure, the presence of “1.1–1.n PSIs” communicates to the teams how assets
are to be built incrementally, and the “2.1–2.n incremental release” milestones com-
municate the importance of early and continuous releases of value.

8: From Centralized Annual to Decentralized Rolling-Wave Planning

Traditionally, planning was often the province of the PMO or those project manag-
ers and project planners who would work with customers to understand require-
ments, estimate the work, and make the commitments for the teams. Although this
was not necessarily without collaboration, the net result was that the project office
and the project managers owned the plan and the team was left to try to achieve the
commitments. In evolving our new planning model, the responsibility for planning
is moved to the teams. At the Program level, this is accomplished primarily by the
release planning function that we described in Chapter 16. In this model, planning
is done on a standard cadence, independent of the status of the project and inde-
pendent of release commitments. They plan to replan.

For many enterprises undergoing this transformation, this was a transition made in
steps, as Figure 22–9 indicates.

Arriving at the third step, the Agile Release Train is no small feat for the enterprise.
Indeed, in practice, this works best when the project office (surprise, surprise)
takes an active role in driving the new planning process. It adds real value because

Wow! eBook <WoweBook.Com>

ptg

446 chaPteR 22 � moving to agiLe PoRtfoLio management

planning is hard. Also, there are a number of reasons why the teams can’t actually
plan at this level entirely by themselves.

Logistically, it is difficult to even arrange such a planning function. It ��
requires advanced scheduling, reservation of adequate facilities, commit-
ments from product managers and key stakeholders to attend, and logistics
on logistics.
Release planning works best when it is facilitated. Neither of the two key ��
stakeholders, product management or development, is in a neutral position
to do this. Rather, a facilitator/planner from the PMO is often an excellent
choice.
While the teams are empowered to self-manage, they are not empowered to ��
self-destruct or grow beyond previously agreed-upon boundaries. If a high-
priority program in process needs additional resources; it should get them.
And yet, what competent program would deprecate their own resources for
a program they are committed to?

From: Gantt

To: Independent,
Asynchronous, Iterations

To: Agile Release Train

Sys 1 Sys 2 Sys 3 Sys 4 Sys 5

First PSI

Iterate Iterate Iterate IterateHarden HardenIterate Iterate

Iterate Iterate Iterate IterateHarden HardenIterate Iterate

Iterate Iterate Iterate IterateHarden HardenIterate Iterate

External Release

External Release

External Release

Ports certs

Release Docs

Second System
PSI or Release

Sys 6 Sys 7 Sys 8

Continuous
Integration

Continuous
Integration

Internal
Release

Release docs

ts certs

Agile Release Train
Content Management

Internal
Release

Release Docs

Ports certs

Issues :
• Irrelevant to Agile Teams
• Hard to Maintain
• Always Obsolete
• If a Team Isn’t on the Plan, Is It a

“Bad” Team or “Bad” Plan?
• Measure Paper, Not Software

Issues :
• Little Coordination Among Teams
• Nonharmonized Schedules
• No Visibility Beyond the Next Sprint
• Little or No System-Level Visibility

• Coordinates Iterations
• Multi-iteration Visibility and

Commitment
• Teams Work Out Interdependencies

on the Fly
• Full System Visibility

Time spent thinking you are on track…….

Time when you discover
you have only built a
“bunch of pieces”

System

Planned system
release date

Integrate and
slip!

Internal Release

Iterate Iterate Iterate Harden Iterate Iterate Iterate

Release docs

Port, certs

Harden

Internal Release

Release docs

IterateIterate IterateHarden Harden

The slowest component
drags the train

Internal Release

Iterate Iterate Iterate Harden Iterate Iterate Iterate

Release docs

Port, certs

Harden

Iterate

A

B

C

Figure 22–9 Typical stages of agile planning evolution

Wow! eBook <WoweBook.Com>

ptg

 summaRy: on to agiLe PoRtfoLio PLanning 447

For these reasons, we suggest that an active governance role for the PMO is driv-
ing the release planning process. In addition to the benefits this provides the teams,
there are many benefits to the PMO as well.

Provides an integral, ongoing role in the agile enterprise, one that is directly ��
supportive of the team’s agile objectives.
Provides the opportunity to attach to the programs. After all, the PMO ��
always wants to know what the state of the program is, so how better than to
help coordinate release planning activities?
Provides a regularized opportunity to understand release status and capture ��
release metrics, such as the release reliability metric, as well as to see when a
program is in trouble.
Provides additional value added by facilitating continuous improve-��
ment through release retrospectives and elimination of Program-level
impediments.

summary: on to agile Portfolio Planning

Although we’ve spent a fair amount of time in this chapter criticizing some mind-
sets and activities of the traditional portfolio and project management functions,
we hope that we’ve added our own value by indicating ways that these functions can
evolve to become staunch agile proponents and participants. By adopting these rec-
ommendations, these functions can evolve from being the “mother of all impedi-
ments” to “leaders of the lean and agile enterprise.” In the next chapter, we’ll put this
new organization to work. Its first task: agile portfolio planning.

Wow! eBook <WoweBook.Com>

ptg

This page intentionally left blank

Wow! eBook <WoweBook.Com>

ptg

 449

Chapter 23

investment themes, ePiCs, and

Portfolio Planning

Greatness is not a function of circumstance. Greatness, it turns out, is largely a
matter of conscious choice, and discipline.

—James Collins, author of Good to Great

In the previous chapter, we described ways in which the portfolio and project man-
agement functions can evolve to operate in a lean and agile manner, helping the

full enterprise achieve the productivity and time-to-market benefits of agile devel-
opment and the proven economic co-benefits of product development flow. In so
doing, we left the requirements topic briefly in order to provide process guidance
within which our agile requirements model can now be placed.

In this chapter, we return to the prime topic—agile requirements—but we do so at
the Portfolio level, the highest level of the Big Picture and the enterprise, the place
where all these requirements arise to begin with. We’ll also further describe the last
two requirements artifacts that we’ll need to conclude our agile requirements story,
investment themes and business epics, which are highlighted in Figure 23–1.

Epic Feature

Is one of

Backlog Item

0,1 0,11..* 1..*
Realized by Realized by

Business
Epic

Architecture
Epic

Is one of

Investment
Theme

Figure 23–1 Strategic investment themes and epics in the requirements model

Wow! eBook <WoweBook.Com>

ptg

450 chaPteR 23 � investment themes, ePics, and PoRtfoLio PLanning

investment themes

Investment themes represent the set of initiatives that drive the enterprise’s
portfolio by governing the investment in the various systems, products, and
applications for which the teams are responsible.

NOTE�³ Some product companies refer to these as strategic product themes. We’ll use the more ge-
neric term of strategic investment themes (themes for short) here.

For example, the pie chart in Figure 23–2 illustrates the relative percentage budget
allocations for the themes of a hypothetical “cloud computing device business unit.”

The set of strategic investment themes drive the Vision for all products, systems,
and services, and new epics are derived from this decision. As we described in the
previous chapter, the responsibility for the investment decisions generally lies
with the portfolio management team, which has fiduciary responsibilities to their
stakeholders.

In most enterprises, these decisions happen at the business unit level based on
annual or twice-annual budgeting process.

NOTE�³ Although it’s beyond our scope, the traditional budgeting process is not really up to the chal-
lenge of agile portfolio planning. Refer to Beyond Budgeting at www.bbrt.org. Member orga-
nizations follow the principles outlined in Beyond Budgeting: How Managers Can Break Free
from the Annual Performance Trap, published by Harvard Business School Press.

The budgeting process determines the amount of funds available for each business
unit or product set to invest in development.

16%

18%

7%
22%

17%

13%
7%

Cloud Computing Business Unit
Strategic Investment Themes

2HF11
Customer Relationship
Management
Employee Data Backup

Social Intranet

E-commerce

Back-Office Storage

User Authentication

Computing Resources

Figure 23–2 Budget allocations for a set of strategic investment themes

Investment
Themes

Wow! eBook <WoweBook.Com>

www.bbrt.org

ptg

 investment themes 451

Within the business unit, the investment decisions are based on some combination
of the following:

Investment in existing product offerings—enhancements, support, and ��
maintenance
Investment in new products and services—products that will enhance ��
revenue and/or gain new market share in the current or near-term budget
period
Investment in futures—product and service offerings that require invest-��
ment today but will not contribute to revenue until outlying years

Balancing these investments is difficult, and we should appreciate the enormous
pressures and conflicting priorities that are constantly present for those who make
these decisions for our enterprise. But make them they must, or the enterprise will
wander through time with an unfocused strategy. And we can all guess how that will
work out.

The result of the decision process is a set of investment themes:

Investment themes are key product value propositions that provide
marketplace differentiation and competitive advantage.

Themes have a much longer life span than epics. Indeed, even in the agile enterprise,
a set of themes may be largely unchanged for up to a year or more.

Communicating Investment Themes

Although determining the investment mix is no small feat, communicating the
decision via themes is fairly straightforward, because themes are very high level and
are easily represented in bullet form. For example, one could imagine an enterprise
business unit developing an online e-mail service deciding on the following themes
for the upcoming year:

Introduce voice and video chat��
Outlook integration��
Personalization��
Mail for Mobile devices 2.0��
Group chat from within mail��

Why Investment Mix Rather Than Backlog Priority?

As opposed to epics, features, and stories, investment themes are not contained or
represented in a backlog. The difference is subtle but important.

Wow! eBook <WoweBook.Com>

ptg

452 chaPteR 23 � investment themes, ePics, and PoRtfoLio PLanning

Backlog items are designed to be addressed in priority order. Investment themes are
designed to be addressed on “a percentage of resources to be made available basis.”
For example, a lower-priority feature on a program backlog may not be addressed
at all in the course of a release, and yet the release could well be a success (meet its
stated objectives and be accepted by the product manager and the market). How-
ever, if the lowest-priority (smallest investment commitment) investment theme is
not addressed over time, the enterprise may ultimately fail in its mission, because it is
not making its actual investments based on the priorities it has decided.

From a lean perspective, allocating a percentage of investment to a theme is a form
of class of service, each theme being given the resources (service level) required to
achieve the appropriate level of investment.

Investment themes also do not share certain other backlog item behaviors. For
example, as critical as they are, they are not really testable, because their instantia-
tion occurs first through epics and then, finally, via actual implementation in fea-
tures and stories, which have the specificity necessary to be testable.

If the enterprise is focused, only a few themes are active at any one time, so we
shouldn’t require a backlog management tool (spreadsheet or agile project manage-
ment tool) to capture and maintain them. A simple list will suffice.

ePiCs

Investment themes drive epics, which represent the highest-level expression of a
customer or business need, as Figure 23–3 (a more obviously hierarchical represen-
tation) shows.

Epics

Features

Stories

Figure 23–3 The hierarchical relationship between epics, features, and stories

Wow! eBook <WoweBook.Com>

ptg

 ePics 453

Derived from strategic investment themes, business epics are development initia-
tives intended to deliver the value of the theme:

Business epics are large, customer-facing initiatives intended to deliver new
products, solutions, or services to the marketplace.

Business epics are identified, prioritized, estimated, and maintained in the portfolio
backlog. They may be stand-alone (developed in a single program or business unit),
or like architectural epics, they may cut across

Time—affecting multiple releases of products, systems, services, or solutions��
Scope—affecting multiple products, systems, services, or solutions��
Organization—affecting multiple teams, programs, business units��

Subepics

As a brief aside, we note that we’ve highlighted three levels of abstraction for
expressing requirements—epics, features, and stories. However, we admit that these
are arbitrary distinctions, essentially just labels to describe how to think about the
system at various levels of abstraction. However, in admitting that they are arbi-
trary, we also admit that there is no perfect hierarchy. For example, prior to release
planning, epics must be allocated to the appropriate programs, where they will
eventually be decomposed into specific features. The features, in turn, drive release
planning for the affected programs.

In such cases, a large epic, such as move CRM to the cloud will spawn a number of
epics for individual programs, business units, and so on. To manage this allocation,
some have found it convenient to split these epics into subepics, which create an
additional level in the hierarchy. You don’t have to add this level, but otherwise it
may eventually become hard to understand what business epics drove these new
program epics to exist. Although we won’t add subepics to the requirements meta-
model, the reader should know that others have found them convenient, and you
can apply them whenever it makes sense to do so.

Expressing Epics

Epics may be expressed in bullet form, as a sentence or two, in video, as a prototype,
in a short business case, or indeed in any form of expression suitable to express the
intent of the product initiative.1

1. I was once at a meeting where an (otherwise) clever agilist, pushing back on what he considered
to be delaying and excessive epic-level documentation requirements, told his PMO manage-
ment, “You can even tell us in interpretive dance; we’ll take it from there.” Note, however, that
this is not the recommended selling approach!

Wow! eBook <WoweBook.Com>

ptg

454 chaPteR 23 � investment themes, ePics, and PoRtfoLio PLanning

With epics, clearly, the objective is “the big vision,” not specificity. In other words,
the epic need only be described in detail sufficient to initiate a further discussion
about who is impacted and what types of new features it implies.

Discriminating Epics, Features, and Stories

As we just described, epics, features, and stories are all forms of expressing user need
and benefit but at different levels of abstraction. For example, earlier we hypoth-
esized possible investment themes for a new, hosted e-mail service provider that
include the following:

Voice and video chat from within mail��
Outlook integration��
Personalization��
Support mobile devices��
Group chat��

One can also imagine that personalization is a significant investment—one that the
provider might hope would create a strategic differentiation from other providers
and one that could evolve over years. In other words, personalization is a reasonable
example of a well-stated strategic investment theme; you get the general idea, but
you have no idea what exactly to do next!

To communicate better what to do next, prospective epics, such as emoticons and user
background desktop themes, could have then been identified. Then, the teams respon-
sible for user background desktop themes might well have brainstormed a multiple-stage
implementation process, with the first releasable feature being apply a standard theme
from mail theme catalog, followed by allow users to further customize a chosen standard theme.

In the first iteration, the teams might have decided to create an initial set of two
stories, for example: implement a framework where selected themes could be cataloged,
selected, and applied and also a user value story as an alpha tester, I can select and apply the
first, prototype standard desktop theme so that I can provide early feedback on the concept.

In this hypothetical example, the requirements information model for this example
would be as shown in Figure 23–4:

Still, we admit that there is no scientific way to determine whether a “thing you
know you want to do” is an epic, feature, or story, but perhaps the discriminators of
Table 23–1 will help.

Wow! eBook <WoweBook.Com>

ptg

 ePics 455

StoryEpic Feature
Realized by Realized by

0,1 1..* 0,1 1..*
Investment Theme

Realized by
1 1..*

Personalization User Background
Desktop Themes

Emoticons

Apply a standard theme
from Gmail theme catalog

Allow users to further
customize a chosen
standard theme

….

Implement a
framework where
selected themes
could be
cataloged,
selected, and
applied

As an <alpha
tester>, I can
<select and apply
the first, prototype
standard desktop
theme> so that I
can <provide early
feedback on the
concept>.

Figure 23–4 Example theme > epic > feature > story > hierarchy

Table 23–1 Discriminating Themes, Epics, Features, and Stories

Type of
Information Description Responsibility

Time Frame
and Sizing

Expression
Format Testable

Investment
theme

Big, audacious,
game changing,
initiatives.
Differentiating,
and providing
competitive
advantage.

Business execu-
tives, Portfolio
management.

Span stra-
tegic planning
horizon, 12 to
18+ months.
Not sized,
controlled by
percentage
investment.

Any: text, proto-
type, PPT, video,
conversation.

No

Epic Bold, impactful,
marketable
differentiators.

Portfolio manage-
ment. Business
analysts, product
and solution
management,
system architects.

6 to 12 months.
Sized in points.

Most any,
including
prototype,
mock-up, short
phrase, or vision
statement.

No

Feature Short, descriptive,
value delivery
and benefit-
oriented state-
ment. Customer
and marketing
understandable.

Product manager
and product
owner.

Fits in an internal
release (PSI),
divide into
incremental
subfeatures as
necessary.
Sized in points.

Key phrase
or user story
voice form.
May be
elaborated with
system use cases.

Yes

Continues

Wow! eBook <WoweBook.Com>

ptg

456 chaPteR 23 � investment themes, ePics, and PoRtfoLio PLanning

Type of
Information Description Responsibility

Time Frame
and Sizing

Expression
Format Testable

Story Small, atomic.
Fit for team and
detailed user
understanding.

Product owner and
team.

Fits in a single
iteration.
Sized in story
points.

User story
canonical form.

Yes

Types of Epics

We’ve already alluded to “types” of epics when we discussed architecture epics in the
previous chapter. More generally, however, enterprises may want to classify epics
into various types, which provide further clarity of the intended investment. For
example, we have seen epics classified as follows:

User/consumer experience epics��
Web services epics��
Distribution partner epics��

This doesn’t matter to the model; enterprises can create any type of epic that suits
their needs. In the rest of this chapter, we’ll just use the general term business epics to
represent the types of epics that are managed in the agile portfolio planning process.

identifying and Prioritizing Business ePiCs: a kanBan
system for Portfolio Planning

In Chapter 21, we described a kanban system for identifying and prioritizing archi-
tectural epics. This system included a kanban state model, a description of activities,
and a prioritization model for moving epics from consideration to implementa-
tion. Although we introduced the model in the context of rearchitecting large-scale
systems, in fact it is a general model that we can apply again here as well. To avoid
repetition, we will not elaborate as much on the motivations or the descriptions of
this model here. Instead, we’ll just describe the highlights of the system as applied to
prioritizing business epics.2

2. The architectural kanban system from the previous chapter and the business epic system in
this chapter could be combined into one system. However, we’ve described them as separate
systems, because in the larger enterprise, different teams are typically responsible for these dif-
ferent concerns.

Table 23–1 Discriminating Themes, Epics, Features, and Stories (Continued)

Wow! eBook <WoweBook.Com>

ptg

 identifying and PRioRitizing Business ePics: a kanBan system foR PoRtfoLio PLanning 457

The primary objectives of this system are as follows:

Make the process of reasoning about future development work visible��
Establish WIP limits to control queue sizes and help assure product develop-��
ment flow
Drive an effective collaboration with the development, solution manage-��
ment, sales/marketing, and executive teams
Provide a quantitative basis for economic decision making��

In summary, the system is designed to help those engaged in this most-critical deci-
sion-making process reason about their work. As their decisions go, so goes the fate
of our enterprise.

Overview

Visually, such a system might appear as in Figure 23–5.

4. Implementation

Problem/Solution Needs
Identification

Evaluation
Architecture Team Ownership

Implementation
Development Team Ownership

Agile Release Trains

WIP
Limit

Release
Planning
Boundary

Innovation Feedback

1. Funnel 2. Backlog 3. Analysis

WIP
Limit

PSI 1 PSI 2 PSI 3 PSI 4

WIP
Limit

PSI 1 PSI 2 PSI 3 PSI 4

No WIP Limit
(List Detail Only)

H
G
D
C
A A

C

G

D

A1

C1

A2

WIP
LimitC2

• Product Roadmap
• New Business Opportunity
• Cost Savings
• Solution Problem

Activities:
• Effort Size Estimate
• Value Size Estimate
• Investment Theme

Alignment

Authority
Approves Epic
• Meets

Threshold
Criteria

Business Analyst
Pulls Epic
• Lead Analyst

Assigned

• Refine Understanding
• Estimate Cost of Delay
• Refine Effort Estimate
• Relative Ranking

• Ownership Transitions
• Teams Begin Implementing

at Release Planning
Boundaries

• Teams Break Epics Into
Features

• Analyst Support on “Pull”
Basis

• Solution Alternatives
• Collaboration

• Solution Management
• Architects
• Market/Sales/Business
• Development

• Weighted Rank
• Business Case

Dev.

Architech Solution
management

Analyse

Executive

Portfolio Management
Team/Product Council
Approval

Figure 23–5 Graphic overview of the business epic kanban system

Wow! eBook <WoweBook.Com>

ptg

458 chaPteR 23 � investment themes, ePics, and PoRtfoLio PLanning

Just like before, epics that are eventually implemented go through a series of four
queues, each characterized by different activities on the part of the business analysts
and other stakeholders, along with correspondingly increasing levels of investment.
The queues are as follows:

Funnel (solution needs identification)��
Backlog��
Analysis��
Implementation��

State Diagram View

As with the architecture kanban system, epics transition through a series of states, as
we describe in Figure 23–6.

The state diagram illustrates all the paths for an epic and the decision gates that
drive the epics down these paths. Figure 23–7 shows details of the activities in the
queue, the decision criteria, and the decision authority.

Criteria met;
slot available

Business case approved
and resource available

Rejected Rejected

Trash

A
C
D
G
H

Rejected

Further
review

PSI 1

PSI 1

A1 A2

C1

C2

PSI 2

PSI 2

PSI 3

PSI 3

PSI 4

PSI 4

WIP
Limit

WIP
Limit

Agile Release Trains

Analyst

Epic A

Epic C

Epic D

Solution
Problem Cost Savings

Portfolio
Roadmap

New
Opportunity

2
Backlog

3
Analysis

4
Implementation

1
Funnel

Not ready

Value/effort >X;
slot available

Figure 23–6 State diagram for business epic kanban system

Wow! eBook <WoweBook.Com>

ptg

 identifying and PRioRitizing Business ePics: a kanBan system foR PoRtfoLio PLanning 459

State Activities to Transition Transition Criteria Next Authority

→ Trash

Portfolio
Authority

→ Escalate
 or Trash

Pull System

Portfolio
Authority

→ Trash

Funnel • Estimate Value
• Estimate Effort
• Test Against Investment

 Themes

Backlog • Assign Cost of Delay
• Effort Estimate Refined
• Establish Relative Rank

Analysis • Solution Alternatives
• Collaboration with Business,

 Architects, Development,
 Solutions Management

• Cost Estimates
• Implementation Options
• Market Validation of Value
• Business Case

1. Rank > Threshold
2. WHEN Slot Available
3. Fails Criteria

Ranked Relative to Other Items
Highest Ranked Item Pulled

When Age of Item > Limit

Business Case with GO/NO GO
Recommendation

GO > Implementation

NO GO 1 > More Elaboration
Needed

No GO 2 - Reject

Figure 23–7 Business epic kanban activities and decisions

The Funnel: Problem/Solution Needs Identification

The funnel queue is the holding area for all business epics that have been identi-
fied. There is no formal filtering process; if a portfolio team member has an idea
or gets an idea from another stakeholder, it goes right into the funnel and is date
stamped at that time.

Sources of New Business Epics

Business drivers for new business epics come from a variety of sources, both inside
and outside of the enterprise. Sources include the following.

Portfolio Vision:�� Most of the new epics come from the portfolio Vision or
Roadmap; they have been identified sometime in the past and are now
reaching an appropriate implementation horizon.
New opportunities:�� Some new epics originate from unanticipated changes in
the marketplace, business acquisitions, entry of new competitors, and so on.
Cost savings:�� Cost savings or other operational efficiencies drive many busi-
ness epics. Examples include supply chain management, cloud-based host-
ing, and warehouse and inventory management.

Wow! eBook <WoweBook.Com>

ptg

460 Chapter 23 Investment themes, epICs, and portfolIo plannIng

Problem with the existing solution: � Some business epics are driven by known
problems with an existing solution. Examples include increasing perfor-
mance and reliability and enhancing scalability to support market success.
(Generally, however, these would then be fed into the architectural kanban
system, if such a system exists.)

Activities: Ranking the Epic

The primary activity for epics in this state is a periodic review and preliminary anal-
ysis of the item by the portfolio management team. A primary goal is to establish a
relative ranking based on three parameters:

A preliminary estimate of the � size (the relative “bigness” of the item) to
implement the effort. The effort estimate is an aggregation of a number of
factors that may include the following:

Estimate of the cost and time to implement �
Number of teams, programs, products, business lines potentially �
affected
Technical risk�
Complexity �

A preliminary estimate of the value of the epics, whether measured in cost �
savings, customer retention, revenue, or market share
Degree of alignment with the enterprise’s current investment themes �

Since the item is only in the funnel state, there’s no reason to overinvest in estimat-
ing, so a simple spreadsheet as shown in Table 23–2 could be applied.

Once an item has been ranked and its value exceeds some threshold, it can be moved
to the backlog as soon as space is available. If the item fails the threshold test, it is
deleted. Items can also be either escalated (increase the cost of delay) or deleted
from the funnel when they have been in the queue too long.

Table 23–2 Ranking Criteria for Business Epics in the Funnel State

Ranking Item Scale

Effort size 1, 2, 3, 5, 8, 13, 20, 40

Potential value 1, 2, 3, 5, 8, 13, 20, 40

Alignment to investment theme 0, .25, .5, .75, 1

Epic weight = (Value/effort) * alignment

Wow! eBook <WoweBook.Com>

ptg

 identifying and PRioRitizing Business ePics: a kanBan system foR PoRtfoLio PLanning 461

Work-in-Process Limits

Since this is the “capture” queue, there is no strict work-in-process limit associated
with this state, although periodic pruning may be necessary to keep the list to a
workable size (perhaps 50 to 75 items).

Decision Authority

The funnel queue, and the final decision to move an item to the backlog, is managed
by the appropriate authority, often a senior business analyst or solution manager.

Backlog

Items in the backlog queue deserve and require additional research.

Backlog Activities: Cadence-Based Review, Discussion, and Peer Rating

The analyst team, working as a group, reviews and discusses all epics on the backlog on
a regular cadence (perhaps every two weeks or so). During this review process, epics
receive additional consideration and are further elaborated to advance understanding.

This includes the diligence required to refine the estimates of effort and value. In
addition, a cost of delay is assigned, which requires a more sophisticated under-
standing of the time element that drives the individual epic.

To rank the epic relative to its peers, epics may be placed into a quantitative evalua-
tion matrix. Table 23–3 provides an example of a template for weighting an epic in
the backlog queue.

Table 23–3 Template for Backlog Epics

Name Date entered

Version Changes

Description

Potential stakeholder sponsors

Prerequisites

Teams, products, programs, markets
affected

Notes

Ratings Weight Net Comments

Size 1 1, 2, 3, 5, 8, 13, 20, 40, 100

Continues

Wow! eBook <WoweBook.Com>

ptg

462 chaPteR 23 � investment themes, ePics, and PoRtfoLio PLanning

Cost of delay

Business value 1 Same scale

Time value 1 Same scale

Risk reduction/
opportunity
enablement

1 See below

Length of time in
queue

.5 See below

Weighted rating
(WSJF)

=(BV+TV+RRV+(LT*.5))/size

Prioritization and Rating System

Again, we use the Weighted Shortest Job First (WSJF) prioritization system for rat-
ing epics. The prioritization parameters in this case include the following:

Estimated size (implementation effort).��
Estimated cost of delay for the epics. As was the case with features and archi-��
tectural epics, the cost of delay includes three components.

Business value:�� Relative estimate of the size of the increase in revenue,
market share, cost reduction, or customer satisfaction.
Time value:�� The way in which the value decays over time. A low rating
indicates a stable (not time sensitive) situation; a high rating indicates a
rapid potential decay.
Risk reduction/opportunity enablement. The way in which this ��
epic reduces the risk of future epics, or enables other new business
opportunities.

Length of time in the queue. ��

Example: 0–30 days = 2, 30–60 days = 5, 60–120 days = 7, over 120 = 10

Net Rating and Decision Criteria

These attributes are combined into a single weighted rating,3 which can be used to
prioritize the epics relative to each other, based on the economics of a WSJF. Items
with the highest rating rise to the top of the backlog for promotion to the next state.

3. Add CoD and time in queue and divide by size.

Table 23–3 Template for Backlog Epics (Continued)

Wow! eBook <WoweBook.Com>

ptg

 identifying and PRioRitizing Business ePics: a kanBan system foR PoRtfoLio PLanning 463

Pull from Transition to Analysis

Since the next queue is WIP-limited, there may be no further decision criteria
beyond the mature rating, and a pull system may be applied. Any available business
analyst can pull an epic into the next queue.

Work-in-Process Limits

Items in this backlog queue require additional investment, so the state is WIP-
limited. A reasonable WIP limit might allow an average of 25 or so items in this
particular queue. The limit can be adjusted over time based on the capacity of the
business analyst team.

Analysis

For the two queues we have described so far, the work on business epics is limited
to discussions and preliminary analysis only. Investment is minimal. The artifacts
are lightweight. A fairly large number of epics are manageable. In the analysis state,
however, material use of scarce resources, including business analysts, architects,
development team leads, product and solution managers, marketing/sales, execu-
tive team members, and so on, is both required and justified.

Analysis Activities

When an item is pulled into this state by the analyst team, the epic is time stamped,
and a business analyst is assigned as the “epic owner.” The epic owner is responsible
for defining and spearheading the analysis work that follows. Work in this state may
include the following:

Requirements workshops and other discovery techniques��
Consideration of solution alternatives��
Competitive analysis��
Impact analysis—development, distribution, and deployment��
Buy-or-build evaluation��
Evaluation of internal resourcing versus outsourcing options��
Refined estimates for cost and impact��
Collaboration with development, solution managers, system architects, and ��
executive sponsors
Market validation of value; assignment of cost of delay��
Assigning an executive business sponsor��

Wow! eBook <WoweBook.Com>

ptg

464 chaPteR 23 � investment themes, ePics, and PoRtfoLio PLanning

Collaborations

Much of the work in the analysis state is driving a set of collaborations with other
key stakeholders to better understand and socialize the epic. Key collaborations
include the following.

With development and architects:�� To establish technical feasibility and impact
on existing systems, the business analyst will involve development manage-
ment, tech leads, and architects in the analysis and design alternatives work.
The development teams themselves will estimate the development cost for
each area impacted. In addition, some development teams and architects
may be involved in technical spikes to determine feasibility.
With solution management/product management:�� In a like manner, the
impact on the marketplace and on the business must also be understood.
Therefore, a second active collaboration is initiated with those elements of
the business that can best assess these factors. In addition, the final value
estimate should come from the solution manager, product manager, or busi-
ness owner—whoever is in the best position to judge the potential value.
With executive stakeholders:�� There are likely to be a few, key, executive-level
stakeholders who have a keen interest in the opportunity or are likely to be
impacted. The overall success of the new initiative will be dependent on
them. Involving these stakeholders in the analysis phase serves to engage
them early, actively solicits their input, helps assure buy-in, and serves as a
check and balance on the potential cost and benefit estimates.

Work-in-Process Limits

The analysis queue is subject to work-in-process limits. The limit may be based on
the number, or the number and size, of the epics and is adjusted over time based on
the capacity of the business analysis team. Typically, some small number of epics
(perhaps 5 to 10) would be manageable for this queue.

Epic Business Case Template

The types of epics that have reached this state are assumed to be quite significant,
and they may affect multiple teams, products, components, and services. They
imply a significant investment, and they will impact a significant number of teams.
Therefore, it is incumbent on the analysts—in collaboration with the development
teams and their product/solution manager-partners—to make a go or no-go recom-
mendation to the business as an output of this state. In addition, the recommenda-
tion should be presented in such a way that the portfolio management team has the
background data they need to make a final decision.

As is the case with architectural epics, we recommend development of a lightweight
business case. Table 23–4 shows an annotated example template.

Wow! eBook <WoweBook.Com>

ptg

 identifying and PRioRitizing Business ePics: a kanBan system foR PoRtfoLio PLanning 465

Table 23–4 Lightweight Business Case Template for Business Epics

Epic name Go or no-go
recommendation:

Date entered
backlog:

Analyst
epic owner:

Version Changes

Description of the
epic

Stakeholder
sponsors

(Identifies key business sponsors who will be supporting the initiative.)

Users and markets affected (Describe the user community of the solution and any markets
affected.)

Products, programs, services affected (Identifies products, programs, services, teams, departments,
and so on, that will be impacted by this epic.)

Impact on sales, distribution,
deployment

(Describes any impact on how the product is sold, distributed, or
deployed.)

Estimated
investment

Story points: Cost:

Weighted rating (WSJF) Type of return (Nature of potential return. Revenue,
market share, new markets served.)

In-house or
outsource
development

(Describes recommendations for where the epic is to be developed.)

Estimated develop-
ment timeline

Start date: Completion date:
(Estimated calendar date or number of PSIs.)

Incremental imple-
mentation strategy

(Breaks initiative down into preliminary epics or subepics that fit the company’s PSI
cadence.)

Reevaluation
checkpoints

(If the epic is large, identifies potential milestones or checkpoints for reevaluation.)

Analysis summary (Brief summary of the analysis that has been formed to create the business case.
Pointers to other data, feasibility studies, models, market analysis, and so on, that was
used in the creation of the business case.)

Attachments Project stakeholder needs assessment (see Chapter 7).
System stakeholder needs assessment.

Other notes and
comments

Wow! eBook <WoweBook.Com>

ptg

466 chaPteR 23 � investment themes, ePics, and PoRtfoLio PLanning

When the analysts think the analysis has been sufficiently thorough and that the
business case is “ready enough,” it is presented to the decision authority for action.

Decision Authority

Because of the scope of the effort, the portfolio management team (or some other
set of stakeholders who have the ultimate fiduciary responsibility for the product
line, business unit, or enterprise) makes the final decision as to whether to proceed
with implementation. Such councils typically include the chief executive for the
domain, senior solution managers, line-of-business owners, sales and marketing
representatives, the CTO, and senior development managers.

“No” Is an Acceptable Answer

However, as is the case with architectural epics, even in the presence of a go recom-
mendation case, the portfolio management team must take a broad view. They must
also consider the opportunity cost of the initiative (the opportunities lost to the
business while this epic is being implemented) along with any other business cases
at the same state of maturity.

Indeed, as was the case with architecture epics, one would hope that the business is
managed in such a way that it is always presented with many opportunities for new
investment, and picking the right ones means saying no to many others. That is one
of the many reasons we keep the business cases lightweight, lest the personal time
investment of those who developed the case may be prejudicial to the decision. The
enterprise should consider only the marginal, forward-looking investment, ignor-
ing any sunk costs and personal biases that may have occurred in analysis.4

Reasonable decisions include not initiating the project or, in the marginal case, per-
haps asking for some additional analysis. In this case, the business must recognize
that because of the WIP limits in the analysis state, there is also an opportunity cost
(other epics cannot enter analysis) in leaving the initiative in that state.

“Yes” Is Too

However, many such initiatives will be approved or the organization will fail to
innovate and maintain a competitive advantage. When approved, the epic is moved
to the next and final state, implementation.

4. Product Development Flow Principle E17—The sunk cost principle. Do not consider money
already spent.

Wow! eBook <WoweBook.Com>

ptg

 summaRy 467

Implementation

Although the analysis work of the prior two states uses scarce resources, the real
investment in mass and cost begins once a business epic has been committed to
implementation.

As was the case with architectural epics, the enterprise must consider resources and
implementation paths as part of the business case in the last state. There are four
implementation paths to be considered:

Path A—transition to development��
Path B—create a new team to explore feasibility and build some ��
architectural runway
Path C—outsourcing��
Path D—purchase a solution��

Because we’ve explored each of these paths in the prior chapter on implementation
options for architectural epics, we won’t repeat them here.

summary

In this chapter, we introduced investment themes, which are the set of initiatives
and relative budgets that drive new development in the agile enterprise. We also
introduced the construct of the business epic, which is the requirements object we
use as a container to define new initiatives and estimate and prioritize larger-scale
business value items. In addition, since decision making at this level is so critical to
the economic success of the business, we introduced a kanban system for portfolio
planning that makes work in process visible, drives collaboration with the key stake-
holders, builds the business case for each epic, and provides a framework for deci-
sion making based on the economics of each new business opportunity.

Our hope is that this chapter, and the business epic kanban system we described,
will help your enterprise implement an agile approach to deciding what to develop
and when. Surely, this will drive the best possible economic outcomes for your agile
enterprise, because that is the ultimate goal of this entire book.

In the next and final chapter, we’ll summarize what we’ve discussed into a more com-
plete framework for reasoning about enterprise-wide agile software requirements.

Wow! eBook <WoweBook.Com>

ptg

This page intentionally left blank

Wow! eBook <WoweBook.Com>

ptg

 469

Chapter 24

ConClusion

W e started this book by noting that software development is one of the world’s
most important technologies. Simply, our modern world runs on software,

and where it doesn’t now, it likely will soon.

In support of this criticality, the move to lighter-weight, more flexible, more adapt-
able, and more user-centric software development methods—generally couched
under the label of agile and lean software development—is an inexorable force. This
is not just a whim of some thought leaders or a simple pushback from management
oversight by a few thousand grumpy software developers. Rather, the trend is driven
by the business benefits these models can deliver—rapid increases in development
productivity and delivered quality as well as improved morale of those doing this
important work. The net benefit is better software development economics, and
those economics are driving enterprises, small and large, to adopt and further
improve these new methods.

But as powerful as they are, they are only now advancing to the point of providing
broad, practical, and standardized guidance for that odd combination of art, sci-
ence, and engineering that is the software development process. Central to this pro-
cess are the software requirements, those abstractions we use to drive a conversation
with our customers, as well as to communicate among ourselves, what the new soft-
ware solution is supposed to do for them and what benefits it is designed to deliver.

In this book, we have attempted to address this central part of the larger puzzle by
providing principles, practices, and techniques that development teams, architects,
product managers, and businesspeople can use to define, communicate, implement,
and test the requisite behaviors of these complex new systems. In so doing, we’ve
built on the governing principles of agile—as primarily expressed by the Agile Man-
ifesto, as well as lean development as primarily expressed by Reinertsen’s Principles
of Product Development Flow—to help assure that the recommendations are as
lean and agile as we can possibly make them.

In Part I, we provided an overview context—an organization, process, and artifact
model—that teams could use to reason about software requirements, starting with

Wow! eBook <WoweBook.Com>

ptg

470 chaPteR 24 � concLusion

the Team level, moving to the Program level, and finally, moving to the full enter-
prise portfolio management challenge.

In Part II, we described the most basic—though certainly far from trivial—prac-
tices that software teams can employ to do their local work. We introduced user
stories, stakeholders, user personas, agile estimating and velocity, iterating, backlog,
throughput and kanban, the role of the product owner, acceptance testing, and a set
of requirements discovery techniques that teams can use to both identify the appro-
priate sources and describe intended system behavior.

In Part III, we elevated the discussion to those practices and techniques that teams
of teams could use to manage requirements at the Program level, where they build
larger systems, applications, and product suites. We introduced additional roles and
artifacts, including Vision, features, Roadmap, the role of the product manager, the
Agile Release Train, release planning, nonfunctional requirements, use cases, and,
finally, a requirements analysis toolkit that teams can use when the enterprise can-
not afford to have the intended behavior misunderstood.

In Part IV, we took the discussion to the managers and executive suites and dis-
cussed approaches to identifying and prioritizing those business and technology
epics that we used to describe new solution and technology initiatives. We described
a set of guiding principles for providing the necessary architectural oversight and
governance. We introduced a kanban system for defining, prioritizing, and imple-
menting large-scale, crosscutting technology initiatives that help teams rearchitect
their system to meet ever-increasing user demands. We described how to change
some of the legacy mind-sets of portfolio management to more agile ways of think-
ing. Finally, we introduced investment themes, business epics, and a kanban system
for agile portfolio planning.

Of course, describing all this is the easy part (well, perhaps not that easy at times),
but the real work is left up to you, the reader. It is our sincere hope that this book
will provide a thinking aid with the practical guidance you need to be able to suc-
cessfully implement a lean/agile—and yet fully scalable—requirements process in
your organization so that you can reap the benefits. After all, that’s the only real
value delivery opportunity we have.

The rest is actual software, and that’s up to you.

Good luck.

further information

For further information, and for discussions and extensions to the ideas expressed
in this work, visit www.agilesoftwarerequirements.com or e-mail the author at
deanleffingwell@gmail.com.

Wow! eBook <WoweBook.Com>

www.agilesoftwarerequirements.com

ptg

 471

Appendix A

Context-free interview

In Chapter 12, Requirements Discovery Toolkit, one of the tools we introduced was
the context-free interview that teams or product owners can use to better under-

stand prospective user requirements. Refer to that chapter for descriptions of the
application and how to use the interview template that follows.

Part I: Establishing the Customer or User Profile

Name:

Company:

Industry:

Job title:

(The above information can typically be entered in advance.)

What are your key responsibilities?

What outputs do you produce?

For whom?

How is success measured?

Which problems interfere with your success?

What, if any, trends make your job easier or more difficult?

Part II: Assessing the Problem

For which [application type] problems do you lack good solutions?

What are they? (Hint: Keep asking, “Anything else?”)

For each problem, ask the following questions.

Why does this problem exist?��
How do you solve it now?��
How would you like to solve it?��

Wow! eBook <WoweBook.Com>

ptg

472 aPPendix a � context-fRee inteRview

Part III: Understanding the User Environment

Who are the users?

What is their educational background?

What is their computer background?

Are users experienced with this type of application?

Which platforms are in use?

What are your plans for future platforms?

Are additional applications in use that are relevant to this application? If so,
let’s talk about them a bit.

What are your expectations for usability of the product?

What are your expectations for training time?

What kinds of user help (for example, hard copy and online documentation)
do you need?

Part IV: Recapping for Understanding

You have told me:

(List customer-described problems in your own words.)

��
��
��

Does this adequately represent the problems you are having with your existing
solution?

What, if any, other problems are you experiencing?

Part V: Analyzing the Customer’s Problem

(Validate or invalidate assumptions.)

(If not yet addressed.) Which, if any, problems are associated with the
following? (List any needs or additional problems you think should concern
the customer or user.)

��
��
��

Wow! eBook <WoweBook.Com>

ptg

 aPPendix a � context-fRee inteRview 473

For each suggested problem, ask the following questions.

Is this a real problem?��
What are the reasons for this problem?��
How do you currently solve the problem?��
How would you like to solve the problem?��
How would you rank solving these problems in comparison to others you’ve ��
mentioned?

Part VI: Assessing Your Solution (If Applicable)

(Summarize the key capabilities of your proposed solution.)

What if you could:

��
��
��

How would you rank the importance of these?

Part VII: Assessing the Opportunity

Who in your organization needs this application?

How many of these types of users would use the application?

How would you value a successful solution?

Part VIII: Assessing the Reliability, Performance, and Support Needs

What are your expectations for reliability?

What are your expectations for performance?

Will you support the product, or will others support it?

Do you have special needs for support?

What about maintenance and service access?

What are the security requirements?

What are the installation and configuration requirements?

Are there special licensing requirements?

How will the software be distributed?

Are there labeling and packaging requirements?

Wow! eBook <WoweBook.Com>

ptg

474 aPPendix a � context-fRee inteRview

Part IX: Addressing Other Requirements

Are there any legal, regulatory, or environmental requirements or other
standards that must be supported?

Can you think of any other requirements we should know about?

Part X: Wrapping Up

Are there any other questions I should be asking you?

If I need to ask follow-up questions, may I give you a call? Would you be willing
to participate in a requirements review?

Part XI: Summarizing

After the interview and while the data is still fresh in your mind, summarize
the three highest-priority needs or problems identified by this user/customer.

1.

2.

3.

Wow! eBook <WoweBook.Com>

ptg

 475

Appendix B

vision doCument temPlate

In Chapter 13, Vision, Features, and Roadmap, we introduced the Vision document
as one mechanism for defining and communicating a Vision for the solution. A

template for such a document is provided in the pages that follow.

Wow! eBook <WoweBook.Com>

ptg

476 aPPendix B � vision document temPLate

Vision Document template

Company Name

Vision Document for [Program Name]

© 20XX [Company Name]

Revision History

Date Revision Description Author

mm/dd/yy 1.0 Initial version Author name

Table of Contents

1 Introduction .2

1 .1 Purpose .2

1 .2 Solution Overview .2

1 .3 References .3

2 User Description .3

2 .1 User/Market Demographics .3

2 .2 User Personas .3

2 .3 User Environment .4

2 .4 Key User Needs .4

2 .5 Alternatives and Competition .4

3 Stakeholders .5

4 Product Overview .5

4 .1 Product Perspective .5

4 .2 Product Position Statement .5

4 .3 Summary of Capabilities .6

4 .4 Assumptions and Dependencies .6

4 .5 Cost and Pricing .6

Page 1 of 8

Wow! eBook <WoweBook.Com>

ptg

 aPPendix B � vision document temPLate 477

5 Product Features .6

5 .1 Feature 1 .6

5 .2 Feature 2 .6

6 Exemplary Use Cases .7

7 Nonfunctional Requirements .7

7 .1 Usability .7

7 .2 Reliability .7

7 .3 Performance .7

7 .4 Supportability . .7

7 .5 Other Requirements .7

8 Documentation Requirements .8

8 .1 User Manual .8

8 .2 Online Help .8

8.3 Installation	Guides,	Configuration,	“Read	Me”	File	 .8

8 .4 Labeling and Packaging .8

9 Glossary .8

1 Introduction

This section provides an overview of the Vision document.

1.1 Purpose

This document defines the strategic intent of the program. It defines high-level user
needs, any applicable user personas, key stakeholders, and the general system capabilities
needed by the users.

1.2 Solution Overview

State the general purpose of the product, system, application or service, and any version
identification.

Identify the product or application to be created or enhanced.•

Describe the application of the product, including its benefits, goals, and •
objectives.

Provide a general description of what the solution will and, where appropriate, •
will not do.

Page 2 of 8

Wow! eBook <WoweBook.Com>

ptg

478 aPPendix B � vision document temPLate

1.3 References

List other documents referenced, and specify the sources from which the references can
be obtained. If a business case (Chapter 23) was developed to drive the program, refer to
it or attach it.

2 User Description

To provide products and services that meet users’ needs, it is helpful to understand the
challenges they confront when performing their jobs. This section should profile the
intended users of the application and the key problems that limit the user’s productivity.
This section should not be used to state specific requirements; just provide the back-
ground for why the features specified in Section 5 are needed.

2.1 User/Market Demographics

Summarize the key market demographics that motivate your solution decisions. Describe
target-market segments. Estimate the market’s size and growth by the number of poten-
tial users or the amount of money your customers spend, trying to meet needs that your
product/enhancement would fulfill. Review major industry trends and technologies.
Refer to a market analysis, where available.

2.2 User Personas

Describe the primary and secondary user personas (see Chapter 7). A thorough analysis
might cover the following topics for each persona:

Technical background and degree of sophistication •

Key responsibilities •

Deliverables the user produces and for whom •

Trends that make the user’s job easier or more difficult •

The user’s definition of success and how the user is rewarded •

Problems that interfere with success •

Page 3 of 8

Wow! eBook <WoweBook.Com>

ptg

 aPPendix B � vision document temPLate 479

2.3 User Environment

Describe the working environment of the target user. Here are some suggestions.

How many people are involved in completing the task? Is this changing? •

How long is a task cycle? How much time is spent in each activity? Is this changing? •

Are there any unique environmental constraints: controlled environment, •
mobile, outdoors, and so on?

Which system platforms are in use today? Future platforms? •

What other applications are in use? Does your application need to integrate •
with them?

2.4 Key User Needs

List the key problems or needs as perceived by the user. Clarify the following issues for
each problem.

What are the reasons for this problem? •

How is it solved now? •

What solutions does the user envision? •

Ranking and cumulative-voting techniques for these needs indicate problems that must
be solved versus issues the user would like to be solved.

2.5 Alternatives and Competition

Identify any alternatives available to the user. These can include buying a competitor’s
product, building a homegrown solution, or simply maintaining the status quo. List any
known competitive choices that exist. Include the major strengths and weaknesses of each
competitor as perceived by the end user.

2.5.1 Competitor 1

2.5.2 Competitor 2

Page 4 of 8

Wow! eBook <WoweBook.Com>

ptg

480 aPPendix B � vision document temPLate

3 Stakeholders

Identify the program stakeholders, their needs, and their degree of involvement with the
system. A table such as the following can be effective:

Project
Stakeholder

Degree of
Involvement

Product Needs Program Needs

Stakeholder 1

Stakeholder 2

4 Product Overview

This section provides a high-level view of the solution capabilities, interfaces to other
applications, and systems configurations. This section usually consists of five subsections,
as follows.

4.1 Product Perspective

This subsection should put the product in perspective to other related products and the
user’s environment. If the product is independent and totally self-contained, state so. If
the product is a component of a larger system, this subsection should relate how these
systems interact and should identify the relevant interfaces among the systems. One easy
way to display the major components of the larger system, interconnections, and external
interfaces is via a system context block diagram.

4.2 Product Position Statement

Provide an overall statement summarizing, at the highest level, the unique position the
product intends to fill in the marketplace. Moore [1991] calls this the product position
statement and recommends the following format.

For (target customer)

Who (statement of the need or opportunity)

The (product name) is a (product category)

That (statement of key benefit, that is, compelling rea son to buy)

Unlike (primary competitive alternative)

Our product (statement of primary differentiation)

Page 5 of 8

Wow! eBook <WoweBook.Com>

ptg

 aPPendix B � vision document temPLate 481

A product position statement communicates the intent of the application and the impor-
tance of the program to all stakeholders.

4.3 Summary of Capabilities

Summarize the major benefits and features the product will provide. Organize the fea-
tures so that the list is understandable to any stakeholder. A simple table listing the key
benefits and their supporting features, as shown below, might suffice.

Solution Features Customer Benefit

Feature 1 Benefit 1

Feature 2 Benefit 2

4.4 Assumptions and Dependencies

List any assumptions that, if changed, will alter the vision for the product.

4.5 Cost and Pricing

Describe any relevant cost and pricing constraints, because these can directly impact the
solution definition and implementation.

5 Product Features

This section describes the intended product features. Features provide the system capa-
bilities that are necessary to deliver benefits to the users. Feature descriptions should be
short and pithy, a key phrase, perhaps followed by one or two sentences of explanation.

Use a level of abstraction high enough to be able to describe the system with a maximum
of 25 to 50 features. Each feature should be perceivable by users, operators, or other exter-
nal systems.

5.1 Feature 1

5.2 Feature 2

Page 6 of 8

Wow! eBook <WoweBook.Com>

ptg

482 aPPendix B � vision document temPLate

6 Exemplary Use Cases

[Optional] You may want to describe a few exemplary use cases, perhaps those that are
architecturally significant or those that will most readily help the reader understand how
the system is intended to be used.

7 Nonfunctional Requirements

This section records other system requirements including nonfunctional requirements
(constraints) imposed on the system (see Chapter 17).

7.1 Usability

7.2 Reliability

7.3 Performance

7.4 Supportability

7.5 Other Requirements

7.5.1 Applicable Standards

List all standards the product must comply with, such as legal and regulatory, communi-
cations standards, platform compliance standards, and quality and safety standards.

7.5.2 System Requirements

Define any system requirements necessary to support the application. These may include
the host operating systems and network platforms, configurations, communication,
peripherals, and companion software.

7.5.3 Licensing, Security, and Installation

Licensing, security, and installation issues can also directly impact the development
effort. Installation requirements may affect coding or create the need for separate instal-
lation software.

Page 7 of 8

Wow! eBook <WoweBook.Com>

ptg

 aPPendix B � vision document temPLate 483

8 Documentation Requirements

This section describes the documentation that must be developed to support successful
deployment and use.

8.1 User Manual

Describe the intent of the user manual. Discuss desired length, level of detail, need for
index and glossary, tutorial versus reference manual strategy, and so on. Formatting, elec-
tronic distribution, and printing constraints should also be identified.

8.2 Online Help

The nature of these systems is unique to application development since they combine
aspects of programming and hosting, such as hyperlinks and web services, with aspects of
technical writing, such as organization, style, and presentation.

8.3	 Installation	Guides,	Configuration,	“Read	Me”	File	

A document that includes installation instructions and configuration guidelines is typ-
ically necessary. Also, a “read me” file is often included as a standard component. The
“read me” file may include a “What’s New with This Release” section and a discussion of
compatibility issues with earlier releases. Most users also appreciate publication of any
known defects and workarounds.

8.4 Labeling and Packaging

Defines the requirements for labeling to be incorporated into the code. Examples include
copyright and patent notices, corporate logos, standardized icons, and other graphic
elements.

9 Glossary

The glossary defines terms that are unique to the program. Include any acronyms or
abbreviations that need to be understood by users or other readers.

Page 8 of 8

Wow! eBook <WoweBook.Com>

ptg

This page intentionally left blank

Wow! eBook <WoweBook.Com>

ptg

 485

Appendix C

release Planning readiness CheCklist

In Chapter 16, Release Planning, we described the release planning activity as a key
component of the Agile Release Train. We noted that a simple checklist is a useful

way to assure preparedness for this important event. An example is provided here.

Part I: Organizational Readiness

No. Item Description Yes/No

1.1 Planning scope and context Is the scope (product, system, technology domains) of
the planning process understood? Do we know what
teams need to plan together?

1.2 Planning time frame,
iteration, and release
cadence

What are the release planning dates?
Is the iteration (sprint) and release (PSI) cadence
defined?
Do we know what release period we are planning for?

1.3 Agile teams Does each feature/component team have an identified
Scrum/Agile Master and product owner?

1.4 Agile team attendance Are all team members present in person, or are
arrangements made to involve them remotely?

1.5 Team agile estimating ability Do the teams have a known velocity and the ability to
do story estimating?

1.6 If no to the above If not, will training be provided prior to that time? Or
will adequate coaching be present during the session?

1.7 Executives, business owners,
participation

Do we know who will set the business context and
present the product/solution Vision?

1.8 Business alignment Is there reasonable agreement on priorities among the
business owners and product management?

1.9 Other attendees Do we know what other key stakeholders (documen-
tation, support, IT, infrastructure, and so on) should
attend?

1.10 Development infrastructure Do we understand the impact and/or plans on SCM
continuous integration and build environments?

Continues

Wow! eBook <WoweBook.Com>

ptg

486 aPPendix c � ReLease PLanning Readiness checkList

Part I: Organizational Readiness

No. Item Description Yes/No

1.11 Agile project management
tooling

Do we know how and where features, iterations,
releases, stories, tasks, status, burndown, and so on,
will be maintained?

1.12 Continuing agile education Is there to be any continuing education provided? If
so, by whom, and does it fit the planning schedule?

1.13 Agile technical practices Is there a strategy for unit testing and test
automation? Any other practice guidelines?

Part II: Release Planning Event Content Preparation

No. Item Description Responsible

2.1 Scope, context, and
organizational readiness
established

Review items from Part I. All

2.2 Final agenda Final agenda with start and stop times,
timeboxes, speaker callouts, and so on.

All

2.3 Facilitator preparation Facilitator understands context,
mechanics of event, and facilitator
guidelines.

Facilitator

2.4 Introductory briefing Establishes schedule, objectives, context,
requirements for session.

Facilitator

2.5 Executive briefing Defines current business context and
investment themes.

Executive identified

2.6 Product Vision briefing(s) Briefings prepared by product managers.
Handouts/backlogs prepared with
supporting detail (features, priorities,
market reports, use cases, UX guidelines,
and so on).

Product managers
and business owners

2.7 Architectural Vision briefing Communicate any new architectural
epics and system qualities (nonfunc-
tional) requirements

CTO/architects,
security directors,
and so on

2.8 Development context
briefing (optional)

Agile development process known;
infrastructure and process initia-
tives understood. Guidelines for agile
technical practices.

Senior development
management

2.9 Meeting notice Finalize agenda and send meeting notice
to attendees with venue, access require-
ments, and so on.

Facilitator or project
manager

(Continued)

Wow! eBook <WoweBook.Com>

ptg

 aPPendix c � ReLease PLanning Readiness checkList 487

Part III: Facilities Checklist

No. Item Description Responsible

3.1 Facilities Roomy enough for all
attendees with separate
breakout rooms (if necessary,
depending on size of group).
Note: Ideally, some teams can
remain in the plenary session
room.

3.2 Room accessibility/security Is facility available before and
after hours (in case teams stay
to continue planning)? Can
teams access the breakout
rooms?

3.3 Refreshments and lunch
arrangements

As appropriate based on venue,
time, culture.

3.4 Internet connectivity Needed to access backlogs and
other planning resources.

3.5 Projection equipment Projector available, working
(spare bulb).

3.6 Audio If there are more than 30 to
40 attendees, a working audio
system is required. Ideally,
one lapel mic for the speaker
and one handheld mic for
reviewers.

3.7 Room arrangement Workshop setting. Tables
seating entire teams (7±2)
preferred.

3.8 Remote communications
arrangement

Arrange connectivity, phone,
Skype, webcam, WebEx, or
whatever to engage team
members who will participate
remotely.

3.9 Release planning bill of
materials

For each team:
Two Super Sticky Ultra •
Notes, 4x6, five colors, three
90-Sheet pads/pack
Two 3M Post-it® Super •
Sticky Meeting Flip Chart
White Pk 2
Set of markers•
Name table tents, if useful•

Wow! eBook <WoweBook.Com>

ptg

488 aPPendix c � ReLease PLanning Readiness checkList

Part IV: Program Planning Roster

(1) Team Name
Scrum/Agile

Master Product Owner
On-site

Attendees
Off-site
Attendees

Breakout
Room (2,3)

1

2

3

4

5

6

7

8

9

10

11

12

Notes:
Suggest limit: 100 people, 12 teams maximum. More typically, 50 to 75 people in 7 to 10 teams. 1.
Breakout rooms may require teleconference equipment for remote team members.2.
Can typically keep four to five teams in the plenary session (auditorium) unless they have remote attendees 3.
that require video and audio.

Wow! eBook <WoweBook.Com>

ptg

 489

Appendix D

agile requirements enterPrise
BaCklog meta-model

In this book, we’ve introduced an extensive, agile requirements artifact meta-model
(note: “enterprise backlog model” might be a better label)—a model that defines

the requirements artifacts used by agile teams, as well as the relationships among
these artifacts. As an aid to understanding, we introduced it incrementally, in the
context of the discussions of each section.

Figure D–1 shows the fully elaborated model, from Team through Program through
Portfolio, including the application of use cases for optionally elaborating system
behavior. If the full model appears complex, that’s because contemporary software
development at scale is complex, even with agile methods. Besides, if you don’t need
it all, don’t use it all.

Implemented by
StoryEpic

Realized by
Feature

Realized by
0,1 1..*

Is one of

Backlog Item Nonfunctional
Requirement

Constrained by

Investment
Theme

Realized by
Task

0.1 1..*

Feature
Acceptance Test

Done
when
passes

1..*

1

System Qualities
Tests

Compliant
when passes

Business
Epic

Architecture
Epic

Is one of

Use Case

Optionally
elaborated by

User Story
Other

Work Item

Is one of

1..*

Story
Acceptance Test

Unit Test

1

0..*

Done when passes

1

0..*

0,1 0,11..* 1..*

0..* 0..*

1..*

0..*

1..*

Figure D–1 Requirements meta-model

Wow! eBook <WoweBook.Com>

ptg

This page intentionally left blank

Wow! eBook <WoweBook.Com>

ptg

 491

BiBliograPhy

Anderson, David J. Kanban. Sequim, WA: Blue Hole Press, 2010.

Baker, Steven, and Joseph Thomas. “Establishing an Agile Portfolio to Align IT
Investments with Business Needs.” Proceedings of the Agile 2008 Conference, IEEE
Computer Society, pp. 252–258, 2008.

Beck, Kent. Extreme Programming Explained: Embrace Change. Boston, MA:
Addison-Wesley, 2000.

———. Test-Driven Development. Boston, MA: Addison-Wesley, 2003.

Beck, Kent, with Cynthia Andres. Extreme Programming Explained: Embrace Change.
Second Edition. Boston, MA: Addison-Wesley, 2005.

Beck, Kent, with Martin Fowler. Planning Extreme Programming. Boston, MA:
Addison-Wesley, 2005.

BMC Software Inc. and Rally Software Development Corp. “How BMC Is Scaling
Agile Development.” 2006.

Boehm, Barry. “A Spiral Model of Software Development and Enhancement.”
Computer vol. 21 no. 5 (May 1988): 61–72.

Cockburn, Alistair. Writing Effective Use Cases. Boston, MA: Addison-Wesley, 2001.

Cohn, Mike. Agile Estimating and Planning. Upper Saddle River, NJ: Prentice-Hall,
2006.

———. Succeeding with Agile: Software Development Using Scrum. Upper Saddle
River, NJ: Addison-Wesley, 2010.

———. User Stories Applied: For Agile Software Development. Boston, MA: Addison-
Wesley, 2004.

Cooper, Alan. The Inmates Are Running the Asylum: Why High Tech Products Drive
Us Crazy and How to Restore the Sanity. U.S.: Sams, 1999.

Wow! eBook <WoweBook.Com>

ptg

492 BiBLiogRaPhy

Crispin, Lisa, and Janet Gregory. Agile Testing: A Practical Guide for Testers and Agile
Teams. Upper Saddle River, NJ: Addison-Wesley, 2009.

Davis, Alan M. Software Requirements: Objects, Functions, and States. Englewood
Cliffs, NJ: Prentice-Hall, 1993.

Denne, Mark, and Jane Cleland-Huang. Software by Numbers: Low-Risk, High-
Return Development. Upper Saddle River, NJ: Prentice Hall, 2004.

Gause, Donald, and Gerald Weinberg. Exploring Requirements: Quality Before
Design. New York, NY: Dorset House Publishing, 1989.

Grady, Robert B. Practical Software Metrics for Project Management and Process
Improvement. Upper Saddle River, NJ: Prentice-Hall, 1992.

Highsmith, Jim. Agile Project Management: Creating Innovative Products. Boston,
MA: Addison-Wesley, 2004.

Jeffries, Ron. “Essential XP: Card, Conversation, and Confirmation.” XP Magazine
(August 2001).

Kniberg, Henrik, and Mattias Skarin. Kanban and Scrum: Making the Most of Both.
Raleigh, NC: Lulu.com, 2010.

Kroll, Per, and Bruce MacIsaac. Agility and Discipline Made Easy: Practices from
OpenUP and RUP. New York, NY: Addison-Wesley, 2006.

Kruchten, Philippe. “The 4+1 View of Architecture.” IEEE Software vol. 12, no. 6
(2005): pp. 45–50.

Ladas, Corey. Scrumban: Essays on Kanban Systems for Lean Software Development.
Seattle, WA: Modus Cooperandi Press, 2008.

Larman, Craig. Agile and Iterative Development: A Manager’s Guide. Boston, MA:
Addison-Wesley, 2004.

Larman, Craig, and Bas Vodde. Scaling Lean and Agile Development. Upper Saddle
River, NJ: Addison-Wesley, 2009.

Leffingwell, Dean. Scaling Software Agility: Best Practices for Large Enterprises.
Boston, MA: Addison-Wesley, 2007.

Leffingwell, Dean, and Don Widrig. Managing Software Requirements: A Unified
Approach. Boston, MA: Addison-Wesley, 2000.

Wow! eBook <WoweBook.Com>

ptg

 BiBLiogRaPhy 493

———. Managing Software Requirements, Second Edition: A Use Case Approach.
Boston, MA: Addison-Wesley, 2003.

Liker, Jeffrey. The Toyota Way. New York, NY: McGraw-Hill, 2004.

Martin, Robert. Clean Code: A Handbook of Agile Software Craftsmanship. Upper
Saddle River, NJ: Prentice-Hall, 2009.

Middleton, Peter, and James Sutton. Lean Software Strategies: Proven Techniques for
Managers and Developers. New York, NY: Productivity Press, 2005.

Moore, Geoffrey. Crossing the Chasm. New York, NY: HarperBusiness, 1991.

———. Dealing with Darwin: How Great Companies Innovate at Every Phase of
Their Evolution. New York, NY: Portfolio Press, 2008.

Mugridge, Rick, and Ward Cunningham. Fit for Developing Software. Upper Saddle
River, NJ: Prentice-Hall, 2005.

Pichler, Roman. Agile Product Management with Scrum. Boston, MA: Addison-
Wesley, 2010.

Poppendieck, Mary, and Tom Poppendieck. Implementing Lean Software Develop-
ment: From Concept to Cash. Upper Saddle River, NJ: Addison-Wesley, 2007.

———. Lean Software Development: An Agile Toolkit for Software Development
Managers. Boston, MA: Addison-Wesley, 2003.

QSM Case Study. “Cutter & SLIM Tools Highlight Unprecedented Agile Gains at
BMC Software.” http://www.qsma.com/re_news.html, 2007.

Reinertsen, Donald G. Managing the Design Factory: A Product Developer’s Toolkit.
New York, NY: Free Press, 1997.

———. The Principles of Product Development Flow: Second Generation Lean Product
Development. Redondo Beach, CA: Celeritas Publishing, 2009.

Royce, Winston W. “Managing the Development of Large Software Systems:
Concepts and Techniques.” WESCON Technical Papers, vol. 14 (1970). Los Angeles:
WESCON. Reprinted in Proceedings of the Ninth International Conference on
Software Engineering (1987): pp. 328–338.

Schwaber, Ken. Agile Project Management with Scrum. Redmond, WA: Microsoft
Press, 2004.

Wow! eBook <WoweBook.Com>

http://www.qsma.com/re_news.html

ptg

494 BiBLiogRaPhy

———. The Enterprise and Scrum. Redmond, WA: Microsoft Press, 2007.

Schwaber, Ken, and Mike Beedle. Agile Software Development with Scrum. Upper
Saddle River, NJ: Prentice Hall, 2002.

Shalloway, Alan et.al. Lean-Agile Software Development: Achieving Enterprise Agility.
Upper Saddle River, NJ: Addison-Wesley, 2010.

Sliger, Michele, and Stacia Broderick. The Software Project Manager's Bridge to Agil-
ity. Upper Saddle River, NJ: Addison-Wesley, 2008.

Standish Group. “Charting the Seas of Information Technology—Chaos.” West Yar-
mouth, MA: The Standish Group International, 1994.

Thomas, M. “IT Projects Sink or Swim.” British Computer Society Review (2001).

Wake, William. “Invest in Good Stories and SMART Tasks.” www.xp123.com, 2003.

Wiegers, Karl E. Software Requirements. Redmond, WA: Microsoft Press, 1999.

Wow! eBook <WoweBook.Com>

www.xp123.com

ptg

 495

index

A
Acceptable spikes, 115
Acceptance criteria for user stories, 104–105
Acceptance Test-Driven Development

(ATDD), 173, 190–191
Acceptance tests, 183

automated, 193–195
characteristics, 188–190
checklist, 192–193
component testing, 198
defining, 187
features, 77, 187
importance, 183–184
overview, 184–187
story, 187–190
teams for, 58–59
test-driven development, 190–191
tester responsibilities, 53
unit testing, 196–198
and user stories, 103

Accepted risk category in release planning, 334
Accuracy

estimate predictions, 136
in reliability, 344
in usability, 350

Achievability in SMART acronym, 163
Activities

in kanban system analysis, 463
RUP, 11
system stakeholder, 125
in user stories, 104

Activity diagrams, 357
Actors in use cases, 370–371, 373–374

Adaptive processes, 12
Agile Manifesto, 12–14
enterprise-scale, 19
Extreme Programming, 14–15
requirements management, 16–19
Scrum, 15

Agenda for requirements workshops, 231
Aggregate behavior in use case modeling, 247
Agile Estimating and Planning (Cohn), 138, 262
Agile Manifesto, 12–14, 23–24, 80–81
Agile Masters, 36
Agile Product Management with Scrum

(Pichler), 204
Agile Release Train (ART), 33, 80–82, 299

decentralized rolling-wave planning,
445–446

designing, 308
introduction, 300–301
principles, 303–304
product development flow, 305–307
rationale, 301–303
releases, 290–291

frequency, 313–317
planning, 308–309
predictability, 310–313
retrospective, 310
tracking and managing, 309–310

strategic alignment, 304–305
Agile Testing (Crispin and Gregory), 185–186
Agility

and legacy mind-sets, 432
Little’s law for, 172–175

Alignment in Agile Release Train, 304–305
Alternate flows in use cases, 375

Wow! eBook <WoweBook.Com>

ptg

496 index

Alternate scenarios in use cases, 368, 371
Alternatives and Competition section in

vision documents, 479
Amazon Architecture, 392–393
Analysis

kanban system, 411, 463–466
rearchitecting with flow, 418–422
requirements. See Requirements analysis

Analyst’s Summary for interviews, 240
Anderson, David, 179–180
Andres, Cynthia, 14
Annual funding, 440–441
Annual planning, 445–447
Applicable Standards section in vision

documents, 482
Application standards, 346
Architects

kanban system analysis, 464
responsibilities, 54
system, 388–390

Architectural epics, 88–89, 384
analysis, 418–422
backlog, 415–418
business case templates, 420–421
business drivers for, 387–388
implementing, 89–90, 423–426
Kanban system objectives, 408–409
overview, 409–410
queue descriptions, 410–411
ranking, 414–415
sources, 413–414
splitting, 403–405
state descriptions, 411–412
systems architecture, 399–403

Architectural flow, 384, 399
Architectural governance, 386, 388
Architectural runways, 44, 88–91, 383, 395–396
Architectural work in process (AWIP),

408–409
Architecture

architectural flow principle, 399
architectural runway principle, 395–396

coding and modeling principle, 392–394
emergence of, 385–386
innovation principle, 397–399
portfolio level, 383–384
principles overview, 390
role collaboration principle, 396–397
simplicity principle, 391–392
splitting architecture epics, 403–405
systems, 384–390
team coding principle, 390–391
testing principle, 395
vision for, 324

ART. See Agile Release Train (ART)
Assessing release status , 287, 289
Assumptions and Dependencies section in

vision documents, 481
ATDD (Acceptance Test-Driven

Development), 173, 190–191
Attendance for release planning, 320
Attitudes of product managers, 280–283
Attributes of product owners, 218–220
Automated tests, 186, 193–195
Availability issues in reliability, 344
AWIP (architectural work in process), 408–409

B
Backlogs, 33, 43, 383

benefits, 169–170
blog story, 170–171
as business drivers, 387
changing and eliminating, 178
epics, 85–87, 453, 461–463
features, 76, 255
investment themes in, 451–452
in iteration, 157–158, 169
kanban system, 411, 415–418, 461–463
Little’s law in, 171–175
meta-model, 489
nonfunctional requirements, 78–79, 341, 348
prioritizing, 209–211
problems with, 368
product development flow, 306

Wow! eBook <WoweBook.Com>

ptg

 index 497

product managers for, 289–290
product owners for, 208–211
program level, 40–41
reader reactions to, 176–177
rearchitecting with flow, 415–418
and throughput, 177
user stories in, 38, 55–56

Baker, Steven, 432
Balchin, Mathew, 224
Bartleman, John, 222
Basic features in Kano model, 270
Basic flows in use cases, 371, 375
Batch sizes

lean software, 26
Little’s law, 109
product development flow, 306
user stories, 110–111

Beck, Kent
simplicity, 392
TDD, 190
XP, 14, 100

Beedle, Mike, 221
Berra, Yogi, 47
Best practices and standards, 346
Beyond Budgeting: How Managers Can

Break Free from the Annual Performance
Trap, 450

Bias in interviews, 238
Bibliography, 491–494
Big, up-front design (BUFD) requirements, 11
Big Picture, 31–32

highlights, 33–34
overview, 32–33
portfolio level, 43–44
program level, 38–43
team level, 34–38

Big visible information radiator (BVIR),
164–165

Black, Keith, 69, 222
Black-box testing, 351–352
Boehm, Barry, 10
Bottom-up, team-based estimating, 259

Brainstorming
idea generation, 233–234
idea prioritization, 236–237
idea reduction, 235–236
online, 237
requirements discovery, 232–237

Breakouts in team planning, 325–327, 330
Breaks in system building, 401–402
Broad brushstroke iteration approach, 160–161
Budgeting in investment themes, 450–451
BUFD (big, up-front design) requirements, 11
Build step in define/build/test sequence, 49
Burndown charts

in iteration, 164
release, 309
task hours, 162

Business Analysis Planning and Monitoring
knowledge area, product manager
responsibilities in, 278

Business analysts. See also Product managers
rearchitecting with flow analysis, 420
responsibilities, 201, 203, 276

Business cases
epics, 464–466
investment funding, 438
kanban system rearchitecting with flow

analysis, 420–421
in vision, 253

Business context in release planning, 323–324
Business drivers for architectural epics,

387–388
Business epics, 89, 449–450, 452–453

backlog, 461–463
business case templates, 464–466
expressing, 453–454
vs. features and stories, 454–456
identifying and prioritizing, 456–467
kanban system, 456
ranking, 460
sources, 459–460
subepics, 453
types, 456

Wow! eBook <WoweBook.Com>

ptg

498 index

Business-facing tests, 185
Business plans in investment funding, 438
Business rules in user story splitting

pattern, 112
Business sense of product owners, 219
Business systems analysts, 206
Business team collaboration for rearchitecting

with flow analysis, 420
Business value

in backlog ratings, 417, 462
of estimates, 137
for release objectives, 331–332

BVIR (big visible information radiator),
164–165

C
Cadence

description, 26
product development flow, 307

Cadence-based reviews, 415–416, 461–463
Cadence calendars in iteration, 168
Calendars in iteration, 168, 215–216
Capacity in performance, 345
Cards

acceptance tests, 58–59
user stories, 102–103, 116–117, 211

Cargill, Tom, 339
Case studies. See Tendril case study
Centralized annual planning, 445–447
Centralized development in user experience,

131–132
Change management

portfolio management, 430
product managers for, 286
in requirements discovery, 245–246
rethinking, 440–442

Changing requirements, 16
Chaos report survey, 6
Chapman, Chris, 224
Chief engineer role in iteration, 161
Cho, Fuijo, 155

Classes of service
investment themes, 452
kanban system, 180

Classifying system stakeholders, 125
Clean Code: A Handbook of Agile Software

Craftsmanship (Martin), 346
Cleland-Huang, Jane, 262
Co-development and Alliances knowledge

area, product manager responsibilities
in, 277

Co-location of teams, 71
Co-planning releases, 217–218
Cockburn, Alistair, 367–369
CoD. See Cost of Delay (CoD)
Code

in architecture principles, 392–394
developer responsibilities, 52
team, 390–391

Cohn, Mike
Agile Estimating and Planning, 138, 262
product owners, 219, 221
Scrum guidance, 205
Succeeding with Agile: Software Development

Using Scrum, 219
User Stories Applied, 100, 103

Collaboration
kanban system analysis, 464
product owners, 220, 296–297
rearchitecting with flow analysis, 419–420
role collaboration principle, 396–397

Collective team judgment, 141
Collins, James, 449
Commercialization phase, product manager

responsibilities in, 277
Commitment

estimates, 137
iteration, 159–163, 214
in release planning, 273, 292–293, 334–335

Common infrastructure as business driver, 388
Common usage model, 413

Wow! eBook <WoweBook.Com>

ptg

 index 499

Communication
investment themes, 451
product owner skills for, 219
with product owners, 294
for requirements analysis, 355–356
user stories for, 101
vision, 289

Competitive analysis
in requirements discovery, 244–245
in vision documents, 479

Complexity
story points, 138
in user stories, 110, 112

Component teams, 35, 65–66, 68–71
Component tests, 186, 198
Compound stories, 111–114
Conditions of satisfaction in user stories, 103
Confidence for releases, 273
Confirmation

acceptance tests, 59
user stories, 103, 211

Constraints
backlog. See Backlogs
nonfunctional requirements, 340–341,

345–347
WIP, 26

Construction phase in RUP, 11
Context

in release planning, 323–324
use cases for, 367

Context diagrams, 95
Context-free interviews, 238, 471–474
Continuous content delivery, 441–442
Continuous improvement, 24
Continuous integration, 72
Conversation

acceptance tests, 58
user stories, 103, 211

Cooper, Alan, 127
Cooper, James, 409
Corporate best practices and standards, 346

Cost and Pricing section in vision
documents, 481

Cost of Delay (CoD)
backlog ratings, 417
estimating, 266–267
introduction, 263–266
kanban system, 411
lean software, 25

Costs
as business driver, 388
business epic savings, 459
estimates, 137, 149, 259
predicting, 311
and queue size, 175
and velocity, 148

Costs per story point, 259
Cottmeyer, Mike, 69
Cranky Product Manager, 205
Crispin, Lisa, 183, 185–186, 192
Criteria for user stories, 104–105
Critical category in idea prioritization,

236–237
Critiquing products, acceptance tests for, 185
CSG Systems, 223
Cumulative voting in idea prioritization, 236
Cunningham, Ward, 119, 194, 391
Customer & Market Research knowledge area,

product manager responsibilities in, 277
Customer change request systems, 245–246
Customer needs, product managers for, 284
Customer satisfaction

Kano model of, 269–271
in requirements management, 16

D
Daily stand-ups, 165
Data entry in user stories, 113
Data sheet approach for vision, 253–254
Data variations in user stories, 112
Data view in UML, 394
Dates, release, 271, 311

Wow! eBook <WoweBook.Com>

ptg

500 index

Davis, Alan M., 361–362
Dealing with Darwin (Moore), 3
Debt in iteration, 216–217
Decentralized control, 27, 307
Decentralized rolling-wave planning, 445–447
Decision authority

business epics, 461
funnel queues, 415
kanban system analysis, 466
rearchitecting with flow analysis, 422

Decision criteria in backlog ratings, 417, 462
Decision-making workshops, 232
Decision tables and decision trees, 359–361
Decisiveness of product owners, 219
Decreased complexity in user stories, 110
Defect logs in requirements discovery, 246
Defects

backlogs for, 208
in reliability, 344

Define/build/test sequence, 49
Defining features, 235–236
Degradation modes in performance, 345
Delay cost

backlog ratings, 417
estimating, 266–267
introduction, 263–266
kanban system, 411
lean software, 25

Delighters in Kano model, 270
Delivering releases, 293
Deming, W. Edwards

process descriptions, 1
quotas, 97
system aim, 381
system contributions, 249
systems, 27

Demonstrable spikes, 115
Demonstration in iteration, 167
Denne, Mark, 262
Dependencies in user stories, 106, 110–111
Deployment, program level, 64
Deployment view in UML, 394

Descriptions in use cases, 371
Design constraints

nonfunctional requirements, 340, 345–347
testing, 352

Detail in user stories, 104
Developer-customer communication gap,

user stories for, 101
Developer role and responsibilities, 36, 52
Development

constraints on, 346
infrastructure building, 72–73
iterations, 37, 300
kanban system analysis, 464
product manager responsibilities, 276–277
releases, 314–316

Development management needs, 124
Development team

iteration planning meeting preparation
responsibilities, 159

rearchitecting with flow analysis, 419
Development time estimates, 260
Development WIP, 409
Differential value in optimization, 269–271
Discount Tire, 224
Discovery-based models, 9, 11
Discovery phase, product manager

responsibilities in, 276
Disillusionment phases of product managers,

280–283
Disruptive technology for architectural

epics, 413
Distributed but governed user experience,

131–133
Distributed teams for iteration plans, 163
Do no harm refactoring approach, 89
Documentation Requirements section in

vision documents, 483
Documenting requirements, product

managers for, 284
Domains in release planning, 320
Draft plan reviews for release planning,

327–328

Wow! eBook <WoweBook.Com>

ptg

 index 501

Drivers for architectural epics, 387–388
Duplicate investment and architectural

epics, 413
Duplication of effort as business driver, 388

E
Eclipse foundation, 11
Economic view in product development flow,

25, 305
Effort estimates, 258–259
Elaboration phase in RUP, 11
Elicitation knowledge area, product manager

responsibilities in, 278
Emotional response in usability, 350
Energy independence case study. See Tendril

case study
Enterprise Analysis knowledge area, product

manager responsibilities in, 279
Enterprise-class systems, systems architecture

in, 384–390
Enterprise-scale adaptive processes, 19
Entity-relationship diagrams (ERDs), 365
Epics

architectural. See Architectural epics
business. See Business epics
and portfolio backlogs, 43, 85–87

ERDs (entity-relationship diagrams), 365
“Establishing an Agile Portfolio to Align

IT Investments with Business Needs”
(Baker), 432

Estimable spikes, 115
Estimating

business value of, 137
cautions, 144, 147
cost, 137, 149, 259
Cost of Delay, 266–267
development time, 260
effort, 258–259
features, 257–260
goals of, 136–137
hybrid models, 151–152

with ideal developer days, 149–151
introduction, 135–136
in INVEST model, 108–109
investment funding, 439–440
with planning poker, 139–142, 144–145
relative, 138–139, 145–147, 258
schedules, 149
story points for, 138, 259
tabletop relative, 145–146
time devoted to, 142–144
velocity, 146–149

Exception conditions in use cases, 375
Exciters in Kano model, 270
Execute phase in iteration, 157
Executing iteration, 164, 214–215
Executive stakeholders in kanban system

analysis, 464
Exemplary Use Cases section in vision

documents, 482
Existing product offerings, investment in, 85
Exit conditions in use cases, 372, 375
Expectations of system stakeholders, 125
Expedite service class in kanban system, 180
Exploring Requirements: Quality Before Design

(Gause and Weinberg), 238
Exponential effect on Lambda, 174
External releases, 300
Extreme Programming (XP), 14–15, 100

F
Facilitation by product owners, 121
Facilitators

release planning, 320–321
requirements workshops, 230–231

Fact-based governance, 444–445
False sense of security phase, product

manager attitude in, 281
Fawcett, Jennifer, 220, 296
Feature prioritization evaluation matrix,

267–268
Feature sets in planned release dates, 271

Wow! eBook <WoweBook.Com>

ptg

502 index

Features
acceptance tests, 77, 187
vs. epics and stories, 454–456
estimating, 257–260
in iteration, 169
overview, 255–257
portfolio level, 87
prioritizing, 261–271
program level, 40–41
teams, 34–35, 66–71, 75–77
testing, 77, 260–261
voice, 257

Feedback in product development flow,
26–27, 307

Fibonacci estimating sequence, 110
Finding user personas, 127–129
Finite state machines (FSMs), 361–363
First degree system stakeholders, 125
FIT (Framework for Integrated Tests)

method, 194–195
FitNesse component, 194
Fixed delivery dates in kanban system, 180
Fixed features in Roadmap, 272
Fixed requirements scope assumption, 7
Flow

architecture principle, 399
events in use cases, 371, 374–375
in kanban system, 179–180
product development, 25–27, 305–307
rearchitecting with flow. See Rearchitecting

with flow
Follow-up in requirements workshops, 232
Forming-Storming-Norming-Performing

model, 35
Fowler, Martin, 100
Framework for Integrated Tests (FIT)

method, 194–195
FSMs (finite state machines), 361–363
Functional silos, 50
Functional spikes, 114–115
Functional tests, 186

Functionality
in FURPS acronym, 339
predicting, 311

Funnel queues, 410, 412–415, 459–461
FURPS acronym, 339–340
Futures, investment in, 85

G
Gat, Israel, 136, 429
Gause, Donald, 238
General availability firewalls, 316
Get it done belief in legacy mind-sets,

434–436
Global optimization, 304
Global WIP, 409
Glossary section in vision documents, 483
Goals

of estimating, 136–137
lean software, 22–23
Scrum Masters/Agile Masters

responsibilities, 52
stretch, 336–337

Good to Great (Collins), 449
Gottesdiener, Ellen, 176
Governance

architectural, 386, 388
portfolio management, 430
rethinking, 442–447

Gregory, Janet, 183, 185–186, 192
Gross estimates, 258
Gross profit, 18
Grouping ideas, 235
Guide to the Business Analysis Body of

Knowledge, 278
Gustafsson, Bjorn, 176

H
Hackathons, 398–399
Hardening iterations, 37, 39, 300, 398
Help section in vision documents, 483
Hendrickson, Elizabeth, 194
High, Timothy, 388

Wow! eBook <WoweBook.Com>

ptg

 index 503

High Delay Cost First approach in Cost of
Delay, 264–265

Highsmith, Jim, 67
History of software requirements methods,

3–5
adaptive processes, 12–19
iterative methods, 9–12
lean software, 20–28
waterfall software process model, 5–9

Http Unit testing, 198
Hybrid estimating model, 151–152

I
Ideal developer days (IDDs), 149–151
Ideas in brainstorming

generation, 233–234
prioritization, 236–237
reduction, 235–236

Identifying
epics, 456–467
stakeholders, 122–125

IIBA (International Institute of Business
Analysts), 278

Impediments
program level, 64
in release planning, 333–334
Scrum Masters/Agile Masters

responsibilities, 52
Implementation

architectural epics, 89–90
kanban system, 411, 467
rearchitecting with flow, 423–426

Implementation view in UML, 394
Implementing Lean Software (Poppendieck

and Poppendieck), 20
Important category in idea prioritization,

236–237
Imposed standards as constraints, 346–347
Improvement

kanban system opportunities, 180
Scrum Masters/Agile Masters

responsibilities, 52

Inception phase in RUP, 11
Increased throughput in user stories, 109–110
Incremental delivery, 17, 444–445
Incremental funding, 440–441
Incremental system building, 400
Independence in INVEST model, 106, 110–111
Index cards for user stories, 116–117
Infrastructure enablers, 384
Infrastructure work, backlogs for, 208
Initiative and queue size, 175
Inmates are Running the Asylum, The

(Cooper), 127
Innovation as business driver, 388
Innovation principle, 397–399
Installation section in vision documents, 482
Installation Guides section in vision

documents, 483
Intangible service class in kanban system, 180
Integration in product development flow, 307
Intentional architecture, 386–387
Interactions, stakeholder, 122
Interface development in user experience, 130
Internal releases, 300
International Institute of Business Analysts

(IIBA), 278
Interviews in requirements discovery,

237–240
Introduction section in vision documents, 477
INVEST model attributes for user stories, 105

estimable, 108–109
independent, 106
negotiable, 107
small, 109–111
testable, 111
valuable, 107–108

Investment funding
portfolio management, 430
rethinking, 436–440

Investment themes, 33, 43, 383, 450–451
vs. backlogs, 451–452
communicating, 451
overview, 84

Wow! eBook <WoweBook.Com>

ptg

504 index

Involvement levels of stakeholders, 121
Iron triangle

eliminating in agile, 16
in iteration, 160
waterfall model, 6–8

IS/IT shops, product manager responsibilities
in, 278–279

Iteration, 9, 33, 155–156
backlogs for, 210
calendars in, 168, 215–216
commitment, 159–163, 214
demonstration, 167
demos, 294
executing, 164, 214–215
feature preview, 169
just-in-time story elaboration, 211–212
length, 156
pattern, 157
planning phase, 157–159, 163, 213–214
product owners driving of, 212–216
Rapid Application Development, 10
Rational Unified Process, 11
requirements, 11–12
retrospective, 157, 167, 215
reviews, 167, 215
spiral method, 10
team backlog in, 157–158
team level, 36–37
technical debt and value stream, 216–217
tracking and adjustment in, 164–167
unit testing in, 197–198

J
Jeffries, Ron, 58, 102
Just get it done belief, 434–436
Just-in-time story elaboration, 211–212

K
Kaizen, 24
Kanban system, 28, 179, 408

analysis, 418–422, 463–466
architectural epics, 413–415

backlogs, 411, 415–418, 461–463
classes of service, 180
funnel queues, 412–415, 459–461
implementation, 411, 423–426, 467
objectives, 408–409
overview, 409–410, 457–458
portfolio planning, 456–467
properties, 179–180
queue descriptions, 410–411
state descriptions, 411–413
state diagram views, 458–459

Kano, Noriaki, 269
Kano model of customer satisfaction, 269–271
Kay, Alan, 251
Key product value propositions, 43
Key User Needs section in vision

documents, 479
Knowledge areas, product manager

responsibilities in, 277–279
Knowledge in story points, 138
Kolsky, Amir, 191
Kouzina, Olga, 176
Kroll, Per, 377
Kruchten, Philippe, 393

L
Labeling and Packaging section in vision

documents, 483
Lambda in Little’s law, 172–173
Larman, Craig, 19, 21–22, 67–68
Last responsible moment (LRM), 253
Lawrence, Richard, 111
Leadership

in lean software, 24
product owners, 121

Lean-Agile Software Development: Achieving
Enterprise Agility (Shalloway), 20, 256

Lean Software and Systems Consortium, 20
Lean software overview, 20

continuous improvement, 24
house of, 20–22
kanban, 28

Wow! eBook <WoweBook.Com>

ptg

 index 505

management support, 24–25
product development flow, 25–27
respect for people, 23
sustainably delivering value fast goal, 22–23
systems view, 27

Lean Software Strategies (Middleton and
Sutton), 20

Leffingwell, Dean
acceptance tests, 183
features, 75
finite state machines, 362
Managing Software Requirements: A Use

Case Approach, 255, 340, 369
requirements vs. design, 385
Scaling Software Agility: Best Practices for

Large Enterprises, 16, 19, 65, 88, 387.
Legacy mind-sets in portfolio management,

432–436
Length of queue in backlog, 174–175
Length of time in queue in backlog ratings, 417
Licensing, Security, and Installation section in

vision documents, 482
Lifecycle phases

product manager responsibilities in,
276–277

RUP, 11
Lightweight business cases

epics, 464–466
investment funding, 438
rearchitecting with flow analysis, 420–421

Limited WIP Society, 179
Linear effect on Lambda, 174
Linear features in Kano model, 270
Little’s law

for agility and time to market, 172–175
in backlog, 171–175
batch size in, 109
in blog story, 170–171
queues, 26
reliability of, 177

Local optimization, 304
Local prioritizations of features, 268–269

Logical view in UML, 394
Logistics in requirements workshops, 229
Low-fidelity interface development, 130
LRM (last responsible moment), 253
Lulls in idea generation, 234

M
Maintainability in nonfunctional

requirements, 345
Management support, 24–25
Managers’ review meeting in release

planning, 328
Managing Software Requirements: A Use Case

Approach (Leffingwell and Widrig), 255,
340, 369

Managing the Design Factory (Reinertsen), 20
Marick, Brian, 185
Market/customer-facing product

managers, 206
Market Demographics section in vision

documents, 478
Marketing and ART cadence, 315–316
Marketing requirements documents (MRDs),

251–252, 281
Marketing stakeholder guidelines, 123
Martens, Ryan, 70, 390
Martin, James, 10
Martin, Robert, 110, 346
Mean time between failures (MTBF)

issues, 344
Mean time to repair (MTTR) issues, 344
Measurability in SMART acronym, 163
Measuring workflow in kanban system,

179–180
Meet-after boards in iteration, 166
Message sequence diagrams (MSDs), 364–365
Metrics review in iteration, 168
Middleton, Peter, 20
Milestones

legacy mind-sets, 434–436
rethinking, 444–445

Minimum guarantees in use cases, 372

Wow! eBook <WoweBook.Com>

ptg

506 index

Minimum marketable feature (MMF) in
Kano model, 270–271

Mitigated risk category in release
planning, 334

Modeling principle in architecture, 392–394
Models in kanban system, 180
Monson-Haefel, Richard, 407
Moore, Geoffrey, 3
Motivation and queue size, 175
MRDs (marketing requirements documents),

251–252, 281
MSDs (message sequence diagrams), 364–365
MTBF (mean time between failures)

issues, 344
MTTR (mean time to repair) issues, 344
Mugridge, Rick, 194
Must-have features in Kano model, 270

N
Names in use cases, 370–371, 374
Needs

compiling, 239–240
product managers for, 284
stakeholders, 125–126

Negotiability of user stories, 107
Net ratings for backlogs, 462
New opportunities in business epics, 459
New products

as business drivers, 387
investment in, 85

Next + 1 releases, 273
97 Things Every Software Architect Should

Know (Monson-Haefel), 407
Nonfunctional requirements (NFRs), 77–78,

339–340
and backlogs, 78–79, 341, 348
constraints, 340–341, 345–347
examples, 342–343
modeling, 340–342
performance, 345
persistent, 347–348
program level, 40, 77–80

reliability, 344
supportability, 345
templates, 352–354
testing, 79–80, 348–352
usability, 343–344
as user stories, 342
in vision, 255, 290

Nonfunctional Requirements section in
vision documents, 482

Normalizing velocity, 152
Number of iterations per release, 37

O
Objective-based commitment in iteration, 161
Objectives of releases, 292–293, 308–309,

312–313, 330–332
Ohno, Taiichi, 22, 319
On-site customers, 201
$100 test, 236
Online brainstorming, 237
Online Help section in vision documents, 483
Opaque transparent firewalls, 316
Operations

guidelines, 123
user story splitting pattern, 113

Optimization, 269–271, 304
Order-taker mentality, 433–435
Out-of-the-box thinking in requirements

workshops, 230
Outlines in use case flows, 374–375
Outsourced development in rearchitecting

with flow implementation, 425
Oversight

portfolio management, 430
rethinking, 442–447

Owned risk category in release planning, 334

P
Parkolla, Mikko, 429–430
Partner stakeholders, 123
Partnerships in product manager/product

owner team, 296–297

Wow! eBook <WoweBook.Com>

ptg

 index 507

Paying down technical debt, 217
Peer ratings for backlogs, 415–416, 461–463
People, respect for, 23
People, Teams, & Culture knowledge area,

product manager responsibilities in, 277
Performance

in FURPS acronym, 340
nonfunctional requirements, 345
testing, 352

Perpetual Mistrust phase, product manager
attitude in, 282–283

Persistent acceptance tests, 190
Persistent nonfunctional requirements,

347–348
Personas, 126

finding, 127–129
primary and secondary, 127

Phases of product manager disillusionment,
280–283

Pichler, Roman, 204
Planned release dates in Roadmap, 271
Planning

centralized annual vs. decentralized rolling-
wave, 445–447

investment funding, 439–440
in legacy mind-sets, 434–435
product development flow, 307
releases. See Release planning

Planning phase in iteration, 157–159, 163,
213–214

Planning poker, estimating with, 139–142,
144–145

Plans of intent, 42, 272, 295
PMBOK (Project Management Body of

Knowledge), 442–443
PMO (project management office), 85,

430–431
Pods of agile teams, 33, 35
Policies in kanban system, 180
Poppendieck, Mary, 20, 22–23, 164
Poppendieck, Tom, 20, 22–23, 164

Portfolio backlogs, 383
as business drivers, 387
epics in, 43, 86–87, 453
product development flow, 306

Portfolio level, 33–34
architectural runways, 88–91
backlogs, 86–87
epics, 85–91
features and stories, 87
introduction, 83–84, 383–384
investment themes, 84
portfolio management team, 85
summary, 43–44

Portfolio management
change management, 440–442
epics identification and prioritization for,

456–467
governance and oversight, 442–447
investment funding, 436–440
legacy mind-sets, 432–436
overview, 429–431
project management office, 430–431
team decisions, 85

Portfolio vision in business epics, 459
Portfolio WIP, 409
Potentially shippable increments (PSIs)

in ART, 80, 300–301, 314–317
program level, 33
in releases, 37, 39–40
in system building, 401–402

PRDs (product requirements documents),
251–252, 281

Preconditions in use cases, 372, 375
Predictability of releases, 310–313
Predictions in estimates, 136
Predisposition in interviews, 238
Preliminary press release approach in

vision, 254
Primary user personas, 127–128
Principles of Agile Architecture, 390–399
Principles of Product Development Flow

(Reinertsen), 20, 25, 262

Wow! eBook <WoweBook.Com>

ptg

508 index

Prioritization
backlog ratings, 417, 462
backlogs, 209–211
epics, 456–467
estimates, 137
features, 261–271
ideas, 236–237
in iteration, 214
product managers for, 285
in Roadmap, 272

Problem solving meeting in release
planning, 328

Process control band, 312
Process, Execution, Metrics knowledge area,

product manager responsibilities in,
277–278

Process review in iteration, 168
Process view in UML, 394
Product backlogs, 38
Product champions, 201
Product companies, product manager

responsibilities in, 276–278
Product councils in requirements discovery,

243–244
Product Development and Management

Association, 276
Product development flow, 25–27, 305–307
Product Features section in vision

documents, 481
Product Management and Product Owner Role

in Large Scale Agile Software Development
(Parkolla), 429

Product management in kanban system
analysis, 464

Product managers, 33, 74, 275
change management, 286
customer needs, 284
documenting requirements, 284
evolution of, 283
phases of disillusionment, 280–283
prioritizing requirements, 285
product owner collaboration, 220, 295–297

program level, 42–43
rearchitecting with flow analysis, 420
release management, 290–294
responsibilities, 276–280, 286–287
Roadmap, 295
scheduling, 285
status assessment, 287
validating requirements, 286
vision, 288–290

Product Overview section in vision
documents, 480

Product owners, 33
attributes, 218–220
backlog management, 208–211
bottlenecks, 221
communication with, 294
CSG Systems, 223
description, 120
Discount Tire, 224
dual roles, 207
emergence of, 201–202
iteration driving, 212–216
iteration planning meeting preparation

responsibilities, 159
just-in-time story elaboration, 211–212
product manager collaboration, 220,

295–297
proxies, 221
release planning, 217–218
responsibilities, 51, 202–208
role/title, 206–207
roles, 36
Scrum, 15
Symbian Software, 223–224
teams, 221
technical debt and value stream, 216–217
TradeStation Technologies, 222–223

Product Position Statement section in vision
documents, 480–481

Product requirements documents (PRDs),
251–252, 281

Wow! eBook <WoweBook.Com>

ptg

 index 509

Product/technology councils in rearchitecting
with flow analysis, 422

Production requirements workshops, 232
Productivity in usability, 350
Program backlogs

features for, 76
product development flow, 306

Program level, 33
architectural epics, 90
ART, 80–82
introduction, 63–64
nonfunctional requirements, 77–80
product managers, 42–43
program managers, 275
release planning, 41
releases and PSIs, 39–40
Roadmap, 41–42, 64
summary, 38–39
teams. See Teams and team level
vision, features, and program backlog, 40–41

Programming support, acceptance tests
for, 185

Progress tracking in iteration, 164–167
Project backlogs, 38
Project-free, continuous content delivery,

441–442
Project Management Body of Knowledge

(PMBOK), 442–443
Project management office (PMO), 85,

430–431
Project Management tool, iteration tracking

with, 166–167
Project plans in investment funding, 438
Project-specific information for requirements

workshops, 230
Project stakeholders, 120
Proxies, product owner, 221
Pruning ideas, 235
Pseudocode, 358–359
PSIs (potentially shippable increments)

in ART, 80, 300–301, 314–317
program level, 33

in releases, 37, 39–40
in system building, 401–402

Purchased solutions for rearchitecting with
flow implementation, 425–426

Q
Qualities, testing, 79–80, 186–187
Quality

agile, 17
predicting, 310–311
and queue size, 175
unit tests, 60
waterfall model, 8

Quality assurance
QA and deployment teams, 71
responsibilities, 54
system, 72

Quality Function Deployment technique, 245
Quality management at program level, 64
Quantitative review in iteration, 168
Questionnaires in requirements discovery,

240–241
Questions in interviews, 238–239
Queues. See also Backlogs

analysis, 418–422
backlog blog story, 170–171
funnel, 410, 412–415, 459–461
in kanban system, 410–411
lean software, 25–26
length, 174–175, 177
in product development flow, 306

R
Rally Software Development, 90, 245–246
Ranking

architectural epics, 414–415
business epics, 460

Rapid Application Development (RAD), 10
Ratings for backlogs, 415–417, 461–463
Rational Unified Process (RUP), 11, 252–253,

367, 393
Realized features, 76
Rearchitecting system portions, 387

Wow! eBook <WoweBook.Com>

ptg

510 index

Rearchitecting with flow, 407–408
analysis, 418–422
architectural epics, 413–415
backlogs, 415–418
funnel queues, 412–415
implementation, 423–426
kanban system, 408–412

Recall in usability, 350
Refactors, backlogs for, 208
References section in vision documents, 478
Refining use cases, 375
Regulations as constraints, 346–347
Reinertsen, Donald G.

on AWIP, 408
batch size, 299
Managing the Design Factory, 20
Principles of Product Development Flow,

20, 25, 262
prioritizing work, 263
on queues, 155, 175

Relationships in use cases, 374
Relative estimating, 138–139, 145–147, 258
Release backlogs in product development

flow, 306
Release levels, program managers at, 275
Release management

product managers for, 290–294
program level, 64

Release management teams (RMTs), 73–74, 294
Release planning, 299

ART, 80–81, 308–309
attendance, 320
checklist, 321–322, 485–488
Day 1, 322–323

architecture vision, 324
business context, 323–324
draft plan reviews, 327–328
managers’ review and problem solving

meeting, 328
opening meeting, 323
team planning breakouts, 325–327

Day 2, 328–329
adjustments, 330

commitment, 334–335
final instructions to teams, 336
final review, 332–333
opening meeting, 330
release objectives, 330–332
retrospective, 335–336
risks and impediments, 333–334
solution vision, 324
team planning breakouts, 330

domains, 320
facilitators, 320–321
preparing for, 319
product manager role, 290–293
product owner role, 217–218
program level, 41
stretch goals, 336–337

Release teams, 71
Release train domains, 308
Releases, 33, 39–40

ART. See Agile Release Train (ART)
commitment, 292–293
frequency, 313–317
managing, 309–310
objectives, 292–293, 308–309, 312–313,

330–332
planning. See Release planning
predictability, 310–313
PSIs, 80
retrospective, 310
Roadmap for, 273
tracking, 293–294, 309–310

Relevancy in SMART acronym, 163
Reliability

in FURPS acronym, 340
nonfunctional requirements, 344
testing, 350–351

Reliable estimates, 136
Reports, requirements analysis, 358
Requirements

backlog meta-model, 489
nonfunctional. See Nonfunctional

requirements (NFRs)
user stories as, 101–102

Wow! eBook <WoweBook.Com>

ptg

 index 511

Requirements analysis, 355–356
activity diagrams, 357
decision tables and decision trees, 359–361
entity-relationship diagrams, 365
finite state machines, 361–363
message sequence diagrams, 364–365
pseudocode, 358–359
sample reports, 358
use case modeling, 366

Requirements Analysis knowledge area,
product manager responsibilities in, 279

Requirements analysts, 206
Requirements architects, 206
Requirements discovery, 227–228

brainstorming, 232–237
competitive analysis, 244–245
customer change request systems, 245–246
defect logs, 246
interviews, 237–240
product councils, 243–244
questionnaires, 240–241
use case modeling, 247
user experience mock-ups, 241–243
workshops, 228–232

Requirements Management and
Communication knowledge area,
product manager responsibilities in, 279

Requirements view in UML, 393
Research and development, 267
Resetting expectations phase, product

manager attitude in, 282
Resolved risk category in release planning, 334
Resource management at program level, 64
Resource utilization in performance, 345
Respect for people, 23
Response time in performance, 345
Responsibilities

product managers, 42–43, 276–280
product owners, 51, 202–208
teams, 50–54

Resynchronization, 26

Retrospective
iteration, 157, 167, 215
release planning, 335–336
releases, 310

Return on investment (ROI)
incremental value delivery for, 17
for prioritizing features, 261–263

Review in iteration, 157, 167, 215
Risks and risk reduction

in backlog ratings, 417
backlogs for, 210
in Cost of Delay, 267
and queue size, 175
in release planning, 333–334

RMT (release management team), 73–74, 294
Roadmaps, 271–272

for architectural epics, 413
description, 81–82
product managers for, 295
program level, 41–42, 64
for releases, 273

ROAM categories in release planning, 334
ROI (return on investment)

incremental value delivery for, 17
for prioritizing features, 261–263

Role collaboration principle
rearchitecting with flow analysis, 419–420
system architecture, 396–397

Roles
product owners, 36, 207
teams, 36, 50–54
in user stories, 104

Rolling-wave planning, 445–447
Roof in lean software, 22–23
Royce, Winston, 5–6
Rude Awakening phase, product manager

attitude in, 281
Rules, responsibility for, 52
Runways, architectural, 44, 88–91, 383,

395–396
RUP (Rational Unified Process), 11, 252–253,

367, 393

Wow! eBook <WoweBook.Com>

ptg

512 index

S
SaaS (software as a service) application, 90,

314
Sales stakeholder guidelines, 123
Sample reports in requirements analysis, 358
SATs (story acceptance tests), 187–190
Scalability in performance, 345
Scale, team organization at, 64
Scaling Lean and Agile Development (Larman

and Vodde), 19
Scaling Software Agility (Leffingwell), 16, 19,

65, 88, 387
Scheduled features, 290
Schedules

estimating, 137, 149
myths, 135
product managers for, 285
and velocity, 148

Schwaber, Ken, 202, 221
Scope

in architectural epics, 384
in business epics, 453
of releases, 290
story points for, 138
in waterfall model, 7

Scotland, Karl, 176
Scrum/Agile Masters, 15, 34

responsibilities, 51–52
roles, 36

Scrum Alliance, 15
Scrum Certified Product Owner courses, 204
Scrum of Scrums planning checkpoints,

326–327
Scrum project management method, 15

product owners, 202–204
story of, 24

SDS (system design specification), 281
Second degree system stakeholders, 125
Secondary user personas, 127–128
Security

in reliability, 344
testing, 351–352

Security section in vision documents, 482
Security stakeholder guidelines, 124
Sense of balance in product manager/product

owner teams, 296
Separation of development from releases and

marketing, 315–316
Sequencing in prioritizing features, 262–263
Shakespeare, William, 63, 99, 135, 183, 201
Shalloway, Alan, 20, 256
Shortest Job First in Cost of Delay, 263–264
Silos, functional, 50
Simplicity in architecture, 391–392
Size

backlog ratings, 417
queue, 174–175
in user stories, 110–111

Sliger, Michele, 443
Small attribute in INVEST model, 109–111
SMART acronym, 162–163
Smart energy grids. See Tendril case study
Software as a service (SaaS) application,

90, 314
Software by Numbers (Denne and Cleland-

Huang), 262
Software kanban. See Kanban system
Software Project Manager’s Bridge to Agility

(Sliger), 443
Software Requirements (Wiegers), 262
Software requirements history, 3–5

adaptive processes, 12–19
iterative methods, 9–12
lean software, 20–28
waterfall software process model, 5–9

Software requirements specifications (SRSs),
251–252

Solely emergent architectures, 386
Solution Assessment and Validation

knowledge area, product manager
responsibilities in, 279

Solution management, 276
kanban system analysis, 464
rearchitecting with flow analysis, 420

Wow! eBook <WoweBook.Com>

ptg

 index 513

Solution/product/technology-facing product
owners, 206

Solution vision in release planning, 324
Solutions-context questions in interviews,

238–239
Sources

architectural epics, 413–414
business epics, 459–460

Special requirements in use cases, 372
Specialist responsibilities, 54
Specificity in SMART acronym, 163
Spikes, 114

guidelines, 115–116
technical and functional, 114–115
user experience, 130

Spiral model of development, 10
Splitting

architecture epics, 403–405
user stories, 111–114

Sponsor guidelines, 124
Sprint status boards, 165
Sprints, Scrum, 15, 36
SRSs (software requirements specifications),

251–252
Stakeholder/product owner teams, 126
Stakeholders, 119

identifying, 122–125
interactions, 122
interviews, 237–238
involvement levels, 121
kanban system analysis, 464
product owners, 120
project, 120
requirements workshops, 229
system, 120
trust, 122
in use cases, 372

Stakeholders section in vision documents,
480–481

Standard service class in kanban system, 180
Standards as constraints, 346–347
Standish Group, 6

Starbucks backlog blog story, 170–171
State descriptions in kanban system, 411–413
State diagram views, 458–459
State transition diagrams, 362–363
Statements of intent, 38
Steering committees, 73
Sterling, Chris, 177
Stories

vs. features and epics, 454–456
just-in-time story elaboration, 211–212
portfolio level, 87
user. See User stories

Story acceptance tests (SATs), 59, 187–190
Story points, 138, 257, 259
Story spikes in user experience, 130
Story time in iteration, 169
Strategic alignment in ART, 304–305
Strategic intent in epics, 44
Strategic investment themes, 450
Strategy, Planning, and Decision Making

knowledge area, product manager
responsibilities in, 277

Strategic product themes, 450
Stretch goals in release planning, 336–337
Stretch objectives in iteration, 160
Subepics, 453
Subjective review in iteration, 168
Subsystems in use cases, 368, 372
Succeeding with Agile: Software Development

Using Scrum (Cohn), 219
Success guarantees in use cases, 372
Summary of Capabilities section in vision

documents, 481
Support stakeholder guidelines, 124
Supportability

in FURPS acronym, 340
nonfunctional requirements, 345
testing, 352

Supporting roles, 54
Sustainably delivering value fast goal, 22–23
Sutton, James, 20
Symbian Software, 223–224

Wow! eBook <WoweBook.Com>

ptg

514 index

Synchronization
lean software, 26
product development flow, 307

System acceptance tests, 186
System architecture, 383
System context diagrams, 95
System design specification (SDS), 281
System qualities

tests, 80, 186–187
user story splitting pattern, 113
in vision, 255

System Requirements section in vision
documents, 482

System stakeholders, 120
classifying, 125
identifying, 124
needs of, 125–126

System teams, 71–73
Systems architecture, 384–385

architectural epics, 387–388, 399–403
business drivers, 387–388
emergence of, 385–386
intentional, 386–387
system architect role, 388–390

Systems in use cases, 368, 370, 372
Systems view in lean software, 27

T
Tabletop relative estimation, 145–147
Task-based commitment in iteration, 162–163
Tasks, team level, 38, 57–58
TDD (test-driven development), 60, 190–191
Team backlogs

in iteration, 157–158
product development flow, 306
user stories in, 38, 55–56

Team-based estimating, 259
Teams and team level

acceptance tests, 58–59
architectural epics, 90–91
coding by, 390–391
features, 34–35

and functional silos, 50
importance, 47–49
iterations, 36–37
overview, 34–35
planning breakouts, 325–327, 330
pods, 35
product owners, 221
program level

co-location, 71
component, 65–66, 68–71
features, 66–71, 75–77
organization at scale, 64
product management, 74
release management, 73–74
system, 71–73
vision, 74–75

rearchitecting with flow implementation,
424, 426

roles and responsibilities, 33, 36, 50–54
tasks, 38, 57–58
user stories, 37–38, 56–57

Technical debt, 39
backlogs for, 208
iteration, 216–217

Technical foundation of product owners, 219
Technical spikes, 114–115
Technological changes as business driver, 387
Technology and Intellectual Property

knowledge area, product manager
responsibilities in, 277

Technology-facing tests, 185
Technology Roadmaps, 413
Templates

business cases, 420–421, 464–466
nonfunctional requirements, 352–354
vision documents, 475–477

Temporal prioritizations of features, 268–269
Tendril case study, 93

activity diagrams, 357
background, 93–94
sample reports, 358
system context diagrams, 95

Wow! eBook <WoweBook.Com>

ptg

 index 515

system stakeholders, 125–126
use case example, 375–377
user personas, 128–129

Tendril end-to-end solution, 94
Test-driven development (TDD), 60, 190–191
Testability of user stories, 111
Tester roles and responsibilities, 36, 53
Testing principle in architecture, 395
Tests

acceptance. See Acceptance tests
in define/build/test sequence, 49
features, 77, 260–261
nonfunctional requirements, 79–80,

348–352
performance, 352
reliability, 350–351
security, 351–352
supportability and design constraints, 352
system-level, 72
system qualities, 80
teams, 58–60
usability, 350
user stories, 188–189

Themes
investment, 33, 43, 84, 383, 450–452
planned release dates, 271

Third degree system stakeholders, 125
Thomas, M., 7
Throughput

and backlog queue length, 177
in performance, 345
in user stories, 109–110

Time
in architectural epics, 384
in business epics, 453

Time to market, Little’s law for, 172–175
Time value

in backlog ratings, 417, 462
backlogs for, 210
in Cost of Delay, 267

Timeboxed tasks in SMART acronym, 163
Toyota Production System (TPS), 20

Toyota Way, The (Liker), 20
Tracking

in iteration, 164–167
releases, 293–294, 309–310

TradeStation Securities trading system, 68–69
TradeStation Technologies product owners,

222–223
Training time, 343
Transitions phase in RUP, 11
Transparent firewalls, 316
Trust

product manager/product owner team,
296–297

in software development, 386
stakeholders, 122

Trustworthiness of product owners, 219
Tuckman, Bruce, 35
Tyranny of the urgent iteration, 169

U
UML (Unified Modeling Language), 393–394
Unambiguous acceptance tests, 189
Unbridled enthusiasm phase, product

manager attitude in, 281
Uncertainty

in product development flow, 307
story points, 138

Undelivered features, 40–41
Unified Modeling Language (UML), 393–394
Unit tests

in agile testing matrix, 186
in iteration, 197–198
overview, 196–197
purpose, 60

United management fronts for releases, 330
Unscheduled features, 290
Usability

in FURPS acronym, 339
nonfunctional requirements, 343–344
testing, 350

Use-case view in UML, 393

Wow! eBook <WoweBook.Com>

ptg

516 index

Use cases
applying, 377–378
basics, 369–370
benefits, 368–369
example, 375–377
model building for, 372–375
overview, 367–368
requirements analysis, 366
requirements discovery, 247
requirements model, 378–379
structure, 370–371
user story splitting pattern, 113
vision documents, 482

Useful category in idea prioritization, 236–237
User Description section in vision

documents, 478–479
User Environment section in vision

documents, 479
User experience (UX) design, 129–130

centralized development, 131–132
distributed but governed, 131–133
interface development, 130
story spikes, 130

User experience mock-ups in requirements
discovery, 241–243

User interaction, use cases for, 368
User interviews in requirements discovery,

237–238
User Manual section in vision documents, 483
User/Market Demographics section in vision

documents, 478
User personas, 126

finding, 127–129
primary and secondary, 127

User Personas section in vision
documents, 478

User stories, 33
acceptance criteria, 104–105
backlogs for, 208
basics, 57

cards, conversation, and confirmation,
102–103, 116–117, 121

detail, 104
for developer-customer communication

gap, 101
introduction, 99–100
INVEST model, 105–111
nonfunctional requirements as, 342
overview, 100–101
problems with, 368
as requirements, 101–102
size and Lambda, 174
spikes, 114–116
splitting, 111–114
teams, 37–38, 56–57
testing, 188–189
for user personas, 127–129
voice, 103–104, 257

User Stories Applied (Cohn), 100, 103
User value

in architectural epics, 384
in backlog ratings, 417
backlogs for, 210
in Cost of Delay, 266–267

User voice
features, 257
user stories, 103–104

Utilization
in legacy mind-sets, 434–435
in performance, 345

V
Validating requirements, product managers

for, 286
Value

in architectural epics, 384
in backlog ratings, 417, 462
in Cost of Delay, 266–267
of estimates, 137
in INVEST model, 107–108
in prioritizing features, 269–271

Wow! eBook <WoweBook.Com>

ptg

 index 517

in release objectives, 331–332
in user stories, 104

Value chain, 23
Value/effort ROI proxy,262
Value stream in iteration, 216–217
Variability

lean software, 26
product development flow, 306
and queue size, 175

Variable features in Roadmap,272
Velocity, 136

establishing, 146–149
feature estimates, 257
increasing, 148
normalizing, 152
schedule and cost connections, 148

Velocity-based commitment in iteration,
160–162

Views in UML, 393–394
Vision

communicating, 289
data sheet approach, 253–254
feature backlog with briefing approach, 255
nonfunctional requirements, 255
overview, 251–252
portfolio, 459
preliminary press release approach, 254
product managers for, 288–290
program level, 40, 64
release planning, 324
teams, 74–75
vision documents, 252–253

Vision document template, 475–477
Assumptions and Dependencies

section, 481
Documentation Requirements section, 483
Exemplary Use Cases section, 482
Glossary section, 483
Introduction section, 477
Nonfunctional Requirements section, 482
Product Features section, 481

Stakeholders section, 480–481
User Description section, 478–479

Vodde, Bas, 19, 21–22, 67–68
Vogels, Werner,392
Voice

features, 257
user stories, 103–104

Volume of story points,138
Von Neumann, John, 355

W
Wake, Bill

INVEST acronym, 105
SMART acronym, 162–163
on user stories, 101

Warm-up materials in requirements
workshops, 230

Waterfall model, 5–6
current use, 8–9
problems, 6
requirements, 6–8

Weighted Shortest Job First (WSJF)
prioritization

backlog ratings, 417
in Cost of Delay, 265–267
epic ratings, 462
for features, 290
for requirements, 285

Weinberg, Gerald, 238
White-box testing, 351
Widget engineering mind-set, 433–435
Widrig, Don, 227

acceptance tests, 183
Managing Software Requirements: A Use

Case Approach, 255, 340, 369
Wiegers, Karl E., 262
Wikis, 348
Wireframe models, 242–243
Work breakdown structure in investment

funding, 439–440

Wow! eBook <WoweBook.Com>

ptg

518 index

Work-in-process (WIP)
backlog ratings, 418, 463
business epics, 461
funnel queues, 415
in kanban system, 179, 464
lean software, 26
product development flow, 306–307
rearchitecting with flow, 420, 426

Work items, 56
Workflow

kanban system, 179–180
user story splitting pattern, 112

Working software in systems architecture, 386

Workshops, requirements, 228–232
Write-the-test-first approach, 111
Writing Effective Use Cases (Cockburn), 369
WSJF. See Weighted Shortest Job First (WSJF)

prioritization

X
XML Unit testing, 198
XP (Extreme Programming), 14–15, 100

Z
Zamora, Mauricio, 223, 390

Wow! eBook <WoweBook.Com>

ptg

This page intentionally left blank

Wow! eBook <WoweBook.Com>

ptg

The Agile Software Development Series

9780201721843

9780321458193

9780201699692

9780201699470 9780201498349 9780201702255 9780321117663

9780201760439 9780321219770 9780131111554

9780201758207 9780321150783 9780321268778 9780321286086

9780321502759 978032148965

Agile_Ad_7_375x9_25.qxd 11/18/08 2:33 PM Page 1

Addison-Wesley | Cisco Press | Exam Cram

IBM Press | Que | Prentice Hall | Sams

SAFARI BOOKS ONLINE

About InformIT — THE TRUSTED TECHNOLOGY LEARNING SOURCE

INFORMIT IS HOME TO THE LEADING TECHNOLOGY PUBLISHING IMPRINTS
Addison-Wesley Professional, Cisco Press, Exam Cram, IBM Press, Prentice Hall
Professional, Que, and Sams. Here you will gain access to quality and trusted content and
resources from the authors, creators, innovators, and leaders of technology. Whether you’re
looking for a book on a new technology, a helpful article, timely newsletters, or access to
the Safari Books Online digital library, InformIT has a solution for you.

Registering your products can unlock
the following benefi ts:

• Access to supplemental content,
including bonus chapters,
source code, or project fi les.

• A coupon to be used on your
next purchase.

Registration benefi ts vary by product.
Benefi ts will be listed on your Account
page under Registered Products.

informit.com/register

THIS PRODUCT

12/5/08 3:25:51 PM

Wow! eBook <WoweBook.Com>

ptg

Systems, Applications, P

The Agile Enterprise Big Picture

Te
am

 B
ac

kl
og

System Team

Nonfunctional
Requirements

Feature 1

Feature 2

Release Planning

Arch 1

Pr
og

ra
m

 B
ac

kl
og

Po
rt

fo
lio

 B
ac

kl
og

Release Theme and Obj

Features and CompoProduct
Owner

Scrum/Agile
Master

Te
am

 B
ac

kl
og

Te

am
 B

ac
kl

og

Agile Teams

Developers and Testers

Pl
an

D
em

o

Pl
an

D
em

o

Stories

Iterations

Stories

Release Management

ProductManagement

Investment
Themes

PortfolioManagement

Portfolio Vision

Architectural Runway

Roadmap

Vision

NFRs

Wow! eBook <WoweBook.Com>

ptg

tions, Products

Re
le

as
e

Pl
an

ni
ng

Arch 1

Re
le

as
e

(o
r P

SI
) Features

Fit in
Releases

Epics Span
Releases

Architecture
Evolves

Continuously
Re

le
as

e
Pl

an
ni

ng

Pr
og

ra
m

Po
rt

fo
lio

Re
le

as
e

(o
r P

SI
)

and Objectives

Components
Stories Fit in
Iterations

(Implemented by)
Tasks

Te
am

Spikes Are
Research,
Design,
Refactor
Stories

H

H

H

H

erations lterations

sion

unway
Epic 5

Epic 7

Epic 6

Epic 8

Feature 3

Feature 4

Epic 1
doc

Epic 3
doc

Epic 2
doc

Epic 4
doc

Wow! eBook <WoweBook.Com>

	Contents
	Foreword
	Preface
	Acknowledgments
	About the Author
	Part I: Overview: The Big Picture
	Chapter 1 A Brief History of Software Requirements Methods
	Software Requirements in Context: Decades of Advancing Software Process Models
	Predictive, Waterfall-Like Processes
	Iterative and Incremental Processes
	Adaptive (Agile) Processes
	Requirements Management in Agile Is Fundamentally Different
	Enterprise-Scale Adaptive Processes
	Introduction to Lean Software
	Summary

	Chapter 2 The Big Picture of Agile Requirements
	The Big Picture Explained
	Big Picture: Team Level
	Big Picture: Program Level
	Big-Picture Elements: Portfolio Level
	Summary

	Chapter 3 Agile Requirements for the Team
	Introduction to the Team Level
	Agile Team Roles and Responsibilities
	User Stories and the Team Backlog
	Acceptance Tests
	Unit Tests
	Summary

	Chapter 4 Agile Requirements for the Program
	Introduction to the Program Level
	Organizing Agile Teams at Scale
	Vision
	Features
	Nonfunctional Requirements
	The Agile Release Train
	Roadmap
	Summary

	Chapter 5 Agile Requirements for the Portfolio
	Introduction to the Portfolio Level
	Investment Themes
	Portfolio Management Team
	Epics and the Portfolio Backlog
	Epics, Features, and Stories
	Architectural Runway and Architectural Epics
	Summary
	Summary of the Full, Enterprise Requirements Information Model

	Interlude: Case Study: Tendril Platform
	Background for the Case Study
	System Context Diagram

	Part II: Agile Requirements for the Team
	Chapter 6 User Stories
	Introduction
	User Story Form
	INVEST in Good User Stories
	Splitting User Stories
	Spikes
	Story Modeling with Index Cards
	Summary

	Chapter 7 Stakeholders, User Personas, and User Experiences
	Stakeholders
	Identifying Stakeholders
	User Personas
	Agile and User Experience Development
	Summary

	Chapter 8 Agile Estimating and Velocity
	Introduction
	Why Estimate? The Business Value of Estimating
	Estimating Scope with Story Points
	Understanding Story Points: An Exercise
	An Alternate Technique: Tabletop Relative Estimation
	From Scope Estimates to Team Velocity
	Caveats on the Relative Estimating Model
	From Velocity to Schedule and Cost
	Estimating with Ideal Developer Days
	A Hybrid Model
	Summary

	Chapter 9 Iterating, Backlog, Throughput, and Kanban
	Iterating: The Heartbeat of Agility
	Backlog, Lean, and Throughput
	Software Kanban Systems
	Summary

	Chapter 10 Acceptance Testing
	Why Write About Testing in an Agile Requirements Book?
	Agile Testing Overview
	What Is Acceptance Testing?
	Characteristics of Good Story Acceptance Tests
	Acceptance Test-Driven Development
	Acceptance Test Template
	Automated Acceptance Testing
	Unit and Component Testing
	Summary

	Chapter 11 Role of the Product Owner
	Is This a New Role?
	Perspectives on Dual Roles of Product Owner and Product Manager
	Responsibilities of the Product Owner in the Enterprise
	Five Essential Attributes of a Good Product Owner
	Collaboration with Product Managers
	Product Owner Bottlenecks: Part-Time Product Owners, Product Owner Proxies, Product Owner Teams
	Seeding the Product Owner Role in the Enterprise
	Summary

	Chapter 12 Requirements Discovery Toolkit
	The Requirements Workshop
	Brainstorming
	Interviews and Questionnaires
	User Experience Mock-Ups
	Forming a Product Council
	Competitive Analysis
	Customer Change Request Systems
	Use-Case Modeling
	Summary

	Part III: Agile Requirements for the Program
	Chapter 13 Vision, Features, and Roadmap
	Vision
	Expressing the Vision
	Features
	Estimating Features
	Testing Features
	Prioritizing Features
	The Roadmap
	Summary

	Chapter 14 Role of the Product Manager
	Product Manager, Business Analyst?
	Responsibilities of the Product Manager in a Product Company
	Business Responsibilities of the Role in the IT/IS Shop
	Responsibility Summary
	Phases of Product Management Disillusionment in the Pre-Agile Enterprise
	Evolving Product Management in the Agile Enterprise
	Responsibilities of the Agile Product Manager
	Summary

	Chapter 15 The Agile Release Train
	Introduction to the Agile Release Train
	Driving Strategic Alignment
	Institutionalizing Product Development Flow
	Designing the Agile Release Train
	Planning the Release
	Tracking and Managing the Release
	Release Retrospective
	Measuring Release Predictability
	Releasing
	Summary

	Chapter 16 Release Planning
	Preparing for Release Planning
	Release Planning Narrative, Day 1
	Release Planning Narrative, Day 2
	Stretch Goals
	Summary

	Chapter 17 Nonfunctional Requirements
	Modeling Nonfunctional Requirements
	Exploring Nonfunctional Requirements
	Persisting Nonfunctional Requirements
	Testing Nonfunctional Requirements
	Template for an NFR Specification
	Summary

	Chapter 18 Requirements Analysis Toolkit
	Activity Diagrams
	Sample Reports
	Pseudocode
	Decision Tables and Decision Trees
	Finite State Machines
	Message Sequence Diagrams
	Entity-Relationship Diagrams
	Use-Case Modeling
	Summary

	Chapter 19 Use Cases
	The Problems with User Stories and Backlog Items
	Five Good Reason to Still Use Use Cases
	Use Case Basics
	A Use Case Example
	Applying Use Cases
	Use Cases in the Agile Requirements Information Model
	Summary

	Part IV: Agile Requirements for the Portfolio
	Chapter 20 Agile Architecture
	Introduction to the Portfolio Level of the Big Picture
	Systems Architecture in Enterprise-Class Systems
	Eight Principles of Agile Architecture
	Implementing Architectural Epics
	Splitting Architecture Epics
	Summary

	Chapter 21 Rearchitecting with Flow
	Architectural Epic Kanban System
	Overview of the Architectural Epic Kanban System
	1. The Funnel: Problem/Solution Needs Identification
	2. Backlog
	3. Analysis
	4. Implementation
	Summary

	Chapter 22 Moving to Agile Portfolio Management
	Portfolio Management
	When Agile Teams Meet the PMO: Two Ships Pass in the Night
	Legacy Mind-Sets Inhibit Enterprise Agility
	Legacy Mind-Sets in Portfolio Management
	Eight Recommendations for Moving to Agile Portfolio Management
	Summary: On to Agile Portfolio Planning

	Chapter 23 Investment Themes, Epics, and Portfolio Planning
	Investment Themes
	Epics
	Identifying and Prioritizing Business Epics: A Kanban System for Portfolio Planning
	Summary

	Chapter 24 Conclusion
	Further Information

	Appendix A: Context-Free Interview
	Appendix B: Vision Document Template
	Appendix C: Release Planning Readiness Checklist
	Appendix D: Agile Requirements Enterprise Backlog Meta-model
	Bibliography
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

