

Atomic Kotlin

Bruce Eckel and Svetlana Isakova
This book is for sale at http://leanpub.com/AtomicKotlin
This version was published on 2020-12-21

ISBN 978-0-9818725-4-4

)

Leanpub

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean
Publishing process. Lean Publishing is the act of publishing an in-progress ebook
using lightweight tools and many iterations to get reader feedback, pivot until you
have the right book and build traction once you do.

© 2020 Mindview LLC

http://leanpub.com/AtomicKotlin
http://leanpub.com/
http://leanpub.com/manifesto

CONTENTS

Contents

Copyright 1
Section I: Programming Basics 5
Introduction 6
Why Kotlin? 12
Hello, World! e 26
var &val . .. e 29
DataTypes 32
Functions 35
if Expressions. 39
String Templates 44
Number Types 46
Booleans 52
Repetition withwhile 56
Looping & Ranges 59
TheinKeyword. 65

Atomic Kotlin (www.AtomicKotlin.com) by Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

CONTENTS

Expressions & Statements o 0o L 69
Summary 1 73
Section II: Introduction to Objects 86
Objects Everywhere 87
Creating Classes, 91
Properties 95
Constructors e 100
Constraining Visibility o o 105
Packages. 111
Testing 115
Exceptions 121
Lists 126
Variable Argument Lists, 132
Sets . . . 137
Maps 140
Property Accessors 144
Summary 2 149

Section III: Usability 173

Extension Functions 174

Named & Default Arguments 177

Atomic Kotlin (www.AtomicKotlin.com) by Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

CONTENTS

Overloading 183
when Expressions 187
Enumerations L o 193
DataClasses 197
Destructuring Declarations 201
Nullable Types 206
Safe Calls & the Elvis Operator 210
Non-Null Assertions 214
Extensions for Nullable Types 217
Introduction to Generics L 220
Extension Properties L . 225
break & continue 228
Section IV: Functional Programming 233
Lambdas 234
The Importance of Lambdas 239
Operations on Collections 244
Member References 250
Higher-Order Functions 255
Manipulating Lists L 260
Building Maps 266
Sequences 274

Atomic Kotlin (www.AtomicKotlin.com) by Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

CONTENTS

Local Functions e 281
Folding Lists 288
Recursion e 292

Section V: Object-Oriented Programming . 300

Interfaces 301
Complex Constructors. 308
Secondary Constructors. 310
Inheritance 314
Base Class Initialization 320
Abstract Classes 325
Upcasting 332
Polymorphism 337
Composition 341
Inheritance & Extensions L. 346
Class Delegation 358
Downcasting 364
Sealed Classes 372
TypeChecking L 378
Nested Classes 390
Objects o 398
Inner Classes 402

Atomic Kotlin (www.AtomicKotlin.com) by Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

CONTENTS

Companion Objects 411
Section VI: Preventing Failure 420
Exception Handling 421
Check Instructions 432
The Nothing Type 441
Resource Cleanup 446
Logging 449
Unit Testing 454
Section VII: Power Tools 464
Extension Lambdas 465
ScopeFunctions 476
Creating Generics 487
Operator Overloading 507
Using Operators 522
Property Delegation 528
Property Delegation Tools 537
Lazy Initialization 543
Late Initialization L 547

Atomic Kotlin (www.AtomicKotlin.com) by Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

CONTENTS

Appendices 551
Appendix A: AtomicTest 552

Appendix B: Java Interoperability 556

Atomic Kotlin (www.AtomicKotlin.com) by Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Copyright
Atomic Kotlin

By Bruce Eckel, President, MindView, LLC, and Svetlana Isakova, JetBrains sro.
Copyright ©2021, MindView LLC.
eBook ISBN 978-0-9818725-4-4
Print Book ISBN 978-0-9818725-5-1

The eBook ISBN covers the Stepik and Leanpub eBook distributions, both available
through AtomicKotlin.com.

Please purchase this book through www.AtomicKotlin.com, to support its con-
tinued maintenance and updates.

All rights reserved. Printed in the United States of America. This publication is
protected by copyright, and permission must be obtained from the publisher prior
to any prohibited reproduction, storage in a retrieval system, or transmission in any
form or by any means, electronic, mechanical, photocopying, recording, or likewise.
For information regarding permissions, see AtomicKotlin.com.

Created in Crested Butte, Colorado, USA, and Munich, Germany.
Text printed in the United States

Ebook: Version 1.0, December 2020

First printing January 2021

www. EBooksWor | d. i r

Copyright 2

Cover design by Daniel Will-Harris, www.Will-Harris.com'

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this book,
and the publisher was aware of a trademark claim, the designations are printed with
initial capital letters or in all capitals.

The Kotlin trademark belongs to the Kotlin Foundation?®. Java is a trademark or reg-
istered trademark of Oracle, Inc. in the United States and other countries. Windows
is a registered trademark of Microsoft Corporation in the United States and other
countries. All other product names and company names mentioned herein are the
property of their respective owners.

The authors and publisher have taken care in the preparation of this book, but make
no expressed or implied warranty of any kind and assume no responsibility for errors
or omissions. No liability is assumed for incidental or consequential damages in
connection with or arising out of the use of the information or programs contained
herein.

Visit us at www.AtomicKotlin.com.

Source Code

All the source code for this book is available as copyrighted freeware, distributed
via Github®. To ensure you have the most current version, this is the official code
distribution site. You may use this code in classroom and other educational situations
as long as you cite this book as the source.

The primary goal of this copyright is to ensure that the source of the code is properly
cited, and to prevent you from republishing the code without permission. (As long
as this book is cited, using examples from the book in most media is generally not a
problem.)

In each source-code file you find a reference to the following copyright notice:

'http://www.Will-Harris.com
*https://kotlinlang.org/foundation/kotlin-foundation.html
*https://github.com/BruceEckel/ AtomicKotlinExamples

Atomic Kotlin (www.AtomicKotlin.com) by Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

http://www.will-harris.com/
https://kotlinlang.org/foundation/kotlin-foundation.html
https://github.com/BruceEckel/AtomicKotlinExamples
http://www.will-harris.com/
https://kotlinlang.org/foundation/kotlin-foundation.html
https://github.com/BruceEckel/AtomicKotlinExamples

Copyright

// Copyright.txt
This computer source code is Copyright ©2021 MindView LLC.
All Rights Reserved.

Permission to use, copy, modify, and distribute this
computer source code (Source Code) and its documentation
without fee and without a written agreement for the
purposes set forth below is hereby granted, provided that
the above copyright notice, this paragraph and the
following five numbered paragraphs appear in all copies.

1. Permission is granted to compile the Source Code and to
include the compiled code, in executable format only, in
personal and commercial software programs.

2. Permission is granted to use the Source Code without
modification in classroom situations, including in
presentation materials, provided that the book "Atomic
Kotlin" is cited as the origin.

3. Permission to incorporate the Source Code into printed
media may be obtained by contacting:

MindView LLC, PO Box 969, Crested Butte, CO 81224
MindViewInc@gmail.com

4. The Source Code and documentation are copyrighted by
MindView LLC. The Source code is provided without express
or implied warranty of any kind, including any implied
warranty of merchantability, fitness for a particular
purpose or non-infringement. MindView LLC does not

warrant that the operation of any program that includes the
Source Code will be uninterrupted or error-free. MindView
LLC makes no representation about the suitability of the
Source Code or of any software that includes the Source
Code for any purpose. The entire risk as to the quality

and performance of any program that includes the Source
Code is with the user of the Source Code. The user
understands that the Source Code was developed for research
and instructional purposes and is advised not to rely
exclusively for any reason on the Source Code or any
program that includes the Source Code. Should the Source

Atomic Kotlin (www.AtomicKotlin.com) by Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Copyright 4

Code or any resulting software prove defective, the user
assumes the cost of all necessary servicing, repair, or
correction.

5. IN NO EVENT SHALL MINDVIEW LLC, OR ITS PUBLISHER BE
LIABLE TO ANY PARTY UNDER ANY LEGAL THEORY FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES,
INCLUDING LOST PROFITS, BUSINESS INTERRUPTION, LOSS OF
BUSINESS INFORMATION, OR ANY OTHER PECUNIARY LOSS, OR FOR
PERSONAL INJURIES, ARISING OUT OF THE USE OF THIS SOURCE
CODE AND ITS DOCUMENTATION, OR ARISING OUT OF THE INABILITY
TO USE ANY RESULTING PROGRAM, EVEN IF MINDVIEW LLC, OR

ITS PUBLISHER HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE. MINDVIEW LLC SPECIFICALLY DISCLAIMS ANY
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE SOURCE CODE AND DOCUMENTATION PROVIDED
HEREUNDER IS ON AN "AS IS" BASIS, WITHOUT ANY ACCOMPANYING
SERVICES FROM MINDVIEW LLC, AND MINDVIEW LLC HAS NO
OBLIGATIONS TO PROVIDE MAINTENANCE, SUPPORT, UPDATES,
ENHANCEMENTS, OR MODIFICATIONS.

Please note that MindView LLC maintains a Web site which is
the sole distribution point for electronic copies of the
Source Code, where it is freely available under the terms
stated above:

https://github.com/BruceEckel /AtomicKotlinExamples

If you think you've found an error in the Source Code,
please submit a correction at:
https://github.com/BruceEckel /AtomicKotlinExamples/issues

You may use the code in your projects and in the classroom (including your presen-
tation materials) as long as the copyright notice that appears in each source file is
retained.

Atomic Kotlin (www.AtomicKotlin.com) by Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Section I: Programming
Basics

There was something amazingly enticing about programming—Vint Cerf

This section is for readers who are learning to program. If you’re an experienced
programmer, skip forward to Summary 1 and Summary 2.

Introduction

This book is for dedicated novices and experienced programmers.

You’re a novice if you don’t have prior programming knowledge, but “dedicated”
because we give you just enough to figure it out on your own. When you’re finished,
you’ll have a solid foundation in programming and in Kotlin.

If you’re an experienced programmer, skip forward to Summary 1 and Summary 2,
then proceed from there.

The “Atomic” part of the book title refers to atoms as the smallest indivisible units. In
this book, we try to introduce only one concept per chapter, so the chapters cannot
be further subdivided—thus we call them atoms.

Concepts

All programming languages consist of features. You apply these features to produce
results. Kotlin is powerful—not only does it have a rich set of features, but you can
usually express those features in numerous ways.

If everything is dumped on you too quickly, you might come away thinking Kotlin
is “too complicated”

This book attempts to prevent overwhelm. We teach you the language carefully and
deliberately, using the following principles:

1. Baby steps and small wins. We cast off the tyranny of the chapter. Instead, we
present each small step as an atomic concept or simply atom, which looks like a
tiny chapter. We try to present only one new concept per atom. A typical atom
contains one or more small, runnable pieces of code and the output it produces.

2. No forward references. As much as possible, we avoid saying, “These features
are explained in a later atom.”

Introduction 7

3. No references to other programming languages. We do so only when neces-
sary. An analogy to a feature in a language you don’t understand isn’t helpful.

4. Show don’t tell. Instead of verbally describing a feature, we prefer examples
and output. It’s better to see a feature in code.

5. Practice before theory. We try to show the mechanics of the language first,
then tell why those features exist. This is backwards from “traditional” teaching,
but it often seems to work better.

If you know the features, you can work out the meaning. It’s usually easier to
understand a single page of Kotlin than it is to understand the equivalent code in
another language.

Where Is the Index?

This book is written in Markdown and produced with Leanpub. Unfortunately,
neither Markdown nor Leanpub supports indexes. However, by creating the smallest-
possible chapters (atoms) consisting of a single topic in each atom, the table of
contents acts as a kind of index. In addition, the eBook versions allow for electronic
searching across the book.

Cross-References

A reference to an atom in the book looks like this: Introduction, which in this case
refers to the current atom. In the various eBook formats, this produces a hyperlink
to that atom.

Formatting

In this book:

« Italics introduce a new term or concept, and sometimes emphasize an idea.
« Fixed-width font indicates program keywords, identifiers and file names.

The code examples are also in this font, and are colorized in the eBook versions
of the book.

Atomic Kotlin (www.AtomicKotlin.com) by Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Introduction 8

« In prose, we follow a function name with empty parentheses, as in func(). This
reminds the reader they are looking at a function.

« To make the eBook easy to read on all devices and allow the user to increase the
font size, we limit our code listing width to 47 characters. At times this requires
compromise, but we feel the results are worth it. To achieve these widths
we may remove spaces that might otherwise be included in many formatting
styles—in particular, we use two-space indents rather than the standard four
spaces.

Sample the Book

We provide a free sample of the electronic book at AtomicKotlin.com®*. The sample
includes the first two sections in their entirety, along with several subsequent atoms.
This way you can try out the book and decide if it’s a good fit for you.

The complete book is for sale, both as a print book and an eBook. If you like what
we've done in the free sample, please support us and help us continue our work
by paying for what you use. We hope the book helps, and we appreciate your
sponsorship.

In the age of the Internet, it doesn’t seem possible to control any piece of information.
You’ll probably find the electronic version of this book in numerous places. If you
are unable to pay for the book right now and you do download it from one of these
sites, please “pay it forward.” For example, help someone else learn the language once
you’ve learned it. Or help someone in any way they need. Perhaps in the future you’ll
be better off, and then you can pay for the book.

Exercises and Solutions

Most atoms in Atomic Kotlin are accompanied by a handful of small exercises.
To improve your understanding, we recommend solving the exercises immediately
after reading the atom. Most of the exercises are checked automatically by the
JetBrains Intelli] IDEA integrated development environment (IDE), so you can see
your progress and get hints if you get stuck.

“http://AtomicKotlin.com

Atomic Kotlin (www.AtomicKotlin.com) by Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

http://atomickotlin.com/
http://atomickotlin.com/

Introduction 9

You can find the following links at http://AtomicKotlin.com/exercises/’.

To solve the exercises, install Intelli] IDEA with the Edu Tools plugin by following
these tutorials:

1. Install Intelli] IDEA and the EduTools Plugin®.
2. Open the Atomic Kotlin course and solve the exercises’.

In the course, you’ll find solutions for all exercises. If you’re stuck on an exercise,
check for hints or try peeking at the solution. We still recommend implementing it
yourself.

If you have any problems setting up and running the course, please read The Trou-
bleshooting Guide®. If that doesn’t solve your problem, please contact the support
team as mentioned in the guide.

If you find a mistake in the course content (for example, a test for a task produces the
wrong result), please use our issue tracker to report the problem with this prefilled
form’. Note that you’ll need to log in into YouTrack. We appreciate your time in
helping to improve the course!

Seminars

You can find information about live seminars and other learning tools at AtomicK-
otlin.com.

Conferences

Bruce creates Open-Spaces conferences such as the Winter Tech Forum™. Join the
mailing list at AtomicKotlin.com to stay informed about our activities and where we
are speaking.

*http://AtomicKotlin.com/exercises/

“https://www.jetbrains.com/help/education/install-edutools-plugin.html
"https://www.jetbrains.com/help/education/learner-start- guide.html?section=Atomic%20Kotlin
®https://www.jetbrains.com/help/education/troubleshooting- guide.html
*https://youtrack.jetbrains.com/newlssue?project=EDC&summary=AtomicKotlin%3A&c=Subsystem%20Kotlin&c=
°http://www.WinterTechForum.com

Atomic Kotlin (www.AtomicKotlin.com) by Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

http://atomickotlin.com/exercises/
https://www.jetbrains.com/help/education/install-edutools-plugin.html
https://www.jetbrains.com/help/education/learner-start-guide.html?section=Atomic%20Kotlin
https://www.jetbrains.com/help/education/troubleshooting-guide.html
https://www.jetbrains.com/help/education/troubleshooting-guide.html
https://youtrack.jetbrains.com/newIssue?project=EDC&summary=AtomicKotlin:&c=Subsystem%20Kotlin&c=
https://youtrack.jetbrains.com/newIssue?project=EDC&summary=AtomicKotlin:&c=Subsystem%20Kotlin&c=
http://www.wintertechforum.com/
http://atomickotlin.com/exercises/
https://www.jetbrains.com/help/education/install-edutools-plugin.html
https://www.jetbrains.com/help/education/learner-start-guide.html?section=Atomic%20Kotlin
https://www.jetbrains.com/help/education/troubleshooting-guide.html
https://youtrack.jetbrains.com/newIssue?project=EDC&summary=AtomicKotlin:&c=Subsystem%20Kotlin&c=
http://www.wintertechforum.com/

Introduction 10

Support Us

This was a big project. It took time and effort to produce this book and accompanying
support materials. If you enjoy this book and want to see more things like it, please
support us:

« Blog, tweet, etc. and tell your friends. This is a grassroots marketing effort
so everything you do will help.

« Purchase an eBook or print version of this book at AtomicKotlin.com.

« Check AtomicKotlin.com for other support products or events.

About Us

Bruce Eckel is the author of the multi-award-winning Thinking in Java and Think-
ing in C++, and a number of other books on computer programming including
Atomic Scala'. He’s given hundreds of presentations throughout the world and puts
on alternative conferences and events like the Winter Tech Forum' and developer
retreats. Bruce has a BS in applied physics and an MS in computer engineering.
His blog is at www.BruceEckel.com' and his consulting, training and conference
business is Mindview LLC*.

Svetlana Isakova began as a member of the Kotlin compiler team, and is now
a developer advocate for JetBrains. She teaches Kotlin and speaks at conferences
worldwide, and is coauthor of the book Kotlin in Action.

Acknowledgements

+ The Kotlin Language Design Team and contributors.
« The developers of Leanpub, which made publishing this book so much easier.

"http://www.atomicscala.com/
http://www.WinterTechForum.com
Phttp://www.BruceEckel.com
“https://www.mindviewllc.com/

Atomic Kotlin (www.AtomicKotlin.com) by Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

http://www.atomicscala.com/
http://www.wintertechforum.com/
http://www.bruceeckel.com/
https://www.mindviewllc.com/
http://www.atomicscala.com/
http://www.wintertechforum.com/
http://www.bruceeckel.com/
https://www.mindviewllc.com/

Introduction 11

Dedications
For my beloved father, E. Wayne Eckel. April 1, 1924—November 23, 2016. You first

taught me about machines, tools, and design.

For my father, Sergey Lvovich Isakov, who passed away so early and who we will
always miss.

About the Cover

Daniel Will-Harris™ designed the cover based on the Kotlin logo.

Phttp://www.will-harris.com

Atomic Kotlin (www.AtomicKotlin.com) by Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

http://www.will-harris.com/
http://www.will-harris.com/

Why Kotlin?

We give an overview of the historical development of programming lan-
guages so you can understand where Kotlin fits and why you might want
to learn it. This atom introduces some topics which, if you are a novice,
might seem too complicated right now. Feel free to skip this atom and
come back to it after you’ve read more of the book.

Programs must be written for people to read, and only incidentally for machines to
execute.—Harold Abelson, Structure and Interpretation of Computer Programs

Programming language design is an evolutionary path from serving the needs of the
machine to serving the needs of the programmer.

A programming language is invented by a language designer and implemented as
one or more programs that act as tools for using the language. The implementer is
usually the language designer, at least initially.

Early languages focused on hardware limitations. As computers become more power-
ful, newer languages shift toward more sophisticated programming with an emphasis
on reliability. These languages can choose features based on the psychology of
programming.

Every programming language is a collection of experiments. Historically, program-
ming language design has been a succession of guesses and assumptions about what
will make programmers more productive. Some of those experiments fail, some are
mildly successful and some are very successful.

We learn from the experiments in each new language. Some languages address issues
that turn out to be incidental rather than essential, or the environment changes (faster
processors, cheaper memory, new understanding of programming and languages)
and that issue becomes less important or even inconsequential. If those ideas become
obsolete and the language doesn’t evolve, it fades from use.

The original programmers worked directly with numbers representing processor
machine instructions. This approach produced numerous errors, and assembly lan-
guage was created to replace the numbers with mnemonic opcodes—words that

Why Kotlin? 13

programmers could more easily remember and read, along with other helpful tools.
However, there was still a one-to-one correspondence between assembly-language
instructions and machine instructions, and programmers had to write each line of
assembly code. In addition, each computer processor used its own distinct assembly
language.

Developing programs in assembly language is exceedingly expensive. Higher-level
languages help solve that problem by creating a level of abstraction away from low-
level assembly languages.

Compilers and Interpreters

Kotlin is compiled rather than interpreted. The instructions of an interpreted lan-
guage are executed directly by a separate program called an interpreter. In contrast,
the source code of a compiled language is converted into a different representation
that runs as its own program, either directly on a hardware processor or on a virtual
machine that emulates a processor:

Source code

l Compilation

Machine
Instructions
or
Bytecode

i Run

Result

Languages such as C, C++, Go and Rust compile into machine code that runs directly
on the underlying hardware central processing unit (CPU). Languages like Java and
Kotlin compile into bytecode which is an intermediate-level format that doesn’t run
directly on the hardware CPU, but instead on a virtual machine, which is a program

Atomic Kotlin (www.AtomicKotlin.com) by Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Why Kotlin? 14

that executes bytecode instructions. The JVM version of Kotlin runs on the Java
Virtual Machine (JVM).

Portability is an important benefit of a virtual machine. The same bytecode can run
on every computer that has a virtual machine. Virtual machines can be optimized
for particular hardware and to solve speed problems. The JVM contains many years
of such optimizations, and has been implemented on many platforms.

At compile time, the code is checked by the compiler to discover compile-time errors.
(IntelliJ IDEA and other development environments highlight these errors when you
input the code, so you can quickly discover and fix any problems). If there are no
compile-time errors, the source code will be compiled into bytecode.

A runtime error cannot be detected at compile time, so it only emerges when you
run the program. Typically, runtime errors are more difficult to discover and more
expensive to fix. Statically-typed languages like Kotlin discover as many errors as
possible at compile time, while dynamic languages perform their safety checks at
runtime (some dynamic languages don’t perform as many safety checks as they

might).

Languages that Influenced Kotlin

Kotlin draws its ideas and features from many languages, and those languages were
influenced by earlier languages. It’s helpful to know some programming-language
history to gain perspective on how we got to Kotlin. The languages described here are
chosen for their influence on the languages that followed them. All these languages
ultimately inspired the design of Kotlin, sometimes by being an example of what not
to do.

FORTRAN: FORmula TRANslation (1957)

Designed for use by scientists and engineers, Fortran’s goal was to make it easier to
encode equations. Finely-tuned and tested Fortran libraries are still in use today, but
they are typically “wrapped” to make them callable from other languages.

Atomic Kotlin (www.AtomicKotlin.com) by Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Why Kotlin? 15

LISP: LISt Processor (1958)

Rather than being application-specific, LISP embodied essential programming con-
cepts; it was the computer scientist’s language and the first functional programming
language (You’ll learn about functional programming in this book). The tradeoff for
its power and flexibility was efficiency: LISP was typically too expensive to run on
early machines, and only in recent decades have machines become fast enough to
produce a resurgence in the use of LISP. For example, the GNU Emacs editor is
written entirely in LISP, and can be extended using LISP.

ALGOL: ALGOrithmic Language (1958)

Arguably the most influential of the 1950’s languages because it introduced syntax
that persisted in many subsequent languages. For example, C and its derivatives are
“ALGOL-like” languages.

COBOL: COmmon Business-Oriented Language (1959)

Designed for business, finance, and administrative data processing. It has an English-
like syntax, and was intended to be self-documenting and highly readable. Although
this intent generally failed—COBOL is famous for bugs introduced by a misplaced
period—the US Department of Defense forced widespread adoption on mainframe
computers, and systems are still running (and requiring maintenance) today.

BASIC: Beginners’ All-purpose Symbolic Instruction
Code (1964)

BASIC was one of the early attempts to make programming accessible. While very
successful, its features and syntax were limited, so it was only partly helpful for
people who needed to learn more sophisticated languages. It is predominantly an
interpreted language, which means that to run it you need the original code for the
program. Despite that, many useful programs were written in BASIC, in particular as
a scripting language for Microsoft’s “Office” products. BASIC might even be thought
of as the first “open” programming language, as people made numerous variations
of it.

Atomic Kotlin (www.AtomicKotlin.com) by Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Why Kotlin? 16

Simula 67, the Original Object-Oriented Language
(1967)

A simulation typically involves many “objects” interacting with each other. Differ-
ent objects have different characteristics and behaviors. Languages that existed at
the time were awkward to use for simulations, so Simula (another “ALGOL-like”
language) was developed to provide direct support for creating simulation objects. It
turns out that these ideas are also useful for general-purpose programming, and this
was the genesis of Object-Oriented (OO) languages.

Pascal (1970)

Pascal increased compilation speed by restricting the language so it could be imple-
mented as a single-pass compiler. The language forced the programmer to structure
their code in a particular way and imposed somewhat awkward and less-readable
constraints on program organization. As processors became faster, memory cheaper,
and compiler technology better, the impact of these constraints became too costly.

An implementation of Pascal, Turbo Pascal from Borland, initially worked on CP/M
machines and then made the move to early MS-DOS (precursor to Windows), later
evolving into the Delphi language for Windows. By putting everything in memory,
Turbo Pascal compiled at lightning speeds on very underpowered machines, dramat-
ically improving the programming experience. Its creator, Anders Hejlsberg, later
went on to design both C# and TypeScript.

Niklaus Wirth, the inventor of Pascal, created subsequent languages: Modula, Modula-
2 and Oberon. As the name implies, Modula focused on dividing programs into
modules, for better organization and faster compilation. Most modern languages
support separate compilation and some form of module system.

C (1972)

Despite the increasing number of higher-level languages, programmers were still
writing assembly language. This is often called systems programming, because it is
done at the level of the operating system, but it also includes embedded programming
for dedicated physical devices. This is not only arduous and expensive (Bruce began

Atomic Kotlin (www.AtomicKotlin.com) by Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Why Kotlin? 17

his career writing assembly language for embedded systems), but it isn’t portable—
assembly language can only run on the processor it is written for. C was designed to
be a “high-level assembly language” that is still close enough to the hardware that you
rarely need to write assembly. More importantly, a C program runs on any processor
with a C compiler. C decoupled the program from the processor, which solved a huge
and expensive problem. As a result, former assembly-language programmers could
be vastly more productive in C. C has been so effective that recent languages (notably
Go and Rust) are still attempting to usurp it for systems programming.

Smalltalk (1972)

Designed from the beginning to be purely object-oriented, Smalltalk significantly
moved OO and language theory forward by being a platform for experimentation
and demonstrating rapid application development. However, it was created when
languages were still proprietary, and the entry price for a Smalltalk system could
be in the thousands. It was interpreted, so you needed a Smalltalk environment to
run programs. Open-source Smalltalk implementations did not appear until after the
programming world had moved on. Smalltalk programmers have contributed great
insights benefitting later OO languages like C++ and Java.

C++: A Better C with Objects (1983)

Bjarne Stroustrup created C++ because he wanted a better C and he wanted support
for the object-oriented constructs he had experienced while using Simula-67. Bruce
was a member of the C++ Standards Committee for its first eight years, and wrote
three books on C++ including Thinking in C++.

Backwards-compatibility with C was a foundational principle of C++ design, so
C code can be compiled in C++ with virtually no changes. This provided an easy
migration path—programmers could continue to program in C, receive the benefits
of C++, and slowly experiment with C++ features while still being productive. Most
criticisms of C++ can be traced to the constraint of backwards compatibility with C.

One of the problems with C was the issue of memory management. The programmer
must first acquire memory, then run an operation using that memory, then release
the memory. Forgetting to release memory is called a memory leak and can result

Atomic Kotlin (www.AtomicKotlin.com) by Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Why Kotlin? 18

in using up the available memory and crashing the process. The initial version of
C++ made some innovations in this area, along with constructors to ensure proper
initialization. Later versions of the language have made significant improvements in
memory management.

Python: Friendly and Flexible (1990)

Python’s designer, Guido Van Rossum, created the language based on his inspiration
of “programming for everyone.” His nurturing of the Python community has given
it the reputation of being the friendliest and most supportive community in the
programming world. Python was one of the first open-source languages, resulting
in implementations on virtually every platform including embedded systems and
machine learning. Its dynamism and ease-of-use makes it ideal for automating small,
repetitive tasks but its features also support the creation of large, complex programs.

Python is a true “grass-roots” language; it never had a company promoting it and the
attitude of its fans was to never push the language, but simply to help anyone learn
it who wants to. The language continues to steadily improve, and in recent years its
popularity has skyrocketed.

Python may have been the first mainstream language to combine functional and OO
programming. It predated Java with automatic memory management using garbage
collection (you typically never have to allocate or release memory yourself) and the
ability to run programs on multiple platforms.

Haskell: Pure Functional Programming (1990)

Inspired by Miranda (1985), a proprietary language, Haskell was created as an open
standard for pure functional programming research, although it has also been used
for products. Syntax and ideas from Haskell have influenced a number of subsequent
languages including Kotlin.

Java: Virtual Machines and Garbage Collection (1995)

James Gosling and his team were given the task of writing code for a TV set-top
box. They decided they didn’t like C++ and instead of creating the box, created the

Atomic Kotlin (www.AtomicKotlin.com) by Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Why Kotlin? 19

Java language. The company, Sun Microsystems, put an enormous marketing push
behind the free language (still a new idea at the time) to attempt domination of the
emerging Internet landscape.

This perceived time window for Internet domination put a lot of pressure on Java
language design, resulting in a significant number of flaws (The book Thinking
in Java illuminates these flaws so readers are prepared to cope with them). Brian
Goetz at Oracle, the current lead developer of Java, has made remarkable and
surprising improvements in Java despite the constraints he inherited. Although Java
was remarkably successful, an important Kotlin design goal is to fix Java’s flaws so
programmers can be more productive.

Java’s success came from two innovative features: a virtual machine and garbage
collection. These were available in other languages—for example, LISP, Smalltalk and
Python have garbage collection and UCSD Pascal ran on a virtual machine—but they
were never considered practical for mainstream languages. Java changed that, and
in doing so made programmers significantly more productive.

A virtual machine is an intermediate layer between the language and the hardware.
The language doesn’t have to generate machine code for a particular processor; it
only needs to generate an intermediate language (bytecode) that runs on the virtual
machine. Virtual machines require processing power and, before Java, were believed
to be impractical. The Java Virtual Machine (JVM) gave rise to Java’s slogan “write
once, run everywhere” In addition, other languages can be more easily developed
by targeting the JVM; examples include Groovy, a Java-like scripting language, and
Clojure, a version of LISP.

Garbage collection solves the problem of forgetting to release memory, or when
it’s difficult to know when a piece of storage is no longer used. Projects have
been significantly delayed or even cancelled because of memory leaks. Although
garbage collection appears in some prior languages, it was believed to produce an
unacceptable amount of overhead until Java demonstrated its practicality.

JavaScript: Java in Name Only (1995)

The original Web browser simply copied and displayed pages from a Web server.
Web browsers proliferated, becoming a new programming platform that needed
language support. Java wanted to be this language but was too awkward for the

Atomic Kotlin (www.AtomicKotlin.com) by Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Why Kotlin? 20

job. JavaScript began as LiveScript and was built into NetScape Navigator, one of
the first Web browsers. Renaming it to JavaScript was a marketing ploy by NetScape,
as the language has only a vague similarity to Java.

As the Web took off, JavaScript became tremendously important. However, the
behavior of JavaScript was so unpredictable that Douglas Crockford wrote a book
with the tongue-in-cheek title JavaScript, the Good Parts, where he demonstrated
all the problems with the language so programmers could avoid them. Subsequent
improvements by the ECMAScript committee have made JavaScript unrecognizeable
to an original JavaScript programmer. It is now considered a stable and mature
language.

Web assembly (WASM) was derived from JavaScript to be a kind of bytecode for web
browsers. It often runs much faster than JavaScript and can be generated by other
languages. At this writing, the Kotlin team is working to add WASM as a target.

C#: Java for .NET (2000)

C# was designed to provide some of the important abilities of Java on the NET
(Windows) platform, while freeing designers from the constraint of following the
Java language. The result included numerous improvements over Java. For example,
C# developed the concept of extension functions, which are heavily used in Kotlin.
C# also became significantly more functional than Java. Many C# features clearly
influenced Kotlin design.

Scala: SCALAble (2003)

Martin Odersky created Scala to run on the Java virtual machine: To piggyback on
the work done on the JVM, to interact with Java programs, and possibly with the
idea that it might displace Java. As a researcher, Odersky and his team used Scala as
a platform to experiment with language features, notably those not included in Java.

These experiments were illuminating and a number of them found their way into
Kotlin, usually in a modified form. For example, the ability to redefine operators like
+ for use in special cases is called operator overloading. This was included in C++
but not Java. Scala added operator overloading but also allows you to invent new
operators by combining any sequence of characters. This often produces confusing

Atomic Kotlin (www.AtomicKotlin.com) by Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Why Kotlin? 21

code. A limited form of operator overloading is included in Kotlin, but you can only
overload operators that already exist.

Scala is also an object-functional hybrid, like Python but with a focus on pure
functions and strict objects. This helped inspire Kotlin’s choice to also be an object-
functional hybrid.

Like Scala, Kotlin runs on the JVM but it interacts with Java far more easily than
Scala does. In addition, Kotlin targets JavaScript, the Android OS, and it generates
native code for other platforms.

Atomic Kotlin evolved from the ideas and material in Atomic Scala®®.

Groovy: A Dynamic JVM Language (2007)

Dynamic languages are appealing because they are more interactive and concise than
static languages. There have been numerous attempts to produce a more dynamic
programming experience on the JVM, including Jython (Python) and Clojure (a
dialect of Lisp). Groovy was the first to achieve wide acceptance.

At first glance, Groovy appears to be a cleaned-up version of Java, producing a more
pleasant programming experience. Most Java code will run unchanged in Groovy, so
Java programmers can be quickly productive, later learning the more sophisticated
features that provide notable programming improvements over Java.

The Kotlin operators 7. and ?: that deal with the problem of emptiness first appeared
in Groovy.

There are numerous Groovy features that are recognizeable in Kotlin. Some of those
features also appear in other languages, which probably pushed harder for them to
be included in Kotlin.

Why Kotlin? (Introduced 2011, Version 1.0:
2016)

Just as C++ was initially intended to be “a better C,” Kotlin was initially oriented
towards being “a better Java.” It has since evolved significantly beyond that goal.

“http://www.AtomicScala.com

Atomic Kotlin (www.AtomicKotlin.com) by Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

http://www.atomicscala.com/
http://www.atomicscala.com/

Why Kotlin? 22

Kotlin pragmatically chooses only the most successful and helpful features from
other programming languages—after those features have been field-tested and proven
especially valuable.

Thus, if you are coming from another language, you might recognize some features
of that language in Kotlin. This is intentional: Kotlin maximizes productivity by
leveraging tested concepts.

Readability

Readability is a primary goal in the design of the language. Kotlin syntax is concise—
it requires no ceremony for most scenarios, but can still express complex ideas.

Tooling

Kotlin comes from JetBrains, a company that specializes in developer tooling. It has
first-class tooling support, and many language features were designed with tooling
in mind.

Multi-Paradigm

Kotlin supports multiple programming paradigms, which are gently introduced in

this book:

« Imperative programming
« Functional programming
+ Object-oriented programming

Multi-Platform

Kotlin source code can be compiled to different target platforms:

« JVM. The source code compiles into JVM bytecode (.class files), which can
then be run on any Java Virtual Machine (JVM).

Atomic Kotlin (www.AtomicKotlin.com) by Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Why Kotlin? 23

+ Android. Android its own runtime called ART" (the predecessor was called
Dalvik). The Kotlin source code is compiled into Dalvik Executable Format
(. dex files).

« JavaScript, to run inside a web browser.

« Native Binaries by generating machine code for specific platforms and CPUs.

This book focuses on the language itself, using the JVM as the only target platform.
Once you know the language, you can apply Kotlin to different application and target
platforms.

Two Kotlin Features

This atom does not assume you are a programmer, which makes it hard to explain
most of the benefits of Kotlin over the alternatives. There are, however, two topics
which are very impactful and can be explained at this early juncture: Java interoper-
ability and the issue of indicating “no value.”

Effortless Java Interoperability

To be “a better C,;” C++ must be backwards compatible with the syntax of C, but
Kotlin does not have to be backwards compatible with the syntax of Java—it only
needs to work with the JVM. This frees the Kotlin designers to create a much cleaner
and more powerful syntax, without the visual noise and complication that clutters
Java.

For Kotlin to be “a better Java,” the experience of trying it must be pleasant and
frictionless, so Kotlin enables effortless integration with existing Java projects. You
can write a small piece of Kotlin functionality and slip it in amidst your existing Java
code. The Java code doesn’t even know the Kotlin code is there—it just looks like
more Java code.

Companies often investigate a new language by building a standalone program with
that language. Ideally, this program is beneficial but nonessential, so if the project
fails it can be terminated with minimal damage. Not every company wants to spend
the kind of resources necessary for this type of experimentation. Because Kotlin

https://source.android.com/devices/tech/dalvik

Atomic Kotlin (www.AtomicKotlin.com) by Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

https://source.android.com/devices/tech/dalvik
https://source.android.com/devices/tech/dalvik

Why Kotlin? 24

seamlessly integrates into an existing Java system (and benefits from that system’s
tests), it becomes very cheap or even free to try Kotlin to see whether it’s a good fit.

In addition, JetBrains, the company that creates Kotlin, provides IntelliJ IDEA in a
“Community” (free) version, which includes support for both Java and Kotlin along
with the ability to easily integrate the two. It even has a tool that takes Java code and
(mostly) rewrites it to Kotlin.

Appendix B covers Java interoperability.
Representing Emptiness

An especially beneficial Kotlin feature is its solution to a challenging programming
problem.

What do you do when someone hands you a dictionary and asks you to look up a
word that doesn’t exist? You could guarantee results by making up definitions for
unknown words. A more useful approach is just to say, “There’s no definition for
that word.” This demonstrates a significant problem in programming: How do you
indicate “no value” for a piece of storage that is uninitialized, or for the result of an
operation?

The null reference was invented in 1965 for ALGOL by Tony Hoare, who later called
it “my billion-dollar mistake.” One problem was that it was too simple—sometimes
being told a room is empty isn’t enough; you might need to know, for example, why
it is empty. This leads to the second problem: the implementation. For efficiency’s
sake, it was typically just a special value that could fit in a small amount of memory,
and what better than the memory already allocated for that information?

The original C language did not automatically initialize storage, which caused nu-
merous problems. C++ improved the situation by setting newly-allocated storage to
all zeroes. Thus, if a numerical value isn’t initialized, it is simply a numerical zero.
This didn’t seem so bad but it allowed uninitialized values to quietly slip through the
cracks (newer C and C++ compilers often warn you about these). Worse, if a piece of
storage was a pointer—used to indicate (“point to”) another piece of storage—a null
pointer would point at location zero in memory, which is almost certainly not what
you want.

Java prevents accesses to uninitialized values by reporting such errors at runtime.
Although this discovers uninitialized values, it doesn’t solve the problem because the

Atomic Kotlin (www.AtomicKotlin.com) by Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Why Kotlin? 25

only way you can verify that your program won’t crash is by running it. There are
swarms of these kinds of bugs in Java code, and programmers waste huge amounts
of time finding them.

Kotlin solves this problem by preventing operations that might cause null errors at
compile time, before the program can run. This is the single-most celebrated feature
by Java programmers adopting Kotlin. This one feature can minimize or eliminate
Java’s null errors.

An Abundance of Benefits

The two features we were able to explain here (without requiring more programming
knowledge) make a huge difference whether or not you're a Java programmer. If
Kotlin is your first language and you end up on a project that needs more program-
mers, it is much easier to recruit one of the many existing Java programmers into
Kotlin.

Kotlin has many other benefits, which we cannot explain until you know more about
programming. That’s what the rest of the book is for.

Languages are often selected by passion, not reason... I'm trying to make Kotlin a
language that is loved for a reason.—Andrey Breslav, Kotlin Lead Language Designer.

Atomic Kotlin (www.AtomicKotlin.com) by Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Hello, World!

“Hello, world!” is a program commonly used to demonstrate the basic
syntax of programming languages.

We develop this program in several steps so you understand its parts.

First, let’s examine an empty program that does nothing at all:

// HelloWorld/EmptyProgram.kt

fun main() {
// Program code here ...

}

The example starts with a comment, which is illuminating text that is ignored by
Kotlin. // (two forward slashes) begins a comment that goes to the end of the current
line:

// Single-1ine comment

Kotlin ignores the // and everything after it until the end of the line. On the following
line, it pays attention again.

The first line of each example in this book is a comment starting with the name of
the the subdirectory containing the source-code file (Here, HelloWor1d) followed
by the name of the file: EmptyProgram.kt. The example subdirectory for each atom
corresponds to the name of that atom.

keywords are reserved by the language and given special meaning. The keyword fun
is short for function. A function is a collection of code that can be executed using
that function’s name (we spend a lot of time on functions throughout the book). The
function’s name follows the fun keyword, so in this case it’'s main() (in prose, we
follow the function name with parentheses).

main() is actually a special name for a function; it indicates the “entry point” for a
Kotlin program. A Kotlin program can have many functions with many different

Hello, World! 27

names, but main() is the one that’s automatically called when you execute the
program.

The parameter list follows the function name and is enclosed by parentheses. Here,
we don’t pass anything into main() so the parameter list is empty.

The function body appears after the parameter list. It begins with an opening brace
({) and ends with a closing brace (}). The function body contains statements and
expressions. A statement produces an effect, and an expression yields a result.

EmptyProgram.kt contains no statements or expressions in the body, just a com-
ment.

Let’s make the program display “Hello, world!” by adding a line in the main() body:

// HelloWorld/HelloWorld.kt

fun main() {
println("Hello, world!")

}
/* Output:
Hello, world!

*/

The line that displays the greeting begins with print1n(). Likemain(),println()
is a function. This line calls the function, which executes its body. You give the
function name, followed by parentheses containing one or more parameters. In this
book, when referring to a function in the prose, we add parentheses after the name
as a reminder that it is a function. Here, we say println().

println() takes a single parameter, which is a String. You define a String by
putting characters inside quotes.

println() moves the cursor to a new line after displaying its parameter, so subse-
quent output appears on the next line. You can use print() instead, which leaves
the cursor on the same line.

Unlike some languages, you don’t need a semicolon at the end of an expression in
Kotlin. It’s only necessary if you put more than one expression on a single line (this
is discouraged).

For some examples in the book, we show the output at the end of the listing, inside a
multiline comment. A multiline comment starts with a /* (a forward slash followed

Atomic Kotlin (www.AtomicKotlin.com) by Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Hello, World! 28

by an asterisk) and continues—including line breaks (which we call newlines)—until
a */ (an asterisk followed by a forward slash) ends the comment:

/* A multiline comment
Doesn't care
about newlines */

It’s possible to add code on the same line after the closing */ of a comment, but it’s
confusing, so people don’t usually do it.

Comments add information that isn’t obvious from reading the code. If comments
only repeat what the code says, they become annoying and people start ignoring
them. When code changes, programmers often forget to update comments, so it’s
good practice to use comments judiciously, mainly for highlighting tricky aspects of
your code.

Exercises and solutions can be found at www.AtomicKotlin.com.

Atomic Kotlin (www.AtomicKotlin.com) by Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

var & val

When an identifier holds data, you must decide whether it can be reas-
signed.

You create identifiers to refer to elements in your program. The most basic decision
for a data identifier is whether it can change its contents during program execution,
or if it can only be assigned once. This is controlled by two keywords:

« var, short for variable, which means you can reassign its contents.
« val, short for value, which means you can only initialize it; you cannot reassign
it.
You define a var like this:

var identifier = initialization

The var keyword is followed by the identifier, an equals sign and then the initializa-
tion value. The identifier begins with a letter or an underscore, followed by letters,
numbers and underscores. Upper and lower case are distinguished (so thisvalue
and thisValue are different).

Here are some var definitions:

// VarAndVal/Vars.kt

fun main() {
var whole = 11 /7 [1]
var fractional = 1.4 /7 [2]
var words = "Twas Brillig" // [3]
println(whole)
println(fractional)
println(words)

}

/* Output:

11

1.4

Twas Brillig

*/

var & val 30

In this book we mark lines with commented numbers in square brackets so we can
refer to them in the text like this:

+ [1] Create a var named whole and store 11 in it.
« [2] Store the “fractional number” 1.4 in the var fractional.
« [3] Store some text (a String) in the var words.

Note that println() can take any single value as an argument.

As the name variable implies, a var can vary. That is, you can change the data stored
in a var. We say that a var is mutable:

// VarAndVal/AVarIsMutable.kt

fun main() {
var sum = 1
sum = sum + 2
sum += 3
println(sum)

}

/* Output:
6

*/

The assignment sum = sum + 2 takes the current value of sum, adds two, and
assigns the result back into sum.

The assignmentsum += 3 means the same assum = sum + 3.The+= operator takes
the previous value stored in sum and increases it by 3, then assigns that new result
back to sum.

Changing the value stored in a var is a useful way to express changes. However,
when the complexity of a program increases, your code is clearer, safer and easier to
understand if the values represented by your identifiers cannot change—that is, they
cannot be reassigned. We specify an unchanging identifier using the val keyword
instead of var. A val can only be assigned once, when it is created:

val identifier = initialization

The val keyword comes from value, indicating something that cannot change—it is
immutable. Choose val instead of var whenever possible. The Vars .kt example at
the beginning of this atom can be rewritten using vals:

Atomic Kotlin (www.AtomicKotlin.com) by Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

var & val 31

// VarAndVal/Vals.kt

fun main() {
val whole = 11
// whole = 15 // Error // [1]
val fractional = 1.4
val words = "Twas Brillig"
println(whole)
println(fractional)
println(words)

}

/* Output:
11

1.4

Twas Brillig
*/

« [1] Once you initialize a val, you can’t reassign it. If we try to reassign whole
to a different number, Kotlin complains, saying “Val cannot be reassigned.”

Choosing descriptive names for your identifiers makes your code easier to under-
stand and often reduces the need for comments. In Vals.kt, you have no idea what
whole represents. If your program is storing the number 11 to represent the time of
day when you get coffee, it’s more obvious to others if you name it coffeetime
and easier to read if it’s cof feeTime (following Kotlin style, we make the first letter
lowercase).

vars are useful when data must change as the program is running. This sounds
like a common requirement, but turns out to be avoidable in practice. In general,
your programs are easier to extend and maintain if you use vals. However, on rare
occasions it’s too complex to solve a problem using only vals. For that reason, Kotlin
gives you the flexibility of vars. However, as you spend more time with vals you’ll
discover that you almost never need vars and that your programs are safer and more
reliable without them.

Exercises and solutions can be found at www.AtomicKotlin.com.

Atomic Kotlin (www.AtomicKotlin.com) by Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Data Types

Data can have different types.

To solve a math problem, you write an expression:

5.9+ 6

You know that adding those numbers produces another number. Kotlin knows that
too. You know that one is a fractional number (5.9), which Kotlin calls a Double,
and the other is a whole number (6), which Kotlin calls an Int. You know the result
is a fractional number.

A type (also called data type) tells Kotlin how you intend to use that data. A type
provides a set of values from which an expression may take its values. A type defines
the operations that can be performed on the data, the meaning of the data, and how
values of that type can be stored.

Kotlin uses types to verify that your expressions are correct. In the above expression,
Kotlin creates a new value of type Double to hold the result.

Kotlin tries to adapt to what you need. If you ask it to do something that violates type
rules it produces an error message. For example, try adding a String and a number:

// DataTypes/StringPlusNumber .kt

fun main() {
println("Sally" + 5.9)

}

/* Output:
Sally5.9
*/

Types tell Kotlin how to use them correctly. In this case, the type rules tell Kotlin how
to add a number to a String: by appending the two values and creating a String
to hold the result.

Now try multiplying a String and a Double by changing the + in StringPlusNum-
ber .kt to a *:

Data Types 33

"Sally" * 5.9

Combining types this way doesn’t make sense to Kotlin, so it gives you an error.

In var & val, we stored several types. Kotlin figured out the types for us, based on
how we used them. This is called type inference.

We can be more verbose and specify the type:
val identifier: Type = initialization

You start with the val or var keyword, followed by the identifier, a colon, the type,
an =, and the initialization value. So instead of saying:

val n = 1
var p = 1.2
You can say:

val n: Int =1
var p: Double = 1.2

We've told Kotlin that n is an Int and p is a Double, rather than letting it infer the
type.

Here are some of Kotlin’s basic types:

// DataTypes/Types.kt

fun main() {

val whole: Int = 11 /7 [1]
val fractional: Double = 1.4 /7 [2]
val trueOrFalse: Boolean = true // [3]
val words: String = "A value" // [4]
val character: Char = 'z' // [5]
val lines: String = """Triple quotes let
you have many lines
in your string""" // [6]
println(whole)
println(fractional)
println(trueOrFalse)
println(words)
println(character)

Atomic Kotlin (www.AtomicKotlin.com) by Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Data Types 34

println(lines)
}
/* Output:
11
1.4
true
A value
z
Triple quotes let
you have many lines
in your string

*/

[1] The Int data type is an integer, which means it only holds whole numbers.
« [2] To hold fractional numbers, use a Double.

[3] A Boolean data type only holds the two special values true and false.
[4] A String holds a sequence of characters. You assign a value using a double-
quoted String.

« [5] A Char holds one character.

« [6] If you have many lines and/or special characters, surround them with triple-
double-quotes (this is a triple-quoted String).

Kotlin uses type inference to determine the meaning of mixed types. When mixing
Ints and Doubles during addition, for example, Kotlin decides the type for the
resulting value:

// DataTypes/Inference.kt

fun main() {
val n=1 + 1.2
println(n)
}
/* Output:
2.2
*/
When you add an Int to a Double using type inference, Kotlin determines that the
result n is a Double and ensures that it follows all the rules for Doubles.

Kotlin’s type inference is part of its strategy of doing work for the programmer. If
you leave out the type declaration, Kotlin can usually infer it.

Exercises and solutions can be found at www.AtomicKotlin.com.

Atomic Kotlin (www.AtomicKotlin.com) by Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Functions

A function is like a small program that has its own name, and can be
executed (invoked) by calling that name from another function.

A function combines a group of activities, and is the most basic way to organize your
programs and to re-use code.

You pass information into a function, and the function uses that information to
calculate and produce a result. The basic form of a function is:

fun functionName(p1: Typel, p2: Type2, ...): ReturnType {
lines of code
return result

}

pl and p2 are the parameters: the information you pass into the function. Each
parameter has an identifier name (p1, p2) followed by a colon and the type of that
parameter. The closing parenthesis of the parameter list is followed by a colon and
the type of result produced by the function. The lines of code in the function body
are enclosed in curly braces. The expression following the return keyword is the
result the function produces when it’s finished.

A parameter is how you define what is passed into a function—it’s the placeholder.
An argument is the actual value that you pass into the function.

The combination of name, parameters and return type is called the function signa-
ture.

Here’s a simple function called multiplyByTwo():

Functions 36

// Functions/MultiplyByTwo.kt

fun multiplyByTwo(x: Int): Int { // [1]
println("Inside multiplyByTwo") // [2]
return x * 2

}

fun main() {
val r = multiplyByTwo(5) // [3]
println(r)

}

/* Output:

Inside multiplyByTwo

10

*/

« [1] Notice the fun keyword, the function name, and the parameter list consist-
ing of a single parameter. This function takes an Int parameter and returns an
Int.

« [2] These two lines are the body of the function. The final line returns the value
of its calculation x * 2 as the result of the function.

« [3] This line calls the function with an appropriate argument, and captures
the result into val r. A function call mimics the form of its declaration: the
function name, followed by arguments inside parentheses.

The function code is executed by calling the function, using the function name
multiplyByTwo() as an abbreviation for that code. This is why functions are the
most basic form of simplification and code reuse in programming. You can also think
of a function as an expression with substitutable values (the parameters).

println() is also a function call—it just happens to be provided by Kotlin. We refer
to functions defined by Kotlin as library functions.

If the function doesn’t provide a meaningful result, its return type is Unit. You can
specify Unit explicitly if you want, but Kotlin lets you omit it:

Atomic Kotlin (www.AtomicKotlin.com) by Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Functions 37

// Functions/SayHello.kt

fun sayHello() {
println("Hallo!")
}

fun sayGoodbye(): Unit {
println("Auf Wiedersehen!")
}

fun main() {
sayHello()
sayGoodbye()

}

/* Output:
Hallo!

Auf Wiedersehen!

*/
Both sayHello() and sayGoodbye() return Unit, but sayHello() leaves out the
explicit declaration. The main() function also returns Unit.

If a function is only a single expression, you can use the abbreviated syntax of an
equals sign followed by the expression:

fun functionName(argl: Typel, arg2: Type2, ...): ReturnType = expression

A function body surrounded by curly braces is called a block body. A function body
using the equals syntax is called an expression body.

Here,multiplyByThree() uses an expression body:

Atomic Kotlin (www.AtomicKotlin.com) by Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Functions 38

// Functions/MultiplyByThree.kt
fun multiplyByThree(x: Int): Int = x * 3

fun main() {
println(multiplyByThree(5))

}

/* Output:

15

*/

This is a short version of saying return x * 3 inside a block body.

Kotlin infers the return type of a function that has an expression body:
// Functions/MultiplyByFour.kt
fun multiplyByFour(x: Int) = x * 4

fun main() {
val result: Int = multiplyByFour(5)
println(result)

}

/* Output:
20

*/

Kotlin infers that multiplyByFour () returns an Int.

Kotlin can only infer return types for expression bodies. If a function has a block
body and you omit its type, that function returns Unit.

When writing functions, choose descriptive names. This makes the code easier to
read, and can often reduce the need for code comments. We can’t always be as
descriptive as we would prefer with the function names in this book because we’re
constrained by line widths.

Exercises and solutions can be found at www.AtomicKotlin.com.

Atomic Kotlin (www.AtomicKotlin.com) by Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

if EXpressions

An if expression makes a choice.

The if keyword tests an expression to see whether it’s true or false and performs
an action based on the result. A true-or-false expression is called a Boolean, after
the mathematician George Boole who invented the logic behind these expressions.
Here’s an example using the > (greater than) and < (less than) symbols:

// IfExpressions/If1.kt

fun main() {
if (1 > 0)
println("It's true!")
if (10 < 11) {
println("10 < 11")
println("ten is less than eleven")
}
}
/* Output:
It's true!
10 < 11
ten is less than eleven

*/

The expression inside the parentheses after the i f must evaluate to true or false.
If true, the following expression is executed. To execute multiple lines, place them
within curly braces.

We can create a Boolean expression in one place, and use it in another:

if Expressions 40

// IfExpressions/If2.kt

fun main() {
val x: Boolean =1 >= 1
if (x)
printIn("It's true!")

}
/* Output:
It's true!

*/

Because x is Boolean, the i f can test it directly by saying i f(x).

The Boolean >= operator returns true if the expression on the left side of the
operator is greater than or equal to that on the right. Likewise, <= returns true
if the expression on the left side is less than or equal to that on the right.

The else keyword allows you to handle both true and false paths:
// IfExpressions/If3.kt

fun main() {
val n: Int = -11

if (n > Q)
println("It's positive")
else
println("It's negative or zero")
}
/* Output:
It's negative or zero
*/

The else keyword is only used in conjunction with i f. You are not limited to a single
check—you can test multiple combinations by combining else and if:

Atomic Kotlin (www.AtomicKotlin.com) by Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

if Expressions 41

// IfExpressions/If4.kt

fun main() {
val n: Int = -11
if (n > Q)
printIn("It's positive")
else if (n == 0)
println("It's zero")
else
println("It's negative")
}
/* Output:
It's negative

*/

Here we use == to check two numbers for equality. ! = tests for inequality.

The typical pattern is to start with if, followed by as many else if clauses as you
need, ending with a final else for anything that doesn’t match all the previous tests.
When an if expression reaches a certain size and complexity you’ll probably use a
when expression instead. when is described later in the book, in when Expressions.

The “not” operator ! tests for the opposite of a Boolean expression:
// IfExpressions/If5.kt

fun main() {
val y: Boolean = false

if (ly)
println("!y is true")

}
/* Output:
ly is true

*/

To verbalize i f(!y), say “if not y”

The entire i f is an expression, so it can produce a result:

Atomic Kotlin (www.AtomicKotlin.com) by Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

if Expressions 42

// IfExpressions/If6.kt

fun main() {
val num = 10
val result = if (num > 100) 4 else 42
println(result)

}

/* Output:
42

*/

Here, we store the value produced by the entire if expression in an intermediate
identifier called result. If the condition is satisfied, the first branch produces
result. If not, the else value becomes result.

Let’s practice creating functions. Here’s one that takes a Boolean parameter:

// IfExpressions/TrueOrFalse.kt

fun trueOrFalse(exp: Boolean): String {

if (exp)
return "It's true!" /7 [1]
return "It's false" // [2]

}

fun main() {
val b =1
println(trueOrFalse(b < 3))
println(trueOrFalse(b >= 3))

}

/* Output:
It's true!
It's false

*/
The Boolean parameter exp is passed to the function trueOrFalse(). If the argu-
ment is passed as an expression, such as b < 3, that expression is first evaluated

and the result is passed to the function. trueOrFalse() tests exp and if the result is
true, line [1] is executed, otherwise line [2] is executed.

« [1] return says, “Leave the function and produce this value as the function’s
result” Notice that return can appear anywhere in a function and does not
have to be at the end.

Atomic Kotlin (www.AtomicKotlin.com) by Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

if Expressions 43

Rather than using return as in the previous example, you can use the else keyword
to produce the result as an expression:

// IfExpressions/OneOrTheOther .kt

fun oneOrTheOther(exp: Boolean): String =
if (exp)
"True!" // No 'return' necessary
else
"False"

fun main() {
val x = 1
println(oneOrTheOther(x == 1))
println(oneOrTheOther(x == 2))

}

/* Output:
True!
False

*/

Instead of two expressions in trueOrFalse(), oneOrTheOther () is a single expres-
sion. The result of that expression is the result of the function, so the i f expression
becomes the function body.

Exercises and solutions can be found at www.AtomicKotlin.com.

Atomic Kotlin (www.AtomicKotlin.com) by Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

String Templates

A String template is a programmatic way to generate a String.

If you put a $ before an identifier name, the String template will insert that
identifier’s contents into the String:

// StringTemplates/StringTemplates.kt

fun main() {
val answer = 42

println("Found $answer!") // [1]
println("printing a $1") /7 [2]
}
/* Output:
Found 42!
printing a $1
*/

« [1] $answer substitutes the value of answer.
« [2] If what follows the $ isn’t recognizable as a program identifier, nothing
special happens.

You can also insert values into a String using concatenation (+):

// StringTemplates/StringConcatenation.kt

fun main() {

val s = "hi\n" // \n is a newline character
val n = 11
val d = 3.14
println("first: " + s + "second: " +
n+ ", third: " + d)
}
/* Output:
first: hi

second: 11, third: 3.14
*/

String Templates 45

Placing an expression inside ${} evaluates it. The return value is converted to a
String and inserted into the resulting String:

// StringTemplates/ExpressionInTemplate.kt

fun main() {
val condition = true

println(
"${if (condition) 'a' else 'b'}") // [1]
val x = 11
println("$x + 4 = ${x + 4}")
1
/* Output:
a
11 + 4 = 15
*/

o [1] if(condition) 'a' else 'b' is evaluated and the result is substituted
for the entire ${} expression.

When a String must include a special character, such as a quote, you can either
escape that character with a \ (backslash), or use a String literal in triple quotes:

// StringTemplates/TripleQuotes.kt

fun main() {
val s = "value"
println("s = \"$s\".")
println("""s = "$s".""")

}

/* Output:

s = "value".

s = "value".

*/

With triple quotes, you insert a value of an expression the same way you do it for a
single-quoted String.

Exercises and solutions can be found at www.AtomicKotlin.com.

Atomic Kotlin (www.AtomicKotlin.com) by Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Number Types

Different types of numbers are stored in different ways.

If you create an identifier and assign an integer value to it, Kotlin infers the Int type:
// NumberTypes/InferInt.kt

fun main() {
val million = 1_0Q00_000 ,// Infers Int
println(million)

}

/* Output:

1000000

*/

For readability, Kotlin allows underscores within numerical values.

The basic mathematical operators for numbers are the ones available in most pro-
gramming languages: addition (+), subtraction (-), division (/), multiplication (*) and
modulus (%), which produces the remainder from integer division:

// NumberTypes/Modulus.kt

fun main() {
val numerator: Int = 19
val denominator: Int = 10
println(numerator % denominator)
}
/* Output:
9
*/

Integer division truncates its result:

Number Types

// NumberTypes/IntDivisionTruncates.kt

fun main() {
val numerator: Int = 19
val denominator: Int = 10
println(numerator / denominator)
}
/* Output:
1
*/

If the operation had rounded the result, the output would be 2.

The order of operations follows basic arithmetic:

// NumberTypes/OpOrder .kt

fun main() {
println(45 + 5 * 6)

}

/* Output:

75

*/

47

The multiplication operation 5 * 6 is performed first, followed by the addition 45

+ 30.
If you want 45 + 5 to happen first, use parentheses:

// NumberTypes/OpOrderParens. kt

fun main() {
println((45 + 5) * 6)

}

/* Output:

300

*/

Now let’s calculate body mass index (BMI), which is weight in kilograms divided
by the square of the height in meters. If you have a BMI of less than 18.5, you are
underweight. Between 18.5 and 24.9 is normal weight. BMI of 25 and higher is
overweight. This example also shows the preferred formatting style when you can’t

fit the function’s parameters on a single line:

Atomic Kotlin (www.AtomicKotlin.com) by Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Number Types 48

// NumberTypes/BMIMetric.kt

fun bmiMetric(
weight: Double,
height: Double
): String {
val bmi = weight / (height * height) // [1]
return if (bmi < 18.5) "Underweight"
else if (bmi < 25) "Normal weight"
else "Overweight™

}

fun main() {

val weight = 72.57 // 160 Ibs
val height = 1.727 // 68 inches
val status = bmiMetric(weight, height)
println(status)
}
/* Output:
Normal weight
*/

« [1] If you remove the parentheses, you divide weight by height then multiply
that result by height. That’s a much larger number, and the wrong answer.

bmiMetric() uses Doubles for the weight and height. A Double holds very large
and very small floating-point numbers.

Here’s a version using English units, represented by Int parameters:
// NumberTypes/BMIEnglish.kt

fun bmiEnglish(
weight: Int,
height: Int
): String {
val bmi =
weight / (height * height) * 703.07 // [1]
return if (bmi < 18.5) "Underweight"
else if (bmi < 25) "Normal weight"
else "Overweight"

Atomic Kotlin (www.AtomicKotlin.com) by Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Number Types 49

fun main() {
val weight = 160

val height = 68
val status = bmiEnglish(weight, height)
println(status)

}

/* Output:

Underweight

*/

Why does the result differ from bmiMetric(), which uses Doubles? When you
divide an integer by another integer, Kotlin produces an integer result. The standard
way to deal with the remainder during integer division is truncation, meaning “chop
it off and throw it away” (there’s no rounding). So if you divide 5 by 2 you get 2,
and 7/10 is zero. When Kotlin calculates bmi in expression [1], it divides 160 by 68
* 68 and gets zero. It then multiplies zero by 703.07 to get zero.

To avoid this problem, move 703.07 to the front of the calculation. The calculations
are then forced to be Double:

val bmi = 703.07 * weight / (height * height)

The Double parameters in bmiMetric() prevent this problem. Convert computa-
tions to the desired type as early as possible to preserve accuracy.

All programming languages have limits to what they can store within an integer.
Kotlin’s Int type can take values between -2°' and +2%'-1, a constraint of the Int
32-bit representation. If you sum or multiply two Ints that are big enough, you’ll
overflow the result:

Atomic Kotlin (www.AtomicKotlin.com) by Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Number Types 50

// NumberTypes/IntegerOverflow.kt

fun main() {
val i: Int = Int.MAX_VALUE
println(i + i)

}

/* Output:

-2

*/

Int.MAX_VALUE is a predefined value which is the largest number an Int can hold.

The overflow produces a result that is clearly incorrect, as it is both negative and
much smaller than we expect. Kotlin issues a warning whenever it detects a potential
overflow.

Preventing overflow is your responsibility as a developer. Kotlin can’t always detect
overflow during compilation, and it doesn’t prevent overflow because that would
produce an unacceptable performance impact.

If your program contains large numbers, you can use Longs, which accommodate
values from -2°* to +2°°-1. To define a val of type Long, you can specify the type
explicitly or put L at the end of a numeric literal, which tells Kotlin to treat that
value as a Long:

// NumberTypes/LongConstants.kt

fun main() {
val i = 0 // Infers Int
val 11 = 0L // L creates Long
val 12: Long = 0 // Explicit type
println("$11 $12")

}

/* Output:

00

*/

By changing to Longs we prevent the overflow in IntegerOverflow.kt:

Atomic Kotlin (www.AtomicKotlin.com) by Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Number Types 51

// NumberTypes/Usinglongs.kt

fun main() {
val i = Int.MAX_VALUE

println(oOL + i + i) /7 [1]
println(1_000_000 * 1_000_00oL) // [2]
}
/* Output:
4294967294
10000000V
*/

Using a numeric literal in both [1] and [2] forces Long calculations, and also produces
a result of type Long. The location where the L appears is unimportant. If one of the
values is Long, the resulting expression is Long.

Although they can hold much larger values than Ints, Longs still have size limita-
tions:

// NumberTypes/BiggestlLong.kt

fun main() {
println(Long.MAX_VALUE)

}

/* Output:
9223372036854 775807
*/

Long.MAX_VALUE is the largest value a Long can hold.

Exercises and solutions can be found at www.AtomicKotlin.com.

Atomic Kotlin (www.AtomicKotlin.com) by Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Booleans

i f Expressions demonstrated the “not” operator !, which negates aBoolean
value. This atom introduces more Boolean Algebra.

We start with the operators “and” and “or”:

+ && (and): Produces true only if the Boolean expression on the left of the
operator and the one on the right are both true.

« | | (or): Produces true if either the expression on the left or right of the operator
is true, or if both are true.

In this example, we determine whether a business is open or closed, based on the

hour:

// Booleans/Openi .kt

fun isOpeni(hour: Int) {

}

val open = 9
val closed = 20
println("Operating hours: $open - $closed")
val status =
if (hour >= open && hour <= closed) // [1]
true
else
false
println("Open: $status")

fun main() = isOpen1(6)
/* Output:

Operating hours: 9 - 20
Open: false

*/

Booleans 53

main() is a single function call, so we can use an expression body as described in
Functions.

The if expression in [1] Checks whether hour is between the opening time and
closing time, so we combine the expressions with the Boolean && (and).

The if expression can be simplified. The result of the expression if(cond) true
else false is just cond:

// Booleans/OpenZ.kt

fun isOpen2(hour: Int) {
val open = 9
val closed = 20
println("Operating hours: $open - $closed")
val status = hour >= open && hour <= closed
println("Open: $status")

}

fun main() = isOpen2(6)
/* Output:

Operating hours: 9 - 20
Open: false

*/

o

Let’s reverse the logic and check whether the business is currently closed. The “or’
operator | | produces true if at least one of the conditions is satisfied:

// Booleans/Closed. kt

fun isClosed(hour: Int) {
val open = 9
val closed = 20
println("Operating hours: $open - $closed")
val status = hour < open || hour > closed
println("Closed: $status")

}

fun main() = isClosed(6)
/* Output:

Operating hours: 9 - 20
Closed: true

*/

Atomic Kotlin (www.AtomicKotlin.com) by Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Booleans 54

Boolean operators enable complicated logic in compact expressions. However, things
can easily become confusing. Strive for readability and specify your intentions
explicitly.

Here’s an example of a complicated Boolean expression where different evaluation
order produces different results:

// Booleans/EvaluationOrder.kt

fun main() {
val sunny = true
val hoursSleep = 6
val exercise = false
val temp = 55

/7 1]

val happyl = sunny && temp > 50 ||
exercise && hoursSleep > 7

println(happy1l)

/7 [2]:

val sameHappy1l = (sunny && temp > 50) ||
(exercise && hoursSleep > 7)

println(sameHappy1)

/7 [3]:
val notSame =
(sunny && temp > 50 || exercise) &&
hoursSleep > 7

println(notSame)
}
/* Output:
true
true
false

*/

The Boolean expressions are sunny, temp > 50, exercise, and hoursSleep > T.
We read happy1 as “It’s sunny and the temperature is greater than 50 or I've exercised
and had more than 7 hours of sleep.” But does && have precedence over | |, or the
opposite?

Atomic Kotlin (www.AtomicKotlin.com) by Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Booleans 55

The expression in [1] uses Kotlin’s default evaluation order. This produces the same
result as the expression in [2] because, without parentheses, the “ands” are evaluated
first, then the “or”. The expression in [3] uses parentheses to produce a different result.
In [3], we're only happy if we get at least 7 hours of sleep.

Exercises and solutions can be found at www.AtomicKotlin.com.

Atomic Kotlin (www.AtomicKotlin.com) by Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Repetition with while

Computers are ideal for repetitive tasks.

The most basic form of repetition uses the while keyword. This repeats a block as
long as the controlling Boolean expression is true:

while (Boolean-expression) {
// Code to be repeated

}

The Boolean expression is evaluated once at the beginning of the loop and again
before each further iteration through the block.

// RepetitionWithWhile/WhilelLoop.kt
fun condition(i: Int) =i < 100 // [1]

fun main() {
var i = 0

while (condition(i)) { /7 [2]
print(".")
i += 10 /7 [3]
}
}
/* Output:
*/

« [1] The comparison operator < produces a Boolean result, so Kotlin infers
Boolean as the result type for condition().

« [2] The conditional expression for the while says: “repeat the statements in the
body as long as condition() returns true”

+ [3] The += operator adds 10 to i and assigns the result to i in a single operation
(i must be a var for this to work). This is equivalent to:

Repetition with while 57

i=1i+ 10
There’s a second way to use while, in conjunction with the do keyword:
do {

// Code to be repeated
} while (Boolean-expression)

Rewriting WhileLoop .kt to use a do-while produces:

// RepetitionWithWhile/DoWhilelLoop.kt

fun main() {
var i = 0

do {
print(".")
i += 10
} while (condition(i))
}
/* Output:
*/

The sole difference between while and do-while is that the body of the do-while
always executes at least once, even if the Boolean expression initially produces false.
In a while, if the conditional is false the first time, then the body never executes.
In practice, do-while is less common than while.

The short versions of assignment operators are available for all the arithmetic oper-
ations: +=, -=, *=, /=, and %=. This uses -= and %=:

// RepetitionWithWhile/AssignmentOperators.kt

fun main() {
var n = 10

val d = 3
print(n)
while (n > d) {
n-=4d
print(" - $d")
}

println(" = $n")

Atomic Kotlin (www.AtomicKotlin.com) by Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Repetition with while 58

var m = 10
print(m)
m %= d
println(" % $d = $m")
}
/* Output:
10 - 3 - 3 -3=1
10 % 3 = 1
*/

To calculate the remainder of the integer division of two natural numbers, we start
with a while loop, then use the remainder operator.

Adding 1 and subtracting 1 from a number are so common that they have their own
increment and decrement operators: ++ and --. You can replace i += 1 with i++:

// RepetitionWithWhile/IncrementOperator.kt
fun main() {

var i = 0
while (i < 4) {

leht(" . u)
i++
}
}
/* Output:
X/

In practice, while loops are not used for iterating over a range of numbers. The for
loop is used instead. This is covered in the next atom.

Exercises and solutions can be found at www.AtomicKotlin.com.

Atomic Kotlin (www.AtomicKotlin.com) by Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Looping & Ranges

The for keyword executes a block of code for each value in a sequence.

The set of values can be a range of integers, a String, or, as you’ll see later in the
book, a collection of items. The in keyword indicates that you are stepping through
values:

for (v in values) {
// Do something with v

}

Each time through the loop, v is given the next element in values.

Here’s a for loop repeating an action a fixed number of times:
// LoopingAndRanges/RepeatThreeTimes. kt

fun main() {

for (i in 1..3) {
println("Hey $i!")

}

}

/* Output:

Hey 1!

Hey 2!

Hey 3!

*/

The output shows the index i receiving each value in the range from 1 to 3.

A range is an interval of values defined by a pair of endpoints. There are two basic
ways to define ranges:

Looping & Ranges 60

// LoopingAndRanges/DefiningRanges.kt

fun main() {

val rangel = 1..10 // [1]
val range2 = 0 until 10 /7 [2]
println(rangel)
println(range2)

}

/* Output:

1..10

0..9

*/

« [1] Using . . syntax includes both bounds in the resulting range.
« [2] until excludes the end. The output shows that 10 is not part of the range.

Displaying a range produces a readable format.

This sums the numbers from 10 to 100:
// LoopingAndRanges/SumUsingRange.kt

fun main() {
var sum = 0
for (n in 10..100) {
sum += n
}
println("sum = $sum")
}
/* Output:
sum = 5005
*/

You can iterate over a range in reverse order. You can also use a step value to change
the interval from the default of 1:

Atomic Kotlin (www.AtomicKotlin.com) by Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Looping & Ranges 61

// LoopingAndRanges/ForWithRanges.kt

fun showRange(r: IntProgression) {
for (i in r) {
print("$i ")
}
print(" // $r")
println()
}

fun main() {
showRange(1..5)
showRange (0 until 5)
showRange(5 downTo 1) // [1]
showRange(@..9 step 2) /7 [2]
showRange(@ until 10 step 3) // [3]
showRange(9 downTo 2 step 3)

/* Output:
345 // 1..5
2 3 4 // 0..4
32 1 // 5 downTo 1 step 1
4 6 8 // 0..8 step 2
9 // 0..9 step 3
// 9 downTo 3 step 3

OO U1 O =
D W N RN RN

6
3

+ [1] downTo produces a decreasing range.
« [2] step changes the interval. Here, the range steps by a value of two instead
of one.

« [3] until can also be used with step. Notice how this affects the output.

In each case the sequence of numbers form an arithmetic progression. showRange()
accepts an IntProgression parameter, which is a built-in type that includes Int
ranges. Notice that the String representation of each IntProgression as it ap-
pears in output comment for each line is often different from the range passed
into showRange () —the IntProgression is translating the input into an equivalent
common form.

You can also produce a range of characters. This for iterates from a to z:

Atomic Kotlin (www.AtomicKotlin.com) by Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Looping & Ranges 62

// LoopingAndRanges/ForWithCharRange.kt

fun main() {

for (c in 'a'..'z") {
print(c)
}
}
/* Output:
abcdefghi jklmnopqgrstuvwxyz
*/

You can iterate over a range of elements that are whole quantities, like integers and
characters, but not floating-point values.

Square brackets access characters by index. Because we start counting characters
in a String at zero, s[@] selects the first character of the String s. Selecting
s.lastIndex produces the final index number:

// LoopingAndRanges/IndexIntoString.kt

fun main() {
val s = "abc
for (i in 0..s.lastIndex) {
print(s[i] + 1)
}

"

}

/* Output:
bed

*/

Sometimes people describe s[@] as “the zeroth character”

Characters are stored as numbers corresponding to their ASCII codes'®, so adding
an integer to a character produces a new character corresponding to the new code
value:

"®https://en.wikipedia.org/wiki/ASCII

Atomic Kotlin (www.AtomicKotlin.com) by Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

https://en.wikipedia.org/wiki/ASCII
https://en.wikipedia.org/wiki/ASCII

Looping & Ranges 63

// LoopingAndRanges/AddingIntToChar .kt

fun main() {
val ch: Char = 'a
println(ch + 25)
println(ch < 'z')

1

}

/* Output:
z

true

*/

The second println() shows that you can compare character codes.

A for loop can iterate over Strings directly:
// LoopingAndRanges/IterateOverString.kt

fun main() {
for (ch in "Jnskhm ") {
print(ch + 1)
}
}
/* Output:
Kotlin!
*/

ch receives each character in turn.

In the following example, the function hasChar () iterates over the String s and
tests whether it contains a given character ch. The return in the middle of the
function stops the function when the answer is found:

Atomic Kotlin (www.AtomicKotlin.com) by Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Looping & Ranges 64

// LoopingAndRanges/HasChar .kt

fun hasChar(s: String, ch: Char): Boolean {
for (¢ in s) {
if (¢ == ch) return true
}

return false

}

fun main() {
println(hasChar("kotlin", 't'))
println(hasChar("kotlin", 'a'))

1

/* Output:
true
false

*/

The next atom shows that hasChar () is unnecessary—you can use built-in syntax
instead.

If you simply want to repeat an action a fixed number of times, you may use
repeat() instead of a for loop:

// LoopingAndRanges/RepeatHi .kt

fun main() {

repeat(2) {
println("hi!")

}

}

/* Output:

hi!

hi!

*/

repeat () is a standard library function, not a keyword. You'll see how it was created
much later in the book.

Exercises and solutions can be found at www.AtomicKotlin.com.

Atomic Kotlin (www.AtomicKotlin.com) by Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

The in Keyword

The in keyword tests whether a value is within a range.

// InKeyword/MembershipInRange.kt

fun main() {
val percent = 35
println(percent in 1..100)

}
/* Output:
true

*/
In Booleans, you learned to check bounds explicitly:
// InKeyword/MembershipUsingBounds .kt

fun main() {
val percent = 35
println(@ <= percent && percent <= 100)

}
/* Output:
true

*/

0 <= x && x <= 100 is logically equivalent to x in @..100. IntelliJ IDEA sug-
gests automatically replacing the first form with the second, which is easier to read
and understand.

The in keyword is used for both iteration and membership. An in inside the control
expression of a for loop means iteration, otherwise in checks membership:

The in Keyword 66

// InKeyword/IterationVsMembership.kt

fun main() {
val values = 1..3
for (v in values) {
println("iteration $v")
}
val v = 2
if (v in values)
println("$v is a member of $values")
}
/* Output:
iteration 1
iteration 2
iteration 3
2 is a member of 1..3
*/

The in keyword is not limited to ranges. You can also check whether a character is
a part of a String. The following example uses in instead of hasChar () from the
previous atom:

// InKeyword/InString.kt

fun main() {
println('t' in "kotlin")
println('a' in "kotlin")

}

/* Output:

true

false

*/

Later in the book you’ll see that in works with other types, as well.

Here, in tests whether a character belongs to a range of characters:

Atomic Kotlin (www.AtomicKotlin.com) by Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

The in Keyword

// InKeyword/CharRange.kt

fun isDigit(ch: Char) = ch in 'Q'..

fun notDigit(ch: Char) =

ch lin '0'..'9Q" /7 [1]

fun main() {
println(isDigit('a'))
println(isDigit('5"))
println(notDigit('z"'))

1

/* Output:

false

true

true

*/

« [1] !in checks that a value doesn’t belong to a range.

You can create a Double range, but you can only use it to check for membership:

// InKeyword/FloatingPointRange.kt

fun inFloatRange(n: Double) {
val r = 1.0..10.0
println("$n in $r? ${n in r}")
}

fun main() {
inFloatRange(©.999999)
inFloatRange(5.09)
inFloatRange(10.0)
inFloatRange(10.0000001)

}

/* Output:

©.999999 in 1.0..10.07 false

5.0 in 1.0..10.0? true

10.0 in 1.0..10.07 true

10.0000001 in 1.0..10.07 false

*/

67

Atomic Kotlin (www.AtomicKotlin.com) by Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

The in Keyword 68

Floating-point ranges can only be created using .. because until would mean
excluding a floating-point number as an endpoint, which doesn’t make sense.

You can check whether a String is a member of a range of Strings:
// InKeyword/StringRange.kt

fun main() {

println("ab" in "aa".."az")
println("ba" in "aa".."az")
}
/* Output:
true
false
*/

Here Kotlin uses alphabetic comparison.

Exercises and solutions can be found at www.AtomicKotlin.com.

Atomic Kotlin (www.AtomicKotlin.com) by Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Expressions & Statements

Statements and expressions are the smallest useful fragments of code in
most programming languages.

There’s a basic difference: a statement has an effect, but produces no result. An
expression always produces a result.

Because it doesn’t produce a result, a statement must change the state of its surround-
ings to be useful. Another way to say this is “a statement is called for its side effects”
(that is, what it does other than producing a result). As a memory aid:

A statement changes state.

One definition of “express” is “to force or squeeze out,” as in “to express the juice
from an orange.” So

An expression expresses.

That is, it produces a result.

The for loop is a statement in Kotlin. You cannot assign it because there’s no result:
// ExpressionsStatements/ForIsAStatement.kt

fun main() {
// Can't do this:
// val f = for(i in 1..10) {}
// Compiler error message:
// for is not an expression, and
// only expressions are allowed here

Expressions & Statements 70

A for loop is used for its side effects.

An expression produces a value, which can be assigned or used as part of another
expression, whereas a statement is always a top-level element.

Every function call is an expression. Even if the function returns Unit and is called
only for its side effects, the result can still be assigned:

// ExpressionsStatements/UnitReturnType.kt
fun unitFun() = Unit

fun main() {
println(unitFun())
val ul: Unit = println(42)
println(ul)
val u2 = println(@) // Type inference
println(u2)

}

/* Output:

kotlin.Unit

42

kotlin.Unit

7

kotlin.Unit

*/

The Unit type contains a single value called Unit, which you can return directly,
as seen in unitFun(). Calling print1n() also returns Unit. The val u1l captures
the return value of print1n() and is explicitly declared as Unit while u2 uses type
inference.

if creates an expression, so you can assign its result:

Atomic Kotlin (www.AtomicKotlin.com) by Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Expressions & Statements 71

// ExpressionsStatements/AssigningAnIf.kt

fun main() {
val resulti

if (11 > 42) 9O else 5

val result2 = if (1 < 2) {
val a = 11
a + 42

} else 42

val result3 =
if (x < y)
println("x < y")
else
println("x > y")

println(resultl)
println(result2)
println(result3)

}

/* Output:
x <y

5

53
kotlin.Unit
*/

The first output line is x < y, even though result3 isn’t displayed until the end
of main(). This happens because evaluating result3 calls println(), and the
evaluation occurs when result3 is defined.

Notice that a is defined inside the block of code for result2. The result of the last
expression becomes the result of the if expression; here, it’s the sum of 11 and 42.
But what about a? Once you leave the code block (move outside the curly braces),
you can’t access a. It is temporary and is discarded once you exit the scope of that

block.

The increment operator i++ is also an expression, even if it looks like a statement.
Kotlin follows the approach used by C-like languages and provides two versions
of increment and decrement operators with slightly different semantics. The prefix
operator appears before the operand, as in ++i, and returns the value after the

Atomic Kotlin (www.AtomicKotlin.com) by Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Expressions & Statements 72

increment happens. You can read it as “first do the increment, then return the
resulting value” The postfix operator is placed after the operand, as in i++, and
returns the value of i before the increment occurs. You can read it as “first produce
the result, then do the increment”

// ExpressionsStatements/PostfixVsPrefix.kt

fun main() {
var i = 10
println(i++)
println(i)
var j = 20
println(++j)
println(j)

}

/* Output:

10

11

21

21

*/

The decrement operator also has two versions: --1i and i--. Using increment and
decrement operators within other expressions is discouraged because it can produce
confusing code:

// ExpressionsStatements/Confusing.kt

fun main() {
var 1 = 1
println(i++ + ++i)

}

Try to guess what the output will be, then check it.

Exercises and solutions can be found at www.AtomicKotlin.com.

Atomic Kotlin (www.AtomicKotlin.com) by Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Summary 1

This atom summarizes and reviews the atoms in Section [, starting at Hello,
World! and ending with Expressions & Statements.

If you’re an experienced programmer, this should be your first atom. New program-
mers should read this atom and perform the exercises as a review of Section L.

If anything isn’t clear to you, study the associated atom for that topic (the sub-
headings correspond to atom titles).

Hello, World!

Kotlin supports both // single-line comments, and /*-to-*/ multiline comments. A
program’s entry point is the function main():

// Summaryl/Hello.kt

fun main() {
println("Hello, world!")
}

/* Output:

Hello, world!

*/

The first line of each example in this book is a comment containing the name of the
atom’s subdirectory, followed by a / and the name of the file. You can find all the
extracted code examples via AtomicKotlin.com.

println() is a standard library function which takes a single String parameter (or
a parameter that can be converted to a String). println() moves the cursor to a
new line after displaying its parameter, while print() leaves the cursor on the same
line.

Kotlin does not require a semicolon at the end of an expression or statement. Semi-
colons are only necessary to separate multiple expressions or statements on a single
line.

Summary 1 74

var & val, Data Types

To create an unchanging identifier, use the val keyword followed by the identifier
name, a colon, and the type for that value. Then add an equals sign and the value to
assign to that val:

val identifier: Type = initialization

Once a val is assigned, it cannot be reassigned.

Kotlin’s type inference can usually determine the type automatically, based on the
initialization value. This produces a simpler definition:

val identifier = initialization
Both of the following are valid:

val dayslnFebruary = 28
val daysInMarch: Int = 31

A var (variable) definition looks the same, using var instead of val:

var identifierl = initialization
var identifier2: Type = initialization

Unlike a val, you can modify a var, so the following is legal:

var hoursSpent = 20
hoursSpent = 25

However, the type can’t be changed, so you get an error if you say:

hoursSpent = 30.5

Kotlin infers the Int type when hoursSpent is defined, so it won’t accept the change
to a floating-point value.

Functions

Functions are named subroutines:

Atomic Kotlin (www.AtomicKotlin.com) by Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Summary 1 75

fun functionName(argl: Typel, arg2: Type2, ...): ReturnType {
// Lines of code ...
return result

}

The fun keyword is followed by the function name and the parameter list in parenthe-
ses. Each parameter must have an explicit type because Kotlin cannot infer parameter
types. The function itself has a type, defined in the same way as for a var or val (a
colon followed by the type). A function’s type is the type of the returned result.

The function signature is followed by the function body contained within curly
braces. The return statement provides the function’s return value.

You can use an abbreviated syntax when the function consists of a single expression:

fun functionName(argl: Typel, arg2: Type2, ...): ReturnType = result

This form is called an expression body. Instead of an opening curly brace, use an
equals sign followed by the expression. You can omit the return type because Kotlin
infers it.

Here’s a function that produces the cube of its parameter, and another that adds an
exclamation point to a String:

// Summaryl/BasicFunctions.kt

fun cube(x: Int): Int {
return x * x * x

}
fun bang(s: String) = s + "!I"

fun main() {
println(cube(3))
println(bang("pop"))

}

/* Output:

27

pop!

*/

cube() has a block body with an explicit return statement. bang() is an expression
body producing the function’s return value. Kotlin infers bang()’s return type to be
String.

Atomic Kotlin (www.AtomicKotlin.com) by Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Summary 1 76

Booleans

For Boolean algebra, Kotlin provides operators such as:

« ! (not) logically negates the value (turns true to false and vice-versa).
« && (and) returns true only if both conditions are true.
« | | (or) returns true if at least one of the conditions is true.

// Summary1/Booleans.kt

fun main() {
val opens = 9
val closes = 20
println("Operating hours: $opens - $closes")
val hour = 6
println("Current time: " + hour)

val isOpen = hour >= opens && hour <= closes
println("Open: " + isOpen)
println("Not open: " + !isOpen)

val isClosed = hour < opens || hour > closes
println("Closed: " + isClosed)

}

/* Output:

Operating hours: 9 - 20
Current time: 6

Open: false

Not open: true

Closed: true

*/

isOpen’s initializer uses && to test whether both conditions are true. The first
condition hour >= opens is false, so the result of the entire expression becomes
false. The initializer for isClosed uses | |, producing true if at least one of the
conditions is true. The expression hour < opens is true, so the whole expression
is true.

Atomic Kotlin (www.AtomicKotlin.com) by Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Summary 1 77

if Expressions

Because i f is an expression, it produces a result. This result can be assigned to a var
or val. Here, you also see the use of the else keyword:

// Summaryl/IfResult.kt

fun main() {
val result = if (99 < 100) 4 else 42
println(result)

}

/* Output:

4

*/

Either branch of an if expression can be a multiline block of code surrounded by
curly braces:

// Summaryl/IfExpression.kt

fun main() {
val activity = "swimming"
val hour = 10

val isOpen = if (
activity == "swimming" ||
activity == "ice skating") {
val opens = 9
val closes = 20
println("Operating hours:
opens + " - " + closes)
hour >= opens && hour <= closes
} else {
false
}
println(isOpen)
}
/* Output:
Operating hours: 9 - 20
true

*/

"oy

Atomic Kotlin (www.AtomicKotlin.com) by Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Summary 1 78

A value defined inside a block of code, such as opens, is not accessible outside the
scope of that block. Because they are defined globally to the i f expression,activity
and hour are accessible inside the i f expression.

The result of an i f expression is the result of the last expression of the chosen branch.
Here, it’s hour >= opens && hour <= closes which is true.

String Templates

You can insert a value within a String using String templates. Use a $ before the
identifier name:

// Summaryl/StrTemplates.kt

fun main() {
val answer = 42

println("Found $answer!") /7 [1]
val condition = true
println(
"${if (condition) 'a' else 'b'}") // [2]
println("printing a $1") // [3]
}
/* Output:
Found 42!
a
printing a $1
*/

+ [1] $answer substitutes the value contained in answer.

« [2] ${if(condition) 'a' else 'b'} evaluates and substitutes the result of
the expression inside ${ }.

« [3] If the $ is followed by anything unrecognizable as a program identifier,
nothing special happens.

Use triple-quoted Strings to store multiline text or text with special characters:

Atomic Kotlin (www.AtomicKotlin.com) by Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Summary 1 79

// Summary1/ThreeQuotes. kt

fun json(qg: String, a: Int) = """{
"question" : "$q",
"answer" : $a

}u nn

fun main() {
println(json("The Ultimate", 42))

}
/* Output:

{
"question" : "The Ultimate",
"answer" : 42

}

*/

You don’t need to escape special characters like " within a triple-quoted String. (In
a regular String you write \" to insert a double quote). As with normal Strings,
you can insert an identifier or an expression using $ inside a triple-quoted String.

Number Types

Kotlin provides integer types (Int, Long) and floating point types (Double). A whole
number constant is Int by default and Long if you append an L. A constant isDouble
if it contains a decimal point:

// Summaryl/NumberTypes .kt
fun main() {

val n = 1000 // Int
val 1 = 1000L // Long

val d = 1000.0 // Double
println("$n $1 $d")

}

/* Output:

1000 1000 1000.0

*/

An Int holds values between -2*' and +2°'-1. Integral values can overflow; for
example, adding anything to Int .MAX_VALUE produces an overflow:

Atomic Kotlin (www.AtomicKotlin.com) by Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Summary 1 80

// Summaryl/Over flow.kt

fun main() {
println(Int.MAX_VALUE + 1)
println(Int.MAX_VALUE + 1L)

i * Qutput:

-2147483648

2147483648

*/

In the second print1n() statement we append L to 1, forcing the whole expression
to be of type Long, which avoids the overflow. (A Long can hold values between -2
and +2%-1).

When you divide an Int with another Int, Kotlin produces an Int result, and
any remainder is truncated. So 1/2 produces @. If a Double is involved, the Int
is promoted to Double before the operation, so1.0/2 produces @.5.

You might expect d1 in the following to produce 3. 4:

// Summaryl1/Truncation.kt

fun main() {
val d1: Double = 3.0 + 2 / 5
println(d1)
val d2: Double = 3 + 2.0 / 5
println(d2)
}
/* Output:
3.0
3.4
*/
Because of evaluation order, it doesn’t. Kotlin first divides 2 by 5, and integer math
produces 0, yielding an answer of 3.0. The same evaluation order does produce
the expected result for d2. Dividing 2.0 by 5 produces ©.4. The 3 is promoted to a
Double because we add it to a Double (@.4), which produces 3. 4.

Understanding evaluation order helps you to decipher what a program does, both
with logical operations (Boolean expressions) and with mathematical operations. If
you’re unsure about evaluation order, use parentheses to force your intention. This
also makes it clear to those reading your code.

Atomic Kotlin (www.AtomicKotlin.com) by Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Summary 1 81

Repetition with while

A while loop continues as long as the controlling Boolean-expression produces true:

while (Boolean-expression) {
// Code to be repeated

}

The Boolean expression is evaluated once at the beginning of the loop and again
before each further iteration.

// Summaryl/While.kt
fun testCondition(i: Int) = i < 100
fun main() {

var 1 = 0
while (testCondition(i)) {

print(".")
i += 10
}
}
/* Output:
*/

Kotlin infers Boolean as the result type for testCondition().

The short versions of assignment operators are available for all mathematical opera-
tions (+=, -=, *=, /=, %=). Kotlin also supports the increment and decrement operators
++ and - -, in both prefix and postfix form.

while can be used with the do keyword:
do {

// Code to be repeated
} while (Boolean-expression)

Rewriting While.kt:

Atomic Kotlin (www.AtomicKotlin.com) by Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Summary 1 82

// Summary1/DoWhile.kt

fun main() {
var i = 0

do {
print(".")
i += 10
} while (testCondition(i))
}
/* Output:
*/

The sole difference between while and do-while is that the body of the do-while
always executes at least once, even if the Boolean expression produces false the
first time.

Looping & Ranges

Many programming languages index into an iterable object by stepping through
integers. Kotlin’s for allows you to take elements directly from iterable objects like
ranges and Strings. For example, this for selects each character in the String
"Kotlin":

// Summaryl/Stringlteration.kt

fun main() {
for (c in "Kotlin") {
print("$c ")
// ¢ += 1 // error:
// val cannot be reassigned
}
}
/* Output:
Kotlin
*/

c can’t be explicitly defined as either a var or val —Kotlin automatically makes it a
val and infers its type as Char (you can provide the type explicitly, but in practice
this is rarely done).

Atomic Kotlin (www.AtomicKotlin.com) by Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Summary 1 83

You can step through integral values using ranges:
// Summaryl/RangeOfInt.kt

fun main() {
for (i in 1..10) {

print("$i ")
}
}
/* Output:
123456789 10
*/

Creating a range with . . includes both bounds, butuntil excludes the top endpoint:
1 until 10 is the same as 1..9. You can specify an increment value using step:
1..21 step 3.

The in Keyword

The same in that provides for loop iteration also allows you to check membership
in a range. ! in returns true if the tested value isn’t in the range:

// Summaryl/Membership.kt

fun inNumRange(n: Int) = n in 50..100

1 1 1 1

fun notLowerCase(ch: Char) = ch !in 'a'..'z

fun main() {

val i1 = 11

val i2 = 100
val c1 = 'K'
val c2 = 'k'

println("$i1 ${inNumRange(i1)}")
println("$i2 ${inNumRange(i2)}")
println("$c1 ${notLowerCase(c1)}")
println("$c2 ${notLowerCase(c2)}")

}

/* Output:

11 false

Atomic Kotlin (www.AtomicKotlin.com) by Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Summary 1 84

100 true
K true
k false
*/

in can also be used to test membership in floating-point ranges, although such ranges
can only be defined using . . and notuntil.

Expressions & Statements

The smallest useful fragment of code in most programming languages is either a
statement or an expression. These have one basic difference:

« A statement changes state.
« An expression expresses.

That is, an expression produces a result, while a statement does not. Because it doesn’t
return anything, a statement must change the state of its surroundings (that is, create
a side effect) to do anything useful.

Almost everything in Kotlin is an expression:

val hours = 10
val minutesPerHour = 60
val minutes = hours * minutesPerHour

In each case, everything to the right of the = is an expression, which produces a result
that is assigned to the identifier on the left.

Functions like print1n() don’t seem to produce a result, but because they are still
expressions, they must return something. Kotlin has a special Unit type for these:

Atomic Kotlin (www.AtomicKotlin.com) by Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Summary 1 85

// Summaryl/UnitReturn.kt

fun main() {
val result = println("returns Unit")
println(result)

}

/* Output:
returns Unit
kotlin.Unit

*/

Experienced programmers should go to Summary 2 after working the exercises for
this atom.

Exercises and solutions can be found at www.AtomicKotlin.com.

Atomic Kotlin (www.AtomicKotlin.com) by Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Section II: Introduction to
Objects

Objects are the foundation for numerous modern languages, including
Kotlin.

In an object-oriented (OO) programming language, you discover “nouns” in the
problem you’re solving, and translate those nouns to objects. Objects hold data and
perform actions. An object-oriented language creates and uses objects.

Kotlin isn’t just object-oriented; it’s also functional. Functional languages focus on
the actions you perform (“verbs”). Kotlin is a hybrid object-functional language.

« This section explains the basics of object-oriented programming.

« Section IV: Functional Programming introduces functional programming.

« Section V: Object-Oriented Programming covers object-oriented programming
in detail.

Objects Everywhere

Objects store data using properties (vals and vars) and perform opera-
tions with this data using functions.

Some definitions:

« Class: Defines properties and functions for what is essentially a new data type.
Classes are also called user-defined types.

« Member: Either a property or a function of a class.

« Member function: A function that works only with a specific class of object.

« Creating an object: Making a val or var of a class. Also called creating an
instance of that class.

Because classes define state and behavior, we can even refer to instances of built-in
types like Double or Boolean as objects.

Consider Kotlin’s IntRange class:
// ObjectsEverywhere/IntRanges.kt

fun main() {
val r1 = IntRange(0, 10)
val r2 = IntRange(5, 7)
println(r1)
println(r2)

}

/* Output:

0..10

5..7

*/

We create two objects (instances) of the IntRange class. Each object has its own
piece of storage in memory. IntRange is a class, but a particular range r1 from 0 to
10 is an object that is distinct from range r2.

Objects Everywhere 88

Numerous operations are available for an IntRange object. Some are straightfor-
ward, like sum(), and others require more understanding before you can use them.
If you try calling one that needs arguments, the IDE will ask for those arguments.

To learn about a particular member function, look it up in the Kotlin documentation®.
Notice the magnifying glass icon in the top right area of the page. Click on that and
type IntRange into the search box. Click on kotlin.ranges > IntRange from
the resulting search. You’ll see the documentation for the IntRange class. You can
study all the member functions—the Application Programming Interface (API)—of
the class. Although you won’t understand most of it at this time, it’s helpful to
become comfortable looking things up in the Kotlin documentation.

An IntRange is a kind of object, and a defining characteristic of an object is that
you perform operations on it. Instead of “performing an operation,” we say calling
a member function. To call a member function for an object, start with the object
identifier, then a dot, then the name of the operation:

// ObjectsEverywhere/RangeSum.kt

fun main() {
val r = IntRange(0, 10)
println(r.sum())

}

/* Output:
55

*/

Because sum() is a member function defined for IntRange, you call it by saying
r.sum(). This adds up all the numbers in that IntRange.

Earlier object-oriented languages used the phrase “sending a message” to describe
calling a member function for an object. Sometimes you’ll still see that terminology:.

Classes can have many operations (member functions). It’s easy to explore classes
using an IDE (integrated development environment) that includes a feature called
code completion. For example, if you type .s after an object identifier within Intelli]
IDEA, it shows all the members of that object that begin with s:

https://kotlinlang.org/api/latest/jvm/stdlib/index.html

Atomic Kotlin (www.AtomicKotlin.com) by Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

https://kotlinlang.org/api/latest/jvm/stdlib/index.html
https://kotlinlang.org/api/latest/jvm/stdlib/index.html

Objects Everywhere

val r = IntRange(@, 10)
r.
start
step
spliterator()
sum()
single()
single {...}
singleOrNull()
singleOrNull {...}
sortedBy {...}
sorted()

<

IESESSESESSE

enrtadivNacrandina S

Spliterator<Int>

1
Did you know that Quick Definition View (_Space) works in completion lookups as well? >> [T

Code Completion

89

Try using code completion on other objects. For example, you can reverse a String

or convert all the characters to lower case:
// ObjectsEverywhere/Strings.kt

fun main() {
val s = "AbcD"
println(s.reversed())
println(s.toLowerCase())

}

/* Output:

DcbA

abed

*/

You can easily convert a String to an integer and back:

Atomic Kotlin (www.AtomicKotlin.com) by Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Objects Everywhere 90

// ObjectsEverywhere/Conversion.kt

fun main() {
val s = "123"
println(s.tolnt())
val i = 123
println(i.toString())

}

/* Output:
123

123

*/

Later in the book we discuss strategies to handle situations when the String you
want to convert doesn’t represent a correct integer value.

You can also convert from one numerical type to another. To avoid confusion,
conversions between number types are explicit. For example, you convert an Int
i to aLong by calling i.toLong(), or to a Double with i .toDouble():

// ObjectsEverywhere/NumberConversions.kt

fun fraction(numerator: Long, denom: Long) =
numerator .toDouble() / denom

fun main() {
val num = 1
val den = 2
val f = fraction(num.tolLong(), den.tolLong())
println(f)
}
/* Output:
0.5
*/

Well-defined classes are easy for a programmer to understand, and produce code
that’s easy to read.

Exercises and solutions can be found at www.AtomicKotlin.com.

Atomic Kotlin (www.AtomicKotlin.com) by Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Creating Classes

Not only can you use predefined types like IntRange and String, you
can also create your own types of objects.

Indeed, creating new types comprises much of the activity in object-oriented pro-
gramming. You create new types by defining classes.

An object is a piece of the solution for a problem you’re trying to solve. Start by
thinking of objects as expressing concepts. As a first approximation, if you discover
a “thing” in your problem, represent that thing as an object in your solution.

Suppose you want to create a program to manage animals in a zoo. It makes sense
to categorize the different types of animals based on how they behave, their needs,
animals they get along with and those they fight with. Everything different about a
species of animal is captured in the classification of that animal’s object. Kotlin uses
the class keyword to create a new type of object:

// CreatingClasses/Animals.kt

// Create some classes:
class Giraffe

class Bear

class Hippo

fun main() {
// Create some objects:
val g1 = Giraffe()
val g2 = Giraffe()
val b = Bear()
val h = Hippo()

// Each object() is unique:
println(gl)
println(g2)
println(h)

Creating Classes 92

println(b)

}
/* Sample output:

Giraffe@28d93b30
Giraffe@1b6d3586
Hippo@4554617c
Bear@74a14482

*/

To define a class, start with the class keyword, followed by an identifier for your
new class. The class name must begin with a letter (A-Z, upper or lower case), but can
include things like numbers and underscores. Following convention, we capitalize the
first letter of a class name, and lowercase the first letter of all vals and vars.

Animals.kt starts by defining three new classes, then creates four objects (also called
instances) of those classes.

Giraffe is a class, but a particular five-year-old male giraffe that lives in Botswana
is an object. Each object is different from all others, so we give them names like g1
and g2.

Notice the rather cryptic output of the last four lines. The part before the @ is the class
name, and the number after the @ is the address where the object is located in your
computer’s memory. Yes, that’s a number even though it includes some letters—it’s
called “hexadecimal notation”’. Every object in your program has its own unique
address.

The classes defined here (Giraffe, Bear, and Hippo) are as simple as possible: the
entire class definition is a single line. More complex classes use curly braces ({ and
}) to create a class body containing the characteristics and behaviors for that class.

A function defined within a class belongs to that class. In Kotlin, we call these member
functions of the class. Some object-oriented languages like Java choose to call them
methods, a term that came from early object-oriented languages like Smalltalk. To
emphasize the functional nature of Kotlin, the designers chose to drop the term
method, as some beginners found the distinction confusing. Instead, the term function
is used throughout the language.

If it is unambiguous, we will just say “function” If we must make the distinction:

*%https://en.wikipedia.org/wiki/Hexadecimal

Atomic Kotlin (www.AtomicKotlin.com) by Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

https://en.wikipedia.org/wiki/Hexadecimal
https://en.wikipedia.org/wiki/Hexadecimal

Creating Classes 93

« Member functions belong to a class.
« Top-level functions exist by themselves and are not part of a class.

Here, bark () belongs to the Dog class:
// CreatingClasses/Dog.kt

class Dog {
fun bark() = "yip!"
}

fun main() {
val dog = Dog()
}

Inmain(), we create a Dog object and assign it to val dog. Kotlin emits a warning
because we never use dog.

Member functions are called (invoked) with the object name, followed by a . (dot/pe-
riod), followed by the function name and parameter list. Here we call the meow()
function and display the result:

// CreatingClasses/Cat.kt

class Cat {
fun meow() = "mrrrow!"

}

fun main() {
val cat = Cat()
// Call 'meow()' for 'cat':
val m1 = cat.meow()
println(mi)

}

/* Output:

mrrrow!

*/

A member function acts on a particular instance of a class. When you call meow(),
you must call it with an object. During the call, meow() can access other members
of that object.

Atomic Kotlin (www.AtomicKotlin.com) by Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Creating Classes 94

When calling a member function, Kotlin keeps track of the object of interest by
silently passing a reference to that object. That reference is available inside the
member function by using the keyword this.

Member functions have special access to other elements within a class, simply by
naming those elements. You can also explicitly qualify access to those elements using
this. Here, exercise() calls speak() with and without qualification:

// CreatingClasses/Hamster.kt

class Hamster {
fun speak() = "Squeak!
fun exercise() =
this.speak() + // Qualified with 'this'
speak() + // Without 'this'
"Running on wheel"

"

}

fun main() {
val hamster = Hamster()
println(hamster.exercise())

}

/* Output:

Squeak! Squeak! Running on wheel
*/

In exercise(), we call speak() first with an explicit this and then omit the
qualification.

Sometimes you’ll see code containing an unnecessary explicit this. That kind of
code often comes from programmers who know a different language where this is
either required, or part of its style. Using a feature unnecessarily is confusing for the
reader, who spends time trying to figure out why you’re doing it. We recommend
avoiding the unnecessary use of this.

Outside the class, you must say hamster .exercise() and hamster .speak().

Exercises and solutions can be found at www.AtomicKotlin.com.

Atomic Kotlin (www.AtomicKotlin.com) by Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Properties

A property is a var or val that’s part of a class.

Defining a property maintains state within a class. Maintaining state is the primary
motivating reason for creating a class rather than just writing one or more standalone
functions.

A var property can be reassigned, while a val property can’t. Each object gets its
own storage for properties:

// Properties/Cup.kt

class Cup {
var percentFull = 0

}

fun main() {
val c1 = Cup()

cl.percentFull = 50
val c2 = Cup()
c2.percentFull = 100

println(cl.percentFull)
println(c2.percentFull)

}

/* Output:
50

100

*/

Defining a var or val inside a class looks just like defining it within a function.
However, the var or val becomes part of that class, and you must refer to it
by specifying its object using dot notation, placing a dot between the object and
the name of the property. You can see dot notation used for each reference to
percentFull.

Properties 96

The percentFull property represents the state of the corresponding Cup object.
cl.percentFull and c2.percentFull contain different values, showing that each
object has its own storage.

A member function can refer to a property within its object without using dot
notation (that is, without qualifying it):

// Properties/Cup2.kt

class Cup2 {

var percentFull = 0

val max = 100

fun add(increase: Int): Int {
percentFull += increase
if (percentFull > max)

percentFull = max

return percentFull

}
}

fun main() {
val cup = Cup2()
cup.add(50)
println(cup.percentFull)
cup.add(70)
println(cup.percentFull)

}

/* Output:

50

100

*/

The add() member function tries to add increase to percentFull but ensures that
it doesn’t go past 100%.
You must qualify both properties and member functions from outside a class.

You can define top-level properties:

Atomic Kotlin (www.AtomicKotlin.com) by Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Properties 97

// Properties/ToplLevelProperty.kt
val constant = 42
var counter = 0

fun inc() {
counter++

}

Defining a top-level val is safe because it cannot be modified. However, defining a
mutable (var) top-level property is considered an anti-pattern. As your program
becomes more complicated, it becomes harder to reason correctly about shared
mutable state. If everyone in your code base can access the var counter, you can’t
guarantee it will change correctly: while inc() increases counter by one, some
other part of the program might decrease counter by ten, producing obscure bugs.
It’s best to guard mutable state within a class. In Constraining Visibility you’ll see
how to make it truly hidden.

To say that vars can be changed while vals cannot is an oversimplification. As an
analogy, consider a house as a val, and a sofa inside the house as a var. You can
modify sofa because it’s a var. You can’t reassign house, though, because it’s a val:

// Properties/ChangingAVal.kt

class House {
var sofa: String = ""

}

fun main() {
val house = House()
house.sofa = "Simple sleeper sofa: $89.00"
println(house.sofa)
house.sofa = "New leather sofa: $3,099.00"
println(house.sofa)
// Cannot reassign the val to a new House:
// house = House()

}

/* Output:

Simple sleeper sofa: $89.00

New leather sofa: $3,099.00

*/

Atomic Kotlin (www.AtomicKotlin.com) by Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Properties 98

Although house is a val, its object can be modified because sofa in class House
is a var. Defining house as a val only prevents it from being reassigned to a new
object.

If we make a property a val, it cannot be reassigned:
// Properties/AnUnchangingVar .kt

class Sofa {
val cover: String = "Loveseat cover"

}

fun main() {
var sofa = Sofa()
// Not allowed:
// sofa.cover = "New cover"
// Reassigning a var:
sofa = Sofa()
}

Even though sofa is a var, its object cannot be modified because cover in class
Sofa is a val. However, sofa can be reassigned to a new object.

We've talked about identifiers like house and sofa as if they were objects. They are
actually references to objects. One way to see this is to observe that two identifiers
can refer to the same object:

// Properties/References.kt

class Kitchen {
var table: String = "Round table"

}

fun main() {

val kitchen1l = Kitchen()

val kitchen2 = kitcheni
println("kitchenl: ${kitcheni.table}")
println("kitchen2: ${kitchen2.table}")
kitchenl.table = "Square table"
println("kitchen1: ${kitcheni.table}")
println("kitchen2: ${kitchen2.table}")

Atomic Kotlin (www.AtomicKotlin.com) by Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Properties 99

/* Output:

kitchenl: Round table
kitchenZ: Round table
kitcheni: Square table
kitchenZ2: Square table
*/

When kitchen1 modifies table, kitchen2 sees the modification. kitcheni .table
and kitchen2.table display the same output.

Remember that var and val control references rather than objects. A var allows you
to rebind a reference to a different object, and a val prevents you from doing so.

Mutability means an object can change its state. In the examples above,class House
and class Kitchen define mutable objects while class Sofa defines immutable
objects.

Exercises and solutions can be found at www.AtomicKotlin.com.

Atomic Kotlin (www.AtomicKotlin.com) by Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Constructors

You initialize a new object by passing information to a constructor.

Each object is an isolated world. A program is a collection of objects, so correct
initialization of each individual object solves a large part of the initialization problem.
Kotlin includes mechanisms to guarantee proper object initialization.

A constructor is like a special member function that initializes a new object. The
simplest form of a constructor is a single-line class definition:

// Constructors/Wombat .kt
class Wombat

fun main() {
val wombat = Wombat()

}

Inmain(), callingWombat () creates aWombat object. If you are coming from another
object-oriented language you might expect to see a new keyword used here, but new
would be redundant in Kotlin so it was omitted.

You pass information to a constructor using a parameter list, just like a function. Here,
the Alien constructor takes a single argument:

Constructors 101

// Constructors/Arg.kt

class Alien(name: String) {
val greeting = "Poor $name!"

}

fun main() {
val alien = Alien("Mr. Meeseeks")
println(alien.greeting)
// alien.name // Error /7 [1]

}
/* Output:
Poor Mr. Meeseeks!

*/

Creating an Alien object requires the argument (try it without one). name initializes
the greeting property within the constructor, but it is not accessible outside the
constructor—try uncommenting line [1].

If you want the constructor parameter to be accessible outside the class body, define
it as a var or val in the parameter list:

// Constructors/VisibleArgs.kt

class MutableNameAlien(var name: String)

class FixedNameAlien(val name: String)

fun main() {
val alienl =
MutableNameAlien("Reverse Giraffe")
val alien2 =
FixedNameAlien("Krombopolis Michael™)

alienl.name = "Parasite"
// Can't do this:
// alien2.name = "Parasite"

}

These class definitions have no explicit class bodies—the bodies are implied.

Atomic Kotlin (www.AtomicKotlin.com) by Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Constructors 102

When name is defined as a var or val, it becomes a property and is thus accessible
outside the constructor. val constructor parameters cannot be changed, while var
constructor parameters are mutable.

Your class can have numerous constructor parameters:
// Constructors/MultipleArgs.kt

class AlienSpecies(
val name: String,
val eyes: Int,
val hands: Int,
val legs: Int

) |
fun describe() =
"$name with $eyes eyes, " +
"$hands hands and $legs legs"
}

fun main() {
val kevin =
AlienSpecies("Zigerion", 2, 2, 2)
val mortyJr =
AlienSpecies("Gazorpian", 2, 6, 2)
println(kevin.describe())
println(mortyJr.describe())
}
/* Output:
Zigerion with 2 eyes, 2 hands and 2 legs
Gazorpian with 2 eyes, 6 hands and 2 legs
*/

In Complex Constructors, you'll see that constructors can also contain complex
initialization logic.

If an object is used when a String is expected, Kotlin calls the object’s toString()
member function. If you don’t write one, you still get a default toString():

Atomic Kotlin (www.AtomicKotlin.com) by Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Constructors 103

// Constructors/DisplayAlienSpecies.kt

fun main() {
val krombopulosMichael =
AlienSpecies("Gromflomite", 2, 2, 2)
println(krombopulosMichael)

}
/* Sample output:

AlienSpecies@4d7e1886
*/

The default toString() isn’t very useful—it produces the class name and the phys-
ical address of the object (this varies from one program execution to the next). You
can define your own toString():

// Constructors/Scientist.kt

class Scientist(val name: String) {
override fun toString(): String {
return "Scientist('$name’)"

}
}

fun main() {
val zeep = Scientist("Zeep Xanflorp")
println(zeep)

}

/* Output:

Scientist('Zeep Xanflorp')
*/

override is a new keyword for us. It is required here because toString() already
has a definition, the one producing the primitive result. override tells Kotlin that
yes, we do actually want to replace the default toString() with our own definition.
The explicitness of override clarifies the code and prevents mistakes.

A toString() that displays the contents of an object in a convenient form is useful
for finding and fixing programming errors. To simplify the process of debugging,
IDEs provide debuggers®' that allow you to observe each step in the execution of a
program and to see inside your objects.

*'https://www.jetbrains.com/help/idea/debugging-code.html

Atomic Kotlin (www.AtomicKotlin.com) by Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

https://www.jetbrains.com/help/idea/debugging-code.html
https://www.jetbrains.com/help/idea/debugging-code.html

Constructors 104

Exercises and solutions can be found at www.AtomicKotlin.com.

Atomic Kotlin (www.AtomicKotlin.com) by Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Constraining Visibility

If you leave a piece of code for a few days or weeks, then come back to it,
you might see a much better way to write it.

This is one of the prime motivations for refactoring, which rewrites working code to
make it more readable, understandable, and thus maintainable.

There is a tension in this desire to change and improve your code. Consumers (client
programmers) require aspects of your code to be stable. You want to change it, and
they want it to stay the same.

This is particularly important for libraries. Consumers of a library don’t want to
rewrite code for a new version of that library. However, the library creator must be
free to make modifications and improvements, with the certainty that the client code
won’t be affected by those changes.

Therefore, a primary consideration in software design is:
Separate things that change from things that stay the same.

To control visibility, Kotlin and some other languages provide access modifiers. Li-
brary creators decide what is and is not accessible by the client programmer using the
modifiers public, private, protected, and internal. This atom covers public
and private, with a brief introduction to internal. We explain protected later in

the book.

An access modifier such as private appears before the definition for a class, function,
or property. An access modifier only controls access for that particular definition.

A public definition is accessible by client programmers, so changes to that defini-
tion impact client code directly. If you don’t provide a modifier, your definition is
automatically public, so public is technically redundant. You will sometimes still
specify public for the sake of clarity.

Constraining Visibility 106

A private definition is hidden and only accessible from other members of the same
class. Changing, or even removing, a private definition doesn’t directly impact
client programmers.

private classes, top-level functions, and top-level properties are accessible only
inside that file:

// Visibility/RecordAnimals.kt
private var index = 0 /7 [1]

private class Animal(val name: String) // [2]

private fun recordAnimal(// [3]
animal: Animal

) |
println("Animal #$index: ${animal.name}")
index++

}

fun recordAnimals() {
recordAnimal (Animal("Tiger"))
recordAnimal (Animal("Antelope"))

}

fun recordAnimalsCount() {
println("$index animals are here!")

}

You can access private top-level properties ([1]), classes ([2]), and functions ([3])
from other functions and classes within RecordAnimals.kt. Kotlin prevents you
from accessing a private top-level element from within another file, telling you it’s
private in the file:

Atomic Kotlin (www.AtomicKotlin.com) by Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Constraining Visibility 107

// Visibility/ObserveAnimals.kt

fun main() {
// Can't access private members
// declared in another file.
// Class is private:
// val rabbit = Animal("Rabbit")
// Function is private:
// recordAnimal (rabbit)
// Property is private:
// index++

recordAnimals()
recordAnimalsCount()
}
/* Output:
Animal #0: Tiger
Animal #1: Antelope
2 animals are here!

*/
Privacy is most commonly used for members of a class:
// Visibility/Cookie.kt

class Cookie(
private var isReady: Boolean // [1]
) |
private fun crumble() = /7 [2]
println("crumble")

public fun bite() = /7 [3]
println("bite")

fun eat() { // [4]
isReady = true // [5]
crumble()
bite()

}

}

fun main() {

Atomic Kotlin (www.AtomicKotlin.com) by Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Constraining Visibility 108

val x = Cookie(false)
x.bite()
// Can't access private members:
// x.1isReady
// x.crumble()
x.eat()

}

/* Output:

bite

crumble

bite

*/

« [1] A private property, not accessible outside the containing class.
« [2] A private member function.

[3] A public member function, accessible to anyone.

[4] No access modifier means public.
+ [5] Only members of the same class can access private members.

The private keyword means no one can access that member except other members
of that class. Other classes cannot access private members, so it’s as if you're also
insulating the class against yourself and your collaborators. With private, you can
freely change that member without worrying whether it affects another class in
the same package. As a library designer you’ll typically keep things as private as
possible, and expose only functions and classes to client programmers.

Any member function that is a helper function for a class can be made private
to ensure you don’t accidentally use it elsewhere in the package and thus prohibit
yourself from changing or removing that function.

The same is true for a private property inside a class. Unless you must expose
the underlying implementation (which is less likely than you might think), make
properties private. However, just because a reference to an object is private inside
a class doesn’t mean some other object can’t have a public reference to the same
object:

Atomic Kotlin (www.AtomicKotlin.com) by Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Constraining Visibility 109

// Visibility/MultipleRef.kt

class Counter(var start: Int) {
fun increment() {
start += 1
}
override fun toString() = start.toString()

}

class CounterHolder(counter: Counter) ({
private val ctr = counter
override fun toString() =
"CounterHolder: " + ctr

}

fun main() {
val ¢ = Counter(11) /7 [1]
val ch = CounterHolder(c) /7 [2]
println(ch)
c.increment() // [3]
println(ch)
val ch2 = CounterHolder(Counter(9)) // [4]
println(ch2)

}

/* Output:

CounterHolder: 11

CounterHolder: 12

CounterHolder: 9

*/

[1] ¢ is now defined in the scope surrounding the creation of the Counter-
Holder object on the following line.

« [2] Passing c as the argument to the CounterHolder constructor means that
the new CounterHolder now refers to the same Counter object that ¢ refers
to.

+ [3] The Counter that is supposedly private inside ch can still be manipulated
via c.

+ [4] Counter(9) has no other references except within CounterHolder, so it
cannot be accessed or modified by anything except ch2.

Maintaining multiple references to a single object is called aliasing and can produce
surprising behavior.

Atomic Kotlin (www.AtomicKotlin.com) by Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Constraining Visibility 110

Modules

Unlike the small examples in this book, real programs are often large. It can be
helpful to divide such programs into one or more modules. A module is a logically
independent part of a codebase. The way you divide a project into modules depends
on the build system (such as Gradle*” or Maven®) and is beyond the scope of this
book.

An internal definition is accessible only inside the module where it is defined.
internal lands somewhere between private and public—use it when private
is too restrictive but you don’t want an element to be a part of the public APL. We
do not use internal in the book’s examples or exercises.

Modules are a higher-level concept. The following atom introduces packages, which
enable finer-grained structuring. A library is often a single module consisting of
multiple packages, so internal elements are available within the library but are not
accessible by consumers of that library.

Exercises and solutions can be found at www.AtomicKotlin.com.

*https://gradle.org/
**https://maven.apache.org/

Atomic Kotlin (www.AtomicKotlin.com) by Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

https://gradle.org/
https://maven.apache.org/
https://gradle.org/
https://maven.apache.org/

Packages

A fundamental principle in programming is the acronym DRY: Don’t
Repeat Yourself.

Multiple identical pieces of code require maintenance whenever you make fixes or
improvements. So duplicating code is not just extra work—every duplication creates
opportunities for mistakes.

The import keyword reuses code from other files. One way to use import is to
specify a class, function or property name:

import packagename.ClassName
import packagename. functionName
import packagename.propertyName

A package is an associated collection of code. Each package is usually designed to
solve a particular problem, and often contains multiple functions and classes. For ex-
ample, we can import mathematical constants and functions from the kot1in.math
library:

// Packages/ImportClass.kt

import kotlin.math.PI
import kotlin.math.cos // Cosine

fun main() {
println(PI)
println(cos(PI))
println(cos(2 * PI))

}

/* Output:

3.141592653589793

-1.0

1.0

*/

Sometimes you want to use multiple third-party libraries containing classes or
functions with the same name. The as keyword allows you to change names while
importing:

Packages 112

// Packages/ImportNameChange.kt
import kotlin.math.PI as circleRatio
import kotlin.math.cos as cosine

fun main() {
println(circleRatio)
println(cosine(circleRatio))
println(cosine(2 * circleRatio))

}

/* Output:

3.141592653589793

-1.0

1.0

*/

as is useful if a library name is poorly chosen or excessively long.

You can fully qualify an import in the body of your code. In the following example,
the code might be less readable due to the explicit package names, but the origin of
each element is absolutely clear:

// Packages/FullyQualify.kt

fun main() {
println(kotlin.math.PI)
println(kotlin.math.cos(kotlin.math.PI))
println(kotlin.math.cos(2 * kotlin.math.PI))

1

/* Output:

3.141592653589793

-1.0

1.0

*/

To import everything from a package, use a star:

Atomic Kotlin (www.AtomicKotlin.com) by Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Packages 113

// Packages/ImportEverything.kt
import kotlin.math.*

fun main() {
println(E)
println(E.roundTolInt())
println(E.toInt())

}

/* Output:
2.718281828459045
3

2

*/

The kotlin.math package contains a convenient roundToInt() that rounds the
Double value to the nearest integer, unlike toInt () which simply truncates anything
after a decimal point.

To reuse your code, create a package using the package keyword. The package
statement must be the first non-comment statement in the file. package is followed
by the name of your package, which by convention is all lowercase:

// Packages/PythagoreanTheorem.kt
package pythagorean
import kotlin.math.sqrt

class RightTriangle(
val a: Double,
val b: Double

) o
fun hypotenuse() = sqgrt(a * a + b * b)
fun area() = a * b / 2

}

You can name the source-code file anything you like, unlike Java which requires the
file name to be the same as the class name.

Kotlin allows you to choose any name for your package, but it’s considered good
style for the package name to be identical to the directory name where the package
files are located (this will not always be the case for the examples in this book).

The elements in the pythagorean package are now available using import:

Atomic Kotlin (www.AtomicKotlin.com) by Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Packages 114

// Packages/ImportPythagorean.kt
import pythagorean.RightTriangle

fun main() {
val rt = RightTriangle(3.0, 4.0)
println(rt.hypotenuse())
println(rt.area())

}

/* Output:
5.0

6.0

*/

In the remainder of this book we use package statements for any file that defines
functions, classes, etc., outside of main(), to prevent name clashes with other files in
the book, but we usually won’t put a package statement in a file that only contains
amain().

Exercises and solutions can be found at www.AtomicKotlin.com.

Atomic Kotlin (www.AtomicKotlin.com) by Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Testing

Constant testing is essential for rapid program development.

If changing one part of your code breaks other code, your tests reveal the problem
right away. If you don’t find out immediately, changes accumulate and you can no
longer tell which change caused the problem. You’ll spend a lot longer tracking it
down.

Testing is a crucial practice, so we introduce it early and use it throughout the rest
of the book. This way, you become accustomed to testing as a standard part of the
programming process.

Using print1n() to verify code correctness is a weak approach—you must scrutinize
the output every time and consciously ensure that it’s correct.

To simplify your experience while using this book, we created our own tiny testing
system. The goal is a minimal approach that:

1. Shows the expected result of expressions.

2. Provides output so you know the program is running, even when all tests
succeed.

3. Ingrains the concept of testing early in your practice.

Although useful for this book, ours is not a testing system for the workplace. Others
have toiled long and hard to create such test systems. For example:

« JUnit** is one of the most popular Java test frameworks, and is easily used from
within Kotlin.
« Kotest™ is designed specifically for Kotlin, and takes advantage of Kotlin lan-
guage features.
« The Spek Framework®® produces a different form of testing, called Specification
Testing.
To use our testing framework, we must first import it. The basic elements of the

framework are eq (equals) and neq (not equals):
**https://junit.org
**https://github.com/kotest/kotest
*https://spekframework.org/

https://junit.org/
https://github.com/kotest/kotest
https://spekframework.org/
https://junit.org/
https://github.com/kotest/kotest
https://spekframework.org/

Testing 116

// Testing/TestingExample.kt
import atomictest.*

fun main() {
val v1 = 11
val v2 = "Ontology"

// 'eq' means "equals":
vl eq 11
v2 eq "Ontology"

// 'neq' means "not equal"
v2 neq "Epistimology"

// [Error] Epistimology != Ontology
// v2 eq "Epistimology"

}

/* Output:

11

Ontology

Ontology

*/

The code for the atomictest package is in Appendix A: AtomicTest. We don’t intend
that you understand everything in AtomicTest . kt right now, because it uses some
features that won’t appear until later in the book.

To produce a clean, comfortable appearance, AtomicTest uses a Kotlin feature you
haven’t seen yet: the ability to write a function call a. function(b) in the text-like
forma function b. This is called infix notation. Only functions defined using the
infix keyword can be called this way. AtomicTest .kt defines the infix eq and
neq used in TestingExample.kt:

expression eq expected
expression neq expected

eq and neq are flexible—almost anything works as a test expression. If expected is a
String, then expression is converted to a String and the two Strings are compared.
Otherwise, expression and expected are compared directly (without converting them
first). In either case, the result of expression appears on the console so you see some-
thing when the program runs. Even when the tests succeed, you still see the result

Atomic Kotlin (www.AtomicKotlin.com) by Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Testing 117

on the left of eq or neq. If expression and expected are not equivalent, AtomicTest
shows an error when the program runs.

The last test in TestingExample.kt intentionally fails so you see an example of
failure output. If the two values are not equal, Kotlin displays the corresponding
message starting with [Error]. If you uncomment the last line and run the example
above, you will see, after all the successful tests:

[Error] Epistimology != Ontology

The actual value stored in v2 is not what it is claimed to be in the “expected”
expression. AtomicTest displays the String representations for both expected and
actual values.

eq and neq are the basic (infix) functions defined for AtomicTest—it truly is a
minimal testing system. When you put eq and neq expressions in your examples,
you’ll create both a test and some console output. You verify the correctness of the
program by running it.

There’s a second tool in AtomicTest. The trace object captures output for later
comparison:

// Testing/Tracel.kt
import atomictest.*

fun main() {

trace("line 1")
trace(47)
trace("line 2")
trace eq """

line 1

47

line 2

mon

}

Adding results to trace looks like a function call, so you can effectively replace
println() with trace().

In previous atoms, we displayed output and relied on human visual inspection to
catch any discrepancies. That’s unreliable; even in a book where we scrutinize the

Atomic Kotlin (www.AtomicKotlin.com) by Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Testing 118

code over and over, we’ve learned that visual inspection can’t be trusted to find errors.
From now on we rarely use commented output blocks because AtomicTest will do
everything for us. However, sometimes we still include commented output blocks
when that produces a more useful effect.

Seeing the benefits of using testing throughout the rest of the book should help
you incorporate testing into your programming process. You'll probably start feeling
uncomfortable when you see code that doesn’t have tests. You might even decide
that code without tests is broken by definition.

Testing as Part of Programming

Testing is most effective when it’s built into your software development process.
Writing tests ensures you get the results you expect. Many people advocate writing
tests before writing the implementation code—you first make the test fail before you
write the code to make it pass. This technique, called Test Driven Development (TDD),
is a way to ensure that you're really testing what you think you are. You’ll find a more
complete description of TDD on Wikipedia (search for “Test Driven Development”).

There’s another benefit to writing testably—it changes the way you craft your code.
You could just display the results on the console. But in the test mindset you wonder,
“How will I test this?” When you create a function, you decide you should return
something from the function, if for no other reason than to test that result. Functions
that do nothing but take input and produce output tend to generate better designs,
as well.

Here’s a simplified example using TDD to implement the BMI calculation from
Number Types. First, we write the tests, along with an initial implementation that
fails (because we haven’t yet implemented the functionality):

Atomic Kotlin (www.AtomicKotlin.com) by Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Testing

// Testing/TDDFail .kt
package testingl
import atomictest.eq

fun main() {

calculateBMI(160, 68) eq "Normal weight"
// calculateBMI(100, 68) eq "Underweight"
// calculateBMI(200, 68) eq "Overweight"

}

fun calculateBMI(lbs: Int, height: Int) =
"Normal weight"

119

Only the first test passes. The other tests fail and are commented. Next, we add code

to determine which weights are in which categories. Now all the tests fail:

// Testing/TDDStillFails.kt
package testing2
import atomictest.eq

fun main() {
// Everything fails:

// calculateBMI(160, 68) eq "Normal weight"

// calculateBMI(100, 68) eq "Underweight"
// calculateBMI(200, 68) eq "Overweight"
}

fun calculateBMI(
lbs: Int,
height: Int
): String {
val bmi = 1lbs / (height * height) * 703.07
return if (bmi < 18.5) "Underweight"
else if (bmi < 25) "Normal weight"
else "Overweight™

}

We’re using Ints instead of Doubles, producing a zero result. The tests guide us to

the fix:

Atomic Kotlin (www.AtomicKotlin.com) by Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Testing

// Testing/TDDWorks.kt
package testing3
import atomictest.eq

fun main() {

}

calculateBMI(160.0, 68.0) eq "Normal weight"
calculateBMI(100.0, 68.0) eq "Underweight"
calculateBMI(200.0, 68.0) eq "Overweight"

fun calculateBMI(

}

You may choose to add additional tests for the boundary conditions.
In the exercises for this book, we include tests that your code must pass.

Exercises and solutions can be found at www.AtomicKotlin.com.

lbs: Double,
height: Double

: String {

val bmi = 1lbs / (height * height) * 703.07
return if (bmi < 18.5) "Underweight"

else if (bmi < 25) "Normal weight"

else "Overweight"

120

Atomic Kotlin (www.AtomicKotlin.com) by Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Exceptions

The word “exception” is used in the same sense as the phrase “I take
exception to that”

An exceptional condition prevents the continuation of the current function or scope.
At the point the problem occurs, you might not know what to do with it, but you
cannot continue within the current context. You don’t have enough information to
fix the problem. So you must stop and hand the problem to another context that’s
able to take appropriate action.

This atom covers the basics of exceptions as an error-reporting mechanism. In Section
VI: Preventing Failure, we look at other ways to deal with problems.

It’s important to distinguish an exceptional condition from a normal problem. A
normal problem has enough information in the current context to cope with the
issue. With an exceptional condition, you cannot continue processing. All you can
do is leave, relegating the problem to an external context. This is what happens when
you throw an exception. The exception is the object that is “thrown” from the site of
the error.

Consider toInt(), which converts a String to an Int. What happens if you call
this function for a String that doesn’t contain an integer value?

// Exceptions/TolntException.kt
package exceptions

fun erroneousCode() {
// Uncomment this line to get an exception:
// val i = "1$".tolInt() // [1]

}

fun main() {
erroneousCode()

}

Exceptions 122

Uncommenting line [1] produces an exception. Here, the failing line is commented
so we don’t stop the book’s build, which checks whether each example compiles and
runs as expected.

When an exception is thrown, the path of execution—the one that can’t be continued—
stops, and the exception object ejects from the current context. Here, it exits the
context of erroneousCode() and goes out to the context of main(). In this case,
Kotlin only reports the error; the programmer has presumably made a mistake and
must fix the code.

When an exception isn’t caught, the program aborts and displays a stack trace
containing detailed information. Uncommenting line [1] in ToIntException.kt,
produces the following output:

Exception in thread "main" java.lang.NumberFormatException: For input s\
tring: "1$"

at java.lang.NumberFormatException. forInputString(NumberFormatExcepti\
on.java:65)

at java.lang.Integer.parselnt(Integer. java:580)

at java.lang.Integer.parselnt(Integer. java:615)

at TolntExceptionKt.erroneousCode(at TolntException.kt:6)

at TolntExceptionKt.main(at ToIntException.kt:10)

The stack trace gives details such as the file and line where the exception occurred,
so you can quickly discover the issue. The last two lines show the problem: in
line 10 of main() we call erroneousCode(). Then, more precisely, in line 6 of
erroneousCode() we call toInt().

To avoid commenting and uncommenting code to display exceptions, we use the
capture() function from the AtomicTest package:

Atomic Kotlin (www.AtomicKotlin.com) by Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Exceptions

// Exceptions/IntroducingCapture.kt
import atomictest.*

fun main() {
capture {
"1$" . toInt()
} eq "NumberFormatException: " +
"""For input string: "1$""""

}

123

Using capture(), we compare the generated exception to the expected error mes-
sage. capture() isn’t very helpful for normal programming—it’s designed specifi-
cally for this book, so you can see the exception and know that the output has been

checked by the book’s build system.

Another strategy when you can’t successfully produce the expected result is to return
null, which is a special constant denoting “no value.” You can return null instead
of a value of any type. Later in Nullable Types we discuss the way null affects the

type of the resulting expression.

The Kotlin standard library contains String.toIntOrNull() which performs the
conversion if the String contains an integer number, or produces null if the

conversion is impossible—null is a simple way to indicate failure:

// Exceptions/IntroducingNull .kt
import atomictest.eq

fun main() {
"1$".toIntOrNull() eq null
}

Suppose we calculate average income over a period of months:

Atomic Kotlin (www.AtomicKotlin.com) by Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Exceptions 124

// Exceptions/Averagelncome.kt
package firstversion
import atomictest.*

fun averagelncome(income: Int, months: Int) =
income / months

fun main() {
averagelIncome(3300, 3) eq 1100
capture {
averagelncome (5000, 0)
} eq "ArithmeticException: / by zero"

}

If months is zero, the division in averageIncome() throws an ArithmeticExcep-
tion. Unfortunately, this doesn’t tell us anything about why the error occurred, what
the denominator means and whether it can legally be zero in the first place. This is
clearly a bug in the code—averageIncome() should cope with a months of @ in a
way that prevents a divide-by-zero error.

Let’s modify averageIncome() to produce more information about the source of
the problem. If months is zero, we can’t return a regular integer value as a result.
One strategy is to return null:

// Exceptions/AverageIncomeWithNull .kt
package withnull
import atomictest.eq

fun averagelncome(income: Int, months: Int) =
if (months == 0)
null
else
income / months

fun main() {
averagelIncome(3300, 3) eq 1100
averagelIncome (5000, 0) eq null

}

If a function can return null, Kotlin requires that you check the result before using
it (this is covered in Nullable Types). Even if you only want to display output to the

Atomic Kotlin (www.AtomicKotlin.com) by Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Exceptions 125

user, it’s better to say “No full month periods have passed,” rather than “Your average
income for the period is: null”

Instead of executing averageIncome() with the wrong arguments, you can throw
an exception—escape and force some other part of the program to manage the issue.
You could just allow the default ArithmeticException, but it’s often more useful
to throw a specific exception with a detailed error message. When, after a couple of
years in production, your application suddenly throws an exception because a new
feature calls averageIncome() without properly checking the arguments, you’ll be
grateful for that message:

// Exceptions/AverageIncomelWithException.kt
package properexception
import atomictest.*

fun averagelncome(income: Int, months: Int) =
if (months == 0)
throw IllegalArgumentException(// [1]
"Months can't be zero")
else
income / months

fun main() {
averagelIncome(3300, 3) eq 1100
capture {
averagelIncome (5000, 0)
} eq "IllegalArgumentException: " +
"Months can't be zero"

« [1] When throwing an exception, the throw keyword is followed by the excep-
tion to be thrown, along with any arguments it might need. Here we use the
standard exception class I11egalArgumentException.

Your goal is to generate the most useful messages possible to simplify the support of
your application in the future. Later you’ll learn to define your own exception types
and make them specific to your circumstances.

Exercises and solutions can be found at www.AtomicKotlin.com.

Atomic Kotlin (www.AtomicKotlin.com) by Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Lists

A List is a container, which is an object that holds other objects.

Containers are also called collections. When we need a basic container for the
examples in this book, we normally use aList.

Lists are part of the standard Kotlin package so they don’t require an import.

The following example creates a List populated with Ints by calling the standard
library function 1istOf() with initialization values:

// Lists/Lists.kt
import atomictest.eq

fun main() {
val ints = 1ist0f(99, 3, 5, 7, 11, 13)
ints eq "[99, 3, 5, 7, 11, 13]" /7 [1]

// Select each element in the List:

var result = ""

for (i in ints) { // [2]
result += "$i "

}
result eq "99 3 5 7 11 13"

// "Indexing" into the List:
ints[4] eq 11 /7 [3]

« [1] A List uses square brackets when displaying itself.

« [2] for loops work well with Lists: for(i in ints) means i receives each
value in ints. You don’t declare val i or give its type; Kotlin knows from the
context that i is a for loop identifier.

Lists 127

+ [3] Square brackets index intoalList. AList keeps its elements in initialization
order, and you select them individually by number. Like most programming
languages, Kotlin starts indexing at element zero, which in this case produces
the value 99. Thus an index of 4 produces the value 11.

Forgetting that indexing starts at zero produces the so-called off-by-one error. In a
language like Kotlin we often don’t select elements one at a time, but instead iterate
through an entire container using in. This eliminates off-by-one errors.

If you use an index beyond the last element in a List, Kotlin throws an ArrayIn-
dexOutOfBoundsException:

// Lists/OutOfBounds.kt
import atomictest.*

fun main() {
val ints = listOf(1, 2, 3)
capture {
ints[3]
} contains
1istOf("ArrayIndexOutOfBoundsException™)
}

AlList canhold all different types. Here’salList of Doublesand aList of Strings:

// Lists/ListUsefulFunction.kt
import atomictest.eq

fun main() {
val doubles =
listOf(1.1, 2.2, 3.3, 4.4)
doubles.sum() eq 11.0

val strings = listOf("Twas", "Brillig",
"And", "Slithy", "Toves")

strings eq listOf("Twas", "Brillig",
"And", "Slithy", "Toves")

strings.sorted() eq listOf("And",
"Brillig", "Slithy", "Toves", "Twas")

strings.reversed() eq 1istOf("Toves",
"Slithy", "And", "Brillig", "Twas")

strings. first() eq "Twas"

Atomic Kotlin (www.AtomicKotlin.com) by Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Lists 128

strings.takelast(2) eq
listOf("Slithy", "Toves")

}

»

This shows some of List’s operations. Note the name “sorted” instead of “sort.
When you call sorted() it produces a new List containing the same elements as the
old, in sorted order—but it leaves the original List alone. Calling it “sort” implies that
the original List is changed directly (a.k.a. sorted in place). Throughout Kotlin, you
see this tendency of “leaving the original object alone and producing a new object.”
reversed() also produces a new List.

Parameterized Types

We consider it good practice to use type inference—it tends to make the code cleaner
and easier to read. Sometimes, however, Kotlin complains that it can’t figure out
what type to use, and in other cases explicitness makes the code more understandable.
Here’s how we tell Kotlin the type contained by a List:

// Lists/ParameterizedTypes.kt
import atomictest.eq

fun main() {

// Type is inferred:

val numbers = 1istOf(1, 2, 3)

val strings =
listOf("one", "two", "three")

// Exactly the same, but explicitly typed:

val numbers2: List<Int> = 1istOf(1, 2, 3)

val strings2: List<String> =
1istOf("one", "two", "three")

numbers eq numbers?2

strings eq strings2

}

Kotlin uses the initialization values to infer that numbers contains a List of Ints,
while strings contains a List of Strings.

numbers2 and strings2 are explicitly-typed versions of numbers and strings,
created by adding the type declarationsList<Int> andList<String>. You haven’t

Atomic Kotlin (www.AtomicKotlin.com) by Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Lists 129

seen angle brackets before—they denote a type parameter, allowing you to say, “this
container holds ‘parameter’ objects.” We pronounce List<Int> as “List of Int.”

Type parameters are useful for components other than containers, but you often see
them with container-like objects.

Return values can also have type parameters:

// Lists/ParameterizedReturn.kt
package lists
import atomictest.eq

// Return type is inferred:
fun inferred(p: Char, q: Char) =
listOf(p, q)

// Explicit return type:
fun explicit(p: Char, q: Char): List<Char> =
1istOf(p, q)

fun main() {
inferred('a', 'b') eq "[a, b]"
explicit('y', 'z') eq
}

Kotlin infers the return type for inferred(), while explicit() specifies the func-
tion return type. You can’t just say it returns a List; Kotlin will complain, so you
must give the type parameter as well. When you specify the return type of a function,
Kotlin enforces your intention.

Read-Only and Mutable Lists

If you don’t explicitly say you want a mutable List, you won’t get one. 1istOf()
produces a read-only List that has no mutating functions.

If you're creating aL ist gradually (that is, you don’t have all the elements at creation
time), use mutablelListOf(). This produces a MutableList that can be modified:

Atomic Kotlin (www.AtomicKotlin.com) by Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Lists 130

// Lists/MutablelList.kt
import atomictest.eq

fun main() {
val list = mutableListOf<Int>()

list.add(1)
list.addAl1(listOf(2, 3))

list += 4
list += 1ist0f(5, 6)

list eq l1istOf(1, 2, 3, 4, 5, 6)
}

You can add elements to aMutablelist using add() and addA11(), or the shortcut
+= which adds a single element or another collection. Because 1ist has no initial
elements, we must tell Kotlin what type it is by providing the <Int> specification in
the call tomutableListOf().

A MutablelList can be treated as a List, in which case it cannot be changed. You
can’t, however, treat a read-only List asaMutablelList:

// Lists/MutlListIslList.kt
package lists
import atomictest.eq

fun getList(): List<Int> {
return mutablelListOf(1, 2, 3)
}

fun main() {
// getlList() produces a read-only List:
val list = getlList()
// list += 3 // Error
list eq listOf(1, 2, 3)
}

Note that 1ist lacks mutation functions despite being originally created using
mutablelListOf() inside getList().During the return, the result type becomes a
List<Int>. The original object is still a MutableList, but it is viewed through the
lensof aList.

Atomic Kotlin (www.AtomicKotlin.com) by Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Lists 131

A List is read-only—you can read its contents but not write to it. If the underlying
implementation is a MutableList and you retain a mutable reference to that im-
plementation, you can still modify it via that mutable reference, and any read-only
references will see those changes. This is another example of aliasing, introduced in
Constraining Visibility:

// Lists/MultiplelListRefs.kt
import atomictest.eq

fun main() {
val first = mutablelListOf(1)
val second: List<Int> = first
second eq 1istOf(1)

first += 2
// second sees the change:
second eq listOf(1, 2)

}

first is an immutable reference (val) to the mutable object produced by muta-
bleListOf(1). Then second is aliased to first, so it is a view of that same object.
second is read-only because List<Int> does not include modification functions.
Note that, without the explicit List<Int> type declaration, Kotlin would infer that
second was also a reference to a mutable object.

We're able to add an element (2) to the object because first is a reference to a
mutable List. Note that second observes these changes—it cannot change the List
although the List changes via first.

Exercises and solutions can be found at www.AtomicKotlin.com.

Atomic Kotlin (www.AtomicKotlin.com) by Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Variable Argument Lists

The vararg keyword produces a flexibly-sized argument list.

In Lists we introduced 1istOf(), which takes any number of parameters and pro-
ducesalist:

// Varargs/ListOf.kt
import atomictest.eq

fun main() {
1istOf(1) eq "[1]"
listOf("a", "b") eq "[a, b]"
}

Using the vararg keyword, you can define a function that takes any number of
arguments, just like 1istOf() does. vararg is short for variable argument list:

// Varargs/VariableArglist.kt
package varargs

fun v(s: String, vararg d: Double) {}

fun main() {
v("abc", 1
v("def", 1
v("ghi", 1
}

0, 2
0, 2.
09, 2 , 5.0, 6.0)

A function definition may specify only one parameter as vararg. Although it’s
possible to specify any item in the parameter list as vararg, it’s usually simplest
to do it for the last one.

vararg allows you to pass any number (including zero) of arguments. All arguments
must be of the specified type. vararg arguments are accessed using the parameter
name, which becomes an Array:

Variable Argument Lists 133

// Varargs/VarargSum.kt
package varargs
import atomictest.eq

fun sum(vararg numbers: Int): Int {
var total = 0
for (n in numbers) {
total += n

}

return total

}

fun main() {
sum(13, 27, 44) eq 84
sum(1, 3, 5, 7, 9, 11) eq 36
sum() eq 0

}

Although Arrays and Lists look similar, they are implemented differently—List is
a regular library class while Array has special low-level support. Array comes from
Kotlin’s requirement for compatibility with other languages, especially Java.

In day-to-day programming, use a List when you need a simple sequence. Use
Arrays only when a third-party API requires an Array, or when you’re dealing with
varargs.

In most cases you can just ignore the fact that vararg produces an Array and treat
it as if it were a List:

// Varargs/Varargl ikelList.kt
package varargs
import atomictest.eq

fun evaluate(vararg ints: Int) =
"Size: ${ints.size}\n" +
"Sum: ${ints.sum()}\n" +
"Average: ${ints.average()}"

fun main() {
evaluate(10, -3, 8, 1, 9) eq """

Size: 5

Sum: 25

Atomic Kotlin (www.AtomicKotlin.com) by Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Variable Argument Lists 134

Average: 5.0

[ININT]

}

You can pass an Array of elements wherever a vararg is accepted. To create an
Array, use arrayOf() in the same way you use 1istOf(). Note that an Array is
always mutable. To convert an Array into a sequence of arguments (not just a single
element of type Array), use the spread operator, *:

// Varargs/SpreadOperator .kt
import varargs.sum
import atomictest.eq

fun main() {
val array = intArrayOf(4, 5)
sum(1, 2, 3, *array, 6) eq 21 // [1]
// Doesn't compile:
// sum(1, 2, 3, array, 6)

val list = 1istOf(9, 10, 11)
sum(*list.tolntArray()) eq 30 // [2]
}

If you pass an Array of primitive types (like Int, Double or Boolean) as in the
example above, the Array creation function must be specifically typed. If you use
arrayOf(4, 5) instead of intArrayOf(4, 5), line [1] will produce an error
complaining that inferred type is Array<Int> but IntArray was expected.

The spread operator only works with arrays. If you have aList that you want to pass
as a sequence of arguments, first convert it to an Array and then apply the spread
operator, as in [2]. Because the result is an Array of a primitive type, we must again
use the specific conversion function toIntArray().

The spread operator is especially helpful when you must pass vararg arguments to
another function that also expects varargs:

Atomic Kotlin (www.AtomicKotlin.com) by Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Variable Argument Lists 135

// Varargs/TwoFunctionsWithVarargs.kt
package varargs
import atomictest.eq

fun first(vararg numbers: Int): String {
var result = ""
for (i in numbers) {
result += "[$i]"

}

return result

}

fun second(vararg numbers: Int) =
first(*numbers)

fun main() {
second(7, 9, 32) eq "[7][9][32]"
}

Command-Line Arguments

When invoking a program on the command line, you can pass it a variable number
of arguments. To capture command-line arguments, you must provide a particular
parameter tomain():

// Varargs/MainArgs.kt

fun main(args: Array<String>) {
for (a in args) {
println(a)
}
}

The parameter is traditionally called args (although you can call it anything), and
the type for args can only be Array<String> (Array of String).

If you are using Intelli] IDEA, you can pass program arguments by editing the
corresponding “Run configuration,” as shown in the last exercise for this atom.

Atomic Kotlin (www.AtomicKotlin.com) by Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Variable Argument Lists 136

You can also use the kotlinc compiler to produce a command-line program. If
kotlinc isn’t on your computer, follow the instructions on the Kotlin main site?’.
Once you've entered and saved the code for MainArgs.kt, type the following at a
command prompt:

kotlinc MainArgs.kt

You provide the command-line arguments following the program invocation, like
this:

kotlin MainArgskKt hamster 42 3.14159

You'll see this output:

hamster
42
3.14159

If you want to turn a String parameter into a specific type, Kotlin provides con-
version functions, such as a toInt() for converting to an Int, and toFloat() for
converting to aF loat. Using these assumes that the command-line arguments appear
in a particular order. Here, the program expects a String, followed by something
convertible to an Int, followed by something convertible to a Float:

// Varargs/MainArgConversion.kt

fun main(args: Array<String>) ({
if (args.size < 3) return
val first = args[Q]
val second = args[1].toInt()
val third = args[2].toFloat()
println("$first $second $third")
}

The first line in main() quits the program if there aren’t enough arguments. If you
don’t provide something convertible to an Int and a Float as the second and third
command-line arguments, you will see runtime errors (try it to see the errors).

Compile and run MainArgConversion.kt with the same command-line arguments
we used before, and you’ll see:

hamster 42 3.14159

Exercises and solutions can be found at www.AtomicKotlin.com.

*"https://kotlinlang.org/

Atomic Kotlin (www.AtomicKotlin.com) by Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

https://kotlinlang.org/
https://kotlinlang.org/

Sets

A Set is a collection that allows only one element of each value.

The most common Set activity is to test for membership using in or contains():

// Sets/Sets.kt
import atomictest.eq

fun main() {
val intSet = setOf(1, 1, 2, 3, 9, 9, 4)
// No duplicates:
intSet eq setOf(41, 2, 3, 4, 9)

// Element order is unimportant:
setOf(1, 2) eq set0f(2, 1)

// Set membership:
(9 in intSet) eq true
(99 in intSet) eq false

intSet.contains(9) eq true
intSet.contains(99) eq false

// Does this set contain another set?
intSet.containsAll(setOf(1, 9, 2)) eq true

// Set union:
intSet.union(set0f(3, 4, 5, 6)) eq
setOf(1, 2, 3, 4, 5, 6, 9)

// Set intersection:
intSet intersect setOf(0, 1, 2, 7, 8) eq
setOf(1, 2)

// Set difference:
intSet subtract setOf(0, 1, 9, 10) eq

Sets 138

setOf(2, 3, 4)
intSet - set0f(@, 1, 9, 10) eq
set0f(2, 3, 4)
}

This example shows:

1. Placing duplicate items into a Set automatically removes those duplicates.

2. Element order is not important for sets. Two sets are equal if they contain the
same elements.

3. Both in and contains() test for membership.

4. You can perform the usual Venn-diagram operations like checking for subset,
union, intersection and difference, using either dot notation (set .union(other))
or infix notation (set intersect other). The functions union, intersect
and subtract can be used with infix notation.

5. Set difference can be expressed with either subtract() or the minus operator.

To remove duplicates from a List, convert it to a Set:

// Sets/RemoveDuplicates.kt
import atomictest.eq

fun main() {
val list = 1istOf(3, 3, 2, 1, 2)
list.toSet() eq setOf(1, 2, 3)
list.distinct() eq 1istOf(3, 2, 1)
"abbcc".toSet() eq setOf('a', 'b', 'c')
}

You can also use distinct(), which returns a List. You may call toSet() on a
String to convert it into a set of unique characters.

As with List, Kotlin provides two creation functions for Set. The result of setOf()
is read-only. To create a mutable Set, use mutableSetOf():

Atomic Kotlin (www.AtomicKotlin.com) by Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Sets 139

// Sets/MutableSet.kt
import atomictest.eq

fun main() {
val mutableSet = mutableSetOf<Int>()
mutableSet += 42
mutableSet += 42
mutableSet eq set0f(42)
mutableSet -= 42
mutableSet eq setOf<Int>()

}

The operators += and -= add and remove elements to Sets, just as with Lists.

Exercises and solutions can be found at www.AtomicKotlin.com.

Atomic Kotlin (www.AtomicKotlin.com) by Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

A Map connects keys to values and looks up a value when given a key.

You create a Map by providing key-value pairs to mapOf(). Using to, we separate
each key from its associated value:

// Maps/Maps .kt
import atomictest.eq

fun main() {

val constants = mapOf(
"Pi" to 3.141,
"e" to 2.718,
"phi" to 1.618

)

constants eq
"{Pi=3.141, e=2.718, phi=1.618}"

// Look up a value from a key:

constants["e"] eq 2.718 /7 [1]

constants.keys eq setOf("Pi", "e", "phi")

constants.values eq "[3.141, 2.718, 1.618]"

var s = ""

// Iterate through key-value pairs:

for (entry in constants) { /7 [2]
s += "${entry.key}=${entry.value}, "

}

s eq "Pi=3.141, e=2.718, phi=1.618,"

g = v

// Unpack during iteration:

for ((key, value) in constants) // [3]
s += "$key=%value, "

s eq "Pi=3.141, e=2.718, phi=1.618,"

Maps 141

o [1] The [] operator looks up a value using a key. You can produce all the
keys using keys and all the values using values. Calling keys produces a
Set because all keys in a Map must be unique, otherwise you’d have ambiguity
during a lookup.

« [2] Iterating through a Map produces key-value pairs as map entries.

+ [3] You can unpack keys and values as you iterate.

A plain Map is read-only. Here’s a MutableMap:

// Maps/MutableMaps.kt
import atomictest.eq

fun main() {
val m =
mutableMapOf(5 to "five", 6 to "six"
m[5] eq "five"
m[5] = "Bive"
m[5] eq "Sive"
m += 4 to "four"
m eq mapOf(5 to "Sive",
4 to "four", 6 to "six"

}

map [key] = value adds or changes the value associated with key. You can also
explicitly add a pair by sayingmap += key to value.

mapOf () andmutableMapOf() preserve the order in which the elements are put into
the Map. This is not guaranteed for other types of Map.

A read-only Map doesn’t allow mutations:

Atomic Kotlin (www.AtomicKotlin.com) by Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Maps 142

// Maps/ReadOnlyMaps.kt
import atomictest.eq

fun main() {
val m = mapOf(5 to "five", 6 to "six"
m[5] eq "five"
// m[5] = "5ive" // Fails
// m += (4 to "four") // Fails
m + (4 to "four") // Doesn't change m
m eq mapOf(5 to "five", 6 to "six"
val m2 = m + (4 to "four")
m2 eq mapOf(
5 to "five", 6 to "six", 4 to "four")

}

The definition of m creates a Map associating Ints with Strings. If we try to replace
a String, Kotlin emits an error.

An expression with + creates a new Map that includes both the old elements and the
new one, but doesn’t affect the original Map. The only way to “add” an element to a
read-only Map is by creating a new Map.

A Map returns null if it doesn’t contain an entry for a given key. If you need a result
that can’t be null, use getValue() and catch NoSuchElementException if the key
is missing;:

// Maps/GetValue.kt
import atomictest.*

fun main() {
val map = mapOf('a' to "attempt")
map['b'] eqg null
capture {
map.getValue('b")
} eq "NoSuchElementException:
"Key b is missing in the map."
map.getOrDefault('a', "??") eq "attempt"
map.getOrDefault('b', "??") eq "??7"
}

"o

getOrDefault() is usually a nicer alternative to null or an exception.

Atomic Kotlin (www.AtomicKotlin.com) by Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Maps 143

You can store class instances as values in aMap. Here’s a map that retrieves aContact
using a number String:

// Maps/ContactMap.kt
package maps
import atomictest.eq

class Contact(
val name: String,
val phone: String

) |
override fun toString(): String {
return "Contact('$name', '$phone’')"
}
}

fun main() {
val miffy = Contact("Miffy", "1-234-567890")
val cleo = Contact("Cleo", "098-765-4321")
val contacts = mapOf(
miffy.phone to miffy,
cleo.phone to cleo)
contacts["1-234-567890"] eq miffy
contacts["1-111-111111"] eq null
}

It’s possible to use class instances as keys in a Map, but that’s trickier so we discuss
it later in the book.

Maps look like simple little databases. They are sometimes called associative arrays,
because they associate keys with values. Although they are quite limited compared
to a full-featured database, they are nonetheless remarkably useful (and far more
efficient than a database).

Exercises and solutions can be found at www.AtomicKotlin.com.

Atomic Kotlin (www.AtomicKotlin.com) by Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Property Accessors

To read a property, use its name. To assign a value to a mutable property,
use the assignment operator =.

This reads and writes the property i:

// PropertyAccessors/Data.kt
package propertyaccessors
import atomictest.eq

class Data(var i: Int)

fun main() {
val data = Data(10)
data.i eq 10 // Read the 'i' property
data.i = 20 // Write to the 'i' property

}

This appears to be straightforward access to the piece of storage named i. However,
Kotlin calls functions to perform the read and write operations. As you expect, the
default behavior of those functions reads and writes the data stored in i. In this
atom you’ll learn to write your own property accessors to customize the reading and
writing actions.

The accessor used to get the value of a property is called a getter. You create a getter
by defining get () immediately after the property definition. The accessor used to
modify a mutable property is called a setter. You create a setter by defining set()
immediately after the property definition.

The property accessors defined in the following example imitate the default imple-
mentations generated by Kotlin. We display additional information so you can see
that the property accessors are indeed called during reads and writes. We indent
get() and set() to visually associate them with the property, but the actual
association happens because get () and set() are defined immediately after that
property (Kotlin doesn’t care about the indentation):

Property Accessors 145

// PropertyAccessors/Default.kt
package propertyaccessors
import atomictest.*

class Default {
var i: Int = 0
get() {
trace("get()")

return field /7 [1]
}

set(value) {
trace("set($value)")
field = value /7 [2]

}

fun main() {
val d = Default()
d.i=2
trace(d.i)
trace eq """
set(2)

get()
2

[ININT]

}

The definition order for get() and set() is unimportant. You can define get()
without defining set (), and vice-versa.

The default behavior for a property returns its stored value from a getter and modifies
it with a setter—the actions of [1] and [2]. Inside the getter and setter, the stored value
is manipulated indirectly using the field keyword, which is only accessible within
these two functions.

This next example uses the default implementation of the getter and adds a setter to
trace changes to the property n:

Atomic Kotlin (www.AtomicKotlin.com) by Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Property Accessors

// PropertyAccessors/LogChanges.kt
package propertyaccessors
import atomictest.*

class LogChanges ({
var n: Int = 0
set(value) {
trace("$field becomes $value")
field = value

}

fun main() {
val lc = LogChanges()
lc.n eq ©
le.n = 2
le.n eq 2
trace eq "0 becomes 2"

}

146

If you define a property as private, both accessors become private. You can also
make the setter private and the getter public. Then you can read the property

outside the class, but only change its value inside the class:

// PropertyAccessors/Counter.kt
package propertyaccessors
import atomictest.eq

class Counter {
var value: Int =0
private set
fun inc() = value++

}

fun main() {
val counter = Counter()
repeat(10) {
counter.inc()

}

counter.value eq 10

}

Atomic Kotlin (www.AtomicKotlin.com) by Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Pro