

Building	Microservices
Sam	Newman

Building	Microservices

by	Sam	Newman

Copyright	©	2015	Sam	Newman.	All	rights	reserved.

Printed	in	the	United	States	of	America.

Published	by	O’Reilly	Media,	Inc.,	1005	Gravenstein	Highway	North,	Sebastopol,	CA
95472.

O’Reilly	books	may	be	purchased	for	educational,	business,	or	sales	promotional	use.
Online	editions	are	also	available	for	most	titles	(http://safaribooksonline.com).	For	more
information,	contact	our	corporate/institutional	sales	department:	800-998-9938	or
corporate@oreilly.com.

Editors:	Mike	Loukides	and	Brian	MacDonald

Production	Editor:	Kristen	Brown

Copyeditor:	Rachel	Monaghan

Proofreader:	Jasmine	Kwityn

Indexer:	Judith	McConville

Interior	Designer:	David	Futato

Cover	Designer:	Ellie	Volckhausen

Illustrator:	Rebecca	Demarest

February	2015:	First	Edition

http://safaribooksonline.com

Revision	History	for	the	First	Edition
2014-01-30:	First	Release

See	http://oreilly.com/catalog/errata.csp?isbn=9781491950357	for	release	details.

The	O’Reilly	logo	is	a	registered	trademark	of	O’Reilly	Media,	Inc.	Building
Microservices,	the	cover	image	of	honey	bees,	and	related	trade	dress	are	trademarks	of
O’Reilly	Media,	Inc.

While	the	publisher	and	the	author	have	used	good	faith	efforts	to	ensure	that	the
information	and	instructions	contained	in	this	work	are	accurate,	the	publisher	and	the
author	disclaim	all	responsibility	for	errors	or	omissions,	including	without	limitation
responsibility	for	damages	resulting	from	the	use	of	or	reliance	on	this	work.	Use	of	the
information	and	instructions	contained	in	this	work	is	at	your	own	risk.	If	any	code
samples	or	other	technology	this	work	contains	or	describes	is	subject	to	open	source
licenses	or	the	intellectual	property	rights	of	others,	it	is	your	responsibility	to	ensure	that
your	use	thereof	complies	with	such	licenses	and/or	rights.

978-1-491-95035-7

[LSI]

http://oreilly.com/catalog/errata.csp?isbn=9781491950357

Preface

Microservices	are	an	approach	to	distributed	systems	that	promote	the	use	of	finely
grained	services	with	their	own	lifecycles,	which	collaborate	together.	Because
microservices	are	primarily	modeled	around	business	domains,	they	avoid	the	problems	of
traditional	tiered	architectures.	Microservices	also	integrate	new	technologies	and
techniques	that	have	emerged	over	the	last	decade,	which	helps	them	avoid	the	pitfalls	of
many	service-oriented	architecture	implementations.

This	book	is	full	of	concrete	examples	of	microservice	use	around	the	world,	including	in
organizations	like	Netflix,	Amazon,	Gilt,	and	the	REA	group,	who	have	all	found	that	the
increased	autonomy	this	architecture	gives	their	teams	is	a	huge	advantage.

Who	Should	Read	This	Book
The	scope	of	this	book	is	broad,	as	the	implications	of	fine-grained	microservice
architectures	are	also	broad.	As	such,	it	should	appeal	to	people	interested	in	aspects	of
design,	development,	deployment,	testing,	and	maintenance	of	systems.	Those	of	you	who
have	already	embarked	on	the	journey	toward	finer-grained	architectures,	whether	for	a
greenfield	application	or	as	part	of	decomposing	an	existing,	more	monolithic	system,	will
find	plenty	of	practical	advice	to	help	you.	It	will	also	help	those	of	you	who	want	to	know
what	all	the	fuss	is	about,	so	that	you	can	determine	whether	microservices	are	right	for
you.

Why	I	Wrote	This	Book
I	started	thinking	about	the	topic	of	application	architectures	many	years	ago,	when
working	to	help	people	deliver	their	software	faster.	I	realized	that	while	infrastructure
automation,	testing,	and	continuous	delivery	techniques	could	help,	if	the	fundamental
design	of	the	system	doesn’t	make	it	easy	to	make	changes,	then	there	are	limits	to	what
can	be	accomplished.

At	the	same	time,	many	organizations	were	experimenting	with	finer-grained	architectures
to	accomplish	similar	goals,	but	also	to	achieve	things	like	improved	scaling,	increasing
autonomy	of	teams,	or	to	more	easily	embrace	new	technologies.	My	own	experiences,	as
well	as	those	of	my	colleagues	at	ThoughtWorks	and	elsewhere,	reinforced	the	fact	that
using	larger	numbers	of	services	with	their	own	independent	lifecycles	resulted	in	more
headaches	that	had	to	be	dealt	with.	In	many	ways,	this	book	was	imagined	as	a	one-stop
shop	that	would	help	encompass	the	wide	variety	of	topics	that	are	necessary	for
understanding	microservices	—	something	that	would	have	helped	me	greatly	in	the	past!

A	Word	on	Microservices	Today
Microservices	is	a	fast-moving	topic.	Although	the	idea	is	not	new	(even	if	the	term	itself
is),	experiences	from	people	all	over	the	world,	along	with	the	emergence	of	new
technologies,	are	having	a	profound	effect	on	how	they	are	used.	Due	to	the	fast	pace	of
change,	I	have	tried	to	focus	this	book	on	ideas	more	than	specific	technologies,	knowing
that	implementation	details	always	change	faster	than	the	thoughts	behind	them.
Nonetheless,	I	fully	expect	that	in	a	few	years	from	now	we’ll	have	learned	even	more
about	where	microservices	fit,	and	how	to	use	them	well.

So	while	I	have	done	my	best	to	distill	out	the	essence	of	the	topic	in	this	book,	if	this
topic	interests	you,	be	prepared	for	many	years	of	continuous	learning	to	keep	on	top	of
the	state	of	the	art!

Navigating	This	Book
This	book	is	primarily	organized	in	a	topic-based	format.	As	such,	you	may	want	to	jump
into	the	specific	topics	that	interest	you	the	most.	While	I	have	done	my	best	to	reference
terms	and	ideas	in	the	earlier	chapters,	I’d	like	to	think	that	even	people	who	consider
themselves	fairly	experienced	will	find	something	of	interest	in	all	chapters	here.	I	would
certainly	suggest	that	you	take	a	look	at	Chapter	2,	which	touches	on	the	breadth	of	the
topic	as	well	as	providing	some	framing	for	how	I	go	about	things	in	case	if	you	want	to
dive	deeper	into	some	of	the	later	topics.

For	people	new	to	the	subject,	I’ve	structured	the	chapters	in	a	way	that	I	hope	will	make
sense	to	read	from	beginning	to	end.

Here	is	an	overview	of	what	we	cover:

Chapter	1,	Microservices

We’ll	begin	with	an	introduction	to	microservices,	including	the	key	benefits	as	well
as	some	of	the	downsides.

Chapter	2,	The	Evolutionary	Architect

This	chapter	discusses	the	difficulties	we	face	in	terms	of	making	trade-offs	as
architects,	and	covers	specifically	just	how	many	things	we	need	to	think	about	with
microservices.

Chapter	3,	How	to	Model	Services

Here	we’ll	start	to	define	the	boundary	of	microservices,	using	techniques	from
domain-driven	design	to	help	focus	our	thinking.

Chapter	4,	Integration

This	is	where	we	start	getting	a	bit	deeper	into	specific	technology	implications,	as
we	discuss	what	sorts	of	service	collaboration	techniques	will	help	us	most.	We’ll
also	delve	into	the	topic	of	user	interfaces	and	integrating	with	legacy	and
commercial	off-the-shelf	(COTS)	products.

Chapter	5,	Splitting	the	Monolith

Many	people	get	interested	in	microservices	as	an	antidote	to	large,	hard-to-change
monolithic	systems,	and	this	is	exactly	what	we’ll	cover	in	detail	in	this	chapter.

Chapter	6,	Deployment

Although	this	book	is	primarily	theoretical,	few	topics	in	the	book	have	been	as
impacted	by	recent	changes	in	technology	as	deployment,	which	we’ll	explore	here.

Chapter	7,	Testing

This	chapter	goes	deep	into	the	topic	of	testing,	an	area	of	particular	concern	when
handling	the	deployment	of	multiple	discrete	services.	Of	particular	note	will	be	the
role	that	consumer-driven	contracts	can	play	in	helping	us	ensure	the	quality	of	our
software.

Chapter	8,	Monitoring

Testing	our	software	before	production	doesn’t	help	if	problems	occur	once	we	go
live,	and	this	chapter	explores	how	we	can	monitor	our	fine-grained	systems	and	deal
with	some	of	the	emergent	complexity	of	distributed	systems.

Chapter	9,	Security

Here	we’ll	examine	the	security	aspects	of	microservices	and	consider	how	to	handle
user-to-service	and	service-to-service	authentication	and	authorization.	Security	is	a
very	important	topic	in	computing,	one	that	is	all	too	readily	ignored.	Although	I	am
in	no	way	a	security	expert,	I	hope	that	this	chapter	will	at	least	help	you	consider
some	of	the	aspects	you	need	to	be	aware	of	when	building	systems,	and
microservice	systems	in	particular.

Chapter	10,	Conway’s	Law	and	System	Design

This	chapter	focuses	on	the	interplay	of	organizational	structure	and	architecture.
Many	organizations	have	realized	that	trouble	will	occur	if	you	don’t	keep	the	two	in
harmony.	We’ll	attempt	to	get	to	the	bottom	of	this	dilemma,	and	consider	some
different	ways	to	align	system	design	with	the	structure	of	your	teams.

Chapter	11,	Microservices	at	Scale

This	is	where	we	start	looking	at	doing	all	of	this	at	scale,	so	that	we	can	handle	the
increased	chance	of	failure	that	can	happen	with	large	numbers	of	services,	as	well	as
large	volumes	of	traffic.

Chapter	12,	Bringing	It	All	Together

The	final	chapter	attempts	to	distill	down	the	core	essence	of	what	makes
microservices	different.	It	includes	a	list	of	seven	microservices	principles,	as	well	as
a	wrap-up	of	the	key	points	of	the	book.

Conventions	Used	in	This	Book
The	following	typographical	conventions	are	used	in	this	book:

Italic

Indicates	new	terms,	URLs,	email	addresses,	filenames,	and	file	extensions.
Constant	width

Used	for	program	listings,	as	well	as	within	paragraphs	to	refer	to	program	elements
such	as	variable	or	function	names,	databases,	data	types,	environment	variables,
statements,	and	keywords.

Constant	width	bold

Shows	commands	or	other	text	that	should	be	typed	literally	by	the	user.
Constant	width	italic

Shows	text	that	should	be	replaced	with	user-supplied	values	or	by	values	determined
by	context.

Safari®	Books	Online
NOTE

Safari	Books	Online	is	an	on-demand	digital	library	that	delivers	expert	content	in	both
book	and	video	form	from	the	world’s	leading	authors	in	technology	and	business.

Technology	professionals,	software	developers,	web	designers,	and	business	and	creative
professionals	use	Safari	Books	Online	as	their	primary	resource	for	research,	problem
solving,	learning,	and	certification	training.

Safari	Books	Online	offers	a	range	of	plans	and	pricing	for	enterprise,	government,
education,	and	individuals.

Members	have	access	to	thousands	of	books,	training	videos,	and	prepublication
manuscripts	in	one	fully	searchable	database	from	publishers	like	O’Reilly	Media,
Prentice	Hall	Professional,	Addison-Wesley	Professional,	Microsoft	Press,	Sams,	Que,
Peachpit	Press,	Focal	Press,	Cisco	Press,	John	Wiley	&	Sons,	Syngress,	Morgan
Kaufmann,	IBM	Redbooks,	Packt,	Adobe	Press,	FT	Press,	Apress,	Manning,	New	Riders,
McGraw-Hill,	Jones	&	Bartlett,	Course	Technology,	and	hundreds	more.	For	more
information	about	Safari	Books	Online,	please	visit	us	online.

http://safaribooksonline.com
https://www.safaribooksonline.com/explore/
https://www.safaribooksonline.com/pricing/
https://www.safaribooksonline.com/enterprise/
https://www.safaribooksonline.com/government/
https://www.safaribooksonline.com/academic-public-library/
https://www.safaribooksonline.com/our-library/

How	to	Contact	Us
Please	address	comments	and	questions	concerning	this	book	to	the	publisher:

O’Reilly	Media,	Inc.

1005	Gravenstein	Highway	North

Sebastopol,	CA	95472

800-998-9938	(in	the	United	States	or	Canada)

707-829-0515	(international	or	local)

707-829-0104	(fax)

We	have	a	web	page	for	this	book,	where	we	list	errata,	examples,	and	any	additional
information.	You	can	access	this	page	at	http://bit.ly/building-microservices.

To	comment	or	ask	technical	questions	about	this	book,	send	email	to
bookquestions@oreilly.com.

For	more	information	about	our	books,	courses,	conferences,	and	news,	see	our	website	at
http://www.oreilly.com.

Find	us	on	Facebook:	http://facebook.com/oreilly

Follow	us	on	Twitter:	http://twitter.com/oreillymedia

Watch	us	on	YouTube:	http://www.youtube.com/oreillymedia

http://bit.ly/building-microservices
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

Acknowledgments
This	book	is	dedicated	to	Lindy	Stephens,	without	whom	it	wouldn’t	exist.	She
encouraged	me	to	start	on	this	journey,	supported	me	throughout	the	often	stressful
process	of	writing,	and	is	the	best	partner	I	could	have	ever	asked	for.	I	would	also	like	to
dedicate	this	to	my	dad,	Howard	Newman,	who	has	always	been	there	for	me.	This	is	for
both	of	you.

I	would	like	to	single	out	Ben	Christensen,	Vivek	Subramaniam,	and	Martin	Fowler	for
providing	detailed	feedback	throughout	the	writing	process,	helping	shape	what	this	book
became.	I’d	also	like	to	thank	James	Lewis,	with	whom	I	have	consumed	many	beers
discussing	the	ideas	presented	in	this	book.	This	book	would	be	a	shadow	of	itself	without
their	help	and	guidance.

In	addition,	many	others	provided	help	and	feedback	on	early	versions	of	the	book.
Specifically,	I	would	like	to	thank	(in	no	particular	order)	Kane	Venables,	Anand
Krishnaswamy,	Kent	McNeil,	Charles	Haynes,	Chris	Ford,	Aidy	Lewis,	Will	Thames,	Jon
Eaves,	Rolf	Russell,	Badrinath	Janakiraman,	Daniel	Bryant,	Ian	Robinson,	Jim	Webber,
Stewart	Gleadow,	Evan	Bottcher,	Eric	Sword,	Olivia	Leonard,	and	all	my	other	colleagues
at	ThoughtWorks	and	across	the	industry	who	have	helped	me	get	this	far.

Finally,	I	would	like	to	thank	all	the	people	at	O’Reilly,	including	Mike	Loukides	for
getting	me	on	board,	my	editor	Brian	MacDonald,	Rachel	Monaghan,	Kristen	Brown,
Betsy	Waliszewski,	and	all	the	other	people	who	have	helped	in	ways	I	may	never	know
about.

Chapter	1.	Microservices

For	many	years	now,	we	have	been	finding	better	ways	to	build	systems.	We	have	been
learning	from	what	has	come	before,	adopting	new	technologies,	and	observing	how	a
new	wave	of	technology	companies	operate	in	different	ways	to	create	IT	systems	that
help	make	both	their	customers	and	their	own	developers	happier.

Eric	Evans’s	book	Domain-Driven	Design	(Addison-Wesley)	helped	us	understand	the
importance	of	representing	the	real	world	in	our	code,	and	showed	us	better	ways	to	model
our	systems.	The	concept	of	continuous	delivery	showed	how	we	can	more	effectively	and
efficiently	get	our	software	into	production,	instilling	in	us	the	idea	that	we	should	treat
every	check-in	as	a	release	candidate.	Our	understanding	of	how	the	Web	works	has	led	us
to	develop	better	ways	of	having	machines	talk	to	other	machines.	Alistair	Cockburn’s
concept	of	hexagonal	architecture	guided	us	away	from	layered	architectures	where
business	logic	could	hide.	Virtualization	platforms	allowed	us	to	provision	and	resize	our
machines	at	will,	with	infrastructure	automation	giving	us	a	way	to	handle	these	machines
at	scale.	Some	large,	successful	organizations	like	Amazon	and	Google	espoused	the	view
of	small	teams	owning	the	full	lifecycle	of	their	services.	And,	more	recently,	Netflix	has
shared	with	us	ways	of	building	antifragile	systems	at	a	scale	that	would	have	been	hard	to
comprehend	just	10	years	ago.

Domain-driven	design.	Continuous	delivery.	On-demand	virtualization.	Infrastructure
automation.	Small	autonomous	teams.	Systems	at	scale.	Microservices	have	emerged	from
this	world.	They	weren’t	invented	or	described	before	the	fact;	they	emerged	as	a	trend,	or
a	pattern,	from	real-world	use.	But	they	exist	only	because	of	all	that	has	gone	before.
Throughout	this	book,	I	will	pull	strands	out	of	this	prior	work	to	help	paint	a	picture	of
how	to	build,	manage,	and	evolve	microservices.

Many	organizations	have	found	that	by	embracing	fine-grained,	microservice
architectures,	they	can	deliver	software	faster	and	embrace	newer	technologies.
Microservices	give	us	significantly	more	freedom	to	react	and	make	different	decisions,
allowing	us	to	respond	faster	to	the	inevitable	change	that	impacts	all	of	us.

http://bit.ly/1GZuFW9

What	Are	Microservices?
Microservices	are	small,	autonomous	services	that	work	together.	Let’s	break	that
definition	down	a	bit	and	consider	the	characteristics	that	make	microservices	different.

Small,	and	Focused	on	Doing	One	Thing	Well
Codebases	grow	as	we	write	code	to	add	new	features.	Over	time,	it	can	be	difficult	to
know	where	a	change	needs	to	be	made	because	the	codebase	is	so	large.	Despite	a	drive
for	clear,	modular	monolithic	codebases,	all	too	often	these	arbitrary	in-process
boundaries	break	down.	Code	related	to	similar	functions	starts	to	become	spread	all	over,
making	fixing	bugs	or	implementations	more	difficult.

Within	a	monolithic	system,	we	fight	against	these	forces	by	trying	to	ensure	our	code	is
more	cohesive,	often	by	creating	abstractions	or	modules.	Cohesion	—	the	drive	to	have
related	code	grouped	together	—	is	an	important	concept	when	we	think	about
microservices.	This	is	reinforced	by	Robert	C.	Martin’s	definition	of	the	Single
Responsibility	Principle,	which	states	“Gather	together	those	things	that	change	for	the
same	reason,	and	separate	those	things	that	change	for	different	reasons.”

Microservices	take	this	same	approach	to	independent	services.	We	focus	our	service
boundaries	on	business	boundaries,	making	it	obvious	where	code	lives	for	a	given	piece
of	functionality.	And	by	keeping	this	service	focused	on	an	explicit	boundary,	we	avoid
the	temptation	for	it	to	grow	too	large,	with	all	the	associated	difficulties	that	this	can
introduce.

The	question	I	am	often	asked	is	how	small	is	small?	Giving	a	number	for	lines	of	code	is
problematic,	as	some	languages	are	more	expressive	than	others	and	can	therefore	do
more	in	fewer	lines	of	code.	We	must	also	consider	the	fact	that	we	could	be	pulling	in
multiple	dependencies,	which	themselves	contain	many	lines	of	code.	In	addition,	some
part	of	your	domain	may	be	legitimately	complex,	requiring	more	code.	Jon	Eaves	at
RealEstate.com.au	in	Australia	characterizes	a	microservice	as	something	that	could	be
rewritten	in	two	weeks,	a	rule	of	thumb	that	makes	sense	for	his	particular	context.

Another	somewhat	trite	answer	I	can	give	is	small	enough	and	no	smaller.	When	speaking
at	conferences,	I	nearly	always	ask	the	question	who	has	a	system	that	is	too	big	and	that
you’d	like	to	break	down?	Nearly	everyone	raises	their	hands.	We	seem	to	have	a	very
good	sense	of	what	is	too	big,	and	so	it	could	be	argued	that	once	a	piece	of	code	no
longer	feels	too	big,	it’s	probably	small	enough.

A	strong	factor	in	helping	us	answer	how	small?	is	how	well	the	service	aligns	to	team
structures.	If	the	codebase	is	too	big	to	be	managed	by	a	small	team,	looking	to	break	it
down	is	very	sensible.	We’ll	talk	more	about	organizational	alignment	later	on.

When	it	comes	to	how	small	is	small	enough,	I	like	to	think	in	these	terms:	the	smaller	the
service,	the	more	you	maximize	the	benefits	and	downsides	of	microservice	architecture.
As	you	get	smaller,	the	benefits	around	interdependence	increase.	But	so	too	does	some	of
the	complexity	that	emerges	from	having	more	and	more	moving	parts,	something	that	we
will	explore	throughout	this	book.	As	you	get	better	at	handling	this	complexity,	you	can
strive	for	smaller	and	smaller	services.

http://bit.ly/1zOFMxl

Autonomous
Our	microservice	is	a	separate	entity.	It	might	be	deployed	as	an	isolated	service	on	a
platform	as	a	service	(PAAS),	or	it	might	be	its	own	operating	system	process.	We	try	to
avoid	packing	multiple	services	onto	the	same	machine,	although	the	definition	of
machine	in	today’s	world	is	pretty	hazy!	As	we’ll	discuss	later,	although	this	isolation	can
add	some	overhead,	the	resulting	simplicity	makes	our	distributed	system	much	easier	to
reason	about,	and	newer	technologies	are	able	to	mitigate	many	of	the	challenges
associated	with	this	form	of	deployment.

All	communication	between	the	services	themselves	are	via	network	calls,	to	enforce
separation	between	the	services	and	avoid	the	perils	of	tight	coupling.

These	services	need	to	be	able	to	change	independently	of	each	other,	and	be	deployed	by
themselves	without	requiring	consumers	to	change.	We	need	to	think	about	what	our
services	should	expose,	and	what	they	should	allow	to	be	hidden.	If	there	is	too	much
sharing,	our	consuming	services	become	coupled	to	our	internal	representations.	This
decreases	our	autonomy,	as	it	requires	additional	coordination	with	consumers	when
making	changes.

Our	service	exposes	an	application	programming	interface	(API),	and	collaborating
services	communicate	with	us	via	those	APIs.	We	also	need	to	think	about	what
technology	is	appropriate	to	ensure	that	this	itself	doesn’t	couple	consumers.	This	may
mean	picking	technology-agnostic	APIs	to	ensure	that	we	don’t	constrain	technology
choices.	We’ll	come	back	time	and	again	to	the	importance	of	good,	decoupled	APIs
throughout	this	book.

Without	decoupling,	everything	breaks	down	for	us.	The	golden	rule:	can	you	make	a
change	to	a	service	and	deploy	it	by	itself	without	changing	anything	else?	If	the	answer	is
no,	then	many	of	the	advantages	we	discuss	throughout	this	book	will	be	hard	for	you	to
achieve.

To	do	decoupling	well,	you’ll	need	to	model	your	services	right	and	get	the	APIs	right.	I’ll
be	talking	about	that	a	lot.

Key	Benefits
The	benefits	of	microservices	are	many	and	varied.	Many	of	these	benefits	can	be	laid	at
the	door	of	any	distributed	system.	Microservices,	however,	tend	to	achieve	these	benefits
to	a	greater	degree	primarily	due	to	how	far	they	take	the	concepts	behind	distributed
systems	and	service-oriented	architecture.

Technology	Heterogeneity
With	a	system	composed	of	multiple,	collaborating	services,	we	can	decide	to	use	different
technologies	inside	each	one.	This	allows	us	to	pick	the	right	tool	for	each	job,	rather	than
having	to	select	a	more	standardized,	one-size-fits-all	approach	that	often	ends	up	being
the	lowest	common	denominator.

If	one	part	of	our	system	needs	to	improve	its	performance,	we	might	decide	to	use	a
different	technology	stack	that	is	better	able	to	achieve	the	performance	levels	required.
We	may	also	decide	that	how	we	store	our	data	needs	to	change	for	different	parts	of	our
system.	For	example,	for	a	social	network,	we	might	store	our	users’	interactions	in	a
graph-oriented	database	to	reflect	the	highly	interconnected	nature	of	a	social	graph,	but
perhaps	the	posts	the	users	make	could	be	stored	in	a	document-oriented	data	store,	giving
rise	to	a	heterogeneous	architecture	like	the	one	shown	in	Figure	1-1.

Figure	1-1.	Microservices	can	allow	you	to	more	easily	embrace	different	technologies

With	microservices,	we	are	also	able	to	adopt	technology	more	quickly,	and	understand
how	new	advancements	may	help	us.	One	of	the	biggest	barriers	to	trying	out	and
adopting	new	technology	is	the	risks	associated	with	it.	With	a	monolithic	application,	if	I
want	to	try	a	new	programming	language,	database,	or	framework,	any	change	will	impact
a	large	amount	of	my	system.	With	a	system	consisting	of	multiple	services,	I	have
multiple	new	places	in	which	to	try	out	a	new	piece	of	technology.	I	can	pick	a	service	that
is	perhaps	lowest	risk	and	use	the	technology	there,	knowing	that	I	can	limit	any	potential
negative	impact.	Many	organizations	find	this	ability	to	more	quickly	absorb	new
technologies	to	be	a	real	advantage	for	them.

Embracing	multiple	technologies	doesn’t	come	without	an	overhead,	of	course.	Some
organizations	choose	to	place	some	constraints	on	language	choices.	Netflix	and	Twitter,
for	example,	mostly	use	the	Java	Virtual	Machine	(JVM)	as	a	platform,	as	they	have	a
very	good	understanding	of	the	reliability	and	performance	of	that	system.	They	also
develop	libraries	and	tooling	for	the	JVM	that	make	operating	at	scale	much	easier,	but
make	it	more	difficult	for	non-Java-based	services	or	clients.	But	neither	Twitter	nor
Netflix	use	only	one	technology	stack	for	all	jobs,	either.	Another	counterpoint	to	concerns

about	mixing	in	different	technologies	is	the	size.	If	I	really	can	rewrite	my	microservice
in	two	weeks,	you	may	well	mitigate	the	risks	of	embracing	new	technology.

As	you’ll	find	throughout	this	book,	just	like	many	things	concerning	microservices,	it’s
all	about	finding	the	right	balance.	We’ll	discuss	how	to	make	technology	choices	in
Chapter	2,	which	focuses	on	evolutionary	architecture;	and	in	Chapter	4,	which	deals	with
integration,	you’ll	learn	how	to	ensure	that	your	services	can	evolve	their	technology
independently	of	each	other	without	undue	coupling.

Resilience
A	key	concept	in	resilience	engineering	is	the	bulkhead.	If	one	component	of	a	system
fails,	but	that	failure	doesn’t	cascade,	you	can	isolate	the	problem	and	the	rest	of	the
system	can	carry	on	working.	Service	boundaries	become	your	obvious	bulkheads.	In	a
monolithic	service,	if	the	service	fails,	everything	stops	working.	With	a	monolithic
system,	we	can	run	on	multiple	machines	to	reduce	our	chance	of	failure,	but	with
microservices,	we	can	build	systems	that	handle	the	total	failure	of	services	and	degrade
functionality	accordingly.

We	do	need	to	be	careful,	however.	To	ensure	our	microservice	systems	can	properly
embrace	this	improved	resilience,	we	need	to	understand	the	new	sources	of	failure	that
distributed	systems	have	to	deal	with.	Networks	can	and	will	fail,	as	will	machines.	We
need	to	know	how	to	handle	this,	and	what	impact	(if	any)	it	should	have	on	the	end	user
of	our	software.

We’ll	talk	more	about	better	handling	resilience,	and	how	to	handle	failure	modes,	in
Chapter	11.

Scaling
With	a	large,	monolithic	service,	we	have	to	scale	everything	together.	One	small	part	of
our	overall	system	is	constrained	in	performance,	but	if	that	behavior	is	locked	up	in	a
giant	monolithic	application,	we	have	to	handle	scaling	everything	as	a	piece.	With
smaller	services,	we	can	just	scale	those	services	that	need	scaling,	allowing	us	to	run
other	parts	of	the	system	on	smaller,	less	powerful	hardware,	like	in	Figure	1-2.

Figure	1-2.	You	can	target	scaling	at	just	those	microservices	that	need	it

Gilt,	an	online	fashion	retailer,	adopted	microservices	for	this	exact	reason.	Starting	in
2007	with	a	monolithic	Rails	application,	by	2009	Gilt’s	system	was	unable	to	cope	with
the	load	being	placed	on	it.	By	splitting	out	core	parts	of	its	system,	Gilt	was	better	able	to
deal	with	its	traffic	spikes,	and	today	has	over	450	microservices,	each	one	running	on
multiple	separate	machines.

When	embracing	on-demand	provisioning	systems	like	those	provided	by	Amazon	Web
Services,	we	can	even	apply	this	scaling	on	demand	for	those	pieces	that	need	it.	This
allows	us	to	control	our	costs	more	effectively.	It’s	not	often	that	an	architectural	approach
can	be	so	closely	correlated	to	an	almost	immediate	cost	savings.

Ease	of	Deployment
A	one-line	change	to	a	million-line-long	monolithic	application	requires	the	whole
application	to	be	deployed	in	order	to	release	the	change.	That	could	be	a	large-impact,
high-risk	deployment.	In	practice,	large-impact,	high-risk	deployments	end	up	happening
infrequently	due	to	understandable	fear.	Unfortunately,	this	means	that	our	changes	build
up	and	build	up	between	releases,	until	the	new	version	of	our	application	hitting
production	has	masses	of	changes.	And	the	bigger	the	delta	between	releases,	the	higher
the	risk	that	we’ll	get	something	wrong!

With	microservices,	we	can	make	a	change	to	a	single	service	and	deploy	it	independently
of	the	rest	of	the	system.	This	allows	us	to	get	our	code	deployed	faster.	If	a	problem	does
occur,	it	can	be	isolated	quickly	to	an	individual	service,	making	fast	rollback	easy	to
achieve.	It	also	means	we	can	get	our	new	functionality	out	to	customers	faster.	This	is
one	of	the	main	reasons	why	organizations	like	Amazon	and	Netflix	use	these
architectures	—	to	ensure	they	remove	as	many	impediments	as	possible	to	getting
software	out	the	door.

The	technology	in	this	space	has	changed	greatly	in	the	last	couple	of	years,	and	we’ll	be
looking	more	deeply	into	the	topic	of	deployment	in	a	microservice	world	in	Chapter	6.

Organizational	Alignment
Many	of	us	have	experienced	the	problems	associated	with	large	teams	and	large
codebases.	These	problems	can	be	exacerbated	when	the	team	is	distributed.	We	also
know	that	smaller	teams	working	on	smaller	codebases	tend	to	be	more	productive.

Microservices	allow	us	to	better	align	our	architecture	to	our	organization,	helping	us
minimize	the	number	of	people	working	on	any	one	codebase	to	hit	the	sweet	spot	of	team
size	and	productivity.	We	can	also	shift	ownership	of	services	between	teams	to	try	to	keep
people	working	on	one	service	colocated.	We	will	go	into	much	more	detail	on	this	topic
when	we	discuss	Conway’s	law	in	Chapter	10.

Composability
One	of	the	key	promises	of	distributed	systems	and	service-oriented	architectures	is	that
we	open	up	opportunities	for	reuse	of	functionality.	With	microservices,	we	allow	for	our
functionality	to	be	consumed	in	different	ways	for	different	purposes.	This	can	be
especially	important	when	we	think	about	how	our	consumers	use	our	software.	Gone	is
the	time	when	we	could	think	narrowly	about	either	our	desktop	website	or	mobile
application.	Now	we	need	to	think	of	the	myriad	ways	that	we	might	want	to	weave
together	capabilities	for	the	Web,	native	application,	mobile	web,	tablet	app,	or	wearable
device.	As	organizations	move	away	from	thinking	in	terms	of	narrow	channels	to	more
holistic	concepts	of	customer	engagement,	we	need	architectures	that	can	keep	up.

With	microservices,	think	of	us	opening	up	seams	in	our	system	that	are	addressable	by
outside	parties.	As	circumstances	change,	we	can	build	things	in	different	ways.	With	a
monolithic	application,	I	often	have	one	coarse-grained	seam	that	can	be	used	from	the
outside.	If	I	want	to	break	that	up	to	get	something	more	useful,	I’ll	need	a	hammer!	In
Chapter	5,	I’ll	discuss	ways	for	you	to	break	apart	existing	monolithic	systems,	and
hopefully	change	them	into	some	reusable,	re-composable	microservices.

Optimizing	for	Replaceability
If	you	work	at	a	medium-size	or	bigger	organization,	chances	are	you	are	aware	of	some
big,	nasty	legacy	system	sitting	in	the	corner.	The	one	no	one	wants	to	touch.	The	one	that
is	vital	to	how	your	company	runs,	but	that	happens	to	be	written	in	some	odd	Fortran
variant	and	runs	only	on	hardware	that	reached	end	of	life	25	years	ago.	Why	hasn’t	it
been	replaced?	You	know	why:	it’s	too	big	and	risky	a	job.

With	our	individual	services	being	small	in	size,	the	cost	to	replace	them	with	a	better
implementation,	or	even	delete	them	altogether,	is	much	easier	to	manage.	How	often	have
you	deleted	more	than	a	hundred	lines	of	code	in	a	single	day	and	not	worried	too	much
about	it?	With	microservices	often	being	of	similar	size,	the	barriers	to	rewriting	or
removing	services	entirely	are	very	low.

Teams	using	microservice	approaches	are	comfortable	with	completely	rewriting	services
when	required,	and	just	killing	a	service	when	it	is	no	longer	needed.	When	a	codebase	is
just	a	few	hundred	lines	long,	it	is	difficult	for	people	to	become	emotionally	attached	to
it,	and	the	cost	of	replacing	it	is	pretty	small.

What	About	Service-Oriented	Architecture?
Service-oriented	architecture	(SOA)	is	a	design	approach	where	multiple	services
collaborate	to	provide	some	end	set	of	capabilities.	A	service	here	typically	means	a
completely	separate	operating	system	process.	Communication	between	these	services
occurs	via	calls	across	a	network	rather	than	method	calls	within	a	process	boundary.

SOA	emerged	as	an	approach	to	combat	the	challenges	of	the	large	monolithic
applications.	It	is	an	approach	that	aims	to	promote	the	reusability	of	software;	two	or
more	end-user	applications,	for	example,	could	both	use	the	same	services.	It	aims	to
make	it	easier	to	maintain	or	rewrite	software,	as	theoretically	we	can	replace	one	service
with	another	without	anyone	knowing,	as	long	as	the	semantics	of	the	service	don’t
change	too	much.

SOA	at	its	heart	is	a	very	sensible	idea.	However,	despite	many	efforts,	there	is	a	lack	of
good	consensus	on	how	to	do	SOA	well.	In	my	opinion,	much	of	the	industry	has	failed	to
look	holistically	enough	at	the	problem	and	present	a	compelling	alternative	to	the
narrative	set	out	by	various	vendors	in	this	space.

Many	of	the	problems	laid	at	the	door	of	SOA	are	actually	problems	with	things	like
communication	protocols	(e.g.,	SOAP),	vendor	middleware,	a	lack	of	guidance	about
service	granularity,	or	the	wrong	guidance	on	picking	places	to	split	your	system.	We’ll
tackle	each	of	these	in	turn	throughout	the	rest	of	the	book.	A	cynic	might	suggest	that
vendors	co-opted	(and	in	some	cases	drove)	the	SOA	movement	as	a	way	to	sell	more
products,	and	those	selfsame	products	in	the	end	undermined	the	goal	of	SOA.

Much	of	the	conventional	wisdom	around	SOA	doesn’t	help	you	understand	how	to	split
something	big	into	something	small.	It	doesn’t	talk	about	how	big	is	too	big.	It	doesn’t	talk
enough	about	real-world,	practical	ways	to	ensure	that	services	do	not	become	overly
coupled.	The	number	of	things	that	go	unsaid	is	where	many	of	the	pitfalls	associated	with
SOA	originate.

The	microservice	approach	has	emerged	from	real-world	use,	taking	our	better
understanding	of	systems	and	architecture	to	do	SOA	well.	So	you	should	instead	think	of
microservices	as	a	specific	approach	for	SOA	in	the	same	way	that	XP	or	Scrum	are
specific	approaches	for	Agile	software	development.

Other	Decompositional	Techniques
When	you	get	down	to	it,	many	of	the	advantages	of	a	microservice-based	architecture
come	from	its	granular	nature	and	the	fact	that	it	gives	you	many	more	choices	as	to	how
to	solve	problems.	But	could	similar	decompositional	techniques	achieve	the	same
benefits?

Shared	Libraries
A	very	standard	decompositional	technique	that	is	built	into	virtually	any	language	is
breaking	down	a	codebase	into	multiple	libraries.	These	libraries	may	be	provided	by	third
parties,	or	created	in	your	own	organization.

Libraries	give	you	a	way	to	share	functionality	between	teams	and	services.	I	might	create
a	set	of	useful	collection	utilities,	for	example,	or	perhaps	a	statistics	library	that	can	be
reused.

Teams	can	organize	themselves	around	these	libraries,	and	the	libraries	themselves	can	be
reused.	But	there	are	some	drawbacks.

First,	you	lose	true	technology	heterogeneity.	The	library	typically	has	to	be	in	the	same
language,	or	at	the	very	least	run	on	the	same	platform.	Second,	the	ease	with	which	you
can	scale	parts	of	your	system	independently	from	each	other	is	curtailed.	Next,	unless
you’re	using	dynamically	linked	libraries,	you	cannot	deploy	a	new	library	without
redeploying	the	entire	process,	so	your	ability	to	deploy	changes	in	isolation	is	reduced.
And	perhaps	the	kicker	is	that	you	lack	the	obvious	seams	around	which	to	erect
architectural	safety	measures	to	ensure	system	resiliency.

Shared	libraries	do	have	their	place.	You’ll	find	yourself	creating	code	for	common	tasks
that	aren’t	specific	to	your	business	domain	that	you	want	to	reuse	across	the	organization,
which	is	an	obvious	candidate	for	becoming	a	reusable	library.	You	do	need	to	be	careful,
though.	Shared	code	used	to	communicate	between	services	can	become	a	point	of
coupling,	something	we’ll	discuss	in	Chapter	4.

Services	can	and	should	make	heavy	use	of	third-party	libraries	to	reuse	common	code.
But	they	don’t	get	us	all	the	way	there.

Modules
Some	languages	provide	their	own	modular	decomposition	techniques	that	go	beyond
simple	libraries.	They	allow	some	lifecycle	management	of	the	modules,	such	that	they
can	be	deployed	into	a	running	process,	allowing	you	to	make	changes	without	taking	the
whole	process	down.

The	Open	Source	Gateway	Initiative	(OSGI)	is	worth	calling	out	as	one	technology-
specific	approach	to	modular	decomposition.	Java	itself	doesn’t	have	a	true	concept	of
modules,	and	we’ll	have	to	wait	at	least	until	Java	9	to	see	this	added	to	the	language.
OSGI,	which	emerged	as	a	framework	to	allow	plug-ins	to	be	installed	in	the	Eclipse	Java
IDE,	is	now	used	as	a	way	to	retrofit	a	module	concept	in	Java	via	a	library.

The	problem	with	OSGI	is	that	it	is	trying	to	enforce	things	like	module	lifecycle
management	without	enough	support	in	the	language	itself.	This	results	in	more	work
having	to	be	done	by	module	authors	to	deliver	on	proper	module	isolation.	Within	a
process	boundary,	it	is	also	much	easier	to	fall	into	the	trap	of	making	modules	overly
coupled	to	each	other,	causing	all	sorts	of	problems.	My	own	experience	with	OSGI,
which	is	matched	by	that	of	colleagues	in	the	industry,	is	that	even	with	good	teams	it	is
easy	for	OSGI	to	become	a	much	bigger	source	of	complexity	than	its	benefits	warrant.

Erlang	follows	a	different	approach,	in	which	modules	are	baked	into	the	language
runtime.	Thus,	Erlang	is	a	very	mature	approach	to	modular	decomposition.	Erlang
modules	can	be	stopped,	restarted,	and	upgraded	without	issue.	Erlang	even	supports
running	more	than	one	version	of	the	module	at	a	given	time,	allowing	for	more	graceful
module	upgrading.

The	capabilities	of	Erlang’s	modules	are	impressive	indeed,	but	even	if	we	are	lucky
enough	to	use	a	platform	with	these	capabilities,	we	still	have	the	same	shortcomings	as
we	do	with	normal	shared	libraries.	We	are	strictly	limited	in	our	ability	to	use	new
technologies,	limited	in	how	we	can	scale	independently,	can	drift	toward	integration
techniques	that	are	overly	coupling,	and	lack	seams	for	architectural	safety	measures.

There	is	one	final	observation	worth	sharing.	Technically,	it	should	be	possible	to	create
well-factored,	independent	modules	within	a	single	monolithic	process.	And	yet	we	rarely
see	this	happen.	The	modules	themselves	soon	become	tightly	coupled	with	the	rest	of	the
code,	surrendering	one	of	their	key	benefits.	Having	a	process	boundary	separation	does
enforce	clean	hygiene	in	this	respect	(or	at	least	makes	it	harder	to	do	the	wrong	thing!).	I
wouldn’t	suggest	that	this	should	be	the	main	driver	for	process	separation,	of	course,	but
it	is	interesting	that	the	promises	of	modular	separation	within	process	boundaries	rarely
deliver	in	the	real	world.

So	while	modular	decomposition	within	a	process	boundary	may	be	something	you	want
to	do	as	well	as	decomposing	your	system	into	services,	by	itself	it	won’t	help	solve
everything.	If	you	are	a	pure	Erlang	shop,	the	quality	of	Erlang’s	module	implementation

may	get	you	a	very	long	way,	but	I	suspect	many	of	you	are	not	in	that	situation.	For	the
rest	of	us,	we	should	see	modules	as	offering	the	same	sorts	of	benefits	as	shared	libraries.

No	Silver	Bullet
Before	we	finish,	I	should	call	out	that	microservices	are	no	free	lunch	or	silver	bullet,	and
make	for	a	bad	choice	as	a	golden	hammer.	They	have	all	the	associated	complexities	of
distributed	systems,	and	while	we	have	learned	a	lot	about	how	to	manage	distributed
systems	well	(which	we’ll	discuss	throughout	the	book)	it	is	still	hard.	If	you’re	coming
from	a	monolithic	system	point	of	view,	you’ll	have	to	get	much	better	at	handling
deployment,	testing,	and	monitoring	to	unlock	the	benefits	we’ve	covered	so	far.	You’ll
also	need	to	think	differently	about	how	you	scale	your	systems	and	ensure	that	they	are
resilient.	Don’t	also	be	surprised	if	things	like	distributed	transactions	or	CAP	theorem
start	giving	you	headaches,	either!

Every	company,	organization,	and	system	is	different.	A	number	of	factors	will	play	into
whether	or	not	microservices	are	right	for	you,	and	how	aggressive	you	can	be	in	adopting
them.	Throughout	each	chapter	in	this	book	I’ll	attempt	to	give	you	guidance	highlighting
the	potential	pitfalls,	which	should	help	you	chart	a	steady	path.

Summary
Hopefully	by	now	you	know	what	a	microservice	is,	what	makes	it	different	from	other
compositional	techniques,	and	what	some	of	the	key	advantages	are.	In	each	of	the
following	chapters	we	will	go	into	more	detail	on	how	to	achieve	these	benefits	and	how
to	avoid	some	of	the	common	pitfalls.

There	are	a	number	of	topics	to	cover,	but	we	need	to	start	somewhere.	One	of	the	main
challenges	that	microservices	introduce	is	a	shift	in	the	role	of	those	who	often	guide	the
evolution	of	our	systems:	the	architects.	We’ll	look	next	at	some	different	approaches	to
this	role	that	can	ensure	we	get	the	most	out	of	this	new	architecture.

Chapter	2.	The	Evolutionary	Architect

As	we	have	seen	so	far,	microservices	give	us	a	lot	of	choice,	and	accordingly	a	lot	of
decisions	to	make.	For	example,	how	many	different	technologies	should	we	use,	should
we	let	different	teams	use	different	programming	idioms,	and	should	we	split	or	merge	a
service?	How	do	we	go	about	making	these	decisions?	With	the	faster	pace	of	change,	and
the	more	fluid	environment	that	these	architectures	allow,	the	role	of	the	architect	also	has
to	change.	In	this	chapter,	I’ll	take	a	fairly	opinionated	view	of	what	the	role	of	an
architect	is,	and	hopefully	launch	one	final	assault	on	the	ivory	tower.

Inaccurate	Comparisons
You	keep	using	that	word.	I	do	not	think	it	means	what	you	think	it	means.

Inigo	Montoya,	from	The	Princess	Bride

Architects	have	an	important	job.	They	are	in	charge	of	making	sure	we	have	a	joined-up
technical	vision,	one	that	should	help	us	deliver	the	system	our	customers	need.	In	some
places,	they	may	only	have	to	work	with	one	team,	in	which	case	the	role	of	the	architect
and	technical	lead	is	often	the	same.	In	others,	they	may	be	defining	the	vision	for	an
entire	program	of	work,	coordinating	with	multiple	teams	across	the	world,	or	perhaps
even	an	entire	organization.	At	whatever	level	they	operate,	the	role	is	a	tricky	one	to	pin
down,	and	despite	it	often	being	the	obvious	career	progression	for	developers	in
enterprise	organizations,	it	is	also	a	role	that	gets	more	criticism	than	virtually	any	other.
More	than	any	other	role,	architects	can	have	a	direct	impact	on	the	quality	of	the	systems
built,	on	the	working	conditions	of	their	colleagues,	and	on	their	organization’s	ability	to
respond	to	change,	and	yet	we	so	frequently	seem	to	get	this	role	wrong.	Why	is	that?

Our	industry	is	a	young	one.	This	is	something	we	seem	to	forget,	and	yet	we	have	only
been	creating	programs	that	run	on	what	we	recognize	as	computers	for	around	70	years.
Therefore,	we	are	constantly	looking	to	other	professions	in	an	attempt	to	explain	what	we
do.	We	aren’t	medical	doctors	or	engineers,	but	nor	are	we	plumbers	or	electricians.
Instead,	we	fall	into	some	middle	ground,	which	makes	it	hard	for	society	to	understand
us,	or	for	us	to	understand	where	we	fit.

So	we	borrow	from	other	professions.	We	call	ourselves	software	“engineers,”	or
“architects.”	But	we	aren’t,	are	we?	Architects	and	engineers	have	a	rigor	and	discipline
we	could	only	dream	of,	and	their	importance	in	society	is	well	understood.	I	remember
talking	to	a	friend	of	mine,	the	day	before	he	became	a	qualified	architect.	“Tomorrow,”	he
said,	“if	I	give	you	advice	down	at	the	pub	about	how	to	build	something	and	it’s	wrong,	I
get	held	to	account.	I	could	get	sued,	as	in	the	eyes	of	the	law	I	am	now	a	qualified
architect	and	I	should	be	held	responsible	if	I	get	it	wrong.”	The	importance	of	these	jobs
to	society	means	that	there	are	required	qualifications	people	have	to	meet.	In	the	UK,	for
example,	a	minimum	of	seven	years	study	is	required	before	you	can	be	called	an
architect.	But	these	jobs	are	also	based	on	a	body	of	knowledge	going	back	thousands	of
years.	And	us?	Not	quite.	Which	is	also	why	I	view	most	forms	of	IT	certification	as
worthless,	as	we	know	so	little	about	what	good	looks	like.

Part	of	us	wants	recognition,	so	we	borrow	names	from	other	professions	that	already	have
the	recognition	we	as	an	industry	crave.	But	this	can	be	doubly	harmful.	First,	it	implies
we	know	what	we	are	doing,	when	we	plainly	don’t.	I	wouldn’t	say	that	buildings	and
bridges	never	fall	down,	but	they	fall	down	much	less	than	the	number	of	times	our
programs	will	crash,	making	comparisons	with	engineers	quite	unfair.	Second,	the
analogies	break	down	very	quickly	when	given	even	a	cursory	glance.	To	turn	things

around,	if	bridge	building	were	like	programming,	halfway	through	we’d	find	out	that	the
far	bank	was	now	50	meters	farther	out,	that	it	was	actually	mud	rather	than	granite,	and
that	rather	than	building	a	footbridge	we	were	instead	building	a	road	bridge.	Our	software
isn’t	constrained	by	the	same	physical	rules	that	real	architects	or	engineers	have	to	deal
with,	and	what	we	create	is	designed	to	flex	and	adapt	and	evolve	with	user	requirements.

Perhaps	the	term	architect	has	done	the	most	harm.	The	idea	of	someone	who	draws	up
detailed	plans	for	others	to	interpret,	and	expects	this	to	be	carried	out.	The	balance	of	part
artist,	part	engineer,	overseeing	the	creation	of	what	is	normally	a	singular	vision,	with	all
other	viewpoints	being	subservient,	except	for	the	occasional	objection	from	the	structural
engineer	regarding	the	laws	of	physics.	In	our	industry,	this	view	of	the	architect	leads	to
some	terrible	practices.	Diagram	after	diagram,	page	after	page	of	documentation,	created
with	a	view	to	inform	the	construction	of	the	perfect	system,	without	taking	into	account
the	fundamentally	unknowable	future.	Utterly	devoid	of	any	understanding	as	to	how	hard
it	will	be	to	implement,	or	whether	or	not	it	will	actually	work,	let	alone	having	any	ability
to	change	as	we	learn	more.

When	we	compare	ourselves	to	engineers	or	architects,	we	are	in	danger	of	doing
everyone	a	disservice.	Unfortunately,	we	are	stuck	with	the	word	architect	for	now.	So	the
best	we	can	do	is	to	redefine	what	it	means	in	our	context.

An	Evolutionary	Vision	for	the	Architect
Our	requirements	shift	more	rapidly	than	they	do	for	people	who	design	and	build
buildings	—	as	do	the	tools	and	techniques	at	our	disposal.	The	things	we	create	are	not
fixed	points	in	time.	Once	launched	into	production,	our	software	will	continue	to	evolve
as	the	way	it	is	used	changes.	For	most	things	we	create,	we	have	to	accept	that	once	the
software	gets	into	the	hands	of	our	customers	we	will	have	to	react	and	adapt,	rather	than
it	being	a	never-changing	artifact.	Thus,	our	architects	need	to	shift	their	thinking	away
from	creating	the	perfect	end	product,	and	instead	focus	on	helping	create	a	framework	in
which	the	right	systems	can	emerge,	and	continue	to	grow	as	we	learn	more.

Although	I	have	spent	much	of	the	chapter	so	far	warning	you	off	comparing	ourselves	too
much	to	other	professions,	there	is	one	analogy	that	I	like	when	it	comes	to	the	role	of	the
IT	architect	and	that	I	think	better	encapsulates	what	we	want	this	role	to	be.	Erik
Doernenburg	first	shared	with	me	the	idea	that	we	should	think	of	our	role	more	as	town
planners	than	architects	for	the	built	environment.	The	role	of	the	town	planner	should	be
familiar	to	any	of	you	who	have	played	SimCity	before.	A	town	planner’s	role	is	to	look	at
a	multitude	of	sources	of	information,	and	then	attempt	to	optimize	the	layout	of	a	city	to
best	suit	the	needs	of	the	citizens	today,	taking	into	account	future	use.	The	way	he
influences	how	the	city	evolves,	though,	is	interesting.	He	does	not	say,	“build	this
specific	building	there”;	instead,	he	zones	a	city.	So	as	in	SimCity,	you	might	designate
part	of	your	city	as	an	industrial	zone,	and	another	part	as	a	residential	zone.	It	is	then	up
to	other	people	to	decide	what	exact	buildings	get	created,	but	there	are	restrictions:	if	you
want	to	build	a	factory,	it	will	need	to	be	in	an	industrial	zone.	Rather	than	worrying	too
much	about	what	happens	in	one	zone,	the	town	planner	will	instead	spend	far	more	time
working	out	how	people	and	utilities	move	from	one	zone	to	another.

More	than	one	person	has	likened	a	city	to	a	living	creature.	The	city	changes	over	time.	It
shifts	and	evolves	as	its	occupants	use	it	in	different	ways,	or	as	external	forces	shape	it.
The	town	planner	does	his	best	to	anticipate	these	changes,	but	accepts	that	trying	to	exert
direct	control	over	all	aspects	of	what	happens	is	futile.

The	comparison	with	software	should	be	obvious.	As	our	users	use	our	software,	we	need
to	react	and	change.	We	cannot	foresee	everything	that	will	happen,	and	so	rather	than
plan	for	any	eventuality,	we	should	plan	to	allow	for	change	by	avoiding	the	urge	to
overspecify	every	last	thing.	Our	city	—	the	system	—	needs	to	be	a	good,	happy	place	for
everyone	who	uses	it.	One	thing	that	people	often	forget	is	that	our	system	doesn’t	just
accommodate	users;	it	also	accommodates	developers	and	operations	people	who	also
have	to	work	there,	and	who	have	the	job	of	making	sure	it	can	change	as	required.	To
borrow	a	term	from	Frank	Buschmann,	architects	have	a	duty	to	ensure	that	the	system	is
habitable	for	developers	too.

A	town	planner,	just	like	an	architect,	also	needs	to	know	when	his	plan	isn’t	being

followed.	As	he	is	less	prescriptive,	the	number	of	times	he	needs	to	get	involved	to
correct	direction	should	be	minimal,	but	if	someone	decides	to	build	a	sewage	plant	in	a
residential	area,	he	needs	to	be	able	to	shut	it	down.

So	our	architects	as	town	planners	need	to	set	direction	in	broad	strokes,	and	only	get
involved	in	being	highly	specific	about	implementation	detail	in	limited	cases.	They	need
to	ensure	that	the	system	is	fit	for	purpose	now,	but	also	a	platform	for	the	future.	And
they	need	to	ensure	that	it	is	a	system	that	makes	users	and	developers	equally	happy.	This
sounds	like	a	pretty	tall	order.	Where	do	we	start?

Zoning
So,	to	continue	the	metaphor	of	the	architect	as	town	planner	for	a	moment,	what	are	our
zones?	These	are	our	service	boundaries,	or	perhaps	coarse-grained	groups	of	services.	As
architects,	we	need	to	worry	much	less	about	what	happens	inside	the	zone	than	what
happens	between	the	zones.	That	means	we	need	to	spend	time	thinking	about	how	our
services	talk	to	each	other,	or	ensuring	that	we	can	properly	monitor	the	overall	health	of
our	system.	How	involved	we	get	inside	the	zone	will	vary	somewhat.	Many	organizations
have	adopted	microservices	in	order	to	maximize	for	autonomy	of	teams,	something	we’ll
expand	on	in	Chapter	10.	If	you	are	in	such	an	organization,	you	will	rely	more	on	the
team	to	make	the	right	local	decision.

But	between	the	zones,	or	the	boxes	on	our	traditional	architecture	diagram,	we	need	to	be
careful;	getting	things	wrong	here	leads	to	all	sorts	of	problems	and	can	be	very	hard	to
correct.

Within	each	service,	you	may	be	OK	with	the	team	who	owns	that	zone	picking	a	different
technology	stack	or	data	store.	Other	concerns	may	kick	in	here,	of	course.	Your
inclination	to	let	teams	pick	the	right	tool	for	the	job	may	be	tempered	by	the	fact	that	it
becomes	harder	to	hire	people	or	move	them	between	teams	if	you	have	10	different
technology	stacks	to	support.	Similarly,	if	each	team	picks	a	completely	different	data
store,	you	may	find	yourself	lacking	enough	experience	to	run	any	of	them	at	scale.
Netflix,	for	example,	has	mostly	standardized	on	Cassandra	as	a	data-store	technology.
Although	it	may	not	be	the	best	fit	for	all	of	its	cases,	Netflix	feels	that	the	value	gained	by
building	tooling	and	expertise	around	Cassandra	is	more	important	than	having	to	support
and	operate	at	scale	multiple	other	platforms	that	may	be	a	better	fit	for	certain	tasks.
Netflix	is	an	extreme	example,	where	scale	is	likely	the	strongest	overriding	factor,	but
you	get	the	idea.

Between	services	is	where	things	can	get	messy,	however.	If	one	service	decides	to	expose
REST	over	HTTP,	another	makes	use	of	protocol	buffers,	and	a	third	uses	Java	RMI,	then
integration	can	become	a	nightmare	as	consuming	services	have	to	understand	and	support
multiple	styles	of	interchange.	This	is	why	I	try	to	stick	to	the	guideline	that	we	should	“be
worried	about	what	happens	between	the	boxes,	and	be	liberal	in	what	happens	inside.”

THE	CODING	ARCHITECT

If	we	are	to	ensure	that	the	systems	we	create	are	habitable	for	our	developers,	then	our	architects	need	to
understand	the	impact	of	their	decisions.	At	the	very	least,	this	means	spending	time	with	the	team,	and	ideally	it
should	mean	that	these	developers	actually	spend	time	coding	with	the	team	too.	For	those	of	you	who	practice	pair
programming,	it	becomes	a	simple	matter	for	an	architect	to	join	a	team	for	a	short	period	as	one	member	of	the
pair.	Ideally,	you	should	work	on	normal	stories,	to	really	understand	what	normal	work	is	like.	I	cannot	emphasize
how	important	it	is	for	the	architect	to	actually	sit	with	the	team!	This	is	significantly	more	effective	than	having	a
call	or	just	looking	at	her	code.

As	for	how	often	you	should	do	this,	that	depends	greatly	on	the	size	of	the	team(s)	you	are	working	with.	But	the
key	is	that	it	should	be	a	routine	activity.	If	you	are	working	with	four	teams,	for	example,	spending	half	a	day	with
each	team	every	four	weeks	ensures	you	build	an	awareness	and	improved	communications	with	the	teams	you	are
working	with.

A	Principled	Approach
Rules	are	for	the	obedience	of	fools	and	the	guidance	of	wise	men.

Generally	attributed	to	Douglas	Bader

Making	decisions	in	system	design	is	all	about	trade-offs,	and	microservice	architectures
give	us	lots	of	trade-offs	to	make!	When	picking	a	datastore,	do	we	pick	a	platform	that
we	have	less	experience	with,	but	that	gives	us	better	scaling?	Is	it	OK	for	us	to	have	two
different	technology	stacks	in	our	system?	What	about	three?	Some	decisions	can	be	made
completely	on	the	spot	with	information	available	to	us,	and	these	are	the	easiest	to	make.
But	what	about	those	decisions	that	might	have	to	be	made	on	incomplete	information?

Framing	here	can	help,	and	a	great	way	to	help	frame	our	decision	making	is	to	define	a
set	of	principles	and	practices	that	guide	it,	based	on	goals	that	we	are	trying	to	achieve.
Let’s	look	at	each	in	turn.

Strategic	Goals
The	role	of	the	architect	is	already	daunting	enough,	so	luckily	we	usually	don’t	have	to
also	define	strategic	goals!	Strategic	goals	should	speak	to	where	your	company	is	going,
and	how	it	sees	itself	as	best	making	its	customers	happy.	These	will	be	high-level	goals,
and	may	not	include	technology	at	all.	They	could	be	defined	at	a	company	level	or	a
division	level.	They	might	be	things	like	“Expand	into	Southeast	Asia	to	unlock	new
markets,”	or	“Let	the	customer	achieve	as	much	as	possible	using	self-service.”	The	key	is
that	this	is	where	your	organization	is	headed,	so	you	need	to	make	sure	the	technology	is
aligned	to	it.

If	you’re	the	person	defining	the	company’s	technical	vision,	this	may	mean	you’ll	need	to
spend	more	time	with	the	nontechnical	parts	of	your	organization	(or	the	business,	as	they
are	often	called).	What	is	the	driving	vision	for	the	business?	And	how	does	it	change?

Principles
Principles	are	rules	you	have	made	in	order	to	align	what	you	are	doing	to	some	larger
goal,	and	will	sometimes	change.	For	example,	if	one	of	your	strategic	goals	as	an
organization	is	to	decrease	the	time	to	market	for	new	features,	you	may	define	a	principle
that	says	that	delivery	teams	have	full	control	over	the	lifecycle	of	their	software	to	ship
whenever	they	are	ready,	independently	of	any	other	team.	If	another	goal	is	that	your
organization	is	moving	to	aggressively	grow	its	offering	in	other	countries,	you	may
decide	to	implement	a	principle	that	the	entire	system	must	be	portable	to	allow	for	it	to	be
deployed	locally	in	order	to	respect	sovereignty	of	data.

You	probably	don’t	want	loads	of	these.	Fewer	than	10	is	a	good	number	—	small	enough
that	people	can	remember	them,	or	to	fit	on	small	posters.	The	more	principles	you	have,
the	greater	the	chance	that	they	overlap	or	contradict	each	other.

Heroku’s	12	Factors	are	a	set	of	design	principles	structured	around	the	goal	of	helping
you	create	applications	that	work	well	on	the	Heroku	platform.	They	also	may	well	make
sense	in	other	contexts.	Some	of	the	principles	are	actually	constraints	based	on	behaviors
your	application	needs	to	exhibit	in	order	to	work	on	Heroku.	A	constraint	is	really
something	that	is	very	hard	(or	virtually	impossible)	to	change,	whereas	principles	are
things	we	decide	to	choose.	You	may	decide	to	explicitly	call	out	those	things	that	are
principles	versus	those	that	are	constraints,	to	help	indicate	those	things	you	really	can’t
change.	Personally,	I	think	there	can	be	some	value	in	keeping	them	in	the	same	list	to
encourage	challenging	constraints	every	now	and	then	and	see	if	they	really	are
immovable!

http://www.12factor.net/

Practices
Our	practices	are	how	we	ensure	our	principles	are	being	carried	out.	They	are	a	set	of
detailed,	practical	guidance	for	performing	tasks.	They	will	often	be	technology-specific,
and	should	be	low	level	enough	that	any	developer	can	understand	them.	Practices	could
include	coding	guidelines,	the	fact	that	all	log	data	needs	to	be	captured	centrally,	or	that
HTTP/REST	is	the	standard	integration	style.	Due	to	their	technical	nature,	practices	will
often	change	more	often	than	principles.

As	with	principles,	sometimes	practices	reflect	constraints	in	your	organization.	For
example,	if	you	support	only	CentOS,	this	will	need	to	be	reflected	in	your	practices.

Practices	should	underpin	our	principles.	A	principle	stating	that	delivery	teams	control
the	full	lifecycle	of	their	systems	may	mean	you	have	a	practice	stating	that	all	services
are	deployed	into	isolated	AWS	accounts,	providing	self-service	management	of	the
resources	and	isolation	from	other	teams.

Combining	Principles	and	Practices
One	person’s	principles	are	another’s	practices.	You	might	decide	to	call	the	use	of
HTTP/REST	a	principle	rather	than	a	practice,	for	example.	And	that	would	be	fine.	The
key	point	is	that	there	is	value	in	having	overarching	ideas	that	guide	how	the	system
evolves,	and	in	having	enough	detail	so	that	people	know	how	to	implement	those	ideas.
For	a	small	enough	group,	perhaps	a	single	team,	combining	principles	and	practices
might	be	OK.	However,	for	larger	organizations,	where	the	technology	and	working
practices	may	differ,	you	may	want	a	different	set	of	practices	in	different	places,	as	long
as	they	both	map	to	a	common	set	of	principles.	A	.NET	team,	for	example,	might	have
one	set	of	practices,	and	a	Java	team	another,	with	a	set	of	practices	common	to	both.	The
principles,	though,	could	be	the	same	for	both.

A	Real-World	Example
My	colleague	Evan	Bottcher	developed	the	diagram	shown	in	Figure	2-1	in	the	course	of
working	with	one	of	our	clients.	The	figure	shows	the	interplay	of	goals,	principles,	and
practices	in	a	very	clear	format.	Over	the	course	of	a	couple	years,	the	practices	on	the	far
right	will	change	fairly	regularly,	whereas	the	principles	remain	fairly	static.	A	diagram
such	as	this	can	be	printed	nicely	on	a	single	sheet	of	paper	and	shared,	and	each	idea	is
simple	enough	for	the	average	developer	to	remember.	There	is,	of	course,	more	detail
behind	each	point	here,	but	being	able	to	articulate	this	in	summary	form	is	very	useful.

Figure	2-1.	A	real-world	example	of	principles	and	practices

It	makes	sense	to	have	documentation	supporting	some	of	these	items.	In	the	main,
though,	I	like	the	idea	of	having	example	code	that	you	can	look	at,	inspect,	and	run,
which	embodies	these	ideas.	Even	better,	we	can	create	tooling	that	does	the	right	thing
out	of	the	box.	We’ll	discuss	that	in	more	depth	momentarily.

The	Required	Standard
When	you’re	working	through	your	practices	and	thinking	about	the	trade-offs	you	need	to
make,	one	of	the	core	balances	to	find	is	how	much	variability	to	allow	in	your	system.
One	of	the	key	ways	to	identify	what	should	be	constant	from	service	to	service	is	to
define	what	a	well-behaved,	good	service	looks	like.	What	is	a	“good	citizen”	service	in
your	system?	What	capabilities	does	it	need	to	have	to	ensure	that	your	system	is
manageable	and	that	one	bad	service	doesn’t	bring	down	the	whole	system?	And,	as	with
people,	what	a	good	citizen	is	in	one	context	does	not	reflect	what	it	looks	like	somewhere
else.	Nonetheless,	there	are	some	common	characteristics	of	well-behaved	services	that	I
think	are	fairly	important	to	observe.	These	are	the	few	key	areas	where	allowing	too
much	divergence	can	result	in	a	pretty	torrid	time.	As	Ben	Christensen	from	Netflix	puts
it,	when	we	think	about	the	bigger	picture,	“it	needs	to	be	a	cohesive	system	made	of
many	small	parts	with	autonomous	lifecycles	but	all	coming	together.”	So	we	need	to	find
the	balance	between	optimizing	for	autonomy	of	the	individual	microservice	without
losing	sight	of	the	bigger	picture.	Defining	clear	attributes	that	each	service	should	have	is
one	way	of	being	clear	as	to	where	that	balance	sits.

Monitoring
It	is	essential	that	we	are	able	to	draw	up	coherent,	cross-service	views	of	our	system
health.	This	has	to	be	a	system-wide	view,	not	a	service-specific	view.	As	we’ll	discuss	in
Chapter	8,	knowing	the	health	of	an	individual	service	is	useful,	but	often	only	when
you’re	trying	to	diagnose	a	wider	problem	or	understand	a	larger	trend.	To	make	this	as
easy	as	possible,	I	would	suggest	ensuring	that	all	services	emit	health	and	general
monitoring-related	metrics	in	the	same	way.

You	might	choose	to	adopt	a	push	mechanism,	where	each	service	needs	to	push	this	data
into	a	central	location.	For	your	metrics	this	might	be	Graphite,	and	for	your	health	it
might	be	Nagios.	Or	you	might	decide	to	use	polling	systems	that	scrape	data	from	the
nodes	themselves.	But	whatever	you	pick,	try	to	keep	it	standardized.	Make	the
technology	inside	the	box	opaque,	and	don’t	require	that	your	monitoring	systems	change
in	order	to	support	it.	Logging	falls	into	the	same	category	here:	we	need	it	in	one	place.

Interfaces
Picking	a	small	number	of	defined	interface	technologies	helps	integrate	new	consumers.
Having	one	standard	is	a	good	number.	Two	isn’t	too	bad,	either.	Having	20	different
styles	of	integration	is	bad.	This	isn’t	just	about	picking	the	technology	and	the	protocol.	If
you	pick	HTTP/REST,	for	example,	will	you	use	verbs	or	nouns?	How	will	you	handle
pagination	of	resources?	How	will	you	handle	versioning	of	end	points?

Architectural	Safety
We	cannot	afford	for	one	badly	behaved	service	to	ruin	the	party	for	everyone.	We	have	to
ensure	that	our	services	shield	themselves	accordingly	from	unhealthy,	downstream	calls.
The	more	services	we	have	that	do	not	properly	handle	the	potential	failure	of	downstream
calls,	the	more	fragile	our	systems	will	be.	This	means	you	will	probably	want	to	mandate
as	a	minimum	that	each	downstream	service	gets	its	own	connection	pool,	and	you	may
even	go	as	far	as	to	say	that	each	also	uses	a	circuit	breaker.	This	will	get	covered	in	more
depth	when	we	discuss	microservices	at	scale	in	Chapter	11.

Playing	by	the	rules	is	important	when	it	comes	to	response	codes,	too.	If	your	circuit
breakers	rely	on	HTTP	codes,	and	one	service	decides	to	send	back	2XX	codes	for	errors,
or	confuses	4XX	codes	with	5XX	codes,	then	these	safety	measures	can	fall	apart.	Similar
concerns	would	apply	even	if	you’re	not	using	HTTP;	knowing	the	difference	between	a
request	that	was	OK	and	processed	correctly,	a	request	that	was	bad	and	thus	prevented
the	service	from	doing	anything	with	it,	and	a	request	that	might	be	OK	but	we	can’t	tell
because	the	server	was	down	is	key	to	ensuring	we	can	fail	fast	and	track	down	issues.	If
our	services	play	fast	and	loose	with	these	rules,	we	end	up	with	a	more	vulnerable
system.

Governance	Through	Code
Getting	together	and	agreeing	on	how	things	can	be	done	is	a	good	idea.	But	spending
time	making	sure	people	are	following	these	guidelines	is	less	fun,	as	is	placing	a	burden
on	developers	to	implement	all	these	standard	things	you	expect	each	service	to	do.	I	am	a
great	believer	in	making	it	easy	to	do	the	right	thing.	Two	techniques	I	have	seen	work
well	here	are	using	exemplars	and	providing	service	templates.

Exemplars
Written	documentation	is	good,	and	useful.	I	clearly	see	the	value;	after	all,	I’ve	written
this	book.	But	developers	also	like	code,	and	code	they	can	run	and	explore.	If	you	have	a
set	of	standards	or	best	practices	you	would	like	to	encourage,	then	having	exemplars	that
you	can	point	people	to	is	useful.	The	idea	is	that	people	can’t	go	far	wrong	just	by
imitating	some	of	the	better	parts	of	your	system.

Ideally,	these	should	be	real-world	services	you	have	that	get	things	right,	rather	than
isolated	services	that	are	just	implemented	to	be	perfect	examples.	By	ensuring	your
exemplars	are	actually	being	used,	you	ensure	that	all	the	principles	you	have	actually
make	sense.

Tailored	Service	Template
Wouldn’t	it	be	great	if	you	could	make	it	really	easy	for	all	developers	to	follow	most	of
the	guidelines	you	have	with	very	little	work?	What	if,	out	of	the	box,	the	developers	had
most	of	the	code	in	place	to	implement	the	core	attributes	that	each	service	needs?

Dropwizard	and	Karyon	are	two	open	source,	JVM-based	microcontainers.	They	work	in
similar	ways,	pulling	together	a	set	of	libraries	to	provide	features	like	health	checking,
serving	HTTP,	or	exposing	metrics.	So,	out	of	the	box,	you	have	a	service	complete	with
an	embedded	servlet	container	that	can	be	launched	from	the	command	line.	This	is	a
great	way	to	get	going,	but	why	stop	there?	While	you’re	at	it,	why	not	take	something
like	a	Dropwizard	or	Karyon,	and	add	more	features	so	that	it	becomes	compliant	for	your
context?

For	example,	you	might	want	to	mandate	the	use	of	circuit	breakers.	In	that	case,	you
might	integrate	a	circuit	breaker	library	like	Hystrix.	Or	you	might	have	a	practice	that	all
your	metrics	need	to	be	sent	to	a	central	Graphite	server,	so	perhaps	pull	in	an	open	source
library	like	Dropwizard’s	Metrics	and	configure	it	so	that,	out	of	the	box,	response	times
and	error	rates	are	pushed	automatically	to	a	known	location.

By	tailoring	such	a	service	template	for	your	own	set	of	development	practices,	you	ensure
that	teams	can	get	going	faster,	and	also	that	developers	have	to	go	out	of	their	way	to
make	their	services	badly	behaved.

Of	course,	if	you	embraced	multiple	disparate	technology	stacks,	you’d	need	a	matching
service	template	for	each.	This	may	be	a	way	you	subtly	constrain	language	choices	in
your	teams,	though.	If	the	in-house	service	template	supports	only	Java,	then	people	may
be	discouraged	from	picking	alternative	stacks	if	they	have	to	do	lots	more	work
themselves.	Netflix,	for	example,	is	especially	concerned	with	aspects	like	fault	tolerance,
to	ensure	that	the	outage	of	one	part	of	its	system	cannot	take	everything	down.	To	handle
this,	a	large	amount	of	work	has	been	done	to	ensure	that	there	are	client	libraries	on	the
JVM	to	provide	teams	with	the	tools	they	need	to	keep	their	services	well	behaved.
Anyone	introducing	a	new	technology	stack	would	mean	having	to	reproduce	all	this
effort.	The	main	concern	for	Netflix	is	less	about	the	duplicated	effort,	and	more	about	the
fact	that	it	is	so	easy	to	get	this	wrong.	The	risk	of	a	service	getting	newly	implemented
fault	tolerance	wrong	is	high	if	it	could	impact	more	of	the	system.	Netflix	mitigates	this
by	using	sidecar	services,	which	communicate	locally	with	a	JVM	that	is	using	the
appropriate	libraries.

You	do	have	to	be	careful	that	creating	the	service	template	doesn’t	become	the	job	of	a
central	tools	or	architecture	team	who	dictates	how	things	should	be	done,	albeit	via	code.
Defining	the	practices	you	use	should	be	a	collective	activity,	so	ideally	your	team(s)
should	take	joint	responsibility	for	updating	this	template	(an	internal	open	source
approach	works	well	here).

http://dropwizard.io/
http://bit.ly/1JtA6KX
http://bit.ly/1wxQtwW
http://bit.ly/1yVt4LN

I	have	also	seen	many	a	team’s	morale	and	productivity	destroyed	by	having	a	mandated
framework	thrust	upon	them.	In	a	drive	to	improve	code	reuse,	more	and	more	work	is
placed	into	a	centralized	framework	until	it	becomes	an	overwhelming	monstrosity.	If	you
decide	to	use	a	tailored	service	template,	think	very	carefully	about	what	its	job	is.	Ideally,
its	use	should	be	purely	optional,	but	if	you	are	going	to	be	more	forceful	in	its	adoption
you	need	to	understand	that	ease	of	use	for	the	developers	has	to	be	a	prime	guiding	force.

Also	be	aware	of	the	perils	of	shared	code.	In	our	desire	to	create	reusable	code,	we	can
introduce	sources	of	coupling	between	services.	At	least	one	organization	I	spoke	to	is	so
worried	about	this	that	it	actually	copies	its	service	template	code	manually	into	each
service.	This	means	that	an	upgrade	to	the	core	service	template	takes	longer	to	be	applied
across	its	system,	but	this	is	less	concerning	to	it	than	the	danger	of	coupling.	Other	teams
I	have	spoken	to	have	simply	treated	the	service	template	as	a	shared	binary	dependency,
although	they	have	to	be	very	diligent	in	not	letting	the	tendency	for	DRY	(don’t	repeat
yourself)	result	in	an	overly	coupled	system!	This	is	a	nuanced	topic,	so	we’ll	explore	it	in
more	detail	in	Chapter	4.

Technical	Debt
We	are	often	put	in	situations	where	we	cannot	follow	through	to	the	letter	on	our
technical	vision.	Often,	we	need	to	make	a	choice	to	cut	a	few	corners	to	get	some	urgent
features	out.	This	is	just	one	more	trade-off	that	we’ll	find	ourselves	having	to	make.	Our
technical	vision	exists	for	a	reason.	If	we	deviate	from	this	reason,	it	might	have	a	short-
term	benefit	but	a	long-term	cost.	A	concept	that	helps	us	understand	this	trade-off	is
technical	debt.	When	we	accrue	technical	debt,	just	like	debt	in	the	real	world	it	has	an
ongoing	cost,	and	is	something	we	want	to	pay	down.

Sometimes	technical	debt	isn’t	just	something	we	cause	by	taking	shortcuts.	What	happens
if	our	vision	for	the	system	changes,	but	not	all	of	our	system	matches?	In	this	situation,
too,	we	have	created	new	sources	of	technical	debt.

The	architect’s	job	is	to	look	at	the	bigger	picture,	and	understand	this	balance.	Having
some	view	as	to	the	level	of	debt,	and	where	to	get	involved,	is	important.	Depending	on
your	organization,	you	might	be	able	to	provide	gentle	guidance,	but	have	the	teams
themselves	decide	how	to	track	and	pay	down	the	debt.	For	other	organizations,	you	may
need	to	be	more	structured,	perhaps	maintaining	a	debt	log	that	is	reviewed	regularly.

Exception	Handling
So	our	principles	and	practices	guide	how	our	systems	should	be	built.	But	what	happens
when	our	system	deviates	from	this?	Sometimes	we	make	a	decision	that	is	just	an
exception	to	the	rule.	In	these	cases,	it	might	be	worth	capturing	such	a	decision	in	a	log
somewhere	for	future	reference.	If	enough	exceptions	are	found,	it	may	eventually	make
sense	to	change	the	principle	or	practice	to	reflect	a	new	understanding	of	the	world.	For
example,	we	might	have	a	practice	that	states	that	we	will	always	use	MySQL	for	data
storage.	But	then	we	see	compelling	reasons	to	use	Cassandra	for	highly	scalable	storage,
at	which	point	we	change	our	practice	to	say,	“Use	MySQL	for	most	storage	requirements,
unless	you	expect	large	growth	in	volumes,	in	which	case	use	Cassandra.”

It’s	probably	worth	reiterating,	though,	that	every	organization	is	different.	I’ve	worked
with	some	companies	where	the	development	teams	have	a	high	degree	of	trust	and
autonomy,	and	there	the	principles	are	lightweight	(and	the	need	for	overt	exception
handling	is	greatly	reduced	if	not	eliminated).	In	more	structured	organizations	in	which
developers	have	less	freedom,	tracking	exceptions	may	be	vital	to	ensure	that	the	rules	put
in	place	properly	reflect	the	challenges	people	are	facing.	With	all	that	said,	I	am	a	fan	of
microservices	as	a	way	of	optimizing	for	autonomy	of	teams,	giving	them	as	much
freedom	as	possible	to	solve	the	problem	at	hand.	If	you	are	working	in	an	organization
that	places	lots	of	restrictions	on	how	developers	can	do	their	work,	then	microservices
may	not	be	for	you.

Governance	and	Leading	from	the	Center
Part	of	what	architects	need	to	handle	is	governance.	What	do	I	mean	by	governance?	It
turns	out	the	Control	Objectives	for	Information	and	Related	Technology	(COBIT)	has	a
pretty	good	definition:

Governance	ensures	that	enterprise	objectives	are	achieved	by	evaluating	stakeholder
needs,	conditions	and	options;	setting	direction	through	prioritisation	and	decision
making;	and	monitoring	performance,	compliance	and	progress	against	agreed-on
direction	and	objectives.

COBIT	5

Governance	can	apply	to	multiple	things	in	the	forum	of	IT.	We	want	to	focus	on	the
aspect	of	technical	governance,	something	I	feel	is	the	job	of	the	architect.	If	one	of	the
architect’s	jobs	is	ensuring	there	is	a	technical	vision,	then	governance	is	about	ensuring
what	we	are	building	matches	this	vision,	and	evolving	the	vision	if	needed.

Architects	are	responsible	for	a	lot	of	things.	They	need	to	ensure	there	is	a	set	of
principles	that	can	guide	development,	and	that	these	principles	match	the	organization’s
strategy.	They	need	to	make	sure	as	well	that	these	principles	don’t	require	working
practices	that	make	developers	miserable.	They	need	to	keep	up	to	date	with	new
technology,	and	know	when	to	make	the	right	trade-offs.	This	is	an	awful	lot	of
responsibility.	All	that,	and	they	also	need	to	carry	people	with	them	—	that	is,	to	ensure
that	the	colleagues	they	are	working	with	understand	the	decisions	being	made	and	are
brought	in	to	carry	them	out.	Oh,	and	as	we’ve	already	mentioned:	they	need	to	spend
some	time	with	the	teams	to	understand	the	impact	of	their	decisions,	and	perhaps	even
code	too.

A	tall	order?	Absolutely.	But	I	am	firmly	of	the	opinion	that	they	shouldn’t	do	this	alone.
A	properly	functioning	governance	group	can	work	together	to	share	the	work	and	shape
the	vision.

Normally,	governance	is	a	group	activity.	It	could	be	an	informal	chat	with	a	small	enough
team,	or	a	more	structured	regular	meeting	with	formal	group	membership	for	a	larger
scope.	This	is	where	I	think	the	principles	we	covered	earlier	should	be	discussed	and
changed	as	required.	This	group	needs	to	be	led	by	a	technologist,	and	to	consist
predominantly	of	people	who	are	executing	the	work	being	governed.	This	group	should
also	be	responsible	for	tracking	and	managing	technical	risks.

A	model	I	greatly	favor	is	having	the	architect	chair	the	group,	but	having	the	bulk	of	the
group	drawn	from	the	technologists	of	each	delivery	team	—	the	leads	of	each	team	at	a
minimum.	The	architect	is	responsible	for	making	sure	the	group	works,	but	the	group	as	a
whole	is	responsible	for	governance.	This	shares	the	load,	and	ensures	that	there	is	a
higher	level	of	buy-in.	It	also	ensures	that	information	flows	freely	from	the	teams	into	the
group,	and	as	a	result,	the	decision	making	is	much	more	sensible	and	informed.

Sometimes,	the	group	may	make	decisions	with	which	the	architect	disagrees.	At	this
point,	what	is	the	architect	to	do?	Having	been	in	this	position	before,	I	can	tell	you	this	is
one	of	the	most	challenging	situations	to	face.	Often,	I	take	the	approach	that	I	should	go
with	the	group	decision.	I	take	the	view	that	I’ve	done	my	best	to	convince	people,	but
ultimately	I	wasn’t	convincing	enough.	The	group	is	often	much	wiser	than	the	individual,
and	I’ve	been	proven	wrong	more	than	once!	And	imagine	how	disempowering	it	can	be
for	a	group	to	have	been	given	space	to	come	up	with	a	decision,	and	then	ultimately	be
ignored.	But	sometimes	I	have	overruled	the	group.	But	why,	and	when?	How	do	you	pick
the	lines?

Think	about	teaching	children	to	ride	a	bike.	You	can’t	ride	it	for	them.	You	watch	them
wobble,	but	if	you	stepped	in	every	time	it	looked	like	they	might	fall	off,	then	they’d
never	learn,	and	in	any	case	they	fall	off	far	less	than	you	think	they	will!	But	if	you	see
them	about	to	veer	into	traffic,	or	into	a	nearby	duck	pond,	then	you	have	to	step	in.
Likewise,	as	an	architect,	you	need	to	have	a	firm	grasp	of	when,	figuratively,	your	team	is
steering	into	a	duck	pond.	You	also	need	to	be	aware	that	even	if	you	know	you	are	right
and	overrule	the	team,	this	can	undermine	your	position	and	also	make	the	team	feel	that
they	don’t	have	a	say.	Sometimes	the	right	thing	is	to	go	along	with	a	decision	you	don’t
agree	with.	Knowing	when	to	do	this	and	when	not	to	is	tough,	but	is	sometimes	vital.

Building	a	Team
Being	the	main	point	person	responsible	for	the	technical	vision	of	your	system	and
ensuring	that	you’re	executing	on	this	vision	isn’t	just	about	making	technology	decisions.
It’s	the	people	you	work	with	who	will	be	doing	the	work.	Much	of	the	role	of	the
technical	leader	is	about	helping	grow	them	—	to	help	them	understand	the	vision
themselves	—	and	also	ensuring	that	they	can	be	active	participants	in	shaping	and
implementing	the	vision	too.

Helping	the	people	around	you	on	their	own	career	growth	can	take	many	forms,	most	of
which	are	outside	the	scope	of	this	book.	There	is	one	aspect,	though,	where	a
microservice	architecture	is	especially	relevant.	With	larger,	monolithic	systems,	there	are
fewer	opportunities	for	people	to	step	up	and	own	something.	With	microservices,	on	the
other	hand,	we	have	multiple	autonomous	codebases	that	will	have	their	own	independent
lifecycles.	Helping	people	step	up	by	having	them	take	ownership	of	individual	services
before	accepting	more	responsibility	can	be	a	great	way	to	help	them	achieve	their	own
career	goals,	and	at	the	same	time	lightens	the	load	on	whoever	is	in	charge!

I	am	a	strong	believer	that	great	software	comes	from	great	people.	If	you	worry	only
about	the	technology	side	of	the	equation,	you’re	missing	way	more	than	half	of	the
picture.

Summary
To	summarize	this	chapter,	here	are	what	I	see	as	the	core	responsibilities	of	the
evolutionary	architect:

Vision

Ensure	there	is	a	clearly	communicated	technical	vision	for	the	system	that	will	help
your	system	meet	the	requirements	of	your	customers	and	organization

Empathy

Understand	the	impact	of	your	decisions	on	your	customers	and	colleagues

Collaboration

Engage	with	as	many	of	your	peers	and	colleagues	as	possible	to	help	define,	refine,
and	execute	the	vision

Adaptability

Make	sure	that	the	technical	vision	changes	as	your	customers	or	organization
requires	it

Autonomy

Find	the	right	balance	between	standardizing	and	enabling	autonomy	for	your	teams

Governance

Ensure	that	the	system	being	implemented	fits	the	technical	vision

The	evolutionary	architect	is	one	who	understands	that	pulling	off	this	feat	is	a	constant
balancing	act.	Forces	are	always	pushing	you	one	way	or	another,	and	understanding
where	to	push	back	or	where	to	go	with	the	flow	is	often	something	that	comes	only	with
experience.	But	the	worst	reaction	to	all	these	forces	that	push	us	toward	change	is	to
become	more	rigid	or	fixed	in	our	thinking.

While	much	of	the	advice	in	this	chapter	can	apply	to	any	systems	architect,	microservices
give	us	many	more	decisions	to	make.	Therefore,	being	better	able	to	balance	all	of	these
trade-offs	is	essential.

In	the	next	chapter,	we’ll	take	some	of	our	newfound	awareness	of	the	architect’s	role	with
us	as	we	start	thinking	about	how	to	find	the	right	boundaries	for	our	microservices.

Chapter	3.	How	to	Model	Services

My	opponent’s	reasoning	reminds	me	of	the	heathen,	who,	being	asked	on	what	the
world	stood,	replied,	“On	a	tortoise.”	But	on	what	does	the	tortoise	stand?	“On
another	tortoise.”

Joseph	Barker	(1854)

So	you	know	what	microservices	are,	and	hopefully	have	a	sense	of	their	key	benefits.
You’re	probably	eager	now	to	go	and	start	making	them,	right?	But	where	to	start?	In	this
chapter,	we’ll	look	at	how	to	think	about	the	boundaries	of	your	microservices	that	will
hopefully	maximize	the	upsides	and	avoid	some	of	the	potential	downsides.	But	first,	we
need	something	to	work	with.

Introducing	MusicCorp
Books	about	ideas	work	better	with	examples.	Where	possible,	I’ll	be	sharing	stories	from
real-world	situations,	but	I’ve	found	it’s	also	useful	to	have	a	fictional	domain	with	which
to	work.	Throughout	the	book,	we’ll	be	returning	to	this	domain,	seeing	how	the	concept
of	microservices	works	within	this	world.

So	let’s	turn	our	attention	to	the	cutting-edge	online	retailer	MusicCorp.	MusicCorp	was
recently	a	brick-and-mortar	retailer,	but	after	the	bottom	dropped	out	of	the	gramophone
record	business	it	focused	more	and	more	of	its	efforts	online.	The	company	has	a	website,
but	feels	that	now	is	the	time	to	double-down	on	the	online	world.	After	all,	those	iPods
are	just	a	passing	fad	(Zunes	are	way	better,	obviously)	and	music	fans	are	quite	happy	to
wait	for	CDs	to	arrive	at	their	doorsteps.	Quality	over	convenience,	right?	And	while
we’re	at	it,	what’s	this	Spotify	thing	people	keep	talking	about	—	some	sort	of	skin
treatment	for	teenagers?

Despite	being	a	little	behind	the	curve,	MusicCorp	has	grand	ambitions.	Luckily,	it	has
decided	that	its	best	chance	of	taking	over	the	world	is	by	making	sure	it	can	make
changes	as	easily	as	possible.	Microservices	for	the	win!

What	Makes	a	Good	Service?
Before	the	team	from	MusicCorp	tears	off	into	the	distance,	creating	service	after	service
in	an	attempt	to	deliver	eight-track	tapes	to	all	and	sundry,	let’s	put	the	brakes	on	and	talk
a	bit	about	the	most	important	underlying	idea	we	need	to	keep	in	mind.	What	makes	a
good	service?	If	you’ve	survived	a	failed	SOA	implementation,	you	may	have	some	idea
where	I’m	going	next.	But	just	in	case	you	aren’t	that	(un)fortunate,	I	want	you	to	focus	on
two	key	concepts:	loose	coupling	and	high	cohesion.	We’ll	talk	in	detail	throughout	the
book	about	other	ideas	and	practices,	but	they	are	all	for	naught	if	we	get	these	two	thing
wrong.

Despite	the	fact	that	these	two	terms	are	used	a	lot,	especially	in	the	context	of	object-
oriented	systems,	it	is	worth	discussing	what	they	mean	in	terms	of	microservices.

Loose	Coupling
When	services	are	loosely	coupled,	a	change	to	one	service	should	not	require	a	change	to
another.	The	whole	point	of	a	microservice	is	being	able	to	make	a	change	to	one	service
and	deploy	it,	without	needing	to	change	any	other	part	of	the	system.	This	is	really	quite
important.

What	sort	of	things	cause	tight	coupling?	A	classic	mistake	is	to	pick	an	integration	style
that	tightly	binds	one	service	to	another,	causing	changes	inside	the	service	to	require	a
change	to	consumers.	We’ll	discuss	how	to	avoid	this	in	more	depth	in	Chapter	4.

A	loosely	coupled	service	knows	as	little	as	it	needs	to	about	the	services	with	which	it
collaborates.	This	also	means	we	probably	want	to	limit	the	number	of	different	types	of
calls	from	one	service	to	another,	because	beyond	the	potential	performance	problem,
chatty	communication	can	lead	to	tight	coupling.

High	Cohesion
We	want	related	behavior	to	sit	together,	and	unrelated	behavior	to	sit	elsewhere.	Why?
Well,	if	we	want	to	change	behavior,	we	want	to	be	able	to	change	it	in	one	place,	and
release	that	change	as	soon	as	possible.	If	we	have	to	change	that	behavior	in	lots	of
different	places,	we’ll	have	to	release	lots	of	different	services	(perhaps	at	the	same	time)
to	deliver	that	change.	Making	changes	in	lots	of	different	places	is	slower,	and	deploying
lots	of	services	at	once	is	risky	—	both	of	which	we	want	to	avoid.

So	we	want	to	find	boundaries	within	our	problem	domain	that	help	ensure	that	related
behavior	is	in	one	place,	and	that	communicate	with	other	boundaries	as	loosely	as
possible.

The	Bounded	Context
Eric	Evans’s	book	Domain-Driven	Design	(Addison-Wesley)	focuses	on	how	to	create
systems	that	model	real-world	domains.	The	book	is	full	of	great	ideas	like	using
ubiquitous	language,	repository	abstractions,	and	the	like,	but	there	is	one	very	important
concept	Evans	introduces	that	completely	passed	me	by	at	first:	bounded	context.	The	idea
is	that	any	given	domain	consists	of	multiple	bounded	contexts,	and	residing	within	each
are	things	(Eric	uses	the	word	model	a	lot,	which	is	probably	better	than	things)	that	do	not
need	to	be	communicated	outside	as	well	as	things	that	are	shared	externally	with	other
bounded	contexts.	Each	bounded	context	has	an	explicit	interface,	where	it	decides	what
models	to	share	with	other	contexts.

Another	definition	of	bounded	contexts	I	like	is	“a	specific	responsibility	enforced	by
explicit	boundaries.”1	If	you	want	information	from	a	bounded	context,	or	want	to	make
requests	of	functionality	within	a	bounded	context,	you	communicate	with	its	explicit
boundary	using	models.	In	his	book,	Evans	uses	the	analogy	of	cells,	where	“[c]ells	can
exist	because	their	membranes	define	what	is	in	and	out	and	determine	what	can	pass.”

Let’s	return	for	a	moment	to	the	MusicCorp	business.	Our	domain	is	the	whole	business	in
which	we	are	operating.	It	covers	everything	from	the	warehouse	to	the	reception	desk,
from	finance	to	ordering.	We	may	or	may	not	model	all	of	that	in	our	software,	but	that	is
nonetheless	the	domain	in	which	we	are	operating.	Let’s	think	about	parts	of	that	domain
that	look	like	the	bounded	contexts	that	Evans	refers	to.	At	MusicCorp,	our	warehouse	is	a
hive	of	activity	—	managing	orders	being	shipped	out	(and	the	odd	return),	taking	delivery
of	new	stock,	having	forklift	truck	races,	and	so	on.	Elsewhere,	the	finance	department	is
perhaps	less	fun-loving,	but	still	has	a	very	important	function	inside	our	organization.
These	employees	manage	payroll,	keep	the	company	accounts,	and	produce	important
reports.	Lots	of	reports.	They	probably	also	have	interesting	desk	toys.

Shared	and	Hidden	Models
For	MusicCorp,	we	can	then	consider	the	finance	department	and	the	warehouse	to	be	two
separate	bounded	contexts.	They	both	have	an	explicit	interface	to	the	outside	world	(in
terms	of	inventory	reports,	pay	slips,	etc.),	and	they	have	details	that	only	they	need	to
know	about	(forklift	trucks,	calculators).

Now	the	finance	department	doesn’t	need	to	know	about	the	detailed	inner	workings	of	the
warehouse.	It	does	need	to	know	some	things,	though	—	for	example	it	needs	to	know
about	stock	levels	to	keep	the	accounts	up	to	date.	Figure	3-1	shows	an	example	context
diagram.	We	see	concepts	that	are	internal	to	the	warehouse,	like	Picker	(people	who	pick
orders),	shelves	that	represent	stock	locations,	and	so	on.	Likewise,	the	company’s	general
ledger	is	integral	to	finance	but	is	not	shared	externally	here.

Figure	3-1.	A	shared	model	between	the	finance	department	and	the	warehouse

To	be	able	to	work	out	the	valuation	of	the	company,	though,	the	finance	employees	need
information	about	the	stock	we	hold.	The	stock	item	then	becomes	a	shared	model
between	the	two	contexts.	However,	note	that	we	don’t	need	to	blindly	expose	everything
about	the	stock	item	from	the	warehouse	context.	For	example,	although	internally	we
keep	a	record	on	a	stock	item	as	to	where	it	should	live	within	the	warehouse,	that	doesn’t
need	to	be	exposed	in	the	shared	model.	So	there	is	the	internal-only	representation,	and
the	external	representation	we	expose.	In	many	ways,	this	foreshadows	the	discussion
around	REST	in	Chapter	4.

Sometimes	we	may	encounter	models	with	the	same	name	that	have	very	different
meanings	in	different	contexts	too.	For	example,	we	might	have	the	concept	of	a	return,
which	represents	a	customer	sending	something	back.	Within	the	context	of	the	customer,
a	return	is	all	about	printing	a	shipping	label,	dispatching	a	package,	and	waiting	for	a
refund.	For	the	warehouse,	this	could	represent	a	package	that	is	about	to	arrive,	and	a
stock	item	that	needs	to	be	restocked.	It	follows	that	within	the	warehouse	we	store
additional	information	associated	with	the	return	that	relates	to	the	tasks	to	be	carried	out;

for	example,	we	may	generate	a	restock	request.	The	shared	model	of	the	return	becomes
associated	with	different	processes	and	supporting	entities	within	each	bounded	context,
but	that	is	very	much	an	internal	concern	within	the	context	itself.

Modules	and	Services
By	thinking	clearly	about	what	models	should	be	shared,	and	not	sharing	our	internal
representations,	we	avoid	one	of	the	potential	pitfalls	that	can	result	in	tight	coupling	(the
opposite	of	what	we	want).	We	have	also	identified	a	boundary	within	our	domain	where
all	like-minded	business	capabilities	should	live,	giving	us	the	high	cohesion	we	want.
These	bounded	contexts,	then,	lend	themselves	extremely	well	to	being	compositional
boundaries.

As	we	discussed	in	Chapter	1,	we	have	the	option	of	using	modules	within	a	process
boundary	to	keep	related	code	together	and	attempt	to	reduce	the	coupling	to	other
modules	in	the	system.	When	you’re	starting	out	on	a	new	codebase,	this	is	probably	a
good	place	to	begin.	So	once	you	have	found	your	bounded	contexts	in	your	domain,
make	sure	they	are	modeled	within	your	codebase	as	modules,	with	shared	and	hidden
models.

These	modular	boundaries	then	become	excellent	candidates	for	microservices.	In	general,
microservices	should	cleanly	align	to	bounded	contexts.	Once	you	become	very	proficient,
you	may	decide	to	skip	the	step	of	keeping	the	bounded	context	modeled	as	a	module
within	a	more	monolithic	system,	and	jump	straight	for	a	separate	service.	When	starting
out,	however,	keep	a	new	system	on	the	more	monolithic	side;	getting	service	boundaries
wrong	can	be	costly,	so	waiting	for	things	to	stabilize	as	you	get	to	grips	with	a	new
domain	is	sensible.	We’ll	discuss	this	more	in	Chapter	5,	along	with	techniques	to	help
break	apart	existing	systems	into	microservices.

So,	if	our	service	boundaries	align	to	the	bounded	contexts	in	our	domain,	and	our
microservices	represent	those	bounded	contexts,	we	are	off	to	an	excellent	start	in
ensuring	that	our	microservices	are	loosely	coupled	and	strongly	cohesive.

Premature	Decomposition
At	ThoughtWorks,	we	ourselves	experienced	the	challenges	of	splitting	out	microservices
too	quickly.	Aside	from	consulting,	we	also	create	a	few	products.	One	of	them	is	SnapCI,
a	hosted	continuous	integration	and	continuous	delivery	tool	(we’ll	discuss	those	concepts
later	in	Chapter	6).	The	team	had	previously	worked	on	another	similar	tool,	Go-CD,	a
now	open	source	continuous	delivery	tool	that	can	be	deployed	locally	rather	than	being
hosted	in	the	cloud.

Although	there	was	some	code	reuse	very	early	on	between	the	SnapCI	and	Go-CD
projects,	in	the	end	SnapCI	turned	out	to	be	a	completely	new	codebase.	Nonetheless,	the
previous	experience	of	the	team	in	the	domain	of	CD	tooling	emboldened	them	to	move
more	quickly	in	identifying	boundaries,	and	building	their	system	as	a	set	of
microservices.

After	a	few	months,	though,	it	became	clear	that	the	use	cases	of	SnapCI	were	subtly
different	enough	that	the	initial	take	on	the	service	boundaries	wasn’t	quite	right.	This	led
to	lots	of	changes	being	made	across	services,	and	an	associated	high	cost	of	change.
Eventually	the	team	merged	the	services	back	into	one	monolithic	system,	giving	them
time	to	better	understand	where	the	boundaries	should	exist.	A	year	later,	the	team	was
then	able	to	split	the	monolithic	system	apart	into	microservices,	whose	boundaries	proved
to	be	much	more	stable.	This	is	far	from	the	only	example	of	this	situation	I	have	seen.
Prematurely	decomposing	a	system	into	microservices	can	be	costly,	especially	if	you	are
new	to	the	domain.	In	many	ways,	having	an	existing	codebase	you	want	to	decompose
into	microservices	is	much	easier	than	trying	to	go	to	microservices	from	the	beginning.

Business	Capabilities
When	you	start	to	think	about	the	bounded	contexts	that	exist	in	your	organization,	you
should	be	thinking	not	in	terms	of	data	that	is	shared,	but	about	the	capabilities	those
contexts	provide	the	rest	of	the	domain.	The	warehouse	may	provide	the	capability	to	get	a
current	stock	list,	for	example,	or	the	finance	context	may	well	expose	the	end-of-month
accounts	or	let	you	set	up	payroll	for	a	new	recruit.	These	capabilities	may	require	the
interchange	of	information	—	shared	models	—	but	I	have	seen	too	often	that	thinking
about	data	leads	to	anemic,	CRUD-based	(create,	read,	update,	delete)	services.	So	ask
first	“What	does	this	context	do?”,	and	then	“So	what	data	does	it	need	to	do	that?”

When	modeled	as	services,	these	capabilities	become	the	key	operations	that	will	be
exposed	over	the	wire	to	other	collaborators.

Turtles	All	the	Way	Down
At	the	start,	you	will	probably	identify	a	number	of	coarse-grained	bounded	contexts.	But
these	bounded	contexts	can	in	turn	contain	further	bounded	contexts.	For	example,	you
could	decompose	the	warehouse	into	capabilities	associated	with	order	fulfillment,
inventory	management,	or	goods	receiving.	When	considering	the	boundaries	of	your
microservices,	first	think	in	terms	of	the	larger,	coarser-grained	contexts,	and	then
subdivide	along	these	nested	contexts	when	you’re	looking	for	the	benefits	of	splitting	out
these	seams.

I	have	seen	these	nested	contexts	remaining	hidden	to	other,	collaborating	microservices
to	great	effect.	To	the	outside	world,	they	are	still	making	use	of	business	capabilities	in
the	warehouse,	but	they	are	unaware	that	their	requests	are	actually	being	mapped
transparently	to	two	or	more	separate	services,	as	you	can	see	in	Figure	3-2.	Sometimes,
you	will	decide	it	makes	more	sense	for	the	higher-level	bounded	context	to	not	be
explicitly	modeled	as	a	service	boundary,	as	in	Figure	3-3,	so	rather	than	a	single
warehouse	boundary,	you	might	instead	split	out	inventory,	order	fulfillment,	and	goods
receiving.

Figure	3-2.	Microservices	representing	nested	bounded	contexts	hidden	inside	the	warehouse

Figure	3-3.	The	bounded	contexts	inside	the	warehouse	being	popped	up	into	their	own	top-level	contexts

In	general,	there	isn’t	a	hard-and-fast	rule	as	to	what	approach	makes	the	most	sense.
However,	whether	you	choose	the	nested	approach	over	the	full	separation	approach
should	be	based	on	your	organizational	structure.	If	order	fulfillment,	inventory
management,	and	goods	receiving	are	managed	by	different	teams,	they	probably	deserve
their	status	as	top-level	microservices.	If,	on	the	other	hand,	all	of	them	are	managed	by
one	team,	then	the	nested	model	makes	more	sense.	This	is	because	of	the	interplay	of
organizational	structures	and	software	architecture,	which	we	will	discuss	toward	the	end
of	the	book	in	Chapter	10.

Another	reason	to	prefer	the	nested	approach	could	be	to	chunk	up	your	architecture	to
simplify	testing.	For	example,	when	testing	services	that	consume	the	warehouse,	I	don’t
have	to	stub	each	service	inside	the	warehouse	context,	just	the	more	coarse-grained	API.
This	can	also	give	you	a	unit	of	isolation	when	considering	larger-scoped	tests.	I	may,	for
example,	decide	to	have	end-to-end	tests	where	I	launch	all	services	inside	the	warehouse
context,	but	for	all	other	collaborators	I	might	stub	them	out.	We’ll	explore	more	about
testing	and	isolation	in	Chapter	7.

Communication	in	Terms	of	Business	Concepts
The	changes	we	implement	to	our	system	are	often	about	changes	the	business	wants	to
make	to	how	the	system	behaves.	We	are	changing	functionality	—	capabilities	—	that	are
exposed	to	our	customers.	If	our	systems	are	decomposed	along	the	bounded	contexts	that
represent	our	domain,	the	changes	we	want	to	make	are	more	likely	to	be	isolated	to	one,
single	microservice	boundary.	This	reduces	the	number	of	places	we	need	to	make	a
change,	and	allows	us	to	deploy	that	change	quickly.

It’s	also	important	to	think	of	the	communication	between	these	microservices	in	terms	of
the	same	business	concepts.	The	modeling	of	your	software	after	your	business	domain
shouldn’t	stop	at	the	idea	of	bounded	contexts.	The	same	terms	and	ideas	that	are	shared
between	parts	of	your	organization	should	be	reflected	in	your	interfaces.	It	can	be	useful
to	think	of	forms	being	sent	between	these	microservices,	much	as	forms	are	sent	around
an	organization.

The	Technical	Boundary
It	can	be	useful	to	look	at	what	can	go	wrong	when	services	are	modeled	incorrectly.	A
while	back,	a	few	colleagues	and	I	were	working	with	a	client	in	California,	helping	the
company	adopt	some	cleaner	code	practices	and	move	more	toward	automated	testing.
We’d	started	with	some	of	the	low-hanging	fruit,	such	as	service	decomposition,	when	we
noticed	something	much	more	worrying.	I	can’t	go	into	too	much	detail	as	to	what	the
application	did,	but	it	was	a	public-facing	application	with	a	large,	global	customer	base.

The	team,	and	system,	had	grown.	Originally	one	person’s	vision,	the	system	had	taken	on
more	and	more	features,	and	more	and	more	users.	Eventually,	the	organization	decided	to
increase	the	capacity	of	the	team	by	having	a	new	group	of	developers	based	in	Brazil	take
on	some	of	the	work.	The	system	got	split	up,	with	the	front	half	of	the	application	being
essentially	stateless,	implementing	the	public-facing	website,	as	shown	in	Figure	3-4.	The
back	half	of	the	system	was	simply	a	remote	procedure	call	(RPC)	interface	over	a	data
store.	Essentially,	imagine	you’d	taken	a	repository	layer	in	your	codebase	and	made	this	a
separate	service.

Figure	3-4.	A	service	boundary	split	across	a	technical	seam

Changes	frequently	had	to	be	made	to	both	services.	Both	services	spoke	in	terms	of	low-
level,	RPC-style	method	calls,	which	were	overly	brittle	(we’ll	discuss	this	futher	in
Chapter	4).	The	service	interface	was	also	very	chatty	too,	resulting	in	performance	issues.
This	resulted	in	the	need	for	elaborate	RPC-batching	mechanisms.	I	called	this	onion
architecture,	as	it	had	lots	of	layers	and	made	me	cry	when	we	had	to	cut	through	it.

Now	on	the	face	of	it,	the	idea	of	splitting	the	previously	monolithic	system	along
geographical/organizational	lines	makes	perfect	sense,	as	we’ll	expand	on	in	Chapter	10.
Here,	however,	rather	than	taking	a	vertical,	business-focused	slice	through	the	stack,	the
team	picked	what	was	previously	an	in-process	API	and	made	a	horizontal	slice.

Making	decisions	to	model	service	boundaries	along	technical	seams	isn’t	always	wrong.	I
have	certainly	seen	this	make	lots	of	sense	when	an	organization	is	looking	to	achieve
certain	performance	objectives,	for	example.	However,	it	should	be	your	secondary	driver

for	finding	these	seams,	not	your	primary	one.

Summary
In	this	chapter,	you’ve	learned	a	bit	about	what	makes	a	good	service,	and	how	to	find
seams	in	our	problem	space	that	give	us	the	dual	benefits	of	both	loose	coupling	and	high
cohesion.	Bounded	contexts	are	a	vital	tool	in	helping	us	find	these	seams,	and	by	aligning
our	microservices	to	these	boundaries	we	ensure	that	the	resulting	system	has	every
chance	of	keeping	those	virtues	intact.	We’ve	also	got	a	hint	about	how	we	can	subdivide
our	microservices	further,	something	we’ll	explore	in	more	depth	later.	And	we	also
introduced	MusicCorp,	the	example	domain	that	we	will	use	throughout	this	book.

The	ideas	presented	in	Eric	Evans’s	Domain-Driven	Design	are	very	useful	to	us	in
finding	sensible	boundaries	for	our	services,	and	I’ve	just	scratched	the	surface	here.	I
recommend	Vaughn	Vernon’s	book	Implementing	Domain-Driven	Design	(Addison-
Wesley)	to	help	you	understand	the	practicalities	of	this	approach.

Although	this	chapter	has	been	mostly	high-level,	we	need	to	get	much	more	technical	in
the	next.	There	are	many	pitfalls	associated	with	implementing	interfaces	between
services	that	can	lead	to	all	sorts	of	trouble,	and	we	will	have	to	take	a	deep	dive	into	this
topic	if	we	are	to	keep	our	systems	from	becoming	a	giant,	tangled	mess.
1	http://bit.ly/bounded-context-explained

http://bit.ly/bounded-context-explained

Chapter	4.	Integration

Getting	integration	right	is	the	single	most	important	aspect	of	the	technology	associated
with	microservices	in	my	opinion.	Do	it	well,	and	your	microservices	retain	their
autonomy,	allowing	you	to	change	and	release	them	independent	of	the	whole.	Get	it
wrong,	and	disaster	awaits.	Hopefully	once	you’ve	read	this	chapter	you’ll	learn	how	to
avoid	some	of	the	biggest	pitfalls	that	have	plagued	other	attempts	at	SOA	and	could	yet
await	you	in	your	journey	to	microservices.

Looking	for	the	Ideal	Integration	Technology
There	is	a	bewildering	array	of	options	out	there	for	how	one	microservice	can	talk	to
another.	But	which	is	the	right	one:	SOAP?	XML-RPC?	REST?	Protocol	buffers?	We’ll
dive	into	those	in	a	moment,	but	before	we	do,	let’s	think	about	what	we	want	out	of
whatever	technology	we	pick.

Avoid	Breaking	Changes
Every	now	and	then,	we	may	make	a	change	that	requires	our	consumers	to	also	change.
We’ll	discuss	how	to	handle	this	later,	but	we	want	to	pick	technology	that	ensures	this
happens	as	rarely	as	possible.	For	example,	if	a	microservice	adds	new	fields	to	a	piece	of
data	it	sends	out,	existing	consumers	shouldn’t	be	impacted.

Keep	Your	APIs	Technology-Agnostic
If	you	have	been	in	the	IT	industry	for	more	than	15	minutes,	you	don’t	need	me	to	tell
you	that	we	work	in	a	space	that	is	changing	rapidly.	The	one	certainty	is	change.	New
tools,	frameworks,	and	languages	are	coming	out	all	the	time,	implementing	new	ideas
that	can	help	us	work	faster	and	more	effectively.	Right	now,	you	might	be	a	.NET	shop.
But	what	about	in	a	year	from	now,	or	five	years	from	now?	What	if	you	want	to
experiment	with	an	alternative	technology	stack	that	might	make	you	more	productive?

I	am	a	big	fan	of	keeping	my	options	open,	which	is	why	I	am	such	a	fan	of	microservices.
It	is	also	why	I	think	it	is	very	important	to	ensure	that	you	keep	the	APIs	used	for
communication	between	microservices	technology-agnostic.	This	means	avoiding
integration	technology	that	dictates	what	technology	stacks	we	can	use	to	implement	our
microservices.

Make	Your	Service	Simple	for	Consumers
We	want	to	make	it	easy	for	consumers	to	use	our	service.	Having	a	beautifully	factored
microservice	doesn’t	count	for	much	if	the	cost	of	using	it	as	a	consumer	is	sky	high!	So
let’s	think	about	what	makes	it	easy	for	consumers	to	use	our	wonderful	new	service.
Ideally,	we’d	like	to	allow	our	clients	full	freedom	in	their	technology	choice,	but	on	the
other	hand,	providing	a	client	library	can	ease	adoption.	Often,	however,	such	libraries	are
incompatible	with	other	things	we	want	to	achieve.	For	example,	we	might	use	client
libraries	to	make	it	easy	for	consumers,	but	this	can	come	at	the	cost	of	increased
coupling.

Hide	Internal	Implementation	Detail
We	don’t	want	our	consumers	to	be	bound	to	our	internal	implementation.	This	leads	to
increased	coupling.	This	means	that	if	we	want	to	change	something	inside	our
microservice,	we	can	break	our	consumers	by	requiring	them	to	also	change.	That
increases	the	cost	of	change	—	the	exact	result	we	are	trying	to	avoid.	It	also	means	we
are	less	likely	to	want	to	make	a	change	for	fear	of	having	to	upgrade	our	consumers,
which	can	lead	to	increased	technical	debt	within	the	service.	So	any	technology	that
pushes	us	to	expose	internal	representation	detail	should	be	avoided.

Interfacing	with	Customers
Now	that	we’ve	got	a	few	guidelines	that	can	help	us	select	a	good	technology	to	use	for
integration	between	services,	let’s	look	at	some	of	the	most	common	options	out	there	and
try	to	work	out	which	one	works	best	for	us.	To	help	us	think	this	through,	let’s	pick	a
real-world	example	from	MusicCorp.

Customer	creation	at	first	glance	could	be	considered	a	simple	set	of	CRUD	operations,
but	for	most	systems	it	is	more	complex	than	that.	Enrolling	a	new	customer	may	need	to
kick	off	additional	processes,	like	setting	up	financial	payments	or	sending	out	welcome
emails.	And	when	we	change	or	delete	a	customer,	other	business	processes	might	get
triggered	as	well.

So	with	that	in	mind,	we	should	look	at	some	different	ways	in	which	we	might	want	to
work	with	customers	in	our	MusicCorp	system.

The	Shared	Database
By	far	the	most	common	form	of	integration	that	I	or	any	of	my	colleagues	see	in	the
industry	is	database	(DB)	integration.	In	this	world,	if	other	services	want	information
from	a	service,	they	reach	into	the	database.	And	if	they	want	to	change	it,	they	reach	into
the	database!	This	is	really	simple	when	you	first	think	about	it,	and	is	probably	the	fastest
form	of	integration	to	start	with	—	which	probably	explains	its	popularity.

Figure	4-1	shows	our	registration	UI,	which	creates	customers	by	performing	SQL
operations	directly	on	the	database.	It	also	shows	our	call	center	application	that	views	and
edits	customer	data	by	running	SQL	on	the	database.	And	the	warehouse	updates
information	about	customer	orders	by	querying	the	database.	This	is	a	common	enough
pattern,	but	it’s	one	fraught	with	difficulties.

Figure	4-1.	Using	DB	integration	to	access	and	change	customer	information

First,	we	are	allowing	external	parties	to	view	and	bind	to	internal	implementation	details.
The	data	structures	I	store	in	the	DB	are	fair	game	to	all;	they	are	shared	in	their	entirety
with	all	other	parties	with	access	to	the	database.	If	I	decide	to	change	my	schema	to	better
represent	my	data,	or	make	my	system	easier	to	maintain,	I	can	break	my	consumers.	The
DB	is	effectively	a	very	large,	shared	API	that	is	also	quite	brittle.	If	I	want	to	change	the
logic	associated	with,	say,	how	the	helpdesk	manages	customers	and	this	requires	a	change
to	the	database,	I	have	to	be	extremely	careful	that	I	don’t	break	parts	of	the	schema	used
by	other	services.	This	situation	normally	results	in	requiring	a	large	amount	of	regression
testing.

Second,	my	consumers	are	tied	to	a	specific	technology	choice.	Perhaps	right	now	it
makes	sense	to	store	customers	in	a	relational	database,	so	my	consumers	use	an
appropriate	(potentially	DB-specific)	driver	to	talk	to	it.	What	if	over	time	we	realize	we
would	be	better	off	storing	data	in	a	nonrelational	database?	Can	it	make	that	decision?	So
consumers	are	intimately	tied	to	the	implementation	of	the	customer	service.	As	we
discussed	earlier,	we	really	want	to	ensure	that	implementation	detail	is	hidden	from
consumers	to	allow	our	service	a	level	of	autonomy	in	terms	of	how	it	changes	its
internals	over	time.	Goodbye,	loose	coupling.

Finally,	let’s	think	about	behavior	for	a	moment.	There	is	going	to	be	logic	associated	with
how	a	customer	is	changed.	Where	is	that	logic?	If	consumers	are	directly	manipulating
the	DB,	then	they	have	to	own	the	associated	logic.	The	logic	to	perform	the	same	sorts	of
manipulation	to	a	customer	may	now	be	spread	among	multiple	consumers.	If	the
warehouse,	registration	UI,	and	call	center	UI	all	need	to	edit	customer	information,	I	need
to	fix	a	bug	or	change	the	behavior	in	three	different	places,	and	deploy	those	changes	too.
Goodbye,	cohesion.

Remember	when	we	talked	about	the	core	principles	behind	good	microservices?	Strong
cohesion	and	loose	coupling	—	with	database	integration,	we	lose	both	things.	Database
integration	makes	it	easy	for	services	to	share	data,	but	does	nothing	about	sharing
behavior.	Our	internal	representation	is	exposed	over	the	wire	to	our	consumers,	and	it	can
be	very	difficult	to	avoid	making	breaking	changes,	which	inevitably	leads	to	a	fear	of	any
change	at	all.	Avoid	at	(nearly)	all	costs.

For	the	rest	of	the	chapter,	we’ll	explore	different	styles	of	integration	that	involve
collaborating	services,	which	themselves	hide	their	own	internal	representations.

Synchronous	Versus	Asynchronous
Before	we	start	diving	into	the	specifics	of	different	technology	choices,	we	should	discuss
one	of	the	most	important	decisions	we	can	make	in	terms	of	how	services	collaborate.
Should	communication	be	synchronous	or	asynchronous?	This	fundamental	choice
inevitably	guides	us	toward	certain	implementation	detail.

With	synchronous	communication,	a	call	is	made	to	a	remote	server,	which	blocks	until
the	operation	completes.	With	asynchronous	communication,	the	caller	doesn’t	wait	for
the	operation	to	complete	before	returning,	and	may	not	even	care	whether	or	not	the
operation	completes	at	all.

Synchronous	communication	can	be	easier	to	reason	about.	We	know	when	things	have
completed	successfully	or	not.	Asynchronous	communication	can	be	very	useful	for	long-
running	jobs,	where	keeping	a	connection	open	for	a	long	period	of	time	between	the
client	and	server	is	impractical.	It	also	works	very	well	when	you	need	low	latency,	where
blocking	a	call	while	waiting	for	the	result	can	slow	things	down.	Due	to	the	nature	of
mobile	networks	and	devices,	firing	off	requests	and	assuming	things	have	worked	(unless
told	otherwise)	can	ensure	that	the	UI	remains	responsive	even	if	the	network	is	highly
laggy.	On	the	flipside,	the	technology	to	handle	asynchronous	communication	can	be	a	bit
more	involved,	as	we’ll	discuss	shortly.

These	two	different	modes	of	communication	can	enable	two	different	idiomatic	styles	of
collaboration:	request/response	or	event-based.	With	request/response,	a	client	initiates	a
request	and	waits	for	the	response.	This	model	clearly	aligns	well	to	synchronous
communication,	but	can	work	for	asynchronous	communication	too.	I	might	kick	off	an
operation	and	register	a	callback,	asking	the	server	to	let	me	know	when	my	operation	has
completed.

With	an	event-based	collaboration,	we	invert	things.	Instead	of	a	client	initiating	requests
asking	for	things	to	be	done,	it	instead	says	this	thing	happened	and	expects	other	parties
to	know	what	to	do.	We	never	tell	anyone	else	what	to	do.	Event-based	systems	by	their
nature	are	asynchronous.	The	smarts	are	more	evenly	distributed	—	that	is,	the	business
logic	is	not	centralized	into	core	brains,	but	instead	pushed	out	more	evenly	to	the	various
collaborators.	Event-based	collaboration	is	also	highly	decoupled.	The	client	that	emits	an
event	doesn’t	have	any	way	of	knowing	who	or	what	will	react	to	it,	which	also	means	that
you	can	add	new	subscribers	to	these	events	without	the	client	ever	needing	to	know.

So	are	there	any	other	drivers	that	might	push	us	to	pick	one	style	over	another?	One
important	factor	to	consider	is	how	well	these	styles	are	suited	for	solving	an	often-
complex	problem:	how	do	we	handle	processes	that	span	service	boundaries	and	may	be
long	running?

Orchestration	Versus	Choreography
As	we	start	to	model	more	and	more	complex	logic,	we	have	to	deal	with	the	problem	of
managing	business	processes	that	stretch	across	the	boundary	of	individual	services.	And
with	microservices,	we’ll	hit	this	limit	sooner	than	usual.	Let’s	take	an	example	from
MusicCorp,	and	look	at	what	happens	when	we	create	a	customer:

1.	 A	new	record	is	created	in	the	loyalty	points	bank	for	the	customer.

2.	 Our	postal	system	sends	out	a	welcome	pack.

3.	 We	send	a	welcome	email	to	the	customer.

This	is	very	easy	to	model	conceptually	as	a	flowchart,	as	we	do	in	Figure	4-2.

When	it	comes	to	actually	implementing	this	flow,	there	are	two	styles	of	architecture	we
could	follow.	With	orchestration,	we	rely	on	a	central	brain	to	guide	and	drive	the	process,
much	like	the	conductor	in	an	orchestra.	With	choreography,	we	inform	each	part	of	the
system	of	its	job,	and	let	it	work	out	the	details,	like	dancers	all	finding	their	way	and
reacting	to	others	around	them	in	a	ballet.

Figure	4-2.	The	process	for	creating	a	new	customer

Let’s	think	about	what	an	orchestration	solution	would	look	like	for	this	flow.	Here,
probably	the	simplest	thing	to	do	would	be	to	have	our	customer	service	act	as	the	central
brain.	On	creation,	it	talks	to	the	loyalty	points	bank,	email	service,	and	postal	service	as
we	see	in	Figure	4-3,	through	a	series	of	request/response	calls.	The	customer	service

itself	can	then	track	where	a	customer	is	in	this	process.	It	can	check	to	see	if	the
customer’s	account	has	been	set	up,	or	the	email	sent,	or	the	post	delivered.	We	get	to	take
the	flowchart	in	Figure	4-2	and	model	it	directly	into	code.	We	could	even	use	tooling	that
implements	this	for	us,	perhaps	using	an	appropriate	rules	engine.	Commercial	tools	exist
for	this	very	purpose	in	the	form	of	business	process	modeling	software.	Assuming	we	use
synchronous	request/response,	we	could	even	know	if	each	stage	has	worked.

Figure	4-3.	Handling	customer	creation	via	orchestration

The	downside	to	this	orchestration	approach	is	that	the	customer	service	can	become	too
much	of	a	central	governing	authority.	It	can	become	the	hub	in	the	middle	of	a	web,	and	a
central	point	where	logic	starts	to	live.	I	have	seen	this	approach	result	in	a	small	number
of	smart	“god”	services	telling	anemic	CRUD-based	services	what	to	do.

With	a	choreographed	approach,	we	could	instead	just	have	the	customer	service	emit	an
event	in	an	asynchronous	manner,	saying	Customer	created.	The	email	service,	postal
service,	and	loyalty	points	bank	then	just	subscribe	to	these	events	and	react	accordingly,
as	in	Figure	4-4.	This	approach	is	significantly	more	decoupled.	If	some	other	service
needed	to	reach	to	the	creation	of	a	customer,	it	just	needs	to	subscribe	to	the	events	and
do	its	job	when	needed.	The	downside	is	that	the	explicit	view	of	the	business	process	we
see	in	Figure	4-2	is	now	only	implicitly	reflected	in	our	system.

Figure	4-4.	Handling	customer	creation	via	choreography

This	means	additional	work	is	needed	to	ensure	that	you	can	monitor	and	track	that	the
right	things	have	happened.	For	example,	would	you	know	if	the	loyalty	points	bank	had	a
bug	and	for	some	reason	didn’t	set	up	the	correct	account?	One	approach	I	like	for	dealing
with	this	is	to	build	a	monitoring	system	that	explicitly	matches	the	view	of	the	business
process	in	Figure	4-2,	but	then	tracks	what	each	of	the	services	does	as	independent
entities,	letting	you	see	odd	exceptions	mapped	onto	the	more	explicit	process	flow.	The
flowchart	we	saw	earlier	isn’t	the	driving	force,	but	just	one	lens	through	which	we	can
see	how	the	system	is	behaving.

In	general,	I	have	found	that	systems	that	tend	more	toward	the	choreographed	approach
are	more	loosely	coupled,	and	are	more	flexible	and	amenable	to	change.	You	do	need	to
do	extra	work	to	monitor	and	track	the	processes	across	system	boundaries,	however.	I
have	found	most	heavily	orchestrated	implementations	to	be	extremely	brittle,	with	a
higher	cost	of	change.	With	that	in	mind,	I	strongly	prefer	aiming	for	a	choreographed
system,	where	each	service	is	smart	enough	to	understand	its	role	in	the	whole	dance.

There	are	quite	a	few	factors	to	unpack	here.	Synchronous	calls	are	simpler,	and	we	get	to
know	if	things	worked	straightaway.	If	we	like	the	semantics	of	request/response	but	are
dealing	with	longer-lived	processes,	we	could	just	initiate	asynchronous	requests	and	wait
for	callbacks.	On	the	other	hand,	asynchronous	event	collaboration	helps	us	adopt	a
choreographed	approach,	which	can	yield	significantly	more	decoupled	services	—
something	we	want	to	strive	for	to	ensure	our	services	are	independently	releasable.

We	are,	of	course,	free	to	mix	and	match.	Some	technologies	will	fit	more	naturally	into
one	style	or	another.	We	do,	however,	need	to	appreciate	some	of	the	different	technical
implementation	details	that	will	further	help	us	make	the	right	call.

To	start	with,	let’s	look	at	two	technologies	that	fit	well	when	we	are	considering
request/response:	remote	procedure	call	(RPC)	and	REpresentational	State	Transfer
(REST).

Remote	Procedure	Calls
Remote	procedure	call	refers	to	the	technique	of	making	a	local	call	and	having	it	execute
on	a	remote	service	somewhere.	There	are	a	number	of	different	types	of	RPC	technology
out	there.	Some	of	this	technology	relies	on	having	an	interface	definition	(SOAP,	Thrift,
protocol	buffers).	The	use	of	a	separate	interface	definition	can	make	it	easier	to	generate
client	and	server	stubs	for	different	technology	stacks,	so,	for	example,	I	could	have	a	Java
server	exposing	a	SOAP	interface,	and	a	.NET	client	generated	from	the	Web	Service
Definition	Language	(WSDL)	definition	of	the	interface.	Other	technology,	like	Java	RMI,
calls	for	a	tighter	coupling	between	the	client	and	server,	requiring	that	both	use	the	same
underlying	technology	but	avoid	the	need	for	a	shared	interface	definition.	All	these
technologies,	however,	have	the	same,	core	characteristic	in	that	they	make	a	local	call
look	like	a	remote	call.

Many	of	these	technologies	are	binary	in	nature,	like	Java	RMI,	Thrift,	or	protocol	buffers,
while	SOAP	uses	XML	for	its	message	formats.	Some	implementations	are	tied	to	a
specific	networking	protocol	(like	SOAP,	which	makes	nominal	use	of	HTTP),	whereas
others	might	allow	you	to	use	different	types	of	networking	protocols,	which	themselves
can	provide	additional	features.	For	example,	TCP	offers	guarantees	about	delivery,
whereas	UDP	doesn’t	but	has	a	much	lower	overhead.	This	can	allow	you	to	use	different
networking	technology	for	different	use	cases.

Those	RPC	implementations	that	allow	you	to	generate	client	and	server	stubs	help	you
get	started	very,	very	fast.	I	can	be	sending	content	over	a	network	boundary	in	no	time	at
all.	This	is	often	one	of	the	main	selling	points	of	RPC:	its	ease	of	use.	The	fact	that	I	can
just	make	a	normal	method	call	and	theoretically	ignore	the	rest	is	a	huge	boon.

Some	RPC	implementations,	though,	do	come	with	some	downsides	that	can	cause	issues.
These	issues	aren’t	always	apparent	initially,	but	nonetheless	they	can	be	severe	enough	to
outweigh	the	benefits	of	being	so	easy	to	get	up	and	running	quickly.

Technology	Coupling
Some	RPC	mechanisms,	like	Java	RMI,	are	heavily	tied	to	a	specific	platform,	which	can
limit	which	technology	can	be	used	in	the	client	and	server.	Thrift	and	protocol	buffers
have	an	impressive	amount	of	support	for	alternative	languages,	which	can	reduce	this
downside	somewhat,	but	be	aware	that	sometimes	RPC	technology	comes	with
restrictions	on	interoperability.

In	a	way,	this	technology	coupling	can	be	a	form	of	exposing	internal	technical
implementation	details.	For	example,	the	use	of	RMI	ties	not	only	the	client	to	the	JVM,
but	the	server	too.

Local	Calls	Are	Not	Like	Remote	Calls
The	core	idea	of	RPC	is	to	hide	the	complexity	of	a	remote	call.	Many	implementations	of
RPC,	though,	hide	too	much.	The	drive	in	some	forms	of	RPC	to	make	remote	method
calls	look	like	local	method	calls	hides	the	fact	that	these	two	things	are	very	different.	I
can	make	large	numbers	of	local,	in-process	calls	without	worrying	overly	about	the
performance.	With	RPC,	though,	the	cost	of	marshalling	and	un-marshalling	payloads	can
be	significant,	not	to	mention	the	time	taken	to	send	things	over	the	network.	This	means
you	need	to	think	differently	about	API	design	for	remote	interfaces	versus	local
interfaces.	Just	taking	a	local	API	and	trying	to	make	it	a	service	boundary	without	any
more	thought	is	likely	to	get	you	in	trouble.	In	some	of	the	worst	examples,	developers
may	be	using	remote	calls	without	knowing	it	if	the	abstraction	is	overly	opaque.

You	need	to	think	about	the	network	itself.	Famously,	the	first	of	the	fallacies	of
distributed	computing	is	“The	network	is	reliable”.	Networks	aren’t	reliable.	They	can	and
will	fail,	even	if	your	client	and	the	server	you	are	speaking	to	are	fine.	They	can	fail	fast,
they	can	fail	slow,	and	they	can	even	malform	your	packets.	You	should	assume	that	your
networks	are	plagued	with	malevolent	entities	ready	to	unleash	their	ire	on	a	whim.
Therefore,	the	failure	modes	you	can	expect	are	different.	A	failure	could	be	caused	by	the
remote	server	returning	an	error,	or	by	you	making	a	bad	call.	Can	you	tell	the	difference,
and	if	so,	can	you	do	anything	about	it?	And	what	do	you	do	when	the	remote	server	just
starts	responding	slowly?	We’ll	cover	this	topic	when	we	talk	about	resiliency	in
Chapter	11.

http://bit.ly/1LbdCzY

Brittleness
Some	of	the	most	popular	implementations	of	RPC	can	lead	to	some	nasty	forms	of
brittleness,	Java’s	RMI	being	a	very	good	example.	Let’s	consider	a	very	simple	Java
interface	that	we	have	decided	to	make	a	remote	API	for	our	customer	service.	Example	4-
1	declares	the	methods	we	are	going	to	expose	remotely.	Java	RMI	then	generates	the
client	and	server	stubs	for	our	method.

Example	4-1.	Defining	a	service	endpoint	using	Java	RMI
import	java.rmi.Remote;

import	java.rmi.RemoteException;

public	interface	CustomerRemote	extends	Remote	{

		public	Customer	findCustomer(String	id)	throws	RemoteException;

		public	Customer	createCustomer(String	firstname,	String	surname,	String	emailAddress)

						throws	RemoteException;

}

In	this	interface,	findCustomer	takes	the	first	name,	surname,	and	email	address.	What
happens	if	we	decide	to	allow	the	Customer	object	to	also	be	created	with	just	an	email
address?	We	could	add	a	new	method	at	this	point	pretty	easily,	like	so:

...

public	Customer	createCustomer(String	emailAddress)	throws	RemoteException;

...

The	problem	is	that	now	we	need	to	regenerate	the	client	stubs	too.	Clients	that	want	to
consume	the	new	method	need	the	new	stubs,	and	depending	on	the	nature	of	the	changes
to	the	specification,	consumers	that	don’t	need	the	new	method	may	also	need	to	have
their	stubs	upgraded	too.	This	is	manageable,	of	course,	but	to	a	point.	The	reality	is	that
changes	like	this	are	fairly	common.	RPC	endpoints	often	end	up	having	a	large	number	of
methods	for	different	ways	of	creating	or	interacting	with	objects.	This	is	due	in	part	to	the
fact	that	we	are	still	thinking	of	these	remote	calls	as	local	ones.

There	is	another	sort	of	brittleness,	though.	Let’s	take	a	look	at	what	our	Customer	object
looks	like:

public	class	Customer	implements	Serializable	{

		private	String	firstName;

		private	String	surname;

		private	String	emailAddress;

		private	String	age;

}

Now,	what	if	it	turns	out	that	although	we	expose	the	age	field	in	our	Customer	objects,
none	of	our	consumers	ever	use	it?	We	decide	we	want	to	remove	this	field.	But	if	the
server	implementation	removes	age	from	its	definition	of	this	type,	and	we	don’t	do	the
same	to	all	the	consumers,	then	even	though	they	never	used	the	field,	the	code	associated
with	deserializing	the	Customer	object	on	the	consumer	side	will	break.	To	roll	out	this
change,	I	would	have	to	deploy	both	a	new	server	and	clients	at	the	same	time.	This	is	a

key	challenge	with	any	RPC	mechanism	that	promotes	the	use	of	binary	stub	generation:
you	don’t	get	to	separate	client	and	server	deployments.	If	you	use	this	technology,	lock-
step	releases	may	be	in	your	future.

Similar	problems	occur	if	I	want	to	restructure	the	Customer	object	even	if	I	didn’t	remove
fields	—	for	example,	if	I	wanted	to	encapsulate	firstName	and	surname	into	a	new
naming	type	to	make	it	easier	to	manage.	I	could,	of	course,	fix	this	by	passing	around
dictionary	types	as	the	parameters	of	my	calls,	but	at	that	point,	I	lose	many	of	the	benefits
of	the	generated	stubs	because	I’ll	still	have	to	manually	match	and	extract	the	fields	I
want.

In	practice,	objects	used	as	part	of	binary	serialization	across	the	wire	can	be	thought	of	as
expand-only	types.	This	brittleness	results	in	the	types	being	exposed	over	the	wire	and
becoming	a	mass	of	fields,	some	of	which	are	no	longer	used	but	can’t	be	safely	removed.

Is	RPC	Terrible?
Despite	its	shortcomings,	I	wouldn’t	go	so	far	as	to	call	RPC	terrible.	Some	of	the
common	implementations	that	I	have	encountered	can	lead	to	the	sorts	of	problems	I	have
outlined	here.	Due	to	the	challenges	of	using	RMI,	I	would	certainly	give	that	technology
a	wide	berth.	Many	operations	fall	quite	nicely	into	the	RPC-based	model,	and	more
modern	mechanisms	like	protocol	buffers	or	Thrift	mitigate	some	of	sins	of	the	past	by
avoiding	the	need	for	lock-step	releases	of	client	and	server	code.

Just	be	aware	of	some	of	the	potential	pitfalls	associated	with	RPC	if	you’re	going	to	pick
this	model.	Don’t	abstract	your	remote	calls	to	the	point	where	the	network	is	completely
hidden,	and	ensure	that	you	can	evolve	the	server	interface	without	having	to	insist	on
lock-step	upgrades	for	clients.	Finding	the	right	balance	for	your	client	code	is	important,
for	example.	Make	sure	your	clients	aren’t	oblivious	to	the	fact	that	a	network	call	is	going
to	be	made.	Client	libraries	are	often	used	in	the	context	of	RPC,	and	if	not	structured	right
they	can	be	problematic.	We’ll	talk	more	about	them	shortly.

Compared	to	database	integration,	RPC	is	certainly	an	improvement	when	we	think	about
options	for	request/response	collaboration.	But	there’s	another	option	to	consider.

REST
REpresentational	State	Transfer	(REST)	is	an	architectural	style	inspired	by	the	Web.
There	are	many	principles	and	constraints	behind	the	REST	style,	but	we	are	going	to
focus	on	those	that	really	help	us	when	we	face	integration	challenges	in	a	microservices
world,	and	when	we’re	looking	for	an	alternative	style	to	RPC	for	our	service	interfaces.

Most	important	is	the	concept	of	resources.	You	can	think	of	a	resource	as	a	thing	that	the
service	itself	knows	about,	like	a	Customer.	The	server	creates	different	representations	of
this	Customer	on	request.	How	a	resource	is	shown	externally	is	completely	decoupled
from	how	it	is	stored	internally.	A	client	might	ask	for	a	JSON	representation	of	a
Customer,	for	example,	even	if	it	is	stored	in	a	completely	different	format.	Once	a	client
has	a	representation	of	this	Customer,	it	can	then	make	requests	to	change	it,	and	the
server	may	or	may	not	comply	with	them.

There	are	many	different	styles	of	REST,	and	I	touch	only	briefly	on	them	here.	I	strongly
recommend	you	take	a	look	at	the	Richardson	Maturity	Model,	where	the	different	styles
of	REST	are	compared.

REST	itself	doesn’t	really	talk	about	underlying	protocols,	although	it	is	most	commonly
used	over	HTTP.	I	have	seen	implementations	of	REST	using	very	different	protocols
before,	such	as	serial	or	USB,	although	this	can	require	a	lot	of	work.	Some	of	the	features
that	HTTP	gives	us	as	part	of	the	specification,	such	as	verbs,	make	implementing	REST
over	HTTP	easier,	whereas	with	other	protocols	you’ll	have	to	handle	these	features
yourself.

http://bit.ly/1fh2AGt

REST	and	HTTP
HTTP	itself	defines	some	useful	capabilities	that	play	very	well	with	the	REST	style.	For
example,	the	HTTP	verbs	(e.g.,	GET,	POST,	and	PUT)	already	have	well-understood
meanings	in	the	HTTP	specification	as	to	how	they	should	work	with	resources.	The
REST	architectural	style	actually	tells	us	that	methods	should	behave	the	same	way	on	all
resources,	and	the	HTTP	specification	happens	to	define	a	bunch	of	methods	we	can	use.
GET	retrieves	a	resource	in	an	idempotent	way,	and	POST	creates	a	new	resource.	This
means	we	can	avoid	lots	of	different	createCustomer	or	editCustomer	methods.	Instead,
we	can	simply	POST	a	customer	representation	to	request	that	the	server	create	a	new
resource,	and	initiate	a	GET	request	to	retrieve	a	representation	of	a	resource.
Conceptually,	there	is	one	endpoint	in	the	form	of	a	Customer	resource	in	these	cases,	and
the	operations	we	can	carry	out	upon	it	are	baked	into	the	HTTP	protocol.

HTTP	also	brings	a	large	ecosystem	of	supporting	tools	and	technology.	We	get	to	use
HTTP	caching	proxies	like	Varnish	and	load	balancers	like	mod_proxy,	and	many
monitoring	tools	already	have	lots	of	support	for	HTTP	out	of	the	box.	These	building
blocks	allow	us	to	handle	large	volumes	of	HTTP	traffic	and	route	them	smartly,	in	a	fairly
transparent	way.	We	also	get	to	use	all	the	available	security	controls	with	HTTP	to	secure
our	communications.	From	basic	auth	to	client	certs,	the	HTTP	ecosystem	gives	us	lots	of
tools	to	make	the	security	process	easier,	and	we’ll	explore	that	topic	more	in	Chapter	9.
That	said,	to	get	these	benefits,	you	have	to	use	HTTP	well.	Use	it	badly,	and	it	can	be	as
insecure	and	hard	to	scale	as	any	other	technology	out	there.	Use	it	right,	though,	and	you
get	a	lot	of	help.

Note	that	HTTP	can	be	used	to	implement	RPC	too.	SOAP,	for	example,	gets	routed	over
HTTP,	but	unfortunately	uses	very	little	of	the	specification.	Verbs	are	ignored,	as	are
simple	things	like	HTTP	error	codes.	All	too	often,	it	seems,	the	existing,	well-understood
standards	and	technology	are	ignored	in	favor	of	new	standards	that	can	only	be
implemented	using	brand-new	technology	—	conveniently	provided	by	the	same
companies	that	help	design	the	new	standards	in	the	first	place!

Hypermedia	As	the	Engine	of	Application	State
Another	principle	introduced	in	REST	that	can	help	us	avoid	the	coupling	between	client
and	server	is	the	concept	of	hypermedia	as	the	engine	of	application	state	(often
abbreviated	as	HATEOAS,	and	boy,	did	it	need	an	abbreviation).	This	is	fairly	dense
wording	and	a	fairly	interesting	concept,	so	let’s	break	it	down	a	bit.

Hypermedia	is	a	concept	whereby	a	piece	of	content	contains	links	to	various	other	pieces
of	content	in	a	variety	of	formats	(e.g.,	text,	images,	sounds).	This	should	be	pretty
familiar	to	you,	as	it’s	what	the	average	web	page	does:	you	follow	links,	which	are	a	form
of	hypermedia	controls,	to	see	related	content.	The	idea	behind	HATEOAS	is	that	clients
should	perform	interactions	(potentially	leading	to	state	transitions)	with	the	server	via
these	links	to	other	resources.	It	doesn’t	need	to	know	where	exactly	customers	live	on	the
server	by	knowing	which	URI	to	hit;	instead,	the	client	looks	for	and	navigates	links	to
find	what	it	needs.

This	is	a	bit	of	an	odd	concept,	so	let’s	first	step	back	and	consider	how	people	interact
with	a	web	page,	which	we’ve	already	established	is	rich	with	hypermedia	controls.

Think	of	the	Amazon.com	shopping	site.	The	location	of	the	shopping	cart	has	changed
over	time.	The	graphic	has	changed.	The	link	has	changed.	But	as	humans	we	are	smart
enough	to	still	see	a	shopping	cart,	know	what	it	is,	and	interact	with	it.	We	have	an
understanding	of	what	a	shopping	cart	means,	even	if	the	exact	form	and	underlying
control	used	to	represent	it	has	changed.	We	know	that	if	we	want	to	view	the	cart,	this	is
the	control	we	want	to	interact	with.	This	is	why	web	pages	can	change	incrementally	over
time.	As	long	as	these	implicit	contracts	between	the	customer	and	the	website	are	still
met,	changes	don’t	need	to	be	breaking	changes.

With	hypermedia	controls,	we	are	trying	to	achieve	the	same	level	of	smarts	for	our
electronic	consumers.	Let’s	look	at	a	hypermedia	control	that	we	might	have	for
MusicCorp.	We’ve	accessed	a	resource	representing	a	catalog	entry	for	a	given	album	in
Example	4-2.	Along	with	information	about	the	album,	we	see	a	number	of	hypermedia
controls.

Example	4-2.	Hypermedia	controls	used	on	an	album	listing
<album>

		<name>Give	Blood</name>

		<link	rel="/artist"	href="/artist/theBrakes"	/>	

		<description>

				Awesome,	short,	brutish,	funny	and	loud.	Must	buy!

		</description>

		<link	rel="/instantpurchase"	href="/instantPurchase/1234"	/>	

</album>

This	hypermedia	control	shows	us	where	to	find	information	about	the	artist.

And	if	we	want	to	purchase	the	album,	we	now	know	where	to	go.

In	this	document,	we	have	two	hypermedia	controls.	The	client	reading	such	a	document
needs	to	know	that	a	control	with	a	relation	of	artist	is	where	it	needs	to	navigate	to	get
information	about	the	artist,	and	that	instantpurchase	is	part	of	the	protocol	used	to
purchase	the	album.	The	client	has	to	understand	the	semantics	of	the	API	in	much	the
same	way	as	a	human	being	needs	to	understand	that	on	a	shopping	website	the	cart	is
where	the	items	to	be	purchased	will	be.

As	a	client,	I	don’t	need	to	know	which	URI	scheme	to	access	to	buy	the	album,	I	just
need	to	access	the	resource,	find	the	buy	control,	and	navigate	to	that.	The	buy	control
could	change	location,	the	URI	could	change,	or	the	site	could	even	send	me	to	another
service	altogether,	and	as	a	client	I	wouldn’t	care.	This	gives	us	a	huge	amount	of
decoupling	between	the	client	and	server.

We	are	greatly	abstracted	from	the	underlying	detail	here.	We	could	completely	change	the
implementation	of	how	the	control	is	presented	as	long	as	the	client	can	still	find	a	control
that	matches	its	understanding	of	the	protocol,	in	the	same	way	that	a	shopping	cart
control	might	go	from	being	a	simple	link	to	a	more	complex	JavaScript	control.	We	are
also	free	to	add	new	controls	to	the	document,	perhaps	representing	new	state	transitions
that	we	can	perform	on	the	resource	in	question.	We	would	end	up	breaking	our
consumers	only	if	we	fundamentally	changed	the	semantics	of	one	of	the	controls	so	it
behaved	very	differently,	or	if	we	removed	a	control	altogether.

Using	these	controls	to	decouple	the	client	and	server	yields	significant	benefits	over	time
that	greatly	offset	the	small	increase	in	the	time	it	takes	to	get	these	protocols	up	and
running.	By	following	the	links,	the	client	gets	to	progressively	discover	the	API,	which
can	be	a	really	handy	capability	when	we	are	implementing	new	clients.

One	of	the	downsides	is	that	this	navigation	of	controls	can	be	quite	chatty,	as	the	client
needs	to	follow	links	to	find	the	operation	it	wants	to	perform.	Ultimately,	this	is	a	trade-
off.	I	would	suggest	you	start	with	having	your	clients	navigate	these	controls	first,	then
optimize	later	if	necessary.	Remember	that	we	have	a	large	amount	of	help	out	of	the	box
by	using	HTTP,	which	we	discussed	earlier.	The	evils	of	premature	optimization	have
been	well	documented	before,	so	I	don’t	need	to	expand	upon	them	here.	Also	note	that	a
lot	of	these	approaches	were	developed	to	create	distributed	hypertext	systems,	and	not	all
of	them	fit!	Sometimes	you’ll	find	yourself	just	wanting	good	old-fashioned	RPC.

Personally,	I	am	a	fan	of	using	links	to	allow	consumers	to	navigate	API	endpoints.	The
benefits	of	progressive	discovery	of	the	API	and	reduced	coupling	can	be	significant.
However,	it	is	clear	that	not	everyone	is	sold,	as	I	don’t	see	it	being	used	anywhere	near	as
much	as	I	would	like.	I	think	a	large	part	of	this	is	that	there	is	some	initial	upfront	work
required,	but	the	rewards	often	come	later.

JSON,	XML,	or	Something	Else?
The	use	of	standard	textual	formats	gives	clients	a	lot	of	flexibility	as	to	how	they
consume	resources,	and	REST	over	HTTP	lets	us	use	a	variety	of	formats.	The	examples	I
have	given	so	far	used	XML,	but	at	this	stage,	JSON	is	a	much	more	popular	content	type
for	services	that	work	over	HTTP.

The	fact	that	JSON	is	a	much	simpler	format	means	that	consumption	is	also	easier.	Some
proponents	also	cite	its	relative	compactness	when	compared	to	XML	as	another	winning
factor,	although	this	isn’t	often	a	real-world	issue.

JSON	does	have	some	downsides,	though.	XML	defines	the	link	control	we	used	earlier
as	a	hypermedia	control.	The	JSON	standard	doesn’t	define	anything	similar,	so	in-house
styles	are	frequently	used	to	shoe-horn	this	concept	in.	The	Hypertext	Application
Language	(HAL)	attempts	to	fix	this	by	defining	some	common	standards	for
hyperlinking	for	JSON	(and	XML	too,	although	arguably	XML	needs	less	help).	If	you
follow	the	HAL	standard,	you	can	use	tools	like	the	web-based	HAL	browser	for
exploring	hypermedia	controls,	which	can	make	the	task	of	creating	a	client	much	easier.

We	aren’t	limited	to	these	two	formats,	of	course.	We	can	send	pretty	much	anything	over
HTTP	if	we	want,	even	binary.	I	am	seeing	more	and	more	people	just	using	HTML	as	a
format	instead	of	XML.	For	some	interfaces,	the	HTML	can	do	double	duty	as	a	UI	and	an
API,	although	there	are	pitfalls	to	be	avoided	here,	as	the	interactions	of	a	human	and	a
computer	are	quite	different!	But	it	is	certainly	an	attractive	idea.	There	are	lots	of	HTML
parsers	out	there,	after	all.

Personally,	though,	I	am	still	a	fan	of	XML.	Some	of	the	tool	support	is	better.	For
example,	if	I	want	to	extract	only	certain	parts	of	the	payload	(a	technique	we’ll	discuss
more	in	“Versioning”)	I	can	use	XPATH,	which	is	a	well-understood	standard	with	lots	of
tool	support,	or	even	CSS	selectors,	which	many	find	even	easier.	With	JSON,	I	have
JSONPATH,	but	this	is	not	widely	supported.	I	find	it	odd	that	people	pick	JSON	because
it	is	nice	and	lightweight,	then	try	and	push	concepts	into	it	like	hypermedia	controls	that
already	exist	in	XML.	I	accept,	though,	that	I	am	probably	in	the	minority	here	and	that
JSON	is	the	format	of	choice	for	most	people!

http://bit.ly/hal-spec

Beware	Too	Much	Convenience
As	REST	has	become	more	popular,	so	too	have	the	frameworks	that	help	us	create
RESTFul	web	services.	However,	some	of	these	tools	trade	off	too	much	in	terms	of	short-
term	gain	for	long-term	pain;	in	trying	to	get	you	going	fast,	they	can	encourage	some	bad
behaviors.	For	example,	some	frameworks	actually	make	it	very	easy	to	simply	take
database	representations	of	objects,	deserialize	them	into	in-process	objects,	and	then
directly	expose	these	externally.	I	remember	at	a	conference	seeing	this	demonstrated
using	Spring	Boot	and	cited	as	a	major	advantage.	The	inherent	coupling	that	this	setup
promotes	will	in	most	cases	cause	far	more	pain	than	the	effort	required	to	properly
decouple	these	concepts.

There	is	a	more	general	problem	at	play	here.	How	we	decide	to	store	our	data,	and	how
we	expose	it	to	our	consumers,	can	easily	dominate	our	thinking.	One	pattern	I	saw	used
effectively	by	one	of	our	teams	was	to	delay	the	implementation	of	proper	persistence	for
the	microservice,	until	the	interface	had	stabilized	enough.	For	an	interim	period,	entities
were	just	persisted	in	a	file	on	local	disk,	which	is	obviously	not	a	suitable	long-term
solution.	This	ensured	that	how	the	consumers	wanted	to	use	the	service	drove	the	design
and	implementation	decisions.	The	rationale	given,	which	was	borne	out	in	the	results,
was	that	it	is	too	easy	for	the	way	we	store	domain	entities	in	a	backing	store	to	overtly
influence	the	models	we	send	over	the	wire	to	collaborators.	One	of	the	downsides	with
this	approach	is	that	we	are	deferring	the	work	required	to	wire	up	our	data	store.	I	think
for	new	service	boundaries,	however,	this	is	an	acceptable	trade-off.

Downsides	to	REST	Over	HTTP
In	terms	of	ease	of	consumption,	you	cannot	easily	generate	a	client	stub	for	your	REST
over	HTTP	application	protocol	like	you	can	with	RPC.	Sure,	the	fact	that	HTTP	is	being
used	means	that	you	get	to	take	advantage	of	all	the	excellent	HTTP	client	libraries	out
there,	but	if	you	want	to	implement	and	use	hypermedia	controls	as	a	client	you	are	pretty
much	on	your	own.	Personally,	I	think	client	libraries	could	do	much	better	at	this	than
they	do,	and	they	are	certainly	better	now	than	in	the	past,	but	I	have	seen	this	apparent
increased	complexity	result	in	people	backsliding	into	smuggling	RPC	over	HTTP	or
building	shared	client	libraries.	Shared	code	between	client	and	server	can	be	very
dangerous,	as	we’ll	discuss	in	“DRY	and	the	Perils	of	Code	Reuse	in	a	Microservice
World”.

A	more	minor	point	is	that	some	web	server	frameworks	don’t	actually	support	all	the
HTTP	verbs	well.	That	means	that	it	might	be	easy	for	you	to	create	a	handler	for	GET	or
POST	requests,	but	you	may	have	to	jump	through	hoops	to	get	PUT	or	DELETE	requests
to	work.	Proper	REST	frameworks	like	Jersey	don’t	have	this	problem,	and	you	can
normally	work	around	this,	but	if	you	are	locked	into	certain	framework	choices	this	might
limit	what	style	of	REST	you	can	use.

Performance	may	also	be	an	issue.	REST	over	HTTP	payloads	can	actually	be	more
compact	than	SOAP	because	it	supports	alternative	formats	like	JSON	or	even	binary,	but
it	will	still	be	nowhere	near	as	lean	a	binary	protocol	as	Thrift	might	be.	The	overhead	of
HTTP	for	each	request	may	also	be	a	concern	for	low-latency	requirements.

HTTP,	while	it	can	be	suited	well	to	large	volumes	of	traffic,	isn’t	great	for	low-latency
communications	when	compared	to	alternative	protocols	that	are	built	on	top	of
Transmission	Control	Protocol	(TCP)	or	other	networking	technology.	Despite	the	name,
WebSockets,	for	example,	has	very	little	to	do	with	the	Web.	After	the	initial	HTTP
handshake,	it’s	just	a	TCP	connection	between	client	and	server,	but	it	can	be	a	much	more
efficient	way	for	you	to	stream	data	for	a	browser.	If	this	is	something	you’re	interested	in,
note	that	you	aren’t	really	using	much	of	HTTP,	let	alone	anything	to	do	with	REST.

For	server-to-server	communications,	if	extremely	low	latency	or	small	message	size	is
important,	HTTP	communications	in	general	may	not	be	a	good	idea.	You	may	need	to
pick	different	underlying	protocols,	like	User	Datagram	Protocol	(UDP),	to	achieve	the
performance	you	want,	and	many	RPC	frameworks	will	quite	happily	run	on	top	of
networking	protocols	other	than	TCP.

Consumption	of	the	payloads	themselves	requires	more	work	than	is	provided	by	some
RPC	implementations	that	support	advanced	serialization	and	deserialization	mechanisms.
These	can	become	a	coupling	point	in	their	own	right	between	client	and	server,	as
implementing	tolerant	readers	is	a	nontrivial	activity	(we’ll	discuss	this	shortly),	but	from
the	point	of	view	of	getting	up	and	running,	they	can	be	very	attractive.

Despite	these	disadvantages,	REST	over	HTTP	is	a	sensible	default	choice	for	service-to-
service	interactions.	If	you	want	to	know	more,	I	recommend	REST	in	Practice	(O’Reilly),
which	covers	the	topic	of	REST	over	HTTP	in	depth.

http://shop.oreilly.com/product/9780596805838.do

Implementing	Asynchronous	Event-Based	Collaboration
We’ve	talked	for	a	bit	about	some	technologies	that	can	help	us	implement
request/response	patterns.	What	about	event-based,	asynchronous	communication?

Technology	Choices
There	are	two	main	parts	we	need	to	consider	here:	a	way	for	our	microservices	to	emit
events,	and	a	way	for	our	consumers	to	find	out	those	events	have	happened.

Traditionally,	message	brokers	like	RabbitMQ	try	to	handle	both	problems.	Producers	use
an	API	to	publish	an	event	to	the	broker.	The	broker	handles	subscriptions,	allowing
consumers	to	be	informed	when	an	event	arrives.	These	brokers	can	even	handle	the	state
of	consumers,	for	example	by	helping	keep	track	of	what	messages	they	have	seen	before.
These	systems	are	normally	designed	to	be	scalable	and	resilient,	but	that	doesn’t	come	for
free.	It	can	add	complexity	to	the	development	process,	because	it	is	another	system	you
may	need	to	run	to	develop	and	test	your	services.	Additional	machines	and	expertise	may
also	be	required	to	keep	this	infrastructure	up	and	running.	But	once	it	does,	it	can	be	an
incredibly	effective	way	to	implement	loosely	coupled,	event-driven	architectures.	In
general,	I’m	a	fan.

Do	be	wary,	though,	about	the	world	of	middleware,	of	which	the	message	broker	is	just	a
small	part.	Queues	in	and	of	themselves	are	perfectly	sensible,	useful	things.	However,
vendors	tend	to	want	to	package	lots	of	software	with	them,	which	can	lead	to	more	and
more	smarts	being	pushed	into	the	middleware,	as	evidenced	by	things	like	the	Enterprise
Service	Bus.	Make	sure	you	know	what	you’re	getting:	keep	your	middleware	dumb,	and
keep	the	smarts	in	the	endpoints.

Another	approach	is	to	try	to	use	HTTP	as	a	way	of	propagating	events.	ATOM	is	a	REST-
compliant	specification	that	defines	semantics	(among	other	things)	for	publishing	feeds
of	resources.	Many	client	libraries	exist	that	allow	us	to	create	and	consume	these	feeds.
So	our	customer	service	could	just	publish	an	event	to	such	a	feed	when	our	customer
service	changes.	Our	consumers	just	poll	the	feed,	looking	for	changes.	On	one	hand,	the
fact	that	we	can	reuse	the	existing	ATOM	specification	and	any	associated	libraries	is
useful,	and	we	know	that	HTTP	handles	scale	very	well.	However,	HTTP	is	not	good	at
low	latency	(where	some	message	brokers	excel),	and	we	still	need	to	deal	with	the	fact
that	the	consumers	need	to	keep	track	of	what	messages	they	have	seen	and	manage	their
own	polling	schedule.

I	have	seen	people	spend	an	age	implementing	more	and	more	of	the	behaviors	that	you
get	out	of	the	box	with	an	appropriate	message	broker	to	make	ATOM	work	for	some	use
cases.	For	example,	the	Competing	Consumer	pattern	describes	a	method	whereby	you
bring	up	multiple	worker	instances	to	compete	for	messages,	which	works	well	for	scaling
up	the	number	of	workers	to	handle	a	list	of	independent	jobs.	However,	we	want	to	avoid
the	case	where	two	or	more	workers	see	the	same	message,	as	we’ll	end	up	doing	the	same
task	more	than	we	need	to.	With	a	message	broker,	a	standard	queue	will	handle	this.	With
ATOM,	we	now	need	to	manage	our	own	shared	state	among	all	the	workers	to	try	to
reduce	the	chances	of	reproducing	effort.

If	you	already	have	a	good,	resilient	message	broker	available	to	you,	consider	using	it	to
handle	publishing	and	subscribing	to	events.	But	if	you	don’t	already	have	one,	give
ATOM	a	look,	but	be	aware	of	the	sunk-cost	fallacy.	If	you	find	yourself	wanting	more
and	more	of	the	support	that	a	message	broker	gives	you,	at	a	certain	point	you	might	want
to	change	your	approach.

In	terms	of	what	we	actually	send	over	these	asynchronous	protocols,	the	same
considerations	apply	as	with	synchronous	communication.	If	you	are	currently	happy	with
encoding	requests	and	responses	using	JSON,	stick	with	it.

Complexities	of	Asynchronous	Architectures
Some	of	this	asynchronous	stuff	seems	fun,	right?	Event-driven	architectures	seem	to	lead
to	significantly	more	decoupled,	scalable	systems.	And	they	can.	But	these	programming
styles	do	lead	to	an	increase	in	complexity.	This	isn’t	just	the	complexity	required	to
manage	publishing	and	subscribing	to	messages	as	we	just	discussed,	but	also	in	the	other
problems	we	might	face.	For	example,	when	considering	long-running	async
request/response,	we	have	to	think	about	what	to	do	when	the	response	comes	back.	Does
it	come	back	to	the	same	node	that	initiated	the	request?	If	so,	what	if	that	node	is	down?
If	not,	do	I	need	to	store	information	somewhere	so	I	can	react	accordingly?	Short-lived
async	can	be	easier	to	manage	if	you’ve	got	the	right	APIs,	but	even	so,	it	is	a	different
way	of	thinking	for	programmers	who	are	accustomed	to	intra-process	synchronous
message	calls.

Time	for	a	cautionary	tale.	Back	in	2006,	I	was	working	on	building	a	pricing	system	for	a
bank.	We	would	look	at	market	events,	and	work	out	which	items	in	a	portfolio	needed	to
be	repriced.	Once	we	determined	the	list	of	things	to	work	through,	we	put	these	all	onto	a
message	queue.	We	were	making	use	of	a	grid	to	create	a	pool	of	pricing	workers,
allowing	us	to	scale	up	and	down	the	pricing	farm	on	request.	These	workers	used	the
competing	consumer	pattern,	each	one	gobbling	messages	as	fast	as	possible	until	there
was	nothing	left	to	process.

The	system	was	up	and	running,	and	we	were	feeling	rather	smug.	One	day,	though,	just
after	we	pushed	a	release	out,	we	hit	a	nasty	problem.	Our	workers	kept	dying.	And	dying.
And	dying.

Eventually,	we	tracked	down	the	problem.	A	bug	had	crept	in	whereby	a	certain	type	of
pricing	request	would	cause	a	worker	to	crash.	We	were	using	a	transacted	queue:	as	the
worker	died,	its	lock	on	the	request	timed	out,	and	the	pricing	request	was	put	back	on	the
queue	—	only	for	another	worker	to	pick	it	up	and	die.	This	was	a	classic	example	of	what
Martin	Fowler	calls	a	catastrophic	failover.

Aside	from	the	bug	itself,	we’d	failed	to	specify	a	maximum	retry	limit	for	the	job	on	the
queue.	We	fixed	the	bug	itself,	and	also	configured	a	maximum	retry.	But	we	also	realized
we	needed	a	way	to	view,	and	potentially	replay,	these	bad	messages.	We	ended	up	having
to	implement	a	message	hospital	(or	dead	letter	queue),	where	messages	got	sent	if	they
failed.	We	also	created	a	UI	to	view	those	messages	and	retry	them	if	needed.	These	sorts
of	problems	aren’t	immediately	obvious	if	you	are	only	familiar	with	synchronous	point-
to-point	communication.

The	associated	complexity	with	event-driven	architectures	and	asynchronous
programming	in	general	leads	me	to	believe	that	you	should	be	cautious	in	how	eagerly
you	start	adopting	these	ideas.	Ensure	you	have	good	monitoring	in	place,	and	strongly
consider	the	use	of	correlation	IDs,	which	allow	you	to	trace	requests	across	process

http://bit.ly/1EmZMss

boundaries,	as	we’ll	cover	in	depth	in	Chapter	8.

I	also	strongly	recommend	Enterprise	Integration	Patterns	(Addison-Wesley),	which
contains	a	lot	more	detail	on	the	different	programming	patterns	that	you	may	need	to
consider	in	this	space.

Services	as	State	Machines
Whether	you	choose	to	become	a	REST	ninja,	or	stick	with	an	RPC-based	mechanism	like
SOAP,	the	core	concept	of	the	service	as	a	state	machine	is	powerful.	We’ve	spoken
before	(probably	ad	nauseum	by	this	point)	about	our	services	being	fashioned	around
bounded	contexts.	Our	customer	microservice	owns	all	logic	associated	with	behavior	in
this	context.

When	a	consumer	wants	to	change	a	customer,	it	sends	an	appropriate	request	to	the
customer	service.	The	customer	service,	based	on	its	logic,	gets	to	decide	if	it	accepts	that
request	or	not.	Our	customer	service	controls	all	lifecycle	events	associated	with	the
customer	itself.	We	want	to	avoid	dumb,	anemic	services	that	are	little	more	than	CRUD
wrappers.	If	the	decision	about	what	changes	are	allowed	to	be	made	to	a	customer	leak
out	of	the	customer	service	itself,	we	are	losing	cohesion.

Having	the	lifecycle	of	key	domain	concepts	explicitly	modeled	like	this	is	pretty
powerful.	Not	only	do	we	have	one	place	to	deal	with	collisions	of	state	(e.g.,	someone
trying	to	update	a	customer	that	has	already	been	removed),	but	we	also	have	a	place	to
attach	behavior	based	on	those	state	changes.

I	still	think	that	REST	over	HTTP	makes	for	a	much	more	sensible	integration	technology
than	many	others,	but	whatever	you	pick,	keep	this	idea	in	mind.

Reactive	Extensions
Reactive	extensions,	often	shortened	to	Rx,	are	a	mechanism	to	compose	the	results	of
multiple	calls	together	and	run	operations	on	them.	The	calls	themselves	could	be
blocking	or	nonblocking	calls.	At	its	heart,	Rx	inverts	traditional	flows.	Rather	than	asking
for	some	data,	then	performing	operations	on	it,	you	observe	the	outcome	of	an	operation
(or	set	of	operations)	and	react	when	something	changes.	Some	implementations	of	Rx
allow	you	to	perform	functions	on	these	observables,	such	as	RxJava,	which	allows
traditional	functions	like	map	or	filter	to	be	used.

The	various	Rx	implementations	have	found	a	very	happy	home	in	distributed	systems.
They	allow	us	to	abstract	out	the	details	of	how	calls	are	made,	and	reason	about	things
more	easily.	I	observe	the	result	of	a	call	to	a	downstream	service.	I	don’t	care	if	it	was	a
blocking	or	nonblocking	call,	I	just	wait	for	the	response	and	react.	The	beauty	is	that	I
can	compose	multiple	calls	together,	making	handling	concurrent	calls	to	downstream
services	much	easier.

As	you	find	yourself	making	more	service	calls,	especailly	when	making	multiple	calls	to
perform	a	single	operation,	take	a	look	at	the	reactive	extensions	for	your	chosen
technology	stack.	You	may	be	surprised	how	much	simpler	your	life	can	become.

DRY	and	the	Perils	of	Code	Reuse	in	a	Microservice	World
One	of	the	acronyms	we	developers	hear	a	lot	is	DRY:	don’t	repeat	yourself.	Though	its
definition	is	sometimes	simplified	as	trying	to	avoid	duplicating	code,	DRY	more
accurately	means	that	we	want	to	avoid	duplicating	our	system	behavior	and	knowledge.
This	is	very	sensible	advice	in	general.	Having	lots	of	lines	of	code	that	do	the	same	thing
makes	your	codebase	larger	than	needed,	and	therefore	harder	to	reason	about.	When	you
want	to	change	behavior,	and	that	behavior	is	duplicated	in	many	parts	of	your	system,	it
is	easy	to	forget	everywhere	you	need	to	make	a	change,	which	can	lead	to	bugs.	So	using
DRY	as	a	mantra,	in	general,	makes	sense.

DRY	is	what	leads	us	to	create	code	that	can	be	reused.	We	pull	duplicated	code	into
abstractions	that	we	can	then	call	from	multiple	places.	Perhaps	we	go	as	far	as	making	a
shared	library	that	we	can	use	everywhere!	This	approach,	however,	can	be	deceptively
dangerous	in	a	microservice	architecture.

One	of	the	things	we	want	to	avoid	at	all	costs	is	overly	coupling	a	microservice	and
consumers	such	that	any	small	change	to	the	microservice	itself	can	cause	unnecessary
changes	to	the	consumer.	Sometimes,	however,	the	use	of	shared	code	can	create	this	very
coupling.	For	example,	at	one	client	we	had	a	library	of	common	domain	objects	that
represented	the	core	entities	in	use	in	our	system.	This	library	was	used	by	all	the	services
we	had.	But	when	a	change	was	made	to	one	of	them,	all	services	had	to	be	updated.	Our
system	communicated	via	message	queues,	which	also	had	to	be	drained	of	their	now
invalid	contents,	and	woe	betide	you	if	you	forgot.

If	your	use	of	shared	code	ever	leaks	outside	your	service	boundary,	you	have	introduced	a
potential	form	of	coupling.	Using	common	code	like	logging	libraries	is	fine,	as	they	are
internal	concepts	that	are	invisible	to	the	outside	world.	RealEstate.com.au	makes	use	of	a
tailored	service	template	to	help	bootstrap	new	service	creation.	Rather	than	make	this
code	shared,	the	company	copies	it	for	every	new	service	to	ensure	that	coupling	doesn’t
leak	in.

My	general	rule	of	thumb:	don’t	violate	DRY	within	a	microservice,	but	be	relaxed	about
violating	DRY	across	all	services.	The	evils	of	too	much	coupling	between	services	are	far
worse	than	the	problems	caused	by	code	duplication.	There	is	one	specific	use	case	worth
exploring	further,	though.

Client	Libraries
I’ve	spoken	to	more	than	one	team	who	has	insisted	that	creating	client	libraries	for	your
services	is	an	essential	part	of	creating	services	in	the	first	place.	The	argument	is	that	this
makes	it	easy	to	use	your	service,	and	avoids	the	duplication	of	code	required	to	consume
the	service	itself.

The	problem,	of	course,	is	that	if	the	same	people	create	both	the	server	API	and	the	client
API,	there	is	the	danger	that	logic	that	should	exist	on	the	server	starts	leaking	into	the
client.	I	should	know:	I’ve	done	this	myself.	The	more	logic	that	creeps	into	the	client
library,	the	more	cohesion	starts	to	break	down,	and	you	find	yourself	having	to	change
multiple	clients	to	roll	out	fixes	to	your	server.	You	also	limit	technology	choices,
especially	if	you	mandate	that	the	client	library	has	to	be	used.

A	model	for	client	libraries	I	like	is	the	one	for	Amazon	Web	Services	(AWS).	The
underlying	SOAP	or	REST	web	service	calls	can	be	made	directly,	but	everyone	ends	up
using	just	one	of	the	various	software	development	kits	(SDKs)	that	exist,	which	provide
abstractions	over	the	underlying	API.	These	SDKs,	though,	are	written	by	the	community
or	AWS	people	other	than	those	who	work	on	the	API	itself.	This	degree	of	separation
seems	to	work,	and	avoids	some	of	the	pitfalls	of	client	libraries.	Part	of	the	reason	this
works	so	well	is	that	the	client	is	in	charge	of	when	the	upgrade	happens.	If	you	go	down
the	path	of	client	libraries	yourself,	make	sure	this	is	the	case.

Netflix	in	particular	places	special	emphasis	on	the	client	library,	but	I	worry	that	people
view	that	purely	through	the	lens	of	avoiding	code	duplication.	In	fact,	the	client	libraries
used	by	Netflix	are	as	much	(if	not	more)	about	ensuring	reliability	and	scalability	of	their
systems.	The	Netflix	client	libraries	handle	service	discovery,	failure	modes,	logging,	and
other	aspects	that	aren’t	actually	about	the	nature	of	the	service	itself.	Without	these
shared	clients,	it	would	be	hard	to	ensure	that	each	piece	of	client/server	communications
behaved	well	at	the	massive	scale	at	which	Netflix	operates.	Their	use	at	Netflix	has
certainly	made	it	easy	to	get	up	and	running	and	increased	productivity	while	also
ensuring	the	system	behaves	well.	However,	according	to	at	least	one	person	at	Netflix,
over	time	this	has	led	to	a	degree	of	coupling	between	client	and	server	that	has	been
problematic.

If	the	client	library	approach	is	something	you’re	thinking	about,	it	can	be	important	to
separate	out	client	code	to	handle	the	underlying	transport	protocol,	which	can	deal	with
things	like	service	discovery	and	failure,	from	things	related	to	the	destination	service
itself.	Decide	whether	or	not	you	are	going	to	insist	on	the	client	library	being	used,	or	if
you’ll	allow	people	using	different	technology	stacks	to	make	calls	to	the	underlying	API.
And	finally,	make	sure	that	the	clients	are	in	charge	of	when	to	upgrade	their	client
libraries:	we	need	to	ensure	we	maintain	the	ability	to	release	our	services	independently
of	each	other!

Access	by	Reference
One	consideration	I	want	to	touch	on	is	how	we	pass	around	information	about	our
domain	entities.	We	need	to	embrace	the	idea	that	a	microservice	will	encompass	the
lifecycle	of	our	core	domain	entities,	like	the	Customer.	We’ve	already	talked	about	the
importance	of	the	logic	associated	with	changing	this	Customer	being	held	in	the	customer
service,	and	that	if	we	want	to	change	it	we	have	to	issue	a	request	to	the	customer	service.
But	it	also	follows	that	we	should	consider	the	customer	service	as	being	the	source	of
truth	for	Customers.

When	we	retrieve	a	given	Customer	resource	from	the	customer	service,	we	get	to	see
what	that	resource	looked	like	when	we	made	the	request.	It	is	possible	that	after	we
requested	that	Customer	resource,	something	else	has	changed	it.	What	we	have	in	effect
is	a	memory	of	what	the	Customer	resource	once	looked	like.	The	longer	we	hold	on	to
this	memory,	the	higher	the	chance	that	this	memory	will	be	false.	Of	course,	if	we	avoid
requesting	data	more	than	we	need	to,	our	systems	can	become	much	more	efficient.

Sometimes	this	memory	is	good	enough.	Other	times	you	need	to	know	if	it	has	changed.
So	whether	you	decide	to	pass	around	a	memory	of	what	an	entity	once	looked	like,	make
sure	you	also	include	a	reference	to	the	original	resource	so	that	the	new	state	can	be
retrieved.

Let’s	consider	the	example	where	we	ask	the	email	service	to	send	an	email	when	an	order
has	been	shipped.	Now	we	could	send	in	the	request	to	the	email	service	with	the
customer’s	email	address,	name,	and	order	details.	However,	if	the	email	service	is
actually	queuing	up	these	requests,	or	pulling	them	from	a	queue,	things	could	change	in
the	meantime.	It	might	make	more	sense	to	just	send	a	URI	for	the	Customer	and	Order
resources,	and	let	the	email	server	go	look	them	up	when	it	is	time	to	send	the	email.

A	great	counterpoint	to	this	emerges	when	we	consider	event-based	collaboration.	With
events,	we’re	saying	this	happened,	but	we	need	to	know	what	happened.	If	we’re
receiving	updates	due	to	a	Customer	resource	changing,	for	example,	it	could	be	valuable
to	us	to	know	what	the	Customer	looked	like	when	the	event	occurred.	As	long	as	we	also
get	a	reference	to	the	entity	itself	so	we	can	look	up	its	current	state,	then	we	can	get	the
best	of	both	worlds.

There	are	other	trade-offs	to	be	made	here,	of	course,	when	we’re	accessing	by	reference.
If	we	always	go	to	the	customer	service	to	look	at	the	information	associated	with	a	given
Customer,	the	load	on	the	customer	service	can	be	too	great.	If	we	provide	additional
information	when	the	resource	is	retrieved,	letting	us	know	at	what	time	the	resource	was
in	the	given	state	and	perhaps	how	long	we	can	consider	this	information	to	be	fresh,	then
we	can	do	a	lot	with	caching	to	reduce	load.	HTTP	gives	us	much	of	this	support	out	of
the	box	with	a	wide	variety	of	cache	controls,	some	of	which	we’ll	discuss	in	more	detail

in	Chapter	11.

Another	problem	is	that	some	of	our	services	might	not	need	to	know	about	the	whole
Customer	resource,	and	by	insisting	that	they	go	look	it	up	we	are	potentially	increasing
coupling.	It	could	be	argued,	for	example,	that	our	email	service	should	be	more	dumb,
and	that	we	should	just	send	it	the	email	address	and	name	of	the	customer.	There	isn’t	a
hard-and-fast	rule	here,	but	be	very	wary	of	passing	around	data	in	requests	when	you
don’t	know	its	freshness.

Versioning
In	every	single	talk	I	have	ever	done	about	microservices,	I	get	asked	how	do	you	do
versioning?	People	have	the	legitimate	concern	that	eventually	they	will	have	to	make	a
change	to	the	interface	of	a	service,	and	they	want	to	understand	how	to	manage	that.	Let’s
break	down	the	problem	a	bit	and	look	at	the	various	steps	we	can	take	to	handle	it.

Defer	It	for	as	Long	as	Possible
The	best	way	to	reduce	the	impact	of	making	breaking	changes	is	to	avoid	making	them	in
the	first	place.	You	can	achieve	much	of	this	by	picking	the	right	integration	technology,
as	we’ve	discussed	throughout	this	chapter.	Database	integration	is	a	great	example	of
technology	that	can	make	it	very	hard	to	avoid	breaking	changes.	REST,	on	the	other
hand,	helps	because	changes	to	internal	implementation	detail	are	less	likely	to	result	in	a
change	to	the	service	interface.

Another	key	to	deferring	a	breaking	change	is	to	encourage	good	behavior	in	your	clients,
and	avoid	them	binding	too	tightly	to	your	services	in	the	first	place.	Let’s	consider	our
email	service,	whose	job	it	is	to	send	out	emails	to	our	customers	from	time	to	time.	It	gets
asked	to	send	an	order	shipped	email	to	customer	with	the	ID	1234.	It	goes	off	and
retrieves	the	customer	with	that	ID,	and	gets	back	something	like	the	response	shown	in
Example	4-3.

Example	4-3.	Sample	response	from	the	customer	service
<customer>

		<firstname>Sam</firstname>

		<lastname>Newman</lastname>

		<email>sam@magpiebrain.com</email>

		<telephoneNumber>555-1234-5678</telephoneNumber>

</customer>

Now	to	send	the	email,	we	need	only	the	firstname,	lastname,	and	email	fields.	We
don’t	need	to	know	the	telephoneNumber.	We	want	to	simply	pull	out	those	fields	we	care
about,	and	ignore	the	rest.	Some	binding	technology,	especially	that	used	by	strongly
typed	languages,	can	attempt	to	bind	all	fields	whether	the	consumer	wants	them	or	not.
What	happens	if	we	realize	that	no	one	is	using	the	telephoneNumber	and	we	decide	to
remove	it?	This	could	cause	consumers	to	break	needlessly.

Likewise,	what	if	we	wanted	to	restructure	our	Customer	object	to	support	more	details,
perhaps	adding	some	further	structure	as	in	Example	4-4?	The	data	our	email	service
wants	is	still	there,	and	still	with	the	same	name,	but	if	our	code	makes	very	explicit
assumptions	as	to	where	the	firstname	and	lastname	fields	will	be	stored,	then	it	could
break	again.	In	this	instance,	we	could	instead	use	XPath	to	pull	out	the	fields	we	care
about,	allowing	us	to	be	ambivalent	about	where	the	fields	are,	as	long	as	we	can	find
them.	This	pattern	—	of	implementing	a	reader	able	to	ignore	changes	we	don’t	care	about
—	is	what	Martin	Fowler	calls	a	Tolerant	Reader.

Example	4-4.	A	restructured	Customer	resource:	the	data	is	all	still	there,	but	can	our
consumers	find	it?
<customer>

		<naming>

				<firstname>Sam</firstname>

				<lastname>Newman</lastname>

				<nickname>Magpiebrain</nickname>

				<fullname>Sam	"Magpiebrain"	Newman</fullname>

		</naming>

		<email>sam@magpiebrain.com</email>

http://bit.ly/1yISOdQ

</customer>

The	example	of	a	client	trying	to	be	as	flexible	as	possible	in	consuming	a	service
demonstrates	Postel’s	Law	(otherwise	known	as	the	robustness	principle),	which	states:
“Be	conservative	in	what	you	do,	be	liberal	in	what	you	accept	from	others.”	The	original
context	for	this	piece	of	wisdom	was	the	interaction	of	devices	over	networks,	where	you
should	expect	all	sorts	of	odd	things	to	happen.	In	the	context	of	our	request/response
interaction,	it	can	lead	us	to	try	our	best	to	allow	the	service	being	consumed	to	change
without	requiring	us	to	change.

http://bit.ly/1Cs7dfR

Catch	Breaking	Changes	Early
It’s	crucial	to	make	sure	we	pick	up	changes	that	will	break	consumers	as	soon	as	possible,
because	even	if	we	choose	the	best	possible	technology,	breaks	can	still	happen.	I	am
strongly	in	favor	of	using	consumer-driven	contracts,	which	we’ll	cover	in	Chapter	7,	to
help	spot	these	problems	early	on.	If	you’re	supporting	multiple	different	client	libraries,
running	tests	using	each	library	you	support	against	the	latest	service	is	another	technique
that	can	help.	Once	you	realize	you	are	going	to	break	a	consumer,	you	have	the	choice	to
either	try	to	avoid	the	break	altogether	or	else	embrace	it	and	start	having	the	right
conversations	with	the	people	looking	after	the	consuming	services.

Use	Semantic	Versioning
Wouldn’t	it	be	great	if	as	a	client	you	could	look	just	at	the	version	number	of	a	service
and	know	if	you	can	integrate	with	it?	Semantic	versioning	is	a	specification	that	allows
just	that.	With	semantic	versioning,	each	version	number	is	in	the	form
MAJOR.MINOR.PATCH.	When	the	MAJOR	number	increments,	it	means	that	backward
incompatible	changes	have	been	made.	When	MINOR	increments,	new	functionality	has
been	added	that	should	be	backward	compatible.	Finally,	a	change	to	PATCH	states	that	bug
fixes	have	been	made	to	existing	functionality.

To	see	how	useful	semantic	versioning	can	be,	let’s	look	at	a	simple	use	case.	Our
helpdesk	application	is	built	to	work	against	version	1.2.0	of	the	customer	service.	If	a
new	feature	is	added,	causing	the	customer	service	to	change	to	1.3.0,	our	helpdesk
application	should	see	no	change	in	behavior	and	shouldn’t	be	expected	to	make	any
changes.	We	couldn’t	guarantee	that	we	could	work	against	version	1.1.0	of	the	customer
service,	though,	as	we	may	rely	on	functionality	added	in	the	1.2.0	release.	We	could	also
expect	to	have	to	make	changes	to	our	application	if	a	new	2.0.0	release	of	the	customer
service	comes	out.

You	may	decide	to	have	a	semantic	version	for	the	service,	or	even	for	an	individual
endpoint	on	a	service	if	you	are	coexisting	them	as	detailed	in	the	next	section.

This	versioning	scheme	allows	us	to	pack	a	lot	of	information	and	expectations	into	just
three	fields.	The	full	specification	outlines	in	very	simple	terms	the	expectations	clients
can	have	of	changes	to	these	numbers,	and	can	simplify	the	process	of	communicating
about	whether	changes	should	impact	consumers.	Unfortunately,	I	haven’t	see	this
approach	used	enough	in	the	context	of	distributed	systems.

http://semver.org/

Coexist	Different	Endpoints
If	we’ve	done	all	we	can	to	avoid	introducing	a	breaking	interface	change,	our	next	job	is
to	limit	the	impact.	The	thing	we	want	to	avoid	is	forcing	consumers	to	upgrade	in	lock-
step	with	us,	as	we	always	want	to	maintain	the	ability	to	release	microservices
independently	of	each	other.	One	approach	I	have	used	successfully	to	handle	this	is	to
coexist	both	the	old	and	new	interfaces	in	the	same	running	service.	So	if	we	want	to
release	a	breaking	change,	we	deploy	a	new	version	of	the	service	that	exposes	both	the
old	and	new	versions	of	the	endpoint.

This	allows	us	to	get	the	new	microservice	out	as	soon	as	possible,	along	with	the	new
interface,	but	give	time	for	consumers	to	move	over.	Once	all	of	the	consumers	are	no
longer	using	the	old	endpoint,	you	can	remove	it	along	with	any	associated	code,	as	shown
in	Figure	4-5.

Figure	4-5.	Coexisting	different	endpoint	versions	allows	consumers	to	migrate	gradually

When	I	last	used	this	approach,	we	had	gotten	ourselves	into	a	bit	of	a	mess	with	the
number	of	consumers	we	had	and	the	number	of	breaking	changes	we	had	made.	This
meant	that	we	were	actually	coexisting	three	different	versions	of	the	endpoint.	This	is	not
something	I’d	recommend!	Keeping	all	the	code	around	and	the	associated	testing
required	to	ensure	they	all	worked	was	absolutely	an	additional	burden.	To	make	this	more
manageable,	we	internally	transformed	all	requests	to	the	V1	endpoint	to	a	V2	request,
and	then	V2	requests	to	the	V3	endpoint.	This	meant	we	could	clearly	delineate	what	code
was	going	to	be	retired	when	the	old	endpoint(s)	died.

This	is	in	effect	an	example	of	the	expand	and	contract	pattern,	which	allows	us	to	phase
breaking	changes	in.	We	expand	the	capabilities	we	offer,	supporting	both	old	and	new

ways	of	doing	something.	Once	the	old	consumers	do	things	in	the	new	way,	we	contract
our	API,	removing	the	old	functionality.

If	you	are	going	to	coexist	endpoints,	you	need	a	way	for	callers	to	route	their	requests
accordingly.	For	systems	making	use	of	HTTP,	I	have	seen	this	done	with	both	version
numbers	in	request	headers	and	also	in	the	URI	itself	—	for	example,	/v1/customer/	or
/v2/customer/.	I’m	torn	as	to	which	approach	makes	the	most	sense.	On	the	one	hand,	I
like	URIs	being	opaque	to	discourage	clients	from	hardcoding	URI	templates,	but	on	the
other	hand,	this	approach	does	make	things	very	obvious	and	can	simplify	request	routing.

For	RPC,	things	can	be	a	little	trickier.	I	have	handled	this	with	protocol	buffers	by	putting
my	methods	in	different	namespaces	—	for	example,	v1.createCustomer	and
v2.createCustomer	—	but	when	you	are	trying	to	support	different	versions	of	the	same
types	being	sent	over	the	network,	this	can	become	really	painful.

Use	Multiple	Concurrent	Service	Versions
Another	versioning	solution	often	cited	is	to	have	different	versions	of	the	service	live	at
once,	and	for	older	consumers	to	route	their	traffic	to	the	older	version,	with	newer
versions	seeing	the	new	one,	as	shown	in	Figure	4-6.	This	is	the	approach	used	sparingly
by	Netflix	in	situations	where	the	cost	of	changing	older	consumers	is	too	high,	especially
in	rare	cases	where	legacy	devices	are	still	tied	to	older	versions	of	the	API.	Personally,	I
am	not	a	fan	of	this	idea,	and	understand	why	Netflix	uses	it	rarely.	First,	if	I	need	to	fix	an
internal	bug	in	my	service,	I	now	have	to	fix	and	deploy	two	different	sets	of	services.
This	would	probably	mean	I	have	to	branch	the	codebase	for	my	service,	and	this	is
always	problematic.	Second,	it	means	I	need	smarts	to	handle	directing	consumers	to	the
right	microservice.	This	behavior	inevitably	ends	up	sitting	in	middleware	somewhere	or	a
bunch	of	nginx	scripts,	making	it	harder	to	reason	about	the	behavior	of	the	system.
Finally,	consider	any	persistent	state	our	service	might	manage.	Customers	created	by
either	version	of	the	service	need	to	be	stored	and	made	visible	to	all	services,	no	matter
which	version	was	used	to	create	the	data	in	the	first	place.	This	can	be	an	additional
source	of	complexity.

Figure	4-6.	Running	multiple	versions	of	the	same	service	to	support	old	endpoints

Coexisting	concurrent	service	versions	for	a	short	period	of	time	can	make	perfect	sense,
especially	when	you’re	doing	things	like	blue/green	deployments	or	canary	releases	(we’ll
be	discussing	these	patterns	more	in	Chapter	7).	In	these	situations,	we	may	be	coexisting
versions	only	for	a	few	minutes	or	perhaps	hours,	and	normally	will	have	only	two
different	versions	of	the	service	present	at	the	same	time.	The	longer	it	takes	for	you	to	get
consumers	upgraded	to	the	newer	version	and	released,	the	more	you	should	look	to
coexist	different	endpoints	in	the	same	microservice	rather	than	coexist	entirely	different
versions.	I	remain	unconvinced	that	this	work	is	worthwhile	for	the	average	project.

User	Interfaces
So	far,	we	haven’t	really	touched	on	the	world	of	the	user	interface.	A	few	of	you	out	there
might	just	be	providing	a	cold,	hard,	clinical	API	to	your	customers,	but	many	of	us	find
ourselves	wanting	to	create	beautiful,	functional	user	interfaces	that	will	delight	our
customers.	But	we	really	do	need	to	think	about	them	in	the	context	of	integration.	The
user	interface,	after	all,	is	where	we’ll	be	pulling	all	these	microservices	together	into
something	that	makes	sense	to	our	customers.

In	the	past,	when	I	first	started	computing,	we	were	mostly	talking	about	big,	fat	clients
that	ran	on	our	desktops.	I	spent	many	hours	with	Motif	and	then	Swing	trying	to	make
my	software	as	nice	to	use	as	possible.	Often	these	systems	were	just	for	the	creation	and
manipulation	of	local	files,	but	many	of	them	had	a	server-side	component.	My	first	job	at
ThoughtWorks	involved	creating	a	Swing-based	electronic	point-of-sale	system	that	was
just	part	of	a	large	number	of	moving	parts,	most	of	which	were	on	the	server.

Then	came	the	Web.	We	started	thinking	of	our	UIs	as	being	thin	instead,	with	more	logic
on	the	server	side.	In	the	beginning,	our	server-side	programs	rendered	the	entire	page	and
sent	it	to	the	client	browser,	which	did	very	little.	Any	interactions	were	handled	on	the
server	side,	via	GETs	and	POSTs	triggered	by	the	user	clicking	on	links	or	filling	in	forms.
Over	time,	JavaScript	became	a	more	popular	option	to	add	dynamic	behavior	to	the
browser-based	UI,	and	some	applications	could	now	be	argued	to	be	as	fat	as	the	old
desktop	clients.

Toward	Digital
Over	the	last	couple	of	years,	organizations	have	started	to	move	away	from	thinking	that
web	or	mobile	should	be	treated	differently;	they	are	instead	thinking	about	digital	more
holistically.	What	is	the	best	way	for	our	customers	to	use	the	services	we	offer?	And	what
does	that	do	to	our	system	architecture?	The	understanding	that	we	cannot	predict	exactly
how	a	customer	might	end	up	interacting	with	our	company	has	driven	adoption	of	more
granular	APIs,	like	those	delivered	by	microservices.	By	combining	the	capabilities	our
services	expose	in	different	ways,	we	can	curate	different	experiences	for	our	customers
on	their	desktop	application,	mobile	device,	wearable	device,	or	even	in	physical	form	if
they	visit	our	brick-and-mortar	store.

So	think	of	user	interfaces	as	compositional	layers	—	places	where	we	weave	together	the
various	strands	of	the	capabilities	we	offer.	So	with	that	in	mind,	how	do	we	pull	all	these
strands	together?

Constraints
Constraints	are	the	different	forms	in	which	our	users	interact	with	our	system.	On	a
desktop	web	application,	for	example,	we	consider	constraints	such	as	what	browser
visitors	are	using,	or	their	resolution.	But	mobile	has	brought	a	whole	host	of	new
constraints.	The	way	our	mobile	applications	communicate	with	the	server	can	have	an
impact.	It	isn’t	just	about	pure	bandwidth	concerns,	where	the	limitations	of	mobile
networks	can	play	a	part.	Different	sorts	of	interactions	can	drain	battery	life,	leading	to
some	cross	customers.

The	nature	of	interactions	changes,	too.	I	can’t	easily	right-click	on	a	tablet.	On	a	mobile
phone,	I	may	want	to	design	my	interface	to	be	used	mostly	one-handed,	with	most
operations	being	controlled	by	a	thumb.	Elsewhere,	I	might	allow	people	to	interact	with
services	via	SMS	in	places	where	bandwidth	is	at	a	premium	—	the	use	of	SMS	as	an
interface	is	huge	in	the	global	south,	for	example.

So,	although	our	core	services	—	our	core	offering	—	might	be	the	same,	we	need	a	way
to	adapt	them	for	the	different	constraints	that	exist	for	each	type	of	interface.	When	we
look	at	different	styles	of	user	interface	composition,	we	need	to	ensure	that	they	address
this	challenge.	Let’s	look	at	a	few	models	of	user	interfaces	to	see	how	this	might	be
achieved.

API	Composition
Assuming	that	our	services	already	speak	XML	or	JSON	to	each	other	via	HTTP,	an
obvious	option	available	to	us	is	to	have	our	user	interface	interact	directly	with	these
APIs,	as	in	Figure	4-7.	A	web-based	UI	could	use	JavaScript	GET	requests	to	retrieve
data,	or	POST	requests	to	change	it.	Even	for	native	mobile	applications,	initiating	HTTP
communications	is	fairly	straightforward.	The	UI	would	then	need	to	create	the	various
components	that	make	up	the	interface,	handling	synchronization	of	state	and	the	like	with
the	server.	If	we	were	using	a	binary	protocol	for	service-to-service	communication,	this
would	be	more	difficult	for	web-based	clients,	but	could	be	fine	for	native	mobile	devices.

There	are	a	couple	of	downsides	with	this	approach.	First,	we	have	little	ability	to	tailor
the	responses	for	different	sorts	of	devices.	For	example,	when	I	retrieve	a	customer
record,	do	I	need	to	pull	back	all	the	same	data	for	a	mobile	shop	as	I	do	for	a	helpdesk
application?	One	solution	to	this	approach	is	to	allow	consumers	to	specify	what	fields	to
pull	back	when	they	make	a	request,	but	this	assumes	that	each	service	supports	this	form
of	interaction.

Another	key	question:	who	creates	the	user	interface?	The	people	who	look	after	the
services	are	removed	from	how	their	services	are	surfaced	to	the	users	—	for	example,	if
another	team	is	creating	the	UI,	we	could	be	drifting	back	into	the	bad	old	days	of	layered
architecture	where	making	even	small	changes	requires	change	requests	to	multiple	teams.

Figure	4-7.	Using	multiple	APIs	to	present	a	user	interface

This	communication	could	also	be	fairly	chatty.	Opening	lots	of	calls	directly	to	services
can	be	quite	intensive	for	mobile	devices,	and	could	be	a	very	inefficient	use	of	a
customer’s	mobile	plan!	Having	an	API	gateway	can	help	here,	as	you	could	expose	calls
that	aggregate	multiple	underlying	calls,	although	that	itself	can	have	some	downsides	that
we’ll	explore	shortly.

UI	Fragment	Composition
Rather	than	having	our	UI	make	API	calls	and	map	everything	back	to	UI	controls,	we
could	have	our	services	provide	parts	of	the	UI	directly,	and	then	just	pull	these	fragments
in	to	create	a	UI,	as	in	Figure	4-8.	Imagine,	for	example,	that	the	recommendation	service
provides	a	recommendation	widget	that	is	combined	with	other	controls	or	UI	fragments
to	create	an	overall	UI.	It	might	get	rendered	as	a	box	on	a	web	page	along	with	other
content.

A	variation	of	this	approach	that	can	work	well	is	to	assemble	a	series	of	coarser-grained
parts	of	a	UI.	So	rather	than	creating	small	widgets,	you	are	assembling	entire	panes	of	a
thick	client	application,	or	perhaps	a	set	of	pages	for	a	website.

These	coarser-grained	fragments	are	served	up	from	server-side	apps	that	are	in	turn
making	the	appropriate	API	calls.	This	model	works	best	when	the	fragments	align	well	to
team	ownership.	For	example,	perhaps	the	team	that	looks	after	order	management	in	the
music	shop	serves	up	all	the	pages	associated	with	order	management.

Figure	4-8.	Services	directly	serving	up	UI	components	for	assembly

You	still	need	some	sort	of	assembly	layer	to	pull	these	parts	together.	This	could	be	as
simple	as	some	server-side	templating,	or,	where	each	set	of	pages	comes	from	a	different
app,	perhaps	you’ll	need	some	smart	URI	routing.

One	of	the	key	advantages	of	this	approach	is	that	the	same	team	that	makes	changes	to
the	services	can	also	be	in	charge	of	making	changes	to	those	parts	of	the	UI.	It	allows	us
to	get	changes	out	faster.	But	there	are	some	problems	with	this	approach.

First,	ensuring	consistency	of	the	user	experience	is	something	we	need	to	address.	Users

want	to	have	a	seamless	experience,	not	to	feel	that	different	parts	of	the	interface	work	in
different	ways,	or	present	a	different	design	language.	There	are	techniques	to	avoid	this
problem,	though,	such	as	living	style	guides,	where	assets	like	HTML	components,	CSS,
and	images	can	be	shared	to	help	give	some	level	of	consistency.

Another	probem	is	harder	to	deal	with.	What	happens	with	native	applications	or	thick
clients?	We	can’t	serve	up	UI	components.	We	could	use	a	hybrid	approach	and	use	native
applications	to	serve	up	HTML	components,	but	this	approach	has	been	shown	time	and
again	to	have	downsides.	So	if	you	need	a	native	experience,	we	will	have	to	fall	back	to
an	approach	where	the	frontend	application	makes	API	calls	and	handles	the	UI	itself.	But
even	if	we	consider	web-only	UIs,	we	still	may	want	very	different	treatments	for	different
types	of	devices.	Building	responsive	components	can	help,	of	course.

There	is	one	key	problem	with	this	approach	that	I’m	not	sure	can	be	solved.	Sometimes
the	capabilities	offered	by	a	service	do	not	fit	neatly	into	a	widget	or	a	page.	Sure,	I	might
want	to	surface	recommendations	in	a	box	on	a	page	on	our	website,	but	what	if	I	want	to
weave	in	dynamic	recommendations	elsewhere?	When	I	search,	I	want	the	type	ahead	to
automatically	trigger	fresh	recommendations,	for	example.	The	more	cross-cutting	a	form
of	interaction	is,	the	less	likely	this	model	will	fit	and	the	more	likely	it	is	that	we’ll	fall
back	to	just	making	API	calls.

Backends	for	Frontends
A	common	solution	to	the	problem	of	chatty	interfaces	with	backend	services,	or	the	need
to	vary	content	for	different	types	of	devices,	is	to	have	a	server-side	aggregation
endpoint,	or	API	gateway.	This	can	marshal	multiple	backend	calls,	vary	and	aggregate
content	if	needed	for	different	devices,	and	serve	it	up,	as	we	see	in	Figure	4-9.	I’ve	seen
this	approach	lead	to	disaster	when	these	server-side	endpoints	become	thick	layers	with
too	much	behavior.	They	end	up	getting	managed	by	separate	teams,	and	being	another
place	where	logic	has	to	change	whenever	some	functionality	changes.

Figure	4-9.	Using	a	single	monolithic	gateway	to	handle	calls	to/from	UIs

The	problem	that	can	occur	is	that	normally	we’ll	have	one	giant	layer	for	all	our	services.
This	leads	to	everything	being	thrown	in	together,	and	suddenly	we	start	to	lose	isolation
of	our	various	user	interfaces,	limiting	our	ability	to	release	them	independently.	A	model
I	prefer	and	that	I’ve	seen	work	well	is	to	restrict	the	use	of	these	backends	to	one	specific
user	interface	or	application,	as	we	see	in	Figure	4-10.

Figure	4-10.	Using	dedicated	backends	for	frontends

This	pattern	is	sometimes	referred	to	as	backends	for	frontends	(BFFs).	It	allows	the	team
focusing	on	any	given	UI	to	also	handle	its	own	server-side	components.	You	can	see
these	backends	as	parts	of	the	user	interface	that	happen	to	be	embedded	in	the	server.
Some	types	of	UI	may	need	a	minimal	server-side	footprint,	while	others	may	need	a	lot
more.	If	you	need	an	API	authentication	and	authorization	layer,	this	can	sit	between	our
BFFs	and	our	UIs.	We’ll	explore	this	more	in	Chapter	9.

The	danger	with	this	approach	is	the	same	as	with	any	aggregating	layer;	it	can	take	on
logic	it	shouldn’t.	The	business	logic	for	the	various	capabilities	these	backends	use
should	stay	in	the	services	themselves.	These	BFFs	should	only	contain	behavior	specific
to	delivering	a	particular	user	experience.

A	Hybrid	Approach
Many	of	the	aforementioned	options	don’t	need	to	be	one-size-fits-all.	I	could	see	an
organization	adopting	the	approach	of	fragment-based	assembly	to	create	a	website,	but
using	a	backends-for-frontends	approach	when	it	comes	to	its	mobile	application.	The	key
point	is	that	we	need	to	retain	cohesion	of	the	underlying	capabilities	that	we	offer	our
users.	We	need	to	ensure	that	logic	associated	with	ordering	music	or	changing	customer
details	lives	inside	those	services	that	handle	those	operations,	and	doesn’t	get	smeared	all
over	our	system.	Avoiding	the	trap	of	putting	too	much	behavior	into	any	intermediate
layers	is	a	tricky	balancing	act.

Integrating	with	Third-Party	Software
We’ve	looked	at	approaches	to	breaking	apart	existing	systems	that	are	under	our	control,
but	what	about	when	we	can’t	change	the	things	we	talk	to?	For	many	valid	reasons,	the
organizations	we	work	for	buy	commercial	off-the-shelf	software	(COTS)	or	make	use	of
software	as	a	service	(SaaS)	offerings	over	which	we	have	little	control.	So	how	do	we
integrate	with	them	sensibly?

If	you’re	reading	this	book,	you	probably	work	at	an	organization	that	writes	code.	You
might	write	software	for	your	own	internal	purposes	or	for	an	external	client,	or	both.
Nonetheless,	even	if	you	are	an	organization	with	the	ability	to	create	a	significant	amount
of	custom	software,	you’ll	still	use	software	products	provided	by	external	parties,	be	they
commercial	or	open	source.	Why	is	this?

First,	your	organization	almost	certainly	has	a	greater	demand	for	software	than	can	be
satisfied	internally.	Think	of	all	the	products	you	use,	from	office	productivity	tools	like
Excel	to	operating	systems	to	payroll	systems.	Creating	all	of	those	for	your	own	use
would	be	a	mammoth	undertaking.	Second,	and	most	important,	it	wouldn’t	be	cost
effective!	The	cost	for	you	to	build	your	own	email	system,	for	example,	is	likely	to	dwarf
the	cost	of	using	an	existing	combination	of	mail	server	and	client,	even	if	you	go	for
commercial	options.

My	clients	often	struggle	with	the	question	“Should	I	build,	or	should	I	buy?”	In	general,
the	advice	I	and	my	colleagues	give	when	having	this	conversation	with	the	average
enterprise	organization	boils	down	to	“Build	if	it	is	unique	to	what	you	do,	and	can	be
considered	a	strategic	asset;	buy	if	your	use	of	the	tool	isn’t	that	special.”

For	example,	the	average	organization	would	not	consider	its	payroll	system	to	be	a
strategic	asset.	People	on	the	whole	get	paid	the	same	the	world	over.	Likewise,	most
organizations	tend	to	buy	content	management	systems	(CMSes)	off	the	shelf,	as	their	use
of	such	a	tool	isn’t	considered	something	that	is	key	to	their	business.	On	the	other	hand,	I
was	involved	early	on	in	rebuilding	the	Guardian’s	website,	and	there	the	decision	was
made	to	build	a	bespoke	content	management	system,	as	it	was	core	to	the	newspaper’s
business.

So	the	notion	that	we	will	occasionally	encounter	commercial,	third-party	software	is
sensible,	and	to	be	welcomed.	However,	many	of	us	end	up	cursing	some	of	these
systems.	Why	is	that?

Lack	of	Control
One	challenge	associated	with	integrating	with	and	extending	the	capabilities	of	COTS
products	like	CMS	or	SaaS	tools	is	that	typically	many	of	the	technical	decisions	have
been	made	for	you.	How	do	you	integrate	with	the	tool?	That’s	a	vendor	decision.	Which
programming	language	can	you	use	to	extend	the	tool?	Up	to	the	vendor.	Can	you	store
the	configuration	for	the	tool	in	version	control,	and	rebuild	from	scratch,	so	as	to	enable
continuous	integration	of	customizations?	It	depends	on	choices	the	vendor	makes.

If	you	are	lucky,	how	easy	—	or	hard	—	it	is	to	work	with	the	tool	from	a	development
point	of	view	has	been	considered	as	part	of	the	tool	selection	process.	But	even	then,	you
are	effectively	ceding	some	level	of	control	to	an	outside	party.	The	trick	is	to	bring	the
integration	and	customization	work	back	on	to	your	terms.

Customization
Many	tools	that	enterprise	organizations	purchase	sell	themselves	on	their	ability	to	be
heavily	customized	just	for	you.	Beware!	Often,	due	to	the	nature	of	the	tool	chain	you
have	access	to,	the	cost	of	customization	can	be	more	expensive	than	building	something
bespoke	from	scratch!	If	you’ve	decided	to	buy	a	product	but	the	particular	capabilities	it
provides	aren’t	that	special	to	you,	it	might	make	more	sense	to	change	how	your
organization	works	rather	than	embark	on	complex	customization.

Content	management	systems	are	a	great	example	of	this	danger.	I	have	worked	with
multiple	CMSes	that	by	design	do	not	support	continuous	integration,	that	have	terrible
APIs,	and	for	which	even	a	minor-point	upgrade	in	the	underlying	tool	can	break	any
customizations	you	have	made.

Salesforce	is	especially	troublesome	in	this	regard.	For	many	years	it	has	pushed	its
Force.com	platform,	which	requires	the	use	of	a	programming	language,	Apex,	that	exists
only	within	the	Force.com	ecosystem!

Integration	Spaghetti
Another	challenge	is	how	you	integrate	with	the	tool.	As	we	discussed	earlier,	thinking
carefully	about	how	you	integrate	between	services	is	important,	and	ideally	you	want	to
standardize	on	a	small	number	of	types	of	integration.	But	if	one	product	decides	to	use	a
proprietary	binary	protocol,	another	some	flavor	of	SOAP,	and	another	XML-RPC,	what
are	you	left	with?	Even	worse	are	the	tools	that	allow	you	to	reach	right	inside	their
underlying	data	stores,	leading	to	all	the	same	coupling	issues	we	discussed	earlier.

On	Your	Own	Terms
COTS	and	SAAS	products	absolutely	have	their	place,	and	it	isn’t	feasible	(or	sensible)
for	most	of	us	to	build	everything	from	scratch.	So	how	do	we	resolve	these	challenges?
The	key	is	to	move	things	back	on	to	your	own	terms.

The	core	idea	here	is	to	do	any	customizations	on	a	platform	you	control,	and	to	limit	the
number	of	different	consumers	of	the	tool	itself.	To	explore	this	idea	in	detail,	let’s	look	at
a	couple	of	examples.

Example:	CMS	as	a	service

In	my	experience,	the	CMS	is	one	of	the	most	commonly	used	product	that	needs	to	be
customized	or	integrated	with.	The	reason	for	this	is	that	unless	you	want	a	basic	static
site,	the	average	enterprise	organization	wants	to	enrich	the	functionality	of	its	website
with	dynamic	content	like	customer	records	or	the	latest	product	offerings.	The	source	of
this	dynamic	content	is	typically	other	services	inside	the	organization,	which	you	may
have	actually	built	yourself.

The	temptation	—	and	often	the	selling	point	of	the	CMS	—	is	that	you	can	customize	the
CMS	to	pull	in	all	this	special	content	and	display	it	to	the	outside	world.	However,	the
development	environment	for	the	average	CMS	is	terrible.

Let’s	look	at	what	the	average	CMS	specializes	in,	and	what	we	probably	bought	it	for:
content	creation	and	content	management.	Most	CMSes	are	pretty	bad	even	at	doing	page
layout,	typically	providing	drag-and-drop	tools	that	don’t	cut	the	mustard.	And	even	then,
you	end	up	needing	to	have	someone	who	understands	HTML	and	CSS	to	fine-tune	the
CMS	templates.	They	tend	to	be	terrible	platforms	on	which	to	build	custom	code.

The	answer?	Front	the	CMS	with	your	own	service	that	provides	the	website	to	the	outside
world,	as	shown	in	Figure	4-11.	Treat	the	CMS	as	a	service	whose	role	is	to	allow	for	the
creation	and	retrieval	of	content.	In	your	own	service,	you	write	the	code	and	integrate
with	services	how	you	want.	You	have	control	over	scaling	the	website	(many	commercial
CMSes	provide	their	own	proprietary	add-ons	to	handle	load),	and	you	can	pick	the
templating	system	that	makes	sense.

Most	CMSes	also	provide	APIs	to	allow	for	content	creation,	so	you	also	have	the	ability
to	front	that	with	your	own	service	façade.	For	some	situations,	we’ve	even	used	such	a
façade	to	abstract	out	the	APIs	for	retrieving	content.

Figure	4-11.	Hiding	a	CMS	using	your	own	service

We’ve	used	this	pattern	multiple	times	across	ThoughtWorks	in	the	last	few	years,	and
I’ve	done	this	more	than	once	myself.	One	notable	example	was	a	client	that	was	looking
to	push	out	a	new	website	for	its	products.	Initially,	it	wanted	to	build	the	entire	solution
on	the	CMS,	but	it	had	yet	to	pick	one.	We	instead	suggested	this	approach,	and	started
development	of	the	fronting	website.	While	waiting	for	the	CMS	tool	to	be	selected,	we
faked	it	by	having	a	web	service	that	just	surfaced	static	content.	We	ended	up	going	live
with	the	site	well	before	the	CMS	was	selected	by	using	our	fake	content	service	in
production	to	surface	content	to	the	live	site.	Later	on,	we	were	able	to	just	drop	in	the
eventually	selected	tool	without	any	change	to	the	fronting	application.

Using	this	approach,	we	keep	the	scope	of	what	the	CMS	does	down	to	a	minimum	and
move	customizations	onto	our	own	technology	stack.

Example:	The	multirole	CRM	system

The	CRM	—	or	Customer	Relationship	Management	—	tool	is	an	often-encountered	beast
that	can	instill	fear	in	the	heart	of	even	the	hardiest	architect.	This	sector,	as	typified	by
vendors	like	Salesforce	or	SAP,	is	rife	with	examples	of	tools	that	try	to	do	everything	for
you.	This	can	lead	to	the	tool	itself	becoming	a	single	point	of	failure,	and	a	tangled	knot
of	dependencies.	Many	implementations	of	CRM	tools	I	have	seen	are	among	the	best
examples	of	adhesive	(as	opposed	to	cohesive)	services.

The	scope	of	such	a	tool	typically	starts	small,	but	over	time	it	becomes	an	increasingly
important	part	of	how	your	organization	works.	The	problem	is	that	the	direction	and
choices	made	around	this	now-vital	system	are	often	made	by	the	tool	vendor	itself,	not	by
you.

I	was	involved	recently	in	an	exercise	to	try	to	wrest	some	control	back.	The	organization
I	was	working	with	realized	that	although	it	was	using	the	CRM	tool	for	a	lot	of	things,	it

wasn’t	getting	the	value	of	the	increasing	costs	associated	with	the	platform.	At	the	same
time,	multiple	internal	systems	were	using	the	less-than-ideal	CRM	APIs	for	integration.
We	wanted	to	move	the	system	architecture	toward	a	place	where	we	had	services	that
modeled	our	businesses	domain,	and	also	lay	the	groundwork	for	a	potential	migration.

The	first	thing	we	did	was	identify	the	core	concepts	to	our	domain	that	the	CRM	system
currently	owned.	One	of	these	was	the	concept	of	a	project	—	that	is,	something	to	which
a	member	of	staff	could	be	assigned.	Multiple	other	systems	needed	project	information.
What	we	did	was	instead	create	a	project	service.	This	service	exposed	projects	as
RESTful	resources,	and	the	external	systems	could	move	their	integration	points	over	to
the	new,	easier-to-work-with	service.	Internally,	the	project	service	was	just	a	façade,
hiding	the	detail	of	the	underlying	integration.	You	can	see	this	in	Figure	4-12.

Figure	4-12.	Using	façade	services	to	mask	the	underlying	CRM

The	work,	which	at	the	time	of	this	writing	was	still	under	way,	was	to	identify	other
domain	concepts	that	the	CRM	was	handling,	and	create	more	façades	for	them.	When	the
time	comes	for	migration	away	from	the	underlying	CRM,	we	could	then	look	at	each
façade	in	turn	to	decide	if	an	internal	software	solution	or	something	off	the	shelf	could	fit
the	bill.

The	Strangler	Pattern
When	it	comes	to	legacy	or	even	COTS	platforms	that	aren’t	totally	under	our	control,	we
also	have	to	deal	with	what	happens	when	we	want	to	remove	them	or	at	least	move	away
from	them.	A	useful	pattern	here	is	the	Strangler	Application	Pattern.	Much	like	with	our
example	of	fronting	the	CMS	system	with	our	own	code,	with	a	strangler	you	capture	and
intercept	calls	to	the	old	system.	This	allows	you	to	decide	if	you	route	these	calls	to
existing,	legacy	code,	or	direct	them	to	new	code	you	may	have	written.	This	allows	you
to	replace	functionality	over	time	without	requiring	a	big	bang	rewrite.

When	it	comes	to	microservices,	rather	than	having	a	single	monolithic	application
intercepting	all	calls	to	the	existing	legacy	system,	you	may	instead	use	a	series	of
microservices	to	perform	this	interception.	Capturing	and	redirecting	the	original	calls	can
become	more	complex	in	this	situation,	and	you	may	require	the	use	of	a	proxy	to	do	this
for	you.

http://bit.ly/1v71DOH

Summary
We’ve	looked	at	a	number	of	different	options	around	integration,	and	I’ve	shared	my
thoughts	on	what	choices	are	most	likely	to	ensure	our	microservices	remain	as	decoupled
as	possible	from	their	other	collaborators:

Avoid	database	integration	at	all	costs.

Understand	the	trade-offs	between	REST	and	RPC,	but	strongly	consider	REST	as	a
good	starting	point	for	request/response	integration.

Prefer	choreography	over	orchestration.

Avoid	breaking	changes	and	the	need	to	version	by	understanding	Postel’s	Law	and
using	tolerant	readers.

Think	of	user	interfaces	as	compositional	layers.

We	covered	quite	a	lot	here,	and	weren’t	able	to	go	into	depth	on	all	of	these	topics.
Nonetheless,	this	should	be	a	good	foundation	to	get	you	going	and	point	you	in	the	right
direction	if	you	want	to	learn	more.

We	also	spent	some	time	looking	at	how	to	work	with	systems	that	aren’t	completely
under	our	control	in	the	form	of	COTS	products.	It	turns	out	that	this	description	can	just
as	easily	apply	to	software	we	wrote!

Some	of	the	approaches	outlined	here	apply	equally	well	to	legacy	software,	but	what	if
we	want	to	tackle	the	often-monumental	task	of	bringing	these	older	systems	to	heel	and
decomposing	them	into	more	usable	parts?	We’ll	discuss	that	in	detail	in	the	next	chapter.

Chapter	5.	Splitting	the	Monolith

We’ve	discussed	what	a	good	service	looks	like,	and	why	smaller	servers	may	be	better	for
us.	We	also	previously	discussed	the	importance	of	being	able	to	evolve	the	design	of	our
systems.	But	how	do	we	handle	the	fact	that	we	may	already	have	a	large	number	of
codebases	lying	about	that	don’t	follow	these	patterns?	How	do	we	go	about	decomposing
these	monolithic	applications	without	having	to	embark	on	a	big-bang	rewrite?

The	monolith	grows	over	time.	It	acquires	new	functionality	and	lines	of	code	at	an
alarming	rate.	Before	long	it	becomes	a	big,	scary	giant	presence	in	our	organization	that
people	are	scared	to	touch	or	change.	But	all	is	not	lost!	With	the	right	tools	at	our
disposal,	we	can	slay	this	beast.

It’s	All	About	Seams
We	discussed	in	Chapter	3	that	we	want	our	services	to	be	highly	cohesive	and	loosely
coupled.	The	problem	with	the	monolith	is	that	all	too	often	it	is	the	opposite	of	both.
Rather	than	tend	toward	cohesion,	and	keep	things	together	that	tend	to	change	together,
we	acquire	and	stick	together	all	sorts	of	unrelated	code.	Likewise,	loose	coupling	doesn’t
really	exist:	if	I	want	to	make	a	change	to	a	line	of	code,	I	may	be	able	to	do	that	easily
enough,	but	I	cannot	deploy	that	change	without	potentially	impacting	much	of	the	rest	of
the	monolith,	and	I’ll	certainly	have	to	redeploy	the	entire	system.

In	his	book	Working	Effectively	with	Legacy	Code	(Prentice-Hall),	Michael	Feathers
defines	the	concept	of	a	seam	—	that	is,	a	portion	of	the	code	that	can	be	treated	in
isolation	and	worked	on	without	impacting	the	rest	of	the	codebase.	We	also	want	to
identify	seams.	But	rather	than	finding	them	for	the	purpose	of	cleaning	up	our	codebase,
we	want	to	identify	seams	that	can	become	service	boundaries.

So	what	makes	a	good	seam?	Well,	as	we	discussed	previously,	bounded	contexts	make
excellent	seams,	because	by	definition	they	represent	cohesive	and	yet	loosely	coupled
boundaries	in	an	organization.	So	the	first	step	is	to	start	identifying	these	boundaries	in
our	code.

Most	programming	languages	provide	namespace	concepts	that	allow	us	to	group	similar
code	together.	Java’s	package	concept	is	a	fairly	weak	example,	but	gives	us	much	of	what
we	need.	All	other	mainstream	programming	languages	have	similar	concepts	built	in,
with	JavaScript	very	arguably	being	an	exception.

Breaking	Apart	MusicCorp
Imagine	we	have	a	large	backend	monolithic	service	that	represents	a	substantial	amount
of	the	behavior	of	MusicCorp’s	online	systems.	To	start,	we	should	identify	the	high-level
bounded	contexts	that	we	think	exist	in	our	organization,	as	we	discussed	in	Chapter	3.
Then	we	want	to	try	to	understand	what	bounded	contexts	the	monolith	maps	to.	Let’s
imagine	that	initially	we	identify	four	contexts	we	think	our	monolithic	backend	covers:

Catalog

Everything	to	do	with	metadata	about	the	items	we	offer	for	sale

Finance

Reporting	for	accounts,	payments,	refunds,	etc.

Warehouse

Dispatching	and	returning	of	customer	orders,	managing	inventory	levels,	etc.

Recommendation

Our	patent-pending,	revolutionary	recommendation	system,	which	is	highly	complex
code	written	by	a	team	with	more	PhDs	than	the	average	science	lab

The	first	thing	to	do	is	to	create	packages	representing	these	contexts,	and	then	move	the
existing	code	into	them.	With	modern	IDEs,	code	movement	can	be	done	automatically
via	refactorings,	and	can	be	done	incrementally	while	we	are	doing	other	things.	You’ll
still	need	tests	to	catch	any	breakages	made	by	moving	code,	however,	especially	if	you’re
using	a	dynamically	typed	language	where	the	IDEs	have	a	harder	time	of	performing
refactoring.	Over	time,	we	start	to	see	what	code	fits	well,	and	what	code	is	left	over	and
doesn’t	really	fit	anywhere.	This	remaining	code	will	often	identify	bounded	contexts	we
might	have	missed!

During	this	process	we	can	use	code	to	analyze	the	dependencies	between	these	packages
too.	Our	code	should	represent	our	organization,	so	our	packages	representing	the
bounded	contexts	in	our	organization	should	interact	in	the	same	way	the	real-life
organizational	groups	in	our	domain	interact.	For	example,	tools	like	Structure	101	allow
us	to	see	the	dependencies	between	packages	graphically.	If	we	spot	things	that	look
wrong	—	for	example,	the	warehouse	package	depends	on	code	in	the	finance	package
when	no	such	dependency	exists	in	the	real	organization	—	then	we	can	investigate	this
problem	and	try	to	resolve	it.

This	process	could	take	an	afternoon	on	a	small	codebase,	or	several	weeks	or	months
when	you’re	dealing	with	millions	of	lines	of	code.	You	may	not	need	to	sort	all	code	into
domain-oriented	packages	before	splitting	out	your	first	service,	and	indeed	it	can	be	more
valuable	to	concentrate	your	effort	in	one	place.	There	is	no	need	for	this	to	be	a	big-bang
approach.	It	is	something	that	can	be	done	bit	by	bit,	day	by	day,	and	we	have	a	lot	of	tools

at	our	disposal	to	track	our	progress.

So	now	that	we	have	our	codebase	organized	around	these	seams,	what	next?

The	Reasons	to	Split	the	Monolith
Deciding	that	you’d	like	a	monolithic	service	or	application	to	be	smaller	is	a	good	start.
But	I	would	strongly	advise	you	to	chip	away	at	these	systems.	An	incremental	approach
will	help	you	learn	about	microservices	as	you	go,	and	will	also	limit	the	impact	of	getting
something	wrong	(and	you	will	get	things	wrong!).	Think	of	our	monolith	as	a	block	of
marble.	We	could	blow	the	whole	thing	up,	but	that	rarely	ends	well.	It	makes	much	more
sense	to	just	chip	away	at	it	incrementally.

So	if	we	are	going	to	break	apart	the	monolith	a	piece	at	a	time,	where	should	we	start?
We	have	our	seams	now,	but	which	one	should	we	pull	out	first?	It’s	best	to	think	about
where	you	are	going	to	get	the	most	benefit	from	some	part	of	your	codebase	being
separated,	rather	than	just	splitting	things	for	the	sake	of	it.	Let’s	consider	some	drivers
that	might	help	guide	our	chisel.

Pace	of	Change
Perhaps	we	know	that	we	have	a	load	of	changes	coming	up	soon	in	how	we	manage
inventory.	If	we	split	out	the	warehouse	seam	as	a	service	now,	we	could	change	that
service	faster,	as	it	is	a	separate	autonomous	unit.

Team	Structure
MusicCorp’s	delivery	team	is	actually	split	across	two	geographical	regions.	One	team	is
in	London,	the	other	in	Hawaii	(some	people	have	it	easy!).	It	would	be	great	if	we	could
split	out	the	code	that	the	Hawaii	team	works	on	the	most,	so	it	can	take	full	ownership.
We’ll	explore	this	idea	further	in	Chapter	10.

Security
MusicCorp	has	had	a	security	audit,	and	has	decided	to	tighten	up	its	protection	of
sensitive	information.	Currently,	all	of	this	is	handled	by	the	finance-related	code.	If	we
split	this	service	out,	we	can	provide	additional	protections	to	this	individual	service	in
terms	of	monitoring,	protection	of	data	at	transit,	and	protection	of	data	at	rest	—	ideas
we’ll	look	at	in	more	detail	in	Chapter	9.

Technology
The	team	looking	after	our	recommendation	system	has	been	spiking	out	some	new
algorithms	using	a	logic	programming	library	in	the	language	Clojure.	The	team	thinks
this	could	benefit	our	customers	by	improving	what	we	offer	them.	If	we	could	split	out
the	recommendation	code	into	a	separate	service,	it	would	be	easy	to	consider	building	an
alternative	implementation	that	we	could	test	against.

Tangled	Dependencies
The	other	point	to	consider	when	you’ve	identified	a	couple	of	seams	to	separate	is	how
entangled	that	code	is	with	the	rest	of	the	system.	We	want	to	pull	out	the	seam	that	is	least
depended	on	if	we	can.	If	you	can	view	the	various	seams	you	have	found	as	a	directed
acyclical	graph	of	dependencies	(something	the	package	modeling	tools	I	mentioned
earlier	are	very	good	at),	this	can	help	you	spot	the	seams	that	are	likely	going	to	be	harder
to	disentangle.

This	brings	us	to	what	is	often	the	mother	of	all	tangled	dependencies:	the	database.

The	Database
We’ve	already	discussed	at	length	the	challenges	of	using	databases	as	a	method	of
integrating	multiple	services.	As	I	made	it	pretty	clear	earlier,	I	am	not	a	fan!	This	means
we	need	to	find	seams	in	our	databases	too	so	we	can	split	them	out	cleanly.	Databases,
however,	are	tricky	beasts.

Getting	to	Grips	with	the	Problem
The	first	step	is	to	take	a	look	at	the	code	itself	and	see	which	parts	of	it	read	to	and	write
from	the	database.	A	common	practice	is	to	have	a	repository	layer,	backed	by	some	sort
of	framework	like	Hibernate,	to	bind	your	code	to	the	database,	making	it	easy	to	map
objects	or	data	structures	to	and	from	the	database.	If	you	have	been	following	along	so
far,	you’ll	have	grouped	our	code	into	packages	representing	our	bounded	contexts;	we
want	to	do	the	same	for	our	database	access	code.	This	may	require	splitting	up	the
repository	layer	into	several	parts,	as	shown	in	Figure	5-1.

Figure	5-1.	Splitting	out	our	repository	layers

Having	the	database	mapping	code	colocated	inside	the	code	for	a	given	context	can	help
us	understand	what	parts	of	the	database	are	used	by	what	bits	of	code.	Hibernate,	for
example,	can	make	this	very	clear	if	you	are	using	something	like	a	mapping	file	per
bounded	context.

This	doesn’t	give	us	the	whole	story,	however.	For	example,	we	may	be	able	to	tell	that	the
finance	code	uses	the	ledger	table,	and	that	the	catalog	code	uses	the	line	item	table,	but	it
might	not	be	clear	that	the	database	enforces	a	foreign	key	relationship	from	the	ledger
table	to	the	line	item	table.	To	see	these	database-level	constraints,	which	may	be	a
stumbling	block,	we	need	to	use	another	tool	to	visualize	the	data.	A	great	place	to	start	is
to	use	a	tool	like	the	freely	available	SchemaSpy,	which	can	generate	graphical
representations	of	the	relationships	between	tables.

All	this	helps	you	understand	the	coupling	between	tables	that	may	span	what	will
eventually	become	service	boundaries.	But	how	do	you	cut	those	ties?	And	what	about
cases	where	the	same	tables	are	used	from	multiple	different	bounded	contexts?	Handling
problems	like	these	is	not	easy,	and	there	are	many	answers,	but	it	is	doable.

http://schemaspy.sourceforge.net

Coming	back	to	some	concrete	examples,	let’s	consider	our	music	shop	again.	We	have
identified	four	bounded	contexts,	and	want	to	move	forward	with	making	them	four
distinct,	collaborating	services.	We’re	going	to	look	at	a	few	concrete	examples	of
problems	we	might	face,	and	their	potential	solutions.	And	while	some	of	these	examples
talk	specifically	about	challenges	encountered	in	standard	relational	databases,	you	will
find	similar	problems	in	other	alternative	NOSQL	stores.

Example:	Breaking	Foreign	Key	Relationships
In	this	example,	our	catalog	code	uses	a	generic	line	item	table	to	store	information	about
an	album.	Our	finance	code	uses	a	ledger	table	to	track	financial	transactions.	At	the	end
of	each	month	we	need	to	generate	reports	for	various	people	in	the	organization	so	they
can	see	how	we’re	doing.	We	want	to	make	the	reports	nice	and	easy	to	read,	so	rather
than	saying,	“We	sold	400	copies	of	SKU	12345	and	made	$1,300,”	we’d	like	to	add	more
information	about	what	was	sold	(i.e.,	“We	sold	400	copies	of	Bruce	Springsteen’s
Greatest	Hits	and	made	$1,300”).	To	do	this,	our	reporting	code	in	the	finance	package
will	reach	into	the	line	item	table	to	pull	out	the	title	for	the	SKU.	It	may	also	have	a
foreign	key	constraint	from	the	ledger	to	the	line	item	table,	as	we	see	in	Figure	5-2.

Figure	5-2.	Foreign	key	relationship

So	how	do	we	fix	things	here?	Well,	we	need	to	make	a	change	in	two	places.	First,	we
need	to	stop	the	finance	code	from	reaching	into	the	line	item	table,	as	this	table	really
belongs	to	the	catalog	code,	and	we	don’t	want	database	integration	happening	once
catalog	and	finance	are	services	in	their	own	rights.	The	quickest	way	to	address	this	is
rather	than	having	the	code	in	finance	reach	into	the	line	item	table,	we’ll	expose	the	data
via	an	API	call	in	the	catalog	package	that	the	finance	code	can	call.	This	API	call	will	be
the	forerunner	of	a	call	we	will	make	over	the	wire,	as	we	see	in	Figure	5-3.

Figure	5-3.	Post	removal	of	the	foreign	key	relationship

At	this	point	it	becomes	clear	that	we	may	well	end	up	having	to	make	two	database	calls
to	generate	the	report.	This	is	correct.	And	the	same	thing	will	happen	if	these	are	two
separate	services.	Typically	concerns	around	performance	are	now	raised.	I	have	a	fairly
easy	answer	to	those:	how	fast	does	your	system	need	to	be?	And	how	fast	is	it	now?	If
you	can	test	its	current	performance	and	know	what	good	performance	looks	like,	then
you	should	feel	confident	in	making	a	change.	Sometimes	making	one	thing	slower	in
exchange	for	other	things	is	the	right	thing	to	do,	especially	if	slower	is	still	perfectly
acceptable.

But	what	about	the	foreign	key	relationship?	Well,	we	lose	this	altogether.	This	becomes	a
constraint	we	need	to	now	manage	in	our	resulting	services	rather	than	in	the	database
level.	This	may	mean	that	we	need	to	implement	our	own	consistency	check	across
services,	or	else	trigger	actions	to	clean	up	related	data.	Whether	or	not	this	is	needed	is
often	not	a	technologist’s	choice	to	make.	For	example,	if	our	order	service	contains	a	list
of	IDs	for	catalog	items,	what	happens	if	a	catalog	item	is	removed	and	an	order	now
refers	to	an	invalid	catalog	ID?	Should	we	allow	it?	If	we	do,	then	how	is	this	represented
in	the	order	when	it	is	displayed?	If	we	don’t,	then	how	can	we	check	that	this	isn’t
violated?	These	are	questions	you’ll	need	to	get	answered	by	the	people	who	define	how
your	system	should	behave	for	its	users.

Example:	Shared	Static	Data
I	have	seen	perhaps	as	many	country	codes	stored	in	databases	(shown	in	Figure	5-4)	as	I
have	written	StringUtils	classes	for	in-house	Java	projects.	This	seems	to	imply	that	we
plan	to	change	the	countries	our	system	supports	way	more	frequently	than	we’ll	deploy
new	code,	but	whatever	the	real	reason,	these	examples	of	shared	static	data	being	stored
in	databases	come	up	a	lot.	So	what	do	we	do	in	our	music	shop	if	all	our	potential
services	read	from	the	same	table	like	this?

Figure	5-4.	Country	codes	in	the	database

Well,	we	have	a	few	options.	One	is	to	duplicate	this	table	for	each	of	our	packages,	with
the	long-term	view	that	it	will	be	duplicated	within	each	service	also.	This	leads	to	a
potential	consistency	challenge,	of	course:	what	happens	if	I	update	one	table	to	reflect	the
creation	of	Newmantopia	off	the	east	coast	of	Australia,	but	not	another?

A	second	option	is	to	instead	treat	this	shared,	static	data	as	code.	Perhaps	it	could	be	in	a
property	file	deployed	as	part	of	the	service,	or	perhaps	just	as	an	enumeration.	The
problems	around	the	consistency	of	data	remain,	although	experience	has	shown	that	it	is
far	easier	to	push	out	changes	to	configuration	files	than	alter	live	database	tables.	This	is
often	a	very	sensible	approach.

A	third	option,	which	may	well	be	extreme,	is	to	push	this	static	data	into	a	service	of	its
own	right.	In	a	couple	of	situations	I	have	encountered,	the	volume,	complexity,	and	rules
associated	with	the	static	reference	data	were	sufficient	that	this	approach	was	warranted,
but	it’s	probably	overkill	if	we	are	just	talking	about	country	codes!

Personally,	in	most	situations	I’d	try	to	push	for	keeping	this	data	in	configuration	files	or
directly	in	code,	as	it	is	the	simple	option	for	most	cases.

Example:	Shared	Data
Now	let’s	dive	into	a	more	complex	example,	but	one	that	can	be	a	common	problem
when	you’re	trying	to	tease	apart	systems:	shared	mutable	data.	Our	finance	code	tracks
payments	made	by	customers	for	their	orders,	and	also	tracks	refunds	given	to	them	when
they	return	items.	Meanwhile,	the	warehouse	code	updates	records	to	show	that	orders	for
customers	have	been	dispatched	or	received.	All	of	this	data	is	displayed	in	one
convenient	place	on	the	website	so	that	customers	can	see	what	is	going	on	with	their
account.	To	keep	things	simple,	we	have	stored	all	this	information	in	a	fairly	generic
customer	record	table,	as	shown	in	Figure	5-5.

Figure	5-5.	Accessing	customer	data:	are	we	missing	something?

So	both	the	finance	and	the	warehouse	code	are	writing	to,	and	probably	occasionally
reading	from,	the	same	table.	How	can	we	tease	this	apart?	What	we	actually	have	here	is
something	you’ll	see	often	—	a	domain	concept	that	isn’t	modeled	in	the	code,	and	is	in
fact	implicitly	modeled	in	the	database.	Here,	the	domain	concept	that	is	missing	is	that	of
Customer.

We	need	to	make	the	current	abstract	concept	of	the	customer	concrete.	As	a	transient
step,	we	create	a	new	package	called	Customer.	We	can	then	use	an	API	to	expose
Customer	code	to	other	packages,	such	as	finance	or	warehouse.	Rolling	this	all	the	way
forward,	we	may	now	end	up	with	a	distinct	customer	service	(Figure	5-6).

Figure	5-6.	Recognizing	the	bounded	context	of	the	customer

Example:	Shared	Tables
Figure	5-7	shows	our	last	example.	Our	catalog	needs	to	store	the	name	and	price	of	the
records	we	sell,	and	the	warehouse	needs	to	keep	an	electronic	record	of	inventory.	We
decide	to	keep	these	two	things	in	the	same	place	in	a	generic	line	item	table.	Before,	with
all	the	code	merged	in	together,	it	wasn’t	clear	that	we	are	actually	conflating	concerns,
but	now	we	can	see	that	in	fact	we	have	two	separate	concepts	that	could	be	stored
differently.

Figure	5-7.	Tables	being	shared	between	different	contexts

The	answer	here	is	to	split	the	table	in	two	as	we	have	in	Figure	5-8,	perhaps	creating	a
stock	list	table	for	the	warehouse,	and	a	catalog	entry	table	for	the	catalog	details.

Figure	5-8.	Pulling	apart	the	shared	table

Refactoring	Databases
What	we	have	covered	in	the	preceding	examples	are	a	few	database	refactorings	that	can
help	you	separate	your	schemas.	For	a	more	detailed	discussion	of	the	subject,	you	may
want	to	take	a	look	at	Refactoring	Databases	by	Scott	J.	Ambler	and	Pramod	J.	Sadalage
(Addison-Wesley).

Staging	the	Break
So	we’ve	found	seams	in	our	application	code,	grouping	it	around	bounded	contexts.
We’ve	used	this	to	identify	seams	in	the	database,	and	we’ve	done	our	best	to	split	those
out.	What	next?	Do	you	do	a	big-bang	release,	going	from	one	monolithic	service	with	a
single	schema	to	two	services,	each	with	its	own	schema?	I	would	actually	recommend
that	you	split	out	the	schema	but	keep	the	service	together	before	splitting	the	application
code	out	into	separate	microservices,	as	shown	in	Figure	5-9.

Figure	5-9.	Staging	a	service	separation

With	a	separate	schema,	we’ll	be	potentially	increasing	the	number	of	database	calls	to
perform	a	single	action.	Where	before	we	might	have	been	able	to	have	all	the	data	we
wanted	in	a	single	SELECT	statement,	now	we	may	need	to	pull	the	data	back	from	two
locations	and	join	in	memory.	Also,	we	end	up	breaking	transactional	integrity	when	we
move	to	two	schemas,	which	could	have	significant	impact	on	our	applications;	we’ll	be
discussing	this	next.	By	splitting	the	schemas	out	but	keeping	the	application	code
together,	we	give	ourselves	the	ability	to	revert	our	changes	or	continue	to	tweak	things
without	impacting	any	consumers	of	our	service.	Once	we	are	satisfied	that	the	DB
separation	makes	sense,	we	can	then	think	about	splitting	out	the	application	code	into	two
services.

Transactional	Boundaries
Transactions	are	useful	things.	They	allow	us	to	say	these	events	either	all	happen
together,	or	none	of	them	happen.	They	are	very	useful	when	we’re	inserting	data	into	a
database;	they	let	us	update	multiple	tables	at	once,	knowing	that	if	anything	fails,
everything	gets	rolled	back,	ensuring	our	data	doesn’t	get	into	an	inconsistent	state.
Simply	put,	a	transaction	allows	us	to	group	together	multiple	different	activities	that	take
our	system	from	one	consistent	state	to	another	—	everything	works,	or	nothing	changes.

Transactions	don’t	just	apply	to	databases,	although	we	most	often	use	them	in	that
context.	Message	brokers,	for	example,	have	long	allowed	you	to	post	and	receive
messages	within	transactions	too.

With	a	monolithic	schema,	all	our	create	or	updates	will	probably	be	done	within	a	single
transactional	boundary.	When	we	split	apart	our	databases,	we	lose	the	safety	afforded	to
us	by	having	a	single	transaction.	Consider	a	simple	example	in	the	MusicCorp	context.
When	creating	an	order,	I	want	to	update	the	order	table	stating	that	a	customer	order	has
been	created,	and	also	put	an	entry	into	a	table	for	the	warehouse	team	so	it	knows	there	is
an	order	that	needs	to	be	picked	for	dispatch.	We’ve	gotten	as	far	as	grouping	our
application	code	into	separate	packages,	and	have	also	separated	the	customer	and
warehouse	parts	of	the	schema	well	enough	that	we	are	ready	to	put	them	into	their	own
schemas	prior	to	separating	the	application	code.

Within	a	single	transaction	in	our	existing	monolithic	schema,	creating	the	order	and
inserting	the	record	for	the	warehouse	team	takes	place	within	a	single	transaction,	as
shown	in	Figure	5-10.

Figure	5-10.	Updating	two	tables	in	a	single	transaction

But	if	we	have	pulled	apart	the	schema	into	two	separate	schemas,	one	for	customer-
related	data	including	our	order	table,	and	another	for	the	warehouse,	we	have	lost	this
transactional	safety.	The	order	placing	process	now	spans	two	separate	transactional
boundaries,	as	we	see	in	Figure	5-11.	If	our	insert	into	the	order	table	fails,	we	can	clearly
stop	everything,	leaving	us	in	a	consistent	state.	But	what	happens	when	the	insert	into	the
order	table	works,	but	the	insert	into	the	picking	table	fails?

Figure	5-11.	Spanning	transactional	boundaries	for	a	single	operation

Try	Again	Later
The	fact	that	the	order	was	captured	and	placed	might	be	enough	for	us,	and	we	may
decide	to	retry	the	insertion	into	the	warehouse’s	picking	table	at	a	later	date.	We	could
queue	up	this	part	of	the	operation	in	a	queue	or	logfile,	and	try	again	later.	For	some	sorts
of	operations	this	makes	sense,	but	we	have	to	assume	that	a	retry	would	fix	it.

In	many	ways,	this	is	another	form	of	what	is	called	eventual	consistency.	Rather	than
using	a	transactional	boundary	to	ensure	that	the	system	is	in	a	consistent	state	when	the
transaction	completes,	instead	we	accept	that	the	system	will	get	itself	into	a	consistent
state	at	some	point	in	the	future.	This	approach	is	especially	useful	with	business
operations	that	might	be	long-lived.	We’ll	discuss	this	idea	in	more	depth	in	Chapter	11
when	we	cover	scaling	patterns.

Abort	the	Entire	Operation
Another	option	is	to	reject	the	entire	operation.	In	this	case,	we	have	to	put	the	system
back	into	a	consistent	state.	The	picking	table	is	easy,	as	that	insert	failed,	but	we	have	a
committed	transaction	in	the	order	table.	We	need	to	unwind	this.	What	we	have	to	do	is
issue	a	compensating	transaction,	kicking	off	a	new	transaction	to	wind	back	what	just
happened.	For	us,	that	could	be	something	as	simple	as	issuing	a	DELETE	statement	to
remove	the	order	from	the	database.	Then	we’d	also	need	to	report	back	via	the	UI	that	the
operation	failed.	Our	application	could	handle	both	aspects	within	a	monolithic	system,
but	we’d	have	to	consider	what	we	could	do	when	we	split	up	the	application	code.	Does
the	logic	to	handle	the	compensating	transaction	live	in	the	customer	service,	the	order
service,	or	somewhere	else?

But	what	happens	if	our	compensating	transaction	fails?	It’s	certainly	possible.	Then	we’d
have	an	order	in	the	order	table	with	no	matching	pick	instruction.	In	this	situation,	you’d
either	need	to	retry	the	compensating	transaction,	or	allow	some	backend	process	to	clean
up	the	inconsistency	later	on.	This	could	be	something	as	simple	as	a	maintenance	screen
that	admin	staff	had	access	to,	or	an	automated	process.

Now	think	about	what	happens	if	we	have	not	one	or	two	operations	we	want	to	be
consistent,	but	three,	four,	or	five.	Handling	compensating	transactions	for	each	failure
mode	becomes	quite	challenging	to	comprehend,	let	alone	implement.

Distributed	Transactions
An	alternative	to	manually	orchestrating	compensating	transactions	is	to	use	a	distributed
transaction.	Distributed	transactions	try	to	span	multiple	transactions	within	them,	using
some	overall	governing	process	called	a	transaction	manager	to	orchestrate	the	various
transactions	being	done	by	underlying	systems.	Just	as	with	a	normal	transaction,	a
distributed	transaction	tries	to	ensure	that	everything	remains	in	a	consistent	state,	only	in
this	case	it	tries	to	do	so	across	multiple	different	systems	running	in	different	processes,
often	communicating	across	network	boundaries.

The	most	common	algorithm	for	handling	distributed	transactions	—	especially	short-
lived	transactions,	as	in	the	case	of	handling	our	customer	order	—	is	to	use	a	two-phase
commit.	With	a	two-phase	commit,	first	comes	the	voting	phase.	This	is	where	each
participant	(also	called	a	cohort	in	this	context)	in	the	distributed	transaction	tells	the
transaction	manager	whether	it	thinks	its	local	transaction	can	go	ahead.	If	the	transaction
manager	gets	a	yes	vote	from	all	participants,	then	it	tells	them	all	to	go	ahead	and	perform
their	commits.	A	single	no	vote	is	enough	for	the	transaction	manager	to	send	out	a
rollback	to	all	parties.

This	approach	relies	on	all	parties	halting	until	the	central	coordinating	process	tells	them
to	proceed.	This	means	we	are	vulnerable	to	outages.	If	the	transaction	manager	goes
down,	the	pending	transactions	never	complete.	If	a	cohort	fails	to	respond	during	voting,
everything	blocks.	And	there	is	also	the	case	of	what	happens	if	a	commit	fails	after
voting.	There	is	an	assumption	implicit	in	this	algorithm	that	this	cannot	happen:	if	a
cohort	says	yes	during	the	voting	period,	then	we	have	to	assume	it	will	commit.	Cohorts
need	a	way	of	making	this	commit	work	at	some	point.	This	means	this	algorithm	isn’t
foolproof	—	rather,	it	just	tries	to	catch	most	failure	cases.

This	coordination	process	also	mean	locks;	that	is,	pending	transactions	can	hold	locks	on
resources.	Locks	on	resources	can	lead	to	contention,	making	scaling	systems	much	more
difficult,	especially	in	the	context	of	distributed	systems.

Distributed	transactions	have	been	implemented	for	specific	technology	stacks,	such	as
Java’s	Transaction	API,	allowing	for	disparate	resources	like	a	database	and	a	message
queue	to	all	participate	in	the	same,	overarching	transaction.	The	various	algorithms	are
hard	to	get	right,	so	I’d	suggest	you	avoid	trying	to	create	your	own.	Instead,	do	lots	of
research	on	this	topic	if	this	seems	like	the	route	you	want	to	take,	and	see	if	you	can	use
an	existing	implementation.

So	What	to	Do?
All	of	these	solutions	add	complexity.	As	you	can	see,	distributed	transactions	are	hard	to
get	right	and	can	actually	inhibit	scaling.	Systems	that	eventually	converge	through
compensating	retry	logic	can	be	harder	to	reason	about,	and	may	need	other	compensating
behavior	to	fix	up	inconsistencies	in	data.

When	you	encounter	business	operations	that	currently	occur	within	a	single	transaction,
ask	yourself	if	they	really	need	to.	Can	they	happen	in	different,	local	transactions,	and
rely	on	the	concept	of	eventual	consistency?	These	systems	are	much	easier	to	build	and
scale	(we’ll	discuss	this	more	in	Chapter	11).

If	you	do	encounter	state	that	really,	really	wants	to	be	kept	consistent,	do	everything	you
can	to	avoid	splitting	it	up	in	the	first	place.	Try	really	hard.	If	you	really	need	to	go	ahead
with	the	split,	think	about	moving	from	a	purely	technical	view	of	the	process	(e.g.,	a
database	transaction)	and	actually	create	a	concrete	concept	to	represent	the	transaction
itself.	This	gives	you	a	handle,	or	a	hook,	on	which	to	run	other	operations	like
compensating	transactions,	and	a	way	to	monitor	and	manage	these	more	complex
concepts	in	your	system.	For	example,	you	might	create	the	idea	of	an	“in-process-order”
that	gives	you	a	natural	place	to	focus	all	logic	around	processing	the	order	end	to	end
(and	dealing	with	exceptions).

Reporting
As	we’ve	already	seen,	in	splitting	a	service	into	smaller	parts,	we	need	to	also	potentially
split	up	how	and	where	data	is	stored.	This	creates	a	problem,	however,	when	it	comes	to
one	vital	and	common	use	case:	reporting.

A	change	in	architecture	as	fundamental	as	moving	to	a	microservices	architecture	will
cause	a	lot	of	disruption,	but	it	doesn’t	mean	we	have	to	abandon	everything	we	do.	The
audience	of	our	reporting	systems	are	users	like	any	other,	and	we	need	to	consider	their
needs.	It	would	be	arrogant	to	fundamentally	change	our	architecture	and	just	ask	them	to
adapt.	While	I’m	not	suggesting	that	the	space	of	reporting	isn’t	ripe	for	disruption	—	it
certainly	is	—	there	is	value	in	determining	how	to	work	with	existing	processes	first.
Sometimes	we	have	to	pick	our	battles.

The	Reporting	Database
Reporting	typically	needs	to	group	together	data	from	across	multiple	parts	of	our
organization	in	order	to	generate	useful	output.	For	example,	we	might	want	to	enrich	the
data	from	our	general	ledger	with	descriptions	of	what	was	sold,	which	we	get	from	a
catalog.	Or	we	might	want	to	look	at	the	shopping	behavior	of	specific,	high-value
customers,	which	could	require	information	from	their	purchase	history	and	their	customer
profile.

In	a	standard,	monolithic	service	architecture,	all	our	data	is	stored	in	one	big	database.
This	means	all	the	data	is	in	one	place,	so	reporting	across	all	the	information	is	actually
pretty	easy,	as	we	can	simply	join	across	the	data	via	SQL	queries	or	the	like.	Typically	we
won’t	run	these	reports	on	the	main	database	for	fear	of	the	load	generated	by	our	queries
impacting	the	performance	of	the	main	system,	so	often	these	reporting	systems	hang	on	a
read	replica	as	shown	in	Figure	5-12.

Figure	5-12.	Standard	read	replication

With	this	approach	we	have	one	sizeable	upside	—	that	all	the	data	is	already	in	one	place,
so	we	can	use	fairly	straightforward	tools	to	query	it.	But	there	are	also	a	couple	of
downsides	with	this	approach.	First,	the	schema	of	the	database	is	now	effectively	a	shared
API	between	the	running	monolithic	services	and	any	reporting	system.	So	a	change	in
schema	has	to	be	carefully	managed.	In	reality,	this	is	another	impediment	that	reduces	the
chances	of	anyone	wanting	to	take	on	the	task	of	making	and	coordinating	such	a	change.

Second,	we	have	limited	options	as	to	how	the	database	can	be	optimized	for	either	use
case	—	backing	the	live	system	or	the	reporting	system.	Some	databases	let	us	make

optimizations	on	read	replicas	to	enable	faster,	more	efficient	reporting;	for	example,
MySQL	would	allow	us	to	run	a	different	backend	that	doesn’t	have	the	overhead	of
managing	transactions.	However,	we	cannot	structure	the	data	differently	to	make
reporting	faster	if	that	change	in	data	structure	has	a	bad	impact	on	the	running	system.
What	often	happens	is	that	the	schema	either	ends	up	being	great	for	one	use	case	and
lousy	for	the	other,	or	else	becomes	the	lowest	common	denominator,	great	for	neither
purpose.

Finally,	the	database	options	available	to	us	have	exploded	recently.	While	standard
relational	databases	expose	SQL	query	interfaces	that	work	with	many	reporting	tools,
they	aren’t	always	the	best	option	for	storing	data	for	our	running	services.	What	if	our
application	data	is	better	modeled	as	a	graph,	as	in	Neo4j?	Or	what	if	we’d	rather	use	a
document	store	like	MongoDB?	Likewise,	what	if	we	wanted	to	explore	using	a	column-
oriented	database	like	Cassandra	for	our	reporting	system,	which	makes	it	much	easier	to
scale	for	larger	volumes?	Being	constrained	in	having	to	have	one	database	for	both
purposes	results	in	us	often	not	being	able	to	make	these	choices	and	explore	new	options.

So	it’s	not	perfect,	but	it	works	(mostly).	Now	if	our	information	is	stored	in	multiple
different	systems,	what	do	we	do?	Is	there	a	way	for	us	to	bring	all	the	data	together	to	run
our	reports?	And	could	we	also	potentially	find	a	way	to	eliminate	some	of	the	downsides
associated	with	the	standard	reporting	database	model?

It	turns	out	we	have	a	number	of	viable	alternatives	to	this	approach.	Which	solution
makes	the	most	sense	to	you	will	depend	on	a	number	of	factors,	but	we’ll	explore	a	few
different	options	that	I	have	seen	in	practice.

Data	Retrieval	via	Service	Calls
There	are	many	variants	of	this	model,	but	they	all	rely	on	pulling	the	required	data	from
the	source	systems	via	API	calls.	For	a	very	simple	reporting	system,	like	a	dashboard	that
might	just	want	to	show	the	number	of	orders	placed	in	the	last	15	minutes,	this	might	be
fine.	To	report	across	data	from	two	or	more	systems,	you	need	to	make	multiple	calls	to
assemble	this	data.

This	approach	breaks	down	rapidly	with	use	cases	that	require	larger	volumes	of	data,
however.	Imagine	a	use	case	where	we	want	to	report	on	customer	purchasing	behavior	for
our	music	shop	over	the	last	24	months,	looking	at	various	trends	in	customer	behavior
and	how	this	has	impacted	on	revenue.	We	need	to	pull	large	volumes	of	data	from	at	least
the	customer	and	finance	systems.	Keeping	a	local	copy	of	this	data	in	the	reporting
system	is	dangerous,	as	we	may	not	know	if	it	has	changed	(even	historic	data	may	be
changed	after	the	fact),	so	to	generate	an	accurate	report	we	need	all	of	the	finance	and
customer	records	for	the	last	two	years.	With	even	modest	numbers	of	customers,	you	can
see	that	this	quickly	will	become	a	very	slow	operation.

Reporting	systems	also	often	rely	on	third-party	tools	that	expect	to	retrieve	data	in	a
certain	way,	and	here	providing	a	SQL	interface	is	the	fastest	way	to	ensure	your	reporting
tool	chain	is	as	easy	to	integrate	with	as	possible.	We	could	still	use	this	approach	to	pull
data	periodically	into	a	SQL	database,	of	course,	but	this	still	presents	us	with	some
challenges.

One	of	the	key	challenges	is	that	the	APIs	exposed	by	the	various	microservices	may	well
not	be	designed	for	reporting	use	cases.	For	example,	a	customer	service	may	allow	us	to
find	a	customer	by	an	ID,	or	search	for	a	customer	by	various	fields,	but	wouldn’t
necessarily	expose	an	API	to	retrieve	all	customers.	This	could	lead	to	many	calls	being
made	to	retrieve	all	the	data	—	for	example,	having	to	iterate	through	a	list	of	all	the
customers,	making	a	separate	call	for	each	one.	Not	only	could	this	be	inefficient	for	the
reporting	system,	it	could	generate	load	for	the	service	in	question	too.

While	we	could	speed	up	some	of	the	data	retrieval	by	adding	cache	headers	to	the
resources	exposed	by	our	service,	and	have	this	data	cached	in	something	like	a	reverse
proxy,	the	nature	of	reporting	is	often	that	we	access	the	long	tail	of	data.	This	means	that
we	may	well	request	resources	that	no	one	else	has	requested	before	(or	at	least	not	for	a
sufficiently	long	time),	resulting	in	a	potentially	expensive	cache	miss.

You	could	resolve	this	by	exposing	batch	APIs	to	make	reporting	easier.	For	example,	our
customer	service	could	allow	you	to	pass	a	list	of	customer	IDs	to	it	to	retrieve	them	in
batches,	or	may	even	expose	an	interface	that	lets	you	page	through	all	the	customers.	A
more	extreme	version	of	this	is	to	model	the	batch	request	as	a	resource	in	its	own	right.
For	example,	the	customer	service	might	expose	something	like	a	BatchCustomerExport
resource	endpoint.	The	calling	system	would	POST	a	BatchRequest,	perhaps	passing	in	a

location	where	a	file	can	be	placed	with	all	the	data.	The	customer	service	would	return	an
HTTP	202	response	code,	indicating	that	the	request	was	accepted	but	has	not	yet	been
processed.	The	calling	system	could	then	poll	the	resource	waiting	until	it	retrieves	a	201
Created	status,	indicating	that	the	request	has	been	fulfilled,	and	then	the	calling	system
could	go	and	fetch	the	data.	This	would	allow	potentially	large	data	files	to	be	exported
without	the	overhead	of	being	sent	over	HTTP;	instead,	the	system	could	simply	save	a
CSV	file	to	a	shared	location.

I	have	seen	the	preceding	approach	used	for	batch	insertion	of	data,	where	it	worked	well.
I	am	less	in	favor	of	it	for	reporting	systems,	however,	as	I	feel	that	there	are	other,
potentially	simpler	solutions	that	can	scale	more	effectively	when	you’re	dealing	with
traditional	reporting	needs.

Data	Pumps
Rather	than	have	the	reporting	system	pull	the	data,	we	could	instead	have	the	data	pushed
to	the	reporting	system.	One	of	the	downsides	of	retrieving	the	data	by	standard	HTTP
calls	is	the	overhead	of	HTTP	when	we’re	making	a	large	number	of	calls,	together	with
the	overhead	of	having	to	create	APIs	that	may	exist	only	for	reporting	purposes.	An
alternative	option	is	to	have	a	standalone	program	that	directly	accesses	the	database	of
the	service	that	is	the	source	of	data,	and	pumps	it	into	a	reporting	database,	as	shown	in
Figure	5-13.

Figure	5-13.	Using	a	data	pump	to	periodically	push	data	to	a	central	reporting	database

At	this	point	you’ll	be	saying,	“But	Sam,	you	said	having	lots	of	programs	integrating	on
the	same	database	is	a	bad	idea!”	At	least	I	hope	you’ll	be	saying	that,	given	how	firmly	I
made	the	point	earlier!	This	approach,	if	implemented	properly,	is	a	notable	exception,
where	the	downsides	of	the	coupling	are	more	than	mitigated	by	making	the	reporting
easier.

To	start	with,	the	data	pump	should	be	built	and	managed	by	the	same	team	that	manages
the	service.	This	can	be	something	as	simple	as	a	command-line	program	triggered	via
Cron.	This	program	needs	to	have	intimate	knowledge	of	both	the	internal	database	for	the
service,	and	also	the	reporting	schema.	The	pump’s	job	is	to	map	one	from	the	other.	We
try	to	reduce	the	problems	with	coupling	to	the	service’s	schema	by	having	the	same	team
that	manages	the	service	also	manage	the	pump.	I	would	suggest,	in	fact,	that	you	version-
control	these	together,	and	have	builds	of	the	data	pump	created	as	an	additional	artifact	as
part	of	the	build	of	the	service	itself,	with	the	assumption	that	whenever	you	deploy	one	of
them,	you	deploy	them	both.	As	we	explicitly	state	that	we	deploy	these	together,	and
don’t	open	up	access	to	the	schema	to	anyone	outside	of	the	service	team,	many	of	the
traditional	DB	integration	challenges	are	largely	mitigated.

The	coupling	on	the	reporting	schema	itself	remains,	but	we	have	to	treat	it	as	a	published
API	that	is	hard	to	change.	Some	databases	give	us	techniques	where	we	could	further
mitigate	this	cost.	Figure	5-14	shows	an	example	of	this	for	relational	databases,	where	we
could	have	one	schema	in	the	reporting	database	for	each	service,	using	things	like

materialized	views	to	create	the	aggregated	view.	That	way,	we	expose	only	the	reporting
schema	for	the	customer	data	to	the	customer	data	pump.	Whether	this	is	something	that
you	can	do	in	a	performant	manner,	however,	will	depend	on	the	capabilities	of	the
database	you	picked	for	reporting.

Figure	5-14.	Utilizing	materialized	views	to	form	a	single	monolithic	reporting	schema

Here,	of	course,	the	complexity	of	integration	is	pushed	deeper	into	the	schema,	and	will
rely	on	capabilities	in	the	database	to	make	such	a	setup	performant.	While	I	think	data
pumps	in	general	are	a	sensible	and	workable	suggestion,	I	am	less	convinced	that	the
complexity	of	a	segmented	schema	is	worthwhile,	especially	given	the	challenges	in
managing	change	in	the	database.

Alternative	Destinations
On	one	project	I	was	involved	with,	we	used	a	series	of	data	pumps	to	populate	JSON	files
in	AWS	S3,	effectively	using	S3	to	masquerade	as	a	giant	data	mart!	This	approach
worked	very	well	until	we	needed	to	scale	our	solution,	and	at	the	time	of	writing	we	are
looking	to	change	these	pumps	to	instead	populate	a	cube	that	can	be	integrated	with
standard	reporting	tools	like	Excel	and	Tableau.

Event	Data	Pump
In	Chapter	4,	we	touched	on	the	idea	of	microservices	emitting	events	based	on	the	state
change	of	entities	that	they	manage.	For	example,	our	customer	service	may	emit	an	event
when	a	given	customer	is	created,	or	updated,	or	deleted.	For	those	microservices	that
expose	such	event	feeds,	we	have	the	option	of	writing	our	own	event	subscriber	that
pumps	data	into	the	reporting	database,	as	shown	in	Figure	5-15.

Figure	5-15.	An	event	data	pump	using	state	change	events	to	populate	a	reporting	database

The	coupling	on	the	underlying	database	of	the	source	microservice	is	now	avoided.
Instead,	we	are	just	binding	to	the	events	emitted	by	the	service,	which	are	designed	to	be
exposed	to	external	consumers.	Given	that	events	are	temporal	in	nature,	it	also	makes	it
easier	for	us	to	be	smarter	in	what	data	we	sent	to	our	central	reporting	store;	we	can	send
data	to	the	reporting	system	as	we	see	an	event,	allowing	data	to	flow	faster	to	our
reporting	system,	rather	than	relying	on	a	regular	schedule	as	with	the	data	pump.

Also,	if	we	store	which	events	have	already	been	processed,	we	can	just	process	the	new
events	as	they	arrive,	assuming	the	old	events	have	already	been	mapped	into	the	reporting
system.	This	means	our	insertion	will	be	more	efficient,	as	we	only	need	to	send	deltas.
We	can	do	similar	things	with	a	data	pump,	but	we	have	to	manage	this	ourselves,	whereas
the	fundamentally	temporal	nature	of	the	stream	of	events	(x	happens	at	timestamp	y)
helps	us	greatly.

As	our	event	data	pump	is	less	coupled	to	the	internals	of	the	service,	it	is	also	easier	to
consider	this	being	managed	by	a	separate	group	from	the	team	looking	after	the
microservice	itself.	As	long	as	the	nature	of	our	event	stream	doesn’t	overly	couple
subscribers	to	changes	in	the	service,	this	event	mapper	can	evolve	independently	of	the
service	it	subscribes	to.

The	main	downsides	to	this	approach	are	that	all	the	required	information	must	be
broadcast	as	events,	and	it	may	not	scale	as	well	as	a	data	pump	for	larger	volumes	of	data
that	has	the	benefit	of	operating	directly	at	the	database	level.	Nonetheless,	the	looser
coupling	and	fresher	data	available	via	such	an	approach	makes	it	strongly	worth
considering	if	you	are	already	exposing	the	appropriate	events.

Backup	Data	Pump
This	option	is	based	on	an	approach	used	at	Netflix,	which	takes	advantage	of	existing
backup	solutions	and	also	resolves	some	scale	issues	that	Netflix	has	to	deal	with.	In	some
ways,	you	can	consider	this	a	special	case	of	a	data	pump,	but	it	seemed	like	such	an
interesting	solution	that	it	deserves	inclusion.

Netflix	has	decided	to	standardize	on	Cassandra	as	the	backing	store	for	its	services,	of
which	there	are	many.	Netflix	has	invested	significant	time	in	building	tools	to	make
Cassandra	easy	to	work	with,	much	of	which	the	company	has	shared	with	the	rest	of	the
world	via	numerous	open	source	projects.	Obviously	it	is	very	important	that	the	data
Netflix	stores	is	properly	backed	up.	To	back	up	Cassandra	data,	the	standard	approach	is
to	make	a	copy	of	the	data	files	that	back	it	and	store	them	somewhere	safe.	Netflix	stores
these	files,	known	as	SSTables,	in	Amazon’s	S3	object	store,	which	provides	significant
data	durability	guarantees.

Netflix	needs	to	report	across	all	this	data,	but	given	the	scale	involved	this	is	a	nontrivial
challenge.	Its	approach	is	to	use	Hadoop	that	uses	SSTable	backup	as	the	source	of	its
jobs.	In	the	end,	Netflix	ended	up	implementing	a	pipeline	capable	of	processing	large
amounts	of	data	using	this	approach,	which	it	then	open	sourced	as	the	Aegisthus	project.
Like	data	pumps,	though,	with	this	pattern	we	still	have	a	coupling	to	the	destination
reporting	schema	(or	target	system).

It	is	conceivable	that	using	a	similar	approach	—	that	is,	using	mappers	that	work	off
backups	—	would	work	in	other	contexts	as	well.	And	if	you’re	already	using	Cassandra,
Netflix	has	already	done	much	of	the	work	for	you!

http://bit.ly/1EMC3zf

Toward	Real	Time
Many	of	the	patterns	previously	outlined	are	different	ways	of	getting	a	lot	of	data	from
many	different	places	to	one	place.	But	does	the	idea	that	all	our	reporting	will	be	done
from	one	location	really	stack	up	anymore?	We	have	dashboards,	alerting,	financial
reports,	user	analytics	—	all	of	these	use	cases	have	different	tolerances	for	accuracy	and
timeliness,	which	may	result	in	different	technical	options	coming	to	bear.	As	I	will	detail
in	Chapter	8,	we	are	moving	more	and	more	toward	generic	eventing	systems	capable	of
routing	our	data	to	multiple	different	places	depending	on	need.

Cost	of	Change
There	are	many	reasons	why,	throughout	the	book,	I	promote	the	need	to	make	small,
incremental	changes,	but	one	of	the	key	drivers	is	to	understand	the	impact	of	each
alteration	we	make	and	change	course	if	required.	This	allows	us	to	better	mitigate	the
cost	of	mistakes,	but	doesn’t	remove	the	chance	of	mistakes	entirely.	We	can	—	and	will
—	make	mistakes,	and	we	should	embrace	that.	What	we	should	also	do,	though,	is
understand	how	best	to	mitigate	the	costs	of	those	mistakes.

As	we	have	seen,	the	cost	involved	in	moving	code	around	within	a	codebase	is	pretty
small.	We	have	lots	of	tools	that	support	us,	and	if	we	cause	a	problem,	the	fix	is	generally
quick.	Splitting	apart	a	database,	however,	is	much	more	work,	and	rolling	back	a	database
change	is	just	as	complex.	Likewise,	untangling	an	overly	coupled	integration	between
services,	or	having	to	completely	rewrite	an	API	that	is	used	by	multiple	consumers,	can
be	a	sizeable	undertaking.	The	large	cost	of	change	means	that	these	operations	are
increasingly	risky.	How	can	we	manage	this	risk?	My	approach	is	to	try	to	make	mistakes
where	the	impact	will	be	lowest.

I	tend	to	do	much	of	my	thinking	in	the	place	where	the	cost	of	change	and	the	cost	of
mistakes	is	as	low	as	it	can	be:	the	whiteboard.	Sketch	out	your	proposed	design.	See	what
happens	when	you	run	use	cases	across	what	you	think	your	service	boundaries	will	be.
For	our	music	shop,	for	example,	imagine	what	happens	when	a	customer	searches	for	a
record,	registers	with	the	website,	or	purchases	an	album.	What	calls	get	made?	Do	you
start	seeing	odd	circular	references?	Do	you	see	two	services	that	are	overly	chatty,	which
might	indicate	they	should	be	one	thing?

A	great	technique	here	is	to	adapt	an	approach	more	typically	taught	for	the	design	of
object-oriented	systems:	class-responsibility-collaboration	(CRC)	cards.	With	CRC	cards,
you	write	on	one	index	card	the	name	of	the	class,	what	its	responsibilities	are,	and	who	it
collaborates	with.	When	working	through	a	proposed	design,	for	each	service	I	list	its
responsibilities	in	terms	of	the	capabilities	it	provides,	with	the	collaborators	specified	in
the	diagram.	As	you	work	through	more	use	cases,	you	start	to	get	a	sense	as	to	whether
all	of	this	hangs	together	properly.

Understanding	Root	Causes
We	have	discussed	how	to	split	apart	larger	services	into	smaller	ones,	but	why	did	these
services	grow	so	large	in	the	first	place?	The	first	thing	to	understand	is	that	growing	a
service	to	the	point	that	it	needs	to	be	split	is	completely	OK.	We	want	the	architecture	of
our	system	to	change	over	time	in	an	incremental	fashion.	The	key	is	knowing	it	needs	to
be	split	before	the	split	becomes	too	expensive.

But	in	practice	many	of	us	will	have	seen	services	grow	well	beyond	the	point	of	sanity.
Despite	knowing	that	a	smaller	set	of	services	would	be	easier	to	deal	with	than	the	huge
monstrosity	we	currently	have,	we	still	plow	on	with	growing	the	beast.	Why?

Part	of	the	problem	is	knowing	where	to	start,	and	I’m	hoping	this	chapter	has	helped.	But
another	challenge	is	the	cost	associated	with	splitting	out	services.	Finding	somewhere	to
run	the	service,	spinning	up	a	new	service	stack,	and	so	on,	are	nontrivial	tasks.	So	how	do
we	address	this?	Well,	if	doing	something	is	right	but	difficult,	we	should	strive	to	make
things	easier.	Investment	in	libraries	and	lightweight	service	frameworks	can	reduce	the
cost	associated	with	creating	the	new	service.	Giving	people	access	to	self-service
provision	virtual	machines	or	even	making	a	platform	as	a	service	(PaaS)	available	will
make	it	easier	to	provision	systems	and	test	them.	Throughout	the	rest	of	the	book,	we’ll
be	discussing	a	number	of	ways	to	help	you	keep	this	cost	down.

Summary
We	decompose	our	system	by	finding	seams	along	which	service	boundaries	can	emerge,
and	this	can	be	an	incremental	approach.	By	getting	good	at	finding	these	seams	and
working	to	reduce	the	cost	of	splitting	out	services	in	the	first	place,	we	can	continue	to
grow	and	evolve	our	systems	to	meet	whatever	requirements	come	down	the	road.	As	you
can	see,	some	of	this	work	can	be	painstaking.	But	the	very	fact	that	it	can	be	done
incrementally	means	there	is	no	need	to	fear	this	work.

So	now	we	can	split	our	services	out,	but	we’ve	introduced	some	new	problems	too.	We
have	many	more	moving	parts	to	get	into	production	now!	So	next	up	we’ll	dive	into	the
world	of	deployment.

Chapter	6.	Deployment

Deploying	a	monolithic	application	is	a	fairly	straightforward	process.	Microservices,	with
their	interdependence,	are	a	different	kettle	of	fish	altogether.	If	you	don’t	approach
deployment	right,	it’s	one	of	those	areas	where	the	complexity	can	make	your	life	a
misery.	In	this	chapter,	we’re	going	to	look	at	some	techniques	and	technology	that	can
help	us	when	deploying	microservices	into	fine-grained	architectures.

We’re	going	to	start	off,	though,	by	taking	a	look	at	continuous	integration	and	continuous
delivery.	These	related	but	different	concepts	will	help	shape	the	other	decisions	we’ll
make	when	thinking	about	what	to	build,	how	to	build	it,	and	how	to	deploy	it.

A	Brief	Introduction	to	Continuous	Integration
Continuous	integration	(CI)	has	been	around	for	a	number	of	years	at	this	point.	It’s	worth
spending	a	bit	of	time	going	over	the	basics,	however,	as	especially	when	we	think	about
the	mapping	between	microservices,	builds,	and	version	control	repositories,	there	are
some	different	options	to	consider.

With	CI,	the	core	goal	is	to	keep	everyone	in	sync	with	each	other,	which	we	achieve	by
making	sure	that	newly	checked-in	code	properly	integrates	with	existing	code.	To	do	this,
a	CI	server	detects	that	the	code	has	been	committed,	checks	it	out,	and	carries	out	some
verification	like	making	sure	the	code	compiles	and	that	tests	pass.

As	part	of	this	process,	we	often	create	artifact(s)	that	are	used	for	further	validation,	such
as	deploying	a	running	service	to	run	tests	against	it.	Ideally,	we	want	to	build	these
artifacts	once	and	once	only,	and	use	them	for	all	deployments	of	that	version	of	the	code.
This	is	in	order	to	avoid	doing	the	same	thing	over	and	over	again,	and	so	that	we	can
confirm	that	the	artifact	we	deployed	is	the	one	we	tested.	To	enable	these	artifacts	to	be
reused,	we	place	them	in	a	repository	of	some	sort,	either	provided	by	the	CI	tool	itself	or
on	a	separate	system.

We’ll	be	looking	at	what	sorts	of	artifacts	we	can	use	for	microservices	shortly,	and	we’ll
look	in	depth	at	testing	in	Chapter	7.

CI	has	a	number	of	benefits.	We	get	some	level	of	fast	feedback	as	to	the	quality	of	our
code.	It	allows	us	to	automate	the	creation	of	our	binary	artifacts.	All	the	code	required	to
build	the	artifact	is	itself	version	controlled,	so	we	can	re-create	the	artifact	if	needed.	We
also	get	some	level	of	traceability	from	a	deployed	artifact	back	to	the	code,	and
depending	on	the	capabilities	of	the	CI	tool	itself,	can	see	what	tests	were	run	on	the	code
and	artifact	too.	It’s	for	these	reasons	that	CI	has	been	so	successful.

Are	You	Really	Doing	It?
I	suspect	you	are	probably	using	continuous	integration	in	your	own	organization.	If	not,
you	should	start.	It	is	a	key	practice	that	allows	us	to	make	changes	quickly	and	easily,	and
without	which	the	journey	into	microservices	will	be	painful.	That	said,	I	have	worked
with	many	teams	who,	despite	saying	that	they	do	CI,	aren’t	actually	doing	it	at	all.	They
confuse	the	use	of	a	CI	tool	with	adopting	the	practice	of	CI.	The	tool	is	just	something
that	enables	the	approach.

I	really	like	Jez	Humble’s	three	questions	he	asks	people	to	test	if	they	really	understand
what	CI	is	about:

Do	you	check	in	to	mainline	once	per	day?

You	need	to	make	sure	your	code	integrates.	If	you	don’t	check	your	code	together
with	everyone	else’s	changes	frequently,	you	end	up	making	future	integration	harder.
Even	if	you	are	using	short-lived	branches	to	manage	changes,	integrate	as	frequently
as	you	can	into	a	single	mainline	branch.

Do	you	have	a	suite	of	tests	to	validate	your	changes?

Without	tests,	we	just	know	that	syntactically	our	integration	has	worked,	but	we
don’t	know	if	we	have	broken	the	behavior	of	the	system.	CI	without	some
verification	that	our	code	behaves	as	expected	isn’t	CI.

When	the	build	is	broken,	is	it	the	#1	priority	of	the	team	to	fix	it?

A	passing	green	build	means	our	changes	have	safely	been	integrated.	A	red	build
means	the	last	change	possibly	did	not	integrate.	You	need	to	stop	all	further	check-
ins	that	aren’t	involved	in	fixing	the	builds	to	get	it	passing	again.	If	you	let	more
changes	pile	up,	the	time	it	takes	to	fix	the	build	will	increase	drastically.	I’ve	worked
with	teams	where	the	build	has	been	broken	for	days,	resulting	in	substantial	efforts
to	eventually	get	a	passing	build.

Mapping	Continuous	Integration	to	Microservices
When	thinking	about	microservices	and	continuous	integration,	we	need	to	think	about
how	our	CI	builds	map	to	individual	microservices.	As	I	have	said	many	times,	we	want	to
ensure	that	we	can	make	a	change	to	a	single	service	and	deploy	it	independently	of	the
rest.	With	this	in	mind,	how	should	we	map	individual	microservices	to	CI	builds	and
source	code?

If	we	start	with	the	simplest	option,	we	could	lump	everything	in	together.	We	have	a
single,	giant	repository	storing	all	our	code,	and	have	one	single	build,	as	we	see	in
Figure	6-1.	Any	check-in	to	this	source	code	repository	will	cause	our	build	to	trigger,
where	we	will	run	all	the	verification	steps	associated	with	all	our	microservices,	and
produce	multiple	artifacts,	all	tied	back	to	the	same	build.

Figure	6-1.	Using	a	single	source	code	repository	and	CI	build	for	all	microservices

This	seems	much	simpler	on	the	surface	than	other	approaches:	fewer	repositories	to
worry	about,	and	a	conceptually	simpler	build.	From	a	developer	point	of	view,	things	are
pretty	straightforward	too.	I	just	check	code	in.	If	I	have	to	work	on	multiple	services	at
once,	I	just	have	to	worry	about	one	commit.

This	model	can	work	perfectly	well	if	you	buy	into	the	idea	of	lock-step	releases,	where
you	don’t	mind	deploying	multiple	services	at	once.	In	general,	this	is	absolutely	a	pattern
to	avoid,	but	very	early	on	in	a	project,	especially	if	only	one	team	is	working	on
everything,	this	might	make	sense	for	short	periods	of	time.

However,	there	are	some	significant	downsides.	If	I	make	a	one-line	change	to	a	single
service	—	for	example,	changing	the	behavior	in	the	user	service	in	Figure	6-1	—	all	the
other	services	get	verified	and	built.	This	could	take	more	time	than	needed	—	I’m
waiting	for	things	that	probably	don’t	need	to	be	tested.	This	impacts	our	cycle	time,	the
speed	at	which	we	can	move	a	single	change	from	development	to	live.	More	troubling,
though,	is	knowing	what	artifacts	should	or	shouldn’t	be	deployed.	Do	I	now	need	to
deploy	all	the	build	services	to	push	my	small	change	into	production?	It	can	be	hard	to
tell;	trying	to	guess	which	services	really	changed	just	by	reading	the	commit	messages	is

difficult.	Organizations	using	this	approach	often	fall	back	to	just	deploying	everything
together,	which	we	really	want	to	avoid.

Furthermore,	if	my	one-line	change	to	the	user	service	breaks	the	build,	no	other	changes
can	be	made	to	the	other	services	until	that	break	is	fixed.	And	think	about	a	scenario
where	you	have	multiple	teams	all	sharing	this	giant	build.	Who	is	in	charge?

A	variation	of	this	approach	is	to	have	one	single	source	tree	with	all	of	the	code	in	it,	with
multiple	CI	builds	mapping	to	parts	of	this	source	tree,	as	we	see	in	Figure	6-2.	With	well-
defined	structure,	you	can	easily	map	the	builds	to	certain	parts	of	the	source	tree.	In
general,	I	am	not	a	fan	of	this	approach,	as	this	model	can	be	a	mixed	blessing.	On	the	one
hand,	my	check-in/check-out	process	can	be	simpler	as	I	have	only	one	repository	to
worry	about.	On	the	other	hand,	it	becomes	very	easy	to	get	into	the	habit	of	checking	in
source	code	for	multiple	services	at	once,	which	can	make	it	equally	easy	to	slip	into
making	changes	that	couple	services	together.	I	would	greatly	prefer	this	approach,
however,	over	having	a	single	build	for	multiple	services.

Figure	6-2.	A	single	source	repo	with	subdirectories	mapped	to	independent	builds

So	is	there	another	alternative?	The	approach	I	prefer	is	to	have	a	single	CI	build	per
microservice,	to	allow	us	to	quickly	make	and	validate	a	change	prior	to	deployment	into
production,	as	shown	in	Figure	6-3.	Here	each	microservice	has	its	own	source	code
repository,	mapped	to	its	own	CI	build.	When	making	a	change,	I	run	only	the	build	and
tests	I	need	to.	I	get	a	single	artifact	to	deploy.	Alignment	to	team	ownership	is	more	clear
too.	If	you	own	the	service,	you	own	the	repository	and	the	build.	Making	changes	across
repositories	can	be	more	difficult	in	this	world,	but	I’d	maintain	this	is	easier	to	resolve
(e.g.,	by	using	command-line	scripts)	than	the	downside	of	the	monolithic	source	control
and	build	process.

Figure	6-3.	Using	one	source	code	repository	and	CI	build	per	microservice

The	tests	for	a	given	microservice	should	live	in	source	control	with	the	microservice’s
source	code	too,	to	ensure	we	always	know	what	tests	should	be	run	against	a	given
service.

So,	each	microservice	will	live	in	its	own	source	code	repository,	and	its	own	CI	build
process.	We’ll	use	the	CI	build	process	to	create	our	deployable	artifacts	too	in	a	fully
automated	fashion.	Now	lets	look	beyond	CI	to	see	how	continuous	delivery	fits	in.

Build	Pipelines	and	Continuous	Delivery
Very	early	on	in	using	continuous	integration,	we	realized	the	value	in	sometimes	having
multiple	stages	inside	a	build.	Tests	are	a	very	common	case	where	this	comes	into	play.	I
may	have	a	lot	of	fast,	small-scoped	tests,	and	a	small	number	of	large-scoped,	slow	tests.
If	we	run	all	the	tests	together,	we	may	not	be	able	to	get	fast	feedback	when	our	fast	tests
fail	if	we’re	waiting	for	our	long-scoped	slow	tests	to	finally	finish.	And	if	the	fast	tests
fail,	there	probably	isn’t	much	sense	in	running	the	slower	tests	anyway!	A	solution	to	this
problem	is	to	have	different	stages	in	our	build,	creating	what	is	known	as	a	build	pipeline.
One	stage	for	the	faster	tests,	one	for	the	slower	tests.

This	build	pipeline	concept	gives	us	a	nice	way	of	tracking	the	progress	of	our	software	as
it	clears	each	stage,	helping	give	us	insight	into	the	quality	of	our	software.	We	build	our
artifact,	and	that	artifact	is	used	throughout	the	pipeline.	As	our	artifact	moves	through
these	stages,	we	feel	more	and	more	confident	that	the	software	will	work	in	production.

Continuous	delivery	(CD)	builds	on	this	concept,	and	then	some.	As	outlined	in	Jez
Humble	and	Dave	Farley’s	book	of	the	same	name,	continuous	delivery	is	the	approach
whereby	we	get	constant	feedback	on	the	production	readiness	of	each	and	every	check-in,
and	furthermore	treat	each	and	every	check-in	as	a	release	candidate.

To	fully	embrace	this	concept,	we	need	to	model	all	the	processes	involved	in	getting	our
software	from	check-in	to	production,	and	know	where	any	given	version	of	the	software
is	in	terms	of	being	cleared	for	release.	In	CD,	we	do	this	by	extending	the	idea	of	the
multistage	build	pipeline	to	model	each	and	every	stage	our	software	has	to	go	through,
both	manual	and	automated.	In	Figure	6-4,	we	see	a	sample	pipeline	that	may	be	familiar.

Figure	6-4.	A	standard	release	process	modeled	as	a	build	pipeline

Here	we	really	want	a	tool	that	embraces	CD	as	a	first-class	concept.	I	have	seen	many
people	try	to	hack	and	extend	CI	tools	to	make	them	do	CD,	often	resulting	in	complex
systems	that	are	nowhere	as	easy	to	use	as	tools	that	build	in	CD	from	the	beginning.
Tools	that	fully	support	CD	allow	you	to	define	and	visualize	these	pipelines,	modeling
the	entire	path	to	production	for	your	software.	As	a	version	of	our	code	moves	through
the	pipeline,	if	it	passes	one	of	these	automated	verification	steps	it	moves	to	the	next
stage.	Other	stages	may	be	manual.	For	example,	if	we	have	a	manual	user	acceptance
testing	(UAT)	process	I	should	be	able	to	use	a	CD	tool	to	model	it.	I	can	see	the	next
available	build	ready	to	be	deployed	into	our	UAT	environment,	deploy	it,	and	if	it	passes
our	manual	checks,	mark	that	stage	as	being	successful	so	it	can	move	to	the	next.

By	modeling	the	entire	path	to	production	for	our	software,	we	greatly	improve	visibility
of	the	quality	of	our	software,	and	can	also	greatly	reduce	the	time	taken	between	releases,

as	we	have	one	place	to	observe	our	build	and	release	process,	and	an	obvious	focal	point
for	introducing	improvements.

In	a	microservices	world,	where	we	want	to	ensure	we	can	release	our	services
independently	of	each	other,	it	follows	that	as	with	CI,	we’ll	want	one	pipeline	per	service.
In	our	pipelines,	it	is	an	artifact	that	we	want	to	create	and	move	through	our	path	to
production.	As	always,	it	turns	out	our	artifacts	can	come	in	lots	of	sizes	and	shapes.	We’ll
look	at	some	of	the	most	common	options	available	to	us	in	a	moment.

And	the	Inevitable	Exceptions
As	with	all	good	rules,	there	are	exceptions	we	need	to	consider	too.	The	“one
microservice	per	build”	approach	is	absolutely	something	you	should	aim	for,	but	are	there
times	when	something	else	makes	sense?	When	a	team	is	starting	out	with	a	new	project,
especially	a	greenfield	one	where	they	are	working	with	a	blank	sheet	of	paper,	it	is	quite
likely	that	there	will	be	a	large	amount	of	churn	in	terms	of	working	out	where	the	service
boundaries	lie.	This	is	a	good	reason,	in	fact,	for	keeping	your	initial	services	on	the	larger
side	until	your	understanding	of	the	domain	stabilizes.

During	this	time	of	churn,	changes	across	service	boundaries	are	more	likely,	and	what	is
in	or	not	in	a	given	service	is	likely	to	change	frequently.	During	this	period,	having	all
services	in	a	single	build	to	reduce	the	cost	of	cross-service	changes	may	make	sense.

It	does	follow,	though,	that	in	this	case	you	need	to	buy	into	releasing	all	the	services	as	a
bundle.	It	also	absolutely	needs	to	be	a	transitionary	step.	As	service	APIs	stabilize,	start
moving	them	out	into	their	own	builds.	If	after	a	few	weeks	(or	a	very	small	number	of
months)	you	are	unable	to	get	stability	in	service	boundaries	in	order	to	properly	separate
them,	merge	them	back	into	a	more	monolithic	service	(albeit	retaining	modular
separation	within	the	boundary)	and	give	yourself	time	to	get	to	grips	with	the	domain.
This	reflects	the	experiences	of	our	own	SnapCI	team,	as	we	discussed	in	Chapter	3.

Platform-Specific	Artifacts
Most	technology	stacks	have	some	sort	of	first-class	artifact,	along	with	tools	to	support
creating	and	installing	them.	Ruby	has	gems,	Java	has	JAR	files	and	WAR	files,	and
Python	has	eggs.	Developers	with	experience	in	one	of	these	stacks	will	be	well	versed	in
working	with	(and	hopefully	creating)	these	artifacts.

From	the	point	of	view	of	a	microservice,	though,	depending	on	your	technology	stack,
this	artifact	may	not	be	enough	by	itself.	While	a	Java	JAR	file	can	be	made	to	be
executable	and	run	an	embedded	HTTP	process,	for	things	like	Ruby	and	Python
applications,	you’ll	expect	to	use	a	process	manager	running	inside	Apache	or	Nginx.	So
we	may	need	some	way	of	installing	and	configuring	other	software	that	we	need	in	order
to	deploy	and	launch	our	artifacts.	This	is	where	automated	configuration	management
tools	like	Puppet	and	Chef	can	help.

Another	downfall	here	is	that	these	artifacts	are	specific	to	a	certain	technology	stack,
which	may	make	deployment	more	difficult	when	we	have	a	mix	of	technologies	in	play.
Think	of	it	from	the	point	of	view	of	someone	trying	to	deploy	multiple	services	together.
They	could	be	a	developer	or	tester	wanting	to	test	some	functionality,	or	it	could	be
someone	managing	a	production	deployment.	Now	imagine	that	those	services	use	three
completely	different	deployment	mechanisms.	Perhaps	we	have	a	Ruby	Gem,	a	JAR	file,
and	a	nodeJS	NPM	package.	Would	they	thank	you?

Automation	can	go	a	long	way	toward	hiding	the	differences	in	the	deployment
mechanisms	of	the	underlying	artifacts.	Chef,	Puppet,	and	Ansible	all	support	multiple
different	common	technology-specific	build	artifacts	too.	But	there	are	different	types	of
artifacts	that	might	be	even	easier	to	work	with.

Operating	System	Artifacts
One	way	to	avoid	the	problems	associated	with	technology-specific	artifacts	is	to	create
artifacts	that	are	native	to	the	underlying	operating	system.	For	example,	for	a	RedHat–	or
CentOS-based	system,	I	might	build	RPMs;	for	Ubuntu,	I	might	build	a	deb	package;	or
for	Windows,	an	MSI.

The	advantage	of	using	OS-specific	artifacts	is	that	from	a	deployment	point	of	view	we
don’t	care	what	the	underlying	technology	is.	We	just	use	the	tools	native	to	the	OS	to
install	the	package.	The	OS	tools	can	also	help	us	uninstall	and	get	information	about	the
packages	too,	and	may	even	provide	package	repositories	that	our	CI	tools	can	push	to.
Much	of	the	work	done	by	the	OS	package	manager	can	also	offset	work	that	you	might
otherwise	do	in	a	tool	like	Puppet	or	Chef.	On	all	Linux	platforms	I	have	used,	for
example,	you	can	define	dependencies	from	your	packages	to	other	packages	you	rely	on,
and	the	OS	tools	will	automatically	install	them	for	you	too.

The	downside	can	be	the	difficulty	in	creating	the	packages	in	the	first	place.	For	Linux,
the	FPM	package	manager	tool	gives	a	nicer	abstraction	for	creating	Linux	OS	packages,
and	converting	from	a	tarball-based	deployment	to	an	OS-based	deployment	can	be	fairly
straightforward.	The	Windows	space	is	somewhat	trickier.	The	native	packaging	system	in
the	form	of	MSI	installers	and	the	like	leave	a	lot	to	be	desired	when	compared	to	the
capabilities	in	the	Linux	space.	The	NuGet	package	system	has	started	to	help	address
this,	at	least	in	terms	of	helping	manage	development	libraries.	More	recently,	Chocolatey
NuGet	has	extended	these	ideas,	providing	a	package	manager	for	Windows	designed	for
deploying	tools	and	services,	which	is	much	more	like	the	package	managers	in	the	Linux
space.	This	is	certainly	a	step	in	the	right	direction,	although	the	fact	that	the	idiomatic
style	in	Windows	is	still	deploy	something	in	IIS	means	that	this	approach	may	be
unappealing	for	some	Windows	teams.

Another	downside,	of	course,	could	be	if	you	are	deploying	onto	multiple	different
operating	systems.	The	overhead	of	managing	artifacts	for	different	OSes	could	be	pretty
steep.	If	you’re	creating	software	for	other	people	to	install,	you	may	not	have	a	choice.	If
you	are	installing	software	onto	machines	you	control,	however,	I	would	suggest	you	look
at	unifying	or	at	least	reducing	the	number	of	different	operating	systems	you	use.	It	can
greatly	reduce	variations	in	behavior	from	one	machine	to	the	next,	and	simplify
deployment	and	maintenance	tasks.

In	general,	those	teams	I’ve	seen	that	have	moved	to	OS-based	package	management	have
simplified	their	deployment	approach,	and	tend	to	avoid	the	trap	of	big,	complex
deployment	scripts.	Especially	if	you’re	on	Linux,	this	can	be	a	good	way	to	simplify
deployment	of	microservices	using	disparate	technology	stacks.

http://bit.ly/15LaQSb

Custom	Images
One	of	the	challenges	with	automated	configuration	management	systems	like	Puppet,
Chef,	and	Ansible	can	be	the	time	taken	to	run	the	scripts	on	a	machine.	Let’s	take	a
simple	example	of	a	server	being	provisioned	and	configured	to	allow	for	the	deployment
of	a	Java	application.	Let’s	assume	I’m	using	AWS	to	provision	the	server,	using	the
standard	Ubuntu	image.	The	first	thing	I	need	to	do	is	install	the	Oracle	JVM	to	run	my
Java	application.	I’ve	seen	this	simple	process	take	around	five	minutes,	with	a	couple	of
minutes	taken	up	by	the	machine	being	provisioned,	and	a	few	more	to	install	the	JVM.
Then	we	can	think	about	actually	putting	our	software	on	it.

This	is	actually	a	fairly	trivial	example.	We	will	often	want	to	install	other	common	bits	of
software.	For	example,	we	might	want	to	use	collectd	for	gathering	OS	stats,	use	logstash
for	log	aggregation,	and	perhaps	install	the	appropriate	bits	of	nagios	for	monitoring	(we’ll
talk	more	about	this	software	in	Chapter	8).	Over	time,	more	things	might	get	added,
leading	to	longer	and	longer	amounts	of	time	needed	for	provisioning	of	these
dependencies.

Puppet,	Chef,	Ansible,	and	their	ilk	can	be	smart	and	will	avoid	installing	software	that	is
already	present.	This	does	not	mean	that	running	the	scripts	on	existing	machines	will
always	be	fast,	unfortunately,	as	running	all	the	checks	takes	time.	We	also	want	to	avoid
keeping	our	machines	around	for	too	long,	as	we	don’t	want	to	allow	for	too	much
configuration	drift	(which	we’ll	explore	in	more	depth	shortly).	And	if	we’re	using	an	on-
demand	compute	platform	we	might	be	constantly	shutting	down	and	spinning	up	new
instances	on	a	daily	basis	(if	not	more	frequently),	so	the	declarative	nature	of	these
configuration	management	tools	may	be	of	limited	use.

Over	time,	watching	the	same	tools	get	installed	over	and	over	again	can	become	a	real
drag.	If	you	are	trying	to	do	this	multiple	times	per	day	—	perhaps	as	part	of	development
or	CI	—	this	becomes	a	real	problem	in	terms	of	providing	fast	feedback.	It	can	also	lead
to	increased	downtime	when	deploying	in	production	if	your	systems	don’t	allow	for	zero-
downtime	deployment,	as	you’re	waiting	to	install	all	the	pre-requisites	on	your	machines
even	before	you	get	to	installing	your	software.	Models	like	blue/green	deployment
(which	we’ll	discuss	in	Chapter	7)	can	help	mitigate	this,	as	they	allow	us	to	deploy	a	new
version	of	our	service	without	taking	the	old	one	offline.

One	approach	to	reducing	this	spin-up	time	is	to	create	a	virtual	machine	image	that	bakes
in	some	of	the	common	dependencies	we	use,	as	shown	in	Figure	6-5.	All	virtualization
platforms	I’ve	used	allow	you	to	build	your	own	images,	and	the	tools	to	do	so	are	much
more	advanced	than	they	were	even	a	few	years	ago.	This	shifts	things	somewhat.	Now
we	could	bake	the	common	tools	into	our	own	image.	When	we	want	to	deploy	our
software,	we	spin	up	an	instance	of	this	custom	image,	and	all	we	have	to	do	is	install	the
latest	version	of	our	service.

Figure	6-5.	Creating	a	custom	VM	image

Of	course,	because	you	build	the	image	only	once,	when	you	subsequently	launch	copies
of	this	image	you	don’t	need	to	spend	time	installing	your	dependencies,	as	they	are
already	there.	This	can	result	in	a	significant	time	savings.	If	your	core	dependencies	don’t
change,	new	versions	of	your	service	can	continue	to	use	the	same	base	image.

There	are	some	drawbacks	with	this	approach,	though.	Building	images	can	take	a	long
time.	This	means	that	for	developers	you	may	want	to	support	other	ways	of	deploying
services	to	ensure	they	don’t	have	to	wait	half	an	hour	just	to	create	a	binary	deployment.
Second,	some	of	the	resulting	images	can	be	large.	This	could	be	a	real	problem	if	you’re
creating	your	own	VMWare	images,	for	example,	as	moving	a	20GB	image	around	a
network	isn’t	always	a	simple	activity.	We’ll	be	looking	at	container	technology	shortly,
and	specifically	Docker,	which	can	avoid	some	of	these	drawbacks.

Historically,	one	of	the	challenges	is	that	the	tool	chain	required	to	build	such	an	image
varied	from	platform	to	platform.	Building	a	VMWare	image	is	different	from	building	an
AWS	AMI,	a	Vagrant	image,	or	a	Rackspace	image.	This	may	not	have	been	a	problem	if
you	had	the	same	platform	everywhere,	but	not	all	organizations	were	this	lucky.	And
even	if	they	were,	the	tools	in	this	space	were	often	difficult	to	work	with,	and	they	didn’t
play	nicely	with	other	tools	you	might	be	using	for	machine	configuration.

Packer	is	a	tool	designed	to	make	creation	of	images	much	easier.	Using	configuration
scripts	of	your	choice	(Chef,	Ansible,	Puppet,	and	more	are	supported),	it	allows	us	to
create	images	for	different	platforms	from	the	same	configuration.	At	the	time	of	writing,
it	has	support	for	VMWare,	AWS,	Rackspace	Cloud,	Digital	Ocean,	and	Vagrant,	and	I’ve
seen	teams	use	it	successfully	for	building	Linux	and	Windows	images.	This	means	you
could	create	an	image	for	deployment	on	your	production	AWS	environment	and	a
matching	Vagrant	image	for	local	development	and	test,	all	from	the	same	configuration.

http://www.packer.io/

Images	as	Artifacts
So	we	can	create	virtual	machine	images	that	bake	in	dependencies	to	speed	up	feedback,
but	why	stop	there?	We	could	go	further,	bake	our	service	into	the	image	itself,	and	adopt
the	model	of	our	service	artifact	being	an	image.	Now,	when	we	launch	our	image,	our
service	is	there	ready	to	go.	This	really	fast	spin-up	time	is	the	reason	that	Netflix	has
adopted	the	model	of	baking	its	own	services	as	AWS	AMIs.

Just	as	with	OS-specific	packages,	these	VM	images	become	a	nice	way	of	abstracting	out
the	differences	in	the	technology	stacks	used	to	create	the	services.	Do	we	care	if	the
service	running	on	the	image	is	written	in	Ruby	or	Java,	and	uses	a	gem	or	JAR	file?	All
we	care	about	is	that	it	works.	We	can	focus	our	efforts,	then,	on	automating	the	creation
and	deployment	of	these	images.	This	also	becomes	a	really	neat	way	to	implement
another	deployment	concept,	the	immutable	server.

Immutable	Servers
By	storing	all	our	configuration	in	source	control,	we	are	trying	to	ensure	that	we	can
automatically	reproduce	services	and	hopefully	entire	environments	at	will.	But	once	we
run	our	deployment	process,	what	happens	if	someone	comes	along,	logs	into	the	box,	and
changes	things	independently	of	what	is	in	source	control?	This	problem	is	often	called
configuration	drift	—	the	code	in	source	control	no	longer	reflects	the	configuration	of	the
running	host.

To	avoid	this,	we	can	ensure	that	no	changes	are	ever	made	to	a	running	server.	Instead,
any	change,	no	matter	how	small,	has	to	go	through	a	build	pipeline	in	order	to	create	a
new	machine.	You	can	implement	this	pattern	without	using	image-based	deployments,
but	it	is	also	a	logical	extension	of	using	images	as	artifacts.	During	our	image	creation,
for	example,	we	could	actually	disable	SSH,	ensuring	that	no	one	could	even	log	onto	the
box	to	make	a	change!

The	same	caveats	we	discussed	earlier	about	cycle	time	still	apply,	of	course.	And	we	also
need	to	ensure	that	any	data	we	care	about	that	is	stored	on	the	box	is	stored	elsewhere.
These	complexities	aside,	I’ve	seen	adopting	this	pattern	lead	to	much	more
straightforward	deployments,	and	easier-to-reason-about	environments.	And	as	I’ve
already	said,	anything	we	can	do	to	simplify	things	should	be	pursued!

Environments
As	our	software	moves	through	our	CD	pipeline	stages,	it	will	also	be	deployed	into
different	types	of	environments.	If	we	think	of	the	example	build	pipeline	in	Figure	6-4,
we	probably	have	to	consider	at	least	four	distinct	environments:	one	environment	where
we	run	our	slow	tests,	another	for	UAT,	another	for	performance,	and	a	final	one	for
production.	Our	microservice	should	be	the	same	throughout,	but	the	environment	will	be
different.	At	the	very	least,	they’ll	be	separate,	distinct	collections	of	configuration	and
hosts.	But	often	they	can	vary	much	more	than	that.	For	example,	our	production
environment	for	our	service	might	consist	of	multiple	load-balanced	hosts	spread	across
two	data	centers,	whereas	our	test	environment	might	just	have	everything	running	on	a
single	host.	These	differences	in	environments	can	introduce	a	few	problems.

I	was	bitten	by	this	personally	many	years	ago.	We	were	deploying	a	Java	web	service	into
a	clustered	WebLogic	application	container	in	production.	This	WebLogic	cluster
replicated	session	state	between	multiple	nodes,	giving	us	some	level	of	resilience	if	a
single	node	failed.	However,	the	WebLogic	licenses	were	expensive,	as	were	the	machines
our	software	was	deployed	onto.	This	meant	that	in	our	test	environment,	our	software
was	deployed	on	a	single	machine,	in	a	nonclustered	configuration.

This	hurt	us	badly	during	one	release.	For	WebLogic	to	be	able	to	copy	session	state
between	nodes,	the	session	data	needs	to	be	properly	serializable.	Unfortunately,	one	of
our	commits	broke	this,	so	when	we	deployed	into	production	our	session	replication
failed.	We	ended	up	resolving	this	by	pushing	hard	to	replicate	a	clustered	setup	in	our	test
environment.

The	service	we	want	to	deploy	is	the	same	in	all	these	different	environments,	but	each	of
the	environments	serves	a	different	purpose.	On	my	developer	laptop	I	want	to	quickly
deploy	the	service,	potentially	against	stubbed	collaborators,	to	run	tests	or	carry	out	some
manual	validation	of	behavior,	whereas	when	I	deploy	into	a	production	environment	I
may	want	to	deploy	multiple	copies	of	my	service	in	a	load-balanced	fashion,	perhaps	split
across	one	or	more	data	centers	for	durability	reasons.

As	you	move	from	your	laptop	to	build	server	to	UAT	environment	all	the	way	to
production,	you’ll	want	to	ensure	that	your	environments	are	more	and	more	production-
like	to	catch	any	problems	associated	with	these	environmental	differences	sooner.	This
will	be	a	constant	balance.	Sometimes	the	time	and	cost	to	reproduce	production-like
environments	can	be	prohibitive,	so	you	have	to	make	compromises.	Additionally,
sometimes	using	a	production-like	environment	can	slow	down	feedback	loops;	waiting
for	25	machines	to	install	your	software	in	AWS	might	be	much	slower	than	simply
deploying	your	service	into	a	local	Vagrant	instance,	for	example.

This	balance,	between	production-like	environments	and	fast	feedback,	won’t	be	static.
Keep	an	eye	on	the	bugs	you	find	further	downstream	and	your	feedback	times,	and	adjust

this	balance	as	required.

Managing	environments	for	single-artfact	monolithic	systems	can	be	challenging,
especially	if	you	don’t	have	access	to	systems	that	are	easily	automatable.	When	you	think
about	multiple	environments	per	microservice,	this	can	be	even	more	daunting.	We’ll	look
shortly	at	some	different	deployment	platforms	that	can	make	this	much	easier	for	us.

Service	Configuration
Our	services	need	some	configuration.	Ideally,	this	should	be	a	small	amount,	and	limited
to	those	features	that	change	from	one	environment	to	another,	such	as	what	username	and
password	should	I	use	to	connect	to	my	database?	Configuration	that	changes	from	one
environment	to	another	should	be	kept	to	an	absolute	minimum.	The	more	your
configuration	changes	fundamental	service	behavior,	and	the	more	that	configuration
varies	from	one	environment	to	another,	the	more	you	will	find	problems	only	in	certain
environments,	which	is	painful	in	the	extreme.

So	if	we	have	some	configuration	for	our	service	that	does	change	from	one	environment
to	another,	how	should	we	handle	this	as	part	of	our	deployment	process?	One	option	is	to
build	one	artifact	per	environment,	with	configuration	inside	the	artifact	itself.	Initially
this	seems	sensible.	The	configuration	is	built	right	in;	just	deploy	it	and	everything	should
work	fine,	right?	This	is	problematic.	Remember	the	concept	of	continuous	delivery.	We
want	to	create	an	artifact	that	represents	our	release	candidate,	and	move	it	through	our
pipeline,	confirming	that	it	is	good	enough	to	go	into	production.	Let’s	imagine	I	build	a
Customer-Service-Test	and	Customer-Service-Prod	artifacts.	If	my	Customer-Service-Test
artifact	passes	the	tests,	but	it’s	the	Customer-Service-Prod	artifact	that	I	actually	deploy,
can	I	be	sure	that	I	have	verified	the	software	that	actually	ends	up	in	production?

There	are	other	challenges	as	well.	First,	there	is	the	additional	time	taken	to	build	these
artifacts.	Next,	the	fact	that	you	need	to	know	at	build	time	what	environments	exist.	And
how	do	you	handle	sensitive	configuration	data?	I	don’t	want	information	about
production	passwords	checked	in	with	my	source	code,	but	if	it	is	needed	at	build	time	to
create	all	those	artifacts,	this	is	often	difficult	to	avoid.

A	better	approach	is	to	create	one	single	artifact,	and	manage	configuration	separately.
This	could	be	a	properties	file	that	exists	for	each	environment,	or	different	parameters
passed	in	to	an	install	process.	Another	popular	option,	especially	when	dealing	with	a
larger	number	of	microservices,	is	to	use	a	dedicated	system	for	providing	configuration,
which	we’ll	explore	more	in	Chapter	11.

Service-to-Host	Mapping
One	of	the	questions	that	comes	up	quite	early	on	in	the	discussion	around	microservices
is	“How	many	services	per	machine?”	Before	we	go	on,	we	should	pick	a	better	term	than
machine,	or	even	the	more	generic	box	that	I	used	earlier.	In	this	era	of	virtualization,	the
mapping	between	a	single	host	running	an	operating	system	and	the	underlying	physical
infrastructure	can	vary	to	a	great	extent.	Thus,	I	tend	to	talk	about	hosts,	using	them	as	a
generic	unit	of	isolation	—	namely,	an	operating	system	onto	which	I	can	install	and	run
my	services.	If	you	are	deploying	directly	on	to	physical	machines,	then	one	physical
server	maps	to	one	host	(which	is	perhaps	not	completely	correct	terminology	in	this
context,	but	in	the	absence	of	better	terms	may	have	to	suffice).	If	you’re	using
virtualization,	a	single	physical	machine	can	map	to	multiple	independent	hosts,	each	of
which	could	hold	one	or	more	services.

So	when	thinking	of	different	deployment	models,	we’ll	talk	about	hosts.	So,	then,	how
many	services	per	host	should	we	have?

I	have	a	definite	view	as	to	which	model	is	preferable,	but	there	are	a	number	of	factors	to
consider	when	working	out	which	model	will	be	right	for	you.	It’s	also	important	to
understand	that	some	choices	we	make	in	this	regard	will	limit	some	of	the	deployment
options	available	to	us.

Multiple	Services	Per	Host
Having	multiple	services	per	host,	as	shown	in	Figure	6-6,	is	attractive	for	a	number	of
reasons.	First,	purely	from	a	host	management	point	of	view,	it	is	simpler.	In	a	world
where	one	team	manages	the	infrastructure	and	another	team	manages	the	software,	the
infrastructure	team’s	workload	is	often	a	function	of	the	number	of	hosts	it	has	to	manage.
If	more	services	are	packed	on	to	a	single	host,	the	host	management	workload	doesn’t
increase	as	the	number	of	services	increases.	Second	is	cost.	Even	if	you	have	access	to	a
virtualization	platform	that	allows	you	to	provision	and	resize	virtual	hosts,	the
virtualization	can	add	an	overhead	that	reduces	the	underlying	resources	available	to	your
services.	In	my	opinion,	both	these	problems	can	be	addressed	with	new	working	practices
and	technology,	and	we’ll	explore	that	shortly.

This	model	is	also	familiar	to	those	who	deploy	into	some	form	of	an	application
container.	In	some	ways,	the	use	of	an	application	container	is	a	special	case	of	the
multiple-services-per-host	model,	so	we’ll	look	into	that	separately.	This	model	can	also
simplify	the	life	of	the	developer.	Deploying	multiple	services	to	a	single	host	in
production	is	synonymous	with	deploying	multiple	services	to	a	local	dev	workstation	or
laptop.	If	we	want	to	look	at	an	alternative	model,	we	want	to	find	a	way	to	keep	this
conceptually	simple	for	developers.

Figure	6-6.	Multiple	microservices	per	host

There	are	some	challenges	with	this	model,	though.	First,	it	can	make	monitoring	more
difficult.	For	example,	when	tracking	CPU,	do	I	need	to	track	the	CPU	of	one	service
independent	of	the	others?	Or	do	I	care	about	the	CPU	of	the	box	as	a	whole?	Side	effects

can	also	be	hard	to	avoid.	If	one	service	is	under	significant	load,	it	can	end	up	reducing
the	resources	available	to	other	parts	of	the	system.	Gilt,	when	scaling	out	the	number	of
services	it	ran,	hit	this	problem.	Initially	it	coexisted	many	services	on	a	single	box,	but
uneven	load	on	one	of	the	services	would	have	an	adverse	impact	on	everything	else
running	on	that	host.	This	makes	impact	analysis	of	host	failures	more	complex	as	well	—
taking	a	single	host	out	of	commission	can	have	a	large	ripple	effect.

Deployment	of	services	can	be	somewhat	more	complex	too,	as	ensuring	one	deployment
doesn’t	affect	another	leads	to	additional	headaches.	For	example,	if	I	use	Puppet	to
prepare	a	host,	but	each	service	has	different	(and	potentially	contradictory)	dependencies,
how	can	I	make	that	work?	In	the	worst-case	scenario,	I	have	seen	people	tie	multiple
service	deployments	together,	deploying	multiple	different	services	to	a	single	host	in	one
step,	to	try	to	simplify	the	deployment	of	multiple	services	to	one	host.	In	my	opinion,	the
small	upside	in	improving	simplicity	is	more	than	outweighed	by	the	fact	that	we	have
given	up	one	of	the	key	benefits	of	microservices:	striving	for	independent	release	of	our
software.	If	you	do	adopt	the	multiple-services-per-host	model,	make	sure	you	keep	hold
of	the	idea	that	each	service	should	be	deployed	independently.

This	model	can	also	inhibit	autonomy	of	teams.	If	services	for	different	teams	are	installed
on	the	same	host,	who	gets	to	configure	the	host	for	their	services?	In	all	likelihood,	this
ends	up	getting	handled	by	a	centralized	team,	meaning	it	takes	more	coordination	to	get
services	deployed.

Another	issue	is	that	this	option	can	limit	our	deployment	artifact	options.	Image-based
deployments	are	out,	as	are	immutable	servers	unless	you	tie	multiple	different	services
together	in	a	single	artifact,	which	we	really	want	to	avoid.

The	fact	that	we	have	multiple	services	on	a	single	host	means	that	efforts	to	target	scaling
to	the	service	most	in	need	of	it	can	be	complicated.	Likewise,	if	one	microservice	handles
data	and	operations	that	are	especially	sensitive,	we	might	want	to	set	up	the	underlying
host	differently,	or	perhaps	even	place	the	host	itself	in	a	separate	network	segment.
Having	everything	on	one	host	means	we	might	end	up	having	to	treat	all	services	the
same	way	even	if	their	needs	are	different.

As	my	colleague	Neal	Ford	puts	it,	many	of	our	working	practices	around	deployment	and
host	management	are	an	attempt	to	optimize	for	scarcity	of	resources.	In	the	past,	the	only
option	if	we	wanted	another	host	was	to	buy	or	rent	another	physical	machine.	This	often
had	a	large	lead	time	to	it	and	resulted	in	a	long-term	financial	commitment.	It	wasn’t
uncommon	for	clients	I	have	worked	with	to	provision	new	servers	only	every	two	to	three
years,	and	trying	to	get	additional	machines	outside	of	these	timelines	was	difficult.	But
on-demand	computing	platforms	have	drastically	reduced	the	costs	of	computing
resources,	and	improvements	in	virtualization	technology	mean	even	for	in-house	hosted
infrastructure	there	is	more	flexibility.

Application	Containers
If	you’re	familiar	with	deploying	.NET	applications	behind	IIS	or	Java	applications	into	a
servlet	container,	you	will	be	well	acquainted	with	the	model	where	multiple	distinct
services	or	applications	sit	inside	a	single	application	container,	which	in	turn	sits	on	a
single	host,	as	we	see	in	Figure	6-7.	The	idea	is	that	the	application	container	your
services	live	in	gives	you	benefits	in	terms	of	improved	manageability,	such	as	clustering
support	to	handle	grouping	multiple	instances	together,	monitoring	tools,	and	the	like.

Figure	6-7.	Multiple	microservices	per	host

This	setup	can	also	yield	benefits	in	terms	of	reducing	overhead	of	language	runtimes.
Consider	running	five	Java	services	in	a	single	Java	servlet	container.	I	only	have	the
overhead	of	one	single	JVM.	Compare	this	with	running	five	independent	JVMs	on	the
same	host	when	using	embedded	containers.	That	said,	I	still	feel	that	these	application
containers	have	enough	downsides	that	you	should	challenge	yourself	to	see	if	they	are
really	required.

First	among	the	downsides	is	that	they	inevitably	constrain	technology	choice.	You	have
to	buy	into	a	technology	stack.	This	can	limit	not	only	the	technology	choices	for	the
implementation	of	the	service	itself,	but	also	the	options	you	have	in	terms	of	automation
and	management	of	your	systems.	As	we’ll	discuss	shortly,	one	of	the	ways	we	can
address	the	overhead	of	managing	multiple	hosts	is	around	automation,	and	so

constraining	our	options	for	resolving	this	may	well	be	doubly	damaging.

I	would	also	question	some	of	the	value	of	the	container	features.	Many	of	them	tout	the
ability	to	manage	clusters	to	support	shared	in-memory	session	state,	something	we
absolutely	want	to	avoid	in	any	case	due	to	the	challenges	this	creates	when	scaling	our
services.	And	the	monitoring	capabilities	they	provide	won’t	be	sufficient	when	we
consider	the	sorts	of	joined-up	monitoring	we	want	to	do	in	a	microservices	world,	as
we’ll	see	in	Chapter	8.	Many	of	them	also	have	quite	slow	spin-up	times,	impacting
developer	feedback	cycles.

There	are	other	sets	of	problems	too.	Attempting	to	do	proper	lifecycle	management	of
applications	on	top	of	platforms	like	the	JVM	can	be	problematic,	and	more	complex	than
simply	restarting	a	JVM.	Analyzing	resource	use	and	threads	is	also	much	more	complex,
as	you	have	multiple	applications	sharing	the	same	process.	And	remember,	even	if	you	do
get	value	from	a	technology-specific	container,	they	aren’t	free.	Aside	from	the	fact	that
many	of	them	are	commercial	and	so	have	a	cost	implication,	they	add	a	resource
overhead	in	and	of	themselves.

Ultimately,	this	approach	is	again	an	attempt	to	optimize	for	scarcity	of	resources	that
simply	may	not	hold	up	anymore.	Whether	you	decide	to	have	multiple	services	per	host
as	a	deployment	model,	I	would	strongly	suggest	looking	at	self-contained	deployable
microservices	as	artifacts.	For	.NET,	this	is	possible	with	things	like	Nancy,	and	Java	has
supported	this	model	for	years.	For	example,	the	venerable	Jetty	embedded	container
makes	for	a	very	lightweight	self-contained	HTTP	server,	which	is	the	core	of	the
Dropwizard	stack.	Google	has	been	known	to	quite	happily	use	embedded	Jetty	containers
for	serving	static	content	directly,	so	we	know	these	things	can	operate	at	scale.

Single	Service	Per	Host
With	a	single-service-per-host	model	shown	in	Figure	6-8,	we	avoid	side	effects	of
multiple	hosts	living	on	a	single	host,	making	monitoring	and	remediation	much	simpler.
We	have	potentially	reduced	our	single	points	of	failure.	An	outage	to	one	host	should
impact	only	a	single	service,	although	that	isn’t	always	clear	when	you’re	using	a
virtualized	platform.	We’ll	cover	designing	for	scale	and	failure	more	in	Chapter	11.	We
also	can	more	easily	scale	one	service	independent	from	others,	and	deal	with	security
concerns	more	easily	by	focusing	our	attention	only	on	the	service	and	host	that	requires
it.

Figure	6-8.	A	single	microservice	per	host

Just	as	important	is	that	we	have	opened	up	the	potential	to	use	alternative	deployment
techniques	such	as	image-based	deployments	or	the	immutable	server	pattern,	which	we
discussed	earlier.

We’ve	added	a	lot	of	complexity	in	adopting	a	microservice	architecture.	The	last	thing	we
want	to	do	is	go	looking	for	more	sources	of	complexity.	In	my	opinion,	if	you	don’t	have
a	viable	PaaS	available,	then	this	model	does	a	very	good	job	of	reducing	a	system’s
overall	complexity.	Having	a	single-service-per-host	model	is	significantly	easier	to

reason	about	and	can	help	reduce	complexity.	If	you	can’t	embrace	this	model	yet,	I	won’t
say	microservices	aren’t	for	you.	But	I	would	suggest	that	you	look	to	move	toward	this
model	over	time	as	a	way	of	reducing	the	complexity	that	a	microservice	architecture	can
bring.

Having	an	increased	number	of	hosts	has	potential	downsides,	though.	We	have	more
servers	to	manage,	and	there	might	also	be	a	cost	implication	of	running	more	distinct
hosts.	Despite	these	problems,	this	is	still	the	model	I	prefer	for	microservice
architectures.	And	we’ll	talk	about	a	few	things	we	can	do	to	reduce	the	overhead	of
handling	large	numbers	of	hosts	shortly.

Platform	as	a	Service
When	using	a	platform	as	a	service	(PaaS),	you	are	working	at	a	higher-level	abstraction
than	at	a	single	host.	Most	of	these	platforms	rely	on	taking	a	technology-specific	artifact,
such	as	a	Java	WAR	file	or	Ruby	gem,	and	automatically	provisioning	and	running	it	for
you.	Some	of	these	platforms	will	transparently	attempt	to	handle	scaling	the	system	up
and	down	for	you,	although	a	more	common	(and	in	my	experience	less	error-prone)	way
will	allow	you	some	control	over	how	many	nodes	your	service	might	run	on,	but	it
handles	the	rest.

At	the	time	of	writing,	most	of	the	best,	most	polished	PaaS	solutions	are	hosted.	Heroku
comes	to	mind	as	being	probably	the	gold	class	of	PaaS.	It	doesn’t	just	handle	running
your	service,	it	also	supports	services	like	databases	in	a	very	simple	fashion.	Self-hosted
solutions	do	exist	in	this	space,	although	they	are	more	immature	than	the	hosted
solutions.

When	PaaS	solutions	work	well,	they	work	very	well	indeed.	However,	when	they	don’t
quite	work	for	you,	you	often	don’t	have	much	control	in	terms	of	getting	under	the	hood
to	fix	things.	This	is	part	of	the	trade-off	you	make.	I	would	say	that	in	my	experience	the
smarter	the	PaaS	solutions	try	to	be,	the	more	they	go	wrong.	I’ve	used	more	than	one
PaaS	that	attempts	to	autoscale	based	on	application	use,	but	does	it	badly.	Invariably	the
heuristics	that	drive	these	smarts	tend	to	be	tailored	for	the	average	application	rather	than
your	specific	use	case.	The	more	nonstandard	your	application,	the	more	likely	it	is	that	it
might	not	play	nicely	with	a	PaaS.

As	the	good	PaaS	solutions	handle	so	much	for	you,	they	can	be	an	excellent	way	of
handling	the	increased	overhead	we	get	with	having	many	more	moving	parts.	That	said,
I’m	still	not	sure	that	we	have	all	the	models	right	in	this	space	yet,	and	the	limited	self-
hosted	options	mean	that	this	approach	might	not	work	for	you.	In	the	coming	decade
though	I	expect	we’ll	be	targeting	PaaS	for	deployment	more	than	having	to	self-manage
hosts	and	deployments	of	individual	services.

Automation
The	answer	to	so	many	problems	we	have	raised	so	far	comes	down	to	automation.	With	a
small	number	of	machines,	it	is	possible	to	manage	everything	manually.	I	used	to	do	this.
I	remember	running	a	small	set	of	production	machines,	and	I	would	collect	logs,	deploy
software,	and	check	processes	by	manually	logging	in	to	the	box.	My	productivity	seemed
to	be	constrained	by	the	number	of	terminal	windows	I	could	have	open	at	once	—	a
second	monitor	was	a	huge	step	up.	This	breaks	down	really	fast,	though.

One	of	the	pushbacks	against	the	single-service-per-host	setup	is	the	perception	that	the
amount	of	overhead	to	manage	these	hosts	will	increase.	This	is	certainly	true	if	you	are
doing	everything	manually.	Double	the	servers,	double	the	work!	But	if	we	automate
control	of	our	hosts,	and	deployment	of	the	services,	then	there	is	no	reason	why	adding
more	hosts	should	increase	our	workload	in	a	linear	fashion.

But	even	if	we	keep	the	number	of	hosts	small,	we	still	are	going	to	have	lots	of	services.
That	means	multiple	deployments	to	handle,	services	to	monitor,	logs	to	collect.
Automation	is	essential.

Automation	is	also	how	we	can	make	sure	that	our	developers	still	remain	productive.
Giving	them	the	ability	to	self-service-provision	individual	services	or	groups	of	services
is	key	to	making	developers’	lives	easier.	Ideally,	developers	should	have	access	to	exactly
the	same	tool	chain	as	is	used	for	deployment	of	our	production	services	so	as	to	ensure
that	we	can	spot	problems	early	on.	We’ll	be	looking	at	a	lot	of	technology	in	this	chapter
that	embraces	this	view.

Picking	technology	that	enables	automation	is	highly	important.	This	starts	with	the	tools
used	to	manage	hosts.	Can	you	write	a	line	of	code	to	launch	a	virtual	machine,	or	shut
one	down?	Can	you	deploy	the	software	you	have	written	automatically?	Can	you	deploy
database	changes	without	manual	intervention?	Embracing	a	culture	of	automation	is	key
if	you	want	to	keep	the	complexities	of	microservice	architectures	in	check.

Two	Case	Studies	on	the	Power	of	Automation
It	is	probably	helpful	to	give	you	a	couple	of	concrete	examples	that	explain	the	power	of
good	automation.	One	of	our	clients	in	Australia	is	RealEstate.com.au	(REA).	Among
other	things,	the	company	provides	real	estate	listings	for	retail	and	commercial	customers
in	Australia	and	elsewhere	in	the	Asia-Pacific	region.	Over	a	number	of	years,	it	has	been
moving	its	platform	toward	a	distributed,	microservices	design.	When	it	started	on	this
journey	it	had	to	spend	a	lot	of	time	getting	the	tooling	around	the	services	just	right	—
making	it	easy	for	developers	to	provision	machines,	to	deploy	their	code,	or	monitor
them.	This	caused	a	front-loading	of	work	to	get	things	started.

In	the	first	three	months	of	this	exercise,	REA	was	able	to	move	just	two	new
microservices	into	production,	with	the	development	team	taking	full	responsibility	for	the
entire	build,	deployment,	and	support	of	the	services.	In	the	next	three	months,	between
10–15	services	went	live	in	a	similar	manner.	By	the	end	of	the	18-month	period,	REA	had
over	60–70	services.

This	sort	of	pattern	is	also	borne	out	by	the	experiences	of	Gilt,	an	online	fashion	retailer
that	started	in	2007.	Gilt’s	monolithic	Rails	application	was	starting	to	become	difficult	to
scale,	and	the	company	decided	in	2009	to	start	decomposing	the	system	into
microservices.	Again	automation,	especially	tooling	to	help	developers,	was	given	as	a
key	reason	to	drive	Gilt’s	explosion	in	the	use	of	microservices.	A	year	later,	Gilt	had
around	10	microservices	live;	by	2012,	over	100;	and	in	2014,	over	450	microservices	by
Gilt’s	own	count	—	in	other	words,	around	three	services	for	every	developer	in	Gilt.

http://bit.ly/1z1WR3T

From	Physical	to	Virtual
One	of	the	key	tools	available	to	us	in	managing	a	large	number	of	hosts	is	finding	ways
of	chunking	up	existing	physical	machines	into	smaller	parts.	Traditional	virtualization
like	VMWare	or	that	used	by	AWS	has	yielded	huge	benefits	in	reducing	the	overhead	of
host	management.	However,	there	have	been	some	new	advances	in	this	space	that	are
well	worth	exploring,	as	they	can	open	up	even	more	interesting	possibilities	for	dealing
with	our	microservice	architecture.

Traditional	Virtualization
Why	is	having	lots	of	hosts	expensive?	Well,	if	you	need	a	physical	server	per	host,	the
answer	is	fairly	obvious.	If	this	is	the	world	you	are	operating	in,	then	the	multiple-
service-per-host	model	is	probably	right	for	you,	although	don’t	be	surprised	if	this
becomes	an	ever	more	challenging	constraint.	I	suspect,	however,	that	most	of	you	are
using	virtualization	of	some	sort.	Virtualization	allows	us	to	slice	up	a	physical	server	into
separate	hosts,	each	of	which	can	run	different	things.	So	if	we	want	one	service	per	host,
can’t	we	just	slice	up	our	physical	infrastructure	into	smaller	and	smaller	pieces?

Well,	for	some	people,	you	can.	However,	slicing	up	the	machine	into	ever	increasing
VMs	isn’t	free.	Think	of	our	physical	machine	as	a	sock	drawer.	If	we	put	lots	of	wooden
dividers	into	our	drawer,	can	we	store	more	socks	or	fewer?	The	answer	is	fewer:	the
dividers	themselves	take	up	room	too!	Our	drawer	might	be	easier	to	deal	with	and
organize,	and	perhaps	we	could	decide	to	put	T-shirts	in	one	of	the	spaces	now	rather	than
just	socks,	but	more	dividers	means	less	overall	space.

In	the	world	of	virtualization,	we	have	a	similar	overhead	as	our	sock	drawer	dividers.	To
understand	where	this	overhead	comes	from,	let’s	look	at	how	most	virtualization	is	done.
Figure	6-9	shows	a	comparison	of	two	types	of	virtualization.	On	the	left,	we	see	the
various	layers	involved	in	what	is	called	type	2	virtualization,	which	is	the	sort
implemented	by	AWS,	VMWare,	VSphere,	Xen,	and	KVM.	(Type	1	virtualization	refers
to	technology	where	the	VMs	run	directly	on	hardware,	not	on	top	of	another	operating
system.)	On	our	physical	infrastructure	we	have	a	host	operating	system.	On	this	OS	we
run	something	called	a	hypervisor,	which	has	two	key	jobs.	First,	it	maps	resources	like
CPU	and	memory	from	the	virtual	host	to	the	physical	host.	Second,	it	acts	as	a	control
layer,	allowing	us	to	manipulate	the	virtual	machines	themselves.

Figure	6-9.	A	comparison	of	standard	Type	2	virtualization,	and	lightweight	containers

Inside	the	VMs,	we	get	what	looks	like	completely	different	hosts.	They	can	run	their	own

operating	systems,	with	their	own	kernels.	They	can	be	considered	almost	hermetically
sealed	machines,	kept	isolated	from	the	underlying	physical	host	and	the	other	virtual
machines	by	the	hypervisor.

The	problem	is	that	the	hypervisor	here	needs	to	set	aside	resources	to	do	its	job.	This
takes	away	CPU,	I/O,	and	memory	that	could	be	used	elsewhere.	The	more	hosts	the
hypervisor	manages,	the	more	resources	it	needs.	At	a	certain	point,	this	overhead
becomes	a	constraint	in	slicing	up	your	physical	infrastructure	any	further.	In	practice,	this
means	that	there	are	often	diminishing	returns	in	slicing	up	a	physical	box	into	smaller	and
smaller	parts,	as	proportionally	more	and	more	resources	go	into	the	overhead	of	the
hypervisor.

Vagrant
Vagrant	is	a	very	useful	deployment	platform,	which	is	normally	used	for	dev	and	test
rather	than	production.	Vagrant	provides	you	with	a	virtual	cloud	on	your	laptop.
Underneath,	it	uses	a	standard	virtualization	system	(typically	VirtualBox,	although	it	can
use	other	platforms).	It	allows	you	to	define	a	set	of	VMs	in	a	text	file,	along	with	how	the
VMs	are	networked	together	and	which	images	the	VMs	should	be	based	on.	This	text	file
can	be	checked	in	and	shared	between	team	members.

This	makes	it	easier	for	you	to	create	production-like	environments	on	your	local	machine.
You	can	spin	up	multiple	VMs	at	a	time,	shut	individual	ones	to	test	failure	modes,	and
have	the	VMs	mapped	through	to	local	directories	so	you	can	make	changes	and	see	them
reflected	immediately.	Even	for	teams	using	on-demand	cloud	platforms	like	AWS,	the
faster	turnaround	of	using	Vagrant	can	be	a	huge	boon	for	development	teams.

One	of	the	downsides,	though,	is	that	running	lots	of	VMs	can	tax	the	average
development	machine.	If	we	have	one	service	to	one	VM,	you	may	not	be	able	to	bring	up
your	entire	system	on	your	local	machine.	This	can	result	in	the	need	to	stub	out	some
dependencies	to	make	things	manageable,	which	is	one	more	thing	you’ll	have	to	handle
to	ensure	that	the	development	and	test	experience	is	a	good	one.

Linux	Containers
For	Linux	users,	there	is	an	alternative	to	virtualization.	Rather	than	having	a	hypervisor
to	segment	and	control	separate	virtual	hosts,	Linux	containers	instead	create	a	separate
process	space	in	which	other	processes	live.

On	Linux,	process	are	run	by	a	given	user,	and	have	certain	capabilities	based	on	how	the
permissions	are	set.	Processes	can	spawn	other	processes.	For	example,	if	I	launch	a
process	in	a	terminal,	that	child	process	is	generally	considered	a	child	of	the	terminal
process.	The	Linux	kernel’s	job	is	maintaining	this	tree	of	processes.

Linux	containers	extend	this	idea.	Each	container	is	effectively	a	subtree	of	the	overall
system	process	tree.	These	containers	can	have	physical	resources	allocated	to	them,
something	the	kernel	handles	for	us.	This	general	approach	has	been	around	in	many
forms,	such	as	Solaris	Zones	and	OpenVZ,	but	it	is	LXC	that	has	become	most	popular.
LXC	is	now	available	out	of	the	box	in	any	modern	Linux	kernel.

If	we	look	at	a	stack	diagram	for	a	host	running	LXC	in	Figure	6-9,	we	see	a	few
differences.	First,	we	don’t	need	a	hypervisor.	Second,	although	each	container	can	run	its
own	operating	system	distribution,	it	has	to	share	the	same	kernel	(because	the	kernel	is
where	the	process	tree	lives).	This	means	that	our	host	operating	system	could	run	Ubuntu,
and	our	containers	CentOS,	as	long	as	they	could	both	share	the	same	kernel.

We	don’t	just	benefit	from	the	resources	saved	by	not	needing	a	hypervisor.	We	also	gain
in	terms	of	feedback.	Linux	containers	are	much	faster	to	provision	than	full-fat	virtual
machines.	It	isn’t	uncommon	for	a	VM	to	take	many	minutes	to	start	—	but	with	Linux
containers,	startup	can	take	a	few	seconds.	You	also	have	finer-grained	control	over	the
containers	themselves	in	terms	of	assigning	resources	to	them,	which	makes	it	much	easier
to	tweak	the	settings	to	get	the	most	out	of	the	underlying	hardware.

Due	to	the	lighter-weight	nature	of	containers,	we	can	have	many	more	of	them	running
on	the	same	hardware	than	would	be	possible	with	VMs.	By	deploying	one	service	per
container,	as	in	Figure	6-10,	we	get	a	degree	of	isolation	from	other	containers	(although
this	isn’t	perfect),	and	can	do	so	much	more	cost	effectively	than	would	be	possible	if	we
wanted	to	run	each	service	in	its	own	VM.

Figure	6-10.	Running	services	in	separate	containers

Containers	can	be	used	well	with	full-fat	virtualization	too.	I’ve	seen	more	than	one
project	provision	a	large	AWS	EC2	instance	and	run	LXC	containers	on	it	to	get	the	best
of	both	worlds:	an	on-demand	ephemeral	compute	platform	in	the	form	of	EC2,	coupled
with	highly	flexible	and	fast	containers	running	on	top	of	it.

Linux	containers	aren’t	without	some	problems,	however.	Imagine	I	have	lots	of
microservices	running	in	their	own	containers	on	a	host.	How	does	the	outside	world	see
them?	You	need	some	way	to	route	the	outside	world	through	to	the	underlying	containers,
something	many	of	the	hypervisors	do	for	you	with	normal	virtualization.	I’ve	seen	many
a	person	sink	inordinate	amounts	of	time	into	configuring	port	forwarding	using	IPTables
to	expose	containers	directly.	Another	point	to	bear	in	mind	is	that	these	containers	cannot
be	considered	completely	sealed	from	each	other.	There	are	many	documented	and	known
ways	in	which	a	process	from	one	container	can	bust	out	and	interact	with	other	containers
or	the	underlying	host.	Some	of	these	problems	are	by	design	and	some	are	bugs	that	are

being	addressed,	but	either	way	if	you	don’t	trust	the	code	you	are	running,	don’t	expect
that	you	can	run	it	in	a	container	and	be	safe.	If	you	need	that	sort	of	isolation,	you’ll	need
to	consider	using	virtual	machines	instead.

Docker
Docker	is	a	platform	built	on	top	of	lightweight	containers.	It	handles	much	of	the	work
around	handling	containers	for	you.	In	Docker,	you	create	and	deploy	apps,	which	are
synonymous	with	images	in	the	VM	world,	albeit	for	a	container-based	platform.	Docker
manages	the	container	provisioning,	handles	some	of	the	networking	problems	for	you,
and	even	provides	its	own	registry	concept	that	allows	you	to	store	and	version	Docker
applications.

The	Docker	app	abstraction	is	a	useful	one	for	us,	because	just	as	with	VM	images	the
underlying	technology	used	to	implement	the	service	is	hidden	from	us.	We	have	our
builds	for	our	services	create	Docker	applications,	and	store	them	in	the	Docker	registry,
and	away	we	go.

Docker	can	also	alleviate	some	of	the	downsides	of	running	lots	of	services	locally	for	dev
and	test	purposes.	Rather	than	using	Vagrant	to	host	multiple	independent	VMs,	each	one
containing	its	own	service,	we	can	host	a	single	VM	in	Vagrant	that	runs	a	Docker
instance.	We	then	use	Vagrant	to	set	up	and	tear	down	the	Docker	platform	itself,	and	use
Docker	for	fast	provisioning	of	individual	services.

A	number	of	different	technologies	are	being	developed	to	take	advantage	of	Docker.
CoreOS	is	a	very	interesting	operating	system	designed	with	Docker	in	mind.	It	is	a
stripped-down	Linux	OS	that	provides	only	the	essential	services	to	allow	Docker	to	run.
This	means	it	consumes	fewer	resources	than	other	operating	systems,	making	it	possible
to	dedicate	even	more	resources	of	the	underlying	machine	to	our	containers.	Rather	than
using	a	package	manager	like	debs	or	RPMs,	all	software	is	installed	as	independent
Docker	apps,	each	running	in	its	own	container.

Docker	itself	doesn’t	solve	all	problems	for	us.	Think	of	it	as	a	simple	PaaS	that	works	on
a	single	machine.	If	you	want	tools	to	help	you	manage	services	across	multiple	Docker
instances	across	multiple	machines,	you’ll	need	to	look	at	other	software	that	adds	these
capabilities.	There	is	a	key	need	for	a	scheduling	layer	that	lets	you	request	a	container
and	then	finds	a	Docker	container	that	can	run	it	for	you.	In	this	space,	Google’s	recently
open	sourced	Kubernetes	and	CoreOS’s	cluster	technology	can	help,	and	it	seems	every
month	there	is	a	new	entrant	in	this	space.	Deis	is	another	interesting	tool	based	on
Docker,	which	is	attempting	to	provide	a	Heroku-like	PaaS	on	top	of	Docker.

I	talked	earlier	about	PaaS	solutions.	My	struggle	with	them	has	always	been	that	they
often	get	the	abstraction	level	wrong,	and	that	self-hosted	solutions	lag	significantly
behind	hosted	solutions	like	Heroku.	Docker	gets	much	more	of	this	right,	and	the
explosion	of	interest	in	this	space	means	I	suspect	it	will	become	a	much	more	viable
platform	for	all	sorts	of	deployments	over	the	next	few	years	for	all	sorts	of	different	use
cases.	In	many	ways,	Docker	with	an	appropriate	scheduling	layer	sits	between	IaaS	and
PaaS	solutions	—	the	term	containers	as	a	service	(CaaS)	is	already	being	used	to

http://deis.io/

describe	it.

Docker	is	being	used	in	production	by	multiple	companies.	It	provides	many	of	the
benefits	of	lightweight	containers	in	terms	of	efficiency	and	speed	of	provisioning,
together	with	the	tools	to	avoid	many	of	the	downsides.	If	you	are	interested	in	looking	at
alternative	deployment	platforms,	I’d	strongly	suggest	you	give	Docker	a	look.

A	Deployment	Interface
Whatever	underlying	platform	or	artifacts	you	use,	having	a	uniform	interface	to	deploy	a
given	service	is	vital.	We’ll	want	to	trigger	deployment	of	a	microservice	on	demand	in	a
variety	of	different	situations,	from	deployments	locally	for	dev	and	test	to	production
deployments.	We’ll	also	want	to	keep	our	deployment	mechanisms	as	similar	as	possible
from	dev	to	production,	as	the	last	thing	we	want	is	to	find	ourselves	hitting	problems	in
production	because	deployment	uses	a	completely	different	process!

After	many	years	of	working	in	this	space,	I	am	convinced	that	the	most	sensible	way	to
trigger	any	deployment	is	via	a	single,	parameterizable	command-line	call.	This	can	be
triggered	by	scripts,	launched	by	your	CI	tool,	or	typed	in	by	hand.	I’ve	built	wrapper
scripts	in	a	variety	of	technology	stacks	to	make	this	work,	from	Windows	batch,	to	bash,
to	Python	Fabric	scripts,	and	more,	but	all	of	the	command	lines	share	the	same	basic
format.

We	need	to	know	what	we	are	deploying,	so	we	need	to	provide	the	name	of	a	known
entity,	or	in	our	case	a	microservice.	We	also	need	to	know	what	version	of	the	entity	we
want.	The	answer	to	what	version	tends	to	be	one	of	three	possibilities.	When	you’re
working	locally,	it’ll	be	whatever	version	is	on	your	local	machine.	When	testing,	you’ll
want	the	latest	green	build,	which	could	just	be	the	most	recent	blessed	artifact	in	our
artifact	repository.	Or	when	testing/diagnosing	issues,	we	may	want	to	deploy	an	exact
build.

The	third	and	final	thing	we’ll	need	to	know	is	what	environment	we	want	the
microservice	deployed	into.	As	we	discussed	earlier,	our	microservice’s	topology	may
differ	from	one	environment	to	the	next,	but	that	should	be	hidden	from	us	here.

So,	imagine	we	create	a	simple	deploy	script	that	takes	these	three	parameters.	Say	we’re
developing	locally	and	want	to	deploy	our	catalog	service	into	our	local	environment.	I
might	type:

$	deploy	artifact=catalog	environment=local	version=local

Once	I’ve	checked	in,	our	CI	build	service	picks	up	the	change	and	creates	a	new	build
artifact,	giving	it	the	build	number	b456.	As	is	standard	in	most	CI	tools,	this	value	gets
passed	along	the	pipeline.	When	our	test	stage	gets	triggered,	the	CI	stage	will	run:

$	deploy	artifact=catalog	environment=ci	version=b456

Meanwhile,	our	QA	wants	to	pull	the	latest	version	of	the	catalog	service	into	an
integrated	test	environment	to	do	some	exploratory	testing,	and	to	help	with	a	showcase.
That	team	runs:

$	deploy	artifact=catalog	environment=integrated_qa	version=latest

The	tool	I’ve	used	the	most	for	this	is	Fabric,	a	Python	library	designed	to	map	command-
line	calls	to	functions,	along	with	good	support	for	handling	tasks	like	SSH	into	remote
machines.	Pair	it	with	an	AWS	client	library	like	Boto,	and	you	have	everything	you	need
to	fully	automate	very	large	AWS	environments.	For	Ruby,	Capistrano	is	similar	in	some
ways	to	Fabric,	and	on	Windows	you	could	go	a	long	way	using	PowerShell.

Environment	Definition
Clearly,	for	this	to	work,	we	need	to	have	some	way	of	defining	what	our	environments
look	like,	and	what	our	service	looks	like	in	a	given	environment.	You	can	think	of	an
environment	definition	as	a	mapping	from	a	microservice	to	compute,	network,	and
storage	resources.	I’ve	done	this	with	YAML	files	before,	and	used	my	scripts	to	pull	this
data	in.	Example	6-1	is	a	simplified	version	of	some	work	I	did	a	couple	of	years	ago	for	a
project	that	used	AWS.

Example	6-1.	An	example	environment	definition
development:

		nodes:

		-	ami_id:	ami-e1e1234

				size:			t1.micro	

				credentials_name:	eu-west-ssh	

				services:	[catalog-service]

				region:	eu-west-1

production:

		nodes:

		-	ami_id:	ami-e1e1234

				size:			m3.xlarge	

				credentials_name:	prod-credentials	

				services:	[catalog-service]

				number:	5		

We	varied	the	size	of	the	instances	we	used	to	be	more	cost	effective.	You	don’t	need
a	16-core	box	with	64GB	of	RAM	for	exploratory	testing!

Being	able	to	specify	different	credentials	for	different	environments	is	key.
Credentials	for	sensitive	environments	were	stored	in	different	source	code	repos	that
only	select	people	would	have	access	to.

We	decided	that	by	default	if	a	service	had	more	than	one	node	configured,	we	would
automatically	create	a	load	balancer	for	it.

I	have	removed	some	detail	for	the	sake	of	brevity.

The	catalog-service	information	was	stored	elsewhere.	It	didn’t	differ	from	one
environment	to	the	next,	as	you	can	see	in	Example	6-2.

Example	6-2.	An	example	environment	definition
catalog-service:

		puppet_manifest	:	catalog.pp	

		connectivity:

				-	protocol:	tcp

						ports:	[8080,	8081]

						allowed:	[WORLD]

This	was	the	name	of	the	Puppet	file	to	run	—	we	happened	to	use	Puppet	solo	in	this
situation,	but	theoretically	could	have	supported	alternative	configuration	systems.

Obviously,	a	lot	of	the	behavior	here	was	convention	based.	For	example,	we	decided	to
normalize	which	ports	services	used	wherever	they	ran,	and	automatically	configured	load
balancers	if	a	service	had	more	than	one	instance	(something	that	AWS’s	ELBs	make
fairly	easy).

Building	a	system	like	this	required	a	significant	amount	of	work.	The	effort	is	often	front-
loaded,	but	can	be	essential	to	manage	the	deployment	complexity	you	have.	I	hope	in	the
future	you	won’t	have	to	do	this	yourself.	Terraform	is	a	very	new	tool	from	Hashicorp,
which	works	in	this	space.	I’d	generally	shy	away	from	mentioning	such	a	new	tool	in	a
book	that	is	more	about	ideas	than	technology,	but	it	is	attempting	to	create	an	open	source
tool	along	these	lines.	It’s	early	days	yet,	but	already	its	capabilities	seem	really
interesting.	With	the	ability	to	target	deployments	on	a	number	of	different	platforms,	in
the	future	it	could	be	just	the	tool	for	the	job.

Summary
We’ve	covered	a	lot	of	ground	here,	so	a	recap	is	in	order.	First,	focus	on	maintaining	the
ability	to	release	one	service	independently	from	another,	and	make	sure	that	whatever
technology	you	select	supports	this.	I	greatly	prefer	having	a	single	repository	per
microservice,	but	am	firmer	still	that	you	need	one	CI	build	per	microservice	if	you	want
to	deploy	them	separately.

Next,	if	possible,	move	to	a	single-service	per	host/container.	Look	at	alternative
technologies	like	LXC	or	Docker	to	make	managing	the	moving	parts	cheaper	and	easier,
but	understand	that	whatever	technology	you	adopt,	a	culture	of	automation	is	key	to
managing	everything.	Automate	everything,	and	if	the	technology	you	have	doesn’t	allow
this,	get	some	new	technology!	Being	able	to	use	a	platform	like	AWS	will	give	you	huge
benefits	when	it	comes	to	automation.

Make	sure	you	understand	the	impact	your	deployment	choices	have	on	developers,	and
make	sure	they	feel	the	love	too.	Creating	tools	that	let	you	self-service-deploy	any	given
service	into	a	number	of	different	environments	is	really	important,	and	will	help
developers,	testers,	and	operations	people	alike.

Finally,	if	you	want	to	go	deeper	into	this	topic,	I	thoroughly	recommend	you	read	Jez
Humble	and	David	Farley’s	Continuous	Delivery	(Addison-Wesley),	which	goes	into
much	more	detail	on	subjects	like	pipeline	design	and	artifact	management.

In	the	next	chapter,	we’ll	be	going	deeper	into	a	topic	we	touched	on	briefly	here.	Namely,
how	do	we	test	our	microservices	to	make	sure	they	actually	work?

Chapter	7.	Testing

The	world	of	automated	testing	has	advanced	significantly	since	I	first	started	writing
code,	and	every	month	there	seems	to	be	some	new	tool	or	technique	to	make	it	even
better.	But	challenges	remain	as	how	to	effectively	and	efficiently	test	our	functionality
when	it	spans	a	distributed	system.	This	chapter	breaks	down	the	problems	associated	with
testing	finer-grained	systems	and	presents	some	solutions	to	help	you	make	sure	you	can
release	your	new	functionality	with	confidence.

Testing	covers	a	lot	of	ground.	Even	when	we	are	just	talking	about	automated	tests,	there
are	a	large	number	to	consider.	With	microservices,	we	have	added	another	level	of
complexity.	Understanding	what	different	types	of	tests	we	can	run	is	important	to	help	us
balance	the	sometimes-opposing	forces	of	getting	our	software	into	production	as	quickly
as	possible	versus	making	sure	our	software	is	of	sufficient	quality.

Types	of	Tests
As	a	consultant,	I	like	pulling	out	the	odd	quadrant	as	a	way	of	categorizing	the	world,	and
I	was	starting	to	worry	this	book	wouldn’t	have	one.	Luckily,	Brian	Marick	came	up	with
a	fantastic	categorization	system	for	tests	that	fits	right	in.	Figure	7-1	shows	a	variation	of
Marick’s	quadrant	from	Lisa	Crispin	and	Janet	Gregory’s	book	Agile	Testing	(Addison-
Wesley)	that	helps	categorize	the	different	types	of	tests.

Figure	7-1.	Brian	Marick’s	testing	quadrant.	Crispin,	Lisa;	Gregory,	Janet,	Agile	Testing:	A	Practical	Guide	for	Testers
and	Agile	Teams,	1st	Edition,	©	2009.	Adapted	by	permission	of	Pearson	Education,	Inc.,	Upper	Saddle	River,	NJ.

At	the	bottom,	we	have	tests	that	are	technology-facing	—	that	is,	tests	that	aid	the
developers	in	creating	the	system	in	the	first	place.	Performance	tests	and	small-scoped
unit	tests	fall	into	this	category	—	all	typically	automated.	This	is	compared	with	the	top
half	of	the	quadrant,	where	tests	help	the	nontechnical	stakeholders	understand	how	your
system	works.	These	could	be	large-scoped,	end-to-end	tests,	as	shown	in	the	top-left
Acceptance	Test	square,	or	manual	testing	as	typified	by	user	testing	done	against	a	UAT
system,	as	shown	in	the	Exploratory	Testing	square.

Each	type	of	test	shown	in	this	quadrant	has	a	place.	Exactly	how	much	of	each	test	you
want	to	do	will	depend	on	the	nature	of	your	system,	but	the	key	point	to	understand	is
that	you	have	multiple	choices	in	terms	of	how	to	test	your	system.	The	trend	recently	has
been	away	from	any	large-scale	manual	testing,	in	favor	of	automating	as	much	as
possible,	and	I	certainly	agree	with	this	approach.	If	you	currently	carry	out	large	amounts
of	manual	testing,	I	would	suggest	you	address	that	before	proceeding	too	far	down	the
path	of	microservices,	as	you	won’t	get	many	of	their	benefits	if	you	are	unable	to	validate
your	software	quickly	and	efficiently.

For	the	purposes	of	this	chapter,	we	will	ignore	manual	testing.	Although	this	sort	of
testing	can	be	very	useful	and	certainly	has	its	part	to	play,	the	differences	with	testing	a
microservice	architecture	mostly	play	out	in	the	context	of	various	types	of	automated
tests,	so	that	is	where	we	will	focus	our	time.

But	when	it	comes	to	automated	tests,	how	many	of	each	test	do	we	want?	Another	model
will	come	in	very	handy	to	help	us	answer	this	question,	and	understand	what	the	different
trade-offs	might	be.

Test	Scope
In	his	book	Succeeding	with	Agile	(Addison-Wesley),	Mike	Cohn	outlines	a	model	called
the	Test	Pyramid	to	help	explain	what	types	of	automated	tests	you	need.	The	pyramid
helps	us	think	about	the	scopes	the	tests	should	cover,	but	also	the	proportions	of	different
types	of	tests	we	should	aim	for.	Cohn’s	original	model	split	automated	tests	into	Unit,
Service,	and	UI,	which	you	can	see	in	Figure	7-2.

Figure	7-2.	Mike	Cohn’s	Test	Pyramid.	Cohn,	Mike,	Succeeding	with	Agile:	Software	Development	Using	Scrum,	1st
Edition,	©	2010.	Adapted	by	permission	of	Pearson	Education,	Inc.,	Upper	Saddle	River,	NJ.

The	problem	with	this	model	is	that	all	these	terms	mean	different	things	to	different
people.	“Service”	is	especially	overloaded,	and	there	are	many	definitions	of	a	unit	test	out
there.	Is	a	test	a	unit	test	if	I	only	test	one	line	of	code?	I’d	say	yes.	Is	it	still	a	unit	test	if	I
test	multiple	functions	or	classes?	I’d	say	no,	but	many	would	disagree!	I	tend	to	stick
with	the	Unit	and	Service	names	despite	their	ambiguity,	but	much	prefer	calling	UI	tests
end-to-end	tests,	which	we’ll	do	from	now	on.

Given	the	confusion,	it’s	worth	us	looking	at	what	these	different	layers	mean.

Let’s	look	at	a	worked	example.	In	Figure	7-3,	we	have	our	helpdesk	application	and	our
main	website,	both	of	which	are	interacting	with	our	customer	service	to	retrieve,	review,
and	edit	customer	details.	Our	customer	service	in	turn	is	talking	to	our	loyalty	points
bank,	where	our	customers	accrue	points	by	buying	Justin	Bieber	CDs.	Probably.	This	is
obviously	a	sliver	of	our	overall	music	shop	system,	but	it	is	a	good	enough	slice	for	us	to

dive	into	a	few	different	scenarios	we	may	want	to	test.

Figure	7-3.	Part	of	our	music	shop	under	test

Unit	Tests
These	are	tests	that	typically	test	a	single	function	or	method	call.	The	tests	generated	as	a
side	effect	of	test-driven	design	(TDD)	will	fall	into	this	category,	as	do	the	sorts	of	tests
generated	by	techniques	such	as	property-based	testing.	We’re	not	launching	services	here,
and	are	limiting	the	use	of	external	files	or	network	connections.	In	general,	you	want	a
large	number	of	these	sorts	of	tests.	Done	right,	they	are	very,	very	fast,	and	on	modern
hardware	you	could	expect	to	run	many	thousands	of	these	in	less	than	a	minute.

These	are	tests	that	help	us	developers	and	so	would	be	technology-facing,	not	business-
facing,	in	Marick’s	terminology.	They	are	also	where	we	hope	to	catch	most	of	our	bugs.
So,	in	our	example,	when	we	think	about	the	customer	service,	unit	tests	would	cover
small	parts	of	the	code	in	isolation,	as	shown	in	Figure	7-4.

Figure	7-4.	Scope	of	unit	tests	on	our	example	system

The	prime	goal	of	these	tests	is	to	give	us	very	fast	feedback	about	whether	our
functionality	is	good.	Tests	can	be	important	to	support	refactoring	of	code,	allowing	us	to
restructure	our	code	as	we	go,	knowing	that	our	small-scoped	tests	will	catch	us	if	we
make	a	mistake.

Service	Tests
Service	tests	are	designed	to	bypass	the	user	interface	and	test	services	directly.	In	a
monolithic	application,	we	might	just	be	testing	a	collection	of	classes	that	provide	a
service	to	the	UI.	For	a	system	comprising	a	number	of	services,	a	service	test	would	test
an	individual	service’s	capabilities.

The	reason	we	want	to	test	a	single	service	by	itself	is	to	improve	the	isolation	of	the	test
to	make	finding	and	fixing	problems	faster.	To	achieve	this	isolation,	we	need	to	stub	out
all	external	collaborators	so	only	the	service	itself	is	in	scope,	as	Figure	7-5	shows.

Figure	7-5.	Scope	of	service	tests	on	our	example	system

Some	of	these	tests	could	be	as	fast	as	small	tests,	but	if	you	decide	to	test	against	a	real
database,	or	go	over	networks	to	stubbed	downstream	collaborators,	test	times	can
increase.	They	also	cover	more	scope	than	a	simple	unit	test,	so	that	when	they	fail	it	can
be	harder	to	detect	what	is	broken	than	with	a	unit	test.	However,	they	have	much	fewer
moving	parts	and	are	therefore	less	brittle	than	larger-scoped	tests.

End-to-End	Tests
End-to-end	tests	are	tests	run	against	your	entire	system.	Often	they	will	be	driving	a	GUI
through	a	browser,	but	could	easily	be	mimicking	other	sorts	of	user	interaction,	like
uploading	a	file.

These	tests	cover	a	lot	of	production	code,	as	we	see	in	Figure	7-6	.	So	when	they	pass,
you	feel	good:	you	have	a	high	degree	of	confidence	that	the	code	being	tested	will	work
in	production.	But	this	increased	scope	comes	with	downsides,	and	as	we’ll	see	shortly,
they	can	be	very	tricky	to	do	well	in	a	microservices	context.

Figure	7-6.	Scope	of	end-to-end	tests	on	our	example	system

Trade-Offs
When	you’re	reading	the	pyramid,	the	key	thing	to	take	away	is	that	as	you	go	up	the
pyramid,	the	test	scope	increases,	as	does	our	confidence	that	the	functionality	being
tested	works.	On	the	other	hand,	the	feedback	cycle	time	increases	as	the	tests	take	longer
to	run,	and	when	a	test	fails	it	can	be	harder	to	determine	which	functionality	has	broken.
As	you	go	down	the	pyramid,	in	general	the	tests	become	much	faster,	so	we	get	much
faster	feedback	cycles.	We	find	broken	functionality	faster,	our	continuous	integration
builds	are	faster,	and	we	are	less	likely	to	move	on	to	a	new	task	before	finding	out	we
have	broken	something.	When	those	smaller-scoped	tests	fail,	we	also	tend	to	know	what
broke,	often	exactly	what	line	of	code.	On	the	flipside,	we	don’t	get	a	lot	of	confidence
that	our	system	as	a	whole	works	if	we’ve	only	tested	one	line	of	code!

When	broader-scoped	tests	like	our	service	or	end-to-end	tests	fail,	we	will	try	to	write	a
fast	unit	test	to	catch	that	problem	in	the	future.	In	that	way,	we	are	constantly	trying	to
improve	our	feedback	cycles.

Virtually	every	team	I’ve	worked	on	has	used	different	names	than	the	ones	that	Cohn
uses	in	the	pyramid.	Whatever	you	call	them,	the	key	takeaway	is	that	you	will	want	tests
of	different	scope	for	different	purposes.

How	Many?
So	if	these	tests	all	have	trade-offs,	how	many	of	each	type	do	you	want?	A	good	rule	of
thumb	is	that	you	probably	want	an	order	of	magnitude	more	tests	as	you	descend	the
pyramid,	but	the	important	thing	is	knowing	that	you	do	have	different	types	of	automated
tests	and	understanding	if	your	current	balance	gives	you	a	problem!

I	worked	on	one	monolithic	system,	for	example,	where	we	had	4,000	unit	tests,	1,000
service	tests,	and	60	end-to-end	tests.	We	decided	that	from	a	feedback	point	of	view	we
had	way	too	many	service	and	end-to-end	tests	(the	latter	of	which	were	the	worst
offenders	in	impacting	feedback	loops),	so	we	worked	hard	to	replace	the	test	coverage
with	smaller-scoped	tests.

A	common	anti-pattern	is	what	is	often	referred	to	as	a	test	snow	cone,	or	inverted
pyramid.	Here,	there	are	little	to	no	small-scoped	tests,	with	all	the	coverage	in	large-
scoped	tests.	These	projects	often	have	glacially	slow	test	runs,	and	very	long	feedback
cycles.	If	these	tests	are	run	as	part	of	continuous	integration,	you	won’t	get	many	builds,
and	the	nature	of	the	build	times	means	that	the	build	can	stay	broken	for	a	long	period
when	something	does	break.

Implementing	Service	Tests
Implementing	unit	tests	is	a	fairly	simple	affair	in	the	grand	scheme	of	things,	and	there	is
plenty	of	documentation	out	there	explaining	how	to	write	them.	The	service	and	end-to-
end	tests	are	the	ones	that	are	more	interesting.

Our	service	tests	want	to	test	a	slice	of	functionality	across	the	whole	service,	but	to
isolate	ourselves	from	other	services	we	need	to	find	some	way	to	stub	out	all	of	our
collaborators.	So,	if	we	wanted	to	write	a	test	like	this	for	the	customer	service	from
Figure	7-3,	we	would	deploy	an	instance	of	the	customer	service,	and	as	discussed	earlier
we	would	want	to	stub	out	any	downstream	services.

One	of	the	first	things	our	continuous	integration	build	will	do	is	create	a	binary	artifact
for	our	service,	so	deploying	that	is	pretty	straightforward.	But	how	do	we	handle	faking
the	downstream	collaborators?

Our	service	test	suite	needs	to	launch	stub	services	for	any	downstream	collaborators	(or
ensure	they	are	running),	and	configure	the	service	under	test	to	connect	to	the	stub
services.	We	then	need	to	configure	the	stubs	to	send	responses	back	to	mimic	the	real-
world	services.	For	example,	we	might	configure	the	stub	for	the	loyalty	points	bank	to
return	known	points	balances	for	certain	customers.

Mocking	or	Stubbing
When	I	talk	about	stubbing	downstream	collaborators,	I	mean	that	we	create	a	stub	service
that	responds	with	canned	responses	to	known	requests	from	the	service	under	test.	For
example,	I	might	tell	my	stub	points	bank	that	when	asked	for	the	balance	of	customer
123,	it	should	return	15,000.	The	test	doesn’t	care	if	the	stub	is	called	0,	1,	or	100	times.	A
variation	on	this	is	to	use	a	mock	instead	of	a	stub.

When	using	a	mock,	I	actually	go	further	and	make	sure	the	call	was	made.	If	the	expected
call	is	not	made,	the	test	fails.	Implementing	this	approach	requires	more	smarts	in	the
fake	collaborators	that	we	create,	and	if	overused	can	cause	tests	to	become	brittle.	As
noted,	however,	a	stub	doesn’t	care	if	it	is	called	0,	1,	or	many	times.

Sometimes,	though,	mocks	can	be	very	useful	to	ensure	that	the	expected	side	effects
happen.	For	example,	I	might	want	to	check	that	when	I	create	a	customer,	a	new	points
balance	is	set	up	for	that	customer.	The	balance	between	stubbing	and	mocking	calls	is	a
delicate	one,	and	is	just	as	fraught	in	service	tests	as	in	unit	tests.	In	general,	though,	I	use
stubs	far	more	than	mocks	for	service	tests.	For	a	more	in-depth	discussion	of	this	trade-
off,	take	a	look	at	Growing	Object-Oriented	Software,	Guided	by	Tests,	by	Steve	Freeman
and	Nat	Pryce	(Addison-Wesley).

In	general,	I	rarely	use	mocks	for	this	sort	of	testing.	But	having	a	tool	that	can	do	both	is
useful.

While	I	feel	that	stubs	and	mocks	are	actually	fairly	well	differentiated,	I	know	the
distinction	can	be	confusing	to	some,	especially	when	some	people	throw	in	other	terms
like	fakes,	spies,	and	dummies.	Martin	Fowler	calls	all	of	these	things,	including	stubs	and
mocks,	test	doubles.

http://bit.ly/1C7atPb

A	Smarter	Stub	Service
Normally	for	stub	services	I’ve	rolled	them	myself.	I’ve	used	everything	from	Apache	or
Nginx	to	embedded	Jetty	containers	or	even	command-line-launched	Python	web	servers
used	to	launch	stub	servers	for	such	test	cases.	I’ve	probably	reproduced	the	same	work
time	and	time	again	in	creating	these	stubs.	My	ThoughtWorks	colleague	Brandon	Bryars
has	potentially	saved	many	of	us	a	chunk	of	work	with	his	stub/mock	server	called
Mountebank.

You	can	think	of	Mountebank	as	a	small	software	appliance	that	is	programmable	via
HTTP.	The	fact	that	it	happens	to	be	written	in	NodeJS	is	completely	opaque	to	any
calling	service.	When	it	launches,	you	send	it	commands	telling	it	what	port	to	stub	on,
what	protocol	to	handle	(currently	TCP,	HTTP,	and	HTTPS	are	supported,	with	more
planned),	and	what	responses	it	should	send	when	requests	are	sent.	It	also	supports
setting	expectations	if	you	want	to	use	it	as	a	mock.	You	can	add	or	remove	these	stub
endpoints	at	will,	making	it	possible	for	a	single	Mountebank	instance	to	stub	more	than
one	downstream	dependency.

So,	if	we	want	to	run	our	service	tests	for	just	our	customer	service	we	can	launch	the
customer	service,	and	a	Mountebank	instance	that	acts	as	our	loyalty	points	bank.	And	if
those	tests	pass,	I	can	deploy	the	customer	service	straightaway!	Or	can	I?	What	about	the
services	that	call	the	customer	service	—	the	helpdesk	and	the	web	shop?	Do	we	know	if
we	have	made	a	change	that	may	break	them?	Of	course,	we	have	forgotten	the	important
tests	at	the	top	of	the	pyramid:	the	end-to-end	tests.

http://www.mbtest.org/

Those	Tricky	End-to-End	Tests
In	a	microservice	system,	the	capabilities	we	expose	via	our	user	interfaces	are	delivered
by	a	number	of	services.	The	point	of	the	end-to-end	tests	as	outlined	in	Mike	Cohn’s
pyramid	is	to	drive	functionality	through	these	user	interfaces	against	everything
underneath	to	give	us	an	overview	of	a	large	amount	of	our	system.

So,	to	implement	an	end-to-end	test	we	need	to	deploy	multiple	services	together,	then	run
a	test	against	all	of	them.	Obviously,	this	test	has	much	more	scope,	resulting	in	more
confidence	that	our	system	works!	On	the	other	hand,	these	tests	are	liable	to	be	slower
and	make	it	harder	to	diagnose	failure.	Let’s	dig	into	them	a	bit	more	using	our	previous
example	to	see	how	these	tests	can	fit	in.

Imagine	we	want	to	push	out	a	new	version	of	the	customer	service.	We	want	to	deploy
our	changes	into	production	as	soon	as	possible,	but	are	concerned	that	we	may	have
introduced	a	change	that	could	break	either	the	helpdesk	or	the	web	shop.	No	problem	—
let’s	deploy	all	of	our	services	together,	and	run	some	tests	against	the	helpdesk	and	web
shop	to	see	if	we’ve	introduced	a	bug.	Now	a	naive	approach	would	be	to	just	add	these
tests	onto	the	end	of	our	customer	service	pipeline,	as	in	Figure	7-7.

Figure	7-7.	Adding	our	end-to-end	tests	stage:	the	right	approach?

So	far,	so	good.	But	the	first	question	we	have	to	ask	ourselves	is	which	version	of	the
other	services	should	we	use?	Should	we	run	our	tests	against	the	versions	of	helpdesk	and
web	shop	that	are	in	production?	It’s	a	sensible	assumption,	but	what	if	there	is	a	new
version	of	either	the	helpdesk	or	web	shop	queued	up	to	go	live;	what	should	we	do	then?

Another	problem:	if	we	have	a	set	of	customer	service	tests	that	deploy	lots	of	services
and	run	tests	against	them,	what	about	the	end-to-end	tests	that	the	other	services	run?	If
they	are	testing	the	same	thing,	we	may	find	ourselves	covering	lots	of	the	same	ground,
and	may	duplicate	a	lot	of	the	effort	to	deploy	all	those	services	in	the	first	place.

We	can	deal	with	both	of	these	problems	elegantly	by	having	multiple	pipelines	fan	in	to	a
single,	end-to-end	test	stage.	Here,	whenever	a	new	build	of	one	of	our	services	is
triggered,	we	run	our	end-to-end	tests,	an	example	of	which	we	can	see	in	Figure	7-8.
Some	CI	tools	with	better	build	pipeline	support	will	enable	fan-in	models	like	this	out	of
the	box.

Figure	7-8.	A	standard	way	to	handle	end-to-end	tests	across	services

So	any	time	any	of	our	services	changes,	we	run	the	tests	local	to	that	service.	If	those
tests	pass,	we	trigger	our	integration	tests.	Great,	eh?	Well,	there	are	a	few	problems.

Downsides	to	End-to-End	Testing
There	are,	unfortunately,	many	disadvantages	to	end-to-end	testing.

Flaky	and	Brittle	Tests
As	test	scope	increases,	so	too	do	the	number	of	moving	parts.	These	moving	parts	can
introduce	test	failures	that	do	not	show	that	the	functionality	under	test	is	broken,	but	that
some	other	problem	has	occurred.	As	an	example,	if	we	have	a	test	to	verify	that	we	can
place	an	order	for	a	single	CD,	but	we	are	running	that	test	against	four	or	five	services,	if
any	of	them	is	down	we	could	get	a	failure	that	has	nothing	to	do	with	the	nature	of	the
test	itself.	Likewise,	a	temporary	network	glitch	could	cause	a	test	to	fail	without	saying
anything	about	the	functionality	under	test.

The	more	moving	parts,	the	more	brittle	our	tests	may	be,	and	the	less	deterministic	they
are.	If	you	have	tests	that	sometimes	fail,	but	everyone	just	re-runs	them	because	they	may
pass	again	later,	then	you	have	flaky	tests.	It	isn’t	only	tests	covering	lots	of	different
process	that	are	the	culprit	here.	Tests	that	cover	functionality	being	exercised	on	multiple
threads	are	often	problematic,	where	a	failure	could	mean	a	race	condition,	a	timeout,	or
that	the	functionality	is	actually	broken.	Flaky	tests	are	the	enemy.	When	they	fail,	they
don’t	tell	us	much.	We	re-run	our	CI	builds	in	the	hope	that	they	will	pass	again	later,	only
to	see	check-ins	pile	up,	and	suddenly	we	find	ourselves	with	a	load	of	broken
functionality.

When	we	detect	flaky	tests,	it	is	essential	that	we	do	our	best	to	remove	them.	Otherwise,
we	start	to	lose	faith	in	a	test	suite	that	“always	fails	like	that.”	A	test	suite	with	flaky	tests
can	become	a	victim	of	what	Diane	Vaughan	calls	the	normalization	of	deviance	—	the
idea	that	over	time	we	can	become	so	accustomed	to	things	being	wrong	that	we	start	to
accept	them	as	being	normal	and	not	a	problem.2	This	very	human	tendency	means	we
need	to	find	and	eliminate	these	tests	as	soon	as	we	can	before	we	start	to	assume	that
failing	tests	are	OK.

In	“Eradicating	Non-Determinism	in	Tests”,	Martin	Fowler	advocates	the	approach	that	if
you	have	flaky	tests,	you	should	track	them	down	and	if	you	can’t	immediately	fix	them,
remove	them	from	the	suite	so	you	can	treat	them.	See	if	you	can	rewrite	them	to	avoid
testing	code	running	on	multiple	threads.	See	if	you	can	make	the	underlying	environment
more	stable.	Better	yet,	see	if	you	can	replace	the	flaky	test	with	a	smaller-scoped	test	that
is	less	likely	to	exhibit	problems.	In	some	cases,	changing	the	software	under	test	to	make
it	easier	to	test	can	also	be	the	right	way	forward.

http://bit.ly/1Daos3Q

Who	Writes	These	Tests?
With	the	tests	that	run	as	part	of	the	pipeline	for	a	specific	service,	the	sensible	starting
point	is	that	the	team	that	owns	that	service	should	write	those	tests	(we’ll	talk	more	about
service	ownership	in	Chapter	10).	But	if	we	consider	that	we	might	have	multiple	teams
involved,	and	the	end-to-end-tests	step	is	now	effectively	shared	between	the	teams,	who
writes	and	looks	after	these	tests?

I	have	seen	a	number	of	anti-patterns	caused	here.	These	tests	become	a	free-for-all,	with
all	teams	granted	access	to	add	tests	without	any	understanding	of	the	health	of	the	whole
suite.	This	can	often	result	in	an	explosion	of	test	cases,	sometimes	resulting	in	the	test
snow	cone	we	talked	about	earlier.	I	have	seen	situations	where,	because	there	was	no	real
obvious	ownership	of	these	tests,	their	results	get	ignored.	When	they	break,	everyone
assumes	it	is	someone	else’s	problem,	so	they	don’t	care	whether	the	tests	are	passing.

Sometimes	organizations	react	by	having	a	dedicated	team	write	these	tests.	This	can	be
disastrous.	The	team	developing	the	software	becomes	increasingly	distant	from	the	tests
for	its	code.	Cycle	times	increase,	as	service	owners	end	up	waiting	for	the	test	team	to
write	end-to-end	tests	for	the	functionality	they	just	wrote.	Because	another	team	writes
these	tests,	the	team	that	wrote	the	service	is	less	involved	with,	and	therefore	less	likely
to	know,	how	to	run	and	fix	these	tests.	Although	it	is	unfortunately	still	a	common
organizational	pattern,	I	see	significant	harm	done	whenever	a	team	is	distanced	from
writing	tests	for	the	code	it	wrote	in	the	first	place.

Getting	this	aspect	right	is	really	hard.	We	don’t	want	to	duplicate	effort,	nor	do	we	want
to	completely	centralize	this	to	the	extent	that	the	teams	building	services	are	too	far
removed	from	things.	The	best	balance	I	have	found	is	to	treat	the	end-to-end	test	suite	as
a	shared	codebase,	but	with	joint	ownership.	Teams	are	free	to	check	in	to	this	suite,	but
the	ownership	of	the	health	of	the	suite	has	to	be	shared	between	the	teams	developing	the
services	themselves.	If	you	want	to	make	extensive	use	of	end-to-end	tests	with	multiple
teams	I	think	this	approach	is	essential,	and	yet	I	have	seen	it	done	very	rarely,	and	never
without	issue.

How	Long?
These	end-to-end	tests	can	take	a	while.	I	have	seen	them	take	up	to	a	day	to	run,	if	not
more,	and	on	one	project	I	worked	on,	a	full	regression	suite	took	six	weeks!	I	rarely	see
teams	actually	curate	their	end-to-end	test	suites	to	reduce	overlap	in	test	coverage,	or
spend	enough	time	in	making	them	fast.

This	slowness,	combined	with	the	fact	that	these	tests	can	often	be	flaky,	can	be	a	major
problem.	A	test	suite	that	takes	all	day	and	often	has	breakages	that	have	nothing	to	do
with	broken	functionality	are	a	disaster.	Even	if	your	functionality	is	broken,	it	could	take
you	many	hours	to	find	out	—	at	which	point	many	of	us	would	already	have	moved	on	to
other	activities,	and	the	context	switch	in	shifting	our	brains	back	to	fix	the	issue	is
painful.

We	can	ameliorate	some	of	this	by	running	tests	in	parallel	—	for	example,	making	use	of
tools	like	Selenium	Grid.	However,	this	approach	is	not	a	substitute	for	actually
understanding	what	needs	to	be	tested	and	actively	removing	tests	that	are	no	longer
needed.

Removing	tests	is	sometimes	a	fraught	exercise,	and	I	suspect	shares	much	in	common
with	people	who	want	to	remove	certain	airport	security	measures.	No	matter	how
ineffective	the	security	measures	might	be,	any	conversation	about	removing	them	is	often
countered	with	knee-jerk	reactions	about	not	caring	about	people’s	safety	or	wanting
terrorists	to	win.	It	is	hard	to	have	a	balanced	conversation	about	the	value	something	adds
versus	the	burden	it	entails.	It	can	also	be	a	difficult	risk/reward	trade-off.	Do	you	get
thanked	if	you	remove	a	test?	Maybe.	But	you’ll	certainly	get	blamed	if	a	test	you
removed	lets	a	bug	through.	When	it	comes	to	the	larger-scoped	test	suites,	however,	this
is	exactly	what	we	need	to	be	able	to	do.	If	the	same	feature	is	covered	in	20	different
tests,	perhaps	we	can	get	rid	of	half	of	them,	as	those	20	tests	take	10	minutes	to	run!
What	this	requires	is	a	better	understanding	of	risk,	which	something	humans	are
famously	bad	at.	As	a	result,	this	intelligent	curation	and	management	of	larger-scoped,
high-burden	tests	happens	incredibly	infrequently.	Wishing	people	did	this	more	isn’t	the
same	thing	as	making	it	happen.

The	Great	Pile-up
The	long	feedback	cycles	associated	with	end-to-end	tests	aren’t	just	a	problem	when	it
comes	to	developer	productivity.	With	a	long	test	suite,	any	breaks	take	a	while	to	fix,
which	reduces	the	amount	of	time	that	the	end-to-end	tests	can	be	expected	to	be	passing.
If	we	deploy	only	software	that	has	passed	through	all	our	tests	successfully	(which	we
should!),	this	means	fewer	of	our	services	get	through	to	the	point	of	being	deployable
into	production.

This	can	lead	to	a	pile-up.	While	a	broken	integration	test	stage	is	being	fixed,	more
changes	from	upstream	teams	can	pile	in.	Aside	from	the	fact	that	this	can	make	fixing	the
build	harder,	it	means	the	scope	of	changes	to	be	deployed	increases.	One	way	to	resolve
this	is	to	not	let	people	check	in	if	the	end-to-end	tests	are	failing,	but	given	a	long	test
suite	time	this	is	often	impractical.	Try	saying,	“You	30	developers:	no	check-ins	til	we	fix
this	seven-hour-long	build!”

The	larger	the	scope	of	a	deployment	and	the	higher	the	risk	of	a	release,	the	more	likely
we	are	to	break	something.	A	key	driver	to	ensuring	we	can	release	our	software
frequently	is	based	on	the	idea	that	we	release	small	changes	as	soon	as	they	are	ready.

The	Metaversion
With	the	end-to-end	test	step,	it	is	easy	to	start	thinking,	So,	I	know	all	these	services	at
these	versions	work	together,	so	why	not	deploy	them	all	together?	This	very	quickly
becomes	a	conversation	along	the	lines	of,	So	why	not	use	a	version	number	for	the	whole
system?	To	quote	Brandon	Bryars,	“Now	you	have	2.1.0	problems.”

By	versioning	together	changes	made	to	multiple	services,	we	effectively	embrace	the	idea
that	changing	and	deploying	multiple	services	at	once	is	acceptable.	It	becomes	the	norm,
it	becomes	OK.	In	doing	so,	we	cede	one	of	the	main	advantages	of	microservices:	the
ability	to	deploy	one	service	by	itself,	independently	of	other	services.

All	too	often,	the	approach	of	accepting	multiple	services	being	deployed	together	drifts
into	a	situation	where	services	become	coupled.	Before	long,	nicely	separate	services
become	increasingly	tangled	with	others,	and	you	never	notice	as	you	never	try	to	deploy
them	by	themselves.	You	end	up	with	a	tangled	mess	where	you	have	to	orchestrate	the
deployment	of	multiple	services	at	once,	and	as	we	discussed	previously,	this	sort	of
coupling	can	leave	us	in	a	worse	place	than	we	would	be	with	a	single,	monolithic
application.

This	is	bad.

http://bit.ly/15BPCVE

Test	Journeys,	Not	Stories
Despite	the	disadvantages	just	outlined,	for	many	users	end-to-end	tests	can	still	be
manageable	with	one	or	two	services,	and	in	these	situations	still	make	a	lot	of	sense.	But
what	happens	with	3,	4,	10,	or	20	services?	Very	quickly	these	test	suites	become	hugely
bloated,	and	in	the	worst	case	can	result	in	Cartesian-like	explosion	in	the	scenarios	under
test.

This	situation	worsens	if	we	fall	into	the	trap	of	adding	a	new	end-to-end	test	for	every
piece	of	functionality	we	add.	Show	me	a	codebase	where	every	new	story	results	in	a	new
end-to-end	test,	and	I’ll	show	you	a	bloated	test	suite	that	has	poor	feedback	cycles	and
huge	overlaps	in	test	coverage.

The	best	way	to	counter	this	is	to	focus	on	a	small	number	of	core	journeys	to	test	for	the
whole	system.	Any	functionality	not	covered	in	these	core	journeys	needs	to	be	covered	in
tests	that	analyze	services	in	isolation	from	each	other.	These	journeys	need	to	be	mutually
agreed	upon,	and	jointly	owned.	For	our	music	shop,	we	might	focus	on	actions	like
ordering	a	CD,	returning	a	product,	or	perhaps	creating	a	new	customer	—	high-value
interactions	and	very	few	in	number.

By	focusing	on	a	small	number	(and	I	mean	small:	very	low	double	digits	even	for
complex	systems)	of	tests	we	can	reduce	the	downsides	of	integration	tests,	but	we	cannot
avoid	all	of	them.	Is	there	a	better	way?

Consumer-Driven	Tests	to	the	Rescue
What	is	one	of	the	key	problems	we	are	trying	to	address	when	we	use	the	integration	tests
outlined	previously?	We	are	trying	to	ensure	that	when	we	deploy	a	new	service	to
production,	our	changes	won’t	break	consumers.	One	way	we	can	do	this	without
requiring	testing	against	the	real	consumer	is	by	using	a	consumer-driven	contract	(CDC).

With	CDCs,	we	are	defining	the	expectations	of	a	consumer	on	a	service	(or	producer).
The	expectations	of	the	consumers	are	captured	in	code	form	as	tests,	which	are	then	run
against	the	producer.	If	done	right,	these	CDCs	should	be	run	as	part	of	the	CI	build	of	the
producer,	ensuring	that	it	never	gets	deployed	if	it	breaks	one	of	these	contracts.	Very
importantly	from	a	test	feedback	point	of	view,	these	tests	need	to	be	run	only	against	a
single	producer	in	isolation,	so	can	be	faster	and	more	reliable	than	the	end-to-end	tests
they	might	replace.

As	an	example,	let’s	revisit	our	customer	service	scenario.	The	customer	service	has	two
separate	consumers:	the	helpdesk	and	web	shop.	Both	these	consuming	services	have
expectations	for	how	the	customer	service	will	behave.	In	this	example,	you	create	two
sets	of	tests:	one	for	each	consumer	representing	the	helpdesk’s	and	web	shop’s	use	of	the
customer	service.	A	good	practice	here	is	to	have	someone	from	the	producer	and
consumer	teams	collaborate	on	creating	the	tests,	so	perhaps	people	from	the	web	shop
and	helpdesk	teams	pair	with	people	from	the	customer	service	team.

Because	these	CDCs	are	expectations	on	how	the	customer	service	should	behave,	they
can	be	run	against	the	customer	service	by	itself	with	any	of	its	downstream	dependencies
stubbed	out,	as	Figure	7-9	shows.	From	a	scope	point	of	view,	they	sit	at	the	same	level	in
the	test	pyramid	as	service	tests,	albeit	with	a	very	different	focus,	as	shown	in	Figure	7-
10.	These	tests	are	focused	on	how	a	consumer	will	use	the	service,	and	the	trigger	if	they
break	is	very	different	when	compared	with	service	tests.	If	one	of	these	CDCs	breaks
during	a	build	of	the	customer	service,	it	becomes	obvious	which	consumer	would	be
impacted.	At	this	point,	you	can	either	fix	the	problem	or	else	start	the	discussion	about
introducing	a	breaking	change	in	the	manner	we	discussed	in	Chapter	4.	So	with	CDCs,
we	can	identify	a	breaking	change	prior	to	our	software	going	into	production	without
having	to	use	a	potentially	expensive	end-to-end	test.

Figure	7-9.	Consumer-driven	testing	in	the	context	of	our	customer	service	example

Figure	7-10.	Integrating	consumer-driven	tests	into	the	test	pyramid

Pact
Pact	is	a	consumer-driven	testing	tool	that	was	originally	developed	in-house	at
RealEstate.com.au,	but	is	now	open	source,	with	Beth	Skurrie	driving	most	of	the
development.	Originally	just	for	Ruby,	Pact	now	includes	JVM	and	.NET	ports.

Pact	works	in	a	very	interesting	way,	as	summarized	in	Figure	7-11.	The	consumer	starts
by	defining	the	expectations	of	the	producer	using	a	Ruby	DSL.	Then,	you	launch	a	local
mock	server,	and	run	this	expectation	against	it	to	create	the	Pact	specification	file.	The
Pact	file	is	just	a	formal	JSON	specification;	you	could	obviously	handcode	these,	but
using	the	language	API	is	much	easier.	This	also	gives	you	a	running	mock	server	that	can
be	used	for	further	isolated	tests	of	the	consumer.

Figure	7-11.	An	overview	of	how	Pact	does	consumer-driven	testing

On	the	producer	side,	you	then	verify	that	this	consumer	specification	is	met	by	using	the
JSON	Pact	specification	to	drive	calls	against	your	API	and	verify	responses.	For	this	to
work,	the	producer	codebase	needs	access	to	the	Pact	file.	As	we	discussed	earlier	in
Chapter	6,	we	expect	both	the	consumer	and	producer	to	be	in	different	builds.	The	use	of
a	language-agnostic	JSON	specification	is	an	especially	nice	touch.	It	means	that	you	can
generate	the	consumer’s	specification	using	a	Ruby	client,	but	use	it	to	verify	a	Java
producer	by	using	the	JVM	port	of	Pact.

As	the	JSON	Pact	specification	is	created	by	the	consumer,	this	needs	to	become	an
artifact	that	the	producer	build	has	access	to.	You	could	store	this	in	your	CI/CD	tool’s
artifact	repository,	or	else	use	the	Pact	Broker,	which	allows	you	to	store	multiple	versions
of	your	Pact	specifications.	This	could	let	you	run	your	consumer-driven	contract	tests
against	multiple	different	versions	of	the	consumers,	if	you	wanted	to	test	against,	say,	the
version	of	the	consumer	in	production	and	the	version	of	the	consumer	that	was	most
recently	built.

Confusingly,	there	is	a	ThoughtWorks	open	source	project	called	Pacto,	which	is	also	a
Ruby	tool	used	for	consumer-driven	testing.	It	has	the	ability	to	record	interactions

http://bit.ly/1GZwceN
http://bit.ly/1ylH0t8

between	client	and	server	to	generate	the	expectations.	This	makes	writing	consumer-
driven	contracts	for	existing	services	fairly	easy.	With	Pacto,	once	generated	these
expectations	are	more	or	less	static,	whereas	with	Pact	you	regenerate	the	expectations	in
the	consumer	with	every	build.	The	fact	that	you	can	define	expectations	for	capabilities
the	producer	may	not	even	have	yet	also	better	fits	into	a	workflow	where	the	producing
service	is	still	being	(or	has	yet	to	be)	developed.

It’s	About	Conversations
In	agile,	stories	are	often	referred	to	as	a	placeholder	for	a	conversation.	CDCs	are	just
like	that.	They	become	the	codification	of	a	set	of	discussions	about	what	a	service	API
should	look	like,	and	when	they	break,	they	become	a	trigger	point	to	have	conversations
about	how	that	API	should	evolve.

It	is	important	to	understand	that	CDCs	require	good	communication	and	trust	between	the
consumer	and	producing	service.	If	both	parties	are	in	the	same	team	(or	the	same
person!),	then	this	shouldn’t	be	hard.	However,	if	you	are	consuming	a	service	provided
with	a	third	party,	you	may	not	have	the	frequency	of	communication,	or	trust,	to	make
CDCs	work.	In	these	situations,	you	may	have	to	make	do	with	limited	larger-scoped
integration	tests	just	around	the	untrusted	component.	Alternatively,	if	you	are	creating	an
API	for	thousands	of	potential	consumers,	such	as	with	a	publicly	available	web	service
API,	you	may	have	to	play	the	role	of	the	consumer	yourself	(or	perhaps	work	with	a
subset	of	your	consumers)	in	defining	these	tests.	Breaking	huge	numbers	of	external
consumers	is	a	pretty	bad	idea,	so	if	anything	the	importance	of	CDCs	is	increased!

So	Should	You	Use	End-to-End	Tests?
As	outlined	in	detail	earlier	in	the	chapter,	end-to-end	tests	have	a	large	number	of
disadvantages	that	grow	significantly	as	you	add	more	moving	parts	under	test.	From
speaking	to	people	who	have	been	implementing	microservices	at	scale	for	a	while	now,	I
have	learned	that	most	of	them	over	time	remove	the	need	entirely	for	end-to-end	tests	in
favor	of	tools	like	CDCs	and	improved	monitoring.	But	they	do	not	necessarily	throw
those	tests	away.	They	end	up	using	many	of	those	end-to-end	journey	tests	to	monitor	the
production	system	using	a	technique	called	semantic	monitoring,	which	we	will	discuss
more	in	Chapter	8.

You	can	view	running	end-to-end	tests	prior	to	production	deployment	as	training	wheels.
While	you	are	learning	how	CDCs	work,	and	improving	your	production	monitoring	and
deployment	techniques,	these	end-to-end	tests	may	form	a	useful	safety	net,	where	you	are
trading	off	cycle	time	for	decreased	risk.	But	as	you	improve	those	other	areas,	you	can
start	to	reduce	your	reliance	on	end-to-end	tests	to	the	point	where	they	are	no	longer
needed.

Similarly,	you	may	work	in	an	environment	where	the	appetite	to	learn	in	production	is
low,	and	people	would	rather	work	as	hard	as	they	can	to	eliminate	any	defects	before
production,	even	if	that	means	software	takes	longer	to	ship.	As	long	as	you	understand
that	you	cannot	be	certain	that	you	have	eliminated	all	sources	of	defects,	and	that	you	will
still	need	to	have	effective	monitoring	and	remediation	in	place	in	production,	this	may	be
a	sensible	decision.

Obviously	you’ll	have	a	better	understanding	of	your	own	organization’s	risk	profile	than
me,	but	I	would	challenge	you	to	think	long	and	hard	about	how	much	end-to-end	testing
you	really	need	to	do.

Testing	After	Production
Most	testing	is	done	before	the	system	is	in	production.	With	our	tests,	we	are	defining	a
series	of	models	with	which	we	hope	to	prove	whether	our	system	works	and	behaves	as
we	would	like,	both	functionally	and	nonfunctionally.	But	if	our	models	are	not	perfect,
then	we	will	encounter	problems	when	our	systems	are	used	in	anger.	Bugs	slip	into
production,	new	failure	modes	are	discovered,	and	our	users	use	the	system	in	ways	we
could	never	expect.

One	reaction	to	this	is	often	to	define	more	and	more	tests,	and	refine	our	models,	to	catch
more	issues	early	and	reduce	the	number	of	problems	we	encounter	with	our	running
production	system.	However,	at	a	certain	point	we	have	to	accept	that	we	hit	diminishing
returns	with	this	approach.	With	testing	prior	to	deployment,	we	cannot	reduce	the	chance
of	failure	to	zero.

Separating	Deployment	from	Release
One	way	in	which	we	can	catch	more	problems	before	they	occur	is	to	extend	where	we
run	our	tests	beyond	the	traditional	predeployment	steps.	Instead,	if	we	can	deploy	our
software,	and	test	it	in	situ	prior	to	directing	production	loads	against	it,	we	can	detect
issues	specific	to	a	given	environment.	A	common	example	of	this	is	the	smoke	test	suite,
a	collection	of	tests	designed	to	be	run	against	newly	deployed	software	to	confirm	that
the	deployment	worked.	These	tests	help	you	pick	up	any	local	environmental	issues.	If
you’re	using	a	single	command-line	command	to	deploy	any	given	microservice	(and	you
should),	this	command	should	run	the	smoke	tests	automatically.

Another	example	of	this	is	what	is	called	blue/green	deployment.	With	blue/green,	we
have	two	copies	of	our	software	deployed	at	a	time,	but	only	one	version	of	it	is	receiving
real	requests.

Let’s	consider	a	simple	example,	seen	in	Figure	7-12.	In	production,	we	have	v123	of	the
customer	service	live.	We	want	to	deploy	a	new	version,	v456.	We	deploy	this	alongside
v123,	but	do	not	direct	any	traffic	to	it.	Instead,	we	perform	some	testing	in	situ	against	the
newly	deployed	version.	Once	the	tests	have	worked,	we	direct	the	production	load	to	the
new	v456	version	of	the	customer	service.	It	is	common	to	keep	the	old	version	around	for
a	short	period	of	time,	allowing	for	a	fast	fallback	if	you	detect	any	errors.

Figure	7-12.	Using	blue/green	deployments	to	separate	deployment	from	release

Implementing	blue/green	deployment	requires	a	few	things.	First,	you	need	to	be	able	to
direct	production	traffic	to	different	hosts	(or	collections	of	hosts).	You	could	do	this	by
changing	DNS	entries,	or	updating	load-balancing	configuration.	You	also	need	to	be	able
to	provision	enough	hosts	to	have	both	versions	of	the	microservice	running	at	once.	If
you’re	using	an	elastic	cloud	provider,	this	could	be	straightforward.	Using	blue/green
deployments	allows	you	to	reduce	the	risk	of	deployment,	as	well	as	gives	you	the	chance
to	revert	should	you	encounter	a	problem.	If	you	get	good	at	this,	the	entire	process	can	be
completely	automated,	with	either	the	full	roll-out	or	revert	happening	without	any	human
intervention.

Quite	aside	from	the	benefit	of	allowing	us	to	test	our	services	in	situ	prior	to	sending
them	production	traffic,	by	keeping	the	old	version	running	while	we	perform	our	release

we	greatly	reduce	the	downtime	associated	with	releasing	our	software.	Depending	on
what	mechanism	is	used	to	implement	the	traffic	redirection,	the	switchover	between
versions	can	be	completely	invisible	to	the	customer,	giving	us	zero-downtime
deployments.

There	is	another	technique	worth	discussing	briefly	here	too,	which	is	sometimes	confused
with	blue/green	deployments,	as	it	can	use	some	of	the	same	technical	implementations.	It
is	known	as	canary	releasing.

Canary	Releasing
With	canary	releasing,	we	are	verifying	our	newly	deployed	software	by	directing
amounts	of	production	traffic	against	the	system	to	see	if	it	performs	as	expected.
“Performing	as	expected”	can	cover	a	number	of	things,	both	functional	and
nonfunctional.	For	example,	we	could	check	that	a	newly	deployed	service	is	responding
to	requests	within	500ms,	or	that	we	see	the	same	proportional	error	rates	from	the	new
and	the	old	service.	But	you	could	go	deeper	than	that.	Imagine	we’ve	released	a	new
version	of	the	recommendation	service.	We	might	run	both	of	them	side	by	side	but	see	if
the	recommendations	generated	by	the	new	version	of	the	service	result	in	as	many
expected	sales,	making	sure	that	we	haven’t	released	a	suboptimal	algorithm.

If	the	new	release	is	bad,	you	get	to	revert	quickly.	If	it	is	good,	you	can	push	increasing
amounts	of	traffic	through	the	new	version.	Canary	releasing	differs	from	blue/green	in
that	you	can	expect	versions	to	coexist	for	longer,	and	you’ll	often	vary	the	amounts	of
traffic.

Netflix	uses	this	approach	extensively.	Prior	to	release,	new	service	versions	are	deployed
alongside	a	baseline	cluster	that	represents	the	same	version	as	production.	Netflix	then
runs	a	subset	of	the	production	load	over	a	number	of	hours	against	both	the	new	version
and	the	baseline,	scoring	both.	If	the	canary	passes,	the	company	then	proceeds	to	a	full
roll-out	into	production.

When	considering	canary	releasing,	you	need	to	decide	if	you	are	going	to	divert	a	portion
of	production	requests	to	the	canary	or	just	copy	production	load.	Some	teams	are	able	to
shadow	production	traffic	and	direct	it	to	their	canary.	In	this	way,	the	existing	production
and	canary	versions	can	see	exactly	the	same	requests,	but	only	the	results	of	the
production	requests	are	seen	externally.	This	allows	you	to	do	a	side-by-side	comparison
while	eliminating	the	chance	that	a	failure	in	the	canary	can	be	seen	by	a	customer	request.
The	work	to	shadow	production	traffic	can	be	complex,	though,	especially	if	the
events/requests	being	replayed	aren’t	idempotent.

Canary	releasing	is	a	powerful	technique,	and	can	help	you	verify	new	versions	of	your
software	with	real	traffic,	while	giving	you	tools	to	manage	the	risk	of	pushing	out	a	bad
release.	It	does	require	a	more	complex	setup,	however,	than	blue/green	deployment,	and	a
bit	more	thought.	You	could	expect	to	coexist	different	versions	of	your	services	for	longer
than	with	blue/green,	so	you	may	be	tying	up	more	hardware	for	longer	than	before.	You’ll
also	need	more	sophisticated	traffic	routing,	as	you	may	want	to	ramp	up	or	down	the
percentages	of	the	traffic	to	get	more	confidence	that	your	release	works.	If	you	already
handle	blue/green	deployments,	you	may	have	some	of	the	building	blocks	already.

Mean	Time	to	Repair	Over	Mean	Time	Between	Failures?
So	by	looking	at	techniques	like	blue/green	deployment	or	canary	releasing,	we	find	a	way
to	test	closer	to	(or	even	in)	production,	and	we	also	build	tools	to	help	us	manage	a	failure
if	it	occurs.	Using	these	approaches	is	a	tacit	acknowledgment	that	we	cannot	spot	and
catch	all	problems	before	we	actually	release	our	software.

Sometimes	expending	the	same	effort	into	getting	better	at	remediation	of	a	release	can	be
significantly	more	beneficial	than	adding	more	automated	functional	tests.	In	the	web
operations	world,	this	is	often	referred	to	as	the	trade-off	between	optimizing	for	mean
time	between	failures	(MTBF)	and	mean	time	to	repair	(MTTR).

Techniques	to	reduce	the	time	to	recovery	can	be	as	simple	as	very	fast	rollbacks	coupled
with	good	monitoring	(which	we’ll	discuss	in	Chapter	8),	like	blue/green	deployments.	If
we	can	spot	a	problem	in	production	early,	and	roll	back	early,	we	reduce	the	impact	to	our
customers.	We	can	also	use	techniques	like	blue/green	deployment,	where	we	deploy	a
new	version	of	our	software	and	test	it	in	situ	prior	to	directing	our	users	to	the	new
version.

For	different	organizations,	this	trade-off	between	MTBF	and	MTTR	will	vary,	and	much
of	this	lies	with	understanding	the	true	impact	of	failure	in	a	production	environment.
However,	most	organizations	that	I	see	spending	time	creating	functional	test	suites	often
expend	little	to	no	effort	at	all	on	better	monitoring	or	recovering	from	failure.	So	while
they	may	reduce	the	number	of	defects	that	occur	in	the	first	place,	they	can’t	eliminate	all
of	them,	and	are	unprepared	for	dealing	with	them	if	they	pop	up	in	production.

Trade-offs	other	than	MTBF	and	MTTR	exist.	For	example,	if	you	are	trying	to	work	out
if	anyone	will	actually	use	your	software,	it	may	make	much	more	sense	to	get	something
out	now,	to	prove	the	idea	or	the	business	model	before	building	robust	software.	In	an
environment	where	this	is	the	case,	testing	may	be	overkill,	as	the	impact	of	not	knowing
if	your	idea	works	is	much	higher	than	having	a	defect	in	production.	In	these	situations,	it
can	be	quite	sensible	to	avoid	testing	prior	to	production	altogether.

Cross-Functional	Testing
The	bulk	of	this	chapter	has	been	focused	on	testing	specific	pieces	of	functionality,	and
how	this	differs	when	you	are	testing	a	microservice-based	system.	However,	there	is
another	category	of	testing	that	is	important	to	discuss.	Nonfunctional	requirements	is	an
umbrella	term	used	to	describe	those	characteristics	your	system	exhibits	that	cannot
simply	be	implemented	like	a	normal	feature.	They	include	aspects	like	the	acceptable
latency	of	a	web	page,	the	number	of	users	a	system	should	support,	how	accessible	your
user	interface	should	be	to	people	with	disabilities,	or	how	secure	your	customer	data
should	be.

The	term	nonfunctional	never	sat	well	with	me.	Some	of	the	things	that	get	covered	by	this
term	seem	very	functional	in	nature!	One	of	my	colleagues,	Sarah	Taraporewalla,	coined
the	phrase	cross-functional	requirements	(CFR)	instead,	which	I	greatly	prefer.	It	speaks
more	to	the	fact	that	these	system	behaviors	really	only	emerge	as	the	result	of	lots	of
cross-cutting	work.

Many,	if	not	most,	CFRs	can	really	only	be	met	in	production.	That	said,	we	can	define
test	strategies	to	help	us	see	if	we	are	at	least	moving	toward	meeting	these	goals.	These
sorts	of	tests	fall	into	the	Property	Testing	quadrant.	A	great	example	of	this	is	the
performance	test,	which	we’ll	discuss	in	more	depth	shortly.

For	some	CFRs,	you	may	want	to	track	them	at	an	individual	service	level.	For	example,
you	may	decide	that	the	durability	of	service	you	require	from	your	payment	service	is
significantly	higher,	but	you	are	happy	with	more	downtime	for	your	music
recommendation	service,	knowing	that	your	core	business	can	survive	if	you	are	unable	to
recommend	artists	similar	to	Metallica	for	10	minutes	or	so.	These	trade-offs	will	end	up
having	a	large	impact	on	how	you	design	and	evolve	your	system,	and	once	again	the	fine-
grained	nature	of	a	microservice-based	system	gives	you	many	more	chances	to	make
these	trade-offs.

Tests	around	CFRs	should	follow	the	pyramid	too.	Some	tests	will	have	to	be	end-to-end,
like	load	tests,	but	others	won’t.	For	example,	once	you’ve	found	a	performance
bottleneck	in	an	end-to-end	load	test,	write	a	smaller-scoped	test	to	help	you	catch	the
problem	in	the	future.	Other	CFRs	fit	faster	tests	quite	easily.	I	remember	working	on	a
project	where	we	had	insisted	on	ensuring	our	HTML	markup	was	using	proper
accessibility	features	to	help	people	with	disabilities	use	our	website.	Checking	the
generated	markup	to	make	sure	that	the	appropriate	controls	were	there	could	be	done
very	quickly	without	the	need	for	any	networking	roundtrips.

All	too	often,	considerations	about	CFRs	come	far	too	late.	I	strongly	suggest	looking	at
your	CFRs	as	early	as	possible,	and	reviewing	them	regularly.

Performance	Tests
Performance	tests	are	worth	calling	out	explicitly	as	a	way	of	ensuring	that	some	of	our
cross-functional	requirements	can	be	met.	When	decomposing	systems	into	smaller
microservices,	we	increase	the	number	of	calls	that	will	be	made	across	network
boundaries.	Where	previously	an	operation	might	have	involved	one	database	call,	it	may
now	involve	three	or	four	calls	across	network	boundaries	to	other	services,	with	a
matching	number	of	database	calls.	All	of	this	can	decrease	the	speed	at	which	our
systems	operate.	Tracking	down	sources	of	latency	is	especially	important.	When	you
have	a	call	chain	of	multiple	synchronous	calls,	if	any	part	of	the	chain	starts	acting
slowly,	everything	is	affected,	potentially	leading	to	a	significant	impact.	This	makes
having	some	way	to	performance	test	your	applications	even	more	important	than	it	might
be	with	a	more	monolithic	system.	Often	the	reason	this	sort	of	testing	gets	delayed	is
because	initially	there	isn’t	enough	of	the	system	there	to	test.	I	understand	this	problem,
but	all	too	often	it	leads	to	kicking	the	can	down	the	road,	with	performance	testing	often
only	being	done	just	before	you	go	live	for	the	first	time,	if	at	all!	Don’t	fall	into	this	trap.

As	with	functional	tests,	you	may	want	a	mix.	You	may	decide	that	you	want	performance
tests	that	isolate	individual	services,	but	start	with	tests	that	check	core	journeys	in	your
system.	You	may	be	able	to	take	end-to-end	journey	tests	and	simply	run	these	at	volume.

To	generate	worthwhile	results,	you’ll	often	need	to	run	given	scenarios	with	gradually
increasing	numbers	of	simulated	customers.	This	allows	you	to	see	how	latency	of	calls
varies	with	increasing	load.	This	means	that	performance	tests	can	take	a	while	to	run.	In
addition,	you’ll	want	the	system	to	match	production	as	closely	as	possible,	to	ensure	that
the	results	you	see	will	be	indicative	of	the	performance	you	can	expect	on	the	production
systems.	This	can	mean	that	you’ll	need	to	acquire	a	more	production-like	volume	of	data,
and	may	need	more	machines	to	match	the	infrastructure	—	tasks	that	can	be	challenging.
Even	if	you	struggle	to	make	the	performance	environment	truly	production-like,	the	tests
may	still	have	value	in	tracking	down	bottlenecks.	Just	be	aware	that	you	may	get	false
negatives,	or	even	worse,	false	positives.

Due	to	the	time	it	takes	to	run	performance	tests,	it	isn’t	always	feasible	to	run	them	on
every	check-in.	It	is	a	common	practice	to	run	a	subset	every	day,	and	a	larger	set	every
week.	Whatever	approach	you	pick,	make	sure	you	run	them	as	regularly	as	you	can.	The
longer	you	go	without	running	performance	tests,	the	harder	it	can	be	to	track	down	the
culprit.	Performance	problems	are	especially	difficult	to	resolve,	so	if	you	can	reduce	the
number	of	commits	you	need	to	look	at	in	order	to	see	a	newly	introduced	problem,	your
life	will	be	much	easier.

And	make	sure	you	also	look	at	the	results!	I’ve	been	very	surprised	by	the	number	of
teams	I	have	encountered	who	have	spent	a	lot	of	work	implementing	tests	and	running
them,	and	never	check	the	numbers.	Often	this	is	because	people	don’t	know	what	a	good
result	looks	like.	You	really	need	to	have	targets.	This	way,	you	can	make	the	build	go	red

or	green	based	on	the	results,	with	a	red	(failing)	build	being	a	clear	call	to	action.

Performance	tesing	needs	to	be	done	in	concert	with	monitoring	the	real	system
performance	(which	we’ll	discuss	more	in	Chapter	8),	and	ideally	should	use	the	same
tools	in	your	performance	test	environment	for	visualizing	system	behavior	as	those	you
use	in	production.	This	can	make	it	much	easier	to	compare	like	with	like.

Summary
Bringing	this	all	together,	what	I	have	outlined	here	is	a	holistic	approach	to	testing	that
hopefully	gives	you	some	general	guidance	on	how	to	proceed	when	testing	your	own
systems.	To	reiterate	the	basics:

Optimize	for	fast	feedback,	and	separate	types	of	tests	accordingly.

Avoid	the	need	for	end-to-end	tests	wherever	possible	by	using	consumer-driven
contracts.

Use	consumer-driven	contracts	to	provide	focus	points	for	conversations	between
teams.

Try	to	understand	the	trade-off	between	putting	more	efforts	into	testing	and
detecting	issues	faster	in	production	(optimizing	for	MTBF	versus	MTTR).

If	you	are	interested	in	reading	more	about	testing,	I	recommend	Agile	Testing	by	Lisa
Crispin	and	Janet	Gregory	(Addison-Wesley),	which	among	other	things	covers	the	use	of
the	testing	quadrant	in	more	detail.

This	chapter	focused	mostly	on	making	sure	our	code	works	before	it	hits	production,	but
we	also	need	to	know	how	to	make	sure	our	code	works	once	it’s	deployed.	In	the	next
chapter,	we’ll	take	a	look	at	how	to	monitor	our	microservice-based	systems.
2	Diane	Vaughan,	The	Challenger	Launch	Decision:	Risky	Technology,	Culture,	and
Deviance	at	NASA	(Chicago:	University	of	Chicago	Press,	1996).

Chapter	8.	Monitoring

As	I’ve	hopefully	shown	so	far,	breaking	our	system	up	into	smaller,	fine-grained
microservices	results	in	multiple	benefits.	It	also,	however,	adds	complexity	when	it
comes	to	monitoring	the	system	in	production.	In	this	chapter,	we’ll	look	at	the	challenges
associated	with	monitoring	and	identifying	problems	in	our	fine-grained	systems,	and	I’ll
outline	some	of	the	things	you	can	do	to	have	your	cake	and	eat	it	too!

Picture	the	scene.	It’s	a	quiet	Friday	afternoon,	and	the	team	is	looking	forward	to	sloping
off	early	to	the	pub	as	a	way	to	start	a	weekend	away	from	work.	Then	suddenly	the
emails	arrive.	The	website	is	misbehaving!	Twitter	is	ablaze	with	your	company’s	failings,
your	boss	is	chewing	your	ear	off,	and	the	prospects	of	a	quiet	weekend	vanish.

What’s	the	first	thing	you	need	to	know?	What	the	hell	has	gone	wrong?

In	the	world	of	the	monolithic	application,	we	at	least	have	a	very	obvious	place	to	start
our	investigations.	Website	slow?	It’s	the	monolith.	Website	giving	odd	errors?	It’s	the
monolith.	CPU	at	100%?	Monolith.	Smell	of	burning?	Well,	you	get	the	idea.	Having	a
single	point	of	failure	also	makes	failure	investigation	somewhat	simpler!

Now	let’s	think	about	our	own,	microservice-based	system.	The	capabilities	we	offer	our
users	are	served	from	multiple	small	services,	some	of	which	communicate	with	yet	more
services	to	accomplish	their	tasks.	There	are	lots	of	advantages	to	such	an	approach
(which	is	good,	as	otherwise	this	book	would	be	a	waste	of	time),	but	in	the	world	of
monitoring,	we	have	a	more	complex	problem	on	our	hands.

We	now	have	multiple	servers	to	monitor,	multiple	logfiles	to	sift	through,	and	multiple
places	where	network	latency	could	cause	problems.	So	how	do	we	approach	this?	We
need	to	make	sense	of	what	otherwise	might	be	a	chaotic,	tangled	mess	—	the	last	thing
any	of	us	wants	to	deal	with	on	a	Friday	afternoon	(or	at	any	time,	come	to	that!).

The	answer	here	is	pretty	straightforward:	monitor	the	small	things,	and	use	aggregation	to
see	the	bigger	picture.	To	see	how,	we’ll	start	with	the	simplest	system	we	can:	a	single
node.

Single	Service,	Single	Server
Figure	8-1	presents	a	very	simple	setup:	one	host,	running	one	service.	Now	we	need	to
monitor	it	in	order	to	know	when	something	goes	wrong,	so	we	can	fix	it.	So	what	should
we	look	for?

Figure	8-1.	A	single	service	on	a	single	host

First,	we’ll	want	to	monitor	the	host	itself.	CPU,	memory	—	all	of	these	things	are	useful.
We’ll	want	to	know	what	they	should	be	when	things	are	healthy,	so	we	can	alert	when
they	go	out	of	bounds.	If	we	want	to	run	our	own	monitoring	software,	we	could	use
something	like	Nagios	to	do	so,	or	else	use	a	hosted	service	like	New	Relic.

Next,	we’ll	want	to	have	access	to	the	logs	from	the	server	itself.	If	a	user	reports	an	error,
these	logs	should	pick	it	up	and	hopefully	tell	us	when	and	where	the	error	is.	At	this
point,	with	our	single	host	we	can	probably	get	by	with	just	logging	on	to	the	host	and
using	command-line	tools	to	scan	the	log.	We	may	even	get	advanced	and	use	logrotate
to	move	old	logs	out	of	the	way	and	avoid	them	taking	up	all	our	disk	space.

Finally,	we	might	want	to	monitor	the	application	itself.	At	a	bare	minimum,	monitoring
the	response	time	of	the	service	is	a	good	idea.	You’ll	probably	be	able	to	do	this	by
looking	at	the	logs	coming	either	from	a	web	server	fronting	your	service,	or	perhaps	from
the	service	itself.	If	we	get	very	advanced,	we	might	want	to	track	the	number	of	errors	we
are	reporting.

Time	passes,	loads	increase,	and	we	find	ourselves	needing	to	scale…

Single	Service,	Multiple	Servers
Now	we	have	multiple	copies	of	the	service	running	on	separate	hosts,	as	shown	in
Figure	8-2,	with	requests	to	the	different	service	instances	distributed	via	a	load	balancer.
Things	start	to	get	a	bit	trickier	now.	We	still	want	to	monitor	all	the	same	things	as	before,
but	need	to	do	so	in	such	a	way	that	we	can	isolate	the	problem.	When	the	CPU	is	high,	is
it	a	problem	we	are	seeing	on	all	hosts,	which	would	point	to	an	issue	with	the	service
itself,	or	is	it	isolated	to	a	single	host,	implying	that	the	host	itself	has	the	problem	—
perhaps	a	rogue	OS	process?

Figure	8-2.	A	single	service	distributed	across	multiple	hosts

So	at	this	point,	we	still	want	to	track	the	host-level	metrics,	and	alert	on	them.	But	now
we	want	to	see	what	they	are	across	all	hosts,	as	well	as	individual	hosts.	In	other	words,
we	want	to	aggregate	them	up,	and	still	be	able	to	drill	down.	Nagios	lets	us	group	our
hosts	like	this	—	so	far,	so	good.	A	similar	approach	will	probably	suffice	for	our
application.

Then	we	have	our	logs.	With	our	service	running	on	more	than	one	server,	we’ll	probably
get	tired	of	logging	into	each	box	to	look	at	it.	With	just	a	few	hosts,	though,	we	can	use
tools	like	ssh-multiplexers,	which	allow	us	to	run	the	same	commands	on	multiple	hosts.
A	big	monitor	and	a	grep	"Error"	app.log	later,	and	we	can	find	our	culprit.

For	tasks	like	response	time	tracking,	we	can	get	some	of	the	aggregation	for	free	by
tracking	at	the	load	balancer	itself.	But	we	need	to	track	the	load	balancer	as	well,	of
course;	if	that	misbehaves,	we	have	a	problem.	At	this	point,	we	also	probably	care	a	lot
more	about	what	a	healthy	service	looks	like,	as	we’ll	configure	our	load	balancer	to
remove	unhealthy	nodes	from	our	application.	Hopefully	by	the	time	we	get	here	we	have
at	least	some	idea	of	that…

Multiple	Services,	Multiple	Servers
In	Figure	8-3,	things	get	much	more	interesting.	Multiple	services	are	collaborating	to
provide	capabilities	to	our	users,	and	those	services	are	running	on	multiple	hosts	—	be
they	physical	or	virtual.	How	do	you	find	the	error	you’re	looking	for	in	thousands	of	lines
of	logs	on	multiple	hosts?	How	do	you	determine	if	one	server	is	misbehaving,	or	if	it	is	a
systematic	issue?	And	how	do	you	track	back	an	error	found	deep	down	in	a	call	chain
between	multiple	hosts	and	work	out	what	caused	it?

Figure	8-3.	Multiple	collaborating	services	distributed	across	multiple	hosts

The	answer	is	collection	and	central	aggregation	of	as	much	as	we	can	get	our	hands	on,
from	logs	to	application	metrics.

Logs,	Logs,	and	Yet	More	Logs…
Now	the	number	of	hosts	we	are	running	on	is	becoming	a	challenge.	SSH-multiplexing	to
retrieve	logs	probably	isn’t	going	to	cut	it	now,	and	there	isn’t	a	screen	big	enough	for	you
to	have	terminals	open	on	every	host.	Instead,	we’re	looking	to	use	specialized	subsystems
to	grab	our	logs	and	make	them	available	centrally.	One	example	of	this	is	logstash,	which
can	parse	multiple	logfile	formats	and	can	send	them	to	downstream	systems	for	further
investigation.

Kibana	is	an	ElasticSearch-backed	system	for	viewing	logs,	illustrated	in	Figure	8-4.	You
can	use	a	query	syntax	to	search	through	logs,	allowing	you	to	do	things	like	restrict	time
and	date	ranges	or	use	regular	expressions	to	find	matching	strings.	Kibana	can	even
generate	graphs	from	the	logs	you	send	it,	allowing	you	to	see	at	a	glance	how	many
errors	have	been	generated	over	time,	for	example.

Figure	8-4.	Using	Kibana	to	view	aggregated	logs

http://logstash.net
http://bit.ly/1BrIp6a

Metric	Tracking	Across	Multiple	Services
As	with	the	challenge	of	looking	at	logs	for	different	hosts,	we	need	to	look	at	better	ways
to	gather	and	view	our	metrics.	It	can	be	hard	to	know	what	good	looks	like	when	we’re
looking	at	metrics	for	a	more	complex	system.	Our	website	is	seeing	nearly	50	4XX	HTTP
error	codes	per	second.	Is	that	bad?	The	CPU	load	on	the	catalog	service	has	increased	by
20%	since	lunch;	has	something	gone	wrong?	The	secret	to	knowing	when	to	panic	and
when	to	relax	is	to	gather	metrics	about	how	your	system	behaves	over	a	long-enough
period	of	time	that	clear	patterns	emerge.

In	a	more	complex	environment,	we’ll	be	provisioning	new	instances	of	our	services
pretty	frequently,	so	we	want	the	system	we	pick	to	make	it	very	easy	to	collect	metrics
from	new	hosts.	We’ll	want	to	be	able	to	look	at	a	metric	aggregated	for	the	whole	system
—	for	example,	the	avergage	CPU	load	—	but	we’ll	also	want	to	aggregate	that	metric	for
all	the	instances	of	a	given	service,	or	even	for	a	single	instance	of	that	service.	That
means	we’ll	need	to	be	able	to	associate	metadata	with	the	metric	to	allow	us	to	infer	this
structure.

Graphite	is	one	such	system	that	makes	this	very	easy.	It	exposes	a	very	simple	API	and
allows	you	to	send	metrics	in	real	time.	It	then	allows	you	to	query	those	metrics	to
produce	charts	and	other	displays	to	see	what	is	happening.	The	way	it	handles	volume	is
also	interesting.	Effectively,	you	configure	it	so	that	you	reduce	the	resolution	of	older
metrics	to	ensure	the	volumes	don’t	get	too	large.	So,	for	example,	I	might	record	the	CPU
for	my	hosts	once	every	10	seconds	for	the	last	10	minutes,	then	an	aggregated	sample
every	minute	for	the	last	day,	down	to	perhaps	one	sample	every	30	minutes	for	the	last
several	years.	In	this	way,	you	can	store	information	about	how	your	system	has	behaved
over	a	long	period	of	time	without	needing	huge	amounts	of	storage.

Graphite	also	enables	you	to	aggregate	across	samples,	or	drill	down	to	a	single	series,	so
you	can	see	the	response	time	for	your	whole	system,	a	group	of	services,	or	a	single
instance.	If	Graphite	doesn’t	work	for	you	for	whatever	reason,	make	sure	you	get	similar
capabilities	in	any	other	tool	you	select.	And	certainly	make	sure	you	can	get	access	to	the
raw	data	to	provide	your	own	reporting	or	dashboards	if	you	need	to.

Another	key	benefit	of	understanding	your	trends	is	when	it	comes	to	capacity	planning.
Are	we	reaching	our	limit?	How	long	until	we	need	more	hosts?	In	the	past	when	we
brought	physical	hosts,	this	was	often	an	annual	job.	In	the	new	age	of	on-demand
computing	provided	by	infrastructure	as	a	service	(IaaS)	vendors,	we	can	now	scale	up	or
down	in	minutes,	if	not	seconds.	This	means	that	if	we	understand	our	usage	patterns,	we
can	make	sure	we	have	just	enough	infrastructure	to	serve	our	needs.	The	smarter	we	are
in	tracking	our	trends	and	knowing	what	to	do	with	them,	the	more	cost	effective	and
responsive	our	systems	can	be.

Service	Metrics
The	operating	systems	we	run	on	generate	a	large	number	of	metrics	for	us,	as	you’ll	find
the	moment	you	install	collectd	on	a	Linux	box	and	point	it	at	Graphite.	Likewise,
supporting	subsystems	like	Nginx	or	Varnish	exposes	useful	information	like	response
times	or	cache	hit	rates.	But	what	about	your	own	service?

I	would	strongly	suggest	having	your	services	expose	basic	metrics	themselves.	At	a	bare
minimum,	for	a	web	service	you	should	probably	expose	metrics	like	response	times	and
error	rates	—	vital	if	your	server	isn’t	fronted	by	a	web	server	that	is	doing	this	for	you.
But	you	should	really	go	further.	For	example,	our	accounts	service	may	want	to	expose
the	number	of	times	customers	view	their	past	orders,	or	your	web	shop	might	want	to
capture	how	much	money	has	been	made	during	the	last	day.

Why	do	we	care	about	this?	Well,	for	a	number	of	reasons.	First,	there	is	an	old	adage	that
80%	of	software	features	are	never	used.	Now	I	can’t	comment	on	how	accurate	that
figure	is,	but	as	someone	who	has	been	developing	software	for	nearly	20	years,	I	know
that	I	have	spent	a	lot	of	time	on	features	that	never	actually	get	used.	Wouldn’t	it	be	nice
to	know	what	they	are?

Second,	we	are	getting	better	than	ever	at	reacting	to	how	our	users	are	using	our	system
to	work	out	how	to	improve	it.	Metrics	that	inform	us	of	how	our	systems	behave	can	only
help	us	here.	We	push	out	a	new	version	of	the	website,	and	find	that	the	number	of
searches	by	genre	has	gone	up	significantly	on	the	catalog	service.	Is	that	a	problem,	or
expected?

Finally,	we	can	never	know	what	data	will	be	useful!	More	times	than	I	can	count	I’ve
wanted	to	capture	data	to	help	me	understand	something	only	after	the	chance	to	do	so	has
long	passed.	I	tend	to	err	toward	exposing	everything	and	relying	on	my	metrics	system	to
handle	this	later.

Libraries	exist	for	a	number	of	different	platforms	that	allow	our	services	to	send	metrics
to	standard	systems.	Codahale’s	Metrics	library	is	one	such	example	library	for	the	JVM.
It	allows	you	to	store	metrics	as	counters,	timers,	or	gauges;	supports	time-boxing	metrics
(so	you	can	specify	metrics	like	“number	of	orders	in	the	last	five	minutes”);	and	also
comes	out	of	the	box	with	support	for	sending	data	to	Graphite	and	other	aggregating	and
reporting	systems.

http://metrics.codahale.com/

Synthetic	Monitoring
We	can	try	to	work	out	if	a	service	is	healthy	by,	for	example,	deciding	what	a	good	CPU
level	is,	or	what	makes	for	an	acceptable	response	time.	If	our	monitoring	system	detects
that	the	actual	values	fall	outside	this	safe	level,	we	can	trigger	an	alert	—	something	that
a	tool	like	Nagios	is	more	than	capable	of.

However,	in	many	ways,	these	values	are	one	step	removed	from	what	we	actually	want	to
track	—	namely,	is	the	system	working?	The	more	complex	the	interactions	between	the
services,	the	further	removed	we	are	from	actually	answering	that	question.	So	what	if	our
monitoring	systems	were	programmed	to	act	a	bit	like	our	users,	and	could	report	back	if
something	goes	wrong?

I	first	did	this	back	in	2005.	I	was	part	of	a	small	ThoughtWorks	team	that	was	building	a
system	for	an	investment	bank.	Throughout	the	trading	day,	lots	of	events	came	in
representing	changes	in	the	market.	Our	job	was	to	react	to	these	changes,	and	look	at	the
impact	on	the	bank’s	portfolio.	We	were	working	under	some	fairly	tight	deadlines,	as	the
goal	was	to	have	done	all	our	calculations	in	less	than	10	seconds	after	the	event	arrived.
The	system	itself	consisted	of	around	five	discrete	services,	at	least	one	of	which	was
running	on	a	computing	grid	that,	among	other	things,	was	scavenging	unused	CPU	cycles
on	around	250	desktop	hosts	in	the	bank’s	disaster	recovery	center.

The	number	of	moving	parts	in	the	system	meant	a	lot	of	noise	was	being	generated	from
many	of	the	lower-level	metrics	we	were	gathering.	We	didn’t	have	the	benefit	of	scaling
gradually	or	having	the	system	run	for	a	few	months	to	understand	what	good	looked	like
for	metrics	like	our	CPU	rate	or	even	the	latencies	of	some	of	the	individual	components.
Our	approach	was	to	generate	fake	events	to	price	part	of	the	portfolio	that	was	not
booked	into	the	downstream	systems.	Every	minute	or	so,	we	had	Nagios	run	a	command-
line	job	that	inserted	a	fake	event	into	one	of	our	queues.	Our	system	picked	it	up	and	ran
all	the	various	calculations	just	like	any	other	job,	except	the	results	appeared	in	the	junk
book,	which	was	used	only	for	testing.	If	a	re-pricing	wasn’t	seen	within	a	given	time,
Nagios	reported	this	as	an	issue.

This	fake	event	we	created	is	an	example	of	synthetic	transaction.	We	used	this	synthetic
transaction	to	ensure	the	system	was	behaving	semantically,	which	is	why	this	technique	is
often	called	semantic	monitoring.

In	practice,	I’ve	found	the	use	of	synthetic	transactions	to	perform	semantic	monitoring
like	this	to	be	a	far	better	indicator	of	issues	in	systems	than	alerting	on	the	lower-level
metrics.	They	don’t	replace	the	need	for	the	lower-level	metrics,	though	—	we’ll	still	want
that	detail	when	we	need	to	find	out	why	our	semantic	monitoring	is	reporting	a	problem.

Implementing	Semantic	Monitoring
Now	in	the	past,	implementing	semantic	monitoring	was	a	fairly	daunting	task.	But	the
world	has	moved	on,	and	the	means	to	do	this	is	at	our	fingertips!	You	are	running	tests
for	your	systems,	right?	If	not,	go	read	Chapter	7	and	come	back.	All	done?	Good!

If	we	look	at	the	tests	we	have	that	test	a	given	service	end	to	end,	or	even	our	whole
system	end	to	end,	we	have	much	of	what	we	need	to	implement	semantic	monitoring.
Our	system	already	exposes	the	hooks	needed	to	launch	the	test	and	check	the	result.	So
why	not	just	run	a	subset	of	these	tests,	on	an	ongoing	basis,	as	a	way	of	monitoring	our
system?

There	are	some	things	we	need	to	do,	of	course.	First,	we	need	to	be	careful	about	the	data
requirements	of	our	tests.	We	may	need	to	find	a	way	for	our	tests	to	adapt	to	different	live
data	if	this	changes	over	time,	or	else	set	a	different	source	of	data.	For	example,	we	could
have	a	set	of	fake	users	we	use	in	production	with	a	known	set	of	data.

Likewise,	we	have	to	make	sure	we	don’t	accidentally	trigger	unforeseen	side	effects.	A
friend	told	me	a	story	about	an	ecommerce	company	that	accidentally	ran	its	tests	against
its	production	ordering	systems.	It	didn’t	realize	its	mistake	until	a	large	number	of
washing	machines	arrived	at	the	head	office.

Correlation	IDs
With	a	large	number	of	services	interacting	to	provide	any	given	end-user	capability,	a
single	initiating	call	can	end	up	generating	multiple	more	downstream	service	calls.	For
example,	consider	the	example	of	a	customer	being	registered.	The	customer	fills	in	all	her
details	in	a	form	and	clicks	submit.	Behind	the	scenes,	we	check	validity	of	the	credit	card
details	with	our	payment	service,	talk	to	our	postal	service	to	send	out	a	welcome	pack	in
the	post,	and	send	a	welcome	email	using	our	email	service.	Now	what	happens	if	the	call
to	the	payment	service	ends	up	generating	an	odd	error?	We’ll	talk	at	length	about
handling	the	failure	in	Chapter	11,	but	consider	the	difficulty	of	diagnosing	what
happened.

If	we	look	at	the	logs,	the	only	service	registering	an	error	is	our	payment	service.	If	we
are	lucky,	we	can	work	out	what	request	caused	the	problem,	and	we	may	even	be	able	to
look	at	the	parameters	of	the	call.	Now	consider	that	this	is	a	simple	example,	and	that	one
initiating	request	could	generate	a	chain	of	downstream	calls	and	maybe	events	being	fired
off	that	are	handled	in	an	asynchronous	manner.	How	can	we	reconstruct	the	flow	of	calls
in	order	to	reproduce	and	fix	the	problem?	Often	what	we	need	is	to	see	that	error	in	the
wider	context	of	the	initiating	call;	in	other	words,	we’d	like	to	trace	the	call	chain
upstream,	just	like	we	do	with	a	stack	trace.

One	approach	that	can	be	useful	here	is	to	use	correlation	IDs.	When	the	first	call	is	made,
you	generate	a	GUID	for	the	call.	This	is	then	passed	along	to	all	subsequent	calls,	as	seen
in	Figure	8-5,	and	can	be	put	into	your	logs	in	a	structured	way,	much	as	you’ll	already	do
with	components	like	the	log	level	or	date.	With	the	right	log	aggregation	tooling,	you’ll
then	be	able	to	trace	that	event	all	the	way	through	your	system:

15-02-2014	16:01:01	Web-Frontend	INFO	[abc-123]	Register

15-02-2014	16:01:02	RegisterService	INFO	[abc-123]	RegisterCustomer…

15-02-2014	16:01:03	PostalSystem	INFO	[abc-123]	SendWelcomePack…

15-02-2014	16:01:03	EmailSystem	INFO	[abc-123]	SendWelcomeEmail…

15-02-2014	16:01:03	PaymentGateway	ERROR	[abc-123]	ValidatePayment…

Figure	8-5.	Using	correlation	IDs	to	track	call	chains	across	multiple	services

You	will,	of	course,	need	to	ensure	that	each	service	knows	to	pass	on	the	correlation	ID.
This	is	where	you	need	to	standardize	and	be	stronger	in	enforcing	this	across	your
system.	But	once	you	have	done	this,	you	can	actually	create	tooling	to	track	all	sorts	of
interactions.	Such	tooling	can	be	useful	in	tracking	down	event	storms,	odd	corner	cases,
or	even	identifying	especially	costly	transactions,	as	you	can	picture	the	whole	cascade	of
calls.

Software	such	as	Zipkin	can	also	trace	calls	across	multiple	system	boundaries.	Based	on
the	ideas	from	Google’s	own	tracing	system,	Dapper,	Zipkin	can	provide	very	detailed
tracing	of	interservice	calls,	along	with	a	UI	to	help	present	the	data.	Personally,	I’ve
found	the	requirements	of	Zipkin	to	be	somewhat	heavyweight,	requiring	custom	clients
and	supporting	collection	systems.	Given	that	you’ll	already	want	log	aggregation	for
other	purposes,	it	feels	much	simpler	to	instead	make	use	of	data	you’re	already	collecting
than	have	to	plumb	in	additional	sources	of	data.	That	said,	if	you	find	that	you	need	a
more	advanced	tool	to	track	interservice	calls	like	this,	you	might	want	to	give	them	a
look.

One	of	the	real	problems	with	correlation	IDs	is	that	you	often	don’t	know	you	need	one
until	after	you	already	have	a	problem	that	could	be	diagnosed	only	if	you	had	the	ID	at
the	beginning!	This	is	especially	problematic,	as	retrofitting	correlation	IDs	in	is	very
difficult;	you	need	to	handle	them	in	a	standardized	way	to	be	able	to	easily	reconsititute
call	chains.	Although	it	might	seem	like	additional	work	up	front,	I	would	strongly	suggest
you	consider	putting	them	in	as	soon	as	you	can,	especially	if	your	system	will	make	use
of	event-drive	architecture	patterns,	which	can	lead	to	some	odd	emergent	behavior.

http://twitter.github.io/zipkin/

Needing	to	handle	tasks	like	consistently	passing	through	correlation	IDs	can	be	a	strong
argument	for	the	use	of	thin	shared	client	wrapper	libraries.	At	a	certain	scale,	it	becomes
difficult	to	ensure	that	everyone	is	calling	downstream	services	in	the	right	way	and
collecting	the	right	sort	of	data.	It	only	takes	one	service	partway	through	the	chain	to
forget	to	do	this	for	you	to	lose	critical	information.	If	you	do	decide	to	create	an	in-house
client	library	to	make	things	like	this	work	out	of	the	box,	do	make	sure	you	keep	it	very
thin	and	not	tied	to	any	particular	producing	service.	For	example,	if	you	are	using	HTTP
as	the	underlying	protocol	for	communication,	just	wrap	a	standard	HTTP	client	library,
adding	in	code	to	make	sure	you	propogate	the	correlation	IDs	in	the	headers.

The	Cascade
Cascading	failures	can	be	especially	perilous.	Imagine	a	situation	where	the	network
connection	between	our	music	shop	website	and	the	catalog	service	goes	down.	The
services	themselves	appear	healthy,	but	they	can’t	talk	to	each	other.	If	we	just	looked	at
the	health	of	the	individual	service,	we	wouldn’t	know	there	is	a	problem.	Using	synthetic
monitoring	—	for	example,	to	mimic	a	customer	searching	for	a	song	—	would	pick	up
the	problem.	But	we’d	also	need	to	report	on	the	fact	that	one	service	cannot	see	another
in	order	to	determine	the	cause	of	the	problem.

Therefore,	monitoring	the	integration	points	between	systems	is	key.	Each	service	instance
should	track	and	expose	the	health	of	its	downstream	dependencies,	from	the	database	to
other	collaborating	services.	You	should	also	allow	this	information	to	be	aggregated	to
give	you	a	rolled-up	picture.	You’ll	want	to	see	the	response	time	of	the	downstream	calls,
and	also	detect	if	it	is	erroring.

As	we’ll	discuss	more	in	Chapter	11,	you	can	use	libraries	to	implement	a	circuit	breaker
around	network	calls	to	help	you	handle	cascading	failures	in	a	more	elegant	fashion,
allowing	you	to	more	gracefully	degrade	your	system.	Some	of	these	libraries,	such	as
Hystrix	for	the	JVM,	also	do	a	good	job	of	providing	these	monitoring	capabilities	for
you.

Standardization
As	we’ve	covered	previously,	one	of	the	ongoing	balancing	acts	you’ll	need	to	pull	off	is
where	to	allow	for	decisions	to	be	made	narrowly	for	a	single	service	versus	where	you
need	to	standardize	across	your	system.	In	my	opinion,	monitoring	is	one	area	where
standardization	is	incredibly	important.	With	services	collaborating	in	lots	of	different
ways	to	provide	capabilities	to	users	using	multiple	interfaces,	you	need	to	view	the
system	in	a	holistic	way.

You	should	try	to	write	your	logs	out	in	a	standard	format.	You	definitely	want	to	have	all
your	metrics	in	one	place,	and	you	may	want	to	have	a	list	of	standard	names	for	your
metrics	too;	it	would	be	very	annoying	for	one	service	to	have	a	metric	called
ResponseTime,	and	another	to	have	one	called	RspTimeSecs,	when	they	mean	the	same
thing.

As	always	with	standardization,	tools	can	help.	As	I’ve	said	before,	the	key	is	making	it
easy	to	do	the	right	thing	—	so	why	not	provide	preconfigured	virtual	machine	images
with	logstash	and	collectd	ready	to	go,	along	with	application	libraries	that	let	you	talk	to
Graphite	really	easily?

Consider	the	Audience
All	this	data	we	are	gathering	is	for	a	purpose.	More	specifically,	we	are	gathering	all	this
data	for	different	people	to	help	them	do	their	jobs;	this	data	becomes	a	call	to	action.
Some	of	this	data	needs	to	trigger	an	immediate	call	to	action	for	our	support	team	—	for
example,	in	the	case	of	one	of	our	synthetic	monitoring	tests	failing.	Other	data,	like	the
fact	that	our	CPU	load	has	increased	by	2%	over	the	last	week,	is	potentially	only	of
interest	when	we’re	doing	capacity	planning.	Likewise,	your	boss	is	probably	going	to
want	to	know	right	away	that	revenue	dipped	25%	after	the	last	release,	but	probably
doesn’t	need	to	be	woken	up	because	searches	for	“Justin	Bieber”	have	gone	up	5%	in	the
last	hour.

What	our	people	want	to	see	and	react	to	right	now	is	different	than	what	they	need	when
drilling	down.	So,	for	the	type	of	person	who	will	be	looking	at	this	data,	consider	the
following:

What	they	need	to	know	right	now

What	they	might	want	later

How	they	like	to	consume	data

Alert	on	the	things	they	need	to	know	right	now.	Create	big	visible	displays	with	this
information	that	sit	in	the	corner	of	the	room.	Give	them	easy	access	to	the	data	they	need
to	know	later.	And	spend	time	with	them	to	know	how	they	want	to	consume	data.	A
discussion	about	all	the	nuances	involved	in	the	graphical	display	of	quantitative
information	is	certainly	outside	the	scope	of	this	book,	but	a	great	place	to	start	is	Stephen
Few’s	excellent	book	Information	Dashboard	Design:	Displaying	Data	for	At-a-Glance
Monitoring	(Analytics	Press).

The	Future
I	have	seen	many	organizations	where	metrics	are	siloed	into	different	systems.
Application-level	metrics,	like	the	number	of	orders	placed,	end	up	in	a	proprietary
analytics	system	like	Omniture,	which	is	often	available	only	to	select	parts	of	the
business,	or	else	ends	up	in	the	dreaded	data	warehouse,	aka	where	data	goes	to	die.
Reporting	from	such	systems	is	often	not	available	in	real	time,	although	that	is	starting	to
change.	Meanwhile,	system	metrics	like	response	times,	error	rates,	and	CPU	load	are
stored	in	systems	that	the	operations	teams	can	access.	These	systems	typically	allow	for
real-time	reporting,	as	normally	the	point	of	them	is	to	provoke	an	immediate	call	to
action.

Historically,	the	idea	that	we	can	find	out	about	key	business	metrics	a	day	or	two	later
was	fine,	as	typically	we	were	unable	to	react	fast	enough	to	this	data	to	do	anything	about
it	anyway.	Now,	though,	we	operate	in	a	world	in	which	many	of	us	can	and	do	push	out
multiple	releases	per	day.	Teams	now	measure	themselves	not	in	terms	of	how	many
points	they	complete,	but	instead	optimize	for	how	long	it	takes	for	code	to	get	from
laptop	to	live.	In	such	an	environment,	we	need	all	our	metrics	at	our	fingertips	to	take	the
right	action.	Ironically,	the	very	systems	that	store	business	metrics	are	often	not	tuned	for
immediate	access	to	data,	but	our	operational	systems	are.

So	why	handle	operational	and	business	metrics	in	the	same	way?	Ultimately,	both	types
of	things	break	down	to	events	that	say	something	happened	at	X.	So,	if	we	can	unify	the
systems	we	use	to	gather,	aggregate,	and	store	these	events,	and	make	them	available	for
reporting,	we	end	up	with	a	much	simpler	architecture.

Riemann	is	an	event	server	that	allows	for	fairly	advanced	aggregation	and	routing	of
events	and	can	form	part	of	such	a	solution.	Suro	is	Netflix’s	data	pipeline	and	operates	in
a	similar	space.	Suro	is	explicitly	used	to	handle	both	metrics	associated	with	user
behavior,	and	more	operational	data	like	application	logs.	This	data	can	then	be	dispatched
to	a	variety	of	systems,	like	Storm	for	real-time	analysis,	Hadoop	for	offline	batch
processing,	or	Kibana	for	log	analysis.

Many	organizations	are	moving	in	a	fundamentally	different	direction:	away	from	having
specialized	tool	chains	for	different	types	of	metrics	and	toward	more	generic	event
routing	systems	capable	of	significant	scale.	These	systems	manage	to	provide	much	more
flexibility,	while	at	the	same	time	actually	simplifying	our	architecture.

http://riemann.io/
https://github.com/Netflix/suro

Summary
So,	we’ve	covered	a	lot	here!	I’ll	attempt	to	summarize	this	chapter	into	some	easy-to-
follow	advice.

For	each	service:

Track	inbound	response	time	at	a	bare	minimum.	Once	you’ve	done	that,	follow	with
error	rates	and	then	start	working	on	application-level	metrics.

Track	the	health	of	all	downstream	responses,	at	a	bare	minimum	including	the
response	time	of	downstream	calls,	and	at	best	tracking	error	rates.	Libraries	like
Hystrix	can	help	here.

Standardize	on	how	and	where	metrics	are	collected.

Log	into	a	standard	location,	in	a	standard	format	if	possible.	Aggregation	is	a	pain	if
every	service	uses	a	different	layout!

Monitor	the	underlying	operating	system	so	you	can	track	down	rogue	processes	and
do	capacity	planning.

For	the	system:

Aggregate	host-level	metrics	like	CPU	together	with	application-level	metrics.

Ensure	your	metric	storage	tool	allows	for	aggregation	at	a	system	or	service	level,
and	drill	down	to	individual	hosts.

Ensure	your	metric	storage	tool	allows	you	to	maintain	data	long	enough	to
understand	trends	in	your	system.

Have	a	single,	queryable	tool	for	aggregating	and	storing	logs.

Strongly	consider	standardizing	on	the	use	of	correlation	IDs.

Understand	what	requires	a	call	to	action,	and	structure	alerting	and	dashboards
accordingly.

Investigate	the	possibility	of	unifying	how	you	aggregate	all	of	your	various	metrics
by	seeing	if	a	tool	like	Suro	or	Riemann	makes	sense	for	you.

I’ve	also	attempted	to	outline	the	direction	in	which	monitoring	is	moving:	away	from
systems	specialized	to	do	just	one	thing,	and	toward	generic	event	processing	systems	that
allow	you	to	look	at	your	system	in	a	more	holistic	way.	This	is	an	exciting	and	emerging
space,	and	while	a	full	investigation	is	outside	the	scope	of	this	book,	hopefully	I’ve	given
you	enough	to	get	started	with.	If	you	want	to	know	more,	I	go	into	some	of	these	ideas

and	more	in	my	earlier	publication	Lightweight	Systems	for	Realtime	Monitoring
(O’Reilly).

In	the	next	chapter,	we’ll	take	a	different	holistic	view	of	our	systems	to	consider	some	of
the	unique	advantages	—	and	challenges	—	that	fine-grained	architectures	can	provide	in
the	area	of	security.

http://www.oreilly.com/webops-perf/free/lightweight-systems.csp

Chapter	9.	Security

We’ve	become	familiar	with	stories	about	security	breaches	of	large-scale	systems
resulting	in	our	data	being	exposed	to	all	sorts	of	dodgy	characters.	But	more	recently,
events	like	the	Edward	Snowden	revelations	have	made	us	even	more	aware	of	the	value
of	data	that	companies	hold	about	us,	and	the	value	of	data	that	we	hold	for	our	customers
in	the	systems	we	build.	This	chapter	will	give	a	brief	overview	of	some	aspects	of
security	you	should	consider	when	designing	your	systems.	While	not	meant	to	be
exhaustive,	it	will	lay	out	some	of	the	main	options	available	to	you	and	give	you	a
starting	point	for	your	own	further	research.

We	need	to	think	about	what	protection	our	data	needs	while	in	transit	from	one	point	to
another,	and	what	protection	it	needs	at	rest.	We	need	to	think	about	the	security	of	our
underlying	operating	systems,	and	our	networks	too.	There	is	so	much	to	think	about,	and
so	much	we	could	do!	So	how	much	security	do	we	need?	How	can	we	work	out	what	is
enough	security?

But	we	also	need	to	think	of	the	human	element.	How	do	we	know	who	a	person	is,	and
what	he	can	do?	And	how	does	this	relate	to	how	our	servers	talk	to	each	other?	Let’s	start
there.

Authentication	and	Authorization
Authentication	and	authorization	are	core	concepts	when	it	comes	to	people	and	things
that	interact	with	our	system.	In	the	context	of	security,	authentication	is	the	process	by
which	we	confirm	that	a	party	is	who	she	says	she	is.	For	a	human,	you	typically
authenticate	a	user	by	having	her	type	in	her	username	and	password.	We	assume	that	only
she	has	access	to	this	information,	and	therefore	that	the	person	entering	this	information
must	be	her.	Other,	more	complex	systems	exist	as	well,	of	course.	My	phone	now	lets	me
use	my	fingerprint	to	confirm	that	I	am	who	I	say	I	am.	Generally,	when	we’re	talking
abstractly	about	who	or	what	is	being	authenticated,	we	refer	to	that	party	as	the	principal.

Authorization	is	the	mechanism	by	which	we	map	from	a	principal	to	the	action	we	are
allowing	her	to	do.	Often,	when	a	principal	is	authenticated,	we	will	be	given	information
about	her	that	will	help	us	decide	what	we	should	let	her	do.	We	might,	for	example,	be
told	what	department	or	office	she	works	in	—	pieces	of	information	that	our	systems	can
use	to	decide	what	she	can	and	cannot	do.

For	single,	monolithic	applications,	it	is	common	for	the	application	itself	to	handle
authentication	and	authorization	for	you.	Django,	the	Python	web	framework,	comes	out
of	the	box	with	user	management,	for	example.	When	it	comes	to	distributed	systems,
though,	we	need	to	think	of	more	advanced	schemes.	We	don’t	want	everyone	to	have	to
log	in	separately	for	different	systems,	using	a	different	username	and	password	for	each.
The	aim	is	to	have	a	single	identity	that	we	can	authenticate	once.

Common	Single	Sign-On	Implementations
A	common	approach	to	authentication	and	authorization	is	to	use	some	sort	of	single	sign-
on	(SSO)	solution.	SAML,	which	is	the	reigning	implementation	in	the	enterprise	space,
and	OpenID	Connect	both	provide	capabilities	in	this	area.	More	or	less	they	use	the	same
core	concepts,	although	the	terminology	differs	slightly.	The	terms	used	here	are	from
SAML.

When	a	principal	tries	to	access	a	resource	(like	a	web-based	interface),	she	is	directed	to
authenticate	with	an	identity	provider.	This	may	ask	her	to	provide	a	username	and
password,	or	might	use	something	more	advanced	like	two-factor	authentication.	Once	the
identity	provider	is	satisfied	that	the	principal	has	been	authenticated,	it	gives	information
to	the	service	provider,	allowing	it	to	decide	whether	to	grant	her	access	to	the	resource.

This	identity	provider	could	be	an	externally	hosted	system,	or	something	inside	your	own
organization.	Google,	for	example,	provides	an	OpenID	Connect	identity	provider.	For
enterprises,	though,	it	is	common	to	have	your	own	identity	provider,	which	may	be	linked
to	your	company’s	directory	service.	A	directory	service	could	be	something	like	the
Lightweight	Directory	Access	Protocol	(LDAP)	or	Active	Directory.	These	systems	allow
you	to	store	information	about	principals,	such	as	what	roles	they	play	in	the	organization.
Often,	the	directory	service	and	the	identity	provider	are	one	and	the	same,	while
sometimes	they	are	separate	but	linked.	Okta,	for	example,	is	a	hosted	SAML	identity
provider	that	handles	tasks	like	two-factor	authentication,	but	can	link	to	your	company’s
directory	services	as	the	source	of	truth.

SAML	is	a	SOAP-based	standard,	and	is	known	for	being	fairly	complex	to	work	with
despite	the	libraries	and	tooling	available	to	support	it.	OpenID	Connect	is	a	standard	that
has	emerged	as	a	specific	implementation	of	OAuth	2.0,	based	on	the	way	Google	and
others	handle	SSO.	It	uses	simpler	REST	calls,	and	in	my	opinion	is	likely	to	make
inroads	into	enterprises	due	to	its	improved	ease	of	use.	Its	biggest	stumbling	block	right
now	is	the	lack	of	identity	providers	that	support	it.	For	a	public-facing	website,	you	might
be	OK	using	Google	as	your	provider,	but	for	internal	systems	or	systems	where	you	want
more	control	over	and	visibility	into	how	and	where	your	data	is	installed,	you’ll	want
your	own	in-house	identity	provider.	At	the	time	of	writing,	OpenAM	and	Gluu	are	two	of
the	very	few	options	available	in	this	space,	compared	to	a	wealth	of	options	for	SAML
(including	Active	Directory,	which	seems	to	be	everywhere).	Until	and	unless	existing
identity	providers	start	supporting	OpenID	Connect,	its	growth	may	be	limited	to	those
situations	where	people	are	happy	using	a	public	identity	provider.

So	while	I	think	OpenID	Connect	is	the	future,	it’s	quite	possible	it’ll	take	a	while	to	reach
widespread	adoption.

Single	Sign-On	Gateway
Within	a	microservice	setup,	each	service	could	decide	to	handle	the	redirection	to,	and
handshaking	with,	the	identity	provider.	Obviously,	this	could	mean	a	lot	of	duplicated
work.	A	shared	library	could	help,	but	we’d	have	to	be	careful	to	avoid	the	coupling	that
can	come	from	shared	code.	This	also	wouldn’t	help	if	you	had	multiple	different
technology	stacks.

Rather	than	having	each	service	manage	handshaking	with	your	identity	provider,	you	can
use	a	gateway	to	act	as	a	proxy,	sitting	between	your	services	and	the	outside	world	(as
shown	in	Figure	9-1).	The	idea	is	that	we	can	centralize	the	behavior	for	redirecting	the
user	and	perform	the	handshake	in	only	one	place.

Figure	9-1.	Using	a	gateway	to	handle	SSO

However,	we	still	need	to	solve	the	problem	of	how	the	downstream	service	receives
information	about	principals,	such	as	their	username	or	what	roles	they	play.	If	you’re
using	HTTP,	it	could	populate	headers	with	this	information.	Shibboleth	is	one	tool	that
can	do	this	for	you,	and	I’ve	seen	it	used	with	Apache	to	great	effect	to	handle	integration
with	SAML-based	identity	providers.

Another	problem	is	that	if	we	have	decided	to	offload	responsibility	for	authentication	to	a
gateway,	it	can	be	harder	to	reason	about	how	a	microservice	behaves	when	looking	at	it
in	isolation.	Remember	in	Chapter	7	where	we	explored	some	of	the	challenges	in
reproducing	production-like	environments?	If	you	go	the	gateway	route,	make	sure	your
developers	can	launch	their	services	behind	one	without	too	much	work.

One	final	problem	with	this	approach	is	that	it	can	lull	you	into	a	false	sense	of	security.	I
like	the	idea	of	defense	in	depth	—	from	network	perimeter,	to	subnet,	to	firewall,	to

machine,	to	operating	system,	to	the	underlying	hardware.	You	have	the	ability	to
implement	security	measures	at	all	of	these	points,	some	of	which	we’ll	get	into	shortly.	I
have	seen	some	people	put	all	their	eggs	in	one	basket,	relying	on	the	gateway	to	handle
every	step	for	them.	And	we	all	know	what	happens	when	we	have	a	single	point	of
failure…

Obviously	you	could	use	this	gateway	to	do	other	things.	If	using	a	layer	of	Apache
instances	running	Shibboleth,	for	example,	you	could	also	decide	to	terminate	HTTPS	at
this	level,	run	intrusion	detection,	and	so	on.	Do	be	careful,	though.	Gateway	layers	tend
to	take	on	more	and	more	functionality,	which	itself	can	end	up	being	a	giant	coupling
point.	And	the	more	functionality	something	has,	the	greater	the	attack	surface.

Fine-Grained	Authorization
A	gateway	may	be	able	to	provide	fairly	effective	coarse-grained	authentication.	For
example,	it	could	prevent	access	to	any	non-logged-in	user	to	the	helpdesk	application.
Assuming	our	gateway	can	extract	attributes	about	the	principal	as	a	result	of	the
authentication,	it	may	be	able	to	make	more	nuanced	decisions.	For	example,	it	is	common
to	place	people	in	groups,	or	assign	them	to	roles.	We	can	use	this	information	to
understand	what	they	can	do.	So	for	the	helpdesk	application,	we	might	allow	access	only
to	principals	with	a	specific	role	(e.g.,	STAFF).	Beyond	allowing	(or	disallowing)	access
to	specific	resources	or	endpoints,	though,	we	need	to	leave	the	rest	to	the	microservice
itself;	it	will	need	to	make	further	decisions	about	what	operations	to	allow.

Back	to	our	helpdesk	application:	do	we	allow	any	staff	members	to	see	any	and	all
details?	More	likely,	we’ll	have	different	roles	at	work.	For	example,	a	principal	in	the
CALL_CENTER	group	might	be	allowed	to	view	any	piece	of	information	about	a
customer	except	his	payment	details.	The	principal	might	also	be	able	to	issue	refunds,	but
that	amount	might	be	capped.	Someone	who	has	the	CALL_CENTER_TEAM_LEADER
role,	however,	might	be	able	to	issue	larger	refunds.

These	decisions	need	to	be	local	to	the	microservice	in	question.	I	have	seen	people	use
the	various	attributes	supplied	by	identity	providers	in	horrible	ways,	using	really	fine-
grained	roles	like	CALL_CENTER_50_DOLLAR_REFUND,	where	they	end	up	putting
information	specific	to	one	part	of	one	of	our	system’s	behavior	into	their	directory
services.	This	is	a	nightmare	to	maintain	and	gives	very	little	scope	for	our	services	to
have	their	own	independent	lifecycle,	as	suddenly	a	chunk	of	information	about	how	a
service	behaves	lives	elsewhere,	perhaps	in	a	system	managed	by	a	different	part	of	the
organization.

Instead,	favor	coarse-grained	roles,	modeled	around	how	your	organization	works.	Going
all	the	way	back	to	the	early	chapters,	remember	that	we	are	building	software	to	match
how	our	organization	works.	So	use	your	roles	in	this	way	too.

Service-to-Service	Authentication	and	Authorization
Up	to	this	point	we’ve	been	using	the	term	principal	to	describe	anything	that	can
authenticate	and	be	authorized	to	do	things,	but	our	examples	have	actually	been	about
humans	using	computers.	But	what	about	programs,	or	other	services,	authenticating	with
each	other?

Allow	Everything	Inside	the	Perimeter
Our	first	option	could	be	to	just	assume	that	any	calls	to	a	service	made	from	inside	our
perimeter	are	implicitly	trusted.

Depending	on	the	sensitivity	of	the	data,	this	might	be	fine.	Some	organizations	attempt	to
ensure	security	at	the	perimeter	of	their	networks,	and	therefore	assume	they	don’t	need	to
do	anything	else	when	two	services	are	talking	together.	However,	should	an	attacker
penetrate	your	network,	you	will	have	little	protection	against	a	typical	man-in-the-middle
attack.	If	the	attacker	decides	to	intercept	and	read	the	data	being	sent,	change	the	data
without	you	knowing,	or	even	in	some	circumstances	pretend	to	be	the	thing	you	are
talking	to,	you	may	not	know	much	about	it.

This	is	by	far	the	most	common	form	of	inside-perimeter	trust	I	see	in	organizations.	They
may	decide	to	run	this	traffic	over	HTTPS,	but	they	don’t	do	much	else.	I’m	not	saying
that	is	a	good	thing!	For	most	of	the	organizations	I	see	using	this	model,	I	worry	that	the
implicit	trust	model	is	not	a	conscious	decision,	but	more	that	people	are	unaware	of	the
risks	in	the	first	place.

HTTP(S)	Basic	Authentication
HTTP	Basic	Authentication	allows	for	a	client	to	send	a	username	and	password	in	a
standard	HTTP	header.	The	server	can	then	check	these	details	and	confirm	that	the	client
is	allowed	to	access	the	service.	The	advantage	here	is	that	this	is	an	extremely	well-
understood	and	well-supported	protocol.	The	problem	is	that	doing	this	over	HTTP	is
highly	problematic,	as	the	username	and	password	are	not	sent	in	a	secure	manner.	Any
intermediate	party	can	look	at	the	information	in	the	header	and	see	the	data.	Thus,	HTTP
Basic	Authentication	should	normally	be	used	over	HTTPS.

When	using	HTTPS,	the	client	gains	strong	guarantees	that	the	server	it	is	talking	to	is
who	the	client	thinks	it	is.	It	also	gives	us	additional	protection	against	people
eavesdropping	on	the	traffic	between	the	client	and	server	or	messing	with	the	payload.

The	server	needs	to	manage	its	own	SSL	certificates,	which	can	become	problematic	when
it	is	managing	multiple	machines.	Some	organizations	take	on	their	own	certificate	issuing
process,	which	is	an	additional	administrative	and	operational	burden.	Tools	around
managing	this	in	an	automated	fashion	are	nowhere	near	as	mature	as	they	could	be,	and	it
isn’t	just	the	issuing	process	you	have	to	handle.	Self-signed	certificates	are	not	easily
revokable,	and	thus	require	a	lot	more	thought	around	disaster	scenarios.	See	if	you	can
dodge	all	this	work	by	avoiding	self-signing	altogether.

Another	downside	is	that	traffic	sent	via	SSL	cannot	be	cached	by	reverse	proxies	like
Varnish	or	Squid.	This	means	that	if	you	need	to	cache	traffic,	it	will	have	to	be	done
either	inside	the	server	or	inside	the	client.	You	can	fix	this	by	having	a	load	balancer
terminate	the	SSL	traffic,	and	having	the	cache	sit	behind	the	load	balancer.

We	also	have	to	think	about	what	happens	if	we	are	using	an	existing	SSO	solution,	like
SAML,	that	already	has	access	to	usernames	and	passwords.	Do	we	want	our	basic	service
auth	to	use	the	same	set	of	credentials,	allowing	us	one	process	for	issuing	and	revoking
them?	We	could	do	this	by	having	the	service	talk	to	the	same	directory	service	that	backs
our	SSO	solution.	Alternatively,	we	could	store	the	usernames	and	passwords	ourselves
inside	the	service,	but	then	we	run	the	risk	of	duplicating	behavior.

One	note:	in	this	approach,	all	the	server	knows	is	that	the	client	has	the	username	and
password.	We	have	no	idea	if	this	information	is	coming	from	a	machine	we	expect;	it
could	be	coming	from	anyone	on	our	network.

Use	SAML	or	OpenID	Connect
If	you	are	already	using	SAML	or	OpenID	Connect	as	your	authentication	and
authorization	scheme,	you	could	just	use	that	for	service-to-service	interactions	too.	If
you’re	using	a	gateway,	you’ll	need	to	route	all	in-network	traffic	via	the	gateway	too,	but
if	each	service	is	handling	the	integration	itself,	this	approach	should	just	work	out	of	the
box.	The	advantage	here	is	that	you’re	making	use	of	existing	infrastructure,	and	get	to
centralize	all	your	service	access	controls	in	a	central	directory	server.	We’d	still	need	to
route	this	over	HTTPS	if	we	wanted	to	avoid	man-in-the-middle	attacks.

Clients	have	a	set	of	credentials	they	use	to	authenticate	themselves	with	the	identity
provider,	and	the	service	gets	the	information	it	needs	to	decide	on	any	fine-grained
authentication.

This	does	mean	you’ll	need	an	account	for	your	clients,	sometimes	referred	to	as	a	service
account.	Many	organizations	use	this	approach	quite	commonly.	A	word	of	warning,
though:	if	you	are	going	to	create	service	accounts,	try	to	keep	their	use	narrow.	So
consider	each	microservice	having	its	own	set	of	credentials.	This	makes
revoking/changing	access	easier	if	the	credentials	become	compromised,	as	you	only	need
to	revoke	the	set	of	credentials	that	have	been	affected.

There	are	a	couple	of	other	downsides,	though.	First,	just	as	with	Basic	Auth,	we	need	to
securely	store	our	credentials:	where	do	the	username	and	password	live?	The	client	will
need	to	find	some	secure	way	to	store	this	data.	The	other	problem	is	that	some	of	the
technology	in	this	space	to	do	the	authentication	is	fairly	tedious	to	code	for.	SAML,	in
particular,	makes	implementing	a	client	a	painful	affair.	OpenID	Connect	has	a	simpler
workflow,	but	as	we	discussed	earlier	it	isn’t	that	well	supported	yet.

Client	Certificates
Another	approach	to	confirm	the	identity	of	a	client	is	to	make	use	of	capabilities	in
Transport	Layer	Security	(TLS),	the	successor	to	SSL,	in	the	form	of	client	certificates.
Here,	each	client	has	an	X.509	certificate	installed	that	is	used	to	establish	a	link	between
client	and	server.	The	server	can	verify	the	authenticity	of	the	client	certificate,	providing
strong	guarantees	that	the	client	is	valid.

The	operational	challenges	here	in	certificate	management	are	even	more	onerous	than
with	just	using	server-side	certificates.	It	isn’t	just	some	of	the	basic	issues	of	creating	and
managing	a	greater	number	of	certificates;	rather,	it’s	that	with	all	the	complexities	around
the	certificates	themselves,	you	can	expect	to	spend	a	lot	of	time	trying	to	diagnose	why	a
service	won’t	accept	what	you	believe	to	be	a	completely	valid	client	certificate.	And	then
we	have	to	consider	the	difficulty	of	revoking	and	reissuing	certificates	should	the	worst
happen.	Using	wildcard	certificates	can	help,	but	won’t	solve	all	problems.	This	additional
burden	means	you’ll	be	looking	to	use	this	technique	when	you	are	especially	concerned
about	the	sensitivity	of	the	data	being	sent,	or	if	you	are	sending	data	via	networks	you
don’t	fully	control.	So	you	might	decide	to	secure	communication	of	very	important	data
between	parties	that	is	sent	over	the	Internet,	for	example.

HMAC	Over	HTTP
As	we	discussed	earlier,	the	use	of	Basic	Authentication	over	plain	HTTP	is	not	terribly
sensible	if	we	are	worried	about	the	username	and	password	being	compromised.	The
traditional	alternative	is	route	traffic	HTTPS,	but	there	are	some	downsides.	Aside	from
managing	the	certificates,	the	overhead	of	HTTPS	traffic	can	place	additional	strain	on
servers	(although,	to	be	honest,	this	has	a	lower	impact	than	it	did	several	years	ago),	and
the	traffic	cannot	easily	be	cached.

An	alternative	approach,	as	used	extensively	by	Amazon’s	S3	APIs	for	AWS	and	in	parts
of	the	OAuth	specification,	is	to	use	a	hash-based	messaging	code	(HMAC)	to	sign	the
request.

With	HMAC	the	body	request	along	with	a	private	key	is	hashed,	and	the	resulting	hash	is
sent	along	with	the	request.	The	server	then	uses	its	own	copy	of	the	private	key	and	the
request	body	to	re-create	the	hash.	If	it	matches,	it	allows	the	request.	The	nice	thing	here
is	that	if	a	man	in	the	middle	messes	with	the	request,	then	the	hash	won’t	match	and	the
server	knows	the	request	has	been	tampered	with.	And	the	private	key	is	never	sent	in	the
request,	so	it	cannot	be	compromised	in	transit!	The	added	benefit	is	that	this	traffic	can
then	more	easily	be	cached,	and	the	overhead	of	generating	the	hashes	may	well	be	lower
than	handling	HTTPS	traffic	(although	your	mileage	may	vary).

There	are	three	downsides	to	this	approach.	First,	both	the	client	and	server	need	a	shared
secret	that	needs	to	be	communicated	somehow.	How	do	they	share	it?	It	could	be
hardcoded	at	both	ends,	but	then	you	have	the	problem	of	revoking	access	if	the	secret
becomes	compromised.	If	you	communicate	this	key	over	some	alternative	protocol,	then
you	need	to	make	sure	that	that	protocol	is	also	very	secure!

Second,	this	is	a	pattern,	not	a	standard,	and	thus	there	are	divergent	ways	of
implementing	it.	As	a	result,	there	is	a	dearth	of	good,	open,	and	usable	implementations
of	this	approach.	In	general,	if	this	approach	interests	you,	then	do	some	more	reading	to
understand	the	different	ways	it	is	done.	I’d	go	as	far	as	to	say	just	look	at	how	Amazon
does	this	for	S3	and	copy	its	approach,	especially	using	a	sensible	hashing	function	with	a
suitably	long	key	like	SHA-256.	JSON	web	tokens	(JWT)	are	also	worth	looking	at,	as
they	implement	a	very	similar	approach	and	seem	to	be	gaining	traction.	But	be	aware	of
the	difficulty	of	getting	this	stuff	right.	My	colleague	was	working	with	a	team	that	was
implementing	its	own	JWT	implementation,	omitted	a	single	Boolean	check,	and
invalidated	its	entire	authentication	code!	Hopefully	over	time	we’ll	see	more	reusable
library	implementations.

Finally,	understand	that	this	approach	ensures	only	that	no	third	party	has	manipulated	the
request	and	that	the	private	key	itself	remains	private.	The	rest	of	the	data	in	the	request
will	still	be	visible	to	parties	snooping	on	the	network.

http://bit.ly/T7BMED

API	Keys
All	public	APIs	from	services	like	Twitter,	Google,	Flickr,	and	AWS	make	use	of	API
keys.	API	keys	allow	a	service	to	identify	who	is	making	a	call,	and	place	limits	on	what
they	can	do.	Often	the	limits	go	beyond	simply	giving	access	to	a	resource,	and	can	extend
to	actions	like	rate-limiting	specific	callers	to	protect	quality	of	service	for	other	people.

When	it	comes	to	using	API	keys	to	handle	your	own	microservice-to-microservice
approach,	the	exact	mechanics	of	how	it	works	will	depend	on	the	technology	you	use.
Some	systems	use	a	single	API	key	that	is	shared,	and	use	an	approach	similar	to	HMAC
as	just	described.	A	more	common	approach	is	to	use	a	public	and	private	key	pair.
Typically,	you’ll	manage	keys	centrally,	just	as	we	would	manage	identities	of	people
centrally.	The	gateway	model	is	very	popular	in	this	space.

Part	of	their	popularity	stems	from	the	fact	that	API	keys	are	focused	on	ease	of	use	for
programs.	Compared	to	handling	a	SAML	handshake,	API	key–based	authentication	is
much	simpler	and	more	straightforward.

The	exact	capabilities	of	the	systems	vary,	and	you	have	multiple	options	in	both	the
commercial	and	open	source	space.	Some	of	the	products	just	handle	the	API	key
exchange	and	some	basic	key	management.	Other	tools	offer	everything	up	to	and
including	rate	limiting,	monetization,	API	catalogs,	and	discovery	systems.

Some	API	systems	allow	you	to	bridge	API	keys	to	existing	directory	services.	This	would
allow	you	to	issue	API	keys	to	principals	(representing	people	or	systems)	in	your
organization,	and	control	the	lifecycle	of	those	keys	in	the	same	way	you’d	manage	their
normal	credentials.	This	opens	up	the	possibility	of	allowing	access	to	your	services	in
different	ways	but	keeping	the	same	source	of	truth	—	for	example,	using	SAML	to
authenticate	humans	for	SSO,	and	using	API	keys	for	service-to-service	communication,
as	shown	in	Figure	9-2.

Figure	9-2.	Using	directory	services	to	synchronize	principal	information	between	an	SSO	and	an	API	gateway

The	Deputy	Problem
Having	a	principal	authenticate	with	a	given	microserservice	is	simple	enough.	But	what
happens	if	that	service	then	needs	to	make	additional	calls	to	complete	an	operation?	Take
a	look	at	Figure	9-3,	which	illustrates	MusicCorp’s	online	shopping	site.	Our	online	shop
is	a	browser-based	JavaScript	UI.	It	makes	calls	to	a	server-side	shop	application,	using
the	backends-for-frontends	pattern	we	described	in	Chapter	4.	Calls	made	between	the
browser	and	server	calls	can	be	authenticated	using	SAML	or	OpenID	Connect	or	similar.
So	far,	so	good.

When	I	am	logged	in,	I	can	click	on	a	link	to	view	details	of	an	order.	To	display	the
information,	we	need	to	pull	back	the	original	order	from	the	order	service,	but	we	also
want	to	look	up	shipping	information	for	the	order.	So	clicking	the	link	to
/orderStatus/12345	causes	the	online	shop	to	initiate	a	call	from	the	online	shop	service	to
both	the	order	service	and	shipping	service	asking	for	those	details.	But	should	these
downstream	services	accept	the	calls	from	the	online	shop?	We	could	adopt	a	stance	of
implicit	trust	—	that	because	the	call	came	from	within	our	perimeter,	it	is	OK.	We	could
even	use	certificates	or	API	keys	to	confirm	that	yes,	it	really	is	the	online	shop	asking	for
this	information.	But	is	this	enough?

Figure	9-3.	An	example	where	a	confused	deputy	could	come	into	play

There	is	a	type	of	vulnerability	called	the	confused	deputy	problem,	which	in	the	context
of	service-to-service	communication	refers	to	a	situation	where	a	malicious	party	can	trick
a	deputy	service	into	making	calls	to	a	downstream	service	on	his	behalf	that	he	shouldn’t
be	able	to.	For	example,	as	a	customer,	when	I	log	in	to	the	online	shopping	system,	I	can
see	my	account	details.	What	if	I	could	trick	the	online	shopping	UI	into	making	a	request
for	someone	else’s	details,	maybe	by	making	a	call	with	my	logged-in	credentials?

In	this	example,	what	is	to	stop	me	from	asking	for	orders	that	are	not	mine?	Once	logged
in,	I	could	start	sending	requests	for	other	orders	that	aren’t	mine	to	see	if	I	could	get

useful	information.	We	could	try	to	protect	against	this	inside	the	online	shop	itself,	by
checking	who	the	order	is	for	and	rejecting	it	if	someone’s	asking	for	things	he	shouldn’t.
If	we	have	lots	of	different	applications	that	surface	this	information,	though,	we	could
potentially	be	duplicating	this	logic	in	lots	of	places.

We	could	route	requests	directly	from	the	UI	to	the	order	service	and	allow	it	to	validate
the	request,	but	then	we	hit	the	various	downsides	we	discussed	in	Chapter	4.
Alternatively,	when	the	online	shop	sends	the	request	to	the	order	service,	it	could	state
not	just	what	order	it	wants,	but	also	on	whose	behalf	it	is	asking.	Some	authentication
schemes	allow	us	to	pass	in	the	original	principal’s	credentials	downstream,	although	with
SAML	this	is	a	bit	of	a	nightmare,	involving	nested	SAML	assertions	that	are	technically
achievable	—	but	so	difficult	that	no	one	ever	does	this.	This	can	become	even	more
complex,	of	course.	Imagine	if	the	services	the	online	shop	talks	to	in	turn	make	more
downstream	calls.	How	far	do	we	have	to	go	in	validating	trust	for	all	those	deputies?

This	problem,	unfortunately,	has	no	simple	answer,	because	it	isn’t	a	simple	problem.	Be
aware	that	it	exists,	though.	Depending	on	the	sensitivity	of	the	operation	in	question,	you
might	have	to	choose	between	implicit	trust,	verifying	the	identity	of	the	caller,	or	asking
the	caller	to	provide	the	credentials	of	the	original	principal.

Securing	Data	at	Rest
Data	lying	about	is	a	liability,	especially	if	it	is	sensitive.	Hopefully	we’ve	done
everything	we	can	to	ensure	attackers	cannot	breach	our	network,	and	also	that	they
cannot	breach	our	applications	or	operating	systems	to	get	access	to	the	underlying	close
up.	However,	we	need	to	be	prepared	in	case	they	do	—	defense	in	depth	is	key.

Many	of	the	high-profile	security	breaches	involve	data	at	rest	being	acquired	by	an
attacker,	and	that	data	being	readable	by	the	attacker.	This	is	either	because	the	data	was
stored	in	an	unencrypted	form,	or	because	the	mechanism	used	to	protect	the	data	had	a
fundamental	flaw.

The	mechanisms	by	which	secure	information	can	be	protected	are	many	and	varied,	but
whichever	approach	you	pick	there	are	some	general	things	to	bear	in	mind.

Go	with	the	Well	Known
The	easiest	way	you	can	mess	up	data	encryption	is	to	try	to	implement	your	own
encryption	algorithms,	or	even	try	to	implement	someone	else’s.	Whatever	programming
language	you	use,	you’ll	have	access	to	reviewed,	regularly	patched	implementations	of
well-regarded	encryption	algorithms.	Use	those!	And	subscribe	to	the	mailing
lists/advisory	lists	for	the	technology	you	choose	to	make	sure	you	are	aware	of
vulnerabilities	as	they	are	found	so	you	can	keep	them	patched	and	up	to	date.

For	encryption	at	rest,	unless	you	have	a	very	good	reason	for	picking	something	else,
pick	a	well-known	implementation	of	AES-128	or	AES-256	for	your	platform.3	Both	the
Java	and	.NET	runtimes	include	implementations	of	AES	that	are	highly	likely	to	be	well
tested	(and	well	patched),	but	separate	libraries	exist	for	most	platforms	too	—	for
example,	the	Bouncy	Castle	libraries	for	Java	and	C#.

For	passwords,	you	should	consider	using	a	technique	called	salted	password	hashing.

Badly	implemented	encryption	could	be	worse	than	having	none,	as	the	false	sense	of
security	(pardon	the	pun)	can	lead	you	to	take	your	eye	off	the	ball.

http://www.bouncycastle.org/
http://bit.ly/1BrIKpi

It’s	All	About	the	Keys
As	has	been	covered	so	far,	encryption	relies	on	an	algorithm	taking	the	data	to	be
encrypted	and	a	key	and	then	producing	the	encrypted	data.	So,	where	is	your	key	stored?
Now	if	I	am	encrypting	my	data	because	I	am	worried	about	someone	stealing	my	whole
database,	and	I	store	the	key	I	use	in	the	same	database,	then	I	haven’t	really	achieved
much!	Therefore,	we	need	to	store	the	keys	somewhere	else.	But	where?

One	solution	is	to	use	a	separate	security	appliance	to	encrypt	and	decrypt	data.	Another	is
to	use	a	separate	key	vault	that	your	service	can	access	when	it	needs	a	key.	The	lifecycle
management	of	the	keys	(and	access	to	change	them)	can	be	a	vital	operation,	and	these
systems	can	handle	this	for	you.

Some	databases	even	include	built-in	support	for	encryption,	such	as	SQL	Server’s
Transparent	Data	Encryption,	that	aim	to	handle	this	in	a	transparent	fashion.	Even	if	your
database	of	choice	does,	research	how	the	keys	are	handled	and	understand	if	the	threat
you	are	protecting	against	is	actually	being	mitigated.

Again,	this	stuff	is	complex.	Avoid	implementing	your	own,	and	do	some	good	research!

Pick	Your	Targets
Assuming	everything	should	be	encrypted	can	simplify	things	somewhat.	There	is	no
guesswork	about	what	should	or	should	not	be	protected.	However,	you’ll	still	need	to
think	about	what	data	can	be	put	into	logfiles	to	help	problem	identification,	and	the
computational	overhead	of	encrypting	everything	can	become	pretty	onerous,	needing
more	powerful	hardware	as	a	result.	This	is	even	more	challenging	when	you’re	applying
database	migrations	as	part	of	refactoring	schemas.	Depending	on	the	changes	being
made,	the	data	may	need	to	be	decrypted,	migrated,	and	re-encrypted.

By	subdividing	your	system	into	more	fine-grained	services,	you	might	identify	an	entire
data	store	that	can	be	encrypted	wholesale,	but	even	then	it	is	unlikely.	Limiting	this
encryption	to	a	known	set	of	tables	is	a	sensible	approach.

Decrypt	on	Demand
Encrypt	data	when	you	first	see	it.	Only	decrypt	on	demand,	and	ensure	that	data	is	never
stored	anywhere.

Encrypt	Backups
Backups	are	good.	We	want	to	back	up	our	important	data,	and	almost	by	definition	data
we	are	worried	enough	about	that	we	want	to	encrypt	it	is	important	enough	to	back	up!
So	it	may	seem	like	an	obvious	point,	but	we	need	to	make	sure	that	our	backups	are	also
encrypted.	This	also	means	that	we	need	to	know	which	keys	are	needed	to	handle	which
version	of	data,	especially	if	the	keys	change.	Having	clear	key	management	becomes
fairly	important.

Defense	in	Depth
As	I’ve	mentioned	earlier,	I	dislike	putting	all	our	eggs	in	one	basket.	It’s	all	about	defence
in	depth.	We’ve	talked	already	about	securing	data	in	transit,	and	securing	data	at	rest.	But
are	there	other	protections	we	could	put	in	place	to	help?

Firewalls
Having	one	or	more	firewalls	is	a	very	sensible	precaution	to	take.	Some	are	very	simple,
able	only	to	restrict	access	to	certain	types	of	traffic	on	certain	ports.	Others	are	more
sophisticated.	ModSecurity,	for	example,	is	a	type	of	application	firewall	that	can	help
throttle	connections	from	certain	IP	ranges	and	detect	other	sorts	of	malicious	attacks.

There	is	value	in	having	more	than	one	firewall.	For	example,	you	may	decide	to	use
IPTables	locally	on	a	host	to	secure	that	host,	setting	up	the	allowable	ingress	and	egress.
These	rules	could	be	tailored	to	the	locally	running	services,	with	a	firewall	at	the
perimeter	for	controlling	general	access.

Logging
Good	logging,	and	specifically	the	ability	to	aggregate	logs	from	multiple	systems,	is	not
about	prevention,	but	can	help	with	detecting	and	recovering	from	bad	things	happening.
For	example,	after	applying	security	patches	you	can	often	see	in	logs	if	people	have	been
exploiting	certain	vulnerabilities.	Patching	makes	sure	it	won’t	happen	again,	but	if	it
already	has	happened,	you	may	need	to	go	into	recovery	mode.	Having	logs	available
allows	you	to	see	if	something	bad	happened	after	the	fact.

Note,	however,	that	we	need	to	be	careful	about	what	information	we	store	in	our	logs!
Sensitive	information	needs	to	be	culled	to	ensure	we	aren’t	leaking	important	data	into
our	logs,	which	could	end	up	being	a	great	target	for	attackers.

Intrusion	Detection	(and	Prevention)	System
Intrusion	detection	systems	(IDS)	can	monitor	networks	or	hosts	for	suspicious	behavior,
reporting	problems	when	it	sees	them.	Intrusion	prevention	systems	(IPS),	as	well	as
monitoring	for	suspicious	activity,	can	step	in	to	stop	it	from	happening.	Unlike	a	firewall,
which	is	primarily	looking	outward	to	stop	bad	things	from	getting	in,	IDS	and	IPS	are
actively	looking	inside	the	perimeter	for	suspect	behavior.	When	you’re	starting	from
scratch,	IDS	may	make	most	sense.	These	systems	are	heuristic-based	(as	are	many
application	firewalls),	and	it	is	possible	that	the	generic	starting	set	of	rules	will	either	be
too	lenient	or	not	lenient	enough	for	how	your	service	behaves.	Using	a	more	passive	IDS
to	alert	you	to	problems	is	a	good	way	to	tune	your	rules	before	using	it	in	a	more	active
capacity.

Network	Segregation
With	a	monolithic	system,	we	have	limits	to	how	we	can	structure	our	networks	to	provide
additional	protections.	With	microservices,	though,	you	can	put	them	into	different
network	segments	to	further	control	how	services	talk	to	each	other.	AWS,	for	example,
provides	the	ability	to	automatically	provision	a	virtual	private	cloud	(VPC),	which	allow
hosts	to	live	in	separate	subnets.	You	can	then	specify	which	VPCs	can	see	each	other	by
defining	peering	rules,	and	even	route	traffic	through	gateways	to	proxy	access,	giving
you	in	effect	multiple	perimeters	at	which	additional	security	measures	can	be	put	into
place.

This	could	allow	you	to	segment	networks	based	on	team	ownership,	or	perhaps	by	risk
level.

Operating	System
Our	systems	rely	on	a	large	amount	of	software	that	we	didn’t	write,	and	may	have
security	vulnerabilities	that	could	expose	our	application,	namely	our	operating	systems
and	the	other	supporting	tools	we	run	on	them.	Here,	basic	advice	can	get	you	a	long	way.
Start	with	only	running	services	as	OS	users	that	have	as	few	permissions	as	possible,	to
ensure	that	if	such	an	account	is	compromised	it	will	do	minimal	damage.

Next,	patch	your	software.	Regularly.	This	needs	to	be	automated,	and	you	need	to	know
if	your	machines	are	out	of	sync	with	the	latest	patch	levels.	Tools	like	Microsoft’s	SCCM
or	RedHat’s	Spacewalk	can	be	beneficial	here,	as	they	can	help	you	see	if	machines	are	up
to	date	with	the	latest	patches	and	initiate	updates	if	required.	If	you	are	using	tools	like
Ansible,	Puppet,	or	Chef,	chances	are	you	are	already	fairly	happy	with	pushing	out
changes	automatically	—	these	tools	can	get	you	a	long	way	too,	but	won’t	do	everything
for	you.

This	really	is	basic	stuff,	but	it	is	surprising	how	often	I	see	critical	software	running	on
unpatched,	old	operating	systems.	You	can	have	the	most	well-defined	and	protected
application-level	security	in	the	world,	but	if	you	have	an	old	version	of	a	web	server
running	on	your	machine	as	root	that	has	an	unpatched	buffer	overflow	vulnerability,	then
your	system	could	still	be	extremely	vulnerable.

Another	thing	to	look	at	if	you	are	using	Linux	is	the	emergence	of	security	modules	for
the	operating	system	itself.	AppArmour,	for	example,	allows	you	to	define	how	your
application	is	expected	to	behave,	with	the	kernel	keeping	an	eye	on	it.	If	it	starts	doing
something	it	shouldn’t,	the	kernel	steps	in.	AppArmour	has	been	around	for	a	while,	as
has	SeLinux.	Although	technically	either	of	them	should	work	on	any	modern	Linux
system,	in	practice	some	distributions	support	one	better	than	the	other.	AppArmour	is
used	by	default	in	Ubuntu	and	SuSE,	for	example,	whereas	SELinux	has	traditionally	been
well	supported	by	RedHat.	A	newer	option	is	GrSSecurity,	which	aims	to	be	simpler	to
use	than	either	AppArmour	or	GrSecurity	while	also	trying	to	expand	on	their	capabilities,
but	it	requires	a	custom	kernel	to	work.	I’d	suggest	taking	a	look	at	all	three	to	see	which
fits	your	use	cases	best,	but	I	like	the	idea	of	having	another	layer	of	protection	and
prevention	at	work.

A	Worked	Example
Having	a	finer-grained	system	architecture	gives	us	much	more	freedom	in	how	we
implement	our	security.	For	those	parts	that	deal	with	the	most	sensitive	information	or
expose	the	most	valuable	capabilities,	we	can	adopt	the	strictest	security	provisions.	But
for	other	parts	of	the	system,	we	can	afford	to	be	much	more	lax	in	what	we	worry	about.

Let’s	consider	MusicCorp	once	again,	and	pull	some	of	the	preceding	concepts	together	to
see	where	and	how	we	might	use	some	of	these	security	techniques.	We’re	looking
primarily	at	the	security	concerns	of	data	in	transit	and	at	rest.	Figure	9-4	shows	a	subset
of	the	overall	system	that	we’ll	be	analyzing,	which	currently	shows	a	crushing	lack	of
regard	for	security	concerns.	Everything	is	sent	over	plain	old	HTTP.

Figure	9-4.	A	subset	of	MusicCorp’s	unfortunately	insecure	architecture

Here	we	have	standard	web	browsers	that	are	used	by	our	customers	to	shop	on	the	site.
We	also	introduce	the	concept	of	a	third-party	royalty	gateway:	we’ve	started	working
with	a	third-party	company	that	will	handle	royalty	payments	for	our	new	streaming
service.	It	contacts	us	occasionally	to	pull	down	records	of	what	music	has	been	streamed
when	—	information	we	jealously	protect	as	we	are	worried	about	competition	from	rival
companies.	Finally,	we	expose	our	catalog	data	to	other	third	parties	—	for	example,
allowing	the	metadata	about	artist	or	song	to	be	embedded	in	music	review	sites.	Inside
our	network	perimeter,	we	have	some	collaborating	services,	which	are	only	ever	used
internally.

For	the	browser,	we’ll	use	a	mix	of	standard	HTTP	traffic	for	nonsecure	content,	to	allow
for	it	to	be	cached.	For	secure,	logged-in	pages,	all	secure	content	will	be	sent	over
HTTPS,	giving	our	customers	extra	protection	if	they	are	doing	things	like	running	on
public	WiFi	networks.

When	it	comes	to	the	third-party	royalty	payment	system,	we	are	concerned	not	only	about
the	nature	of	the	data	we	are	exposing,	but	also	about	making	sure	the	requests	we’re

getting	are	legitimate.	Here,	we	insist	that	our	third	party	uses	client	certificates.	All	the
data	is	sent	over	a	secure,	cryptographic	channel,	increasing	our	ability	to	ensure	we’re
being	asked	for	this	data	by	the	right	person.	We	do,	of	course,	have	to	think	about	what
happens	when	the	data	leaves	our	control.	Will	our	partner	care	about	the	data	as	much	as
we	will?

For	the	feeds	of	catalog	data,	we	want	this	information	shared	as	widely	as	possible	to
allow	people	to	easily	buy	music	from	us!	However,	we	don’t	want	this	abused,	and	we’d
like	some	idea	of	who	is	using	our	data.	Here,	API	keys	make	perfect	sense.

Inside	the	network	perimeter,	things	are	a	bit	more	nuanced.	How	worried	are	we	about
people	compromising	our	internal	networks?	Ideally,	we’d	like	to	use	HTTPS	at	a
minimum,	but	managing	it	is	somewhat	painful.	We	decide	instead	to	put	the	work
(initially,	at	least)	into	hardening	our	network	perimeter,	including	having	a	properly
configured	firewall	and	selecting	an	appropriate	hardware	or	software	security	appliance
to	check	for	malicious	traffic	(e.g.,	port	scanning	or	denial-of-service	attacks).

That	said,	we	are	concerned	about	some	of	our	data	and	where	it	lives.	We	aren’t	worried
about	the	catalog	service;	after	all,	we	want	that	data	shared	and	have	provided	an	API	for
it!	But	we	are	very	concerned	about	our	customers’	data.	Here,	we	decide	to	encrypt	the
data	held	by	the	customer	service,	and	decrypt	data	on	read.	If	attackers	do	penetrate	our
network,	they	could	still	run	requests	against	the	customer	service’s	API,	but	the	current
implementation	does	not	allow	for	the	bulk	retrieval	of	customer	data.	If	it	did,	we	would
likely	consider	the	use	of	client	certificates	to	protect	this	information.	Even	if	attackers
compromise	the	machine	the	database	is	running	on	and	manage	to	download	the	entire
contents,	they	would	need	access	to	the	key	used	to	encrypt	and	decrypt	the	data	to	make
use	if	it.

Figure	9-5	shows	the	final	picture.	As	you	can	see,	the	choices	we	made	about	what
technology	to	use	were	based	on	an	understanding	of	the	nature	of	the	information	being
secured.	Your	own	architecture’s	security	concerns	are	likely	to	be	very	different,	and	so
you	may	end	up	with	a	different-looking	solution.

Figure	9-5.	MusicCorp’s	more	secure	system

Be	Frugal
As	disk	space	becomes	cheaper	and	the	capabilities	of	the	databases	improve,	the	ease
with	which	bulk	amounts	of	information	can	be	captured	and	stored	is	improving	rapidly.
This	data	is	valuable	—	not	only	to	businesses	themselves,	which	increasingly	see	data	as
a	valuable	asset,	but	equally	to	the	users	who	value	their	own	privacy.	The	data	that
pertains	to	an	individual,	or	could	be	used	to	derive	information	about	an	individual,	must
be	the	data	we	are	most	careful	about.

However,	what	if	we	made	our	lives	a	bit	easier?	Why	not	scrub	as	much	information	as
possible	that	can	be	personally	identifiable,	and	do	it	as	soon	as	possible?	When	logging	a
request	from	a	user,	do	we	need	to	store	the	entire	IP	address	forever,	or	could	we	replace
the	last	few	digits	with	x?	Do	we	need	to	store	someone’s	name,	age,	gender,	and	date	of
birth	in	order	to	provide	her	with	product	offers,	or	is	her	age	range	and	postcode	enough
information?

The	advantages	here	are	manifold.	First,	if	you	don’t	store	it,	no	one	can	steal	it.	Second,	if
you	don’t	store	it,	no	one	(e.g.,	a	governmental	agency)	can	ask	for	it	either!

The	German	phrase	Datensparsamkeit	represents	this	concept.	Originating	from	German
privacy	legislation,	it	encapsulates	the	concept	of	only	storing	as	much	information	as	is
absolutely	required	to	fulfill	business	operations	or	satisfy	local	laws.

This	is	obviously	in	direct	tension	with	the	move	toward	storing	more	and	more
information,	but	it	is	a	start	to	realize	that	this	tension	even	exists!

The	Human	Element
Much	of	what	we	have	covered	here	is	the	basics	of	how	to	implement	technological
safeguards	to	protect	your	systems	and	data	from	malicious,	external	attackers.	However,
you	may	also	need	processes	and	policies	in	place	to	deal	with	the	human	element	in	your
organization.	How	do	you	revoke	access	to	credentials	when	someone	leaves	the
organization?	How	can	you	protect	yourself	against	social	engineering?	As	a	good	mental
exercise,	consider	what	damage	a	disgruntled	ex-employee	could	do	to	your	systems	if	she
wanted	to.	Putting	yourself	in	the	mindset	of	a	malicious	party	is	often	a	good	way	to
reason	about	the	protections	you	may	need,	and	few	malicious	parties	have	as	much	inside
information	as	a	recent	employee!

The	Golden	Rule
If	there	is	nothing	else	you	take	away	from	this	chapter,	let	it	be	this:	don’t	write	your	own
crypto.	Don’t	invent	your	own	security	protocols.	Unless	you	are	a	cryptographic	expert
with	years	of	experience,	if	you	try	inventing	your	own	encoding	or	elaborate
cryptographic	protections,	you	will	get	it	wrong.	And	even	if	you	are	a	cryptographic
expert,	you	may	still	get	it	wrong.

Many	of	the	tools	previously	outlined,	like	AES,	are	industry-hardened	technologies
whose	underlying	algorithms	have	been	peer	reviewed,	and	whose	software
implementation	has	been	rigorously	tested	and	patched	over	many	years.	They	are	good
enough!	Reinventing	the	wheel	in	many	cases	is	often	just	a	waste	of	time,	but	when	it
comes	to	security	it	can	be	outright	dangerous.

Baking	Security	In
Just	as	with	automated	functional	testing,	we	don’t	want	security	to	be	left	to	a	different
set	of	people,	nor	do	we	want	to	leave	everything	to	the	last	minute.	Helping	educate
developers	about	security	concerns	is	key,	as	raising	everyone’s	general	awareness	of
security	issues	can	help	reduce	them	in	the	first	place.	Getting	people	familar	with	the
OWASP	Top	Ten	list	and	OWASP’s	Security	Testing	Framework	can	be	a	great	place	to
start.	Specialists	absolutely	have	their	place,	though,	and	if	you	have	access	to	them,	use
them	to	help	you.

There	are	automated	tools	that	can	probe	our	systems	for	vulnerabilities,	such	as	by
looking	for	cross-site	scripting	attacks.	The	Zed	Attack	Proxy	(aka	ZAP)	is	a	good
example.	Informed	by	the	work	of	OWASP,	ZAP	attempts	to	re-create	malicious	attacks
on	your	website.	Other	tools	exist	that	use	static	analysis	to	look	for	common	coding
mistakes	that	can	open	up	security	holes,	such	as	Brakeman	for	Ruby.	Where	these	tools
can	be	easily	integrated	into	normal	CI	builds,	integrate	them	into	your	standard	check-ins.
Other	sorts	of	automated	tests	are	more	involved.	For	example,	using	something	like
Nessus	to	scan	for	vulnerabilities	is	a	bit	more	involved	and	it	may	require	a	human	to
interpret	the	results.	That	said,	these	tests	are	still	automatable,	and	it	may	make	sense	to
run	them	with	the	same	sort	of	cadence	as	load	testing.

Microsoft’s	Security	Development	Lifecycle	also	has	some	good	models	for	how	delivery
teams	can	bake	security	in.	Some	aspects	of	it	feel	overly	waterfall,	but	take	a	look	and	see
what	aspects	can	fit	into	your	current	workflow.

http://brakemanscanner.org/
http://bit.ly/1nYsK6v

External	Verification
With	security,	I	think	there	is	great	value	in	having	an	external	assessment	done.	Exercises
like	penetration	testing,	when	done	by	an	outside	party,	really	do	mimic	real-world
attempts.	They	also	sidestep	the	issue	that	teams	aren’t	always	able	to	see	the	mistakes
they	have	made	themselves,	as	they	are	too	close	to	the	problem.	If	you’re	a	big	enough
company,	you	may	have	a	dedicated	infosec	team	that	can	help	you.	If	not,	find	an
external	party	who	can.	Reach	out	to	them	early,	understand	how	they	like	to	work,	and
find	out	how	much	notice	they	need	to	do	a	test.

You’ll	also	need	to	consider	how	much	verification	you	require	before	each	release.
Generally,	doing	a	full	penetration	test,	for	example,	isn’t	needed	for	small	incremental
releases,	but	may	be	for	larger	changes.	What	you	need	depends	on	your	own	risk	profile.

Summary
So	again	we	return	to	a	core	theme	of	the	book	—	that	having	a	system	decomposed	into
finer-grained	services	gives	us	many	more	options	as	to	how	to	solve	a	problem.	Not	only
can	having	microservices	potentially	reduce	the	impact	of	any	given	breach,	but	it	also
gives	us	more	ability	to	trade	off	the	overhead	of	more	complex	and	secure	approaches
where	data	is	sensitive,	and	a	lighter-weight	approach	when	the	risks	are	lower.

Once	you	understand	the	threat	levels	of	different	parts	of	your	system,	you	should	start	to
get	a	sense	of	when	to	consider	security	during	transit,	at	rest,	or	not	at	all.

Finally,	understand	the	importance	of	defense	in	depth,	make	sure	you	patch	your
operating	systems,	and	even	if	you	consider	yourself	a	rock	star,	don’t	try	to	implement
your	own	cryptography!

If	you	want	a	general	overview	of	security	for	browser-based	applications,	a	great	place	to
start	is	the	excellent	Open	Web	Application	Security	Project	(OWASP)	nonprofit,	whose
regularly	updated	Top	10	Security	Risk	document	should	be	considered	essential	reading
for	any	developer.	Finally,	if	you	want	a	more	general	discussion	of	cryptography,	check
out	the	book	Cryptography	Engineering	by	Niels	Ferguson,	Bruce	Schneier,	and
Tadayoshi	Kohno	(Wiley).

Getting	to	grips	with	security	is	often	about	understanding	people	and	how	they	work	with
our	systems.	One	human-related	aspect	we	haven’t	yet	discussed	in	terms	of	microservices
is	the	interplay	between	organizational	structures	and	the	architectures	themselves.	But	as
with	security,	we’ll	see	that	ignoring	the	human	element	can	be	a	grave	mistake.
3	In	general,	key	length	increases	the	amount	of	work	required	to	brute-force-break	a	key.
Therefore	you	can	assume	the	longer	the	key,	the	more	secure	your	data.	However,	some
minor	concerns	have	been	raised	about	the	implementation	of	AES-256	for	certain	types
of	keys	by	respected	security	expert	Bruce	Schneier.	This	is	one	of	those	areas	where	you
need	to	do	more	research	on	what	the	current	advice	is	at	the	time	of	reading!

https://www.owasp.org/
http://bit.ly/1tgAx7j

Chapter	10.	Conway’s	Law	and	System
Design

Much	of	the	book	so	far	has	focused	on	the	technical	challenges	in	moving	toward	a	fine-
grained	architecture.	But	there	are	other,	organizational	issues	to	consider	as	well.	As
we’ll	learn	in	this	chapter,	you	ignore	your	company’s	organization	chart	at	your	peril!

Our	industry	is	young,	and	seems	to	be	constantly	reinventing	itself.	And	yet	a	few	key
laws	have	stood	the	test	of	time.	Moore’s	law,	for	example,	which	states	that	the	density	of
transistors	on	integrated	circuits	doubles	every	two	years,	has	proved	to	be	uncannily
accurate	(although	some	people	predict	that	this	trend	is	already	slowing).	One	law	that	I
have	found	to	be	almost	universally	true,	and	far	more	useful	in	my	day-to-day	work,	is
Conway’s	law.

Melvin	Conway’s	paper	How	Do	Committees	Invent,	published	in	Datamation	magazine
in	April	1968,	observed	that:

Any	organization	that	designs	a	system	(defined	more	broadly	here	than	just
information	systems)	will	inevitably	produce	a	design	whose	structure	is	a	copy	of	the
organization’s	communication	structure.

This	statement	is	often	quoted,	in	various	forms,	as	Conway’s	law.	Eric	S.	Raymond
summarized	this	phenomenon	in	The	New	Hacker’s	Dictionary	(MIT	Press)	by	stating	“If
you	have	four	groups	working	on	a	compiler,	you’ll	get	a	4-pass	compiler.”

Evidence
The	story	goes	that	when	Melvin	Conway	submitted	his	paper	on	this	topic	to	the	Harvard
Business	Review,	they	rejected	it,	claiming	he	hadn’t	proved	his	thesis.	I’ve	seen	this
theory	borne	out	in	so	many	different	situations	that	I’ve	accepted	it	as	true.	But	you	don’t
have	to	take	my	word	for	it:	since	Conway’s	original	submission,	a	lot	of	work	has	been
done	in	this	area.	A	number	of	studies	have	been	carried	out	to	explore	the	interrelation	of
organizational	structure	and	the	systems	they	create.

Loose	and	Tightly	Coupled	Organizations
In	Exploring	the	Duality	Between	Product	and	Organizational	Architectures	(Harvard
Business	School),	the	authors	Alan	MacCormack,	John	Rusnak,	and	Carliss	Baldwin	look
at	a	number	of	different	software	systems,	loosely	categorized	as	being	created	either	by
loosely	coupled	organizations	or	tightly	coupled	organizations.	For	tightly	coupled
organizations,	think	commercial	product	firms	that	are	typically	colocated	with	strongly
aligned	visions	and	goals,	while	loosely	coupled	organizations	are	well	represented	by
distributed	open	source	communities.

In	their	study,	in	which	they	matched	similar	product	pairs	from	each	type	of	organization,
the	authors	found	that	the	more	loosely	coupled	organizations	actually	created	more
modular,	less	coupled	systems,	whereas	the	more	tightly	focused	organization’s	software
was	less	modularized.

Windows	Vista
Microsoft	carried	out	an	empirical	study	where	it	looked	at	how	its	own	organizational
structure	impacted	the	software	quality	of	a	specific	product,	Windows	Vista.	Specifically,
the	researchers	looked	at	multiple	factors	to	determine	how	error-prone	a	component	in
the	system	would	be.4	After	looking	at	multiple	metrics,	including	commonly	used
software	quality	metrics	like	code	complexity,	they	found	that	the	metrics	associated	with
organizational	structures	proved	to	be	the	most	statistically	relevant	measures.

So	here	we	have	another	example	of	the	organizational	structure	impacting	the	nature	of
the	system	that	organization	creates.

http://bit.ly/1Bfbdwb

Netflix	and	Amazon
Probably	the	two	poster	children	for	the	idea	that	organizations	and	architecture	should	be
aligned	are	Amazon	and	Netflix.	Early	on,	Amazon	started	to	understand	the	benefits	of
teams	owning	the	whole	lifecycle	of	the	systems	they	managed.	It	wanted	teams	to	own
and	operate	the	systems	they	looked	after,	managing	the	entire	lifecycle.	But	Amazon	also
knew	that	small	teams	can	work	faster	than	large	teams.	This	led	famously	to	its	two-pizza
teams,	where	no	team	should	be	so	big	that	it	could	not	be	fed	with	two	pizzas.	This	driver
for	small	teams	owning	the	whole	lifecycle	of	their	services	is	a	major	reason	why
Amazon	developed	Amazon	Web	Services.	It	needed	to	create	the	tooling	to	allow	its
teams	to	be	self-sufficient.

Netflix	learned	from	this	example,	and	ensured	that	from	the	beginning	it	structured	itself
around	small,	independent	teams,	so	that	the	services	they	created	would	also	be
independent	from	each	other.	This	ensured	that	the	architecture	of	the	system	was
optimized	for	speed	of	change.	Effectively,	Netflix	designed	the	organizational	structure
for	the	system	architecture	it	wanted.

What	Can	We	Do	with	This?
So	evidence,	anecdotal	and	empirical,	points	to	our	organizational	structure	being	a	strong
influence	on	the	nature	(and	quality)	of	the	systems	we	provide.	So	how	does	this
understanding	help	us?	Let’s	look	at	a	few	different	organizational	situations	and
understand	what	impact	each	might	have	on	our	system	design.

Adapting	to	Communication	Pathways
Let’s	first	consider	a	simple,	single	team.	It’s	in	charge	of	all	aspects	of	the	system	design
and	implementation.	It	can	have	frequent,	fine-grained	communication.	Imagine	that	this
team	is	in	charge	of	a	single	service	—	say,	our	music	shop’s	catalog	service.	Now
consider	the	inside	of	a	service:	lots	of	fine-grained	method	or	function	calls.	As	we’ve
discussed	before,	we	aim	to	ensure	our	services	are	decomposed	such	that	the	pace	of
change	inside	a	service	is	much	higher	than	the	pace	of	change	between	services.	This
single	team,	with	its	ability	for	fine-grained	communication,	matches	nicely	with	the
communication	pathways	of	the	code	within	the	service.

This	single	team	finds	it	easy	to	communicate	about	proposed	changes	and	refactorings,
and	typically	has	a	good	sense	of	ownership.

Now	let’s	imagine	a	different	scenario.	Instead	of	a	single,	geolocated	team	owning	our
catalog	service,	suppose	that	teams	in	the	UK	and	India	both	are	actively	involved	in
changing	a	service	—	effectively	having	joint	ownership	of	the	service.	Geographical	and
time	zone	boundaries	here	make	fine-grained	communication	between	those	teams
difficult.	Instead,	they	rely	on	more	coarse-grained	communication	via	video	conferencing
and	email.	How	easy	is	it	for	a	team	member	in	the	UK	to	make	a	simple	refactoring	with
confidence?	The	cost	of	communications	in	a	geographically	distributed	team	is	higher,
and	therefore	the	cost	of	coordinating	changes	is	higher.

When	the	cost	of	coordinating	change	increases,	one	of	two	things	happen.	Either	people
find	ways	to	reduce	the	coordination/communication	costs,	or	they	stop	making	changes.
The	latter	is	exactly	how	we	end	up	with	large,	hard-to-maintain	codebases.

I	recall	one	client	project	I	worked	on	where	ownership	of	a	single	service	was	shared
between	two	geographical	locations.	Eventually,	each	site	started	specializing	what	work	it
handled.	This	allowed	it	to	take	ownership	of	part	of	the	codebase,	within	which	it	could
have	an	easier	cost	of	change.	The	teams	then	had	more	coarse-grained	communication
about	how	the	two	parts	interrelated;	effectively,	the	communication	pathways	made
possible	within	the	organizational	structure	matched	the	coarse-grained	API	that	formed
the	boundary	between	the	two	halves	of	the	codebase.

So	where	does	this	leave	us	when	considering	evolving	our	own	service	design?	Well,	I
would	suggest	that	geographical	boundaries	between	people	involved	with	the
development	of	a	system	can	be	a	great	way	to	drive	when	services	should	be
decomposed,	and	that	in	general,	you	should	look	to	assign	ownership	of	a	service	to	a
single,	colocated	team	who	can	keep	the	cost	of	change	low.

Perhaps	your	organization	decides	that	it	wants	to	increase	the	number	of	people	working
on	your	project	by	opening	up	an	office	in	another	country.	At	this	point,	think	actively
about	what	parts	of	your	system	can	be	moved	over.	Perhaps	this	is	what	drives	your
decisions	about	what	seams	to	split	out	next.

It	is	also	worth	noting	at	this	point	that,	at	least	based	on	the	observations	of	the	authors	of
the	Exploring	the	Duality	Between	Product	and	Organizational	Architectures	report
previously	referenced,	if	the	organization	building	the	system	is	more	loosely	coupled
(e.g.,	consisting	of	geographically	distributed	teams),	the	systems	being	built	tend	toward
the	more	modular,	and	therefore	hopefully	less	coupled.	The	tendency	of	a	single	team
that	owns	many	services	to	lean	toward	tighter	integration	is	very	hard	to	maintain	in	a
more	distributed	organization.

Service	Ownership
What	do	I	mean	by	service	ownership?	In	general,	it	means	that	the	team	owning	a	service
is	responsible	for	making	changes	to	that	service.	The	team	should	feel	free	to	restructure
the	code	however	it	wants,	as	long	as	that	change	doesn’t	break	consuming	services.	For
many	teams,	ownership	extends	to	all	aspects	of	the	service,	from	sourcing	requirements
to	building,	deploying,	and	maintaining	the	application.	This	model	is	especially	prevalent
with	microservices,	where	it	is	easier	for	a	small	team	to	own	a	small	service.	This
increased	level	of	ownership	leads	to	increased	autonomy	and	speed	of	delivery.	Having
one	team	responsible	for	deploying	and	maintaining	the	application	means	it	has	an
incentive	to	create	services	that	are	easy	to	deploy;	that	is,	concerns	about	“throwing
something	over	the	wall”	dissipate	when	there	is	no	one	to	throw	it	to!

This	model	is	certainly	one	I	favor.	It	pushes	the	decisions	to	the	people	best	able	to	make
them,	giving	the	team	both	increased	power	and	autonomy,	but	also	making	it	accountable
for	its	work.	I’ve	seen	far	too	many	developers	hand	their	system	over	for	testing	or
deployment	phases	and	think	that	their	work	is	done	at	that	point.

Drivers	for	Shared	Services
I	have	seen	many	teams	adopt	a	model	of	shared	service	ownership.	I	find	this	approach
suboptimal,	for	reasons	already	discussed.	However,	the	drivers	that	cause	people	to	pick
shared	services	are	important	to	understand,	especially	as	we	may	be	able	to	find	some
compelling	alternative	models	that	can	address	people’s	underlying	concerns.

Too	Hard	to	Split
Obviously,	one	of	the	reasons	you	may	find	yourself	with	a	single	service	owned	by	more
than	one	team	is	that	the	cost	of	splitting	the	service	is	too	high,	or	perhaps	your
organization	might	not	see	the	point	of	it.	This	is	a	common	occurrence	with	large
monolithic	systems.	If	this	is	the	main	challenge	you	face,	then	I	hope	some	of	the	advice
given	in	Chapter	5	will	be	of	use.	You	could	also	consider	merging	teams	together,	to	align
more	closely	with	the	architecture	itself.

Feature	Teams
The	idea	of	feature	teams	(aka	feature-based	teams)	is	that	a	small	team	drives	the
development	of	a	set	of	features,	implementing	all	functionality	required	even	if	it	cuts
across	component	(or	even	service)	boundaries.	The	goals	of	feature	teams	are	sensible
enough.	This	structure	allows	the	team	to	retain	a	focus	on	the	end	result	and	ensures	that
the	work	is	joined	up,	avoiding	some	of	the	challenges	of	trying	to	coordinate	changes
across	multiple	different	teams.

In	many	situations,	the	feature	team	is	a	reaction	to	traditional	IT	organizations	where
team	structure	is	aligned	around	technical	boundaries.	For	example,	you	might	have	a
team	that	is	responsible	for	the	UI,	another	that	is	responsible	for	the	application	logic,	and
a	third	handling	the	database.	In	this	environment,	a	feature	team	is	a	significant	step	up,
as	it	works	across	all	these	layers	to	deliver	the	functionality.

With	wholesale	adoption	of	feature	teams,	all	services	can	be	considered	shared.	Everyone
can	change	every	service,	every	piece	of	code.	The	role	of	the	service	custodians	here
becomes	much	more	complex,	if	the	role	exists	at	all.	Unfortunately,	I	rarely	see
functioning	custodians	at	all	where	this	pattern	is	adopted,	leading	to	the	sorts	of	issues	we
discussed	earlier.

But	let’s	again	consider	what	microservices	are:	services	modeled	after	a	business	domain,
not	a	technical	one.	And	if	our	team	that	owns	any	given	service	is	similarly	aligned	along
the	business	domain,	it	is	much	more	likely	that	the	team	will	be	able	to	retain	a	customer
focus,	and	see	more	of	the	feature	development	through,	because	it	has	a	holistic
understanding	and	ownership	of	all	the	technology	associated	with	a	service.

Cross-cutting	changes	can	occur,	of	course,	but	their	likelihood	is	significantly	reduced	by
our	avoiding	technology-oriented	teams.

Delivery	Bottlenecks
One	key	reason	people	move	toward	shared	services	is	to	avoid	delivery	bottlenecks.
What	if	there	is	a	large	backlog	of	changes	that	need	to	be	made	in	a	single	service?	Let’s
imagine	that	we	are	rolling	out	the	ability	for	a	customer	to	see	the	genre	of	a	track	across
our	products,	as	well	as	adding	a	a	brand	new	type	of	stock:	virtual	musical	ringtones	for
the	mobile	phone.	The	website	team	needs	to	make	a	change	to	surface	the	genre
information,	with	the	mobile	app	team	working	to	allow	users	to	browse,	preview,	and	buy
the	ringtones.	Both	changes	need	to	be	made	to	the	catalog	service,	but	unfortunately	half
the	team	is	out	with	the	flu,	and	the	other	half	is	stuck	diagnosing	a	production	failure.

We	have	a	couple	of	options	that	don’t	involve	shared	services	to	avoid	this	situation.	The
first	is	to	just	wait.	The	website	and	mobile	application	teams	move	on	to	something	else.
Depending	on	how	important	the	feature	is,	or	how	long	the	delay	is	likely	to	be,	this	may
be	fine	or	it	may	be	a	major	problem.

You	could	instead	add	people	to	the	catalog	team	to	help	them	move	through	their	work
faster.	The	more	standardized	the	technology	stack	and	programming	idioms	in	use	across
your	system,	the	easier	it	is	for	other	people	to	make	changes	in	your	services.	The
flipside,	of	course,	as	we	discussed	earlier,	is	that	standardization	tends	to	reduce	a	team’s
ability	to	adopt	the	right	solution	for	the	job,	and	can	lead	to	different	sorts	of
inefficiencies.	If	the	team	is	on	the	other	side	of	the	planet,	this	might	be	impossible,
however.

Another	option	could	be	to	split	the	catalog	into	a	separate	general	music	catalog	and	a
ringtone	catalog.	If	the	change	being	made	to	support	ringtones	is	fairly	small,	and	the
likelihood	of	this	being	an	area	in	which	we	will	develop	heavily	in	the	future	is	also	quite
low,	this	may	well	be	premature.	On	the	other	hand,	if	there	are	10	weeks	of	ringtone-
related	features	stacked	up,	splitting	out	the	service	could	make	sense,	with	the	mobile
team	taking	ownership.

There	is	another	model	that	could	work	well	for	us,	though.

Internal	Open	Source
So	what	if	we’ve	tried	our	hardest,	but	we	just	can’t	find	a	way	past	having	a	few	shared
services?	At	this	point,	properly	embracing	the	internal	open	source	model	can	make	a	lot
of	sense.

With	normal	open	source,	a	small	group	of	people	are	considered	core	committers.	They
are	the	custodians	of	the	code.	If	you	want	a	change	to	an	open	source	project,	you	either
ask	one	of	the	committers	to	make	the	change	for	you,	or	else	you	make	the	change
yourself	and	send	them	a	pull	request.	The	core	committers	are	still	in	charge	of	the
codebase;	they	are	the	owners.

Inside	the	organization,	this	pattern	can	work	well	too.	Perhaps	the	people	who	worked	on
the	service	originally	are	no	longer	on	a	team	together;	perhaps	they	are	now	scattered
across	the	organization.	Well,	if	they	still	have	commit	rights,	you	can	find	them	and	ask
for	their	help,	perhaps	pairing	up	with	them,	or	if	you	have	the	right	tooling	you	can	send
them	a	pull	request.

Role	of	the	Custodians
We	still	want	our	services	to	be	sensible.	We	want	the	code	to	be	of	decent	quality,	and	the
service	itself	to	exhibit	some	sort	of	consistency	in	how	it	is	put	together.	We	also	want	to
make	sure	that	changes	being	made	now	don’t	make	future	planned	changes	much	harder
than	they	need	to	be.	This	means	that	we	need	to	adopt	the	same	patterns	used	in	normal
open	source	internally	too,	which	means	separating	out	a	group	of	trusted	committers	(the
core	team),	and	untrusted	committers	(people	from	outside	the	team	submitting	changes).

The	core	team	needs	to	have	some	way	of	vetting	and	approving	the	changes.	It	needs	to
make	sure	the	changes	are	idiomatically	consistent	—	that	is,	that	they	follow	the	general
coding	guidelines	of	the	rest	of	the	codebase.	The	people	doing	the	vetting	are	therefore
going	to	have	to	spend	time	working	with	the	submitters	to	make	sure	the	change	is	of
sufficient	quality.

Good	gatekeepers	put	a	lot	of	work	into	this,	communicating	clearly	with	the	submitters
and	encouraging	good	behavior.	Bad	gatekeepers	can	use	this	as	an	excuse	to	exert	power
over	others	or	have	religious	wars	about	arbitrary	technical	decisions.	Having	seen	both
sets	of	behavior,	I	can	tell	you	one	thing	is	clear:	either	way	it	takes	time.	When
considering	allowing	untrusted	committers	to	submit	changes	to	your	codebase,	you	have
to	decide	if	the	overhead	of	being	a	gatekeeper	is	worth	the	trouble:	could	the	core	team	be
doing	better	things	with	the	time	it	spends	vetting	patches?

Maturity
The	less	stable	or	mature	a	service	is,	the	harder	it	will	be	to	allow	people	outside	the	core
team	to	submit	patches.	Before	the	key	spine	of	a	service	is	in	place,	the	team	may	not
know	what	good	looks	like,	and	therefore	may	struggle	to	know	what	a	good	submission
looks	like.	During	this	stage,	the	service	itself	is	undergoing	a	high	degree	of	change.

Most	open	source	projects	tend	to	not	take	submissions	from	a	wider	group	of	untrusted
committers	until	the	core	of	the	first	version	is	done.	Following	a	similar	model	for	your
own	organizations	makes	sense.	If	a	service	is	pretty	mature,	and	is	rarely	changed	—	for
example,	our	cart	service	—	then	perhaps	that	is	the	time	to	open	it	up	for	other
contributions.

Tooling
To	best	support	an	internal	open	source	model,	you’ll	need	some	tooling	in	place.	The	use
of	a	distributed	version	control	tool	with	the	ability	for	people	to	submit	pull	requests	(or
something	similar)	is	important.	Depending	on	the	size	of	the	organization,	you	may	also
need	tooling	to	allow	for	a	discussion	and	evolution	of	patch	requests;	this	may	or	may	not
mean	a	full-blown	code	review	system,	but	the	ability	to	comment	inline	on	patches	is
very	useful.	Finally,	you’ll	need	to	make	it	very	easy	for	a	committer	to	build	and	deploy
your	software,	and	make	it	available	for	others.	Typically	this	involves	having	well-
defined	build	and	deployment	pipelines	and	centralized	artifact	repositories.

Bounded	Contexts	and	Team	Structures
As	mentioned	before,	we	look	to	draw	our	service	boundaries	around	bounded	contexts.	It
therefore	follows	that	we	would	like	our	teams	aligned	along	bounded	contexts	too.	This
has	multiple	benefits.	First,	a	team	will	find	it	easier	to	grasp	domain	concepts	within	a
bounded	context,	as	they	are	interrelated.	Second,	services	within	a	bounded	context	are
more	likely	to	be	services	that	talk	to	each	other,	making	system	design	and	release
coordination	easier.	Finally,	in	terms	of	how	the	delivery	team	interacts	with	the	business
stakeholders,	it	becomes	easier	for	the	team	to	create	good	relationships	with	the	one	or
two	experts	in	that	area.

The	Orphaned	Service?
So	what	about	services	that	are	no	longer	being	actively	maintained?	As	we	move	toward
finer-grained	architectures,	the	services	themselves	become	smaller.	One	of	the	goals	of
smaller	services,	as	we	have	discussed,	is	the	fact	that	they	are	simpler.	Simpler	services
with	less	functionality	may	not	need	to	change	for	a	while.	Consider	the	humble	cart
service,	which	provides	some	fairly	modest	capabilities:	Add	to	Cart,	Remove	from	Cart,
and	so	on.	It	is	quite	conceivable	that	this	service	may	not	have	to	change	for	months	after
first	being	written,	even	if	active	development	is	still	going	on.	What	happens	here?	Who
owns	this	service?

If	your	team	structures	are	aligned	along	the	bounded	contexts	of	your	organization,	then
even	services	that	are	not	changed	frequently	still	have	a	de	facto	owner.	Imagine	a	team
that	is	aligned	with	the	consumer	web	sales	context.	It	might	handle	the	website,	cart,	and
recommendation	services.	Even	if	the	cart	service	hasn’t	been	changed	in	months,	it	would
naturally	fall	to	this	team	to	make	the	change.	One	of	the	benefits	of	microservices,	of
course,	is	that	if	the	team	needs	to	change	the	service	to	add	a	new	feature	and	not	find	it
to	its	liking,	rewriting	it	shouldn’t	take	too	long	at	all.

That	said,	if	you’ve	adopted	a	truly	polyglot	approach,	making	use	of	multiple	technology
stacks,	then	the	challenges	of	making	changes	to	an	orphaned	service	could	be
compounded	if	your	team	doesn’t	know	the	tech	stack	any	longer.

Case	Study:	RealEstate.com.au
REA’s	core	business	is	real	estate.	But	this	encompasses	multiple	different	facets,	each	of
which	operates	as	a	single	line	of	business	(LOB).	For	example,	one	line	of	business	deals
with	residential	property	in	Australia,	another	commercial,	while	another	might	relate	to
one	of	REA’s	overseas	businesses.	These	lines	of	business	have	IT	delivery	teams	(or
squads)	associated	with	them;	some	may	have	only	a	single	squad,	while	the	biggest	has
four.	So	for	residential	property,	there	are	multiple	teams	involved	with	creating	the
website	and	listing	services	to	allow	people	to	browse	property.	People	rotate	between
these	teams	every	now	and	then,	but	tend	to	stay	within	that	line	of	business	for	extended
periods,	ensuring	that	the	team	members	can	build	up	a	strong	awareness	of	that	part	of
the	domain.	This	in	turn	helps	the	communication	between	the	various	business
stakeholders	and	the	team	delivering	features	for	them.

Each	squad	inside	a	line	of	business	is	expected	to	own	the	entire	lifecycle	of	the	services
it	creates,	including	building,	testing	and	releasing,	supporting,	and	even
decommissioning.	A	core	delivery	services	team	provides	advice	and	guidance	to	these
teams,	as	well	as	tooling	to	help	it	get	the	job	done.	A	strong	culture	of	automation	is	key,
and	REA	makes	heavy	use	of	AWS	as	a	key	part	of	enabling	the	teams	to	be	more
autonomous.	Figure	10-1	illustrates	how	this	all	works.

Figure	10-1.	An	overview	of	Realestate.com.au’s	organizational	and	team	structure,	and	alignment	with	architecture

It	isn’t	just	the	delivery	organization	that	is	aligned	to	how	the	business	operates.	It
extends	to	the	architecture	too.	One	example	of	this	is	integration	methods.	Within	an
LOB,	all	services	are	free	to	talk	to	each	other	in	any	way	they	see	fit,	as	decided	by	the
squads	who	act	as	their	custodians.	But	between	LOBs,	all	communication	is	mandated	to

be	asynchronous	batch,	one	of	the	few	cast-iron	rules	of	the	very	small	architecture	team.
This	coarse-grained	communication	matches	the	coarse-grained	communication	that	exists
between	the	different	parts	of	the	business	too.	By	insisting	on	it	being	batch,	each	LOB
has	a	lot	of	freedom	in	how	it	acts	and	manages	itself.	It	could	afford	to	take	its	services
down	whenever	it	wanted,	knowing	that	as	long	as	it	can	satisfy	the	batch	integration	with
other	parts	of	the	business	and	its	own	business	stakeholders,	no	one	would	care.

This	structure	has	allowed	for	significant	autonomy	of	not	only	the	teams	but	also	the
different	parts	of	the	business.	From	a	handful	of	services	a	few	years	ago,	REA	now	has
hundreds,	with	more	services	than	people,	and	is	growing	at	a	rapid	pace.	The	ability	to
deliver	change	has	helped	the	company	achieve	significant	success	in	the	local	market	to
the	point	where	it	is	expanding	overseas.	And,	most	heartening	of	all,	from	talking	to	the
people	there	I	get	the	impression	that	both	the	architecture	and	organizational	structure	as
they	stand	now	are	just	the	latest	iteration	rather	than	the	destination.	I	daresay	in	another
five	years	REA	will	look	very	different	again.

Those	organizations	that	are	adaptive	enough	to	change	not	only	their	system	architecture
but	also	their	organizational	structure	can	yield	huge	benefits	in	terms	of	improved
autonomy	of	teams	and	faster	time	to	market	for	new	features	and	functionality.	REA	is
just	one	of	a	number	of	organizations	that	are	realizing	that	system	architecture	doesn’t
exist	in	a	vacuum.

Conway’s	Law	in	Reverse
So	far,	we’ve	spoken	about	how	the	organization	impacts	the	system	design.	But	what
about	the	reverse?	Namely,	can	a	system	design	change	the	organization?	While	I	haven’t
been	able	to	find	the	same	quality	of	evidence	to	support	the	idea	that	Conway’s	law
works	in	reverse,	I’ve	seen	it	anecdotally.

Probably	the	best	example	was	a	client	I	worked	with	many	years	ago.	Back	in	the	days
when	the	Web	was	fairly	nascent,	and	the	Internet	was	seen	as	something	that	arrived	on
an	AOL	floppy	disk	through	the	door,	this	company	was	a	large	print	firm	that	had	a
small,	modest	website.	It	had	a	website	because	it	was	the	thing	to	do,	but	in	the	grand
scheme	of	things	it	was	fairly	unimportant	to	how	the	business	operated.	When	the
original	system	was	created,	a	fairly	arbitrary	technical	decision	was	made	as	to	how	the
system	would	work.

The	content	for	this	system	was	sourced	in	multiple	ways,	but	most	of	it	came	from	third
parties	who	were	placing	ads	for	viewing	by	the	general	public.	There	was	an	input	system
that	allowed	content	to	be	created	by	the	paying	third	parties,	a	central	system	that	took
that	data	and	enriched	it	in	various	ways,	and	an	output	system	that	created	the	final
website	that	the	general	public	could	browse.

Whether	the	original	design	decisions	were	right	at	the	time	is	a	conversation	for
historians,	but	many	years	on	the	company	had	changed	quite	a	bit	and	I	and	many	of	my
colleagues	were	starting	to	wonder	if	the	system	design	was	fit	for	the	company’s	present
state.	Its	physical	print	business	had	diminished	significantly,	and	the	revenues	and
therefore	business	operations	of	the	organization	were	now	dominated	by	its	online
presence.

What	we	saw	at	that	time	was	an	organization	tightly	aligned	to	this	three-part	system.
Three	channels	or	divisions	in	the	IT	side	of	the	business	aligned	with	each	of	the	input,
core,	and	output	parts	of	the	business.	Within	those	channels,	there	were	separate	delivery
teams.	What	I	didn’t	realize	at	the	time	was	that	these	organizational	structures	didn’t
predate	the	system	design,	but	actually	grew	up	around	it.	As	the	print	side	of	the	business
diminished,	and	the	digital	side	of	the	business	grew,	the	system	design	inadvertently	lay
the	path	for	how	the	organization	grew.

In	the	end	we	realized	that	whatever	the	shortcomings	of	the	system	design	were,	we
would	have	to	make	changes	to	the	organizational	structure	to	make	a	shift.	Many	years
later,	that	process	remains	a	work	in	progress!

People
No	matter	how	it	looks	at	first,	it’s	always	a	people	problem.

Gerry	Weinberg,	The	Second	Law	of	Consulting

We	have	to	accept	that	in	a	microservice	environment,	it	is	harder	for	a	developer	to	just
think	about	writing	code	in	his	own	little	world.	He	has	to	be	more	aware	of	the
implications	of	things	like	calls	across	network	boundaries,	or	the	implications	of	failure.
We’ve	also	talked	about	the	ability	of	microservices	to	make	it	easier	to	try	out	new
technologies,	from	data	stores	to	languages.	But	if	you’re	moving	from	a	world	where	you
have	a	monolithic	system,	where	the	majority	of	your	developers	have	just	had	to	use	one
language	and	remain	completely	oblivious	to	the	operational	concerns,	then	throwing
them	into	the	world	of	microservices	may	be	a	rude	awakening	for	them.

Likewise,	pushing	power	into	development	teams	to	increase	autonomy	can	be	fraught.
People	who	have	in	the	past	thrown	work	over	the	wall	to	someone	else	are	accustomed	to
having	someone	else	to	blame,	and	may	not	feel	comfortable	being	fully	accountable	for
their	work.	You	may	even	find	contractual	barriers	to	having	your	developers	carry
support	pagers	for	the	systems	they	support!

Although	this	book	has	mostly	been	about	technology,	people	are	not	just	a	side	issue	to
be	considered;	they	are	the	people	who	built	what	you	have	now,	and	will	build	what
happens	next.	Coming	up	with	a	vision	for	how	things	should	be	done	without	considering
how	your	current	staff	will	feel	about	this	or	without	considering	what	capabilities	they
have	is	likely	to	lead	to	a	bad	place.

Each	organization	has	its	own	set	of	dynamics	around	this	topic.	Understand	your	staff’s
appetite	to	change.	Don’t	push	them	too	fast!	Maybe	you	still	have	a	separate	team	handle
frontline	support	or	deployment	for	a	short	period	of	time,	giving	your	developers	time	to
adjust	to	other	new	practices.	You	may,	however,	have	to	accept	that	you	need	different
sorts	of	people	in	your	organization	to	make	all	this	work.	Whatever	your	approach,
understand	that	you	need	to	be	clear	in	articulating	the	responsibilities	of	your	people	in	a
microservices	world,	and	also	be	clear	why	those	responsibilities	are	important	to	you.
This	can	help	you	see	what	your	skill	gaps	might	be,	and	think	about	how	to	close	them.
For	many	people,	this	will	be	a	pretty	scary	journey.	Just	remember	that	without	people	on
board,	any	change	you	might	want	to	make	could	be	doomed	from	the	start.

Summary
Conway’s	law	highlights	the	perils	of	trying	to	enforce	a	system	design	that	doesn’t	match
the	organization.	This	leads	us	to	trying	to	align	service	ownership	to	colocated	teams,
which	themselves	are	aligned	around	the	same	bounded	contexts	of	the	organization.
When	the	two	are	not	in	alignment,	we	get	tension	points	as	outlined	throughout	this
chapter.	By	recognizing	the	link	between	the	two,	we’ll	make	sure	the	system	we	are
trying	to	build	makes	sense	for	the	organization	we’re	building	it	for.

Some	of	what	we	covered	here	touched	on	the	challenges	of	working	with	organizations	at
scale.	However,	there	are	other	technical	considerations	that	we	need	to	worry	about	when
our	systems	start	to	grow	beyond	a	few	discrete	services.	We’ll	address	those	next.
4	And	we	all	know	Windows	Vista	was	quite	error-prone!

Chapter	11.	Microservices	at	Scale

When	you’re	dealing	with	nice,	small,	book-sized	examples,	everything	seems	simple.	But
the	real	world	is	a	more	complex	space.	What	happens	when	our	microservice
architectures	grow	from	simpler,	more	humble	beginnings	to	something	more	complex?
What	happens	when	we	have	to	handle	failure	of	multiple	separate	services	or	manage
hundreds	of	services?	What	are	some	of	the	coping	patterns	when	you	have	more
microservices	than	people?	Let’s	find	out.

Failure	Is	Everywhere
We	understand	that	things	can	go	wrong.	Hard	disks	can	fail.	Our	software	can	crash.	And
as	anyone	who	has	read	the	fallacies	of	distributed	computing	can	tell	you,	we	know	that
the	network	is	unreliable.	We	can	do	our	best	to	try	to	limit	the	causes	of	failure,	but	at	a
certain	scale,	failure	becomes	inevitable.	Hard	drives,	for	example,	are	more	reliable	now
than	ever	before,	but	they’ll	break	eventually.	The	more	hard	drives	you	have,	the	higher
the	likelihood	of	failure	for	an	individual	unit;	failure	becomes	a	statistical	certainty	at
scale.

Even	for	those	of	us	not	thinking	at	extreme	scale,	if	we	can	embrace	the	possibility	of
failure	we	will	be	better	off.	For	example,	if	we	can	handle	the	failure	of	a	service
gracefully,	then	it	follows	that	we	can	also	do	in-place	upgrades	of	a	service,	as	a	planned
outage	is	much	easier	to	deal	with	than	an	unplanned	one.

We	can	also	spend	a	bit	less	of	our	time	trying	to	stop	the	inevitable,	and	a	bit	more	of	our
time	dealing	with	it	gracefully.	I’m	amazed	at	how	many	organizations	put	processes	and
controls	in	place	to	try	to	stop	failure	from	occurring,	but	put	little	to	no	thought	into
actually	making	it	easier	to	recover	from	failure	in	the	first	place.

Baking	in	the	assumption	that	everything	can	and	will	fail	leads	you	to	think	differently
about	how	you	solve	problems.

I	saw	one	example	of	this	thinking	while	spending	some	time	on	the	Google	campus	many
years	ago.	In	the	reception	area	of	one	of	the	buildings	in	Mountain	View	was	an	old	rack
of	machines,	there	as	a	sort	of	exhibit.	I	noticed	a	couple	of	things.	First,	these	servers
weren’t	in	server	enclosures,	they	were	just	bare	motherboards	slotted	into	the	rack.	The
main	thing	I	noticed,	though,	was	that	the	hard	drives	were	attached	by	velcro.	I	asked	one
of	the	Googlers	why	that	was.	“Oh,”	he	said,	“the	hard	drives	fail	so	much	we	don’t	want
them	screwed	in.	We	just	rip	them	out,	throw	them	in	the	bin,	and	velcro	in	a	new	one.”

So	let	me	repeat:	at	scale,	even	if	you	buy	the	best	kit,	the	most	expensive	hardware,	you
cannot	avoid	the	fact	that	things	can	and	will	fail.	Therefore,	you	need	to	assume	failure
can	happen.	If	you	build	this	thinking	into	everything	you	do,	and	plan	for	failure,	you	can
make	different	trade-offs.	If	you	know	your	system	can	handle	the	fact	that	a	server	can
and	will	fail,	why	bother	spending	much	on	it	at	all?	Why	not	use	a	bare	motherboard	with
cheaper	components	(and	some	velcro)	like	Google	did,	rather	than	worrying	too	much
about	the	resiliency	of	a	single	node?

http://bit.ly/1En0t51

How	Much	Is	Too	Much?
We	touched	on	the	topic	of	cross-functional	requirements	in	Chapter	7.	Understanding
cross-functional	requirements	is	all	about	considering	aspects	like	durability	of	data,
availability	of	services,	throughput,	and	acceptable	latency	of	services.	Many	of	the
techniques	covered	in	this	chapter	and	elsewhere	talk	about	approaches	to	implement
these	requirements,	but	only	you	know	exactly	what	the	requirements	themselves	might
be.

Having	an	autoscaling	system	capable	of	reacting	to	increased	load	or	failure	of	individual
nodes	might	be	fantastic,	but	could	be	overkill	for	a	reporting	system	that	only	needs	to
run	twice	a	month,	where	being	down	for	a	day	or	two	isn’t	that	big	of	a	deal.	Likewise,
figuring	out	how	to	do	blue/green	deployments	to	eliminate	downtime	of	a	service	might
make	sense	for	your	online	ecommerce	system,	but	for	your	corporate	intranet	knowledge
base	it’s	probably	a	step	too	far.

Knowing	how	much	failure	you	can	tolerate,	or	how	fast	your	system	needs	to	be,	is
driven	by	the	users	of	your	system.	That	in	turn	will	help	you	understand	which
techniques	will	make	the	most	sense	for	you.	That	said,	your	users	won’t	always	be	able	to
articulate	what	the	exact	requirements	are.	So	you	need	to	ask	questions	to	help	extract	the
right	information,	and	help	them	understand	the	relative	costs	of	providing	different	levels
of	service.

As	I	mentioned	previously,	these	cross-functional	requirements	can	vary	from	service	to
service,	but	I	would	suggest	defining	some	general	cross-functionals	and	then	overriding
them	for	particular	use	cases.	When	it	comes	to	considering	if	and	how	to	scale	out	your
system	to	better	handle	load	or	failure,	start	by	trying	to	understand	the	following
requirements:

Response	time/latency

How	long	should	various	operations	take?	It	can	be	useful	here	to	measure	this	with
different	numbers	of	users	to	understand	how	increasing	load	will	impact	the
response	time.	Given	the	nature	of	networks,	you’ll	always	have	outliers,	so	setting
targets	for	a	given	percentile	of	the	responses	monitored	can	be	useful.	The	target
should	also	include	the	number	of	concurrent	connections/users	you	will	expect	your
software	to	handle.	So	you	might	say,	“We	expect	the	website	to	have	a	90th-
percentile	response	time	of	2	seconds	when	handling	200	concurrent	connections	per
second.”

Availability

Can	you	expect	a	service	to	be	down?	Is	this	considered	a	24/7	service?	Some	people
like	to	look	at	periods	of	acceptable	downtime	when	measuring	availability,	but	how
useful	is	this	to	someone	calling	your	service?	I	should	either	be	able	to	rely	on	your
service	responding	or	not.	Measuring	periods	of	downtime	is	really	more	useful	from
a	historical	reporting	angle.

Durability	of	data

How	much	data	loss	is	acceptable?	How	long	should	data	be	kept	for?	This	is	highly
likely	to	change	on	a	case-by-case	basis.	For	example,	you	might	choose	to	keep	user
session	logs	for	a	year	or	less	to	save	space,	but	your	financial	transaction	records
might	need	to	be	kept	for	many	years.

Once	you	have	these	requirements	in	place,	you’ll	want	a	way	to	systematically	measure
them	on	an	ongoing	basis.	You	may	decide	to	make	use	of	performance	tests,	for	example,
to	ensure	your	system	meets	acceptable	performance	targets,	but	you’ll	want	to	make	sure
you	are	monitoring	these	stats	in	production	as	well!

Degrading	Functionality
An	essential	part	of	building	a	resilient	system,	especially	when	your	functionality	is
spread	over	a	number	of	different	microservices	that	may	be	up	or	down,	is	the	ability	to
safely	degrade	functionality.	Let’s	imagine	a	standard	web	page	on	our	ecommerce	site.	To
pull	together	the	various	parts	of	that	website,	we	might	need	several	microservices	to	play
a	part.	One	microservice	might	display	the	details	about	the	album	being	offered	for	sale.
Another	might	show	the	price	and	stock	level.	And	we’ll	probably	be	showing	shopping
cart	contents	too,	which	may	be	yet	another	microservice.	Now	if	one	of	those	services	is
down,	and	that	results	in	the	whole	web	page	being	unavailable,	then	we	have	arguably
made	a	system	that	is	less	resilient	than	one	that	requires	only	one	service	to	be	available.

What	we	need	to	do	is	understand	the	impact	of	each	outage,	and	work	out	how	to
properly	degrade	functionality.	If	the	shopping	cart	service	is	unavailable,	we’re	probably
in	a	lot	of	trouble,	but	we	could	still	show	the	web	page	with	the	listing.	Perhaps	we	just
hide	the	shopping	cart	or	replace	it	with	an	icon	saying	“Be	Back	Soon!”

With	a	single,	monolithic	application,	we	don’t	have	many	decisions	to	make.	System
health	is	binary.	But	with	a	microservice	architecture,	we	need	to	consider	a	much	more
nuanced	situation.	The	right	thing	to	do	in	any	situation	is	often	not	a	technical	decision.
We	might	know	what	is	technically	possible	when	the	shopping	cart	is	down,	but	unless
we	understand	the	business	context	we	won’t	understand	what	action	we	should	be	taking.
For	example,	perhaps	we	close	the	entire	site,	still	allow	people	to	browse	the	catalog	of
items,	or	replace	the	part	of	the	UI	containing	the	cart	control	with	a	phone	number	for
placing	an	order.	But	for	every	customer-facing	interface	that	uses	multiple	microservices,
or	every	microservice	that	depends	on	multiple	downstream	collaborators,	you	need	to	ask
yourself,	“What	happens	if	this	is	down?”	and	know	what	to	do.

By	thinking	about	the	criticality	of	each	of	our	capabilities	in	terms	of	our	cross-functional
requirements,	we’ll	be	much	better	positioned	to	know	what	we	can	do.	Now	let’s
consider	some	things	we	can	do	from	a	technical	point	of	view	to	make	sure	that	when
failure	occurs	we	can	handle	it	gracefully.

Architectural	Safety	Measures
There	are	a	few	patterns,	which	collectively	I	refer	to	as	architectural	safety	measures,	that
we	can	make	use	of	to	ensure	that	if	something	does	go	wrong,	it	doesn’t	cause	nasty
ripple-out	effects.	These	are	points	it	is	essential	you	understand,	and	should	strongly
consider	standardizing	in	your	system	to	ensure	that	one	bad	citizen	doesn’t	bring	the
whole	world	crashing	down	around	your	ears.	In	a	moment,	we’ll	take	a	look	at	a	few	key
safety	measures	you	should	consider,	but	before	we	do,	I’d	like	to	share	a	brief	story	to
outline	the	sort	of	thing	that	can	go	wrong.

I	was	a	technical	lead	on	a	project	where	we	were	building	an	online	classified	ads
website.	The	website	itself	handled	fairly	high	volumes,	and	generated	a	good	deal	of
income	for	the	business.	Our	core	application	handled	some	display	of	classified	ads	itself,
and	also	proxied	calls	to	other	services	that	provided	different	types	of	products,	as	shown
in	Figure	11-1.	This	is	actually	an	example	of	a	strangler	application,	where	a	new	system
intercepts	calls	made	to	legacy	applications	and	gradually	replaces	them	altogether.	As
part	of	this	project,	we	were	partway	through	retiring	the	older	applications.	We	had	just
moved	over	the	highest	volume	and	biggest	earning	product,	but	much	of	the	rest	of	the
ads	were	still	being	served	by	a	number	of	older	applications.	In	terms	of	both	the	number
of	searches	and	the	money	made	by	these	applications,	there	was	a	very	long	tail.

Figure	11-1.	A	classified	ads	website	strangling	older	legacy	applications

Our	system	had	been	live	for	a	while	and	was	behaving	very	well,	handling	a	not
insignificant	load.	At	that	time	we	must	have	been	handling	around	6,000–7,000	requests
per	second	during	peak,	and	although	most	of	that	was	very	heavily	cached	by	reverse
proxies	sitting	in	front	of	our	application	servers,	the	searches	for	products	(the	most
important	aspect	of	the	site)	were	mostly	uncached	and	required	a	full	server	round-trip.

One	morning,	just	before	we	hit	our	daily	lunchtime	peak,	the	system	started	behaving
slowly,	then	gradually	started	failing.	We	had	some	level	of	monitoring	on	our	new	core
application,	enough	to	tell	us	that	each	of	our	application	nodes	was	hitting	a	100%	CPU
spike,	well	above	the	normal	levels	even	at	peak.	In	a	short	period	of	time,	the	entire	site
went	down.

We	managed	to	track	down	the	culprit	and	bring	the	site	back	up.	It	turned	out	one	of	the
downstream	ad	systems,	one	of	the	oldest	and	least	actively	maintained,	had	started
responding	very	slowly.	Responding	very	slowly	is	one	of	the	worst	failure	modes	you	can
experience.	If	a	system	is	just	not	there,	you	find	out	pretty	quickly.	When	it’s	just	slow,
you	end	up	waiting	around	for	a	while	before	giving	up.	But	whatever	the	cause	of	the
failure,	we	had	created	a	system	that	was	vulnerable	to	a	cascading	failure.	A	downstream
service,	over	which	we	had	little	control,	was	able	to	take	down	our	whole	system.

While	one	team	looked	at	the	problems	with	the	downstream	system,	the	rest	of	us	started
looking	at	what	had	gone	wrong	in	our	application.	We	found	a	few	problems.	We	were
using	an	HTTP	connection	pool	to	handle	our	downstream	connections.	The	threads	in	the
pool	itself	had	timeouts	configured	for	how	long	they	would	wait	when	making	the
downstream	HTTP	call,	which	is	good.	The	problem	was	that	the	workers	were	all	taking
a	while	to	time	out	due	to	the	slow	downstream	system.	While	they	were	waiting,	more
requests	went	to	the	pool	asking	for	worker	threads.	With	no	workers	available,	these
requests	themselves	hung.	It	turned	out	the	connection	pool	library	we	were	using	did
have	a	timeout	for	waiting	for	workers,	but	this	was	disabled	by	default!	This	led	to	a	huge
build-up	of	blocked	threads.	Our	application	normally	had	40	concurrent	connections	at
any	given	time.	In	the	space	of	five	minutes,	this	situation	caused	us	to	peak	at	around	800
connections,	bringing	the	system	down.

What	was	worse	was	that	the	downstream	service	we	were	talking	to	represented
functionality	that	less	than	5%	of	our	customer	base	used,	and	generated	even	less	revenue
than	that.	When	you	get	down	to	it,	we	discovered	the	hard	way	that	systems	that	just	act
slow	are	much	harder	to	deal	with	than	systems	that	just	fail	fast.	In	a	distributed	system,
latency	kills.

Even	if	we’d	had	the	timeouts	on	the	pool	set	correctly,	we	were	also	sharing	a	single
HTTP	connection	pool	for	all	outbound	requests.	This	meant	that	one	slow	service	could
exhaust	the	number	of	available	workers	all	by	itself,	even	if	everything	else	was	healthy.
Lastly,	it	was	clear	that	the	downstream	service	in	question	wasn’t	healthy,	but	we	kept
sending	traffic	its	way.	In	our	situation,	this	meant	we	were	actually	making	a	bad
situation	worse,	as	the	downstream	service	had	no	chance	to	recover.	We	ended	up
implementing	three	fixes	to	avoid	this	happening	again:	getting	our	timeouts	right,
implementing	bulkheads	to	separate	out	different	connection	pools,	and	implementing	a
circuit	breaker	to	avoid	sending	calls	to	an	unhealthy	system	in	the	first	place.

The	Antifragile	Organization
In	his	book	Antifragile	(Random	House),	Nassim	Taleb	talks	about	things	that	actually
benefit	from	failure	and	disorder.	Ariel	Tseitlin	used	this	concept	to	coin	the	concept	of	the
antifragile	organization	in	regards	to	how	Netflix	operates.

The	scale	at	which	Netflix	operates	is	well	known,	as	is	the	fact	that	Netflix	is	based
entirely	on	the	AWS	infrastructure.	These	two	factors	mean	that	it	has	to	embrace	failure
well.	Netflix	goes	beyond	that	by	actually	inciting	failure	to	ensure	that	its	systems	are
tolerant	of	it.

Some	organizations	would	be	happy	with	game	days,	where	failure	is	simulated	by
systems	being	switched	off	and	having	the	various	teams	react.	During	my	time	at	Google,
this	was	a	fairly	common	occurrence	for	various	systems,	and	I	certainly	think	that	many
organizations	could	benefit	from	having	these	sorts	of	exercises	regularly.	Google	goes
beyond	simple	tests	to	mimic	server	failure,	and	as	part	of	its	annual	DiRT	(Disaster
Recovery	Test)	exercises	it	has	simulated	large-scale	disasters	such	as	earthquakes.	Netflix
also	takes	a	more	aggressive	approach,	by	writing	programs	that	cause	failure	and	running
them	in	production	on	a	daily	basis.

The	most	famous	of	these	programs	is	the	Chaos	Monkey,	which	during	certain	hours	of
the	day	will	turn	off	random	machines.	Knowing	that	this	can	and	will	happen	in
production	means	that	the	developers	who	create	the	systems	really	have	to	be	prepared
for	it.	The	Chaos	Monkey	is	just	one	part	of	Netflix’s	Simian	Army	of	failure	bots.	The
Chaos	Gorilla	is	used	to	take	out	an	entire	availability	center	(the	AWS	equivalent	of	a
data	center),	whereas	the	Latency	Monkey	simulates	slow	network	connectivity	between
machines.	Netflix	has	made	these	tools	available	under	an	open	source	license.	For	many,
the	ultimate	test	of	whether	your	system	really	is	robust	might	be	unleashing	your	very
own	Simian	Army	on	your	production	infrastructure.

Embracing	and	inciting	failure	through	software,	and	building	systems	that	can	handle	it,
is	only	part	of	what	Netflix	does.	It	also	understands	the	importance	of	learning	from	the
failure	when	it	occurs,	and	adopting	a	blameless	culture	when	mistakes	do	happen.
Developers	are	further	empowered	to	be	part	of	this	learning	and	evolving	process,	as	each
developer	is	also	responsible	for	managing	his	or	her	production	services.

By	causing	failure	to	happen,	and	building	for	it,	Netflix	has	ensured	that	the	systems	it
has	scale	better,	and	better	support	the	needs	of	its	customers.

Not	everyone	needs	to	go	to	the	sorts	of	extremes	that	Google	or	Netflix	do,	but	it	is
important	to	understand	the	mindset	shift	that	is	required	with	distributed	systems.	Things
will	fail.	The	fact	that	your	system	is	now	spread	across	multiple	machines	(which	can	and
will	fail)	across	a	network	(which	will	be	unreliable)	can	actually	make	your	system	more
vulnerable,	not	less.	So	regardless	of	whether	you’re	trying	to	provide	a	service	at	the
scale	of	Google	or	Netflix,	preparing	yourself	for	the	sorts	of	failure	that	happen	with

http://bit.ly/1e9i40t
http://bit.ly/15CnW3a
http://bit.ly/1fsqzaH

more	distributed	architectures	is	pretty	important.	So	what	do	we	need	to	do	to	handle
failure	in	our	systems?

Timeouts
Timeouts	are	something	it	is	easy	to	overlook,	but	in	a	downstream	system	they	are
important	to	get	right.	How	long	can	I	wait	before	I	can	consider	a	downstream	system	to
actually	be	down?

Wait	too	long	to	decide	that	a	call	has	failed,	and	you	can	slow	the	whole	system	down.
Time	out	too	quickly,	and	you’ll	consider	a	call	that	might	have	worked	as	failed.	Have	no
timeouts	at	all,	and	a	downstream	system	being	down	could	hang	your	whole	system.

Put	timeouts	on	all	out-of-process	calls,	and	pick	a	default	timeout	for	everything.	Log
when	timeouts	occur,	look	at	what	happens,	and	change	them	accordingly.

Circuit	Breakers
In	your	own	home,	circuit	breakers	exist	to	protect	your	electrical	devices	from	spikes	in
the	power.	If	a	spike	occurs,	the	circuit	breaker	gets	blown,	protecting	your	expensive
home	appliances.	You	can	also	manually	disable	a	circuit	breaker	to	cut	the	power	to	part
of	your	home,	allowing	you	to	work	safely	on	the	electrics.	Michael	Nygard’s	book
Release	It!	(Pragmatic	Programmers)	shows	how	the	same	idea	can	work	wonders	as	a
protection	mechanism	for	our	software.

Consider	the	story	I	shared	just	a	moment	ago.	The	downstream	legacy	ad	application	was
responding	very	slowly,	before	eventually	returning	an	error.	Even	if	we’d	got	the
timeouts	right,	we’d	be	waiting	a	long	time	before	we	got	the	error.	And	then	we’d	try	it
again	the	next	time	a	request	came	in,	and	wait.	It’s	bad	enough	that	the	downstream
service	is	malfunctioning,	but	it’s	making	us	go	slow	too.

With	a	circuit	breaker,	after	a	certain	number	of	requests	to	the	downstream	resource	have
failed,	the	circuit	breaker	is	blown.	All	further	requests	fail	fast	while	the	circuit	breaker	is
in	its	blown	state.	After	a	certain	period	of	time,	the	client	sends	a	few	requests	through	to
see	if	the	downstream	service	has	recovered,	and	if	it	gets	enough	healthy	responses	it
resets	the	circuit	breaker.	You	can	see	an	overview	of	this	process	in	Figure	11-2.

How	you	implement	a	circuit	breaker	depends	on	what	a	failed	request	means,	but	when
I’ve	implemented	them	for	HTTP	connections	I’ve	taken	failure	to	mean	either	a	timeout
or	a	5XX	HTTP	return	code.	In	this	way,	when	a	downstream	resource	is	down,	or	timing
out,	or	returning	errors,	after	a	certain	threshold	is	reached	we	automatically	stop	sending
traffic	and	start	failing	fast.	And	we	can	automatically	start	again	when	things	are	healthy.

Getting	the	settings	right	can	be	a	little	tricky.	You	don’t	want	to	blow	the	circuit	breaker
too	readily,	nor	do	you	want	to	take	too	long	to	blow	it.	Likewise,	you	really	want	to	make
sure	that	the	downstream	service	is	healthy	again	before	sending	traffic.	As	with	timeouts,
I’d	pick	some	sensible	defaults	and	stick	with	them	everywhere,	then	change	them	for
specific	cases.

While	the	circuit	breaker	is	blown,	you	have	some	options.	One	is	to	queue	up	the	requests
and	retry	them	later	on.	For	some	use	cases,	this	might	be	appropriate,	especially	if	you’re
carrying	out	some	work	as	part	of	a	asynchronous	job.	If	this	call	is	being	made	as	part	of
a	synchronous	call	chain,	however,	it	is	probably	better	to	fail	fast.	This	could	mean
propagating	an	error	up	the	call	chain,	or	a	more	subtle	degrading	of	functionality.

If	we	have	this	mechanism	in	place	(as	with	the	circuit	breakers	in	our	home),	we	could
use	them	manually	to	make	it	safer	to	do	our	work.	For	example,	if	we	wanted	to	take	a
microservice	down	as	part	of	routine	maintenance,	we	could	manually	blow	all	the	circuit
breakers	of	the	dependent	systems	so	they	fail	fast	while	the	microservice	is	offline.	Once
it’s	back,	we	can	reset	the	circuit	breakers	and	everything	should	go	back	to	normal.

Figure	11-2.	An	overview	of	circuit	breakers

Bulkheads
In	another	pattern	from	Release	It!,	Nygard	introduces	the	concept	of	a	bulkhead	as	a	way
to	isolate	yourself	from	failure.	In	shipping,	a	bulkhead	is	a	part	of	the	ship	that	can	be
sealed	off	to	protect	the	rest	of	the	ship.	So	if	the	ship	springs	a	leak,	you	can	close	the
bulkhead	doors.	You	lose	part	of	the	ship,	but	the	rest	of	it	remains	intact.

In	software	architecture	terms,	there	are	lots	of	different	bulkheads	we	can	consider.
Returning	to	my	own	experience,	we	actually	missed	the	chance	to	implement	a	bulkhead.
We	should	have	used	different	connection	pools	for	each	downstream	connection.	That
way,	if	one	connection	pool	gets	exhausted,	the	other	connections	aren’t	impacted,	as	we
see	in	Figure	11-3.	This	would	ensure	that	if	a	downstream	service	started	behaving
slowly	in	the	future,	only	that	one	connection	pool	would	be	impacted,	allowing	other
calls	to	proceed	as	normal.

Figure	11-3.	Using	a	connection	pool	per	downstream	service	to	provide	bulkheads

Separation	of	concerns	can	also	be	a	way	to	implement	bulkheads.	By	teasing	apart
functionality	into	separate	microservices,	we	reduce	the	chance	of	an	outage	in	one	area
affecting	another.

Look	at	all	the	aspects	of	your	system	that	can	go	wrong,	both	inside	your	microservices
and	between	them.	Do	you	have	bulkheads	in	place?	I’d	suggest	starting	with	separate
connection	pools	for	each	downstream	connection	at	the	very	least.	You	may	want	to	go
further,	however,	and	consider	using	circuit	breakers	too.

We	can	think	of	our	circuit	breakers	as	an	automatic	mechanism	to	seal	a	bulkhead,	to	not
only	protect	the	consumer	from	the	downstream	problem,	but	also	to	potentially	protect
the	downstream	service	from	more	calls	that	may	be	having	an	adverse	impact.	Given	the
perils	of	cascading	failure,	I’d	recommend	mandating	circuit	breakers	for	all	your
synchronous	downstream	calls.	You	don’t	have	to	write	your	own,	either.	Netflix’s	Hystrix

http://bit.ly/1wxQtwW

library	is	a	JVM	circuit	breaker	abstraction	that	comes	with	some	powerful	monitoring,
but	other	implementations	exist	for	different	technology	stacks,	such	as	Polly	for	.NET,	or
the	circuit_breaker	mixin	for	Ruby.

In	many	ways,	bulkheads	are	the	most	important	of	these	three	patterns.	Timeouts	and
circuit	breakers	help	you	free	up	resources	when	they	are	becoming	constrained,	but
bulkheads	can	ensure	they	don’t	become	constrained	in	the	first	place.	Hystrix	allows	you,
for	example,	to	implement	bulkheads	that	actually	reject	requests	in	certain	conditions	to
ensure	that	resources	don’t	become	even	more	saturated;	this	is	known	as	load	shedding.
Sometimes	rejecting	a	request	is	the	best	way	to	stop	an	important	system	from	becoming
overwhelmed	and	being	a	bottleneck	for	multiple	upstream	services.

http://bit.ly/1CIDFuT
http://bit.ly/1CIDFLp

Isolation
The	more	one	service	depends	on	another	being	up,	the	more	the	health	of	one	impacts	the
ability	of	the	other	to	do	its	job.	If	we	can	use	integration	techniques	that	allow	a
downstream	server	to	be	offline,	upstream	services	are	less	likely	to	be	affected	by
outages,	planned	or	unplanned.

There	is	another	benefit	to	increasing	isolation	between	services.	When	services	are
isolated	from	each	other,	much	less	coordination	is	needed	between	service	owners.	The
less	coordination	needed	between	teams,	the	more	autonomy	those	teams	have,	as	they	are
able	to	operate	and	evolve	their	services	more	freely.

Idempotency
In	idempotent	operations,	the	outcome	doesn’t	change	after	the	first	application,	even	if
the	operation	is	subsequently	applied	multiple	times.	If	operations	are	idempotent,	we	can
repeat	the	call	multiple	times	without	adverse	impact.	This	is	very	useful	when	we	want	to
replay	messages	that	we	aren’t	sure	have	been	processed,	a	common	way	of	recovering
from	error.

Let’s	consider	a	simple	call	to	add	some	points	as	a	result	of	one	of	our	customers	placing
an	order.	We	might	make	a	call	with	the	sort	of	payload	shown	in	Example	11-1.

Example	11-1.	Crediting	points	to	an	account
<credit>

		<amount>100</amount>

		<forAccount>1234</account>

</credit>

If	this	call	is	received	multiple	times,	we	would	add	100	points	multiple	times.	As	it
stands,	therefore,	this	call	is	not	idempotent.	With	a	bit	more	information,	though,	we
allow	the	points	bank	to	make	this	call	idempotent,	as	shown	in	Example	11-2.

Example	11-2.	Adding	more	information	to	the	points	credit	to	make	it	idempotent
<credit>

		<amount>100</amount>

		<forAccount>1234</account>

		<reason>

				<forPurchase>4567</forPurchase>

		</reason>

</credit>

Now	we	know	that	this	credit	relates	to	a	specific	order,	4567.	Assuming	that	we	could
receive	only	one	credit	for	a	given	order,	we	could	apply	this	credit	again	without
increasing	the	overall	number	of	points.

This	mechanism	works	just	as	well	with	event-based	collaboration,	and	can	be	especially
useful	if	you	have	multiple	instances	of	the	same	type	of	service	subscribing	to	events.
Even	if	we	store	which	events	have	been	processed,	with	some	forms	of	asynchronous
message	delivery	there	may	be	small	windows	where	two	workers	can	see	the	same
message.	By	processing	the	events	in	an	idempotent	manner,	we	ensure	this	won’t	cause
us	any	issues.

Some	people	get	quite	caught	up	with	this	concept,	and	assume	it	means	that	subsequent
calls	with	the	same	parameters	can’t	have	any	impact,	which	then	leaves	us	in	an
interesting	position.	We	really	would	still	like	to	record	the	fact	that	a	call	was	received	in
our	logs,	for	example.	We	want	to	record	the	response	time	of	the	call	and	collect	this	data
for	monitoring.	The	key	point	here	is	that	it	is	the	underlying	business	operation	that	we
are	considering	idempotent,	not	the	entire	state	of	the	system.

Some	of	the	HTTP	verbs,	such	as	GET	and	PUT,	are	defined	in	the	HTTP	specification	to
be	idempotent,	but	for	that	to	be	the	case,	they	rely	on	your	service	handling	these	calls	in

an	idempotent	manner.	If	you	start	making	these	verbs	nonidempotent,	but	callers	think
they	can	safely	execute	them	repeatedly,	you	may	get	yourself	into	a	mess.	Remember,
just	because	you’re	using	HTTP	as	an	underlying	protocol	doesn’t	mean	you	get
everything	for	free!

Scaling
We	scale	our	systems	in	general	for	one	of	two	reasons.	First,	to	help	deal	with	failure:	if
we’re	worried	that	something	will	fail,	then	having	more	of	it	will	help,	right?	Second,	we
scale	for	performance,	either	in	terms	of	handling	more	load,	reducing	latency,	or	both.
Let’s	look	at	some	common	scaling	techniques	we	can	use	and	think	about	how	they	apply
to	microservice	architectures.

Go	Bigger
Some	operations	can	just	benefit	from	more	grunt.	Getting	a	bigger	box	with	faster	CPU
and	better	I/O	can	often	improve	latency	and	throughput,	allowing	you	to	process	more
work	in	less	time.	However,	this	form	of	scaling,	often	called	vertical	scaling,	can	be
expensive	—	sometimes	one	big	server	can	cost	more	than	two	smaller	servers	with	the
same	combined	raw	power,	especially	when	you	start	getting	to	really	big	machines.
Sometimes	our	software	itself	cannot	do	much	with	the	extra	resources	available	to	it.
Larger	machines	often	just	give	us	more	CPU	cores,	but	not	enough	of	our	software	is
written	to	take	advantage	of	them.	The	other	problem	is	that	this	form	of	scaling	may	not
do	much	to	improve	our	server’s	resiliency	if	we	only	have	one	of	them!	Nonetheless,	this
can	be	a	good	quick	win,	especially	if	you’re	using	a	virtualization	provider	that	lets	you
resize	machines	easily.

Splitting	Workloads
As	outlined	in	Chapter	6,	having	a	single	microservice	per	host	is	certainly	preferable	to	a
multiservice-per-host	model.	Initially,	however,	many	people	decide	to	coexist	multiple
microservices	on	one	box	to	keep	costs	down	or	to	simplify	host	management	(although
that	is	an	arguable	reason).	As	the	microservices	are	independent	processes	that
communicate	over	the	network,	it	should	be	an	easy	task	to	then	move	them	onto	their
own	hosts	to	improve	throughput	and	scaling.	This	can	also	increase	the	resiliency	of	the
system,	as	a	single	host	outage	will	impact	a	reduced	number	of	microservices.

Of	course,	we	could	also	use	the	need	for	increased	scale	to	split	an	existing	microservice
into	parts	to	better	handle	the	load.	As	a	simplistic	example,	let’s	imagine	that	our
accounts	service	provides	the	ability	to	create	and	manage	individual	customers’	financial
accounts,	but	also	exposes	an	API	for	running	queries	to	generate	reports.	This	query
capability	places	a	significant	load	on	the	system.	The	query	capacity	is	considered
noncritical,	as	it	isn’t	needed	to	keep	orders	flowing	in	during	the	day.	The	ability	to
manage	the	financial	records	for	our	customers	is	critical,	though,	and	we	can’t	afford	for
it	to	be	down.	By	splitting	these	two	capabilities	into	separate	services,	we	reduce	the	load
on	the	critical	accounts	service,	and	introduce	a	new	accounts	reporting	service	that	is
designed	not	only	with	querying	in	mind	(perhaps	using	some	of	the	techniques	we
outlined	in	Chapter	4,	but	also	as	a	noncritical	system	doesn’t	need	to	be	deployed	in	as
resilient	a	way	as	the	core	accounts	service.

Spreading	Your	Risk
One	way	to	scale	for	resilience	is	to	ensure	that	you	don’t	put	all	your	eggs	in	one	basket.
A	simplistic	example	of	this	is	making	sure	that	you	don’t	have	multiple	services	on	one
host,	where	an	outage	would	impact	multiple	services.	But	let’s	consider	what	host	means.
In	most	situations	nowadays,	a	host	is	actually	a	virtual	concept.	So	what	if	I	have	all	of
my	services	on	different	hosts,	but	all	those	hosts	are	actually	virtual	hosts,	running	on	the
same	physical	box?	If	that	box	goes	down,	I	could	lose	multiple	services.	Some
virtualization	platforms	enable	you	to	ensure	that	your	hosts	are	distributed	across
multiple	different	physical	boxes	to	reduce	this	chance.

For	internal	virtualization	platforms,	it	is	a	common	practice	to	have	the	virtual	machine’s
root	partition	mapped	to	a	single	SAN	(storage	area	network).	If	that	SAN	goes	down,	it
can	take	down	all	connected	VMs.	SANs	are	big,	expensive,	and	designed	not	to	fail.	That
said,	I	have	had	big	expensive	SANs	fail	on	me	at	least	twice	in	the	last	10	years,	and	each
time	the	results	were	fairly	serious.

Another	common	form	of	separation	to	reduce	failure	is	to	ensure	that	not	all	your	services
are	running	in	a	single	rack	in	the	data	center,	or	that	your	services	are	distributed	across
more	than	one	data	center.	If	you’re	using	an	underlying	service	provider,	it	is	important	to
know	if	a	service-level	agreement	(SLA)	is	offered	and	plan	accordingly.	If	you	need	to
ensure	your	services	are	down	for	no	more	than	four	hours	every	quarter,	but	your	hosting
provider	can	only	guarantee	a	downtime	of	eight	hours	per	quarter,	you	have	to	either
change	the	SLA,	or	come	up	with	an	alternative	solution.

AWS,	for	example,	is	split	into	regions,	which	you	can	think	of	as	distinct	clouds.	Each
region	is	in	turn	split	into	two	or	more	availability	zones	(AZs).	AZs	are	AWS’s	equivalent
of	a	data	center.	It	is	essential	to	have	services	distributed	across	multiple	availability
zones,	as	AWS	does	not	offer	any	guarantees	about	the	availability	of	a	single	node,	or
even	an	entire	availability	zone.	For	its	compute	service,	it	offers	only	a	99.95%	uptime
over	a	given	monthly	period	of	the	region	as	a	whole,	so	you’ll	want	to	distribute	your
workloads	across	multiple	availability	zones	inside	a	single	region.	For	some	people,	this
isn’t	good	enough,	and	instead	they	run	their	services	across	multiple	regions	too.

It	should	be	noted,	of	course,	that	because	providers	give	you	an	SLA	guarantee,	they	will
tend	to	limit	their	liability!	If	them	missing	their	targets	costs	you	customers	and	a	large
amount	of	money,	you	might	find	yourself	searching	through	contracts	to	see	if	you	can
claw	anything	back	from	them.	Therefore,	I	would	strongly	suggest	you	understand	the
impact	of	a	supplier	failing	in	its	obligations	to	you,	and	work	out	if	you	need	to	have	a
plan	B	(or	C)	in	your	pocket.	More	than	one	client	I’ve	worked	with	has	had	a	disaster
recovery	hosting	platform	with	a	different	supplier,	for	example,	to	ensure	they	weren’t
too	vulnerable	to	the	mistakes	of	one	company.

Load	Balancing
When	you	need	your	service	to	be	resilient,	you	want	to	avoid	single	points	of	failure.	For
a	typical	microservice	that	exposes	a	synchronous	HTTP	endpoint,	the	easiest	way	to
achieve	this	is	to	have	multiple	hosts	running	your	microservice	instance,	sitting	behind	a
load	balancer,	as	shown	in	Figure	11-4.	To	consumers	of	the	microservice,	you	don’t	know
if	you	are	talking	to	one	microservice	instance	or	a	hundred.

Figure	11-4.	An	example	of	a	load	balancing	approach	to	scale	the	number	of	customer	service	instances

Load	balancers	come	in	all	shapes	and	sizes,	from	big	and	expensive	hardware	appliances
to	software-based	load	balancers	like	mod_proxy.	They	all	share	some	key	capabilities.
They	distribute	calls	sent	to	them	to	one	or	more	instances	based	on	some	algorithm,
remove	instances	when	they	are	no	longer	healthy,	and	hopefully	add	them	back	in	when
they	are.

Some	load	balancers	provide	useful	features.	A	common	one	is	SSL	termination,	where
inbound	HTTPS	connections	to	the	load	balancer	are	transformed	to	HTTP	connections
once	they	hit	the	instance	itself.	Historically,	the	overhead	of	managing	SSL	was
significant	enough	that	having	a	load	balancer	handle	this	process	for	you	was	fairly
useful.	Nowadays,	this	is	as	much	about	simplifying	the	set-up	of	the	individual	hosts
running	the	instance.	The	point	of	using	HTTPS,	though,	is	to	ensure	that	the	requests
aren’t	vulnerable	to	a	man-in-the-middle	attack,	as	we	discussed	in	Chapter	9,	so	if	we	use
SSL	termination,	we	are	potentially	exposing	ourselves	somewhat.	One	mitigation	is	to
have	all	the	instances	of	the	microservice	inside	a	single	VLAN,	as	we	see	in	Figure	11-5.
A	VLAN	is	a	virtual	local	area	network,	that	is	isolated	in	such	a	way	that	requests	from
outside	it	can	come	only	via	a	router,	and	in	this	case	our	router	is	also	our	SSL-
terminating	load	balancer.	The	only	communication	to	the	microservice	from	outside	the
VLAN	comes	over	HTTPS,	but	internally	everything	is	HTTP.

Figure	11-5.	Using	HTTPS	termination	at	the	load	balancer	with	a	VLAN	for	improved	security

AWS	provides	HTTPS-terminating	load	balancers	in	the	form	of	ELBs	(elastic	load
balancers)	and	you	can	use	its	security	groups	or	virtual	private	clouds	(VPCs)	to
implement	the	VLAN.	Otherwise,	software	like	mod_proxy	can	play	a	similar	role	as	a
software	load	balancer.	Many	organizations	have	hardware	load	balancers,	which	can	be
difficult	to	automate.	In	such	circumstances	I	have	found	myself	advocating	for	software
load	balancers	sitting	behind	the	hardware	load	balancers	to	allow	teams	the	freedom	to
reconfigure	these	as	required.	You	do	want	to	watch	for	the	fact	that	all	too	often	the
hardware	load	balancers	themselves	are	single	points	of	failure!	Whatever	approach	you
take,	when	considering	the	configuration	of	a	load	balancer,	treat	it	as	you	treat	the
configuration	of	your	service:	make	sure	it	is	stored	in	version	control	and	can	be	applied
automatically.

Load	balancers	allow	us	to	add	more	instances	of	our	microservice	in	a	way	that	is
transparent	to	any	service	consumers.	This	gives	us	an	increased	ability	to	handle	load,
and	also	reduce	the	impact	of	a	single	host	failing.	However,	many,	if	not	most,	of	your
microservices	will	have	some	sort	of	persistent	data	store,	probably	a	database	sitting	on	a
different	machine.	If	we	have	multiple	microservice	instances	on	different	machines,	but
only	a	single	host	running	the	database	instance,	our	database	is	still	a	single	source	of
failure.	We’ll	talk	about	patterns	to	handle	this	shortly.

Worker-Based	Systems
Load	balancing	isn’t	the	only	way	to	have	multiple	instances	of	your	service	share	load
and	reduce	fragility.	Depending	on	the	nature	of	the	operations,	a	worker-based	system
could	be	just	as	effective.	Here,	a	collection	of	instances	all	work	on	some	shared	backlog
of	work.	This	could	be	a	number	of	Hadoop	processes,	or	perhaps	a	number	of	listeners	to
a	shared	queue	of	work.	These	types	of	operations	are	well	suited	to	batch	work	or
asynchronous	jobs.	Think	of	tasks	like	image	thumbnail	processing,	sending	email,	or
generating	reports.

The	model	also	works	well	for	peaky	load,	where	you	can	spin	up	additional	instances	on
demand	to	match	the	load	coming	in.	As	long	as	the	work	queue	itself	is	resilient,	this
model	can	be	used	to	scale	both	for	improved	throughput	of	work,	but	also	for	improved
resiliency	—	the	impact	of	a	worker	failing	(or	not	being	there)	is	easy	to	deal	with.	Work
will	take	longer,	but	nothing	gets	lost.

I’ve	seen	this	work	well	in	organizations	where	there	is	lots	of	unused	compute	capacity	at
certain	times	of	day.	For	example,	overnight	you	might	not	need	as	many	machines	to	run
your	ecommerce	system,	so	you	can	temporarily	use	them	to	run	workers	for	a	reporting
job	instead.

With	worker-based	systems,	although	the	workers	themselves	don’t	need	to	be	that
reliable,	the	system	that	contains	the	work	to	be	done	does.	You	could	handle	this	by
running	a	persistent	message	broker,	for	example,	or	perhaps	a	system	like	Zookeeper.	The
benefit	here	is	that	if	we	use	existing	software	for	this	purpose,	someone	has	done	much	of
the	hard	work	for	us.	However,	we	still	need	to	know	how	to	set	up	and	maintain	these
systems	in	a	resilient	fashion.

Starting	Again
The	architecture	that	gets	you	started	may	not	be	the	architecture	that	keeps	you	going
when	your	system	has	to	handle	very	different	volumes	of	load.	As	Jeff	Dean	said	in	his
presentation	“Challenges	in	Building	Large-Scale	Information	Retrieval	Systems”
(WSDM	2009	conference),	you	should	“design	for	~10×	growth,	but	plan	to	rewrite
before	~100×.”	At	certain	points,	you	need	to	do	something	pretty	radical	to	support	the
next	level	of	growth.

Recall	the	story	of	Gilt,	which	we	touched	on	in	Chapter	6.	A	simple	monolithic	Rails
application	did	well	for	Gilt	for	two	years.	Its	business	became	increasingly	successful,
which	meant	more	customers	and	more	load.	At	a	certain	tipping	point,	the	company	had
to	redesign	the	application	to	handle	the	load	it	was	seeing.

A	redesign	may	mean	splitting	apart	an	existing	monolith,	as	it	did	for	Gilt.	Or	it	might
mean	picking	new	data	stores	that	can	handle	the	load	better,	which	we’ll	look	at	in	a
moment.	It	could	also	mean	adopting	new	techniques,	such	as	moving	from	synchronous
request/response	to	event-based	systems,	adopting	new	deployment	platforms,	changing
whole	technology	stacks,	or	everything	in	between.

There	is	a	danger	that	people	will	see	the	need	to	rearchitect	when	certain	scaling
thresholds	are	reached	as	a	reason	to	build	for	massive	scale	from	the	beginning.	This	can
be	disastrous.	At	the	start	of	a	new	project,	we	often	don’t	know	exactly	what	we	want	to
build,	nor	do	we	know	if	it	will	be	successful.	We	need	to	be	able	to	rapidly	experiment,
and	understand	what	capabilities	we	need	to	build.	If	we	tried	building	for	massive	scale
up	front,	we’d	end	up	front-loading	a	huge	amount	of	work	to	prepare	for	load	that	may
never	come,	while	diverting	effort	away	from	more	important	activities,	like
understanding	if	anyone	will	want	to	actually	use	our	product.	Eric	Ries	tells	the	story	of
spending	six	months	building	a	product	that	no	one	ever	downloaded.	He	reflected	that	he
could	have	put	up	a	link	on	a	web	page	that	404’d	when	people	clicked	on	it	to	see	if	there
was	any	demand,	spent	six	months	on	the	beach	instead,	and	learned	just	as	much!

The	need	to	change	our	systems	to	deal	with	scale	isn’t	a	sign	of	failure.	It	is	a	sign	of
success.

Scaling	Databases
Scaling	stateless	microservices	is	fairly	straightforward.	But	what	if	we	are	storing	data	in
a	database?	We’ll	need	to	know	how	to	scale	that	too.	Different	types	of	databases	provide
different	forms	of	scaling,	and	understanding	what	form	suits	your	use	case	best	will
ensure	you	select	the	right	database	technology	from	the	beginning.

Availability	of	Service	Versus	Durability	of	Data
Straight	off,	it	is	important	to	separate	the	concept	of	availability	of	the	service	from	the
durability	of	the	data	itself.	You	need	to	understand	that	these	are	two	different	things,	and
as	such	they	will	have	different	solutions.

For	example,	I	could	store	a	copy	of	all	data	written	to	my	database	in	a	resilient
filesystem.	If	the	database	goes	down,	my	data	isn’t	lost,	as	I	have	a	copy,	but	the	database
itself	isn’t	available,	which	may	make	my	microservice	unavailable	too.	A	more	common
model	would	be	using	a	standby.	All	data	written	to	the	primary	database	gets	copied	to
the	standby	replica	database.	If	the	primary	goes	down,	my	data	is	safe,	but	without	a
mechanism	to	either	bring	it	back	up	or	promote	the	replica	to	the	primary,	we	don’t	have
an	available	database,	even	though	our	data	is	safe.

Scaling	for	Reads
Many	services	are	read-mostly.	Think	of	a	catalog	service	that	stores	information	for	the
items	we	have	for	sale.	We	add	records	for	new	items	on	a	fairly	irregular	basis,	and	it
wouldn’t	at	all	be	surprising	if	we	get	more	than	100	reads	of	our	catalog’s	data	for	every
write.	Happily,	scaling	for	reads	is	much	easier	than	scaling	for	writes.	Caching	of	data
can	play	a	large	part	here,	and	we’ll	discuss	that	in	more	depth	shortly.	Another	model	is
to	make	use	of	read	replicas.

In	a	relational	database	management	system	(RDBMS)	like	MySQL	or	Postgres,	data	can
be	copied	from	a	primary	node	to	one	or	more	replicas.	This	is	often	done	to	ensure	that	a
copy	of	our	data	is	kept	safe,	but	we	can	also	use	it	to	distribute	our	reads.	A	service	could
direct	all	writes	to	the	single	primary	node,	but	distribute	reads	to	one	or	more	read
replicas,	as	we	see	in	Figure	11-6.	The	replication	from	the	primary	database	to	the
replicas	happens	at	some	point	after	the	write.	This	means	that	with	this	technique	reads
may	sometimes	see	stale	data	until	the	replication	has	completed.	Eventually	the	reads
will	see	the	consistent	data.	Such	a	setup	is	called	eventually	consistent,	and	if	you	can
handle	the	temporary	inconsistency	it	is	a	fairly	easy	and	common	way	to	help	scale
systems.	We’ll	look	into	this	in	more	depth	shortly	when	we	look	at	the	CAP	theorem.

Figure	11-6.	Using	read	replicas	to	scale	reads

Years	ago,	using	read	replicas	to	scale	was	all	the	rage,	although	nowadays	I	would
suggest	you	look	to	caching	first,	as	it	can	deliver	much	more	significant	improvements	in
performance,	often	with	less	work.

Scaling	for	Writes
Reads	are	comparatively	easy	to	scale.	What	about	writes?	One	approach	is	to	use
sharding.	With	sharding,	you	have	multiple	database	nodes.	You	take	a	piece	of	data	to	be
written,	apply	some	hashing	function	to	the	key	of	the	data,	and	based	on	the	result	of	the
function	learn	where	to	send	the	data.	To	pick	a	very	simplistic	(and	actually	bad)
example,	imagine	that	customer	records	A–M	go	to	one	database	instance,	and	N–Z
another.	You	can	manage	this	yourself	in	your	application,	but	some	databases,	like
Mongo,	handle	much	of	it	for	you.

The	complexity	with	sharding	for	writes	comes	from	handling	queries.	Looking	up	an
individual	record	is	easy,	as	I	can	just	apply	the	hashing	function	to	find	which	instance
the	data	should	be	on,	and	then	retrieve	it	from	the	correct	shard.	But	what	about	queries
that	span	the	data	in	multiple	nodes	—	for	example,	finding	all	the	customers	who	are	over
18?	If	you	want	to	query	all	shards,	you	either	need	to	query	each	individual	shard	and
join	in	memory,	or	have	an	alternative	read	store	where	both	data	sets	are	available.	Often
querying	across	shards	is	handled	by	an	asynchronous	mechanism,	using	cached	results.
Mongo	uses	map/reduce	jobs,	for	example,	to	perform	these	queries.

One	of	the	questions	that	emerges	with	sharded	systems	is,	what	happens	if	I	want	to	add
an	extra	database	node?	In	the	past,	this	would	often	require	significant	downtime	—
especially	for	large	clusters	—	as	you	might	have	to	take	the	entire	database	down	and
rebalance	the	data.	More	recently,	more	systems	support	adding	extra	shards	to	a	live
system,	where	the	rebalancing	of	data	happens	in	the	background;	Cassandra,	for	example,
handles	this	very	well.	Adding	shards	to	an	existing	cluster	isn’t	for	the	faint	of	heart,
though,	so	make	sure	you	test	this	thoroughly.

Sharding	for	writes	may	scale	for	write	volume,	but	may	not	improve	resiliency.	If
customer	records	A–M	always	go	to	Instance	X,	and	Instance	X	is	unavailable,	access	to
records	A–M	can	be	lost.	Cassandra	offers	additional	capabilities	here,	where	we	can
ensure	that	data	is	replicated	to	multiple	nodes	in	a	ring	(Cassandra’s	term	for	a	collection
of	Cassandra	nodes).

As	you	may	have	inferred	from	this	brief	overview,	scaling	databases	for	writes	are	where
things	get	very	tricky,	and	where	the	capabilities	of	the	various	databases	really	start	to
become	differentiated.	I	often	see	people	changing	database	technology	when	they	start
hitting	limits	on	how	easily	they	can	scale	their	existing	write	volume.	If	this	happens	to
you,	buying	a	bigger	box	is	often	the	quickest	way	to	solve	the	problem,	but	in	the
background	you	might	want	to	look	at	systems	like	Cassandra,	Mongo,	or	Riak	to	see	if
their	alternative	scaling	models	might	offer	you	a	better	long-term	solution.

Shared	Database	Infrastructure
Some	types	of	databases,	such	as	the	traditional	RDBMS,	separate	the	concept	of	the
database	itself	and	the	schema.	This	means	one	running	database	could	host	multiple,
independent	schemas,	one	for	each	microservice.	This	can	be	very	useful	in	terms	of
reducing	the	number	of	machines	we	need	to	run	our	system,	but	we	are	introducing	a
significant	single	point	of	failure.	If	this	database	infrastructure	goes	down,	it	can	impact
multiple	microservices	at	once,	potentially	resulting	in	a	catastrophic	outage.	If	you	are
running	this	sort	of	setup,	make	sure	you	consider	the	risks.	And	be	very	sure	that	the
database	itself	is	as	resilient	as	it	can	be.

CQRS
The	Command-Query	Responsibility	Segregation	(CQRS)	pattern	refers	to	an	alternate
model	for	storing	and	querying	information.	With	normal	databases,	we	use	one	system
for	performing	modifications	to	data	and	querying	the	data.	With	CQRS,	part	of	the
system	deals	with	commands,	which	capture	requests	to	modify	state,	while	another	part
of	the	system	deals	with	queries.

Commands	come	in	requesting	changes	in	state.	These	commands	are	validated,	and	if
they	work,	they	will	be	applied	to	the	model.	Commands	should	contain	information	about
their	intent.	They	can	be	processed	synchronously	or	asynchronously,	allowing	for
different	models	to	handle	scaling;	we	could,	for	example,	just	queue	up	inbound	requests
and	process	them	later.

The	key	takeaway	here	is	that	the	internal	models	used	to	handle	commands	and	queries
are	themselves	completely	separate.	For	example,	I	might	choose	to	handle	and	process
commands	as	events,	perhaps	just	storing	the	list	of	commands	in	a	data	store	(a	process
known	as	event	sourcing).	My	query	model	could	query	an	event	store	and	create
projections	from	stored	events	to	assemble	the	state	of	domain	objects,	or	could	just	pick
up	a	feed	from	the	command	part	of	the	system	to	update	a	different	type	of	store.	In	many
ways,	we	get	the	same	benefits	of	read	replicas	that	we	discussed	earlier,	without	the
requirement	that	the	backing	store	for	the	replicas	be	the	same	as	the	data	store	used	to
handle	data	modifications.

This	form	of	separation	allows	for	different	types	of	scaling.	The	command	and	query
parts	of	our	system	could	live	in	different	services,	or	on	different	hardware,	and	could
make	use	of	radically	different	types	of	data	store.	This	can	unlock	a	large	number	of	ways
to	handle	scale.	You	could	even	support	different	types	of	read	format	by	having	multiple
implementations	of	the	query	piece,	perhaps	supporting	a	graph-based	representation	of
your	data,	or	a	key/value-based	form	of	your	data.

Be	warned,	however:	this	sort	of	pattern	is	quite	a	shift	away	from	a	model	where	a	single
data	store	handles	all	our	CRUD	operations.	I’ve	seen	more	than	one	experienced
development	team	struggle	to	get	this	pattern	right!

Caching
Caching	is	a	commonly	used	performance	optimization	whereby	the	previous	result	of
some	operation	is	stored,	so	that	subsequent	requests	can	use	this	stored	value	rather	than
spending	time	and	resources	recalculating	the	value.	More	often	than	not,	caching	is	about
eliminating	needless	round-trips	to	databases	or	other	services	to	serve	results	faster.	Used
well,	it	can	yield	huge	performance	benefits.	The	reason	that	HTTP	scales	so	well	in
handling	large	numbers	of	requests	is	that	the	concept	of	caching	is	built	in.

Even	with	a	simple	monolithic	web	application,	there	are	quite	a	few	choices	as	to	where
and	how	to	cache.	With	a	microservice	architecture,	where	each	service	is	its	own	source
of	data	and	behavior,	we	have	many	more	choices	to	make	about	where	and	how	to	cache.
With	a	distributed	system,	we	typically	think	of	caching	either	on	the	client	side	or	on	the
server	side.	But	which	is	best?

Client-Side,	Proxy,	and	Server-Side	Caching
In	client-side	caching,	the	client	stores	the	cached	result.	The	client	gets	to	decide	when
(and	if)	it	goes	and	retrieves	a	fresh	copy.	Ideally,	the	downstream	service	will	provide
hints	to	help	the	client	understand	what	to	do	with	the	response,	so	it	knows	when	and	if	to
make	a	new	request.	With	proxy	caching,	a	proxy	is	placed	between	the	client	and	the
server.	A	great	example	of	this	is	using	a	reverse	proxy	or	content	delivery	network
(CDN).	With	server-side	caching,	the	server	handles	caching	responsibility,	perhaps
making	use	of	a	system	like	Redis	or	Memcache,	or	even	a	simple	in-memory	cache.

Which	one	makes	the	most	sense	depends	on	what	you	are	trying	to	optimize.	Client-side
caching	can	help	reduce	network	calls	drastically,	and	can	be	one	of	the	fastest	ways	of
reducing	load	on	a	downstream	service.	In	this	case,	the	client	is	in	charge	of	the	caching
behavior,	and	if	you	want	to	make	changes	to	how	caching	is	done,	rolling	out	changes	to
a	number	of	consumers	could	be	difficult.	Invalidation	of	stale	data	can	also	be	trickier,
although	we’ll	discuss	some	coping	mechanisms	for	this	in	a	moment.

With	proxy	caching,	everything	is	opaque	to	both	the	client	and	server.	This	is	often	a	very
simple	way	to	add	caching	to	an	existing	system.	If	the	proxy	is	designed	to	cache	generic
traffic,	it	can	also	cache	more	than	one	service;	a	common	example	is	a	reverse	proxy	like
Squid	or	Varnish,	which	can	cache	any	HTTP	traffic.	Having	a	proxy	between	the	client
and	server	does	introduce	additional	network	hops,	although	in	my	experience	it	is	very
rare	that	this	causes	problems,	as	the	performance	optimizations	resulting	from	the
caching	itself	outweigh	any	additional	network	costs.

With	server-side	caching,	everything	is	opaque	to	the	clients;	they	don’t	need	to	worry
about	anything.	With	a	cache	near	or	inside	a	service	boundary,	it	can	be	easier	to	reason
about	things	like	invalidation	of	data,	or	track	and	optimize	cache	hits.	In	a	situation	where
you	have	multiple	types	of	clients,	a	server-side	cache	could	be	the	fastest	way	to	improve
performance.

For	every	public-facing	website	I’ve	worked	on,	we’ve	ended	up	doing	a	mix	of	all	three
approaches.	But	for	more	than	one	distributed	system,	I’ve	gotten	away	with	no	caching	at
all.	But	it	all	comes	down	to	knowing	what	load	you	need	to	handle,	how	fresh	your	data
needs	to	be,	and	what	your	system	can	do	right	now.	Knowing	that	you	have	a	number	of
different	tools	at	your	disposal	is	just	the	beginning.

Caching	in	HTTP
HTTP	provides	some	really	useful	controls	to	help	us	cache	either	on	the	client	side	or
server	side,	which	are	worth	understanding	even	if	you	aren’t	using	HTTP	itself.

First,	with	HTTP,	we	can	use	cache-control	directives	in	our	responses	to	clients.	These
tell	clients	if	they	should	cache	the	resource	at	all,	and	if	so	how	long	they	should	cache	it
for	in	seconds.	We	also	have	the	option	of	setting	an	Expires	header,	where	instead	of
saying	how	long	a	piece	of	content	can	be	cached	for,	we	specify	a	time	and	date	at	which
a	resource	should	be	considered	stale	and	fetched	again.	The	nature	of	the	resources	you
are	sharing	determines	which	one	is	most	likely	to	fit.	Standard	static	website	content	like
CSS	or	images	often	fit	well	with	a	simple	cache-control	time	to	live	(TTL).	On	the
other	hand,	if	you	know	in	advance	when	a	new	version	of	a	resource	will	be	updated,
setting	an	Expires	header	will	make	more	sense.	All	of	this	is	very	useful	in	stopping	a
client	from	even	needing	to	make	a	request	to	the	server	in	the	first	place.

Aside	from	cache-control	and	Expires,	we	have	another	option	in	our	arsenal	of	HTTP
goodies:	Entity	Tags,	or	ETags.	An	ETag	is	used	to	determine	if	the	value	of	a	resource	has
changed.	If	I	update	a	customer	record,	the	URI	to	the	resource	is	the	same,	but	the	value
is	different,	so	I	would	expect	the	ETag	to	change.	This	becomes	powerful	when	we’re
using	what	is	called	a	conditional	GET.	When	making	a	GET	request,	we	can	specify
additional	headers,	telling	the	service	to	send	us	the	resource	only	if	some	criteria	are	met.

For	example,	let’s	imagine	we	fetch	a	customer	record,	and	its	ETag	comes	back	as
o5t6fkd2sa.	Later	on,	perhaps	because	a	cache-control	directive	has	told	us	the	resource
should	be	considered	stale,	we	want	to	make	sure	we	get	the	latest	version.	When	issuing
the	subsequent	GET	request,	we	can	pass	in	a	If-None-Match:	o5t6fkd2sa.	This	tells	the
server	that	we	want	the	resource	at	the	specified	URI,	unless	it	already	matches	this	ETag
value.	If	we	already	have	the	up-to-date	version,	the	service	sends	us	a	304	Not	Modified
response,	telling	us	we	have	the	latest	version.	If	there	is	a	newer	version	available,	we	get
a	200	OK	with	the	changed	resource,	and	a	new	ETag	for	the	resource.

The	fact	that	these	controls	are	built	into	such	a	widely	used	specification	means	we	get	to
take	advantage	of	a	lot	of	preexisting	software	that	handles	the	caching	for	us.	Reverse
proxies	like	Squid	or	Varnish	can	sit	transparently	on	the	network	between	client	and
server,	storing	and	expiring	cached	content	as	required.	These	systems	are	geared	toward
serving	huge	numbers	of	concurrent	requests	very	fast,	and	are	a	standard	way	of	scaling
public-facing	websites.	CDNs	like	AWS’s	CloudFront	or	Akamai	can	ensure	that	requests
are	routed	to	caches	near	the	calling	client,	making	sure	that	traffic	doesn’t	go	halfway
round	the	world	when	it	needs	to.	And	more	prosaically,	HTTP	client	libraries	and	client
caches	can	handle	a	lot	of	this	work	for	us.

ETags,	Expires,	and	cache-control	can	overlap	a	bit,	and	if	you	aren’t	careful	you	can
end	up	giving	conflicting	information	if	you	decide	to	use	all	of	them!	For	a	more	in-depth

discussion	of	the	various	merits,	take	a	look	at	the	book	REST	In	Practice	(O’Reilly)	or
read	section	13	of	the	HTTP	1.1	specification,	which	describes	how	both	clients	and
servers	are	supposed	to	implement	these	various	controls.

Whether	you	decide	to	use	HTTP	as	an	interservice	protocol,	caching	at	the	client	and
reducing	the	need	for	round-trips	to	the	client	is	well	worth	it.	If	you	decide	to	pick	a
different	protocol,	understand	when	and	how	you	can	provide	hints	to	the	client	to	help	it
understand	how	long	it	can	cache	for.

http://bit.ly/rest-practice
http://bit.ly/1JOSoVh

Caching	for	Writes
Although	you’ll	find	yourself	using	caching	for	reads	more	often,	there	are	some	use	cases
where	caching	for	writes	make	sense.	For	example,	if	you	make	use	of	a	write-behind
cache,	you	can	write	to	a	local	cache,	and	at	some	later	point	the	data	will	be	flushed	to	a
downstream	source,	probably	the	canonical	source	of	data.	This	can	be	useful	when	you
have	bursts	of	writes,	or	when	there	is	a	good	chance	that	the	same	data	will	be	written
multiple	times.	When	used	to	buffer	and	potentially	batch	writes,	write-behind	caches	can
be	a	useful	further	performance	optimization.

With	a	write-behind	cache,	if	the	buffered	writes	are	suitably	persistent,	even	if	the
downstream	service	is	unavailable	we	could	queue	up	the	writes	and	send	them	through
when	it	is	available	again.

Caching	for	Resilience
Caching	can	be	used	to	implement	resiliency	in	case	of	failure.	With	client-side	caching,	if
the	downstream	service	is	unavailable,	the	client	could	decide	to	simply	use	cached	but
potentially	stale	data.	We	could	also	use	something	like	a	reverse	proxy	to	serve	up	stale
data.	For	some	systems,	being	available	even	with	stale	data	is	better	than	not	returning	a
result	at	all,	but	that	is	a	judgment	call	you’ll	have	to	make.	Obviously,	if	we	don’t	have
the	requested	data	in	the	cache,	then	we	can’t	do	much	to	help,	but	there	are	ways	to
mitigate	this.

A	technique	I	saw	used	at	the	Guardian,	and	subsequently	elsewhere,	was	to	crawl	the
existing	live	site	periodically	to	generate	a	static	version	of	the	website	that	could	be
served	in	the	event	of	an	outage.	Although	this	crawled	version	wasn’t	as	fresh	as	the
cached	content	served	from	the	live	system,	in	a	pinch	it	could	ensure	that	a	version	of	the
site	would	get	displayed.

Hiding	the	Origin
With	a	normal	cache,	if	a	request	results	in	a	cache	miss,	the	request	goes	on	to	the	origin
to	fetch	the	fresh	data	with	the	caller	blocking,	waiting	on	the	result.	In	the	normal	course
of	things,	this	is	to	be	expected.	But	if	we	suffer	a	massive	cache	miss,	perhaps	because	an
entire	machine	(or	group	of	machines)	that	provide	our	cache	fail,	a	large	number	of
requests	will	hit	the	origin.

For	those	services	that	serve	up	highly	cachable	data,	it	is	common	for	the	origin	itself	to
be	scaled	to	handle	only	a	fraction	of	the	total	traffic,	as	most	requests	get	served	out	of
memory	by	the	caches	that	sit	in	front	of	the	origin.	If	we	suddenly	get	a	thundering	herd
due	to	an	entire	cache	region	vanishing,	our	origin	could	be	pummelled	out	of	existence.

One	way	to	protect	the	origin	in	such	a	situation	is	never	to	allow	requests	to	go	to	the
origin	in	the	first	place.	Instead,	the	origin	itself	populates	the	cache	asynchronously	when
needed,	as	shown	in	Figure	11-7.	If	a	cache	miss	is	caused,	this	triggers	an	event	that	the
origin	can	pick	up	on,	alerting	it	that	it	needs	to	repopulate	the	cache.	So	if	an	entire	shard
has	vanished,	we	can	rebuild	the	cache	in	the	background.	We	could	decide	to	block	the
original	request	waiting	for	the	region	to	be	repopulated,	but	this	could	cause	contention
on	the	cache	itself,	leading	to	further	problems.	It’s	more	likely	if	we	are	prioritizing
keeping	the	system	stable	that	we	would	fail	the	original	request,	but	it	would	fail	fast.

Figure	11-7.	Hiding	the	origin	from	the	client	and	populating	the	cache	asynchronously

This	sort	of	approach	may	not	make	sense	for	some	situations,	but	it	can	be	a	way	to
ensure	the	system	remains	up	when	parts	of	it	fail.	By	failing	requests	fast,	and	ensuring
we	don’t	take	up	resources	or	increase	latency,	we	avoid	a	failure	in	our	cache	from
cascading	downstream	and	give	ourselves	a	chance	to	recover.

Keep	It	Simple
Be	careful	about	caching	in	too	many	places!	The	more	caches	between	you	and	the
source	of	fresh	data,	the	more	stale	the	data	can	be,	and	the	harder	it	can	be	to	determine
the	freshness	of	the	data	that	a	client	eventually	sees.	This	can	be	especially	problematic
with	a	microservice	architecture	where	you	have	multiple	services	involved	in	a	call	chain.
Again,	the	more	caching	you	have,	the	harder	it	will	be	to	assess	the	freshness	of	any	piece
of	data.	So	if	you	think	a	cache	is	a	good	idea,	keep	it	simple,	stick	to	one,	and	think
carefully	before	adding	more!

Cache	Poisoning:	A	Cautionary	Tale
With	caching	we	often	think	that	if	we	get	it	wrong	the	worst	thing	that	can	happen	is	we
serve	stale	data	for	a	bit.	But	what	happens	if	you	end	up	serving	stale	data	forever?
Earlier	I	mentioned	the	project	I	worked	on	where	we	were	using	a	strangler	application	to
help	intercept	calls	to	multiple	legacy	systems	with	a	view	of	incrementally	retiring	them.
Our	application	operated	effectively	as	a	proxy.	Traffic	to	our	application	was	routed
through	to	the	legacy	application.	On	the	way	back,	we	did	a	few	housekeeping	things;	for
example,	we	made	sure	that	the	results	from	the	legacy	application	had	proper	HTTP
cache	headers	applied.

One	day,	shortly	after	a	normal	routine	release,	something	odd	started	happening.	A	bug
had	been	introduced	whereby	a	small	subset	of	pages	were	falling	through	a	logic
condition	in	our	cache	header	insertion	code,	resulting	in	us	not	changing	the	header	at	all.
Unfortunately,	this	downstream	application	had	also	been	changed	sometime	previously	to
include	an	Expires:	Never	HTTP	header.	This	hadn’t	had	any	effect	earlier,	as	we	were
overriding	this	header.	Now	we	weren’t.

Our	application	made	heavy	use	of	Squid	to	cache	HTTP	traffic,	and	we	noticed	the
problem	quite	quickly	as	we	were	seeing	more	requests	bypassing	Squid	itself	to	hit	our
application	servers.	We	fixed	the	cache	header	code	and	pushed	out	a	release,	and	also
manually	cleared	the	relevant	region	of	the	Squid	cache.	However,	that	wasn’t	enough.

As	I	mentioned	earlier,	you	can	cache	in	multiple	places.	When	it	comes	to	serving	up
content	to	users	of	a	public-facing	web	application,	you	could	have	multiple	caches
between	you	and	your	customer.	Not	only	might	you	be	fronting	your	website	with
something	like	a	CDN,	but	some	ISPs	make	use	of	caching.	Can	you	control	those	caches?
And	even	if	you	could,	there	is	one	cache	that	you	have	little	control	over:	the	cache	in	a
user’s	browser.

Those	pages	with	Expires:	Never	stuck	in	the	caches	of	many	of	our	users,	and	would
never	be	invalidated	until	the	cache	became	full	or	the	user	cleaned	them	out	manually.
Clearly	we	couldn’t	make	either	thing	happen;	our	only	option	was	to	change	the	URLs	of
these	pages	so	they	were	refetched.

Caching	can	be	very	powerful	indeed,	but	you	need	to	understand	the	full	path	of	data	that
is	cached	from	source	to	destination	to	really	appreciate	its	complexities	and	what	can	go
wrong.

Autoscaling
If	you	are	lucky	enough	to	have	fully	automatable	provisioning	of	virtual	hosts,	and	can
fully	automate	the	deployment	of	your	microservice	instances,	then	you	have	the	building
blocks	to	allow	you	to	automatically	scale	your	microservices.

For	example,	you	could	also	have	the	scaling	triggered	by	well-known	trends.	You	might
know	that	your	system’s	peak	load	is	between	9	a.m.	and	5	p.m.,	so	you	bring	up
additional	instances	at	8:45	a.m.,	and	turn	them	off	at	5:15	p.m..	If	you’re	using	something
like	AWS	(which	has	very	good	support	for	autoscaling	built	in),	turning	off	instances	you
don’t	need	any	longer	will	help	save	money.	You’ll	need	data	to	understand	how	your	load
changes	over	time,	from	day	to	day,	week	to	week.	Some	businesses	have	obvious
seasonal	cycles	too,	so	you	may	need	data	going	back	a	fair	way	to	make	proper	judgment
calls.

On	the	other	hand,	you	could	be	reactive,	bringing	up	additional	instances	when	you	see
an	increase	in	load	or	an	instance	failure,	and	remove	instances	when	you	no	longer
needed	them.	Knowing	how	fast	you	can	scale	up	once	you	spot	an	upward	trend	is	key.	If
you	know	you’ll	only	get	a	couple	of	minutes’	notice	about	an	increase	in	load,	but	scaling
up	will	take	you	at	least	10	minutes,	you	know	you’ll	need	to	keep	extra	capacity	around
to	bridge	this	gap.	Having	a	good	suite	of	load	tests	is	almost	essential	here.	You	can	use
them	to	test	your	autoscaling	rules.	If	you	don’t	have	tests	that	can	reproduce	different
loads	that	will	trigger	scaling,	then	you’re	only	going	to	find	out	in	production	if	you	got
the	rules	wrong.	And	the	consequences	of	failure	aren’t	great!

A	news	site	is	a	great	example	of	a	type	of	business	where	you	may	want	a	mix	of
predictive	and	reactive	scaling.	On	the	last	news	site	I	worked	on,	we	saw	very	clear	daily
trends,	with	views	climbing	from	the	morning	to	lunchtime	and	then	starting	to	decline.
This	pattern	was	repeated	day	in,	day	out,	with	traffic	less	pronounced	at	the	weekend.
That	gave	you	a	fairly	clear	trend	that	could	drive	proactive	scaling	up	(and	down)	of
resources.	On	the	other	hand,	a	big	news	story	would	cause	an	unexpected	spike,	requiring
more	capacity	at	often	short	notice.

I	actually	see	autoscaling	used	much	more	for	handling	failure	of	instances	than	for
reacting	to	load	conditions.	AWS	lets	you	specify	rules	like	“There	should	be	at	least	5
instances	in	this	group,”	so	if	one	goes	down	a	new	one	is	automatically	launched.	I’ve
seen	this	approach	lead	to	a	fun	game	of	whack-a-mole	when	someone	forgets	to	turn	off
the	rule	and	then	tries	to	take	down	the	instances	for	maintenance,	only	to	see	them	keep
spinning	up!

Both	reactive	and	predictive	scaling	are	very	useful,	and	can	help	you	be	much	more	cost
effective	if	you’re	using	a	platform	that	allows	you	to	pay	only	for	the	computing
resources	you	use.	But	they	also	require	careful	observation	of	the	data	available	to	you.
I’d	suggest	using	autoscaling	for	failure	conditions	first	while	you	collect	the	data.	Once

you	want	to	start	scaling	for	load,	make	sure	you	are	very	cautious	about	scaling	down	too
quickly.	In	most	situations,	having	more	computing	power	at	your	hands	than	you	need	is
much	better	than	not	having	enough!

CAP	Theorem
We’d	like	to	have	it	all,	but	unfortunately	we	know	we	can’t.	And	when	it	comes	to
distributed	systems	like	those	we	build	using	microservice	architectures,	we	even	have	a
mathematical	proof	that	tells	us	we	can’t.	You	may	well	have	heard	about	the	CAP
theorem,	especially	in	discussions	about	the	merits	of	various	different	types	of	data
stores.	At	its	heart	it	tells	us	that	in	a	distributed	system,	we	have	three	things	we	can	trade
off	against	each	other:	consistency,	availability,	and	partition	tolerance.	Specifically,	the
theorem	tells	us	that	we	get	to	keep	two	in	a	failure	mode.

Consistency	is	the	system	characteristic	by	which	I	will	get	the	same	answer	if	I	go	to
multiple	nodes.	Availability	means	that	every	request	receives	a	response.	Partition
tolerance	is	the	system’s	ability	to	handle	the	fact	that	communication	between	its	parts	is
sometimes	impossible.

Since	Eric	Brewer	published	his	original	conjecture,	the	idea	has	gained	a	mathematical
proof.	I’m	not	going	to	dive	into	the	math	of	the	proof	itself,	as	not	only	is	this	not	that
sort	of	book,	but	I	can	also	guarantee	that	I	would	get	it	wrong.	Instead,	let’s	use	some
worked	examples	that	will	help	us	understand	that	under	it	all,	the	CAP	theorem	is	a
distillation	of	a	very	logical	set	of	reasoning.

We’ve	already	talked	about	some	simple	database	scaling	techniques.	Let’s	use	one	of
these	to	probe	the	ideas	behind	the	CAP	theorem.	Let’s	imagine	that	our	inventory	service
is	deployed	across	two	separate	data	centers,	as	shown	in	Figure	11-8.	Backing	our	service
instance	in	each	data	center	is	a	database,	and	these	two	databases	talk	to	each	other	to	try
to	synchronize	data	between	them.	Reads	and	writes	are	done	via	the	local	database	node,
and	replication	is	used	to	synchronize	the	data	between	the	nodes.

Now	let’s	think	about	what	happens	when	something	fails.	Imagine	that	something	as
simple	as	the	network	link	between	the	two	data	centers	stops	working.	The
synchronization	at	this	point	fails.	Writes	made	to	the	primary	database	in	DC1	will	not
propagate	to	DC2,	and	vice	versa.	Most	databases	that	support	these	setups	also	support
some	sort	of	queuing	technique	to	ensure	that	we	can	recover	from	this	afterward,	but
what	happens	in	the	meantime?

Figure	11-8.	Using	multiprimary	replication	to	share	data	between	two	database	nodes

Sacrificing	Consistency
Let’s	assume	that	we	don’t	shut	the	inventory	service	down	entirely.	If	I	make	a	change
now	to	the	data	in	DC1,	the	database	in	DC2	doesn’t	see	it.	This	means	any	requests	made
to	our	inventory	node	in	DC2	see	potentially	stale	data.	In	other	words,	our	system	is	still
available	in	that	both	nodes	are	able	to	serve	requests,	and	we	have	kept	the	system
running	despite	the	partition,	but	we	have	lost	consistency.	This	is	often	called	a	AP
system.	We	don’t	get	to	keep	all	three.

During	this	partition,	if	we	keep	accepting	writes	then	we	accept	the	fact	that	at	some
point	in	the	future	they	have	to	be	resynchronized.	The	longer	the	partition	lasts,	the	more
difficult	this	resynchronization	can	become.

The	reality	is	that	even	if	we	don’t	have	a	network	failure	between	our	database	nodes,
replication	of	data	is	not	instantaneous.	As	touched	on	earlier,	systems	that	are	happy	to
cede	consistency	to	keep	partition	tolerance	and	availability	are	said	to	be	eventually
consistent;	that	is,	we	expect	at	some	point	in	the	future	that	all	nodes	will	see	the	updated
data,	but	it	won’t	happen	at	once	so	we	have	to	live	with	the	possibility	that	users	see	old
data.

Sacrificing	Availability
What	happens	if	we	need	to	keep	consistency	and	want	to	drop	something	else	instead?
Well,	to	keep	consistency,	each	database	node	needs	to	know	the	copy	of	the	data	it	has	is
the	same	as	the	other	database	node.	Now	in	the	partition,	if	the	database	nodes	can’t	talk
to	each	other,	they	cannot	coordinate	to	ensure	consistency.	We	are	unable	to	guarantee
consistency,	so	our	only	option	is	to	refuse	to	respond	to	the	request.	In	other	words,	we
have	sacrificed	availability.	Our	system	is	consistent	and	partition	tolerant,	or	CP.	In	this
mode	our	service	would	have	to	work	out	how	to	degrade	functionality	until	the	partition
is	healed	and	the	database	nodes	can	be	resynchronized.

Consistency	across	multiple	nodes	is	really	hard.	There	are	few	things	(perhaps	nothing)
harder	in	distributed	systems.	Think	about	it	for	a	moment.	Imagine	I	want	to	read	a
record	from	the	local	database	node.	How	do	I	know	it	is	up	to	date?	I	have	to	go	and	ask
the	other	node.	But	I	also	have	to	ask	that	database	node	to	not	allow	it	to	be	updated
while	the	read	completes;	in	other	words,	I	need	to	initiate	a	transactional	read	across
multiple	database	nodes	to	ensure	consistency.	But	in	general	people	don’t	do
transactional	reads,	do	they?	Because	transactional	reads	are	slow.	They	require	locks.	A
read	can	block	an	entire	system	up.	All	consistent	systems	require	some	level	of	locking	to
do	their	job.

As	we’ve	already	discussed,	distributed	systems	have	to	expect	failure.	Consider	our
transactional	read	across	a	set	of	consistent	nodes.	I	ask	a	remote	node	to	lock	a	given
record	while	the	read	is	initiated.	I	complete	the	read,	and	ask	the	remote	node	to	release
its	lock,	but	now	I	can’t	talk	to	it.	What	happens	now?	Locks	are	really	hard	to	get	right
even	in	a	single	process	system,	and	are	significantly	more	difficult	to	implement	well	in	a
distributed	system.

Remember	when	we	talked	about	distributed	transactions	in	Chapter	5?	The	core	reason
they	are	challenging	is	because	of	this	problem	with	ensuring	consistency	across	multiple
nodes.

Getting	multinode	consistency	right	is	so	hard	that	I	would	strongly,	strongly	suggest	that
if	you	need	it,	don’t	try	to	invent	it	yourself.	Instead,	pick	a	data	store	or	lock	service	that
offers	these	characteristics.	Consul,	for	example,	which	we’ll	discuss	shortly,	implements
a	strongly	consistent	key/value	store	designed	to	share	configuration	between	multiple
nodes.	Along	with	“Friends	don’t	let	friends	write	their	own	crypto”	should	go	“Friends
don’t	let	friends	write	their	own	distributed	consistent	data	store.”	If	you	think	you	need	to
write	your	own	CP	data	store,	read	all	the	papers	on	the	subject	first,	then	get	a	PhD,	and
then	look	forward	to	spending	a	few	years	getting	it	wrong.	Meanwhile,	I’ll	be	using
something	off	the	shelf	that	does	it	for	me,	or	more	likely	trying	really	hard	to	build
eventually	consistent	AP	systems	instead.

Sacrificing	Partition	Tolerance?
We	get	to	pick	two,	right?	So	we’ve	got	our	eventually	consistent	AP	system.	We	have	our
consistent,	but	hard	to	build	and	scale,	CP	system.	Why	not	a	CA	system?	Well,	how	can
we	sacrifice	partition	tolerance?	If	our	system	has	no	partition	tolerance,	it	can’t	run	over	a
network.	In	other	words,	it	needs	to	be	a	single	process	operating	locally.	CA	systems
don’t	exist	in	distributed	systems.

AP	or	CP?
Which	is	right,	AP	or	CP?	Well,	the	reality	is	it	depends.	As	the	people	building	the
system,	we	know	the	trade-off	exists.	We	know	that	AP	systems	scale	more	easily	and	are
simpler	to	build,	and	we	know	that	a	CP	system	will	require	more	work	due	to	the
challenges	in	supporting	distributed	consistency.	But	we	may	not	understand	the	business
impact	of	this	trade-off.	For	our	inventory	system,	if	a	record	is	out	of	date	by	five
minutes,	is	that	OK?	If	the	answer	is	yes,	an	AP	system	might	be	the	answer.	But	what
about	the	balance	held	for	a	customer	in	a	bank?	Can	that	be	out	of	date?	Without
knowing	the	context	in	which	the	operation	is	being	used,	we	can’t	know	the	right	thing	to
do.	Knowing	about	the	CAP	theorem	just	helps	you	understand	that	this	trade-off	exists
and	what	questions	to	ask.

It’s	Not	All	or	Nothing
Our	system	as	a	whole	doesn’t	need	to	be	either	AP	or	CP.	Our	catalog	could	be	AP,	as	we
don’t	mind	too	much	about	a	stale	record.	But	we	might	decide	that	our	inventory	service
needs	to	be	CP,	as	we	don’t	want	to	sell	a	customer	something	we	don’t	have	and	then
have	to	apologize	later.

But	individual	services	don’t	even	need	to	be	CP	or	AP.

Let’s	think	about	our	points	balance	service,	where	we	store	records	of	how	many	loyalty
points	our	customers	have	built	up.	We	could	decide	that	we	don’t	care	if	the	balance	we
show	for	a	customer	is	stale,	but	that	when	it	comes	to	updating	a	balance	we	need	it	to	be
consistent	to	ensure	that	customers	don’t	use	more	points	than	they	have	available.	Is	this
microservice	CP,	or	AP,	or	is	it	both?	Really,	what	we	have	done	is	push	the	trade-offs
around	the	CAP	theorem	down	to	individual	service	capabilities.

Another	complexity	is	that	neither	consistency	nor	availability	is	all	or	nothing.	Many
systems	allow	us	a	far	more	nuanced	trade-off.	For	example,	with	Cassandra	I	can	make
different	trade-offs	for	individual	calls.	So	if	I	need	strict	consistency,	I	can	perform	a	read
that	blocks	until	all	replicas	have	responded	confirming	the	value	is	consistent,	or	until	a
specific	quorum	of	replicas	have	responded,	or	even	just	a	single	node.	Obviously,	if	I
block	waiting	for	all	replicas	to	report	back	and	one	of	them	is	unavailable,	I’ll	be
blocking	for	a	long	time.	But	if	I	am	satisfied	with	just	a	simple	quorum	of	nodes
reporting	back,	I	can	accept	some	lack	of	consistency	to	be	less	vulnerable	to	a	single
replica	being	unavailable.

You’ll	often	see	posts	about	people	beating	the	CAP	theorem.	They	haven’t.	What	they
have	done	is	create	a	system	where	some	capabilities	are	CP,	and	some	are	AP.	The
mathematical	proof	behind	the	CAP	theorem	holds.	Despite	many	attempts	at	school,	I’ve
learned	that	you	don’t	beat	math.

And	the	Real	World
Much	of	what	we’ve	talked	about	is	the	electronic	world	—	bits	and	bytes	stored	in
memory.	We	talk	about	consistency	in	an	almost	child-like	fashion;	we	imagine	that	within
the	scope	of	the	system	we	have	created,	we	can	stop	the	world	and	have	it	all	make	sense.
And	yet	so	much	of	what	we	build	is	just	a	reflection	of	the	real	world,	and	we	don’t	get	to
control	that,	do	we?

Let’s	revisit	our	inventory	system.	This	maps	to	real-world,	physical	items.	We	keep	a
count	in	our	system	of	how	many	albums	we	have.	At	the	start	of	the	day	we	had	100
copies	of	Give	Blood	by	The	Brakes.	We	sold	one.	Now	we	have	99	copies.	Easy,	right?
By	what	happens	if	when	the	order	was	being	sent	out,	someone	knocks	a	copy	of	the
album	onto	the	floor	and	it	gets	stepped	on	and	broken?	What	happens	now?	Our	systems
say	99,	but	there	are	98	copies	on	the	shelf.

What	if	we	made	our	inventory	system	AP	instead,	and	occasionally	had	to	contact	a	user
later	on	and	tell	him	that	one	of	his	items	is	actually	out	of	stock?	Would	that	be	the	worst
thing	in	the	world?	It	would	certainly	be	much	easier	to	build,	scale,	and	ensure	it	is
correct.

We	have	to	recognize	that	no	matter	how	consistent	our	systems	might	be	in	and	of
themselves,	they	cannot	know	everything	that	happens,	especially	when	we’re	keeping
records	of	the	real	world.	This	is	one	of	the	main	reasons	why	AP	systems	end	up	being
the	right	call	in	many	situations.	Aside	from	the	complexity	of	building	CP	systems,	they
can’t	fix	all	our	problems	anyway.

Service	Discovery
Once	you	have	more	than	a	few	microservices	lying	around,	your	attention	inevitably
turns	to	knowing	where	on	earth	everything	is.	Perhaps	you	want	to	know	what	is	running
in	a	given	environment	so	you	know	what	you	should	be	monitoring.	Maybe	it’s	as	simple
as	knowing	where	your	accounts	service	is	so	that	those	microservices	that	use	it	know
where	to	find	it.	Or	perhaps	you	just	want	to	make	it	easy	for	developers	in	your
organization	to	know	what	APIs	are	available	so	they	don’t	reinvent	the	wheel.	Broadly
speaking,	all	of	these	use	cases	fall	under	the	banner	of	service	discovery.	And	as	always
with	microservices,	we	have	quite	a	few	different	options	at	our	disposal	for	dealing	with
it.

All	of	the	solutions	we’ll	look	at	handle	things	in	two	parts.	First,	they	provide	some
mechanism	for	an	instance	to	register	itself	and	say,	“I’m	here!”	Second,	they	provide	a
way	to	find	the	service	once	it’s	registered.	Service	discovery	gets	more	complicated,
though,	when	we	are	considering	an	environment	where	we	are	constantly	destroying	and
deploying	new	instances	of	services.	Ideally,	we’d	want	whatever	solution	we	pick	to	cope
with	this.

Let’s	look	at	some	of	the	most	common	solutions	to	service	delivery	and	consider	our
options.

DNS
It’s	nice	to	start	simple.	DNS	lets	us	associate	a	name	with	the	IP	address	of	one	or	more
machines.	We	could	decide,	for	example,	that	our	accounts	service	is	always	found	at
accounts.musiccorp.com.	We	would	then	have	that	entry	point	to	the	IP	address	of	the	host
running	that	service,	or	perhaps	have	it	resolve	to	a	load	balancer	that	is	distributing	load
across	a	number	of	instances.	This	means	we’d	have	to	handle	updating	these	entries	as
part	of	deploying	our	service.

When	dealing	with	instances	of	a	service	in	different	environments,	I	have	seen	a
convention-based	domain	template	work	well.	For	example,	we	might	have	a	template
defined	as	<servicename>-<environment>.musiccorp.com,	giving	us	entries	like
accounts-uat.musiccorp.com	or	accounts-dev.musiccorp.com.

A	more	advanced	way	of	handling	different	environments	is	to	have	different	domain
name	servers	for	different	environments.	So	I	could	assume	that	accounts.musiccorp.com
is	where	I	always	find	the	accounts	service,	but	it	could	resolve	to	different	hosts
depending	on	where	I	do	the	lookup.	If	you	already	have	your	environments	sitting	in
different	network	segments	and	are	comfortable	with	managing	your	own	DNS	servers
and	entries,	this	could	be	quite	a	neat	solution,	but	it	is	a	lot	of	work	if	you	aren’t	getting
other	benefits	from	this	setup.

DNS	has	a	host	of	advantages,	the	main	one	being	it	is	such	a	well-understood	and	well-
used	standard	that	almost	any	technology	stack	will	support	it.	Unfortunately,	while	a
number	of	services	exist	for	managing	DNS	inside	an	organization,	few	of	them	seem
designed	for	an	environment	where	we	are	dealing	with	highly	disposable	hosts,	making
updating	DNS	entries	somewhat	painful.	Amazon’s	Route53	service	does	a	pretty	good
job	of	this,	but	I	haven’t	seen	a	self-hosted	option	that	is	as	good	yet,	although	(as	we’ll
discuss	shortly)	Consul	may	help	us	here.	Aside	from	the	problems	in	updating	DNS
entries,	the	DNS	specification	itself	can	cause	us	some	issues.

DNS	entries	for	domain	names	have	a	time	to	live	(TTL).	This	is	how	long	a	client	can
consider	the	entry	fresh.	When	we	want	to	change	the	host	to	which	the	domain	name
refers,	we	update	that	entry,	but	we	have	to	assume	that	clients	will	be	holding	on	to	the
old	IP	for	at	least	as	long	as	the	TTL	states.	DNS	entries	can	get	cached	in	multiple	places
(even	the	JVM	will	cache	DNS	entries	unless	you	tell	it	not	to),	and	the	more	places	they
are	cached	in,	the	more	stale	the	entry	can	be.

One	way	to	work	around	this	problem	is	to	have	the	domain	name	entry	for	your	service
point	to	a	load	balancer,	which	in	turn	points	to	the	instances	of	your	service,	as	shown	in
Figure	11-9.	When	you	deploy	a	new	instance,	you	can	take	the	old	one	out	of	the	load-
balancer	entry	and	add	the	new	one.	Some	people	use	DNS	round-robining,	where	the
DNS	entries	themselves	refer	to	a	group	of	machines.	This	technique	is	extremely
problematic,	as	the	client	is	hidden	from	the	underlying	host,	and	therefore	cannot	easily

stop	routing	traffic	to	one	of	the	hosts	should	it	become	sick.

Figure	11-9.	Using	DNS	to	resolve	to	a	load	balancer	to	avoid	stale	DNS	entries

As	mentioned,	DNS	is	well	understood	and	widely	supported.	But	it	does	have	one	or	two
downsides.	I	would	suggest	investigating	whether	it	is	a	good	fit	for	you	before	picking
something	more	complex.	For	a	situation	where	you	have	only	single	nodes,	having	DNS
refer	directly	to	hosts	is	probably	fine.	But	for	those	situations	where	you	need	more	than
one	instance	of	a	host,	have	DNS	entries	resolve	to	load	balancers	that	can	handle	putting
individual	hosts	into	and	out	of	service	as	appropriate.

Dynamic	Service	Registries
The	downsides	of	DNS	as	a	way	of	finding	nodes	in	a	highly	dynamic	environment	have
led	to	a	number	of	alternative	systems,	most	of	which	involve	the	service	registering	itself
with	some	central	registry,	which	in	turn	offers	the	ability	to	look	up	these	services	later
on.	Often,	these	systems	do	more	than	just	providing	service	registration	and	discovery,
which	may	or	may	not	be	a	good	thing.	This	is	a	crowded	field,	so	we’ll	just	look	at	a	few
options	to	give	you	a	sense	of	what	is	available.

Zookeeper
Zookeeper	was	originally	developed	as	part	of	the	Hadoop	project.	It	is	used	for	an	almost
bewildering	array	of	use	cases,	including	configuration	management,	synchronizing	data
between	services,	leader	election,	message	queues,	and	(usefully	for	us)	as	a	naming
service.

Like	many	similar	types	of	systems,	Zookeeper	relies	on	running	a	number	of	nodes	in	a
cluster	to	provide	various	guarantees.	This	means	you	should	expect	to	be	running	at	least
three	Zookeeper	nodes.	Most	of	the	smarts	in	Zookeeper	are	around	ensuring	that	data	is
replicated	safely	between	these	nodes,	and	that	things	remain	consistent	when	nodes	fail.

At	its	heart,	Zookeeper	provides	a	hierarchical	namespace	for	storing	information.	Clients
can	insert	new	nodes	in	this	hierarchy,	change	them,	or	query	them.	Furthermore,	they	can
add	watches	to	nodes	to	be	told	when	they	change.	This	means	we	could	store	the
information	about	where	our	services	are	located	in	this	structure,	and	as	a	client	be	told
when	they	change.	Zookeeper	is	often	used	as	a	general	configuration	store,	so	you	could
also	store	service-specific	configuration	in	it,	allowing	you	to	do	tasks	like	dynamically
changing	log	levels	or	turning	off	features	of	a	running	system.	Personally,	I	tend	to	shy
away	from	the	use	of	systems	like	Zookeeper	as	a	configuration	source,	as	I	think	it	can
make	it	harder	to	reason	about	the	behavior	of	a	given	service.

Zookeeper	itself	is	fairly	generic	in	what	it	offers,	which	is	why	it	is	used	for	so	many	use
cases.	You	can	think	of	it	just	as	a	replicated	tree	of	information	that	you	can	be	alerted
about	when	it	changes.	This	means	that	you’ll	typically	build	things	on	top	of	it	to	suit
your	particular	use	case.	Luckily,	client	libraries	exist	for	most	languages	out	there.

In	the	grand	scheme	of	things,	Zookeeper	could	be	considered	old	by	now,	and	doesn’t
provide	us	that	much	functionality	out	of	the	box	to	help	with	service	discovery	compared
to	some	of	the	newer	alternatives.	That	said,	it	is	certainly	tried	and	tested,	and	widely
used.	The	underlying	algorithms	Zookeeper	implements	are	quite	hard	to	get	right.	I	know
one	database	vendor,	for	example,	that	was	using	Zookeeper	just	for	leader	election	in
order	to	ensure	that	a	primary	node	got	properly	promoted	during	failure	conditions.	The
client	felt	that	Zookeeper	was	too	heavyweight	and	spent	a	long	time	ironing	out	bugs	in
its	own	implementation	of	the	PAXOS	algorithm	to	replace	what	Zookeeper	did.	People
often	say	you	shouldn’t	write	your	own	cryptography	libraries.	I’d	extend	that	by	saying
you	shouldn’t	write	your	own	distributed	coordination	systems	either.	There	is	a	lot	to	be
said	for	using	existing	stuff	that	just	works.

http://zookeeper.apache.org/

Consul
Like	Zookeeper,	Consul	supports	both	configuration	management	and	service	discovery.
But	it	goes	further	than	Zookeeper	in	providing	more	support	for	these	key	use	cases.	For
example,	it	exposes	an	HTTP	interface	for	service	discovery,	and	one	of	Consul’s	killer
features	is	that	it	actually	provides	a	DNS	server	out	of	the	box;	specifically,	it	can	serve
SRV	records,	which	give	you	both	an	IP	and	port	for	a	given	name.	This	means	if	part	of
your	system	uses	DNS	already	and	can	support	SRV	records,	you	can	just	drop	in	Consul
and	start	using	it	without	any	changes	to	your	existing	system.

Consul	also	builds	in	other	capabilities	that	you	might	find	useful,	such	as	the	ability	to
perform	health	checks	on	nodes.	This	means	that	Consul	could	well	overlap	the
capabilities	provided	by	other	dedicated	monitoring	tools,	although	you	would	more	likely
use	Consul	as	a	source	of	this	information	and	then	pull	it	into	a	more	comprehensive
dashboard	or	alerting	system.	Consul’s	highly	fault-tolerant	design	and	focus	on	handling
systems	that	make	heavy	use	of	ephemeral	nodes	does	make	me	wonder,	though,	if	it	may
end	up	replacing	systems	like	Nagios	and	Sensu	for	some	use	cases.

Consul	uses	a	RESTful	HTTP	interface	for	everything	from	registering	a	service,	querying
the	key/value	store,	or	inserting	health	checks.	This	makes	integration	with	different
technology	stacks	very	straightforward.	One	of	the	other	things	I	really	like	about	Consul
is	that	the	team	behind	it	has	split	out	the	underlying	cluster	management	piece.	Serf,
which	Consul	sits	on	top	of,	handles	detection	of	nodes	in	a	cluster,	failure	management,
and	alerting.	Consul	then	adds	service	discovery	and	configuration	management.	This
separation	of	concerns	appeals	to	me,	which	should	be	no	surprise	to	you	given	the	themes
that	run	through	this	book!

Consul	is	very	new,	and	given	the	complexity	of	the	algorithms	it	uses,	this	would
normally	make	me	hesitant	in	recommending	it	for	such	an	important	job.	That	said,
Hashicorp,	the	team	behind	it,	certainly	has	a	great	track	record	in	creating	very	useful
open	source	technology	(in	the	form	of	both	Packer	and	Vagrant),	the	project	is	being
actively	developed,	and	I’ve	spoken	to	a	few	people	who	are	happily	using	it	in
production.	Given	that,	I	think	it	is	well	worth	a	look.

http://www.consul.io/

Eureka
Netflix’s	open	source	Eureka	system	bucks	the	trend	of	systems	like	Consul	and
Zookeeper	in	that	it	doesn’t	also	try	to	be	a	general-purpose	configuration	store.	It	is
actually	very	targeted	in	its	use	case.

Eureka	also	provides	basic	load-balancing	capabilities	in	that	it	can	support	basic	round-
robin	lookup	of	service	instances.	It	provides	a	REST-based	endpoint	so	you	can	write
your	own	clients,	or	you	can	use	its	own	Java	client.	The	Java	client	provides	additional
capabilities,	such	as	health	checking	of	instances.	Obviously	if	you	bypass	Eureka’s	own
client	and	go	directly	to	the	REST	endpoint,	you’re	on	your	own	there.

By	having	the	clients	deal	with	service	discovery	directly,	we	avoid	the	need	for	a	separate
process.	However,	you	do	require	that	every	client	implement	service	discovery.	Netflix,
which	standardizes	on	the	JVM,	achieves	this	by	having	all	clients	use	Eureka.	If	you’re	in
a	more	polyglot	environment,	this	may	be	more	of	a	challenge.

http://bit.ly/15Co2I7

Rolling	Your	Own
One	approach	I	have	used	myself	and	seen	done	elsewhere	is	to	roll	your	own	system.	On
one	project	we	were	making	heavy	use	of	AWS,	which	offers	the	ability	to	add	tags	to
instances.	When	launching	service	instances,	I	would	apply	tags	to	help	define	what	the
instance	was	and	what	it	was	used	for.	These	allowed	for	some	rich	metadata	to	be
associated	with	a	given	host,	for	example:

service	=	accounts

environment	=	production

version	=	154

I	could	then	use	the	AWS	APIs	to	query	all	the	instances	associated	with	a	given	AWS
account	to	find	machines	I	cared	about.	Here,	AWS	itself	is	handling	the	storing	of	the
metadata	associated	with	each	instance,	and	providing	us	with	the	ability	to	query	it.	I	then
built	command-line	tools	for	interacting	with	these	instances,	and	making	dashboards	for
status	monitoring	becomes	fairly	easy,	especially	if	you	adopt	the	idea	of	having	each
service	instance	exposing	health	check	details.

The	last	time	I	did	this	we	didn’t	go	as	far	as	having	services	use	the	AWS	APIs	to	find
their	service	dependencies,	but	there	is	no	reason	why	you	couldn’t.	Obviously,	if	you
want	upstream	services	to	be	alerted	when	the	location	of	a	downstream	service	changes,
you’re	on	your	own.

Don’t	Forget	the	Humans!
The	systems	we’ve	looked	at	so	far	make	it	easy	for	a	service	instance	to	register	itself	and
look	up	other	services	it	needs	to	talk	to.	But	as	humans	we	sometimes	want	this
information	too.	Whatever	system	you	pick,	make	sure	you	have	tools	available	that	let
you	build	reports	and	dashboards	on	top	of	these	registries	to	create	displays	for	humans,
not	just	for	computers.

Documenting	Services
By	decomposing	our	systems	into	finer-grained	microservices,	we’re	hoping	to	expose	lots
of	seams	in	the	form	of	APIs	that	people	can	use	to	do	many,	hopefully	wonderful,	things.
If	you	get	your	discovery	right,	we	know	where	things	are.	But	how	do	we	know	what
those	things	do,	or	how	to	use	them?	One	option	is	obviously	to	have	documentation	about
the	APIs.	Of	course,	documentation	can	often	be	out	of	date.	Ideally,	we’d	ensure	that	our
documentation	is	always	up	to	date	with	the	microservice	API,	and	make	it	easy	to	see	this
documentation	when	we	know	where	a	service	endpoint	is.	Two	different	pieces	of
technology,	Swagger	and	HAL,	try	to	make	this	a	reality,	and	both	are	worth	looking	at.

Swagger
Swagger	lets	you	describe	your	API	in	order	to	generate	a	very	nice	web	UI	that	allows
you	to	view	the	documentation	and	interact	with	the	API	via	a	web	browser.	The	ability	to
execute	requests	is	very	nice:	you	can	define	POST	templates,	for	example,	making	it
clear	what	sort	of	content	the	server	expects.

To	do	all	of	this,	Swagger	needs	the	service	to	expose	a	sidecar	file	matching	the	Swagger
format.	Swagger	has	a	number	of	libraries	for	different	languages	that	does	this	for	you.
For	example,	for	Java	you	can	annotate	methods	that	match	your	API	calls,	and	the	file
gets	generated	for	you.

I	like	the	end-user	experience	that	Swagger	gives	you,	but	it	does	little	for	the	incremental
exploration	concept	at	the	heart	of	hypermedia.	Still,	it’s	a	pretty	nice	way	to	expose
documentation	about	your	services.

HAL	and	the	HAL	Browser
By	itself,	the	Hypertext	Application	Language	(HAL)	is	a	standard	that	describes
standards	for	hypermedia	controls	that	we	expose.	As	we	covered	in	Chapter	4,
hypermedia	controls	are	the	means	by	which	we	allow	clients	to	progressively	explore	our
APIs	to	use	our	service’s	capabilities	in	a	less	coupled	fashion	than	other	integration
techniques.	If	you	decide	to	adopt	HAL’s	hypermedia	standard,	then	not	only	can	you
make	use	of	a	wide	number	of	client	libraries	for	consuming	the	API	(at	the	time	of
writing,	the	HAL	wiki	listed	50	supporting	libraries	for	a	number	of	different	languages),
but	you	can	also	make	use	of	the	HAL	browser,	which	gives	you	a	way	to	explore	the	API
via	a	web	browser.

Like	Swagger,	this	UI	can	be	used	not	only	to	act	as	living	documentation,	but	also	to
execute	calls	against	the	service	itself.	Executing	calls	isn’t	quite	as	slick,	though.
Whereas	with	Swagger	you	can	define	templates	to	do	things	like	issue	a	POST	request,
with	HAL	you’re	more	on	your	own.	The	flipside	to	this	is	that	the	inherent	power	of
hypermedia	controls	lets	you	much	more	effectively	explore	the	API	exposed	by	the
service,	as	you	can	follow	links	around	very	easily.	It	turns	out	that	web	browsers	are
pretty	good	at	that	sort	of	thing!

Unlike	with	Swagger,	all	the	information	needed	to	drive	this	documentation	and	sandbox
is	embedded	in	the	hypermedia	controls.	This	is	a	double-edged	sword.	If	you	are	already
using	hypermedia	controls,	it	takes	little	effort	to	expose	a	HAL	browser	and	have	clients
explore	your	API.	However,	if	you	aren’t	using	hypermedia,	you	either	can’t	use	HAL	or
have	to	retrofit	your	API	to	use	hypermedia,	which	is	likely	to	be	an	exercise	that	breaks
existing	consumers.

The	fact	that	HAL	also	describes	a	hypermedia	standard	with	some	supporting	client
libraries	is	an	added	bonus,	and	I	suspect	is	a	big	reason	why	I’ve	seen	more	uptake	of
HAL	as	a	way	of	documenting	APIs	than	Swagger	for	those	people	already	using
hypermedia	controls.	If	you’re	using	hypermedia,	my	recommendation	is	to	go	with	HAL
over	Swagger.	But	if	you’re	using	hypermedia	and	can’t	justify	the	switch,	I’d	definitely
suggest	giving	Swagger	a	go.

http://bit.ly/hal-spec

The	Self-Describing	System
During	the	early	evolution	of	SOA,	standards	like	Universal	Description,	Discovery,	and
Integration	(UDDI)	emerged	to	help	people	make	sense	of	what	services	were	running.
These	approaches	were	fairly	heavyweight,	which	led	to	alternative	techniques	to	try	to
make	sense	of	our	systems.	Martin	Fowler	discussed	the	concept	of	the	humane	registry,
where	a	much	more	lightweight	approach	is	simply	to	have	a	place	where	humans	can
record	information	about	the	services	in	the	organization	in	something	as	basic	as	a	wiki.

Getting	a	picture	of	our	system	and	how	it	is	behaving	is	important,	especially	when	we’re
at	scale.	We’ve	covered	a	number	of	different	techniques	that	will	help	us	gain
understanding	directly	from	our	system.	By	tracking	the	health	of	our	downstream
services	together	with	correlation	IDs	to	help	us	see	call	chains,	we	can	get	real	data	in
terms	of	how	our	services	interrelate.	Using	service	discovery	systems	like	Consul,	we	can
see	where	our	microservices	are	running.	HAL	lets	us	see	what	capabilities	are	being
hosted	on	any	given	endpoint,	while	our	health-check	pages	and	monitoring	systems	let	us
know	the	health	of	both	the	overall	system	and	individual	services.

All	of	this	information	is	available	programatically.	All	of	this	data	allows	us	to	make	our
humane	registry	more	powerful	than	a	simple	wiki	page	that	will	no	doubt	get	out	of	date.
Instead,	we	should	use	it	to	harness	and	display	all	the	information	our	system	will	be
emitting.	By	creating	custom	dashboards,	we	can	pull	together	the	vast	array	of
information	that	is	available	to	help	us	make	sense	of	our	ecosystem.

By	all	means,	start	with	something	as	simple	as	a	static	web	page	or	wiki	that	perhaps
scrapes	in	a	bit	of	data	from	the	live	system.	But	look	to	pull	in	more	and	more
information	over	time.	Making	this	information	readily	available	is	a	key	tool	to	managing
the	emerging	complexity	that	will	come	from	running	these	systems	at	scale.

http://bit.ly/1CIDHTn

Summary
As	a	design	approach,	microservices	are	still	fairly	young,	so	although	we	have	some
notable	experiences	to	draw	upon,	I’m	sure	the	next	few	years	will	yield	more	useful
patterns	in	handling	them	at	scale.	Nonetheless,	I	hope	this	chapter	has	outlined	some
steps	you	can	take	on	your	journey	to	microservices	at	scale	that	will	hold	you	in	good
stead.

In	addition	to	what	I	have	covered	here,	I	recommend	Michael	Nygard’s	excellent	book
Release	It!.	In	it	he	shares	a	collection	of	stories	about	system	failure	and	some	patterns	to
help	deal	with	it	well.	The	book	is	well	worth	a	read	(in	fact,	I	would	go	so	far	as	to	say	it
should	be	considered	essential	reading	for	anyone	building	systems	at	scale).

We’ve	covered	quite	a	lot	of	ground,	and	we’re	nearing	the	end.	In	our	next	and	final
chapter,	we	will	look	to	pull	everything	back	together	and	summarize	what	we	have
learned	in	the	book	overall.

Chapter	12.	Bringing	It	All	Together

We’ve	covered	a	fair	amount	in	the	previous	chapters,	from	what	microservices	are	to	how
to	define	their	boundaries,	and	from	integration	technology	to	concerns	about	security	and
monitoring.	And	we	even	found	time	to	work	out	how	the	role	of	the	architect	fits	in.
There	is	a	lot	to	take	in,	as	although	microservices	themselves	may	be	small,	the	breadth
and	impact	of	their	architecture	are	not.	So	here	I’ll	try	to	summarize	some	of	the	key
points	covered	throughout	the	book.

Principles	of	Microservices
We	discussed	the	role	that	principles	can	play	in	Chapter	2.	They	are	statements	about	how
things	should	be	done,	and	why	we	think	they	should	be	done	that	way.	They	help	us
frame	the	various	decisions	we	have	to	make	when	building	our	systems.	You	should
absolutely	define	your	own	principles,	but	I	thought	it	worth	spelling	out	what	I	see	as
being	the	key	principles	for	microservice	architectures,	which	you	can	see	summarized	in
Figure	12-1.	These	are	the	principles	that	will	help	us	create	small	autonomous	services
that	work	well	together.	We’ve	already	covered	everything	here	at	least	once	so	far,	so
nothing	should	be	new,	but	there	is	value	in	distilling	it	down	to	its	core	essence.

You	can	choose	to	adopt	these	principles	wholesale,	or	perhaps	tweak	them	to	make	sense
in	your	own	organization.	But	note	the	value	that	comes	from	using	them	in	combination:
the	whole	should	be	greater	than	the	sum	of	the	parts.	So	if	you	decide	to	drop	one	of
them,	make	sure	you	understand	what	you’ll	be	missing.

For	each	of	these	principles,	I’ve	tried	to	pull	out	some	of	the	supporting	practices	that	we
have	covered	in	the	book.	As	the	saying	goes,	there	is	more	than	one	way	to	skin	a	cat:
you	might	find	your	own	practices	to	help	deliver	on	these	principles,	but	this	should	get
you	started.

Figure	12-1.	Principles	of	microservices

Model	Around	Business	Concepts
Experience	has	shown	us	that	interfaces	structured	around	business-bounded	contexts	are
more	stable	than	those	structured	around	technical	concepts.	By	modeling	the	domain	in
which	our	system	operates,	not	only	do	we	attempt	to	form	more	stable	interfaces,	but	we
also	ensure	that	we	are	better	able	to	reflect	changes	in	business	processes	easily.	Use
bounded	contexts	to	define	potential	domain	boundaries.

Adopt	a	Culture	of	Automation
Microservices	add	a	lot	of	complexity,	a	key	part	of	which	comes	from	the	sheer	number
of	moving	parts	we	have	to	deal	with.	Embracing	a	culture	of	automation	is	one	key	way
to	address	this,	and	front-loading	effort	to	create	the	tooling	to	support	microservices	can
make	a	lot	of	sense.	Automated	testing	is	essential,	as	ensuring	our	services	still	work	is	a
more	complex	process	than	with	monolithic	systems.	Having	a	uniform	command-line	call
to	deploy	the	same	way	everywhere	can	help,	and	this	can	be	a	key	part	of	adopting
continuous	delivery	to	give	us	fast	feedback	on	the	production	quality	of	each	check-in.

Consider	using	environment	definitions	to	help	you	specify	the	differences	from	one
environment	to	another,	without	sacrificing	the	ability	to	use	a	uniform	deployment
method.	Think	about	creating	custom	images	to	speed	up	deployment,	and	embracing	the
creation	of	fully	automated	immutable	servers	to	make	it	easier	to	reason	about	your
systems.

Hide	Internal	Implementation	Details
To	maximize	the	ability	of	one	service	to	evolve	independently	of	any	others,	it	is	vital
that	we	hide	implementation	details.	Modeling	bounded	contexts	can	help,	as	this	helps	us
focus	on	those	models	that	should	be	shared,	and	those	that	should	be	hidden.	Services
should	also	hide	their	databases	to	avoid	falling	into	one	of	the	most	common	sorts	of
coupling	that	can	appear	in	traditional	service-oriented	architectures,	and	use	data	pumps
or	event	data	pumps	to	consolidate	data	across	multiple	services	for	reporting	purposes.

Where	possible,	pick	technology-agnostic	APIs	to	give	you	freedom	to	use	different
technology	stacks.	Consider	using	REST,	which	formalizes	the	separation	of	internal	and
external	implementation	details,	although	even	if	using	remote	procedure	calls	(RPCs),
you	can	still	embrace	these	ideas.

Decentralize	All	the	Things
To	maximize	the	autonomy	that	microservices	make	possible,	we	need	to	constantly	be
looking	for	the	chance	to	delegate	decision	making	and	control	to	the	teams	that	own	the
services	themselves.	This	process	starts	with	embracing	self-service	wherever	possible,
allowing	people	to	deploy	software	on	demand,	making	development	and	testing	as	easy
as	possible,	and	avoiding	the	need	for	separate	teams	to	perform	these	activities.

Ensuring	that	teams	own	their	services	is	an	important	step	on	this	journey,	making	teams
responsible	for	the	changes	that	are	made,	ideally	even	having	them	decide	when	to
release	those	changes.	Making	use	of	internal	open	source	ensures	that	people	can	make
changes	on	services	owned	by	other	teams,	although	remember	that	this	requires	work	to
implement.	Align	teams	to	the	organization	to	ensure	that	Conway’s	law	works	for	you,
and	help	your	team	become	domain	experts	in	the	business-focused	services	they	are
creating.	Where	some	overarching	guidance	is	needed,	try	to	embrace	a	shared
governance	model	where	people	from	each	team	collectively	share	responsibility	for
evolving	the	technical	vision	of	the	system.

This	principle	can	apply	to	architecture	too.	Avoid	approaches	like	enterprise	service	bus
or	orchestration	systems,	which	can	lead	to	centralization	of	business	logic	and	dumb
services.	Instead,	prefer	choreography	over	orchestration	and	dumb	middleware,	with
smart	endpoints	to	ensure	that	you	keep	associated	logic	and	data	within	service
boundaries,	helping	keep	things	cohesive.

Independently	Deployable
We	should	always	strive	to	ensure	that	our	microservices	can	and	are	deployed	by
themselves.	Even	when	breaking	changes	are	required,	we	should	seek	to	coexist
versioned	endpoints	to	allow	our	consumers	to	change	over	time.	This	allows	us	to
optimize	for	speed	of	release	of	new	features,	as	well	as	increasing	the	autonomy	of	the
teams	owning	these	microservices	by	ensuring	that	they	don’t	have	to	constantly
orchestrate	their	deployments.	When	using	RPC-based	integration,	avoid	tightly	bound
client/server	stub	generation	such	as	that	promoted	by	Java	RMI.

By	adopting	a	one-service-per-host	model,	you	reduce	side	effects	that	could	cause
deploying	one	service	to	impact	another	unrelated	service.	Consider	using	blue/green	or
canary	release	techniques	to	separate	deployment	from	release,	reducing	the	risk	of	a
release	going	wrong.	Use	consumer-driven	contracts	to	catch	breaking	changes	before
they	happen.

Remember	that	it	should	be	the	norm,	not	the	exception,	that	you	can	make	a	change	to	a
single	service	and	release	it	into	production,	without	having	to	deploy	any	other	services
in	lock-step.	Your	consumers	should	decide	when	they	update	themselves,	and	you	need	to
accommodate	this.

Isolate	Failure
A	microservice	architecture	can	be	more	resilient	than	a	monolithic	system,	but	only	if	we
understand	and	plan	for	failures	in	part	of	our	system.	If	we	don’t	account	for	the	fact	that
a	downstream	call	can	and	will	fail,	our	systems	might	suffer	catastrophic	cascading
failure,	and	we	could	find	ourselves	with	a	system	that	is	much	more	fragile	than	before.

When	using	network	calls,	don’t	treat	remote	calls	like	local	calls,	as	this	will	hide
different	sorts	of	failure	mode.	So	make	sure	if	you’re	using	client	libraries	that	the
abstraction	of	the	remote	call	doesn’t	go	too	far.

If	we	hold	the	tenets	of	antifragility	in	mind,	and	expect	failure	will	occur	anywhere	and
everywhere,	we	are	on	the	right	track.	Make	sure	your	timeouts	are	set	appropriately.
Understand	when	and	how	to	use	bulkheads	and	circuit	breakers	to	limit	the	fallout	of	a
failing	component.	Understand	what	the	customer-facing	impact	will	be	if	only	one	part	of
the	system	is	misbehaving.	Know	what	the	implications	of	a	network	partition	might	be,
and	whether	sacrificing	availability	or	consistency	in	a	given	situation	is	the	right	call.

Highly	Observable
We	cannot	rely	on	observing	the	behavior	of	a	single	service	instance	or	the	status	of	a
single	machine	to	see	if	the	system	is	functioning	correctly.	Instead,	we	need	a	joined-up
view	of	what	is	happening.	Use	semantic	monitoring	to	see	if	your	system	is	behaving
correctly,	by	injecting	synthetic	transactions	into	your	system	to	simulate	real-user
behavior.	Aggregate	your	logs,	and	aggregate	your	stats,	so	that	when	you	see	a	problem
you	can	drill	down	to	the	source.	And	when	it	comes	to	reproducing	nasty	issues	or	just
seeing	how	your	system	is	interacting	in	production,	use	correlation	IDs	to	allow	you	to
trace	calls	through	the	system.

When	Shouldn’t	You	Use	Microservices?
I	get	asked	this	question	a	lot.	My	first	piece	of	advice	would	be	that	the	less	well	you
understand	a	domain,	the	harder	it	will	be	for	you	to	find	proper	bounded	contexts	for	your
services.	As	we	discussed	previously,	getting	service	boundaries	wrong	can	result	in
having	to	make	lots	of	changes	in	service-to-service	collaboration	—	an	expensive
operation.	So	if	you’re	coming	to	a	monolithic	system	for	which	you	don’t	understand	the
domain,	spend	some	time	learning	what	the	system	does	first,	and	then	look	to	identify
clean	module	boundaries	prior	to	splitting	out	services.

Greenfield	development	is	also	quite	challenging.	It	isn’t	just	that	the	domain	is	also	likely
to	be	new;	it’s	that	it	is	much	easier	to	chunk	up	something	you	have	than	something	you
don’t!	So	again,	consider	starting	monolithic	first	and	break	things	out	when	you’re	stable.

Many	of	the	challenges	you’re	going	to	face	with	microservices	get	worse	with	scale.	If
you	mostly	do	things	manually,	you	might	be	OK	with	1	or	2	services,	but	5	or	10?
Sticking	with	old	monitoring	practices	where	you	just	look	at	stats	like	CPU	and	memory
likewise	might	work	OK	for	a	few	services,	but	the	more	service-to-service	collaboration
you	do,	the	more	painful	this	will	become.	You’ll	find	yourself	hitting	these	pain	points	as
you	add	more	services,	and	I	hope	the	advice	in	this	book	will	help	you	see	some	of	these
problems	coming,	and	give	you	some	concrete	tips	for	how	to	deal	with	them.	I	spoke
before	about	REA	and	Gilt	taking	a	while	to	build	the	tooling	and	practices	to	manage
microservices	well,	prior	to	being	able	to	use	them	in	any	large	quantity.	These	stories	just
reinforce	to	me	the	importance	of	starting	gradually	so	you	understand	your	organization’s
appetite	and	ability	to	change,	which	will	help	you	properly	adopt	microservices.

Parting	Words
Microservice	architectures	give	you	more	options,	and	more	decisions	to	make.	Making
decisions	in	this	world	is	a	far	more	common	activity	than	in	simpler,	monolithic	systems.
You	won’t	get	all	of	these	decisions	right,	I	can	guarantee	that.	So,	knowing	we	are	going
to	get	some	things	wrong,	what	are	our	options?	Well,	I	would	suggest	finding	ways	to
make	each	decision	small	in	scope;	that	way,	if	you	get	it	wrong,	you	only	impact	a	small
part	of	your	system.	Learn	to	embrace	the	concept	of	evolutionary	architecture,	where
your	system	bends	and	flexes	and	changes	over	time	as	you	learn	new	things.	Think	not	of
big-bang	rewrites,	but	instead	of	a	series	of	changes	made	to	your	system	over	time	to
keep	it	supple.

Hopefully	by	now	I’ve	shared	with	you	enough	information	and	experiences	to	help	you
decide	if	microservices	are	for	you.	If	they	are,	I	hope	you	think	of	this	as	a	journey,	not	a
destination.	Go	incrementally.	Break	your	system	apart	piece	by	piece,	learning	as	you	go.
And	get	used	to	it:	in	many	ways,	the	discipline	to	continually	change	and	evolve	our
systems	is	a	far	more	important	lesson	to	learn	than	any	other	I	have	shared	with	you
through	this	book.	Change	is	inevitable.	Embrace	it.

Index

A

acceptance	testing,	Types	of	Tests

access	by	reference,	Access	by	Reference

accountability,	People

adaptability,	Summary

Aegisthus	project,	Backup	Data	Pump

aggregated	logs,	Logs,	Logs,	and	Yet	More	Logs…

antifragile	systems,	Microservices,	The	Antifragile	Organization-Isolation

bulkheads,	Bulkheads

circuit	breakers,	Circuit	Breakers

examples	of,	The	Antifragile	Organization

increased	use	of,	Microservices

isolation,	Isolation

load	shedding,	Bulkheads

timeouts,	Timeouts

AP	system

definition	of	term,	Sacrificing	Consistency

vs.	CP	system,	AP	or	CP?

API	key-based	authentication,	API	Keys,	It’s	All	About	the	Keys

application	containers,	Application	Containers

architects	(see	systems	architects)

architectural	principles

development	of,	Principles

Heroku’s	12	factors,	Principles

key	microservices	principles,	Bringing	It	All	Together

real-world	example,	A	Real-World	Example

architectural	safety,	Architectural	Safety,	Architectural	Safety	Measures

artifacts

images,	Images	as	Artifacts

operating	system,	Operating	System	Artifacts

platform-specific,	Platform-Specific	Artifacts

asynchronous	collaboration

complexities	of,	Complexities	of	Asynchronous	Architectures

implementing,	Implementing	Asynchronous	Event-Based	Collaboration

vs.	synchronous,	Synchronous	Versus	Asynchronous

ATOM	specification,	Technology	Choices

authentication/authorization,	Authentication	and	Authorization-The	Deputy
Problem

definition	of	terms,	Authentication	and	Authorization

fine-grained,	Fine-Grained	Authorization

service-to-service,	Service-to-Service	Authentication	and	Authorization

single	sign-on	(SSO),	Common	Single	Sign-On	Implementations

single	sign-on	gateway,	Single	Sign-On	Gateway

terminology,	Common	Single	Sign-On	Implementations

automation

benefits	for	deployment,	Automation

case	studies	on,	Two	Case	Studies	on	the	Power	of	Automation

autonomy

microservices	and,	Autonomous

role	of	systems	architect	in,	Summary

autoscaling,	Autoscaling

availability

in	CAP	theorem,	CAP	Theorem

key	microservices	principle	of,	How	Much	Is	Too	Much?

sacrificing,	Sacrificing	Availability

B

backends	for	frontends	(BFFs),	Backends	for	Frontends

backup	data	pumps,	Backup	Data	Pump

backups,	encryption	of,	Encrypt	Backups

blue/green	deployment,	Separating	Deployment	from	Release

bottlenecks,	Delivery	Bottlenecks

bounded	contexts

concept	of,	The	Bounded	Context

modules	and	services,	Modules	and	Services

nested,	Turtles	All	the	Way	Down

premature	decomposition,	Premature	Decomposition

shared	vs.	hidden	models,	Shared	and	Hidden	Models

system	design	and,	Bounded	Contexts	and	Team	Structures

Brakeman,	Baking	Security	In

breaking	changes

avoiding,	Avoid	Breaking	Changes

deferring,	Defer	It	for	as	Long	as	Possible

early	detection	of,	Catch	Breaking	Changes	Early

brittle	tests,	Flaky	and	Brittle	Tests

brittleness,	Brittleness

build	pipelines,	Build	Pipelines	and	Continuous	Delivery

bulkheads,	Bulkheads

bundled	service	release,	And	the	Inevitable	Exceptions

business	capabilities,	Business	Capabilities

business	concepts,	Communication	in	Terms	of	Business	Concepts

business-facing	tests,	Types	of	Tests

C

caching

benefits	of,	Caching

cache	failures,	Hiding	the	Origin

cache	poisoning,	Cache	Poisoning:	A	Cautionary	Tale

client-side,	Client-Side,	Proxy,	and	Server-Side	Caching

for	writes,	Caching	for	Writes

in	HTTP,	Caching	in	HTTP

proxy,	Client-Side,	Proxy,	and	Server-Side	Caching

server-side,	Client-Side,	Proxy,	and	Server-Side	Caching

canary	releasing,	Canary	Releasing

CAP	theorem,	CAP	Theorem-And	the	Real	World

AP/CP	systems,	It’s	Not	All	or	Nothing

application	of,	And	the	Real	World

basics	of,	CAP	Theorem

sacrificing	availability,	Sacrificing	Availability

sacrificing	consistency,	Sacrificing	Consistency

sacrificing	partition	tolerance,	Sacrificing	Partition	Tolerance?

cascading	failures,	The	Cascade

certificate	management,	Client	Certificates

Chaos	Gorilla,	The	Antifragile	Organization

Chaos	Monkey,	The	Antifragile	Organization

choreographed	architecture,	Orchestration	Versus	Choreography

circuit	breakers,	Tailored	Service	Template,	Circuit	Breakers

circuit_breaker	mixin	for	Ruby,	Bulkheads

class-responsibility-collaboration	(CRC),	Cost	of	Change

client	certificates,	Client	Certificates

client	libraries,	Client	Libraries

client-side	caching,	Client-Side,	Proxy,	and	Server-Side	Caching

code	reuse,	DRY	and	the	Perils	of	Code	Reuse	in	a	Microservice	World

coding	architect,	Zoning

cohesion,	Small,	and	Focused	on	Doing	One	Thing	Well,	High	Cohesion

Cohn’s	Test	Pyramid,	Test	Scope

collaboration,	Summary

event-based,	Synchronous	Versus	Asynchronous

request/response,	Synchronous	Versus	Asynchronous

Command-Query	Responsibility	Segregation	(CQRS),	CQRS

commits,	two-phase,	Distributed	Transactions

communication

adapting	to	pathways,	Adapting	to	Communication	Pathways

protocols	for	(SOAP),	What	About	Service-Oriented	Architecture?

synchronous	vs.	asynchronous,	Synchronous	Versus	Asynchronous

compensating	transactions,	Abort	the	Entire	Operation

composability,	Composability

configuration	drift,	Immutable	Servers

configuration,	service,	Service	Configuration

confused	deputy	problem,	The	Deputy	Problem

consistency

in	CAP	theorem,	CAP	Theorem

sacrificing,	Sacrificing	Consistency

constraints,	Constraints

Consul,	Consul

consumer-driven	contracts	(CDCs),	Consumer-Driven	Tests	to	the	Rescue-It’s
About	Conversations

content	delivery	network	(CDN),	Client-Side,	Proxy,	and	Server-Side	Caching

content	management	systems	(CMS),	Example:	CMS	as	a	service

continuous	delivery	(CD),	Microservices,	Build	Pipelines	and	Continuous
Delivery

continuous	integration	(CI)

basics,	A	Brief	Introduction	to	Continuous	Integration

checklist	for,	Are	You	Really	Doing	It?

mapping	to	microservices,	Mapping	Continuous	Integration	to
Microservices

Conway’s	law

evidence	of,	Evidence

in	reverse,	Conway’s	Law	in	Reverse

statement	of,	Conway’s	Law	and	System	Design

summary	of,	Summary

coordination	process,	Distributed	Transactions

core	team,	Role	of	the	Custodians

CoreOS,	Docker

correlation	IDs,	Correlation	IDs

CP	system,	AP	or	CP?

cross-functional	requirements	(CFR),	Cross-Functional	Testing,	How	Much	Is
Too	Much?

custodians,	Role	of	the	Custodians

custom	images,	Custom	Images

Customer	Relationship	Management	(CRM),	Example:	The	multirole	CRM
system

customers,	interfacing	with

enrolling	new	customers,	Interfacing	with	Customers,	Orchestration
Versus	Choreography

shared	databases,	The	Shared	Database

D

data

batch	insertion	of,	Data	Retrieval	via	Service	Calls

durability	of,	How	Much	Is	Too	Much?

encryption	of	backup,	Encrypt	Backups

retrieval	via	service	calls,	Data	Retrieval	via	Service	Calls

securing	at	rest,	Securing	Data	at	Rest

(see	also	security)

shared,	Example:	Shared	Data

shared	static,	Example:	Shared	Static	Data

data	encryption,	Go	with	the	Well	Known

data	pumps

backup,	Backup	Data	Pump

data	retrieval	via,	Data	Pumps

event,	Event	Data	Pump

serial	use	of,	Alternative	Destinations

database	decomposition,	The	Database-Understanding	Root	Causes

breaking	foreign	key	relationships,	Example:	Breaking	Foreign	Key
Relationships

incremental	approach	to,	Cost	of	Change

overview	of,	Summary

refactoring	databases,	Staging	the	Break

selecting	separation	points,	Getting	to	Grips	with	the	Problem

selecting	separation	timing,	Understanding	Root	Causes

shared	data,	Example:	Shared	Data

shared	static	data,	Example:	Shared	Static	Data

shared	tables,	Example:	Shared	Tables

transactional	boundaries,	Transactional	Boundaries

database	integration,	The	Shared	Database

database	scaling

Command-Query	Responsibility	Segregation	(CQRS),	CQRS

for	reads,	Scaling	for	Reads

for	writes,	Scaling	for	Writes

service	availability	vs.	data	durability,	Availability	of	Service	Versus
Durability	of	Data

shared	infrastructure,	Shared	Database	Infrastructure

decision-making	guidelines,	A	Principled	Approach-A	Real-World	Example

customized	approach	to,	Combining	Principles	and	Practices

practices	for,	Practices

principles	for,	Principles

real-world	example,	A	Real-World	Example

strategic	goals,	Strategic	Goals

decompositional	techniques

databases	(see	database	decomposition)

identifying/packaging	contexts,	Breaking	Apart	MusicCorp

modules,	Modules

seam	concept,	It’s	All	About	Seams

selecting	separation	points,	The	Reasons	to	Split	the	Monolith

selecting	separation	timing,	Understanding	Root	Causes

shared	libraries,	Shared	Libraries

decoupling,	Autonomous,	Orchestration	Versus	Choreography

degrading	functionality,	Degrading	Functionality

delivery	bottlenecks,	Delivery	Bottlenecks

deployment

artifacts,	images	as,	Images	as	Artifacts

artifacts,	operating	system,	Operating	System	Artifacts

artifacts,	platform-specific,	Platform-Specific	Artifacts

automation,	Automation

blue/green	deployment,	Separating	Deployment	from	Release

build	pipeline,	Build	Pipelines	and	Continuous	Delivery

bundled	service	release,	And	the	Inevitable	Exceptions

continuous	integration	basics,	A	Brief	Introduction	to	Continuous
Integration

continuous	integration	checklist,	Are	You	Really	Doing	It?

continuous	integration	in	microservices,	Mapping	Continuous
Integration	to	Microservices

custom	images,	Custom	Images

environment	definition,	Environment	Definition

environments	to	consider,	Environments

immutable	servers,	Immutable	Servers

interfaces,	A	Deployment	Interface

microservices	vs.	monolithic	systems,	Ease	of	Deployment,	Deployment

overview	of,	Summary

separating	from	release,	Separating	Deployment	from	Release

service	configuration,	Service	Configuration

virtualization	approach,	From	Physical	to	Virtual

virtualization,	hypervisors,	Traditional	Virtualization

virtualization,	traditional,	Traditional	Virtualization

virtualization,	type	2,	Traditional	Virtualization

deputy	problem,	The	Deputy	Problem

design	principles,	Principles,	Bringing	It	All	Together-Highly	Observable

(see	also	architectural	principles)

design/delivery	practices

development	of,	Practices

real-world	example,	A	Real-World	Example

directory	service,	Common	Single	Sign-On	Implementations

DiRT	(Disaster	Recovery	Test),	The	Antifragile	Organization

distributed	systems

fallacies	of,	Local	Calls	Are	Not	Like	Remote	Calls,	Failure	Is
Everywhere

key	promises	of,	Composability

distributed	transactions,	Distributed	Transactions

DNS	service,	DNS

Docker,	Docker

documentation

HAL	(Hypertext	Application	Language),	HAL	and	the	HAL	Browser

importance	of,	Documenting	Services

self-describing	systems,	HAL	and	the	HAL	Browser

Swagger,	Swagger

domain-driven	design,	Microservices

Dropwizard,	Tailored	Service	Template

DRY	(Don’t	Repeat	Yourself),	DRY	and	the	Perils	of	Code	Reuse	in	a
Microservice	World

dummies,	Mocking	or	Stubbing

durability,	How	Much	Is	Too	Much?

dynamic	service	registries

benefits	of,	Dynamic	Service	Registries

Consul,	Consul

Eureka,	Eureka

launching,	Rolling	Your	Own

Zookeeper,	Zookeeper

E

empathy,	Summary

encryption,	Go	with	the	Well	Known

end-to-end	tests

appropriate	uses	for,	Test	Journeys,	Not	Stories,	So	Should	You	Use	End-
to-End	Tests?

Cohn’s	Test	Pyramid,	Test	Scope

creation	of,	Who	Writes	These	Tests?

drawbacks	of,	Flaky	and	Brittle	Tests

feedback	cycle,	The	Great	Pile-up

implementation	of,	Those	Tricky	End-to-End	Tests

metaversion,	The	Metaversion

scope	of,	End-to-End	Tests

timing	of,	How	Long?

endpoints

coexisting	different,	Coexist	Different	Endpoints

server-side	aggregation,	Backends	for	Frontends

environments

definition	during	deployment,	Environment	Definition

deployment	considerations,	Environments

managing,	Environments

Erlang	modules,	Modules

Eureka,	Eureka

event	data	pumps,	Event	Data	Pump

event	sourcing,	CQRS

event-based	collaboration,	Synchronous	Versus	Asynchronous

eventual	consistency,	Try	Again	Later,	Sacrificing	Consistency

evolutionary	architects	(see	systems	architects)

exception	handling,	Exception	Handling

exemplars,	Exemplars

exploratory	testing,	Types	of	Tests

F

failure	bots,	The	Antifragile	Organization

failures

cascading,	The	Cascade

(see	also	monitoring)

dealing	with,	Failure	Is	Everywhere

fakes,	Mocking	or	Stubbing

feature-based	teams,	Feature	Teams

firewalls,	Firewalls

flaky	tests,	Flaky	and	Brittle	Tests

foreign	key	relationships,	breaking,	Example:	Breaking	Foreign	Key
Relationships

FPM	package	manager	tool,	Operating	System	Artifacts

functionality,	degrading,	Degrading	Functionality

G

game	days,	The	Antifragile	Organization

gatekeepers,	Role	of	the	Custodians

governance

concept	of,	Governance	and	Leading	from	the	Center

role	of	systems	architect	in,	Summary

granularity,	What	About	Service-Oriented	Architecture?

Graphite,	Metric	Tracking	Across	Multiple	Services

H

habitable	systems,	An	Evolutionary	Vision	for	the	Architect

HAL	(Hypertext	Application	Language),	HAL	and	the	HAL	Browser

hash-based	messaging	code	(HMAC),	HMAC	Over	HTTP

HATEOS	principle,	Hypermedia	As	the	Engine	of	Application	State

heterogeneity

benefits	of,	Technology	Heterogeneity

shared	libraries	and,	Shared	Libraries

hexagonal	architecture,	Microservices

hidden	models,	Shared	and	Hidden	Models

high	cohesion,	High	Cohesion

HMAC	(hash-based	messaging	code),	HMAC	Over	HTTP

HTTP	(Hypertext	Transfer	Protocol)

caching	in,	Caching	in	HTTP

HATEOS	principle,	Hypermedia	As	the	Engine	of	Application	State

HTTP	over	REST	benefits,	REST	and	HTTP

HTTP	over	REST	drawbacks,	Downsides	to	REST	Over	HTTP

HTTP	termination,	Load	Balancing

HTTP(S)	Basic	Authentication,	HTTP(S)	Basic	Authentication

humane	registry,	HAL	and	the	HAL	Browser

hypermedia,	Hypermedia	As	the	Engine	of	Application	State

hypervisors,	Traditional	Virtualization

Hystrix	library,	Tailored	Service	Template,	Bulkheads

I

idempotent	operations,	Idempotency

identity	provider,	Common	Single	Sign-On	Implementations

images

as	artifacts,	Images	as	Artifacts

custom,	Custom	Images

immutable	servers,	Immutable	Servers

infrastructure	automation,	Microservices

integration

access	by	reference,	Access	by	Reference

asynchronous	event-based	collaboration,	Implementing	Asynchronous
Event-Based	Collaboration

customer	interface,	Interfacing	with	Customers

DRY	(Don’t	Repeat	Yourself),	DRY	and	the	Perils	of	Code	Reuse	in	a
Microservice	World

goals	for,	Looking	for	the	Ideal	Integration	Technology

guidelines	for,	Summary

importance	of,	Integration

orchestration	vs.	choreography,	Orchestration	Versus	Choreography

reactive	extensions,	Reactive	Extensions

remote	procedure	calls,	Remote	Procedure	Calls

REST	(Representational	State	Transfer),	REST

services	as	state	machines,	Services	as	State	Machines

shared	databases,	The	Shared	Database

synchronous	vs.	asynchronous	communication,	Synchronous	Versus
Asynchronous

third-party	software,	Integrating	with	Third-Party	Software

user	interfaces,	User	Interfaces

versioning,	Versioning

interfaces

coexisting	new	and	old,	Coexist	Different	Endpoints

deployment,	A	Deployment	Interface

standards	establishment	for,	Interfaces

(see	also	user	interfaces)

internal	implementation	detail,	Hide	Internal	Implementation	Detail

internal	open	source	model,	Internal	Open	Source

intrusion	detection	systems	(IDS),	Intrusion	Detection	(and	Prevention)	System

intrusion	prevention	systems	(IPS),	Intrusion	Detection	(and	Prevention)	System

isolation,	Isolation

IT	architects	(see	systems	architects)

J

JSON,	JSON,	XML,	or	Something	Else?

JSON	web	tokens	(JWT),	HMAC	Over	HTTP

K

Karyon,	Tailored	Service	Template

key-based	authentication,	API	Keys

Kibana,	Logs,	Logs,	and	Yet	More	Logs…

L

latency,	How	Much	Is	Too	Much?

Latency	Monkey,	The	Antifragile	Organization

layered	architectures,	Microservices

libraries

client,	Client	Libraries

service	metrics,	Service	Metrics

shared,	Shared	Libraries

Linux	containers,	Linux	Containers

load	balancing,	Load	Balancing

load	shedding,	Bulkheads

local	calls,	Local	Calls	Are	Not	Like	Remote	Calls

logs

aggregated,	Logs,	Logs,	and	Yet	More	Logs…

(see	also	monitoring)

security	issues,	Logging

standardization	of,	Standardization

logstash,	Logs,	Logs,	and	Yet	More	Logs…

loose	coupling,	Loose	Coupling,	Orchestration	Versus	Choreography,	Loose	and
Tightly	Coupled	Organizations

M

man-in-the-middle	attacks,	Allow	Everything	Inside	the	Perimeter

Marick’s	quadrant,	Types	of	Tests

maturity,	Maturity

mean	time	between	failures	(MTBF),	Mean	Time	to	Repair	Over	Mean	Time
Between	Failures?

mean	time	to	repair	(MTTR),	Mean	Time	to	Repair	Over	Mean	Time	Between
Failures?

message	brokers,	Technology	Choices

metrics

libraries	for,	Service	Metrics

service	metrics,	Service	Metrics

tracking	across	multiple	services,	Metric	Tracking	Across	Multiple
Services

Metrics	library,	Tailored	Service	Template

microservices

appropriate	application	of,	When	Shouldn’t	You	Use	Microservices?

autonomy	and,	Autonomous,	Building	a	Team

benefits	of,	Microservices

composability	of,	Composability

definition	of	term,	What	Are	Microservices?

deployment	ease	of,	Ease	of	Deployment

drawbacks	of,	No	Silver	Bullet,	When	Shouldn’t	You	Use	Microservices?

key	principles	of,	Bringing	It	All	Together

organizational	alignment	and,	Organizational	Alignment

origins	of,	Microservices

replaceability	and,	Optimizing	for	Replaceability

resilience	of,	Resilience

scaling	and,	Scaling

size	and,	Small,	and	Focused	on	Doing	One	Thing	Well

technology	heterogeneity	of,	Technology	Heterogeneity

vs.	modules,	Modules

vs.	service-oriented	architecture,	What	About	Service-Oriented
Architecture?

vs.	shared	libraries,	Shared	Libraries

microservices	at	scale

antifragile	systems,	The	Antifragile	Organization

architectural	safety	measures,	Architectural	Safety	Measures

autoscaling,	Autoscaling

caching,	Caching

caching	for	writes,	Caching	for	Writes

CAP	theorem,	CAP	Theorem

cross-functional	requirements	(CFR),	How	Much	Is	Too	Much?

dealing	with	failures,	Failure	Is	Everywhere

degrading	functionality,	Degrading	Functionality

documenting	services,	Documenting	Services

dynamic	service	registries,	Dynamic	Service	Registries

idempotent	operations,	Idempotency

scaling,	Scaling

scaling	databases,	Scaling	Databases

self-describing	systems,	HAL	and	the	HAL	Browser

service	discovery,	Service	Discovery

middleware,	Technology	Choices

mocking	vs.	stubbing,	Mocking	or	Stubbing

modeling	services

bounded	contexts,	The	Bounded	Context

business	capabilities,	Business	Capabilities

business	concepts,	Communication	in	Terms	of	Business	Concepts

key	concepts,	What	Makes	a	Good	Service?

modules	and	services,	Modules	and	Services

nested	bounded	contexts,	Turtles	All	the	Way	Down

premature	decomposition,	Premature	Decomposition

shared	vs.	hidden	models,	Shared	and	Hidden	Models

technical	boundaries,	The	Technical	Boundary

modular	decomposition,	Modules

modules,	Modules	and	Services

monitoring

cascading	failures,	The	Cascade

central	logging,	Logs,	Logs,	and	Yet	More	Logs…

complexities	of,	Monitoring

correlation	IDs,	Correlation	IDs

displaying/sharing	results,	Consider	the	Audience

metric	tracking	across	multiple	services,	Metric	Tracking	Across
Multiple	Services

multiple	services/multiple	servers,	Multiple	Services,	Multiple	Servers

overview	of,	Summary

real-time	reporting,	The	Future

semantic,	Implementing	Semantic	Monitoring

service	metrics,	Service	Metrics

single	service/multiple	servers,	Single	Service,	Multiple	Servers

single	service/single	server,	Single	Service,	Single	Server

standardization	of,	Standardization

standards	establishment	and,	Monitoring

synthetic,	Synthetic	Monitoring

monolithic	systems

codebases	in,	Small,	and	Focused	on	Doing	One	Thing	Well

lack	of	cohesion/loose	coupling	in,	It’s	All	About	Seams

reporting	databases	in,	The	Reporting	Database

vs.	service-oriented	architecture,	What	About	Service-Oriented
Architecture?

Moore’s	law,	Conway’s	Law	and	System	Design

Mountebank,	A	Smarter	Stub	Service

MTBF	(mean	time	between	failures),	Mean	Time	to	Repair	Over	Mean	Time
Between	Failures?

MTTR	(mean	time	to	repair),	Mean	Time	to	Repair	Over	Mean	Time	Between
Failures?

N

nested	bounded	contexts,	Turtles	All	the	Way	Down

network	segregation,	Network	Segregation

nonfunctional	requirements,	Cross-Functional	Testing

normalization	of	deviance,	Flaky	and	Brittle	Tests

O

on-demand	provisioning	systems,	Scaling

on-demand	virtualization,	Microservices

onion	architecture,	The	Technical	Boundary

Open	Web	Application	Security	Project	(OWASP),	Baking	Security	In

OpenID	Connect,	Common	Single	Sign-On	Implementations,	Use	SAML	or
OpenID	Connect

operating	system	artifacts,	Operating	System	Artifacts

operating	systems	security,	Operating	System

orchestration	architecture,	Orchestration	Versus	Choreography

organizational	alignment,	Organizational	Alignment

organizational	structure

Conway’s	law	and,	Conway’s	Law	and	System	Design

effect	on	systems	design,	Evidence

loose	vs.	tightly	coupled,	Loose	and	Tightly	Coupled	Organizations

orphaned	services,	The	Orphaned	Service?

OSGI	(Open	Source	Gateway	Initiative),	Modules

ownership

shared,	Drivers	for	Shared	Services

system	design	and,	Service	Ownership

P

Packer,	Custom	Images

Pact,	Pact

Pacto,	Pact

partition	tolerance

in	CAP	theorem,	CAP	Theorem

sacrificing,	Sacrificing	Partition	Tolerance?

passwords,	Go	with	the	Well	Known

performance	tests,	Performance	Tests

platform	as	a	service	(PaaS),	Platform	as	a	Service

platform-specific	artifacts,	Platform-Specific	Artifacts

Polly	for	.NET,	Bulkheads

Postel’s	Law,	Defer	It	for	as	Long	as	Possible

predictive	scaling,	Autoscaling

principal	party,	Authentication	and	Authorization

privacy	issues,	Be	Frugal

property	testing,	Types	of	Tests

proxy	caching,	Client-Side,	Proxy,	and	Server-Side	Caching

R

RabbitMQ,	Technology	Choices

RDBMS	(relational	database	management	systems),	Scaling	for	Reads

reactive	extensions	(Rx),	Reactive	Extensions

reactive	scaling,	Autoscaling

read	replicas,	Scaling	for	Reads

redesign,	Starting	Again

refactoring	databases,	Staging	the	Break

remote	procedure	calls,	Remote	Procedure	Calls-Is	RPC	Terrible?

benefits	and	drawbacks	of,	Is	RPC	Terrible?

brittleness,	Brittleness

definition	of	term,	Remote	Procedure	Calls

technologies	available,	Remote	Procedure	Calls

technology	coupling,	Technology	Coupling

vs.	local	calls,	Local	Calls	Are	Not	Like	Remote	Calls

replaceability,	Optimizing	for	Replaceability

reporting	databases

backup	data	pumps,	Backup	Data	Pump

data	pump	guidelines,	Data	Pumps

data	retrieval	via	service	calls,	Data	Retrieval	via	Service	Calls

event	data	pumps,	Event	Data	Pump

generic	eventing	systems,	Toward	Real	Time

monolithic	approach	to,	The	Reporting	Database

third-party	software,	Data	Retrieval	via	Service	Calls

request/response	collaboration,	Synchronous	Versus	Asynchronous

resilience	engineering,	Resilience,	Caching	for	Resilience

resources,	REST

response	time,	How	Much	Is	Too	Much?

REST	(Representational	State	Transfer),	REST-Downsides	to	REST	Over
HTTP

ATOM	specification,	Technology	Choices

concept	of,	REST

frameworks	for,	Beware	Too	Much	Convenience

HTTP	over	REST	benefits,	REST	and	HTTP

HTTP	over	REST	drawbacks,	Downsides	to	REST	Over	HTTP

textual	formats,	JSON,	XML,	or	Something	Else?

reverse	proxy,	Client-Side,	Proxy,	and	Server-Side	Caching

Riemann,	The	Future

risk,	spreading,	Spreading	Your	Risk

Robustness	principle,	Defer	It	for	as	Long	as	Possible

Rx	(reactive	extensions),	Reactive	Extensions

S

SAML,	Common	Single	Sign-On	Implementations,	Use	SAML	or	OpenID
Connect

SAN	(storage	area	networks),	Spreading	Your	Risk

scaling,	Scaling-Starting	Again

autoscaling,	Autoscaling

benefits	of,	Scaling

databases,	Scaling	Databases

load	balancing,	Load	Balancing

reasons	for,	Scaling

splitting	workloads,	Splitting	Workloads

spreading	risk,	Spreading	Your	Risk

vertical,	Go	Bigger

vs.	redesign,	Starting	Again

worker-based	systems,	Worker-Based	Systems

seams,	concept	of,	It’s	All	About	Seams

security,	Security-Summary

attacks,	defending	from,	Defense	in	Depth

authentication/authorization,	Authentication	and	Authorization

backups,	Backup	Data	Pump,	Encrypt	Backups

education/awareness	of,	Baking	Security	In

encryption,	Go	with	the	Well	Known

example	setup,	A	Worked	Example

external	verification	of,	External	Verification

firewalls,	Firewalls

human	element	of,	The	Human	Element

importance	of,	Security

intrusion	detection/prevention,	Intrusion	Detection	(and	Prevention)
System

key	storage,	It’s	All	About	the	Keys

logs,	Logging

man-in-the-middle	attacks,	Allow	Everything	Inside	the	Perimeter

operating	systems,	Operating	System

overview	of,	Summary

passwords,	Go	with	the	Well	Known

privacy	issues,	Be	Frugal

securing	data	at	rest,	Securing	Data	at	Rest

service-to-service	authentication/authorization,	Service-to-Service
Authentication	and	Authorization

tool	selection,	The	Golden	Rule

virtual	private	clouds,	Network	Segregation

Security	Development	Lifecycle,	Baking	Security	In

self-describing	systems,	HAL	and	the	HAL	Browser

semantic	monitoring,	So	Should	You	Use	End-to-End	Tests?,	Synthetic
Monitoring

semantic	versioning,	Use	Semantic	Versioning

server-side	caching,	Client-Side,	Proxy,	and	Server-Side	Caching

service	accounts,	Use	SAML	or	OpenID	Connect

service	boundaries,	Zoning

(see	also	modeling	services)

service	calls,	data	retrieval	via,	Data	Retrieval	via	Service	Calls

service	configuration,	Service	Configuration

service	discovery,	Service	Discovery

service	ownership

comprehensive	approach,	Service	Ownership

shared,	Drivers	for	Shared	Services

service	provider,	Common	Single	Sign-On	Implementations

service	separation,	staging,	Staging	the	Break

(see	also	database	decomposition)

service	templates,	Tailored	Service	Template

service	tests

Cohn’s	Test	Pyramid,	Test	Scope

implementation	of,	Implementing	Service	Tests

mocking	vs.	stubbing,	Mocking	or	Stubbing

Mountebank	server	for,	A	Smarter	Stub	Service

scope	of,	Service	Tests

service-oriented	architectures	(SOA)

concept	of,	What	About	Service-Oriented	Architecture?

drawbacks	of,	What	About	Service-Oriented	Architecture?

reuse	of	functionality	in,	Composability

vs.	microservices,	What	About	Service-Oriented	Architecture?

service-to-host	mapping,	Service-to-Host	Mapping-Platform	as	a	Service

application	containers,	Application	Containers

multiple	services	per	host,	Multiple	Services	Per	Host

platform	as	a	service	(PaaS),	Platform	as	a	Service

single	service	per	host,	Single	Service	Per	Host

terminology,	Service-to-Host	Mapping

service-to-service	authentication/authorization,	Service-to-Service
Authentication	and	Authorization-The	Deputy	Problem

API	keys,	API	Keys

client	certificates,	Client	Certificates

confused	deputy	problem,	The	Deputy	Problem

HMAC	over	HTTP,	HMAC	Over	HTTP

HTTP(S)	basic,	HTTP(S)	Basic	Authentication

man-in-the-middle	attacks,	Allow	Everything	Inside	the	Perimeter

SAML/OpenID	Connect,	Use	SAML	or	OpenID	Connect

sharding,	Scaling	for	Writes

shared	code,	DRY	and	the	Perils	of	Code	Reuse	in	a	Microservice	World

shared	data,	Example:	Shared	Data

shared	libraries,	Shared	Libraries

shared	models,	Shared	and	Hidden	Models

shared	static	data,	Example:	Shared	Static	Data

shared	tables,	Example:	Shared	Tables

sharing	behavior,	The	Shared	Database

single	sign-on	(SSO),	Common	Single	Sign-On	Implementations-Single	Sign-On
Gateway

smoke	test	suites,	Separating	Deployment	from	Release

spies,	Mocking	or	Stubbing

SSH-multiplexing,	Single	Service,	Multiple	Servers

SSL	certificates,	HTTP(S)	Basic	Authentication

SSL	termination,	Load	Balancing

standards	enforcement

exemplars,	Exemplars

tailored	service	templates,	Tailored	Service	Template

standards	establishment,	The	Required	Standard-Architectural	Safety

architectural	safety,	Architectural	Safety

importance	of,	The	Required	Standard

interfaces,	Interfaces

monitoring,	Monitoring

static	data,	Example:	Shared	Static	Data

Strangler	Application	Pattern,	The	Strangler	Pattern,	Architectural	Safety
Measures

strategic	goals

real-world	example,	A	Real-World	Example

understanding,	Strategic	Goals

stubbing	vs.	mocking,	Mocking	or	Stubbing

Suro,	The	Future

Swagger,	Swagger

synchronous	communication,	Synchronous	Versus	Asynchronous

synthetic	monitoring,	Synthetic	Monitoring

system	design

accountability	and,	People

adapting	to	communication	pathways,	Adapting	to	Communication
Pathways

bounded	contexts,	Bounded	Contexts	and	Team	Structures

case	study,	Case	Study:	RealEstate.com.au

Conway’s	law	of,	Conway’s	Law	and	System	Design

delivery	bottlenecks,	Delivery	Bottlenecks

effect	on	organizational	structure,	Conway’s	Law	in	Reverse

feature	teams,	Feature	Teams

internal	open	source	model,	Internal	Open	Source

organizational	structure	and,	Evidence

orphaned	services,	The	Orphaned	Service?

overview	of,	Summary

role	of	custodians,	Role	of	the	Custodians

service	maturity,	Maturity

service	ownership,	Service	Ownership

shared	service	ownership,	Drivers	for	Shared	Services

tooling,	Tooling

systems	architects

challenges	faced	by,	Summary

decision-making	guidelines	for,	A	Principled	Approach

exception	handling,	Exception	Handling

governance,	Governance	and	Leading	from	the	Center

responsibilities	of,	Inaccurate	Comparisons,	Technical	Debt,	Summary

role	of,	An	Evolutionary	Vision	for	the	Architect

service	boundaries	and,	Zoning

standards	enforcement	by,	Governance	Through	Code-Tailored	Service
Template

standards	establishment	by,	The	Required	Standard

team	building	by,	Building	a	Team

team	participation	by,	Zoning

technical	debt	and,	Technical	Debt

T

tables,	shared,	Example:	Shared	Tables

tailored	service	templates,	Tailored	Service	Template

team	building,	Building	a	Team

team	structures,	Bounded	Contexts	and	Team	Structures

technical	boundaries,	The	Technical	Boundary

technical	debt,	Technical	Debt

technology	heterogeneity,	Technology	Heterogeneity

technology-agnostic	APIs,	Keep	Your	APIs	Technology-Agnostic

technology-facing	tests,	Types	of	Tests

templates,	Tailored	Service	Template

test	doubles,	Mocking	or	Stubbing

Test	Pyramid,	Test	Scope,	Consumer-Driven	Tests	to	the	Rescue

test	snow	cone,	How	Many?

test-driven	design	(TDD),	Unit	Tests

testing

canary	releasing,	Canary	Releasing

considerations	for,	Trade-Offs

consumer-driven	tests,	Consumer-Driven	Tests	to	the	Rescue

cross-functional,	Cross-Functional	Testing

end-to-end	tests,	Those	Tricky	End-to-End	Tests

MTTR	over	MTBF,	Mean	Time	to	Repair	Over	Mean	Time	Between
Failures?

overview	of,	Summary

performance	tests,	Performance	Tests

post-production,	Testing	After	Production

scope	of,	Test	Scope

selecting	number	of,	How	Many?

semantic	monitoring,	So	Should	You	Use	End-to-End	Tests?

separating	deployment	from	release,	Separating	Deployment	from
Release

service	test	implementation,	Implementing	Service	Tests

types	of	tests,	Types	of	Tests

third-party	software,	Integrating	with	Third-Party	Software-The	Strangler
Pattern,	Data	Retrieval	via	Service	Calls

building	vs.	buying,	Integrating	with	Third-Party	Software

content	management	systems	(CMS),	Example:	CMS	as	a	service

Customer	Relationship	Management	(CRM),	Example:	The	multirole
CRM	system

customization	of,	Customization

integration	issues,	Integration	Spaghetti

lack	of	control	over,	Lack	of	Control

reporting	databases,	Data	Retrieval	via	Service	Calls

Strangler	Application	Pattern,	The	Strangler	Pattern

tight	coupling,	Loose	Coupling,	Loose	and	Tightly	Coupled	Organizations

time	to	live	(TTL),	DNS

timeouts,	Timeouts

transaction	managers,	Distributed	Transactions

transactional	boundaries,	Transactional	Boundaries-So	What	to	Do?

transactions

compensating,	Abort	the	Entire	Operation

distributed,	Distributed	Transactions

Transport	Layer	Security	(TLS),	Client	Certificates

two-phase	commits,	Distributed	Transactions

type	2	virtualization,	Traditional	Virtualization

U

UDDI	(Universal	Description,	Discovery,	and	Integration),	HAL	and	the	HAL
Browser

unit	tests

Cohn’s	Test	Pyramid,	Test	Scope

goals	of,	Unit	Tests

Marick’s	quadrant,	Types	of	Tests

scope	of,	Unit	Tests

user	interfaces,	User	Interfaces-A	Hybrid	Approach

API	composition,	API	Composition

API	gateways,	Backends	for	Frontends

API	granularity,	Toward	Digital

Cohn’s	Test	Pyramid,	Test	Scope

(see	also	end-to-end	tests)

constraints,	Constraints

evolution	of,	User	Interfaces

fragment	composition,	UI	Fragment	Composition

hybrid	approaches,	A	Hybrid	Approach

V

Vagrant,	Vagrant

versioning,	Versioning-Use	Multiple	Concurrent	Service	Versions

catching	breaking	changes	early,	Catch	Breaking	Changes	Early

coexisting	different	endpoints,	Coexist	Different	Endpoints

deferring	breaking	changes,	Defer	It	for	as	Long	as	Possible

multiple	concurrent	versions,	Use	Multiple	Concurrent	Service	Versions

semantic,	Use	Semantic	Versioning

vertical	scaling,	Go	Bigger

virtual	private	clouds	(VPC),	Network	Segregation

virtualization

hypervisors,	Traditional	Virtualization

traditional,	Traditional	Virtualization

type	2,	Traditional	Virtualization

virtualization	platforms

Docker,	Docker

Linux	containers,	Linux	Containers

on-demand,	Microservices

storage	area	networks	in,	Spreading	Your	Risk

Vagrant,	Vagrant

vision,	Summary

W

worker-based	systems,	Worker-Based	Systems

write-behind	caches,	Caching	for	Resilience

X

XML,	JSON,	XML,	or	Something	Else?

Z

Zed	Attack	Proxy	(ZAP),	Baking	Security	In

Zipkin,	Correlation	IDs

Zookeeper,	Zookeeper

About	the	Author

Sam	Newman	is	a	technologist	at	ThoughtWorks,	where	he	currently	splits	his	time
between	helping	clients	and	working	as	an	architect	for	ThoughtWorks’	own	internal
systems.	He	has	worked	with	a	variety	of	companies	in	multiple	domains	around	the
world,	often	with	one	foot	in	the	developer	world,	and	another	in	the	IT	operations	space.
If	you	asked	him	what	he	does,	he’d	say,	“I	work	with	people	to	build	better	software
systems.”	He	has	written	articles,	presented	at	conferences,	and	sporadically	commits	to
open	source	projects.

Colophon

The	animals	on	the	cover	of	Building	Microservices	are	honey	bees	(of	the	genus	Apis).	Of
20,000	known	species	of	bees,	only	seven	are	considered	honey	bees.	They	are	distinct
because	they	produce	and	store	honey,	as	well	as	building	hives	from	wax.	Beekeeping	to
collect	honey	has	been	a	human	pursuit	for	thousands	of	years.

Honey	bees	live	in	hives	with	thousands	of	individuals	and	have	a	very	organized	social
structure.	There	are	three	castes:	queen,	drone,	and	worker.	Each	hive	has	one	queen,	who
remains	fertile	for	3–5	years	after	her	mating	flight,	and	lays	up	to	2,000	eggs	per	day.
Drones	are	male	bees	who	mate	with	the	queen	(and	die	in	the	act	because	of	their	barbed
sex	organs).	Worker	bees	are	sterile	females	who	fill	many	roles	during	their	lifetime,	such
as	nursemaid,	construction	worker,	grocer,	guard,	undertaker,	and	forager.	Foraging
worker	bees	communicate	with	one	another	by	“dancing”	in	particular	patterns	to	share
information	about	nearby	resources.

All	three	castes	of	honey	bee	are	similar	in	appearance,	with	wings,	six	legs,	and	a	body
segmented	into	a	head,	thorax,	and	abdomen.	They	have	short	fuzzy	hairs	in	a	striped
yellow	and	black	pattern.	Their	diet	is	made	up	exclusively	of	honey,	which	is	created	by	a
process	of	partially	digesting	and	regurgitating	sugar-rich	flower	nectar.

Bees	are	crucial	to	agriculture,	as	they	pollinate	crops	and	other	flowering	plants	while
they	collect	pollen	and	nectar.	On	average,	each	hive	of	bees	gathers	66	pounds	of	pollen	a
year.	In	recent	years,	the	decline	of	many	bee	species	has	been	cause	for	concern	and	is
known	as	“colony	collapse	disorder.”	It	is	still	unclear	what	is	causing	this	die-off:	some
theories	include	parasites,	insecticide	use,	or	disease,	but	no	effective	preventative
measures	have	been	found	to	date.

Many	of	the	animals	on	O’Reilly	covers	are	endangered;	all	of	them	are	important	to	the
world.	To	learn	more	about	how	you	can	help,	go	to	animals.oreilly.com.

The	cover	image	is	from	Johnson’s	Natural	History.	The	cover	fonts	are	URW	Typewriter
and	Guardian	Sans.	The	text	font	is	Adobe	Minion	Pro;	the	heading	font	is	Adobe	Myriad
Condensed;	and	the	code	font	is	Dalton	Maag’s	Ubuntu	Mono.

http://animals.oreilly.com

Preface
Who	Should	Read	This	Book

Why	I	Wrote	This	Book

A	Word	on	Microservices	Today

Navigating	This	Book

Conventions	Used	in	This	Book

Safari®	Books	Online

How	to	Contact	Us

Acknowledgments

1.	Microservices
What	Are	Microservices?

Small,	and	Focused	on	Doing	One	Thing	Well

Autonomous

Key	Benefits
Technology	Heterogeneity

Resilience

Scaling

Ease	of	Deployment

Organizational	Alignment

Composability

Optimizing	for	Replaceability

What	About	Service-Oriented	Architecture?

Other	Decompositional	Techniques
Shared	Libraries

Modules

No	Silver	Bullet

Summary

2.	The	Evolutionary	Architect
Inaccurate	Comparisons

An	Evolutionary	Vision	for	the	Architect

Zoning

A	Principled	Approach
Strategic	Goals

Principles

Practices

Combining	Principles	and	Practices

A	Real-World	Example

The	Required	Standard
Monitoring

Interfaces

Architectural	Safety

Governance	Through	Code
Exemplars

Tailored	Service	Template

Technical	Debt

Exception	Handling

Governance	and	Leading	from	the	Center

Building	a	Team

Summary

3.	How	to	Model	Services
Introducing	MusicCorp

What	Makes	a	Good	Service?
Loose	Coupling

High	Cohesion

The	Bounded	Context
Shared	and	Hidden	Models

Modules	and	Services

Premature	Decomposition

Business	Capabilities

Turtles	All	the	Way	Down

Communication	in	Terms	of	Business	Concepts

The	Technical	Boundary

Summary

4.	Integration
Looking	for	the	Ideal	Integration	Technology

Avoid	Breaking	Changes

Keep	Your	APIs	Technology-Agnostic

Make	Your	Service	Simple	for	Consumers

Hide	Internal	Implementation	Detail

Interfacing	with	Customers

The	Shared	Database

Synchronous	Versus	Asynchronous

Orchestration	Versus	Choreography

Remote	Procedure	Calls
Technology	Coupling

Local	Calls	Are	Not	Like	Remote	Calls

Brittleness

Is	RPC	Terrible?

REST

REST	and	HTTP

Hypermedia	As	the	Engine	of	Application	State

JSON,	XML,	or	Something	Else?

Beware	Too	Much	Convenience

Downsides	to	REST	Over	HTTP

Implementing	Asynchronous	Event-Based	Collaboration
Technology	Choices

Complexities	of	Asynchronous	Architectures

Services	as	State	Machines

Reactive	Extensions

DRY	and	the	Perils	of	Code	Reuse	in	a	Microservice	World
Client	Libraries

Access	by	Reference

Versioning
Defer	It	for	as	Long	as	Possible

Catch	Breaking	Changes	Early

Use	Semantic	Versioning

Coexist	Different	Endpoints

Use	Multiple	Concurrent	Service	Versions

User	Interfaces
Toward	Digital

Constraints

API	Composition

UI	Fragment	Composition

Backends	for	Frontends

A	Hybrid	Approach

Integrating	with	Third-Party	Software
Lack	of	Control

Customization

Integration	Spaghetti

On	Your	Own	Terms

The	Strangler	Pattern

Summary

5.	Splitting	the	Monolith
It’s	All	About	Seams

Breaking	Apart	MusicCorp

The	Reasons	to	Split	the	Monolith
Pace	of	Change

Team	Structure

Security

Technology

Tangled	Dependencies

The	Database

Getting	to	Grips	with	the	Problem

Example:	Breaking	Foreign	Key	Relationships

Example:	Shared	Static	Data

Example:	Shared	Data

Example:	Shared	Tables

Refactoring	Databases
Staging	the	Break

Transactional	Boundaries
Try	Again	Later

Abort	the	Entire	Operation

Distributed	Transactions

So	What	to	Do?

Reporting

The	Reporting	Database

Data	Retrieval	via	Service	Calls

Data	Pumps
Alternative	Destinations

Event	Data	Pump

Backup	Data	Pump

Toward	Real	Time

Cost	of	Change

Understanding	Root	Causes

Summary

6.	Deployment
A	Brief	Introduction	to	Continuous	Integration

Are	You	Really	Doing	It?

Mapping	Continuous	Integration	to	Microservices

Build	Pipelines	and	Continuous	Delivery
And	the	Inevitable	Exceptions

Platform-Specific	Artifacts

Operating	System	Artifacts

Custom	Images
Images	as	Artifacts

Immutable	Servers

Environments

Service	Configuration

Service-to-Host	Mapping
Multiple	Services	Per	Host

Application	Containers

Single	Service	Per	Host

Platform	as	a	Service

Automation
Two	Case	Studies	on	the	Power	of	Automation

From	Physical	to	Virtual
Traditional	Virtualization

Vagrant

Linux	Containers

Docker

A	Deployment	Interface
Environment	Definition

Summary

7.	Testing
Types	of	Tests

Test	Scope
Unit	Tests

Service	Tests

End-to-End	Tests

Trade-Offs

How	Many?

Implementing	Service	Tests
Mocking	or	Stubbing

A	Smarter	Stub	Service

Those	Tricky	End-to-End	Tests

Downsides	to	End-to-End	Testing

Flaky	and	Brittle	Tests
Who	Writes	These	Tests?

How	Long?

The	Great	Pile-up

The	Metaversion

Test	Journeys,	Not	Stories

Consumer-Driven	Tests	to	the	Rescue
Pact

It’s	About	Conversations

So	Should	You	Use	End-to-End	Tests?

Testing	After	Production
Separating	Deployment	from	Release

Canary	Releasing

Mean	Time	to	Repair	Over	Mean	Time	Between	Failures?

Cross-Functional	Testing
Performance	Tests

Summary

8.	Monitoring
Single	Service,	Single	Server

Single	Service,	Multiple	Servers

Multiple	Services,	Multiple	Servers

Logs,	Logs,	and	Yet	More	Logs…

Metric	Tracking	Across	Multiple	Services

Service	Metrics

Synthetic	Monitoring
Implementing	Semantic	Monitoring

Correlation	IDs

The	Cascade

Standardization

Consider	the	Audience

The	Future

Summary

9.	Security
Authentication	and	Authorization

Common	Single	Sign-On	Implementations

Single	Sign-On	Gateway

Fine-Grained	Authorization

Service-to-Service	Authentication	and	Authorization
Allow	Everything	Inside	the	Perimeter

HTTP(S)	Basic	Authentication

Use	SAML	or	OpenID	Connect

Client	Certificates

HMAC	Over	HTTP

API	Keys

The	Deputy	Problem

Securing	Data	at	Rest
Go	with	the	Well	Known

It’s	All	About	the	Keys

Pick	Your	Targets

Decrypt	on	Demand

Encrypt	Backups

Defense	in	Depth
Firewalls

Logging

Intrusion	Detection	(and	Prevention)	System

Network	Segregation

Operating	System

A	Worked	Example

Be	Frugal

The	Human	Element

The	Golden	Rule

Baking	Security	In

External	Verification

Summary

10.	Conway’s	Law	and	System	Design
Evidence

Loose	and	Tightly	Coupled	Organizations

Windows	Vista

Netflix	and	Amazon

What	Can	We	Do	with	This?

Adapting	to	Communication	Pathways

Service	Ownership

Drivers	for	Shared	Services
Too	Hard	to	Split

Feature	Teams

Delivery	Bottlenecks

Internal	Open	Source
Role	of	the	Custodians

Maturity

Tooling

Bounded	Contexts	and	Team	Structures

The	Orphaned	Service?

Case	Study:	RealEstate.com.au

Conway’s	Law	in	Reverse

People

Summary

11.	Microservices	at	Scale
Failure	Is	Everywhere

How	Much	Is	Too	Much?

Degrading	Functionality

Architectural	Safety	Measures

The	Antifragile	Organization
Timeouts

Circuit	Breakers

Bulkheads

Isolation

Idempotency

Scaling
Go	Bigger

Splitting	Workloads

Spreading	Your	Risk

Load	Balancing

Worker-Based	Systems

Starting	Again

Scaling	Databases
Availability	of	Service	Versus	Durability	of	Data

Scaling	for	Reads

Scaling	for	Writes

Shared	Database	Infrastructure

CQRS

Caching
Client-Side,	Proxy,	and	Server-Side	Caching

Caching	in	HTTP

Caching	for	Writes

Caching	for	Resilience

Hiding	the	Origin

Keep	It	Simple

Cache	Poisoning:	A	Cautionary	Tale

Autoscaling

CAP	Theorem
Sacrificing	Consistency

Sacrificing	Availability

Sacrificing	Partition	Tolerance?

AP	or	CP?

It’s	Not	All	or	Nothing

And	the	Real	World

Service	Discovery
DNS

Dynamic	Service	Registries
Zookeeper

Consul

Eureka

Rolling	Your	Own

Don’t	Forget	the	Humans!

Documenting	Services
Swagger

HAL	and	the	HAL	Browser

The	Self-Describing	System

Summary

12.	Bringing	It	All	Together
Principles	of	Microservices

Model	Around	Business	Concepts

Adopt	a	Culture	of	Automation

Hide	Internal	Implementation	Details

Decentralize	All	the	Things

Independently	Deployable

Isolate	Failure

Highly	Observable

When	Shouldn’t	You	Use	Microservices?

Parting	Words

Index

	Preface
	Who Should Read This Book
	Why I Wrote This Book
	A Word on Microservices Today
	Navigating This Book
	Conventions Used in This Book
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	1. Microservices
	What Are Microservices?
	Small, and Focused on Doing One Thing Well
	Autonomous

	Key Benefits
	Technology Heterogeneity
	Resilience
	Scaling
	Ease of Deployment
	Organizational Alignment
	Composability
	Optimizing for Replaceability

	What About Service-Oriented Architecture?
	Other Decompositional Techniques
	Shared Libraries
	Modules

	No Silver Bullet
	Summary

	2. The Evolutionary Architect
	Inaccurate Comparisons
	An Evolutionary Vision for the Architect
	Zoning
	A Principled Approach
	Strategic Goals
	Principles
	Practices
	Combining Principles and Practices
	A Real-World Example

	The Required Standard
	Monitoring
	Interfaces
	Architectural Safety

	Governance Through Code
	Exemplars
	Tailored Service Template

	Technical Debt
	Exception Handling
	Governance and Leading from the Center
	Building a Team
	Summary

	3. How to Model Services
	Introducing MusicCorp
	What Makes a Good Service?
	Loose Coupling
	High Cohesion

	The Bounded Context
	Shared and Hidden Models
	Modules and Services
	Premature Decomposition

	Business Capabilities
	Turtles All the Way Down
	Communication in Terms of Business Concepts
	The Technical Boundary
	Summary

	4. Integration
	Looking for the Ideal Integration Technology
	Avoid Breaking Changes
	Keep Your APIs Technology-Agnostic
	Make Your Service Simple for Consumers
	Hide Internal Implementation Detail

	Interfacing with Customers
	The Shared Database
	Synchronous Versus Asynchronous
	Orchestration Versus Choreography
	Remote Procedure Calls
	Technology Coupling
	Local Calls Are Not Like Remote Calls
	Brittleness
	Is RPC Terrible?

	REST
	REST and HTTP
	Hypermedia As the Engine of Application State
	JSON, XML, or Something Else?
	Beware Too Much Convenience
	Downsides to REST Over HTTP

	Implementing Asynchronous Event-Based Collaboration
	Technology Choices
	Complexities of Asynchronous Architectures

	Services as State Machines
	Reactive Extensions
	DRY and the Perils of Code Reuse in a Microservice World
	Client Libraries

	Access by Reference
	Versioning
	Defer It for as Long as Possible
	Catch Breaking Changes Early
	Use Semantic Versioning
	Coexist Different Endpoints
	Use Multiple Concurrent Service Versions

	User Interfaces
	Toward Digital
	Constraints
	API Composition
	UI Fragment Composition
	Backends for Frontends
	A Hybrid Approach

	Integrating with Third-Party Software
	Lack of Control
	Customization
	Integration Spaghetti
	On Your Own Terms
	Example: CMS as a service
	Example: The multirole CRM system

	The Strangler Pattern

	Summary

	5. Splitting the Monolith
	It’s All About Seams
	Breaking Apart MusicCorp
	The Reasons to Split the Monolith
	Pace of Change
	Team Structure
	Security
	Technology

	Tangled Dependencies
	The Database
	Getting to Grips with the Problem
	Example: Breaking Foreign Key Relationships
	Example: Shared Static Data
	Example: Shared Data
	Example: Shared Tables
	Refactoring Databases
	Staging the Break

	Transactional Boundaries
	Try Again Later
	Abort the Entire Operation
	Distributed Transactions
	So What to Do?

	Reporting
	The Reporting Database
	Data Retrieval via Service Calls
	Data Pumps
	Alternative Destinations

	Event Data Pump
	Backup Data Pump
	Toward Real Time
	Cost of Change
	Understanding Root Causes
	Summary

	6. Deployment
	A Brief Introduction to Continuous Integration
	Are You Really Doing It?

	Mapping Continuous Integration to Microservices
	Build Pipelines and Continuous Delivery
	And the Inevitable Exceptions

	Platform-Specific Artifacts
	Operating System Artifacts
	Custom Images
	Images as Artifacts
	Immutable Servers

	Environments
	Service Configuration
	Service-to-Host Mapping
	Multiple Services Per Host
	Application Containers
	Single Service Per Host
	Platform as a Service

	Automation
	Two Case Studies on the Power of Automation

	From Physical to Virtual
	Traditional Virtualization
	Vagrant
	Linux Containers
	Docker

	A Deployment Interface
	Environment Definition

	Summary

	7. Testing
	Types of Tests
	Test Scope
	Unit Tests
	Service Tests
	End-to-End Tests
	Trade-Offs
	How Many?

	Implementing Service Tests
	Mocking or Stubbing
	A Smarter Stub Service

	Those Tricky End-to-End Tests
	Downsides to End-to-End Testing
	Flaky and Brittle Tests
	Who Writes These Tests?
	How Long?
	The Great Pile-up
	The Metaversion

	Test Journeys, Not Stories
	Consumer-Driven Tests to the Rescue
	Pact
	It’s About Conversations

	So Should You Use End-to-End Tests?
	Testing After Production
	Separating Deployment from Release
	Canary Releasing
	Mean Time to Repair Over Mean Time Between Failures?

	Cross-Functional Testing
	Performance Tests

	Summary

	8. Monitoring
	Single Service, Single Server
	Single Service, Multiple Servers
	Multiple Services, Multiple Servers
	Logs, Logs, and Yet More Logs…
	Metric Tracking Across Multiple Services
	Service Metrics
	Synthetic Monitoring
	Implementing Semantic Monitoring

	Correlation IDs
	The Cascade
	Standardization
	Consider the Audience
	The Future
	Summary

	9. Security
	Authentication and Authorization
	Common Single Sign-On Implementations
	Single Sign-On Gateway
	Fine-Grained Authorization

	Service-to-Service Authentication and Authorization
	Allow Everything Inside the Perimeter
	HTTP(S) Basic Authentication
	Use SAML or OpenID Connect
	Client Certificates
	HMAC Over HTTP
	API Keys
	The Deputy Problem

	Securing Data at Rest
	Go with the Well Known
	It’s All About the Keys
	Pick Your Targets
	Decrypt on Demand
	Encrypt Backups

	Defense in Depth
	Firewalls
	Logging
	Intrusion Detection (and Prevention) System
	Network Segregation
	Operating System

	A Worked Example
	Be Frugal
	The Human Element
	The Golden Rule
	Baking Security In
	External Verification
	Summary

	10. Conway’s Law and System Design
	Evidence
	Loose and Tightly Coupled Organizations
	Windows Vista

	Netflix and Amazon
	What Can We Do with This?
	Adapting to Communication Pathways
	Service Ownership
	Drivers for Shared Services
	Too Hard to Split
	Feature Teams
	Delivery Bottlenecks

	Internal Open Source
	Role of the Custodians
	Maturity
	Tooling

	Bounded Contexts and Team Structures
	The Orphaned Service?
	Case Study: RealEstate.com.au
	Conway’s Law in Reverse
	People
	Summary

	11. Microservices at Scale
	Failure Is Everywhere
	How Much Is Too Much?
	Degrading Functionality
	Architectural Safety Measures
	The Antifragile Organization
	Timeouts
	Circuit Breakers
	Bulkheads
	Isolation

	Idempotency
	Scaling
	Go Bigger
	Splitting Workloads
	Spreading Your Risk
	Load Balancing
	Worker-Based Systems
	Starting Again

	Scaling Databases
	Availability of Service Versus Durability of Data
	Scaling for Reads
	Scaling for Writes
	Shared Database Infrastructure
	CQRS

	Caching
	Client-Side, Proxy, and Server-Side Caching
	Caching in HTTP
	Caching for Writes
	Caching for Resilience
	Hiding the Origin
	Keep It Simple
	Cache Poisoning: A Cautionary Tale

	Autoscaling
	CAP Theorem
	Sacrificing Consistency
	Sacrificing Availability
	Sacrificing Partition Tolerance?
	AP or CP?
	It’s Not All or Nothing
	And the Real World

	Service Discovery
	DNS

	Dynamic Service Registries
	Zookeeper
	Consul
	Eureka
	Rolling Your Own
	Don’t Forget the Humans!

	Documenting Services
	Swagger
	HAL and the HAL Browser

	The Self-Describing System
	Summary

	12. Bringing It All Together
	Principles of Microservices
	Model Around Business Concepts
	Adopt a Culture of Automation
	Hide Internal Implementation Details
	Decentralize All the Things
	Independently Deployable
	Isolate Failure
	Highly Observable

	When Shouldn’t You Use Microservices?
	Parting Words

	Index

