(0

IN AC

Creating and consuming

Monsur Hossain
Foreworn BY Eric Bidelman

/lll MANNING

CORS in Action

CORS 1n Action

Creating and consuming
cross-origin APIs

MONSUR HOSSAIN

MANNING
SHELTER ISLAND

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road

PO Box 761

Shelter Island, NY 11964

Email: orders@manning.com

©2015 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

/I/I Manning Publications Co. Development editors: Cynthia Kane, Monique Bos
20 Baldwin Road Technical development editor Deepak Vohra
PO Box 761 Copyeditor: Jodie Allen
Shelter Island, NY 11964 Proofreader: Elizabeth Martin

Technical proofreader: Konstantin Yakushev
Typesetter: Dennis Dalinnik
Cover designer: Marija Tudor

ISBN: 9781617291821
Printed in the United States of America
128345678910 -EBM - 19 18 17 16 15 14

www.manning.com

For Haroun and Annisa

brief contents

PART 1 INTRODUCING CORS . ..uuttereeeceescescesscescescessosscsssessosssssoes 1
1 m The Core of CORS 3
2 m Making CORS requests 12

PART 2 CORS ON THE SERVER ..ccutetcececescscecescscecescssscscesossssesess 37

3 = Handling CORS requests 39

4 w Handling preflight requests 63

5 wm Cookies and response headers 94
6 wm Best practices 112

PART 3 DEBUGGING CORS REQUESTS . .ccceteeceecrecrecrecrasacsscens 149
7 m Debugging CORS requests 151

contents

Joreword xv

preface xvii

acknowledgments xix

about this book xxi

author online xxv

about the author xxvi

about the cover illustration xxvii

The Core of CORS 3
1.1 Whatis CORS? 4
1.2 CORS by example 5

Setting up the request 7 = Sending the request 7
Processing the response 7

1.3 Benefits of CORS 9

Wider audience 9 = Servers stay in charge 9
Flexibility 10 = Easy for developers 10
Reduced maintenance overhead 10

1.4 Summary 10

CONTENTS

Making CORS requests 12

2.1 Whatis a cross-origin request? 13
2.2 Browser support for CORS 14
2.3 Using the XMLHttpRequest object 15

Sending an HTTP request 17 = Handling the HI'TP
response 20 = Including cookies on cross-origin requests 27

2.4 XDomainRequest object in Internet Explorer 8 and 9 28
Differences between XDomainRequest and XMLHttpRequest 30

2.5 Canvas and cross-origin images 32

2.6 CORS requests from jQuery 34

2.7 Summary 36

Handling CORS requests 39

3.1 Setting up the sample code 40

Setting wp the sample API 40 = Setting up the sample client 42
Running the sample app 44

3.2 Making a CORS request 45
3.3 Anatomy of a CORS request 47

The players in a CORS request 48 = Lifecycle of
a CORS request 49

3.4 Making a request with the Origin header 51
Viewing the Origin header 51 = What is an origin? 52
Setting the Origin header 55

3.5 Responding to a CORS request 55

The Access-Control-Allow-Origin header 55
Access-Control-Allow-Origin with a wildcard (*) value 56

Access-Control-Allow-Origin with an origin value 59
Rejecting CORS requests 59

3.6 Summary 62

Handling preflight requests 63

4.1 Whatis a preflight request? 64
Lifecycle of a preflight request 64 = Why does the preflight

request exist? 64

CONTENTS

4.2 Triggering a preflight request 67
When is a preflight request sent? 71
4.3 Identifying a preflight request 72

Origin header 72 = HTTP OPTIONS method 73
Access-Control-Request-Method header 74 = Pulting it
all together 75

4.4 Responding to a preflight request 75

Supporting HT'TP methods with Access-Control-Allow-Methods 76
Supporting request headers with Access-Control-Allow-Headers 78
Sending the actual request 83 = Rejecting a preflight request 83

4.5 Recapping preflights 85
4.6 Preflight result cache 90
4.7 Summary 93

Cookies and response headers 94

5.1 Supporting cookies in CORS requests 95

Setting cookies with a login page 95 = Reading the cookie on
the server 97 = Including cookies in CORS requests 99
How withCredentials and Access-Control-Allow-Credentials
interact 102 = Caveals to cookie support 104

5.2 Exposing response headers to the client 107

Reading a response header 108 = Adding response
header support 108

5.3 Summary 111

Best practices 112

6.1 Refactoring the sample code 113
6.2 Before you begin 114
6.3 Setting the Access-Control-Allow-Origin header 114

Allowing cross-origin access for everyone 115 = Limiting CORS
requests to a set of origins 116 = CORS and proxy servers 121
Null origin 123 = Origin header on same-origin requests 124

6.4 Security 126

Including cookies on requests 128 = Authorizing requests
using OAuth2 132

6.5 Handling preflight requests 135
Whitelisting request methods and headers 135

CONTENTS

6.6 Reducing preflight requests 139

Maximizing the preflight cache 139 = Changing your site to
reduce preflight requests 141

6.7 Exposing response headers 142
6.8 CORS and redirects 144
6.9 Summary 147

Debugging CORS requests 151

7.1 Solving CORS errors 152
7.2 Using the browser’s developer tools 153
Using the console 155 = Using the Network tab 155

7.3 Monitoring network traffic 158
Using Wireshark 159 = Using Fiddler 161

7.4 Using curl to simulate CORS requests 165
Making CORS requests using curl 165 = Making preflight
requests using curl 167 = Why use curl? 168
7.5 Sending requests using test-cors.org 169
Sending requests to a remote server 169 = Sending requests to
the local server 171 = Understanding how the client works 173
7.6 Tips for mobile debugging 174

Log requests on the server 175 = Use test-cors.org 175
Use remote debugging tools 175 = Use a mobile simulator 175

7.7 Getting help 176
7.8 Summary 177

CORS reference 178

A.1 HTTP headers 178
Request headers 178 = Response headers 178

A.2 Other terms used in CORS 180

Simple method 180 = Simple header 180
Simple response header 181

CONTENTS

Configuring your environment 182

B.1 Setting up for the sample application 182
Node.js and NPM 182 = Express 186

B.2 Debugging tools 187
Wireshark 187 = Fiddler 189 = Curl 189
B.3 Resources 190

What is CSRF? 191
C.1 Whatis CSRF? 191

C.2 Implementing CSRF protection for same-origin
requests 195

Other cross-origin techniques 199
D.1 JSONP 199
D.2 Flash 201
D.3 postMessage and easyXDM 203
D.4 Serverside request 204

ndex 206

Joreword

No one can argue that AJAX was an important advancement in the evolution of the
web. In a few short years, a single technology (XMLHttpRequest) revolutionized how
users interacted with our content. Instead of loading entire pages, portions of the
page could refresh with minimal distraction to the user. In a time when broadband
wasn’t the norm, this change was amazingly powerful.

The web grew up during that time. The birth of AJAX catalyzed the transformation
of “web pages” into “web apps,” but it also paved the way for modern client-side devel-
opment. Today’s JavaScript frameworks, which launched single page apps (SPAs), were
a result of this early paradigm shift. But as more code moved off the server and into
the client, it was clear XMLHttpRequest wasn’t keeping up. JavaScript’s single-origin
policy suffocated our creative potential. Web developers like you and I developed
clever techniques (JSONP and proxy servers) to wiggle around the restrictions, but
ultimately, all our cleverness was just a bandage. Gone were the days of the mashup.
Web services were becoming a ubiquitous “back end” for web applications. True
dependencies in our applications are critical to making web services tick. However, for
services to be accessible from JavaScript meant a better tool was needed for dealing
with remote resources. Enter cross-origin resource sharing, better known as CORs.

CORs is a powerful addition in the evolution of XMLHttpRequest and the advance-
ment of web apps. By definition, CORs creates a standard way for JavaScript to securely
communicate with cross-domain resources. Practically speaking, it opens up a whole
new world for front-end developers. CORs brings back flexibility to JavaScript develop-
ers and allows them to access APIs and services from anywhere on web. For example,

XV

xvi

FOREWORD

organizations can publish read/write JSON APIs or make their entire data sets accessi-
ble to the world of JavaScript.

Monsur Hossain is fellow Googler and expert in cross-domain JavaScript communi-
cation. He and I first crossed paths working on Google’s XML-based Data APIs and
later as engineers on Google’s JavaScript client library. Over the years, Monsur lead
many facets of the client library, including its OAuth authentication flow and adding
CORS support for APIs like YouTube and Google Drive.

CORs in Action is a well-rounded resource for developers wanting to learn the
entire spectrum of CORs. Monsur does an excellent job of covering the basics. He
highlights important sections with figures and provides excellent code snippets to
teach by example.

I particularly like how often Monsur references the browser DevIools. It’s a critical
tool for gaining insight into the browser’s network stack. His use of real-world APIs like
Google Calendar and Flickr also give readers practical hands-on experience. I have no
doubt you’ll walk away learning a great deal from CORs in Action.

ERIC BIDELMAN
STAFF DEVELOPER RELATIONS ENGINEER
GOOGLE

preface

I first encountered cross-origin requests around 2006, when I joined Google and
became the owner of the GData JavaScript Client. The GData JavaScript Client was a
library that gave developers access to various Google APIs from JavaScript. The library
itself was written in JavaScript, and the code was pretty straightforward...except for this
little corner of code that made cross-origin requests to Google’s servers. This was
before CORS existed, so this little corner jumped though crazy hoops to load data
from Google’s APIs. From the developer’s perspective, the code simply worked. But
between the request and the response was a dark and convoluted maze of code that
was difficult to understand and debug.

So you can imagine my happiness when I discovered CORS. Here was a clean, sim-
ple, and standard way for making cross-origin requests. Instead of code that’s difficult
to understand, I could have simple HTTP response headers. Instead of code that’s dif-
ficult to debug, I could have a single standard that worked across all browsers. I
quickly set out to add support for CORS to Google’s APIs.

And that’s when the real fun started. While CORS uses HTTP headers to enable
cross-origin requests, there are many subtle ways in which these headers can interact.
It’s not as simple as adding an HTTP header to your server and calling it a day. And
because CORS was such a new feature, there weren’t a lot of resources to guide me.
Armed with the CORS spec, Wireshark, and a lot of patience, I spent the next few
weeks building a flexible and configurable CORS library that could work for various
types of requests. Based on that experience, I started contributing CORS knowledge to

xvii

xviii

PREFACE

the community by participating in Stack Overflow and writing an article about CORS
for HTML5Rocks.com.

That was almost three years ago, and in the years since, CORS has grown from a
specification to a feature supported by most major APIs. You can find CORS support in
APIs from Amazon, Dropbox, Facebook, Flickr, Google, and GitHub (to name just a
few). This book distills those three years of experience into an easy and illuminating
resource for learning CORS. My hope is that this book helps make CORS a little less
daunting, and encourages you to add CORS support to your own systems. Open access
to information is a cornerstone of the web, and CORS is one of the ways to enable this.
The more developers become comfortable with CORS, the more it will become a part
of the everyday vocabulary of the web.

HTML5Rocks.com

acknowledgments

This book would have never come together were it not for the generous support from
many individuals. I’d like to take a moment to acknowledge them here.

Thank you to all the Googlers who helped guide my own understanding of CORS,
including Eric Bidelman, Jad Boutros, Antonio Fuentes, Joe Gregorio, Jason Hall
(whose prompting led me to investigate CORS in the first place), Yaniv Inbar, Sven
Mawson, Eduardo Vela Nava, Jeffrey Posnick, Louis Ryan, Benjamin Carl Wiley Sittler,
and Mark Stahl. And special thanks to Eric for contributing the foreword to the book.

Thank you to Anne van Kesteren for authoring the CORS spec that made this
book possible, to Evan Hahn and Will Stranathan for their insights on particularly
thorny areas of this book, and to Nicholas Zakas, whose blog post was my first intro-
duction to CORS. Michael Hausenblas, thank you for starting enable-cors.org, and
passing the torch to me.

Thank you to everyone at Manning for their support and guidance during the
crafting of this book. To my editors Cynthia Kane and Monique Bos, thank you for the
readings and rereadings that elevated the chapters to the next level. To Konstantin
Yakushev, thank you for your in-depth technical review across multiple platforms.
Thank you also to Michael Stephens, Kevin Sullivan, Jodie Allen, Deepak Vohra,
Elizabeth Martin, and Chuck Larson.

Thank you to the reviewers who took time to read the manuscript at various stages
of its development and who provided invaluable feedback: Christopher Haupt, Cristian
Antonioli, Jeroen Benckhuijsen, Joshua Frederic, Margriet Bruggeman, Nickie Buckner,
Nikander Bruggeman, Roger Keizer, Roger Le, and Tom Rutka.

enable-cors.org

ACKNOWLEDGMENTS

Thank you to Amma, Abba, Mom, Dad, Irene, Marvin, Seema Apa, and Jav Bhai
for your enthusiasm and support. And finally, thank you to my wife, Suraiya, whose
patience, advice, understanding, and love were necessary ingredients for writing
this book.

about this book

The idea behind CORS is simple: allow one site to make a request to another. It’s a
fairly trivial thing to do from most programming languages. So why does there need
to be a book about it?

Hidden behind this simple idea are a lot of complex concepts. While other pro-
gramming languages have no restrictions on HTTP requests, things are different in a
browser, where the browser’s same-origin policy prevents requests from different sites.
CORS must balance the need to enable cross-origin requests while preserving the
same-origin policy for sites that don’t use CORS.

Also, CORS has both a client- and a server-side component. For a cross-origin
request to succeed, the client and the server must be in agreement. This is different
from other web technologies. For example, CSS lives solely in the client-side code;
there is no server-side component.

This book serves as an introduction to CORS and attempts to demystify the issues
that make CORS complicated.

What this book will give you

Here is an overview of the topics this book will cover:

= CORS from the client—This book starts by looking at how to make CORS requests
from JavaScript code. It introduces the XMLHttpRequest object, which can be
used to make CORS requests. While the XMLHt tpRequest object may be familiar
to JavaScript developers, the book focuses on what is unique about CORS. The

xxii

ABOUT THIS BOOK

book also covers alternative mechanisms for making CORS requests, such as
images in canvas elements, media uploads, and using JQuery.

= CORS from the server—The server uses HTTP headers to control CORS behavior.
HTTP headers can be used to indicate things like which HTTP methods are
allowed, whether cookies can be included on requests, and whether cross-origin
requests are allowed at all. This book takes an in-depth look at what these head-
ers are and how they’re used.

» Debugging CORS requests—Because CORS has client and server components, it
can sometimes be difficult to debug CORS issues when things go wrong. This
book ends with a look at how to debug issues with CORS requests. It introduces
such tools as the browser’s debugging tools, Wireshark, and Fiddler.

What this book won’t give you

This book isn’t an introduction to JavaScript or the web. This doesn’t mean you need
to be a JavaScript expert. It assumes that you have a basic understanding of how the
web, HTTP requests, and JavaScript work.

Although this book uses Node.js and Express for the sample code, you won’t find
fully programmed CORS solutions for your specific language or platform (unless, of
course, you happen to be using Node.js and Express). The core concepts of CORS are
the same regardless of what web platform or programming language you use. The
goal of this book is to give you the foundation for understanding CORS, so that you
can then go off and implement it on your own platform.

How to read this book

Because this book is an overview of CORS, you can approach it from different
perspectives:

= API owners—Whether you maintain an existing API or are building a new API
from scratch, CORS is a great way to extend your API’s reach.

m APl consumers—Building dynamic sites on top of APIs can sometimes be diffi-
cult. CORS can make this easier by giving developers a pure JavaScript mecha-
nism for making API requests.

» JavaScript developers—Even if you aren’t making CORS requests, JavaScript devel-
opers can benefit from understanding the basics of how XMLHttpRequest and
CORS work. Most modern web pages are built on top of asynchronous HTTP
requests (AJAX), and it’s useful to have CORS as another tool in your toolbox.

Roadmap

This book is divided into three parts. The first part looks at how to make CORS
requests from the browser. The second part looks at how to add CORS support to a
server. The third part looks at how to debug CORS requests.

ABOUT THIS BOOK xxiii

PART 1: INTRODUCTION TO CORS

Chapter 1 begins by giving an overview of what CORS requests are and how they
work. It then dives into CORS with an example that makes cross-origin requests to
the Flickr API.

Chapter 2 introduces the XMLHttpRequest object, which can be used to make
cross-origin requests. Next, it covers the XDomainRequest object, which is used to
make CORS requests from Internet Explorer 8 and 9. Then it covers other places
where CORS shows up, such as canvas images. Finally, it looks at how to make CORS
requests using JQuery.

PART 2: IMPLEMENTING CORS

Chapter 3 switches gears to see how a server can be configured to support CORS. It
takes a closer look at the role that the client code, the browser, and the server play in
the lifecycle of a cross-origin request. It introduces the Access-Control-Allow-Origin
header, which is how a server indicates that it allows cross-origin requests.

Chapter 4 introduces the concept of a preflight request, which is a small request that
asks the server for permission to make the actual CORS request. It covers how the pre-
flight request fits into the CORS lifecycle, and introduces a new set of HTTP headers
for controlling the response.

Chapter 5 looks at how to include user credentials such as cookies on the request.
It also shows how the server can grant permission to the client to read certain
response headers.

The preceding chapters set the foundation for using CORS from the server. Chap-
ter 6 expands on these ideas by providing a set of best practices for implementing
CORS on your own server.

PART 3: CORS IN PRACTICE

Chapter 7 looks at how to debug CORS requests when something goes wrong. It intro-
duces tools like the browser’s debugging tools, Wireshark, and Fiddler, which can be
used to monitor and diagnose CORS issues.

APPENDIXES

Appendix A provides a reference for all the CORSrelated headers. Appendix B looks
at how to set up Node.js and Express, which are used throughout the book for the
sample code. Appendix C takes a closer look at CSRF issues, and how they relate to
CORS. Appendix D looks at other cross-origin request techniques.

Online resources

This book provides a general introduction to CORS. If you’d like more information,
here are a few resources you can turn to:

= The sample code for this book is hosted at GitHub (https://github.com/monsur/
CORSinAction). You can either follow along with the book and type the code
out, or download and run the code from here.

https://github.com/monsur/CORSinAction
https://github.com/monsur/CORSinAction

XXiv

ABOUT THIS BOOK

= enable-cors.org is a site I maintain that has pointers to various server-side CORS
implementations. If you’re looking to add CORS support to a particular program-
ming framework (for example, Java Tomcat), here’s where you should turn.

= The CORS spec (www.w3.org/TR/cors/) defines exactly how CORS works.

= Stack Overflow (http://stackoverflow.com/) is a great resource for getting help
on CORS-related questions. I hang out there as well, and often answer questions
tagged with #cors.

Code conventions and downloads

All source code in the book is in a fixed-width font like this, which sets it off from
the surrounding text. In many listings, the code is annotated to point out the key con-
cepts, and numbered bullets are sometimes used in the text to provide additional infor-
mation about the code. We have tried to format the code so that it fits within the
available page space in the book by adding line breaks and using indentation carefully.

Code examples appear throughout this book. Longer listings appear under clear
listing headers, whereas shorter listings appear between lines of text.

Source code for all the working examples is available from www.manning.com/
CORS in Action or www.manning.com/hossain. Sample code is also available at https://
github.com/monsur/CORSinAction.

http://www.w3.org/TR/cors/
http://stackoverflow.com/
http://www.manning.com/
http://www.manning.com/hossain
https://github.com/monsur/CORSinAction
https://github.com/monsur/CORSinAction

author online

Purchase of CORS in Actionincludes free access to a private web forum run by Manning
Publications where you can make comments about the book, ask technical questions,
and receive help from the authors and from other users. To access the forum and sub-
scribe to it, point your web browser to www.manning.com/CORSinAction. This page
provides information on how to get on the forum once you are registered, what kind
of help is available, and the rules of conduct on the forum. It also provides links to the
source code for the examples in the book, errata, and other downloads.

Manning’s commitment to our readers is to provide a venue where a meaningful dia-
log between individual readers and between readers and the author can take place. It is
not a commitment to any specific amount of participation on the part of the author,
whose contribution to the Author Online forum remains voluntary (and unpaid). We
suggest you try asking the author challenging questions lest his interest stray!

The Author Online forum and the archives of previous discussions will be accessi-
ble from the publisher’s website as long as the book is in print.

XXV

www.manning.com/CORSinAction

about the author

Monsur Hossain is a software engineer at Google, where he has worked on various API
related projects, including the Google APIs JavaScript Client and the Google APIs Dis-
covery Service. He is also responsible for adding CORS support to Google APIs. He main-
tains the site enable-cors.org. Monsur lives in Chicago with his wife and two children.

http://enable-cors.org/

about the cover illustration

The figure on the cover of CORS in Action is captioned “A Rabbit-skin Seller.” The illus-
tration is taken from a nineteenth-century edition of Sylvain Maréchal’s four-volume
compendium of regional dress customs published in France. Each illustration is finely
drawn and colored by hand. The rich variety of Maréchal’s collection reminds us viv-
idly of how culturally apart the world’s towns and regions were just a little over 200
years ago. Isolated from each other, people spoke different dialects and languages; in
the streets or in the countryside, it was easy to identify where they lived and what their
trade or station in life was just by their dress.

Dress codes have changed since then and the diversity by region, so rich at the
time, has faded away. It is now hard to tell apart the inhabitants of different conti-
nents, let alone different towns or regions. Perhaps we have traded cultural diversity
for a more varied personal life—certainly for a more varied and fast-paced technolog-
ical life.

At a time when it is hard to tell one computer book from another, Manning cele-
brates the inventiveness and initiative of the computer business with book covers
based on the rich diversity of regional life of two centuries ago, brought back to life by
Maréchal’s pictures.

XXVii

Part 1

Introducing CORS

ross-Origin Resource Sharing (CORS) enables web clients to make HTTP
requests to servers hosted on different origins. CORS is a unique web technology
in that it has both a serverside and a client-side component. The serverside
component configures which types of cross-origin requests are allowed, while
the client-side component controls how cross-origin requests are made.

Part 1 focuses on the client-side component of CORS. Chapter 1 is an intro-
duction to CORS, how it works, and its benefits. It also gives a taste of what CORS
looks like by introducing a sample application that makes CORS requests to the
Flickr APL.

Chapter 2 dives deeper into this sample application to show how the client-
side component of CORS works. It starts by looking at how the browser’s
XMLHt tpRequest object (which is already familiar to any developer making same-
origin requests) can be used to make cross-origin requests. Then, it turns to
Internet Explorer 8 and Internet Explorer 9, which support a subset of CORS via
the XDomainRequest object. Next, it looks at other places where CORS requests
turn up, such as the canvas element. The chapter concludes by looking at how
CORS requests can be made from jQuery.

The Core of CORS

This chapter covers
m Which issues CORS solves
® How a CORS request works
m The benefits of CORS

Suppose you’re building a web mashup to load photos from the New York Public
Library’s (NYPL) Flickr page and display them on your own page. What would the
code look like? You could start with an HTML page to display the photos, add
JavaScript code to load the photos from the Flickr page, and display them on the
page. Pretty straightforward, right?

But if you were to run this code in the browser, it wouldn’t work because the
browser’s same-origin policy limits client code from making HTTP requests to dif-
ferent origins. This means that a web page running from your desktop or web
server can’t make an HTTP request to Flickr.com.

Cross-Origin Resource Sharing, or CORS, was built to help solve this issue. Before
CORS, developers would need to go to great lengths to access APIs from JavaScript
clients in the browser. CORS enables cross-origin requests in a safe, standard
manner. From a client’s perspective, CORS is awesome because it opens up a new
world of APIs that previously wasn’t available to browser JavaScript. From a server’s

1.1

CHAPTER 1 The Core of CORS

perspective, CORS is awesome because it allows the server to open up its APIs to a new
world of users.

This chapter gives an overview of what CORS is and how it’s used. It begins by review-
ing CORS’s features and benefits. It then walks through the code to make a CORS request.

What is CORS?

CORS is simply a way of making HTTP requests from one place to another. This is a
trivial thing in other programming languages. But it’s difficult to do in clientside
JavaScript, because for years the browser’s same-origin policy has explicitly prevented
these types of requests.

This may make CORS sound like a contradiction. How can CORS allow cross-origin
requests if the same-origin policy explicitly forbids them? The key is that CORS puts
servers firmly in charge of who can make requests, and what type of requests are
allowed. A server has the choice to open up its API to all clients, open it up to a small
number of clients, or prevent access to all clients.

So if browsers enforce a same-origin policy, how does CORS work? The secret lies in
the request and response headers. The browser and the server use HTTP headers to
communicate how cross-origin requests behave. Using the response headers, the
server can indicate which clients can access the API, which HTTP methods or HTTP
headers are allowed, and whether cookies are allowed in the request.

Figure 1.1 shows what an end-to-end CORS request to the Flickr API looks like.

Browser inspects headers; if they're
valid, it gives response to client.

Browser Flickr server

o Client code e Browser adds / \
initiates headers and sends

request to request to Flickr.
Flickr.

-

Flickr responds

var xhr = with special

new XMLHTTPRequest () ; CORS-specific
xhr.open (method, url) ; HTTP headers.
xhr.onload = function ()
{
Vi
xhr.send () ;

JavaScript code \ /

Figure 1.1 End-to-end CORS request flow

1.2

CORS by example 5

Here is a simplified look at the steps to making a CORS request (there are a few more
nuances to some CORS requests, which we’ll cover in later chapters):

@ The CORS request is initiated by the JavaScript client code.
@ The browser includes additional HTTP headers on the request before sending
the request to the server.

© The server includes HTTP headers in the response that indicate whether the
request is allowed.

O 1f the request is allowed, the browser sends the response to the client code.

If the headers returned by the server don’t exist, or aren’t what the browser expects,
the response is rejected and the client can’t view the response. In this way, browsers
can still enforce the same-origin policy on servers that don’t allow cross-origin
requests. Now that you have a sense of what CORS is, let’s turn our attention to making
a CORS request.

CORS by example

Let’s demonstrate how CORS works by building a Flickr sample app. Figure 1.2 shows
the app, which loads photos from the NYPL’s Flickr site and displays them on the page.
The following listing shows the code behind this sample.

<!DOCTYPE html>

<html>

<body onload="loadPhotos() ;">

<div id="photos">Loading photos...</div>

<scripts>

function loadPhotos () {
var api_key = '<YOUR API KEY HERE>';
var method = 'GET'; QAAJ quueﬁto
var url = 'https://api.flickr.com/services/rest/?' + Flickr AP

'method=flickr.people.getPublicPhotos&' +
'user 1d=32951986%40N05&"' +

'extras=url g&format=json&nojsoncallback=1&' +
'api_key=' + api_key;

var xhr = new XMLHttpRequest () ; Makes sure browser
if (! ('withCredentials' in xhr)) { supports CORS
alert ('Browser does not support CORS.');
return;

}

xhr.open (method, url) ;

xhr.onerror = function() {
alert ('There was an error.');

}i

xhr.onload = function() {
var data = JSON.parse (xhr.responseText) ;
if (data.stat == 'ok') {

var photosDiv = document.getElementById ('photos');
photosDiv.innerHTML = '';

CHAPTER 1 The Core of CORS

var photos = data.photos.photo;
for (var i = 0; i < photos.length; i++) {
var img = document.createElement ('img') ;
img.src = photos[i] .url_g;
photosDiv.appendChild (img) ; Displays photos
} 4—‘ on page
} else {
alert (data.message) ;
}
}i

xhr.send () ;

}

</script>
</body>
</html>

NOTE If you’d like to run this sample in your browser, you’ll need to obtain
an API key from Flickr and substitute it for the <YOUR API KEY HERE> string in
the code. You can obtain an API key at www.flickr.com/services/apps/create/.

.| index.html| x

& C' | file:///Users/monsur/Listings/ch01/listing-1.1/index.html| =

Figure 1.2 Loading photos
from Flickr using CORS

www.flickr.com/services/apps/create/

121

1.2.2

1.23

CORS by example 7

If you save this code to an HTML file (and set the API key as mentioned in the pre-
ceding note) and then open that file in your browser, you should see a bunch of
photos. The key thing to note about this example is that although the web page is run-
ning from your local filesystem, it’s making a request to the server at api.flickr.com.
Let’s walk through the code to get a better understanding of what each section
is doing.

Setting up the request

The code starts by creating a new XMLHt tpRequest object:

var xhr = new XMLHttpRequest () ;

if (! ('withCredentials' in xhr)) ({
alert ('Browser does not support CORS.');
return;

}

xhr.open (method, url) ;

The first and last lines are the same for same-origin and cross-origin requests. The first
line creates the XMLHttpRequest object, the last sets the HTTP method and URL.

The three middle lines highlight the difference between a same-origin-capable
browser and a cross-origin-capable browser. If the browser fully supports CORS, the
XMLHt tpRequest object will contain a withCredentials property. You can use this
property to check if the browser supports CORS. The preceding code alerts you if the
browser doesn’t support CORS.

Sending the request

Once the request is set up, you send the request to the server using the send method:
xhr.send () ;

This method initiates the HTTP request to the server. Chrome’s Network tab gives you
a better understanding of what the request looks like, as shown in figure 1.3. The fig-
ure shows the fact that even though the request originates from the filesystem @, the
destination server is in fact flickr.com @.

Notice how the response has a header set to Access-Control-Allow-Origin: * €.
The Access-Control-Allow-Origin header is the magic behind CORS. The server uses
this header to indicate that cross-origin requests are allowed. The Access-Control-
Allow-Origin header must always be present on a CORS response, but it’s just one of
many headers that can be used to configure CORS behavior. Part 2 of this book will
cover these headers in greater detail.

Processing the response

Once the browser receives the response, it checks the response headers to verify that
the cross-origin request is valid. If the request isn’t valid, the browser will log an error

CHAPTER 1 The Core of CORS

° Request originates from local file system.

® O VY
Name
Path

—l index.html
==| /Users/monsur/Google%2(

?method=flickr.people.g...

. 4058784908 _401c422f...
—! farm3.staticflickr.com/258
& 4058037391_95489¢06...

farm3.staticflickr.com/278

P

‘ 4058037097_14681677...
farm3.staticflickr.com/270

4058778064_61657751...
farm3.staticflickr.com/250

E 4058034963_7b6105fa...
farm4.staticflickr.com/352

Q 4057968245_dd1978c4...

farm3.staticflickr.com/264

. 4057968029_1394fffec...
farm3.staticflickr.com/266

. 4055708757_79c66341...
farm4.staticflickr.com/353

- 4055708627_6cc74aa4...
== farm3.staticflickr.com/260

I' 4055708497_2364b24f...

farm3.staticflickr.com/277

| Preserve log |_ Disable cache

103 requests | 4.8 KB transferr...

X ‘Headers‘ Preview Response Timing

Remote Address: 98.139.199.205:443

Request URL: https://api.flickr.com/services/rest/?method=
flickr.people.getPublicPhotos&user_id=32951986%40N05&extr
as=url_g&format=json&nojsoncallback=1&api_key=29523214cd0
29cB8fefd7e8b667129b6a

Request Method: GET
Status Code: @ 200 0K
v Request Headers view source
Accept: */*
Accept-Encoding: gzip,deflate,sdch
Accept-Language: en-US,en;q=0.8
Cache-Control: no-cache
Connection: keep-alive
Host: api.flickr.com
Origin: null
Pragma: no-cache
User-Agent: Mozilla/5.@ (Macintosh; Intel Mac 0S X 10_9_
3) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/36.0.19
85.103 Safari/537.36
» Query String Parameters (6)
v Response Headers view source
Access-Control-Allow-0rigin: *
Age: 2
Cache-Control: private
Connection: keep-alive
Content-Encoding: gzip
Content-Length: 4214
Content-Type: application/json
Date: Tue, 08 Jul 2014 22:34:15 GMT
P3P: policyref="http://info.yahoo.com/w3c/p3p.xml", CP="

CAO DSP COR CUR ADM DEV TAI PSA PSD IVAi IVDi CONi TELo

Request ends up
at api.flickr.com.

e Access-Control-Allow-Origin header
is what enables CORS.

Figure 1.3 Details on the HTTP request and response from the Flickr API

to the console, then fire the XMLHt tpRequest’s onerror event. But because the response
here is valid, the browser fires the XMLHt tpRequest’s onload event:

xhr.onload

function() {

var data = JSON.parse (xhr.responseText) ;

1.3

13.1

1.3.2

Benefits of CORS 9

if (data.stat == 'ok') {

var photosDiv = document.getElementById ('photos');

photosDiv.innerHTML = '';

var photos = data.photos.photo;

for (var 1 = 0; 1 < photos.length; i++) {
var img = document.createElement ('img') ;
img.src = photos[i] .url g;
photosDiv.appendChild (img) ;

}
} else {
alert (data.message) ;

}
}i

This code parses the response text into a JavaScript Serialized Object Notation (JSON)
object, grabs the images from the object, and displays them on the page. In addition
to the response text, the XMLHt tpRequest object also has properties for the HTTP sta-
tus, HTTP status text, and methods that retrieve response headers.

Benefits of CORS

The example from the previous section gave you a sense of power of CORS. Now let’s
turn our attention to some of the benefits CORS provides.

Wider audience

If you’re building a public API, you want to open up access to as wide an audience as
possible. Developers in other languages can easily use native libraries to make API
requests. For example, a Python developer can use the httplib2 library to make HTTP
requests to any server, regardless of where the request originates. The following snip-
pet shows what a Python request to Flickr looks like. The httplib2 library doesn’t care
whether the server is CORS-enabled; it indiscriminately makes the request and pro-
cesses the response, as this sample code shows:

import httplib2
h = httplib2.Http(".cache")
resp, content = h.request ("http://www.flickr.com/photos/nypl/", "GET")

JavaScript developers don’t have that advantage because the browser’s same-origin
policy limits HTTP requests to a single domain. CORS enables JavaScript developers to
use an API the same way a developer in another language could.

Servers stay in charge

Safety is an important factor when making cross-domain requests. Any cross-domain
mechanism needs to be careful not to break the browser’s same-origin policy and
inadvertently send requests to an unsuspecting server.

CORS achieves this safety by allowing servers to opt-in to CORS. For the request to
succeed, the server must use response headers to explicitly acknowledge that the request

10

133

134

1.3.5

1.4

CHAPTER 1 The Core of CORS

is allowed. That way, if a CORS request is made to a server that doesn’t support CORS
or doesn’t have the right CORS headers, the request fails.

Flexibility
CORS gives servers the flexibility to configure cross-origin access in a variety of ways.
The server can specify various features:

= Which domains are allowed to make requests

= Which HTTP methods are allowed (for example, GET/PUT/POST/DELETE)
= Which headers are allowed on the HTTP request

= Whether or not requests may include cookie data

= Which response headers the client can read

These rich settings put the server firmly in control of how the CORS request works.

Easy for developers

Because CORS is a standardized specification, it works in a consistent manner across
sites. Developers need only learn about CORS once; then they can use the same tech-
niques across all sites that support CORS.

While CORS requires new configuration on the server side, the clientside devel-
oper experience remains largely unchanged. JavaScript’s XMLHt tpRequest object has
been available in browsers for over 10 years. Developers make CORS requests using
the same XMLHttpRequest object they are familiar with. There isn’t any new code for
the developer to learn. From the developer’s perspective, same-origin and cross-origin
requests look mostly the same. (There are some slight differences, which we’ll cover
in chapter 2.)

Reduced maintenance overhead

There are ways to make cross-origin requests without using CORS (appendix D covers
some of these techniques). But these techniques require custom code, custom servers,
or additional documentation. This leads to an additional maintenance burden for the
server developer.

Conversely, CORS only requires a few additional response headers. This reduced
maintenance means that API owners can focus their attention on other things, rather
than worrying about reinventing and maintaining new cross-domain mechanisms.
Because CORS is a published specification with broad browser support, site owners can
rest assured that their implementation is stable and that details won’t change.

Summary

CORS allows client code to make cross-origin requests to remote servers. CORS is nec-
essary because the browser’s same-origin policy traditionally disallows cross-origin
requests, which makes it difficult to load data from other sites. Here are some benefits
of CORS:

Summary 11

= Opens an API to a wider audience

= Puts servers in charge of how CORS behaves

= Allows flexible configuration options

= Makes it easy for client developers to use

» Reduces maintenance overhead for server developers

The next chapter will dive into the details of how to make CORS requests from the
browser.

Making CORS requests

This chapter covers

Which browsers support CORS
How to use the XMLHttpRequest object to
make CORS requests

How to use the XDomainRequest object in
Internet Explorer 8 and 9

How to load cross-origin images in
a canvas element

How to make CORS requests from jQuery

A CORS request consists of two sides: the client making the request, and the server
receiving the request. On the client side, the developer writes JavaScript code to
send the request to the server. The server responds to the request by setting special
CORS-specific headers to indicate that the cross-origin request is allowed. Without
both the client’s and the server’s participation, the CORS request will fail.

This chapter focuses on how to make CORS requests from JavaScript. It assumes
you have an existing CORS-enabled API (such as the Flickr API, the GitHub API, or your
own API) to make requests to (if you don’t have an existing CORS-enabled API, don’t
worry. Part 2 looks at how to set one up). The chapter starts by defining what a cross-
origin request is and which browsers support it. It then covers the main ways to make

12

2.1

What is a cross-origin request? 13

Homer Bart Ned Rod

742 Evergreen Terrace 744 Evergreen Terrace

Figure 2.1 Two houses with two people in each. Each house represents a website, and the people in
the house are web pages.

CORS requests, including the XMLHttpRequest and XDomainRequest objects. Next it
looks at how the HTML5 <canvas> element uses CORS to load images. It ends with a look
at jQuery support for CORS. The server-side details of CORS will be covered in chapter 3.

What is a cross-origin request?

Before learning how to make a cross-origin request, let’s define what a cross-origin
request is. Think of a website as a house, and each page on the website as an inhabit-
ant of that house. Suppose there are houses located at 742 Evergreen Terrace and 744
Evergreen Terrace, and each house has two residents: Homer and Bart at 742 Ever-
green Terrace, and Ned and Rod at 744 Evergreen Terrace (as shown in figure 2.1).

An HTTP request is a conversation between two people. When Homer talks to Bart,
the conversation takes place solely within the confines of the house. This is called a
same-origin request. If Homer calls Ned, the conversation crosses the boundaries of the
house. This is called a cross-origin request. Figure 2.2 shows the distinction between a
same-origin and a cross-origin request.

Same-origin request =
people talking inside

a house Cross-origin request =
calling from one house
to another
Homer Bart Ned Rod

742 Evergreen Terrace 744 Evergreen Terrace

Figure 2.2 Illlustrating the difference between a same-origin and a cross-origin request

14

2.2

CHAPTER 2 Making CORS requests

Flickr API server

£)

<html>

<body onload="loadPhotos () ;">
<div id="photos"></div>
<script>

function loadPhotos () {

var xhr = new XMLHttpRequest () ;
xhr.open (method, url); HTTP request
xhr.onerror = function() {

}i

xhr.onload = function() {

xhr.send () ;

}

</script>
</body></html>

S /

JavaScript code e Flickr API server
running in browser. receives API request.

Figure 2.3 Making a request from the browser to the Flickr API

Now let’s apply this analogy to the Flickr example from chapter 1. In that example,
there is JavaScript code running in the browser, which initiates a request to the Flickr
API, as shown in figure 2.3. This request is a cross-origin request because the Java-
Script code making the request and the API server receiving the request live on two
different websites.

There are a lot of different pieces to making a successful cross-origin request.
The client and the server must work together to ensure that the request succeeds.
This chapter focuses on the first part of this process: how the client initiates a
request to the server @. Let’s start by taking a look at which browsers do and don’t
support CORS.

Browser support for CORS

Browser support for CORS can be divided into three tiers: full support, partial support,

and no support. If you're developing with CORS, it’s helpful to know which browsers

your users are using, so you know which of these three tiers you need to focus on.
CORS is fully supported in the following desktop browsers:

s Chrome 3+
» Firefox 3.5+
= Safari 4+

23

Using the XMILH{ttpRequest object 15

= Internet Explorer 10+
= Opera 12+

In addition to desktop browsers, CORS is fully supported in most mobile browsers,
including iOS 3.2+ and Android 2.1+. Mobile devices tend to have up-to-date software,
so if you’re developing for mobile browsers, you can be comfortable knowing your
users have CORS support.

Internet Explorer 8 and 9 support a limited version of CORS using something called
the XDomainRequest object, which is limited to only certain types of CORS requests. If
cross-origin requests in Internet Explorer 8 or Internet Explorer 9 are important to your
application, you’ll want to learn about the limitations in XDomainRequest.

If the browser’s version is older than the ones mentioned here, it probably doesn’t
support CORS. If you need to support cross-origin requests in an older browser, there
are still options. As we’ll cover in appendix D, there are other mechanisms available
for making cross-origin requests in older browsers. But you won’t be able to use the
techniques described here.

Table 2.1 breaks down the landscape of CORS support in browsers. As of mid-2014,
approximately 83% of the browsers out there have full support for CORS, and another
6% have partial support.

Table 2.1 CORS support in browsers

Tier CORS support Browsers

1 Full CORS support Chrome 3+, Firefox 3.5+, Safari 4+, Internet Explorer 10+, Opera 12+

2 Partial CORS support Internet Explorer 8, Internet Explorer 9

3 No CORS support Chrome 2 and below, Firefox 3 and below, Safari 3 and below,
Internet Explorer 7 and below, Opera 11 and below

(Source: http://caniuse.com/#search=cors.)

The next two sections look at how to work with CORS in tier 1 and tier 2 browsers. Tier 1
browsers use the XMLHt tpRequest object to make cross-origin requests, while tier 2 brows-
ers use the XDomainRequest object. Let’s start by looking at the XMLHt t pRequest object.

Using the XMLHttpRequest object

JavaScript code can make HTTP requests with the XMLHttpRequest object. Listing 1.1
showed you how the XMLHttpRequest object can be used for a CORS request to the
Flickr API. The following listing shows the code from listing 1.1 and highlights the indi-
vidual pieces of the request.

<!DOCTYPE htmls>
<html>
<body onload="loadPhotos() ;">

http://caniuse.com/#search=cors

16

CHAPTER 2 Making CORS requests

<div id="photos">loading photos...</div>

<scripts>
function loadPhotos () ({
var apiikey = '<YOUR API KEY HERE>';
var method = 'GET';
var url = 'https://api.flickr.com/services/rest/?' +

'method=flickr.people.getPublicPhotos&' +
'user 1d=32951986%40N05&' +
'extras=url_g&format=json&nojsoncallback=1&' +
'api_key=' + api_key;

var xhr = new XMLHttpRequest () ;

if (!('withCredentials' in xhr)) {
alert ('Browser does not support CORS.');
return;
} Sets up request
xhr.open (method, url) ; parameters
xhr.onerror = function()
alert ('There was an error.');
bi Sends
xhr.onload = function() { request
var data = JSON.parse (xhr.responseText) ;
if (data.stat == 'ok') {

var photosDiv = document.getElementById('photos');
photosDiv.innerHTML = '';

var photos = data.photos.photo;

for (var i = 0; i < photos.length; i++) ({
var img = document.createElement ('img') ;
img.src = photos[i].url g;
photosDiv.appendChild (img) ;

1
} else {

alert (data.message) ;
}

bi Processes
xhr.send () ; response
}
</script>

</body>
</html>

There are three parts to making an HTTP request:

= Sets up request parameters.
= Sends request.

= Processes response. (The code to process the response is defined before the
request is actually sent, which is why xhr.onload comes before xhr.send.)

The rest of this section will examine how to use the XMLHt t pRequest object during these
three phases of the HTTP lifecycle. While the XMLHttpRequest object can be used to
make either same-origin or cross-origin requests, this section will pay special attention
to any CORS-specific behavior. Even if you have worked with the XMLHt tpRequest object

Using the XMLHitpRequest object 17

before, some of this information may still be new, because the XMLHttpRequest
object underwent a revision around 2010. The latest version has new properties that
help enable CORS. The older version of XMLHt tpRequest works in older tier 3 browsers,
but because it doesn’t support CORS, it isn’t covered here.

2.3.1 Sending an HTTP request

The first step in making an HTTP request is setting up a new XMLHt tpRequest object.
The following listing highlights the code that sets up the request.

<!DOCTYPE html>

<html>
<body onload="loadPhotos() ;">
<div id="photos"s>Loading photos...</div>
<scripts>
function loadPhotos() {
var apiikey = '<YOUR API KEY HERE>';
var method = 'GET';
var url = 'https://api.flickr.com/services/rest/?' +
'method=flickr.people.getPublicPhotos&' + Defines HTTP
'user id=32951986%40N05&' + method and URL

'extras=url_g&format=json&nojsoncallback=1&' +
'api key=' + api key;

var xhr = new XMLHttpRequest () ;

if (! ('withCredentials' in xhr)) Creates new
alert ('Browser does not support CORS.'); XMLHttpRequest
return; object

}

xhr.open (method, url) ;

xhr.onerror = function() { Assigns HTTP method and
alert ('There was an error.'); UR,L to XMLH“PRequeSt
. object
xhr.onload = function() ({
var data = JSON.parse (xhr.responseText) ;
if (data.stat == 'ok') {

var photosDiv = document.getElementById ('photos');
photosDiv.innerHTML = '';
var photos = data.photos.photo;
for (var 1 = 0; 1 < photos.length; i++) {
var img = document.createElement ('img') ;
img.src = photos[i].url g;
photosDiv.appendChild (img) ;
}
} else {
alert (data.message) ;
1
Vi

xhr.send () ;

}

18

CHAPTER 2 Making CORS requests

</script>

</body>

</html>

It starts by defining the HTTP method and URL to the APL In the case of a cross-origin
request, the URL is the full URL to the resource. There is no other special informa-
tion that needs to be set to delineate a request as cross-origin. The browser does the
work of parsing the URL and determining if the request is a same-origin or a cross-
origin request.

The code then creates a new XMLHttpRequest object, and verifies that it supports
CORS by checking that the XMLHttpRequest object has a withCredentials property.
The withCredentials property will be covered in more detail later in this chapter. For
now, all you need to know is that if the XMLHt tpRequest object has a withCredentials
property, then it supports CORS.

The open method is called to set the values of the HTTP method and URL. The
open method also does some basic validation to ensure that the HTTP method and
URL are valid. For example, if the HTTP method contains a space, calling open will
throw a syntax error.

ADDING HTTP HEADERS

The setRequestHeader method lets you add HTTP headers to the request. This method
accepts a header key and header value, and includes the header on the request. The fol-
lowing code snippet, which should be included after the open method, shows an example
of using the setRequestHeader method to set the X-Requested-With request header:

xhr.setRequestHeader ('X-Requested-With', 'CORS in Action');

There are some headers that are set by the browser that can’t be set by the user (see the
following sidebar for the complete list). As you’ll see in the next chapter, the browser
sets an Origin header on cross-origin requests. If you try to override this header in your
code, the browser will ignore your value. This is a security measure that helps prevent
user code from overriding trusted header values. The server can trust these values
because it knows the user hasn’t accidentally (or maliciously) tainted the value.

Setting request headers

Here is the list of headers that cannot be set by the setRequestHeader method:
Accept-Charset, Accept-Encoding, Access-Control-Request-Headers, Access-Control-
Request-Method, Connection, Content-Length, Cookie, Cookie2, Date, DNT, Expect,
Host, Keep-Alive, Origin, Referer, TE, Trailer, Transfer-Encoding, Upgrade, User-Agent,
Via, and any headers starting with ‘Proxy-’" or ‘Sec-'.

These headers have special meaning and can only be set by the browser. There is no
error if the code tries to set the header. The value is just ignored.

The server has to give its permission for the client to include custom request headers
on a cross-origin request. This behavior is unique to cross-origin requests; same-origin

Using the XMILH{ttpRequest object 19

requests can include any custom request header. If the server doesn’t whitelist the
request headers, the request will fail. We’ll dive into more details on how a server does
this in chapter 4.

MAKING THE REQUEST
Once the request is set up, calling the send method will send the HTTP request to the
server, as shown in the following listing.

Listing 2.3 Calling the send method to initiate the HTTP request

<!DOCTYPE html>

<html>
<body onload="loadPhotos() ;">
<div id="photos"s>Loading photos...</div>
<scripts>
function loadPhotos() {
var api key = '<YOUR API KEY HERE>';
var method = 'GET';
var url = 'https://api.flickr.com/services/rest/?' +

'method=flickr.people.getPublicPhotos&' +
'user 1d=32951986%40N05&' +

'extras=url_ g&format=json&nojsoncallback=1&' +
'api_key=' + api_ key;

var xhr = new XMLHttpRequest () ;

if (! ('withCredentials' in xhr)) ({
alert ('Browser does not support CORS.');
return;

}

xhr.open (method, url);

xhr.onerror = function() ({
alert ('There was an error.');

xhr.onload = function() {
var data = JSON.parse (xhr.responseText) ;
if (data.stat == 'ok') {
var photosDiv = document.getElementById('photos');
photosDiv.innerHTML = '';
var photos = data.photos.photo;
for (var i = 0; i < photos.length; i++) {
var img = document.createElement ('img') ;
img.src = photos[i].url g;
photosDiv.appendChild (img) ;
}
} else {
alert (data.message) ;

}

}i The send method initiates

xhr.send () ; the HTTP request.

1
</script>
</body>
</html>

20

23.2

CHAPTER 2 Making CORS requests

xhr.timeout = 10000;

xhr.send () ; xhr.send () ;

(10 seconds later)
xhr.abort () ;

Figure 2.4 Canceling a request that
is still in progress using the timeout
property and abort method

Request times out. Request is aborted.

If the HTTP request has a request body, the body can be passed in as a parameter to
the send method as follows:

xhr.send ('request body goes here');

Once the send method is called, the HTTP request is sent to the server. Even though
the request has been sent, there are still a couple of ways to cancel the request. First, the
timeout property can be used to ensure that the request doesn’t exceed a certain
number of milliseconds. Setting the timeout property to 10000 will kill the request
after 10 seconds. The default value for the timeout property is 0, which means there is
no timeout, and the request will continue until the server responds. Second, the client
can manually kill the request by using the abort method. Calling the abort method
will abort the request immediately. Figure 2.4 shows how to use the timeout property
and the abort method.

When the server receives a cross-origin request, it determines whether or not the
request is allowed, and replies accordingly. Chapter 3 will cover how the server replies
to cross-origin requests. But for now, let’s assume there is a successful HTTP response,
and look at how to handle it.

Handling the HTTP response

The XMLHttpRequest object handles the server’s response through a set of events.
Events are functions that are invoked at specific moments in the lifecycle of an HTTP

Using the XMILH{ttpRequest object 21

request. Events aren’t unique to the XMLHt tpRequest object; when a user clicks a link
on an HTML page, the browser fires a click event.

Asynchronous versus synchronous requests

By default, the XMLHt tpRequest object makes asynchronous requests. This means
that the send method makes the request in the background, and fires events when
the status of the request changes. The XMLHttpRequest object can also make syn-
chronous requests. In a synchronous request, the send method will wait until the
response is received (or an error is encountered).

Client code can trigger a synchronous request by setting the third parameter to the
open method to false. For example: xhr.open ('GET', 'http://', false). Syn-
chronous requests don’t fire any events. Instead the code waits until the request is
finished. This can cause the entire page to become unresponsive until the request
returns. In general, you should avoid synchronous requests and stick with the default
asynchronous requests.

The functions that handle these events are called event handlers. Table 2.2 gives an
overview of all event handlers supported by the XMLHt t pRequest object.

Table 2.2 Event handlers exposed by the XMLHt tpRequest object

Event handler

Description

onloadstart
onprogress
onabort
onerror
onload

ontimeout

onloadend

onreadystatechange

Fires when the request starts.

Fires when sending and loading data.

Fires when the request has been aborted by calling the abort method.
Fires when the request has failed.

Fires when the request has successfully completed.

Fires when the timeout has been exceeded (if the client code specified a
timeout value).

Fires when the request has completed, regardless of whether there was
an error or not.

Legacy handler from the previous version of XMLHt tpRequest; fires
when legacy readyState property changes. It is superseded by other
events and is only useful for non-tier 1 browsers.

Figure 2.5 shows when these events are fired during the lifecycle of an HTTP request.
Some events, such as onloadstart and onloadend, are always fired once per request.

Others may be fired multiple times, such as onreadystatechange and onprogress.

Some event handlers may not fire at all, depending on the status of the request; these

include onload, onerror, ontimeout, and onabort.

22

CHAPTER 2 Making CORS requests

onloadstart

—— onreadystatechange

———— onprogress

[——————— onabort

——— ontimeout

> Oonerror

———— > onload

Figure 2.5 Which event handlers fire
onloadend during the course of an HTTP request

The user can assign a function to each of these event handers to process the particular
event. If you need to always run some code at the end of the request (regardless of
whether or not there was an error), you’d assign a method to the onloadend event
handler. The code isn’t required to handle each of those events; if an event handler is
unassigned, nothing happens when that event is fired. Let’s take a closer look at some
of the more important event handlers.

HANDLING A SUCCESSFUL RESPONSE WITH THE ONLOAD EVENT HANDLER

The onload event handler fires when the request is successful. In the Flickr example,
the onload handler is responsible for displaying the photos on the page, as shown in the
following listing.

Listing 2.4 Assigning a function to the XMLHt tpRequest’s onload event handler

<!DOCTYPE html>

<html>

<body onload="loadPhotos() ;">

<div id="photos">Loading photos...</div>

<scripts>
function loadPhotos () {
var api key = '<YOUR API KEY HERE>';
var method = 'GET';
var url = 'https://api.flickr.com/services/rest/?' +

'method=flickr.people.getPublicPhotos&' +
'user 1d=32951986%40N05&' +

'extras=url g&format=json&nojsoncallback=1&"' +
'api_key=' + api_key;

Using the XMILH{ttpRequest object

var xhr = new XMLHttpRequest () ;

if (! ('withCredentials' in xhr)) {
alert ('Browser does not support CORS.');
return;

}

xhr.open (method, url) ;

xhr.onerror = function() ({
alert ('There was an error.');

}i

xhr.onload = function() {
var data = JSON.parse (xhr.responseText) ;
if (data.stat == 'ok') {

var photosDiv = document.getElementById ('photos');

photosDiv.innerHTML = '';
var photos = data.photos.photo;
for (var 1 = 0; 1 < photos.length; i++) {
var img = document.createElement ('img') ;
img.src = photos[i] .url_g;
photosDiv.appendChild (img) ;
}
} else {
alert (data.message) ;
}
Vi

xhr.send () ;

1
</scripts>
</body>
</html>

23

Assigns a method
to onload event
handler

When processing the HTTP response, the code has access to various response vari-
ables, such as the HTTP status code, the HTTP status text, the response body, and the
response HTTP headers. For example, the code in listing 2.4 uses the responseText
property to grab the body of the response. Table 2.3 gives an overview of the proper-

ties that are available on the response.

Table 2.3 Response properties on the XMLHt tpRequest object

Response property Description

status The HTTP status code (for example, 200 for a successful request).

statusText The response string returned by the server (for example, OK for a successful
request).

response The body of the response, in the format defined by responseType. If the client

parsed from the response body.

indicated that the response type is json, the response will be a JSON object

responseText The body of the response as a string. Can only be used if responseType was

not set or was set as text.

responseXML The body of the response as a DOM element (XML is here for historical reasons).

Can only be used if responseType was not set or was set as document.

24

CHAPTER 2 Making CORS requests

The getResponseHeader and getAl1ResponseHeaders methods can be used to read the
HTTP headers on the response. getResponseHeader returns the value of a given response
header, while getAllResponseHeaders returns all the response headers as a single
string. There is one caveat to reading response headers on a cross-origin request. By
default, CORS only allows the client code to read the following response headers:

= Cache-Control

= Content-Language
= Content-Type

= Expires

= Last-Modified

= Pragma

If the server sets any additional response headers that aren’t in this list, the client
won’t be able to see them. But the server can also override this behavior by specifically
indicating that these additional response headers should be visible to the client code.
The details of how to do this are covered in chapter 5.

To understand when the onload handler fires, it’s important to distinguish a suc-
cessful response from a successful response status code. HTTP responses have an asso-
ciated status code. A successful response usually has a status code of 200, although any
status code in the 200 range signals a success. Status codes in the 300 range signal
that the request is being redirected, while status codes of 400 or above signal an
error (the 400 range is reserved for client errors while the 500 range is reserved for
Server errors).

Regardless of the underlying response status code, if the response makes it back to
the browser, the onload event handler will fire. So although a request may fail due to a
file not found (status code 404) or an internal server error (status code 500), the onload
event handler will still fire. Figure 2.6 shows the relationship between the response and
the response status code.

If the request fails for some other reason, the onerror event handler will fire.
These are errors where the server doesn’t send a valid response to the browser, or the
server doesn’t support CORS. The next section takes a look at how to use the onerror
event handler.

HANDLING AN ERROR USING THE ONERROR HANDLER

The onerror event handler will fire if there is an issue with the request. This can hap-
pen if, for example, the servers powering the Flickr APT are down and not responding.
But the onerror event is particularly relevant to CORS because it fires if the server
rejects the CORS request. If the Flickr API didn’t support CORS, the onerror event
handler would fire.

As we’ll cover in the next part of this book, the server has many reasons to reject a
CORS request. The server may allow cross-origin GET and POST requests, but not PUT or
DELETE requests. In this case, if a client attempts a PUT request, the onerror handler
will fire instead of the onload handler.

Using the XMILH{ttpRequest object 25

Response
status code

100 T \
} 100-199 = Informational
200 |
} 200-299 = Success
300 |
300-399 = Redirect All valid server responsgs..
onload event handler will fire.
400 |
400-499 = Client error
Figure 2.6 Distinction
500 —— between the response
and response status
code. The status code
500-599 = Server error may have an error, but
the onload event
1 J handler will still fire.

Listing 2.5 shows how to add an onerror handler to the sample code. Note that while
the onerror event signals that something went wrong with the cross-origin request, it
doesn’t tell you what went wrong. The statusText property will be empty, and the
status will be 0. The code will only know that a request failed, and nothing more.

Listing 2.5 Handling a CORS error using the onerror event handler

<!DOCTYPE html>

<html>
<body onload="loadPhotos() ;">
<div id="photos"s>Loading photos...</div>
<scripts>
function loadPhotos() {
var api key = '<YOUR API KEY HERE>';
var method = 'GET';
var url = 'https://api.flickr.com/services/rest/?' +

'method=flickr.people.getPublicPhotos&' +
'user 1d=32951986%40N05&' +

'extras=url_ g&format=json&nojsoncallback=1&' +
'api_key=' + api_ key;

var xhr = new XMLHttpRequest () ;
if (! ('withCredentials' in xhr)) ({
alert ('Browser does not support CORS.');

26

CHAPTER 2 Making CORS requests

return;

}

xhr.open (method, url) ;

xhr.onerror = function() Assigns a method

alert ('There was an error.'); to onerror event
}i handler
xhr.onload = function() ({

var data = JSON.parse (xhr.responseText) ;

if (data.stat == 'ok') {

var photosDiv = document.getElementById('photos');
photosDiv.innerHTML = '';
var photos = data.photos.photo;
for (var 1 = 0; i < photos.length; i++) {
var img = document.createElement ('img') ;
img.src = photos[i].url g;
photosDiv.appendChild (img) ;

}

} else {
alert (data.message) ;

}
i

xhr.send () ;

}

</script>
</body>
</html>

If you’re curious to understand why a cross-origin request failed, some browsers (such
as Chrome) will display the reason in the console log. This message will give more
context to a human who is able to read the message, but there is no way to read this
message from JavaScript. Chapter 7 will go into more detail on how to debug and fix a
failing CORS request.

OTHER EVENT HANDLERS
Together, the onload and onerror event handlers will handle most of your needs. But

the XMLHt t pRequest object exposes a few more event handlers that you can hook into,
as shown in table 2.4.

Table 2.4 XMLHttpRequest event handlers

Event handler Function
onloadstart Fires when the request is successfully initiated asynchronously.
onloadend Similar to onloadstart, onloadend always fires when the request

ends. This event handler is useful if you want to execute some piece of
code at the very end of the request, regardless of whether or not the
request is successful.

onabort Fires if the client aborts the request by calling the abort method. If
onabort fires, the onload and onerror event handlers will not fire.

233

Using the XMLHttpRequest object 27

Table 2.4 XMLHttpRequest event handlers (continued)

Event handler Function

ontimeout Fires if the code set a timeout value, and that timeout has been exceeded.
If your code sets a timeout of 10,000 milliseconds (10 seconds), this
event handler will fire if the response hasn’t been received after 10 sec-
onds. If ontimeout fires, the onload and onerror event handlers
will not fire.

onprogress Monitors progress of a request or response. It's most helpful in the
context of uploading or downloading binary data, such as an image. If
you're uploading an image to a website, onprogress can be used
to create a progress indicator showing how much of the image has
been uploaded.

onreadystatechange | Fires when the request changes states. The XMLHt tpRequest spec
defines five states a request can be in: unset, opened, headers received,
loading, and done. The value of the ready state is stored in the
XMLHttpRequest object’s readyState property. For example, when
a request goes from loading to done, its readyState changes from 3 to
4 (the numeric values for loading and done, respectively), and
onreadystatechange fires.

When the XMLHttpRequest spec was first devised, onreadystate was the only event
handler available. Now that there are much finer-grained events available, you’re bet-
ter off using them.

Including cookies on cross-origin requests

Many websites need a way of identifying the user visiting the page. If you check your
email using Gmail, Gmail needs some way of knowing who you are so that it can load
your emails.

Websites can identify users through user credentials, a general term for any bit of
information that can identify a user. The most popular form of user credentials is the
cookie. Servers will use cookies to store a unique ID that identifies the user. The
browser then includes this cookie on every request to the server.

NOTE Same-origin HTTP requests will always contain the cookie in the
request. In contrast, cross-origin requests don’t include cookies by default.

Cookies can be included on cross-origin requests by setting the XMLHttpRequest’s
withCredentials property to true. Setting the withCredentials property to true indi-
cates that user credentials such as cookies, basic authentication information, or client-
side Secure Sockets Layer (SSL) certificates should be included on cross-origin requests.
The following code snippet shows an example of setting the withCredentials property
to true:

xhr.withCredentials = true;

28

24

CHAPTER 2 Making CORS requests

If you were to run this code in a web browser, it would fail because setting the with-
Credentials property to true isn’t enough to complete the request. The server must
also indicate that it allows cookies for the request to succeed. Chapter 5 will delve
deeper into how the server can enable cookies on requests.

NOTE The withCredentials property doesn’t work with synchronous requests.

This section covered the basics of using the XMLHttpRequest object in the context of
cross-origin requests. You can use the techniques from this section to make cross-origin
requests to a CORS-enabled server. If you'd like to learn more about how the XMLHttp-
Request object works, you can turn to Ajax in Practice by Dave Crane et al. (Manning,
2007), or go directly to the XMLHttpRequest spec at http://xhr.spec.whatwg.org/.

While the XMLHttpRequest object allows you to make cross-origin requests from
most browsers, Internet Explorer 8 and Internet Explorer 9 support a limited set of
cross-origin requests. These browsers use a different object, called XDomainRequest, to
make these requests. The next section looks into how the XDomainRequest works and
how it’s different from the XMLHttpRequest object.

XDomainRequest object in Internet Explorer 8 and 9

Internet Explorer 8 and Internet Explorer 9 support cross-origin requests, but in a
different way. These browsers still have an XMLHt t pRequest object for making same-
origin requests, but they also have a different XDomainRequest object specifically for
making cross-origin requests. This XDomainRequest object is only relevant to Internet
Explorer 8 and Internet Explorer 9. Internet Explorer 10 and above support the regu-
lar XMLHttpRequest object for both same-origin and cross-origin requests. If CORS
support for Internet Explorer 8 and Internet Explorer 9 is important to you, you’ll
want to learn the details of how the XDomainRequest object works.

Listing 2.6 changes the Flickr APT example to use the XDomainRequest object. The
XDomainRequest objectlooks a lot like an XMLHt tpRequest object. If you compare this list-
ing to the original code, there is only a one-line difference when creating a new XDomain-
Request object @. Once you have a new XDomainRequest object, you can use it in the
same way you use the XMLHttpRequest object. You can use the send method to send the
request, and then use the onload and onerror event handlers to process the response.

<!DOCTYPE html>

<html>
<body onload="loadPhotos() ;">
<div id="photos">Loading photos...</div>
<scripts>
function loadPhotos() {
var method = 'GET';
var url = 'http://s3.amazonaws.com/corsinaction/flickr.json';

var xhr = new XDomainRequest () ;
xhr.open (method, url) ; <ka’

http://xhr.spec.whatwg.org/

xhr = new XDomainRequest () ;

xhr.open (method, url) ;
} else {

xhr = null;

If browser has an
XDomainRequest
object, uses that.
Otherwise, browser

} doesn’t support

return xhr; CORS; returns null.

XDomainRequest object in Internet Explorer 8 and 9 29
xhr.onerror = function() {
alert ('There was an error.');
i
xhr.onload = function()
var data = JSON.parse (xhr.responseText) ;
if (data.stat == 'ok') {
var photosDiv = document.getElementById ('photos');
photosDiv.innerHTML = '';
var photos = data.photos.photo;
for (var 1 = 0; 1 < photos.length; i++) {
var img = document.createElement ('img') ;
img.src = photos[i].url_g;
photosDiv.appendChild (img) ;
}
} else {
alert (data.message) ;
}
i
xhr.send () ;
}
</script>
</body>
</html>
NOTE You may have noticed that the request URL changed from a Flickr URL
to an Amazon one. This is because the Flickr API only supports HTTPS, and
the XDomainRequest object can’t make requests to HTTPS origins from non-
HTTPS origins. The URL in listing 2.6 is a copy of the Flickr response that is
served from an Amazon S3 server via HTTP. Additionally, since the XDomain-
Request object does not support local files, you can find a version of this sam-
ple hosted at http:// corsinaction.s3.amazonaws.com/flickr.html.
If you’re writing client-side JavaScript code to make cross-origin requests, it
can be annoying to write two different sets of code for Internet Explorer 8
and Internet Explorer 9 and other browsers. Luckily, the following listing
(which is from the blog at www.nczonline.net/blog/2010/05/25/cross-domain-
ajax-with-cross-origin-resource-sharing,/) provides a simple function for choos-
ing the correct cross-origin request object.
function createCORSRequest (method, url) {
var xhr = new XMLHttpRequest () ; If browser supports CORS,
if ("withCredentials" in xhr) { re?"“SXMLH“PReque“
xhr.open(method, url, true); object.
} else if (typeof XDomainRequest != "undefined") {

www.nczonline.net/blog/2010/05/25/cross-domain-ajax-with-cross-origin-resource-sharing/
http://corsinaction.s3.amazonaws.com/flickr.html
www.nczonline.net/blog/2010/05/25/cross-domain-ajax-with-cross-origin-resource-sharing/

30

24.1

CHAPTER 2 Making CORS requests

This code runs in all browsers, and does one of the following:

= If the browser has an XMLHt tpRequest object and it supports CORS, it returns a
new XMLHttpRequest object.

= If the browser supports XDomainRequest, it returns a new XDomainRequest object.

= If the browser doesn’t support either of those objects, it doesn’t support CORS.

It returns null to indicate that CORS isn’t supported.

While the XDomainRequest object looks similar to its XMLHttpRequest object, there
are many differences between the two. The next section takes a closer look at these

differences.

Differences between XDomainRequest and XMLHttpRequest

Although the XDomainRequest and XMLHttpRequest objects let you make cross-origin
requests, there are many differences between the two objects. The XDomainRequest
object is very limited in the types of cross-origin requests it can make. Table 2.5 com-

pares and contrasts the XMLHt t pRequest object to the XDomainRequest object.

Table 2.5 Comparison of XMLHt tpRequest and XDomainRequest

Supported feature XMLHttpRequest XDomainRequest
HTTP methods All GET
POST
HTTP schemes All HTTP
HTTPS
Request content type All text/plain
Synchronous requests Yes No
Custom request headers Yes No
User credentials (such as cookies) | Yes No
Event handlers onloadstart onload
onload onerror
onerror ontimeout
onabort onprogress
ontimeout
onprogress
onreadystatechange
onloadend
Response properties status responseText
statusText contentType
responseType
response
responseText
responseXML

getResponseHeader
getAllResponseHeaders

XDomainRequest object in Internet Explorer 8 and 9 31

The reason for this difference is historical. Internet Explorer 8 was released in 2009,
when the CORS spec was still young. The Internet Explorer developers wanted to
ensure that cross-origin requests were done in a safe manner, so they limited how
cross-origin requests could be made. As the CORS spec has evolved, the kinks have
been worked out to the point where Internet Explorer 10 and above have support for
all CORS functionality. But Internet Explorer 8 and Internet Explorer 9 represent a
large proportion of the browsers still in use, so they can’t be ignored. Here is a look at
how the XDomainRequest object is different from XMLHt tpRequest.

GET AND POST ONLY
The XDomainRequest object can only make HTTP requests using GET or POST. Other
HTTP methods such as HEAD, PUT, or DELETE aren’t allowed.

LIMITED SCHEME SUPPORT

XDomainRequest only supports CORS from the http:// or https:// schemes. This means
that opening a file on your computer won’t work, because this uses the file:// scheme.
Furthermore, HTTP pages can only make CORS requests to other HTTP pages, and
HTTPS pages can only make CORS requests to other HTTPS pages.

CONTENT-TYPE TEXT/PLAIN ONLY FOR REQUESTS

The XDomainRequest object can only make requests with the text/plain Content-
Type. Content-Type identifies the data type of the HTTP body. It’s an HTTP header
that can be present on both HTTP requests and HTTP responses. When visiting a
web page, for example, the HTML file has a Content-Type of text/html, and a JPEG
image has a Content-Type of image/jpeg. The Content-Type serves as a hint to brows-
ers and servers about what data type to expect. If your server expects a different
content type on requests, it will have to be modified to also allow the text/plain
Content-Type.

ASYNCHRONOUS REQUESTS ONLY

The XDomainRequest object supports only asynchronous requests; there is no way to
use it to make synchronous requests. But this is a feature that won’t be missed. The
blocking nature of synchronous requests can lead to a frustrating user experience,
because the user can’t interact with the page until the request completes.

NO CusSTOM REQUEST HEADERS

Earlier I showed how the XMLHttpRequest object uses the setRequestHeader method
to include custom request headers on the request. The XDomainRequest object
doesn’t have a setRequestHeader function, and doesn’t allow custom request headers
on requests.

NO COOKIES OR USER CREDENTIALS

The XDomainRequest object never includes cookies or other user credentials in
requests. Furthermore, there is no withCredentials property to override behavior.
Cookies are the main mechanism for identifying visitors to a website, which means the
XDomainRequest object is best suited for making requests to public data that doesn’t
serve any user-specific information.

32

2.5

CHAPTER 2 Making CORS requests

FEWER EVENT HANDLERS

The XDomainRequest object only has four event handlers: onload, onerror, onprogress,
and ontimeout. These behave the same as their XMLHt tpRequest counterparts. There
is no onabort method, because there is no corresponding abort method to abort the
request, and there aren’t onloadstart and onloadend methods to mark the begin-
ning and end of the request.

HMLHttpRequest’s onloadend handler is useful for ensuring a piece of code always
executes, regardless of whether the request was a success or a failure. For example, the
onloadend handler could be used to hide a status message at the end of the request. If
you need to execute a piece of code at the end of a request, be sure to put it in the
onload, onerror, and ontimeout methods.

LESS RESPONSE INFORMATION
Once the server sends an HTTP response, the XDomainRequest object only gives the
JavaScript code access to the response body and response content type. There is no
way to access the HTTP status code or status text, or any of the response headers.

The XMLHt tpRequest and XDomainRequest objects allow HTTP requests to be made
from JavaScript. But these aren’t the only way the browser uses CORS. The next sec-
tion covers how the HTML5 <canvas> element uses CORS to load images.

Canvas and cross-origin images

HTTP requests from JavaScript are the most common way to use CORS, but they aren’t
the only way. The HTML <canvas> element also relies on CORS when loading images
from different origins. Canvas was introduced in HTML5 as a way to draw shapes and
images from JavaScript. The following listing shows how to use JavaScript and a canvas
to draw a solid rectangle. Figure 2.7 shows what this canvas looks like in the browser.

<canvas id="myCanvas"s></canvas>

<scripts>

var myCanvas = document.getElementById('myCanvas') ;
var myContext = myCanvas.getContext ('2d') ;
myContext.fillStyle = '#888"';

myContext.fillRect (0,0,240,150) ;

</script>

In addition to drawing shapes, a canvas can also display images. These images can live
either on the same server as the page, or on a different server. The canvas can display
all images, regardless of whether or not the image comes from the same origin. The
difference is that cross-origin images can taint the canvas.

Tainting a canvas means that data can no longer be extracted from the canvas. The
<canvas> element exposes three methods for extracting data: toBlob, toDataURL, and
getImageData. All three methods return the binary image data. When these methods are
called on a canvas with a same-origin image, they work just fine. But when they are called
on a canvas with a cross-origin image, the browser throws an error, as shown in figure 2.8.

Canvas and cross-origin images 33

| canvas.html X

& C' | file:///Users/monsur/canvas.html =

Figure 2.7 Example of drawing
a rectangle on a canvas

To get around this error, the image must be labeled as “cross-origin.” This is as simple
as setting the image’s crossOrigin attribute, as shown in the following listing.

Listing 2.9 Setting an image’s crossOrigin attribute

<canvas id=“myCanvas"></canvas>

<scripts>

var myCanvas = document.getElementById ("myCanvas") ;
var myContext = myCanvas.getContext ('2d') ;

Setting image’s

var img = new Image () ; .. .
crossOrigin attribute.

img.crossOrigin = 'anonymous';

img.onload = function() {
myCanvas.width = img.width;
myCanvas.height = img.height; Calling toDataU-RL wor-ks,
myContext .drawImage (img, 0, 0); evm1whenthelmagem
console.log (myCanvas.toDataURL ("image/png")) ; on a different origin.

}i

img.src = 'http://www.html5rocks.com/static/images/mastheads/h5r-shadow.png';
</script>
Q, Elements Network Sources Timeline Profiles Resources Audits |Console | o1 = ¥ 1=, x

© ¥ <topframe>v

© »Uncaught SecurityError: Failed to execute 'toDataURL' on 'HTMLCanvasElement': Tainted canvases may not be exported. canvas.html:12
>

Figure 2.8 The error when trying to extract data from a tainted canvas

34

2.6

CHAPTER 2 Making CORS requests

The crossOrigin attribute has two possible values: anonymous and user-credentials.
If crossOrigin is set to user-credentials, any user credentials for that origin are
included in the request. For example, if the origin has cookies, the cookies will be
included with the image request. This is similar to setting the withCredentials prop-
erty on the XMLHttpRequest object. Setting the crossOrigin attribute to anonymous
will still make the request, but there won’t be any cookies attached to the request. It’s
best to always use the anonymous value, unless you absolutely need the user's cookies
to load the image.

Once the image’s cross-origin property is set and the request is successful, the
image can be manipulated in the same way as a same-origin image. That means that
the toBlob, toDataURL, and getImageData methods will work on a canvas with a
cross-origin image.

Note that the crossOrigin attribute alone isn’t enough to avoid tainting the can-
vas. As with most of the other CORS features we’ve covered in this chapter, the server
must indicate that cross-origin access to the image is allowed. If the server doesn’t
allow it, the image will still be displayed in the canvas, but none of the data extraction
methods will work.

CORS requests from jQuery

JQuery is a popular JavaScript framework that powers many JavaScript apps. JQuery
has a function named ajax for making HTTP requests. Under the hood, the ajax
method uses the XMLHt tpRequest object to make HTTP requests. The following listing
modifies the Flickr API to use jQuery.

<!DOCTYPE html>

<html>

<body>

<div id="photos">Loading photos...</div>

<script src="http://ajax.googleapis.com/ajax/libs/jquery/2.1.1/
jquery.min.js"></script>

<scripts>
function loadPhotos () {
var api_key = '<YOUR API KEY HERE>';
var method = 'GET';
var url = 'https://api.flickr.com/services/rest/?' + $.ajax method both
'method=flickr.people.getPublicPhotos&' + initializes and sends
'user 1d=32951986%40N05&' + an HTTP request.

'extras=url_g&format=json&nojsoncallback=1&' +

'api_key=' + api_key; json data type

$.ajax(url, { indicates that
) type: metl:hod response should
e : be parsed as JSON.

dataType: 'json',
success: function(data, textStatus, jgXHR)
if (data.stat == 'ok') { <FW
$ ('#photos') .empty () ;

success property is
used instead of onload.

CORS requests from jQuery 35

$.each(data.photos.photo, function(i, photo) ({
var img = $('') .attr('src', photo.url q);
S ('#photos') .append (img) ;

3N
} else {

alert (data.message) ;
}

b

error: function(jgXHR, textStatus, errorThrown) { QAAW error property is used

alert ('There was an error.'); instead of onerror.

h
}

$ (document) . ready (loadPhotos) ;
</script>

</body>

</html>

The jQuery version looks similar to the original example, but the syntax varies slightly.
Instead of distinct open, send, and onload methods, all the functionality is contained
within the ajax method, and the HTTP request is made immediately when the ajax
method is called.

JQuery’s dataType property indicates that the response should be parsed as JSON.
This saves the developer the additional step of using JSON.parse to parse the
response text into a JSON object. The XMLHt tpRequest object can do this as well by set-
ting the responseType property to 'json'. As of this writing, the responseType prop-
erty isn’t fully supported in all browsers. These are minor cosmetic differences; the
functionality between the original sample and the jQuery version is the same.

While jQuery has full support for CORS, there are a few things to be aware of when
using jQuery.

First, jQuery doesn’t support synchronous cross-origin requests.

Second, the ajax method only supports XMLHttpRequest, and doesn’t support
XDomainRequest. This means if you’re using jQuery and need support for CORS in
Internet Explorer 8 or Internet Explorer 9, you’ll need to write code to fall back on
the XDomainRequest object, or use a jQuery plugin that supports XDomainRequests,
such as the one at https://github.com/jaubourg/ajaxHooks/blob/master/src/xdr.js.

Third, if you need to set the withCredentials property, you'll need to use the
xhrFields property, as shown in the following code snippet. The xhrFields property
lets you set arbitrary fields on the XMLHt tpRequest object:

$.ajax (url, {
xhrFields: ({
withCredentials: true
}

I3

Fourth, jQuery doesn’t set the X-Requested-With request header on cross-origin
requests. JQuery traditionally sets the X-Requested-With header on HTTP requests.

https://github.com/jaubourg/ajaxHooks/blob/master/src/xdr.js

36

2.7

CHAPTER 2 Making CORS requests

This header is used by clients to indicate that a request is coming from an XMLHttp-
Request object. The server receiving the request can look for the X-Requested-With
header to determine where the request is coming from. JQuery always sets this header
when making same-origin requests, but removes it from cross-origin requests. The reason
is that setting custom request headers requires an additional server configuration step.
Rather than force developers to make changes to their server, jQuery chose to drop this
header. The following code snippet shows how to reenable the X-Requested-With header
on cross-domain requests:
$.ajax (url, {

headers: {'X-Requested-With': 'XMLHttpRequest'}
1
Note that if you add this header, you’ll also need to update your server to allow this
header on cross-origin requests. Chapter 4 shows how to add server-side support for
this and other request headers.

Summary

This chapter explored ways to make cross-origin requests from the browser. Browsers
can be divided into three tiers of CORS support:

» Tier 1—Browsers that fully support CORS
= Tier 2—Browsers that partially support CORS
= Tier 3—Browsers that don’t support CORS

The browsers in tier 1 all use the XMLHttpRequest object to make cross-origin requests,
while the browsers in tier 2 (Internet Explorer 8 and Internet Explorer 9) use the
XDomainRequest object. JQuery can also be used to make cross-origin requests in tier
1 browsers.

In addition to these objects, the browser also uses CORS when loading cross-origin
images in the <canvas> element. By default, a cross-origin image will taint a canvas,
which prevents data from being extracted from the canvas. Setting the image’s cross-
Origin property to anonymous (or in some cases user-credentials) will allow data to
be extracted.

This chapter gives you the foundation for issuing cross-origin requests from the
browser. But it has glossed over the details of how the server responds to cross-origin
requests. For a cross-origin request to succeed, the server must give its permission to
make cross-origin requests. The next part will cover how to configure a server to support
CORS. We'll start by learning how to identify and respond to simple CORS requests.

Part 2

CORS on the server

Part 1 looked at CORS from the perspective of a client making cross-origin
requests. Part 2 examines CORS from the perspective of a server receiving a
cross-origin request.

Chapter 3 takes a look at how to handle a simple CORS request. It begins by
setting up a sample application that will be used throughout the rest of the
book. Next, it covers the roles of that the client, the browser, and the server play
in a cross-origin request. It then applies this knowledge back to the sample appli-
cation, and shows how the server uses HTTP response headers to configure CORS
behavior. In particular, chapter 3 introduces two key headers used by CORS: the
Origin request header and the Access-Control-Allow-Origin response header.

Chapter 4 introduces the notion of a preflight request, which allows clients to
ask permission before sending a cross-origin request. The preflight request
ensures that servers aren’t caught off-guard by unexpected requests. The server
can give permissions to allow certain HTTP methods (via the Access-Control-
Allow-Methods response header) and certain HTTP request headers (via the
Access-Control-Allow-Headers response header). Finally, the chapter covers
the preflight cache, which allows preflight requests to be cached for a certain
period of time.

Chapter 5 rounds out your understanding of CORS by covering two remain-
ing features: including user credentials such as cookies on cross-origin requests,
and giving the client permission to view certain response headers.

Chapter 6 takes the knowledge from the previous three chapters and turns it
into practical guidance for your own CORS implementation. It starts by looking
at the different ways you can allow access to your API, from opening up to the

38

PART 2 CORS on the server

public or limiting it to a certain subset of origins. This chapter also looks at common
security issues, such as how to protect your API against CSRF attacks, and how you can
use OAuth?2 to give third-party services access to your API. Next, it looks at how to
improve performance by minimizing preflight requests. Finally, it examines how CORS
requests interact with HTTP redirects.

Handling CORS requests

This chapter covers

® How to set up the book’s sample application

m What a CORS request looks like from a server’s
perspective

® What an origin is

® How to respond to CORS requests using the
Access-Control-Allow-Origin header

Suppose you're the owner of a blog that you programmed yourself. To keep the site
scalable, you've separated the blog data from the HTML code by introducing an
API. The blog page queries the API to load the blog posts, then displays those posts
on the page.

As your site becomes more popular, some of your more tech-savvy readers ask if
they can use your data to create JavaScript mashups, or embed some of your data
on their site by creating a JavaScript widget. They can do this now by screen-scraping
the data from your site, but they would be a lot happier if they could plug into the
same API you use to load the data for the site.

You love your readers, and think this is a great idea. But when you share your API
code with them, it doesn’t work. This is because the browser’s same-origin policy pre-
vents the API request from running from anywhere but your own web application.

39

40

3.1

3.1.1

CHAPTER 3 Handling CORS requests

CORS offers a way around this restriction by letting your server specify which kinds
of requests are allowed. CORS gives you control over who can access which pieces of
your APIL

This chapter will take a closer look at how to handle CORS requests from the
server’s perspective. We’ll start by setting up sample code for your blogging app. I'll
then introduce the major players in CORS and you’ll learn how they interact. You’ll
also learn about the basic building blocks of a CORS request and response.

Setting up the sample code

This section introduces the sample code that will be used throughout the rest of this
book. You’ll add new functionality to it as you learn more about how CORS works. The
sample you’ll be developing is a blogging app that displays a set of blog posts to the
user. The app consists of a server that exposes two pieces of functionality:

1 An API endpoint that returns all the blog posts in JSON format
2 An HTML page that queries the API for the posts and then displays them on
the page
Figure 3.1 shows what the blogging app will look like once you're done setting up the
code in this section.

Appendix B explains how to set up the prerequisites for this sample. If you haven’t
already, take a moment to visit those requirements. After setting up the prerequisites,
your development environment should have the following:

= Node,js

= Express

= A web browser that supports CORS

Once you've set up these prerequisites, you're ready to write code.

Setting up the sample API
Let’s turn our attention to how to set up each piece of code. You'll start by building
the API portion of the server, as highlighted in figure 3.2.

Add the JavaScript code in listing 3.1 to a file named app.js. This code creates a
new server running on port 9999 of your computer. The code starts by creating a few

[client.html /api/posts

<html> {

<body> "1":{"post":

<style> Veoo®ly

"2": {"post":

</style> Mooy,

"3":{"post":

</body> Mooy Figure 3.1 The sample blogging app

</html> } consists of two parts: an API with

blog data, and an HTML page to

HTML page JSON API display the blog data.

Setting up the sample code 41

/api/posts
{
WY g { "post" g
| "2":{"post":
"3": {"post":
EPNT,
}
Figure 3.2 The location of the API
JSON API endpoint within the sample app

blog posts (these are just made-up sample posts for the app; a real blog would load
these posts from a database). It then creates a new Express web server and adds the
express.static () middleware. The express.static () middleware configures the web
server to read files from your computer and serve them through the web server (this
will come into play in the next section, where you’ll add a client.html file).

Next, the code sets up the actual API. The API lives at the endpoint /api/posts.
Requests to /api/posts will return a JSON object containing the sample blog posts.
Now that the code has configured how the server behaves, it starts the server on port
9999. Finally, the code prints out a friendly startup message to verify that everything
is working.

var express = require ('express');

var POSTS = {
"1': {'post': 'This is the first blog post.'

s
Serves '2': {'post': 'This is the second blog post.'}, :I:;z-:ﬁgl:f
static files '3': {'post': 'This is the third blog post.'}
from the bi
same var SERVER PORT = 9999; QJ Creates a new Express-
directm:y var serverapp = express () ; powered web server
as app.Js serverapp.use (express.static(_dirname)) ;
serverapp.get ('/api/posts', function(req, res) ({ Adds API endpoint
res.json (POSTS) ; to retrieve sample Displays a
Starts L«> 1) posts startup
server serverapp.listen (SERVER PORT, function() { message
console.log('Started server at http://127.0.0.1:' + SERVER_PORT) ; once server
3N is started

NOTE If you are using Linux, you may have to invoke Node.js by typing
nodejs rather than node.

You can run the server by opening a terminal window, navigating to the directory
where your code lives, and typing node app. js. You should see the output in figure 3.3.
You can stop the server by pressing Ctrl-C. Every time you make changes to the code
in app.js, you'll need to stop and then start the server.

42

3.1.2

CHAPTER 3 Handling CORS requests

[CHGNG) __ listing-3.1 — node — 50x5]

> node app.js
Started server at http://127.0.0.1:9999

Figure 3.3 Output from running
the API server

Here is an overview of how to perform these tasks:

m Stop the server. If the server is running, press Ctrl-C in the terminal window to
stop it.

m Start the server. If the server isn’t running, type node app.js in the terminal win-
dow to start it.

» Restart the server. Stop the server, then start the server (that is, press Ctrl-C fol-
lowed by typing node app.js).

You can verify that the server is working by visiting http://127.0.0.1:9999/api/posts in a
browser. You should see a JSON response similar to figure 3.4. If you don’t see this
response or you receive an error, review the preceding steps to make sure everything is
in order.

Now that you have a working AP, let’s build the page that uses this API.

Setting up the sample client

With the API in place, you're ready to add the client.html page that consumes the API,
as highlighted in figure 3.5.

Copy the contents of listing 3.2 into a new file named client.html, and save it in the
same directory as app.js. Client.html is the web page that reads the data from the API
and displays it in the browser.

Chapter 2 covered the basics of how the client makes CORS requests, but here is a
recap of the code in listing 3.2. The main functionality of client.html takes place in
the getBlogPost function. The function starts by creating a new XMLHttpRequest
object. XMLHttpRequest is the standard mechanism for making HTTP requests in

m 127.0.0.1:9999/api/posts % ! --T’

N

& C | [} 127.0.0.1:9999/api/posts wl =

{"1":{"post":"This is the first blog
post."},"2":{"post":"This is the second blog
post."},"3":{"post":"This is the third blog
post."}}

Figure 3.4 The response from
a working server

http://127.0.0.1:9999/api/posts

Setting up the sample code 43

[client.html

<html>
<body>
<style>

</style> e —
</body>
</html> Figure 3.5 Location of the

client web page within the
HTML page sample app

JavaScript, and will be used to load the posts from the API. Next, the code defines an
onload function that executes when the HTTP response is received. This particular
function parses the blog posts into a JSON object, then displays the posts on the page.
After the request behavior is configured, the actual request is sent to the server. The
getBlogPost function is called when the page loads, so that the posts are automati-
cally displayed when the user visits the page. If there is an error when making the
HTTP request, the page displays the word 'ERROR' on the page to let you know that
something is wrong.

< !DOCTYPE htmlx>

<html><body onload="getBlogPosts () ;"> QT Gets posts when

<style> page loads

.post {margin-bottom: 20px;}
</style>
<div id="output"s></div>
<scripts>
var createXhr = function(method, url) {
var xhr = new XMLHttpRequest () ; .
- . Displays an error
xhr.onerror = function() ({ QJ if request fails
document .getElementById ('output') .innerHTML = 'ERROR';
Vi
xhr.open (method, url, true);
return xhr;
}i Creates a new
XMLHttpRequest

var getBlogPosts = function/() { oMed

var xhr = createXhr ('GET', 'http://127.0.0.1:9999/api/posts');
xhr.onload = function()
var data JSON.parse (xhr.responseText) ;
var elem = document.getElementById('output!');
for (var postId in data) { Displays
var postText = datal[postId] ['post']; posts on
var div = document.createElement ('div'); page
div.className = 'post';
div.appendChild (document.createTextNode (postText)) ;
elem.appendChild (div) ;

44

3.1.3

CHAPTER 3 Handling CORS requests

xhr.send () ; < Makes HTTP
}i . request
</scripts>
</body></html>

When making changes to the app.js server code, you’ll need to reload the client.html
page. This means clicking the browser’s Reload button, or pressing Ctrl-R (Cmd-R on
Macs) in the browser. Reloading the page ensures that the client page picks up the lat-
est changes made on the server.

Running the sample app

Now that the server and client code are ready, let’s fire up the sample app. Start the
server by typing node app.js in the terminal window (or restart it if it’s already run-
ning). Because the server also serves the client.html page, the server must be running
for the clienthtml page to load. (If you encounter “file not found” errors on cli-
ent.html, be sure to first check that the server is running.) Next, switch over to your
web browser and visit the page at http://127.0.0.1:9999/client.html. You should see
the blog posts as shown in figure 3.6.

The client.html page displays the sample posts defined in app.js. To do this, the cli-
ent.html page sends an HTTP request to /api/posts. You can view this HTTP request
and response (or any errors) by using the browser’s JavaScript console. I’ll be using
Chrome for the screenshots throughout this book. You can open Chrome’s JavaScript
Console by pressing the keyboard shortcut Ctrl-Shift-] on Windows (Cmd-Option-] on
Mac). You can also find it by navigating to the Tools > JavaScript Console menu option
on Windows (or the View > Developer > JavaScript Console menu option on Mac). If
you aren’t using Chrome, don’t worry. Most browsers have a builtin JavaScript Con-
sole that will give you the same information. Chapter 7 demonstrates how to open the
JavaScript console in most major browsers.

You can view the details of the HTTP request by opening the JavaScript console,
clicking the Network tab, and refreshing the client.html page. You should see two
HTTP requests in the Network tab: one for client.html, the other for /api/posts. If you

“ 127.0.0.1:9999/client.htrr X ! -.‘;”

& C [} 127.0.0.1:9999/client.html o

This is the first blog post.
This is the second blog post.

This is the third blog post.

Figure 3.6 Client page
with a successful request

http://127.0.0.1:9999/client.html
http://127.0.0.1:9999/client.html

3.2

Making a CORS request 45

127.0.0.1:9999/client.htr x \ '\

C [J 127.0.0.1:9999/client.html

This is the first blog post.

This is the second blog post.

This is the third blog post.
Q, Elements | Network | Sources Timeline Profiles Resources Audits Console >= # |E|‘ X
® O Y := ()Preservelog [)Disable cache
Name %
Path [Headers] Preview Response Timing
ﬂ client.html Remote Address: 127.0.0.1:9999
=== Request URL: http://127.0.0.1:9999/api/posts

oot Request Method: GET
p : Status Code: @ 200 0K
/ap v Request Headers view source

Accept: x/x
Accept-Encoding: gzip,deflate,sdch
Accept-Language: en-US,en;q=0.8
Cache-Control: no-cache
Connection: keep-alive
Host: 127.0.0.1:9999
Pragma: no-cache
Referer: http://127.0.0.1:9999/client.html
User-Agent: Mozilla/5.0 (Macintosh; Intel Mac 0S X 10_9_
3) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/36.0.19
85.103 Safari/537.36
v Response Headers view source
Connection: keep-alive
Content-Length: 134
Content-Type: application/json; charset=utf-
8
2 requests | 1.5 KB transferred ... Date: Wed, 02 Jul 2014 19:50:42 GMT

Figure 3.7 Viewing the HTTP request and response to the API

click the /api/posts request, then the Headers tab, you can see all the details of the
request and response, as shown in figure 3.7.

The remainder of this book will make incremental updates to this sample code to
demonstrate how the features of CORS work. You’ll switch back and forth between the
terminal and the browser depending on which part of the code we’re looking at. Now
that the sample app is up and running, let’s introduce CORS to the mix.

Making a CORS request

The previous section created a sample app running on a single server at 127.0.0.1:9999.
This sample app makes a same-origin HTTP request to load the blog data from the
/api/posts endpoint. Now that the sample app is set up, let’s modify it to make a cross-
origin request.

You can make a cross-origin request by introducing a new server that sends requests
to the API on 127.0.0.1:9999. Listing 3.3 modifies app.js to introduce a second server

127.0.0.1:9999

[client.html

<html>
<body>
<style>
</style>
</body>
</html>

CHAPTER 3 Handling CORS requests

v

Success

/api/posts

HTML page

nin. {"pOSt" .

nony,

nom. {"pOSt" .

" 'u},

n3m. {"pOSt" .

D, .0h,

JSON API

/

localhost:1111

/client.html

<html>
<body>
<style>

Error (needs
CORS support)

</style>

</body>
</html>

Figure 3.8 Topology of sample

HTML page app with new server

running at localhost:1111. Requests from 127.0.0.1:9999 to localhost:1111 are cross-
origin requests, because 127.0.0.1:9999 and localhost:1111 are different. Figure 3.8
shows what this new server configuration looks like.

Listing 3.3 Update app.js to add a new server running on localhost:1111

serverapp.listen (SERVER PORT, function() {
console.log ('Started server at http://127.0.0.1:' + SERVER PORT) ;

13K

var CLIENT PORT = 1111; Code for second
var clientapp = express(); server begins here

clientapp.use (express.static(_ dirname)) ;
clientapp.listen (CLIENT PORT, function()
console.log('Started client at http://localhost:' + CLIENT PORT) ;

)
If you restart the server, then visit the page at http://localhost:1111/client.html, you’ll
receive an error in the browser as well as the JavaScript console, as shown in figure 3.9.

Contrast this to the page at http://127.0.0.1:9999/ client.html, which still works. Both
pages are using the same client.html code, so what’s the difference?

http://127.0.0.1:9999/client.html
http://localhost:1111/client.html

3.3

Anatomy of a CORS request 47

| localhost:1111/client.html x \ '\ a
€ C' [localhost:1111/client.html =

g

ERROR

Q, Elements Network Sources Timeline Profiles Resources Audits | Console| @1 »= # B x

4

© W <topframe> v

© XMLHttpRequest cannot load http://127.0.0.1:9999/api/posts. No 'Access-Control-
Allow-0Origin' header is present on the requested resource. Origin
'http://localhost:1111"' is therefore not allowed access. client.html:1

> |

Figure 3.9 Error when making a cross-origin request

NOTE Ifyou are using Internet Explorer 10 or above, you need to add http://
localhost to your Trusted Sites for the sample to work. You do this by navigat-
ing to Trusted Sites (located under Internet Options > Security > Trusted Sites
> Sites) and adding http://localhost.

The difference is that the request from http://127.0.0.1:9999/client.html is a same-
origin request, while the request from http://localhost:1111/client.html is a cross-
origin request. The request from http://127.0.0.1:9999/ client. html succeeds because the
request comes from the same location as the server (127.0.0.1:9999). The request
from http://localhost:1111/client.html fails because it crosses server boundaries, and
you haven’t yet configured the server to accept these requests.

The rest of this chapter will work toward fixing that error. To do that, let’s first dis-
cuss what happens behind the scenes when you make a CORS request.

Anatomy of a CORS request

Think about what happens when you want to withdraw money from an ATM. You
walk up to the machine, swipe your card, enter your PIN, and a few seconds later
you walk away with money in your wallet. Figure 3.10 shows each of the players in
this transaction.

()
E . Figure 3.10 A bank withdrawal

consists of you, the ATM, and
You Bank account your bank account

http://localhost
http://localhost
http://localhost
http://127.0.0.1:9999/client.html
http://localhost:1111/client.html
http://127.0.0.1:9999/client.html
http://localhost:1111/client.html

48

3.3.1

CHAPTER 3 Handling CORS requests

The ATM acts as a trusted intermediary between you and the bank by verifying each
step of the transaction. It checks things like whether you entered the correct PIN, or
whether your bank account has enough money. Imagine if instead of an ATM there
was a stack of money and the bank trusted everyone to take the right amount. That
bank wouldn’t be in business long!

Like this ATM transaction, a CORS request has its own group of players with similar
functionality. The players in a CORS request are the client, the browser, and the server.

The players in a CORS request

The key players in a CORS request are the client, the browser, and the server. The cli-
ent wants some piece of data from the server, such as a JSON API response or the con-
tents of a web page. The browser acts as the trusted intermediary to verify that the
client can access the data from the server. Table 3.1 shows how these players fit with
the ATM analogy.

Table 3.1 A CORS request consists of the client, the browser, and the server

CORS player ATM analogy Description
Client You Wants data from the server
Browser ATM Manages the communication between the client and the server
Server Bank account Serves the data the client wants
CLIENT

In the same way that you want money from your bank account, the client wants data
from the server. The client is a snippet of JavaScript code running on a website, and
it’s responsible for initiating the CORS request. It’s served from a particular domain
and usually consists of an XMLHttpRequest to a remote server. The following code
snippet highlights the portion from the sample’s client.html file that is responsible for
making the CORS request:

var xhr = createXhr ('GET', 'http://127.0.0.1:9999/api/posts');
xhr.onload = function() {

};...

xhr.send () ;

Client versus user

Sometimes the words client and user are used interchangeably, but they are different
in the context of CORS. A user is a person visiting a website, while a client is the
actual code served by that website. Multiple users can visit the same website and be
served the same JavaScript client code, as shown in figure 3.11. For the purposes
of understanding CORS, we’ll focus on the client and not on the user.

3.3.2

Anatomy of a CORS request 49

@
0 \
var xhr =
new XMLHTTPRequest () ;
—— | xhr.open (method, url) ;
xhr.onload = function|()
{
© / ;
xhr.send () ;
Client
Figure 3.11 Multiple users
interacting with a website’s
Users client code
BROWSER

The client code runs inside a web browser. The CORS spec calls the web browser a user
agent, but we’ll refer to it as the web browser. Just like the ATM, the browser is a
trusted intermediary, and plays an active role in a CORS request in two ways:

= The browser adds additional information to the request so that the server can
identify the client.

= The browser interprets the server’s response and decides whether to send the
request to the client or to return an error.

If the browser didn’t do these things, a client could send any request to the server, and
the protection introduced by the browser’s same-origin policy would be broken. The
browser ensures that both the client and the server play by the rules of CORS.

SERVER
The server is the destination of the CORS request. It’s the bank account in the ATM
analogy. The server stores the data that the client wants, and it has the final say as to
whether the CORS request is allowed or not.

Now that you know who is involved in a CORS request, let’s take a look at how they
all work together.

Lifecycle of a CORS request

A full end-to-end CORS request flow is shown in figure 3.12. Although technically the
client code runs inside the browser, figure 3.12 separates the client from the browser
to make it easier to envision the flow. The steps in a CORS request, illustrated in the
figure, are:

50 CHAPTER 3 Handling CORS requests

Browser adds additional
information to request and

(— 0 Client initiates request. —r forwards it to server. S
v
\—/
v
\—/
v
\—/
v
- o Browser decides whether - e Server decides how -
. client should have access to respond to request
Client to response. Browser and sends response Server
to browser.

Figure 3.12 Lifecycle of a CORS request

The client initiates the request.
The browser adds additional information to the request and forwards it to
the server.

®© OO

The server decides how to respond to the request, and sends the response to
the browser.

O The browser decides whether the client should have access to the response, and
either passes the response to the client or returns an error.

Like an ATM interacting with a bank account, the browser and the server “talk” to each
other to determine whether the client can access the server’s data. A hypothetical con-
versation between the browser and the server might go something like figure 3.13.

The browser and the server talk to each other through HTTP headers. HTTP head-
ers carry the details of the CORS request, including whether or not the CORS request
is allowed. Let’s take another look at the conversation in figure 3.13, this time mapped
onto a set of HTTP requests and responses. The bolded items show how the parts of
the conversation map to the HTTP headers.

Hi server
127.0.0.1:9999!
Please give me the data at
/api/posts and let me know if
the client at localhost: 1111
can access it.

Here’s the
data. And, yup, any
client can have
access.

Figure 3.13 Conversation
between a browser and a
Browser Server server regarding CORS

34

3.4.1

Making a request with the Origin header 51

Browser: Hi server 127.0.0.1:9999! Please GET /api/posts HTTP/1.1
give me the data at /api/posts and let me User-hgent: Chrome

) : Host: 127.0.0.1:9999
know if the client at localhost:1111 can Accept: */x

access it. Origin: http://localhost:1111

Server: Here is the data. And, yup, any client HTTP/1.1 200 OK

- - - 1 1 + %
can have access. Access-Control-Allow-Origin:

This conversation represents the simplest dialogue that can take place between a

browser and a server during a CORS request. As you’ll see in subsequent chapters, this

conversation grows richer and new headers are added based on the client’s needs.
CORS is built around many headers, but the two most important are:

= The Origin request header
= The Access-Control-Allow-Origin response header

These headers must be present on every successful CORS request. Without one or
the other, the CORS request will fail. Let’s dig deeper into the vocabulary of these
two headers.

Making a request with the Origin header

The Origin header is central to CORS. The client identifies itself to the server by using
the Origin header. Think of it as the client’s calling card.

A CORS request must have an Origin header. There is no way around that. If there
is no Origin header it isn’t CORS. With that in mind, let’s revisit the sample app and
take a look at the actual Origin header.

Viewing the Origin header

The browser’s Network tab lets you view the HTTP headers included on the request,
including the Origin header. View this header by opening the Network tab in the
browser’s JavaScript console and reloading the page at http://localhost:1111/client.html.

After the page finishes loading, choose the request to /api/posts in the Network
tab. This is the actual CORS request from localhost:1111 to the API server on
127.0.0.1:9999. On the right are the HTTP headers for the request (if there are no
headers be sure the Headers tab is selected). You should see the Origin header in the
list of headers, as shown in figure 3.14.

Notice how the console only shows the request headers, and no response headers.
Because the CORS request is failing, the browser hides the response information from
the console. Once the server is configured to support CORS, the response information
will appear here as well.

Also notice that while the Origin header is present on the request, the code in cli-
ent.html never added it to the request. The Origin header is silently added to the
request by the browser. Next let’s take a look at what the Origin header is and how it
appears in the request.

http://localhost:1111/client .html

52

34.2

CHAPTER 3 Handling CORS requests

Q, Elements | Network| Sources Timeline Profiles Resources Audits Console @1 >= # B x

4

® © Y == [Preservelog [|Disable cache

Name %

Path ‘ Headers‘ Preview Response

<;‘ client.html Request URL: http://127.0.0.1:9999/api/posts

v Request Headers

posts A Provisional headers are shown
127.0.0.1/api Cache-Control: no-cache
— Origin: http://localhost:1111

Pragma: no-cache

Referer: http://localhost:1111/client.html

User-Agent: Mozilla/5.0 (Macintosh; Intel Mac 0S X 10_9_
3) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/36.0.19
85.103 Safari/537.36

2 requests | 1.2 KB transferred ...

Figure 3.14 The Origin header on the HTTP request

What is an origin?

The origin defines where the client resource lives. The origin for the page at http://
localhost:1111/client.html is http://localhost:1111. In other words, the origin is every-
thing in the URL up until the path. In more formal terms, the origin is the scheme,
host, and port of a URL, as shown in figure 3.15.

Table 3.2 shows the origins for various URLs (note that these are example URLs,
and some won’t actually work in your browser).

Table 3.2 Origin values for various example URLs

URL Origin
http://localhost:1111 http://localhost:1111
http://localhost:1111/client.html http://localhost:1111
https://localhost:1111/client.html https://localhost:1111
http://localhost/client.html http://localhost
file:///Users/hossain/ch02/client.html null

The string null can also be a valid value for the origin, even though it doesn’t follow
the scheme /host/port pattern. Browsers use the value null when the origin of the cli-
ent can’t be determined. An example of this is opening a file in your browser. The file

http://localhost:1111/client.html
— —

Scheme Host Port

Figure 3.15 The origin consists of
Origin the scheme, host, and port.

http://localhost:1111/client.html
http://localhost:1111/client.html
http://localhost:1111
http://localhost:1111
http://localhost:1111/client.html
https://localhost:1111/client.html
http://localhost/client.html
http://localhost:1111
http://localhost:1111
https://localhost:1111
http://localhost

Making a request with the Origin header 53

Loading a file in web browser.

client.html

& C | file:///Users/monsur/Google%20Drive/Manning/Writing/Listings... 7.0 =

ERROR

Q, Elements | Network | Sources Timeline Profiles Resources Audits Console @1 >= ﬁ El‘x
® O Vv = Preserve log (| Disable cache

Name % .
Path Headers ‘ Preview Response
- client.html Request URL: http://127.0.0.1:9999/api/posts

==| /Users/monsur/Google%2(v Request Headers

127.0.0.1/api
e er=Agent: Mozilla/5.0 (Macintosh; Intel Mac 0S X 10_9_

/ 3) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/36.0.19
85.103 Safari/537.36

2 requests | 0B transferred | 1...

Origin is null.

Figure 3.16 Request with null origin

exists on your local filesystem and isn’t loaded from a remote server. Therefore it
doesn’t have an origin. You can see this in action by double-clicking the client.html
file to open it in your browser. Looking in the Network tab, you’ll see the Origin
header set to null, as shown in figure 3.16. It’s important to be aware of null origin
values and respond to them appropriately. We’ll cover this in more detail in chapter 6.

The term origin may be misleading in the context of CORS because it can be inter-
preted as the origin of the request. Origin has nothing to do with HTTP requests/
responses in this case; it’s only a property of a URL. Any URL can have an origin. When
an origin refers to the client making the request, we call it the client origin. When an

54

CHAPTER 3 Handling CORS requests

origin refers to the URL receiving the request, we call it the server origin. Table 3.3 shows
the client and server origins for the sample app.

Table 3.3 Client and server origins for the sample app

URL Origin
Client http://localhost:1111/client.html http://localhost:1111
Server http://127.0.0.1:9999/api/posts http://127.0.0.1:9999

There isn’t anything inherently special about an origin. It’s merely what a browser
uses to group content together. Servers use the origin to determine where a request is
coming from. Browsers use the origin to define whether a request is same-origin or
cross-origin, and exhibits different behavior for each.

SAME-ORIGIN VERSUS CROSS-ORIGIN REQUESTS

With the definition of origin in place, I can provide a more formal definition for
same-origin and cross-origin requests. A request is a same-origin request when the cli-
ent origin and the server origin are exactly the same. Otherwise the request is a cross-
origin request.

This distinction between same-origin and cross-origin requests lies at the heart of
CORS. When the client initiates the request, the browser extracts the server origin
from the URL of the request. It then compares the server origin against the client ori-
gin to determine if the request is same-origin or cross-origin. Browsers allow clients to
make same-origin requests without any restrictions. But if the request is cross-origin,
the browser uses CORS to determine how to handle the request.

In the sample app, the origin of the page at http://127.0.0.1:9999/ client.html is
http://127.0.0.1:9999. This matches the origin of the API endpoint at http:/
127.0.0.1:9999/api/posts. Therefore the request is same-origin. On the other hand,
the origin for the page at http://localhost:1111/client.html is http://localhost:1111,
which doesn’t match the origin http://127.0.0.1:9999. Table 3.4 shows example
requests along with whether they are same-origin requests.

Table 3.4 Same-origin versus cross-origin requests

Client origin Server origin Same-origin request
http://127.0.0.1:9999 http://127.0.0.1:9999 Yes
http:/127.0.0.1:9999 https://127.0.0.1:9999 No (different schemes)
http://localhost:1111 http://localhost:9999 No (different ports)
http://localhost:9999/ http://127.0.0.1:9999 No (different hosts)

The last example in table 3.4 might come as a surprise. The IP address for localhost is
traditionally 127.0.0.1, so you’d expect http://localhost:9999 and http://127.0.0.1:9999

http://127.0.0.1:9999/client.html
http://127.0.0.1:9999
http://127.0.0.1:9999/api/posts
http://127.0.0.1:9999/api/posts
http://localhost:1111/client.html
http://localhost:1111
http://127.0.0.1:9999
http://localhost:9999
http://127.0.0.1:9999
http://localhost:1111/client.html
http://127.0.0.1:9999/api/posts
http://localhost:1111
http://127.0.0.1:9999
http://127.0.0.1:9999
http://127.0.0.1:9999
http://127.0.0.1:9999
http://127.0.0.1:9999
http://localhost:1111
http://localhost:9999/
https://127.0.0.1:9999
http://localhost:9999

3.4.3

3.5

3.5.1

Responding to a CORS request 55

HTTP GET /api/posts
HTTP GET /api/posts N~ 1 Origin: http://localhost:1111

_/
Client Browser Server

Figure 3.17 The browser adds the Origin header before sending the request to the server.

to be the same origin. But remember that the origin comparison only compares the
string values of the scheme, host, and port, and knows nothing about what host an IP
address maps to. In this example, “localhost” and “127.0.0.1” are different strings, and
therefore the request isn’t a same-origin request. Now that you know what an origin is,
let’s look at how the browser sets the Origin header on requests.

Setting the Origin header

The browser adds the Origin header to the HTTP request before sending the request to
the server. The browser is solely responsible for setting the Origin header. The Origin
header is always present on cross-origin requests, and the client has no way of setting or
overriding the value. This is a requirement from a security standpoint: if the client could
change the Origin header, they could pretend to be someone they aren’t. Figure 3.17
shows how the browser adds the Origin header before sending the request to the server.

Same-origin requests may sometimes have an Origin header as well. Chrome and
Safari include an Origin header on same-origin non-GET requests. In these cases, the
Origin header has the same value as the server’s origin value. This is important to
keep in mind. When identifying CORS requests, it’s not enough to check that the Ori-
gin header exists. You should also check that the origin value is different from your
server’s origin value.

In this section you learned what an Origin header is, where you can find it, and
how it can be used to identify a CORS request. Next, let’s update the server to respond
to the CORS request by using the Access-Control-Allow-Origin response header.

Responding to a CORS request

Look back at the conversation between the browser and the server in figure 3.13. The
Origin header got you to the first part of the conversation, where the browser identifies
the client. Now let’s turn our attention to the second part of the conversation, where the
server responds to the browser. The server does this by adding the Access-Control-Allow-
Origin header to the response. Let’s take a look at how this header works.

The Access-Control-Allow-Origin header

The server uses the Access-Control-Allow-Origin response header to approve the
request. This header must be present on every successful CORS response. It completes

56

3.5.2

CHAPTER 3 Handling CORS requests

HTTP GET /api/posts
HTTP GET /api/posts <::::::::> Origin: http://localhost:1111

HTTP/1.1 200 OK

. Access-Control-Allow-Origin: *
Client Browser Server

Figure 3.18 Responding to a CORS request using the Access-Control-Allow-Origin header

the conversation by saying “Yup, that client can have access.” If this header isn’t pres-
ent, the CORS request will fail.

The Access-Control-Allow-Origin header is an additional response header layered
onto the response. It shouldn’t affect any other response parameters. If the resource
can’t be found and returns a 404 error, it should continue returning a 404, even with
the Access-Control-Allow-Origin header. Figure 3.18 shows how a server can use the
Access-Control-Allow-Origin header to respond to a CORS request.

The value of the Access-Control-Allow-Origin header can be either a wildcard or
an origin value. The wildcard value says that clients from any origin can access the
resource, while the origin value only gives access to a specific client. Here is an exam-
ple of both header values.

Access-Control-Allow-Origin: *
Access-Control-Allow-Origin: http://localhost:1111

Let’s look at how to use these header values.

Access-Control-Allow-Origin with a wildcard (*) value

An Access-Control-Allow-Origin header with the value * indicates that any client can
access this resource. In fact, the simplest way to add CORS support to a server is to add
Access-Control-Allow-Origin: * to every response. Let’s modify the sample to do
just that.

Listing 3.4 introduces a new piece of middleware to the server named handleCors.
All CORS-related functionality will go in this middleware. The handleCors function
adds an Access-Control-Allow-Origin header to the response, then calls next () to con-
tinue processing the request. (Calling next () is a standard pattern that all Express
middleware components must follow to continue processing the request.) Finally, you
attach the handleCors middleware to the server processing pipeline.

When you restart the server and reload the client at http://localhost:1111/
client.html, you should see the blog posts loaded on the page. If you examine the
request in the Network tab, you’ll now see both the HTTP request and response, with
the Origin header in the request and the Access-Control-Allow-Origin header in the
response, as shown in figure 3.19. Congratulations—with that one line of code, you’ve
added CORS support to the server!

http://localhost:1111/client .html
http://localhost:1111/client .html

Responding to a CORS request 57

localhost:1111/client.html x

L C' | localhost:1111/client.html e =
This is the first blog post.

This is the second blog post.

This is the third blog post.

Q, Elements | Network | Sources Timeline Profiles Resources Audits Console)= -ﬁ E‘ X
® © W := [Preservelog | |Disable cache

Name x

Path Headers | Preview Response Timing

> client.html Remote Address: 127.0.0.1:9999

=== Request URL: http://127.0.0.1:9999/api/posts

= Request Method: GET
2(2)7 0.0.1/api Status Code: @ 200 0K
20:0:1/apl v Request Headers view source

Accept: x/x*
Accept-Encoding: gzip,deflate,sdch
Accept-Language: en-11S,en;q=0.8
Cache-Control: no-cache
Connection: keep-alive

Host:

Origin: http://localhost:1111

/ Referer: http://localhost:1111/client.html

User-Agent: Mozilla/5.@ (Macintosnh; Intel Mac 0S X 10_9_
3) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/36.0.19
85.103 Safari/537.36

2 iew source
Access-Control-Allow-Origin: x

Content-Length: 134

2 requests | 1.5 KB transferred ... Content-Tvpe: aoolication/ison: charset=utf-
Origin request Access-Control-Allow-Origin J
header response header

Figure 3.19 Adding wildcard CORS support to the server

Listing 3.4 Adding wildcard CORS support to the server

var handleCors = function(reqg, res, next) { Introduces new
res.set ('Access-Control-Allow-Origin', '*'); handleCors middleware
next () ;

}i

Adds Access-Control-Allow-

var SERVER_PORT = 9999; L
- Origin response header

var serverapp = express|();

serverapp.use (express.static(_ dirname)) ;

serverapp .use (handleCors) ; Adds handleCors

serverapp.get ('/api/posts', function(req, res) ({ Q—‘ middleware to server
res.json (POSTS) ;

I3

CHAPTER 3 Handling CORS requests

binding hell getting
1ello to...

'6BJECT.OBSERVE()

LEARN MORE

HTMLS5 ROCKS

Q, Elements | Network | Sources Timeline Profiles Resources Audits Console 1 5=

.

htmlSrocks.com

www.html5rocks.com

L
en/
www.html5rocks.com

| v2-combined.min.css?2...
_‘ /static/css

® © Y := (Preservelog [Disable cache
Name s
Path |Headers| Preview Response Timing

Host: www.html5rocks.com
User-Agent: Mozilla/5.0 (Macintosh; Intel Mac 0S X 10_9_
3) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/36.0.19
85.103 Safari/537.36
v Respon ade i
Access-Control-Allow-Origin: *
Alterna 2 ol—88:quic, B
Cache-Control: no-cache
Content-Encoding: gzip
Content-Length: 4270
Content-Type: text/html; charset=utf-8
Date: Wed, 02 Jul 2014 20:20:33 GMT

ew source

Server: Google Frontend
Vary: Accept-Encoding
X-UA-Compatible: IE=Edge, chrome=1

—| css?family=Open+Sans:...
= | fants nnnaleanis com

28 requests | 246 KB transferre...

Access-Control-Allow-Origin header
on HTML5rocks.com

Figure 3.20 htmli5rocks.com always adds the Access-Control-Allow-Origin: * header to responses.

The wildcard value is ideal for situations where anyone can access the data, regardless
of the client. A good example is the HTML5Rocks.com website. The website itself is a
public resource, accessible from any browser, without any authentication. If you make
a request to HTML5rocks.com and examine the response in the console, you’ll see the
Access-Control-Allow-Origin header as shown in figure 3.20.

Note that although a resource has an Access-Control-Allow-Origin: * header, it
doesn’t necessarily mean that it’s publicly accessible. There may be additional forms
of authentication on the resource, as you’ll see in chapter 6.

The wildcard is just one way to respond to CORS requests. Now let’s look at using
actual origin values in the Access-Control-Allow-Origin header.

3.5.3

3.54

Responding to a CORS request 59

Access-Control-Allow-Origin with an origin value

The Access-Control-Allow-Origin header can also have an actual origin as a value.
For example:

Access-Control-Allow-Origin: http://localhost:1111

This header indicates that only clients from http://localhost:1111 can access the
resource. Clients from other origins will be rejected.

Let’s modify the example to respond with an origin value rather than a wildcard.
This is pretty easy to do; simply replace the * value with http://localhost:1111, like
in the following code snippet.

var handleCors = function(req, res, next) {
res.set ('Access-Control-Allow-Origin', 'http://localhost:1111"');
next () ;

}i

Restart the server and reload the client at http://localhost:1111/client.html; you
should still see the blog posts, with a successful response in the console.

The Access-Control-Allow-Origin header can have only a single origin value. You
cannot specify multiple origins in the same header. If your server supports clients
from different origins, the Access-Control-Allow-Origin header will have to contain
only the origin for the specific client making the request.

Using the origin value is useful when you have a subset of servers, and you only want
to allow CORS requests from those servers. For example, a mobile app may host its app
on http://mobile.foo.com, but store its private API on http://api.foo.com. In this case a
header with Access-Control-Allow-Origin: http://mobile. foo.com could be used to
limit CORS requests to the http://mobile.foo.com origin only, as shown in figure 3.21.

You’ve learned of two ways to enable CORS on a server: using a wildcard value, or
specifying a specific origin. But what if you want to prevent clients from certain locations
from making CORS requests? The next section looks at how to reject CORS requests.

Rejecting CORS requests

So far we’ve covered what to do if you want to accept a CORS request. But what if you
only want to allow CORS requests from certain origins and reject the others? CORS is
strict in the sense that the Access-Control-Allow-Origin value must either be * or an
exact match of the Origin header. Regular expressions or multiple origins aren’t
allowed; the Access-Control-Allow-Origin can only grant permissions to one origin ata
time. If the Access-Control-Allow-Origin isn’t * or an exact match of the Origin
header, the browser rejects the request.

Table 3.5 summarizes the behavior for Origin and Access-Control-Allow-Origin
header combinations. Rejecting a CORS request is as simple as:

= Sending an Access-Control-Allow-Origin header that doesn’t match the Ori-
gin header

= Removing the Access-Control-Allow-Origin header entirely

http://localhost:1111
http://localhost:1111/client.html
http://mobile.foo.com
http://api.foo.com
http://mobile.foo.com

60

Origin: http://www.bar.com

Origin: http://www.mobile.foo.com

v

Access-Control-Allow-Origin:
http://mobile.foo.com

Origin: http://www.baz.com

CHAPTER 3 Handling CORS requests

http://api.foo.com

Figure 3.21 The Access-Control-Allow-Origin only allows access from

http://mobile.foo.com.

When you last modified the sample app, you updated the Access-Control-Allow-Origin
header to only allow cross-origin requests from http://localhost:1111. Requests from

any other origin will be rejected.

Table 3.5 How the browser reacts to server responses

Client request

Server response

Browser behavior

Origin: http://
localhost:1111

Origin: http://
localhost:1111

None

Access-Control-Allow-Origin:

*

Error. No Access-Control-
Allow-Origin header.

Success.

http://mobile.foo.com
http://localhost:1111

Responding to a CORS request 61

Table 3.5 How the browser reacts to server responses (continued)

Client request Server response Browser behavior
Origin: http:// Access-Control-Allow-Origin: Success.
localhost:1111 http://localhost:1111
Origin: http:// Access-Control-Allow-Origin: Error. Access-Control-Allow-
localhost:1111 http://othersite.com Origin header doesn’t match

Origin header.

What does it mean for the browser to reject the request? It means that the browser
doesn’t forward any of the response information to the client. The client only knows
that an error occurred, but it doesn’t receive any additional information about what
the error was. This can be frustrating when debugging CORS requests, because it’s
hard to programmatically infer when a request fails due to CORS rather than some
other reason. Chapter 7 delves more into how to debug failing CORS requests.

When the browser rejects the CORS request, it doesn’t send the response to the cli-
ent. But the actual HTTP request is still made to the server, and the server still sends
back an HTTP response. It may seem a little odd for the browser to make an HTTP
request only to have it rejected. But this must be done because the browser has no way
of knowing whether or not CORS is supported without first asking the server by mak-
ing the request. Figure 3.22 shows the CORS flow when the server rejects the CORS
request. The request is still sent to the server @. When the browser notices that there
is no Access-Control-Allow-Origin header (or the header doesn’t match the origin), it
triggers an error on the client, and doesn’t forward the response details 0.

Note that this mechanism for rejecting CORS requests also protects servers that
know nothing about CORS. Any server that was operational before CORS was intro-
duced needs to be protected from unauthorized CORS requests. If a server knows
nothing about CORS, but it receives a CORS request, the server’s response will not
have an Access-Control-Allow-Origin header, and the request will be rejected. The
CORS request will succeed only if the server explicitly opts-in to the request.

e ey ° Browser sends _—
] I—— request to server.]

— = N

il e Because there is no ~— ~

Client Access-Control-Allow-Origin - Browser Server
header, browser doesn’t

send response to client.

Figure 3.22 CORS flow for a rejected CORS request

62

3.6

CHAPTER 3 Handling CORS requests

There are a number of strategies for accepting and rejecting CORS requests, depend-
ing on how open or closed you’d like your server to be. We cover these strategies in
chapter 6.

Summary

This chapter provided an overview of how CORS works from the server’s perspective. I
started by defining the players in a CORS request:

= The client, which initiates the cross-origin request
= The browser, which manages the communication between the client and the server

m The server, which serves data that the client wants
Next, I covered the HTTP headers needed for a basic CORS request:

= The browser sends the Origin header to indicate where a request is coming from.

= An origin is defined as the scheme, host, and port portion of a URL.

= The server responds with the Access-Control-Allow-Origin header if the request
is valid.

Finally, you learned that the Access-Control-Allow-Origin header supports two values:

= Setting the Access-Control-Allow-Origin header to * allows cross-origin requests
from any client.

= Setting the Access-Control-Allow-Origin header to a specific origin value only
allows cross-origin requests from that specific client.

The techniques described in this chapter should give you a good understanding of
how CORS works, and how to add simple CORS support to a server. But not all requests
can be handled with only the Access-Control-Allow-Origin header. More complex
HTTP requests, like PUT or DELETE, or requests with custom HTTP headers, will still
fail. Any cross-origin request beyond the simplest request needs additional processing
to succeed. We’ll cover these new processing techniques in the next chapter.

Handling preflight regaiests

This chapter covers

m What a CORS preflight is
® How to respond to a CORS preflight
= How the preflight cache works

The previous chapter showed how to respond to CORS requests by using the Access-
Control-Allow-Origin header. While this header is required on all valid CORS
responses, there are some cases where the Access-Control-Allow-Origin header
alone isn’t enough. Certain types of requests, such as DELETE or PUT, need to go a
step further and ask for the server’s permission before making the actual request.

The browser asks for permissions by using what is called a preflight request. A
preflight request is a small request that is sent by the browser before the actual
request. It contains information like which HTTP method is used, as well as if any
custom HTTP headers are present. The preflight gives the server a chance to exam-
ine what the actual request will look like before it’s made. The server can then indi-
cate whether the browser should send the actual request, or return an error to the
client without sending the request.

This chapter will examine what a preflight request is and when it’s used. Next
it will introduce headers the server can use to respond to a preflight. It will then

63

64

4.1

4.1.1

4.1.2

CHAPTER 4 Handling preflight requests

introduce the preflight cache, which is a browser optimization that helps limit the num-
ber of preflight requests that are made.

What is a preflight request?

Let’s think about a preflight request in the context of the ATM example from chapter 3.
Banks sometimes put their ATMs inside a room behind a locked door. The door can
only be unlocked by swiping your ATM card (or if a kind person lets you in, but let’s
ignore that for now). Once you’re inside, you can walk up to the ATM and withdraw
money. The simple act of swiping your card to unlock the door doesn’t automatically
give you money, but it’s a quick check to verify that you have permission to use the ATM.

In a similar fashion, a preflight request asks for the server’s permission to send the
request. The preflight isn’t the request itself. Instead, it contains metadata about it,
such as which HTTP method is used and if the client added additional request head-
ers. The server inspects this metadata to decide whether the browser is allowed to
send the request.

By asking for permission before making the request, the preflight introduces an
additional processing step to CORS. Let’s dig deeper into how this new step fits into
your existing understanding of CORS.

Lifecycle of a preflight request

Chapter 3 framed CORS requests in the context of a conversation between the browser
and the server. The preflight augments this conversation with additional dialogue, as
shown in figure 4.1. This conversation is a bit longer than the conversation from chap-
ter 3. It adds the first two lines, where the browser asks the server for permission to use
the DELETE method. These two lines are the preflight request, while the last two lines
are the CORS request.

Figure 4.2 expands figure 3.12 in chapter 3 to show how the preflight request fits
into the lifecycle of a CORS request. The browser uses the server’s response to the pre-
flight to determine if the request can be made. If the server grants the right permis-
sions on the preflight response, the browser sends the request to the server. The
server can also decide not to approve the request, in which case the browser will
return an error to the client, and the request will never be sent.

Now that you have a sense of what a preflight request is, let’s discuss why it exists in
the first place.

Why does the preflight request exist?

The concept of a preflight was introduced to allow cross-origin requests to be made
without breaking existing servers that depend on the browser’s same-origin policy. If
the preflight hits a server that is CORS-enabled, the server knows what a preflight
request is and can respond appropriately. But if the preflight hits a server that doesn’t
know or doesn’t care about CORS, the server won’t send the correct preflight response,
and the actual request will never be sent. The preflight protects unsuspecting servers
from receiving cross-origin requests they may not want.

What is a preflight request? 65

Browser Server

Hi server
127.0.0.1:9999! | have
client localhost: 1111 here, and
she wants to DELETE the
blog post at /api/posts/1.
Is that ok?

&

Great, here’s
the DELETE request
for /api/posts/1.

Yup, |
accept DELETE
requests, send the
request along.

Preflight request

Actual request

Thank
you! I've deleted
that post.

Figure 4.1 Preflight versus actual request

This is best conveyed by a story. Imagine it is is 2004. The web is still young, the term
Web 2.0 was only recently coined, and you’re the administrator of a small news site.
Much like the sample app, this site uses XMLHt tpRequests to load news data from an

Client initiates request to Browser sends Server sends
server through browser preflight request preflight response

v

\ N

v

v

/ v

v

Client Browser > (Server

Client receives Server sends Browser sends

actual response actual response actual request

Figure 4.2 Lifecycle of a CORS request (with preflight)

CHAPTER 4 Handling preflight requests

Your server

—
v

GET

POST

Homepage API

DELETE

v

All requests allowed g

Figure 4.3 Your server, circa 2004. CORS doesn’t yet exist, but your site and your API
live under the same origin, so they can communicate.

API, as shown in figure 4.3. Because your site lives under the same origin as your API, it
can make any type of HTTP request to the APL

Not only does this API fetch news stories, but it also lets you, the owner, edit and
delete news items. While you have basic security measures in place, your code never
checks which origin a request is coming from, because why should it? All browsers
enforce the same-origin policy. There is no such thing as CORS (remember this is
2004), so there is no way for clients from other origins to access your APIL.

Now fast-forward to 2009. Your news site has become much more popular, and it’s
still humming along nicely, thanks to the clean architectural separation between your
frontend and the API. But then late one night you read that Chrome 4.0 will be
released soon, and it supports this new feature called Cross-Origin Resource Sharing
that allows cross-origin requests.

You find this a bit troubling, and that night you have nightmares of your server
being deluged with all sorts of requests from servers across the web, as shown in fig-
ure 4.4. You wake in a cold sweat wondering how you’ll protect your server from these
cross-origin requests. Will users suddenly be able to send DELETE requests without your
permission? Why would browsers suddenly break the same-origin policy you have
come to rely on?

Luckily, CORS answers these questions. The arrival of CORS didn’t cause thousands
of server administrators to wake in a cold sweat. In fact, browser support for CORS was
a fairly painless rollout because when the CORS spec was being drafted, the spec
authors recognized that CORS needed to be introduced in a way that was compatible
with existing servers.

The answer to preserving backward compatibility was to introduce the preflight
request. The preflight request is a way for the browser to ask the server if it’s okay to send
a cross-origin request before sending the actual request. The same-origin policy is still

4.2

Triggering a preflight request 67

Your server

e
GET

POST
Homepage API

7<

DELETE DELETE

DELETE

badsite.com badsite2.com

Figure 4.4 A CORS nightmare scenario. Cross-origin requests are made without any
permission from the server. Thankfully this isn’t how CORS is implemented.

preserved, because the request is never made unless the server grants permission. An
existing server that knows nothing about CORS can safely ignore the preflight request,
and the browser will not forward the actual request to the server, as shown in figure 4.5.

To return to the story, after learning about the CORS preflight request, you rest a
little easier that night, knowing that your server won’t receive any unauthorized requests
from other people’s servers.

This story demonstrates why the preflight was introduced: it allows cross-origin
requests to be introduced to the web in a way that doesn’t adversely affect existing
servers. Now that you know why the preflight request exists, let’s modify the sample
code to trigger a preflight request.

Triggering a preflight request

Chapter 3 introduced a sample blogging app that loads blog posts using CORS. Let’s
modify that to let the user delete blog posts. The standard method for deleting data in
a REST API is to use the HTTP DELETE method, so we’ll use that here.

Listing 4.1 modifies client.html to display a Delete link next to each blog post.
Clicking the link calls the deletePost JavaScript function. The deletePost function
deletes a blog post by sending a DELETE request to the URL /api/posts/{ID}, where {ID}
is the blog post’s ID. For example, a request to /api/posts/1 would delete the blog post
with an ID of 1. If the delete is successful, the post is removed from the page.

68

CHAPTER 4 Handling preflight requests

Your server

GET

POST

Homepage

DELETE

API

OPTIONS

badsite.com

OPTIONS

badsite2.com

Figure 4.5 The CORS preflight request prevents unauthorized API requests from ever
reaching your server.

Listing 4.1 Adding a function to delete posts

var getBlogPosts =
var xhr =
xhr.onload =

var
var
for

var
var
div.
div.
div.

var a =
a.
a.
a.

function()
createXhr ('GET',
function() {
data = JSON.parse (xhr.responseText) ;
elem =
(var postId in data) {

postText = datal[postId] ['post'];

div = document.createElement ('div') ;
className = 'post';

id = 'postId' + postId;

document .createElement ('a') ;
innerHTML = 'Delete post #' + postId;
href = '"#';
onclick = function(postId) {
return function() {

deletePost (postId) ;

}i

} (postId) ;
div.appendChild (document.createTextNode ('
div.appendChild(a) ;

document .getElementById('output') ;

"))

'http://127.0.0.1:9999/api/posts"') ;

appendChild (document .createTextNode (postText)) ;

Adds a Delete link
next to blog post

Triggering a preflight request 69

elem.appendChild(div) ;

}
}i

xhr.send() ;
bi Processes
var deletePost = function (postId) ({ delete request
var url = 'http://127.0.0.1:9999/api/posts/' + postId;
var xhr = createXhr ('DELETE', url);
xhr.onload = function() {
if (xhr.status == 204) {

var element = document.getElementById('postId' + postId) ;
element .parentNode.removeChild (element) ;

}
}i

xhr.send () ;

Vi

This listing modifies the client code. Now let’s turn our attention to the server code to
respond to the DELETE request. Listing 4.2 modifies the app.js server code to handle
the incoming DELETE request. It listens for DELETE requests on the /api/posts/{ID}
URL. When it receives a DELETE request, the code deletes the post with the corre-
sponding ID and returns the HTTP 204 status code. HTTP 204 means that the request
was successful, but the body has no content; it’s the traditional response code used for
DELETE requests in REST APIs.

serverapp.get ('/api/posts', function(req, res) ({ Listens for delete
res.json (POSTS) ; requests on
1 /api/posts/{ID}

Hog delete POSTS[req.params.id];

post res.status (204) .end () ; <k41 Returns

b , , HTTP 204
serverapp.listen (SERVER PORT, function() ({

console.log('Started server at http://localhost:' + SERVER PORT) ;

3N

Deletes %$>serverapp.delete('/api/posts/:id', function(req, res) ({

After making the changes in listings 4.1 and 4.2, restart the server and reload the
client.html page. You should see a Delete link next to each blog post, as shown in
figure 4.6.

The code looks like it should work, because you added CORS support to your
server in the previous chapter. But if you click a Delete link, you’ll see the error mes-
sage shown in figure 4.7. What is going on here?

Looking at the error in figure 4.7, one inconsistency should stand out: although
the code is making a DELETE request @), the error is on an OPTIONS request @. The
browser never sends the DELETE request. This certainly looks weird, but this isn’t a
bug. What you’re seeing is the preflight request.

70

CHAPTER 4 Handling preflight requests

localhost:1111/client.html X - %
& C [localhost:1111/client.html W=

This is the first blog post. Delete post #1
This is the second blog post. Delete post #2

This is the third blog post. Delete post #3

Figure 4.6 Adding a Delete link
next to each blog post

Seeing the preflight on the DELETE request may lead you to ask, why didn’t the GET
request to load posts also have a preflight? The preflight request is only sent some of
the time. The next section looks at when a preflight request is sent.

a The error is on a DELETE request. w

Q D Elements Network Sources Timeline Profiles Resources Audits » 01/)3 # |El‘><
© W <topframe> v

© XMLHttpRequest cannot load http://127.0.0.1:9999/api/posts/1. Method DELETE is not
allowed by Access-Control-Allow-Methods. i

>

Q D Elements | Network | Sources Timeline Profiles Resources Audits » 01 >= ﬁ B x

® © Y := [Preservelog [|Disable cache
Name Status s Size Time |_. .
path Method Text Type Initiator Conten | Laten Timelini
| client.html 200 1.8KB 3ms
S?‘ GET oK text/html Other e b
—’ posts a5 200 lication] client.html:43 382B 18...
| 127.0.0.1/api oK application/json g /iy 1348 17...
gl 1 OETIONS 200 et client.html:55 0B 3ms
J 127.0.0.1/api/posts OK x m Script 0B 2ms

3 requests | 2.2 KB transferred | 1.99 s (load: 11 ms, DOMContentLoaded: 11 ms)

e The browser made an OPTIONS request.

Figure 4.7 Error message when trying to delete a post

4.2.1

Triggering a preflight request 71

When is a preflight request sent?

Even with the same-origin policy in place, there are ways to make some types of cross-
origin requests from the browser. Appendix D goes into more details about these tech-
niques, but here are two ways the client can circumvent the same-origin policy:

» A web page can easily make GET requests to another origin. Every <script> tag or
 tag issues a GET request.

= A web page can make POST requests via the <form> tag. The <form> tag also allows
the Content-Type header to be set to application/x-www-form-urlencoded,
multipart/form-data, or text/plain.

The following listing shows the code that can be used to make these cross-origin requests.
(You don’t need to download or run this listing, it’s only meant as an example.)

<html><body> Using HTML to make GET

 request for an image

<form enctype="text/plain" method="post" action="http://example.com/

form submit" id="myform">
<input type="submit" value="Submit" /> Using HTML to make POST request
</form> with a Content-Type header

<scripts>

Using JavaScript to make

var img = document.createElement ('img') ; N
GET request for an image

img.src = 'http://example.com/image.jpg’';

var myform = document.getElementById('myform') ;

myform. submit () ; : Using JavaScript to make POST

</scripts request with a Content-Type header

</body></html>

These techniques existed long before the concept of CORS and preflights. Because
the browser can make these requests without CORS, the preflight doesn’t provide any
additional value. For example, if there were a preflight on a GET request, the client
could always use a script tag to get around the preflight. The browser skips the pre-
flight in cases where the client can already make the cross-origin request through
other means.

This gives a general overview of when a preflight is used. To state it more con-
cretely, a preflight request is issued when a request meets any of the following criteria:

= Jtuses an HTTP method other than GET, POST, or HEAD
= It sets the Content-Type request header with values other than

a application/x-www-form-urlencoded
b multipart/form-data
c text/plain

72

4.3

4.3.1

CHAPTER 4 Handling preflight requests

m]t sets additional request headers that are not
a Accept
b Accept-Language
¢ Content-Language
= The XMLHttpRequest contains upload events (section 4.5 shows an example
using upload events)

The CORS spec collectively refers to these HTTP methods as simple methods, and the
HTTP headers as simple headers. If these rules seem like a bit of a hodgepodge, it’s
because they are. There isn’t any rhyme or reason as to why those rules are defined that
way. It’s a result of how the web has evolved over the past 20 years. But how these rules
were defined isn’t as important as identifying and responding to preflight requests. The
next section modifies the sample app to respond to the preflight for the DELETE request.

Identifying a preflight request

In the context of the CORS lifecycle diagram, the preflight request is the first request
sent from the browser to the server, as shown in figure 4.8. If a preflight request is just
another HTTP request, how do you distinguish it from actual requests? The first thing
you need to do is figure out what a preflight request looks like.

There are three characteristics of a preflight request, as shown in figure 4.9 it uses
the HTTP OPTIONS method @, it has an Origin request header @, and it has an
Access-Control-Request-Method header @.

Figure 4.9 shows the preflight request from the sample with each of these three
characteristics highlighted. All three characteristics must exist on the request for it to
be a preflight request. If any one of these pieces is missing, the request isn’t a pre-
flight. Let’s dig deeper into what each of these pieces is.

Origin header

In chapter 3 you learned that every CORS request must have an Origin header. The
preflight is no different. Without the Origin header, the request isn’t a CORS request,
and therefore it can’t be a preflight request.

Brower sends

preflight request
T < —

v v
Browser Server

Figure 4.8 Preflight request

4.3.2

Identifying a preflight request 73

0 HTTP OPTIONS method e Access-Control-Request-Method header

Q, Elements | Network | Sources Timeline Profiles Resources Audits Console Q1 >= #

® O = [|Preserve log [|Disable cache

Name x

Path ‘Headers Preview Response Timing
<>“ client.html Remote Address: 127.0.0.1:9999

~ 5 B 19999/api/posts/1
— posts < Request Method: OPTIONS

= I v Request Headers view source
1 Accept: */*
127.0.0.1/api/posts Accept-Encoding: gzip,deflate, sdch

<

: TeRs
Access-Control-Request-Method: DELETE

< Origin: http://localhost:1111
5 + T /client.html

User-Agent: Mozilla/5.0 (Macintosh; Intel Mac 0S X 10_9_3) AppleWe

/ bKit/537.36 (KHTML, like Gecko) Chrome/36.0.1985.103

Safari/537.36

v Response Headers view source
Access-Control-Allow-Origin: http://localhost:1111
Allow: DELETE

Connection: keep-alive

Content-Length: 6

Content-Type: text/html; charset=utf-8
Date: Thu, 03 Jul 2014 02:29:32 GMT
X-Powered-By: Express

e Origin header

Figure 4.9 The pieces of a preflight request

3 requests | 2.2 KB transferred .

The Origin header tells you where the request is coming from. The value of the Ori-
gin header on a preflight request is the same value as the Origin header on the actual
request. So if you’re making a CORS request from http://localhost:1111, the Origin
header on the preflight request will also have the value http://localhost:1111.

HTTP OPTIONS method

A preflight request must be made via the HTTP OPTIONS method, which is defined by
the HTTP spec and isn’t specific to CORS. The HTTP spec (RFC2616) defines an
OPTIONS request as “a request for information about the communication options
available on the request/response chain.” This means that even before CORS, clients
could use the OPTIONS method to learn more about an endpoint. When used out-
side of CORS, the OPTIONS method traditionally conveys which HTTP methods are
supported on a particular URL. Table 4.1 shows an example of a non-CORS OPTIONS
request to a server. The Allow response header is used to indicate which HTTP meth-
ods are supported at the /api/posts endpoint, without triggering an actual request to
the /api/posts endpoint.

http://localhost:1111
http://localhost:1111

74

4.3.3

CHAPTER 4 Handling preflight requests

Table 4.1 What an HTTP OPTIONS request and response might look like in a pre-CORS world

HTTP request HTTP response

OPTIONS /api/posts HTTP/1.1
User-Agent: Chrome

Host: 127.0.0.1:9999
Accept: */*

HTTP/1.1 200 OK
Allow: GET, POST

NOTE You may have noticed that the preflight request itself is a cross-origin
request. This was deemed acceptable by the CORS spec authors, because the
preflight request is used in the way OPTIONS requests are intended.

An OPTIONS request with an Origin header is not necessarily a preflight request. To
distinguish a regular OPTIONS request from a preflight OPTIONS request, a preflight
request will always contain an Access-Control-Request-Method header, as discussed next.

Access-Control-Request-Method header

The Access-Control-Request-Method request header asks the server for permission to
make a request using a particular HTTP method. The preceding example of deleting a
post uses the HTTP DELETE method. Therefore, the Access-Control-Request-Method
header would be set to DELETE:

Access-Control-Request-Method: DELETE

The Access-Control-Request-Method header is always set to the value of the HTTP
method for the actual request, as shown in table 4.2. Because an HTTP request must

have an HTTP method, a preflight request must have an Access-Control-Request-
Method header.

Table 4.2 Mapping the actual request method to the preflight

Preflight request

Actual request

OPTIONS /data HTTP/1.1

User-Agent: Chrome

Host: localhost:10009

Accept: */*

Origin: http://localhost:10007
Access-Control-Request-Method: DELETE

DELETE /data HTTP/1.1
User-Agent: Chrome

Host: localhost:10009

Accept: */*

Origin: http://localhost:10007

To recap, a preflight request must have an HTTP OPTIONS method, and it must con-
tain an Origin and Access-Control-Request-Method header. Now that you know
what comprises a preflight request, let’s modify the sample code to detect these
three characteristics.

http://localhost:10007
http://localhost:10007

Responding to a preflight request 75

4.3.4 Putting it all together

Does the
request
have an
Access-

Control-

Request-
Method
header?

4.4

Listing 4.4 adds an isPreflight method to the sample app that detects whether an
incoming request is a preflight request. The isPreflight method checks three things:

= [s the request an HTTP OPTIONS request?
= Does the request have an Origin header?
= Does the request have an Access-Control-Request-Method header?

var isPreflight = function(req) ({ Is the request an’H'ITP
var isHttpOptions = reg.method === 'OPTIONS'; OPTIONS request?
var hasOriginHeader = reg.headers|['origin']; Does the
> var hasRequestMethod = req.headers|['access-control-request-method']; request
return isHttpOptions && hasOriginHeader && hasRequestMethod; have an
bi Origin
?
var handleCors = function(req, res, next) { header?
res.set ('Access-Control-Allow-Origin', 'http://localhost:1111"');

if (isPreflight (req)) {
console.log('Received a preflight request!');
res.status (204) .end() ;
return;

}

next () ;

If request is a preflight,
stops processing it and
displays a message.

Vi

If all three criteria are true, the request is a preflight. If you reload the sample and
click a Delete link, you should see the text “Received a preflight request!” in the
server’s terminal window, as shown in figure 4.10.

® O O _ listing-4.4 — node — 50%5 |

> node app.js

Started server at http://127.0.0.1:9999

Started client at http://localhost:1111

Received a preflight request! Figure 4.10 The server successfully

received a preflight request.

This verifies that the server has detected a preflight request. But the request still fails
because you aren’t responding to the preflight. Next you’ll learn how to respond to
the preflight.

Responding to a preflight request

Now that you have detected the preflight request, the server needs to respond so that
the browser can make the actual request. The server’s preflight response, shown in fig-
ure 4.11, grants permissions to make the HTTP request. These permissions are
granted by setting HTTP headers on the response. This section will show which HTTP
headers the server needs to set to respond to a preflight, and how to reject a preflight
if the request isn’t allowed.

76

44.1

CHAPTER 4 Handling preflight requests

Server sends
preflight response

v v
Browser Server

Figure 4.11 After receiving a preflight request, the server sends a preflight response that may grant
permissions to make the actual HTTP request.

Supporting HTTP methods with Access-Control-Allow-Methods

Thinking back to the conversation between the browser and the server in figure 4.1,
responding to a preflight involves telling the browser that the server accepts DELETE
requests from different origins. The server does this by setting the Access-Control-
Allow-Methods response header as follows:

Access-Control-Allow-Methods: DELETE

This header indicates that the server grants permissions to the client to make a DELETE
request to that URL. The Access-Control-Allow-Methods header may look a lot like the
Access-Control-Request-Method header, but they’re quite different. The Access-Control-
Request-Method is a single value that asks permission to use a specific HTTP method.
The Access-Control-Allow-Methods header grants permissions to use one or more
HTTP methods, and it can have multiple values. If you wanted to open your API end-
point to all HTTP methods, you can put the following values in the Access-Control-
Allow-Methods header:

Access-Control-Allow-Methods: HEAD, GET, POST, PUT, DELETE
Let’s turn back to the sample code and update it to respond to the preflight request.

UPDATING THE SAMPLE TO SUPPORT DELETE

The following listing modifies the sample code to respond to the preflight request. If
the request is a preflight, the code adds an Access-Control-Allow-Methods header to
the response.

var handleCors = function(reqg, res, next) {
res.set ('Access-Control-Allow-Origin', 'http://localhost:1111"');
if (isPreflight (req)) {
res.set ('Access-Control-Allow-Methods', 'GET, DELETE') ; Adds Access-Control-
res.status (204) .end () ; Qw Allow-Methods
return; response header

}

Responding to a preflight request 77

next () ;

}i

Now, finally, if you restart the server, reload the page, and click a Delete link, the blog
post will be deleted. The deleted post will disappear from the page as a confirmation
that the delete was successful. Figure 4.12 shows the two HTTP requests being made to
delete the post.

NOTE If this were a real app, the corresponding blog post would be perma-

nently deleted from the database. Because the sample doesn’t have a data-
base, the deleted posts will reappear when you restart the web server.

localhost:1111/client.htrm X

€« C' | [localhost:1111/client.html# w =
This is the second blog post. Delete post #2
This is the third blog post. Delete post #3
Q, Elements | Network | Sources Timeline Profiles Resources Audits Console = -ﬂ- |EI‘ *
® O ¥ = Preserve log [|Disable cache
Name Status - Size Time .
Path Methad Text Type Initiatar Conten | Latency L
| client.html 200 1.8KB 1llms
<?‘ GET e text/html Other Loks 11me @
| posts T 200 PR, client.ntml:... 3828 7ms
J 127.0.0.1/api oK EIELEHE o 1348 6ms
“‘ 1 EIE 204 D client.html:... 2018B 2ms
127.0.0.1/api/posts No Content p Script 0B 2ms
4 DELETE e text/plain Oth HE 2ms
B
127.0.0.1/api/posts No Content SKUR © 0B 2ms

4 requests | 2.5 KB transferred | 1.67 s (load: 18 ms, DOMContentLoaded: 18 ms)

o Actual DELETE request

a Preflight request

Figure 4.12 The preflight followed by the DELETE request

78

4.4.2

CHAPTER 4 Handling preflight requests

In addition to the Access-Control-Allow-Methods header, the preflight response should
have the following characteristics:

m The HTTP response status should be in the 200 range. This is defined by the CORS
spec (although some browsers still process the response correctly if the status
isn’t in the 200 range). The sample code uses response code 204, which indi-
cates the response is valid, but contains no body.

m The response shouldn’t have a body. There isn’t anything in the CORS spec regard-
ing the body of the preflight response, but having a body could cause confusion
for the developer, because he or she then must know how to parse and interpret
the body. It’s better to keep things simple and stick to the CORS headers only.

» If a method is a simple method, it doesn’t need to be listed in the Access-Control-Allow-
Methods header. (Recall from section 4.2 that the CORS spec defines simple
methods as GET, POST, and HEAD.) If the client sends an Access-Control-
Request-Method: GET request header, the server doesn’t need to include the
Access-Control-Allow-Methods header in the response. But this can be confus-
ing. For consistency, the rest of the samples in this chapter will always include
the Access-Control-Allow-Methods header, even for simple HTTP methods.

With the changes done so far, the server can now support CORS for various HTTP
methods. But we aren’t done with the preflight quite yet. A preflight request is also
sent when the client adds additional headers to a request. The next section covers
how to respond to those requests.

Supporting request headers with Access-Control-Allow-Headers

The previous section taught you how the server can respond to a preflight request to
grant permissions to use HTTP methods. But this isn’t the only type of preflight a
server can receive. A browser may also send a preflight if the request contains addi-
tional HTTP headers from the client. The modified browser/server conversation is
shown in figure 4.13.

TRIGGERING A PREFLIGHT FOR REQUEST HEADERS
To see this in action, let’s modify the getBlogPost method to include a couple of

additional headers when loading the blog posts. It really doesn’t matter what the
headers are, so let’s make some up:

» Timezone-Offset—The user’s time zone offset in minutes. This can be calculated
from JavaScript.
m Sample-Source—The name of this book, CORS in Action.

The following listing adds these headers to the sample code. Again, the actual values
of these headers aren’t important; they are needed only to see how CORS behaves.

var getBlogPosts = function() ({
var xhr = createXhr ('GET', 'http://127.0.0.1:9999/api/posts');

Responding to a preflight request 79

xhr.setRequestHeader ('Timezone-Offset',

new Date () .getTimezoneOffset()) ;
xhr.setRequestHeader ('Sample-Source',

'CORS in Action') ;
xhr.onload = function() {

When you reload the client page, none of the posts will load, and you’ll see an error
message similar to the one you saw with the DELETE method, as shown in figure 4.14.
Only this time the error is about the new headers and not the HTTP method. If you
inspect the request in the Network tab as shown in figure 4.15, you can see that the
preflight request has a new Access-Control-Request-Headers header with the additional
header values.

Hi server
127.0.0.1:9999! | have client
localhost: 1111 here, and she wants
to GET the blog posts at /api/posts.
She also wants to send the
Timezone-Offset and

Sample-Source headers.
Is that ok?

Yup, |
accept GET requests
as well as the Timezone-Offset
and Sample-Source request
headers. Send the
request along.

Browser Server

Preflight request

Figure 4.13 Conversation between browser and server for additional headers

localhost:1111/client.htrm X |

~
Sd

)\

& C | localhost:1111/client.html# e

ERROR

Q, Elements Network Sources » Q1 >= # =

X

4

© W <topframe> v

© XMLHttpRequest cannot load
http://127.0.0.1:9999/api/posts. Request header
field Timezone-Offset is not allowed by Access-
Control-Allow-Headers. i

Figure 4.14 Error when trying to
add additional headers to a request

80

Q, Elements | Network | Sources Timeline Profiles Resources Audits Console Q1 >= #

® © ¥ := [Preservelog

Name
Path

<> client.html

posts
127.0.0.1/api

Accept-Languag: m=4S;emg=0.8
Access-Control-Request-Headers: timezone-offset, sample-source
ccess=Contrel-R = hod: GET

2 requests | 2.0 KB transferred ...

X

CHAPTER 4 Handling preflight requests

Access-Control-Request-Headers header

0
x

Disable cache

Headers | Preview Response Timing

Remote Address: 127.0.0.1:9999
Request URL: http://127.0.0.1:9999/api/posts
Request Method: OPTIONS
Status Code: @ 204 No Content
v Request Headers view source
Accept: x/*
Accept-Encoding: gzip,deflate,sdch

Cache-Control: no-cache

Connection: keep-alive

Host: 127.0.0.1:9999

Origin: http://localhost:1111

Pragma: no-cache

Referer: http://localhost:1111/client.html

User-Agent: Mozilla/5.8 (Macintosh; Intel Mac 0S X 10_9_3) AppleWebKit/537.3

6 (KHTML, like Gecko) Chrome/36.0.1985.103 Safari/537.36
v Response Headers view source

Access-Control-Allow-Methods: DELETE

Access-Control-Allow-Origin: http://localhost:1111

Connection: keep-alive

Date: Thu, @3 Jul 2014 02:47:23 GMT

X-Powered-By: Express

Figure 4.15 Preflight request has a new Access-Control-Request-Headers header

NOTE It may be surprising to see that the preflight request is sent even
though the request is a GET request. After all, didn’t we add support for GET
requests in chapter 3? Adding custom headers to a cross-origin request is a
new functionality that wasn’t possible before CORS. Therefore, it needs a pre-
flight, even if the HTTP method wouldn’t normally trigger a preflight.

In the same way that the Access-Control-Request-Method header asks permission to
use a particular HTTP method, the Access-Control-Request-Headers header asks per-
mission to send additional headers to the server. Table 4.3 shows how the request
maps onto the Access-Control-Request-Headers header.

Table 4.3 Mapping the actual request headers to the preflight

Preflight request Actual request
OPTIONS /api/posts HTTP/1.1 GET /api/posts HTTP/1.1
User-Agent: Chrome User-Agent: Chrome
Host: 127.0.0.1:9999 Host: 127.0.0.1:9999
Accept: */* Accept: */*
Origin: http://localhost:1111 Origin: http://
Access-Control-Request-Method: GET localhost:1111
Access-Control-Request-Headers: Timezone- Timezone-Offset: 300
Offset, Sample-Source Sample-Source: Cors in Action

The Access-Control-Request-Headers header serves a similar purpose as its Access-Control-
Request-Method counterpart, but there are differences. While the Access-Control-Request-
Method header can have only one value, the Access-Control-Request-Headers header

http://localhost:1111
http://localhost:1111
http://localhost:1111

Responding to a preflight request 81

can have multiple values separated by a comma. And while a preflight request will always
have an Access-Control-Request-Method header, the Access-Control-Request-Headers
header is optional, and is only present if the client adds headers to the request.

ALLOWING CUSTOM HEADERS ON THE REQUEST

The server responds to the preflight request by adding the Access-Control-Allow-
Headers header. The Access-Control-Allow-Headers header contains a list of headers
that are allowed in requests. The following response header indicates that the client has
permission to include the Timezone-Offset and the Sample-Source headers on requests:

Access-Control-Allow-Headers: Timezone-Offset, Sample-Source

If all the values in the Access-Control-Request-Headers request header match the val-
ues in the Access-Control-Allow-Headers response header, the browser is granted per-
mission to make the request. If the browser requested a header, and that header isn’t
present in the Access-Control-Allow-Headers header, the request is rejected. Table 4.4
shows an example of a valid and an invalid Access-Control-Allow-Headers header.

Table 4.4 Responding to Access-Control-Request-Headers by using Access-Control-Allow-Headers. All
requested headers must also be in the response for the CORS request to succeed.

Response header Preflight request status

Access-Control-Allow-Headers: Accepted. Timezone-Offset and Sample-Source were requested,
Timezone-Offset, Sample-Source and both are present in the Access-Control-Allow-Headers header.

Access-Control-Allow-Headers: Accepted. Same as the previous case. Even though the Anything-
Timezone-Offset, Sample-Source, Else header is not present in the request, it's okay to specify addi-
Anything-Else tional values in the Access-Control-Allow-Headers header.
Access-Control-Allow-Headers: Rejected. Both Timezone-Offset and Sample-Source were
Timezone-Offset requested, but only Timezone-Offset is present in the Access-

Control-Allow-Headers header.

Listing 4.7 recaps how the browser translates additional headers from code into the
preflight request, and how these headers flow from preflight request to preflight
response to actual request. The preflight starts in the developer’s JavaScript code,
which adds new headers to the XMLHttpRequest @. The browser notices that there
are additional headers and puts them in the Access-Control-Request-Headers header
in the preflight @. The server responds by including those same headers in the Access-
Control-Allow-Headers response @. Finally, the browser validates that the headers
match those requested by the developer, and sends the request to the server @.

JavaScript code: O 1]
var xhr = new XMLHttpRequest () ;

xhr.setRequestHeader ('Timezone-Offset') ;
xhr.setRequestHeader ('Sample-Source') ;

82

CHAPTER 4 Handling preflight requests

Preflight request: @
OPTIONS /api/posts HTTP/1.1

User-Agent: Chrome

Host: 127.0.0.1:9999

Accept: */*

Origin: http://localhost:1111

Access-Control-Request-Method: GET
Access-Control-Request-Headers: Timezone-Offset, Sample-Source

Preflight response: +—@©
HTTP/1.1 204 No Content

Access-Control-Allow-Origin: http://localhost:1111
Access-Control-Allow-Methods: GET, DELETE
Access-Control-Allow-Headers: Timezone-Offset, Sample-Source

Actual request: —0
GET /api/posts HTTP/1.1

User-Agent: Chrome

Host: 127.0.0.1:9999

Accept: */*

Origin: http://localhost:1111

Timezone-Offset: 300

Sample-Source: Cors in Action

NOTE If the requested header is a simple header, it’s not required to be
included in the Access-Control-Allow-Headers response header. But I recom-
mend including simple headers to avoid confusion.

Listing 4.8 modifies the sample code to respond to the Access-Control-Request-Headers
header. The code sets the Access-Control-Allow-Headers header to the value of the
headers you support. It also adds the GET method to the list of allowed HTTP methods,
because the custom headers are sent on a GET request. The sample will work fine even
without adding GET to the Access-Control-Allow-Methods header (because GET is a
simple method), but I like to include it to avoid confusion. Restart the server and
reload the page, and the blog posts should reappear.

var handleCors = function(req, res, next) {

res.set ('Access-Control-Allow-Origin', 'http://localhost:1111'); | Adds GET to the

if (isPreflight (req)) { Access-Control-
res.set ('Access-Control-Allow-Methods', 'GET, DELETE') ; Allow-Methods
res.set ('Access-Control-Allow-Headers', response header

'Timezone-Offset, Sample-Source');

res.status(204) .end(); Adds Access-Control-Allow-

} return; Headers to preflight response

next () ;

}i

After the server responds to the preflight request, the browser inspects the preflight
response and verifies that the server is granting the appropriate permissions. If the
preflight response checks out, the browser sends the actual request to the server.

Responding to a preflight request 83

|

~ ~ ~

Client Browser Server
Actual request

Figure 4.16 Sending the actual request

4.4.3 Sending the actual request

Once the browser receives a successful preflight response, it sends the actual request
to the server, as shown in figure 4.16.

In the blogging app, once the browser receives the preflight response, it sends the
HTTP DELETE request to delete the blog post. The DELETE request can be handled using
the same technique you learned in chapter 3: add an Access-Control-Allow-Origin header.

The following listing highlights the code that adds the Access-Control-Allow-
Origin header to the response. This code is from chapter 3. You don’t need to write
any new code—the Access-Control-Allow-Origin header is added to both preflight
and actual responses.

var handleCors = function(req, res, next) {

res.set ('Access-Control-Allow-Origin', 'http://localhost:1111'); The Access-

if (isPreflight (req)) { Control-Allow-
res.set ('Access-Control-Allow-Methods', 'GET, DELETE') ; Origin header is
res.set ('Access-Control-Allow-Headers', added to both

'Timezone-Offset, Sample-Source'); preflight and

res.status (204) .end () ; actual CORS
return; requests.

}

next () ;

}i

We’ve spent a lot of time talking about how to successfully respond to a preflight
request. But there may be times when you don’t want a request to be made. Next, let’s
turn our attention to rejecting a preflight request.

4.44 Rejecting a preflight request

We’ve explored how to successfully respond to a preflight request. But there may also
be times when you want to reject a CORS request. Perhaps your server doesn’t support
the DELETE method at a particular endpoint. How do you tell the browser that the
request isn’t allowed?

84

CHAPTER 4 Handling preflight requests

Client initiates Browser sends

request to server preflight request

~ ~ ~

Client Browser Server
Browser notifies client Server sends
that there is an error preflight response

Figure 4.17 If the server rejects a preflight request, the browser returns an error to the client
without ever sending the actual request.

Rejecting a CORS request “short-circuits” the request, as shown in figure 4.17. The
browser makes the preflight request to the server, and when the server rejects the
request, the browser notifies the client code that the request was rejected. The cli-
ent code doesn’t receive the actual preflight response, nor does it receive any
additional data about why the request failed (even though the console log shows
this information).

As mentioned in chapter 1, servers must opt-in to CORS. That means if a server’s
response doesn’t exactly match what the browser expects, the browser plays it safe and
rejects the request. With that in mind, there are many ways for a server to reject a pre-
flight request, including:

= Leave out the Access-Control-Allow-Origin header (if the requested method is
not a simple method).

= Return a value in Access-Control-Allow-Methods that doesn’t match the Access-
Control-Request-Method header.

= If the preflight request has an Access-Control-Request-Headers header:

— Leave out the Access-Control-Allow-Headers header.
— Return a value in the Access-Control-Allow-Headers header that doesn’t
match the Access-Control-Request-Headers header.

Returning a non-200 HTTP response code as the preflight response will not reject the
request in some browsers. This may sound surprising, because a non-200 status code is
used to signal that something isn’t right. But in this case, even though the CORS spec
explicitly states that the preflight response should be in the 200 range, some browsers
still allow non-200 responses. It’s still a good idea to stick to the HTTP 200 or 204 status
code, because it adheres to the spec, which won’t change.

Table 4.5 shows ways to reject the preflight request. Suppose someone tries to send
a request header named Shady-Status to the sample app. You don’t want your server
to receive this header, so the server code should reject the preflight.

4.5

Recapping preflights

OPTIONS /api/posts HTTP/1.1

Origin: http://localhost:1111
Access-Control-Request-Method: DELETE
Access-Control-Request-Headers:

Shady-Status

Table 4.5 Various ways to reject a CORS preflight request

85

Response

Reason

HTTP/1.1 200 OK

HTTP/1.1 200 OK
Access-Control-Allow-Origin: *

HTTP/1.1 200 OK
Access-Control-Allow-Origin: *
Access-Control-Allow-Methods: DELETE

HTTP/1.1 200 OK
Access-Control-Allow-Origin: *
Access-Control-Allow-Methods: DELETE
Access-Control-Allow-Headers: Foo

HTTP/1.1 200 OK
Access-Control-Allow-Origin: *
Access-Control-Allow-Methods: GET
Access-Control-Allow-Headers: Shady-
Status

No Access-Control-Allow-Origin header

No Access-Control-Allow-Methods header

No Access-Control-Allow-Headers header

Access-Control-Allow-Headers doesn’t match

Access-Control-Allow-Methods doesn’t match

As you can see, there are a lot of ways to reject a preflight request. Which one should
you choose? Chapter 6 provides guidance for rejecting CORS requests.
The last few sections threw a lot of information your way. The next section takes a

step back and reviews what you’ve learned so far.

Recapping preflights

The first thing you may have noticed is that there are a lot of different headers involved
when working with preflights. Table 4.6 recaps these headers and what they mean.

Table 4.6 Preflight request headers and their corresponding response headers

Request header Details

Response header

Details

Indicates the HTTP method
for the actual request

Access-Control-
Request-Method

Indicates additional head-
ers on the request

Can contain multiple values
Optional

Access-Control-
Request-Headers

Access-Control-
Allow-Methods

Access-Control-
Allow-Headers

Indicates which HTTP meth-
ods are supported at that
endpoint

Can contain multiple values

Indicates which HTTP head-
ers are supported at that
endpoint

Can contain multiple values

86

CHAPTER 4 Handling preflight requests

A simple way to distinguish these headers is to remember that any header starting with
“Access-Control-Request-” is a request header added by the browser asking the server
for permissions, and any header starting with “Access-Control-Allow-” is a response
header sent by the server that grants permissions.

Figure 4.18 revisits the end-to-end flow from figure 4.2, except this time it includes
the header and code that is exchanged among the client, browser, and server. The

— T T
— (1) — [2) —
N A
N
N A
@ —
(4] —
N
N
N A
Client Browser Server
var xhr = createXhr ('GET',
'http://127.0.0.1:9999/api/posts"') ;
xhr.setRequestHeader ('Timezone-Offset"',
new Date() .getTimezoneOffset());
xhr.setRequestHeader ('Sample-Source',
'"CORS in Action');
xhr.send () ;
OPTIONS /api/posts HTTP/1.1
User-Agent: Chrome
Client initiates request to Host: 127.0.0.1:9999
server through browser Accept: */*
Origin: http://localhost:1111
Access-Control-Request-Method: GET
Access-Control-Request-Headers:
Timezone-Offset, X-Sample-Source
HTTP 204
Browser sends Access-Control-Allow-Origin: http:
preflight request //localhost:1111

Access-Control-Allow-Methods: GET
Access-Control-Allow-Headers:

GET /api/posts HTTP/1.1 Timezone-Offset, X-Sample-Source
User-Agent: Chrome

Host: 127.0.0.1:9999 e Server sends

Accept: */* preflight response

Origin: http://localhost:1111
Timezone-Offset: 300
Sample-Source: CORS in Action

HTTP 200
Access-Control-Allow-Origin:
Browser sends http://localhost:1111
actual request
{
N7 (Npost”, N7
Server sends wor (“p PN ,,}'
2”7: {“post”, A
actual response wan “ PN ”
3”: {“post”, L")

Client receives
xhr.onload = function() { actual response
var data = JSON.parse (xhr.responseText);
// Process the response here.
Vi

Figure 4.18 End-to-end CORS request flow (with preflight)

Recapping preflights 87

JavaScript code initiates the request by calling the XMLHt tpRequest’s send method @.
The browser intercepts the request and initiates a preflight request @. If the server
provides a valid preflight response @, the browser follows up by sending the actual
request @. The server responds to the actual request @. This actual request is then
sent to the calling JavaScript code for further processing @.

Let’s wrap up our discussion on preflights by looking at a few things to keep in
mind about preflight requests.

SUCCESSFUL PREFLIGHT != SUCCESSFUL REQUEST

The preflight response doesn’t provide any insight into the success or failure of the
actual request. A preflight could be successful, but the request could still fail for many
reasons, such as a file not found, an authorization error, or a server issue. The pre-
flight only ensures that the browser can make a cross-origin request to the server, and
nothing more. The server is still free to reject the request for other reasons.

Think of an HTTP request as a set of Russian nesting dolls. Each doll contains a set
of request headers that define the request behavior. Figure 4.19 shows how an HTTP
request maps to this Russian nesting doll analogy.

The outermost doll is the CORS doll, and it contains the Origin header. The inner
dolls can contain a variety of information, such as a cookie validating the user (cookie
support in CORS will be covered in the next chapter). Even if the outermost CORS
layer succeeds, the request may still fail while processing through one of the inner lay-
ers (for example, the cookie may have expired).

JAVASCRIPT CODE AND PREFLIGHTS
The preflight takes place solely between the browser and the server. There is no way
for the JavaScript code to intercept the preflight response or get updates on its status.
From the client code’s perspective, the preflight is invisible. A failing preflight is akin
to the actual request failing, even though the actual request is never made.

This is a useful feature, because it hides the complexity of preflight requests from
the developer writing the client code. Figure 4.20 shows how both the client and the
server view a CORS request with a preflight. There is complexity in answering a preflight

. CORS doll Cookie doll
Original request J x
GET /api/posts HTTP/1.1 CORS Cookie check
User-Agent: Chrome successful . failed! HTTP response

Host: 127.0.0.1:9999
Accept: */*

Origin: http://localhost:1111 2
Cookie: owner

——— HTTP 401 Unauthorized

Origin: http://localhost:1111 Cookie: owner

Figure 4.19 An HTTP request as a set of Russian dolls. Requests may fail for various reasons, and a
successful preflight doesn’t imply a successful request.

88

CHAPTER 4 Handling preflight requests

CORS from the client’s perspective

HTTP request

HTTP response

v
Client

CORS from the server’s perspective

T
e

Preflight

Actual request

v
Browser

M~

v
Server

Figure 4.20 A CORS request (with
preflight) looks like a regular HTTP
request from the client’s perspective.

request, but only the server developer needs to worry about this complexity. From the cli-
ent developer’s perspective, a cross-origin request looks the same as any HTTP request.

PREFLIGHTS ARE STATELESS
Both the preflight and the actual request are stateless. This means that there is no
additional information connecting the actual request back to the preflight request
that preceded it. To get a sense of what this means, table 4.7 compares a preflight

request with its partner request.

Table 4.7 The actual request has no information about the preflight request

Request type

HTTP request

Preflight

Actual

OPTIONS /api/posts HTTP/1.1

User-Agent : Chrome

Host: 127.0.0.1:9999

Accept: */*

Origin: http://localhost:1111

Access-Control-Request-Method: GET
Access-Control-Request-Headers: Timezone-Offset, Sample-Source

GET /api/posts HTTP/1.1

User-Agent : Chrome

Host: 127.0.0.1:9999

Accept: */*

Origin: http://localhost:1111

Timezone-Offset: 300

Sample-Source: Cors in Action

Recapping preflights 89

Looking at the actual request, there is no information that connects it to the original
preflight request. This can be confusing because we think of the preflight plus the
actual request as occurring in tandem. If your server receives the actual request, you
have to trust that the browser did the right thing and sent the preflight request before
it. This highlights how crucial the browser is when making a CORS request.

Because the preflight request is stateless, it’s important that all CORS responses
include the Access-Control-Allow-Origin header. It’s not enough to include the Access-
Control-Allow-Origin header on just the preflight response. Both the preflight response
and the actual response need the Access-Control-Allow-Origin header, as shown in
table 4.8.

Table 4.8 Both the preflight response and the actual response need the Access-Control-Allow-Origin
header.

Response type HTTP response

Preflight HTTP/1.1 204 No Content

Access-Control-Allow-Origin: *
Access-Control-Allow-Methods: GET, DELETE
Access-Control-Allow-Headers: Timezone-Offset, Sample-Source

Actual HTTP/1.1 200 OK
Access-Control-Allow-Origin: *
Content-Type: application/json

If neither the preflight response nor the actual response has an Access-Control-Allow-
Origin header, the CORS request will be rejected.

PREFLIGHT REQUESTS AND UPLOAD EVENTS
The discussion in this chapter has been focused on making HTTP requests, bu