


Principles of Distributed Database Systems






M. Tamer Ozsu « Patrick Valduriez

Principles of Distributed
Database Systems

Third Edition

@ Springer



M. Tamer Ozsu

David R. Cheriton School of
Computer Science
University of Waterloo
Waterloo Ontario

Canada N2L 3G1
Tamer.Ozsu@uwaterloo.ca

Patrick Valduriez

INRIA

LIRMM

161 rue Ada

34392 Montpellier Cedex
France
Patrick.Valduriez@inria.fr

This book was previously published by: Pearson Education, Inc.

ISBN 978-1-4419-8833-1

DOI 10.1007/978-1-4419-8834-8
Springer New Y ork Dordrecht Heidelberg London

Library of Congress Control Number: 2011922491

© Springer Science+Business Media, LLC 2011

All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York,
NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in
connection with any form of information storage and retrieval, electronic adaptation, computer, software,

e-ISBN 978-1-4419-8834-8

or by similar or dissimilar methodology now known or hereafter developed is forbidden.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they
are not identified as such, is not to be taken as an expression of opinion as to whether or not they are

subject to proprietary rights.

Printed on acid-free paper

Springer is part of Springer Sciencet+Business Media (www.springer.com)



To my family
and my parents
M.T.O.

To Esther, my daughters Anna, Juliette and
Sarah, and my parents
PV.






Preface

It has been almost twenty years since the first edition of this book appeared, and ten
years since we released the second edition. As one can imagine, in a fast changing
area such as this, there have been significant changes in the intervening period.
Distributed data management went from a potentially significant technology to one
that is common place. The advent of the Internet and the World Wide Web have
certainly changed the way we typically look at distribution. The emergence in recent
years of different forms of distributed computing, exemplified by data streams and
cloud computing, has regenerated interest in distributed data management. Thus, it
was time for a major revision of the material.

We started to work on this edition five years ago, and it has taken quite a while to
complete the work. The end result, however, is a book that has been heavily revised —
while we maintained and updated the core chapters, we have also added new ones.
The major changes are the following:

1. Database integration and querying is now treated in much more detail, re-
flecting the attention these topics have received in the community in the
past decade. Chapter 4 focuses on the integration process, while Chapter 9
discusses querying over multidatabase systems.

2. The previous editions had only brief discussion of data replication protocols.
This topic is now covered in a separate chapter (Chapter 13) where we provide
an in-depth discussion of the protocols and how they can be integrated with
transaction management.

3. Peer-to-peer data management is discussed in depth in Chapter 16. These
systems have become an important and interesting architectural alternative to
classical distributed database systems. Although the early distributed database
systems architectures followed the peer-to-peer paradigm, the modern incar-
nation of these systems have fundamentally different characteristics, so they
deserve in-depth discussion in a chapter of their own.

4. Web data management is discussed in Chapter 17. This is a difficult topic
to cover since there is no unifying framework. We discuss various aspects
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of the topic ranging from web models to search engines to distributed XML
processing.

5. Earlier editions contained a chapter where we discussed “recent issues” at the
time. In this edition, we again have a similar chapter (Chapter 18) where we
cover stream data management and cloud computing. These topics are still
in a flux and are subjects of considerable ongoing research. We highlight the
issues and the potential research directions.

The resulting manuscript strikes a balance between our two objectives, namely to
address new and emerging issues, and maintain the main characteristics of the book
in addressing the principles of distributed data management.

The organization of the book can be divided into two major parts. The first part
covers the fundamental principles of distributed data management and consist of
Chapters 1 to 14. Chapter 2 in this part covers the background and can be skipped if
the students already have sufficient knowledge of the relational database concepts
and the computer network technology. The only part of this chapter that is essential
is Example 2.3, which introduces the running example that we use throughout much
of the book. The second part covers more advanced topics and includes Chapters 15 —
18. What one covers in a course depends very much on the duration and the course
objectives. If the course aims to discuss the fundamental techniques, then it might
cover Chapters 1, 3, 5, 6-8, 10-12. An extended coverage would include, in addition
to the above, Chapters 4, 9, and 13. Courses that have time to cover more material
can selectively pick one or more of Chapters 15 — 18 from the second part.

Many colleagues have assisted with this edition of the book. S. Keshav (Univer-
sity of Waterloo) has read and provided many suggestions to update the sections
on computer networks. Renée Miller (University of Toronto) and Erhard Rahm
(University of Leipzig) read an early draft of Chapter 4 and provided many com-
ments, Alon Halevy (Google) answered a number of questions about this chapter
and provided a draft copy of his upcoming book on this topic as well as reading
and providing feedback on Chapter 9, Avigdor Gal (Technion) also reviewed and
critiqued this chapter very thoroughly. Matthias Jarke and Xiang Li (University of
Aachen), Gottfried Vossen (University of Muenster), Erhard Rahm and Andreas
Thor (University of Leipzig) contributed exercises to this chapter. Hubert Naacke
(University of Paris 6) contributed to the section on heterogeneous cost modeling
and Fabio Porto (LNCC, Petropolis) to the section on adaptive query processing of
Chapter 9. Data replication (Chapter 13) could not have been written without the
assistance of Gustavo Alonso (ETH Ziirich) and Bettina Kemme (McGill University).
Tamer spent four months in Spring 2006 visiting Gustavo where work on this chapter
began and involved many long discussions. Bettina read multiple iterations of this
chapter over the next one year criticizing everything and pointing out better ways of
explaining the material. Esther Pacitti (University of Montpellier) also contributed to
this chapter, both by reviewing it and by providing background material; she also
contributed to the section on replication in database clusters in Chapter 14. Ricardo
Jimenez-Peris also contributed to that chapter in the section on fault-tolerance in
database clusters. Khuzaima Daudjee (University of Waterloo) read and provided
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comments on this chapter as well. Chapter 15 on Distributed Object Database Man-
agement was reviewed by Serge Abiteboul (INRIA), who provided important critique
of the material and suggestions for its improvement. Peer-to-peer data management
(Chapter 16) owes a lot to discussions with Beng Chin Ooi (National University
of Singapore) during the four months Tamer was visiting NUS in the fall of 2006.
The section of Chapter 16 on query processing in P2P systems uses material from
the PhD work of Reza Akbarinia (INRIA) and Wenceslao Palma (PUC-Valparaiso,
Chile) while the section on replication uses material from the PhD work of Vidal
Martins (PUCPR, Curitiba). The distributed XML processing section of Chapter 17
uses material from the PhD work of Ning Zhang (Facebook) and Patrick Kling at
the University of Waterloo, and Ying Zhang at CWI. All three of them also read
the material and provided significant feedback. Victor Muntés i Mulero (Universitat
Politécnica de Catalunya) contributed to the exercises in that chapter. Ozgiir Ulusoy
(Bilkent University) provided comments and corrections on Chapters 16 and 17.
Data stream management section of Chapter 18 draws from the PhD work of Lukasz
Golab (AT&T Labs-Research), and Yingying Tao at the University of Waterloo.
Walid Aref (Purdue University) and Avigdor Gal (Technion) used the draft of the
book in their courses, which was very helpful in debugging certain parts. We thank
them, as well as many colleagues who had helped out with the first two editions,
for all their assistance. We have not always followed their advice, and, needless
to say, the resulting problems and errors are ours. Students in two courses at the
University of Waterloo (Web Data Management in Winter 2005, and Internet-Scale
Data Distribution in Fall 2005) wrote surveys as part of their coursework that were
very helpful in structuring some chapters. Tamer taught courses at ETH Ziirich
(PDDBS - Parallel and Distributed Databases in Spring 2006) and at NUS (CS5225 —
Parallel and Distributed Database Systems in Fall 2010) using parts of this edition.
We thank students in all these courses for their contributions and their patience as
they had to deal with chapters that were works-in-progress — the material got cleaned
considerably as a result of these teaching experiences.

You will note that the publisher of the third edition of the book is different than
the first two editions. Pearson, our previous publisher, decided not to be involved
with the third edition. Springer subsequently showed considerable interest in the
book. We would like to thank Susan Lagerstrom-Fife and Jennifer Evans of Springer
for their lightning-fast decision to publish the book, and Jennifer Mauer for a ton
of hand-holding during the conversion process. We would also like to thank Tracy
Dunkelberger of Pearson who shepherded the reversal of the copyright to us without
delay.

As in earlier editions, we will have presentation slides that can be used to teach
from the book as well as solutions to most of the exercises. These will be available
from Springer to instructors who adopt the book and there will be a link to them
from the book’s site at springer.com.

Finally, we would be very interested to hear your comments and suggestions
regarding the material. We welcome any feedback, but we would particularly like to
receive feedback on the following aspects:
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any errors that may have remained despite our best efforts (although we hope
there are not many);

any topics that should no longer be included and any topics that should be
added or expanded; and

any exercises that you may have designed that you would like to be included
in the book.

M. Tamer Ozsu (Tamer.Ozsu@uwaterloo.ca)
Patrick Valduriez (Patrick.Valduriez@inria.fr)
November 2010
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Chapter 1
Introduction

Distributed database system (DDBS) technology is the union of what appear to
be two diametrically opposed approaches to data processing: database system and
computer network technologies. Database systems have taken us from a paradigm
of data processing in which each application defined and maintained its own data
(Figure 1.1) to one in which the data are defined and administered centrally (Figure
1.2). This new orientation results in data independence, whereby the application
programs are immune to changes in the logical or physical organization of the data,
and vice versa.

One of the major motivations behind the use of database systems is the desire
to integrate the operational data of an enterprise and to provide centralized, thus
controlled access to that data. The technology of computer networks, on the other
hand, promotes a mode of work that goes against all centralization efforts. At first
glance it might be difficult to understand how these two contrasting approaches can
possibly be synthesized to produce a technology that is more powerful and more
promising than either one alone. The key to this understanding is the realization
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that the most important objective of the database technology is infegration, not
centralization. It is important to realize that either one of these terms does not
necessarily imply the other. It is possible to achieve integration without centralization,
and that is exactly what the distributed database technology attempts to achieve.

In this chapter we define the fundamental concepts and set the framework for
discussing distributed databases. We start by examining distributed systems in general
in order to clarify the role of database technology within distributed data processing,
and then move on to topics that are more directly related to DDBS.

1.1 Distributed Data Processing

The term distributed processing (or distributed computing) is hard to define precisely.
Obviously, some degree of distributed processing goes on in any computer system,
even on single-processor computers where the central processing unit (CPU) and in-
put/output (I/O) functions are separated and overlapped. This separation and overlap
can be considered as one form of distributed processing. The widespread emergence
of parallel computers has further complicated the picture, since the distinction be-
tween distributed computing systems and some forms of parallel computers is rather
vague.

In this book we define distributed processing in such a way that it leads to a
definition of a distributed database system. The working definition we use for a
distributed computing system states that it is a number of autonomous processing
elements (not necessarily homogeneous) that are interconnected by a computer
network and that cooperate in performing their assigned tasks. The “processing
element” referred to in this definition is a computing device that can execute a
program on its own. This definition is similar to those given in distributed systems
textbooks (e.g., [Tanenbaum and van Steen, 2002] and [Colouris et al., 2001]).

A fundamental question that needs to be asked is: What is being distributed?
One of the things that might be distributed is the processing logic. In fact, the
definition of a distributed computing system given above implicitly assumes that the
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processing logic or processing elements are distributed. Another possible distribution
is according to function. Various functions of a computer system could be delegated
to various pieces of hardware or software. A third possible mode of distribution is
according to data. Data used by a number of applications may be distributed to a
number of processing sites. Finally, control can be distributed. The control of the
execution of various tasks might be distributed instead of being performed by one
computer system. From the viewpoint of distributed database systems, these modes
of distribution are all necessary and important. In the following sections we talk
about these in more detail.

Another reasonable question to ask at this point is: Why do we distribute at all?
The classical answers to this question indicate that distributed processing better
corresponds to the organizational structure of today’s widely distributed enterprises,
and that such a system is more reliable and more responsive. More importantly,
many of the current applications of computer technology are inherently distributed.
Web-based applications, electronic commerce business over the Internet, multimedia
applications such as news-on-demand or medical imaging, manufacturing control
systems are all examples of such applications.

From a more global perspective, however, it can be stated that the fundamental
reason behind distributed processing is to be better able to cope with the large-scale
data management problems that we face today, by using a variation of the well-known
divide-and-conquer rule. If the necessary software support for distributed processing
can be developed, it might be possible to solve these complicated problems simply
by dividing them into smaller pieces and assigning them to different software groups,
which work on different computers and produce a system that runs on multiple
processing elements but can work efficiently toward the execution of a common task.

Distributed database systems should also be viewed within this framework and
treated as tools that could make distributed processing easier and more efficient. It is
reasonable to draw an analogy between what distributed databases might offer to the
data processing world and what the database technology has already provided. There
is no doubt that the development of general-purpose, adaptable, efficient distributed
database systems has aided greatly in the task of developing distributed software.

1.2 What is a Distributed Database System?

We define a distributed database as a collection of multiple, logically interrelated
databases distributed over a computer network. A distributed database management
system (distributed DBMS) is then defined as the software system that permits the
management of the distributed database and makes the distribution transparent to the
users. Sometimes “distributed database system” (DDBS) is used to refer jointly to
the distributed database and the distributed DBMS. The two important terms in these
definitions are “logically interrelated” and “distributed over a computer network.”
They help eliminate certain cases that have sometimes been accepted to represent a
DDBS.
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A DDBS is not a “collection of files” that can be individually stored at each
node of a computer network. To form a DDBS, files should not only be logically
related, but there should be structured among the files, and access should be via
a common interface. We should note that there has been much recent activity in
providing DBMS functionality over semi-structured data that are stored in files on
the Internet (such as Web pages). In light of this activity, the above requirement
may seem unnecessarily strict. Nevertheless, it is important to make a distinction
between a DDBS where this requirement is met, and more general distributed data
management systems that provide a “DBMS-like” access to data. In various chapters
of this book, we will expand our discussion to cover these more general systems.

It has sometimes been assumed that the physical distribution of data is not the
most significant issue. The proponents of this view would therefore feel comfortable
in labeling as a distributed database a number of (related) databases that reside in the
same computer system. However, the physical distribution of data is important. It
creates problems that are not encountered when the databases reside in the same com-
puter. These difficulties are discussed in Section 1.5. Note that physical distribution
does not necessarily imply that the computer systems be geographically far apart;
they could actually be in the same room. It simply implies that the communication
between them is done over a network instead of through shared memory or shared
disk (as would be the case with multiprocessor systems), with the network as the only
shared resource.

This suggests that multiprocessor systems should not be considered as DDBSs.
Although shared-nothing multiprocessors, where each processor node has its own
primary and secondary memory, and may also have its own peripherals, are quite
similar to the distributed environment that we focus on, there are differences. The
fundamental difference is the mode of operation. A multiprocessor system design
is rather symmetrical, consisting of a number of identical processor and memory
components, and controlled by one or more copies of the same operating system
that is responsible for a strict control of the task assignment to each processor. This
is not true in distributed computing systems, where heterogeneity of the operating
system as well as the hardware is quite common. Database systems that run over
multiprocessor systems are called parallel database systems and are discussed in
Chapter 14.

A DDBS is also not a system where, despite the existence of a network, the
database resides at only one node of the network (Figure 1.3). In this case, the
problems of database management are no different than the problems encountered in
a centralized database environment (shortly, we will discuss client/server DBMSs
which relax this requirement to a certain extent). The database is centrally managed
by one computer system (site 2 in Figure 1.3) and all the requests are routed to
that site. The only additional consideration has to do with transmission delays. It
is obvious that the existence of a computer network or a collection of “files” is not
sufficient to form a distributed database system. What we are interested in is an
environment where data are distributed among a number of sites (Figure 1.4).
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1.3 Data Delivery Alternatives

In distributed databases, data are “delivered” from the sites where they are stored to
where the query is posed. We characterize the data delivery alternatives along three
orthogonal dimensions: delivery modes, frequency and communication methods. The
combinations of alternatives along each of these dimensions (that we discuss next)
provide a rich design space.

The alternative delivery modes are pull-only, push-only and hybrid. In the pull-
only mode of data delivery, the transfer of data from servers to clients is initiated
by a client pull. When a client request is received at a server, the server responds by
locating the requested information. The main characteristic of pull-based delivery is
that the arrival of new data items or updates to existing data items are carried out at a
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server without notification to clients unless clients explicitly poll the server. Also, in
pull-based mode, servers must be interrupted continuously to deal with requests from
clients. Furthermore, the information that clients can obtain from a server is limited
to when and what clients know to ask for. Conventional DBMSs offer primarily
pull-based data delivery.

In the push-only mode of data delivery, the transfer of data from servers to clients
is initiated by a server push in the absence of any specific request from clients.
The main difficulty of the push-based approach is in deciding which data would be
of common interest, and when to send them to clients — alternatives are periodic,
irregular, or conditional. Thus, the usefulness of server push depends heavily upon
the accuracy of a server to predict the needs of clients. In push-based mode, servers
disseminate information to either an unbounded set of clients (random broadcast)
who can listen to a medium or selective set of clients (multicast), who belong to some
categories of recipients that may receive the data.

The hybrid mode of data delivery combines the client-pull and server-push mech-
anisms. The continuous (or continual) query approach (e.g., [Liu et al., 1996],[ Terry
et al., 1992],[Chen et al., 2000],[Pandey et al., 2003]) presents one possible way of
combining the pull and push modes: namely, the transfer of information from servers
to clients is first initiated by a client pull (by posing the query), and the subsequent
transfer of updated information to clients is initiated by a server push.

There are three typical frequency measurements that can be used to classify the
regularity of data delivery. They are periodic, conditional, and ad-hoc or irregular.

In periodic delivery, data are sent from the server to clients at regular intervals.
The intervals can be defined by system default or by clients using their profiles. Both
pull and push can be performed in periodic fashion. Periodic delivery is carried out
on a regular and pre-specified repeating schedule. A client request for IBM’s stock
price every week is an example of a periodic pull. An example of periodic push is
when an application can send out stock price listing on a regular basis, say every
morning. Periodic push is particularly useful for situations in which clients might not
be available at all times, or might be unable to react to what has been sent, such as in
the mobile setting where clients can become disconnected.

In conditional delivery, data are sent from servers whenever certain conditions
installed by clients in their profiles are satisfied. Such conditions can be as simple
as a given time span or as complicated as event-condition-action rules. Conditional
delivery is mostly used in the hybrid or push-only delivery systems. Using condi-
tional push, data are sent out according to a pre-specified condition, rather than
any particular repeating schedule. An application that sends out stock prices only
when they change is an example of conditional push. An application that sends out a
balance statement only when the total balance is 5% below the pre-defined balance
threshold is an example of hybrid conditional push. Conditional push assumes that
changes are critical to the clients, and that clients are always listening and need to
respond to what is being sent. Hybrid conditional push further assumes that missing
some update information is not crucial to the clients.

Ad-hoc delivery is irregular and is performed mostly in a pure pull-based system.
Data are pulled from servers to clients in an ad-hoc fashion whenever clients request
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it. In contrast, periodic pull arises when a client uses polling to obtain data from
servers based on a regular period (schedule).

The third component of the design space of information delivery alternatives is the
communication method. These methods determine the various ways in which servers
and clients communicate for delivering information to clients. The alternatives are
unicast and one-to-many. In unicast, the communication from a server to a client
is one-to-one: the server sends data to one client using a particular delivery mode
with some frequency. In one-to-many, as the name implies, the server sends data
to a number of clients. Note that we are not referring here to a specific protocol;
one-to-many communication may use a multicast or broadcast protocol.

We should note that this characterization is subject to considerable debate. It is
not clear that every point in the design space is meaningful. Furthermore, specifi-
cation of alternatives such as conditional and periodic (which may make sense) is
difficult. However, it serves as a first-order characterization of the complexity of
emerging distributed data management systems. For the most part, in this book, we
are concerned with pull-only, ad hoc data delivery systems, although examples of
other approaches are discussed in some chapters.

1.4 Promises of DDBSs

Many advantages of DDBSs have been cited in literature, ranging from sociological
reasons for decentralization [D’Oliviera, 1977] to better economics. All of these can
be distilled to four fundamentals which may also be viewed as promises of DDBS
technology: transparent management of distributed and replicated data, reliable
access to data through distributed transactions, improved performance, and easier
system expansion. In this section we discuss these promises and, in the process,
introduce many of the concepts that we will study in subsequent chapters.

1.4.1 Transparent Management of Distributed and Replicated Data

Transparency refers to separation of the higher-level semantics of a system from
lower-level implementation issues. In other words, a transparent system “hides” the
implementation details from users. The advantage of a fully transparent DBMS is the
high level of support that it provides for the development of complex applications. It
is obvious that we would like to make all DBMSs (centralized or distributed) fully
transparent.

Let us start our discussion with an example. Consider an engineering firm that
has offices in Boston, Waterloo, Paris and San Francisco. They run projects at
each of these sites and would like to maintain a database of their employees, the
projects and other related data. Assuming that the database is relational, we can store
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this information in two relations: EMP(ENO, ENAME, TITLE)! and PROJ(PNO,
PNAME, BUDGET). We also introduce a third relation to store salary information:
SAL(TITLE, AMT) and a fourth relation ASG which indicates which employees
have been assigned to which projects for what duration with what responsibility:
ASG(ENO, PNO, RESP, DUR). If all of this data were stored in a centralized DBMS,
and we wanted to find out the names and employees who worked on a project for
more than 12 months, we would specify this using the following SQL query:

SELECT ENAME, AMT
FROM EMP, ASG, SAL

WHERE ASG.DUR > 12

AND EMP.ENO = ASG.ENO
AND SAL.TITLE = EMP.TITLE

However, given the distributed nature of this firm’s business, it is preferable, under
these circumstances, to localize data such that data about the employees in Waterloo
office are stored in Waterloo, those in the Boston office are stored in Boston, and
so forth. The same applies to the project and salary information. Thus, what we
are engaged in is a process where we partition each of the relations and store each
partition at a different site. This is known as fragmentation and we discuss it further
below and in detail in Chapter 3.

Furthermore, it may be preferable to duplicate some of this data at other sites
for performance and reliability reasons. The result is a distributed database which
is fragmented and replicated (Figure 1.5). Fully transparent access means that the
users can still pose the query as specified above, without paying any attention to
the fragmentation, location, or replication of data, and let the system worry about
resolving these issues.

For a system to adequately deal with this type of query over a distributed, frag-
mented and replicated database, it needs to be able to deal with a number of different
types of transparencies. We discuss these in this section.

1.4.1.1 Data Independence

Data independence is a fundamental form of transparency that we look for within a
DBMS. It is also the only type that is important within the context of a centralized
DBMS. It refers to the immunity of user applications to changes in the definition and
organization of data, and vice versa.

As is well-known, data definition occurs at two levels. At one level the logical
structure of the data are specified, and at the other level its physical structure. The
former is commonly known as the schema definition, whereas the latter is referred
to as the physical data description. We can therefore talk about two types of data

! We discuss relational systems in Chapter 2 (Section 2.1) where we develop this example further.
For the time being, it is sufficient to note that this nomenclature indicates that we have just defined
a relation with three attributes: ENO (which is the key, identified by underlining), ENAME and
TITLE.
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independence: logical data independence and physical data independence. Logical
data independence refers to the immunity of user applications to changes in the
logical structure (i.e., schema) of the database. Physical data independence, on the
other hand, deals with hiding the details of the storage structure from user applications.
When a user application is written, it should not be concerned with the details of
physical data organization. Therefore, the user application should not need to be
modified when data organization changes occur due to performance considerations.

1.4.1.2 Network Transparency

In centralized database systems, the only available resource that needs to be shielded
from the user is the data (i.e., the storage system). In a distributed database envi-
ronment, however, there is a second resource that needs to be managed in much
the same manner: the network. Preferably, the user should be protected from the
operational details of the network; possibly even hiding the existence of the network.
Then there would be no difference between database applications that would run on
a centralized database and those that would run on a distributed database. This type
of transparency is referred to as network transparency or distribution transparency.
One can consider network transparency from the viewpoint of either the services
provided or the data. From the former perspective, it is desirable to have a uniform
means by which services are accessed. From a DBMS perspective, distribution
transparency requires that users do not have to specify where data are located.
Sometimes two types of distribution transparency are identified: location trans-
parency and naming transparency. Location transparency refers to the fact that the
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command used to perform a task is independent of both the location of the data and
the system on which an operation is carried out. Naming transparency means that a
unique name is provided for each object in the database. In the absence of naming
transparency, users are required to embed the location name (or an identifier) as part
of the object name.

1.4.1.3 Replication Transparency

The issue of replicating data within a distributed database is introduced in Chapter
3 and discussed in detail in Chapter 13. At this point, let us just mention that for
performance, reliability, and availability reasons, it is usually desirable to be able
to distribute data in a replicated fashion across the machines on a network. Such
replication helps performance since diverse and conflicting user requirements can be
more easily accommodated. For example, data that are commonly accessed by one
user can be placed on that user’s local machine as well as on the machine of another
user with the same access requirements. This increases the locality of reference.
Furthermore, if one of the machines fails, a copy of the data are still available on
another machine on the network. Of course, this is a very simple-minded description
of the situation. In fact, the decision as to whether to replicate or not, and how many
copies of any database object to have, depends to a considerable degree on user
applications. We will discuss these in later chapters.

Assuming that data are replicated, the transparency issue is whether the users
should be aware of the existence of copies or whether the system should handle the
management of copies and the user should act as if there is a single copy of the data
(note that we are not referring to the placement of copies, only their existence). From
a user’s perspective the answer is obvious. It is preferable not to be involved with
handling copies and having to specify the fact that a certain action can and/or should
be taken on multiple copies. From a systems point of view, however, the answer is not
that simple. As we will see in Chapter 11, when the responsibility of specifying that
an action needs to be executed on multiple copies is delegated to the user, it makes
transaction management simpler for distributed DBMSs. On the other hand, doing
so inevitably results in the loss of some flexibility. It is not the system that decides
whether or not to have copies and how many copies to have, but the user application.
Any change in these decisions because of various considerations definitely affects
the user application and, therefore, reduces data independence considerably. Given
these considerations, it is desirable that replication transparency be provided as a
standard feature of DBMSs. Remember that replication transparency refers only
to the existence of replicas, not to their actual location. Note also that distributing
these replicas across the network in a transparent manner is the domain of network
transparency.
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1.4.1.4 Fragmentation Transparency

The final form of transparency that needs to be addressed within the context of a
distributed database system is that of fragmentation transparency. In Chapter 3 we
discuss and justify the fact that it is commonly desirable to divide each database
relation into smaller fragments and treat each fragment as a separate database object
(i.e., another relation). This is commonly done for reasons of performance, avail-
ability, and reliability. Furthermore, fragmentation can reduce the negative effects of
replication. Each replica is not the full relation but only a subset of it; thus less space
is required and fewer data items need be managed.

There are two general types of fragmentation alternatives. In one case, called
horizontal fragmentation, a relation is partitioned into a set of sub-relations each
of which have a subset of the tuples (rows) of the original relation. The second
alternative is vertical fragmentation where each sub-relation is defined on a subset of
the attributes (columns) of the original relation.

When database objects are fragmented, we have to deal with the problem of
handling user queries that are specified on entire relations but have to be executed on
subrelations. In other words, the issue is one of finding a query processing strategy
based on the fragments rather than the relations, even though the queries are specified
on the latter. Typically, this requires a translation from what is called a global query to
several fragment queries. Since the fundamental issue of dealing with fragmentation
transparency is one of query processing, we defer the discussion of techniques by
which this translation can be performed until Chapter 7.

1.4.1.5 Who Should Provide Transparency?

In previous sections we discussed various possible forms of transparency within a
distributed computing environment. Obviously, to provide easy and efficient access
by novice users to the services of the DBMS, one would want to have full trans-
parency, involving all the various types that we discussed. Nevertheless, the level of
transparency is inevitably a compromise between ease of use and the difficulty and
overhead cost of providing high levels of transparency. For example, Gray argues
that full transparency makes the management of distributed data very difficult and
claims that “applications coded with transparent access to geographically distributed
databases have: poor manageability, poor modularity, and poor message performance”
[Gray, 1989]. He proposes a remote procedure call mechanism between the requestor
users and the server DBMSs whereby the users would direct their queries to a specific
DBMS. This is indeed the approach commonly taken by client/server systems that
we discuss shortly.

What has not yet been discussed is who is responsible for providing these services.
It is possible to identify three distinct layers at which the transparency services can be
provided. It is quite common to treat these as mutually exclusive means of providing
the service, although it is more appropriate to view them as complementary.
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We could leave the responsibility of providing transparent access to data resources
to the access layer. The transparency features can be built into the user language,
which then translates the requested services into required operations. In other words,
the compiler or the interpreter takes over the task and no transparent service is
provided to the implementer of the compiler or the interpreter.

The second layer at which transparency can be provided is the operating system
level. State-of-the-art operating systems provide some level of transparency to system
users. For example, the device drivers within the operating system handle the details
of getting each piece of peripheral equipment to do what is requested. The typical
computer user, or even an application programmer, does not normally write device
drivers to interact with individual peripheral equipment; that operation is transparent
to the user.

Providing transparent access to resources at the operating system level can ob-
viously be extended to the distributed environment, where the management of the
network resource is taken over by the distributed operating system or the middleware
if the distributed DBMS is implemented over one. There are two potential problems
with this approach. The first is that not all commercially available distributed operat-
ing systems provide a reasonable level of transparency in network management. The
second problem is that some applications do not wish to be shielded from the details
of distribution and need to access them for specific performance tuning.

The third layer at which transparency can be supported is within the DBMS. The
transparency and support for database functions provided to the DBMS designers
by an underlying operating system is generally minimal and typically limited to
very fundamental operations for performing certain tasks. It is the responsibility of
the DBMS to make all the necessary translations from the operating system to the
higher-level user interface. This mode of operation is the most common method today.
There are, however, various problems associated with leaving the task of providing
full transparency to the DBMS. These have to do with the interaction of the operating
system with the distributed DBMS and are discussed throughout this book.

A hierarchy of these transparencies is shown in Figure 1.6. It is not always easy
to delineate clearly the levels of transparency, but such a figure serves an important
instructional purpose even if it is not fully correct. To complete the picture we
have added a “language transparency” layer, although it is not discussed in this
chapter. With this generic layer, users have high-level access to the data (e.g., fourth-
generation languages, graphical user interfaces, natural language access).

1.4.2 Reliability Through Distributed Transactions

Distributed DBMSs are intended to improve reliability since they have replicated
components and, thereby eliminate single points of failure. The failure of a single site,
or the failure of a communication link which makes one or more sites unreachable,
is not sufficient to bring down the entire system. In the case of a distributed database,
this means that some of the data may be unreachable, but with proper care, users



1.4 Promises of DDBSs 13

Data

Fig. 1.6 Layers of Transparency

may be permitted to access other parts of the distributed database. The “proper care”
comes in the form of support for distributed transactions and application protocols.

We discuss transactions and transaction processing in detail in Chapters 10—12.
A transaction is a basic unit of consistent and reliable computing, consisting of a
sequence of database operations executed as an atomic action. It transforms a consis-
tent database state to another consistent database state even when a number of such
transactions are executed concurrently (sometimes called concurrency transparency),
and even when failures occur (also called failure atomicity). Therefore, a DBMS
that provides full transaction support guarantees that concurrent execution of user
transactions will not violate database consistency in the face of system failures as
long as each transaction is correct, i.e., obeys the integrity rules specified on the
database.

Let us give an example of a transaction based on the engineering firm example
that we introduced earlier. Assume that there is an application that updates the
salaries of all the employees by 10%. It is desirable to encapsulate the query (or
the program code) that accomplishes this task within transaction boundaries. For
example, if a system failure occurs half-way through the execution of this program,
we would like the DBMS to be able to determine, upon recovery, where it left off
and continue with its operation (or start all over again). This is the topic of failure
atomicity. Alternatively, if some other user runs a query calculating the average
salaries of the employees in this firm while the original update action is going on, the
calculated result will be in error. Therefore we would like the system to be able to
synchronize the concurrent execution of these two programs. To encapsulate a query
(or a program code) within transactional boundaries, it is sufficient to declare the
begin of the transaction and its end:

Begin_transaction SALARY _UPDATE
begin
EXEC SQL UPDATE PAY
SET SAL = SALx1.1
end.
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Distributed transactions execute at a number of sites at which they access the
local database. The above transaction, for example, will execute in Boston, Waterloo,
Paris and San Francisco since the data are distributed at these sites. With full support
for distributed transactions, user applications can access a single logical image of
the database and rely on the distributed DBMS to ensure that their requests will be
executed correctly no matter what happens in the system. “Correctly” means that
user applications do not need to be concerned with coordinating their accesses to
individual local databases nor do they need to worry about the possibility of site or
communication link failures during the execution of their transactions. This illustrates
the link between distributed transactions and transparency, since both involve issues
related to distributed naming and directory management, among other things.

Providing transaction support requires the implementation of distributed concur-
rency control (Chapter 11) and distributed reliability (Chapter 12) protocols — in
particular, two-phase commit (2PC) and distributed recovery protocols — which are
significantly more complicated than their centralized counterparts. Supporting repli-
cas requires the implementation of replica control protocols that enforce a specified
semantics of accessing them (Chapter 13).

1.4.3 Improved Performance

The case for the improved performance of distributed DBMSs is typically made
based on two points. First, a distributed DBMS fragments the conceptual database,
enabling data to be stored in close proximity to its points of use (also called data
localization). This has two potential advantages:

1. Since each site handles only a portion of the database, contention for CPU
and I/O services is not as severe as for centralized databases.

2. Localization reduces remote access delays that are usually involved in wide
area networks (for example, the minimum round-trip message propagation
delay in satellite-based systems is about 1 second).

Most distributed DBMSs are structured to gain maximum benefit from data localiza-
tion. Full benefits of reduced contention and reduced communication overhead can
be obtained only by a proper fragmentation and distribution of the database.

This point relates to the overhead of distributed computing if the data have
to reside at remote sites and one has to access it by remote communication. The
argument is that it is better, in these circumstances, to distribute the data management
functionality to where the data are located rather than moving large amounts of data.
This has lately become a topic of contention. Some argue that with the widespread
use of high-speed, high-capacity networks, distributing data and data management
functions no longer makes sense and that it may be much simpler to store data
at a central site and access it (by downloading) over high-speed networks. This
argument, while appealing, misses the point of distributed databases. First of all, in
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most of today’s applications, data are distributed; what may be open for debate is
how and where we process it. Second, and more important, point is that this argument
does not distinguish between bandwidth (the capacity of the computer links) and
latency (how long it takes for data to be transmitted). Latency is inherent in the
distributed environments and there are physical limits to how fast we can send data
over computer networks. As indicated above, for example, satellite links take about
half-a-second to transmit data between two ground stations. This is a function of the
distance of the satellites from the earth and there is nothing that we can do to improve
that performance. For some applications, this might constitute an unacceptable delay.

The second case point is that the inherent parallelism of distributed systems
may be exploited for inter-query and intra-query parallelism. Inter-query parallelism
results from the ability to execute multiple queries at the same time while intra-query
parallelism is achieved by breaking up a single query into a number of subqueries each
of which is executed at a different site, accessing a different part of the distributed
database.

If the user access to the distributed database consisted only of querying (i.e.,
read-only access), then provision of inter-query and intra-query parallelism would
imply that as much of the database as possible should be replicated. However, since
most database accesses are not read-only, the mixing of read and update operations
requires the implementation of elaborate concurrency control and commit protocols.

1.4.4 Easier System Expansion

In a distributed environment, it is much easier to accommodate increasing database
sizes. Major system overhauls are seldom necessary; expansion can usually be
handled by adding processing and storage power to the network. Obviously, it may
not be possible to obtain a linear increase in “power,” since this also depends on the
overhead of distribution. However, significant improvements are still possible.

One aspect of easier system expansion is economics. It normally costs much less
to put together a system of “smaller” computers with the equivalent power of a single
big machine. In earlier times, it was commonly believed that it would be possible
to purchase a fourfold powerful computer if one spent twice as much. This was
known as Grosh’s law. With the advent of microcomputers and workstations, and
their price/performance characteristics, this law is considered invalid.

This should not be interpreted to mean that mainframes are dead; this is not the
point that we are making here. Indeed, in recent years, we have observed a resurgence
in the world-wide sale of mainframes. The point is that for many applications, it is
more economical to put together a distributed computer system (whether composed
of mainframes or workstations) with sufficient power than it is to establish a single,
centralized system to run these tasks. In fact, the latter may not even be feasible these
days.
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1.5 Complications Introduced by Distribution

The problems encountered in database systems take on additional complexity in a
distributed environment, even though the basic underlying principles are the same.
Furthermore, this additional complexity gives rise to new problems influenced mainly
by three factors.

First, data may be replicated in a distributed environment. A distributed database
can be designed so that the entire database, or portions of it, reside at different sites
of a computer network. It is not essential that every site on the network contain the
database; it is only essential that there be more than one site where the database
resides. The possible duplication of data items is mainly due to reliability and effi-
ciency considerations. Consequently, the distributed database system is responsible
for (1) choosing one of the stored copies of the requested data for access in case of
retrievals, and (2) making sure that the effect of an update is reflected on each and
every copy of that data item.

Second, if some sites fail (e.g., by either hardware or software malfunction), or
if some communication links fail (making some of the sites unreachable) while an
update is being executed, the system must make sure that the effects will be reflected
on the data residing at the failing or unreachable sites as soon as the system can
recover from the failure.

The third point is that since each site cannot have instantaneous information
on the actions currently being carried out at the other sites, the synchronization of
transactions on multiple sites is considerably harder than for a centralized system.

These difficulties point to a number of potential problems with distributed DBMSs.
These are the inherent complexity of building distributed applications, increased
cost of replicating resources, and, more importantly, managing distribution, the
devolution of control to many centers and the difficulty of reaching agreements,
and the exacerbated security concerns (the secure communication channel problem).
These are well-known problems in distributed systems in general, and, in this book,
we discuss their manifestations within the context of distributed DBMS and how they
can be addressed.

1.6 Design Issues

In Section 1.4, we discussed the promises of distributed DBMS technology, highlight-
ing the challenges that need to be overcome in order to realize them. In this section
we build on this discussion by presenting the design issues that arise in building a
distributed DBMS. These issues will occupy much of the remainder of this book.
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1.6.1 Distributed Database Design

The question that is being addressed is how the database and the applications that run
against it should be placed across the sites. There are two basic alternatives to placing
data: partitioned (or non-replicated) and replicated. In the partitioned scheme the
database is divided into a number of disjoint partitions each of which is placed at
a different site. Replicated designs can be either fully replicated (also called fully
duplicated) where the entire database is stored at each site, or partially replicated (or
partially duplicated) where each partition of the database is stored at more than one
site, but not at all the sites. The two fundamental design issues are fragmentation,
the separation of the database into partitions called fragments, and distribution, the
optimum distribution of fragments.

The research in this area mostly involves mathematical programming in order
to minimize the combined cost of storing the database, processing transactions
against it, and message communication among sites. The general problem is NP-hard.
Therefore, the proposed solutions are based on heuristics. Distributed database design
is the topic of Chapter 3.

1.6.2 Distributed Directory Management

A directory contains information (such as descriptions and locations) about data
items in the database. Problems related to directory management are similar in nature
to the database placement problem discussed in the preceding section. A directory
may be global to the entire DDBS or local to each site; it can be centralized at one
site or distributed over several sites; there can be a single copy or multiple copies.
We briefly discuss these issues in Chapter 3.

1.6.3 Distributed Query Processing

Query processing deals with designing algorithms that analyze queries and convert
them into a series of data manipulation operations. The problem is how to decide
on a strategy for executing each query over the network in the most cost-effective
way, however cost is defined. The factors to be considered are the distribution of
data, communication costs, and lack of sufficient locally-available information. The
objective is to optimize where the inherent parallelism is used to improve the perfor-
mance of executing the transaction, subject to the above-mentioned constraints. The
problem is NP-hard in nature, and the approaches are usually heuristic. Distributed
query processing is discussed in detail in Chapter 6 - 8.
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1.6.4 Distributed Concurrency Control

Concurrency control involves the synchronization of accesses to the distributed data-
base, such that the integrity of the database is maintained. It is, without any doubt,
one of the most extensively studied problems in the DDBS field. The concurrency
control problem in a distributed context is somewhat different than in a centralized
framework. One not only has to worry about the integrity of a single database, but
also about the consistency of multiple copies of the database. The condition that
requires all the values of multiple copies of every data item to converge to the same
value is called mutual consistency.

The alternative solutions are too numerous to discuss here, so we examine them in
detail in Chapter 11. Let us only mention that the two general classes are pessimistic ,
synchronizing the execution of user requests before the execution starts, and opfi-
mistic, executing the requests and then checking if the execution has compromised
the consistency of the database. Two fundamental primitives that can be used with
both approaches are locking, which is based on the mutual exclusion of accesses to
data items, and timestamping, where the transaction executions are ordered based on
timestamps. There are variations of these schemes as well as hybrid algorithms that
attempt to combine the two basic mechanisms.

1.6.5 Distributed Deadlock Management

The deadlock problem in DDBSs is similar in nature to that encountered in operating
systems. The competition among users for access to a set of resources (data, in this
case) can result in a deadlock if the synchronization mechanism is based on locking.
The well-known alternatives of prevention, avoidance, and detection/recovery also
apply to DDBSs. Deadlock management is covered in Chapter 11.

1.6.6 Reliability of Distributed DBMS

We mentioned earlier that one of the potential advantages of distributed systems
is improved reliability and availability. This, however, is not a feature that comes
automatically. It is important that mechanisms be provided to ensure the consistency
of the database as well as to detect failures and recover from them. The implication
for DDBSs is that when a failure occurs and various sites become either inoperable
or inaccessible, the databases at the operational sites remain consistent and up to date.
Furthermore, when the computer system or network recovers from the failure, the
DDBSs should be able to recover and bring the databases at the failed sites up-to-date.
This may be especially difficult in the case of network partitioning, where the sites
are divided into two or more groups with no communication among them. Distributed
reliability protocols are the topic of Chapter 12.
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1.6.7 Replication

If the distributed database is (partially or fully) replicated, it is necessary to implement
protocols that ensure the consistency of the replicas,i.e., copies of the same data item
have the same value. These protocols can be eager in that they force the updates
to be applied to all the replicas before the transaction completes, or they may be
lazy so that the transaction updates one copy (called the master) from which updates
are propagated to the others after the transaction completes. We discuss replication
protocols in Chapter 13.

1.6.8 Relationship among Problems

Naturally, these problems are not isolated from one another. Each problem is affected
by the solutions found for the others, and in turn affects the set of feasible solutions
for them. In this section we discuss how they are related.

The relationship among the components is shown in Figure 1.7. The design of
distributed databases affects many areas. It affects directory management, because the
definition of fragments and their placement determine the contents of the directory
(or directories) as well as the strategies that may be employed to manage them.
The same information (i.e., fragment structure and placement) is used by the query
processor to determine the query evaluation strategy. On the other hand, the access
and usage patterns that are determined by the query processor are used as inputs to
the data distribution and fragmentation algorithms. Similarly, directory placement
and contents influence the processing of queries.
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The replication of fragments when they are distributed affects the concurrency
control strategies that might be employed. As we will study in Chapter 11, some
concurrency control algorithms cannot be easily used with replicated databases.
Similarly, usage and access patterns to the database will influence the concurrency
control algorithms. If the environment is update intensive, the necessary precautions
are quite different from those in a query-only environment.

There is a strong relationship among the concurrency control problem, the dead-
lock management problem, and reliability issues. This is to be expected, since to-
gether they are usually called the transaction management problem. The concurrency
control algorithm that is employed will determine whether or not a separate deadlock
management facility is required. If a locking-based algorithm is used, deadlocks will
occur, whereas they will not if timestamping is the chosen alternative.

Reliability mechanisms involve both local recovery techniques and distributed
reliability protocols. In that sense, they both influence the choice of the concurrency
control techniques and are built on top of them. Techniques to provide reliability also
make use of data placement information since the existence of duplicate copies of
the data serve as a safeguard to maintain reliable operation.

Finally, the need for replication protocols arise if data distribution involves replicas.
As indicated above, there is a strong relationship between replication protocols and
concurrency control techniques, since both deal with the consistency of data, but from
different perspectives. Furthermore, the replication protocols influence distributed
reliability techniques such as commit protocols. In fact, it is sometimes suggested
(wrongly, in our view) that replication protocols can be used instead of implementing
distributed commit protocols.

1.6.9 Additional Issues

The above design issues cover what may be called “traditional” distributed database
systems. The environment has changed significantly since these topics started to be
investigated, posing additional challenges and opportunities.

One of the important developments has been the move towards “looser” federation
among data sources, which may also be heterogeneous. As we discuss in the next
section, this has given rise to the development of multidatabase systems (also called
federated databases and data integration systems) that require re-investigation of
some of the fundamental database techniques. These systems constitute an important
part of today’s distributed environment. We discuss database design issues in multi-
database systems (i.e., database integration) in Chapter 4 and the query processing
challenges in Chapter 9.

The growth of the Internet as a fundamental networking platform has raised
important questions about the assumptions underlying distributed database systems.
Two issues are of particular concern to us. One is the re-emergence of peer-to-peer
computing, and the other is the development and growth of the World Wide Web
(web for short). Both of these aim at improving data sharing, but take different
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approaches and pose different data management challenges. We discuss peer-to-peer
data management in Chapter 16 and web data management in Chapter 17.

We should note that peer-to-peer is not a new concept in distributed databases,
as we discuss in the next section. However, their new re-incarnation has significant
differences from the earlier versions. In Chapter 16, it is these new versions that we
focus on.

Finally, as earlier noted, there is a strong relationship between distributed
databases and parallel databases. Although the former assumes each site to be a
single logical computer, most of these installations are, in fact, parallel clusters. Thus,
while most of the book focuses on issues that arise in managing data distributed
across these sites, interesting data management issues exist within a single logical
site that may be a parallel system. We discuss these issues in Chapter 14.

1.7 Distributed DBMS Architecture

The architecture of a system defines its structure. This means that the components of
the system are identified, the function of each component is specified, and the interre-
lationships and interactions among these components are defined. The specification
of the architecture of a system requires identification of the various modules, with
their interfaces and interrelationships, in terms of the data and control flow through
the system.

In this section we develop three “reference” architectures” for a distributed DBMS:
client/server systems, peer-to-peer distributed DBMS, and multidatabase systems.
These are “idealized” views of a DBMS in that many of the commercially available
systems may deviate from them; however, the architectures will serve as a reasonable
framework within which the issues related to distributed DBMS can be discussed.

We first start with a brief presentation of the “ANSI/SPARC architecture”, which is
a datalogical approach to defining a DBMS architecture — it focuses on the different
user classes and roles and their varying views on data. This architecture is helpful in
putting certain concepts we have discussed so far in their proper perspective. We then
have a short discussion of a generic architecture of a centralized DBMSs, that we
subsequently extend to identify the set of alternative architectures for a distributed
DBMS. Whithin this characterization, we focus on the three alternatives that we
identified above.

1.7.1 ANSI/SPARC Architecture

In late 1972, the Computer and Information Processing Committee (X3) of the Amer-
ican National Standards Institute (ANSI) established a Study Group on Database

2 A reference architecture is commonly created by standards developers to clearly define the
interfaces that need to be standardized.



22 1 Introduction

=l=N===
\ / N/

External External External External
Schema view view view
Conceptual Conceptual
Schema view

Internal Internal

Schema view

Fig. 1.8 The ANSI/SPARC Architecture

Management Systems under the auspices of its Standards Planning and Requirements
Committee (SPARC). The mission of the study group was to study the feasibility
of setting up standards in this area, as well as determining which aspects should be
standardized if it was feasible. The study group issued its interim report in 1975
[ANSI/SPARC, 1975], and its final report in 1977 [Tsichritzis and Klug, 1978].
The architectural framework proposed in these reports came to be known as the
“ANSI/SPARC architecture,” its full title being “ANSI/X3/SPARC DBMS Frame-
work.” The study group proposed that the interfaces be standardized, and defined
an architectural framework that contained 43 interfaces, 14 of which would deal
with the physical storage subsystem of the computer and therefore not be considered
essential parts of the DBMS architecture.

A simplified version of the ANSI/SPARC architecture is depicted in Figure 1.8.
There are three views of data: the external view, which is that of the end user, who
might be a programmer; the internal view, that of the system or machine; and
the conceptual view, that of the enterprise. For each of these views, an appropriate
schema definition is required.

At the lowest level of the architecture is the internal view, which deals with the
physical definition and organization of data. The location of data on different storage
devices and the access mechanisms used to reach and manipulate data are the issues
dealt with at this level. At the other extreme is the external view, which is concerned
with how users view the database. An individual user’s view represents the portion of
the database that will be accessed by that user as well as the relationships that the user
would like to see among the data. A view can be shared among a number of users,
with the collection of user views making up the external schema. In between these
two ends is the conceptual schema, which is an abstract definition of the database. It
is the “real world” view of the enterprise being modeled in the database [ Yormark,
1977]. As such, it is supposed to represent the data and the relationships among data
without considering the requirements of individual applications or the restrictions
of the physical storage media. In reality, however, it is not possible to ignore these
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requirements completely, due to performance reasons. The transformation between
these three levels is accomplished by mappings that specify how a definition at one
level can be obtained from a definition at another level.

This perspective is important, because it provides the basis for data independence
that we discussed earlier. The separation of the external schemas from the conceptual
schema enables logical data independence, while the separation of the conceptual
schema from the internal schema allows physical data independence.

1.7.2 A Generic Centralized DBMS Architecture

A DBMS is a reentrant program shared by multiple processes (transactions), that
run database programs. When running on a general purpose computer, a DBMS is
interfaced with two other components: the communication subsystem and the operat-
ing system. The communication subsystem permits interfacing the DBMS with other
subsystems in order to communicate with applications. For example, the terminal
monitor needs to communicate with the DBMS to run interactive transactions. The
operating system provides the interface between the DBMS and computer resources
(processor, memory, disk drives, etc.).

The functions performed by a DBMS can be layered as in Figure 1.9, where the
arrows indicate the direction of the data and the control flow. Taking a top-down
approach, the layers are the interface, control, compilation, execution, data access,
and consistency management.

The interface layer manages the interface to the applications. There can be
several interfaces such as, in the case of relational DBMSs discussed in Chapter
2, SQL embedded in a host language, such as C and QBE (Query-by-Example).
Database application programs are executed against external views of the database.
For an application, a view is useful in representing its particular perception of the
database (shared by many applications). A view in relational DBMSs is a virtual
relation derived from base relations by applying relational algebra operations.® These
concepts are defined more precisely in Chapter 2, but they are usually covered in
undergraduate database courses, so we expect many readers to be familiar with
them. View management consists of translating the user query from external data to
conceptual data.

The control layer controls the query by adding semantic integrity predicates and
authorization predicates. Semantic integrity constraints and authorizations are usually
specified in a declarative language, as discussed in Chapter 5. The output of this layer
is an enriched query in the high-level language accepted by the interface.

The query processing (or compilation) layer maps the query into an optimized
sequence of lower-level operations. This layer is concerned with performance. It

3 Note that this does not mean that the real-world views are, or should be, specified in relational
algebra. On the contrary, they are specified by some high-level data language such as SQL. The
translation from one of these languages to relational algebra is now well understood, and the effects
of the view definition can be specified in terms of relational algebra operations.
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decomposes the query into a tree of algebra operations and tries to find the “optimal”
ordering of the operations. The result is stored in an access plan. The output of this
layer is a query expressed in lower-level code (algebra operations).

The execution layer directs the execution of the access plans, including transaction
management (commit, restart) and synchronization of algebra operations. It interprets
the relational operations by calling the data access layer through the retrieval and
update requests.

The data access layer manages the data structures that implement the files, indices,
etc. It also manages the buffers by caching the most frequently accessed data. Careful
use of this layer minimizes the access to disks to get or write data.

Finally, the consistency layer manages concurrency control and logging for update
requests. This layer allows transaction, system, and media recovery after failure.
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1.7.3 Architectural Models for Distributed DBMSs

We now consider the possible ways in which a distributed DBMS may be architected.
We use a classification (Figure 1.10) that organizes the systems as characterized
with respect to (1) the autonomy of local systems, (2) their distribution, and (3) their
heterogeneity.
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Fig. 1.10 DBMS Implementation Alternatives

1.7.4 Autonomy

Autonomy, in this context, refers to the distribution of control, not of data. It indi-
cates the degree to which individual DBMSs can operate independently. Autonomy
is a function of a number of factors such as whether the component systems (i.e.,
individual DBMSs) exchange information, whether they can independently exe-
cute transactions, and whether one is allowed to modify them. Requirements of an
autonomous system have been specified as follows [Gligor and Popescu-Zeletin,
1986]:

1. The local operations of the individual DBMSs are not affected by their partic-
ipation in the distributed system.
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2. The manner in which the individual DBMSs process queries and optimize
them should not be affected by the execution of global queries that access
multiple databases.

3. System consistency or operation should not be compromised when individual
DBMSs join or leave the distributed system.

On the other hand, the dimensions of autonomy can be specified as follows [Du
and Elmagarmid, 1989]:

1. Design autonomy: Individual DBMSs are free to use the data models and
transaction management techniques that they prefer.

2. Communication autonomy: Each of the individual DBMSs is free to make its
own decision as to what type of information it wants to provide to the other
DBMSs or to the software that controls their global execution.

3. Execution autonomy: Each DBMS can execute the transactions that are sub-
mitted to it in any way that it wants to.

We will use a classification that covers the important aspects of these features.
One alternative is tight integration, where a single-image of the entire database
is available to any user who wants to share the information, which may reside in
multiple databases. From the users’ perspective, the data are logically integrated in
one database. In these tightly-integrated systems, the data managers are implemented
so that one of them is in control of the processing of each user request even if
that request is serviced by more than one data manager. The data managers do
not typically operate as independent DBMSs even though they usually have the
functionality to do so.

Next we identify semiautonomous systems that consist of DBMSs that can (and
usually do) operate independently, but have decided to participate in a federation to
make their local data sharable. Each of these DBMSs determine what parts of their
own database they will make accessible to users of other DBMSs. They are not fully
autonomous systems because they need to be modified to enable them to exchange
information with one another.

The last alternative that we consider is total isolation, where the individual systems
are stand-alone DBMSs that know neither of the existence of other DBMSs nor how
to communicate with them. In such systems, the processing of user transactions that
access multiple databases is especially difficult since there is no global control over
the execution of individual DBMSs.

It is important to note at this point that the three alternatives that we consider for
autonomous systems are not the only possibilities. We simply highlight the three
most popular ones.
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1.7.5 Distribution

Whereas autonomy refers to the distribution (or decentralization) of control, the
distribution dimension of the taxonomy deals with data. Of course, we are considering
the physical distribution of data over multiple sites; as we discussed earlier, the user
sees the data as one logical pool. There are a number of ways DBMSs have been
distributed. We abstract these alternatives into two classes: client/server distribution
and peer-to-peer distribution (or full distribution). Together with the non-distributed
option, the taxonomy identifies three alternative architectures.

The client/server distribution concentrates data management duties at servers
while the clients focus on providing the application environment including the
user interface. The communication duties are shared between the client machines
and servers. Client/server DBMSs represent a practical compromise to distributing
functionality. There are a variety of ways of structuring them, each providing a
different level of distribution. With respect to the framework, we abstract these
differences and leave that discussion to Section 1.7.8, which we devote to client/server
DBMS architectures. What is important at this point is that the sites on a network are
distinguished as “clients” and “servers” and their functionality is different.

In peer-to-peer systems, there is no distinction of client machines versus servers.
Each machine has full DBMS functionality and can communicate with other ma-
chines to execute queries and transactions. Most of the very early work on distributed
database systems have assumed peer-to-peer architecture. Therefore, our main focus
in this book are on peer-to-peer systems (also called fully distributed), even though
many of the techniques carry over to client/server systems as well.

1.7.6 Heterogeneity

Heterogeneity may occur in various forms in distributed systems, ranging from
hardware heterogeneity and differences in networking protocols to variations in data
managers. The important ones from the perspective of this book relate to data models,
query languages, and transaction management protocols. Representing data with
different modeling tools creates heterogeneity because of the inherent expressive
powers and limitations of individual data models. Heterogeneity in query languages
not only involves the use of completely different data access paradigms in different
data models (set-at-a-time access in relational systems versus record-at-a-time access
in some object-oriented systems), but also covers differences in languages even
when the individual systems use the same data model. Although SQL is now the
standard relational query language, there are many different implementations and
every vendor’s language has a slightly different flavor (sometimes even different
semantics, producing different results).
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1.7.7 Architectural Alternatives

The distribution of databases, their possible heterogeneity, and their autonomy are
orthogonal issues. Consequently, following the above characterization, there are
18 different possible architectures. Not all of these architectural alternatives that
form the design space are meaningful. Furthermore, not all are relevant from the
perspective of this book.

In Figure 1.10, we have identified three alternative architectures that are the focus
of this book and that we discuss in more detail in the next three subsections: (A0,
D1, HO) that corresponds to client/server distributed DBMSs, (A0, D2, HO) that
is a peer-to-peer distributed DBMS and (A2, D2, H1) which represents a (peer-to-
peer) distributed, heterogeneous multidatabase system. Note that we discuss the
heterogeneity issues within the context of one system architecture, although the issue
arises in other models as well.

1.7.8 Client/Server Systems

Client/server DBMSs entered the computing scene at the beginning of 1990’s and
have made a significant impact on both the DBMS technology and the way we do
computing. The general idea is very simple and elegant: distinguish the functionality
that needs to be provided and divide these functions into two classes: server functions
and client functions. This provides a two-level architecture which makes it easier to
manage the complexity of modern DBMSs and the complexity of distribution.

As with any highly popular term, client/server has been much abused and has
come to mean different things. If one takes a process-centric view, then any process
that requests the services of another process is its client and vice versa. However, it
is important to note that “client/server computing” and “client/server DBMS,” as it is
used in our context, do not refer to processes, but to actual machines. Thus, we focus
on what software should run on the client machines and what software should run on
the server machine.

Put this way, the issue is clearer and we can begin to study the differences in client
and server functionality. The functionality allocation between clients and serves
differ in different types of distributed DBMSs (e.g., relational versus object-oriented).
In relational systems, the server does most of the data management work. This means
that all of query processing and optimization, transaction management and storage
management is done at the server. The client, in addition to the application and the
user interface, has a DBMS client module that is responsible for managing the data
that is cached to the client and (sometimes) managing the transaction locks that may
have been cached as well. It is also possible to place consistency checking of user
queries at the client side, but this is not common since it requires the replication
of the system catalog at the client machines. Of course, there is operating system
and communication software that runs on both the client and the server, but we only
focus on the DBMS related functionality. This architecture, depicted in Figure 1.11,
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Fig. 1.11 Client/Server Reference Architecture

is quite common in relational systems where the communication between the clients
and the server(s) is at the level of SQL statements. In other words, the client passes
SQL queries to the server without trying to understand or optimize them. The server
does most of the work and returns the result relation to the client.

There are a number of different types of client/server architecture. The simplest is
the case where there is only one server which is accessed by multiple clients. We call
this multiple client/single server. From a data management perspective, this is not
much different from centralized databases since the database is stored on only one
machine (the server) that also hosts the software to manage it. However, there are
some (important) differences from centralized systems in the way transactions are
executed and caches are managed. We do not consider such issues at this point. A
more sophisticated client/server architecture is one where there are multiple servers in
the system (the so-called multiple client/multiple server approach). In this case, two
alternative management strategies are possible: either each client manages its own
connection to the appropriate server or each client knows of only its “home server’
which then communicates with other servers as required. The former approach
simplifies server code, but loads the client machines with additional responsibilities.
This leads to what has been called “heavy client” systems. The latter approach, on

i
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the other hand, concentrates the data management functionality at the servers. Thus,
the transparency of data access is provided at the server interface, leading to “light
clients.”

From a datalogical perspective, client/server DBMSs provide the same view of
data as do peer-to-peer systems that we discuss next. That is, they give the user the
appearance of a logically single database, while at the physical level data may be
distributed. Thus the primary distinction between client/server systems and peer-
to-peer ones is not in the level of transparency that is provided to the users and
applications, but in the architectural paradigm that is used to realize this level of
transparency.

Client/server can be naturally extended to provide for a more efficient function
distribution on different kinds of servers: client servers run the user interface (e.g.,
web servers), application servers run application programs, and database servers
run database management functions. This leads to the present trend in three-tier
distributed system architecture, where sites are organized as specialized servers
rather than as general-purpose computers.

The original idea, which is to offload the database management functions to a
special server, dates back to the early 1970s [Canaday et al., 1974]. At the time, the
computer on which the database system was run was called the database machine,
database computer, or backend computer, while the computer that ran the applica-
tions was called the host computer. More recent terms for these are the database
server and application server, respectively. Figure 1.12 illustrates a simple view of
the database server approach, with application servers connected to one database
server via a communication network.

The database server approach, as an extension of the classical client/server archi-
tecture, has several potential advantages. First, the single focus on data management
makes possible the development of specific techniques for increasing data reliability
and availability, e.g. using parallelism. Second, the overall performance of database
management can be significantly enhanced by the tight integration of the database
system and a dedicated database operating system. Finally, a database server can
also exploit recent hardware architectures, such as multiprocessors or clusters of PC
servers to enhance both performance and data availability.

Although these advantages are significant, they can be offset by the overhead
introduced by the additional communication between the application and the data
servers. This is an issue, of course, in classical client/server systems as well, but
in this case there is an additional layer of communication to worry about. The
communication cost can be amortized only if the server interface is sufficiently high
level to allow the expression of complex queries involving intensive data processing.

The application server approach (indeed, a n-tier distributed approach) can be
extended by the introduction of multiple database servers and multiple application
servers (Figure 1.13), as can be done in classical client/server architectures. In this
case, it is typically the case that each application server is dedicated to one or a few
applications, while database servers operate in the multiple server fashion discussed
above.



1.7 Distributed DBMS Architecture

Client Client
network
Application
server
network
Database
server
~
&
Fig. 1.12 Database Server Approach
Client Client
network
Application Application
server server
networ
Database Database Database
server server server

-~

v

Fig. 1.13 Distributed Database Servers

A

A4

A

v




32 1 Introduction

1.7.9 Peer-to-Peer Systems

If the term “client/server” is loaded with different interpretations, “peer-to-peer” is
even worse as its meaning has changed and evolved over the years. As noted earlier,
the early works on distributed DBMSs all focused on peer-to-peer architectures where
there was no differentiation between the functionality of each site in the system®.
After a decade of popularity of client/server computing, peer-to-peer have made
a comeback in the last few years (primarily spurred by file sharing applications)
and some have even positioned peer-to-peer data management as an alternative
to distributed DBMSs. While this may be a stretch, modern peer-to-peer systems
have two important differences from their earlier relatives. The first is the massive
distribution in current systems. While in the early days we focused on a few (perhaps
at most tens of) sites, current systems consider thousands of sites. The second is the
inherent heterogeneity of every aspect of the sites and their autonomy. While this has
always been a concern of distributed databases, as discussed earlier, coupled with
massive distribution, site heterogeneity and autonomy take on an added significance,
disallowing some of the approaches from consideration.

Discussing peer-to-peer database systems within this backdrop poses real chal-
lenges; the unique issues of database management over the “modern” peer-to-peer
architectures are still being investigated. What we choose to do, in this book, is to
initially focus on the classical meaning of peer-to-peer (the same functionality of
each site), since the principles and fundamental techniques of these systems are
very similar to those of client/server systems, and discuss the modern peer-to-peer
database issues in a separate chapter (Chapter 16).

Let us start the description of the architecture by looking at the data organizational
view. We first note that the physical data organization on each machine may be, and
probably is, different. This means that there needs to be an individual internal schema
definition at each site, which we call the local internal schema (LIS). The enterprise
view of the data is described by the global conceptual schema (GCS), which is global
because it describes the logical structure of the data at all the sites.

To handle data fragmentation and replication, the logical organization of data
at each site needs to be described. Therefore, there needs to be a third layer in the
architecture, the local conceptual schema (LCS). In the architectural model we have
chosen, then, the global conceptual schema is the union of the local conceptual
schemas. Finally, user applications and user access to the database is supported by
external schemas (ESs), defined as being above the global conceptual schema.

This architecture model, depicted in Figure 1.14, provides the levels of trans-
parency discussed earlier. Data independence is supported since the model is an
extension of ANSI/SPARC, which provides such independence naturally. Location
and replication transparencies are supported by the definition of the local and global
conceptual schemas and the mapping in between. Network transparency, on the
other hand, is supported by the definition of the global conceptual schema. The user

4 In fact, in the first edition of this book which appeared in early 1990 and whose writing was
completed in 1989, there wasn’t a single mention of the term “client/server”.
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queries data irrespective of its location or of which local component of the distributed
database system will service it. As mentioned before, the distributed DBMS translates
global queries into a group of local queries, which are executed by distributed DBMS
components at different sites that communicate with one another.

The detailed components of a distributed DBMS are shown in Figure 1.15. One
component handles the interaction with users, and another deals with the storage. The
first major component, which we call the user processor, consists of four elements:

1. The user interface handler is responsible for interpreting user commands as
they come in, and formatting the result data as it is sent to the user.

2. The semantic data controller uses the integrity constraints and authorizations
that are defined as part of the global conceptual schema to check if the user
query can be processed. This component, which is studied in detail in Chapter
5, is also responsible for authorization and other functions.

3. The global query optimizer and decomposer determines an execution strategy
to minimize a cost function, and translates the global queries into local ones
using the global and local conceptual schemas as well as the global directory.
The global query optimizer is responsible, among other things, for generating
the best strategy to execute distributed join operations. These issues are
discussed in Chapters 6 through 8.

4. The distributed execution monitor coordinates the distributed execution of the
user request. The execution monitor is also called the distributed transaction
manager. In executing queries in a distributed fashion, the execution monitors
at various sites may, and usually do, communicate with one another.

The second major component of a distributed DBMS is the data processor and
consists of three elements:
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1. The local query optimizer, which actually acts as the access path selector,
is responsible for choosing the best access path® to access any data item
(touched upon briefly in Chapter 8).

2. The local recovery manager is responsible for making sure that the local
database remains consistent even when failures occur (Chapter 12).

3. The run-time support processor physically accesses the database according
to the physical commands in the schedule generated by the query optimizer.
The run-time support processor is the interface to the operating system and
contains the database buffer (or cache) manager, which is responsible for
maintaining the main memory buffers and managing the data accesses.

It is important to note, at this point, that our use of the terms “user processor”
and “data processor” does not imply a functional division similar to client/server
systems. These divisions are merely organizational and there is no suggestion that
they should be placed on different machines. In peer-to-peer systems, one expects
to find both the user processor modules and the data processor modules on each
machine. However, there have been suggestions to separate “query-only sites” in a
system from full-functionality ones. In this case, the former sites would only need to
have the user processor.

In client/server systems where there is a single server, the client has the user
interface manager while the server has all of the data processor functionality as
well as semantic data controller; there is no need for the global query optimizer
or the global execution monitor. If there are multiple servers and the home server
approach described in the previous section is employed, then each server hosts all of
the modules except the user interface manager that resides on the client. If, however,
each client is expected to contact individual servers on its own, then, most likely,
the clients will host the full user processor functionality while the data processor
functionality resides in the servers.

1.7.10 Multidatabase System Architecture

Multidatabase systems (MDBS) represent the case where individual DBMSs (whether
distributed or not) are fully autonomous and have no concept of cooperation; they may
not even “know” of each other’s existence or how to talk to each other. Our focus is,
naturally, on distributed MDBSs, which is what the term will refer to in the remainder.
In most current literature, one finds the term data integration system used instead.
We avoid using that term since data integration systems consider non-database data
sources as well. Our focus is strictly on databases. We discuss these systems and
their relationship to database integration in Chapter 4. We note, however, that there
is considerable variability of the use of the term “multidatabase” in literature. In this

5 The term access path refers to the data structures and the algorithms that are used to access the
data. A typical access path, for example, is an index on one or more attributes of a relation.
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book, we use it consistently as defined above, which may devitate from its use in
some of the existing literature.

The differences in the level of autonomy between the distributed multi-DBMSs
and distributed DBMSs are also reflected in their architectural models. The fun-
damental difference relates to the definition of the global conceptual schema. In
the case of logically integrated distributed DBMSs, the global conceptual schema
defines the conceptual view of the entire database, while in the case of distributed
multi-DBMSs, it represents only the collection of some of the local databases that
each local DBMS wants to share. The individual DBMSs may choose to make some
of their data available for access by others (i.e., federated database architectures) by
defining an export schema [Heimbigner and McLeod, 1985]. Thus the definition of a
global database is different in MDBSs than in distributed DBMSs. In the latter, the
global database is equal to the union of local databases, whereas in the former it is
only a (possibly proper) subset of the same union. In a MDBS, the GCS (which is
also called a mediated schema) is defined by integrating either the external schemas
of local autonomous databases or (possibly parts of their) local conceptual schemas.

Furthermore, users of a local DBMS define their own views on the local database
and do not need to change their applications if they do not want to access data from
another database. This is again an issue of autonomy.

Designing the global conceptual schema in multidatabase systems involves the
integration of either the local conceptual schemas or the local external schemas
(Figure 1.16). A major difference between the design of the GCS in multi-DBMSs
and in logically integrated distributed DBMSs is that in the former the mapping is
from local conceptual schemas to a global schema. In the latter, however, mapping
is in the reverse direction. As we discuss in Chapters 3 and 4, this is because the
design in the former is usually a bottom-up process, whereas in the latter it is usually
a top-down procedure. Furthermore, if heterogeneity exists in the multidatabase
system, a canonical data model has to be found to define the GCS.

GEs,| |GEs,| |GEs,
\ /
LES,,| |LES,,| |LES,, Gcs LES.,| |LES,,| [LES.m
LCS, LCS,
Lis, Lis,

Fig. 1.16 MDBS Architecture with a GCS
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Once the GCS has been designed, views over the global schema can be defined
for users who require global access. It is not necessary for the GES and GCS to be
defined using the same data model and language; whether they do or not determines
whether the system is homogeneous or heterogeneous.

If heterogeneity exists in the system, then two implementation alternatives exist:
unilingual and multilingual. A unilingual multi-DBMS requires the users to utilize
possibly different data models and languages when both a local database and the
global database are accessed. The identifying characteristic of unilingual systems is
that any application that accesses data from multiple databases must do so by means
of an external view that is defined on the global conceptual schema. This means that
the user of the global database is effectively a different user than those who access
only a local database, utilizing a different data model and a different data language.

An alternative is multilingual architecture, where the basic philosophy is to permit
each user to access the global database (i.e., data from other databases) by means
of an external schema, defined using the language of the user’s local DBMS. The
GCS definition is quite similar in the multilingual architecture and the unilingual
approach, the major difference being the definition of the external schemas, which
are described in the language of the external schemas of the local database. Assuming
that the definition is purely local, a query issued according to a particular schema is
handled exactly as any query in the centralized DBMSs. Queries against the global
database are made using the language of the local DBMS, but they generally require
some processing to be mapped to the global conceptual schema.

The component-based architectural model of a multi-DBMS is significantly dif-
ferent from a distributed DBMS. The fundamental difference is the existence of
full-fledged DBMSs, each of which manages a different database. The MDBS pro-
vides a layer of software that runs on top of these individual DBMSs and provides
users with the facilities of accessing various databases (Figure 1.17). Note that in a
distributed MDBS, the multi-DBMS layer may run on multiple sites or there may be
central site where those services are offered. Also note that as far as the individual
DBMSs are concerned, the MDBS layer is simply another application that submits
requests and receives answers.

A popular implementation architecture for MDBSs is the mediator/wrapper ap-
proach (Figure 1.18) [Wiederhold, 1992]. A mediator “is a software module that
exploits encoded knowledge about certain sets or subsets of data to create information
for a higher layer of applications.” Thus, each mediator performs a particular function
with clearly defined interfaces. Using this architecture to implement a MDBS, each
module in the multi-DBMS layer of Figure 1.17 is realized as a mediator. Since
mediators can be built on top of other mediators, it is possible to construct a layered
implementation. In mapping this architecture to the datalogical view of Figure 1.16,
the mediator level implements the GCS. It is this level that handles user queries over
the GCS and performs the MDBS functionality.

The mediators typically operate using a common data model and interface lan-
guage. To deal with potential heterogeneities of the source DBMSs, wrappers are
implemented whose task is to provide a mapping between a source DBMSs view and
the mediators’ view. For example, if the source DBMS is a relational one, but the
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mediator implementations are object-oriented, the required mappings are established
by the wrappers. The exact role and function of mediators differ from one imple-
mentation to another. In some cases, thin mediators have been implemented who do
nothing more than translation. In other cases, wrappers take over the execution of
some of the query functionality.

One can view the collection of mediators as a middleware layer that provides
services above the source systems. Middleware is a topic that has been the subject of
significant study in the past decade and very sophisticated middleware systems have
been developed that provide advanced services for development of distributed appli-
cations. The mediators that we discuss only represent a subset of the functionality
provided by these systems.

1.8 Bibliographic Notes

There are not many books on distributed DBMSs. Ceri and Pelagatti’s book [Ceri
and Pelagatti, 1983] was the first on this topic though it is now dated. The book
by Bell and Grimson [Bell and Grimson, 1992] also provides an overview of the
topics addressed here. In addition, almost every database book now has a chapter on
distributed DBMSs. A brief overview of the technology is provided in [Ozsu and
Valduriez, 1997]. Our papers [Ozsu and Valduriez, 1994, 1991] provide discussions
of the state-of-the-art at the time they were written.

Database design is discussed in an introductory manner in [Levin and Morgan,
1975] and more comprehensively in [Ceri et al., 1987]. A survey of the file distribu-
tion algorithms is given in [Dowdy and Foster, 1982]. Directory management has not
been considered in detail in the research community, but general techniques can be
found in Chu and Nahouraii [1975] and [Chu, 1976]. A survey of query processing
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techniques can be found in [Sacco and Yao, 1982]. Concurrency control algorithms
are reviewed in [Bernstein and Goodman, 1981] and [Bernstein et al., 1987]. Dead-
lock management has also been the subject of extensive research; an introductory
paper is [Isloor and Marsland, 1980] and a widely quoted paper is [Obermarck,
1982]. For deadlock detection, good surveys are [Knapp, 1987] and [Elmagarmid,
1986]. Reliability is one of the issues discussed in [Gray, 1979], which is one of the
landmark papers in the field. Other important papers on this topic are [ Verhofstadt,
1978] and [Hérder and Reuter, 1983]. [Gray, 1979] is also the first paper discussing
the issues of operating system support for distributed databases; the same topic is
addressed in [Stonebraker, 1981]. Unfortunately, both papers emphasize centralized
database systems.

There have been a number of architectural framework proposals. Some of the inter-
esting ones include Schreiber’s quite detailed extension of the ANSI/SPARC frame-
work which attempts to accommodate heterogeneity of the data models [Schreiber,
1977], and the proposal by Mohan and Yeh [Mohan and Yeh, 1978]. As expected,
these date back to the early days of the introduction of distributed DBMS technology.
The detailed component-wise system architecture given in Figure 1.15 derives from
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[Rahimi, 1987]. An alternative to the classification that we provide in Figure 1.10
can be found in [Sheth and Larson, 1990].

Most of the discussion on architectural models for multi-DBMSs is from [Ozsu
and Barker, 1990]. Other architectural discussions on multi-DBMSs are given in
[Gligor and Luckenbaugh, 1984], [Litwin, 1988], and [Sheth and Larson, 1990]. All
of these papers provide overview discussions of various prototype and commercial
systems. An excellent overview of heterogeneous and federated database systems is
[Sheth and Larson, 1990].



Chapter 2
Background

As indicated in the previous chapter, there are two technological bases for distributed
database technology: database management and computer networks. In this chapter,
we provide an overview of the concepts in these two fields that are more important
from the perspective of distributed database technology.

2.1 Overview of Relational DBMS

The aim of this section is to define the terminology and framework used in subsequent
chapters, since most of the distributed database technology has been developed using
the relational model. In later chapters, when appropriate, we introduce other models.
Our focus here is on the language and operators.

2.1.1 Relational Database Concepts

A database is a structured collection of data related to some real-life phenomena that
we are trying to model. A relational database is one where the database structure is
in the form of tables. Formally, a relation R defined over n sets D1, D5, ..., D, (not
necessarily distinct) is a set of n-tuples (or simply tuples) (dy,da,...,d,) such that
di€D,,dy € Dy,...,d, € DD,.

Example 2.1. As an example we use a database that models an engineering company.
The entities to be modeled are the employees (EMP) and projects (PROJ). For
each employee, we would like to keep track of the employee number (ENO), name
(ENAME), title in the company (TITLE), salary (SAL), identification number of
the project(s) the employee is working on (PNO), responsibility within the project
(RESP), and duration of the assignment to the project (DUR) in months. Similarly,
for each project we would like to store the project number (PNO), the project name
(PNAME), and the project budget (BUDGET).

M.T. Ozsu and P. Valduriez, Principles of Distributed Database Systems: Third Edition, 41
DOI 10.1007/978-1-4419-8834-8_2, © Springer Science+Business Media, LLC 2011
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EMP

ENO | ENAME | TITLE SAL PNO | RESP DUR
PROJ

PNO | PNAME BUDGET

Fig. 2.1 Sample Database Scheme

The relation schemas for this database can be defined as follows:

EMP(ENO, ENAME, TITLE, SAL, PNO, RESP, DUR)
PROJ(PNO,PNAME, BUDGET)

In relation scheme EMP, there are seven attributes: ENO, ENAME, TITLE, SAL,
PNO, RESP, DUR. The values of ENO come from the domain of all valid employee
numbers, say D1, the values of ENAME come from the domain of all valid names,
say D;, and so on. Note that each attribute of each relation does not have to come
from a distinct domain. Various attributes within a relation or from a number of
relations may be defined over the same domain. ¢

The key of a relation scheme is the minimum non-empty subset of its attributes
such that the values of the attributes comprising the key uniquely identify each tuple
of the relation. The attributes that make up key are called prime attributes. The
superset of a key is usually called a superkey. Thus in our example the key of PROJ
is PNO, and that of EMP is the set (ENO, PNO). Each relation has at least one key.
Sometimes, there may be more than one possibility for the key. In such cases, each
alternative is considered a candidate key, and one of the candidate keys is chosen
as the primary key, which we denote by underlining. The number of attributes of a
relation defines its degree, whereas the number of tuples of the relation defines its
cardinality.

In tabular form, the example database consists of two tables, as shown in Figure
2.1. The columns of the tables correspond to the attributes of the relations; if there
were any information entered as the rows, they would correspond to the tuples. The
empty table, showing the structure of the table, corresponds to the relation schema;
when the table is filled with rows, it corresponds to a relation instance. Since the
information within a table varies over time, many instances can be generated from
one relation scheme. Note that from now on, the term relation refers to a relation
instance. In Figure 2.2 we depict instances of the two relations that are defined in
Figure 2.1.

An attribute value may be undefined. This lack of definition may have various
interpretations, the most common being “unknown” or “not applicable”. This special
value of the attribute is generally referred to as the null value. The representation of
a null value must be different from any other domain value, and special care should
be given to differentiate it from zero. For example, value “0” for attribute DUR is
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EMP
ENO| ENAME | TITLE SAL PNO | RESP DUR
El J. Doe Elect. Eng. | 40000 P1 | Manager 12
E2 M. Smith | Analyst 34000 P1 | Analyst 24
E2 M. Smith | Analyst 34000 P2 | Analyst 6
E3 A. Lee Mech. Eng. | 27000 P3 | Consultant 10
E3 A. Lee Mech. Eng. | 27000 P4 | Engineer 48
E4 J. Miller | Programmer| 24000 P2 | Programmer 18
E5 B. Casey| Syst. Anal. | 34000 P2 | Manager 24
E6 L. Chu Elect. Eng. | 40000 P4 | Manager 48
E7 R. Davis | Mech. Eng. | 27000 P3 | Engineer 36
E8 J. Jones | Syst. Anal. | 34000 P3 | Manager 40
PROJ
PNO PNAME BUDGET

P1 | Instrumentation 150000
P2 | Database Develop.[ 135000
P3 [ CAD/CAM 250000
P4 | Maintenance 310000

Fig. 2.2 Sample Database Instance

known information (e.g., in the case of a newly hired employee), while value “null”
for DUR means unknown. Supporting null values is an important feature necessary
to deal with maybe queries [Codd, 1979].

2.1.2 Normalization

The aim of normalization is to eliminate various anomalies (or undesirable aspects)
of a relation in order to obtain “better” relations. The following four problems might
exist in a relation scheme:

1. Repetition anomaly. Certain information may be repeated unnecessarily. Con-
sider, for example, the EMP relation in Figure 2.2. The name, title, and salary
of an employee are repeated for each project on which this person serves. This
is obviously a waste of storage and is contrary to the spirit of databases.
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2. Update anomaly. As a consequence of the repetition of data, performing
updates may be troublesome. For example, if the salary of an employee
changes, multiple tuples have to be updated to reflect this change.

3. Insertion anomaly. It may not be possible to add new information to the
database. For example, when a new employee joins the company, we cannot
add personal information (name, title, salary) to the EMP relation unless an
appointment to a project is made. This is because the key of EMP includes
the attribute PNO, and null values cannot be part of the key.

4. Deletion anomaly. This is the converse of the insertion anomaly. If an em-
ployee works on only one project, and that project is terminated, it is not
possible to delete the project information from the EMP relation. To do so
would result in deleting the only tuple about the employee, thereby resulting
in the loss of personal information we might want to retain.

Normalization transforms arbitrary relation schemes into ones without these
problems. A relation with one or more of the above mentioned anomalies is split into
two or more relations of a higher normal form. A relation is said to be in a normal
form if it satisfies the conditions associated with that normal form. Codd initially
defined the first, second, and third normal forms (INF, 2NF, and 3NF, respectively).
Boyce and Codd [Codd, 1974] later defined a modified version of the third normal
form, commonly known as the Boyce-Codd normal form (BCNF). This was followed
by the definition of the fourth (4NF) [Fagin, 1977] and fifth normal forms (5NF)
[Fagin, 1979].

The normal forms are based on certain dependency structures. BCNF and lower
normal forms are based on functional dependencies (FDs), 4NF is based on multi-
valued dependencies, and SNF is based on projection-join dependencies. We only
introduce functional dependency, since that is the only relevant one for the example
we are considering.

Let R be a relation defined over the set of attributes A = {A1,A,,...,A,} and let
X CA, Y CA. If for each value of X in R, there is only one associated Y value, we
say that “X functionally determines Y™’ or that “Y is functionally dependent on X.”
Notationally, this is shown as X — Y. The key of a relation functionally determines
the non-key attributes of the same relation.

Example 2.2. For example, in the PROJ relation of Example 2.1 (one can observe
these in Figure 2.2 as well), the valid FD is

PNO — (PNAME, BUDGET)
In the EMP relation we have
(ENO, PNO) — (ENAME,TITLE,SAL,RESP,.DUR)

This last FD is not the only FD in EMP, however. If each employee is given unique
employee numbers, we can write
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ENO — (ENAME, TITLE, SAL)
(ENO, PNO) — (RESP, DUR)

It may also happen that the salary for a given position is fixed, which gives rise to
the FD

TITLE — SAL
¢

We do not discuss the normal forms or the normalization algorithms in detail;
these can be found in database textbooks. The following example shows the result of
normalization on the sample database that we introduced in Example 2.1.

Example 2.3. The following set of relation schemes are normalized into BCNF with
respect to the functional dependencies defined over the relations.

EMP(ENO, ENAME, TITLE)
PAY(TITLE, SAL)

PROJ(PNO, PNAME, BUDGET)
ASG(ENO, PNO, RESP, DUR)

The normalized instances of these relations are shown in Figure 2.3. ¢

2.1.3 Relational Data Languages

Data manipulation languages developed for the relational model (commonly called
query languages) fall into two fundamental groups: relational algebra languages and
relational calculus languages. The difference between them is based on how the user
query is formulated. The relational algebra is procedural in that the user is expected
to specify, using certain high-level operators, how the result is to be obtained. The
relational calculus, on the other hand, is non-procedural; the user only specifies the
relationships that should hold in the result. Both of these languages were originally
proposed by Codd [1970], who also proved that they were equivalent in terms of
expressive power [Codd, 1972].

2.1.3.1 Relational Algebra

Relational algebra consists of a set of operators that operate on relations. Each
operator takes one or two relations as operands and produces a result relation, which,
in turn, may be an operand to another operator. These operations permit the querying
and updating of a relational database.
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EMP ASG
ENO | ENAME TITLE ENO| PNO| RESP DUR
E1 | J. Doe |Elect. Eng E1 | P1 | Manager 12
E2 | M. Smith |Syst. Anal. E2 [ P1 | Analyst 24
E3 | A.Lee |Mech. Eng. E2 [ P2 | Analyst 6
E4 | J. Miller |[Programmer E3 | P3 | Consultant 10
E5 | B. Casey|Syst. Anal. E3 | P4 | Engineer 48
E6 | L.Chu |Elect. Eng. E4 | P2 | Programmer 18
E7 | R. Davis |Mech. Eng. E5 | P2 | Manager 24
E8 | J.Jones |Syst. Anal. E6 | P4 | Manager 48
E7 | P3 | Engineer 36
E8 | P3 | Manager 40
PROJ PAY
PNO PNAME BUDGET TITLE SAL
P1 | Instrumentation 150000 Elect. Eng. 40000
P2 | Database Develop.| 135000 Syst. Anal. 34000
P3 | CAD/CAM 250000 Mech. Eng. 27000
P4 | Maintenance 310000 Programmer | 24000

Fig. 2.3 Normalized Relations

There are five fundamental relational algebra operators and five others that can be
defined in terms of these. The fundamental operators are selection, projection, union,
set difference, and Cartesian product. The first two of these operators are unary
operators, and the last three are binary operators. The additional operators that can be
defined in terms of these fundamental operators are intersection, 0 — join, natural
Jjoin, semijoin and division. In practice, relational algebra is extended with operators
for grouping or sorting the results, and for performing arithmetic and aggregate
functions. Other operators, such as outer join and transitive closure, are sometimes
used as well to provide additional functionality. We only discuss the more common
operators.

The operands of some of the binary relations should be union compatible. Two
relations R and § are union compatible if and only if they are of the same degree
and the i-th attribute of each is defined over the same domain. The second part of
the definition holds, obviously, only when the attributes of a relation are identified
by their relative positions within the relation and not by their names. If relative
ordering of attributes is not important, it is necessary to replace the second part of the
definition by the phrase “the corresponding attributes of the two relations should be
defined over the same domain.” The correspondence is defined rather loosely here.

Many operator definitions refer to “formula”, which also appears in relational
calculus expressions we discuss later. Thus, let us define precisely, at this point, what
we mean by a formula. We define a formula within the context of first-order predicate
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calculus (since we use that formalism later), and follow the notation of Gallaire et al.
[1984]. First-order predicate calculus is based on a symbol alphabet that consists of
(1) variables, constants, functions, and predicate symbols; (2) parentheses; (3) the
logical connectors A (and), V (or), - (not), — (implication), and <+ (equivalence);
and (4) quantifiers V (for all) and 3 (there exists). A term is either a constant or a
variable. Recursively, if f is an n-ary function and 71, ...,f, are terms, f(f1,...,t;)
is also a term. An aromic formula is of the form P(zy,...,t,), where P is an n-ary
predicate symbol and the #;’s are terms. A well-formed formula (wff) can be defined
recursively as follows: If w; and w; are wffs, then (w;), —(w;), (w;) A (w;), (wi) V
(wj), (wi) = (w;), and (w;) <> (w;) are all wffs. Variables in a wff may be free or
they may be bound by one of the two quantifiers.

Selection.

Selection produces a horizontal subset of a given relation. The subset consists of all
the tuples that satisfy a formula (condition). The selection from a relation R is

GF(R)

where R is the relation and F' is a formula.

The formula in the selection operation is called a selection predicate and is an
atomic formula whose terms are of the form A@c¢, where A is an attribute of R and
0 is one of the arithmetic comparison operators <, >, =, #, <, and >. The terms
can be connected by the logical connectors A, V, and —. Furthermore, the selection
predicate does not contain any quantifiers.

Example 2.4. Consider the relation EMP shown in Figure 2.3. The result of selecting
those tuples for electrical engineers is shown in Figure 2.4. ¢

OTITLE="Elect. Eng."(EMP)

ENO ENAME TITLE

El J. Doe Elect. Eng
E6 L. Chu Elect. Eng.

Fig. 2.4 Result of Selection



48 2 Background

Projection.

Projection produces a vertical subset of a relation. The result relation contains only
those attributes of the original relation over which projection is performed. Thus the
degree of the result is less than or equal to the degree of the original relation.

The projection of relation R over attributes A and B is denoted as

s 5(R)

Note that the result of a projection might contain tuples that are identical. In that
case the duplicate tuples may be deleted from the result relation. It is possible to
specify projection with or without duplicate elimination.

Example 2.5. The projection of relation PROJ shown in Figure 2.3 over attributes

PNO and BUDGET is depicted in Figure 2.5. ¢
Upyo BubceT (PROY)
PNO BUDGET
P1 150000
P2 135000
P3 250000
P4 310000

Fig. 2.5 Result of Projection

Union.

The union of two relations R and S (denoted as R U S) is the set of all tuples that are
in R, or in S, or in both. We should note that R and S should be union compatible. As
in the case of projection, the duplicate tuples are normally eliminated. Union may be
used to insert new tuples into an existing relation, where these tuples form one of the
operand relations.

Set Difference.

The set difference of two relations R and S (R —S) is the set of all tuples that are
in R but not in S. In this case, not only should R and S be union compatible, but
the operation is also asymmetric (i.e., R — S # S — R). This operation allows the
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EMP x PAY

ENO ENAME EMP.TITLE | PAY.TITLE SAL

El J. Doe Elect. Eng. | Elect. Eng. 40000
El J. Doe Elect. Eng. | Syst. Anal. 34000
El J. Doe Elect. Eng. Mech. Eng. 27000
El J. Doe Elect. Eng. Programmer | 24000
E2 M. Smith Syst. Anal. Elect. Eng. 40000
E2 M. Smith Syst. Anal. Syst. Anal. 34000
E2 M. Smith Syst. Anal. Mech. Eng. 27000
E2 M. Smith Syst. Anal. Programmer | 24000
E3 A Lee Mech. Eng. | Elect. Eng. 40000
E3 A. Lee Mech. Eng. | Syst. Anal. 34000
E3 A. Lee Mech. Eng. | Mech. Eng. 27000
E3 A. Lee Mech. Eng. | Programmer| 24000
E8 J. Jones Syst. Anal. Elect. Eng. 40000
E8 J. Jones Syst. Anal. Syst. Anal. 34000
E8 J. Jones Syst. Anal. Mech. Eng. 27000
E8 J. Jones Syst. Anal. Programmer | 24000

Fig. 2.6 Partial Result of Cartesian Product

deletion of tuples from a relation. Together with the union operation, we can perform
modification of tuples by deletion followed by insertion.

Cartesian Product.

The Cartesian product of two relations R of degree k; and S of degree k; is the set
of (k; + k)-tuples, where each result tuple is a concatenation of one tuple of R with
one tuple of S, for all tuples of R and S. The Cartesian product of R and S is denoted
asR xS.

It is possible that the two relations might have attributes with the same name. In
this case the attribute names are prefixed with the relation name so as to maintain the
uniqueness of the attribute names within a relation.

Example 2.6. Consider relations EMP and PAY in Figure 2.3. EMP x PAY is shown
in Figure 2.6. Note that the attribute TITLE, which is common to both relations,
appears twice, prefixed with the relation name. ¢
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Intersection.

Intersection of two relations R and S (R N S) consists of the set of all tuples that are
in both R and S. In terms of the basic operators, it can be specified as follows:

RNS=R—(R-YS)

0-Join.

Join is a derivative of Cartesian product. There are various forms of join; the primary
classification is between inner join and outer join. We first discuss inner join and its
variants and then describe outer join.

The most general type of inner join is the 8-join. The 6-join of two relations R
and S is denoted as

RXp S

where F is a formula specifying the join predicate. A join predicate is specified
similar to a selection predicate, except that the terms are of the form R.A0S.B, where
A and B are attributes of R and S, respectively.

The join of two relations is equivalent to performing a selection, using the join
predicate as the selection formula, over the Cartesian product of the two operand
relations. Thus

RXp S=o0p(RxS)

In the equivalence above, we should note that if F' involves attributes of the two
relations that are common to both of them, a projection is necessary to make sure
that those attributes do not appear twice in the result.

Example 2.7. Let us consider that the EMP relation in Figure 2.3 and add two more
tuples as depicted in Figure 2.7(a). Then Figure 2.7(b) shows the 0-join of relations
EMP and ASG over the join predicate EMP.ENO=ASG.ENO.

The same result could have been obtained as

EMP XgmpeNo-AsGENO ASG =

TTENO, ENAME, TITLE, SAL (OEMPENO =PAY.ENO (EMP X ASG))
Notice that the result does not have tuples E9 and E10 since these employees

have not yet been assigned to a project. Furthermore, the information about some
employees (e.g., E2 and E3) who have been assigned to multiple projects appear
more than once in the result. ¢

This example demonstrates a special case of 0-join which is called the equi-join.
This is a case where the formula F' only contains equality (=) as the arithmetic
operator. It should be noted, however, that an equi-join does not have to be specified
over a common attribute as the example above might suggest.
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EMP EMP P epp ENO=ASG.ENO ASC
ENO | ENAME TITLE ENO | ENAME TITLE PNO RESP DUR

E1 | J. Doe |Elect. Eng El J. Doe Elect. Eng. P1 Manager 12
E2 | M. Smith |Syst. Anal. E2 M. Smith Syst. Anal. P1 Analyst 12
E3 | A.Lee |Mech. Eng. E2 M. Smith Syst. Anal. P2 Analyst 12
E4 | J. Miller |Programmer E3 A. Lee Mech. Eng. P3 Consultant 12
E5 | B. Casey|Syst. Anal. E3 A. Lee Mech. Eng. P4 Engineer 12
E6 | L.Chu |Elect. Eng. E4 J. Miller Programmer P2 Programmer | 12
E7 | R. Davis |Mech. Eng. E5 J. Miller Syst. Anal. P2 Manager 12
E8 | J.Jones |Syst. Anal. E6 L. Chu Elect. Eng. P4 Manager 12
E9 | A.Hsu |Programmer E7 R. Davis Mech. Eng. P3 Engineer 12
E10| T. Wong |Syst. Anal. E8 J. Jones Syst. Anal. P3 Manager 12

(@) (b)

Fig. 2.7 The Result of Join

A natural join is an equi-join of two relations over a specified attribute, more
specifically, over attributes with the same domain. There is a difference, however, in
that usually the attributes over which the natural join is performed appear only once
in the result. A natural join is denoted as the join without the formula

RXy S

where A is the attribute common to both R and S. We should note here that the natural
join attribute may have different names in the two relations; what is required is that
they come from the same domain. In this case the join is denoted as

Ry Xp S
where B is the corresponding join attribute of S.

Example 2.8. The join of EMP and ASG in Example 2.7 is actually a natural join.
Here is another example — Figure 2.8 shows the natural join of relations EMP and
PAY in Figure 2.3 over the attribute TITLE.

¢

Inner join requires the joined tuples from the two operand relations to satisfy the
join predicate. In contrast, outer join does not have this requirement — tuples exist in
the result relation regardless. Outer join can be of three types: left outer join (I¥),
right outer join (XC) and full outer join (2X). In the left outer join, the tuples from
the left operand relation are always in the result, in the case of right outer join, the
tuples from the right operand are always in the result, and in the case of full outer
relation, tuples from both relations are always in the result. Outer join is useful in
those cases where we wish to include information from one or both relations even if
the do not satisfy the join predicate.
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EMP B TITLE PAY

ENO | ENAME TITLE SAL

El J. Doe Elect. Eng. 40000
E2 M. Smith Analyst 34000
E3 A. Lee Mech. Eng. 27000
E4 J. Miller Programmer | 24000
E5 B. Casey | Syst. Anal. 34000
E6 L. Chu Elect. Eng. 40000
E7 R. Davis Mech. Eng. 27000
E8 J. Jones Syst. Anal. 34000

Fig. 2.8 The Result of Natural Join

2 Background

Example 2.9. Consider the left outer join of EMP (as revised in Example 2.7) and
ASG over attribute ENO (i.e., EMP Xgno ASG). The result is given in Figure 2.9.
Notice that the information about two employees, E9 and E10 are included in the
result even thought they have not yet been assigned to a project with “Null” values
for the attributes from the ASG relation.

¢

EMPT ENO ASG
ENO | ENAME TITLE PNO RESP DUR
E1 J. Doe Elect. Eng. P1 Manager 12
E2 M. Smith Syst. Anal. P1 Analyst 12
E2 M. Smith Syst. Anal. P2 Analyst 12
E3 A. Lee Mech. Eng. P3 Consultant 12
E3 A. Lee Mech. Eng. P4 Engineer 12
E4 J. Miller Programmer P2 Programmer | 12
E5 J. Miller Syst. Anal. P2 Manager 12
E6 L. Chu Elect. Eng. P4 Manager 12
E7 R. Davis Mech. Eng. P3 Engineer 12
E8 J. Jones Syst. Anal. P3 Manager 12
E9 A. Hsu Programmer Null Null Null
E10 T. Wong Syst. Anal. Null Null Null

Fig. 2.9 The Result of Left Outer Join
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Semijoin.

The semijoin of relation R, defined over the set of attributes A, by relation S, defined
over the set of attributes B, is the subset of the tuples of R that participate in the join
of R with S. It is denoted as R Xy S (where F is a predicate as defined before) and
can be obtained as follows:

RxpS= HA(R X S) = HA(R) X HAmB(S)
=R NXg HAﬁB(S)

The advantage of semijoin is that it decreases the number of tuples that need to be
handled to form the join. In centralized database systems, this is important because
it usually results in a decreased number of secondary storage accesses by making
better use of the memory. It is even more important in distributed databases since
it usually reduces the amount of data that needs to be transmitted between sites in
order to evaluate a query. We talk about this in more detail in Chapters 3 and 8. At
this point note that the operation is asymmetric (i.e., R X S # S X R).

Example 2.10. To demonstrate the difference between join and semijoin, let us con-
sider the semijoin of EMP with PAY over the predicate EMP.TITLE = PAY.TITLE,
that is,

EMP XgmpTiTLE = PAYTITLE PAY

The result of the operation is shown in Figure 2.10. We encourage readers to
compare Figures 2.7 and 2.10 to see the difference between the join and the semijoin
operations. Note that the resultant relation does not have the PAY attribute and is

therefore smaller. ¢
EMP D< ¢\ 1o 17 e-payimie PAY

ENO | ENAME TITLE
El J. Doe Elect. Eng.
E2 M. Smith Analyst
E3 A. Lee Mech. Eng.
E4 J. Miller Programmer
E5 B. Casey | Syst. Anal.
E6 L. Chu Elect. Eng.
E7 R. Davis Mech. Eng.
E8 J. Jones Syst. Anal.

Fig. 2.10 The Result of Semijoin
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Division.

The division of relation R of degree r with relation S of degree s (where r > s and
s # 0) is the set of (r — s)-tuples ¢ such that for all s-tuples u in S, the tuple fu is in
R. The division operation is denoted as R = S and can be specified in terms of the
fundamental operators as follows:

RS =TI;(R) ~ TT5((TT5(R) x S) ~ R)
where A is the set of attributes of R that are not in S [i.e., the (r — s)-tuples].

Example 2.11. Assume that we have a modified version of the ASG relation (call it
ASG’) depicted in Figure 2.11a and defined as follows:

ASG’ = Igno.pno (ASG) Xpno PROJ

If one wants to find the employee numbers of those employees who are assigned
to all the projects that have a budget greater than $200,000, it is necessary to divide
ASG’ with a restricted version of PROJ, called PROJ (see Figure 2.11b). The result
of division (ASG’+ PRQOY’) is shown in Figure 2.11c.

The keyword in the query above is “all.” This rules out the possibility of doing
a selection on ASG’ to find the necessary tuples, since that would only give those
which correspond to employees working on some project with a budget greater than
$200,000, not those who work on all projects. Note that the result contains only the
tuple (E3) since the tuples (E3, P3, CAD/CAM, 250000) and (E3, P4, Maintenance,
310000) both exist in ASG’. On the other hand, for example, (E7) is not in the result,
since even though the tuple (E7, P3, CAD/CAM, 250000) is in ASG’, the tuple (E7,
P4, Maintenance, 310000) is not. ¢

Since all operations take relations as input and produce relations as outputs, we
can nest operations using a parenthesized notation and represent relational algebra
programs. The parentheses indicate the order of execution. The following are a few
examples that demonstrate the issue.

Example 2.12. Consider the relations of Figure 2.3. The retrieval query
“Find the names of employees working on the CAD/CAM project”
can be answered by the relational algebra program

IMename (((OpNaME = “capicam PROJ) Mpno ASG) Meno EMP)

The order of execution is: the selection on PROJ, followed by the join with ASG,
followed by the join with EMP, and finally the project on ENAME.
An equivalent program where the size of the intermediate relations is smaller is

IMename (EMP X gno (TTeno (ASG X pno (OpnaME= “capicam» PROJ))))
¢
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ASG'

ENO | PNO | PNAME BUDGET

El P1 Instrumentation 150000
E2 P1 Instrumentation 150000
E2 P2 Database Develop.| 135000
E3 P3 CAD/CAM 250000
E3 P4 Maintenance 310000
E4 P2 Database Develop.| 135000
E5 P2 Database Develop.| 135000

E6 P4 Maintenance 310000

E7 P3 CAD/CAM 250000

E8 P3 CADI/CAM 250000

(a)
PROJ' (ASG' + PROJ)
PNO PNAME BUDGET ENO
P3 CAD/CAM 250000 E3
P4 Maintenance 310000
(b) (c)

Fig. 2.11 The Result of Division

Example 2.13. The update query
“Replace the salary of programmers by $25,000”
can be computed by

(PAY —(OTITLE = “Programmer” PAY)) U((Programmer, 25000 ))

2.1.3.2 Relational Calculus

In relational calculus-based languages, instead of specifying how to obtain the result,
one specifies what the result is by stating the relationship that is supposed to hold
for the result. Relational calculus languages fall into two groups: tuple relational
calculus and domain relational calculus. The difference between the two is in terms
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of the primitive variable used in specifying the queries. We briefly review these two
types of languages.

Relational calculus languages have a solid theoretical foundation since they are
based on first-order predicate logic as we discussed before. Semantics is given to
formulas by interpreting them as assertions on the database. A relational database
can be viewed as a collection of tuples or a collection of domains. Tuple relational
calculus interprets a variable in a formula as a tuple of a relation, whereas domain
relational calculus interprets a variable as the value of a domain.

Tuple relational calculus.

The primitive variable used in tuple relational calculus is a tuple variable which
specifies a tuple of a relation. In other words, it ranges over the tuples of a relation.
Tuple calculus is the original relational calculus developed by Codd [1970].

In tuple relational calculus queries are specified as {¢|F(¢)}, where ¢ is a tuple
variable and F is a well-formed formula. The atomic formulas are of two forms:

1. Tuple-variable membership expressions. If t is a tuple variable ranging over
the tuples of relation R (predicate symbol), the expression “tuple ¢ belongs to
relation R” is an atomic formula, which is usually specified as R.t or R(z).

2. Conditions. These can be defined as follows:

(a) s[A]6¢[B], where s and ¢ are tuple variables and A and B are compo-
nents of s and ¢, respectively. 0 is one of the arithmetic comparison
operators <, >, =, #, <, and >. This condition specifies that
component A of s stands in relation 0 to the B component of ¢: for
example, s[SAL] > ¢[SAL].

(b) s[A]Oc, where s, A, and O are as defined above and c is a constant. For
example, sSEENAME] = “Smith”.

Note that A is defined as a component of the tuple variable s. Since the range of
s is a relation instance, say S, it is obvious that component A of s corresponds to
attribute A of relation S. The same thing is obviously true for B.

There are many languages that are based on relational tuple calculus, the most
popular ones being SQL! [Date, 1987] and QUEL [Stonebraker et al., 1976]. SQL is
now an international standard (actually, the only one) with various versions released:
SQLI1 was released in 1986, modifications to SQL1 were included in the 1989 version,
SQL2 was issued in 1992, and SQL3, with object-oriented language extensions, was
released in 1999.

! Sometimes SQL is cited as lying somewhere between relational algebra and relational calculus. Its
originators called it a “mapping language.” However, it follows the tuple calculus definition quite
closely; hence we classify it as such.



2.1 Overview of Relational DBMS 57

SQL provides a uniform approach to data manipulation (retrieval, update), data
definition (schema manipulation), and control (authorization, integrity, etc.). We limit
ourselves to the expression, in SQL, of the queries in Examples 2.14 and 2.15.

Example 2.14. The query from Example 2.12,
“Find the names of employees working on the CAD/CAM project”

can be expressed as follows:

SELECT EMP.ENAME

FROM EMP, ASG, PROJ

WHERE EMP.ENO = ASG.ENO

AND ASG.PNO = PROJ.PNO
AND PROJ.PNAME = "CAD/CAM"

¢

Note that a retrieval query generates a new relation similar to the relational algebra
operations.

Example 2.15. The update query of Example 2.13,
“Replace the salary of programmers by $25,000”

is expressed as

UPDATE PAY
SET SAL = 25000
WHERE PAY.TITLE = "Programmer"

Domain relational calculus.

The domain relational calculus was first proposed by Lacroix and Pirotte [1977]. The
fundamental difference between a tuple relational language and a domain relational
language is the use of a domain variable in the latter. A domain variable ranges over
the values in a domain and specifies a component of a tuple. In other words, the range
of a domain variable consists of the domains over which the relation is defined. The
wifs are formulated accordingly. The queries are specified in the following form:

X15X2 5 ey X |[F (X1, X0, 0y Xn)

where F is a wif in which x1,...,x, are the free variables.

The success of domain relational calculus languages is due mainly to QBE [Zloof,
1977], which is a visual application of domain calculus. QBE, designed only for
interactive use from a visual terminal, is user friendly. The basic concept is an
example: the user formulates queries by providing a possible example of the answer.
Typing relation names triggers the printing, on screen, of their schemes. Then, by
supplying keywords into the columns (domains), the user specifies the query. For
instance, the attributes of the project relation are given by P, which stands for “Print.”
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EMP ENO ENAME TITLE
E2 P

ASG ENO PNO RESP DUR
E2 P3

PROJ PNO PNAME BUDGET
P3 CAD/CAM

Fig. 2.12 Retrieval Query in QBE

By default, all queries are retrieval. An update query requires the specification
of U under the name of the updated relation or in the updated column. The retrieval
query corresponding to Example 2.12 is given in Figure 2.12 and the update query
of Example 2.13 is given in Figure 2.13. To distinguish examples from constants,
examples are underlined.

PAY TITLE SAL

Programmer U.25000

Fig. 2.13 Update Query in QBE

2.2 Review of Computer Networks

In this section we discuss computer networking concepts relevant to distributed
database systems. We omit most of the details of the technological and technical
issues in favor of discussing the main concepts.

We define a computer network as an interconnected collection of autonomous
computers that are capable of exchanging information among themselves (Figure
2.14). The keywords in this definition are inferconnected and autonomous. We want
the computers to be autonomous so that each computer can execute programs on its
own. We also want the computers to be interconnected so that they are capable of
exchanging information. Computers on a network are referred to as nodes, hosts, end
systems, or sites. Note that sometimes the terms host and end system are used to refer
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Switches

Fig. 2.14 A Computer Network

simply to the equipment, whereas sife is reserved for the equipment as well as the
software that runs on it. Similarly, node is generally used as a generic reference to
the computers or to the switches in a network. They form one of the fundamental
hardware components of a network. The other fundamental component is special
purpose devices and links that form the communication path that interconnects the
nodes. As depicted in Figure 2.14, the hosts are connected to the network through
switches (represented as circles with an X in them)?, which are special-purpose
equipment that route messages through the network. Some of the hosts may be
connected to the switches directly (using fiber optic, coaxial cable or copper wire)
and some via wireless base stations. The switches are connected to each other by
communication links that may be fiber optics, coaxial cable, satellite links, microwave
connections, etc.

The most widely used computer network these days is the Internet. It is hard
to define the Internet since the term is used to mean different things, but perhaps
the best definition is that it is a network of networks (Figure 2.15). Each of these

2 Note that the terms “switch” and “router” are sometimes used interchangeably (even within the
same text). However, other times they are used to mean slightly different things: switch refers to the
devices inside a network whereas router refers to one that is at the edge of a network connecting it
to the backbone. We use them interchangeably as in Figures 2.14 and 2.15.
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networks is referred to as an intranet to highlight the fact that they are “internal” to
an organization. An intranet, then, consists of a set of links and routers (shown as
“R” in Figure 2.15) administered by a single administrative entity or by its delegates.
For instance, the routers and links at a university constitute a single administrative
domain. Such domains may be located within a single geographical area (such as the
university network mentioned above), or, as in the case of large enterprises or Internet
Service Provider (ISP) networks, span multiple geographical areas. Each intranet is
connected to some others by means of links provisioned from ISPs. These links are
typically high-speed, long-distance duplex data transmission media (we will define
these terms shortly), such as a fiber-optic cable, or a satellite link. These links make up
what is called the Internet backbone. Each intranet has a router interface that connects
it to the backbone, as shown in Figure 2.15. Thus, each link connects an intranet
router to an ISP’s router. ISP’s routers are connected by similar links to routers of
other ISPs. This allows servers and clients within an intranet to communicate with
servers and clients in other intranets.

2.2.1 Types of Networks

There are various criteria by which computer networks can be classified. One crite-
rion is the geographic distribution (also called scale [Tanenbaum, 2003]), a second
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criterion is the interconnection structure of nodes (also called ropology), and the
third is the mode of transmission.

2.2.1.1 Scale

In terms of geographic distribution, networks are classified as wide area networks,
metropolitan area networks and local area networks. The distinctions among these
are somewhat blurred, but in the following, we give some general guidelines that
identify each of these networks. The primary distinction among them are probably in
terms of propagation delay, administrative control, and the protocols that are used in
managing them.

A wide area network (WAN) is one where the link distance between any two nodes
is greater than approximately 20 kilometers (km) and can go as large as thousands of
kilometers. Use of switches allow the aggregation of communication over wider areas
such as this. Owing to the distances that need to be traveled, long delays are involved
in wide area data transmission. For example, via satellite, there is a minimum delay
of half a second for data to be transmitted from the source to the destination and
acknowledged. This is because the speed with which signals can be transmitted is
limited to the speed of light, and the distances that need to be spanned are great
(about 31,000 km from an earth station to a satellite).

WAN:Ss are typically characterized by the heterogeneity of the transmission media,
the computers, and the user community involved. Early WANS had a limited capacity
of less than a few megabits-per-second (Mbps). However, most of the current ones are
broadband WANS that provide capacities of 150 Mbps and above. These individual
channels are aggregated into the backbone links; the current backbone links are
commonly OC48 at 2.4 Gbps or OC192 at 10Gbps. These networks can carry
multiple data streams with varying characteristics (e.g., data as well as audio/video
streams), the possibility of negotiating for a level of quality of service (QoS) and
reserving network resources sufficient to fulfill this level of QoS.

Local area networks (LANs) are typically limited in geographic scope (usually
less than 2 km). They provide higher capacity communication over inexpensive
transmission media. The capacities are typically in the range of 10-1000 Mbps per
connection. Higher capacity and shorter distances between hosts result in very short
delays. Furthermore, the better controlled environments in which the communication
links are laid out (within buildings, for example) reduce the noise and interference,
and the heterogeneity among the computers that are connected is easier to manage,
and a common transmission medium is used.

Metropolitan area networks (MANSs) are in between LANs and WANS in scale
and cover a city or a portion of it. The distances between nodes is typically on the
order of 10 km.
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2.2.1.2 Topology

As the name indicates, interconnection structure or topology refers to the way nodes
on a network are interconnected. The network in Figure 2.14 is what is called an
irregular network, where the interconnections between nodes do not follow any
pattern. It is possible to find a node that is connected to only one other node, as well
as nodes that have connections to a number of nodes. Internet is a typical irregular
network.

Host Host
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Host Host
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Fig. 2.16 Bus Network

Another popular topology is the bus, where all the computers are connected to a
common channel (Figure 2.16). This type of network is primarily used in LANs. The
link control is typically performed using carrier sense medium access with collision
detection (CSMA/CD) protocol. The CSMA/CD bus control mechanism can best be
described as a “listen before and while you transmit” scheme. The fundamental point
is that each host listens continuously to what occurs on the bus. When a message
transmission is detected, the host checks if the message is addressed to it, and takes
the appropriate action. If it wants to transmit, it waits until it detects no more activity
on the bus and then places its message on the network and continues to listen to bus
activity. If it detects another transmission while it is transmitting a message itself,
then there has been a “collision.” In such a case, and when the collision is detected,
the transmitting hosts abort the transmission, each waits a random amount of time,
and then each retransmits the message. The basic CSMA/CD scheme is used in the
Ethernet local area network>.

Other common alternatives are star, ring, bus, and mesh networks.

3 In most current implementations of Ethernet, multiple busses are linked via one or more switches
(called switched hubs) for expanded coverage and to better control the load on each bus segment.
In these systems, individual computers can directly be connected to the switch as well. These are
known as switched Ethernet.
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e Star networks connect all the hosts to a central node that coordinates the
transmission on the network. Thus if two hosts want to communicate, they have
to go through the central node. Since there is a separate link between the central
node and each of the others, there is a negotiation between the hosts and the
central node when they wish to communicate.

e Ring networks interconnect the hosts in the form of a loop. This type of network

was originally proposed for LANSs, but their use in these networks has nearly
stopped. They are now primarily used in MANSs (e.g., SONET rings). In their
current incarnation, data transmission around the ring is usually bidirectional
(original rings were unidirectional), with each station (actually the interface
to which each station is connected) serving as an active repeater that receives
a message, checks the address, copies the message if it is addressed to that
station, and retransmits it.
Control of communication in ring type networks is generally controlled by
means of a control token. In the simplest type of token ring networks, a token,
which has one bit pattern to indicate that the network is free and a different
bit pattern to indicate that it is in use, is circulated around the network. Any
site wanting to transmit a message waits for the token. When it arrives, the site
checks the token’s bit pattern to see if the network is free or in use. If it is free,
the site changes the bit pattern to indicate that the network is in use and then
places the messages on the ring. The message circulates around the ring and
returns to the sender which changes the bit pattern to free and sends the token
to the next computer down the line.

e Complete (or mesh) interconnection is one where each node is interconnected
to every other node. Such an interconnection structure obviously provides more
reliability and the possibility of better performance than that of the structures
noted previously. However, it is also the costliest. For example, a complete
connection of 10,000 computers would require approximately (10,000)? links.*

2.2.2 Communication Schemes

In terms of the physical communication schemes employed, networks can be either
point-to-point (also called unicast) networks, or broadcast (sometimes also called
multi-point) networks.

In point-to-point networks, there are one or more (direct or indirect) links between
each pair of nodes. The communication is always between two nodes and the receiver
and sender are identified by their addresses that are included in the message header.
Data transmission from the sender to the receiver follows one of the possibly many
links between them, some of which may involve visiting other intermediate nodes.
An intermediate node checks the destination address in the message header and if
it is not addressed to it, passes it along to the next intermediate node. This is the

# The general form of the equation is n(n — 1)/2, where n is the number of nodes on the network.
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process of switching or routing. The selection of the links via which messages are
sent is determined by usually elaborate routing algorithms that are beyond our scope.
We discuss the details of switching in Section 2.2.3.

The fundamental transmission media for point-to-point networks are twisted pair,
coaxial or fiber optic cables. Each of these media have different capacities: twisted
pair 300 bps to 10 Mbps, coaxial up to 200 Mbps, and fiber optic 10 Gbps and even
higher.

In broadcast networks, there is a common communication channel that is utilized
by all the nodes in the network. Messages are transmitted over this common channel
and received by all the nodes. Each node checks the receiver address and if the
message is not addressed to it, ignores it.

A special case of broadcasting is multicasting where the message is sent to a
subset of the nodes in the network. The receiver address is somehow encoded to
indicate which nodes are the recipients.

Broadcast networks are generally radio or satellite-based. In case of satellite
transmission, each site beams its transmission to a satellite which then beams it back
at a different frequency. Every site on the network listens to the receiving frequency
and has to disregard the message if it is not addressed to that site. A network that
uses this technique is HughesNet™ .

Microwave transmission is another mode of data communication and it can be
over satellite or terrestrial. Terrestrial microwave links used to form a major portion
of most countries’ telephone networks although many of these have since been
converted to fiber optic. In addition to the public carriers, some companies make
use of private terrestrial microwave links. In fact, major metropolitan cities face the
problem of microwave interference among privately owned and public carrier links.
A very early example that is usually identified as having pioneered the use of satellite
microwave transmission is ALOHA [Abramson, 1973].

Satellite and microwave networks are examples of wireless networks. These types
of wireless networks are commonly referred to as wireless broadband networks.
Another type of wireless network is one that is based on cellular networks. A
cellular network control station is responsible for a geographic area called a cell and
coordinates the communication from mobile hosts in their cell. These control stations
may be linked to a “wireline”” backbone network and thereby provide access from/to
mobile hosts to other mobile hosts or stationary hosts on the wireline network.

A third type of wireless network with which most of us may be more familiar are
wireless LANs (commonly referred to as Wi-LAN or WiLan). In this case a number
of “base stations” are connected to a wireline network and serve as connection points
for mobile hosts (similar to control stations in cellular networks). These networks
can provide bandwidth of up to 54 Mbps.

A final word on broadcasting topologies is that they have the advantage that it is
easier to check for errors and to send messages to more than one site than to do so in
point-to-point topologies. On the other hand, since everybody listens in, broadcast
networks are not as secure as point-to-point networks.
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2.2.3 Data Communication Concepts

What we refer to as data communication is the set of technologies that enable two
hosts to communicate. We are not going to be too detailed in this discussion, since,
at the distributed DBMS level, we can assume that the technology exists to move
bits between hosts. We, instead, focus on a few important issues that are relevant to
understanding delay and routing concepts.

As indicated earlier hosts are connected by links, each of which can carry one or
more channels. Link is a physical entity whereas channel is a logical one. Communi-
cation links can carry signals either in digital form or in analog form. Telephone lines,
for example, can carry data in analog form between the home and the central office —
the rest of the telephone network is now digital and even the home-to-central office
link is becoming digital with voice-over-IP (VoIP) technology. Each communication
channel has a capacity, which can be defined as the amount of information that can
be transmitted over the channel in a given time unit. This capacity is commonly
referred to as the bandwidth of the channel. In analog transmission channels, the
bandwidth is defined as the difference (in hertz) between the lowest and highest
frequencies that can be transmitted over the channel per second. In digital links,
bandwidth refers (less formally and with abuse of terminology) to the number of bits
that can be transmitted per second (bps).

With respect to delays in getting the user’s work done, the bandwidth of a trans-
mission channel is a significant factor, but it is not necessarily the only ones. The
other factor in the transmission time is the software employed. There are usually
overhead costs involved in data transmission due to the redundancies within the
message itself, necessary for error detection and correction. Furthermore, the net-
work software adds headers and trailers to any message, for example, to specify
the destination or to check for errors in the entire message. All of these activities
contribute to delays in transmitting data. The actual rate at which data are transmitted
across the network is known as the data transfer rate and this rate is usually less than
the actual bandwidth of the transmission channel. The software issues, that generally
are referred as network protocols, are discussed in the next section.

In computer-to-computer communication, data are usually transmitted in packets,
as we mentioned earlier. Usually, upper limits on frame sizes are established for each
network and each contains data as well as some control information, such as the
destination and source addresses, block error check codes, and so on (Figure 2.17).
If a message that is to be sent from a source node to a destination node cannot fit
one frame, it is split over a number of frames. This is be discussed further in Section
2.2.4.

There are various possible forms of switching/routing that can occur in point-to-
point networks. It is possible to establish a connection such that a dedicated channel
exists between the sender and the receiver. This is called circuit switching and is
commonly used in traditional telephone connections. When a subscriber dials the
number of another subscriber, a circuit is established between the two phones by
means of various switches. The circuit is maintained during the period of conversation
and is broken when one side hangs up. Similar setup is possible in computer networks.
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Another form of switching used in computer communication is packet switching,
where a message is broken up into packets and each packet transmitted individually.
In our discussion of the TCP/IP protocol earlier, we referred to messages being
transmitted; in fact the TCP protocol (or any other transport layer protocol) takes
each application package and breaks it up into fixed sized packets. Therefore, each
application message may be sent to the destination as multiple packets.

Packets for the same message may travel independently of each other and may,
in fact, take different routes. The result of routing packets along possibly different
links in the network is that they may arrive at the destination out-of-order. Thus
the transport layer software at the destination site should be able to sort them into
their original order to reconstruct the message. Consequently, it is the individual
packages that are routed through the network, which may result in packets reaching
the destination at different times and even out of order. The transport layer protocol
at the destination is responsible for collating and ordering the packets and generating
the application message properly.

The advantages of packet switching are many. First, packet-switching networks
provide higher link utilization since each link is not dedicated to a pair of communi-
cating equipment and can be shared by many. This is especially useful in computer
communication due to its bursty nature — there is a burst of transmission and then
some break before another burst of transmission starts. The link can be used for
other transmission when it is idle. Another reason is that packetizing may permit the
parallel transmission of data. There is usually no requirement that various packets
belonging to the same message travel the same route through the network. In such
a case, they may be sent in parallel via different routes to improve the total data
transmission time. As mentioned above, the result of routing frames this way is that
their in-order delivery cannot be guaranteed.

On the other hand, circuit switching provides a dedicated channel between the
receiver and the sender. If there is a sizable amount of data to be transmitted between
the two or if the channel sharing in packet switched networks introduces too much
delay or delay variance, or packet loss (which are important in multimedia applica-
tions), then the dedicated channel facilitates this significantly. Therefore, schemes
similar to circuit switching (i.e., reservation-based schemes) have gained favor in
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the broadband networks that support applications such as multimedia with very high
data transmission loads.

2.2.4 Communication Protocols

Establishing a physical connection between two hosts is not sufficient for them
to communicate. Error-free, reliable and efficient communication between hosts
requires the implementation of elaborate software systems that are generally called
protocols. Network protocols are “layered” in that network functionality is divided
into layers, each layer performing a well-defined function relying on the services
provided by the layer below it and providing a service to the layer above. A protocol
defines the services that are performed at one layer. The resulting layered protocol
set is referred to as a protocol stack or protocol suite.

There are different protocol stacks for different types of networks; however, for
communication over the Internet, the standard one is what is referred to as TCP/IP
that stands for “Transport Control Protocol/Internet Protocol”. We focus primarily
on TCP/IP in this section as well as some of the common LAN protocols.

Before we get into the specifics of the TCP/IP protocol stack, let us first discuss
how a message from a process on host C in Figure 2.15 is transmitted to a process
on server S, assuming both hosts implement the TCP/IP protocol. The process is
depicted in Figure 2.18.

The appropriate application layer protocol takes the message from the process on
host C and creates an application layer message by adding some application layer
header information (oblique hatched part in Figure 2.18) details of which are not
important for us. The application message is handed over to the TCP protocol, which
repeats the process by adding its own header information. TCP header includes the
necessary information to facilitate the provision of TCP services we discuss shortly.
The Internet layer takes the TCP message that is generated and forms an Internet
message as we also discuss below. This message is now physically transmitted from
host C to its router using the protocol of its own network, then through a series
of routers to the router of the network that contains server S, where the process is
reversed until the original message is recovered and handed over to the appropriate
process on S. The TCP protocols at hosts C and S communicate to ensure the
end-to-end guarantees that we discussed.

2.2.4.1 TCP/IP Protocol Stack

What is referred to as TCP/IP is in fact a family of protocols, commonly referred
to as the protocol stack. It consists of two sets of protocols, one set at the transport
layer and the other at the network (Internet) layer (Figure 2.19).

The transport layer defines the types of services that the network provides to
applications. The protocols at this layer address issues such as data loss (can the
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application tolerate losing some of the data during transmission?), bandwidth (some
applications have minimum bandwidth requirements while others can be more elastic
in their requirements), and timing (what type of delay can the applications tolerate?).
For example, a file transfer application can not tolerate any data loss, can be flexible
in its bandwidth use (it will work whether the connection is high capacity or low
capacity, although the performance may differ), and it does not have strict timing
requirements (although we may not like a file transfer to take a few days, it would
still work). In contrast, a real-time audio/video transmission application can tolerate
a limited amount of data loss (this may cause some jitter and other problems, but the
communication will still be “understandable”), has minimum bandwidth requirement
(5-128 Kbps for audio and 5 Kbps-20 Mbps for video), and is time sensitive (audio
and video data need to be synchronized).

To deal with these varying requirements (at least with some of them), at the trans-
port layer, two protocols are provided: TCP and UDP. TCP is connection-oriented,
meaning that prior setup is required between the sender and the receiver before
actual message transmission can start; it provides reliable transmission between the
sender and the receiver by ensuring that the messages are received correctly at the
receiver (referred to as “end-to-end reliability”); ensures flow control so that the
sender does not overwhelm the receiver if the receiver process is not able to keep
up with the incoming messages, and ensures congestion control so that the sender
is throttled when network is overloaded. Note that TCP does not address the timing
and minimum bandwidth guarantees, leaving these to the application layer.

UDP, on the other hand, is a connectionless service that does not provide the
reliability, flow control and congestion control guarantees that TCP provides. Nor
does it establish a connection between the sender and receiver beforehand. Thus, each
message is transmitted hoping that it will get to the destination, but no end-to-end
guarantees are provided. Thus, UDP has significantly lower overhead than TCP,
and is preferred by applications that would prefer to deal with these requirements
themselves, rather than having the network protocol handle them.

The network layer implements the Internet Protocol (IP) that provides the facility
to “package” a message in a standard Internet message format for transmission across
the network. Each Internet message can be up to 64KB long and consists of a header
that contains, among other things, the IP addresses of the sender and the receiver
machines (the numbers such as 129.97.79.58 that you may have seen attached to your
own machines), and the message body itself. The message format of each network
that makes up the Internet can be different, but each of these messages are encoded
into an Internet message by the Internet Protocol before they are transmitted®.

The importance of TCP/IP is the following. Each of the intranets that are part of
the Internet can use its own preferred protocol, so the computers on that network
implement that particular protocol (e.g., the token ring mechanism and the CSMA/CS
technique described above are examples of these types of protocols). However, if
they are to connect to the Internet, they need to be able to communicate using TCP/IP,
which are implemented on top of these specific network protocols (Figure 2.19).

3 Today, many of the Intranets also use TCP/IP, in which case IP encapsulation may not be necessary.
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2.2.4.2 Other Protocol Layers

Let us now briefly consider the other two layers depicted in Figure 2.19. Although
these are not part of the TCP/IP protocol stack, they are necessary to be able to build
distributed applications. These make up the top and the bottom layers of the protocol
stack.

The Application Protocol layer provides the specifications that distributed appli-
cations have to follow. For example, if one is building a Web application, then the
documents that will be posted on the Web have to be written according to the HTML
protocol (note that HTML is not a networking protocol, but a document encoding
protocol) and the communication between the client browser and the Web server has
to follow the HTTP protocol. Similar protocols are defined at this layer for other
applications as indicated in the figure.

The bottom layer represents the specific network that may be used. Each of
those networks have their own message formats and protocols and they provide the
mechanisms for data transmission within those networks.

The standardization for LANs is spearheaded by the Institute of Electrical and
Electronics Engineers (IEEE), specifically their Committee No. 802; hence the
standard that has been developed is known as the IEEE 802 Standard. The three
layers of the IEEE 802 local area network standard are the physical layer, the medium
access control layer, and the logical link control layer.

The physical layer deals with physical data transmission issues such as signaling.
Medium access control layer defines protocols that control who can have access to the
transmission medium and when. Logical link control layer implements protocols that
ensure reliable packet transmission between two adjacent computers (not end-to-end).
In most LANS, the TCP and IP layer protocols are implemented on top of these three
layers, enabling each computer to be able to directly communicate on the Internet.

To enable it to cover a variety of LAN architectures, the 802 local area network
standard is actually a number of standards rather than a single one. Originally, it
was specified to support three mechanisms at the medium access control level: the
CSMA/CD mechanism, token ring, and token access mechanism for bus networks.

2.3 Bibliographic Notes

This chapter covered the basic issues related to relational database systems and
computer networks. These concepts are discussed in much greater detail in a number
of excellent textbooks. Related to database technology, we can name [Ramakrishnan
and Gehrke, 2003; Elmasri and Navathe, 2011; Silberschatz et al., 2002; Garcia-
Molina et al., 2002; Kifer et al., 2006], and [Date, 2004]. For computer networks one
can refer to [Tanenbaum, 2003; Kurose and Ross, 2010; Leon-Garcia and Widjaja,
2004; Comer, 2009]. More focused discussion of data communication issues can be
found in [Stallings, 2011].



Chapter 3
Distributed Database Design

The design of a distributed computer system involves making decisions on the
placement of data and programs across the sites of a computer network, as well
as possibly designing the network itself. In the case of distributed DBMSs, the
distribution of applications involves two things: the distribution of the distributed
DBMS software and the distribution of the application programs that run on it.
Different architectural models discussed in Chapter 1 address the issue of application
distribution. In this chapter we concentrate on distribution of data.

It has been suggested that the organization of distributed systems can be investi-
gated along three orthogonal dimensions [Levin and Morgan, 1975] (Figure 3.1):

1. Level of sharing
2. Behavior of access patterns

3. Level of knowledge on access pattern behavior

In terms of the level of sharing, there are three possibilities. First, there is no shar-
ing: each application and its data execute at one site, and there is no communication
with any other program or access to any data file at other sites. This characterizes the
very early days of networking and is probably not very common today. We then find
the level of data sharing; all the programs are replicated at all the sites, but data files
are not. Accordingly, user requests are handled at the site where they originate and
the necessary data files are moved around the network. Finally, in data-plus-program
sharing, both data and programs may be shared, meaning that a program at a given
site can request a service from another program at a second site, which, in turn, may
have to access a data file located at a third site.

Levin and Morgan draw a distinction between data sharing and data-plus-pro-
gram sharing to illustrate the differences between homogeneous and heterogeneous
distributed computer systems. They indicate, correctly, that in a heterogeneous
environment it is usually very difficult, and sometimes impossible, to execute a given
program on different hardware under a different operating system. It might, however,
be possible to move data around relatively easily.

M.T. Ozsu and P. Valduriez, Principles of Distributed Database Systems: Third Edition, 71
DOI 10.1007/978-1-4419-8834-8_3, © Springer Science+Business Media, LLC 2011
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Along the second dimension of access pattern behavior, it is possible to identify
two alternatives. The access patterns of user requests may be static, so that they do
not change over time, or dynamic. It is obviously considerably easier to plan for
and manage the static environments than would be the case for dynamic distributed
systems. Unfortunately, it is difficult to find many real-life distributed applications
that would be classified as static. The significant question, then, is not whether a
system is static or dynamic, but how dynamic it is. Incidentally, it is along this
dimension that the relationship between the distributed database design and query
processing is established (refer to Figure 1.7).

The third dimension of classification is the level of knowledge about the access
pattern behavior. One possibility, of course, is that the designers do not have any
information about how users will access the database. This is a theoretical possibility,
but it is very difficult, if not impossible, to design a distributed DBMS that can
effectively cope with this situation. The more practical alternatives are that the
designers have complete information, where the access patterns can reasonably
be predicted and do not deviate significantly from these predictions, or partial
information, where there are deviations from the predictions.

The distributed database design problem should be considered within this general
framework. In all the cases discussed, except in the no-sharing alternative, new
problems are introduced in the distributed environment which are not relevant in
a centralized setting. In this chapter it is our objective to focus on these unique
problems.



3.1 Top-Down Design Process 73

Two major strategies that have been identified for designing distributed databases
are the top-down approach and the bottom-up approach [Ceri et al., 1987]. As the
names indicate, they constitute very different approaches to the design process. Top-
down approach is more suitable for tightly integrated, homogeneous distributed
DBMSs, while bottom-up design is more suited to multidatabases (see the classifica-
tion in Chapter 1). In this chapter, we focus on top-down design and defer bottom-up
to the next chapter.

3.1 Top-Down Design Process

A framework for top-down design process is shown in Figure 3.2. The activity begins
with a requirements analysis that defines the environment of the system and “elicits
both the data and processing needs of all potential database users” [Yao et al., 1982a].
The requirements study also specifies where the final system is expected to stand
with respect to the objectives of a distributed DBMS as identified in Section 1.4.
These objectives are defined with respect to performance, reliability and availability,
economics, and expandability (flexibility).

The requirements document is input to two parallel activities: view design and
conceptual design. The view design activity deals with defining the interfaces for end
users. The conceptual design, on the other hand, is the process by which the enterprise
is examined to determine entity types and relationships among these entities. One
can possibly divide this process into two related activity groups [Davenport, 1981]:
entity analysis and functional analysis. Entity analysis is concerned with determining
the entities, their attributes, and the relationships among them. Functional analysis,
on the other hand, is concerned with determining the fundamental functions with
which the modeled enterprise is involved. The results of these two steps need to be
cross-referenced to get a better understanding of which functions deal with which
entities.

There is a relationship between the conceptual design and the view design. In one
sense, the conceptual design can be interpreted as being an integration of user views.
Even though this view integration activity is very important, the conceptual model
should support not only the existing applications, but also future applications. View
integration should be used to ensure that entity and relationship requirements for all
the views are covered in the conceptual schema.

In conceptual design and view design activities the user needs to specify the data
entities and must determine the applications that will run on the database as well as
statistical information about these applications. Statistical information includes the
specification of the frequency of user applications, the volume of various information,
and the like. Note that from the conceptual design step comes the definition of
global conceptual schema discussed in Section 1.7. We have not yet considered the
implications of the distributed environment; in fact, up to this point, the process is
identical to that in a centralized database design.
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Fig. 3.2 Top-Down Design Process

The global conceptual schema (GCS) and access pattern information collected
as a result of view design are inputs to the distribution design step. The objective
at this stage, which is the focus of this chapter, is to design the local conceptual
schemas (LCSs) by distributing the entities over the sites of the distributed system. It
is possible, of course, to treat each entity as a unit of distribution. Given that we use
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the relational model as the basis of discussion in this book, the entities correspond to
relations.

Rather than distributing relations, it is quite common to divide them into subre-
lations, called fragments, which are then distributed. Thus, the distribution design
activity consists of two steps: fragmentation and allocation. The reason for separating
the distribution design into two steps is to better deal with the complexity of the
problem. However, this raises other concerns as we discuss at the end of the chapter.

The last step in the design process is the physical design, which maps the local
conceptual schemas to the physical storage devices available at the corresponding
sites. The inputs to this process are the local conceptual schema and the access pattern
information about the fragments in them.

It is well known that design and development activity of any kind is an ongoing
process requiring constant monitoring and periodic adjustment and tuning. We have
therefore included observation and monitoring as a major activity in this process.
Note that one does not monitor only the behavior of the database implementation but
also the suitability of user views. The result is some form of feedback, which may
result in backing up to one of the earlier steps in the design.

3.2 Distribution Design Issues

In the preceding section we indicated that the relations in a database schema are
usually decomposed into smaller fragments, but we did not offer any justification or
details for this process. The objective of this section is to fill in these details.

The following set of interrelated questions covers the entire issue. We will there-
fore seek to answer them in the remainder of this section.

Why fragment at all?

How should we fragment?

How much should we fragment?

Is there any way to test the correctness of decomposition?

How should we allocate?

S U kWD

What is the necessary information for fragmentation and allocation?

3.2.1 Reasons for Fragmentation

From a data distribution viewpoint, there is really no reason to fragment data. After
all, in distributed file systems, the distribution is performed on the basis of entire files.
In fact, the very early work dealt specifically with the allocation of files to nodes on
a computer network. We consider earlier models in Section 3.4.
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With respect to fragmentation, the important issue is the appropriate unit of distri-
bution. A relation is not a suitable unit, for a number of reasons. First, application
views are usually subsets of relations. Therefore, the locality of accesses of applica-
tions is defined not on entire relations but on their subsets. Hence it is only natural to
consider subsets of relations as distribution units.

Second, if the applications that have views defined on a given relation reside at
different sites, two alternatives can be followed, with the entire relation being the
unit of distribution. Either the relation is not replicated and is stored at only one site,
or it is replicated at all or some of the sites where the applications reside. The former
results in an unnecessarily high volume of remote data accesses. The latter, on the
other hand, has unnecessary replication, which causes problems in executing updates
(to be discussed later) and may not be desirable if storage is limited.

Finally, the decomposition of a relation into fragments, each being treated as
a unit, permits a number of transactions to execute concurrently. In addition, the
fragmentation of relations typically results in the parallel execution of a single query
by dividing it into a set of subqueries that operate on fragments. Thus fragmentation
typically increases the level of concurrency and therefore the system throughput.
This form of concurrency, which we refer to as intraquery concurrency, is dealt with
mainly in Chapters 7 and 8, under query processing.

Fragmentation raises difficulties as well. If the applications have conflicting
requirements that prevent decomposition of the relation into mutually exclusive
fragments, those applications whose views are defined on more than one fragment
may suffer performance degradation. It might, for example, be necessary to retrieve
data from two fragments and then take their join, which is costly. Minimizing
distributed joins is a fundamental fragmentation issue.

The second problem is related to semantic data control, specifically to integrity
checking. As a result of fragmentation, attributes participating in a dependency may
be decomposed into different fragments that might be allocated to different sites. In
this case, even the simpler task of checking for dependencies would result in chasing
after data in a number of sites. In Chapter 5 we return to the issue of semantic data
control.

3.2.2 Fragmentation Alternatives

Relation instances are essentially tables, so the issue is one of finding alternative
ways of dividing a table into smaller ones. There are clearly two alternatives for this:
dividing it horizontally or dividing it vertically.

Example 3.1. In this chapter we use a modified version of the relational database
scheme developed in Section 2.1. We have added to the PROJ relation a new attribute
(LOC) that indicates the place of each project. Figure 3.3 depicts the database instance
we will use. Figure 3.4 shows the PROJ relation of Figure 3.3 divided horizontally
into two relations. Subrelation PROJ; contains information about projects whose
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EMP, ASG
ENO | ENAME TITLE ENO| PNO| RESP DUR
E1 | J.Doe |Elect. Eng E1 | P1 | Manager 12
E2 | M. Smith |Syst. Anal. E2 [ P1 | Analyst 24
E3 | A.Lee |Mech. Eng. E2 [ P2 | Analyst 6
E4 | J. Miller |Programmer E3 | P3 | Consultant 10
E5 | B. Casey|Syst. Anal. E3 | P4 | Engineer 48
E6 | L.Chu |Elect. Eng. E4 | P2 | Programmer 18
E7 | R. Davis |Mech. Eng. E5 | P2 | Manager 24
E8 | J.Jones |Syst. Anal. E6 | P4 | Manager 48
E7 | P3 | Engineer 36
E8 | P3 | Manager 40
PROJ PAY
PNO PNAME BUDGET| LOC TITLE SAL
P1 [ Instrumentation 150000 (Montreal ||Elect. Eng. 40000
P2 | Database Develop.| 135000 |New York || Syst. Anal. 34000
P3 | CAD/CAM 250000 [New York || Mech. Eng. 27000
P4 | Maintenance 310000 |Paris Programmer | 24000

Fig. 3.3 Modified Example Database

budgets are less than $200,000, whereas PROJ; stores information about projects
with larger budgets. ¢

Example 3.2. Figure 3.5 shows the PROJ relation of Figure 3.3 partitioned vertically
into two subrelations, PROJ; and PROJ,. PROJ; contains only the information about
project budgets, whereas PROJ, contains project names and locations. It is important
to notice that the primary key to the relation (PNO) is included in both fragments. ¢

The fragmentation may, of course, be nested. If the nestings are of different types,
one gets hybrid fragmentation. Even though we do not treat hybrid fragmentation as
a primitive fragmentation strategy, many real-life partitionings may be hybrid.

3.2.3 Degree of Fragmentation

The extent to which the database should be fragmented is an important decision
that affects the performance of query execution. In fact, the issues in Section 3.2.1
concerning the reasons for fragmentation constitute a subset of the answers to the
question we are addressing here. The degree of fragmentation goes from one extreme,
that is, not to fragment at all, to the other extreme, to fragment to the level of
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PROJ:L
PNO PNAME BUDGET LOC
P1 Instrumentation 150000 Montreal
P2 Database Develop. 135000 New York
PROJ 2
PNO PNAME BUDGET LOC
P3 CAD/CAM 255000 New York
P4 Maintenance 310000 Paris

Fig. 3.4 Example of Horizontal Partitioning

PROJ, PROJ,
PNO BUDGET PNO PNAME LOC
P1 150000 P1 Instrumentation Montreal
P2 135000 P2 Database Develop.] New York
P3 250000 P3 CAD/CAM New York
P4 310000 P4 Maintenance Paris

Fig. 3.5 Example of Vertical Partitioning

individual tuples (in the case of horizontal fragmentation) or to the level of individual
attributes (in the case of vertical fragmentation).

We have already addressed the adverse effects of very large and very small units
of fragmentation. What we need, then, is to find a suitable level of fragmentation that
is a compromise between the two extremes. Such a level can only be defined with
respect to the applications that will run on the database. The issue is, how? In general,
the applications need to be characterized with respect to a number of parameters.
According to the values of these parameters, individual fragments can be identified.
In Section 3.3 we describe how this characterization can be carried out for alternative
fragmentations.
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3.2.4 Correctness Rules of Fragmentation

We will enforce the following three rules during fragmentation, which, together,
ensure that the database does not undergo semantic change during fragmentation.

1. Completeness. If a relation instance R is decomposed into fragments Fp =
{R1,Ra, ...,R,}, each data item that can be found in R can also be found
in one or more of R;’s. This property, which is identical to the lossless de-
composition property of normalization (Section 2.1), is also important in
fragmentation since it ensures that the data in a global relation are mapped
into fragments without any loss [Grant, 1984]. Note that in the case of hori-
zontal fragmentation, the “item” typically refers to a tuple, while in the case
of vertical fragmentation, it refers to an attribute.

2. Reconstruction. If a relation R is decomposed into fragments Fr = {R;,R2,
..., Ry}, it should be possible to define a relational operator 57 such that

R=<yR;, VR;€F

The operator 57 will be different for different forms of fragmentation; it is
important, however, that it can be identified. The reconstructability of the
relation from its fragments ensures that constraints defined on the data in the
form of dependencies are preserved.

3. Disjointness. If a relation R is horizontally decomposed into fragments Fr =
{Ri, Ro, ..., R,} and data item d; is in R, it is not in any other fragment
Ry (k£ j). This criterion ensures that the horizontal fragments are disjoint. If
relation R is vertically decomposed, its primary key attributes are typically
repeated in all its fragments (for reconstruction). Therefore, in case of vertical
partitioning, disjointness is defined only on the non-primary key attributes of
a relation.

3.2.5 Allocation Alternatives

Assuming that the database is fragmented properly, one has to decide on the allocation
of the fragments to various sites on the network. When data are allocated, it may
either be replicated or maintained as a single copy. The reasons for replication are
reliability and efficiency of read-only queries. If there are multiple copies of a data
item, there is a good chance that some copy of the data will be accessible somewhere
even when system failures occur. Furthermore, read-only queries that access the same
data items can be executed in parallel since copies exist on multiple sites. On the other
hand, the execution of update queries cause trouble since the system has to ensure
that all the copies of the data are updated properly. Hence the decision regarding
replication is a trade-off that depends on the ratio of the read-only queries to the
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update queries. This decision affects almost all of the distributed DBMS algorithms
and control functions.

A non-replicated database (commonly called a partitioned database) contains
fragments that are allocated to sites, and there is only one copy of any fragment on
the network. In case of replication, either the database exists in its entirety at each
site (fully replicated database), or fragments are distributed to the sites in such a way
that copies of a fragment may reside in multiple sites (partially replicated database).
In the latter the number of copies of a fragment may be an input to the allocation
algorithm or a decision variable whose value is determined by the algorithm. Figure
3.6 compares these three replication alternatives with respect to various distributed
DBMS functions. We will discuss replication at length in Chapter 13.

Full replication Partial replication Partitioning
QUERY -
PROCESSING Easy Sameydificulty
DIRECTORY Easy or Same|difficulty
MANAGEMENT nonexistent < >
CONCURRENCY -
CONTROL Moderate Difficult Easy
RELIABILITY Very high High Low
REALITY Possible application Realistic Possible application

Fig. 3.6 Comparison of Replication Alternatives

3.2.6 Information Requirements

One aspect of distribution design is that too many factors contribute to an optimal
design. The logical organization of the database, the location of the applications, the
access characteristics of the applications to the database, and the properties of the
computer systems at each site all have an influence on distribution decisions. This
makes it very complicated to formulate the distribution problem.

The information needed for distribution design can be divided into four categories:
database information, application information, communication network informa-
tion, and computer system information. The latter two categories are completely
quantitative in nature and are used in allocation models rather than in fragmentation
algorithms. We do not consider them in detail here. Instead, the detailed information
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requirements of the fragmentation and allocation algorithms are discussed in their
respective sections.

3.3 Fragmentation

In this section we present the various fragmentation strategies and algorithms. As
mentioned previously, there are two fundamental fragmentation strategies: horizontal
and vertical. Furthermore, there is a possibility of nesting fragments in a hybrid
fashion.

3.3.1 Horizontal Fragmentation

As we explained earlier, horizontal fragmentation partitions a relation along its tuples.
Thus each fragment has a subset of the tuples of the relation. There are two versions
of horizontal partitioning: primary and derived. Primary horizontal fragmentation
of a relation is performed using predicates that are defined on that relation. Derived
horizontal fragmentation, on the other hand, is the partitioning of a relation that
results from predicates being defined on another relation.

Later in this section we consider an algorithm for performing both of these
fragmentations. However, first we investigate the information needed to carry out
horizontal fragmentation activity.

3.3.1.1 Information Requirements of Horizontal Fragmentation
Database Information.

The database information concerns the global conceptual schema. In this context it is
important to note how the database relations are connected to one another, especially
with joins. In the relational model, these relationships are also depicted as relations.
However, in other data models, such as the entity-relationship (E-R) model [Chen,
1976], these relationships between database objects are depicted explicitly. Ceri et al.
[1983] also model the relationship explicitly, within the relational framework, for
purposes of the distribution design. In the latter notation, directed links are drawn
between relations that are related to each other by an equijoin operation.

Example 3.3. Figure 3.7 shows the expression of links among the database relations
given in Figure 2.3. Note that the direction of the link shows a one-to-many rela-
tionship. For example, for each title there are multiple employees with that title;
thus there is a link between the PAY and EMP relations. Along the same lines, the
many-to-many relationship between the EMP and PROJ relations is expressed with
two links to the ASG relation. ¢
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PAY
TITLE, SAL
Ll
EMP | PROJ
ENO, ENAME, TITLE PNO, PNAME, BUDGET, LOC
L, L,
ASG

ENO, PNO, RESP, DUR

Fig. 3.7 Expression of Relationships Among Relations Using Links

The links between database objects (i.e., relations in our case) should be quite
familiar to those who have dealt with network models of data. In the relational model,
they are introduced as join graphs, which we discuss in detail in subsequent chapters
on query processing. We introduce them here because they help to simplify the
presentation of the distribution models we discuss later.

The relation at the tail of a link is called the owner of the link and the relation
at the head is called the member [Ceri et al., 1983]. More commonly used terms,
within the relational framework, are source relation for owner and farget relation
for member. Let us define two functions: owner and member, both of which provide
mappings from the set of links to the set of relations. Therefore, given a link, they
return the member or owner relations of the link, respectively.

Example 3.4. Given link L; of Figure 3.7, the owner and member functions have the
following values:

owner(L;) = PAY
member(L;) = EMP
¢

The quantitative information required about the database is the cardinality of each
relation R, denoted card(R).

Application Information.

As indicated previously in relation to Figure 3.2, both qualitative and quantitative
information is required about applications. The qualitative information guides the
fragmentation activity, whereas the quantitative information is incorporated primarily
into the allocation models.

The fundamental qualitative information consists of the predicates used in user
queries. If it is not possible to analyze all of the user applications to determine these
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predicates, one should at least investigate the most “important” ones. It has been
suggested that as a rule of thumb, the most active 20% of user queries account for
80% of the total data accesses [Wiederhold, 1982]. This “80/20 rule” may be used as
a guideline in carrying out this analysis.

At this point we are interested in determining simple predicates. Given a relation
R(Ay, Ay, ..., A,), where A; is an attribute defined over domain D;, a simple
predicate p; defined on R has the form

pj:A; 0 Value

where 6 € {=, <, #, <, >, >} and Value is chosen from the domain of A; (Value €
D;). We use Pr; to denote the set of all simple predicates defined on a relation R;.
The members of Pr; are denoted by p;;.

Example 3.5. Given the relation instance PROJ of Figure 3.3,
PNAME = “Maintenance”
is a simple predicate, as well as

BUDGET < 200000
¢

Even though simple predicates are quite elegant to deal with, user queries quite
often include more complicated predicates, which are Boolean combinations of
simple predicates. One combination that we are particularly interested in, called a
minterm predicate, is the conjunction of simple predicates. Since it is always possible
to transform a Boolean expression into conjunctive normal form, the use of minterm
predicates in the design algorithms does not cause any loss of generality.

Given a set Pr; = {pi1, pi2, --., Pim} Of simple predicates for relation R;, the set
of minterm predicates M; = {m;;, mp, ..., mj;} is defined as

M; = {mijlm; =\ pi}, 1<k<m, 1<j<z
Pik€Pr;

where pj = pi; or pj, = —pi. So each simple predicate can occur in a minterm
predicate either in its natural form or its negated form.

It is important to note that the negation of a predicate is meaningful for equality
predicates of the form Attribute = Value. For inequality predicates, the negation
should be treated as the complement. For example, the negation of the simple predi-
cate Artribute < Value is Attribute > Value. Besides theoretical problems of comple-
mentation in infinite sets, there is also the practical problem that the complement may
be difficult to define. For example, if two simple predicates are defined of the form
Lower_bound < Attribute_1, and Attribute_1 < U pper_bound, their complements
are ~(Lower_bound < Attribute_1) and —(Attribute_1 < U pper_bound). However,
the original two simple predicates can be written as Lower_bound < Attribute_1 <
U pper_bound with a complement —~(Lower_bound < Attribute_1 < U pper_bound)
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that may not be easy to define. Therefore, the research in this area typically considers
only simple equality predicates [Ceri et al., 1982b; Ceri and Pelagatti, 1984].

Example 3.6. Consider relation PAY of Figure 3.3. The following are some of the
possible simple predicates that can be defined on PAY.

p1: TITLE = “Elect. Eng.”
p2: TITLE = “Syst. Anal.”
p3: TITLE = “Mech. Eng.”
pa: TITLE = “Programmer”
ps: SAL < 30000

The following are some of the minterm predicates that can be defined based on
these simple predicates.

my: TITLE = “Elect. Eng.” A SAL < 30000
my: TITLE = “Elect. Eng.” A SAL > 30000
m3: =(TITLE = “Elect. Eng.”) A SAL < 30000
my: ~(TITLE = “Elect. Eng.”) A SAL > 30000
ms: TITLE = “Programmer” A SAL < 30000
mg: TITLE = “Programmer” A SAL > 30000
¢

There are a few points to mention here. First, these are not all the minterm
predicates that can be defined; we are presenting only a representative sample.
Second, some of these may be meaningless given the semantics of relation PAY;
we are not addressing that issue here. Third, these are simplified versions of the
minterms. The minterm definition requires each predicate to be in a minterm in either
its natural or its negated form. Thus, m1, for example, should be written as

my: TITLE = “Elect. Eng.” A TITLE # “Syst. Anal.” A TITLE # “Mech. Eng.”
A TITLE # “Programmer” A SAL < 30000

However, clearly this is not necessary, and we use the simplified form. Finally,
note that there are logically equivalent expressions to these minterms; for example,
m3 can also be rewritten as

ms3: TITLE # “Elect. Eng.” A SAL < 30000

In terms of quantitative information about user applications, we need to have two
sets of data.

1. Minterm selectivity: number of tuples of the relation that would be accessed
by a user query specified according to a given minterm predicate. For example,
the selectivity of m of Example 3.6 is O since there are no tuples in PAY that
satisfy the minterm predicate. The selectivity of m;, on the other hand, is 0.25
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since one of the four tuples in PAY satisfy m,. We denote the selectivity of a
minterm m; as sel (m;).

2. Access frequency: frequency with which user applications access data. If
0=1{q1, 2, ..., q4} is a set of user queries, acc(q;) indicates the access
frequency of query ¢; in a given period.

Note that minterm access frequencies can be determined from the query frequen-
cies. We refer to the access frequency of a minterm m; as acc(m;).

3.3.1.2 Primary Horizontal Fragmentation

Before we present a formal algorithm for horizontal fragmentation, we intuitively
discuss the process for primary (and derived) horizontal fragmentation. A primary
horizontal fragmentation is defined by a selection operation on the owner relations of
a database schema. Therefore, given relation R, its horizontal fragments are given by

Ri:GFi(R), 1§i§w

where F; is the selection formula used to obtain fragment R; (also called the frag-
mentation predicate). Note that if F; is in conjunctive normal form, it is a minterm
predicate (m;). The algorithm we discuss will, in fact, insist that F; be a minterm
predicate.

Example 3.7. The decomposition of relation PROJ into horizontal fragments PROJ;
and PROJ, in Example 3.1 is defined as follows':

PROJ; = 6BupGET < 200000 (PROJ)
PROJ; = 6gupgEeT > 200000 (PROJ)
¢

Example 3.7 demonstrates one of the problems of horizontal partitioning. If
the domain of the attributes participating in the selection formulas are continuous
and infinite, as in Example 3.7, it is quite difficult to define the set of formulas
F={F, F,, ..., F,} that would fragment the relation properly. One possible course
of action is to define ranges as we have done in Example 3.7. However, there is
always the problem of handling the two endpoints. For example, if a new tuple with
a BUDGET value of, say, $600,000 were to be inserted into PROJ, one would have
had to review the fragmentation to decide if the new tuple is to go into PROJ; or if
the fragments need to be revised and a new fragment needs to be defined as

! We assume that the non-negativity of the BUDGET values is a feature of the relation that is
enforced by an integrity constraint. Otherwise, a simple predicate of the form 0 < BUDGET also
needs to be included in Pr. We assume this to be true in all our examples and discussions in this
chapter.
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PROJ> = 6200000<BUDGET < 400000 (PROJ)
PROJ3 = O0uDGET > 400000 (PROJ)

Example 3.8. Consider relation PROJ of Figure 3.3. We can define the following
horizontal fragments based on the project location. The resulting fragments are shown
in Figure 3.8.

PROJ 1 = OLOC="Montreal” (PROJ )
PROJ2 = OLOC="New York” (PROJ )
PROJ 3 = OLOC="Paris” (PROJ )

¢
PROJ;
PNO PNAME BUDGET LOC
P1 Instrumentation 150000 Montreal
PROJ,
PNO PNAME BUDGET LOC
P2 Database Develop. 135000 New York
P3 CAD/CAM 250000 New York
PROJ3
PNO PNAME BUDGET LOC
P4 Maintenance 310000 Paris

Fig. 3.8 Primary Horizontal Fragmentation of Relation PROJ

Now we can define a horizontal fragment more carefully. A horizontal fragment
R; of relation R consists of all the tuples of R that satisfy a minterm predicate m,;.
Hence, given a set of minterm predicates M, there are as many horizontal fragments
of relation R as there are minterm predicates. This set of horizontal fragments is also
commonly referred to as the set of minterm fragments.

From the foregoing discussion it is obvious that the definition of the horizontal
fragments depends on minterm predicates. Therefore, the first step of any fragmenta-
tion algorithm is to determine a set of simple predicates that will form the minterm
predicates.

An important aspect of simple predicates is their completeness; another is their
minimality. A set of simple predicates Pr is said to be complete if and only if there
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is an equal probability of access by every application to any tuple belonging to any
minterm fragment that is defined according to Pr.

Example 3.9. Consider the fragmentation of relation PROJ given in Example 3.8. If
the only application that accesses PROJ wants to access the tuples according to the
location, the set is complete since each tuple of each fragment PROJ; (Example 3.8)
has the same probability of being accessed. If, however, there is a second application
which accesses only those project tuples where the budget is less than or equal to
$200,000, then Pr is not complete. Some of the tuples within each PROJ; have a
higher probability of being accessed due to this second application. To make the set
of predicates complete, we need to add (BUDGET < 200000, BUDGET > 200000)
to Pr:

Pr = {LOC=“Montreal”, LOC="“New York”, LOC="Paris”,
BUDGET < 200000, BUDGET > 200000}
¢

The reason completeness is a desirable property is because fragments obtained ac-
cording to a complete set of predicates are logically uniform since they all satisfy the
minterm predicate. They are also statistically homogeneous in the way applications
access them. These characteristics ensure that the resulting fragmentation results
in a balanced load (with respect to the given workload) across all the fragments.
Therefore, we will use a complete set of predicates as the basis of primary horizontal
fragmentation.

It is possible to define completeness more formally so that a complete set of
predicates can be obtained automatically. However, this would require the designer
to specify the access probabilities for each tuple of a relation for each application
under consideration. This is considerably more work than appealing to the common
sense and experience of the designer to come up with a complete set. Shortly, we
will present an algorithmic way of obtaining this set.

The second desirable property of the set of predicates, according to which min-
term predicates and, in turn, fragments are to be defined, is minimality, which is
very intuitive. It simply states that if a predicate influences how fragmentation is
performed (i.e., causes a fragment f to be further fragmented into, say, f; and f;),
there should be at least one application that accesses f; and f; differently. In other
words, the simple predicate should be relevant in determining a fragmentation. If all
the predicates of a set Pr are relevant, Pr is minimal.

A formal definition of relevance can be given as follows [Ceri et al., 1982b]. Let
m; and m; be two minterm predicates that are identical in their definition, except that
m; contains the simple predicate p; in its natural form while m; contains —p;. Also,
let f; and f; be two fragments defined according to m; and m, respectively. Then p;
is relevant if and only if

2 1t is clear that the definition of completeness of a set of simple predicates is different from the
completeness rule of fragmentation given in Section 3.2.4.



88 3 Distributed Database Design

acc(m;) , acc(m;)

card(fi) " card(f;)

Example 3.10. The set Pr defined in Example 3.9 is complete and minimal. If, how-
ever, we were to add the predicate

PNAME = “Instrumentation”

to Pr, the resulting set would not be minimal since the new predicate is not
relevant with respect to Pr — there is no application that would access the resulting
fragments any differently. ¢

We can now present an iterative algorithm that would generate a complete and
minimal set of predicates Pr’ given a set of simple predicates Pr. This algorithm,
called COM_MIN, is given in Algorithm 3.1. To avoid lengthy wording, we have
adopted the following notation:

Rule I: each fragment is accessed differently by at least one application.’

f; of Pr': fragment f; defined according to a minterm predicate defined over the
predicates of Pr'.

Algorithm 3.1: COM_MIN Algorithm

Input: R: relation; Pr: set of simple predicates

Output: Pr': set of simple predicates

Declare: F': set of minterm fragments

begin

find p; € Pr such that p; partitions R according to Rule 1 ;

Pr' «p;;

Pr<« Pr—p;;

F — f; {f; is the minterm fragment according to p;} ;
repeat

find a p; € Pr such that p; partitions some fi of Pr’ according to Rule 1

Pr' < Pr'Up;;

Pr<Pr—pj,;

F<+FUf;;

if 3p; € Pr’ which is not relevant then
Pr « Pr —py;

L F—F—fi;

until Pr’ is complete ;

end
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The algorithm begins by finding a predicate that is relevant and that partitions the
input relation. The repeat-until loop iteratively adds predicates to this set, ensuring
minimality at each step. Therefore, at the end the set Pr' is both minimal and
complete.

The second step in the primary horizontal design process is to derive the set of
minterm predicates that can be defined on the predicates in set Pr’. These minterm
predicates determine the fragments that are used as candidates in the allocation step.
Determination of individual minterm predicates is trivial; the difficulty is that the
set of minterm predicates may be quite large (in fact, exponential on the number of
simple predicates). We look at ways of reducing the number of minterm predicates
that need to be considered in fragmentation.

This reduction can be achieved by eliminating some of the minterm fragments that
may be meaningless. This elimination is performed by identifying those minterms
that might be contradictory to a set of implications /. For example, if Pr' = {p;, p>},
where

p1 : att =value_1
p2 : att =value 2

and the domain of att is {value_1,value_2}, it is obvious that I contains two implica-
tions:

i1 : (att =value_1) = —(att = value_2)
ir . —(att = valuey) = (att = value 2)

The following four minterm predicates are defined according to Pr':

my : (att = value_1) A (att = value 2)
my : (att = value_1) A —(att = value_2)
m3 : —(att = value_1) A\ (att = value_2)
my : —(att = value_1) N —(att = value 2)

H(
(

In this case the minterm predicates m and my4 are contradictory to the implications /
and can therefore be eliminated from M.

The algorithm for primary horizontal fragmentation is given in Algorithm 3.2.
The input to the algorithm PHORIZONTAL is a relation R that is subject to primary
horizontal fragmentation, and Pr, which is the set of simple predicates that have been
determined according to applications defined on relation R.

Example 3.11. We now consider the design of the database scheme given in Figure
3.7. The first thing to note is that there are two relations that are the subject of primary
horizontal fragmentation: PAY and PROJ.

Suppose that there is only one application that accesses PAY, which checks the
salary information and determines a raise accordingly. Assume that employee records
are managed in two places, one handling the records of those with salaries less than
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Algorithm 3.2: PHORIZONTAL Algorithm

Input: R: relation; Pr: set of simple predicates
QOutput: M: set of minterm fragments

begin

Pr' <~ COM_MIN(R, Pr) ;

determine the set M of minterm predicates ;
determine the set I of implications among p; € Pr’ ;
foreach m; € M do

L if mj; is contradictory according to I then

L M+—M—m;

end

or equal to $30,000, and the other handling the records of those who earn more than
$30,000. Therefore, the query is issued at two sites.
The simple predicates that would be used to partition relation PAY are

p1: SAL < 30000
pa: SAL > 30000

thus giving the initial set of simple predicates Pr = {pi,p,}. Applying the
COM_MIN algorithm with i = 1 as initial value results in Pr' = {p; }. This is com-
plete and minimal since p, would not partition f; (which is the minterm fragment
formed with respect to pp) according to Rule 1. We can form the following minterm
predicates as members of M:

my: (SAL < 30000)
my: ~(SAL < 30000) = SAL > 30000

Therefore, we define two fragments Fy = {S},S, } according to M (Figure 3.9).

PAY 1 PAY
TITLE SAL TITLE SAL
Mech. Eng. 27000 Elect. Eng. 40000
Programmer 24000 Syst. Anal. 34000

Fig. 3.9 Horizontal Fragmentation of Relation PAY

Let us next consider relation PROJ. Assume that there are two applications. The
first is issued at three sites and finds the names and budgets of projects given their
location. In SQL notation, the query is
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SELECT PNAME, BUDGET
FROM PROJ
WHERE LOC=Value

For this application, the simple predicates that would be used are the following:

p1: LOC = “Montreal”
p2: LOC = “New York”
p3: LOC = “Paris”

The second application is issued at two sites and has to do with the management
of the projects. Those projects that have a budget of less than or equal to $200,000
are managed at one site, whereas those with larger budgets are managed at a second
site. Thus, the simple predicates that should be used to fragment according to the
second application are

pa: BUDGET < 200000
ps: BUDGET > 200000

If the COM_MIN algorithm is followed, the set Pr' = {p1, p2, pa} is obviously
complete and minimal. Actually COM_MIN would add any two of p1, p2, p3 to Pr/;
in this example we have selected to include py, p».

Based on Pr’, the following six minterm predicates that form M can be defined:

mi: (LOC = “Montreal”) A (BUDGET < 200000)
ma: (LOC = “Montreal”) A (BUDGET > 200000)
ms: (LOC = “New York”) A (BUDGET < 200000)
ma: (LOC = “New York”) A (BUDGET > 200000)
ms: (LOC = “Paris”) A (BUDGET < 200000)

me: (LOC = “Paris”) A (BUDGET > 200000)

As noted in Example 3.6, these are not the only minterm predicates that can be
generated. It is, for example, possible to specify predicates of the form

P1/Ap2/Ap3/A\palps

However, the obvious implications

i1:p1 = "p2A7p3
i :py = 7p1A—p3
i3:p3 = Tp1Ap2
i4:ps= —ps
i5 :p5 = P4
i 17 p4 = Ps
i7:7p5 = P4

eliminate these minterm predicates and we are left with m to mg.
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Looking at the database instance in Figure 3.3, one may be tempted to claim that
the following implications hold:

ig: LOC = “Montreal” = — (BUDGET > 200000)
ig: LOC = “Paris” = — (BUDGET < 200000)
i10:  (LOC = “Montreal”) = BUDGET < 200000
i11: = (LOC = “Paris”) = BUDGET > 200000

However, remember that implications should be defined according to the semantics
of the database, not according to the current values. There is nothing in the database
semantics that suggest that the implications ig through 71| hold. Some of the fragments
defined according to M = {m,...,mg} may be empty, but they are, nevertheless,
fragments.

The result of the primary horizontal fragmentation of PROJ is to form six frag-
ments FPRO] = {PROJ] . PROJZ, PROJ3, PROJ4, PROJ5, PROJ6} of relation PROJ
according to the minterm predicates M (Figure 3.10). Since fragments PROJ,, and
PROJ5 are empty, they are not depicted in Figure 3.10. ¢

PROJq PROJ3

PNO PNAME BUDGET| LOC PNO PNAME BUDGET| LOC

P1 |Instrumentation| 150000 | Montreal P2 Database 135000 [New York
Develop.

PROJ4 PROJg

PNO PNAME BUDGET| LOC PNO PNAME BUDGET| LOC

P3 CAD/CAM 250000 |New York|| P4 Maintenance 310000 Paris

Fig. 3.10 Horizontal Partitioning of Relation PROJ

3.3.1.3 Derived Horizontal Fragmentation

A derived horizontal fragmentation is defined on a member relation of a link accord-
ing to a selection operation specified on its owner. It is important to remember two
points. First, the link between the owner and the member relations is defined as an
equi-join. Second, an equi-join can be implemented by means of semijoins. This
second point is especially important for our purposes, since we want to partition a
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member relation according to the fragmentation of its owner, but we also want the
resulting fragment to be defined only on the attributes of the member relation.

Accordingly, given a link L where owner(L) = S and member(L) = R, the derived
horizontal fragments of R are defined as

Ri:R[XSi,lﬁl‘SW

where w is the maximum number of fragments that will be defined on R, and S; = oF,
(S), where F; is the formula according to which the primary horizontal fragment S; is
defined.

Example 3.12. Consider link L; in Figure 3.7, where owner(L;) = PAY and
member(L;) = EMP. Then we can group engineers into two groups according to
their salary: those making less than or equal to $30,000, and those making more than
$30,000. The two fragments EMP; and EMP; are defined as follows:

EMP; = EMP x PAY;
EMP, = EMP x PAY;

where

PAY | = OsaL < 30000(PAY)
PAY; = GsaL > 30000(PAY)

The result of this fragmentation is depicted in Figure 3.11. ¢
EMP; EMP,
ENO ENAME TITLE ENO ENAME TITLE
E3 A. Lee Mech. Eng. E1l J. Doe Elect. Eng.
E4 J. Miller Programmer E2 M. Smith Syst. Anal.
; E5 B. Casey Syst. Anal.
E7 R.D Mech. Eng.
avis ech- =9 E6 L. Chu Elect. Eng.
E8 J. Jones Syst. Anal.

Fig. 3.11 Derived Horizontal Fragmentation of Relation EMP

To carry out a derived horizontal fragmentation, three inputs are needed: the set of
partitions of the owner relation (e.g., PAY; and PAY, in Example 3.12), the member
relation, and the set of semijoin predicates between the owner and the member (e.g.,
EMP.TITLE = PAY.TITLE in Example 3.12). The fragmentation algorithm, then, is
quite trivial, so we will not present it in any detail.

There is one potential complication that deserves some attention. In a database
schema, it is common that there are more than two links into a relation R (e.g., in
Figure 3.7, ASG has two incoming links). In this case there is more than one possible
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derived horizontal fragmentation of R. The choice of candidate fragmentation is
based on two criteria:

1. The fragmentation with better join characteristics

2. The fragmentation used in more applications

Let us discuss the second criterion first. This is quite straightforward if we take into
consideration the frequency with which applications access some data. If possible,
one should try to facilitate the accesses of the “heavy” users so that their total impact
on system performance is minimized.

Applying the first criterion, however, is not that straightforward. Consider, for ex-
ample, the fragmentation we discussed in Example 3.1. The effect (and the objective)
of this fragmentation is that the join of the EMP and PAY relations to answer the
query is assisted (1) by performing it on smaller relations (i.e., fragments), and (2)
by potentially performing joins in parallel.

The first point is obvious. The fragments of EMP are smaller than EMP itself.
Therefore, it will be faster to join any fragment of PAY with any fragment of EMP
than to work with the relations themselves. The second point, however, is more
important and is at the heart of distributed databases. If, besides executing a number
of queries at different sites, we can parallelize execution of one join query, the
response time or throughput of the system can be expected to improve. In the case of
joins, this is possible under certain circumstances. Consider, for example, the join
graph (i.e., the links) between the fragments of EMP and PAY derived in Example
3.10 (Figure 3.12). There is only one link coming in or going out of a fragment.
Such a join graph is called a simple graph. The advantage of a design where the join
relationship between fragments is simple is that the member and owner of a link
can be allocated to one site and the joins between different pairs of fragments can
proceed independently and in parallel.

PAY PAY

1 2
TITLE SAL TITLE SAL
EMP, v EMP, v
ENO | ENAME | TITLE ENO | ENAME | TITLE

Fig. 3.12 Join Graph Between Fragments

Unfortunately, obtaining simple join graphs may not always be possible. In that
case, the next desirable alternative is to have a design that results in a partitioned join
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graph. A partitioned graph consists of two or more subgraphs with no links between
them. Fragments so obtained may not be distributed for parallel execution as easily
as those obtained via simple join graphs, but the allocation is still possible.

Example 3.13. Let us continue with the distribution design of the database we started
in Example 3.11. We already decided on the fragmentation of relation EMP according
to the fragmentation of PAY (Example 3.12). Let us now consider ASG. Assume that
there are the following two applications:

1. The first application finds the names of engineers who work at certain places.
It runs on all three sites and accesses the information about the engineers who
work on local projects with higher probability than those of projects at other
locations.

2. Ateach administrative site where employee records are managed, users would
like to access the responsibilities on the projects that these employees work
on and learn how long they will work on those projects.

The first application results in a fragmentation of ASG according to the (non-
empty) fragments PROJ{, PROJ3, PROJ4 and PROJg of PROJ obtained in Example
3.11. Remember that

PROJ;: 6Loc=Montrear’ABUDGET<200000 (PROJ)
PROJ3: GLoc=New York*ABUDGET<200000 (PROJ)
PROJ4: GLoc=New York*ABUDGET>200000 (PROJ)
PROJs: O1Loc=Paris"ABUDGET>200000 (PROJ)

Therefore, the derived fragmentation of ASG according to {PROJ;, PROJ,,
PROJ3} is defined as follows:

ASG; = ASG x PROJ;
ASG; = ASG x PROIJ;
ASG3 = ASG x PROJ4
ASG4 = ASG x PROJg

These fragment instances are shown in Figure 3.13.
The second query can be specified in SQL as

SELECT RESP, DUR
FROM ASG, EMP;
WHERE ASG.ENO

EMP; . ENO

where i = 1 or i = 2, depending on the site where the query is issued. The derived
fragmentation of ASG according to the fragmentation of EMP is defined below and
depicted in Figure 3.14.

ASG; = ASG x EMP;
ASGs = ASG x EMP,
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ASG; ASG3
ENO PNO RESP DUR ENO PNO RESP DUR
El P1 Manager 12 E3 P3 Consultant 10
E2 P1 Analyst 24 E7 P3 Engineer 36
ASG, E8 P3 Manager 40
ENO | PNO | RESP DUR ASG4
E2 P2 Analyst 6 ENO PNO RESP DUR
E4 P2 | Programmer 18 E3 P4 Engineer 48
E5 P2 Manager 24 E6 P4 Manager 48

Fig. 3.13 Derived Fragmentation of ASG with respect to PROJ

ASGq ASG2
ENO | PNO RESP DUR ENO PNO RESP DUR

E3 P3 Consultant 10 El P1 Manager 12

E3 P4 Engineer 48 E2 P1 Analyst 24

E4 P2 Programmer 18 E2 P2 Analyst 6

E7 P3 Engineer 36 E5 P2 Manager 24
E6 P4 Manager 48
E8 P3 Manager 40

Fig. 3.14 Derived Fragmentation of ASG with respect to EMP

This example demonstrates two things:

1. Derived fragmentation may follow a chain where one relation is fragmented
as a result of another one’s design and it, in turn, causes the fragmentation of
another relation (e.g., the chain PAY -=EMP—ASG).

2. Typically, there will be more than one candidate fragmentation for a relation
(e.g., relation ASG). The final choice of the fragmentation scheme may be a
decision problem addressed during allocation.
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3.3.1.4 Checking for Correctness

We should now check the fragmentation algorithms discussed so far with respect to
the three correctness criteria presented in Section 3.2.4.

Completeness.

The completeness of a primary horizontal fragmentation is based on the selection
predicates used. As long as the selection predicates are complete, the resulting
fragmentation is guaranteed to be complete as well. Since the basis of the fragmen-
tation algorithm is a set of complete and minimal predicates, Pr/, completeness is
guaranteed as long as no mistakes are made in defining Pr’.

The completeness of a derived horizontal fragmentation is somewhat more difficult
to define. The difficulty is due to the fact that the predicate determining the fragmen-
tation involves two relations. Let us first define the completeness rule formally and
then look at an example.

Let R be the member relation of a link whose owner is relation S, where R and
S are fragmented as Fg = {R|,R2,...,R,} and Fs = {S1,S2,...,S}, respectively.
Furthermore, let A be the join attribute between R and S. Then for each tuple ¢ of R;,
there should be a tuple ¢’ of S; such that 7[A] = ¢'[A].

For example, there should be no ASG tuple which has a project number that is not
also contained in PROJ. Similarly, there should be no EMP tuples with TITLE values
where the same TITLE value does not appear in PAY as well. This rule is known
as referential integrity and ensures that the tuples of any fragment of the member
relation are also in the owner relation.

Reconstruction.

Reconstruction of a global relation from its fragments is performed by the union
operator in both the primary and the derived horizontal fragmentation. Thus, for a
relation R with fragmentation Fg = {R;,R2,...,Ry},

R=[JRi, VR, €Fg

Disjointness.

It is easier to establish disjointness of fragmentation for primary than for derived
horizontal fragmentation. In the former case, disjointness is guaranteed as long as
the minterm predicates determining the fragmentation are mutually exclusive.

In derived fragmentation, however, there is a semijoin involved that adds con-
siderable complexity. Disjointness can be guaranteed if the join graph is simple.
Otherwise, it is necessary to investigate actual tuple values. In general, we do not
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want a tuple of a member relation to join with two or more tuples of the owner
relation when these tuples are in different fragments of the owner. This may not
be very easy to establish, and illustrates why derived fragmentation schemes that
generate a simple join graph are always desirable.

Example 3.14. In fragmenting relation PAY (Example 3.11), the minterm predicates
M = {m,my} were

my: SAL < 30000
my: SAL > 30000

Since m; and m; are mutually exclusive, the fragmentation of PAY is disjoint.
For relation EMP, however, we require that

1. Each engineer has a single title.

2. Each title have a single salary value associated with it.

Since these two rules follow from the semantics of the database, the fragmentation
of EMP with respect to PAY is also disjoint. ¢

3.3.2 Vertical Fragmentation

Remember that a vertical fragmentation of a relation R produces fragments R, R»,
..., Ry, each of which contains a subset of R’s attributes as well as the primary key
of R. The objective of vertical fragmentation is to partition a relation into a set of
smaller relations so that many of the user applications will run on only one fragment.
In this context, an “optimal” fragmentation is one that produces a fragmentation
scheme which minimizes the execution time of user applications that run on these
fragments.

Vertical fragmentation has been investigated within the context of centralized
database systems as well as distributed ones. Its motivation within the centralized
context is as a design tool, which allows the user queries to deal with smaller relations,
thus causing a smaller number of page accesses [Navathe et al., 1984]. It has also
been suggested that the most “active” subrelations can be identified and placed in a
faster memory subsystem in those cases where memory hierarchies are supported
[Eisner and Severance, 1976].

Vertical partitioning is inherently more complicated than horizontal partitioning.
This is due to the total number of alternatives that are available. For example, in
horizontal partitioning, if the total number of simple predicates in Pr is n, there are
2" possible minterm predicates that can be defined on it. In addition, we know that
some of these will contradict the existing implications, further reducing the candidate
fragments that need to be considered. In the case of vertical partitioning, however,
if a relation has m non-primary key attributes, the number of possible fragments is
equal to B(m), which is the mth Bell number [Niamir, 1978]. For large values of
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m,B(m) = m™; for example, for m=10, B(m) ~ 115,000, for m=15, B(m) ~ 10, for
m=30, B(m) = 10*3 [Hammer and Niamir, 1979; Navathe et al., 1984].

These values indicate that it is futile to attempt to obtain optimal solutions to the
vertical partitioning problem; one has to resort to heuristics. Two types of heuristic
approaches exist for the vertical fragmentation of global relations:

1. Grouping: starts by assigning each attribute to one fragment, and at each step,
joins some of the fragments until some criteria is satisfied. Grouping was first
suggested for centralized databases [Hammer and Niamir, 1979], and was
used later for distributed databases [Sacca and Wiederhold, 1985].

2. Splitting: starts with a relation and decides on beneficial partitionings based
on the access behavior of applications to the attributes. The technique was
also first discussed for centralized database design [Hoffer and Severance,
1975]. It was then extended to the distributed environment [Navathe et al.,
1984].

In what follows we discuss only the splitting technique, since it fits more naturally
within the top-down design methodology, since the “optimal” solution is probably
closer to the full relation than to a set of fragments each of which consists of a single
attribute [Navathe et al., 1984]. Furthermore, splitting generates non-overlapping
fragments whereas grouping typically results in overlapping fragments. We prefer
non-overlapping fragments for disjointness. Of course, non-overlapping refers only
to non-primary key attributes.

Before we proceed, let us clarify an issue that we only mentioned in Example 3.2,
namely, the replication of the global relation’s key in the fragments. This is a charac-
teristic of vertical fragmentation that allows the reconstruction of the global relation.
Therefore, splitting is considered only for those attributes that do not participate in
the primary key.

There is a strong advantage to replicating the key attributes despite the obvious
problems it causes. This advantage has to do with semantic integrity enforcement, to
be discussed in Chapter 5. Note that the dependencies briefly discussed in Section 2.1
is, in fact, a constraint that has to hold among the attribute values of the respective
relations at all times. Remember also that most of these dependencies involve the
key attributes of a relation. If we now design the database so that the key attributes
are part of one fragment that is allocated to one site, and the implied attributes are
part of another fragment that is allocated to a second site, every update request that
causes an integrity check will necessitate communication among sites. Replication of
the key attributes at each fragment reduces the chances of this occurring but does not
eliminate it completely, since such communication may be necessary due to integrity
constraints that do not involve the primary key, as well as due to concurrency control.

One alternative to the replication of the key attributes is the use of tuple identifiers
(TIDs), which are system-assigned unique values to the tuples of a relation. Since
TIDs are maintained by the system, the fragments are disjoint at a logical level.
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3.3.2.1 Information Requirements of Vertical Fragmentation

The major information required for vertical fragmentation is related to applications.
The following discussion, therefore, is exclusively focused on what needs to be
determined about applications that will run against the distributed database. Since
vertical partitioning places in one fragment those attributes usually accessed together,
there is a need for some measure that would define more precisely the notion of
“togetherness.” This measure is the affinity of attributes, which indicates how closely
related the attributes are. Unfortunately, it is not realistic to expect the designer or
the users to be able to easily specify these values. We now present one way by which
they can be obtained from more primitive data.

The major information requirement related to applications is their access frequen-
cies. Let Q = {q1,¢2,...,q4} be the set of user queries (applications) that access
relation R(A1,A»,...,A,). Then, for each query ¢; and each attribute A ;, we associate
an arttribute usage value, denoted as use(q;,A ), and defined as follows:

.y _ J 1if attribute A} is referenced by query g;
use(qi,Aj) = { 0 otherwise

The use(q;, ®) vectors for each application are easy to define if the designer knows
the applications that will run on the database. Again, remember that the 80-20 rule
discussed earlier should be helpful in this task.

Example 3.15. Consider relation PROJ of Figure 3.3. Assume that the following
applications are defined to run on this relation. In each case we also give the SQL
specification.

q1: Find the budget of a project, given its identification number.
SELECT BUDGET
FROM PROJ
WHERE PNO=Value

q>: Find the names and budgets of all projects.

SELECT PNAME, BUDGET
FROM PROJ

g3: Find the names of projects located at a given city.
SELECT PNAME
FROM PROJ
WHERE LOC=Value

q4: Find the total project budgets for each city.
SELECT SUM (BUDGET)

FROM PROJ
WHERE LOC=Value
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According to these four applications, the attribute usage values can be defined. As
a notational convenience, we let Ay = PNO, A, = PNAME, A3 = BUDGET, and A4
= LOC. The usage values are defined in matrix form (Figure 3.15), where entry (i, j)
denotes use(g;, A;). ¢

a, 1 0 1
a, 0 1 1 0

ds 0 1 0 1

@l o o 1 1

Fig. 3.15 Example Attribute Usage Matrix

Attribute usage values are not sufficiently general to form the basis of attribute
splitting and fragmentation. This is because these values do not represent the weight
of application frequencies. The frequency measure can be included in the definition
of the attribute affinity measure aff(A;,A;), which measures the bond between two
attributes of a relation according to how they are accessed by applications.

The attribute affinity measure between two attributes A; and A; of a relation
R(A1,A;, ...,A,) with respect to the set of applications Q = {g1,¢2,...,q4} is de-
fined as

aff(Ai,Aj) = Y Y refi(qr)acci(q)

kluse(qy,A;)=1Ause(qx,A j)=1V75;

where re f;(gx) is the number of accesses to attributes (A;,A ;) for each execution of
application ¢y, at site S; and acc;(gy) is the application access frequency measure
previously defined and modified to include frequencies at different sites.

The result of this computation is an n X n matrix, each element of which is one of
the measures defined above. We call this matrix the attribute affinity matrix (AA).

Example 3.16. Let us continue with the case that we examined in Example 3.15.
For simplicity, let us assume that ref;(g;) = 1 for all g; and S;. If the application
frequencies are

acci(q1) = 15 acca(g1) =20 acez(g1) = 10
acci(q2) =5 acca(q2) =0 acez(g2) =0
acci(gs) =25 accy(g3) =25 aces(gz) =25
acci(qa) =3 accy(qs) =0 accz(qs) =0

then the affinity measure between attributes A; and A3 can be measured as
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aff(A1,43) = Y4 X3  acei(qi) = acei(q1) +acea(q1) +acez(qi) = 45

since the only application that accesses both of the attributes is g;. The complete
attribute affinity matrix is shown in Figure 3.16. Note that the diagonal values are

not computed since they are meaningless. ¢
AL A A A
A B - 0 45 0_
Al O 5 75
Al 45 5 3
Al o 73 3

Fig. 3.16 Attribute Affinity Matrix

The attribute affinity matrix will be used in the rest of this chapter to guide the
fragmentation effort. The process involves first clustering together the attributes with
high affinity for each other, and then splitting the relation accordingly.

3.3.2.2 Clustering Algorithm

The fundamental task in designing a vertical fragmentation algorithm is to find some
means of grouping the attributes of a relation based on the attribute affinity values in
AA. Tt has been suggested that the bond energy algorithm (BEA) [McCormick et al.,
1972] should be used for this purpose ([Hoffer and Severance, 1975] and [Navathe
et al., 1984]). It is considered appropriate for the following reasons [Hoffer and
Severance, 1975]:

1. TItis designed specifically to determine groups of similar items as opposed to,
say, a linear ordering of the items (i.e., it clusters the attributes with larger
affinity values together, and the ones with smaller values together).

2. The final groupings are insensitive to the order in which items are presented
to the algorithm.

3. The computation time of the algorithm is reasonable: O(n?), where 7 is the
number of attributes.

4. Secondary interrelationships between clustered attribute groups are identifi-
able.

The bond energy algorithm takes as input the attribute affinity matrix, permutes its
rows and columns, and generates a clustered affinity matrix (CA). The permutation is
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done in such a way as to maximize the following global affinity measure (AM):

AM = Z Zaff(A“AJ)[aff(AhA]fl)+aff(Al,AJ+l)

i=1j=1
+aff(Ai1,A;) +aff(Air1,A;)]

where

aff(Ao,Aj) =aff(Ai,Ao) =aff(Ani1,A)) = aff(Ai,Apns1) =0

The last set of conditions takes care of the cases where an attribute is being placed
in CA to the left of the leftmost attribute or to the right of the rightmost attribute
during column permutations, and prior to the topmost row and following the last
row during row permutations. In these cases, we take O to be the aff values between
the attribute being considered for placement and its left or right (top or bottom)
neighbors, which do not exist in CA.

The maximization function considers the nearest neighbors only, thereby resulting
in the grouping of large values with large ones, and small values with small ones.
Also, the attribute affinity matrix (AA) is symmetric, which reduces the objective
function of the formulation above to

AM =YY aff(AiA)aff(AiAj 1) +aff(AiAji)]

i=1j=1

The details of the bond energy algorithm are given in Algorithm 3.3. Generation
of the clustered affinity matrix (CA) is done in three steps:

1. [Initialization. Place and fix one of the columns of AA arbitrarily into CA.
Column 1 was chosen in the algorithm.

2. [Iteration. Pick each of the remaining n — i columns (where i is the number of
columns already placed in CA) and try to place them in the remaining i + 1
positions in the CA matrix. Choose the placement that makes the greatest
contribution to the global affinity measure described above. Continue this step
until no more columns remain to be placed.

3. Row ordering. Once the column ordering is determined, the placement of the
rows should also be changed so that their relative positions match the relative
positions of the columns.?

3 From now on, we may refer to elements of the AA and CA matrices as AA(i, j) and CA(i, j),
respectively. This is done for notational convenience only. The mapping to the affinity measures
is AA(i, j) = af f(Ai,A;) and CA(i, j) = af f(attribute placed at column i in CA, attribute placed at
column j in CA). Even though AA and CA matrices are identical except for the ordering of attributes,
since the algorithm orders all the CA columns before it orders the rows, the affinity measure of CA
is specified with respect to columns. Note that the endpoint condition for the calculation of the
affinity measure (AM) can be specified, using this notation, as CA(0, j) = CA(i,0) = CA(n+1, j) =
CA(i,n+1)=0.
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Algorithm 3.3: BEA Algorithm
Input: AA: attribute affinity matrix
Output: CA: clustered affinity matrix
begin
{initialize; remember that AA is an n X n matrix }
CA(e,1) < AA(e,1) ;
CA(e,2) < AA(e,2) ;
index <+ 3 ;
while index < n do {choose the “best” location for attribute AA;;g0x }
for i from 1 to index— 1 by 1 do calculate cont(A;_1,Ajnger,Ai) ;
calculate cont (Aindex—1,AindexsAindex+1) 3 {boundary condition}
loc < placement given by maximum cont value ;
for j from index to loc by —1 do
| CA(e,j) < CA(e,j—1) {shuffle the two matrices}
CA(e,loc) +— AA(e,index) ;
L index < index+1
order the rows according to the relative ordering of columns

end

For the second step of the algorithm to work, we need to define what is meant
by the contribution of an attribute to the affinity measure. This contribution can be
derived as follows. Recall that the global affinity measure AM was previously defined
as

AM = Z Zaff(A”A])[aff(AlaA]—l) +aff(Ai,Aj+1)]

i=1j=1

which can be rewritten as

laff(Ai,Aj)aff(AiAj1) +aff(AiAjaff(AiAj)]

I
1=
™M=

AM

Il
_

i=1j=1

n

Z Zaff A,,A )aff(A,,A] 1 Zaff(AiaAj)aff(AivAjJrl)
= i=1

Let us define the bond between two attributes A, and Ay as
bond(Ay,Ay) Zaff Az Ax)aff(AzAy)

Then AM can be written as

n
AM =Y [bond(Aj,Aj_1) +bond(Aj,Aj1)]
j=1
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Now consider the following # attributes

AL Ay . A AiAj Ay .. A,

A M, A M//
The global affinity measure for these attributes can be written as

AM,y =AM +AM"
—&-bOnd(A,;l,A,') + bOl’ld(A,',Aj) —‘y—bOl’ld(Aj,A,') +b0nd(Aj,Aj+1)
i
=Y [bond(A;, A1) + bond (A, A1)

=1

n
+ Z [bOl’ld(AhA[,])+b0nd(A[,A1+1)]
[=i+2

+2bond(A,-,Aj)

Now consider placing a new attribute A; between attributes A; and A; in the clustered
affinity matrix. The new global affinity measure can be similarly written as

AMyery = AM' +AM" + bond(A;, Ar) + bond (A, A;)
+ bond(Ax,A;) +bond(Aj,Ay)
— AM +AM" 4 2bond (A, Ay) +2bond (A, A))

Thus, the net contribution* to the global affinity measure of placing attribute Ay
between A; and A; is

COl’lt(Ai,Ak,Aj) = AM,,.,, —AM,;,;
= 2bond (A;,Ar) +2bond(Ai, A ;) — 2bond(A;,Aj)

Example 3.17. Let us consider the AA matrix given in Figure 3.16 and study the
contribution of moving attribute A4 between attributes A; and A,, given by the
formula

cont(A1,A4,A2) = 2bond(A1,A4) + 2bond(A4,As) — 2bond(A1,A)
Computing each term, we get

bond(A1,As) = 45%0+0%75+45%3+0%78 = 135
bond(A4,Az) = 11865
bOl’ld(A],Ag) =225

Therefore,

4 In literature [Hoffer and Severance, 1975] this measure is specified as bond(A;,Ay) +
bond(Ay,A;j) —2bond(A;,Aj). However, this is a pessimistic measure which does not follow from
the definition of AM.
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cont(A1,A4,A7) =2% 1354211865 — 2 %225 = 23550
¢

Note that the calculation of the bond between two attributes requires the multipli-
cation of the respective elements of the two columns representing these attributes
and taking the row-wise sum.

The algorithm and our discussion so far have both concentrated on the columns of
the attribute affinity matrix. We can also make the same arguments and redesign the
algorithm to operate on the rows. Since the AA matrix is symmetric, both of these
approaches will generate the same result.

Another point about Algorithm 3.3 is that to improve its efficiency, the second
column is also fixed and placed next to the first one during the initialization step.
This is acceptable since, according to the algorithm, A, can be placed either to the
left of A; or to its right. The bond between the two, however, is independent of their
positions relative to one another.

Finally, we should indicate the problem of computing cont at the endpoints. If
an attribute A; is being considered for placement to the left of the leftmost attribute,
one of the bond equations to be calculated is between a non-existent left element
and Ay [i.e., bond(Ag,Ax)]. Thus we need to refer to the conditions imposed on the
definition of the global affinity measure AM, where CA(0, k) = 0. The other extreme
is if A; is the rightmost attribute that is already placed in the CA matrix and we are
checking for the contribution of placing attribute A to the right of A;. In this case
the bond (k,k+ 1) needs to be calculated. However, since no attribute is yet placed in
column k + 1 of CA, the affinity measure is not defined. Therefore, according to the
endpoint conditions, this bond value is also 0.

Example 3.18. We consider the clustering of the PROJ relation attributes and use the
attribute affinity matrix AA of Figure 3.16.

According to the initialization step, we copy columns 1 and 2 of the AA matrix
to the CA matrix (Figure 3.17a) and start with column 3 (i.e., attribute Az). There
are three alternative places where column 3 can be placed: to the left of column
1, resulting in the ordering (3-1-2), in between columns 1 and 2, giving (1-3-2),
and to the right of 2, resulting in (1-2-3). Note that to compute the contribution of
the last ordering we have to compute cont(Ay,A3,Aq4) rather than cont(A1,A2,A3).
Furthermore, in this context A4 refers to the fourth index position in the CA matrix,
which is empty (Figure 3.17b), not to the attribute column A4 of the AA matrix. Let
us calculate the contribution to the global affinity measure of each alternative.

Ordering (0-3-1):
cont(Ag,A3,A1) = 2bond(Ag,A3) + 2bond(A3,A}) — 2bond (Ap,A1)
We know that

bond(Ao,Al) = bond(A(),Ag,) =0
bond(A3,A1) =45%45+5%x04+53%454+3x0=4410
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Al 45 0
A, 0 80
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A, | 0 75

(a)
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Fig. 3.17 Calculation of the Clustered Affinity (CA) Matrix

Thus
cont(Ao,A3,A1) = 8820

Ordering (1-3-2):

107

Ag A
45 0 ]
5 80
53 5
3 75 |
(b)
Ay A A4_
45 0 0
53 5 3
5 80 75
3 75 78_
(d)

cont(A1,A3,Ay) =2bond(A1,As) + 2bond(Az,Ay) — 2bond(A1,A7)

bond(A1 ,A3) = bOl’ld(A3,A1) =4410

bond(A3,A;) =890
bOi’ld(Al ,Az) =225

Thus

cont(A1,A3,A;) = 10150

Ordering (2-3-4):

cont(Az,A3,A4) = 2bond(Az,As) + 2bond(Az,As) — 2bond(A,,As)

bond(Az,A3) =890
bOi’ld(A3,A4) =0
bOi’ld(Az,A4) =0
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Thus
Cont(Az,Ag,A4) = 1780

Since the contribution of the ordering (1-3-2) is the largest, we select to place A3
to the right of A (Figure 3.17b). Similar calculations for A4 indicate that it should
be placed to the right of A, (Figure 3.17c¢).

Finally, the rows are organized in the same order as the columns and the result is
shown in Figure 3.17d. ¢

In Figure 3.17d we see the creation of two clusters: one is in the upper left corner
and contains the smaller affinity values and the other is in the lower right corner
and contains the larger affinity values. This clustering indicates how the attributes
of relation PROJ should be split. However, in general the border for this split may
not be this clear-cut. When the CA matrix is big, usually more than two clusters are
formed and there are more than one candidate partitionings. Thus, there is a need to
approach this problem more systematically.

3.3.2.3 Partitioning Algorithm

The objective of the splitting activity is to find sets of attributes that are accessed
solely, or for the most part, by distinct sets of applications. For example, if it is
possible to identify two attributes, A; and A, which are accessed only by application
q1, and attributes Az and A4, which are accessed by, say, two applications ¢, and g3,
it would be quite straightforward to decide on the fragments. The task lies in finding
an algorithmic method of identifying these groups.

Consider the clustered attribute matrix of Figure 3.18. If a point along the diagonal
is fixed, two sets of attributes are identified. One set {A,A»,...,A;} is at the upper
left-hand corner and the second set {A;y1,...,A,} is to the right and to the bottom of
this point. We call the former set fop and the latter set bottfom and denote the attribute
sets as TA and BA, respectively.

We now turn to the set of applications Q = {q1,¢>,...,q,} and define the set of
applications that access only TA, only BA, or both. These sets are defined as follows:

AQ(qi) = {Aj|use(qi,Aj) = 1}
TQ = {4ilAQ(q:) C TA}
BQ = {qi|lAQ(q:) C BA}
00 =0Q—-{TQUBQ}

The first of these equations defines the set of attributes accessed by application
gi; TQ and BQ are the sets of applications that only access TA or BA, respectively,
and OQ is the set of applications that access both.

There is an optimization problem here. If there are n attributes of a relation, there
are n — 1 possible positions where the dividing point can be placed along the diagonal
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Fig. 3.18 Locating a Splitting Point

of the clustered attribute matrix for that relation. The best position for division is
one which produces the sets TQ and BQ such that the total accesses to only one
fragment are maximized while the total accesses to both fragments are minimized.
We therefore define the following cost equations:

co=Y Y refi(giacci(q)

qi€Q VS;

CTQ="Y ) refi(ai)acci(q;)
inTQ VSJ'

CBQ = Z Zrefj(q,-)accj(q,-)
qi€BO VSj

cog=), Y refilaacc;(q)
4€0Q VS,

Each of the equations above counts the total number of accesses to attributes by
applications in their respective classes. Based on these measures, the optimization
problem is defined as finding the point x (1 < x < n) such that the expression

7=CTQ+CBQ—COQ*

is maximized [Navathe et al., 1984]. The important feature of this expression is
that it defines two fragments such that the values of CTQ and CBQ are as nearly
equal as possible. This enables the balancing of processing loads when the fragments
are distributed to various sites. It is clear that the partitioning algorithm has linear
complexity in terms of the number of attributes of the relation, that is, O(n).

There are two complications that need to be addressed. The first is with respect
to the splitting. The procedure splits the set of attributes two-way. For larger sets of
attributes, it is quite likely that m-way partitioning may be necessary.
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Designing an m-way partitioning is possible but computationally expensive. Along
the diagonal of the CA matrix, it is necessary to try 1,2, ...,m — 1 split points, and for
each of these, it is necessary to check which place maximizes z. Thus, the complexity
of such an algorithm is O(2™). Of course, the definition of z has to be modified
for those cases where there are multiple split points. The alternative solution is to
recursively apply the binary partitioning algorithm to each of the fragments obtained
during the previous iteration. One would compute 7 Q, BQ, and OQ, as well as the
associated access measures for each of the fragments, and partition them further.

The second complication relates to the location of the block of attributes that
should form one fragment. Our discussion so far assumed that the split point is
unique and single and divides the CA matrix into an upper left-hand partition and a
second partition formed by the rest of the attributes. The partition, however, may also
be formed in the middle of the matrix. In this case, we need to modify the algorithm
slightly. The leftmost column of the CA matrix is shifted to become the rightmost
column and the topmost row is shifted to the bottom. The shift operation is followed
by checking the n — 1 diagonal positions to find the maximum z. The idea behind
shifting is to move the block of attributes that should form a cluster to the topmost
left corner of the matrix, where it can easily be identified. With the addition of the
shift operation, the complexity of the partitioning algorithm increases by a factor of
n and becomes O(n?).

Assuming that a shift procedure, called SHIFT, has already been implemented, the
partitioning algorithm is given in Algorithm 3.4. The input of the PARTITION is the
clustered affinity matrix CA, the relation R to be fragmented, and the attribute usage
and access frequency matrices. The output is a set of fragments Fg = {R;, R, }, where
R; C{A},Ay...,A,} and R N R, = the key attributes of relation R. Note that for
n-way partitioning, this routine should either be invoked iteratively, or implemented
as a recursive procedure.

Example 3.19. When the PARTITION algorithm is applied to the CA matrix obtained
for relation PROJ (Example 3.18), the result is the definition of fragments Fproy =
{PROJl,PROJz}, where PROJ1 = {A] ,A3} and PROJ2 = {A1 ,A27A4}. Thus

PROJ, = {PNO, BUDGET}
PROJ, = {PNO, PNAME, LOC}

Note that in this exercise we performed the fragmentation over the entire set of
attributes rather than only on the non-key ones. The reason for this is the simplicity
of the example. For that reason, we included PNO, which is the key of PROJ in
PROJ; as well as in PROJ;. ¢

3.3.2.4 Checking for Correctness

We follow arguments similar to those of horizontal partitioning to prove that the
PARTITION algorithm yields a correct vertical fragmentation.
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Algorithm 3.4: PARTITION Algorithm
Input: CA: clustered affinity matrix; R: relation; ref: attribute usage matrix;
acc: access frequency matrix
Output: F': set of fragments
begin
{determine the z value for the first column}
{the subscripts in the cost equations indicate the split point}
calculate CTQ,,—1 ;
calculate CBQ,,—1 ;
calculate COQ,,_1 ;
best < CTQ,_1 *CBQ,_1 — (COQ,_1)*;
repeat

{determine the best partitioning }
forifromn—2to1by—1do

calculate CTQ; ;

calculate CBQ; ;

calculate COQ; ;

7+ CTQ*CBQ; —COQ?;

if z > best then best <+ z {record the split point within shift}
call SHIFT(CA)

until no more SHIFT is possible ;

reconstruct the matrix according to the shift position ;

Ry + T4 (R)UK ; {K is the set of primary key attributes of R}
Ry HBA(R) Uk;

F+ {R|,R:}

end

Completeness.

Completeness is guaranteed by the PARTITION algorithm since each attribute of the
global relation is assigned to one of the fragments. As long as the set of attributes A
over which the relation R is defined consists of

A=JR

completeness of vertical fragmentation is ensured.

Reconstruction.

We have already mentioned that the reconstruction of the original global relation is
made possible by the join operation. Thus, for a relation R with vertical fragmentation
Fr ={R1,Rz,...,R,} and key attribute(s) K,
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R =NXg Ri,VR,‘ e Iy

Therefore, as long as each R; is complete, the join operation will properly reconstruct
R. Another important point is that either each R; should contain the key attribute(s)
of R, or it should contain the system assigned tuple IDs (TIDs).

Disjointness.

As we indicated before, the disjointness of fragments is not as important in vertical
fragmentation as it is in horizontal fragmentation. There are two cases here:

1. TIDs are used, in which case the fragments are disjoint since the TIDs that are
replicated in each fragment are system assigned and managed entities, totally
invisible to the users.

2. The key attributes are replicated in each fragment, in which case one cannot
claim that they are disjoint in the strict sense of the term. However, it is
important to realize that this duplication of the key attributes is known and
managed by the system and does not have the same implications as tuple
duplication in horizontally partitioned fragments. In other words, as long as
the fragments are disjoint except for the key attributes, we can be satisfied
and call them disjoint.

3.3.3 Hybrid Fragmentation

In most cases a simple horizontal or vertical fragmentation of a database schema will
not be sufficient to satisfy the requirements of user applications. In this case a vertical
fragmentation may be followed by a horizontal one, or vice versa, producing a tree-
structured partitioning (Figure 3.19). Since the two types of partitioning strategies
are applied one after the other, this alternative is called hybrid fragmentation. It has
also been named mixed fragmentation or nested fragmentation.

R
/H/\H
Ry Ro
m \Y v \%
R11 NP Ro1 Roo Ro3

Fig. 3.19 Hybrid Fragmentation
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A good example for the necessity of hybrid fragmentation is relation PROJ, which
we have been working with. In Example 3.11 we partitioned it into six horizontal
fragments based on two applications. In Example 3.19 we partitioned the same
relation vertically into two. What we have, therefore, is a set of horizontal fragments,
each of which is further partitioned into two vertical fragments.

The number of levels of nesting can be large, but it is certainly finite. In the case
of horizontal fragmentation, one has to stop when each fragment consists of only one
tuple, whereas the termination point for vertical fragmentation is one attribute per
fragment. These limits are quite academic, however, since the levels of nesting in
most practical applications do not exceed 2. This is due to the fact that normalized
global relations already have small degrees and one cannot perform too many vertical
fragmentations before the cost of joins becomes very high.

We will not discuss in detail the correctness rules and conditions for hybrid
fragmentation, since they follow naturally from those for vertical and horizontal frag-
mentations. For example, to reconstruct the original global relation in case of hybrid
fragmentation, one starts at the leaves of the partitioning tree and moves upward
by performing joins and unions (Figure 3.20). The fragmentation is complete if the
intermediate and leaf fragments are complete. Similarly, disjointness is guaranteed if
intermediate and leaf fragments are disjoint.

Fig. 3.20 Reconstruction of Hybrid Fragmentation

3.4 Allocation

The allocation of resources across the nodes of a computer network is an old problem
that has been studied extensively. Most of this work, however, does not address the
problem of distributed database design, but rather that of placing individual files on
a computer network. We will examine the differences between the two shortly. We
first need to define the allocation problem more precisely.



114 3 Distributed Database Design

3.4.1 Allocation Problem

Assume that there are a set of fragments F = {F,F,...,F,} and a distributed
system consisting of sites S = {S,S5,...,S,} on which a set of applications Q =
{q1,92,...,q4} is running. The allocation problem involves finding the “optimal”
distribution of F to S.

The optimality can be defined with respect to two measures [Dowdy and Foster,
1982]:

1. Minimal cost. The cost function consists of the cost of storing each F; at a
site S}, the cost of querying F; at site S;, the cost of updating F; at all sites
where it is stored, and the cost of data communication. The allocation problem,
then, attempts to find an allocation scheme that minimizes a combined cost
function.

2. Performance. The allocation strategy is designed to maintain a performance
metric. Two well-known ones are to minimize the response time and to
maximize the system throughput at each site.

Most of the models that have been proposed to date make this distinction of
optimality. However, if one really examines the problem in depth, it is apparent that
the “optimality” measure should include both the performance and the cost factors.
In other words, one should be looking for an allocation scheme that, for example,
answers user queries in minimal time while keeping the cost of processing minimal.
A similar statement can be made for throughput maximization. One can then ask
why such models have not been developed. The answer is quite simple: complexity.

Let us consider a very simple formulation of the problem. Let F and S be defined
as before. For the time being, we consider only a single fragment, F;. We make a
number of assumptions and definitions that will enable us to model the allocation
problem.

1. Assume that Q can be modified so that it is possible to identify the update and
the retrieval-only queries, and to define the following for a single fragment Fy:

T ={t1,t2,...,tm}

where ¢; is the read-only traffic generated at site S; for F;, and
U= {I/l],btz,...,l/lm}

where u; is the update traffic generated at site S; for Fy.

2. Assume that the communication cost between any two pair of sites S; and S
is fixed for a unit of transmission. Furthermore, assume that it is different for
updates and retrievals in order that the following can be defined:
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Cc(T)= {612,6‘13,.‘.,C1m,...,Cm,Lm}

C/(U) - {C,127C/137"'acllma"'acinf],m}

where ¢;; is the unit communication cost for retrieval requests between sites
Si and S, and c; ; 1s the unit communication cost for update requests between
sites S; and S;.

3. Let the cost of storing the fragment at site S; be d;. Thus we can define
D={d,,ds,...,d,} for the storage cost of fragment Fj, at all the sites.

4. Assume that there are no capacity constraints for either the sites or the com-
munication links.

Then the allocation problem can be specified as a cost-minimization problem
where we are trying to find the set / C S that specifies where the copies of the
fragment will be stored. In the following, x; denotes the decision variable for the
placement such that

~_J 1if fragment F; is assigned to site S;
Y779 0 otherwise

The precise specification is as follows:

m
. / .
min |Y | Y xujc;+t; min ¢ |+ ) xjd;
=1\ j|s;el JIs;el jIS;er
subject to
x;j=0o0rl

The second term of the objective function calculates the total cost of storing all
the duplicate copies of the fragment. The first term, on the other hand, corresponds
to the cost of transmitting the updates to all the sites that hold the replicas of the
fragment, and to the cost of executing the retrieval-only requests at the site, which
will result in minimal data transmission cost.

This is a very simplistic formulation that is not suitable for distributed database
design. But even if it were, there is another problem. This formulation, which comes
from Casey [1972], has been proven to be NP-complete [Eswaran, 1974]. Various
different formulations of the problem have been proven to be just as hard over the
years (e.g., [Sacca and Wiederhold, 1985] and [Lam and Yu, 1980]). The implication
is, of course, that for large problems (i.e., large number of fragments and sites),
obtaining optimal solutions is probably not computationally feasible. Considerable
research has therefore been devoted to finding good heuristics that may provide
suboptimal solutions.
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There are a number of reasons why simplistic formulations such as the one we
have discussed are not suitable for distributed database design. These are inherent in
all the early file allocation models for computer networks.

1. One cannot treat fragments as individual files that can be allocated one at a
time, in isolation. The placement of one fragment usually has an impact on the
placement decisions about the other fragments which are accessed together
since the access costs to the remaining fragments may change (e.g., due to
distributed join). Therefore, the relationship between fragments should be
taken into account.

2. The access to data by applications is modeled very simply. A user request
is issued at one site and all the data to answer it is transferred to that site.
In distributed database systems, access to data is more complicated than
this simple “remote file access” model suggests. Therefore, the relationship
between the allocation and query processing should be properly modeled.

3. These models do not take into consideration the cost of integrity enforcement,
yet locating two fragments involved in the same integrity constraint at two
different sites can be costly.

4. Similarly, the cost of enforcing concurrency control mechanisms should be
considered [Rothnie and Goodman, 1977].

In summary, let us remember the interrelationship between the distributed database
problems as depicted in Figure 1.7. Since the allocation is so central, its relationship
with algorithms that are implemented for other problem areas needs to be represented
in the allocation model. However, this is exactly what makes it quite difficult to solve
these models. To separate the traditional problem of file allocation from the fragment
allocation in distributed database design, we refer to the former as the file allocation
problem (FAP) and to the latter as the database allocation problem (DAP).

There are no general heuristic models that take as input a set of fragments and
produce a near-optimal allocation subject to the types of constraints discussed here.
The models developed to date make a number of simplifying assumptions and are
applicable to certain specific formulations. Therefore, instead of presenting one or
more of these allocation algorithms, we present a relatively general model and then
discuss a number of possible heuristics that might be employed to solve it.

3.4.2 Information Requirements

It is at the allocation stage that we need the quantitative data about the database, the
applications that run on it, the communication network, the processing capabilities,
and storage limitations of each site on the network. We will discuss each of these in
detail.
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3.4.2.1 Database Information

To perform horizontal fragmentation, we defined the selectivity of minterms. We now
need to extend that definition to fragments, and define the selectivity of a fragment F;
with respect to query ¢;. This is the number of tuples of F; that need to be accessed
in order to process g;. This value will be denoted as sel;(Fj).

Another piece of necessary information on the database fragments is their size.
The size of a fragment Fj is given by

size(Fj) = card(F;) * length(Fj)

where length(F;) is the length (in bytes) of a tuple of fragment F;.

3.4.2.2 Application Information

Most of the application-related information is already compiled during the fragmenta-
tion activity, but a few more are required by the allocation model. The two important
measures are the number of read accesses that a query ¢; makes to a fragment F;
during its execution (denoted as RR;;), and its counterpart for the update accesses
(UR;}). These may, for example, count the number of block accesses required by the
query.

We also need to define two matrices UM and RM, with elements u;; and r;j,
respectively, which are specified as follows:

- 1 if query ¢; updates fragment Fj
Y771 0 otherwise

~_ [ 1if query g; retrieves from fragment F;
Y] 0 otherwise

A vector O of values o(i) is also defined, where o(i) specifies the originating site
of query g;. Finally, to define the response-time constraint, the maximum allowable
response time of each application should be specified.

3.4.2.3 Site Information

For each computer site, we need to know its storage and processing capacity. Obvi-
ously, these values can be computed by means of elaborate functions or by simple
estimates. The unit cost of storing data at site S will be denoted as USCy. There is
also a need to specify a cost measure LPC}, as the cost of processing one unit of work
at site Si. The work unit should be identical to that of the RR and UR measures.
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3.4.2.4 Network Information

In our model we assume the existence of a simple network where the cost of commu-
nication is defined in terms of one frame of data. Thus g;; denotes the communication
cost per frame between sites S; and S;. To enable the calculation of the number of
messages, we use fsize as the size (in bytes) of one frame. There is no question
that there are more elaborate network models which take into consideration the
channel capacities, distances between sites, protocol overhead, and so on. However,
the derivation of those equations is beyond the scope of this chapter.

3.4.3 Allocation Model

We discuss an allocation model that attempts to minimize the total cost of processing
and storage while trying to meet certain response time restrictions. The model we
use has the following form:

min(Total Cost)
subject to

response-time constraint
storage constraint
processing constraint

In the remainder of this section we expand the components of this model based
on the information requirements discussed in Section 3.4.2. The decision variable is
x;j, which is defined as

o 1 if the fragment F; is stored at site S
771 0 otherwise

3.4.3.1 Total Cost

The total cost function has two components: query processing and storage. Thus it
can be expressed as

TOC= Y, QPG+ Y ) STCi

Yqi€O VSkES VFjEF

where QPC; is the query processing cost of application g;, and STCj; is the cost of
storing fragment F; at site Sy.
Let us consider the storage cost first. It is simply given by

STCjx = USCy * size(Fj) * x ji.
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and the two summations find the total storage costs at all the sites for all the fragments.

The query processing cost is more difficult to specify. Most models of the file allo-
cation problem (FAP) separate it into two components: the retrieval-only processing
cost, and the update processing cost. We choose a different approach in our model of
the database allocation problem (DAP) and specify it as consisting of the processing
cost (PC) and the transmission cost (7'C). Thus the query processing cost (QPC) for
application g; is

QOPC; = PC;+TC;

According to the guidelines presented in Section 3.4.1, the processing component,
PC, consists of three cost factors, the access cost (AC), the integrity enforcement cost
(IE), and the concurrency control cost (CC):

PC; =AC,+ IE; +CC;

The detailed specification of each of these cost factors depends on the algorithms
used to accomplish these tasks. However, to demonstrate the point, we specify AC in
some detail:

AC; = Z Z (M[j*URij+rij*RRij)*xjk*LPCk
VS,eSs VFJ'EF

The first two terms in the above formula calculate the number of accesses of user
query g; to fragment F;. Note that (UR;; + RR;;) gives the total number of update and
retrieval accesses. We assume that the local costs of processing them are identical.
The summation gives the total number of accesses for all the fragments referenced
by g;. Multiplication by LPC}, gives the cost of this access at site S;. We again use
Xji to select only those cost values for the sites where fragments are stored.

A very important issue needs to be pointed out here. The access cost function
assumes that processing a query involves decomposing it into a set of subqueries,
each of which works on a fragment stored at the site, followed by transmitting the
results back to the site where the query has originated. As we discussed earlier, this
is a very simplistic view which does not take into consideration the complexities of
database processing. For example, the cost function does not take into account the
cost of performing joins (if necessary), which may be executed in a number of ways,
studied in Chapter 8. In a model that is more realistic than the generic model we are
considering, these issues should not be omitted.

The integrity enforcement cost factor can be specified much like the processing
component, except that the unit local processing cost would probably change to reflect
the true cost of integrity enforcement. Since the integrity checking and concurrency
control methods are discussed later in the book, we do not need to study these cost
components further here. The reader should refer back to this section after reading
Chapters 5 and 11 to be convinced that the cost functions can indeed be derived.

The transmission cost function can be formulated along the lines of the access cost
function. However, the data transmission overhead for update and that for retrieval
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requests are quite different. In update queries it is necessary to inform all the sites
where replicas exist, while in retrieval queries, it is sufficient to access only one of the
copies. In addition, at the end of an update request, there is no data transmission back
to the originating site other than a confirmation message, whereas the retrieval-only
queries may result in significant data transmission.

The update component of the transmission function is

TCUi= ), ) uij*Xp*8opat Y, Y, Uij*Xjk*8kofi)
VSkESVFjEF VSkESVF]'EF

The first term is for sending the update message from the originating site o(i) of
g; to all the fragment replicas that need to be updated. The second term is for the
confirmation.

The retrieval cost can be specified as

seli(F;) * length(Fj)
fsize

TCR; = Z migg(”ij * Xk * 8o (i) k T Tij * X jk * * 8k o(i))

VF;eF Sk

The first term in 7TCR represents the cost of transmitting the retrieval request to
those sites which have copies of fragments that need to be accessed. The second term
accounts for the transmission of the results from these sites to the originating site.
The equation states that among all the sites with copies of the same fragment, only
the site that yields the minimum total transmission cost should be selected for the
execution of the operation.

Now the transmission cost function for query g; can be specified as

TC;=TCU;+TCR;

which fully specifies the total cost function.

3.4.3.2 Constraints

The constraint functions can be specified in similar detail. However, instead of
describing these functions in depth, we will simply indicate what they should look
like. The response-time constraint should be specified as

execution time of g; < maximum response time of ¢;,Vgq; € Q

Preferably, the cost measure in the objective function should be specified in terms
of time, as it makes the specification of the execution-time constraint relatively
straightforward.

The storage constraint is

Z STCj; < storage capacity at site Sg,VSy € §
VFJ'GF
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whereas the processing constraint is

Z processing load of g; at site Sy < processing capacity of Si,VS; € S
VgicQ

This completes our development of the allocation model. Even though we have
not developed it entirely, the precision in some of the terms indicates how one goes
about formulating such a problem. In addition to this aspect, we have indicated the
important issues that need to be addressed in allocation models.

3.4.4 Solution Methods

In the preceding section we developed a generic allocation model which is consider-
ably more complex than the FAP model presented in Section 3.4.1. Since the FAP
model is NP-complete, one would expect the solution of this formulation of the
database allocation problem (DAP) to be NP-complete as well. Even though we will
not prove this conjecture, it is indeed true. Thus one has to look for heuristic methods
that yield suboptimal solutions. The test of “goodness” in this case is, obviously, how
close the results of the heuristic algorithm are to the optimal allocation.

A number of different heuristics have been applied to the solution of FAP and
DAP models. It was observed early on that there is a correspondence between FAP
and the plant location problem that has been studied in operations research. In fact,
the isomorphism of the simple FAP and the single commodity warehouse location
problem has been shown [Ramamoorthy and Wah, 1983]. Thus heuristics developed
by operations researchers have commonly been adopted to solve the FAP and DAP
problems. Examples are the knapsack problem solution [Ceri et al., 1982a], branch-
and-bound techniques [Fisher and Hochbaum, 1980], and network flow algorithms
[Chang and Liu, 1982].

There have been other attempts to reduce the complexity of the problem. One
strategy has been to assume that all the candidate partitionings have been determined
together with their associated costs and benefits in terms of query processing. The
problem, then, is modeled so as to choose the optimal partitioning and placement for
each relation [Ceri et al., 1983]. Another simplification frequently employed is to
ignore replication at first and find an optimal non-replicated solution. Replication
is handled at the second step by applying a greedy algorithm which starts with the
non-replicated solution as the initial feasible solution, and tries to improve upon it
([Ceri et al., 1983] and [Ceri and Pernici, 1985]). For these heuristics, however, there
is not enough data to determine how close the results are to the optimal.
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3.5 Data Directory

The distributed database schema needs to be stored and maintained by the system.
This information is necessary during distributed query optimization, as we will
discuss later. The schema information is stored in a data dictionary/directory, also
called a catalog or simply a directory. A directory is a meta-database that stores a
number of information.

Within the context of the centralized ANSI/SPARC architecture discussed in
Section 1.7.1, directory is the system component that permits mapping between
different data organizational views. It should at least contain schema and mapping
definitions. It may also contain usage statistics, access control information, and
the like. It is clearly seen that the data dictionary/directory serves as the central
component in both processing different schemas and in providing mappings among
them.

In the case of a distributed database, as depicted in Figure 1.14 and discussed
earlier in this chapter, schema definition is done at the global level (i.e., the global
conceptual schema — GCS) as well as at the local sites (i.e., local conceptual schemas —
LCSs). Consequently, there are two types of directories: a global directory/dictionary
(GD/D)’ that describes the database schema as the end users see it, and that permits
the required global mappings between external schemas and the GCS, and the local
directory/dictionary (LD/D), that describes the local mappings and describes the
schema at each site. Thus, the local database management components are integrated
by means of global DBMS functions.

As stated above, the directory is itself a database that contains metadata about
the actual data stored in the database. Therefore, the techniques we discussed in
this chapter with respect to distributed database design also apply to directory man-
agement. Briefly, a directory may be either global to the entire database or local to
each site. In other words, there might be a single directory containing information
about all the data in the database, or a number of directories, each containing the
information stored at one site. In the latter case, we might either build hierarchies
of directories to facilitate searches, or implement a distributed search strategy that
involves considerable communication among the sites holding the directories.

The second issue has to do with location. In the case of a global directory, it may
be maintained centrally at one site, or in a distributed fashion by distributing it over a
number of sites. Keeping the directory at one site might increase the load at that site,
thereby causing a bottleneck as well as increasing message traffic around that site.
Distributing it over a number of sites, on the other hand, increases the complexity
of managing directories. In the case of multi-DBMSs, the choice is dependent on
whether or not the system is distributed. If it is, the directory is always distributed;
otherwise of course, it is maintained centrally.

The final issue is replication. There may be a single copy of the directory or
multiple copies. Multiple copies would provide more reliability, since the probability
of reaching one copy of the directory would be higher. Furthermore, the delays

3 In the remainder, we will simply refer to this as the global directory.
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in accessing the directory would be lower, due to less contention and the relative
proximity of the directory copies. On the other hand, keeping the directory up to date
would be considerably more difficult, since multiple copies would need to be updated.
Therefore, the choice should depend on the environment in which the system operates
and should be made by balancing such factors as the response-time requirements, the
size of the directory, the machine capacities at the sites, the reliability requirements,
and the volatility of the directory (i.e., the amount of change experienced by the
database, which would cause a change to the directory).

3.6 Conclusion

In this chapter, we presented the techniques that can be used for distributed database
design with special emphasis on the fragmentation and allocation issues. There are a
number of lines of research that have been followed in distributed database design.
For example, Chang has independently developed a theory of fragmentation [Chang
and Cheng, 1980], and allocation [Chang and Liu, 1982]. However, for its maturity
of development, we have chosen to develop this chapter along the track developed by
Ceri, Pelagatti, Navathe, and Wiederhold. Our references to the literature by these
authors reflect this quite clearly.

There is a considerable body of literature on the allocation problem, focusing
mostly on the simpler file allocation issue. We still do not have sufficiently general
models that take into consideration all the aspects of data distribution. The model
presented in Section 3.4 highlights the types of issues that need to be taken into
account. Within this context, it might be worthwhile to take a somewhat different
approach to the solution of the distributed allocation problem. One might develop a
set of heuristic rules that might accompany the mathematical formulation and reduce
the solution space, thus making the solution feasible.

We have discussed, in detail, the algorithms that one can use to fragment a
relational schema in various ways. These algorithms have been developed quite
independently and there is no underlying design methodology that combines the
horizontal and vertical partitioning techniques. If one starts with a global relation,
there are algorithms to decompose it horizontally as well as algorithms to decom-
pose it vertically into a set of fragment relations. However, there are no algorithms
that fragment a global relation into a set of fragment relations some of which are
decomposed horizontally and others vertically. It is commonly pointed out that most
real-life fragmentations would be mixed, i.e., would involve both horizontal and
vertical partitioning of a relation, but the methodology research to accomplish this is
lacking. What is needed is a distribution design methodology which encompasses
the horizontal and vertical fragmentation algorithms and uses them as part of a more
general strategy. Such a methodology should take a global relation together with a set
of design criteria and come up with a set of fragments some of which are obtained
via horizontal and others obtained via vertical fragmentation.
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The second part of distribution design, namely allocation, is typically treated
independently of fragmentation. The process is, therefore, linear when the output of
fragmentation is input to allocation. At first sight, the isolation of the fragmentation
and the allocation steps appears to simplify the formulation of the problem by
reducing the decision space. However, closer examination reveals that isolating the
two steps actually contributes to the complexity of the allocation models. Both steps
have similar inputs, differing only in that fragmentation works on global relations
whereas allocation considers fragment relations. They both require information about
the user applications (e.g., how often they access data, what the relationships of
individual data objects to one another are, etc.), but ignore how each other makes
use of these inputs. The end result is that the fragmentation algorithms decide
how to partition a relation based partially on how applications access it, but the
allocation models ignore the part that this input plays in fragmentation. Therefore,
the allocation models have to include all over again detailed specification of the
relationship among the fragment relations and how user applications access them.
What would be more promising is to formulate a methodology that more properly
reflects the interdependence of the fragmentation and the allocation decisions. This
requires extensions to existing distribution design strategies. We recognize that
integrated methodologies such as the one we propose here may be considerably
complex. However, there may be synergistic effects of combining these two steps
enabling the development of quite acceptable heuristic solution methods. There
are a few studies that follow such an integrated methodology (e.g., [Muro et al.,
1983, 1985; Yoshida et al., 1985]). These methodologies build a simulation model
of the distributed DBMS, taking as input a specific database design, and measure
its effectiveness. Development of tools based on such methodologies, which aid the
human designer rather than attempt to replace him, is probably the more appropriate
approach to the design problem.

Another aspect of the work described in this chapter is that it assumes a static
environment where design is conducted only once and this design can persist. Reality,
of course, is quite different. Both physical (e.g., network characteristics, available
storage at various sites) and logical (e.g., migration of applications from one site to
another, access pattern modifications) changes occur necessitating redesign of the
database. This problem has been studied to some extent. In a dynamic environment,
the process becomes one of design-redesign-materialization of the redesign. The
design step follows techniques that have been described in this chapter. Redesign
can either be limited in that only parts of the database are affected, or total, requir-
ing a complete redistribution [Wilson and Navathe, 1986]. Materialization refers
to the reorganization of the distributed database to reflect the changes required by
the redesign step. Limited redesign, in particular, the materialization issue is stud-
ied in [Rivera-Vega et al., 1990; Varadarajan et al., 1989]. Complete redesign and
materialization issues have been studied in [Karlapalem et al., 1996b; Karlapalem
and Navathe, 1994; Kazerouni and Karlapalem, 1997]. In particular, Kazerouni and
Karlapalem [1997] describes a stepwise redesign methodology which involves a
split phase where fragments are further subdivided based on the changed application
requirements until no further subdivision is profitable based on a cost function. At
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this point, the merging phase starts where fragments that are accessed together by a
set of applications are merged into one fragment.

3.7 Bibliographic Notes

Most of the known results about fragmentation have been covered in this chapter.
Work on fragmentation in distributed databases initially concentrated on horizontal
fragmentation. Most of the literature on this has been cited in the appropriate section.
The topic of vertical fragmentation for distribution design has been addressed in
several papers ([Navathe et al., 1984] and [Sacca and Wiederhold, 1985]. The original
work on vertical fragmentation goes back to Hoffer’s dissertation [Hoffer, 1975;
Hoffer and Severance, 1975] and to Hammer and Niamir’s work ([Niamir, 1978] and
[Hammer and Niamir, 1979]).

It is not possible to be as exhaustive when discussing allocation as we have
been for fragmentation, given there is no limit to the literature on the subject. The
investigation of FAP on wide area networks goes back to Chu’s work [Chu, 1969,
1973]. Most of the early work on FAP has been covered in the excellent survey by
Dowdy and Foster [1982]. Some theoretical results about FAP are reported by Grapa
and Belford [1977] and Kollias and Hatzopoulos [1981].

The DAP work dates back to the mid-1970s to the works of Eswaran [1974] and
others. In their earlier work, Levin and Morgan [1975] concentrated on data allocation,
but later they considered program and data allocation together [Morgan and Levin,
1977]. The DAP has been studied in many specialized settings as well. Work has
been done to determine the placement of computers and data in a wide area network
design [Gavish and Pirkul, 1986]. Channel capacities have been examined along with
data placement [Mahmoud and Riordon, 1976] and data allocation on supercomputer
systems [Irani and Khabbaz, 1982] as well as on a cluster of processors [Sacca and
Wiederhold, 1985]. An interesting work is the one by Apers, where the relations
are optimally placed on the nodes of a virtual network, and then the best matching
between the virtual network nodes and the physical network are found [Apers, 1981].

Some of the allocation work has also touched upon physical design. The assign-
ment of files to various levels of a memory hierarchy has been studied by Foster and
Browne [1976] and by Navathe et al. [1984]. These are outside the scope of this
chapter, as are those that deal with general resource and task allocation in distributed
systems (e.g., [Bucci and Golinelli, 1977], [Ceri and Pelagatti, 1982], and [Haessig
and Jenny, 1980]).

We should finally point out that some effort was spent to develop a general
methodology for distributed database design along the lines that we presented (Figure
3.2). Ours is similar to the DATAID-D methodology [Ceri and Navathe, 1983; Ceri
et al., 1987]. Other attempts to develop a methodology are due to Fisher et al. [1980],
Dawson [1980]; Hevner and Schneider [1980] and Mohan [1979].
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Exercises

Problem 3.1 (*). Given relation EMP as in Figure 3.3, let p;: TITLE < “Program-
mer” and py: TITLE > “Programmer” be two simple predicates. Assume that char-
acter strings have an order among them, based on the alphabetical order.

(a) Perform a horizontal fragmentation of relation EMP with respect to {py, p» }.

(b) Explain why the resulting fragmentation (EMP;, EMP,) does not fulfill the
correctness rules of fragmentation.

(¢) Modify the predicates p; and p, so that they partition EMP obeying the
correctness rules of fragmentaion. To do this, modify the predicates, compose
all minterm predicates and deduce the corresponding implications, and then
perform a horizontal fragmentation of EMP based on these minterm predicates.
Finally, show that the result has completeness, reconstruction and disjointness
properties.

Problem 3.2 (*). Consider relation ASG in Figure 3.3. Suppose there are two ap-
plications that access ASG. The first is issued at five sites and attempts to find the
duration of assignment of employees given their numbers. Assume that managers,
consultants, engineers, and programmers are located at four different sites. The
second application is issued at two sites where the employees with an assignment
duration of less than 20 months are managed at one site, whereas those with longer
duration are managed at a second site. Derive the primary horizontal fragmentation
of ASG using the foregoing information.

Problem 3.3. Consider relations EMP and PAY in Figure 3.3. EMP and PAY are
horizontally fragmented as follows:

EMP| = OriTLE="Elect Eng.” (EMP)
EMP; = orirLE="syst. Anal.”(EMP)
EMP; = OriTLE=“Mech.Eng" (EMP)
EMP, = GTITLE:“Programmer”(EMP)

PAY| = 0sarL>30000(PAY)
PAY> = 0sarL<30000(PAY)

Draw the join graph of EMP X g PAY. Is the graph simple or partitioned? If it
is partitioned, modify the fragmentation of either EMP or PAY so that the join graph
of EMP X 1rrLg PAY is simple.

Problem 3.4. Give an example of a CA matrix where the split point is not unique
and the partition is in the middle of the matrix. Show the number of shift operations
required to obtain a single, unique split point.

Problem 3.5 (**). Given relation PAY as in Figure 3.3, let p;: SAL < 30000 and p»:
SAL > 30000 be two simple predicates. Perform a horizontal fragmentation of PAY
with respect to these predicates to obtain PAY [, and PAY>. Using the fragmentation of
PAY, perform further derived horizontal fragmentation for EMP. Show completeness,
reconstruction, and disjointness of the fragmentation of EMP.
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Problem 3.6 (**). Let O = {q1,...,gs} be a set of queries, A = {A],...,As} be a
set of attributes, and S = {5, 52,53} be a set of sites. The matrix of Figure 3.21a
describes the attribute usage values and the matrix of Figure 3.21b gives the applica-
tion access frequencies. Assume that ref;(g;) = 1 for all g; and S; and that A; is the
key attribute. Use the bond energy and vertical partitioning algorithms to obtain a
vertical fragmentation of the set of attributes in A.

A1 A2 AS SZI. 52 53
a, B 0o 1 1 q, | 10 20 0_
d, 1 1 1 a, 5 0 10
as 1 0 0 a5 0 3 5
a, 0 0 1 a, 0 10 0
g 1 1 1 s 0 15 O
(@) (b)

Fig. 3.21 Attribute Usage Values and Application Access Frequencies in Exercise 3.6

Problem 3.7 (**). Write an algorithm for derived horizontal fragmentation.

Problem 3.8 (**). Assume the following view definition

CREATE VIEW EMPVIEW (ENO, ENAME, PNO, RESP)
AS SELECT EMP.ENO, EMP.ENAME, ASG.PNO,
ASG.RESP
FROM EMP, ASG
WHERE EMP.ENO=ASG.ENO
AND DUR=24

is accessed by application g1, located at sites 1 and 2, with frequencies 10 and 20,
respectively. Let us further assume that there is another query ¢, defined as

SELECT ENO, DUR
FROM ASG

which is run at sites 2 and 3 with frequencies 20 and 10, respectively. Based on the
above information, construct the use(g;,A ;) matrix for the attributes of both relations
EMP and ASG. Also construct the affinity matrix containing all attributes of EMP
and ASG. Finally, transform the affinity matrix so that it could be used to split the
relation into two vertical fragments using heuristics or BEA.

Problem 3.9 (**). Formally define the three correctness criteria for derived horizon-
tal fragmentation.
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Problem 3.10 (*). Given a relation R(K,A,B,C) (where K is the key) and the fol-
lowing query

SELECT =
FROM R
WHERE R.A = 10 AND R.B=15

(a) What will be the outcome of running PHF on this query?
(b) Does the COM_MIN algorithm produce in this case a complete and minimal
predicate set? Justify your answer.

Problem 3.11 (*). Show that the bond energy algorithm generates the same results
using either row or column operation.

Problem 3.12 (**). Modify algorithm PARTITION to allow n-way partitioning, and
compute the complexity of the resulting algorithm.

Problem 3.13 (**). Formally define the three correctness criteria for hybrid frag-
mentation.

Problem 3.14. Discuss how the order in which the two basic fragmentation schemas
are applied in hybrid fragmentation affects the final fragmentation.

Problem 3.15 (*%). Describe how the following can be properly modeled in the
database allocation problem.

(a) Relationships among fragments
(b) Query processing

(¢) Integrity enforcement

(d) Concurrency control mechanisms

Problem 3.16 (**). Consider the various heuristic algorithms for the database allo-
cation problem.

(a) What are some of the reasonable criteria for comparing these heuristics?
Discuss.
(b) Compare the heuristic algorithms with respect to these criteria.

Problem 3.17 (*). Pick one of the heuristic algorithms used to solve the DAP, and
write a program for it.

Problem 3.18 (**). Assume the environment of Exercise 3.8. Also assume that 60%
of the accesses of query ¢; are updates to PNO and RESP of view EMPVIEW and
that ASG.DUR is not updated through EMPVIEW. In addition, assume that the data
transfer rate between site 1 and site 2 is half of that between site 2 and site 3. Based
on the above information, find a reasonable fragmentation of ASG and EMP and an
optimal replication and placement for the fragments, assuming that storage costs do
not matter here, but copies are kept consistent.
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Hint: Consider horizontal fragmentation for ASG based on DUR=24 predicate
and the corresponding derived horizontal fragmentation for EMP. Also look at the
affinity matrix obtained in Example 3.8 for EMP and ASG together, and consider
whether it would make sense to perform a vertical fragmentation for ASG.






Chapter 4
Database Integration

In the previous chapter, we discussed top-down distributed database design, which
is suitable for tightly integrated, homogeneous distributed DBMSs. In this chapter,
we focus on bottom-up design that is appropriate in multidatabase systems. In this
case, a number of databases already exist, and the design task involves integrating
them into one database. The starting point of bottom-up design is the individual local
conceptual schemas. The process consists of integrating local databases with their
(local) schemas into a global database with its global conceptual schema (GCS) (also
called the mediated schema).

Database integration, and the related problem of querying multidatabases (see
Chapter 9), is only one part of the more general interoperability problem. In recent
years, new distributed applications have started to pose new requirements regarding
the data source(s) they access. In parallel, the management of “legacy systems”
and reuse of the data they generate have gained importance. The result has been a
renewed consideration of the broader question of information system interoperability,
including non-database sources and interoperability at the application level in addition
to the database level.

Database integration can be either physical or logical [Jhingran et al., 2002]. In the
former, the source databases are integrated and the integrated database is materialized.
These are known as data warehouses. The integration is aided by extract-transform-
load (ETL) tools that enable extraction of data from sources, their transformation
to match the GCS, and their loading (i.e., materialization). Enterprise Application
Integration (EAI), which allows data exchange between applications, perform similar
transformation functions, although data are not entirely materialized. This process
is depicted in Figure 4.1. In logical integration, the global conceptual (or mediated)
schema is entirely virfual and not materialized. This is also known as Enterprise
Information Integration (EII)!.

These two approaches are complementary and address differing needs. Data
warehousing [Inmon, 1992; Jarke et al., 2003] supports decision support applications,

It has been (rightly) argued that the second “I”” should stand for Interoperability rather than
Integration (see J. Pollock’s contribution in [Halevy et al., 2005]).

M.T. Ozsu and P. Valduriez, Principles of Distributed Database Systems: Third Edition, 131
DOI 10.1007/978-1-4419-8834-8_4, © Springer Science+Business Media, LLC 2011
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Fig. 4.1 Data Warehouse Approach

which are commonly termed On-line Analytical Processing (OLAP) [Codd, 1995]
to better reflect their different requirements relative to the On-Line Transaction
Processing (OLTP) applications. OLTP applications, such as airline reservation or
banking systems, are high-throughput transaction-oriented. They need extensive data
control and availability, high multiuser throughput and predictable, fast response
times. In contrast, OLAP applications, such as trend analysis or forecasting, need to
analyze historical, summarized data coming from a number of operational databases.
They use complex queries over potentially very large tables. Because of their strategic
nature, response time is important. The users are managers or analysts. Performing
OLAP queries directly over distributed operational databases raises two problems.
First, it hurts the OLTP applications’ performance by competing for local resources.
Second, the overall response time of the OLAP queries can be very poor because large
quantities of data must be transferred over the network. Furthermore, most OLAP
applications do not need the most current versions of the data, and thus do not need
direct access to most up-to-date operational data. Consequently, data warehouses
gather data from a number of operational databases and materialize them. As updates
happen on the operational databases, they are propagated to the data warehouse (also
referred to as materialized view maintenance [Gupta and Mumick, 1999b]).

By contrast, in logical data integration, the integration is only virtual and there is
no materialized global database (see Figure 1.18). The data resides in the operational
databases and the GCS provides a virtual integration for querying over them similar
to the case described in the previous chapter. The difference is that the GCS may not
be the union of the local conceptual schamas (LCSs). It is possible for the GCS not
to capture all of the information in each of the LCSs. Furthermore, in some cases,
the GCS may be defined bottom-up, by “integrating” parts of the LCSs of the local
operational databases rather than being defined up-front (more on this shortly). User
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queries are posed over this global schema, which are then decomposed and shipped
to the local operational databases for processing as is done in tightly-integrated
systems. The main differences are the autonomy and potential heterogeneity of the
local systems. These have important effects on query processing that we discuss in
Chapter 9. Although there is ample work on transaction management in these systems,
supporting global updates is quite difficult given the autonomy of the underlying
operational DBMSs. Therefore, they are primarily read-only.

Logical data integration, and the resulting systems, are known by a variety of
names; data integration and information integration are perhaps the most common
terms used in literature. The generality of these terms point to the fact that the
underlying data sources do not have to be databases. In this chapter we focus our
attention on the integration of autonomous and (possibly) heterogeneous databases;
thus we will use the term database integration (which also helps to distinguish these
systems from data warehouses).

4.1 Bottom-Up Design Methodology

Bottom-up design involves the process by which information from participating
databases can be (physically or logically) integrated to form a single cohesive multi-
database. There are two alternative approaches. In some cases, the global conceptual
(or mediated) schema is defined first, in which case the bottom-up design involves
mapping LCSs to this schema. This is the case in data warehouses, but the practice is
not restricted to these and other data integration methodologies may follow the same
strategy. In other cases, the GCS is defined as an integration of parts of LCSs. In this
case, the bottom-up design involves both the generation of the GCS and the mapping
of individual LCSs to this GCS.

If the GCS is defined up-front, the relationship between the GCS and the local
conceptual schemas (LCS) can be of two fundamental types [Lenzerini, 2002]: local-
as-view, and global-as-view. In local-as-view (LAV) systems, the GCS definition
exists, and each LCS is treated as a view definition over it. In global-as-view systems
(GAV), on the other hand, the GCS is defined as a set of views over the LCSs. These
views indicate how the elements of the GCS can be derived, when needed, from the
elements of LCSs. One way to think of the difference between the two is in terms of
the results that can be obtained from each system [Koch, 2001]. In GAV, the query
results are constrained to the set of objects that are defined in the GCS, although
the local DBMSs may be considerably richer (Figure 4.2a). In LAV, on the other
hand, the results are constrained by the objects in the local DBMSs, while the GCS
definition may be richer (Figure 4.2b). Thus, in LAV systems, it may be necessary
to deal with incomplete answers. A combination of these two approaches has also
been proposed as global-local-as-view (GLAV) [Friedman et al., 1999] where the
relationship between GCS and LCSs is specified using both LAV and GAV.

Bottom-up design occurs in two general steps (Figure 4.3): schema translation
(or simply translation) and schema generation. In the first step, the component
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Fig. 4.2 GAV and LAV Mappings (Based on [Koch, 2001])

database schemas are translated to a common intermediate canonical representation
(InSy, InS,, ..., InS,). The use of a canonical representation facilitates the translation
process by reducing the number of translators that need to be written. The choice of
the canonical model is important. As a principle, it should be one that is sufficiently
expressive to incorporate the concepts available in all the databases that will later
be integrated. Alternatives that have been used include the entity-relationship model
[Palopoli et al., 1998, 2003b; He and Ling, 2006], object-oriented model [Castano and
Antonellis, 1999; Bergamaschi et al., 2001], or a graph [Palopoli et al., 1999; Milo
and Zohar, 1998; Melnik et al., 2002; Do and Rahm, 2002] that may be simplified to
a tree [Madhavan et al., 2001]. The graph (tree) models have become more popular
as XML data sources have proliferated, since it is fairly straightforward to map XML
to graphs, although there are efforts to target XML directly [ Yang et al., 2003]. In this
chapter, we will simply use the relational model as our canonical data model, because
we have been using it throughout the book, and the graph models used in literature
are quite diverse with no common graph representation. The choice of the relational
model as the canonical data representation does not affect in any fundamental way
the discussion of the major issues of data integration. In any case, we will not discuss
the specifics of translating various data models to relational; this can be found in
many database textbooks.

Clearly, the translation step is necessary only if the component databases are
heterogeneous and local schemas are defined using different data models. There has
been some work on the development of system federation, in which systems with
similar data models are integrated together (e.g., relational systems are integrated
into one conceptual schema and, perhaps, object databases are integrated to another
schema) and these integrated schemas are “combined” at a later stage (e.g., AURORA
project [Yan, 1997; Yan et al., 1997]). In this case, the translation step is delayed,
providing increased flexibility for applications to access underlying data sources in a
manner that is suitable for their needs.

In the second step of bottom-up design, the intermediate schemas are used to
generate a GCS. In some methodologies, local external (or export) schemas are
considered for integration rather than full database schemas, to reflect the fact that
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local systems may only be willing to contribute some of their data to the multidatabase

[Sheth and Larson, 1990].

The schema generation process consists of the following steps:

1. Schema matching to determine the syntactic and semantic correspondences
among the translated LCS elements or between individual LCS elements and

the pre-defined GCS elements (Section 4.2).

2. Integration of the common schema elements into a global conceptual (medi-
ated) schema if one has not yet been defined (Section 4.3).

3. Schema mapping that determines how to map the elements of each LCS to

the other elements of the GCS (Section 4.4).

It is also possible that the schema mapping step may be divided into two
phases [Bernstein and Melnik, 2007]: mapping constraint generation and transforma-
tion generation. In the first phase, given correspondences between two schemas, a
transformation function such as a query or view definition over the source schema
is generated that would “populate” the target schema. In the second phase, an exe-
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cutable code is generated corresponding to this transformation function that would
actually generate a target database consistent with these constraints. In some cases,
the constraints are implicitly included in the correspondences, eliminating the need
for the first phase.

Example 4.1. To facilitate our discussion of global schema design in multidatabase
systems, we will use an example that is an extension of the engineering database we
have been using throughout the book. To demonstrate both phases of the database
integration process, we introduce some data model heterogeneity into our example.

Consider two organizations, each with their own database definitions. One is the
(relational) database example that we have developed in Chapter 2. We repeat that
definition in Figure 4.4 for completeness. The underscored attributes are the keys
of the associated relations. We have made one modification in the PROJ relation by
including attributes LOC and CNAME. LOC is the location of the project, whereas
CNAME is the name of the client for whom the project is carried out. The second
database also defined similar data, but is specified according to the entity-relationship
(E-R) data model [Chen, 1976] as depicted in Figure 4.5.

EMP(ENO, ENAME, TITLE)

PROJ(PNO, PNAME, BUDGET, LOC, CNAME)
ASG(ENO, PNO, RESP, DUR)

PAY(TITLE, SAL)

Fig. 4.4 Relational Engineering Database Representation

We assume that the reader is familiar with the entity-relationship data model.
Therefore, we will not describe the formalism, except to make the following points
regarding the semantics of Figure 4.5. This database is similar to the relational
engineering database definition of Figure 4.4, with one significant difference: it also
maintains data about the clients for whom the projects are conducted. The rectangular
boxes in Figure 4.5 represent the entities modeled in the database, and the diamonds
indicate a relationship between the entities to which they are connected. The type of
relationship is indicated around the diamonds. For example, the CONTRACTED-BY
relation is a many-to-one from the PROJECT entity to the CLIENT entity (e.g., each
project has a single client, but each client can have many projects). Similarly, the
WORKS-IN relationship indicates a many-to-many relationship between the two
connected relations. The attributes of entities and the relationships are shown as
elliptical circles. ¢

Example 4.2. The mapping of the E-R model to the relational model is given in
Figure 4.6. Note that we have renamed some of the attributes in order to ensure name
uniqueness. ¢
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WORKER(WNUMBER, NAME, TITLE, SALARY)
PROJECT(PNUMBER, PNAME, BUDGET)

CLIENT(CNAME, ADDRESS)

WORKS_IN(WNUMBER, PNUMBER, RESPONSIBILITY, DURATION)
CONTRACTED_BY(PNUMBER, CNAME, CONTRACTNO)

Fig. 4.5 Entity-Relationship Database

Fig. 4.6 Relational Mapping of E-R Schema

4.2 Schema Matching

Schema matching determines which concepts of one schema match those of another.
As discussed earlier, if the GCS has already been defined, then one of these schemas
is typically the GCS, and the task is to match each LCS to the GCS. Otherwise,
matching is done on two LCSs. The matches that are determined in this phase are
then used in schema mapping to produce a set of directed mappings, which, when
applied to the source schema, would map its concepts to the target schema.

The matches that are defined or discovered during schema matching are specified
as a set of rules where each rule (r) identifies a correspondence (c) between two
elements, a predicate (p) that indicates when the correspondence may hold, and a
similarity value (s) between the two elements identified in the correspondence. A
correspondence (¢) may simply identify that two concepts are similar (which we
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will denote by ~) or it may be a function that specifies that one concept may be
derived by a computation over the other one (for example, if the BUDGET value
of one project is specified in US dollars while the other one is specified in Euros,
the correspondence may specify that one is obtained by multiplying the other one
with the appropriate exchange rate). The predicate (p) is a condition that qualifies
the correspondence by specifying when it might hold. For example, in the budget
example specified above, p may specify that the rule holds only if the location of one
project is in US while the other one is in the Euro zone. The similarity value (s) for
each rule can be specified or calculated. Similarity values are real values in the range
[0,1]. Thus, a set of matches can be defined as M = {r} where r = (¢, p,s).

As indicated above, correspondences may either be discovered or specified. As
much as it is desirable to automate this process, as we discuss below, there are many
complicating factors. The most important is schema heterogeneity, which refers to
the differences in the way real-world phenomena are captured in different schemas.
This is a critically important issue, and we devote a separate section to it (Section
4.2.1). Aside from schema heterogeneity, other issues that complicate the matching
process are the following:

o [nsufficient schema and instance information: Matching algorithms depend
on the information that can be extracted from the schema and the existing
data instances. In some cases there is some ambiguity of the terms due to
the insufficient information provided about these items. For example, using
short names or ambiguous abbreviations for concepts, as we have done in our
examples, can lead to incorrect matching.

e Unavailability of schema documentation: In most cases, the database schemas
are not well documented or not documented at all. Quite often, the schema
designer is no longer available to guide the process. The lack of these vital
information sources adds to the difficulty of matching.

o Subjectivity of matching: Finally, we need to note (and admit) that matching
schema elements can be highly subjective; two designers may not agree on a
single “correct” mapping. This makes the evaluation of a given algorithm’s
accuracy significantly difficult.

Despite these difficulties, serious progress has been made in recent years in
developing algorithmic approaches to the matching problem. In this section, we
discuss a number of these algorithms and the various approaches.

A number of issues affect the particular matching algorithm [Rahm and Bernstein,
2001]. The more important ones are the following:

o Schema versus instance matching. So far in this chapter, we have been focusing
on schema integration; thus, our attention has naturally been on matching
concepts of one schema to those of another. A large number of algorithms
have been developed that work on “schema objects.” There are others, however,
that have focused instead on the data instances or a combination of schema
information and data instances. The argument is that considering data instances
can help alleviate some of the semantic issues discussed above. For example, if
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an attribute name is ambiguous, as in “contact-info”, then fetching its data may
help identify its meaning; if its data instances have the phone number format,
then obviously it is the phone number of the contact agent, while long strings
may indicate that it is the contact agent name. Furthermore, there are a large
number of attributes, such as postal codes, country names, email addresses, that
can be defined easily through their data instances.

Matching that relies solely on schema data may be more efficient, because
it does not require a search over data instances to match the attributes. Fur-
thermore, this approach is the only feasible one when few data instances are
available in the matched databases, in which case learning may not be reliable.
However, in peer-to-peer systems (see Chapter 16), there may not be a schema,
in which case instance-based matching is the only appropriate approach.

o Element-level vs. structure-level. Some matching algorithms operate on indi-
vidual schema elements while others also consider the structural relationships
between these elements. The basic concept of the element-level approach is that
most of the schema semantics are captured by the elements’ names. However,
this may fail to find complex mappings that span multiple attributes. Match
algorithms that also consider structure are based on the belief that, normally,
the structures of matchable schemas tend to be similar.

e Matching cardinality. Matching algorithms exhibit various capabilities in terms
of cardinality of mappings. The simplest approaches use 1:1 mapping, which
means that each element in one schema is matched with exactly one element in
the other schema. The majority of proposed algorithms belong to this category,
because problems are greatly simplified in this case. Of course there are many
cases where this assumption is not valid. For example, an attribute named
“Total price” could be mapped to the sum of two attributes in another schema
named “Subtotal” and “Taxes”. Such mappings require more complex matching
algorithms that consider 1:M and N:M mappings.

These criteria, and others, can be used to come up with a taxonomy of matching
approaches [Rahm and Bernstein, 2001]. According to this taxonomy (which we
will follow in this chapter with some modifications), the first level of separation
is between schema-based matchers versus instance-based matchers (Figure 4.7).
Schema-based matchers can be further classified as element-level and structure-level,
while for instance-based approaches, only element-level techniques are meaningful.
At the lowest level, the techniques are characterized as either linguistic or constraint-
based. It is at this level that fundamental differences between matching algorithms
are exhibited and we focus on these algorithms in the remainder, discussing linguis-
tic approaches in Section 4.2.2, constraint-based approaches in Section 4.2.3, and
learning-based techniques in Section 4.2.4. Rahm and Bernstein [2001] refer to all
of these as individual matcher approaches, and their combinations are possible by
developing either hybrid matchers or composite matchers (Section 4.2.5).
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Individual Matchers

Schema-based Instance-based
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Linguistic Constraint-based Constraint-based Linguistic Constraint-based Learning-based

Fig. 4.7 Taxonomy of Schema Matching Techniques

4.2.1 Schema Heterogeneity

Schema matching algorithms deal with both structural heterogeneity and semantic
heterogeneity among the matched schemas. We discuss these in this section before
presenting the different match algorithms.

Structural conflicts occur in four possible ways: as type conflicts, dependency
conflicts, key conflicts,, or behavioral conflicts [Batini et al., 1986]. Type conflicts
occur when the same object is represented by an attribute in one schema and by an
entity (relation) in another. Dependency conflicts occur when different relationship
modes (e.g., one-to-one versus many-to-many) are used to represent the same thing
in different schemas. Key conflicts occur when different candidate keys are available
and different primary keys are selected in different schemas. Behavioral conflicts
are implied by the modeling mechanism. For example, deleting the last item from
one database may cause the deletion of the containing entity (i.e., deletion of the last
employee causes the dissolution of the department).

Example 4.3. We have two structural conflicts in the example we are considering.
The first is a type conflict involving clients of projects. In the schema of Figure 4.5,
the client of a project is modeled as an entity. In the schema of Figure 4.4, however,
the client is included as an attribute of the PROJ entity.

The second structural conflict is a dependency conflict involving the WORKS_IN
relationship in Figure 4.5 and the ASG relation in Figure 4.4. In the former, the
relationship is many-to-one from the WORKER to the PROJECT, whereas in the
latter, the relationship is many-to-many. ¢

Structural differences among schemas are important, but their identification and
resolution is not sufficient. Schema matching has to take into account the (possibly
different) semantics of the schema concepts. This is referred to as semantic hetero-
geneity, which is a fairly loaded term without a clear definition. It basically refers
to the differences among the databases that relate to the meaning, interpretation,
and intended use of data [Vermeer, 1997]. There are attempts to formalize semantic
heterogeneity and to establish its link to structural heterogeneity [Kashyap and Sheth,
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1996; Sheth and Kashyap, 1992]; we will take a more informal approach and discuss
some of the semantic heterogeneity issues intuitively. The following are some of
these problems that the match algorithms need to deal with.

o Synonyms, homonyms, hypernyms. Synonyms are multiple terms that all refer
to the same concept. In our database example, PROJ and PROJECT refer to the
same concept. Homonyms, on the other hand, occur when the same term is used
to mean different things in different contexts. Again, in our example, BUDGET
may refer to the gross budget in one database and it may refer to the net budget
(after some overhead deduction) in another, making their simple comparison
difficult. Hypernym is a term that is more generic than a similar word. Although
there is no direct example of it in the databases we are considering, the concept
of a Vehicle in one database is a hypernym for the concept of a Car in another
(incidentally, in this case, Car is a iyponym of Vehicle). These problems can
be addressed by the use of domain ontologies that define the organization of
concepts and terms in a particular domain.

o Different ontology: Even if domain ontologies are used to deal with issues in
one domain, it is quite often the case that schemas from different domains may
need to be matched. In this case, one has to be careful of the meaning of terms
across ontologies, as they can be highly dependent on the domain they are used
in. For example, an attribute called “load” may imply a measure of resistance in
an electrical ontology, but in a mechanical ontology, it may represent a measure
of weight.

e [mprecise wording: Schemas may contain ambiguous names. For example the
LOCATION and LOC attributes in our example database may refer to the
full address or just the city name. Similarly, an attribute named “contact-info”
may imply that the attribute contains the name of the contact agent or his/her
telephone number. These types of ambiguities are common.

4.2.2 Linguistic Matching Approaches

Linguistic matching approaches, as the name implies, use element names and other
textual information (such as textual descriptions/annotations in schema definitions)
to perform matches among elements. In many cases, they may use external sources,
such as thesauri, to assist in the process.

Linguistic techniques can be applied in both schema-based approaches and
instance-based ones. In the former case, similarities are established among schema
elements whereas in the latter, they are specified among elements of individual
data instances. To focus our discussion, we will mostly consider schema-based
linguistic matching approaches, briefly mentioning instance-based techniques. Con-
sequently, we will use the notation (SC1.element-1 ~ SC2.element-2, p, s) to represent
that element-1 in schema SC1 corresponds to element-2 in schema SC2 if predicate p
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holds, with a similarity value of s. Matchers use these rules and similarity values to
determine the similarity value of schema elements.

Linguistic matchers that operate at the schema element-level typically deal with
the names of the schema elements and handle cases such as synonyms, homonyms,
and hypernyms. In some cases, the schema definitions can have annotations (natural
language comments) that may be exploited by the linguistic matchers. In the case
of instance-based approaches, linguistic matchers focus on information retrieval
techniques such as word frequencies, key terms, etc. In these cases, the matchers
“deduce” similarities based on these information retrieval measures.

Schema linguistic matchers use a set of linguistic (also called terminological)
rules that can be hand-crafted or may be “discovered” using auxiliary data sources
such as thesauri, e.g., WordNet [Miller, 1995] (http://wordnet.princeton.edu/). In the
case of hand-crafted rules, the designer needs to specify the predicate p and the
similarity value s as well. For discovered rules, these may either be specified by an
expert following the discovery, or they may be computed using one of the techniques
we will discuss shortly.

The hand-crafted linguistic rules may deal with capitalization, abbreviations,
concept relationships, etc. In some systems, the hand-crafted rules are specified for
each schema individually (intraschema rules) by the designer, and interschema rules
are then “discovered” by the matching algorithm [Palopoli et al., 1999]. However, in
most cases, the rule base contains both intra and interschema rules.

Example 4.4. In the relational database of Example 4.2, the set of rules may have
been defined (quite intuitively) as follows where RelDB refers to the relational
schema and ERDB refers to the translated E-R schema:

(uppercase names = lower case names, true, 1.0))

(uppercase names ~ capitalized names, true, 1.0))

(capitalized names ~ lower case names, true, 1.0))

(RelDB.ASG ~ ERDB.WORKS.IN, true,0.8)

The first three rules are generic ones specifying how to deal with capitalizations,
while the fourth one specifies a similarity between the ASG element of RelDB and the
WORKS_IN element of ERDB. Since these correspondences always hold, p = true.

¢

As indicated above, there are ways of determining the element name similari-
ties automatically. For example, COMA [Do and Rahm, 2002] uses the following
techniques to determine similarity of two element names:

e The affixes, which are the common prefixes and suffixes between the two
element name strings are determined.

o The n-grams of the two element name strings are compared. An n-gram is a
substring of length n and the similarity is higher if the two strings have more
n-grams in common.

e The edit distance between two element name strings is computed. The edit
distance (also called the Lewenstein metric) determines the number of character
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modifications (additions, deletions, insertions) that one has to perform on one
string to convert it to the second string.

o The soundex code of the element names is computed. This gives the phonetic
similarity between names based on their soundex codes. Soundex code of
English words are obtained by hashing the word to a letter and three numbers.
This hash value (roughly) corresponds to how the word would sound. The
important aspect of this code in our context is that two words that sound similar
will have close soundex codes.

Example 4.5. Consider matching the RESP and the RESPONSIBILITY attributes
in the two example schemas we are considering. The rules defined in Example 4.4
take care of the capitalization differences, so we are left with matching RESP with
RESPONSIBILITY. Let us consider how the similarity between these two strings
can be computed using the edit distance and the n-gram approaches.

The number of editing changes that one needs to do to convert one of these strings
to the other is 10 (either we add the characters ‘O’, ‘N’, ‘S, ‘T’, ‘B’, ‘T’, ‘'L, ‘T, ‘T,
‘Y’, to RESP or delete the same characters from RESPONSIBILITY). Thus the ratio
of the required changes is 10/14, which defines the edit distance between these two
strings; 1 — (10/14) = 4/14 = 0.29 is then their similarity.

For n-gram computation, we need to first fix the value of n. For this example, let
n =3, so we are looking for 3-grams. The 3-grams of RESP are ‘RES’ and ‘ESP’.
Similarly, there are twelve 3-grams of RESPONSIBILITY: ‘RES’, ‘ESP’, ‘SPO’,
‘PON’, ‘ONS’, ‘NSI’, ‘SIB’, ‘IBI’, ‘BIP’, ‘ILI’, ‘LIT’, and ‘ITY’. There are two
matching 3-grams out of twelve, giving a 3-gram similarity of 2/12 = 0.17. ¢

The examples we have covered in this section all fall into the category of 1:1
matches — we matched one element of a particular schema to an element of another
schema. As discussed earlier, it is possible to have 1:N (e.g., Street address, City,
and Country element values in one database can be extracted from a single Address
element in another), N:1 (e.g., Total_price can be calculated from Subtotal and Taxes
elements), or N:M (e.g., Book _title, Rating information can be extracted via a join
of two tables one of which holds book information and the other maintains reader
reviews and ratings). Rahm and Bernstein [2001] suggest that 1:1, 1:N, and N:1
matchers are typically used in element-level matching while schema-level matching
can also use N:M matching, since, in the latter case the necessary schema information
is available.

4.2.3 Constraint-based Matching Approaches

Schema definitions almost always contain semantic information that constrain the
values in the database. These are typically data type information, allowable ranges
for data values, key constraints, etc. In the case of instance-based techniques, the
existing ranges of the values can be extracted as well as some patterns that exist in
the instance data. These can be used by matchers.
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Consider data types that capture a large amount of semantic information. This
information can be used to disambiguate concepts and also focus the match. For
example, RESP and RESPONSIBILITY have relatively low similarity values ac-
cording to computations in Example 4.5. However, if they have the same data type
definition, this may be used to increase their similarity value. Similarly, the data type
comparison may differentiate between elements that have high lexical similarity. For
example, ENO in Figure 4.4 has the same edit distance and n-gram similarity values
to the two NUMBER attributes in Figure 4.5 (of course, we are referring to the names
of these attributes). In this case, the data types may be of assistance — if the data type
of both ENO and worker number (WORKER.NUMBER) are integer while the data
type of project number (PROJECT.NUMBER) is a string, the likelihood of ENO
matching WORKER.NUMBER is significantly higher.

In structure-based approaches, the structural similarities in the two schemas can
be exploited in determining the similarity of the schema elements. If two schema
elements are structurally similar, this enhances our confidence that they indeed
represent the same concept. For example, if two elements have very different names
and we have not been able to establish their similarity through element matchers, but
they have the same properties (e.g., same attributes) that have the same data types,
then we can be more confident that these two elements may be representing the same
concept.

The determination of structural similarity involves checking the similarity of the
“neighborhoods” of the two concepts under consideration. Definition of the neighbor-
hood is typically done using a graph representation of the schemas [Madhavan et al.,
2001; Do and Rahm, 2002] where each concept (relation, entity, attribute) is a node
and there is a directed edge between two nodes if and only if the two concepts are
related (e.g., there is an edge from a relation node to each of its attributes, or there
is an edge from a foreign key attribute node to the primary key attribute node it is
referencing). In this case, the neighborhood can be defined in terms of the nodes that
can be reached within a certain path length of each concept, and the problem reduces
to checking the similarity of the subgraphs in this neighborhood.

The traversing of the graph can be done in a number of ways; for example CUPID
[Madhavan et al., 2001] converts the graphs to trees and then looks at similarities of
subtrees rooted at the two nodes in consideration, while COMA [Do and Rahm, 2002]
considers the paths from the root to these element nodes. The fundamental point of
these algorithms is that if the subgraphs are similar, this increases the similarity of the
roots of these subtrees. The similarity of the subgraphs are determined in a bottom-
up process, starting at the leaves whose similarity are determined using element
matching (e.g., name similarity to the level of synonyms, or data type compatibility).
The similarity of the two subtrees is recursively determined based on the similarity
of the nodes in the subtree. A number of formulae may be used to for this recursive
computation. CUPID, for example, looks at the similarity of two leaf nodes and if
it is higher than a threshold value, then those two leaf nodes are said to be strongly
linked. The similarity of two subgraphs is then defined as the fraction of leaves in the
two subtrees that are strongly linked. This is based on the assumption that leafs carry
more information and that the structural similarity of two non-leaf schema elements
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is determined by the similarity of the leaf nodes in their respective subtrees, even if
their immediate children are not similar. These are heuristic rules and it is possible to
define others.

Another interesting approach to considering neighborhood in directed graphs
while computing similarity of nodes is similarity flooding [Melnik et al., 2002]. It
starts from an initial graph where the node similarities are already determined by
means of an element matcher, and propagates, iteratively, to determine the similarity
of each node to its neighbors. Hence, whenever any two elements in two schemas
are found to be similar, the similarity of their adjacent nodes increases. The iterative
process stops when the node similarities stabilize. At each iteration, to reduce the
amount of work, a subset of the nodes are selected as the “most plausible” matches,
which are then considered in the subsequent iteration.

Both of these approaches are agnostic to the edge semantics. In some graph
representations, there is additional semantics attached to these edges. For example,
containment edges from a relation or entity node to its attributes may be distinguished
from referential edges from a foreign key attribute node to the corresponding primary
key attribute node. Some systems exploit these edge semantics (e.g., DIKE [Palopoli
et al., 1998, 2003a]).

4.2.4 Learning-based Matching

A third alternative approach that has been proposed is to use machine learning
techniques to determine schema matches. Learning-based approaches formulate the
problem as one of classification where concepts from various schemas are classified
into classes according to their similarity. The similarity is determined by checking
the features of the data instances of the databases that correspond to these schemas.
How to classify concepts according to their features is learned by studying the data
instances in a training data set.

The process is as follows (Figure 4.8). A training set (7) is prepared that consists
of instances of example correspondences between the concepts of two databases D;
and D;. This training set can be generated after manual identification of the schema
correspondences between two databases followed by extraction of example training
data instances [Doan et al., 2003a], or by the specification of a query expression that
converts data from one database to another [Berlin and Motro, 2001]. The learner
uses this training data to acquire probabilistic information about the features of
the data sets. The classifier, when given two other database instances (Dy and Dy),
then uses this knowledge to go through the data instances in Dy and D; and make
predictions about classifying the elements of Dy and D;.

This general approach applies to all of the proposed learning-based schema
matching approaches. Where they differ is the type of learner that they use and how
they adjust this learner’s behavior for schema matching. Some have used neural
networks (e.g., SEMINT [Li and Clifton, 2000; Li et al., 2000]), others have used
Naive Bayesian learner/classifier (Autoplex [Berlin and Motro, 2001], LSD [Doan
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Fig. 4.8 Learning-based Matching Approach

etal., 2001, 2003a] and [Naumann et al., 2002]), and decision trees [Embley et al.,
2001, 2002]. Discussing the details of these learning techniques are beyond our
scope.

4.2.5 Combined Matching Approaches

The individual matching techniques that we have considered so far have their strong
points and their weaknesses. Each may be more suitable for matching certain cases.
Therefore, a “complete” matching algorithm or methodology usually needs to make
use of more than one individual matcher.

There are two possible ways in which matchers can be combined [Rahm and Bern-
stein, 2001]: hybrid and composite. Hybrid algorithms combine multiple matchers
within one algorithm. In other words, elements from two schemas can be compared
using a number of element matchers (e.g., string matching as well as data type
matching) and/or structural matchers within one algorithm to determine their overall
similarity. Careful readers will have noted that in discussing the constraint-based
matching algorithms that focused on structural matching, we followed a hybrid
approach since they were based on an initial similarity determination of, for example,
the leaf nodes using an element matcher, and these similarity values were then used in
structural matching. Composite algorithms, on the other hand, apply each matcher to
the elements of the two schemas (or two instances) individually, obtaining individual
similarity scores, and then they apply a method for combining these similarity scores.
More precisely, if s,(C’]‘ ,C}") is the similarity score using matcher i (i = 1,...,¢) over
two concepts C; from schema k and C; from schema m, then the composite similarity
of the two concepts is given by s(Cf7 C") = f(s1,...,54) where f is the function that
is used to combine the similarity scores. This function can be as simple as average,
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max, or min, or it can be an adaptation of more complicated ranking aggregation
functions [Fagin, 2002] that we will discuss further in Chapter 9. Composite approach
has been proposed in the LSD [Doan et al., 2001, 2003a] and iMAP [Dhamankar
et al., 2004] systems for handling 1:1 and N:M matches, respectively.

4.3 Schema Integration

Once schema matching is done, the correspondences between the various LCSs
have been identified. The next step is to create the GCS, and this is referred to as
schema integration. As indicated earlier, this step is only necessary if a GCS has
not already been defined and matching was performed on individual LCSs. If the
GSC was defined up-front, then the matching step would determine correspondences
between it and each of the LCSs and there would be no need for the integration step.
If the GCS is created as a result of the integration of LCSs based on correspondences
identified during schema matching, then, as part of integration, it is important to
identify the correspondences between the GCS and the LCSs. Although tools (e.g.,
[Sheth et al., 1988a]) have been developed to aid in the integration process, human
involvement is clearly essential.

Example 4.6. There are a number of possible integrations of the two example LCSs
we have been discussing. Figure 4.9 shows one possible GCS that can be generated
as a result of schema integration. ¢

Employee(ENUMBER, ENAME, TITLE)

Pay(TITLE, SALARY)

ProjecttPNUMBER, PNAME, BIDGET, LOCATION)
Client(CNAME, ADDRESS, CONTRACTNO, PNUMBER)
Works(ENUMBER, PNUMBER, RESP, DURATION)

Fig. 4.9 Example Integrated GCS

Integration methodologies can be classified as binary or nary mechanisms [Batini
et al., 1986] based on the manner in which the local schemas are handled in the first
phase (Figure 4.10). Binary integration methodologies involve the manipulation of
two schemas at a time. These can occur in a stepwise (ladder) fashion (Figure 4.11a)
where intermediate schemas are created for integration with subsequent schemas
[Pu, 1988], or in a purely binary fashion (Figure 4.11b), where each schema is
integrated with one other, creating an intermediate schema for integration with other
intermediate schemas ([Batini and Lenzirini, 1984] and [Dayal and Hwang, 1984]).
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Other binary integration approaches do not make this distinction [Melnik et al.,
2002].

Integration Process

Binary n-ary

ladder balanced one-shot iterative

Fig. 4.10 Taxonomy of Integration Methodologies

Nary integration mechanisms integrate more than two schemas at each iteration.
One-pass integration (Figure 4.12a) occurs when all schemas are integrated at once,
producing the global conceptual schema after one iteration. Benefits of this approach
include the availability of complete information about all databases at integration
time. There is no implied priority for the integration order of schemas, and the
trade-offs, such as the best representation for data items or the most understandable
structure, can be made between all schemas rather than between a few. Difficulties
with this approach include increased complexity and difficulty of automation.

o

(a) Stepwise (b) Pure binary
Fig. 4.11 Binary Integration Methods

Iterative nary integration (Figure 4.12b) offers more flexibility (typically, more
information is available) and is more general (the number of schemas can be varied
depending on the integrator’s preferences). Binary approaches are a special case of
iterative nary. They decrease the potential integration complexity and lead toward
automation techniques, since the number of schemas to be considered at each step is
more manageable. Integration by an nary process enables the integrator to perform
the operations on more than two schemas. For practical reasons, the majority of
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(a) One-pass (b) Iterative

Fig. 4.12 Nary Integration Methods

systems utilize binary methodology, but a number of researchers prefer the nary
approach because complete information is available ([Elmasri et al., 1987; Yao et al.,
1982b; He et al., 2004]).

4.4 Schema Mapping

Once a GCS (or mediated schema) is defined, it is necessary to identify how the
data from each of the local databases (source) can be mapped to GCS (target) while
preserving semantic consistency (as defined by both the source and the target).
Although schema matching has identified the correspondences between the LCSs
and the GCS, it may not have identified explicitly how to obtain the global database
from the local ones. This is what schema mapping is about.

In the case of data warehouses, schema mappings are used to explicitly extract data
from the sources, and translate them to the data warehouse schema for populating it.
In the case of data integration systems, these mappings are used in query processing
phase by both the query processor and the wrappers (see Chapter 9).

There are two issues related to schema mapping that we will be studying: mapping
creation, and mapping maintenance. Mapping creation is the process of creating
explicit queries that map data from a local database to the global data. Mapping
maintenance is the detection and correction of mapping inconsistencies resulting
from schema evolution. Source schemas may undergo structural or semantic changes
that invalidate mappings. Mapping maintenance is concerned with the detection
of broken mappings and the (automatic) rewriting of mappings such that semantic
consistency with the new schema and semantic equivalence with the current mapping
are achieved.
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4.4.1 Mapping Creation

Mapping creation starts with a source LCS, the target GCS, and a set of schema
matches M and produces a set of queries that, when executed, will create GCS
data instances from the source data. In data warehouses, these queries are actually
executed to create the data warehouse (global database) while in data integration
systems, these queries are used in the reverse direction during query processing
(Chapter 9).

Let us make this more concrete by referring to the canonical relational representa-
tion that we have adopted. The source LCS under consideration consists of a set of
relations 8 = {S},...,Sn }, the GCS consists of a set of global (or target) relations
T={T,...,T,}, and M consists of a set of schema match rules as defined in Section
4.2. We are looking for a way to generate, for each T, a query Oy that is defined on a
(possibly proper) subset of the relations in § such that, when executed, will generate
data for T} from the source relations.

An algorithm due to Miller et al. [2000] accomplishes this iteratively by consider-
ing each Ty in turn. It starts with M C M (M is the set of rules that only apply to the
attributes of 7;) and divides it into subsets {M,l, ..., M}} such that each M,{ specifies

one possible way that values of 7; can be computed. Each M,ﬁ can be mapped to a
query qi that, when executed, would generate some of T;’s data. The union of all of

these queries gives Ok (= Ujq;) that we are looking for.

The algorithm proceeds in four steps that we discuss below. It does not con-
sider the similarity values in the rules. It can be argued that the similarity values
would be used in the final stages of the matching process to finalize correspon-
dences, so that their use during mapping is unnecessary. Furthermore, by the time
this phase of the integration process is reached, the concern is how to map source
relation (LCS) data to target relation (GCS) data. Consequently, correspondences
are not symmetric equivalences (<), but mappings (—): attribute(s) from (possi-
bly multiple) source relations are mapped to an attribute of a target relation (i.e.,
(Si.attributey,S;.attribute;) — T,,.attribute;)).

Example 4.7. To demonstrate the algorithm, we will use a different example database
than what we have been working with, because it does not incorporate all the com-
plexities that we wish to demonstrate. Instead, we will use the following abstract
example.

Source relations (LCS):

S1(A1,42)
S2(B1,B2,B3)
$3(C1,C2,C3)
S4(D1,D>)

Target relation (GCS)
T(Wl ) W27 W3a W4)
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We consider only one relation in GCS, since the algorithm iterates over target
relations one-at-a-time, so this is sufficient to demonstrate the operation of the
algorithm.

The foreign key relationships between the attributes are as follows:

Foreign key|Refers to

Ay B,
Ay B
C, B

The following matches have been discovered for attributes of relation 7' (these
make up Mr). In the subsequent examples, we will not be concerned with the
predicates, so they are not explicitly specified.

¢

In the first step, My (corresponding to 7%) is partitioned into its subsets {M,i oM}
such that each M,{ contains at most one match for each attribute of 7;. These are
called potential candidate sets, some of which may be complete in that they include
a match for every attribute of 7, but others may not be. The reasons for considering
incomplete sets are twofold. First, it may be the case that no match is found for one
or more attributes of the target relation (i.e., none of the match sets are complete).
Second, for large and complex database schemas, it may make sense to build the
mapping iteratively so that the designer specifies the mappings incrementally.

Example 4.8. Mr is partitioned into the following fifty-three subsets (i.e., potential
candidate sets). The first eight of these are complete, while the rest are not. To make
it easier to read, the complete rules are listed in the order of the target attributes to
which they map (e.g., the third rule in M} is r4, because this rule maps to attribute
W3):

M} = {ri,r2,ra,r3} M§ ={ri,r2,r4,r7}

Mj ={ri,re,ra,r3} Mg ={ri,re,ra,r7}

M3 = {rs,ra,ra,r3}
M} = {rs,rg,r4,r3}
M3 = {r1,r,m3}
ME = {ri,r3,rs}

M = {rs,ra, 14,17}

M% = {r57r6>r4ar7}

MY = {ri,ra, 14}

M = {ra,r3,14}
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M]1"3:{r17r3,r6} M]1"4:{r37r47r6}

M47:{I‘1} M48:{r2}

M = {r3) M = {13}
M3 = {rs} M = {rg)
M53 — {r7}

¢

In the second step, the algorithm analyzes each potential candidate set Mki to see
if a “good” query can be produced for it. If all the matches in M, ,{ map values from a

single source relation to 7, then it is easy to generate a query corresponding to Mk’.
Of particular concern are matches that require access to multiple source relations. In
this case the algorithm checks to see if there is a referential connection between these
relations through foreign keys (i.e., whether there is a join path through the source
relations). If there isn’t, then the potential candidate set is eliminated from further
consideration. In case there are multiple join paths through foreign key relationships,
the algorithm looks for those paths that will produce the most number of tuples (i.e.,
the estimated difference in size of the outer and inner joins is the smallest). If there
are multiple such paths, then the database designer needs to be involved in selecting
one (tools such as Clio [Miller et al., 2001], OntoBuilder [Roitman and Gal, 2006]
and others facilitate this process and provide mechanisms for designers to view and
specify correspondences [Yan et al., 2001]). The result of this step is a set My C M,
of candidate sets.

Example 4.9. In this example, there is no M, ,i where the values of all of T”’s attributes
are mapped from a single source relation. Among those that involve multiple source
relations, rules that involve S;,S, and S3 can be mapped to “good” queries since
there are foreign key relationships between them. However, the rules that involve Sy4
(i.e., those that include rule r7) cannot be mapped to a “good” query since there is no
join path from Sy to the other relations (i.e., any query would involve a cross product,
which is expensive). Thus, these rules are eliminated from the potential candidate set.
Considering only the complete sets, M,%,M,f,M,E’, and M, E are pruned from the set. In
the end, the candidate set (M}) contains thirty-five rules (the readers are encouraged
to verify this to better understand the algorithm). ¢

In the third step, the algorithm looks for a cover of the candidate sets M. The
cover G, C M is a set of candidate sets such that each match in M}, appears in C; at
least once. The point of determining a cover is that it accounts for all of the matches
and is, therefore, sufficient to generate the target relation 7. If there are multiple
covers (a match can participate in multiple covers), then they are ranked in increasing
number of the candidate sets in the cover. The fewer the number of candidate sets
in the cover, the fewer are the number of queries that will be generated in the next
step; this improves the efficiency of the mappings that are generated. If there are
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multiple covers with the same ranking, then they are further ranked in decreasing
order of the total number of unique target attributes that are used in the candidate sets
constituting the cover. The point of this ranking is that covers with higher number
of attributes generate fewer null values in the result. At this stage, the designer may
need to be consulted to choose from among the ranked covers.

Example 4.10. First note that we have six rules that define matches in M that we
need to consider, since M ,f that include rule r; have been eliminated. There are a large
number of possible covers; let us start with those that involve M,} to demonstrate the
algorithm:

Cr = {{r,ra,ra,r3}, {r1,r6,r4,73},{r2}}
~—
M} M3 M8

€3 = {{r1,ra,ra,r3}, {rs,r2,ra,r3}, {r6}}
—

M} M3 M3
€} = {{r,r2,ra,r3} {rs. re,r4,73}}
M} M},

e;t:{{7],}"2,7’4,}’3},{7'5,7'6,1"4}}
e —— N —
M}, m)?
65 :{{rl,rz,r4,r3},{r57r6,r3}}
—_————— ——
M} My
e%:{{Vl,’"2,r4a’”3},{r57r6}}
—————— ——

| 32
My My

At this point we observe that the covers consist of either two or three candidate
sets. Since the algorithm prefers those with fewer candidate sets, we only need to
focus on those involving two sets. Furthermore, among these covers, we note that the
number of target attributes in the candidate sets differ. Since the algorithm prefers
covers with the largest number of target attributes in each candidate set, C‘f% is the
preferred cover in this case.

Note that due to the two heuristics employed by the algorithm, the only covers we
need to consider are those that involve M},M%,M%, and M}. Similar covers can be
defined involving M%,M%, and M7 we leave that as an exercise. In the remainder,
we will assume that the designer has chosen to use (:’% as the preferred cover. ¢

The final step of the algorithm builds a query qi for each of the candidate sets
in the cover selected in the previous step. The union of all of these queries (UNION
ALL) results in the final mapping for relation 7; in the GCS.

Query g; is built as follows:

e SELECT clause includes all correspondences (c) in each of the rules (rf() in M,f .
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e FROM clause includes all source relations mentioned in rf( and in the join paths
determined in Step 2 of the algorithm.

e WHERE clause includes conjunct of all predicates (p) in r}; and all join predi-
cates determined in Step 2 of the algorithm.

o If r;; contains an aggregate function either in c or in p

e GROUP BY is used over attributes (or functions on attributes) in the
SELECT clause that are not within the aggregate;

e If aggregate is in the correspondence c, it is added to SELECT, else (i.e.,
aggregate is in the predicate p) a HAVING clause is created with the
aggregate.

Example 4.11. Since in Example 4.10 we have decided to use cover (33T for the final
mapping, we need to generate two queries: qlT and q7T corresponding to M} and M7,
respectively. For ease of presentation, we list the rules here again:

The two queries are as follows:

qp : SELECT A1,A2, B2, B3
FROM  S1,5
WHERE pj AND pp AND p3 AND p4
AND S].Al = Sz.Bl AND S].A2 = Sz.Bl

qy : SELECT B3,B3,C1,(

FROM  $7,53

WHERE p3 AND py4 AND p5 AND pg
AND S3.C1 = Sz.Bl

Thus, the final query Qy for target relation T becomes q}c UNION ALL qZ. ¢

The output of this algorithm, after it is iteratively applied to each target relation T
is a set of queries Q = {Q} that, when executed, produce data for the GCS relations.
Thus, the algorithm produces GAV mappings between relational schemas — recall
that GAV defines a GCS as a view over the LCSs and that is exactly what the set of
mapping queries do. The algorithm takes into account the semantics of the source
schema since it considers foreign key relationships in determining which queries
to generate. However, it does not consider the semantics of the target, so that the
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tuples that are generated by the execution of the mapping queries are not guaranteed
to satisfy target semantics. This is not a major issue in the case when the GCS is
integrated from the LCSs; however, if the GCS is defined independent of the LCSs,
then this is problematic.

It is possible to extend the algorithm to deal with target semantics as well as
source semantics. This requires that inter-schema tuple-generating dependencies be
considered. In other words, it is necessary to produce GLAV mappings. A GLAV
mapping, by definition, is not simply a query over the source relations; it is a
relationship between a query over the source (i.e., LCS) relations and a query over
the target (i.e., GCS) relations. Let us be more precise. Consider a schema match v
that specifies a correspondence between attribute A of a source LCS relation S and
attribute B of a target GCS relation T (in the notation we used in this section we have
v=(S.A ~T.B,p,s)). Then the source query specifies how to retrieve S.A and the
target query specifies how to obtain 7.B. The GLAV mapping, then, is a relationship
between these two queries.

An algorithm to accomplish this [Popa et al., 2002] also starts, as above, with a
source schema, a target schema, and M, and “discovers” mappings that satisfy both
the source and the target schema semantics. The algorithm is also more powerful
than the one we discussed in this section in that it can handle nested structures that
are common in XML, object databases, and nested relational systems.

The first step in discovering all of the mappings based on schema match corre-
spondences is semantic translation, which seeks to interpret schema matches in M
in a way that is consistent with the semantics of both the source and target schemas
as captured by the schema structure and the referential (foreign key) constraints. The
result is a set of logical mappings each of which captures the design choices (seman-
tics) made in both source and target schemas. Each logical mapping corresponds to
one target schema relation. The second step is data translation that implements each
logical mapping as a rule that can be translated into a query that would create an
instance of the target element when executed.

Semantic translation takes as inputs the source 8 and target schemas T, and M
and performs the following two steps:

o It examines intra-schema semantics within the 8§ and 7 separately and produces
for each a set of logical relations that are semantically consistent.

e It then interprets inter-schema correspondences M in the context of logical
relations generated in Step 1 and produces a set of queries into Q that are
semantically consistent with 7.

4.4.2 Mapping Maintenance

In dynamic environments where schemas evolve over time, schema mappings can be
made invalid as the result of structural or constraint changes made to the schemas.
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Thus, the detection of invalid/inconsistent schema mappings and the adaptation of
such schema mappings to new schema structures/constraints becomes important.

In general, automatic detection of invalid/inconsistent schema mappings is desir-
able as the complexity of the schemas, and the number of schema mappings used in
database applications, increases. Likewise, (semi-)automatic adaptation of mappings
to schema changes is also a goal. It should be noted that automatic adaptation of
schema mappings is not the same as automatic schema matching. Schema adaptation
aims to resolve semantic correspondences using known changes in intra-schema
semantics, semantics in existing mappings, and detected semantic inconsistencies
(resulting from schema changes). Schema matching must take a much more “from
scratch” approach at generating schema mappings and does not have the ability (or
luxury) of incorporating such contextual knowledge.

4.4.2.1 Detecting invalid mappings

In general, detection of invalid mappings resulting from schema change can ei-
ther happen proactively, or reactively. In proactive detection environments, schema
mappings are tested for inconsistencies as soon as schema changes are made by a
user. The assumption (or requirement) is that the mapping maintenance system is
completely aware of any and all schema changes, as soon as they are made. The
ToMAS system [Velegrakis et al., 2004], for example, expects users to make schema
changes through its own schema editors, making the system immediately aware of
any schema changes. Once schema changes have been detected, invalid mappings
can be detected by doing a semantic translation of the existing mappings using the
logical relations of the updated schema.

In reactive detection environments, the mapping maintenance system is unaware
of when and what schema changes are made. To detect invalid schema mappings in
this setting, mappings are tested at regular intervals by performing queries against the
data sources and translating the resulting data using the existing mappings. Invalid
mappings are then determined based on the results of these mapping tests.

An alternative method that has been proposed is to use machine learning tech-
niques to detect invalid mappings (as in the Maveric system [McCann et al., 2005]).
What has been proposed is to build an ensemble of trained sensors (similar to multiple
learners in schema matching) to detect invalid mappings. Examples of such sensors
include value sensors for monitoring distribution characteristics of target instance
values, trend sensors for monitoring the average rate of data modification, and layout
and constraint sensors that monitor translated data against expected target schema
syntax and semantics. A weighted combination of the findings of the individual
sensors is then calculated where the weights are also learned. If the combined result
indicates changes and follow-up tests suggest that this may indeed be the case, an
alert is generated.
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4.4.2.2 Adapting invalid mappings

Once invalid schema mappings are detected, they must be adapted to schema changes
and made valid once again. Various high-level mapping adaptation approaches have
been proposed [Velegrakis et al., 2004]. These can be broadly described as fixed
rule approaches that define a re-mapping rule for every type of expected schema
change, map bridging approaches that compare original schema S and the updated
schema §’, and generate new mapping from S to §’ in addition to existing mappings,
and semantic rewriting approaches, which exploit semantic information encoded in
existing mappings, schemas, and semantic changes made to schemas to propose map
rewritings that produce semantically consistent target data. In most cases, multiple
such rewritings are possible, requiring a ranking of the candidates for presentation to
users who make the final decision (based on scenario- or business-level semantics
not encoded in schemas or mappings).

Arguably, a complete remapping of schemas (i.e. from scratch, using schema
matching techniques) is another alternative to mapping adaption. However, in most
cases, map rewriting is cheaper than map regeneration as rewriting can exploit
knowledge encoded in existing mappings to avoid computation of mappings that
would be rejected by the user anyway (and to avoid redundant mappings).

4.5 Data Cleaning

Errors in source databases can always occur, requiring cleaning in order to correctly
answer user queries. Data cleaning is a problem that arises in both data warehouses
and data integration systems, but in different contexts. In data warehouses where
data are actually extracted from local operational databases and materialized as a
global database, cleaning is performed as the global database is created. In the case
of data integration systems, data cleaning is a process that needs to be performed
during query processing when data are returned from the source databases.

The errors that are subject to data cleaning can generally be broken down into
either schema-level or instance-level concerns [Rahm and Do, 2000]. Schema-level
problems can arise in each individual LCS due to violations of explicit and implicit
constraints. For example, values of attributes may be outside the range of their
domains (e.g. 14th month or negative salary value), attribute values may violate
implicit dependencies (e.g., the age attribute value may not correspond to the value
that is computed as the difference between the current date and the birth date),
uniqueness of attribute values may not hold, and referential integrity constraints may
be violated. Furthermore, in the environment that we are considering in this chapter,
the schema-level heterogeneities (both structural and semantic) among the LCSs that
we discussed earlier can all be considered problems that need to be resolved. At the
schema level, it is clear that the problems need to be identified at the schema match
stage and fixed during schema integration.
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Instance level errors are those that exist at the data level. For example, the values
of some attributes may be missing although they were required, there could be
misspellings and word transpositions (e.g., “M.D. Mary Smith” versus “Mary Smith,
M.D.”) or differences in abbreviations (e.g., “J. Doe” in one source database while
“J.N. Doe” in another), embedded values (e.g., an aggregate address attribute that
includes street name, value, province name, and postal code), values that were
erroneously placed in other fields, duplicate values, and contradicting values (the
salary value appearing as one value in one database and another value in another
database). For instance-level cleaning, the issue is clearly one of generating the
mappings such that the data are cleaned through the execution of the mapping
functions (queries).

The popular approach to data cleaning has been to define a number of operators
that operate either on schemas or on individual data. The operators can be composed
into a data cleaning plan. Example schema operators add or drop columns from table,
restructure a table by combining columns or splitting a column into two [Raman
and Hellerstein, 2001], or define more complicated schema transformation through
a generic “map” operator [Galhardas et al., 2001] that takes a single relation and
produces one ore more relations. Example data level operators include those that
apply a function to every value of one attribute, merging values of two attributes into
the value of a single attribute and its converse split operator [Raman and Hellerstein,
2001], a matching operator that computes an approximate join between tuples of
two relations, clustering operator that groups tuples of a relation into clusters, and a
tuple merge operator that partitions the tuples of a relation into groups and collapses
the tuples in each group into a single tuple through some aggregation over them
[Galhardas et al., 2001], as well as basic operators to find duplicates and eliminate
them (this has long been known as the purge/merge problem [Herndndez and Stolfo,
1998]). Many of the data level operators compare individual tuples of two relations
(from the same or different schemas) and decide whether or not they represent the
same fact. This is similar to what is done in schema matching, except that it is done
at the individual data level and what is considered are not individual attribute values,
but entire tuples. However, the same techniques we studied under schema matching
(e.g., use of edit distance or soundex value) can be used in this context. There have
been proposals for special techniques for handling this efficiently within the context
of data cleaning (e.g., [Chaudhuri et al., 2003]).

Given the large amount of data that needs to be handled, data level cleaning is
expensive and efficiency is a significant issue. The physical implementation of each
of the operators we discussed above is a considerable concern. Although cleaning can
be done off-line as a batch process in the case of data warehouses, for data integration
systems, cleaning needs to be done online as data are retrieved from the sources. The
performance of data cleaning is, of course, more critical in the latter case. In fact, the
performance and scalability concerns in the latter systems have resulted in proposals
where data cleaning is forfeited in favor of querying that is tolerant to conflicts [Yan
and Ozsu, 1999].
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4.6 Conclusion

In this chapter we discussed the bottom-up database design process, which we called
database integration. This is the process of creating a GCS (or a mediated schema)
and determining how each LCS maps to it. A fundamental separation is between
data warehouses where the GCS is instantiated and materialized, and data integration
systems where the GCS is merely a virtual view.

Although the topic of database integration has been studied extensively for a
long time, almost all of the work has been fragmented. Individual projects focus on
schema matching, or data cleaning, or schema mapping. There is a serious lack of
research that considers end-to-end methodology for database integration. The lack of
a methodology is made more serious by the fact that each of these research activities
work on different assumptions related to data models, types of heterogeneities and so
on. A notable exception is the work of Bernstein and Melnik [2007], which provides
the beginnings of a comprehensive “end-to-end” methodology. This is probably the
most important topic that requires attention.

A related concept that has received considerable discussion in literature is data
exchange. This is defined as “the problem of taking data structured under a source
schema and creating an instance of a target schema that reflects the source data
as accurately as possible.” [Fagin et al., 2005]. This is very similar to the physical
integration (i.e., materialized) data integration, such as data warehouses, that we
discussed in this chapter. A difference between data warehouses and the materializa-
tion approaches as addressed in data exchange environments is that data warehouse
data typically belongs to one organization and can be structured according to a well-
defined schema while in data exchange environments data may come from different
sources and contain heterogeneity [Doan et al., 2010]. However, for most of the
discussions of this chapter, this is not a major concern.

Our focus in this chapter has been on integrating databases. Increasingly, however,
the data that are used in distributed applications involve those that are not in a
database. An interesting new topic of discussion among researchers is the integration
of structured data that is stored in databases and unstructured data that is maintained
in other systems (Web servers, multimedia systems, digital libraries, etc) [Halevy
et al., 2003; Somani et al., 2002]. In next generation systems, ability to handle both
types of data will be increasingly important.

Another issue that we ignored in this chapter is interoperability when a GCS does
not exist or cannot be specified. As we discussed in Chapter 1, there have been early
objections to interoperable access to multiple data sources through a GCS, arguing
instead that the languages should provide facilities to access multiple heterogeneous
sources without requiring a GCS. The issue becomes critical in the modern peer-to-
peer systems where the scale and the variety of data sources make it quite difficult
(if not impossible) to design a GCS. We will discuss data integration in peer-to-peer
systems in Chapter 16.
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4.7 Bibliographic Notes

A large volume of literature exists on the topic of this chapter. The work goes back to
early 1980’s and which is nicely surveyed by Batini et al. [1986]. Subsequent work
is nicely covered by Elmagarmid et al. [1999] and Sheth and Larson [1990].

There is an upcoming book on this topic that provides the broadest coverage
of the subject [Doan et al., 2010]. There are a number of recent overview papers
on the topic. Bernstein and Melnik [2007] provides a very nice discussion of the
integration methodology. It goes further by comparing the model management work
with some of the data integration research. Halevy et al. [2006] reviews the data
integration work in the 1990’s, focusing on the Information Manifold system [Levy
et al., 1996c¢], that uses a LAV approach. The paper provides a large bibliography
and discusses the research areas that have been opened in the intervening years. Haas
[2007] takes a comprehensive approach to the entire integration process and divides
it into four phases: understanding that involves discovering relevant information
(keys, constraints, data types, etc), analyzing it to assess quality, an to determine
statistical properties; standardization whereby the best way to represent the integrated
information is determined; specification, that involves the configuration of the integra-
tion process; and execution, which is the actual integration. The specification phase
includes the techniques defined in this paper. Doan and Halevy [2005] is another
very good overview of the various schema matching techniques. They propose a
different, and simpler, classification of the techniques as rule-based, learning-based,
and combined.

A large number of systems have been developed that have tested the LAV versus
GAV approaches. Many of these focus on querying over integrated systems, so we
will discuss them in Chapter 9. Examples of LAV approaches are described in the
papers [Duschka and Genesereth, 1997; Levy et al., 1996a; Manolescu et al., 2001]
while examples of GAV are presented in papers [Adali et al., 1996a; Garcia-Molina
et al., 1997; Haas et al., 1997b].

Topics of structural and semantic heterogeneity have occupied researchers for
quite some time. While the literature on this topic is quite extensive, some of the
interesting publications that discuss structural heterogeneity are and those that focus
on semantic heterogeneity are [Dayal and Hwang, 1984; Kim and Seo, 1991; Breitbart
et al., 1986; Krishnamurthy et al., 1991] [Hull, 1997; Ouksel and Sheth, 1999;
Kashyap and Sheth, 1996; Bright et al., 1994; Ceri and Widom, 1993]. We should
note that this list is seriously incomplete.

More recent works in schema matching are surveyed by Rahm and Bernstein
[2001] and Doan and Halevy [2005]. In particular, Rahm and Bernstein [2001] gives
a very nice comparison of various proposals.

A number of systems have been developed demonstrating the feasibility of various
schema matching approaches. Among rule-based techniques, one can cite DIKE
[Palopoli et al., 1998, 2003b,a], DIPE, which is an earlier version of this system
[Palopoli et al., 1999], TranSCM [Milo and Zohar, 1998], ARTEMIS [Bergamaschi
et al., 2001], similarity flooding [Melnik et al., 2002], CUPID [Madhavan et al.,
2001], and COMA [Do and Rahm, 2002].
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Exercises

Problem 4.1. Distributed database systems and distributed multidatabase systems
represent two different approaches to systems design. Find three real-life applications
for which each of these approaches would be more appropriate. Discuss the features
of these applications that make them more favorable for one approach or the other.

Problem 4.2. Some architectural models favor the definition of a global conceptual
schema, whereas others do not. What do you think? Justify your selection with
detailed technical arguments.

Problem 4.3 (*). Give an algorithm to convert a relational schema to an entity-
relationship one.

Problem 4.4 (**). Consider the two databases given in Figures 4.13 and 4.14 and
described below. Design a global conceptual schema as a union of the two databases
by first translating them into the E-R model.

DIRECTOR(NAME, PHONE_NO, ADDRESS)

LICENSES(LIC_NO, CITY, DATE, ISSUES, COST, DEPT, CONTACT)
RACER(NAME, ADDRESS, MEM_NUM)

SPONSOR(SP_.NAME, CONTACT)

RACE(R_NO, LIC_NO, DIR, MAL_WIN, FRM_WIN, SP_.NAME)

Fig. 4.13 Road Race Database

Figure 4.13 describes a relational race database used by organizers of road races
and Figure 4.14 describes an entity-relationship database used by a shoe manufacturer.
The semantics of each of these database schemas is discussed below. Figure 4.13
describes a relational road race database with the following semantics:
DIRECTOR is a relation that defines race directors who organize races; we assume

that each race director has a unique name (to be used as the key), a phone number,

and an address.

LICENSES is required because all races require a governmental license, which is
issued by a CONTACT in a department who is the ISSUER, possibly contained
within another government department DEPT; each license has a unique LIC_ZNO
(the key), which is issued for use in a specific CITY on a specific DATE with a
certain COST.

RACER is a relation that describes people who participate in a race. Each person
is identified by NAME, which is not sufficient to identify them uniquely, so a
compound key formed with the ADDRESS is required. Finally, each racer may
have a MEM_NUM to identify him or her as a member of the racing fraternity, but
not all competitors have membership numbers.

SPONSOR indicates which sponsor is funding a given race. Typically, one sponsor
funds a number of races through a specific person (CONTACT), and a number of
races may have different sponsors.
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Fig. 4.14 Sponsor Database

RACE uniquely identifies a single race which has a license number (LIC_NO) and
race number (R_NO) (to be used as a key, since a race may be planned without
acquiring a license yet); each race has a winner in the male and female groups
(MAL_WIN and FEM_WIN) and a race director (DIR).

Figure 4.14 illustrates an entity-relationship schema used by the sponsor’s database
system with the following semantics:

SHOES are produced by sponsors of a certain MODEL and SIZE, which forms the
key to the entity.

MANUFACTURER is identified uniquely by NAME and resides at a certain AD-
DRESS.

DISTRIBUTOR is a person that has a NAME and ADDRESS (which are necessary
to form the key) and a SIN number for tax purposes.

SALESPERSON is a person (entity) who has a NAME, earns a COMMISSION,
and is uniquely identified by his or her SIN number (the key).

Makes is a relationship that has a certain fixed production cost (PROD_COST). It
indicates that a number of different shoes are made by a manufacturer, and that
different manufacturers produce the same shoe.

Sells is a relationship that indicates the wholesale COST to a distributor of shoes. It
indicates that each distributor sells more than one type of shoe, and that each type
of shoe is sold by more than one distributor.
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Contract is a relationship whereby a distributor purchases, for a COST, exclusive
rights to represent a manufacturer. Note that this does not preclude the distributor
from selling different manufacturers’ shoes.

Employs indicates that each distributor hires a number of salespeople to sell the
shoes; each earns a BASE_SALARY.

Problem 4.5 (*). Consider three sources:

e Database 1 has one relation Area(ld, Field) providing areas of specialization of
employees; the Id field identifies an employee.

e Database 2 has two relations, Teach(Professor, Course) and In(Course, Field);
Teach indicates the courses that each professor teaches and In that specifies
possible fields that a course can blong to.

e Database 3 has two relations, Grant(Researcher, GrantNo) for grants given to
researchers, and For(GrantNo, Field) indicating which fields the grants are for.

The objective is to build a GCS with two relations: Works(Id, Project) stating
that an employee works for a particular project, and Area(Project, Field) associating
projects with one or more fields.

(a) Provide a LAV mapping between Database 1 and the GCS.

(b) Provide a GLAV mapping between the GCS and the local schemas.

(¢) Suppose one extra relation, Funds(GrantNo, Project), is added to Database 3.
Provide a GAV mapping in this case.

Problem 4.6. Consider a GCS with the following relation: Person(Name, Age, Gen-
der). This relation is defined as a view over three LCSs as follows:

CREATE VIEW Person AS

SELECT Name, Age, "male" AS Gender
FROM SoccerPlayer

UNION

SELECT Name, NULL AS Age, Gender
FROM Actor

UNION

SELECT Name, Age, Gender

FROM Politician

WHERE Age > 30

For each of the following queries, discuss which of the three local schemas
(SoccerPlayer, Actor, and Politician) contribute to the global query result.

(a) SELECT Name FROM person
(b) SELECT Name FROM Person
WHERE Gender = "female"
(C) SELECT Name FROM Person WHERE Age > 25

(d) SELECT Name FROM Person WHERE Age < 25
() SELECT Name FROM Person
WHERE Gender = "male" AND Age = 40
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Problem 4.7. A GCS with the relation Country(Name, Continent, Population, Has-
Coast) describes countries of the world. The attribute HasCoast indicates if the
country has direct access to the sea. Three LCSs are connected to the global schema
using the LAV approach as follows:

(a)

(b)

CREATE
SELECT
FROM
WHERE

CREATE
SELECT
FROM
WHERE

CREATE
SELECT
FROM
WHERE

VIEW EuropeanCountry AS

Name, Continent, Population, HasCoast
Country

Continent = "Europe"

VIEW BigCountry AS

Name, Continent, Population, HasCoast
Country

Population >= 30000000

VIEW MidsizeOceanCountry AS

Name, Continent, Population, HasCoast
Country

HasCoast = true AND Population > 10000000

For each of the following queries, discuss the results with respect to their
completeness, i.e., verify if the (combination of the) local sources cover all
relevant results.

SELECT Name FROM Country

SELECT Name FROM Country
WHERE Population > 40

SELECT Name FROM Country
WHERE Population > 20

For each of the following queries, discuss which of the three LCSs are necessary
for the global query result.

SELECT Name FROM Country

SELECT Name FROM Country
WHERE Population > 30
AND Continent = "Europe"

SELECT Name FROM Country
WHERE Population < 30

SELECT Name FROM Country
WHERE Population > 30
AND HasCoast = true

Problem 4.8. Consider the following two relations PRODUCT and ARTICLE that
are specified in a simplified SQL notation. The perfect schema matching correspon-
dences are denoted by arrows.



4.7 Bibliographic Notes 165

PRODUCT — ARTICLE
Id: int PRIMARY KEY — Key: varchar(255) PRIMARY KEY
Name: varchar(255) — Title: varchar(255)
DeliveryPrice: float —  Price: real

Description: varchar(8000) —  Information: varchar(5000)

(a) For each of the five correspondences, indicate which of the following match
approaches will probably identify the correspondence:

1. Syntactic comparison of element names, e.g., using edit distance string
similarity
Comparison of element names using a synonym lookup table
Comparison of data types

4. Analysis of instance data values

(b) Isit possible for the listed matching approaches to determine false correspon-
dences for these match tasks? If so, give an example.

Problem 4.9. Consider two relations S(a,b,c) and T(d,e, f). A match approach
determines the following similarities between the elements of S and T:

Td|T.e|T.f
S.a[0.8]0.3[0.1
$.6[0.5]0.2[0.9
5.c[0.4]0.7]0.8

Based on the given matcher’s result, derive an overall schema match result with the
following characteristics:

e Each element participates in exactly one correspondence.

e There is no correspondence where both elements match an element of the

opposite schema with a higher similarity than its corresponding counterpart.

Problem 4.10 (*). Figure 4.15 illustrates the schema of three different data sources:

e MyGroup contains publications authored by members of a working group;

e MyConference contains publications of a conference series and associated
workshops;

e MyPublisher contains articles that are published in journals.

The arrows show the foreign key-to-primary key relationships.
The sources are defined as follows:
MyGroup

e Publication
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MyGroup
RELATION Publication RELATION AuthorOf RELATION GroupMember
Pub_ID: INT PRIMARY KEY «—— Pub_ID_FK: INT PRIMARY KEY /VMemberJD: INT PRIMARY KEY
VenueName: VARCHAR Member_ID_FK: INT PRIMARY KEY Name: VARCHAR
VenueType: VARCHAR Email: VARCHAR
Year: INT

Title: VARCHAR

MyConference

RELATION ConfWorkshop RELATION Paper

CW_ID: INT PRIMARY KEY Pap_ID: INT PRIMARY KEY
Year: INT Title: VARCHAR
Location: VARCHAR Authors: ARRAY[20] OF VARCHAR

Organizer: VARCHAR CW_ID_FK: INT

AssociatedConf_ID_FK: INT

MyPublisher
RELATION Journal RELATION Article RELATION Author
” Journ_ID: INT PRIMARY KEY: Art_ID: INT PRIMARY KEY€¢——Art_ID_FK: INT PRIMARY KEY

( Name: VARCHAR \ Title: VARCHAR Pers_ID_FK: INT PRIMARY KEY
Volume: INT Journ_ID_FK: INT Position: INT
e: INT
Year: | RELATION Editor

Journ_ID_FK: INT PRIMARY KEY
Pers_IK_FK: INT PRIMARY KEY

RELATION Person
Pers_ID: INT PRIMARY KEY
LastName: VARCHAR
FirstName: VARCHAR
Affiliation: VARCHAR

Fig. 4.15 Figure for Exercise 10

Pub_ID: unique publication ID

VenueName: name of the journal, conference or workshop

VenueType: “journal”, “conference”, or “workshop”

Year: year of publication

Title: publication’s title
o AuthorOf

e many-to-many relationship representing “group member is author of
publication”

e GroupMember

e Member_ID: unique member ID
e Name: name of the group member

e Email: email address of the group member

MyConference
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e ConfWorkshop
o CW_ID: unique ID for the conference/workshop
e Name: name of the conference or workshop
e Year: year when the event takes place
e Location: event’s location
e Organizer: name of the organizing person

e AssociatedConf_ID_FK: value is NULL if it is a conference, ID of the
associated conference if the event is a workshop (this is assuming that
workshops are organized in conjunction with a conference)

e Paper

e Pap_ID: unique paper ID

o Title: paper’s title

e Author: array of author names

o CW_ID_FK: conference/workshop where the paper is published
MyPublisher
e Journal

e Journ_ID: unique journal ID

e Name: journal’s name

e Year: year when the event takes place

e Volume: journal volume

e Issue: journal issue
e Article

e Art_ID: unique article ID

o Title: title of the article

e Journ_ID_FK: journal where the article is published
e Person

e Pers_ID: unique person ID

e LastName: last name of the person

e FirstName: first name of the person

o Affiliation: person’s affiliation (e.g., the name of a university)
e Author

e represents the many-to-many relationship for “person is author of article”
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e Position: author’s position in the author list (e.g., first author has Position

1)
e Editor

e represents the many-to-many relationship for “person is editor of journal
issue”

(a) Identify all schema matching correspondences between the schema elements
of the sources. Use the names and data types of the schema elements as well
as the given description.

(b) Classify your correspondences along the following dimensions:

1. Type of schema elements (e.g., attribute-attribute or attribute-relation)

2. Cardinality (e.g., 1:1 or 1:N)

(¢) Give a consolidated global schema that covers all information of the source
schemas.

Problem 4.11 (*). Figure 4.16 illustrates (using a simplified SQL syntax) two
sources S and S,. S has two relations, Course and Tutor, and S, has only one
relation, Lecture. The solid arrows denote schema matching correspondences. The
dashed arrow represents a foreign key relationship between the two relations in Sj.

RELATION Course RELATION Lecture
id: INT PRIMARY KEY » id: INT PRIMARY KEY
name: VARCHAR(255) > title: VARCHAR(255)
V4 tutor_id_fk: INT FOREIGN KEY REFERENCES(Tutor) lecturer: VARCHAR(255)

/

!

\ RELATION Tutor

N4 id: INT PRIMARY KEY
lastname: VARCHAR(255)
firsthame: VARCHAR(255)

Fig. 4.16 Figure for Exercise 11

The following are four schema mappings (represented as SQL queries) to trans-
form S;’s data into S,.

1. SELECT C.id, C.name as Title, CONCAT (T.lastname,
T.firstname) AS Lecturer)
FROM Course AS C
JOIN Tutor AS T ON (C.tutor_id_fk = T.id)

2. SELECT C.id, C.name AS Title, NULL AS Lecturer)
FROM Course AS C
UNION
SELECT T.id AS ID, NULL AS Title, T,
lastname AS Lecturer)
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FROM Course AS C
FULL OUTER JOIN Tutor AS T ON(C.tutor_id_fk=T.id)

3. SELECT C.id, C.name as Title, CONCAT (T.lastname,
T.firstname) AS Lecturer)
FROM Course AS C
FULL OUTER JOIN Tutor AS T ON(C.tutor_id_fk=T.id)

Discuss each of these schema mappings with respect to the following questions:

(a) Is the mapping meaningful?
(b) Is the mapping complete (i.e., are all data instances of S transformed)?
(¢) Does the mapping potentially violate key constraints?

Problem 4.12 (*). Consider three data sources:

e Database 1 has one relation AREA(ID, FIELD) providing areas of specialization
of employees where ID identifies an employee.

e Database 2 has two relations: TEACH(PROFESSOR, COURSE) and IN(COURSE,
FIELD) specifying possible fields a course can belong to.

e Database 3 has two relations: GRANT(RESEARCHER, GRANT#) for grants
given to researchers, and FOR(GRANTH#, FIELD) indicating the fields that the
grants are in.

Design a global schema with two relations: WORKS(ID, PROJECT) that records
which projects employees work in, and AREA(PROJECT, FIELD) that associates
projects with one or more fields for the following cases:

(a) There should be a LAV mapping between Database 1 and the global schema.

(b) There should be a GLAV mapping between the global schema and the local
schemas.

(¢) There should be a GAV mapping when one extra relation FUNDS(GRANT#,
PROIJECT) is added to Database 3.

Problem 4.13 (*¥). Logic (first-order logic, to be precise) has been suggested as a
uniform formalism for schema translation and integration. Discuss how logic can be
useful for this purpose.






Chapter 5
Data and Access Control

An important requirement of a centralized or a distributed DBMS is the ability to
support semantic data control, i.e., data and access control using high-level semantics.
Semantic data control typically includes view management, security control, and
semantic integrity control. Informally, these functions must ensure that authorized
users perform correct operations on the database, contributing to the maintenance of
database integrity. The functions necessary for maintaining the physical integrity of
the database in the presence of concurrent accesses and failures are studied separately
in Chapters 10 through 12 in the context of transaction management. In the relational
framework, semantic data control can be achieved in a uniform fashion. Views,
security constraints, and semantic integrity constraints can be defined as rules that the
system automatically enforces. The violation of some rules by a user program (a set
of database operations) generally implies the rejection of the effects of that program
(e.g., undoing its updates) or propagating some effects (e.g., updating related data) to
preserve the database integrity.

The definition of the rules for controlling data manipulation is part of the adminis-
tration of the database, a function generally performed by a database administrator
(DBA). This person is also in charge of applying the organizational policies. Well-
known solutions for semantic data control have been proposed for centralized DBMSs.
In this chapter we briefly review the centralized solution to semantic data control, and
present the special problems encountered in a distributed environment and solutions
to these problems. The cost of enforcing semantic data control, which is high in terms
of resource utilization in a centralized DBMS, can be prohibitive in a distributed
environment.

Since the rules for semantic data control must be stored in a catalog, the manage-
ment of a distributed directory (also called a catalog) is also relevant in this chapter.
We discussed directories in Section 3.5. Remember that the directory of a distributed
DBMS is itself a distributed database. There are several ways to store semantic
data control definitions, according to the way the directory is managed. Directory
information can be stored differently according to its type; in other words, some
information might be fully replicated whereas other information might be distributed.
For example, information that is useful at compile time, such as security control

M.T. Ozsu and P. Valduriez, Principles of Distributed Database Systems: Third Edition, 171
DOI 10.1007/978-1-4419-8834-8_5, © Springer Science+Business Media, LLC 2011
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information, could be replicated. In this chapter we emphasize the impact of directory
management on the performance of semantic data control mechanisms.

This chapter is organized as follows. View management is the subject of Section
5.1. Security control is presented in Section 5.2. Finally, semantic integrity control is
treated in Section 5.3. For each section we first outline the solution in a centralized
DBMS and then give the distributed solution, which is often an extension of the
centralized one, although more difficult.

5.1 View Management

One of the main advantages of the relational model is that it provides full logical
data independence. As introduced in Chapter 1, external schemas enable user groups
to have their particular view of the database. In a relational system, a view is a virtual
relation, defined as the result of a query on base relations (or real relations), but not
materialized like a base relation, which is stored in the database. A view is a dynamic
window in the sense that it reflects all updates to the database. An external schema
can be defined as a set of views and/or base relations. Besides their use in external
schemas, views are useful for ensuring data security in a simple way. By selecting a
subset of the database, views hide some data. If users may only access the database
through views, they cannot see or manipulate the hidden data, which are therefore
secure.

In the remainder of this section we look at view management in centralized
and distributed systems as well as the problems of updating views. Note that in
a distributed DBMS, a view can be derived from distributed relations, and the
access to a view requires the execution of the distributed query corresponding to
the view definition. An important issue in a distributed DBMS is to make view
materialization efficient. We will see how the concept of materialized views helps in
solving this problem, among others, but requires efficient techniques for materialized
view maintenance.

5.1.1 Views in Centralized DBMSs

Most relational DBMSs use a view mechanism where a view is a relation derived
from base relations as the result of a relational query (this was first proposed within
the INGRES [Stonebraker, 1975] and System R [Chamberlin et al., 1975] projects).
It is defined by associating the name of the view with the retrieval query that specifies
1t.

Example 5.1. The view of system analysts (SYSAN) derived from relation EMP
(ENO,ENAME,TITLE), can be defined by the following SQL query:
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Fig. 5.1 Relation Corresponding to the View SYSAN

CREATE VIEW SYSAN (ENO, ENAME)

AS SELECT ENO, ENAME
FROM EMP
WHERE TITLE = "Syst. Anal."

¢

The single effect of this statement is the storage of the view definition in the
catalog. No other information needs to be recorded. Therefore, the result of the query
defining the view (i.e., a relation having the attributes ENO and ENAME for the
system analysts as shown in Figure 5.1) is not produced. However, the view SYSAN
can be manipulated as a base relation.

Example 5.2. The query

“Find the names of all the system analysts with their project number and respon-
sibility(ies)”

involving the view SYSAN and relation ASG(ENO,PNO,RESP,DUR) can be ex-
pressed as

SELECT ENAME, PNO, RESP
FROM SYSAN, ASG
WHERE SYSAN.ENO = ASG.ENO

¢

Mapping a query expressed on views into a query expressed on base relations can
be done by query modification [Stonebraker, 1975]. With this technique the variables
are changed to range on base relations and the query qualification is merged (ANDed)
with the view qualification.

Example 5.3. The preceding query can be modified to

SELECT ENAME, PNO, RESP
FROM EMP, ASG

WHERE EMP.ENO = ASG.ENO

AND TITLE = "Syst. Anal."

The result of this query is illustrated in Figure 5.2. ¢
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The modified query is expressed on base relations and can therefore be processed
by the query processor. It is important to note that view processing can be done at
compile time. The view mechanism can also be used for refining the access controls
to include subsets of objects. To specify any user from whom one wants to hide data,
the keyword USER generally refers to the logged-on user identifier.

ENAME PNO RESP
M.Smith P1 Analyst
M.Smith P2 Analyst
B.Casey P3 Manager
J.Jones P4 Manager

Fig. 5.2 Result of Query involving View SYSAN

Example 5.4. The view ESAME restricts the access by any user to those employees
having the same title:

CREATE VIEW ESAME

AS SELECT «*
FROM EMP E1, EMP E2
WHERE E1.TITLE = E2.TITLE
AND E1.ENO = USER

In the view definition above, * stands for “all attributes™ and the two tuple variables
(E1 and E2) ranging over relation EMP are required to express the join of one tuple
of EMP (the one corresponding to the logged-on user) with all tuples of EMP based
on the same title. For example, the following query issued by the user J. Doe,

SELECT «*
FROM ESAME

returns the relation of Figure 5.3. Note that the user J. Doe also appears in the result.
If the user who creates ESAME is an electrical engineer, as in this case, the view

represents the set of all electrical engineers. ¢
ENO ENAME TITLE
El J. Doe Elect. Eng
E2 L. Chu Elect. Eng

Fig. 5.3 Result of Query on View ESAME
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Views can be defined using arbitrarily complex relational queries involving selec-
tion, projection, join, aggregate functions, and so on. All views can be interrogated
as base relations, but not all views can be manipulated as such. Updates through
views can be handled automatically only if they can be propagated correctly to the
base relations. We can classify views as being updatable and not updatable. A view
is updatable only if the updates to the view can be propagated to the base relations
without ambiguity. The view SYSAN above is updatable; the insertion, for example,
of a new system analyst (201, Smith) will be mapped into the insertion of a new
employee (201, Smith, Syst. Anal.). If attributes other than TITLE were hidden by
the view, they would be assigned null values.

Example 5.5. The following view, however, is not updatable:

CREATE VIEW EG (ENAME, RESP)

AS SELECT DISTINCT ENAME, RESP
FROM EMP, ASG
WHERE EMP.ENO = ASG.ENO

The deletion, for example, of the tuple (Smith, Analyst) cannot be propagated,
since it is ambiguous. Deletions of Smith in relation EMP or analyst in relation ASG
are both meaningful, but the system does not know which is correct. ¢

Current systems are very restrictive about supporting updates through views.
Views can be updated only if they are derived from a single relation by selection and
projection. This precludes views defined by joins, aggregates, and so on. However, it
is theoretically possible to automatically support updates of a larger class of views
[Bancilhon and Spyratos, 1981; Dayal and Bernstein, 1978; Keller, 1982]. It is
interesting to note that views derived by join are updatable if they include the keys of
the base relations.

5.1.2 Views in Distributed DBMSs

The definition of a view is similar in a distributed DBMS and in centralized systems.
However, a view in a distributed system may be derived from fragmented relations
stored at different sites. When a view is defined, its name and its retrieval query are
stored in the catalog.

Since views may be used as base relations by application programs, their definition
should be stored in the directory in the same way as the base relation descriptions.
Depending on the degree of site autonomy offered by the system [Williams et al.,
1982], view definitions can be centralized at one site, partially duplicated, or fully
duplicated. In any case, the information associating a view name to its definition site
should be duplicated. If the view definition is not present at the site where the query
is issued, remote access to the view definition site is necessary.

The mapping of a query expressed on views into a query expressed on base
relations (which can potentially be fragmented) can also be done in the same way as
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in centralized systems, that is, through query modification. With this technique, the
qualification defining the view is found in the distributed database catalog and then
merged with the query to provide a query on base relations. Such a modified query is
a distributed query, which can be processed by the distributed query processor (see
Chapter 6). The query processor maps the distributed query into a query on physical
fragments.

In Chapter 3 we presented alternative ways of fragmenting base relations. The
definition of fragmentation is, in fact, very similar to the definition of particular views.
It is possible to manage views and fragments using a unified mechanism [Adiba,
1981]. This is based on the observation that views in a distributed DBMS can
be defined with rules similar to fragment definition rules. Furthermore, replicated
data can be handled in the same way. The value of such a unified mechanism is
to facilitate distributed database administration. The objects manipulated by the
database administrator can be seen as a hierarchy where the leaves are the fragments
from which relations and views can be derived. Therefore, the DBA may increase
locality of reference by making views in one-to-one correspondence with fragments.
For example, it is possible to implement the view SYSAN illustrated in Example 5.1
by a fragment at a given site, provided that most users accessing the view SYSAN
are at the same site.

Evaluating views derived from distributed relations may be costly. In a given orga-
nization it is likely that many users access the same view which must be recomputed
for each user. We saw in Section 5.1.1 that view derivation is done by merging the
view qualification with the query qualification. An alternative solution is to avoid
view derivation by maintaining actual versions of the views, called materialized
views. A materialized view stores the tuples of a view in a database relation, like the
other database tuples, possibly with indices. Thus, access to a materialized view is
much faster than deriving the view, in particular, in a distributed DBMS where base
relations can be remote. Introduced in the early 1980s [Adiba and Lindsay, 1980],
materialized views have since gained much interest in the context of data warehous-
ing to speed up On Line Analytical Processing (OLAP) applications [Gupta and
Mumick, 1999c]. Materialized views in data warehouses typically involve aggregate
(such as SUM and COUNT) and grouping (GROUP BY) operators because they
provide compact database summaries. Today, all major database products support
materialized views.

Example 5.6. The following view over relation PROJ(PNO,PNAME,BUDGET,LOC)
gives, for each location, the number of projects and the total budget.

CREATE VIEW PL(LOC, NBPROJ, TBUDGET)
AS SELECT LOC, COUNT (%), SUM(BUDGET)
FROM PROJ

GROUP BY LOC
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5.1.3 Maintenance of Materialized Views

A materialized view is a copy of some base data and thus must be kept consistent with
that base data which may be updated. View maintenance is the process of updating
(or refreshing) a materialized view to reflect the changes made to the base data. The
issues related to view materialization are somewhat similar to those of database
replication which we will address in Chapter 13. However, a major difference is
that materialized view expressions, in particular, for data warehousing, are typically
more complex than replica definitions and may include join, group by and aggregate
operators. Another major difference is that database replication is concerned with
more general replication configurations, e.g., with multiple copies of the same base
data at multiple sites.

A view maintenance policy allows a DBA to specify when and how a view should
be refreshed. The first question (when to refresh) is related to consistency (between
the view and the base data) and efficiency. A view can be refreshed in two modes:
immediate or deferred. With the immediate mode, a view is refreshed immediately
as part as the transaction that updates base data used by the view. If the view and the
base data are managed by different DBMSs, possibly at different sites, this requires
the use of a distributed transaction, for instance, using the two-phase commit (2PC)
protocol (see Chapter 12). The main advantages of immediate refreshment are that
the view is always consistent with the base data and that read-only queries can be
fast. However, this is at the expense of increased transaction time to update both the
base data and the views within the same transactions. Furthermore, using distributed
transactions may be difficult.

In practice, the deferred mode is preferred because the view is refreshed in
separate (refresh) transactions, thus without performance penalty on the transactions
that update the base data. The refresh transactions can be triggered at different times:
lazily, just before a query is evaluated on the view; periodically, at predefined times,
e.g., every day; or forcedly, after a predefined number of updates to the base data.
Lazy refreshment enables queries to see the latest consistent state of the base data but
at the expense of increased query time to include the refreshment of the view. Periodic
and forced refreshment allow queries to see views whose state is not consistent with
the latest state of the base data. The views managed with these strategies are also
called snapshots [Adiba, 1981; Blakeley et al., 1986].

The second question (how to refresh a view) is an important efficiency issue. The
simplest way to refresh a view is to recompute it from scratch using the base data.
In some cases, this may be the most efficient strategy, e.g., if a large subset of the
base data has been changed. However, there are many cases where only a small
subset of view needs to be changed. In these cases, a better strategy is to compute
the view incrementally, by computing only the changes to the view. Incremental
view maintenance relies on the concept of differential relation. Let u be an update
of relation R. R™ and R~ are differential relations of R by u, where R™ contains the
tuples inserted by u into R, and R~ contains the tuples of R deleted by u. If u is an
insertion, R~ is empty. If u is a deletion, R is empty. Finally, if u is a modification,
relation R can be obtained by computing (R — R™)UR™. Similarly, a materialized
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view V can be refreshed by computing (V —V~)UV ™. Computing the changes to the
view, i.e., VT and V ~, may require using the base relations in addition to differential
relations.

Example 5.7. Consider the view EG of Example 5.5 which uses relations EMP and
ASG as base data and assume its state is derived from that of Example 3.1, so that
EG has 9 tuples (see Figure 5.4). Let EMP™ consist of one tuple (E9, B. Martin,
Programmer) to be inserted in EMP, and ASG™ consist of two tuples (E4, P3,
Programmer, 12) and (E9, P3, Programmer, 12) to be inserted in ASG. The changes
to the view EG can be computed as:

EG+ = (SELECT ENAME, RESP

FROM EMP, ASG+

WHERE EMP.ENO = ASG+.ENO)
UNION

(SELECT ENAME, RESP

FROM EMP+, ASG

WHERE EMP+.ENO = ASG.ENO)
UNION

(SELECT ENAME, RESP

FROM EMP+, ASG+

WHERE EMP+.ENO = ASG+.ENO)

which yields tuples (B. Martin, Programmer) and (J. Miller, Programmer). Note that
integrity constraints would be useful here to avoid useless work (see Section 5.3.2).
Assuming that relations EMP and ASG are related by a referential constraint that
says that ENO in ASG must exist in EMP, the second SELECT statement is useless

as it produces an empty relation. ¢

EG

ENAME RESP

J. Doe Manager

M. Smith Analyst

A. Lee Consultant
A. Lee Engineer

J. Miller Programmer
B. Casey Manager

L. Chu Manager

R. Davis Engineer
J.Jones Manager

Fig. 5.4 State of View EG

Efficient techniques have been devised to perform incremental view maintenance
using both the materialized views and the base relations. The techniques essen-
tially differ in their views’ expressiveness, their use of integrity constraints, and
the way they handle insertion and deletion. Gupta and Mumick [1999a] classify
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these techniques along the view expressiveness dimension as non-recursive views,
views involving outerjoins, and recursive views. For non-recursive views, i.e., select-
project-join (SPJ) views that may have duplicate elimination, union and aggregation,
an elegant solution is the counting algorithm [Gupta et al., 1993]. One problem stems
from the fact that individual tuples in the view may be derived from several tuples
in the base relations, thus making deletion in the view difficult. The basic idea of
the counting algorithm is to maintain a count of the number of derivations for each
tuple in the view, and to increment (resp. decrement) tuple counts based on insertions
(resp. deletions); a tuple in the view of which count is zero can then be deleted.

Example 5.8. Consider the view EG in Figure 5.4. Each tuple in EG has one deriva-
tion (i.e., a count of 1) except tuple (M. Smith, Analyst) which has two (i.e., a count
of 2). Assume now that tuples (E2, P1, Analyst, 24) and (E3, P3, Consultant, 10) are
deleted from ASG. Then only tuple (A. Lee, Consultant) needs to be deleted from
EG. ¢

We now present the basic counting algorithm for refreshing a view V defined
over two relations R and S as a query g(R,S). Assuming that each tuple in V has
an associated derivation count, the algorithm has three main steps (see Algorithm
5.1). First, it applies the view differentiation technique to formulate the differential
views VT and V™~ as queries over the view, the base relations, and the differential
relations. Second, it computes V™ and V™~ and their tuple counts. Third, it applies the
changes V* and V™~ in V by adding positive counts and subtracting negative counts,
and deleting tuples with a count of zero.

Algorithm 5.1: COUNTING Algorithm

Input: V: view defined as ¢(R,S); R, S relations; R*, R™: changes to R
begin
Vt=¢"(V,R", R, S);
V-=¢g (V,R,RS);
compute V* with positive counts for inserted tuples;
compute V"~ with negative counts for deleted tuples;
compute (V —V~)UV™ by adding positive counts and substracting
negative counts deleting each tuple in V with count = 0;
end

The counting algorithm is optimal since it computes exactly the view tuples
that are inserted or deleted. However, it requires access to the base relations. This
implies that the base relations be maintained (possibly as replicas) at the sites of the
materialized view. To avoid accessing the base relations so the view can be stored at a
different site, the view should be maintainable using only the view and the differential
relations. Such views are called self-maintainable [Gupta et al., 1996].
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Example 5.9. Consider the view SYSAN in Example 5.1. Let us write the view
definition as SYSAN=¢(EMP) meaning that the view is defined by a query g on
EMP. We can compute the differential views using only the differential relations,
i.e., SYSANT = g(EMP") and SYSAN™ = g(EMP™). Thus, the view SYSAN is
self-maintainable. ¢

Self-maintainability depends on the views’ expressiveness and can be defined
with respect to the kind of updates (insertion, deletion or modification) [Gupta et al.,
1996]. Most SPJ views are not self-maintainable with respect to insertion but are often
self-maintainable with respect to deletion and modification. For instance, an SPJ
view is self-maintainable with respect to deletion of relation R if the key attributes of
R are included in the view.

Example 5.10. Consider the view EG of Example 5.5. Let us add attribute ENO
(which is key of EMP) in the view definition. This view is not self-maintainable with
respect to insertion. For instance, after an insertion of an ASG tuple, we need to
perform the join with EMP to get the corresponding ENAME to insert in the view.
However, this view is self-maintainable with respect to deletion on EMP. For instance,
if one EMP tuple is deleted, the view tuples having same ENO can be deleted. 4

5.2 Data Security

Data security is an important function of a database system that protects data against
unauthorized access. Data security includes two aspects: data protection and access
control.

Data protection is required to prevent unauthorized users from understanding the
physical content of data. This function is typically provided by file systems in the
context of centralized and distributed operating systems. The main data protection
approach is data encryption [Fernandez et al., 1981], which is useful both for in-
formation stored on disk and for information exchanged on a network. Encrypted
(encoded) data can be decrypted (decoded) only by authorized users who “know” the
code. The two main schemes are the Data Encryption Standard [NBS, 1977] and
the public-key encryption schemes ([Diffie and Hellman, 1976] and [Rivest et al.,
1978]). In this section we concentrate on the second aspect of data security, which
is more specific to database systems. A complete presentation of database security
techniques can be found in [Castano et al., 1995].

Access control must guarantee that only authorized users perform operations they
are allowed to perform on the database. Many different users may have access to
a large collection of data under the control of a single centralized or distributed
system. The centralized or distributed DBMS must thus be able to restrict the access
of a subset of the database to a subset of the users. Access control has long been
provided by operating systems, and more recently, by distributed operating systems
[Tanenbaum, 1995] as services of the file system. In this context, a centralized
control is offered. Indeed, the central controller creates objects, and this person may
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allow particular users to perform particular operations (read, write, execute) on these
objects. Also, objects are identified by their external names.

Access control in database systems differs in several aspects from that in tra-
ditional file systems. Authorizations must be refined so that different users have
different rights on the same database objects. This requirement implies the ability to
specify subsets of objects more precisely than by name and to distinguish between
groups of users. In addition, the decentralized control of authorizations is of partic-
ular importance in a distributed context. In relational systems, authorizations can
be uniformly controlled by database administrators using high-level constructs. For
example, controlled objects can be specified by predicates in the same way as is a
query qualification.

There are two main approaches to database access control [Lunt and Fernandez,
1990]. The first approach is called discretionary and has long been provided by
DBMS. Discretionary access control (or authorization control) defines access rights
based on the users, the type of access (e.g., SELECT, UPDATE) and the objects to be
accessed. The second approach, called mandatory or multilevel [Lunt and Ferndndez,
1990; Jajodia and Sandhu, 1991] further increases security by restricting access to
classified data to cleared users. Support of multilevel access control by major DBMSs
is more recent and stems from increased security threats coming from the Internet.

From solutions to access control in centralized systems, we derive those for
distributed DBMSs. However, there is the additional complexity which stems from
the fact that objects and users can be distributed. In what follows we first present
discretionary and multilevel access control in centralized systems and then the
additional problems and their solutions in distributed systems.

5.2.1 Discretionary Access Control

Three main actors are involved in discretionary access control control: the subject
(e.g., users, groups of users) who trigger the execution of application programs; the
operations, which are embedded in application programs; and the database objects,
on which the operations are performed [Hoffman, 1977]. Authorization control
consists of checking whether a given triple (subject, operation, object) can be allowed
to proceed (i.e., the user can execute the operation on the object). An authorization
can be viewed as a triple (subject, operation type, object definition) which specifies
that the subjects has the right to perform an operation of operation type on an object.
To control authorizations properly, the DBMS requires the definition of subjects,
objects, and access rights.

The introduction of a subject in the system is typically done by a pair (user name,
password). The user name uniquely identifies the users of that name in the system,
while the password, known only to the users of that name, authenticates the users.
Both user name and password must be supplied in order to log in the system. This
prevents people who do not know the password from entering the system with only
the user name.
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The objects to protect are subsets of the database. Relational systems provide
finer and more general protection granularity than do earlier systems. In a file system,
the protection granule is the file, while in an object-oriented DBMS, it is the object
type. In a relational system, objects can be defined by their type (view, relation, tuple,
attribute) as well as by their content using selection predicates. Furthermore, the view
mechanism as introduced in Section 5.1 permits the protection of objects simply by
hiding subsets of relations (attributes or tuples) from unauthorized users.

A right expresses a relationship between a subject and an object for a particular
set of operations. In an SQL-based relational DBMS, an operation is a high-level
statement such as SELECT, INSERT, UPDATE, or DELETE, and rights are defined
(granted or revoked) using the following statements:

GRANT (operation type(s)) ON (object) TO (subject(s))
REVOKE (operation type(s)) FROM (object) TO (subject(s))

The keyword public can be used to mean all users. Authorization control can be
characterized based on who (the grantors) can grant the rights. In its simplest form,
the control is centralized: a single user or user class, the database administrators, has
all privileges on the database objects and is the only one allowed to use the GRANT
and REVOKE statements.

A more flexible but complex form of control is decentralized [Griffiths and Wade,
1976]: the creator of an object becomes its owner and is granted all privileges on it.
In particular, there is the additional operation type GRANT, which transfers all the
rights of the grantor performing the statement to the specified subjects. Therefore,
the person receiving the right (the grantee) may subsequently grant privileges on that
object. The main difficulty with this approach is that the revoking process must be
recursive. For example, if A, who granted B who granted C the GRANT privilege on
object O, wants to revoke all the privileges of B on O, all the privileges of C on O
must also be revoked. To perform revocation, the system must maintain a hierarchy
of grants per object where the creator of the object is the root.

The privileges of the subjects over objects are recorded in the catalog (directory)
as authorization rules. There are several ways to store the authorizations. The most
convenient approach is to consider all the privileges as an authorization matrix, in
which a row defines a subject, a column an object, and a matrix entry (for a pair
(subject, object)), the authorized operations. The authorized operations are specified
by their operation type (e.g., SELECT, UPDATE). It is also customary to associate
with the operation type a predicate that further restricts the access to the object. The
latter option is provided when the objects must be base relations and cannot be views.
For example, one authorized operation for the pair (Jones, relation EMP) could be

SELECT WHERE TITLE = "Syst.Anal."

which authorizes Jones to access only the employee tuples for system analysts. Figure
5.5 gives an example of an authorization matrix where objects are either relations
(EMP and ASG) or attributes (ENAME).
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EMP ENAME ASG
Casey UPDATE UPDATE UPDATE
Jones SELECT SELECT SELECT

WHERE RESP # "Manager"

Smith NONE SELECT NONE

Fig. 5.5 Example of Authorization Matrix

The authorization matrix can be stored in three ways: by row, by column, or by
element. When the matrix is stored by row, each subject is associated with the list of
objects that may be accessed together with the related access rights. This approach
makes the enforcement of authorizations efficient, since all the rights of the logged-on
user are together (in the user profile). However, the manipulation of access rights per
object (e.g., making an object public) is not efficient since all subject profiles must be
accessed. When the matrix is stored by column, each object is associated with the list
of subjects who may access it with the corresponding access rights. The advantages
and disadvantages of this approach are the reverse of the previous approach.

The respective advantages of the two approaches can be combined in the third
approach, in which the matrix is stored by element, that is, by relation (subject, object,
right). This relation can have indices on both subject and object, thereby providing
fast-access right manipulation per subject and per object.

5.2.2 Multilevel Access Control

Discretionary access control has some limitations. One problem is that a malicious
user can access unauthorized data through an authorized user. For instance, consider
user A who has authorized access to relations R and S and user B who has authorized
access to relation S only. If B somehow manages to modify an application program
used by A so it writes R data into S, then B can read unauthorized data without
violating authorization rules.

Multilevel access control answers this problem and further improves security
by defining different security levels for both subjects and data objects. Multilevel
access control in databases is based on the well-known Bell and Lapaduda model
designed for operating system security [Bell and Lapuda, 1976]. In this model,
subjects are processes acting on a user’s behalf; a process has a security level also
called clearance derived from that of the user. In its simplest form, the security levels
are Top Secret (T'S), Secret (S), Confidential (C) and Unclassified (U), and ordered as
TS >S>C > U, where “>" means “more secure”. Access in read and write modes
by subjects is restricted by two simple rules:

1. A subject S is allowed to read an object of security level [ only if level(S) > 1.
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2. A subject S is allowed to write an object of security level / only if class(S) <.

Rule 1 (called “no read up”) protects data from unauthorized disclosure, i.e., a
subject at a given security level can only read objects at the same or lower security
levels. For instance, a subject with secret clearance cannot read top-secret data. Rule
2 (called “no write down”) protects data from unauthorized change, i.e., a subject
at a given security level can only write objects at the same or higher security levels.
For instance, a subject with top-secret clearance can only write top-secret data but
cannot write secret data (which could then contain top-secret data).

In the relational model, data objects can be relations, tuples or attributes. Thus, a
relation can be classified at different levels: relation (i.e., all tuples in the relation
have the same security level), tuple (i.e., every tuple has a security level), or attribute
(i.e., every distinct attribute value has a security level). A classified relation is thus
called multilevel relation to reflect that it will appear differently (with different data)
to subjects with different clearances. For instance, a multilevel relation classified
at the tuple level can be represented by adding a security level attribute to each
tuple. Similarly, a multilevel relation classified at attribute level can be represented
by adding a corresponding security level to each attribute. Figure 5.6 illustrates a
multilevel relation PROJ* based on relation PROJ which is classified at the attribute
level. Note that the additional security level attributes may increase significantly the
size of the relation.

PROJ*

PNO SL1| PNAME SL2 | BUDGET SL3 | LOC SL4

P1 C | Instrumentation C 150000 C Montreal C
P2 C | Database Develop. C 135000 S New York S
P3 S | CAD/CAM S 250000 S New York S

Fig. 5.6 Multilevel relation PROJ* classified at the attribute level

The entire relation also has a security level which is the lowest security level of
any data it contains. For instance, relation PROJ* has security level C. A relation can
then be accessed by any subject having a security level which is the same or higher.
However, a subject can only access data for which it has clearance. Thus, attributes
for which a subject has no clearance will appear to the subject as null values with
an associated security level which is the same as the subject. Figure 5.7 shows an
instance of relation PROJ* as accessed by a subject at a confidential security level.

Multilevel access control has strong impact on the data model because users
do not see the same data and have to deal with unexpected side-effects. One major
side-effect is called polyinstantiation [Lunt et al., 1990] which allows the same object
to have different attribute values depending on the users’ security level. Figure 5.8
illustrates a multirelation with polyinstantiated tuples. Tuple of primary key P3 has
two instantiations, each one with a different security level. This may result from a
subject S with security level C inserting a tuple with key="P3” in relation PROJ* in
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PROJ*C

PNO SL1| PNAME SL2 | BUDGET SL3 | LOC SL4

P1 C | Instrumentation C 150000 C Montreal C
p2 C | Database Develop. C Null C Null C

Fig. 5.7 Confidential relation PROJ*C

Figure 5.6. Because S (with confidential clearance level) should ignore the existence
of tuple with key="P3” (classified as secret), the only practical solution is to add a
second tuple with same key and different classification. However, a user with secret
clearance would see both tuples with key="E3” and should interpret this unexpected
effect.

PROJ**

PNO SL1| PNAME SL2 | BUDGET SL3 | LOC SL4
P1 C | Instrumentation C 150000 C Montreal C
P2 C | Database Develop. C 135000 S New York S
P3 S | CAD/CAM S 250000 S New York S
P3 C | Web Develop. C 200000 C Paris C

Fig. 5.8 Multilevel relation with polyinstantiation

5.2.3 Distributed Access Control

The additional problems of access control in a distributed environment stem from the
fact that objects and subjects are distributed and that messages with sensitive data
can be read by unauthorized users. These problems are: remote user authentication,
management of discretionary access rules, handling of views and of user groups, and
enforcing multilevel access control.

Remote user authentication is necessary since any site of a distributed DBMS
may accept programs initiated, and authorized, at remote sites. To prevent remote
access by unauthorized users or applications (e.g., from a site that is not part of the
distributed DBMS), users must also be identified and authenticated at the accessed
site. Furthermore, instead of using passwords that could be obtained from sniffing
messages, encrypted certificates could be used.

Three solutions are possible for managing authentication:

1. Authentication information is maintained at a central site for global users
which can then be authenticated only once and then accessed from multiple
sites.
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2. The information for authenticating users (user name and password) is repli-
cated at all sites in the catalog. Local programs, initiated at a remote site, must
also indicate the user name and password.

3. Allssites of the distributed DBMS identify and authenticate themselves similar
to the way users do. Intersite communication is thus protected by the use of
the site password. Once the initiating site has been authenticated, there is no
need for authenticating their remote users.

The first solution simplifies password administration significantly and enables
single authentication (also called single sign on). However, the central authentication
site can be a single point of failure and a bottleneck. The second solution is more
costly in terms of directory management given that the introduction of a new user is
a distributed operation. However, users can access the distributed database from any
site. The third solution is necessary if user information is not replicated. Nevertheless,
it can also be used if there is replication of the user information. In this case it makes
remote authentication more efficient. If user names and passwords are not replicated,
they should be stored at the sites where the users access the system (i.e., the home
site). The latter solution is based on the realistic assumption that users are more static,
or at least they always access the distributed database from the same site.

Distributed authorization rules are expressed in the same way as centralized ones.
Like view definitions, they must be stored in the catalog. They can be either fully
replicated at each site or stored at the sites of the referenced objects. In the latter case
the rules are duplicated only at the sites where the referenced objects are distributed.
The main advantage of the fully replicated approach is that authorization can be
processed by query modification [Stonebraker, 1975] at compile time. However,
directory management is more costly because of data duplication. The second solution
is better if locality of reference is very high. However, distributed authorization cannot
be controlled at compile time.

Views may be considered to be objects by the authorization mechanism. Views
are composite objects, that is, composed of other underlying objects. Therefore,
granting access to a view translates into granting access to underlying objects. If
view definition and authorization rules for all objects are fully replicated (as in many
systems), this translation is rather simple and can be done locally. The translation is
harder when the view definition and its underlying objects are all stored separately
[Wilms and Lindsay, 1981], as is the case with site autonomy assumption. In this
situation, the translation is a totally distributed operation. The authorizations granted
on views depend on the access rights of the view creator on the underlying objects. A
solution is to record the association information at the site of each underlying object.

Handling user groups for the purpose of authorization simplifies distributed
database administration. In a centralized DBMS, “all users” can be referred to
as public. In a distributed DBMS, the same notion is useful, the public denoting all
the users of the system. However an intermediate level is often introduced to specify
the public at a particular site, denoted by public @site_s [Wilms and Lindsay, 1981].
The public is a particular user group. More precise groups can be defined by the
command
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DEFINE GROUP (group-id) AS (list of subject ids)

The management of groups in a distributed environment poses some problems
since the subjects of a group can be located at various sites and access to an object may
be granted to several groups, which are themselves distributed. If group information
as well as access rules are fully replicated at all sites, the enforcement of access
rights is similar to that of a centralized system. However, maintaining this replication
may be expensive. The problem is more difficult if site autonomy (with decentralized
control) must be maintained. Several solutions to this problem have been identified
[Wilms and Lindsay, 1981]. One solution enforces access rights by performing a
remote query to the nodes holding the group definition. Another solution replicates a
group definition at each node containing an object that may be accessed by subjects
of that group. These solutions tend to decrease the degree of site autonomy.

Enforcing multilevel access control in a distributed environment is made difficult
by the possibility of indirect means, called covert channels, to access unauthorized
data [Rjaibi, 2004]. For instance, consider a simple distributed DBMS architecture
with two sites, each managing its database at a single security level, e.g., one site
is confidential while the other is secret. According to the “no write down” rule, an
update operation from a subject with secret clearance could only be sent to the secret
site. However, according to the “no read up” rule, a read query from the same secret
subject could be sent to both the secret and the confidential sites. Since the query sent
to the confidential site may contain secret information (e.g., in a select predicate),
it is potentially a covert channel. To avoid such covert channels, a solution is to
replicate part of the database [Thuraisingham, 2001] so that a site at security level [
contains all data that a subject at level / can access. For instance, the secret site would
replicate confidential data so that it can entirely process secret queries. One problem
with this architecture is the overhead of maintaining the consistency of replicas
(see Chapter 13 on replication). Furthermore, although there are no covert channels
for queries, there may still be covert channels for update operations because the
delays involved in synchronizing transactions may be exploited [Jajodia et al., 2001].
The complete support for multilevel access control in distributed database systems,
therefore, requires significant extensions to transaction management techniques [Ray
et al., 2000] and to distributed query processing techniques [Agrawal et al., 2003].

5.3 Semantic Integrity Control

Another important and difficult problem for a database system is how to guaran-
tee database consistency. A database state is said to be consistent if the database
satisfies a set of constraints, called semantic integrity constraints. Maintaining a
consistent database requires various mechanisms such as concurrency control, re-
liability, protection, and semantic integrity control, which are provided as part of
transaction management. Semantic integrity control ensures database consistency by
rejecting update transactions that lead to inconsistent database states, or by activat-
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ing specific actions on the database state, which compensate for the effects of the
update transactions. Note that the updated database must satisfy the set of integrity
constraints.

In general, semantic integrity constraints are rules that represent the knowledge
about the properties of an application. They define static or dynamic application
properties that cannot be directly captured by the object and operation concepts of a
data model. Thus the concept of an integrity rule is strongly connected with that of a
data model in the sense that more semantic information about the application can be
captured by means of these rules.

Two main types of integrity constraints can be distinguished: structural constraints
and behavioral constraints. Structural constraints express basic semantic properties
inherent to a model. Examples of such constraints are unique key constraints in the
relational model, or one-to-many associations between objects in the object-oriented
model. Behavioral constraints, on the other hand, regulate the application behavior.
Thus they are essential in the database design process. They can express associations
between objects, such as inclusion dependency in the relational model, or describe
object properties and structures. The increasing variety of database applications and
the development of database design aid tools call for powerful integrity constraints
that can enrich the data model.

Integrity control appeared with data processing and evolved from procedural meth-
ods (in which the controls were embedded in application programs) to declarative
methods. Declarative methods have emerged with the relational model to alleviate the
problems of program/data dependency, code redundancy, and poor performance of
the procedural methods. The idea is to express integrity constraints using assertions
of predicate calculus [Florentin, 1974]. Thus a set of semantic integrity assertions
defines database consistency. This approach allows one to easily declare and modify
complex integrity constraints.

The main problem in supporting automatic semantic integrity control is that
the cost of checking for constraint violation can be prohibitive. Enforcing integrity
constraints is costly because it generally requires access to a large amount of data
that are not directly involved in the database updates. The problem is more difficult
when constraints are defined over a distributed database.

Various solutions have been investigated to design an integrity manager by com-
bining optimization strategies. Their purpose is to (1) limit the number of constraints
that need to be enforced, (2) decrease the number of data accesses to enforce a given
constraint in the presence of an update transaction, (3) define a preventive strategy
that detects inconsistencies in a way that avoids undoing updates, (4) perform as
much integrity control as possible at compile time. A few of these solutions have been
implemented, but they suffer from a lack of generality. Either they are restricted to a
small set of assertions (more general constraints would have a prohibitive checking
cost) or they only support restricted programs (e.g., single-tuple updates).

In this section we present the solutions for semantic integrity control first in
centralized systems and then in distributed systems. Since our context is the relational
model, we consider only declarative methods.
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5.3.1 Centralized Semantic Integrity Control

A semantic integrity manager has two main components: a language for expressing
and manipulating integrity assertions, and an enforcement mechanism that performs
specific actions to enforce database integrity upon update transactions.

5.3.1.1 Specification of Integrity Constraints

Integrity constraints should be manipulated by the database administrator using a
high-level language. In this section we illustrate a declarative language for specifying
integrity constraints [Simon and Valduriez, 1987]. This language is much in the spirit
of the standard SQL language, but with more generality. It allows one to specify,
read, or drop integrity constraints. These constraints can be defined either at relation
creation time, or at any time, even if the relation already contains tuples. In both cases,
however, the syntax is almost the same. For simplicity and without lack of generality,
we assume that the effect of integrity constraint violation is to abort the violating
transactions. However, the SQL standard provides means to express the propagation
of update actions to correct inconsistencies, with the CASCADING clause within
the constraint declaration. More generally, triggers (event-condition-action rules)
[Ramakrishnan and Gehrke, 2003] can be used to automatically propagate updates,
and thus to maintain semantic integrity. However, triggers are quite powerful and
thus more difficult to support efficiently than specific integrity constraints.

In relational database systems, integrity constraints are defined as assertions. An
assertion is a particular expression of tuple relational calculus (see Chapter 2), in
which each variable is either universally (V) or existentially (3) quantified. Thus an
assertion can be seen as a query qualification that is either true or false for each tuple
in the Cartesian product of the relations determined by the tuple variables. We can
distinguish between three types of integrity constraints: predefined, precondition, or
general constraints.

Examples of integrity constraints will be given on the following database:

EMP(ENO, ENAME, TITLE)
PROJ(PNO, PNAME, BUDGET)
ASG(ENO, PNO, RESP, DUR)
Predefined constraints are based on simple keywords. Through them, it is possible
to express concisely the more common constraints of the relational model, such as

non-null attribute, unique key, foreign key, or functional dependency [Fagin and
Vardi, 1984]. Examples 5.11 through 5.14 demonstrate predefined constraints.

Example 5.11. Employee number in relation EMP cannot be null.

ENO NOT NULL IN EMP



190 5 Data and Access Control

Example 5.12. The pair (ENO, PNO) is the unique key in relation ASG.

(ENO, PNO) UNIQUE IN ASG

¢

Example 5.13. The project number PNO in relation ASG is a foreign key matching
the primary key PNO of relation PROJ. In other words, a project referred to in
relation ASG must exist in relation PROJ.

PNO IN ASG REFERENCES PNO IN PROJ

¢

Example 5.14. The employee number functionally determines the employee name.

ENO IN EMP DETERMINES ENAME

¢

Precondition constraints express conditions that must be satisfied by all tuples in a
relation for a given update type. The update type, which might be INSERT, DELETE,
or MODIFY, permits restricting the integrity control. To identify in the constraint
definition the tuples that are subject to update, two variables, NEW and OLD, are
implicitly defined. They range over new tuples (to be inserted) and old tuples (to
be deleted), respectively [Astrahan et al., 1976]. Precondition constraints can be
expressed with the SQL CHECK statement enriched with the ability to specify the
update type. The syntax of the CHECK statement is

CHECK ON (relation name ) WHEN(update type)
((qualification over relation name))

Examples of precondition constraints are the following:

Example 5.15. The budget of a project is between 500K and 1000K.

CHECK ON PROJ (BUDGET+ >= 500000 AND BUDGET <= 1000000)

¢
Example 5.16. Only the tuples whose budget is 0 may be deleted.
CHECK ON PROJ WHEN DELETE (BUDGET = 0)
¢
Example 5.17. The budget of a project can only increase.
CHECK ON PROJ (NEW.BUDGET > OLD.BUDGET
AND NEW.PNO = OLD.PNO)
¢

General constraints are formulas of tuple relational calculus where all variables
are quantified. The database system must ensure that those formulas are always
true. General constraints are more concise than precompiled constraints since the
former may involve more than one relation. For instance, at least three precompiled
constraints are necessary to express a general constraint on three relations. A general
constraint may be expressed with the following syntax:
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CHECK ON 1list of <variable name>:<relation name>,
(<qualification>)

Examples of general constraints are given below.
Example 5.18. The constraint of Example 5.8 may also be expressed as

CHECK ON el:EMP, e2:EMP
(el.ENAME = e2.ENAME IF el.ENO = e2.ENO)

¢

Example 5.19. The total duration for all employees in the CAD project is less than
100.

CHECK ON g:ASG, j:PROJ (SUM(g.DUR WHERE
g.PNO=73.PNO) <100 IF j.PNAME="CAD/CAM")

5.3.1.2 Integrity Enforcement

We now focus on enforcing semantic integrity that consists of rejecting update
transactions that violate some integrity constraints. A constraint is violated when it
becomes false in the new database state produced by the update transaction. A major
difficulty in designing an integrity manager is finding efficient enforcement algo-
rithms. Two basic methods permit the rejection of inconsistent update transactions.
The first one is based on the defection of inconsistencies. The update transaction u is
executed, causing a change of the database state D to D,,. The enforcement algorithm
verifies, by applying tests derived from these constraints, that all relevant constraints
hold in state D,,. If state D, is inconsistent, the DBMS can try either to reach another
consistent state, D/,, by modifying D, with compensation actions, or to restore state
D by undoing u. Since these tests are applied after having changed the database state,
they are generally called posttests. This approach may be inefficient if a large amount
of work (the update of D) must be undone in the case of an integrity failure.

The second method is based on the prevention of inconsistencies. An update
is executed only if it changes the database state to a consistent state. The tuples
subject to the update transaction are either directly available (in the case of insert) or
must be retrieved from the database (in the case of deletion or modification). The
enforcement algorithm verifies that all relevant constraints will hold after updating
those tuples. This is generally done by applying to those tuples tests that are derived
from the integrity constraints. Given that these tests are applied before the database
state is changed, they are generally called pretests. The preventive approach is more
efficient than the detection approach since updates never need to be undone because
of integrity violation.

The query modification algorithm [Stonebraker, 1975] is an example of a pre-
ventive method that is particularly efficient at enforcing domain constraints. It adds
the assertion qualification to the query qualification by an AND operator so that the
modified query can enforce integrity.
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Example 5.20. The query for increasing the budget of the CAD/CAM project by
10%, which would be specified as

UPDATE PROJ
SET BUDGET = BUDGET=x1.1
WHERE PNAME= "CAD/CAM"

will be transformed into the following query in order to enforce the domain constraint
discussed in Example 5.9.

UPDATE PROJ

SET BUDGET = BUDGET * 1.1
WHERE PNAME= "CAD/CAM"

AND NEW.BUDGET > 500000
AND NEW.BUDGET < 1000000

¢

The query modification algorithm, which is well known for its elegance, produces
pretests at run time by ANDing the assertion predicates with the update predicates of
each instruction of the transaction. However, the algorithm only applies to tuple cal-
culus formulas and can be specified as follows. Consider the assertion (Vx € R)F(x),
where F is a tuple calculus expression in which x is the only free variable. An update
of R can be written as (Vx € R)(Q(x) = update(x)), where Q is a tuple calculus
expression whose only free variable is x. Roughly speaking, the query modification
consists in generating the update (Vx € R)((Q(x) and F(x)) =update(x)). Thus x
needs to be universally quantified.

Example 5.21. The foreign key constraint of Example 5.13 that can be rewritten as
Vg € ASG, 3j € PROJ : g PNO = j.PNO

could not be processed by query modification because the variable j is not universally
quantified. ¢

To handle more general constraints, pretests can be generated at constraint defi-
nition time, and enforced at run time when updates occur [Bernstein et al., 1980a;
Bernstein and Blaustein, 1982; Blaustein, 1981; Nicolas, 1982]. The method de-
scribed by Nicolas [1982] is restricted to updates that insert or delete a single tuple of
a single relation. The algorithm proposed by Bernstein et al. [1980a] and Blaustein
[1981] is an improvement, although updates are single single tuple. The algorithm
builds a pretest at constraint definition time for each constraint and each update
type (insert, delete). These pretests are enforced at run time. This method accepts
multirelation, monovariable assertions, possibly with aggregates. The principle is the
substitution of the tuple variables in the assertion by constants from an updated tuple.
Despite its important contribution to research, the method is hardly usable in a real
environment because of the restriction on updates.

In the rest of this section, we present the method proposed by Simon and Valduriez
[1986, 1987], which combines the generality of updates supported by Stonebraker
[1975] with at least the generality of assertions for which pretests can be produced by
Blaustein [1981]. This method is based on the production, at assertion definition time,
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of pretests that are used subsequently to prevent the introduction of inconsistencies
in the database. This is a general preventive method that handles the entire set of
constraints introduced in the preceding section. It significantly reduces the proportion
of the database that must be checked when enforcing assertions in the presence of
updates. This is a major advantage when applied to a distributed environment.

The definition of pretest uses differential relations, as defined in Section 5.1.3. A
pretest is a triple (R, U, C) in which R is a relation, U is an update type, and C is an
assertion ranging over the differential relation(s) involved in an update of type U.
When an integrity constraint / is defined, a set of pretests may be produced for the
relations used by I. Whenever a relation involved in / is updated by a transaction
u, the pretests that must be checked to enforce I are only those defined on 7 for the
update type of u. The performance advantage of this approach is twofold. First, the
number of assertions to enforce is minimized since only the pretests of type u need
be checked. Second, the cost of enforcing a pretest is less than that of enforcing 1
since differential relations are, in general, much smaller than the base relations.

Pretests may be obtained by applying transformation rules to the original asser-
tion. These rules are based on a syntactic analysis of the assertion and quantifier
permutations. They permit the substitution of differential relations for base relations.
Since the pretests are simpler than the original ones, the process that generates them
is called simplification.

Example 5.22. Consider the modified expression of the foreign key constraint in
Example 5.15. The pretests associated with this constraint are

(ASG, INSERT, (), (PROJ, DELETE, ;) and (PROJ, MODIFY, C3)
where C; is

vV NEW € ASG*, 3j € PROJ: NEW.PNO = j.PNO
Cyis

Vg € ASG, V OLD € PROJ™ : g.PNO # OLD.PNO
and C3 is

Vg € ASG, VOLD € PROJ-, 3NEW € PROJ* : g.PNO # OLD.PNO OR

OLD.PNO = NEW.PNO
¢

The advantage provided by such pretests is obvious. For instance, a deletion on
relation ASG does not incur any assertion checking.

The enforcement algorithm [Simon and Valduriez, 1984] makes use of pretests and
is specialized according to the class of the assertions. Three classes of constraints are
distinguished: single-relation constraints, multirelation constrainss, and constraints
involving aggregate functions.
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Let us now summarize the enforcement algorithm. Recall that an update transac-
tion updates all tuples of relation R that satisfy some qualification. The algorithm
acts in two steps. The first step generates the differential relations R™ and R~ from R.
The second step simply consists of retrieving the tuples of R™ and R, which do not
satisfy the pretests. If no tuples are retrieved, the constraint is valid. Otherwise, it is
violated.

Example 5.23. Suppose there is a deletion on PROJ. Enforcing (PROJ, DELETE,
() consists in generating the following statement:

result < retrieve all tuples of PROJ~ where —(C;)

Then, if the result is empty, the assertion is verified by the update and consistency
is preserved. ¢

5.3.2 Distributed Semantic Integrity Control

In this section we present algorithms for ensuring the semantic integrity of distributed
databases. They are extensions of the simplification method discussed previously. In
what follows, we assume global transaction management capabilities, as provided
for homogeneous systems or multidatabase systems. Thus, the two main problems
of designing an integrity manager for such a distributed DBMS are the definition
and storage of assertions, and the enforcement of these constraints. We will also
discuss the issues involved in integrity constraint checking when there is no global
transaction support.

5.3.2.1 Definition of Distributed Integrity Constraints

An integrity constraint is supposed to be expressed in tuple relational calculus. Each
assertion is seen as a query qualification that is either true or false for each tuple
in the Cartesian product of the relations determined by the tuple variables. Since
assertions can involve data stored at different sites, the storage of the constraints
must be decided so as to minimize the cost of integrity checking. There is a strategy
based on a taxonomy of integrity constraints that distinguishes three classes:

1. Individual constraints: single-relation single-variable constraints. They refer
only to tuples to be updated independently of the rest of the database. For
instance, the domain constraint of Example 5.15 is an individual assertion.

2. Set-oriented constraints: include single-relation multivariable constraints such
as functional dependency (Example 5.14) and multirelation multivariable
constraints such as foreign key constraints (Example 5.13).
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3. Constraints involving aggregates: require special processing because of the
cost of evaluating the aggregates. The assertion in Example 5.19 is representa-
tive of a constraint of this class.

The definition of a new integrity constraint can be started at one of the sites
that store the relations involved in the assertion. Remember that the relations can
be fragmented. A fragmentation predicate is a particular case of assertion of class
1. Different fragments of the same relation can be located at different sites. Thus,
defining an integrity assertion becomes a distributed operation, which is done in
two steps. The first step is to transform the high-level assertions into pretests, using
the techniques discussed in the preceding section. The next step is to store pretests
according to the class of constraints. Constraints of class 3 are treated like those of
class 1 or 2, depending on whether they are individual or set-oriented.

Individual constraints.

The constraint definition is sent to all other sites that contain fragments of the relation
involved in the constraint. The constraint must be compatible with the relation data
at each site. Compatibility can be checked at two levels: predicate and data. First,
predicate compatibility is verified by comparing the constraint predicate with the
fragment predicate. A constraint C is not compatible with a fragment predicate p
if “C is true” implies that “p is false,” and is compatible with p otherwise. If non-
compatibility is found at one of the sites, the constraint definition is globally rejected
because tuples of that fragment do not satisfy the integrity constraints. Second, if
predicate compatibility has been found, the constraint is tested against the instance
of the fragment. If it is not satisfied by that instance, the constraint is also globally
rejected. If compatibility is found, the constraint is stored at each site. Note that the
compatibility checks are performed only for pretests whose update type is “insert”
(the tuples in the fragments are considered “inserted”).

Example 5.24. Consider relation EMP, horizontally fragmented across three sites
using the predicates

p1:0<ENO < “E3”
p2 : "E3” < ENO < “E6”
p3 : ENO > “E6”
and the domain constraint C: ENO < “E4”. Constraint C is compatible with p
(if C is true, p; is true) and p; (if C is true, p; is not necessarily false), but not with
p3 (if C is true, then ps is false). Therefore, constraint C should be globally rejected

because the tuples at site 3 cannot satisfy C, and thus relation EMP does not satisfy

C. ¢
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Set-oriented constraints.

Set-oriented constraint are multivariable; that is, they involve join predicates. Al-
though the assertion predicate may be multirelation, a pretest is associated with a
single relation. Therefore, the constraint definition can be sent to all the sites that
store a fragment referenced by these variables. Compatibility checking also involves
fragments of the relation used in the join predicate. Predicate compatibility is useless
here, because it is impossible to infer that a fragment predicate p is false if the
constraint C (based on a join predicate) is true. Therefore C must be checked for
compatibility against the data. This compatibility check basically requires joining
each fragment of the relation, say R, with all fragments of the other relation, say S,
involved in the constraint predicate. This operation may be expensive and, as any
join, should be optimized by the distributed query processor. Three cases, given in
increasing cost of checking, can occur:

1. The fragmentation of R is derived (see Chapter 3) from that of S based on a
semijoin on the attribute used in the assertion join predicate.

S is fragmented on join attribute.

S is not fragmented on join attribute.

In the first case, compatibility checking is cheap since the tuple of S matching a
tuple of R is at the same site. In the second case, each tuple of R must be compared
with at most one fragment of S, because the join attribute value of the tuple of R can
be used to find the site of the corresponding fragment of S. In the third case, each
tuple of R must be compared with all fragments of S. If compatibility is found for all
tuples of R, the constraint can be stored at each site.

Example 5.25. Consider the set-oriented pretest (ASG, INSERT, C;) defined in
Example 5.16, where C| is

V NEW € ASG*, 3j € PROJ: NEW.PNO = ;. PNO

Let us consider the following three cases:

1. ASG is fragmented using the predicate
ASGKx PNO PROJ,’

where PROJ; is a fragment of relation PROJ. In this case each tuple NEW of
ASG has been placed at the same site as tuple j such that NEW.PNO = j.PNO.
Since the fragmentation predicate is identical to that of C;, compatibility
checking does not incur communication.

2. PROJ is horizontally fragmented based on the two predicates

p1 : PNO < “P3”
p2 : PNO > “P3”
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In this case each tuple NEW of ASG is compared with either fragment
PROJ;, if NEW.PNO < “P3”, or fragment PROJ, if NEW.PNO > “P3”.

3. PROIJ is horizontally fragmented based on the two predicates

p1 : PNAME = “CAD/CAM”
p2 : PNAME # “CAD/CAM”

In this case each tuple of ASG must be compared with both fragments PROJ;
and PROJ5.

¢

5.3.2.2 Enforcement of Distributed Integrity Assertions

Enforcing distributed integrity assertions is more complex than needed in centralized
DBMSs, even with global transaction management support. The main problem is to
decide where (at which site) to enforce the integrity constraints. The choice depends
on the class of the constraint, the type of update, and the nature of the site where the
update is issued (called the query master site). This site may, or may not, store the
updated relation or some of the relations involved in the integrity constraints. The
critical parameter we consider is the cost of transferring data, including messages,
from one site to another. We now discuss the different types of strategies according
to these criteria.

Individual constraints.

Two cases are considered. If the update transaction is an insert statement, all the
tuples to be inserted are explicitly provided by the user. In this case, all individual
constraints can be enforced at the site where the update is submitted. If the update
is a qualified update (delete or modify statements), it is sent to the sites storing the
relation that will be updated. The query processor executes the update qualification
for each fragment. The resulting tuples at each site are combined into one temporary
relation in the case of a delete statement, or two, in the case of a modify statement
(i.e., R™ and R™). Each site involved in the distributed update enforces the assertions
relevant at that site (e.g., domain constraints when it is a delete).

Set-oriented constraints.

We first study single-relation constraints by means of an example. Consider the
functional dependency of Example 5.14. The pretest associated with update type
INSERT is

(EMP, INSERT, C)
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where C is
(Ve € EMP)(VNEW1 € EMP)(VNEW2 € EMP) (1)
(NEW1.ENO = e¢.ENO = NEWI1.ENAME = ¢.ENAME) A 2)

(NEW1.ENO = NEW2.ENO = NEW1ENAME = NEW2.ENAME)(3)

The second line in the definition of C checks the constraint between the inserted
tuples (NEW 1) and the existing ones (e), while the third checks it between the inserted
tuples themselves. That is why two variables (NEW1 and NEW2) are declared in the
first line.

Consider now an update of EMP. First, the update qualification is executed by
the query processor and returns one or two temporary relations, as in the case of
individual constraints. These temporary relations are then sent to all sites storing
EMP. Assume that the update is an INSERT statement. Then each site storing a
fragment of EMP will enforce constraint C described above. Because e in C is
universally quantified, C must be satisfied by the local data of each site. This is due
to the fact that Vx € {ai,...,a,}f(x) is equivalent to [f(ai1) A f(az) A--- A f(an)].
Thus the site where the update is submitted must receive for each site a message
indicating that this constraint is satisfied and that it is a condition for all sites. If the
constraint is not true for one site, this site sends an error message indicating that the
constraint has been violated. The update is then invalid, and it is the responsibility of
the integrity manager to decide if the entire transaction must be rejected using the
global transaction manager.

Let us now consider multirelation constraints. For the sake of clarity, we assume
that the integrity constraints do not have more than one tuple variable ranging over
the same relation. Note that this is likely to be the most frequent case. As with
single-relation constraints, the update is computed at the site where it was submitted.
The enforcement is done at the query master site, using the ENFORCE algorithm
given in Algorithm 5.2.

Example 5.26. We illustrate this algorithm through an example based on the foreign
key constraint of Example 5.13. Let u be an insertion of a new tuple into ASG. The
previous algorithm uses the pretest (ASG, INSERT, C), where C is

V¥ NEW € ASG+, 3j € PROJ : NEW.PNO = j.PNO

For this constraint, the retrieval statement is to retrieve all new tuples in ASG™
where C is not true. This statement can be expressed in SQL as

SELECT NEW. *
FROM ASGY NEW, PROJ
WHERE COUNT (PROJ.PNO WHERE NEW.PNO = PROJ.PNO)=0

Note that NEW.* denotes all the attributes of ASG™. ¢

Thus the strategy is to send new tuples to sites storing relation PROJ in order to
perform the joins, and then to centralize all results at the query master site. For each
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Algorithm 5.2: ENFORCE Algorithm
Input: U: update type; R: relation
begin
retrieve all compiled assertions (R, U, C) ;
inconsistent < false ;
for each compiled assertion do
| result < all new (respectively old), tuples of R where —(C;)
if card(result) # 0 then
L inconsistent < true
if —inconsistent then
| send the tuples to update to all the sites storing fragments of R
else
| reject the update

end

site storing a fragment of PROJ, the site joins the fragment with ASG™ and sends the
result to the query master site, which performs the union of all results. If the union is
empty, the database is consistent. Otherwise, the update leads to an inconsistent state
and should be rejected, using the global transaction manager. More sophisticated
strategies that notify or compensate inconsistencies can also be devised.

Constraints involving aggregates.

These constraints are among the most costly to test because they require the calcu-
lation of the aggregate functions. The aggregate functions generally manipulated
are MIN, MAX, SUM, and COUNT. Each aggregate function contains a projection
part and a selection part. To enforce these constraints efficiently, it is possible to
produce pretest that isolate redundant data which can be stored at each site storing
the associated relation [Bernstein and Blaustein, 1982]. This data is what we called
materialized views in Section 5.1.2.

5.3.2.3 Summary of Distributed Integrity Control

The main problem of distributed integrity control is that the communication and
processing costs of enforcing distributed constraints can be prohibitive. The two
main issues in designing a distributed integrity manager are the definition of the
distributed assertions and of the enforcement algorithms, which minimize the cost of
distributed integrity checking. We have shown in this chapter that distributed integrity
control can be completely achieved, by extending a preventive method based on the
compilation of semantic integrity constraints into pretests. The method is general
since all types of constraints expressed in first-order predicate logic can be handled.
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It is compatible with fragment definition and minimizes intersite communication. A
better performance of distributed integrity enforcement can be obtained if fragments
are defined carefully. Therefore, the specification of distributed integrity constraints
is an important aspect of the distributed database design process.

The method described above assumes global transaction support. Without global
transaction support as in some loosely-coupled multidatabase systems, the problem is
more difficult [Grefen and Widom, 1997]. First, the interface between the constraint
manager and the component DBMS is different since constraint checking can no
longer be part of the global transaction validation. Instead, the component DBMSs
should notify the integrity manager to perform constraint checking after some events,
e.g., as a result of local transactions’s commitments. This can be done using triggers
whose events are updates to relations involved in global constraints. Second, if a
global constraint violation is detected, since there is no way to specify global aborts,
specific correcting transactions should be provided to produce global database states
that are consistent. A family of protocols for global integrity checking has been
proposed [Grefen and Widom, 1997]. The root of the family is a simple strategy,
based on the computation of differential relations (as in the previous method), which
is shown to be safe (correctly identifies constraint violations) but inaccurate (may
raise an error event though there is no constraint violation). Inaccuracy is due to the
fact that producing differential relations at different times at different sites may yield
phantom states for the global database, i.e., states that never existed. Extensions of
the basic protocol with either timestamping or using local transaction commands are
proposed to solve that problem.

5.4 Conclusion

Semantic data and access control includes view management, security control, and
semantic integrity control. In the relational framework, these functions can be uni-
formly achieved by enforcing rules that specify data manipulation control. Solutions
initially designed for handling these functions in centralized systems have been
significantly extended and enriched for distributed systems, in particular, support for
materialized views and group-based discretionary access control. Semantic integrity
control has received less attention and is generally not supported by distributed
DBMS products.

Full semantic data control is more complex and costly in terms of performance in
distributed systems. The two main issues for efficiently performing data control are
the definition and storage of the rules (site selection) and the design of enforcement
algorithms which minimize communication costs. The problem is difficult since
increased functionality (and generality) tends to increase site communication. The
problem is simplified if control rules are fully replicated at all sites and harder if
site autonomy is to be preserved. In addition, specific optimizations can be done
to minimize the cost of data control but with extra overhead such as managing
materialized views or redundant data. Thus the specification of distributed data
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control must be included in the distributed database design so that the cost of control
for update programs is also considered.

5.5 Bibliographic Notes

Semantic data control is well-understood in centralized systems [Ramakrishnan and
Gehrke, 2003] and all major DBMSs provide extensive support for it. Research on
semantic data control in distributed systems started in the early 1980’s with the R*
project at IBM Research and has increased much since then to address new important
applications such as data warehousing or data integration.

Most of the work on view management has concerned updates through views and
support for materialized views. The two basic papers on centralized view management
are [Chamberlin et al., 1975] and [Stonebraker, 1975]. The first reference presents an
integrated solution for view and authorization management in System R. The second
reference describes INGRES’s query modification technique for uniformly handling
views, authorizations, and semantic integrity control. This method was presented in
Section 5.1.

Theoretical solutions to the problem of view updates are given in [Bancilhon and
Spyratos, 1981; Dayal and Bernstein, 1978], and [Keller, 1982]. The first of these is
the seminal paper on view update semantics [Bancilhon and Spyratos, 1981] where
the authors formalize the view invariance property after updating, and show how
a large class of views including joins can be updated. Semantic information about
the base relations is particularly useful for finding unique propagation of updates.
However, the current commercial systems are very restrictive in supporting updates
through views.

Materialized views have received much attention. The notion of snapshot for
optimizing view derivation in distributed database systems is due to [Adiba and
Lindsay, 1980]. Adiba [1981] generalizes the notion of snapshot by that of derived
relation in a distributed context. He also proposes a unified mechanism for managing
views, and snapshots, as well as fragmented and replicated data. Gupta and Mumick
[1999c] have edited a thorough collection of papers on materialized view management
in. In [Gupta and Mumick, 1999a], they describe the main techniques to perform
incremental maintenance of materialized views. The counting algorithm which we
presented in Section 5.1.3 has been proposed in [Gupta et al., 1993].

Security in computer systems in general is presented in [Hoffman, 1977]. Security
in centralized database systems is presented in [Lunt and Fernandez, 1990; Castano
et al., 1995]. Discretionary access control in distributed systems has first received
much attention in the context of the R* project. The access control mechanism of
System R Griffiths and Wade [1976] is extended in [Wilms and Lindsay, 1981] to
handle groups of users and to run in a distributed environment. Multilevel access
control for distributed DBMS has recently gained much interest. The seminal paper
on multilevel access control is the Bell and Lapaduda model originally designed for
operating system security [Bell and Lapuda, 1976]. Multilevel access control for



202 5 Data and Access Control

databases is described in [Lunt and Fernandez, 1990; Jajodia and Sandhu, 1991].
A good introduction to multilevel security in relational DBMS can be found in
[Rjaibi, 2004]. Transaction management in multilevel secure DBMS is addressed in
[Ray et al., 2000; Jajodia et al., 2001]. Extensions of multilevel access control for
distributed DBMS are proposed in [Thuraisingham, 2001].

The content of Section 5.3 comes largely from the work on semantic integrity
control described in [Simon and Valduriez, 1984, 1986] and [Simon and Valduriez,
1987]. In particular, [Simon and Valduriez, 1986] extends a preventive strategy for
centralized integrity control based on pretests to run in a distributed environment,
assuming global transaction support. The initial idea of declarative methods, that is, to
use assertions of predicate logic to specify integrity constraints, is due to [Florentin,
1974]. The most important declarative methods are in [Bernstein et al., 1980a;
Blaustein, 1981; Nicolas, 1982; Simon and Valduriez, 1984], and [Stonebraker, 1975].
The notion of concrete views for storing redundant data is described in [Bernstein and
Blaustein, 1982]. Note that concrete views are useful in optimizing the enforcement
of constraints involving aggregates. [Civelek et al., 1988; Sheth et al., 1988b] and
Sheth et al. [1988a] describe systems and tools for semantic data control, particularly
view management. Semantic intergrity checking in loosely-coupled multidatabase
systems without global transaction support is addressed in [Grefen and Widom,
1997].

Exercises

Problem 5.1. Define in SQL-like syntax a view of the engineering database V(ENO,
ENAME, PNO, RESP), where the duration is 24. Is view V updatable? Assume that
relations EMP and ASG are horizontally fragmented based on access frequencies as
follows:

Site 1 Site 2 Site 3
EMP; EMP,
ASG; ASG;

where

EMP, = GTITLE#“Engineer”(EMP)
EMP; = ori1LE = “Engineer” (EMP)
ASG| = 0p<pur<36(ASG)
ASG; = opur>36(ASG)

At which site(s) should the definition of V be stored without being fully replicated,
to increase locality of reference?

Problem 5.2. Express the following query: names of employees in view V who work
on the CAD project.

Problem 5.3 (*). Assume that relation PROJ is horizontally fragmented as
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PROJ; = opnamE = “cap»(PROIJ)
PROJ, = opname--cap(PROJ)

Modify the query obtained in Exercise 5.2 to a query expressed on the fragments.

Problem 5.4 (**). Propose a distributed algorithm to efficiently refresh a snapshot
at one site derived by projection from a relation horizontally fragmented at two other
sites. Give an example query on the view and base relations which produces an
inconsistent result.

Problem 5.5 (*). Consider the view EG of Example 5.5 which uses relations EMP
and ASG as base data and assume its state is derived from that of Example 3.1, so
that EG has 9 tuples (see Figure 5.4). Assume that tuple (E3, P3, Consultant, 10)
from ASG is updated to (E3, P3, Engineer, 10). Apply the basic counting algorithm
for refreshing the view EG. What projected attributes should be added to view EG to
make it self-maintainable?

Problem 5.6. Propose a relation schema for storing the access rights associated with
user groups in a distributed database catalog, and give a fragmentation scheme for
that relation, assuming that all members of a group are at the same site.

Problem 5.7 (**). Give an algorithm for executing the REVOKE statement in a
distributed DBMS, assuming that the GRANT privilege can be granted only to a
group of users where all its members are at the same site.

Problem 5.8 (**). Consider the multilevel relation PROJ** in Figure 5.8. Assuming
that there are only two classification levels for attributes (S and C), propose an
allocation of PROJ** on two sites using fragmentation and replication that avoids
covert channels on read queries. Discuss the constraints on updates for this allocation
to work.

Problem 5.9. Using the integrity constraint specification language of this chapter,
express an integrity constraint which states that the duration spent in a project cannot
exceed 48 months.

Problem 5.10 (*). Define the pretests associated with integrity constraints covered
in Examples 5.11 to 5.14.

Problem 5.11. Assume the following vertical fragmentation of relations EMP, ASG
and PROJ:

Site 1 Site2 Site3 Site 4
EMP; EMP,
PROJ; PROJ,
ASG, ASG,

where
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EMP; = Ilgno, ExaME(EMP)
EMP; = Ilgno, TrtLE(EMP)
PROJ; = Ilpno, pNaME(PROJ)
PROJ; = Ilpno, BupGeT(PROJ)
ASG; = Ilgno, pNo, RESP(ASG)
ASG; = Ilgno, pno, DUR(ASG)

Where should the pretests obtained in Exercise 5.9 be stored?

Problem 5.12 (**). Consider the following set-oriented constraint:

CHECK ON e:EMP, a:ASG
(e .ENO = a.ENO and (e.TITLE = "Programmer")
IF a.RESP = "Programmer")

What does it mean? Assuming that EMP and ASG are allocated as in the previ-
ous exercice, define the corresponding pretests and theri storage. Apply algorithm
ENFORCE for an update of type INSERT in ASG.

Problem 5.13 (**). Assume a distributed multidatabase system with no global trans-
action support. Assume also that there are two sites, each with a (different) EMP
relation and a integrity manager that communicates with the component DBMS. Sup-
pose that we want to have a global unique key constraint on EMP. Propose a simple
strategy using differential relations to check this constraint. Discuss the possible
actions when a constraint is violated.



Chapter 6
Overview of Query Processing

The success of relational database technology in data processing is due, in part, to the
availability of non-procedural languages (i.e., SQL), which can significantly improve
application development and end-user productivity. By hiding the low-level details
about the physical organization of the data, relational database languages allow the
expression of complex queries in a concise and simple fashion. In particular, to
construct the answer to the query, the user does not precisely specify the procedure
to follow. This procedure is actually devised by a DBMS module, usually called a
query processor. This relieves the user from query optimization, a time-consuming
task that is best handled by the query processor, since it can exploit a large amount
of useful information about the data.

Because it is a critical performance issue, query processing has received (and
continues to receive) considerable attention in the context of both centralized and
distributed DBMSs. However, the query processing problem is much more difficult
in distributed environments than in centralized ones, because a larger number of
parameters affect the performance of distributed queries. In particular, the relations
involved in a distributed query may be fragmented and/or replicated, thereby induc-
ing communication overhead costs. Furthermore, with many sites to access, query
response time may become very high.

In this chapter we give an overview of query processing in distributed DBMSs,
leaving the details of the important aspects of distributed query processing to the next
two chapters. The context chosen is that of relational calculus and relational algebra,
because of their generality and wide use in distributed DBMSs. As we saw in Chapter
3, distributed relations are implemented by fragments. Distributed database design is
of major importance for query processing since the definition of fragments is based
on the objective of increasing reference locality, and sometimes parallel execution
for the most important queries. The role of a distributed query processor is to map
a high-level query (assumed to be expressed in relational calculus) on a distributed
database (i.e., a set of global relations) into a sequence of database operators (of
relational algebra) on relation fragments. Several important functions characterize
this mapping. First, the calculus query must be decomposed into a sequence of
relational operators called an algebraic query. Second, the data accessed by the
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query must be localized so that the operators on relations are translated to bear on
local data (fragments). Finally, the algebraic query on fragments must be extended
with communication operators and optimized with respect to a cost function to be
minimized. This cost function typically refers to computing resources such as disk
1/0s, CPUs, and communication networks.

The chapter is organized as follows. In Section 6.1 we illustrate the query process-
ing problem. In Section 6.2 we define precisely the objectives of query processing
algorithms. The complexity of relational algebra operators, which affect mainly the
performance of query processing, is given in Section 6.3. In Section 6.4 we provide a
characterization of query processors based on their implementation choices. Finally,
in Section 6.5 we introduce the different layers of query processing starting from a
distributed query down to the execution of operators on local sites and communica-
tion between sites. The layers introduced in Section 6.5 are described in detail in the
next two chapters.

6.1 Query Processing Problem

The main function of a relational query processor is to transform a high-level query
(typically, in relational calculus) into an equivalent lower-level query (typically, in
some variation of relational algebra). The low-level query actually implements the
execution strategy for the query. The transformation must achieve both correctness
and efficiency. It is correct if the low-level query has the same semantics as the
original query, that is, if both queries produce the same result. The well-defined
mapping from relational calculus to relational algebra (see Chapter 2) makes the
correctness issue easy. But producing an efficient execution strategy is more involved.
A relational calculus query may have many equivalent and correct transformations
into relational algebra. Since each equivalent execution strategy can lead to very
different consumptions of computer resources, the main difficulty is to select the
execution strategy that minimizes resource consumption.

Example 6.1. We consider the following subset of the engineering database schema
given in Figure 2.3:

EMP(ENO, ENAME, TITLE)
ASG(ENO, PNO, RESP, DUR)

and the following simple user query:
“Find the names of employees who are managing a project”

The expression of the query in relational calculus using the SQL syntax is
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SELECT ENAME

FROM EMP, ASG

WHERE EMP.ENO = ASG.ENO
AND RESP = ‘‘Manager’’

Two equivalent relational algebra queries that are correct transformations of the
query above are

TITeNAME (ORESP="Manager’AEMPENO=ASG.ENO (EMP x ASG))

and

IMenamMe(EMP Xeno (ORESP=“Manager” (ASG)))

It is intuitively obvious that the second query, which avoids the Cartesian product
of EMP and ASG, consumes much less computing resources than the first, and thus
should be retained. ¢

In a centralized context, query execution strategies can be well expressed in an
extension of relational algebra. The main role of a centralized query processor is to
choose, for a given query, the best relational algebra query among all equivalent ones.
Since the problem is computationally intractable with a large number of relations
[Ibaraki and Kameda, 1984], it is generally reduced to choosing a solution close to
the optimum.

In a distributed system, relational algebra is not enough to express execution
strategies. It must be supplemented with operators for exchanging data between
sites. Besides the choice of ordering relational algebra operators, the distributed
query processor must also select the best sites to process data, and possibly the way
data should be transformed. This increases the solution space from which to choose
the distributed execution strategy, making distributed query processing significantly
more difficult.

Example 6.2. This example illustrates the importance of site selection and commu-
nication for a chosen relational algebra query against a fragmented database. We
consider the following query of Example 6.1:

Iename (EMP Xgno (ORESP="Manager” (ASG)))

We assume that relations EMP and ASG are horizontally fragmented as follows:

EMP; = ogno<-E3" (EMP)
EMP; = ogno><E37(EMP)
ASG; = Ogno<E3"(ASG)
ASG; = Ogno>E3"(ASG)

Fragments ASG;, ASG;, EMP;, and EMP, are stored at sites 1, 2, 3, and 4,
respectively, and the result is expected at site 5.

For the sake of pedagogical simplicity, we ignore the project operator in the
following. Two equivalent distributed execution strategies for the above query are
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shown in Figure 6.1. An arrow from site i to site j labeled with R indicates that
relation R is transferred from site i to site j. Strategy A exploits the fact that relations
EMP and ASG are fragmented the same way in order to perform the select and join
operator in parallel. Strategy B centralizes all the operand data at the result site before
processing the query.

Site 5

result = EMP‘l v EMP’2

EMP’,
Site 3
EMP’, = EMP, M,  ASG', EMP’, = EMP, M .,  ASG,
A A
ASG", ASG',
Site 1 Site 2
ASG'; = Opegp=managerSC1 ASG’; = Opegp=managerSC;

(a) Strategy A

Site 5

result = (EMP, U EMP,) Y (ASG, UASG,)

ENO cSRESF’:"Manac\:Jer"

ASG;//’ AS?7/ﬂ k\Eypl k\\EMP2

Site 1 Site 2 Site 3 Site 4

(b) Strategy B

Fig. 6.1 Equivalent Distributed Execution Strategies

To evaluate the resource consumption of these two strategies, we use a simple
cost model. We assume that a tuple access, denoted by fupacc, is 1 unit (which we
leave unspecified) and a tuple transfer, denoted ruptrans, is 10 units. We assume
that relations EMP and ASG have 400 and 1000 tuples, respectively, and that there
are 20 managers in relation ASG. We also assume that data is uniformly distributed
among sites. Finally, we assume that relations ASG and EMP are locally clustered on
attributes RESP and ENO, respectively. Therefore, there is direct access to tuples of
ASG (respectively, EMP) based on the value of attribute RESP (respectively, ENO).

The total cost of strategy A can be derived as follows:
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1. Produce ASG’ by selecting ASG requires (10+ 10) xtupacc = 20
2. Transfer ASG' to the sites of EMP requires (104 10) xtuptrans = 200
3. Produce EMP’ by joining ASG’ and EMP requires

(10+ 10) x tupacc 2 = 40
4. Transfer EMP’ to result site requires (10 + 10) x tuptrans = 200
The total cost is 460
The cost of strategy B can be derived as follows:
1. Transfer EMP to site 5 requires 400 * tuptrans = 4,000
2. Transfer ASG to site 5 requires 1000 * tuptrans = 10,000
3. Produce ASG’ by selecting ASG requires 1000 * tupacc = 1,000
4. Join EMP and ASG’ requires 400 20 * tupacc = 8,000
The total cost is 23,000

In strategy A, the join of ASG’ and EMP (step 3) can exploit the cluster index on
ENO of EMP. Thus, EMP is accessed only once for each tuple of ASG'. In strategy
B, we assume that the access methods to relations EMP and ASG based on attributes
RESP and ENO are lost because of data transfer. This is a reasonable assumption
in practice. We assume that the join of EMP and ASG’ in step 4 is done by the
default nested loop algorithm (that simply performs the Cartesian product of the
two input relations). Strategy A is better by a factor of 50, which is quite significant.
Furthermore, it provides better distribution of work among sites. The difference
would be even higher if we assumed slower communication and/or higher degree of
fragmentation. ¢

6.2 Objectives of Query Processing

As stated before, the objective of query processing in a distributed context is to trans-
form a high-level query on a distributed database, which is seen as a single database
by the users, into an efficient execution strategy expressed in a low-level language on
local databases. We assume that the high-level language is relational calculus, while
the low-level language is an extension of relational algebra with communication
operators. The different layers involved in the query transformation are detailed in
Section 6.5. An important aspect of query processing is query optimization. Because
many execution strategies are correct transformations of the same high-level query,
the one that optimizes (minimizes) resource consumption should be retained.

A good measure of resource consumption is the fotal cost that will be incurred
in processing the query [Sacco and Yao, 1982]. Total cost is the sum of all times
incurred in processing the operators of the query at various sites and in intersite
communication. Another good measure is the response time of the query [Epstein
et al., 1978], which is the time elapsed for executing the query. Since operators
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can be executed in parallel at different sites, the response time of a query may be
significantly less than its total cost.

In a distributed database system, the total cost to be minimized includes CPU,
I/O, and communication costs. The CPU cost is incurred when performing operators
on data in main memory. The I/O cost is the time necessary for disk accesses. This
cost can be minimized by reducing the number of disk accesses through fast access
methods to the data and efficient use of main memory (buffer management). The
communication cost is the time needed for exchanging data between sites participat-
ing in the execution of the query. This cost is incurred in processing the messages
(formatting/deformatting), and in transmitting the data on the communication net-
work.

The first two cost components (I/O and CPU cost) are the only factors considered
by centralized DBMSs. The communication cost component is equally important
factor considered in distributed databases. Most of the early proposals for distributed
query optimization assume that the communication cost largely dominates local
processing cost (I/O and CPU cost), and thus ignore the latter. This assumption is
based on very slow communication networks (e.g., wide area networks that used
to have a bandwidth of a few kilobytes per second) rather than on networks with
bandwidths that are comparable to disk connection bandwidth. Therefore, the aim of
distributed query optimization reduces to the problem of minimizing communica-
tion costs generally at the expense of local processing. The advantage is that local
optimization can be done independently using the known methods for centralized
systems. However, modern distributed processing environments have much faster
communication networks, as discussed in Chapter 2, whose bandwidth is comparable
to that of disks. Therefore, more recent research efforts consider a weighted combi-
nation of these three cost components since they all contribute significantly to the
total cost of evaluating a query' [Page and Popek, 1985]. Nevertheless, in distributed
environments with high bandwidths, the overhead cost incurred for communication
between sites (e.g., software protocols) makes communication cost still an important
factor.

6.3 Complexity of Relational Algebra Operations

In this chapter we consider relational algebra as a basis to express the output of query
processing. Therefore, the complexity of relational algebra operators, which directly
affects their execution time, dictates some principles useful to a query processor.
These principles can help in choosing the final execution strategy.

The simplest way of defining complexity is in terms of relation cardinalities
independent of physical implementation details such as fragmentation and storage

! There are some studies that investigate the feasibility of retrieving data from a neighboring nodes’
main memory cache rather than accessing them from a local disk [Franklin et al., 1992; Dahlin
et al., 1994; Freeley et al., 1995]. These approaches would have a significant impact on query
optimization.



6.4 Characterization of Query Processors 211

structures. Figure 6.2 shows the complexity of unary and binary operators in the
order of increasing complexity, and thus of increasing execution time. Complexity is
O(n) for unary operators, where n denotes the relation cardinality, if the resulting
tuples may be obtained independently of each other. Complexity is O(n *logn) for
binary operators if each tuple of one relation must be compared with each tuple of the
other on the basis of the equality of selected attributes. This complexity assumes that
tuples of each relation must be sorted on the comparison attributes. However, using
hashing and enough memory to hold one hashed relation can reduce the complexity
of binary operators O(n) [Bratbergsengen, 1984]. Projects with duplicate elimination
and grouping operators require that each tuple of the relation be compared with each
other tuple, and thus also have O(n xlogn) complexity. Finally, complexity is O(n?)
for the Cartesian product of two relations because each tuple of one relation must be
combined with each tuple of the other.

Operation Complexity

Select
) . ) N O(n)
Project (without duplicate elimination)

Project (with duplicate elimination)

O(n*log n)
Group by
Join
Semijoin

O(n*log n)
Division
Set Operators
Cartesian Product o(n?)

Fig. 6.2 Complexity of Relational Algebra Operations

This simple look at operator complexity suggests two principles. First, because
complexity is relative to relation cardinalities, the most selective operators that reduce
cardinalities (e.g., selection) should be performed first. Second, operators should
be ordered by increasing complexity so that Cartesian products can be avoided or
delayed.

6.4 Characterization of Query Processors

It is quite difficult to evaluate and compare query processors in the context of both
centralized systems [Jarke and Koch, 1984] and distributed systems [Sacco and
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Yao, 1982; Apers et al., 1983; Kossmann, 2000] because they may differ in many
aspects. In what follows, we list important characteristics of query processors that
can be used as a basis for comparison. The first four characteristics hold for both
centralized and distributed query processors while the next four characteristics are
particular to distributed query processors in tightly-integrated distributed DBMSs.
This characterization is used in Chapter 8 to compare various algorithms.

6.4.1 Languages

Initially, most work on query processing was done in the context of relational DBMSs
because their high-level languages give the system many opportunities for optimiza-
tion. The input language to the query processor is thus based on relational calculus.
With object DBMSs, the language is based on object calculus which is merely an
extension of relational calculus. Thus, decomposition to object algebra is also needed
(see Chapter 15). XML, another data model that we consider in this book, has its
own languages, primarily in XQuery and XPath. Their execution requires special
care that we discuss in Chapter 17.

The former requires an additional phase to decompose a query expressed in
relational calculus into relational algebra. In a distributed context, the output language
is generally some internal form of relational algebra augmented with communication
primitives. The operators of the output language are implemented directly in the
system. Query processing must perform efficient mapping from the input language
to the output language.

6.4.2 Types of Optimization

Conceptually, query optimization aims at choosing the “best” point in the solution
space of all possible execution strategies. An immediate method for query optimiza-
tion is to search the solution space, exhaustively predict the cost of each strategy, and
select the strategy with minimum cost. Although this method is effective in selecting
the best strategy, it may incur a significant processing cost for the optimization itself.
The problem is that the solution space can be large; that is, there may be many
equivalent strategies, even with a small number of relations. The problem becomes
worse as the number of relations or fragments increases (e.g., becomes greater than
5 or 6). Having high optimization cost is not necessarily bad, particularly if query
optimization is done once for many subsequent executions of the query. Therefore, an
“exhaustive” search approach is often used whereby (almost) all possible execution
strategies are considered [Selinger et al., 1979].

To avoid the high cost of exhaustive search, randomized strategies, such as iterative
improvement [Swami, 1989] and simulated annealing [loannidis and Wong, 1987]
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have been proposed. They try to find a very good solution, not necessarily the best one,
but avoid the high cost of optimization, in terms of memory and time consumption.
Another popular way of reducing the cost of exhaustive search is the use of
heuristics, whose effect is to restrict the solution space so that only a few strategies
are considered. In both centralized and distributed systems, a common heuristic is to
minimize the size of intermediate relations. This can be done by performing unary
operators first, and ordering the binary operators by the increasing sizes of their
intermediate relations. An important heuristic in distributed systems is to replace join
operators by combinations of semijoins to minimize data communication.

6.4.3 Optimization Timing

A query may be optimized at different times relative to the actual time of query
execution. Optimization can be done statically before executing the query or dynami-
cally as the query is executed. Static query optimization is done at query compilation
time. Thus the cost of optimization may be amortized over multiple query executions.
Therefore, this timing is appropriate for use with the exhaustive search method. Since
the sizes of the intermediate relations of a strategy are not known until run time, they
must be estimated using database statistics. Errors in these estimates can lead to the
choice of suboptimal strategies.

Dynamic query optimization proceeds at query execution time. At any point of
execution, the choice of the best next operator can be based on accurate knowledge of
the results of the operators executed previously. Therefore, database statistics are not
needed to estimate the size of intermediate results. However, they may still be useful
in choosing the first operators. The main advantage over static query optimization
is that the actual sizes of intermediate relations are available to the query processor,
thereby minimizing the probability of a bad choice. The main shortcoming is that
query optimization, an expensive task, must be repeated for each execution of the
query. Therefore, this approach is best for ad-hoc queries.

Hybrid query optimization attempts to provide the advantages of static query opti-
mization while avoiding the issues generated by inaccurate estimates. The approach
is basically static, but dynamic query optimization may take place at run time when
a high difference between predicted sizes and actual size of intermediate relations is
detected.

6.4.4 Statistics

The effectiveness of query optimization relies on statistics on the database. Dynamic
query optimization requires statistics in order to choose which operators should
be done first. Static query optimization is even more demanding since the size of
intermediate relations must also be estimated based on statistical information. In a
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distributed database, statistics for query optimization typically bear on fragments,
and include fragment cardinality and size as well as the size and number of distinct
values of each attribute. To minimize the probability of error, more detailed statistics
such as histograms of attribute values are sometimes used at the expense of higher
management cost. The accuracy of statistics is achieved by periodic updating. With
static optimization, significant changes in statistics used to optimize a query might
result in query reoptimization.

6.4.5 Decision Sites

When static optimization is used, either a single site or several sites may participate
in the selection of the strategy to be applied for answering the query. Most systems
use the centralized decision approach, in which a single site generates the strategy.
However, the decision process could be distributed among various sites participating
in the elaboration of the best strategy. The centralized approach is simpler but requires
knowledge of the entire distributed database, while the distributed approach requires
only local information. Hybrid approaches where one site makes the major decisions
and other sites can make local decisions are also frequent. For example, System R*
[Williams et al., 1982] uses a hybrid approach.

6.4.6 Exploitation of the Network Topology

The network topology is generally exploited by the distributed query processor. With
wide area networks, the cost function to be minimized can be restricted to the data
communication cost, which is considered to be the dominant factor. This assumption
greatly simplifies distributed query optimization, which can be divided into two
separate problems: selection of the global execution strategy, based on intersite
communication, and selection of each local execution strategy, based on a centralized
query processing algorithm.

With local area networks, communication costs are comparable to I/O costs.
Therefore, it is reasonable for the distributed query processor to increase parallel
execution at the expense of communication cost. The broadcasting capability of
some local area networks can be exploited successfully to optimize the processing of
join operators [Ozsoyoglu and Zhou, 1987; Wah and Lien, 1985]. Other algorithms
specialized to take advantage of the network topology are discussed by Kerschberg
et al. [1982] for star networks and by LaChimia [1984] for satellite networks.

In a client-server environment, the power of the client workstation can be exploited
to perform database operators using data shipping [Franklin et al., 1996]. The
optimization problem becomes to decide which part of the query should be performed
on the client and which part on the server using query shipping.
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6.4.7 Exploitation of Replicated Fragments

A distributed relation is usually divided into relation fragments as described in Chap-
ter 3. Distributed queries expressed on global relations are mapped into queries on
physical fragments of relations by translating relations into fragments. We call this
process localization because its main function is to localize the data involved in
the query. For higher reliability and better read performance, it is useful to have
fragments replicated at different sites. Most optimization algorithms consider the lo-
calization process independently of optimization. However, some algorithms exploit
the existence of replicated fragments at run time in order to minimize communication
times. The optimization algorithm is then more complex because there are a larger
number of possible strategies.

6.4.8 Use of Semijoins

The semijoin operator has the important property of reducing the size of the operand
relation. When the main cost component considered by the query processor is commu-
nication, a semijoin is particularly useful for improving the processing of distributed
join operators as it reduces the size of data exchanged between sites. However, using
semijoins may result in an increase in the number of messages and in the local
processing time. The early distributed DBMSs, such as SDD-1 [Bernstein et al.,
1981], which were designed for slow wide area networks, make extensive use of
semijoins. Some later systems, such as R* [Williams et al., 1982], assume faster
networks and do not employ semijoins. Rather, they perform joins directly since
using joins leads to lower local processing costs. Nevertheless, semijoins are still
beneficial in the context of fast networks when they induce a strong reduction of
the join operand. Therefore, some query processing algorithms aim at selecting an
optimal combination of joins and semijoins [Ozsoyoglu and Zhou, 1987; Wah and
Lien, 1985].

6.5 Layers of Query Processing

In Chapter 1 we have seen where query processing fits within the distributed DBMS
architecture. The problem of query processing can itself be decomposed into several
subproblems, corresponding to various layers. In Figure 6.3 a generic layering scheme
for query processing is shown where each layer solves a well-defined subproblem. To
simplify the discussion, let us assume a static and semicentralized query processor
that does not exploit replicated fragments. The input is a query on global data
expressed in relational calculus. This query is posed on global (distributed) relations,
meaning that data distribution is hidden. Four main layers are involved in distributed
query processing. The first three layers map the input query into an optimized
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Fig. 6.3 Generic Layering Scheme for Distributed Query Processing

distributed query execution plan. They perform the functions of query decomposition,
data localization, and global query optimization. Query decomposition and data
localization correspond to query rewriting. The first three layers are performed by a
central control site and use schema information stored in the global directory. The
fourth layer performs distributed query execution by executing the plan and returns
the answer to the query. It is done by the local sites and the control site. The first
two layers are treated extensively in Chapter 7, while the two last layers are detailed
in Chapter 8. In the remainder of this chapter we present an overview of these four
layers.

6.5.1 Query Decomposition

The first layer decomposes the calculus query into an algebraic query on global
relations. The information needed for this transformation is found in the global
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conceptual schema describing the global relations. However, the information about
data distribution is not used here but in the next layer. Thus the techniques used by
this layer are those of a centralized DBMS.

Query decomposition can be viewed as four successive steps. First, the calculus
query is rewritten in a normalized form that is suitable for subsequent manipulation.
Normalization of a query generally involves the manipulation of the query quantifiers
and of the query qualification by applying logical operator priority.

Second, the normalized query is analyzed semantically so that incorrect queries
are detected and rejected as early as possible. Techniques to detect incorrect queries
exist only for a subset of relational calculus. Typically, they use some sort of graph
that captures the semantics of the query.

Third, the correct query (still expressed in relational calculus) is simplified. One
way to simplify a query is to eliminate redundant predicates. Note that redundant
queries are likely to arise when a query is the result of system transformations applied
to the user query. As seen in Chapter 5, such transformations are used for performing
semantic data control (views, protection, and semantic integrity control).

Fourth, the calculus query is restructured as an algebraic query. Recall from
Section 6.1 that several algebraic queries can be derived from the same calculus
query, and that some algebraic queries are “better”” than others. The quality of an
algebraic query is defined in terms of expected performance. The traditional way
to do this transformation toward a “better” algebraic specification is to start with
an initial algebraic query and transform it in order to find a “good” one. The initial
algebraic query is derived immediately from the calculus query by translating the
predicates and the target statement into relational operators as they appear in the query.
This directly translated algebra query is then restructured through transformation
rules. The algebraic query generated by this layer is good in the sense that the
worse executions are typically avoided. For instance, a relation will be accessed only
once, even if there are several select predicates. However, this query is generally far
from providing an optimal execution, since information about data distribution and
fragment allocation is not used at this layer.

6.5.2 Data Localization

The input to the second layer is an algebraic query on global relations. The main role
of the second layer is to localize the query’s data using data distribution information
in the fragment schema. In Chapter 3 we saw that relations are fragmented and stored
in disjoint subsets, called fragments, each being stored at a different site. This layer
determines which fragments are involved in the query and transforms the distributed
query into a query on fragments. Fragmentation is defined by fragmentation pred-
icates that can be expressed through relational operators. A global relation can be
reconstructed by applying the fragmentation rules, and then deriving a program,
called a localization program, of relational algebra operators, which then act on
fragments. Generating a query on fragments is done in two steps. First, the query
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is mapped into a fragment query by substituting each relation by its reconstruction
program (also called materialization program), discussed in Chapter 3. Second,
the fragment query is simplified and restructured to produce another “good” query.
Simplification and restructuring may be done according to the same rules used in
the decomposition layer. As in the decomposition layer, the final fragment query is
generally far from optimal because information regarding fragments is not utilized.

6.5.3 Global Query Optimization

The input to the third layer is an algebraic query on fragments. The goal of query
optimization is to find an execution strategy for the query which is close to opti-
mal. Remember that finding the optimal solution is computationally intractable. An
execution strategy for a distributed query can be described with relational algebra
operators and communication primitives (send/receive operators) for transferring data
between sites. The previous layers have already optimized the query, for example,
by eliminating redundant expressions. However, this optimization is independent
of fragment characteristics such as fragment allocation and cardinalities. In addi-
tion, communication operators are not yet specified. By permuting the ordering of
operators within one query on fragments, many equivalent queries may be found.

Query optimization consists of finding the “best” ordering of operators in the
query, including communication operators that minimize a cost function. The cost
function, often defined in terms of time units, refers to computing resources such
as disk space, disk I/Os, buffer space, CPU cost, communication cost, and so on.
Generally, it is a weighted combination of I/O, CPU, and communication costs.
Nevertheless, a typical simplification made by the early distributed DBMSs, as we
mentioned before, was to consider communication cost as the most significant factor.
This used to be valid for wide area networks, where the limited bandwidth made
communication much more costly than local processing. This is not true anymore
today and communication cost can be lower than I/O cost. To select the ordering of
operators it is necessary to predict execution costs of alternative candidate orderings.
Determining execution costs before query execution (i.e., static optimization) is based
on fragment statistics and the formulas for estimating the cardinalities of results of
relational operators. Thus the optimization decisions depend on the allocation of
fragments and available statistics on fragments which are recorder in the allocation
schema.

An important aspect of query optimization is join ordering, since permutations of
the joins within the query may lead to improvements of orders of magnitude. One
basic technique for optimizing a sequence of distributed join operators is through the
semijoin operator. The main value of the semijoin in a distributed system is to reduce
the size of the join operands and then the communication cost. However, techniques
which consider local processing costs as well as communication costs may not use
semijoins because they might increase local processing costs. The output of the query
optimization layer is a optimized algebraic query with communication operators
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included on fragments. It is typically represented and saved (for future executions)
as a distributed query execution plan .

6.5.4 Distributed Query Execution

The last layer is performed by all the sites having fragments involved in the query.
Each subquery executing at one site, called a local query, is then optimized using
the local schema of the site and executed. At this time, the algorithms to perform
the relational operators may be chosen. Local optimization uses the algorithms of
centralized systems (see Chapter 8).

6.6 Conclusion

In this chapter we provided an overview of query processing in distributed DBMSs.
We first introduced the function and objectives of query processing. The main assump-
tion is that the input query is expressed in relational calculus since that is the case
with most current distributed DBMS. The complexity of the problem is proportional
to the expressive power and the abstraction capability of the query language. For
instance, the problem is even harder with important extensions such as the transitive
closure operator [Valduriez and Boral, 1986].

The goal of distributed query processing may be summarized as follows: given
a calculus query on a distributed database, find a corresponding execution strategy
that minimizes a system cost function that includes I/O, CPU, and communication
costs. An execution strategy is specified in terms of relational algebra operators
and communication primitives (send/receive) applied to the local databases (i.e., the
relation fragments). Therefore, the complexity of relational operators that affect the
performance of query execution is of major importance in the design of a query
processor.

We gave a characterization of query processors based on their implementation
choices. Query processors may differ in various aspects such as type of algorithm,
optimization granularity, optimization timing, use of statistics, choice of decision
site(s), exploitation of the network topology, exploitation of replicated fragments,
and use of semijoins. This characterization is useful for comparing alternative query
processor designs and to understand the trade-offs between efficiency and complexity.

The query processing problem is very difficult to understand in distributed envi-
ronments because many elements are involved. However, the problem may be divided
into several subproblems which are easier to solve individually. Therefore, we have
proposed a generic layering scheme for describing distributed query processing. Four
main functions have been isolated: query decomposition, data localization, global
query optimization, and distributed query execution. These functions successively
refine the query by adding more details about the processing environment. Query
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decomposition and data localization are treated in detail in Chapter 7. Distributed
query optimization and execution is the topic of Chapter 8.
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Ceri and Pelagatti [1984] deal extensively with distributed query processing by
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also discusses different distributed architectures such as client-server, multi-tier, and
multidatabases.



Chapter 7
Query Decomposition and Data Localization

In Chapter 6 we discussed a generic layering scheme for distributed query processing
in which the first two layers are responsible for query decomposition and data
localization. These two functions are applied successively to transform a calculus
query specified on distributed relations (i.e., global relations) into an algebraic query
defined on relation fragments. In this chapter we present the techniques for query
decomposition and data localization.

Query decomposition maps a distributed calculus query into an algebraic query on
global relations. The techniques used at this layer are those of the centralized DBMS
since relation distribution is not yet considered at this point. The resultant algebraic
query is “good” in the sense that even if the subsequent layers apply a straightforward
algorithm, the worst executions will be avoided. However, the subsequent layers
usually perform important optimizations, as they add to the query increasing detail
about the processing environment.

Data localization takes as input the decomposed query on global relations and ap-
plies data distribution information to the query in order to localize its data. In Chapter
3 we have seen that to increase the locality of reference and/or parallel execution,
relations are fragmented and then stored in disjoint subsets, called fragments, each
being placed at a different site. Data localization determines which fragments are
involved in the query and thereby transforms the distributed query into a fragment
query. Similar to the decomposition layer, the final fragment query is generally far
from optimal because quantitative information regarding fragments is not exploited
at this point. Quantitative information is used by the query optimization layer that
will be presented in Chapter 8.

This chapter is organized as follows. In Section 7.1 we present the four successive
phases of query decomposition: normalization, semantic analysis, simplification,
and restructuring of the query. In Section 7.2 we describe data localization, with
emphasis on reduction and simplification techniques for the four following types of
fragmentation: horizontal, vertical, derived, and hybrid.

M.T. Ozsu and P. Valduriez, Principles of Distributed Database Systems: Third Edition, 221
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7.1 Query Decomposition

Query decomposition (see Figure 6.3) is the first phase of query processing that
transforms a relational calculus query into a relational algebra query. Both input and
output queries refer to global relations, without knowledge of the distribution of data.
Therefore, query decomposition is the same for centralized and distributed systems.
In this section the input query is assumed to be syntactically correct. When this phase
is completed successfully the output query is semantically correct and good in the
sense that redundant work is avoided. The successive steps of query decomposition
are (1) normalization, (2) analysis, (3) elimination of redundancy, and (4) rewriting.
Steps 1, 3, and 4 rely on the fact that various transformations are equivalent for a
given query, and some can have better performance than others. We present the first
three steps in the context of tuple relational calculus (e.g., SQL). Only the last step
rewrites the query into relational algebra.

7.1.1 Normalization

The input query may be arbitrarily complex, depending on the facilities provided by
the language. It is the goal of normalization to transform the query to a normalized
form to facilitate further processing. With relational languages such as SQL, the
most important transformation is that of the query qualification (the WHERE clause),
which may be an arbitrarily complex, quantifier-free predicate, preceded by all
necessary quantifiers (V or 3). There are two possible normal forms for the predicate,
one giving precedence to the AND (A) and the other to the OR (V). The conjunctive
normal form is a conjunction (A predicate) of disjunctions (V predicates) as follows:

(PrtVPRV-NVPp) A AN(Pmt Y Pm2 VN D)

where p;; is a simple predicate. A qualification in disjunctive normal form, on the
other hand, is as follows:

(Pri AP A AP1a) VN (Pt AP N+ A Pun)

The transformation of the quantifier-free predicate is straightforward using the
well-known equivalence rules for logical operations (A, V, and —):

P1APp2<= p2Api
P11V p2= p2Vpi
p1A(p2Ap3)
p1V(p2Vps3)
piA(p2Vp3)
p1V(p2Ap3)

(p1ADp2)
(p1Vp2)
(P1AP2)V(p1 /\pa)
(p1Vp2) NP1V p3)

Ap
Vp

AU S o

54
54
-
54
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7. =(p1Ap2) & —p1V-op2
8. —(p1Vp2) & prA-p2
9. =(-p)ep

In the disjunctive normal form, the query can be processed as independent con-
junctive subqueries linked by unions (corresponding to the disjunctions). However,
this form may lead to replicated join and select predicates, as shown in the following
example. The reason is that predicates are very often linked with the other predicates
by AND. The use of rule 5 mentioned above, with p; as a join or select predicate,
would result in replicating p;. The conjunctive normal form is more practical since
query qualifications typically include more AND than OR predicates. However,
it leads to predicate replication for queries involving many disjunctions and few
conjunctions, a rare case.

Example 7.1. Let us consider the following query on the engineering database that
we have been referring to:

“Find the names of employees who have been working on project P1 for 12 or
24 months”

The query expressed in SQL is

SELECT ENAME

FROM EMP, ASG

WHERE EMP.ENO = ASG.ENO
AND ASG.PNO = "P1"

AND DUR = 12 OR DUR = 24

The qualification in conjunctive normal form is
EMP.ENO = ASG.ENO A ASG.PNO =“P1” A (DUR =12 V DUR = 24)
while the qualification in disjunctive normal form is

(EMPENO = ASG.ENO A ASG.PNO =“P1” ADUR =12) V
(EMP.ENO = ASG.ENO A ASG.PNO = “P1” A DUR = 24)

In the latter form, treating the two conjunctions independently may lead to redun-
dant work if common subexpressions are not eliminated. ¢

7.1.2 Analysis

Query analysis enables rejection of normalized queries for which further processing
is either impossible or unnecessary. The main reasons for rejection are that the query
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is type incorrect or semantically incorrect. When one of these cases is detected, the
query is simply returned to the user with an explanation. Otherwise, query processing
is continued. Below we present techniques to detect these incorrect queries.

A query is type incorrect if any of its attribute or relation names are not defined
in the global schema, or if operations are being applied to attributes of the wrong
type. The technique used to detect type incorrect queries is similar to type checking
for programming languages. However, the type declarations are part of the global
schema rather than of the query, since a relational query does not produce new types.

Example 7.2. The following SQL query on the engineering database is type incorrect
for two reasons. First, attribute E# is not declared in the schema. Second, the operation
“>200” is incompatible with the type string of ENAME.

SELECT E#
FROM EMP
WHERE ENAME > 200

¢

A query is semantically incorrect if its components do not contribute in any way
to the generation of the result. In the context of relational calculus, it is not possible
to determine the semantic correctness of general queries. However, it is possible to
do so for a large class of relational queries, those which do not contain disjunction
and negation [Rosenkrantz and Hunt, 1980]. This is based on the representation of
the query as a graph, called a query graph or connection graph [Ullman, 1982]. We
define this graph for the most useful kinds of queries involving select, project, and
join operators. In a query graph, one node indicates the result relation, and any other
node indicates an operand relation. An edge between two nodes one of which does
not correspond to the result represents a join, whereas an edge whose destination
node is the result represents a project. Furthermore, a non-result node may be labeled
by a select or a self-join (join of the relation with itself) predicate. An important
subgraph of the query graph is the join graph, in which only the joins are considered.
The join graph is particularly useful in the query optimization phase.

Example 7.3. Let us consider the following query:

“Find the names and responsibilities of programmers who have been working on
the CAD/CAM project for more than 3 years.”

The query expressed in SQL is
SELECT ENAME, RESP
FROM EMP, ASG, PROJ
WHERE EMP.ENO = ASG.ENO
AND  ASG.PNO = PROJ.PNO

AND PNAME = "CAD/CAM"
AND DUR > 36
AND TITLE = "Programmer"

The query graph for the query above is shown in Figure 7.1a. Figure 7.1b shows
the join graph for the graph in Figure 7.1a. ¢
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DUR=>36

TITLE =
"Programmer"

PNAME = "CAD/CAM"

(@) Query graph

EMP.ENO = ASG.ENO ASG.PNO = PROJ.PNO

(b) Corresponding join graph

Fig. 7.1 Relation Graphs

The query graph is useful to determine the semantic correctness of a conjunctive
multivariable query without negation. Such a query is semantically incorrect if its
query graph is not connected. In this case one or more subgraphs (corresponding to
subqueries) are disconnected from the graph that contains the result relation. The
query could be considered correct (which some systems do) by considering the
missing connection as a Cartesian product. But, in general, the problem is that join
predicates are missing and the query should be rejected.

Example 7.4. Let us consider the following SQL query:

SELECT ENAME, RESP
FROM EMP, ASG, PROJ
WHERE EMP.ENO = ASG.ENO

AND PNAME = "CAD/CAM"
AND DUR > 36
AND TITLE = "Programmer"

Its query graph, shown in Figure 7.2, is disconnected, which tells us that the query
is semantically incorrect. There are basically three solutions to the problem: (1) reject
the query, (2) assume that there is an implicit Cartesian product between relations
ASG and PROJ, or (3) infer (using the schema) the missing join predicate ASG.PNO
= PROJ.PNO which transforms the query into that of Example 7.3. ¢
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DUR>36

EMP.ENO = ASG.ENQ,
TITLE =
"Programmer"
ENAME

Fig. 7.2 Disconnected Query Graph

RESP ‘

PNAME = "CAD/CAM"

7.1.3 Elimination of Redundancy

As we saw in Chapter 5, relational languages can be used uniformly for semantic data
control. In particular, a user query typically expressed on a view may be enriched
with several predicates to achieve view-relation correspondence, and ensure semantic
integrity and security. The enriched query qualification may then contain redundant
predicates. A naive evaluation of a qualification with redundancy can well lead to
duplicated work. Such redundancy and thus redundant work may be eliminated by
simplifying the qualification with the following well-known idempotency rules:

PAp<=Dp
pVp<=p

p/N\true < p

pV false & p

PN false & false
pVtrue < true
pA-p <& false
pV p <& true
PiA(p1V p2) < p1
PV (P1AP2) & pi

L XA E WD

[
S

Example 7.5. The SQL query
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SELECT TITLE

FROM EMP

WHERE (NOT (TITLE = "Programmer")
AND (TITLE = "Programmer"

OR TITLE = "Elect. Eng.")

AND NOT (TITLE = "Elect. Eng."))
OR ENAME = "J. Doe"

can be simplified using the previous rules to become
SELECT TITLE
FROM EMP
WHERE ENAME = "J. Doe"

The simplification proceeds as follows. Let p; be TITLE = “Programmer”, p, be
TITLE = “Elect. Eng.”, and p3 be ENAME = “J. Doe”. The query qualification is

(=p1 A(p1V p2) A=p2) V p3

The disjunctive normal form for this qualification is obtained by applying rule 5
defined in Section 7.1.1, which yields

(=1 A((p1 A=p2) V(P2 A=p2))) V P3
and then rule 3 defined in Section 7.1.1, which yields
(=p1APLA=P2)V (mP1 AP2 A=p2) V p3
By applying rule 7 defined above, we obtain
(false A~p2) (~p1 A false) V ps
By applying the same rule, we get
falseV falseV p3

which is equivalent to p3 by rule 4. ¢

7.1.4 Rewriting

The last step of query decomposition rewrites the query in relational algebra. For the
sake of clarity it is customary to represent the relational algebra query graphically by
an operator tree. An operator tree is a tree in which a leaf node is a relation stored in
the database, and a non-leaf node is an intermediate relation produced by a relational
algebra operator. The sequence of operations is directed from the leaves to the root,
which represents the answer to the query.
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The transformation of a tuple relational calculus query into an operator tree can
easily be achieved as follows. First, a different leaf is created for each different
tuple variable (corresponding to a relation). In SQL, the leaves are immediately
available in the FROM clause. Second, the root node is created as a project operation
involving the result attributes. These are found in the SELECT clause in SQL. Third,
the qualification (SQL WHERE clause) is translated into the appropriate sequence
of relational operations (select, join, union, etc.) going from the leaves to the root.
The sequence can be given directly by the order of appearance of the predicates and
operators.

Example 7.6. The query

“Find the names of employees other than J. Doe who worked on the CAD/CAM
project for either one or two years” whose SQL expression is

SELECT ENAME
FROM PROJ, ASG, EMP

WHERE ASG.ENO = EMP.ENO

AND ASG.PNO = PROJ.PNO
AND ENAME !="J. Doe"

AND PROJ.PNAME = "CAD/CAM"
AND (DUR = 12 OR DUR = 24)

can be mapped in a straightforward way in the tree in Figure 7.3. The predicates have
been transformed in order of appearance as join and then select operations. ¢

By applying transformation rules, many different trees may be found equivalent
to the one produced by the method described above [Smith and Chang, 1975]. We
now present the six most useful equivalence rules, which concern the basic relational
algebra operators. The correctness of these rules has been proven [Ullman, 1982].

In the remainder of this section, R, S, and T are relations where R is defined over
attributes A = {A1,A»,...,A, } and S is defined over B= {B,B5,...,B,}.

1. Commutativity of binary operators. The Cartesian product of two relations
R and § is commutative:

RxS< SXR
Similarly, the join of two relations is commutative:
RXS & SHR

This rule also applies to union but not to set difference or semijoin.

2. Associativity of binary operators. The Cartesian product and the join are
associative operators:

(RxS)XT < Rx(SxT)
(RXS)MXT < RX(SXT)
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Fig. 7.3 Example of Operator Tree

3. Idempotence of unary operators. Several subsequent projections on the

same relation may be grouped. Conversely, a single projection on several
attributes may be separated into several subsequent projections. If R is defined
over the attribute set A, and A’ CA,A” C A, and A’ C A”, then

HA’(HA” (R)) & Iy (R)

Several subsequent selections 0,,(4,) on the same relation, where p; is a
predicate applied to attribute A;, may be grouped as follows:

Op, (Al)(aﬂz(Az)(R)) = GPI(AI)/\F2(A2)(R)
Conversely, a single selection with a conjunction of predicates may be sepa-
rated into several subsequent selections.

Commuting selection with projection. Selection and projection on the same
relation can be commuted as follows:

4;,..4,(Opa,) (R) < a4, (Opa,) (Tay,. 4,4, (R)))
Note that if A, is already a member of {A1,...,A,}, the last projection on
[A1,...,A,] on the right-hand side of the equality is useless.

Commuting selection with binary operators. Selection and Cartesian prod-
uct can be commuted using the following rule (remember that attribute A;
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belongs to relation R):
Op(a) (R X S) & (0p(a;)(R)) x S
Selection and join can be commuted:
Op(a)) (R Mp(a;.By) §) < Gpay(R) Mpayme) S

Selection and union can be commuted if R and T are union compatible (have
the same schema):

Op(a)) (RUT) & Opa,) (R) U G4, (T)

Selection and difference can be commuted in a similar fashion.

Commuting projection with binary operators. Projection and Cartesian
product can be commuted. If C =A’"UB’, where A’ CA, B’ C B,and A and B
are the sets of attributes over which relations R and S, respectively, are defined,
we have

Hc(R X S) = HA/(R) x I (S)
Projection and join can also be commuted.
HC(R N[)(A,’,Bj) S) A HA, (R) N[?(A,’,Bj) HB/ (S)

For the join on the right-hand side of the implication to hold we need to
have A; € A" and B; € B'. Since C = A’ UB', A; and B; are in C and therefore
we don’t need a projection over C once the projections over A’ and B’ are
performed. Projection and union can be commuted as follows:

HC(RUS) < Ie(R)U Hc(S)

Projection and difference can be commuted similarly.

The application of these six rules enables the generation of many equivalent trees.
For instance, the tree in Figure 7.4 is equivalent to the one in Figure 7.3. However,
the one in Figure 7.4 requires a Cartesian product of relations EMP and PROJ, and
may lead to a higher execution cost than the original tree. In the optimization phase,
one can imagine comparing all possible trees based on their predicted cost. However,
the excessively large number of possible trees makes this approach unrealistic. The
rules presented above can be used to restructure the tree in a systematic way so that
the “bad” operator trees are eliminated. These rules can be used in four different
ways. First, they allow the separation of the unary operations, simplifying the query
expression. Second, unary operations on the same relation may be grouped so that
access to a relation for performing unary operations can be done only once. Third,
unary operations can be commuted with binary operations so that some operations
(e.g., selection) may be done first. Fourth, the binary operations can be ordered. This
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last rule is used extensively in query optimization. A simple restructuring algorithm
uses a single heuristic that consists of applying unary operations (select/project) as
soon as possible to reduce the size of intermediate relations [Ullman, 1982].

11

ENAME
(&)

PNAME="CAD/CAM" A (DUR=12 v DUR=24) A ENAME ="J. Doe"

D4F’NO, ENO
x ASG
EMP PROJ

Fig. 7.4 Equivalent Operator Tree

Example 7.7. The restructuring of the tree in Figure 7.3 leads to the tree in Figure
7.5. The resulting tree is good in the sense that repeated access to the same relation
(as in Figure 7.3) is avoided and that the most selective operations are done first.
However, this tree is far from optimal. For example, the select operation on EMP
is not very useful before the join because it does not greatly reduce the size of the
operand relation. ¢

7.2 Localization of Distributed Data

In Section 7.1 we presented general techniques for decomposing and restructuring
queries expressed in relational calculus. These global techniques apply to both
centralized and distributed DBMSs and do not take into account the distribution
of data. This is the role of the localization layer. As shown in the generic layering
scheme of query processing described in Chapter 6, the localization layer translates
an algebraic query on global relations into an algebraic query expressed on physical
fragments. Localization uses information stored in the fragment schema.
Fragmentation is defined through fragmentation rules, which can be expressed
as relational queries. As we discussed in Chapter 3, a global relation can be recon-
structed by applying the reconstruction (or reverse fragmentation) rules and deriving
a relational algebra program whose operands are the fragments. We call this a lo-
calization program. To simplify this section, we do not consider the fact that data
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HENAME
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Fig. 7.5 Rewritten Operator Tree

fragments may be replicated, although this can improve performance. Replication is
considered in Chapter 8.

A naive way to localize a distributed query is to generate a query where each global
relation is substituted by its localization program. This can be viewed as replacing
the leaves of the operator tree of the distributed query with subtrees corresponding
to the localization programs. We call the query obtained this way the localized
query. In general, this approach is inefficient because important restructurings and
simplifications of the localized query can still be made [Ceri and Pelagatti, 1983;
Ceri et al., 1986]. In the remainder of this section, for each type of fragmentation we
present reduction techniques that generate simpler and optimized queries. We use the
transformation rules and the heuristics, such as pushing unary operations down the
tree, that were introduced in Section 7.1.4.

7.2.1 Reduction for Primary Horizontal Fragmentation

The horizontal fragmentation function distributes a relation based on selection predi-
cates. The following example is used in subsequent discussions.

Example 7.8. Relation EMP(ENO, ENAME, TITLE) of Figure 2.3 can be split into
three horizontal fragments EMP;, EMP,, and EMP3, defined as follows:
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EMP; = ogno< E3(EMP)
EMP; = o°g3*<gno<"E6*(EMP)
EMP;3 = 0gno>"E6”(EMP)

Note that this fragmentation of the EMP relation is different from the one discussed
in Example 3.12.

The localization program for an horizontally fragmented relation is the union of
the fragments. In our example we have

EMP = EMP,U EMP,U EMP;

Thus the localized form of any query specified on EMP is obtained by replacing it
by (EMP,U EMP,U EMP3. ¢

The reduction of queries on horizontally fragmented relations consists primarily of
determining, after restructuring the subtrees, those that will produce empty relations,
and removing them. Horizontal fragmentation can be exploited to simplify both
selection and join operations.

7.2.1.1 Reduction with Selection

Selections on fragments that have a qualification contradicting the qualification of
the fragmentation rule generate empty relations. Given a relation R that has been
horizontally fragmented as Ry, R, ..., R,,, where R; = Op; (R), the rule can be stated
formally as follows:

Rule 1: 6,,(R;) = ¢ if Vxin R : ~(p;i(x) A p;(x))

where p; and p; are selection predicates, x denotes a tuple, and p(x) denotes “predi-
cate p holds for x.”

For example, the selection predicate ENO=“E1” conflicts with the predicates of
fragments EMP, and EMP; of Example 7.8 (i.e., no tuple in EMP, and EMP3 can
satisfy this predicate). Determining the contradicting predicates requires theorem-
proving techniques if the predicates are quite general [Hunt and Rosenkrantz, 1979].
However, DBMSs generally simplify predicate comparison by supporting only simple
predicates for defining fragmentation rules (by the database administrator).

Example 7.9. We now illustrate reduction by horizontal fragmentation using the
following example query:

SELECT =*
FROM EMP
WHERE ENO = "E5"

Applying the naive approach to localize EMP from EMP;, EMP,, and EMP3
gives the localized query of Figure 7.6a. By commuting the selection with the union
operation, it is easy to detect that th