Clean (++

Sustainable Software Development
Patterns and Best Practices with G++ 17

Stephan Roth

Apress’

Clean C++

Sustainable Software Development Patterns
and Best Practices with C++ 17

Stephan Roth

Apress-

Clean C++: Sustainable Software Development Patterns and Best Practices with C++ 17

Stephan Roth
Bad Schwartau, Schleswig-Holstein, Germany

ISBN-13 (pbk): 978-1-4842-2792-3 ISBN-13 (electronic): 978-1-4842-2793-0
DOI10.1007/978-1-4842-2793-0

Library of Congress Control Number: 2017955209
Copyright © 2017 by Stephan Roth

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol
with every occurrence of a trademarked name, logo, or image we use the names, logos, and images only
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Cover image by Freepik (www. freepik.com)

Managing Director: Welmoed Spahr
Editorial Director: Todd Green
Acquisitions Editor: Steve Anglin
Development Editor: Matthew Moodie
Technical Reviewer: Marc Gregoire
Coordinating Editor: Mark Powers
Copy Editor: Karen Jameson

Distributed to the book trade worldwide by Springer Science+Business Media New York,

233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,

e-mail orders-ny@springer-sbm.com, or visit www. springeronline.com. Apress Media, LLC is a California
LLC and the sole member (owner) is Springer Science + Business Media Finance Inc

(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions
and licenses are also available for most titles. For more information, reference our Print and eBook Bulk
Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484227923. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

www.freepik.com
mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
http://www.apress.com/rights-permissions
http://www.apress.com/rights-permissions
http://www.apress.com/bulk-sales
www.apress.com/9781484227923
http://www.apress.com/source-code

To Caroline and Maximilian: my beloved and marvelous family.

Contents at a Glance

About the AUthOr ... ———————— Xiii
About the Technical REVIEWEYsveesssesssssssssssmsssssssssssssmssssssssssssssssssssnsnsnssnsssnsannas XV
Acknowledgments........cccciuiismmmsmnmmmmmmsssssssssssnnsmmesssssssssssnnsssessssssssnnsnnnnensssssssnnnnnns XVii
Chapter 1: Introductionccccnmmeemmmmmmmmmms s ——————————— 1
Chapter 2: Build a Safety Netcccccisemmmmmnnemmmmmisssnmmmsssssmmssssssmmssssssessssssnnns 9
Chapter 3: Be PrinCipled........ccccuiseenmmmssssnnsmssssssssmssssssssssssssnsssssssssssssssssnnssssssnnnnns 27
Chapter 4: Basics Of Clean C++.....ccccvunssmmmmmmssssnnmmssssssnnmssssssssssssssssssssssssssssssssnnnss 41
Chapter 5: Advanced Concepts of Modern C++........cccimmmsssmmnmmssssssnnmsssssssnssssssnnnss 85
Chapter 6: Object Orientationccccusreennnnnsennnnnssesnnnnsssr e —————— 133
Chapter 7: Functional Programmingccccuussesmmmssssssnssssssssnsssssssssssssssssnsssssnnnnns 167
Chapter 8: Test-Driven Developmentccccceemmmmmnsmsssssssssssmssmsssssssssssssssssesssssns 191
Chapter 9: Design Patterns and 1dioms.........ccccmnmnsmmnmmsssssnnmmsssssssmsssssssssssssssnns 217
Appendix A: Small UML GUIEcoeermmmsssmmmsnnmmmmssssssssssssssssssssssssssssssnssssssssssssnnnnns 273
Bibliographycccuiiiieeemmmmssnsnmmmsssssnmmssssssnmesssssnsnsssssnsnnsssssnnnnnssssnnnnnssssnnnnssssnnnnnns 285
INA@X.ciiieiinrie s —————————————————————_ 287

Contents

About the AUtROrccscmriemmisnmmesmses s Xiii
About the Technical REVIEWETcussesssssssssssansssssnsssssnsssssnsssssnsssssnsssssnsssssnnssssnnssssns XV
Acknowledgments........cccciuiismmmsmnmmmmmmsssssssssssnnsmmesssssssssssnnsssessssssssnnsnnnnensssssssnnnnnns XVii
Chapter 1: Introductioncccccciieemmininesnnmmnssssnmmssssn s 1
SOftWArE ENIOPY....ccceeceeceeceecrrsie s sss s s sn s s s s sn s sn s n e n s n s n s n e sn s nssnssnesnennnnnssnennns 2
ClEAN COUEeeverreerreerresessesressseses e ssesr s s s e e e s sssn e s s se e s e sas e saenn s e eae e saesnn e snnnnnnnns 3
WRY G oot ser e e s e e e e e e e e e e e e e d e e e n e e e n e nn e nnnnnnnnnnan 4
C++11 =The Beginning of @ NEW Era.........cccoeeeeeeecerece e sns e s s 4
WhO ThiS BOOK IS FOF........eieeticrreircsisse s s sss s sss s s s s s sssssssens 5
Conventions Used in ThiS BOOKcccouerererenerenneneresesesessesesesesesessesesesssesessesessssesesenns 5
RS0 072 £ 3PP 5
Notes, TipS, AN WAININGScooveriiirerinerene e sse e ssessesaessessesas s e ssesaessesaessssesssesassssssssssses 6

010 LT 11 0] 6
Companion Website and Source Code Repository..........c.cuuerermnsnnsnesnsnesnsesssesessns 7
UML Di@QIaMS....ccceceeresrrrersssessessssesssssssessssesssssssssssssssssssssssssssssssssssssnsssssssssssssssssssssssssssasens 7
Chapter 2: Build a Safety Netccccunemmmmmmnsmmmmmmssssmmmmssssnmssssssnmsssssnmssssssnnns 9
The Need fOr TESHINGccvveerierrerrrernsrre s n s sn s nn s 9
Introduction into TEStING........ccveerirrercr s 11
UNIE TESES . 13
What ahout QA?........cee e e 14
Rules for GOOd UNit TESEScccovreererercrerssesess e s snenes 15
TSt COUE QUANITYvevereeereerereerererereresereeseraesesaesesseras e sae e saesesaesesaesasserassesassesansesassesaesansesassersenersssnaes 15

UNIt TEST NAMING.....coeieiecee e s sa e s a e s s s b s e e e e e e e e e e e e e e e sresaennenens 15

CONTENTS

UNit TESE INAEPENUENCEcveeeeecee e s e s a e s a e sa e e e e sa e e e e e e e e e naen 16
0NE ASSEITION PEE TEST....coveerreereererrerererassersesersesessesessesas e saesessesessesessesassesaeesaessssessssesassessenessensnssansens 17
Independent Initialization of Unit Test ENVIronments..........cccovvevinennnnnnnnss s sesssnnenns 18
Exclude Getters and SEHErS ... ———— 18
EXclude Third-Party COUEccoeverererrererrerreseresesesesessssessesessssessessssessssessesesssssssessssessssessesessssssssnansens 18
EXclude EXTErNal SYSEBMScccvevererererererresersereresesesassessesessesessesessessssessssessssssssssssessssessesessssssassansens 19
And What Do We Do with the Database? ... 19
Don’t Mix Test Code with Production Code..........c.cunnmiinssssssssesssssssesssssssssesssssssens 19
Tests MuSt RUN FaSt ... sesees 22
Test Doubles (FAKE ODJECES)evuvereriererreriererererereseresserss e ssesessesessesassessssessssesssssssessssesassesassessenssssnssaes 22
Chapter 3: Be Principled........ccounmmmmmmmmmmmmmmmsssssssnmmmmmmmsssssssssssmssssssssssssssssssnnns 27
What IS @ PriNCIPIE?......eeeeereete et 27
KISS ..ot n e n e R nennennenn 28
YAGNL.....ocoeieereetsierrese e sse s sr s sse e s ss s e s e a e e s nn e e ae e e e r e e e Re e e eRe e nnnnnn e nnn 28
DRY ... —— 29
Information Hiding........coceoeeeeeiececec e 29
StroNg CONESIONciviviicciri i —————— 32
LOOSE COUPIING...covierrerirerrestseresse s ss s se e se s sa s s sn s ne e sn s s nn s snennnnnns 35
Be Careful with Optimizations..........cccvcvvrvrsrcr e 39
Principle of Least AstoniShment (PLA)........c.coomnnmsss e 39
The BOY SCOUL RUIE ...ttt 39
Chapter 4: Basics 0Of Clean C++ ...ccceeerrmmmmmmmmssssssssmmmmmmmssssssssssssssssssssssssssssssssssns 41
GOOA NAMES ... e 41
Names Should Be Self-EXPIanatory...........cccoveevererererieresseresersesesssssssessssessssesssssssessssessssessesesssssssssansens 43
Use Names from the DOMaiN.........cocovrnnmnnmnnnnss—s 44
Choose Names at an Appropriate Level of ADSTraction...........cccevvrererrernrernrereseresessesessessesessssessesenaens 45
Avoid Redundancy When ChooSing @ NAMEcceceverrererrereerereneseresessssessssessssesssssssessssesssessssesssnssaes 46
AvO0id CryptiC ADDIEVIALIONScceererereererterereserereserss e ssesessesessesessesassesassessssessessssesessesassesassesssnessssnaes 46
Avoid Hungarian Notation and PrefiXes ... s s s sssssssssssssesssnses 47
Avoid Using the Same Name for Different PUIPOSEScccvererererererereneressessesessesessesesesesessssessssenaes 48

viii

CONTENTS

COMMENES ...t s n s re e s na s e s nenn s e nnennnnnas 48
Let the Code TEIl @ STOY.......cceeceeeereecririee e ne s 49
Do Not Comment OBVIOUS THINGSccceeeerreereresreeesessssesesss s sesesssssssessssssssesssssssssssssssssssssssssaes 49
Don’t Disable Code With COMMENTS ... 50
Don’t Write BIOCK COMMENTS ..o 50
The Rare Cases Where Comments Are USEfUL ... 53
FUNCHIONS.....ociiii s 56
0NE TRING, NO MOTE! ..ottt s s e se e sae e saesa s sae e sae e saesesaesassesae e sae e saenesaesansenaeenaeesannanaens 58
Let Them Be SMall.........ccviiiisis s 59
L1410 (0] 8T 1] 60
Use Intention-Revealing NAMESccccvevererererererereressersesessesessesessessssessesessssssssssssessssessesessssssassansens 61
Arguments and RETUIN VAIUBSccvveevirerrirrcer et sss s e sn s snesassn st sn s snssa s s sa s s s snssns s s 61
About Old C-style in C++ PrOJECLScccueeeeeeecrecrecee e e e e s e e sssseessssnssnesnesnssnssnssnsnnns 72
Prefer C++ Strings and Streams over Old C-Style char...........ccorrncnnnresnecr s 72
Avoid Using printf(), sprintf(), gets(), BIC. e —————— 74
Prefer Standard Library Containers over Simple C-Style Arrays.........ccvcvevnenniesnsennsesnsesesesesenaens 77
Use C++ casts Instead of Old C-Style Casts..........ccoeurrercrerricncrirerecse e 80
LT 1o T 82
Chapter 5: Advanced Concepts of Modern C++......cccuunmmmmmmsssnmmmmsmsssssssssssssssssssnns 85
Managing RESOUICES.........ccccvrerrersersessrsses s sessessesses e s ses e s e s ses s s sessnssnssnssnssnsssssnsssssssssannas 85
Resource Acquisition Is Initialization (RAIl)..........cccceererirrnnncrrre e e sesnens 87
SMAM POINTEIS......vviitciiii bbb rs 87
Avoid EXplicit NeW and DEIETE.......ccceveeeecerree ettt s s e e e e sa e e sa s sa e sn e sa s sn e sa e sn e nn s 93
Managing Proprietary BESOUICESccourureierererecririseese s sa s 93
We LiKe 10 MOVE ...t s s 94
What Are MOVE SEMANTICS? ... 95
The Matter with Those Ivalues and rvalues............coovvrrrnnnnnnnn s 96
TVAIUE REEBIEINCES.c.ccecccecce e 97
Don’t ENOrce MOVE EVEIYWREIE ..ot se s senessssnss 98
THE RUIE O ZEIO ... 99

ix

CONTENTS

The Compiler IS YOUr COlIRAGUE..........ceccrerrereerererrentsesesessesesseses e ssessssesssssssesessssssssnens 102
Automatic TYPE DEAUCTION.cceeerereceerireee e n s 103
Computations during Compile TIME........cccoriiererrrercrrreere e eens 106
Variable TEMPIALES ..o e e e s a e s e 108

Don’t Allow Undefined BEAVIOrcccovermreminnmsmnssss s 109

Type-Rich Programming.........ccccvceersersmnsessssssssessessssses s ssssssssssssssssssssssssssssessssssssnssssnes 110

KNOW YOUK LIDFAIIES...cucceieersersenesessssessessssessessssessssesssssssssssssssssssssssssssssssssssssnsssssssnssns 116
Take Advantage of <algOrithm> ..o 117
Take Advantage 0f BOOSTcccccerrecnrrcc s 122
More Libraries That You Should KNOW ADOUL.............coceeeenenininenereeeese s 123

Proper Exception and Error HaNdIingcccocvververvensnnensessessesses s sesses e sessessesenns 123
Prevention Is Better Than AREICAre..........c.connnnn s 124
An Exception Is an EXception — Literally!........c.ccccvervierrcernrererrersesereesesesesessssessssessessssessssessesessssenaes 128
If You Can’t Recover, Get Out QUICKIY.......oceverereerereerers e res s res e sesse e ssesas e saesesassesassesaesassesassenes 129
Define User-Specific EXCEPION TYPES ...ccvveverrereerereerereeserereseressersesessesesssssssesassessssessssssssssssessssessenenes 129
Throw by Value, Catch by const REfErENCE.........ccveverererererererreree v rss e see s sesaesassesaesesaesesaes 131
Pay Attention to the Correct Order of CatCh-ClauSEsS.........covverervereerereererererererrerse e serseressesessessesenes 131

Chapter 6: Object Orientationcoccnminm e ————— 133

Object-0riented THINKINGccocevererererere e sse e s saessssassassassassassassassassassnnns 133

Abstraction — the Key to Master COmplexityccceeeerereresesessse s sse s sessesssesennns 135

Principles for GOOd Class DESIQgNc.ccevveresmrsersnsesessssesssssssssssesssssssessssssssssssessssssnes 135
KEEP ClasSES SMAUL..........oeoeeiriiecirireeere s sn e nn s nnns 136
Single Responsibility PrinCIpIe (SRP)........ccocorreierirncesirs e ssssssnns 137
0pen-Closed PrinCIpIe (OCP)cccoeureerereriesesesesrssee e e sesesssssessssssssssssssssssssssssssssssssssssssnns 137
Liskov Substitution PrinCiple (LSP)........ccccvriierererrseneserisesesesesesssesesssssesessssssssesssssssesssssssssssssssssssens 138
Interface Segregation PriNCIPIE (ISP).......ccovuioeeerireecnirrccseses e eens 149
Acyclic Dependency PriNCIPIE.........coveecerrerererreesese s sessns 150
Dependency Inversion PrNCIPIE (DIP).......ccoeoeeerrrreenerereneeseseseesesesssssesessssssesesssssssessssssssesssssssssnns 153
Don’t Talk to Strangers (Law Of DEMETEN).......ccccovrrreecrerirccrerer e 158

AVOIA ANEIMIC CIASSES.....veieireririiriresssesssesesssesse e ssse s s s ssessbe s s s be s b e s as s be s b e as s be s b e s an s bessbasanasbesanasans 163

CONTENTS

LR 10T SRR 163
Av0id Static Class MEMDEISoceerererererereriseseresssesesesesesesesssssesesenes 165
Chapter 7: Functional Programmingccccuussesmmmssssssnmmssssssnsssssssssssssssssssssssnnnnns 167
What Is Functional Programming?ccceceerinenmnesnscsessessssessessssessssessessssssssssssens 168
WRHAL IS @ FUNCHIONT ... nenenes 169
Pure vSs. IMpUre FUNCHIONS ..o sa s sne s sn e sa e e sa e sa et et sa e a e sn s sn e nn e 170
Functional Programming in MOdern C++.......ccocverircrsssssessssses s ses e sesnns 171
Functional Programming with C++ Templates...........ccoveerieiesnrccrrreerer e 171
Function-Like ODJECtS (FUNCLOIS).........ccceererurieeririeeesere s enns 173
Binders and FUNCLION WEAPPETSccciiriiiriniernscre e se e st se st ssssessesessssesssssssesassessssenns 179
Lambda EXPreSSIONS.......ccveririeriereere s sss st se s e e s s e e st s se s e e e s ns 181
Generic Lambda EXPresSions (C4+14)cooiocecrerrecrirneeseseses e sesssss e ssssssessssssssssssssssssnns 183
Higher-0rder FUNCHONSccoeeierrercsescs e se s snse s 184
Map, Filter, aNd REAUCEcoveeereeeeeere ettt ses e ses e se e s e sae e s s sas e ae e s e saesasaesassesasnesns 185
Clean Code in Functional Programming...........cccceerernsenesssesnsesssssssesssssssessssessessssenns 189
Chapter 8: Test-Driven Developmentccccccmmnnnsemmmmnsssnnmmsssssnmsssssssssssnnn 191
The Drawbacks of Plain Old Unit Testing (POUT)ccccvvrverrerrenrenses s e e e ses e 192
Test-Driven Development as a Game Changerccceevvrvercersessessesses s s ses s ses e 193
The WOrKFIOW OF TDDccoeeereeccsirieecse e e et ne e nnans 193
TDD by Example: The Roman Numerals Code Katacooveeerirrrcncnennencsesesse s 196
The Advantages Of TDDcccccerrerenmrsesessesessssesssssssesssse e ssesssssssessssesssssssessssssssnsnsens 213
When We Should Not USE TDD........ccccvceeriereninieresenesessesse s sss e ssesessessssessessssesssnsnnens 215
Chapter 9: Design Patterns and 1diomscccusemmsssnnmsssnsmsssssssssssssssnsssssanssssnnnss 217
Design Principles vs. Design Patterns..........ccccovevevsnnssssessessessessss s s s sessssssssennenns 217
Some Patterns, and When 10 USe Themocevrverirrnnsn e ses s ssessnenns 218
Dependency INJECHON (DI).......o.oeceerieecrerieecrer e 218
T o] (] OSSR 230
R (1 | 231
0] 1101 o TSR 235
COMMANG PrOCESSOc.vecucereerccesesseeesessse e sesss s s e s se s e sss e s e s ese e e s sse s e sssne s e nesssnnnsnnas 239

xi

CONTENTS

0]] 0| 242

0] LT T 245
FACIOMIBS ... —————————— 250
FACAUR ...t ——————————————————— 253
IMIONEY ClASS ..veverreeereerereerereresersesessesessesessesassessssessssesassassesassessssessesessessssesssessssessesesssssssansesasserseneres 254
Special Case ObJect (NUIl ODJECL)ccceuerererererereresersssersssessesessessssesssessesesssssssessssesssessssessssassesassens 257
What IS an Idiom?.........cceri 260
Some USEful C++ 1dIOMS........cuieieiririi bbb snns 261
Appendix A: Small UML GUIdeccussemmmmssssnnnsmsssssssssssssssssssssssssssssssssnsssssssnnssssss 273
Class DIiAgramscccceeererrerressessessessessessessessessesssssssssssssssssesssssesssssssssssessssssssssssssansans 273
ClASS ... 273
INEEITACE ... ———————— 275
ASSOCIALION ..o 278
GENEIALIZALION........ccceicce 280

0T 0T o LT ST 281
COMPONENTS ..o e r e e a e s a e s sa e s sa e sa e e e saesa e e s saesnenannens 282
STEIEOTYPES ...t ne e 283
Bibliographyccccuisemmmmnsssmnmmmssssnmmmsssssnmmsssssssmessssssnssssssssnessssnnssessssnnnnssssnnnnnss 285
INA@X.eiiieiiiesssnsssanssns s s sns s s s 287

xii

About the Author

Stephan Roth, born on May 15, 1968, is a passionate coach, consultant,
and trainer for Systems and Software Engineering with German
consultancy company oose Innovative Informatik eG located in Hamburg.
Before he joined oose, Stephan worked for many years as a software
developer, software architect, and systems engineer in the field of radio
reconnaissance and communication intelligence systems. He has
developed sophisticated applications, especially for distributed systems
with ambitious performance requirements, and graphical user interfaces
using C++ and other programming languages. Stephan is also a speaker
at professional conferences and author of several publications. As a
member of the Gesellschaft fiir Systems Engineering e.V., the German
chapter of the international Systems Engineering organization INCOSE, he is also engaged in the Systems
Engineering community. Furthermore, he is an active supporter of the Software Craftsmanship movement
and concerned with principles and practices of Clean Code Development (CCD).

Stephan Roth lives with his wife Caroline and their son Maximilian in Bad Schwartau, a spa in the
German federal state of Schleswig-Holstein near the Baltic Sea.

You can visit Stephan’s website and blog about Systems Engineering, Software Engineering, and Software
Craftsmanship via the URL roth-soft.de. Please note that the articles there are mainly written in German.

On top of that, you can contact him via e-mail or follow him at the networks listed below.

E-Mail: stephan@clean-cpp.com

Twitter: @_StephanRoth (https://twitter.com/_StephanRoth)

Google+ Profile Page: http://gplus.to/sro

LinkedIn: http://www.linkedin.com/pub/stephan-roth/79/3a1/514

xiii

stephan@clean-cpp.com
https://twitter.com/_StephanRoth
http://gplus.to/sro
http://www.linkedin.com/pub/stephan-roth/79/3a1/514

About the Technical Reviewer

Marc Gregoire is a software engineer from Belgium. He graduated from the University of Leuven, Belgium,
with a degree in "Burgerlijk ingenieur in de computer wetenschappen" (equivalent to Master of Science

in engineering in computer science). The year after, he received a master’s degree, cum laude, in artificial
intelligence at the same university. After his studies were completed, Marc started working for a software
consultancy company called Ordina Belgium. As a consultant, he worked for Siemens and Nokia Siemens
Networks on critical 2G and 3G software running on Solaris for telecom operators. This required working in
international teams stretching from South America and the United States to EMEA and Asia. Marc is now
working for Nikon Metrology on industrial 3D laser scanning software.

His main expertise is C/C++, and specifically Microsoft VC++ and the MFC framework. He has
experience in developing C++ programs running 24x7 on Windows and Linux platforms: for example, KNX/
EIB home automation software. Next to C/C++, Marc also likes C# and uses PHP for creating web pages.

Since April 2007, he has received the yearly Microsoft MVP (Most Valuable Professional) award for his
Visual C++ expertise.

Marc is the founder of the Belgian C++ Users Group (www.becpp.org), author of Professional C++ and a
member of the CodeGuru forum (as Marc G). He maintains a blog on www. nuonsoft.com/blog/.

XV

http://www.becpp.org/
http://www.nuonsoft.com/blog/

Acknowledgments

Writing a book like this one is never just the work of an individual person, the author. There are always
numerous, fabulous people who contribute significantly to such a great project.

First of all, I would like to thank Steve Anglin of Apress. Steve contacted me in March 2016 and has
persuaded me to continue my book project with Apress Media LLC, which has been self-published at
Leanpub until then. That was such great luck, and I thank you, dear Steve. In July 2016 the contracts were
signed. Nevertheless, I would also like to thank the superb Leanpub self-publishing platform that served
some years as a kind of "incubator” for this book.

Next, I would like to thank Mark Powers, Editorial Operations Manager at Apress, for his great support
during the writing of the manuscript. Mark was not only always available to answer questions: his incessant
follow-up on the progress of the manuscript was a positive incentive for me. I am very grateful to you, dear
Mark. In addition, many thanks also to Matthew Moodie, Lead Development Editor at Apress, who has
provided proper help throughout the whole book development process.

A special thank you goes out to my technical reviewer Marc Gregoire. Marc, thank you for critically
examining every single chapter. You've found many issues that I probably would have never found. You
pushed me hard to improve several sections, and that was really valuable to me.

Of course, I would also like to say a big thank you to the whole production team at Apress. They've done
an excellent job regarding the finalization (copy editing, indexing, composition/layout, etc.) of the whole
book until the distribution of the final print (and eBook) files.

Of course, I also thank all my colleagues at oose. Thank you for the many inspiring discussions.

Last but not least, I would like to thank my beloved and unique family, especially for their
understanding that a book project takes a great deal of time. Maximilian and Caroline, you're just wonderful.

xvii

CHAPTER 1

Introduction

How it is done is as important as having it done.

—Eduardo Namur

It is still a sad reality that many software development projects are in bad conditions, and some might even
be in a serious crisis. The reasons for this are manifold. Some projects, for example, are afflicted because of
lousy project management. In other projects, the conditions and requirements are constantly changed, but
the process does not support this high-dynamic environment.

In some projects there are pure technical reasons: their code is of poor quality. That does not
necessarily mean that the code is not working correctly. Its external quality, measured by the quality
assurance department using blackbox, user, or acceptance tests, can be pretty high. It can pass the QA
without complaints, and the test report says that they find nothing wrong. Also users of the software may be
satisfied and happy, and its development has been completed on time and budget (... which is rare, I know).
Everything seems to be fine ... really everything?

Nevertheless, the internal quality of this code, which might work correctly, can be very poor. Often the
code is difficult to understand and horrible to maintain and extend. Countless software units, like classes,
or functions, are very large, some of them with thousands of lines of code. Too many dependencies between
software units lead to unwanted side effects if something is changed. The software has no perceivable
architecture. Its structure seems to be randomly originated and some developers speak about “historically
grown software” or “architecture by accident.” Classes, functions, variables, and constants have bad and
mysterious names, and the code is littered with lots of comments: some of them are outdated, just describe
obvious things, or are plain wrong. Developers are afraid to change something or to extend the software
because they know that it is rotten and fragile, and they know that unit test coverage is poor, if there are
any unit tests at all. “Never touch a running system” is a statement that is frequently heard in such kinds of
projects. The implementation of a new feature doesn’t need a few days until it is ready for deployment; it
takes several weeks or even months.

Such a kind of bad software is often referred to as a Big Ball Of Mud. This term was first used in 1997 by
Brian Foote and Joseph W. Yoder in a paper for the Fourth Conference on Patterns Languages of Programs
(PLoP '97/EuroPLoP '97). Foote and Yoder describe the Big Ball Of Mud as “.. a haphazardly structured,
sprawling, sloppy, duct-tape-and-baling-wire, spaghetti-code jungle.” Such software systems are costly and
time-wasting maintenance nightmares, and they can bring a development organization to its knees!

The pathological phenomena just described can be found in software projects in all industrial sectors
and domains. The programming language used doesn’t matter. You'll find Big Ball Of Muds written in Java,
PHP, C, C#, C++, or any other more or less popular language. But why is that so?

© Stephan Roth 2017 1
S. Roth, Clean C++, DOI 10.1007/978-1-4842-2793-0_1

CHAPTER 1 © INTRODUCTION

Software Entropy

First of all, there is something that seems to be like a natural law. Just like any other closed and complex
system, software tends to get messy over time. This phenomenon is called software entropy. The term is
based on the second law of thermodynamics. It states that a closed system’s disorder cannot be reduced;
it can only remain unchanged or increase. Software seems to behave this way. Every time a new function
is added or something is changed, the code is getting a little bit more disordered. There are also numerous
influencing factors that could forward software entropy, for instance, the following:

e Unrealistic project schedules that will raise the pressure, and hence will compel
developers to botch things and to do their work in a bad and unprofessional way.

¢ Immense complexity of software systems nowadays.
¢ Developers have different skill levels and experience.
¢ Globally distributed, cross-cultural teams, enforcing communication problems.

¢ The development mainly pays attention to the functional aspects (functional
requirements and the system’s use cases) of the software, whereby the quality
requirements (a.k.a. nonfunctional requirements), such as performance efficiency,
maintainability, usability, portability, security, etc., are neglected or at worst are
being fully forgotten.

e Inappropriate development environment and bad tools.

e Management is focused on earning quick money and doesn’t understand the value
of sustainable software development.

e Quick and dirty hacks and non-design-conformable implementations (a.k.a. Broken
Windows).

THE BROKEN WINDOW THEORY

The Broken Window Theory was developed in U.S.-American crime research. The theory states that a
single destroyed window at an abandoned building can be the trigger for the dilapidation of an entire
neighborhood. The broken window sends a fatal signal to the environment: “Look, nobody cares

about this building!” This attracts further decay, vandalism, and other antisocial behavior. The Broken
Window Theory has been used as the foundation for several reforms in criminal policy, especially for the
development of Zero-Tolerance strategies.

In software development, this theory was taken up and applied to the quality of code. Hacks and bad
implementations, which are not compliant with the software design, are called “broken windows.”

If these bad implementations are not repaired, more hacks to deal with them may appear in their
neighborhood. And thus, the dilapidation of code is set into motion.

Don’t tolerate “broken windows” in your code — fix them!

However, it seems to be that particular C and C++ projects are prone for mess and tend more than
others to slip off into a bad state. Even the World Wide Web is full of bad, but apparently very fast and highly
optimized C++ code examples, with a cruel syntax and completely ignoring elementary principles for good
design and well-written code.

CHAPTER 1 * INTRODUCTION

One reason for this might be that C++ is a multi-paradigm programming language on an intermediate
level, that is, it comprises both high-level and low-level language features. With C++ you are able to write large
and distributed business software systems with sophisticated user interfaces, as well as software for small
embedded systems with real-time behavior, tied very closely to the underlying hardware. Multi-paradigm
language means that you are able to write procedural, functional, or object-oriented programs, or even a
mixture of all three paradigms. In addition, C++ allows Template Metaprogramming (TMP), a technique in
which so-called templates are used by a compiler to generate temporary source code, which is merged by
the compiler with the rest of the source code and then compiled. And ever since the release of ISO standard
C++11, even more ways have been added, for example, functional programming with anonymous functions
are now supported in a very elegant manner by lambda expressions. As a consequence of these diverse
capabilities, C++ has the reputation to be very complex, complicated, and cumbersome.

Another cause for bad software could be that many developers didn’t have an IT background.

Anyone can begin to develop software nowadays, no matter if she has a university degree or any other
apprenticeship in computer science. A vast majority of C++ developers are (or were) non-experts. Especially
in the technological domains automotive, railway transportation, aerospace, electrical/electronics, or
mechanical engineering, many engineers slipped into programming during the last decades without having
an education in computer science. As the complexity grew and technical systems contained more and more
software, there was an urgent need for programmers. This demand was covered by the existing workforce.
Electrical engineers, mathematicians, physicists, and also lots of people from strictly nontechnical
disciplines started to develop software and learn it mainly by self-education and hands-on by simply doing
it. And they have done it to their best knowledge and belief.

Basically, there is absolutely nothing wrong with it. But sometimes just knowing the tools and the
programming language is not enough! Software development is not the same as programming. The world is
full of software that was tinkered together by improperly trained software developers. There are many things on
abstract levels a developer must consider to create a sustainable system, for example, architecture and design.
How should a system be structured to achieve certain quality goals? What is this object-oriented thing good for
and how do I use it efficiently? What are the advantages and drawbacks of a certain framework or library? What
are the differences between various algorithms, and why doesn’t one algorithm fit all similar problems? And
what the heck is a deterministic finite automaton, and why does it help to cope with complexity?!

But there is no reason to lose heart! What really matters for a software’s ongoing health is that someone
cares about it, and clean code is the key!

Clean Code

A major misunderstanding is to confuse clean code with something that can be called “beautiful code.”
Clean code has no beauty reasons. Professional programmers are not paid for writing beautiful or pretty
code. They are hired by development companies as experts to create customer value.

Code is clean if it can be understood and maintained easily by any team member.

Clean code is the basis for being fast. If your code is clean and test coverage is good, a change or a new
function just take a few hours or a couple of days - and not weeks or months - until it is implemented, tested,
and deployed.

Clean code is the foundation for sustainable software and keeps a software development project
running over a long time without accumulating a large amount of technical debt. Developers must
actively tend the software and ensure it stays in shape because the code is crucial for survival of a software
development organization.

Clean code is also a key to make you a happier developer. It leads to a stress-free life. If your code is
clean and you're feeling comfortable with it, you can keep calm in every situation, even in front of a tight
project deadline.

All of the points mentioned above are true, but the key point is this: Clean code saves money! In
essence, it's about economic efficiency. Each year, development organizations lose a lot of money because
their code is in bad shape.

CHAPTER 1 © INTRODUCTION

Why C++7?

C makes it easy to shoot yourself in the foot. C++ makes it harder, but when you do, you
blow away your whole leg!

—Bjarne Stroustrup, Bjarne Stroustrup’s FAQ: Did you really say that?

Each programming language is a tool, and each one has its strengths and weaknesses. An important

part of the job of a software architect is to choose the programming language — or nowadays the set of
programming languages — that suits the project perfectly. It is an important architectural decision that
should never be made on the basis of a gut feeling or personal preferences. Similarly, a principle like “In our
company we do everything with <replace this with the language of your choice>" might not be a good guide.

As a multi-paradigm programming language, C++ is a melting pot that blends different ideas and
concepts together. The language has always been an excellent choice when it comes to the development
of operating systems, device drivers, embedded systems, database management systems, ambitious
computer games, 3D animations and computer aided design, real time audio and video processing, big data
management, and many other performance-critical applications. There are certain domains in which C++ is
the lingua franca. Large C++ code bases with billions of lines of code are still out there and in use.

A few years ago a widely spread opinion was that C++ is hard to learn and use. The language can be
complex and daunting to programmers who are often shouldered with the task of writing large, complex
programs. Due to this, mainly interpreted and managed languages, such as Java or C#, were getting popular.
An excessive marketing by the manufacturer of these languages did the rest. In consequence, managed
languages have come to dominate in certain domains, but natively compiled languages still dominate in
others. A programming language is not a religion. If you don’t need the performance of C++, but Java, for
instance, makes your work easier, then by all means use it.

C++11 —The Beginning of a New Era

Some people say that C++ is currently undergoing a renaissance. Some even speak of a revolution. They
say that the modern C++ of today is no longer comparable with the “historical C++” of the early 1990s. The
catalyst for this trend was mainly the appearance of the C++ Standard ISO/IEC 14882:2011 [ISO11], better
known as C++11, in September 2011.

No doubt, C++11 has brought some great innovations. It looked as if the publication of this standard
has set some stuff in motion. And while this book is in production, the C++ standardization committee
has completed their work on the new C++17 standard, which is now in its final ISO balloting process.
Furthermore, C++20 is already getting off the starting blocks.

Currently there are a lot of things happening in the native development space, especially in companies
of the manufacturing industry, because software has become the most important value-adding factor for
technical systems. Development tools for C++ are much more powerful nowadays and a multitude of useful
libraries and frameworks are available. But I would not necessarily call this whole development a revolution.
I think it is usual evolution. Also programming languages must be continually improved and adapted to
meet new requirements, and C++98 respectively C++03 (which was primarily just a bug fix release on C++98)
was a bit long in the tooth.

CHAPTER 1 * INTRODUCTION

Who This Book Is For

As a trainer and consultant I have the opportunity to take a look into many companies that are developing
software. Furthermore, I observe very closely what is happening in the developer scene. And I've recognized
a gap.

My impression is that C++ programmers have been ignored by those promoting Software Craftsmanship
and Clean Code development. Many principles and practices, which are relatively well-known in the Java
environment, and in the hip world of web or game development, seems to be largely unknown in the C++
world. Pioneering books, such as Andrew Hunt and David Thomas’s The Pragmatic Programmer [Hunt99],
or Robert C. Martin’s Clean Code [Martin09], are often not even known.

This book tries to close that gap a little, because even with C++, code can be written clean! If you want to
teach yourself about writing clean C++, this book is for you.

This book is not a C++ primer! You should already be familiar with the basic concepts of the language
to use the knowledge from this book efficiently. If you just want to start with C++ development and still have
no basic knowledge of the language, you should first learn them, which can be done with other books or a
good C++ introduction training.

Furthermore, this book doesn’t contain any esoteric hack or kludge. I know that a lot of nutty and mind-
blowing things are possible with C++, but these are usually not in the spirit of clean code and should only
seldom be used for a clean and modern C++ program. If you are really crazy about mysterious C++ pointer
calisthenics, this book is not for you.

For some code examples in this book, various language features of the standards C++11 (ISO/IEC
14882:2011), C++14 (ISO/IEC 14882:2014), and also a few from the latest C++17 are used. If you are not
familiar with these features, don’t worry. I will briefly provide introductions about some of them with the help
of sidebars. Please note that actually not every C++ compiler supports all new language features completely.

Apart from that, this book is written to help C++ developers of all skill levels and shows by example how to
write understandable, flexible, maintainable and efficient C++ code. Even if you are a seasoned C++ developer,
there are some nuggets and data points in this book that I think you will find useful in your work. The presented
principles and practices can be applied to both new software systems, sometimes called greenfield projects; as
well as legacy systems with a long history, which are often called brownfield projects pejoratively.

Conventions Used in This Book

The following typographical conventions are used in this book:
Italic font is used to introduce new terms and names.

Bold font is used within paragraphs to emphasize terms or important
statements.

Monospaced font is used within paragraphs to refer to program elements such as
class, variable or function names, statements, and C++ keywords. This font is also
used to show command line inputs, an address of a website (URL), a keystroke
sequence, or the output produced by a program.

Sidebars

Sometimes I'm passing on small bits of information to you that are tangentially related to the content around
it, which could be considered separate from that content. Such sections are known as sidebars. Sometimes I
use a sidebar to present an additional or contrasting discussion about the topic around it. Example:

CHAPTER 1 © INTRODUCTION

THIS HEADER CONTAINS THE TITLE OF A SIDEBAR

This is the text in a sidebar.

Notes, Tips, and Warnings

Another kind of sidebar for special purposes is used for notes, tips, and warnings. They are used to give
some special information to you, to provide a useful piece of advice, or to warn you about things that can be
dangerous and should be avoided. Example:

Note This is the text of the note.

Code Samples

Code examples and code snippets will appear separately from the text, syntax-highlighted (keywords of the
C++ language are bold) and in a monospaced font. Longer code sections usually have titles. To reference to
specific lines of the code example in the text, code samples are sometimes decorated with line numbers.

Listing 1-1. Aline-numbered code sample

01 class Clazz {

02 public:

03 Clazz();

04 virtual ~Clazz();
05 void doSomething();
06

07 private:

08 int _attribute;
09

10 void function();
11 };

To better focus on specific aspects of the code, irrelevant parts are sometimes obscured and represented
by a comment with ellipsis (...), like in this example:

void Clazz::function() {
/...

}

Coding Style

Just a few words about the coding style I've used in this book.

You may get the impression that my programming style has a strong likeness to typical Java code, mixed
up with the Kernighan and Ritchie (K&R) style. In my nearly 20 years as a software developer, and even later
in my career, I still have learned other programming languages than C++, for instance ANSI-C, Java, Delphi,
Scala, and several scripting languages. Hence I've adopted my own programming style, which is a melting
pot of different influences.

6

CHAPTER 1 * INTRODUCTION

Maybe you do not like my style, and you prefer Linus Torvald’s Kernel style, the Allman style, or any
other popular C++ coding standard. This is of course perfectly OK. I like my style, and you like yours.

Companion Website and Source Code Repository

This book is accompanied by a companion website: www.clean-cpp.com.
The website includes:

e Adiscussion forum where readers can discuss specific topics with other readers and,
of course, with the author.

e The discussion of additional topics that may not yet have been covered in this book.
e High-resolution version of all the figures in this book.

Most of the source code examples in this book, and other useful additions, are available on GitHub at:
https://github.com/clean-cpp

You can check out the code using Git with the following command:
$> git clone https://github.com/clean-cpp/book-samples.git

You can get a .zip archive of the code by going to https://github.com/clean-cpp/book-samples and
clicking on the “Download ZIP” button.

UML Diagrams

Some illustrations in this book are UML diagrams. The Unified Modeling Language (UML) is a standardized
graphical language to create models of software and other systems. In its current version 2.5, UML offers 14
diagram types to describe a system entirely.

Don’t worry if you are not familiar with all diagram types; I use in this book only a few of them. I present
UML diagrams from time to time to provide a quick overview of certain issues that possibly cannot be
detected fast enough by just reading the code. In Appendix A you find a brief overview of the used notations.

http://www.clean-cpp.com/
https://github.com/clean-cpp
https://github.com/clean-cpp/book-samples.git
https://github.com/clean-cpp/book-samples

CHAPTER 2

Build a Safety Net

Testing is a skill. While this may come as a surprise to some people it is a simple fact.

—Mark Fewster and Dorothy Graham, Software Test Automation, 1999

That I start the main part of this book with a chapter about testing may be surprising to some readers, but
this is for several good reasons. During the past few years, testing on certain levels has become an essential
cornerstone of modern software development. The potential benefits of a good test strategy are enormous. All
kinds of tests, if well engineered, can be helpful and useful. In this chapter I will describe why I think that Unit
Tests, especially, are indispensable to ensure a fundamental level of excellent quality in software.

Please note that this chapter is about what is sometimes called POUT (“Plain Old Unit Testing”) and not
the design-supporting tool Test-Driven Development (TDD), which I will discuss later in this book.

The Need for Testing

1962: NASA MARINER 1

The Mariner 1 spacecraft was launched on July 22, 1962, as a Venus flyby mission for planetary
exploration. Due to a problem with its directional antenna, the Atlas-Agena B launching rocket worked
unreliably and lost its control signal from ground control shortly after launch.

This exceptional case had been considered during design and construction of the rocket. The
Atlas-Agena launching vehicle switched to automatic control by the on-board guidance computer.
Unfortunately, an error in the software of this computer led to incorrect control commands that caused
a critical course deviation and made steering impossible. The rocket was directed toward earth and
pointed to a critical area.

At T+293 seconds the Range Safety Officer sent the destruct command to blow the rocket. A NASA
examination report' mentions a typo in the computer’s source code, the lack of a hyphen (*-"), as the
cause of the error. The total loss was $18.5 million, which was a huge amount of money in those days.

'NASA National Space Science Data Center (NSSDC): Mariner 1, http://nssdc.gsfc.nasa.gov/nmc/spacecraft-
Display.do?id=MARIN1, retrieved 2014-04-28.

© Stephan Roth 2017 9
S. Roth, Clean C++, DOI 10.1007/978-1-4842-2793-0_2

http://nssdc.gsfc.nasa.gov/nmc/spacecraftDisplay.do?id=MARIN1
http://nssdc.gsfc.nasa.gov/nmc/spacecraftDisplay.do?id=MARIN1

CHAPTER 2 © BUILD A SAFETY NET

If software developers are asked why tests are good and essential, I suppose that the most common
answer will be the reduction of bugs, errors, or flaws. No doubt, this is basically correct: testing is an
elementary part of the quality assurance.

Software bugs are usually perceived as an unpleasant nuisance. Users are annoyed about the wrong
behavior of the program, which produces invalid output, or they are seriously ticked off about regular
crashes. Sometimes even odds and ends, such as a truncated text in a dialogue box of a user interface, are
enough to significantly bother users of software in their daily work. The consequence may be an increasing
dissatisfaction about the software, and at worst its replacement by another product. In addition to a financial
loss, the image of the software’s manufacturer suffers from bugs. At worst, the company gets into serious
trouble and many jobs get lost.

But the previously described scenario does not apply to every piece of software. The implications of a
bug can be much more dramatic.

1986: THERAC-25 MEDICAL ACCELERATOR DISASTER

This case is probably the most consequential failure in the history of software development. The
Therac-25 was a radiation therapy device. It was developed and produced from 1982 until 1985 by the
state-owned enterprise Atomic Energy of Canada Limited (AECL). Eleven devices were produced and
installed in clinics in the USA and Canada.

Due to bugs in the control software, an insufficient quality assurance process, and other deficiencies,
three patients lost their life caused by a radiation overdose. Three other patients were irradiated and
carried away permanent, heavy health damages.

An analysis of this case has the result that, among other things, the software was written by only one
person who was also responsible for the tests.

When people think of computers, they usually have a Desktop PC, laptop, tablet, or smartphone in their
mind. And if they think about software, they usually think about web shops, office suites, or business IT systems.

But these kinds of software and computers make up only a very small percentage of all systems with
which we have contact every day. Most of the software that surrounds us controls machines that physically
interact with the world. Our whole life is managed by software. In a nutshell: There is no life today without
software! Software is everywhere and an essential part of our infrastructure.

If we board an elevator, we give our lives are in the hands of software. Aircrafts are controlled by
software, and the entire, worldwide air traffic control system depends on software. Our modern cars contain
a significant amount of small computer systems with software that communicate over a network, responsible
for many safety-critical functions of the vehicle. Air conditioning, automatic doors, medical devices, trains,
automated production lines in factories ... No matter what we're doing nowadays, we permanently come
into touch with software. And with the Digital Revolution and the Internet of Things (IoT), the relevance of
software for our life will again increase significantly. Hardly any other topic is this more evident than with
the autonomous (driverless) car.

I think it is unnecessary to emphasize that any bug in these software-intense systems can have
catastrophic consequences. A fault or malfunction of these important systems can be a threat to life or
physical condition. At worst, hundreds of people can lose their life during a plane crash, possibly caused
by a wrong if-statement in a subroutine of the Fly-by-Wire subsystem. Quality is under no circumstances
negotiable in these kinds of systems. Never!

But even in systems without functional safety requirements, bugs can have serious implications,
especially if they are subtler in their destructiveness. It is easy to imagine that bugs in financial software could
be a trigger for a worldwide bank crisis nowadays. Just assume that the financial software of an arbitrary big
bank carries out every posting twice due to a bug, and this issue will not be noticed for a couple of days.

10

CHAPTER 2 * BUILD A SAFETY NET

1990: THE AT&T CRASH

On January 15th, 1990, the AT&T long distance telephone network crashed and 75 million phone calls
failed during 9 hours. The blackout was caused by a single line of code (a wrong break statement) in
a software upgrade that AT&T deployed to all 114 of its computer-operated electronic switches (4ESS)
in December 1989. The problem began the afternoon of January 15 when a malfunction in AT&T’s
Manhattan control center led to a chain reaction and disabled switches throughout half the network.

The estimated loss for AT&T was $60 million, and probably a huge amount of losses for businesses that
relied on the telephone network.

Introduction into Testing

There are different levels of quality assurance measures in software development projects. These levels are often
visualized in the form of a pyramid - the so-called Test Pyramid. The fundamental concept was developed by
the American software developer Mike Cohn, one of the founders of the Scrum Alliance. He described the Test
Automation Pyramid in his book Succeeding with Agile [Cohn09]. With the aid of the pyramid, Cohn describes
the degree of automation required for efficient software testing. In the following years, the Test Pyramid has been
developed further by different people. The one depicted in Figure 2-1 is my version of it.

Testing

Automated
GUI Tests

Automated
Integration and
System Tests

cov.: ~10% resp.: QA & business

Automated Component Tests

cov.: >=50% resp.: developers

Y Automated Unit Tests

cov.: ~100% resp.: developers

Figure 2-1. The Test Pyramid

The pyramid shape, of course, is no coincidence. The message behind it is that you should have many
more low-level unit tests (approximately 100% code coverage) than other kind of tests. But why is that?

11

CHAPTER 2 © BUILD A SAFETY NET

Experience has shown that the total costs regarding implementation and maintenance of tests are
increasing toward the top of the pyramid. Large system tests and manual user acceptance tests are usually
complex, often require extensive organization, and cannot be automated easily. For instance, an automated
Ul test is hard to write, often fragile, and relatively slow. Therefore, these tests are often performed manually,
which is suitable for customer approval (acceptance tests) and regular exploratory tests by QA, but far too
time consuming and expensive for everyday use during development.

Furthermore, large system tests, or UI-driven tests, are totally improper to check all possible paths of
execution through the whole system. There’s lots of code in a software system that deals with alternative
paths, exceptions and error-handling, cross-cutting concerns (security, transaction handling, logging ...) and
other auxiliary functions that are required, but often cannot be reached through the normal user interface.

Above all, if a test on a system level fails, the exact cause of the error can be difficult to locate. System
tests typically are based upon the system’s use cases. During the execution of a use case, many components
are involved. This means that many hundreds, or even thousands, of lines of code are executed. Which one
of these lines was responsible for the failed test? This question often cannot be answered easily and requires
a time-consuming and costly analysis.

Unfortunately, in several software development projects you'll find degenerated Test Pyramids as
shown in Figure 2-2. In such projects an enormous effort is put into the tests on the higher level, whereas the
elementary unit tests are neglected (Ice Cream Cone Anti-Pattern). In the extreme case they are completely
missing (Cup Cake Anti-Pattern).

Ige Cream Cone

Rrfi-Paffern Gun Cake

Prfi-Patern

GUI Tests

3% ting

R

Integrati and System Tests
GrATLONANG Sy GUI Tests

Component Tests

Integration and System Tests

Unit Tests

Figure 2-2. Degenerated Test Pyramids (Anti-Patterns)

Therefore, a broad base of inexpensive, well-crafted, very fast, regularly maintained, and fully
automated unit tests, supported by a selection of useful component tests, can be a solid foundation to ensure
a pretty high quality of a software system.

12

CHAPTER 2 © BUILD A SAFETY NET

Unit Tests

“refactoring” without tests isn’t refactoring, it is just moving shit around.

—Corey Haines (@coreyhaines), December 20, 2013, on Twitter

A unit test is a piece of code that executes a small part of your production code base in a particular context.
The test will show you in a split second that your code works as you expect it to work. If unit test coverage
is pretty high, and you can check in less than a minute that all parts of your system under development are
working correctly, it will have numerous advantages:

e Numerous investigations and studies have proven that fixing bugs after software is
shipped has been proven to be much more expensive than having unit tests in place.

e Unit tests give an immediate feedback about your entire code base. Provided that test
coverage is sufficiently high (approx. 100%), developers know in just a few seconds if
the code works correctly.

e Unit tests give developers the confidence to refactor their code without fear of doing
something wrong that breaks the code. In fact, a structural change in a code base
without a safety net of unit tests is dangerous and should not be called Refactoring.

e Ahigh coverage with unit tests can prevent time-consuming and frustrating
debugging sessions. The often hours-long searches for the causation of a bug
using a Debugger can be reduced dramatically. Of course, you will never be able to
completely eliminate the use of a Debugger. This tool can still be used to analyze
subtle problems, or to find the cause of a failed unit test. But it will no longer be the
pivotal developer tool to ensure the quality of the code.

e Unit tests are a kind of executable documentation because they show exactly how
the code is designed to be used. They are, so to speak, something of a usage example.

e Unit tests can easily detect regressions, that is, they can immediately show things
that used to work, but have unexpectedly stopped working after a change in the code
was made.

¢ Unit testing fosters the creation of clean and well-formed interfaces. It can help
to avoid unwanted dependencies between units. A Design for Testability is also a
good Design for Usability, that is, if a piece of code can be mounted against a test
fixture easily, then it can usually also be integrated with less effort into the system’s
production code.

e Unit testing makes the development faster.

Especially the last item in this list appears to be paradoxical and needs a little bit of explanation. Unit
testing helps the development to go ahead faster - how can that be? That doesn’t seem logic.

No doubt about it: writing unit tests means effort. First and foremost, managers just see that effort
and do not understand why developers should invest time for tests. And especially in the initial phase of a
project, the positive effect of unit testing on development speed may not be visible. In these early stages of a
project, when the complexity of the system is relatively low and most everything works fine, writing unit tests
seems at first just to take effort. But times are changing ...

13

CHAPTER 2 © BUILD A SAFETY NET

When the system becomes bigger and bigger (+ 100,000 LOC) and the complexity increases, it becomes
more difficult to understand and verify the system (remember software entropy I've described in Chapter 1).
Frequently when many developers in different teams are working on a huge system, they are confronted with
code written by other developers every day. Without unit tests in place, this can become a very frustrating
job. I'm sure everyone knows those stupid, endless debugging sessions, walking through the code in single-
step mode while analyzing the values of variables again and again and again. ... This is a huge waste of time!
And it will slow down development speed significantly.

Particularly in the mid-to-late stages of development, and in the maintenance phase after delivery of
the product, good unit tests unfold their positive effects. The greatest time savings from unit testing comes a
few months or years after a test was written, when a unit or its API needs to be changed or extended.

If test coverage is high it’s nearly irrelevant, whether a piece of code that is edited by a developer was
written by himself or by another developer. Good unit tests help developers to understand a piece of code
written by another person quickly, even if it was written three years ago. If a test fails, it exactly shows
where some behavior is broken. Developers can trust that everything still works correctly if all tests pass.
Lengthy and annoying debugging sessions become a rarity, and the Debugger serves mainly to find the
cause of a failed test quickly if this cause is not obvious. And that’s great because it’s fun to work that way. It’s
motivating, and it leads to faster and better results. Developers will have greater confidence in the code base
and will feel comfortable with it. Changing requirements or new feature requests? No problem, because they
are able to ship the new product quick and often, and with excellent quality.

UNIT TEST FRAMEWORKS

There are several different unit test frameworks available for C++ development, for example, CppUnit,
Boost.Test, CUTE, Google Test, and a couple more.

In principle, all these frameworks follow the basic design of so-called xUnit, which is a collective name
for several unit test frameworks that derive their structure and functionality from Smalltalk’s SUnit.
Apart from the fact that the content of this chapter is not fixated on a specific unit test framework, and
because its content is applicable to unit testing in general, a full and detailed comparison of all available
frameworks would be beyond the scope of this book. Furthermore, choosing a suitable framework is
dependent on many factors. For instance, if it is very important to you that you can add new tests with a
minimal amount of work quickly, so this might be a knock-out criterion for certain frameworks.

What about QA?

A developer could have the following attitude: “Why should I test my software? We have testers and a QA
department, it’s their job.”
The essential question is this: Is software quality a sole concern of the quality assurance department?
The simple and clear answer: No!

I've said this before, and I'll say it again. Despite the fact that your company may have a
separate QA group to test the software, it should be the goal of the development group that
QA find nothing wrong.

—Robert C. Martin, The Clean Coder [Martinl1]

14

http://dx.doi.org/10.1007/978-1-4842-2793-0_1

CHAPTER 2 * BUILD A SAFETY NET

It would be extremely unprofessional to hand over a piece of software to QA from which is known that

it contains bugs. Professional developers never foist off the responsibility for a system’s quality on other
departments. On the contrary, professional software craftspeople build productive partnerships with the
people from QA. They should work closely together and complement each other.

Of course it is a very ambitious goal to deliver 100% defect-free software. From time to time, QA will find
something wrong. And that’s good. QA is our second safety net. They check whether the previous quality
assurance measures were sufficient and effective.

From our mistakes we can learn and get better. Professional developers remedy those quality deficits
immediately by fixing the bugs that were found by QA, and by writing automated unit tests to catch them in the
future. Then they should carefully think about this: “How in God’s name could it happen that we’ve overlooked
this issue?” The result of this retrospective should serve as an input to improve the development process.

Rules for Good Unit Tests

I've seen many unit tests that are pretty unhelpful. Unit tests should add value to your project. To achieve
this goal, some essential rules should be followed, which I will describe in this section.

Test Code Quality

The same high-quality requirements for the production code have to be valid for the unit test code. I'll go
even further: Ideally, there should be no judgmental distinction between production and test code - both
are equal. If we say that there is production code on the one hand, and test code on the other hand, we
separate things that belong together inseparably. Don’t do that! Thinking about production and test code in
two categories lays the foundation to be able to neglect tests later in the project.

Unit Test Naming
If a unit test fails, the developer wants to know immediately:
e What is the name of the unit; whose test was failed?
e What was tested, and what was the environment of the test (the test scenario)?
e What was the expected test result, and what is the actual test result of the failed test?

Hence an expressive and descriptive naming of unit tests is very important. My advice is to establish
naming standards for all tests.

First of all, it's good practice to name the unit test module (depending on the unit test framework, they
are called Test Harnesses or Test Fixtures) in such a way so that the tested unit can be easily derived from it.
They should have a name like <Unit_under_Test>Test, whereby the placeholder <Unit_under_Test> must
be substituted by the name of the test subject, obviously. For instance, if your system under test (SUT) is the
unit Money, the corresponding test fixture that attaches to that unit and contains all unit test cases, should be
named MoneyTest (see Figure 2-3).

«TestContext» sut «SUT»
MoneyTest Money

Figure 2-3. The system under test (SUT) and its Test Context

15

CHAPTER 2 © BUILD A SAFETY NET

Beyond that, unit tests must have expressive and descriptive names. It is not helpful if unit tests
have more or less meaningless names like testConstructor(), test4391(), or sumTest (). Here are two
suggestions to find a good name for them.

For general, multipurpose classes that can be used in different contexts, an expressive name could
contain the following parts:

e The precondition of the test scenario, that is, the state of the SUT before the test was
executed.

e The tested part of the unit under test, typically the name of the tested procedure,
function, or method (API).

e The expected test result.

That leads to a name template for unit test procedures/methods, like this one:
<PreconditionAndStateOfUnitUnderTest> <TestedPartOfAPI> <ExpectedBehavior>
Here are a few examples:

Listing 2-1. Some examples for good and expressive unit test names

void CustomerCacheTest::cacheIsEmpty addElement sizeIsOne();

void CustomerCacheTest::cacheContainsOneElement removeElement sizeIsZero();

void ComplexNumberCalculatorTest::givenTwoComplexNumbers_add_Works();

void MoneyTest:: givenTwoMoneyObjectsWithDifferentBalance theInequalityComparison_Works();
void MoneyTest::createMoneyObjectWithParameter getBalanceAsString returnsCorrectString();
void InvoiceTest::invoiceIsReadyForAccounting getInvoiceDate returnsToday();

Another possible approach to build expressive unit test names is to manifest a specific requirement in
the name. These names typically reflect requirements of the application’s domain. For instance, they are
derived from stakeholder requirements.

Listing 2-2. Some more examples of unit test names that verify domain-specific requirements

void UserAccountTest::creatingNewAccountWithExistingEmailAddressThrowsException();
void ChessEngineTest::aPawnCanNotMoveBackwards();

void ChessEngineTest::aCastlingIsNotAllowedIfInvolvedKingHasBeenMovedBefore();
void ChessEngineTest::aCastlingIsNotAllowedIfInvolvedRookHasBeenMovedBefore();
void HeaterControlTest::iflWaterTemperatureIsGreaterThan92DegTurnHeaterOff();

void BookInventoryTest::aBookThatIsInTheInventoryCanBeBorrowedByAuthorizedPeople();
void BookInventoryTest::aBookThatIsAlreadyBorrowedCanNotBeBorrowedTwice();

As you read these test method names, it becomes clear that even if the implementation of the tests and
the test methods are not shown here, a lot of useful information can be derived easily from it. And this is also
a great advantage if such a test will fail. Nearly all unit test frameworks write the name of the failed test on
standard output (stdout). Thus, error location is greatly facilitated.

Unit Test Independence

Each unit test must be independent to all the others. It would be fatal if tests must be executed in a specific
order because one test is based on the result of the previous one. Never write a unit test whose result is the
prerequisite for a subsequent test. Never leave the unit under test in an altered state, which is a precondition
for the following tests.

16

CHAPTER 2 * BUILD A SAFETY NET

Major problems can be caused by global states, for example, the usage of Singletons or static members
in your unit under test. Not only is it that Singletons increase the coupling between software units. They also
often hold a global state that circumvents unit test independence. For instance, if a certain global state is the
precondition for a successful test, but the previous test has mutated that global state, it can cause serious trouble.
Especially in legacy systems, which are often littered with Singletons, this begs the question: how can I
getrid of all those nasty dependencies to those Singletons and make my code better testable? Well, that’s an
important question I discuss in section Dependency Injection in Chapter 6.

DEALING WITH LEGACY SYSTEMS

If you are confronted with so-called Legacy Systems and you are facing many difficulties while trying to
add unit tests, | recommend the book Working Effectively with Legacy Code [Feathers07] by Michael C.
Feathers. Feathers’s book contains many strategies for working with large, untested legacy code bases.
It also includes a catalogue of 24 dependency-breaking techniques. These strategies and techniques are
beyond the scope of this book.

One Assertion per Test

I know that this is a controversial topic, but I will try to explain why I think this is important. My advice is to
limit a unit test to use one assertion only, like this:

Listing 2-3. A unit test that checks the not-equal-operator of a Money class

void MoneyTest::givenTwoMoneyObjectsWithDifferentBalance theInequalityComparison Works() {
const Money m1(-4000.0);
const Money m2(2000.0);
ASSERT_TRUE(m1 != m2);

}

One could now argue that we could also check whether other comparison operators
(e.g., Money: :operator==()) are working correctly in this unit test. It would be easy to do that by simply
adding more assertions, like this:

Listing 2-4. Question: Is it really a good idea to check all comparison operators in one unit test?

void MoneyTest::givenTwoMoneyObjectsWithDifferentBalance testAllComparisonOperators() {

const Money mi1(-4000.0);

const Money m2(2000.0);

ASSERT TRUE(m1 != m2);

ASSERT FALSE(m1 == m2);

ASSERT_TRUE(m1 < m2);

ASSERT _FALSE(m1 > m2);

// ...more assertions here...

17

http://dx.doi.org/10.1007/978-1-4842-2793-0_6

CHAPTER 2 © BUILD A SAFETY NET

I think the problems with this approach are obvious:

e Ifatest can fail for several reasons, it can be difficult for developers to find the cause
of the error quickly. Above all, an early assertion that fails obscures additional errors,
that is, it hides subsequent assertions, because the execution of the test is stopped.

e Asalready explained in section Unit Test Naming, we should name a test in a
precise and expressive way. With multiple assertions, a unit test really tests many
things (which is, by the way, a violation of the Single Responsibility Principle;
see Chapter 6), and it would be difficult to find a good name for it. The above ..
testAllComparisonOperators() is not precise enough.

Independent Initialization of Unit Test Environments

This rule is somewhat akin to Unit Test Independence. When a clean implemented test completes, all states
related to that test must disappear. In more specific terms: when running all unit tests, each test must be an
isolated partial instantiation of an application. Each test has to set up and initialize its required environment
completely on its own. The same applies to cleaning up after the execution of the test.

Exclude Getters and Setters

Don’t write unit tests for usual getters and setters of a class, like this:

Listing 2-5. A simple setter and getter

void Customer::setForename(const std::stringd forename) {
this->forename = forename;
}

std::string Customer::getForename() const {
return forename;
}

Do you really expect that something could go wrong with such straightforward methods? These
member functions are typically so simple that it would be foolish to write unit tests for them. Furthermore,
usual getters and setters are implicitly tested by other and more important unit tests.

Attention, I just wrote that it is not necessary to test usual and simple getters and setters. Sometimes,
getters and setters are not that simple. According to the Information Hiding Principle (see section,
Information Hiding in Chapter 3) that we will discuss later, it should be hidden for the client if a getter
is simple and stupid, or if it has to make complex things to determine its return value. Therefore, it can
sometimes be useful to write an explicit test for a getter or setter.

Exclude Third-Party Code

Don’t write tests for third-party code! We don’t have to verify that libraries or frameworks do work as
expected. For example, we can assume with a clear conscience that the countless times used member
function std: :vector: :push_back() from the C++ Standard Library works correctly. On the contrary, we
can expect that third-party code comes with its own unit tests. It can be a wise architectural decision to not
use libraries or frameworks in your project that don’t have own unit tests and whose quality are doubtful.

18

http://dx.doi.org/10.1007/978-1-4842-2793-0_6
http://dx.doi.org/10.1007/978-1-4842-2793-0_3

CHAPTER 2 © BUILD A SAFETY NET

Exclude External Systems

The same as for third-party code is true for external systems. Don’t write tests for systems that are in the
context of your system to be developed, and thus not in your responsibility. For instance, if your financial
software uses an existing, external currency conversion system that is connected via Internet, you should not
test this. Besides the fact that such a system cannot provide a defined answer (the conversion factor between
currencies varies minute by minute), and that such a system might be impossible to reach due to network
issues, we are not responsible for the external system.

My advice is to mock (see section Test doubles (Fake objects) later in this chapter) these things out and
to test your code, not theirs.

And What Do We Do with the Database?

Many IT systems contain (relational) databases nowadays. They are required to persist huge amounts of
objects or data into longer-term storage, so that these objects or data can be queried in a comfortable way
and survive a shutdown of the system.

An important question is this: what shall we do with the database during unit testing?

My first and overriding piece of advice on this subject is: When there is any way to test
without a database, test without the database!

—Gerard Meszaros, xUnit Patterns

Databases can cause diverse and sometimes subtle problems during unit testing. For instance, if many unit
tests use the same database, the database tends to become a large central storage that those tests must share for
different purposes. This sharing may adversely affect the independence of the unit tests I've discussed earlier in
this chapter. It could be difficult to guarantee the required precondition for each unit test. The execution of one
unit test can cause unwanted side effects for other tests via the commonly used database.

Another problem is that databases are basically slow. They are much slower than access to local computer
memory. Unit tests that interact with the database tend to run magnitudes slower than tests that can run entirely
in memory. Imagine you have a few hundred unit tests, and each test needs an extra time span of 500 ms on
average, caused by the database queries. In sum all tests take several minutes longer than without a database.

My advice is to mock out the database (see section about Test Doubles/Mock Objects later in this
chapter), and execute all unit tests solely in memory. Don’t worry: the database, if it exists, will be involved
on the integration and system testing level.

Don’t Mix Test Code with Production Code

Sometimes developers come up with the idea to equip their production code with test code. For example, a
class might contain code to handle a dependency to a collaborating class during a test in the following manner:

Listing 2-6. One possible solution to deal with a dependency during test

#include <memory>

#include "DataAccessObject.h"
#include "CustomerDAO.h"
#include "FakeDAOForTest.h"

using DataAccessObjectPtr = std::unique_ptr<DataAccessObject>;

19

CHAPTER 2 © BUILD A SAFETY NET

class Customer {
public:
Customer() {}
explicit Customer(bool testMode) : inTestMode(testMode) {}

void save() {
DataAccessObjectPtr dataAccessObject = getDataAccessObject();
// ...use dataAccessObject to save this customer...

};
/.

private:
DataAccessObjectPtr getDataAccessObject() const {
if (inTestMode) {
return std::make _unique<FakeDAOForTest>();
} else {
return std::make_unique<CustomerDAO>();
}
}

// ...more operations here...

bool inTestMode{ false };
// ...more attributes here...

};

DataAccessObject is the abstract base class of specific DAQO’s, in this case, CustomerDAO and
FakeDAOForTest. The last one is a so-called fake object, which is nothing else than a test double (see
section about Test doubles (Fake objects) later in this chapter). It is intended to replace the real DAQ, since
we do not want to test it, and we don’t want to save the customer during test (remember my advice about
databases). Which one of both DAQ’s is used is controlled by the Boolean data member inTestMode.

Well, this code would work, but the solution has several disadvantages.

First of all, our production code is cluttered with test code. Although it does not appear dramatically at
first sight, it can increase complexity and reduce readability. We need an additional member to distinguish
between test mode and production usage of our system. This Boolean member has nothing to do with a
customer, not to mention with our system’s domain. And it’s easy to imagine that such kind of member is
required in many classes in our system.

Moreover, our class Customer has dependencies to CustomerDAO and FakeDAOForTest. You can see it in
the list of includes at the top of the source code. This means that the test dummy FakeDAOForTest is also part
of the system in the production environment. It is to be hoped that the code of the test double is never called
in production, but it is compiled, linked, and deployed.

Of course there are more elegant ways to deal with these dependencies and to keep the production code
free from test code. For instance, we can inject the specific DAO as a reference parameter in Customer : :save().

Listing 2-7. Avoiding dependencies to test code (1)

class DataAccessObject;

class Customer {
public:
void save(DataAccessObject® dataAccessObject) {
// ...use dataAccessObject to save this customer...

}
20

CHAPTER 2 © BUILD A SAFETY NET

/] ...
};

Alternatively, this can be done during construction of instances of type Customer. In this case we must
hold a reference to the DAO as an attribute of the class. Furthermore, we have to suppress the automatic
generation of the default constructor through the compiler because we don’ t want that any user of the
Customer can create an improperly initialized instance of it.

Listing 2-8. Avoiding dependencies to test code (2)

class DataAccessObject;

class Customer {
public:
Customer() = delete;
Customer (DataAccessObjectd dataAccessObject) : dataAccessObject(dataAccessObject) {}
void save() {
// ...use member dataAccessObject to save this customer...

}

/1 ...

private:
DataAccessObjectd dataAccessObject;
/7 ...

};

DELETED FUNCTIONS [C++11]

In C++, the compiler automatically generates the so-called special member functions (default constructor,
copy constructor, copy-assignment operator, and destructor) for a type if it does not declare its own. Since
C++11, this list of special member functions is extended by the move constructor and move-assignment
operator. C++11 (and higher) provides an easy and declarative way to suppress the automatic creation of
any special member function, as well as normal member functions and non-member functions: you can
delete them. For instance, you can prevent the creation of a default constructor this way:

class Clazz {
public:

Clazz() = delete;
};

And another example: you can delete operator new to prevent classes from being dynamically allocated
on the heap:

class Clazz {
public:
void* operator new(std::size t) = delete;

};

21

CHAPTER 2 © BUILD A SAFETY NET

A third alternative could be that the specific DAO is created by a Factory (see section Factory in Chapter 9
about Design Patterns) the Customer knows. This Factory can be configured from the outside to create the kind
of DAO that is required if the system runs in a test environment. No matter which one of these possible solutions
you choose, the Customer is free of test code. There are no dependencies to specific DAO’s in Customer.

Tests Must Run Fast

In large projects, one day you will reach the point where you have thousands of unit tests. This is great in
terms of software quality. But an awkward side effect might be that people will stop running these tests
before they're doing a check-in into the source code repository, because it takes too long.

It is easy to imagine that there is a strong correlation between the time it takes to run tests and a team'’s
productivity. If running all unit tests takes 15 minutes, 1/2 hour, or more, developers are impeded in doing
their work and waste their time with waiting for the test results. Even if the execution of each unit test takes
“only” half a second on average, it takes more than 8 minutes to carry out 1,000 tests. That means that the
execution of the whole test suite 10 times per day will result in almost 1.5 hours of waiting time in total. As a
result, developers will run the tests less often.

My advice is: Tests must run fast! Unit tests should establish a rapid feedback loop for developers.

The execution of all unit tests for a large project should not last longer than about 3 minutes, and rather less
time than that. For a faster, local test execution (<= a few seconds) during development, the test framework
should provide an easy way to turn off irrelevant groups of tests temporarily.

Needless to say, that on the automated build system all tests must be executed without exception
continuously every time before the final product will be built. The development team should get an
immediate notification if one or more tests fail on the build system. For instance, this can be done via e-mail
or with the help of an optical visualization (e.g., due to a flat screen on the wall, or a “traffic light” controlled
by the build system) at a prominent place. If even just one test fails, under no circumstances should you
release and ship the product!

Test Doubles (Fake Objects)

Unit tests should only be called “unit tests” if the units to be tested are completely independent from
collaborators during test execution, that is, the unit under test does not use other units or external systems.
For instance, while the involvement of a database during an integration test is uncritical and required,
because that’s the purpose of an integration test, an access (e.g., a query) to this database during a real
unit test is proscribed (see section And What Do We Do with the Database? earlier in this chapter). Thus,
dependencies of the unit to be tested to other modules or external systems should be replaced by so-called
Test Doubles, also known as Fake Objects, or Mock-Ups.

In order to work in an elegant way with such Test Doubles, loose coupling of the unit under test is to be
striven for (see section Loose coupling in the chapter Be Principled). For instance, an abstraction (e.g., an
interface in the form of a pure abstract class) can be introduced at the point where an access is made to a
collaborator that is unwanted for the test, as shown in Figure 2-4.

22

http://dx.doi.org/10.1007/978-1-4842-2793-0_9

CHAPTER 2 * BUILD A SAFETY NET

This class should X
not be used/called
during a unit test. +func01()
+func02()
[}
1
1
I
«Test Context» ‘i?
i sut suT
TestFixture - «SUT» Ty
UnitToTest
«TestCase» +test01() ;_ Interface
«TestCase» +test02() +func01() +funco1()
«TestCase» +test03() | - - - - - pf{+func02() +func02()
«Create» |+func03()
«TestCase» +testNN() /_’}

I
|

«Test Double»
XMock

«Create» +func01()
+func02()

Figure 2-4. An interface makes it easy to replace X with a Test Double XMock

Let’s assume that you want to develop an application that uses an external web service for current
currency conversions. During a unit test you cannot use this external service naturally, because it delivers
different conversion factors every second. Furthermore, the service is queried via Internet, which is basically
slow and can fail. And it is impossible to simulate borderline cases. Hence you have to replace the real
currency conversion by a test double during the unit test.

At first, we have to introduce a variation point in our code, where we can replace the module that
communicates with the currency conversion service by a test double. This can be done with the help of an
interface, which is in C++ an abstract class with solely pure virtual member functions.

Listing 2-9. An abstract interface for currency converters

class CurrencyConverter {

public:

virtual ~CurrencyConverter() { }

virtual long double getConversionFactor() const = 0;

};

The access to the currency conversion service via Internet is encapsulated in a class that implements
the CurrencyConverter interface.

Listing 2-10. The class that accesses the realtime currency conversion service

class RealtimeCurrencyConversionService : public CurrencyConverter {
public:

virtual long double getConversionFactor() const override;

// ...more members here that are required to access the service...

};

23

CHAPTER 2 © BUILD A SAFETY NET

For testing purposes a second implementation exists: the Test Double CurrencyConversionServiceMock.
Objects of this class will return a defined and predictable conversion factor as it is required for unit testing.
Furthermore, objects of this class provide additionally the capability to set the conversion factor from outside,
for example, to simulate borderline cases.

Listing 2-11. The Test Double

class CurrencyConversionServiceMock : public CurrencyConverter {
public:
virtual long double getConversionFactor() const override {
return conversionFactor;

}

void setConversionFactor(const long double value) {
conversionFactor = value;

}

private:
long double conversionFactor{0.5};

};

At the place in the production code where the currency converter is used, the interface is now used
to access the service. Due to this abstraction it is totally transparent for the client’s code which kind of
implementation is used during runtime - either the real currency converter or its Test Double.

Listing 2-12. The header of the class that uses the service

#include <memory>
class CurrencyConverter;

class UserOfConversionService {
public:
UserOfConversionService() = delete;
UserOfConversionService(const std::shared ptr<CurrencyConverter>& conversionService);
void doSomething();
// More of the public class interface follows here...

private:
std: :shared ptr<CurrencyConverter> conversionService;
//...internal implementation...

};

Listing 2-13. An excerpt from the implementation file

UserOfConversionService: :UserOfConversionService (conmst std::shared_
ptr<CurrencyConverter>& conversionService) :
conversionService(conversionService) { }

void UserOfConversionService::doSomething() {
long double conversionFactor = conversionService->getConversionFactor();
/7 ...

}
24

CHAPTER 2 © BUILD A SAFETY NET

In a unit test for class UserOfConversionService, the test case is now able to pass in the mock
object through the initialization constructor. On the other hand, at normal operation of the software, the
real service can be passed through the constructor. This technique is known as a design pattern named
Dependency Injection, which is discussed in detail in the eponymous section of the chapter Design Pattern.

Listing 2-14. An example how UserOfConversionService gets its required CurrencyConverter object

std::shared_ptr<CurrencyConverter> serviceToUse = std::make_shared<name of the desired class
here */>();

UserOfConversionService user(serviceToUse);

// The instance of UserOfConversionService is ready for use...

user.doSomething();

25

CHAPTER 3

Be Principled

I would advise students to pay more attention to the fundamental ideas rather than the
latest technology. The technology will be out-of-date before they graduate. Fundamental
ideas never get out of date.

—David L. Parnas

In this chapter, I introduce the most important and fundamental principles of well-designed and well-
crafted software. What is special about these principles is that they are not tied to certain programming
paradigms or programming languages. Some of them are not even specific to software development. For
instance, the discussed KISS principle can be relevant to many areas of life: generally speaking, it is not a bad
idea to make everything as simple in life as possible - not only software development.

That is, you should not learn of the following principles once and then forget them. These advices are
given for you to internalize. These principles are so important that they should, ideally, become second
nature to every