
www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Early praise for Crafting Rails 4 Applications

Superb—the most advanced Rails book on the market.

➤ Xavier Noria
Ruby on Rails consultant

In Crafting Rails 4 Applications, José Valim showed me how to make Ruby on
Rails dance. I write better code and waste less time fighting the framework because
of the tricks he taught me. If you make a living with Ruby on Rails (or would like
to), do yourself a favor and read this book.

➤ Avdi Grimm
Head chef, Ruby Tapas

This is easily the best continuing-education book for Rails that I have ever read.
You learn how things work internally and how you can use that to your advantage
when building Rails applications.

➤ James Edward Gray
Developer, Gray Software Productions Inc.

Crafting Rails 4 Applications is the best introduction to Rails internals out there.
After reading it I quickly became a Rails contributor.

➤ Guillermo Iguaran
Lead developer

www.it-ebooks.info

http://www.it-ebooks.info/

Crafting Rails 4 Applications
Expert Practices for Everyday Rails Development

José Valim

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

www.it-ebooks.info

http://www.it-ebooks.info/

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at http://pragprog.com.

The team that produced this book includes:

Brian P. Hogan (editor)
Potomac Indexing, LLC (indexer)
Candace Cunningham (copyeditor)
David J. Kelly (typesetter)
Janet Furlow (producer)
Juliet Benda (rights)
Ellie Callahan (support)

Copyright © 2013 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-937785-55-0
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—November 2013

www.it-ebooks.info

http://pragprog.com
http://www.it-ebooks.info/

Contents

Acknowledgments vii

Preface ix

1. Creating Our Own Renderer 1
Creating Your First Rails Plug-in 21.1

1.2 Writing the Renderer 5
1.3 Understanding the Rails Rendering Stack 9
1.4 Taking It to the Next Level 14
1.5 Wrapping Up 16

2. Building Models with Active Model 17
Creating Our Model 172.1

2.2 Integration Tests with Capybara 28
2.3 Taking It to the Next Level 32
2.4 Wrapping Up 37

3. Retrieving View Templates from Custom Stores 39
Revisiting the Rendering Stack 393.1

3.2 Setting Up a SqlResolver 41
3.3 Configuring Our Resolver for Production 48
3.4 Serving Templates with Metal 55
3.5 Wrapping Up 59

4. Sending Multipart Emails Using Template Handlers . . . 61
Playing with the Template-Handler API 634.1

4.2 Building a Template Handler with Markdown + ERB 66
4.3 Customizing Rails Generators 71
4.4 Extending Rails with Railties 78
4.5 Wrapping Up 80

www.it-ebooks.info

http://www.it-ebooks.info/

5. Streaming Server Events to Clients Asynchronously . . . 83
Extending Rails with Engines 845.1

5.2 Live Streaming 87
5.3 Filesystem Notifications with Threads 92
5.4 Code-Loading Techniques 100
5.5 Wrapping Up 104

6. Writing DRY Controllers with Responders 105
Understanding Responders 1066.1

6.2 Exploring ActionController::Responder 109
6.3 The Flash Responder 114
6.4 HTTP Cache Responder 119
6.5 More Ways to Customize Generators 122
6.6 Wrapping Up 128

7. Managing Application Events with Mountable Engines . . 131
Mountable and Isolated Engines 1317.1

7.2 Storing Notifications in the Database 133
7.3 Rails and Rack 140
7.4 Middleware Stacks 143
7.5 Streaming with Rack 150
7.6 Wrapping Up 154

8. Translating Applications Using Key-Value Back Ends . . 155
Revisiting Rails::Application 1568.1

8.2 I18n Back Ends and Extensions 159
8.3 Rails and Sinatra 163
8.4 Taking It to the Next Level with Devise and Capybara 169
8.5 Wrapping Up 175

Index 177

Contents • vi

www.it-ebooks.info

http://www.it-ebooks.info/

Acknowledgments
First and foremost, I am grateful to my wife for the care, for the love, and for
occasionally dragging me outside to enjoy the world around us. I also want
to send lots of love to my parents and family, who proudly exhibited the first
edition of this book to everyone who stepped into our home. Now they will get
a fresh new edition, too!

I also want to thank the guys at Plataformatec, specially George Guimarães,
Hugo Baraúna, and Marcelo Park. Without them, this book would not have
been possible. Everyone at Plataformatec helped from day one, when we were
deciding the chapter’s contents, up until the final paragraphs.

The reviewers did an outstanding job with this book. Thanks to Daniel Bretoi,
Rafael França, Kevin Gisi, Jeff Holland, Landrus Kurt, Xavier Noria, Stephen
Orr, Yves Senn, Neeraj Singh, and Charley Stran.

Special thanks to my editor, Brian Hogan, and The Pragmatic Programmers,
who helped me take this book from great to excellent; and to Yehuda Katz for
supporting me not only while writing this book, but also in Rails Core devel-
opment as a whole.

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

Preface
When Rails was first released in 2004, it revolutionized how web development
was done by embracing concepts like Don’t Repeat Yourself (DRY) and con-
vention over configuration. As Rails gained momentum, the conventions that
were making things work so well started to get in the way of developers who
had the urge to extend how Rails behaved or even to replace whole
components.

Some developers felt that using DataMapper as an object-relational mapper
(ORM) instead of using Active Record was best. Other developers turned to
MongoDB and other nonrelational databases but still wanted to use their
favorite web framework. Then there were developers who preferred test
frameworks like RSpec to Test::Unit. These developers hacked, cobbled, or
monkey-patched solutions together to accomplish their goals because previous
versions of Rails did not provide a solid application programming interface
(API) or the modularity required to make these changes in a clean, maintain-
able fashion.

With time, the Rails team started to listen to those developers, and after years
the result is a robust and wide-ranging set of plug-in APIs, targeted to devel-
opers who want to customize their workflows, replace whole components, and
bend Rails to their will without messy hacks.

This book guides you through these plug-in APIs with practical examples. In
each chapter, we’ll use test-driven development to build a Rails plug-in or
application that covers those APIs and how they fit in the Rails architecture.
By the time you finish this book, you will understand Rails better and increase
your productivity while writing more modular and faster Rails applications.

Who Should Read This Book?

If you’re an intermediate or advanced Rails developer looking to dig deeper
and make the Rails framework work for you, this is your book. We’ll go beyond
the basics of Rails; instead of showing how Rails lets you use its built-in

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

features to render HTML or XML from a controller, I’ll show you how the render()
method works so you can modify it to accept custom options, such as :pdf.

Rails Versions

All projects in Crafting Rails 4 Applications were developed and tested against
Rails 4.0.0. Future stable releases, like Rails 4.0.1, 4.0.2, and so forth, should
be suitable as well. You can check your Rails version with the following
command:

rails -v

And you can use gem install to get the most appropriate version:

gem install rails -v 4.0.0

This book also has excerpts from the Rails source code. All these excerpts
were extracted from Rails 4.0.0.

Most of the APIs described in this book should remain compatible throughout
Rails releases. Very few of them changed since the release of the first edition
of this book.1

Note for Windows Developers

Some chapters have dependencies that rely on C extensions. These dependen-
cies install fine in UNIX systems, but Windows developers need the DevKit,2

a toolkit that enables you to build many of the native C/C++ extensions
available for Ruby.

Download and installation instructions are available online at http://rubyin-
staller.org/downloads/. Alternatively, you can get everything you need by installing
RailsInstaller,3 which packages Ruby, Rails, and the DevKit, as well as several
other common libraries.

What Is in the Book?

We’ll explore the inner workings of Rails across eight chapters.

In Chapter 1, Creating Our Own Renderer, on page 1, I’ll introduce rails plugin,
a tool used throughout this book to create Rails plug-ins, and we’ll customize
render() to accept :pdf as an option with a behavior we’ll define. This chapter
starts a series of discussions about Rails’s rendering stack.

1. http://www.pragprog.com/titles/jvrails/
2. http://rubyinstaller.org/downloads/
3. http://railsinstaller.org

Preface • x

report erratum • discusswww.it-ebooks.info

http://rubyinstaller.org/downloads/
http://rubyinstaller.org/downloads/
http://www.pragprog.com/titles/jvrails/
http://rubyinstaller.org/downloads/
http://railsinstaller.org
http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

In Chapter 2, Building Models with Active Model, on page 17, we’ll take a look
at Active Model and its modules as we create an extension called Mail Form
that receives data through a form and sends it to a preconfigured email
address.

Then in Chapter 3, Retrieving View Templates from Custom Stores, on page
39, we’ll revisit the Rails rendering stack and customize it to read templates
from a database instead of the filesystem. At the end of the chapter, you’ll
learn how to build faster controllers using Rails’s modularity.

In Chapter 4, Sending Multipart Emails Using Template Handlers, on page 61,
we’ll create a new template handler (like ERB and Haml) on top of Markdown.4

We’ll then create new generators and seamlessly integrate them into Rails.

In Chapter 5, Streaming Server Events to Clients Asynchronously, on page 83,
we’ll build a Rails engine that streams data to clients. We’ll also see how to
use Ruby’s Queue class in the Ruby Standard Library to synchronize the
exchange of information between threads, and we’ll finish with a discussion
about thread safety and eager loading.

In Chapter 6, Writing DRY Controllers with Responders, on page 105, we’ll study
Rails’s responders and how we can use them to encapsulate controllers’
behavior, making our controllers simpler and our applications more modular.
We’ll then extend Rails responders to add HTTP cache and internationalized
Flash messages by default. At the end of the chapter, you’ll learn how to
customize Rails’s scaffold generators for enhanced productivity.

In Chapter 7, Managing Application Events with Mountable Engines, on page
131, we’ll build a mountable engine that stores information about each action
processed by our application in a MongoDB database and exposes them for
further analysis through a web interface. We’ll finish the chapter talking about
Rack and its middleware stacks while writing our own middleware.

Finally, in Chapter 8, Translating Applications Using Key-Value Back Ends,
on page 155, we’ll discuss the internationalization framework (I18n) and cus-
tomize it to read and store translations in a Redis data store. We’ll create an
application that uses Sinatra as a Rails extension so we can modify these
translations from Redis through a web interface. We’ll protect this translation
interface using Devise and show Capybara’s flexibility to write integration
tests for different browsers.5,6

4. http://daringfireball.net/projects/markdown
5. https://github.com/plataformatec/devise
6. https://github.com/jnicklas/capybara

report erratum • discuss

What Is in the Book? • xi

www.it-ebooks.info

http://daringfireball.net/projects/markdown
https://github.com/plataformatec/devise
https://github.com/jnicklas/capybara
http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

Changes in the Second Edition

All of the projects and code examples have been updated and tested to work
with Rails 4. The projects also use up-to-date workflows for creating Rails
plug-ins and interfacing with the framework.

In addition, Chapter 5, Streaming Server Events to Clients Asynchronously,
on page 83, is brand-new; it covers Rails’s support for Server Sent Events
and digs into eager loading and thread safety.

We also explore isolated and mountable engines and single-file Rails applica-
tions in this edition.

How to Read This Book

We’ll build a project from scratch in each chapter. Although these projects
do not depend on each other, most of the discussions in each chapter depend
on what you learned previously. For example, in Chapter 1, Creating Our Own
Renderer, on page 1, we discuss Rails’s rendering stack, and then we take
this discussion further in Chapter 3, Retrieving View Templates from Custom
Stores, on page 39, and finish it in Chapter 4, Sending Multipart Emails Using
Template Handlers, on page 61. In other words, you can skip around, but to
get the big picture, you should read the chapters in the order they are
presented.

Online Resources

The book’s website has links to an interactive discussion forum as well as
errata for the book.7 You’ll also find the source code for all the projects we
build. Readers of the ebook can click the gray box above a given code excerpt
to download that snippet directly.

If you find a mistake, please create an entry on the errata page so we can
address it. If you have an electronic copy of this book, please click the link
in the footer of any page to easily submit errata to us.

Let’s get started by creating a Rails plug-in that customizes the render() method
so you can learn how Rails’s rendering stack works.

José Valim

jose.valim@plataformatec.com.br

7. http://www.pragprog.com/titles/jvrails2/

Preface • xii

report erratum • discusswww.it-ebooks.info

http://www.pragprog.com/titles/jvrails2/
http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

CHAPTER 1

Creating Our Own Renderer
Like many web frameworks, Rails uses the model-view-controller (MVC)
architecture pattern to organize our code. The controller usually is responsible
for gathering information from our models and sending the data to the view
for rendering. On other occasions, the model is responsible for representing
itself, and then the view does not take part in the request; this most often
happens in JavaScript Object Notation (JSON) requests. The following index
action illustrates these two scenarios:

class PostsController < ApplicationController
def index

if client_authenticated?
render json: Post.all

else
render template: "shared/not_authenticated", status: 401

end
end

end

The common interface to render a given model or template is the render()
method. Besides knowing how to render a :template or a :file, Rails can render
raw :text and a few formats, such as :xml, :json, and :js. Although the default
set of Rails options is enough to bootstrap our applications, we sometimes
need to add new options like :pdf or :csv to the render() method.

To achieve this, Rails provides an application programming interface (API)
that we can use to create our own renderers. We’ll explore this API as we
modify the render() method to accept :pdf as an option and return a PDF created
with Prawn,1 a tiny, fast, and nimble PDF-writer library for Ruby.

1. https://github.com/prawnpdf/prawn

In this chapter, we’ll see
• Rails plug-ins and their basic structure
• How to customize the render() method to accept custom

options
• Rails rendering-stack basics

report erratum • discusswww.it-ebooks.info

https://github.com/prawnpdf/prawn
http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

As in most chapters in this book, we’ll use the rails plugin generator to create
a plug-in that extends Rails’s capabilities. Let’s get started!

1.1 Creating Your First Rails Plug-in

If you already have Rails installed, you’re ready to craft your first plug-in.
Let’s call this plug-in pdf_renderer:

$ rails plugin new pdf_renderer

When we run this command we see the following output:

create
create README.rdoc
create Rakefile
create pdf_renderer.gemspec
create MIT-LICENSE
create .gitignore
create Gemfile
create lib/pdf_renderer.rb
create lib/tasks/pdf_renderer_tasks.rake
create lib/pdf_renderer/version.rb
create test/test_helper.rb
create test/pdf_renderer_test.rb
append Rakefile

vendor_app test/dummy
run bundle install

This command creates the basic plug-in structure, containing a pdf_renderer.gem-
spec file, a Rakefile, a Gemfile, and the lib and test folders. The second-to-last step
in the preceding text is a little more interesting; it generates a full-fledged
Rails application inside the test/dummy directory, which allows us to run our
tests inside a Rails application context.

The generator finishes by running bundle install, which uses Bundler to install
all dependencies our project requires.2 With everything set up, let’s explore
the generated files.

pdf_renderer.gemspec

The pdf_renderer.gemspec provides a basic gem specification. The specification
declares the gem’s authors, version, dependencies, source files, and more.
This allows us to easily bundle our plug-in into a Ruby gem, making it easy
for us to share our code across different Rails applications.

Notice that the gem has the same name as the file inside the lib directory,
which is pdf_renderer. By following this convention, whenever you declare this

2. http://gembundler.com/

Chapter 1. Creating Our Own Renderer • 2

report erratum • discusswww.it-ebooks.info

http://gembundler.com/
http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

gem in a Rails application’s Gemfile, the file at lib/pdf_renderer.rb will be automat-
ically required. For now, this file contains only a definition for the PdfRenderer
module.

Finally, notice that our gemspec does not explicitly define the project version.
Instead, the version is defined in lib/pdf_renderer/version.rb, which is referenced
in the gemspec as PdfRenderer::VERSION. This is a common practice in Ruby gems.

Gemfile

In a Rails application, the Gemfile is used to list all sorts of dependencies, no
matter if they’re development, test, or production dependencies. However, as
our plug-in already has a gemspec to list dependencies, the Gemfile simply reuses
the gemspec dependencies. The Gemfile may eventually contain extra dependen-
cies that you find convenient to use during development, like the debugger or
the excellent pry gems.3

To manage our plug-in dependencies, we use Bundler. Bundler locks our
environment to use only the gems listed in both the pdf_renderer.gemspec and
the Gemfile, ensuring the tests are executed using the specified gems. We can
add new dependencies and update existing ones by running the bundle install
and bundle update commands in our plug-in’s root.

Rakefile

The Rakefile provides basic tasks to run the test suite, generate documentation,
and release our gem to the public. We can get the full list by executing rake -T
at pdf_renderer’s root:

$ rake -T
rake build # Build pdf_renderer-0.0.1.gem into the pkg directory
rake clobber_rdoc # Remove RDoc HTML files
rake install # Build and install pdf_renderer-0.0.1.gem into system gems
rake rdoc # Build RDoc HTML files
rake release # Create tag v0.0.1 and build and push pdf_renderer...
rake rerdoc # Rebuild RDoc HTML files
rake test # Run tests

Booting the Dummy Application

rails plugin creates a dummy application inside our test directory, and this
application’s booting process is similar to that of a normal application created
with the rails command.

3. http://pryrepl.org/

report erratum • discuss

Creating Your First Rails Plug-in • 3

www.it-ebooks.info

http://pryrepl.org/
http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

The config/boot.rb file has only one responsibility: to configure our application’s
load paths. The config/application.rb file should then load all required dependencies
and configure the application, which is initialized in config/environment.rb.

The boot file that rails plugin generates is at test/dummy/config/boot.rb, and it is
similar to the application one—the first difference is that it needs to point to
the Gemfile at the root of the pdf_renderer plugin. It also explicitly adds the plug-
in’s lib directory to Ruby’s load path, making our plug-in available inside the
dummy application:

pdf_renderer/1_prawn/test/dummy/config/boot.rb
Set up gems listed in the Gemfile.
ENV['BUNDLE_GEMFILE'] ||= File.expand_path('../../../../Gemfile', __FILE__)

require 'bundler/setup' if File.exists?(ENV['BUNDLE_GEMFILE'])
$LOAD_PATH.unshift File.expand_path('../../../../lib', __FILE__)

The boot file delegates to Bundler the responsibility of setting up dependencies
and their load paths. The test/dummy/config/application.rb is a stripped-down version
of the config/application.rb found in Rails applications:

pdf_renderer/1_prawn/test/dummy/config/application.rb
require File.expand_path('../boot', __FILE__)
require 'rails/all'

Bundler.require(*Rails.groups)
require "pdf_renderer"

module Dummy
class Application < Rails::Application

...
end

end

The config/environment.rb is exactly the same as you’d find in a regular Rails
application:

pdf_renderer/1_prawn/test/dummy/config/environment.rb
Load the rails application.
require File.expand_path('../application', __FILE__)

Initialize the rails application.
Dummy::Application.initialize!

Running Tests

By default rails plugin generates one sanity test for our plug-in. Let’s run our
tests and see them pass with the following:

$ rake test

Chapter 1. Creating Our Own Renderer • 4

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/jvrails2/code/pdf_renderer/1_prawn/test/dummy/config/boot.rb
http://media.pragprog.com/titles/jvrails2/code/pdf_renderer/1_prawn/test/dummy/config/application.rb
http://media.pragprog.com/titles/jvrails2/code/pdf_renderer/1_prawn/test/dummy/config/environment.rb
http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

The output looks something like this:

Run options: --seed 20094

Running tests:

.

Finished tests in 0.096440s, 10.3691 tests/s, 10.3691 assertions/s.

1 tests, 1 assertions, 0 failures, 0 errors, 0 skips

The test, defined in test/pdf_renderer_test.rb, asserts that our plug-in defined a
module called PdfRenderer.

pdf_renderer/1_prawn/test/pdf_renderer_test.rb
require 'test_helper'
class PdfRendererTest < ActiveSupport::TestCase

test "truth" do
assert_kind_of Module, PdfRenderer

end
end

Finally, note that our test file requires test/test_helper.rb, which is the file
responsible for loading our application and configuring our testing environ-
ment. With our plug-in skeleton created and a green test suite, we can start
writing our first custom renderer.

1.2 Writing the Renderer

At the beginning of this chapter, we briefly discussed the render() method and
a few options that it accepts, but we haven’t formally described what a ren-
derer is.

A renderer is nothing more than a hook exposed by the render() method to
customize its behavior. Adding our own renderer to Rails is quite simple. Let’s
consider the :json renderer in Rails source code as an example:

rails/actionpack/lib/action_controller/metal/renderers.rb
add :json do |json, options|

json = json.to_json(options) unless json.kind_of?(String)
if options[:callback].present?

self.content_type ||= Mime::JS
"#{options[:callback]}(#{json})"

else
self.content_type ||= Mime::JSON
json

end
end

report erratum • discuss

Writing the Renderer • 5

www.it-ebooks.info

http://media.pragprog.com/titles/jvrails2/code/pdf_renderer/1_prawn/test/pdf_renderer_test.rb
http://media.pragprog.com/titles/jvrails2/code/rails/actionpack/lib/action_controller/metal/renderers.rb
http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

So, whenever we invoke the following method in our application

render json: @post

it will invoke the block defined as the :json renderer. The local variable json
inside the block points to the @post object, and the other options passed to
render() will be available in the options variable. In this case, since the method
was called without any extra options, it’s an empty hash.

In the following sections, we want to add a :pdf renderer that creates a PDF
document from a given template and sends it to the client with the appropriate
headers. The value given to the :pdf option should be the name of the file to
be sent.

The following is an example of the API we want to provide:

render pdf: 'contents', template: 'path/to/template'

Although Rails knows how to render templates and send files to the client, it
does not know how to handle PDF files. For this, let’s use Prawn.

Playing with Prawn

Prawn is a PDF-writing library for Ruby.4 Since it’s going to be a dependency
of our plug-in, we need to add it to our pdf_renderer.gemspec:

pdf_renderer/1_prawn/pdf_renderer.gemspec
s.add_dependency "prawn", "0.12.0"

Next, let’s ask bundler to install our new dependency and test it via interactive
Ruby:

$ bundle install
$ irb

Inside irb, let’s create a sample PDF:

require "prawn"

pdf = Prawn::Document.new
pdf.text("A PDF in four lines of code")
pdf.render_file("sample.pdf")

Exit irb, and you can see a PDF file in the directory in which you started the
irb session. Prawn provides its own syntax to create PDFs, and although this
gives us a flexible API, the drawback is that it cannot create PDFs from HTML
files.

4. https://github.com/prawnpdf/prawn

Chapter 1. Creating Our Own Renderer • 6

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/jvrails2/code/pdf_renderer/1_prawn/pdf_renderer.gemspec
https://github.com/prawnpdf/prawn
http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

Code in Action

Let’s write some tests before we dive into the code. Since we have a dummy
application at test/dummy, we can create controllers as in an actual Rails
application, and use them to test the complete request stack. Let’s name the
controller used in our tests HomeController and add the following contents:

pdf_renderer/1_prawn/test/dummy/app/controllers/home_controller.rb
class HomeController < ApplicationController

def index
respond_to do |format|
format.html
format.pdf { render pdf: "contents" }

end
end

end

Now let’s create the PDF view the controller uses:

pdf_renderer/1_prawn/test/dummy/app/views/home/index.pdf.erb
This template is rendered with Prawn.

And add a route for the index action:

pdf_renderer/1_prawn/test/dummy/config/routes.rb
Dummy::Application.routes.draw do

get "/home", to: "home#index", as: :home
end

Finally, let’s write an integration test that verifies a PDF is being returned
when we access /home.pdf:

pdf_renderer/1_prawn/test/integration/pdf_delivery_test.rb
require "test_helper"

class PdfDeliveryTest < ActionDispatch::IntegrationTest
test "pdf request sends a pdf as file" do

get home_path(format: :pdf)

assert_match "PDF", response.body
assert_equal "binary", headers["Content-Transfer-Encoding"]

assert_equal "attachment; filename=\"contents.pdf\"",
headers["Content-Disposition"]

assert_equal "application/pdf", headers["Content-Type"]
end

end

The test uses the response headers to assert that a binary-encoded PDF file
was sent as an attachment, including the expected filename. Although we
cannot assert much about the PDF body since it’s encoded, we can at least

report erratum • discuss

Writing the Renderer • 7

www.it-ebooks.info

http://media.pragprog.com/titles/jvrails2/code/pdf_renderer/1_prawn/test/dummy/app/controllers/home_controller.rb
http://media.pragprog.com/titles/jvrails2/code/pdf_renderer/1_prawn/test/dummy/app/views/home/index.pdf.erb
http://media.pragprog.com/titles/jvrails2/code/pdf_renderer/1_prawn/test/dummy/config/routes.rb
http://media.pragprog.com/titles/jvrails2/code/pdf_renderer/1_prawn/test/integration/pdf_delivery_test.rb
http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

assert that it has the string PDF in it, which Prawn adds to the PDF body. Let’s
run our test with rake test and watch it fail:

1) Failure:
test_pdf_request_sends_a_pdf_as_file(PdfDeliveryTest):
Expected /PDF/ to match "This template is rendered with Prawn.\n".

The test fails as expected. Since we haven’t taught Rails how to handle the
:pdf option in render(), it is simply rendering the template without wrapping it
in a PDF. We can make the test pass by implementing our renderer in just a
few lines of code inside lib/pdf_renderer.rb:

pdf_renderer/1_prawn/lib/pdf_renderer.rb
require "prawn"
ActionController::Renderers.add :pdf do |filename, options|

pdf = Prawn::Document.new
pdf.text render_to_string(options)
send_data(pdf.render, filename: "#{filename}.pdf",

disposition: "attachment")
end

And that’s it! In this code block, we create a new PDF document, add some
text to it, and send the PDF as an attachment using the send_data() method
available in Rails. We can now run the tests and watch them pass. We can
also go to test/dummy, start the server with rails server, and test it by accessing
http://localhost:3000/home.pdf.

Even though our test passes, there is still some explaining to do. First of all,
observe that we did not, at any point, set the Content-Type to application/pdf. How
did Rails know which content type to set in our response?

The content type was set correctly because Rails ships with a set of registered
formats and MIME types:

rails/actionpack/lib/action_dispatch/http/mime_types.rb
Mime::Type.register "text/html", :html, %w(application/xhtml+xml), %w(xhtml)
Mime::Type.register "text/plain", :text, [], %w(txt)
Mime::Type.register "text/javascript", :js,

%w(application/javascript application/x-javascript)
Mime::Type.register "text/css", :css
Mime::Type.register "text/calendar", :ics
Mime::Type.register "text/csv", :csv

Mime::Type.register "image/png", :png, [], %w(png)
Mime::Type.register "image/jpeg", :jpeg, [], %w(jpg jpeg jpe pjpeg)
Mime::Type.register "image/gif", :gif, [], %w(gif)
Mime::Type.register "image/bmp", :bmp, [], %w(bmp)
Mime::Type.register "image/tiff", :tiff, [], %w(tif tiff)

Chapter 1. Creating Our Own Renderer • 8

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/jvrails2/code/pdf_renderer/1_prawn/lib/pdf_renderer.rb
http://media.pragprog.com/titles/jvrails2/code/rails/actionpack/lib/action_dispatch/http/mime_types.rb
http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

Mime::Type.register "video/mpeg", :mpeg, [], %w(mpg mpeg mpe)

Mime::Type.register "application/xml", :xml, %w(text/xml application/x-xml)
Mime::Type.register "application/rss+xml", :rss
Mime::Type.register "application/atom+xml", :atom
Mime::Type.register "application/x-yaml", :yaml, %w(text/yaml)

Mime::Type.register "multipart/form-data", :multipart_form
Mime::Type.register "application/x-www-form-urlencoded", :url_encoded_form

Mime::Type.register "application/json", :json,
%w(text/x-json application/jsonrequest)

Mime::Type.register "application/pdf", :pdf, [], %w(pdf)
Mime::Type.register "application/zip", :zip, [], %w(zip)

Notice how the PDF format is defined with its respective content type. When
we requested the /home.pdf URL, Rails retrieved the pdf format from the URL,
verified it matched with the format.pdf block defined in HomeController#index, and
proceeded to set the proper content type before invoking the block that called
render.

Going back to our render implementation, although send_data() is a public Rails
method and has been available since the first Rails versions, you might not
have heard about the render_to_string() method. To better understand it, let’s
take a look at the Rails rendering process as a whole.

1.3 Understanding the Rails Rendering Stack

Action Mailer and Action Controller have several features in common, such
as template rendering, helpers, and layouts. To avoid code duplication, those
shared responsibilities are centralized in Abstract Controller, which both
Action Mailer and Action Controller use as their foundation. At the same time,
some features are required by only one of the two libraries. Given those
requirements, Abstract Controller was designed in a way that developers can
cherry-pick the functionality they want. For instance, if we want an object to
have basic rendering capabilities, where it simply renders a template but does
not include a layout, we include the AbstractController::Rendering module in our
object, leaving out AbstractController::Layouts.

When we include AbstractController::Rendering in an object, the rendering stack
proceeds as shown in Figure 1, Visualization of the rendering stack when we
call render with AbstractController::Rendering, on page 10 every time we call
render().

report erratum • discuss

Understanding the Rails Rendering Stack • 9

www.it-ebooks.info

http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

Figure 1—Visualization of the rendering stack when we call render() with
AbstractController::Rendering

Each rectangle represents a method, followed by the classes or modules that
implement it. The arrows represent method calls. For example, render() calls
_normalize_render() and then calls render_to_body(). The stack can be confirmed by
looking at the AbstractController::Rendering implementation in Rails source code:

rails/actionpack/lib/abstract_controller/rendering.rb
def render(*args, &block)

options = _normalize_render(*args, &block)
self.response_body = render_to_body(options)

end

def _normalize_render(*args, &block)
options = _normalize_args(*args, &block)
_normalize_options(options)
options

end

def render_to_body(options = {})
_process_options(options)
_render_template(options)

end

Chapter 1. Creating Our Own Renderer • 10

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/jvrails2/code/rails/actionpack/lib/abstract_controller/rendering.rb
http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

Abstract Controller’s rendering stack is responsible for normalizing the
arguments and options you provide and converting them to a hash of options
that ActionView::Renderer#render() accepts, which will take care of finally rendering
the template. Each method in the stack plays a specific role within this
overall responsibility. These methods can be either private (starting with an
underscore) or part of the public API.

The first relevant method in the stack is _normalize_args(), invoked by _normal-
ized_render(), and it converts the user-provided arguments into a hash. This
allows the render() method to be invoked as render(:new), which _normalize_args()
converts to render(action: "new"). The hash that _normalize_args() returns is then
further normalized by _normalize_options(). There is not much normalization
happening inside AbstractController::Rendering#_normalize_options() since it’s the basic
module, but it does convert render(partial: true) calls to render(partial: action_name).
So, whenever you give partial: true in a show() action, it becomes partial: "show"
down the stack.

After normalization, render_to_body() is invoked. This is where the actual render-
ing starts. The first step is to process all options that are meaningless to the
view, using the _process_options() method. Although AbstractController::Rendering#
_process_options() is an empty method, we can look into ActionController::Rendering#
_process_options() for a handful of examples about what to do in this method.
For instance, in controllers we are allowed to invoke the following:

render template: "shared/not_authenticated", status: 401

Here the :status option is meaningless to views, since status refers to the HTTP
response status. So, it’s ActionController::Rendering#_process_options()’s responsibility
to intercept and handle this option and others.

After options processing, _render_template() is invoked and different objects start
to collaborate. In particular, an instance of ActionView::Renderer called view_renderer
is created and the render() method is called on it with two arguments: the
view_context and our hash of normalized options:

rails/actionpack/lib/abstract_controller/rendering.rb
view_renderer.render(view_context, options)

The view context is an instance of ActionView::Base; it is the context in which
our templates are evaluated. When we call link_to() in a template, it works
because it’s a method available inside ActionView::Base. When instantiated, the
view context receives view_assigns() as an argument. The term assigns references
the group of controller variables that will be accessible in the view. By default,
whenever you set an instance variable in your controller as @posts = Post.all,
@posts is marked as an assign and will also be available in views.

report erratum • discuss

Understanding the Rails Rendering Stack • 11

www.it-ebooks.info

http://media.pragprog.com/titles/jvrails2/code/rails/actionpack/lib/abstract_controller/rendering.rb
http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

At this point, it’s important to highlight the inversion of concerns that hap-
pened between Rails 2.3 and Rails 3.0. In the former the view is responsible
for retrieving assigns from the controller, and in the latter the controller tells
the view which assigns to use.

Imagine that we want a controller that does not send any assigns to the view.
In Rails 2.3, since the view automatically pulls in all instance variables from
controllers, to achieve that we should either stop using instance variables in
our controller or be sure to remove all instance variables before rendering a
template. In Rails 3 and up, this responsibility is handled in the controller.
We just need to override the view_assigns() method to return an empty hash:

class UsersController < ApplicationController
protected
def view_assigns

{}
end

end

By returning an empty hash, we ensure none of the actions in the controller
pass assigns to the view.

With the view context and the hash of normalized options in hand, our
ActionView::Renderer instance has everything it needs to find a template, based
on the options, and finally render it inside the view context.

This modular and well-defined stack allows anyone to hook into the rendering
process and add their own features. When we include AbstractController::Layouts
on top of AbstractController::Rendering, the rendering stack is extended as shown
in Figure 2, Visualization of the rendering stack when we call render with
AbstractController::Rendering and AbstractController::Layouts, on page 13.

AbstractController::Layouts simply overrides _normalize_options() to support the :layout
option. In case no :layout option is set when calling render(), one may be auto-
matically set based on the value a developer configures at the controller class
level. Action Controller further extends the Abstract Controller rendering
stack, adding and processing options that make sense only in the controller
scope. Those extensions are broken into four main modules:

• ActionController::Rendering: Overrides render() to check if it’s ever called twice,
raising a DoubleRenderError if so; also overrides _process_options() to handle
options such as :location, :status, and :content_type

• ActionController::Renderers: Adds the API we used in this chapter, which allows
us to trigger a specific behavior whenever a given key (such as :pdf) is
supplied

Chapter 1. Creating Our Own Renderer • 12

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

Figure 2—Visualization of the rendering stack when we call render() with
AbstractController::Rendering and AbstractController::Layouts

• ActionController::Instrumentation: Overloads the render() method so it can measure
how much time was spent in the rendering stack

• ActionController::Streaming: Overloads the _process_options() method to handle the
:stream by setting the proper HTTP headers and the _render_template() method
to allow templates to be streamed

Figure 3, Visualization of the rendering stack when we call render with
AbstractController and ActionController, on page 14 shows the final stack with
Abstract Controller and Action Controller rendering modules.

Now that we understand how the render() works, we are ready to understand
how render_to_string() works. Let’s start by seeing its definition in AbstractCon-
troller::Rendering:

rails/actionpack/lib/abstract_controller/rendering.rb
def render_to_string(*args, &block)

options = _normalize_render(*args, &block)
render_to_body(options)

end

At first, the render_to_string() method looks quite similar to render(). The only dif-
ference is that render_to_string() does not store the rendered template as the

report erratum • discuss

Understanding the Rails Rendering Stack • 13

www.it-ebooks.info

http://media.pragprog.com/titles/jvrails2/code/rails/actionpack/lib/abstract_controller/rendering.rb
http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

Figure 3—Visualization of the rendering stack when we call render() with
AbstractController and ActionController

response body. However, when we analyze the whole rendering stack, we see
that some Action Controller modules overload render() to add behavior while
leaving render_to_string() alone.

For instance, by using render_to_string() in our renderer, we ensure instrumen-
tation events defined by ActionController::Instrumentation won’t be triggered twice
and won’t raise a double render error since those functionalities are added
only to the render() method.

In some other cases, render_to_string() may be overloaded, as well. When using Action
Controller, the response body can be another object that is not a string, which is
what happens on template streaming. For this reason, ActionController::Rendering
overrides render_to_string() to always return a string, as the name indicates.

1.4 Taking It to the Next Level

Going back to our renderer implementation, we now understand what happens
when we add the following line to our controllers:

format.pdf { render pdf: "contents" }

In our renderer, it becomes this:

Chapter 1. Creating Our Own Renderer • 14

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

pdf = Prawn::Document.new
pdf.text render_to_string({})
send_data(pdf.render, filename: "contents.pdf",

disposition: "attachment")

When we invoke render_to_string() with an empty hash, the _normalize_options()
method in the rendering stack detects the empty hash and changes it to
render the template with the same name as the current action. At the end,
render_to_string({}) simply passes template: "#{controller_name}/#{action_name}" to the
view-renderer object.

The fact that our renderer relies on render_to_string() allows us to also use the
following options:

render pdf: "contents", template: "path/to/template"

And internally, the preceding code is the same as the following:

pdf = Prawn::Document.new
pdf.text render_to_string(template: "path/to/template")
send_data(pdf.render, filename: "contents.pdf",

disposition: "attachment")

This time render_to_string() receives an explicit template to render. To finish our
PDF renderer, let’s add a test to confirm that the chosen template will indeed
be rendered. Our test invokes a new action in HomeController that calls render()
with both :pdf and :template options:

pdf_renderer/2_final/test/dummy/app/controllers/home_controller.rb
def another

render pdf: "contents", template: "home/index"
end

Let’s add a route for this new action:

pdf_renderer/2_final/test/dummy/config/routes.rb
get "/another", to: "home#another", as: :another

Our test simply accesses "/another.pdf" and ensures a PDF is being returned:

pdf_renderer/2_final/test/integration/pdf_delivery_test.rb
test "pdf renderer uses the specified template" do

get another_path(format: :pdf)
assert_match "PDF", response.body
assert_equal "binary", headers["Content-Transfer-Encoding"]
assert_equal "attachment; filename=\"contents.pdf\"",

headers["Content-Disposition"]
assert_equal "application/pdf", headers["Content-Type"]

end

Now run the tests and watch them pass once again!

report erratum • discuss

Taking It to the Next Level • 15

www.it-ebooks.info

http://media.pragprog.com/titles/jvrails2/code/pdf_renderer/2_final/test/dummy/app/controllers/home_controller.rb
http://media.pragprog.com/titles/jvrails2/code/pdf_renderer/2_final/test/dummy/config/routes.rb
http://media.pragprog.com/titles/jvrails2/code/pdf_renderer/2_final/test/integration/pdf_delivery_test.rb
http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

1.5 Wrapping Up

In this chapter we created a renderer for the PDF format. Using these ideas,
you can easily create renderers for formats such as CSV and ATOM and
encapsulate any logic specific to your application in a renderer, as well. You
could even create a wrapper for other PDF libraries that are able to convert
HTML files to PDF, such as the paid Prince XML library or the open source
Flying Saucer, which is written in Java but is easily accessible through
JRuby.5,6,7

We also discussed the Rails rendering stack and its modularity. As Rails itself
relies on this well-defined stack to extend Action Controller and Action Mailer,
it makes the rendering API more robust; it was battle-tested by Rails’s own
features and various use cases. As we’ll see in the chapters that follow, this
is a common practice throughout the Rails codebase.

Rails’s renderers open several possibilities to extend your rendering stack.
But as with any other powerful tool, remember to use renderers wisely.

Next let’s look at Active Model and its modules and create a Rails extension
to use in Rails controllers and views.

5. http://www.princexml.com/
6. http://xhtmlrenderer.java.net/
7. http://jruby.org/

Chapter 1. Creating Our Own Renderer • 16

report erratum • discusswww.it-ebooks.info

http://www.princexml.com/
http://xhtmlrenderer.java.net/
http://jruby.org/
http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

CHAPTER 2

Building Models with Active Model
In the previous chapter, we talked briefly about Abstract Controller and how
it reduced code duplication in the Rails source code since it’s decoupled from
both Action Mailer and Action Controller. Now let’s look at Active Model, which
is similar.

Active Model was originally created to hold the behavior shared between Active
Record and Active Resource.1 As with Abstract Controller, the desired func-
tionalities can be cherry-picked by including only the modules you need.
Active Model is also responsible for defining the application programming
interface (API) required by Rails controllers and views, so any other object-
relational mapper (ORM) can use Active Model to ensure Rails behaves
exactly as it would with Active Record.

Let’s explore both facets of Active Model in this chapter by writing a plug-in
called Mail Form that we’ll use in our controllers and views. Mail Form’s goal
is to receive a hash of parameters sent by a POST request, validate them, and
email them to a specified email address. This abstraction will allow us to
create fully functional contact forms in just a couple of minutes!

2.1 Creating Our Model

Mail Form objects belong to the models part in the model-view-controller
architecture, as they receive the information sent through a form and deliver
it to a recipient specified by the business model. Let’s structure Mail Form
in the same way Active Record works: we’ll provide a class named MailForm::Base
that contains the most common features we expect in a model, such as the
ability to specify attributes, and seamless integration with Rails forms. As we
did in the previous chapter, let’s use rails plugin to create our new plug-in:

1. Since then, Active Resource has been extracted from the Rails codebase and is available
at https://github.com/rails/activeresource.

In this chapter, we’ll see
• Active Model and its modules
• How to make an object comply with the Active Model API

required by Rails
• Rails’s validators and Ruby-constant lookup

report erratum • discusswww.it-ebooks.info

https://github.com/rails/activeresource
http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

$ rails plugin new mail_form

Our first feature is to implement a class method called attributes() that allows
a developer to specify which attributes the Mail Form object contains. Let’s
create a model inside test/fixtures/sample_mail.rb as a fixture to use in our tests:

mail_form/1_attributes/test/fixtures/sample_mail.rb
class SampleMail < MailForm::Base

attributes :name, :email
end

Then we’ll add a test to ensure the defined attributes name and email are
available as accessors in the Mail Form object:

mail_form/1_attributes/test/mail_form_test.rb
require "test_helper"
require "fixtures/sample_mail"

class MailFormTest < ActiveSupport::TestCase
test "sample mail has name and email as attributes" do

sample = SampleMail.new
sample.name = "User"
assert_equal "User", sample.name
sample.email = "user@example.com"
assert_equal "user@example.com", sample.email

end
end

When we run the test suite with rake test, it fails because MailForm::Base is not
defined yet. Let’s define it in lib/mail_form/base.rb and implement the attributes()
method:

mail_form/1_attributes/lib/mail_form/base.rb
module MailForm

class Base
def self.attributes(*names)
attr_accessor(*names)

end
end

end

Our implementation delegates the creation of attributes to attr_accessor(). Before
we run our tests again, we need to ensure that MailForm::Base is loaded. One
option would be to explicitly require "mail_form/base" in lib/mail_form.rb. However,
let’s use Ruby’s autoload() instead:

mail_form/1_attributes/lib/mail_form.rb
module MailForm

autoload :Base, "mail_form/base"
end

Chapter 2. Building Models with Active Model • 18

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/jvrails2/code/mail_form/1_attributes/test/fixtures/sample_mail.rb
http://media.pragprog.com/titles/jvrails2/code/mail_form/1_attributes/test/mail_form_test.rb
http://media.pragprog.com/titles/jvrails2/code/mail_form/1_attributes/lib/mail_form/base.rb
http://media.pragprog.com/titles/jvrails2/code/mail_form/1_attributes/lib/mail_form.rb
http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

autoload() allows us to lazily load a constant when it is first referenced. So we
note that MailForm has a constant called Base defined in mail_form/base.rb. When
MailForm::Base is referenced for the first time, Ruby loads the mail_form/base.rb file.
This is frequently used in Ruby gems and in Rails itself for a fast booting
process, as it does not need to load everything up front.

With autoload() in place, our first test passes. We have a simple model with
attributes, but so far we haven’t used any of Active Model’s goodness. Let’s
do that now.

Adding Attribute Methods

ActiveModel::AttributeMethods is a module that tracks all defined attributes, allowing
us to add a common behavior to all of them dynamically. To show how it
works, let’s define two convenience methods, clear_name() and clear_email(), which
will clear out the value of the associated attribute when invoked. Let’s write
a test first:

mail_form/2_attributes_prefix/test/mail_form_test.rb
test "sample mail can clear attributes using clear_ prefix" do

sample = SampleMail.new

sample.name = "User"
sample.email = "user@example.com"
assert_equal "User", sample.name
assert_equal "user@example.com", sample.email

sample.clear_name
sample.clear_email
assert_nil sample.name
assert_nil sample.email

end

Invoking clear_name() and clear_email() sets their respective attribute value back
to nil. With ActiveModel::AttributeMethods, we can define both clear_name() and
clear_email() dynamically in four simple steps, as outlined in our new MailForm::Base
implementation:

mail_form/2_attributes_prefix/lib/mail_form/base.rb
module MailForm

class Base
include ActiveModel::AttributeMethods # 1) attribute methods behavior
attribute_method_prefix 'clear_' # 2) clear_ is attribute prefix

def self.attributes(*names)
attr_accessor(*names)

report erratum • discuss

Creating Our Model • 19

www.it-ebooks.info

http://media.pragprog.com/titles/jvrails2/code/mail_form/2_attributes_prefix/test/mail_form_test.rb
http://media.pragprog.com/titles/jvrails2/code/mail_form/2_attributes_prefix/lib/mail_form/base.rb
http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

3) Ask to define the prefix methods for the given attribute names
define_attribute_methods(names)

end

protected

4) Since we declared a "clear_" prefix, it expects to have a
"clear_attribute" method defined, which receives an attribute
name and implements the clearing logic.
def clear_attribute(attribute)
send("#{attribute}=", nil)

end
end

end

Run rake test, and all tests should be green again. ActiveModel::AttributeMethods
uses method_missing() to compile both the clear_name() and clear_email() methods
when they are first accessed. Their implementation invokes clear_attribute(),
passing the attribute name as a parameter.

If we want to define suffixes instead of a prefix like clear_, we need to use the
attribute_method_suffix() method and implement the method with the chosen suffix
logic. As an example, let’s implement name?() and email?() methods, which should
return true if the respective attribute value is present, as in the following test:

mail_form/3_attributes_suffix/test/mail_form_test.rb
test "sample mail can ask if an attribute is present or not" do

sample = SampleMail.new
assert !sample.name?

sample.name = "User"
assert sample.name?

sample.email = ""
assert !sample.email?

end

When we run the test suite, our new test fails. To make it pass, let’s define ?
as a suffix, changing our MailForm::Base implementation to the following:

mail_form/3_attributes_suffix/lib/mail_form/base.rb
module MailForm

class Base
include ActiveModel::AttributeMethods
attribute_method_prefix 'clear_'

1) Add the attribute suffix
attribute_method_suffix '?'

Chapter 2. Building Models with Active Model • 20

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/jvrails2/code/mail_form/3_attributes_suffix/test/mail_form_test.rb
http://media.pragprog.com/titles/jvrails2/code/mail_form/3_attributes_suffix/lib/mail_form/base.rb
http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

def self.attributes(*names)
attr_accessor(*names)
define_attribute_methods(names)

end
protected

def clear_attribute(attribute)
send("#{attribute}=", nil)

end
2) Implement the logic required by the '?' suffix
def attribute?(attribute)
send(attribute).present?

end
end

end

Now we have both prefix and suffix methods defined and the tests are passing.
But what if we want to define both the prefix and the suffix at the same time?
We could use the attribute_method_affix() method, which accepts a hash specifying
both the prefix and the suffix.

Active Record uses attribute methods extensively. An example is the
attribute_before_type_cast() method, which uses _before_type_cast as a suffix to return
raw data, as received from forms. The dirty functionality, which is also part
of Active Model, is built on top of ActiveModel::AttributeMethods and defines a
handful of methods like attribute_changed?(), reset_attribute!(), and so on. You can
check the dirty implementation source code in the Rails repository.2

Aiming for an Active Model–Compliant API

Even though we added attributes to our models to store form data, we need
to ensure that our model complies with the Active Model API; otherwise, we
won’t be able to use it in our controllers and views.

As usual, we’ll achieve this compliance through test-driven development,
except this time we won’t need to write the tests—Rails already provides all
of them in a module called ActiveModel::Lint::Tests. When included, this module
defines several tests asserting that each method required in an Active Mod-
el–compliant API exists. Each of these tests expects an instance variable
named @model to return the object we want to assert against. In our case,
@model should contain an instance of SampleMail, which will be compliant if
MailForm::Base is compliant. Let’s create a new test file called test/compliance_test.rb
with the following:

2. https://github.com/rails/rails/tree/4-0-stable/activemodel/lib/active_model/dirty.rb

report erratum • discuss

Creating Our Model • 21

www.it-ebooks.info

https://github.com/rails/rails/tree/4-0-stable/activemodel/lib/active_model/dirty.rb
http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

mail_form/4_am_compliance/test/compliance_test.rb
require 'test_helper'
require 'fixtures/sample_mail'

class ComplianceTest < ActiveSupport::TestCase
include ActiveModel::Lint::Tests

def setup
@model = SampleMail.new

end
end

When we run rake test, we get several failures, all with this reason:

The object should respond to to_model.

When Rails controllers and view helpers receive a model, they first call
to_model() and manipulate the returned result instead of the model directly.
This allows ORM implementations that don’t want to add Active Model
methods to their API to return a proxy object where these methods are defined.
In our case, we want to add Active Model methods directly to MailForm::Base.
Consequently, our to_model() implementation should return self, as shown here:

def to_model
self

end

Although we could add this method to MailForm::Base, we are not going to
implement it ourselves. Instead, let’s include ActiveModel::Conversion, which
implements to_model() exactly as we discussed, and three other methods
required by Active Model: to_key(), to_param(), and to_partial_path().

The to_key() method should return an array of keys that uniquely identifies
the model, if any exists, and it is used by dom_id() in views. The dom_id() method
was added to Rails along with dom_class() and a bunch of other helpers to better
organize our views. For example, div_for(@post), where @post is an Active Record
instance of the Post class with an id of 42, relies on both these methods to
create a div where the id attribute is equal to post_42 and the class attribute is
post. For Active Record, to_key() returns an array containing the record ID from
the database.

On the other hand, to_param() is used in routing and can be overwritten in any
model to generate a unique URL for that model. When we invoke post_path(@post),
Rails calls to_param() in the @post object and uses its result to generate the final
URL. For Active Record, the default is to return the ID as a string.

Chapter 2. Building Models with Active Model • 22

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/jvrails2/code/mail_form/4_am_compliance/test/compliance_test.rb
http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

Finally, we have to_partial_path(). This method is invoked every time we pass a
record or a collection of records to render() in our views. Rails will go through
each of these records and retrieve the path to their partial. For example, the
path to an instance of the Post class is posts/post.

It is important to understand not only what those methods do, but also what
they allow us to achieve. For example, by customizing to_param(), we can easily
change the URLs of our objects. Imagine a Post class with id and title attributes;
changing the URLs of those posts to include the title is as easy as this:

def to_param
"#{id}-#{title.parameterize}"

end

Similarly, imagine that each Post has a different format. It can be a video, a
link, or a bunch of a text, and each of those formats should be rendered dif-
ferently. If we store the format of the blog post in the format attribute, we could
render each post as follows:

@posts.each do |post|
render partial: "posts/post_#{post.format}",

locals: { post: @post }
end

However, by overriding to_partial_path() like this

def to_partial_path
"posts/post_#{format}"

end

our view would simply call

render @posts

This not only makes our code cleaner, but also improves our application
performance. In the first example, we end up going through Rails’s rendering
stack many times, looking up templates and duplicating efforts. However, by
customizing to_partial_path(), we call render() just once, allowing Rails to efficiently
look up all partials in one take.

The default to_partial_path() implementation available in ActiveModel::Conversion
allows us to provide partials for MailForm::Base objects as in any Active Record
object. However, since our objects are never persisted, they aren’t uniquely
identified, meaning that both to_key() and to_param() should return nil. This is
exactly the behavior provided by ActiveModel::Conversion. Let’s include it in our
MailForm::Base class:

report erratum • discuss

Creating Our Model • 23

www.it-ebooks.info

http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

mail_form/4_am_compliance/lib/mail_form/base.rb
module MailForm

class Base
include ActiveModel::Conversion

When we include this module and run rake test, we get errors with the following
messages (you may get them in different order):

The model should respond to model_name

The model should respond to errors

The model should respond to persisted?

To fix the first failing test, we need to extend the MailForm::Base class with
ActiveModel::Naming:

mail_form/4_am_compliance/lib/mail_form/base.rb
module MailForm

class Base
include ActiveModel::Conversion
extend ActiveModel::Naming

After we extend our class with ActiveModel::Naming, it responds to a method called
model_name() that returns an instance of ActiveModel::Name, which acts like a string
and provides a few methods, such as human(), singular(), and others that are
inflected from the model name. Let’s add a small test case to our suite to
show these methods and what they return:

mail_form/4_am_compliance/test/compliance_test.rb
test "model_name exposes singular and human name" do

assert_equal "sample_mail", @model.class.model_name.singular
assert_equal "Sample mail", @model.class.model_name.human

end

This is similar to the behavior Active Record exhibits. The only difference is
that Active Record supports internationalization (I18n) and Mail Form does
not. Luckily, that can be easily fixed by extending MailForm::Base with ActiveMod-
el::Translation. Let’s write a test first:

mail_form/4_am_compliance/test/compliance_test.rb
test "model_name.human uses I18n" do

begin
I18n.backend.store_translations :en,
activemodel: { models: { sample_mail: "My Sample Mail" } }

assert_equal "My Sample Mail", @model.class.model_name.human
ensure

I18n.reload!
end

end

Chapter 2. Building Models with Active Model • 24

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/jvrails2/code/mail_form/4_am_compliance/lib/mail_form/base.rb
http://media.pragprog.com/titles/jvrails2/code/mail_form/4_am_compliance/lib/mail_form/base.rb
http://media.pragprog.com/titles/jvrails2/code/mail_form/4_am_compliance/test/compliance_test.rb
http://media.pragprog.com/titles/jvrails2/code/mail_form/4_am_compliance/test/compliance_test.rb
http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

The test adds a new translation to the I18n back end that contains the desired
human name for the SampleMail class. We need to wrap the code in the
begin...ensure clause to guarantee the I18n back end is reloaded, removing the
translation we stored. Let’s update MailForm::Base to make the new test pass:

mail_form/4_am_compliance/lib/mail_form/base.rb
module MailForm

class Base
include ActiveModel::Conversion
extend ActiveModel::Naming
extend ActiveModel::Translation

After we add naming and translation behaviors, rake test returns fewer failures,
showing that we’re moving forward. This time our tests fail for the following
reasons:

The model should respond to errors

The model should respond to persisted?

The first failure is related to validations. Active Model does not say anything
about validation macros (such as validates_presence_of()), but it requires us to
define a method named errors(), which returns a Hash, and each value in this
hash is an Array. We can fix this failure by including ActiveModel::Validations in
our model:

mail_form/4_am_compliance/lib/mail_form/base.rb
module MailForm

class Base
include ActiveModel::Conversion
extend ActiveModel::Naming
extend ActiveModel::Translation
include ActiveModel::Validations

Now our model instance responds to errors() and valid?(), which behaves exactly
as in Active Record. Furthermore, ActiveModel::Validations adds several validation
macros, such as validates(), validates_format_of(), and validates_inclusion_of().

For now, let’s run rake test and see what’s left to make our test suite green
again:

The model should respond to persisted?

This time Rails won’t help us. Luckily, it’s easy enough to implement persisted?()
ourselves. Both our controllers and our views use the persisted?() method, under
different circumstances. For instance, whenever we invoke form_for(@model), it
checks whether the model is persisted. If so, it creates a form that does a PUT

report erratum • discuss

Creating Our Model • 25

www.it-ebooks.info

http://media.pragprog.com/titles/jvrails2/code/mail_form/4_am_compliance/lib/mail_form/base.rb
http://media.pragprog.com/titles/jvrails2/code/mail_form/4_am_compliance/lib/mail_form/base.rb
http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

request; if not, it should do a POST request. The same happens in url_for()
when it generates a URL based on your model.

In Active Record, the object is persisted if it’s saved in the database; in other
words, if it’s neither a new record nor destroyed. However, in our case, our
object won’t be saved in any database, and consequently persisted?() should
always return false.

Let’s add the persisted?() method to our MailForm::Base implementation:

mail_form/4_am_compliance/lib/mail_form/base.rb
def persisted?

false
end

This time, after running rake test, all tests pass! This means our model complies
with the Active Model API. Well done!

Delivering the Form

The next step in our Mail Form implementation is to add the logic that delivers
an email with the model attributes. The deliver() method takes care of the
delivery, and sends an email to the address stored in our model’s email
attribute. The email body contains all model attributes and their respective
values. Let’s specify this behavior by adding a new test to test/mail_form_test.rb:

mail_form/5_delivery/test/mail_form_test.rb
setup do

ActionMailer::Base.deliveries.clear
end

test "delivers an email with attributes" do
sample = SampleMail.new
Simulate data from the form
sample.email = "user@example.com"
sample.deliver

assert_equal 1, ActionMailer::Base.deliveries.size
mail = ActionMailer::Base.deliveries.last

assert_equal ["user@example.com"], mail.from
assert_match "Email: user@example.com", mail.body.encoded

end

When we run the new test, we get a failure because the deliver() method does
not exist yet. Because our model has the concept of validity from ActiveModel::Val-
idations, the deliver() method should deliver the email if the Mail Form object is
valid?():

Chapter 2. Building Models with Active Model • 26

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/jvrails2/code/mail_form/4_am_compliance/lib/mail_form/base.rb
http://media.pragprog.com/titles/jvrails2/code/mail_form/5_delivery/test/mail_form_test.rb
http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

mail_form/5_delivery/lib/mail_form/base.rb
def deliver

if valid?
MailForm::Notifier.contact(self).deliver

else
false

end
end

The class responsible for creating and delivering the email is MailForm::Notifier.
Let’s implement it using Action Mailer:

mail_form/5_delivery/lib/mail_form/notifier.rb
module MailForm

class Notifier < ActionMailer::Base
append_view_path File.expand_path("../../views", __FILE__)

def contact(mail_form)
@mail_form = mail_form
mail(mail_form.headers)

end
end

end

The contact() action in our mailer assigns to @mail_form and then invokes the
headers() method in the given Mail Form object. This method should return a
hash with email data as keys like :to, :from, and :subject and should not be
defined in MailForm::Base, but rather in each child class. This is a simple but
powerful API contract that allows a developer to customize the email delivery
without a need to redefine or monkey-patch the Notifier class.

Our MailForm::Notifier also calls append_view_path(), which adds lib/views inside our
plug-in folder as a new location to search for templates. The last step before
we run the test suite again is to autoload our new class:

mail_form/5_delivery/lib/mail_form.rb
autoload :Notifier, "mail_form/notifier"

Then let’s define the headers() method in the SampleMail class:

mail_form/5_delivery/test/fixtures/sample_mail.rb
def headers

{ to: "recipient@example.com", from: self.email }
end

Now when we run rake test, it fails with the following message:

1) Failure:
test_delivers_an_email_with_attributes(MailFormTest):
ActionView::MissingTemplate: Missing template mail_form/notifier/contact

report erratum • discuss

Creating Our Model • 27

www.it-ebooks.info

http://media.pragprog.com/titles/jvrails2/code/mail_form/5_delivery/lib/mail_form/base.rb
http://media.pragprog.com/titles/jvrails2/code/mail_form/5_delivery/lib/mail_form/notifier.rb
http://media.pragprog.com/titles/jvrails2/code/mail_form/5_delivery/lib/mail_form.rb
http://media.pragprog.com/titles/jvrails2/code/mail_form/5_delivery/test/fixtures/sample_mail.rb
http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

This is expected since we haven’t added a template to our mailer. Our default
mail template will show the message subject and print all attributes and their
respective values:

mail_form/5_delivery/lib/views/mail_form/notifier/contact.text.erb
<%= message.subject %>
<% @mail_form.attribute_names.each do |key| -%>

<%= @mail_form.class.human_attribute_name(key) %>: <%= @mail_form.send(key) %>
<% end -%>

To show all attributes, we need a list of all attribute names, but we don’t keep
such a list so far. We can implement such list by defining a class_attribute()
called attributes_names() that is updated every time we call attributes():

mail_form/5_delivery/lib/mail_form/base.rb
1) Define a class attribute and initialize it
class_attribute :attribute_names
self.attribute_names = []

def self.attributes(*names)
attr_accessor(*names)
define_attribute_methods(names)

2) Add new names as they are defined
self.attribute_names += names

end

When we use class_attribute() for defining the names, it automatically works with
inheritance. So if a class eventually inherits from our SampleMail fixture, it will
automatically inherit all of its attribute names, too.

After we run rake test, all tests should be green again, and our Mail Form
implementation is finished. Whenever we need to create a contact form, we
create a class that inherits from MailForm::Base, we define our attributes and the
email headers, and we’re ready to go! To ensure it works exactly as we expect,
let’s check the whole process with an integration test.

2.2 Integration Tests with Capybara

In the previous chapter, we used Rails testing facilities to ensure a PDF was
sent back to the client. To guarantee our project works as a contact form, we
should create an actual form, submit it to the appropriate endpoint, and
verify the email was sent. Those kind of tests are particularly hard to write
using only the Rails testing tools. Most of the time, we end up writing direct
requests to endpoints:

post "/contact_form", contact_form:
{ email: "jose@example.com", message: "hello"}

Chapter 2. Building Models with Active Model • 28

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/jvrails2/code/mail_form/5_delivery/lib/views/mail_form/notifier/contact.text.erb
http://media.pragprog.com/titles/jvrails2/code/mail_form/5_delivery/lib/mail_form/base.rb
http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

Writing a test using post() and explicit parameters is fine for some scenarios,
particularly for APIs, but it falls flat when testing a contact-form workflow.
For example, how do we guarantee there’s a Submit button on the page? What
happens when we click it? Is the request sent to the proper URL? What if we
forget the email field?

To guarantee all those questions are answered, it’s common to use a more
robust testing tool like Capybara.3 Capybara makes this sort of testing trivial
by providing an easy-to-use domain-specific language (DSL), which we’ll use
throughout the book. The first step is to add it as a development dependency
to our gemspec:

mail_form/5_delivery/mail_form.gemspec
s.add_development_dependency "capybara", "~> 2.0.0"

To use Capybara, let’s define a brand-new test-case class called ActiveSupport::Inte-
grationCase. This class is built on top of ActiveSupport::TestCase and includes Rails’s
URL helpers and the Capybara DSL:

mail_form/5_delivery/test/test_helper.rb
require "capybara"
require "capybara/rails"

Define a bare test case to use with Capybara
class ActiveSupport::IntegrationCase < ActiveSupport::TestCase

include Capybara::DSL
include Rails.application.routes.url_helpers

end

Now we’re ready to write our first test using it:

mail_form/5_delivery/test/integration/navigation_test.rb
require "test_helper"

class NavigationTest < ActiveSupport::IntegrationCase
setup do

ActionMailer::Base.deliveries.clear
end

test "sends an e-mail after filling the contact form" do
visit "/"

fill_in "Name", with: "John Doe"
fill_in "Email", with: "john.doe@example.com"
fill_in "Message", with: "MailForm rocks!"

click_button "Deliver"

3. https://github.com/jnicklas/capybara

report erratum • discuss

Integration Tests with Capybara • 29

www.it-ebooks.info

http://media.pragprog.com/titles/jvrails2/code/mail_form/5_delivery/mail_form.gemspec
http://media.pragprog.com/titles/jvrails2/code/mail_form/5_delivery/test/test_helper.rb
http://media.pragprog.com/titles/jvrails2/code/mail_form/5_delivery/test/integration/navigation_test.rb
https://github.com/jnicklas/capybara
http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

assert_match "Your message was successfully sent.", page.body

assert_equal 1, ActionMailer::Base.deliveries.size
mail = ActionMailer::Base.deliveries.last

assert_equal ["john.doe@example.com"], mail.from
assert_equal ["recipient@example.com"], mail.to
assert_match "Message: MailForm rocks!", mail.body.encoded

end
end

The integration test navigates to the root path, which returns a form with
name, email, and message fields. On submitting the form, the server delivers
an email to the configured recipient with the given message and shows the
user a success message. To make the test pass, let’s add the model, controller,
views, and routes to our dummy app, starting with the routes:

mail_form/5_delivery/test/dummy/config/routes.rb
Dummy::Application.routes.draw do

resources :contact_forms, only: :create
root to: "contact_forms#new"

end

The controller and view follow:

mail_form/5_delivery/test/dummy/app/controllers/contact_forms_controller.rb
class ContactFormsController < ApplicationController

def new
@contact_form = ContactForm.new

end

def create
@contact_form = ContactForm.new(params[:contact_form])

if @contact_form.deliver
redirect_to root_url, notice: "Your message was successfully sent."

else
render action: "new"

end
end

end

mail_form/5_delivery/test/dummy/app/views/contact_forms/new.html.erb
<h1>New Contact Form</h1>

<%= form_for(@contact_form) do |f| %>
<% if @contact_form.errors.any? %>
<div id="errorExplanation">

<h2>Oops, something went wrong:</h2>

<% @contact_form.errors.full_messages.each do |msg| %>

Chapter 2. Building Models with Active Model • 30

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/jvrails2/code/mail_form/5_delivery/test/dummy/config/routes.rb
http://media.pragprog.com/titles/jvrails2/code/mail_form/5_delivery/test/dummy/app/controllers/contact_forms_controller.rb
http://media.pragprog.com/titles/jvrails2/code/mail_form/5_delivery/test/dummy/app/views/contact_forms/new.html.erb
http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

<%= msg %>
<% end %>

</div>
<% end %>
<div class="field">

<%= f.label :name %>

<%= f.text_field :name %>

</div>
<div class="field">

<%= f.label :email %>

<%= f.text_field :email %>

</div>
<div class="field">

<%= f.label :message %>

<%= f.text_field :message %>

</div>
<div class="actions">

<%= f.submit "Deliver" %>
</div>

<% end %>

And finally, here’s the model:

mail_form/5_delivery/test/dummy/app/models/contact_form.rb
class ContactForm < MailForm::Base

attributes :name, :email, :message

def headers
{ to: "recipient@example.com", from: self.email }

end
end

Because our tests use flash messages, we need to add them to the layout just
before the yield call:

mail_form/5_delivery/test/dummy/app/views/layouts/application.html.erb
<p style="color: green"><%= notice %></p>

With everything in place, let’s run the test suite and…get an unexpected
failure:

1) Error:
test_sends_an_e-mail_after_filling_the_contact_form(NavigationTest):
ArgumentError: wrong number of arguments (1 for 0)

app/controllers/contact_forms_controller.rb:7:in `initialize'

The failure occurs because the initialize() method in MailForm::Base, unlike Active
Record, does not expect a hash as an argument. Notice that an Active Mod-
el–compliant API does not say anything about how our models should be

report erratum • discuss

Integration Tests with Capybara • 31

www.it-ebooks.info

http://media.pragprog.com/titles/jvrails2/code/mail_form/5_delivery/test/dummy/app/models/contact_form.rb
http://media.pragprog.com/titles/jvrails2/code/mail_form/5_delivery/test/dummy/app/views/layouts/application.html.erb
http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

initialized. Let’s implement an initialize() method, which receives a hash as an
argument and sets attribute values:

mail_form/5_delivery/lib/mail_form/base.rb
def initialize(attributes = {})

attributes.each do |attr, value|
self.public_send("#{attr}=", value)

end if attributes
end

After we define the previous method, our integration test succeeds, showing
that everything works as expected. Remember that if you go to the dummy
application inside test/dummy, you can run rails s as in any other Rails applica-
tion. Feel free to start your server, add some validations to your ContactForm
class, and have some fun with it.

2.3 Taking It to the Next Level

In the previous section, we wrote our Mail Form plug-in with some basic
features and added integration testing to ensure it works. However, we can
do a lot more with Active Model. Let’s look at some examples.

Validators

Every Rails developer is familiar with Rails validations, as they are often used
to exemplify the productivity that can be achieved with Rails. In the Rails
source code, each validation is backed up by a validator class. Let’s see the
validates_presence_of() macro as an example:

rails/activemodel/lib/active_model/validations/presence.rb
def validates_presence_of(*attr_names)

validates_with PresenceValidator, _merge_attributes(attr_names)
end

The validates_with() method is responsible for initializing the given ActiveModel::Val-
idations::PresenceValidator class, and _merge_attributes() converts the given attributes
to a hash. When you invoke the following

validates_presence_of :name

you’re actually doing this:

validates_with PresenceValidator, attributes: [:name]

which is roughly the same as this:

validate PresenceValidator.new(attributes: [:name])

This process is similar to what happens with the validates() method:

Chapter 2. Building Models with Active Model • 32

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/jvrails2/code/mail_form/5_delivery/lib/mail_form/base.rb
http://media.pragprog.com/titles/jvrails2/code/rails/activemodel/lib/active_model/validations/presence.rb
http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

validates :name, presence: true

This has the same effect as the following:

validate PresenceValidator.new(attributes: [:name])

The question is, how does Rails know that the :presence key should use the
PresenceValidator? Simple: it converts the :presence key to "PresenceValidator" and
then tries to find a constant named PresenceValidator in the current class, just
like the following:

const_get("#{key.to_s.camelize}Validator")

This is important to discuss because now we can add any validator to any
class, relying solely on Ruby’s constant lookup. To understand exactly how
it works, let’s start a new irb session and type the following:

module Foo
module Bar
end

end

class Baz
include Foo

end

Baz::Bar # => Foo::Bar

Notice how the last line of the script returns Foo::Bar even if Bar is not defined
inside the Baz class. This happens because whenever a constant is looked up,
Ruby searches inside all objects in the ancestor chain. Since Foo is included
in Baz, Foo is an ancestor of Baz, allowing Ruby to find the Foo::Bar constant (you
can check Baz ancestors by typing Baz.ancestors in the previous irb session).

To showcase how we can use this in practice, let’s implement an absence
validator in our MailForm::Base. Since a lot of spam usually comes through
contact forms, we’ll use the absence validator as a honey pot.

The honey pot works by creating a field, such as nickname, and hiding it with
CSS. This way, humans do not see the field and consequently do not fill it
in, but robots will fill it in like any other field. So whenever the nickname
value is present, the email should not be sent because it is definitely spam.

Given Ruby’s constant-lookup rules, we can add an :absence option to the
validates() method of any class by implementing the AbsenceValidator inside a
module and including this module in the desired class. Let’s start by writing
a simple test for it:

report erratum • discuss

Taking It to the Next Level • 33

www.it-ebooks.info

http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

mail_form/6_final/test/mail_form_test.rb
test "validates absence of nickname" do

sample = SampleMail.new(nickname: "Spam")
assert !sample.valid?
assert_equal ["is invalid"], sample.errors[:nickname]

end

The test shows the record must be invalid if the nickname field contains any
value. Let’s add the nickname field with :absence validation to our SampleMail
object:

mail_form/6_final/test/fixtures/sample_mail.rb
attributes :nickname
validates :nickname, absence: true

When we run rake test, we get a test failure since SampleMail can no longer be
loaded because AbsenceValidator is not defined anywhere. Let’s create it:

mail_form/6_final/lib/mail_form/validators.rb
module MailForm

module Validators
class AbsenceValidator < ActiveModel::EachValidator
def validate_each(record, attribute, value)

record.errors.add(attribute, :invalid, options) unless value.blank?
end

end
end

end

Our validator inherits from EachValidator. For every attribute given on initializa-
tion, EachValidator calls the validate_each() method with the record, the attribute, and
its respective value. For each attribute, we add an error message unless the
value is blank.

Next let’s include MailForm::Validators in MailForm::Base:

mail_form/6_final/lib/mail_form/base.rb
include MailForm::Validators

This will add MailForm::Validators to the MailForm::Base ancestors chain. So, when-
ever we give :absence as a key to validates(), it will search for an AbsenceValidator
constant, find it inside MailForm::Validators, and initialize it, similar to what it did
with the PresenceValidator. To ensure it really works, we need to autoload our
validators container:

mail_form/6_final/lib/mail_form.rb
autoload :Validators, 'mail_form/validators'

Run rake test, and all tests pass again. The beauty of this implementation is
that adding the :absence key to validates() did not require us to register the option

Chapter 2. Building Models with Active Model • 34

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/jvrails2/code/mail_form/6_final/test/mail_form_test.rb
http://media.pragprog.com/titles/jvrails2/code/mail_form/6_final/test/fixtures/sample_mail.rb
http://media.pragprog.com/titles/jvrails2/code/mail_form/6_final/lib/mail_form/validators.rb
http://media.pragprog.com/titles/jvrails2/code/mail_form/6_final/lib/mail_form/base.rb
http://media.pragprog.com/titles/jvrails2/code/mail_form/6_final/lib/mail_form.rb
http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

anywhere. Those options are discovered at runtime using Ruby’s constant
lookup.

Feel free to add the nickname field to our contact-form views and hide it with
CSS, fully enabling our honey pot. It’s up to you to write an integration test
for it, since we still have some more Active Model investigation to do.

Callbacks

Wouldn’t it be cool if we could provide hooks around the deliver() method so
we could add some behavior before and after the delivery? This is quite easy
to achieve with ActiveModel::Callbacks. To illustrate the API we intend to build,
let’s change our SampleMail fixture:

mail_form/6_final/test/fixtures/sample_mail.rb
before_deliver do

evaluated_callbacks << :before
end
after_deliver do

evaluated_callbacks << :after
end
def evaluated_callbacks

@evaluated_callbacks ||= []
end

We have added an evaluated_callbacks() method to keep all evaluated callbacks
and we implemented both before_deliver() and after_deliver() callbacks. Our test
should call the deliver() in our SampleMail instance and assert both callbacks
were evaluated:

mail_form/6_final/test/mail_form_test.rb
test "provides before and after deliver hooks" do

sample = SampleMail.new(email: "user@example.com")
sample.deliver
assert_equal [:before, :after], sample.evaluated_callbacks

end

Finally, let’s add support to callbacks in MailForm::Base. This can be done in
three steps: extend our class with ActiveModel::Callbacks functionality, then define
our callbacks, and finally overwrite deliver() implementation to run the callbacks
before and after delivering:

mail_form/6_final/lib/mail_form/base.rb
1) Add callbacks behavior
extend ActiveModel::Callbacks

2) Define the callbacks. The line below will create both before_deliver
and after_deliver callbacks with the same semantics as in Active Record
define_model_callbacks :deliver

report erratum • discuss

Taking It to the Next Level • 35

www.it-ebooks.info

http://media.pragprog.com/titles/jvrails2/code/mail_form/6_final/test/fixtures/sample_mail.rb
http://media.pragprog.com/titles/jvrails2/code/mail_form/6_final/test/mail_form_test.rb
http://media.pragprog.com/titles/jvrails2/code/mail_form/6_final/lib/mail_form/base.rb
http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

3) Change deliver to run the callbacks
def deliver

if valid?
run_callbacks(:deliver) do
MailForm::Notifier.contact(self).deliver

end
else

false
end

end

As Active Record callbacks, you can give procs, strings, symbols, and any
object that responds to the callback name. Feel free to try these options!

A Base Model

In many circumstances, a developer would like to achieve an Active Model–com-
pliant API: in contact forms, when implementing search functionality, or even
when splitting a sign-up flow into many steps. For this reason, Active Model
provides an ActiveModel::Model module that can be included in any class:

class Person
include ActiveModel::Model
attr_accessor :name, :age

end

person = Person.new(name: 'bob', age: '18')
person.name # => 'bob'
person.age # => 18

By including ActiveModel::Model we are guaranteed that it will pass all ActiveMod-
el::Lint::Tests tests. Let’s take a look at its source:

rails/activemodel/lib/active_model/model.rb
module ActiveModel

module Model
def self.included(base)
base.class_eval do

extend ActiveModel::Naming
extend ActiveModel::Translation
include ActiveModel::Validations
include ActiveModel::Conversion

end
end

def initialize(params={})
params.each do |attr, value|

self.public_send("#{attr}=", value)
end if params

end

Chapter 2. Building Models with Active Model • 36

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/jvrails2/code/rails/activemodel/lib/active_model/model.rb
http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

def persisted?
false

end
end

end

As we can see, this basic module contains a subset of the behaviour we’ve
implemented in this chapter. It’s a good starting point whenever we need
these functionalities in our applications!

2.4 Wrapping Up

In this chapter, we covered how to use Active Model to quickly create our own
models that play seamlessly with Rails controllers and views. We talked about
ActiveModel::AttributeMethods, ActiveModel::Conversion, ActiveModel::Naming, ActiveModel::Trans-
lation, ActiveModel::Validations, and finally ActiveModel::Callbacks. We also dove into
Rails validators and how we can easily extend the validates() method behavior.

Even after all that, Active Model has a couple other modules to explore, like
ActiveModel::Dirty and ActiveModel::Serialization. They let us bring dirty attributes and
serializers such as to_xml() and to_json() right into our models, just like Active
Record models.

Finally, if you enjoyed Mail Form here, check out the Mail Form by Platafor-
matec,4 which is a production-ready gem created with the same concepts
explored in this chapter. It also has additional features, such as attachment
handling and the ability to append request information.

In the next chapter, we’ll go back to studying the Rails rendering stack and
extend it to look for a template in the database instead of the filesystem,
keeping an eye on performance.

4. https://github.com/plataformatec/mail_form

report erratum • discuss

Wrapping Up • 37

www.it-ebooks.info

https://github.com/plataformatec/mail_form
http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

CHAPTER 3

Retrieving View Templates
from Custom Stores

When Rails renders a template, it has to get that template from somewhere.
By default, Rails serves templates from the filesystem, but it doesn’t need to
be limited like that. Rails provides hooks that allow us to retrieve templates
from anywhere we want, as long as we implement the required application
programming interface (API). Let’s explore this by building a mechanism that
lets us serve templates from a database—templates that can be created,
updated, and deleted through the web interface. But first let’s take a deeper
look at Rails’s rendering stack.

3.1 Revisiting the Rendering Stack

In Section 1.3, Understanding the Rails Rendering Stack, on page 9, we saw
that the main responsibility of the Rails controllers rendering stack is to
normalize options and send them to an instance of ActionView::Renderer. When
invoked, the renderer receives an instance of ActionView::Base called the view
context, and a hash of normalized options used to find, compile, and render
a specific template.

Whenever we render a template in Rails, its source must first be compiled
into executable Ruby code. Every time some Ruby code is executed, its execu-
tion happens inside a given context and, in a Rails application, views are
executed inside the view context object. All helpers available in our templates,
such as form_for() and link_to(), are defined in modules included in the view
context object.

Besides the view context, the view renderer has access to an instance of
ActionView::LookupContext usually referred to as lookup_context. The lookup context

In this chapter, we’ll see
• How to customize the Rails rendering stack to look up tem-

plates from the database
• How Ruby Hash lookup works
• How to speed up controllers with ActionController::Metal

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

is shared between controllers and views, and it holds all the information
required to find a template. For example, whenever a JavaScript Object
Notation (JSON) request comes, the request format is stored in the lookup_context
object, so Rails will only look for templates tied to the JSON format.

The lookup context is also responsible for holding all view paths. A view path
is a collection of objects able to find templates given a set of conditions. All
controllers in a Rails application have one view path by default, which is a
filesystem path pointing to app/views. Given a set of conditions like template
name, locale, and format, this view path finds a specific template under
app/views. For instance, whenever we have an HTML request at the index action
of a UsersController, this default view path will attempt to pick a template at
app/views/users/index.html.*. If the desired template is found, it’s then compiled
and rendered, as shown in the following image.

Figure 4—Rendering workflow between a controller, view renderer, lookup context,
and view path

In Delivering the Form, on page 26, we manipulated the view path in our Mail-
Form::Notifier object to include another path in the template lookup:

module MailForm
class Notifier < ActionMailer::Base

append_view_path File.expand_path("../../views", __FILE__)
end

end

The preceding code states that if a template cannot be found under app/views,
the mailer should look within the lib/views directory next.

Although we mostly set new view paths as strings, representing filesystem
paths, Rails provides a well-defined API for adding any object as a view path.
This means we’re not forced to store view templates in the filesystem. We can
store templates anywhere we want as long as we provide an object that knows
how to find them. Although externally those objects are called view paths,

Chapter 3. Retrieving View Templates from Custom Stores • 40

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

internally Rails calls them template resolvers, and they must comply with the
Resolver API.

Rails provides an abstract resolver implementation called ActionView::Resolver.
In this chapter we’ll use it to create a resolver that uses the database as a
template store so we can store our pages in the database and edit them
through a web interface using our favorite template handler (such as Liquid,
ERB, or Haml). We can implement this functionality with one scaffold and a
few lines of code!

3.2 Setting Up a SqlResolver

This time, instead of using rails plugin to implement the desired functionality,
we’ll develop the template-management system by building a Rails application
called templater. Let’s create it using the command line:

$ rails new templater

Next, let’s define the model that will hold templates in the database using the
Rails scaffold generator:

$ rails generate scaffold SqlTemplate body:text path:string \
format:string locale:string handler:string partial:boolean

The body attribute is a text column used to store the whole template; the path
should store a string similar to a filesystem path (for instance, the index()
action under UsersController will have users/index as the path); format and locale hold
the template format and its locale; the handler stores the template handler (for
example, Liquid, ERB, or Haml); and, finally, partial tells us whether the stored
template is a partial.

Before executing the generated migration, let’s make one change in it, setting
false as the default value for the partial attribute:

t.boolean :partial, default: false

And now we’re ready to run our migrations:

$ bundle exec rake db:migrate

So far, no surprises. Next let’s create a template resolver, which will use the
SqlTemplate model to read templates from the database and expose them
according to the Resolver API (described next).

The Resolver API

The Resolver API is composed of a single method, called find_all(), which should
return an array of templates and has the following signature:

report erratum • discuss

Setting Up a SqlResolver • 41

www.it-ebooks.info

http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

def find_all(name, prefix, partial, details, cache_key, locals)

For an HTML request at the index() action of a UsersController, those arguments
are exactly as shown here:

find_all("index", "users", false, { formats: [:html],
locale: [:en, :en], handlers: [:erb, :builder, :rjs] }, nil, [])

For this simple request, we can see that name maps to the action name, while
prefix refers to the controller name. Next, partial is a Boolean that tells whether
the template being rendered is a partial, and details is a hash with extra
information for the lookup, such as the request formats, the current interna-
tionalization framework (I18n) locale followed by the default locale, and the
available template handlers. The last two arguments are the cache_key (which
we’ll consider to be nil for now) and the locals variable (which is an empty array,
as locals are used only when rendering a partial).

Rails provides an abstract resolver implementation, called ActionView::Resolver,
which we’ll use as the base for our resolver. Part of its source code is shown
next, focusing on the find_all() and find_templates() methods:

rails/actionpack/lib/action_view/template/resolver.rb
module ActionView

class Resolver
cattr_accessor :caching
self.caching = true

def initialize
@cache = Cache.new

end

def clear_cache
@cache.clear

end

def find_all(name, prefix=nil, partial=false, details={}, key=nil, locals=[])
cached(key, [name, prefix, partial], details, locals) do

find_templates(name, prefix, partial, details)
end

end

private

def find_templates(name, prefix, partial, details)
raise NotImplementedError

end
end

end

Chapter 3. Retrieving View Templates from Custom Stores • 42

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/jvrails2/code/rails/actionpack/lib/action_view/template/resolver.rb
http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

The find_all() method implements a basic caching mechanism where the block
given to cached() is yielded only if no previous entry exists in the cache. When
the block is invoked, it calls find_templates(), which raises a NotImplementedError,
indicating it should be implemented in child classes. Notice that the cache_key
and locals are used only by the cache mechanism; they are not passed down
to template lookup.

Let’s inherit from ActionView::Resolver and implement the find_templates() method
using the SqlTemplate model to retrieve templates from the database, resulting
in the same template lookup, as the next figure shows.

Figure 5—Template lookup with SqlTemplate

Writing the Code

Let’s call our resolver implementation SqlTemplate::Resolver and implement it in
three main steps. The first receives the name, prefix, partial, and details as
arguments and normalizes them. Next, we create a SQL statement from the
normalized arguments and query the database. The last step is to transform
the array of records returned from the database into ActionView::Template
instances.

Let’s write a test first to demonstrate the functionality we want.

templater/1_resolver/test/models/sql_template_test.rb
require 'test_helper'

class SqlTemplateTest < ActiveSupport::TestCase
test "resolver returns a template with the saved body" do

resolver = SqlTemplate::Resolver.new
details = { formats: [:html], locale: [:en], handlers: [:erb] }

1) Assert our resolver cannot find any template as the database is empty
find_all(name, prefix, partial, details)
assert resolver.find_all("index", "posts", false, details).empty?

2) Create a template in the database
SqlTemplate.create!(
body: "<%= 'Hi from SqlTemplate!' %>",
path: "posts/index",

report erratum • discuss

Setting Up a SqlResolver • 43

www.it-ebooks.info

http://media.pragprog.com/titles/jvrails2/code/templater/1_resolver/test/models/sql_template_test.rb
http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

format: "html",
locale: "en",
handler: "erb",
partial: false)

3) Assert that a template can now be found
template = resolver.find_all("index", "posts", false, details).first
assert_kind_of ActionView::Template, template

4) Assert specific information about the found template
assert_equal "<%= 'Hi from SqlTemplate!' %>", template.source
assert_kind_of ActionView::Template::Handlers::ERB, template.handler
assert_equal [:html], template.formats
assert_equal "posts/index", template.virtual_path
assert_match %r[SqlTemplate - \d+ - "posts/index"], template.identifier

end
end

The find_all() method in our resolver should return an ActionView::Template instance.
This template instance is initialized as follows:

ActionView::Template.new(source, identifier, handler, details)

The source is the body of the template stored in the database. The identifier is a
unique string used to represent the template. We’ll ensure its uniqueness by
adding the template ID in the database.

The handler is the object responsible for compiling the template. The handler is
not a string—like we stored in the database—but rather an object that’s
retrieved using the method registered_template_handler() from ActionView::Template:

ActionView::Template.registered_template_handler("erb") # =>
#<ActionView::Template::Handlers::ERB:0x007fc722516490>

Finally, the last parameter given on template initialization is a hash with
three keys: the :format of the template found, the last time the template was
updated as :updated_at, and a :virtual_path that represents the template.

Since templates are no longer required to be in the filesystem, they do not
necessarily have a path, and this breaks a couple of Rails features that depend
explicitly on filesystem templates. One example is the I18n shortcut t(".message")
inside your views. It uses the template filesystem path to retrieve the transla-
tion, so whenever you’re inside a template at app/views/users/index, the shortcut
attempts to find the I18n translation at "users.index.message".

To circumvent this need for a path, Rails requires templates to provide a
:virtual_path. You can store your templates anywhere and give them any source
or any identifier, but you need to provide a :virtual_path that represents what

Chapter 3. Retrieving View Templates from Custom Stores • 44

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

the path would be if this template were stored in the filesystem. This allows
t(".message") to work as expected by setting the virtual path to users/index.

With tests in place and an understanding of how templates are initialized,
let’s implement our resolver by inheriting from ActionView::Resolver and imple-
menting find_templates().

It’s important to consider in our resolver that the order of the given details
matters. In other words, if the locale array contains [:es, :en], a template in
Spanish (:es) has higher preference than one in English if both exist. One
solution is to generate an order clause for each detail and get the result
properly sorted from the database. Another option is to sort the returned
templates in Ruby. However, for simplicity, instead of passing all locales and
formats to the SQL query, let’s simply pick the first ones from the array.

Without further ado, let’s implement our resolver:

templater/1_resolver/app/models/sql_template.rb
class SqlTemplate < ActiveRecord::Base

validates :body, :path, presence: true
validates :format, inclusion: Mime::SET.symbols.map(&:to_s)
validates :locale, inclusion: I18n.available_locales.map(&:to_s)
validates :handler, inclusion:

ActionView::Template::Handlers.extensions.map(&:to_s)

class Resolver < ActionView::Resolver
protected

def find_templates(name, prefix, partial, details)
conditions = {

path: normalize_path(name, prefix),
locale: normalize_array(details[:locale]).first,
format: normalize_array(details[:formats]).first,
handler: normalize_array(details[:handlers]),
partial: partial || false

}
::SqlTemplate.where(conditions).map do |record|

initialize_template(record)
end

end
Normalize name and prefix, so the tuple ["index", "users"] becomes
"users/index" and the tuple ["template", nil] becomes "template".
def normalize_path(name, prefix)
prefix.present? ? "#{prefix}/#{name}" : name

end
Normalize arrays by converting all symbols to strings.
def normalize_array(array)
array.map(&:to_s)

end

report erratum • discuss

Setting Up a SqlResolver • 45

www.it-ebooks.info

http://media.pragprog.com/titles/jvrails2/code/templater/1_resolver/app/models/sql_template.rb
http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

Initialize an ActionView::Template object based on the record found.
def initialize_template(record)
source = record.body
identifier = "SqlTemplate - #{record.id} - #{record.path.inspect}"
handler = ActionView::Template.registered_template_handler(record.handler)

details = {
format: Mime[record.format],
updated_at: record.updated_at,
virtual_path: virtual_path(record.path, record.partial)

}
ActionView::Template.new(source, identifier, handler, details)

end

Make paths as "users/user" become "users/_user" for partials.
def virtual_path(path, partial)
return path unless partial
if index = path.rindex("/")

path.insert(index + 1, "_")
else

"_#{path}"
end

end
end

end

Our implementation normalizes the given arguments, queries the database,
and creates template objects from the result set. We also added several vali-
dations to our model, ensuring the body and path values cannot be blank, and
guaranteeing a valid format, locale, and handler are supplied.

As a result of adding some validations to our models, some functional tests
are failing since our fixtures now contain invalid data. To make them pass,
let’s change the fixture at test/fixtures/sql_templates.yml to include a valid format,
locale, and handler:

templater/1_resolver/test/fixtures/sql_templates.yml
one:

id: 1
path: "some/path"
format: "html"
locale: "en"
handler: "erb"
partial: false
body: "Body"

Now with our resolver implemented and a green test suite, we get to create a
new scaffold and make it use templates from the database instead of the
filesystem. Let’s create a user scaffold by running the following command:

Chapter 3. Retrieving View Templates from Custom Stores • 46

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/jvrails2/code/templater/1_resolver/test/fixtures/sql_templates.yml
http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

$ rails generate scaffold User name:string

We’ll run our migrations next:

$ bundle exec rake db:migrate

We can now start the server, access /users, and perform all create, read, update,
and delete operations as usual.

Next let’s access the /sql_templates path and create a new template by filling the
template body with the same contents as the file in app/views/users/index.html.erb;
setting the path with users/index; setting the format, locale, and handler to html,
en, and erb, respectively; and keeping the Partial box unchecked.

Save this new template and head back to the /users path. Now delete the view
file app/views/users/index.html.erb, and rerender the page. You should get a “Tem-
plate is missing” error, but don’t worry, because we expect that. The template
is stored in the database, but we still haven’t told the UsersController to use our
new resolver to retrieve it.

Let’s do that by adding the following line to UsersController:

templater/1_resolver/app/controllers/users_controller.rb
class UsersController < ApplicationController

append_view_path SqlTemplate::Resolver.new

When we refresh the page at /users, we see the whole index page once again
retrieved from the database! And although the template is in the database,
the layout still comes from the filesystem. In other words, in a single request
we can get templates from different resolvers in our view paths.

Feel free to head back to /sql_templates, manipulate the body of the stored tem-
plate, and notice that the index() action in the UsersController will change
accordingly. The fact that we can achieve this behavior in so few lines of code
shows the power of the ActionView::Resolver abstraction.

Before we move to the next section, let’s run the test suite once again. A test
is failing with an error message:

1) Error:
test_should_get_index(UsersControllerTest)
ActionView::MissingTemplate: Missing template users/index,

application/index with {:locale=>[:en], :formats=>[:html],
:handlers=>[:erb, :builder, :raw, :ruby, :jbuilder, :coffee]}. Searched in:
* "templater/app/views"
* "#<SqlTemplate::Resolver:0x007f9774fbc0d0>"

This happens because we deleted the template from the filesystem. Although
we added the same template to our development database, our test database

report erratum • discuss

Setting Up a SqlResolver • 47

www.it-ebooks.info

http://media.pragprog.com/titles/jvrails2/code/templater/1_resolver/app/controllers/users_controller.rb
http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

remains clean, raising this MissingTemplate error in the test environment. To fix
this, let’s change our sql_templates fixture.

templater/1_resolver/test/fixtures/sql_templates.yml
users_index:

id: 2
path: "users/index"
format: "html"
locale: "en"
handler: "erb"
partial: false
body: "<h1>Listing users</h1>

<table>
<tr>

<th>Name</th>
<th></th>
<th></th>
<th></th>

</tr>
<%% @users.each do |user| %>

<tr>
<td><%%= user.name %></td>
<td><%%= link_to 'Show', user %></td>
<td><%%= link_to 'Edit', edit_user_path(user) %></td>
<td><%%= link_to 'Destroy', user,
data: { confirm: 'Are you sure?' }, method: :delete %></td>

</tr>
<%% end %>
</table>

<%%= link_to 'New user', new_user_path %>"

Our fixture is just a copy of the template. The only caveat is that Rails parses
fixtures with ERB, so we need to escape our ERB tags using <%% ... %>. And
that’s all—our tests are all green again.

3.3 Configuring Our Resolver for Production

To ensure the template lookup is fast in production, Rails provides some
caching conveniences. Let’s explore those conveniences so we understand
how to enable caching for our templates, and the strategies available to us
to expire this cache whenever a template is saved to the database.

As mentioned earlier, Rails gives our resolver a cache_key through the find_all()
method. Our first stop is to learn why Rails creates this cache key and how
our resolver uses it.

Chapter 3. Retrieving View Templates from Custom Stores • 48

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/jvrails2/code/templater/1_resolver/test/fixtures/sql_templates.yml
http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

The Resolvers Cache

As we saw in the code on page 42, ActionView::Resolver’s find_all() method automat-
ically caches templates using the cached() method. The cache is created on
initialization and referenced by the instance variable @cached. The resolver
caches templates only if Rails.application.config.cache_classes returns true; addition-
ally, it exposes a clear_cache() method to clear its cache.

Each template must be cached in a function of five values: the cache_key, its
prefix, its name, whether it is a partial or not, and the set of locals. Given those
five keys, we could store the templates in the cache in these three ways:

Nested hash
@cached[key][prefix][name][partial][locals]

Simple hash with array as key
@cached[[key, prefix, name, partial, locals]]

Simple hash with hash as key
@cached[key: key, prefix: prefix, name: name, partial: partial, locals: locals]

All three cache implementations give us the desired behavior. However, there
is a difference between them: performance. We need to explore how Ruby
does hash lookups to understand this.

Ruby Hash Lookup

Whenever we store a value for a given key in a Hash object, Ruby stores three
things: the given key, the given value, and the object hash for the given key.
This hash is the result of the Object#hash() method called on the object given
as the key. There is an easy way to prove that Ruby Hash in fact relies on
Object#hash(); just start an irb session, and type the following:

class NoHash
undef_method :hash

end

hash = Hash.new
hash[NoHash.new] = 1
=> NoMethodError: undefined method `hash' for #<NoHash:0x101643820>

If we undefine the hash() method in our object, it can no longer be stored in
the hash. Adding an element to the hash is similar to creating a new entry
in a table, as shown in Figure 6, Illustration of what a hash stores for each
entry, on page 50.

Whenever we attempt to retrieve the value for a given key in a Hash object, like
hash[:b], Ruby calculates the Object#hash() for this given key and then searches

report erratum • discuss

Configuring Our Resolver for Production • 49

www.it-ebooks.info

http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

Figure 6—Illustration of what a hash stores for each entry. Keep in mind the Ruby
implementation uses pointers instead of a table structure, but the table is an easy way to

represent how it works.

whether one or more entries in the Hash object have this same hash value.
For instance, the value returned by :b.hash is 231228 in the preceding figure.
Seeing that one or more entries have the value 231228, Ruby checks whether
any key for these entries is equal to the given key, using the equality operator
eql?(). Since :b.eql?(:b) returns true, accessing hash[:b] in our example successfully
returns 2 as the result.

To prove that Ruby uses Object#hash() to localize entries, let’s start another irb
session and do a few experiments.

hash = {}
object = Object.new
hash[object] = 1
hash[object] # => 1

def object.hash; 123; end

hash[object] # => nil
hash # => {#<Object:0x1016e3de8>=>1}

This time we used an arbitrary Ruby object as a hash key, and we could
successfully set and get values. However, after we modified the value object#hash

Chapter 3. Retrieving View Templates from Custom Stores • 50

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

returned, the value could not be found even though the same object is still
in the hash.

Ruby stores Object#hash() for each key to provide faster lookups. Comparing
hash values (integers) is much faster than comparing each object stored in
the hash.

This implementation implies that the performance hit of finding a value in
the hash is not merely in the eql?() method, but also in calculating Object#hash()
for the given key. Remember, we could implement our resolver cache using
a nested hash or a simple hash with arrays as the key, or a simple hash with
hashes as keys. We should choose the first, because in the nested-hash case,
the hash keys are strings or Booleans, and Ruby knows how to calculate the
Object#hash() value for these very quickly. On the other hand, calculating
Object#hash() and equality for arrays and hashes is more expensive.

We can demonstrate this in another irb session:

require "benchmark"
foo = "foo"
bar = "bar"
array = [foo, bar]
hash = {a: foo, b: bar}

nested_hash = Hash.new { |h,k| h[k] = {} }
nested_hash[foo][bar] = true

array_hash = { array => true }
hash_hash = { hash => true }

Benchmark.realtime { 1000.times { nested_hash[foo][bar] } } # => 0.000342
Benchmark.realtime { 1000.times { array_hash[array] } } # => 0.000779
Benchmark.realtime { 1000.times { hash_hash[hash] } } # => 0.001645

The nested-hash implementation yields better results. Although the choice
for a nested hash apparently does not yield substantial gains, the concepts
we covered about Hash lookups in Ruby are fundamental to understanding
the next section.

The Cache Key

We already know that our resolvers come with a built-in cache. We also know
that this cache uses a nested hash to store templates and that the cache
depends on five values: @cached[key][prefix][name][partial][locals]. However, the
find_all() signature receives six arguments:

def find_all(name, prefix=nil, partial=false, details={}, key=nil, locals=[])

report erratum • discuss

Configuring Our Resolver for Production • 51

www.it-ebooks.info

http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

details is a hash containing the format, locale, and other information useful
for the template lookup. The lookup context holds this information, and it is
essential for retrieving the correct template from the filesystem. So why doesn’t
the cache use these details?

Remember how we determined that calculating the Object#hash() for a hash
object is expensive when compared to simpler structures, like strings? If we
were to use details as the key in the cache’s nested hash, it would be slow since
details is a hash of arrays:

details # => {
formats: [:html],
locale: [:en, :en],
handlers: [:erb, :builder, :rjs]

}

Slow because details is a hash of arrays
@cached[details][prefix][name][partial][locals]

Instead, the lookup context generates a simple Ruby object for each details
hash and sends it as cache_key to resolvers. The whole process is similar to
the following code:

Generate an object for the details hash
@details_key ||= {}
key = @details_key[details] ||= Object.new

And send it to each resolver
resolver.find_all(name, prefix, partial, details, key)

Inside the resolver, the details value is not used in the cache
Instead we use the key, which is a simple object and fast
@cached[key][prefix][name][partial][locals]

In other words, details is not used directly in the cache, but rather via the
cache_key. This is important because during a request the details hash rarely
changes, as the format and locale are usually set before rendering any tem-
plate. Therefore, regardless of how many templates are rendered and resolvers
are involved in a request, the cache_key is likely to be calculated just once. If
a detail changes, such as the request format, a new cache_key is generated.

Let’s fire up irb once again and do our last benchmark in this chapter. Our
benchmark will show how accessing a hash using a simple Object, like the
cache_key, compares with using a hash of arrays, like the details hash:

require "benchmark"
cache_key = Object.new
details = {

Chapter 3. Retrieving View Templates from Custom Stores • 52

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

formats: [:html, :xml, :json],
locale: [:en],
handlers: [:erb, :builder, :rjs]

}

hash_1 = { cache_key => 10 }
hash_2 = { details => 10 }

Benchmark.realtime { 1000.times { hash_1[cache_key] } } # => 0.000202
Benchmark.realtime { 1000.times { hash_2[details] } } # => 0.003937

Twenty times slower is quite a difference! For applications that require high
performance, these milliseconds can easily mount up in requests that render
several collections and partials, dramatically affecting the response time. In
some benchmarks done with Rails, using the details hash took up to ten percent
of the time spent in the rendering stack, while using the cache_key reduced this
to less than one percent.

Expiring the Cache

Since Rails automatically handles the cache inside resolvers, we only need
to worry about expiring the cache using the Resolver#clear_cache() method. This
cache is stored in the resolver instance, so to expire these caches, we would
need to track all instances of SqlTemplate::Resolver and call clear_cache() in each of
them whenever we add or update a template in the database.

However, does it make sense to create several SqlTemplate::Resolver instances?
Because the cache is in the instance, creating several instances would create
several caches, reducing their effectiveness. Therefore, we don’t want several
resolver instances. We want only one shared across the entire application.

We need a singleton class. Luckily, Ruby has a Singleton module in its Standard
Library, which does all the hard work for us. Including this module in SqlTem-
plate::Resolver makes SqlTemplate::Resolver.new() a private method and exposes Sql-
Template::Resolver.instance() instead, which always returns the same object.

Also, having a singleton object makes it very easy to expire the cache. Since
we can always access the instantiated resolver with SqlTemplate::Resolver.instance(),
we just need to call clear_cache() on it every time we save a SqlTemplate instance.

Let’s get started with those changes. The first one is to require and include
Singleton inside SqlTemplate::Resolver:

templater/2_improving/app/models/sql_template.rb
require "singleton"
include Singleton

report erratum • discuss

Configuring Our Resolver for Production • 53

www.it-ebooks.info

http://media.pragprog.com/titles/jvrails2/code/templater/2_improving/app/models/sql_template.rb
http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

After doing this simple change, we need to update both app/controllers/users_con-
troller.rb and test/models/sql_template_test.rb to call SqlTemplate::Resolver.instance() instead
of SqlTemplate::Resolver.new():

templater/2_improving/app/controllers/users_controller.rb
append_view_path SqlTemplate::Resolver.instance

templater/2_improving/test/models/sql_template_test.rb
resolver = SqlTemplate::Resolver.instance

With our singleton resolver in place, let’s write a test in test/models/sql_tem-
plate_test.rb that asserts that our cache is properly expired. This new test should
update the SqlTemplate from fixtures and assert that our resolver will return
the updated template:

templater/2_improving/test/models/sql_template_test.rb
test "sql_template expires the cache on update" do

cache_key = Object.new
resolver = SqlTemplate::Resolver.instance
details = { formats: [:html], locale: [:en], handlers: [:erb] }

t = resolver.find_all("index", "users", false, details, cache_key).first
assert_match "Listing users", t.source

sql_template = sql_templates(:users_index)
sql_template.update_attributes(body: "New body for template")

t = resolver.find_all("index", "users", false, details, cache_key).first
assert_equal "New body for template", t.source

end

Notice we generated a fake cache_key with Object.new to pass to find_all() because
the cache is activated only if a cache key is supplied.

Finally, to make our test pass, let’s add an after_save callback to SqlTemplate,
right after the model validations:

templater/2_improving/app/models/sql_template.rb
after_save do

SqlTemplate::Resolver.instance.clear_cache
end

Now every time a template is created or updated, the cache is expired, allowing
the modified template to be picked up and recompiled. Unfortunately, this
approach has a severe limitation: it works for only single-instance deploy-
ments. For example, if your infrastructure contains more than one server or
if you use Passenger or Unicorn with a pool of instances, a request will reach
a specific instance, which will have only its own cache cleared up. In other
words, this cache is not synchronized between machines.

Chapter 3. Retrieving View Templates from Custom Stores • 54

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/jvrails2/code/templater/2_improving/app/controllers/users_controller.rb
http://media.pragprog.com/titles/jvrails2/code/templater/2_improving/test/models/sql_template_test.rb
http://media.pragprog.com/titles/jvrails2/code/templater/2_improving/test/models/sql_template_test.rb
http://media.pragprog.com/titles/jvrails2/code/templater/2_improving/app/models/sql_template.rb
http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

Luckily, we can solve this issue:

• One option is to reimplement the cache using memcached or Redis so it
is shared between machines with an appropriate expiration mechanism.1,2

• Another option is to notify each instance whenever the cache is expired
—for example, through a queue. In this schema, after_save() would simply
push a message to the queue, which would send a notification to all
subscribed instances.

• We can also solve this by setting config.action_view.cache_template_loading to false
on production. Previously I mentioned that the resolver cache is enabled
only if config.cache_classes is true.

However, whenever cache_template_loading() is set, it has higher preference
than the cache_classes() configuration. If the template cache is disabled,
Rails queries the database every time a template lookup happens, but
the template is recompiled only if the updated_at value we set on template
creation is more recent than the one the resolver has cached. So, even
though we trigger a new query, the expensive template compilation hap-
pens only if needed. This is how Rails behaves by default in development.

Which strategy is best for you depends on your infrastructure, performance
requirements, and how frequently templates are changed.

With that, we’ve finished our SqlTemplate::Resolver implementation!

3.4 Serving Templates with Metal

Now that we can create and edit templates from the UI and serve them with
our own resolver, we’re ready to take it to the next level. Let’s use our templater
tooling as a simple content-management system (CMS).

Creating the CmsController
We already can create, update, and delete templates by accessing /sql_templates;
now we need to expose them depending on the accessed URL.

To achieve this, let’s map all requests under /cms/* to a controller that will use
our resolver to find the template in the database, and render them back to
the client. A request at /cms/about should render a SqlTemplate stored in the
database with path equals to about.

1. http://memcached.org/
2. http://redis.io

report erratum • discuss

Serving Templates with Metal • 55

www.it-ebooks.info

http://memcached.org/
http://redis.io
http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

We can implement this functionality with a few lines of code. Let’s start with
an integration test that we’ll write using Capybara. The first step is to set up
Capybara as we did in Section 2.2, Integration Tests with Capybara, on page
28:

templater/2_improving/test/test_helper.rb
require "capybara"
require "capybara/rails"

Define a bare test case to use with Capybara
class ActiveSupport::IntegrationCase < ActiveSupport::TestCase

include Capybara::DSL
include Rails.application.routes.url_helpers

end

Add it as a dependency to the Gemfile:

templater/2_improving/Gemfile
group :test do

gem 'capybara', '~> 2.0.0'
end

Finally, write the test that creates a template and renders it:

templater/2_improving/test/integration/cms_test.rb
require 'test_helper'

class CmsTest < ActiveSupport::IntegrationCase
test "can access any page in SqlTemplate" do

visit "/sql_templates"
click_link "New Sql template"

fill_in "Body", with: "My first CMS template"
fill_in "Path", with: "about"
fill_in "Format", with: "html"
fill_in "Locale", with: "en"
fill_in "Handler", with: "erb"

click_button "Create Sql template"
assert_match "Sql template was successfully created.", page.body

visit "/cms/about"
assert_match "My first CMS template", page.body

end
end

To make our new test pass, let’s write a route that will map to our CmsController:

templater/2_improving/config/routes.rb
get "cms/*page", to: "cms#respond"

Chapter 3. Retrieving View Templates from Custom Stores • 56

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/jvrails2/code/templater/2_improving/test/test_helper.rb
http://media.pragprog.com/titles/jvrails2/code/templater/2_improving/Gemfile
http://media.pragprog.com/titles/jvrails2/code/templater/2_improving/test/integration/cms_test.rb
http://media.pragprog.com/titles/jvrails2/code/templater/2_improving/config/routes.rb
http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

This route maps all requests at /cms/* to the respond() action in the CmsController,
which we implement as follows:

templater/2_improving/app/controllers/cms_controller.rb
class CmsController < ApplicationController

prepend_view_path SqlTemplate::Resolver.instance

def respond
render template: params[:page]

end
end

We simply pass the given route as a template name, which is forwarded to
our SqlTemplate::Resolver that looks up the template. Notice we prepend our
resolver to the view paths this time, as it is the main source for templates.
Our test suite is green again!

If you want to test our simple CMS manually, fire up the server, go to
/sql_templates, create a new template with path equal to about, and add some
content. Then access /cms/about and see your new page!

Playing with Metal

Our CmsController inherits from ApplicationController, which inherits from ActionCon-
troller::Base, and consequently it comes with all the functionality available in
regular Rails controllers. It includes all helpers, adds cross-site request forgery
protection, allows us to hide actions with hide_action(), supports flash messages,
and adds the respond_to() method—it does a lot more than required since our
controller handles only GET requests. Wouldn’t it be nice if we could somehow
have a simpler controller, with just the behavior we need?

We’ve already discussed Abstract Controller and how it provides a basic
structure that is shared between Action Mailer and Action Controller. However,
AbstractController::Base doesn’t know anything about HTTP. On the other hand,
ActionController::Base comes with the whole package. Isn’t there a point in the
middle?

Indeed there is! It’s called ActionController::Metal. ActionController::Metal inherits from
AbstractController::Base and implements the minimum functionality required for
our controllers to be a valid Rack application and work with HTTP. The
inheritance chain is as shown in Figure 7, CmsController superclasses, on
page 58.

By taking a quick look at ActionController::Base in the Rails source code, we notice
it inherits from Metal and adds a bunch of behavior:

report erratum • discuss

Serving Templates with Metal • 57

www.it-ebooks.info

http://media.pragprog.com/titles/jvrails2/code/templater/2_improving/app/controllers/cms_controller.rb
http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

Figure 7—CmsController superclasses

rails/actionpack/lib/action_controller/base.rb
module ActionController

class Base < Metal
abstract!

include AbstractController::Layouts
include AbstractController::Translation
include AbstractController::AssetPaths
include Helpers
include HideActions
include UrlFor
include Redirecting
include Rendering
include Renderers::All
include ConditionalGet
include RackDelegation
include Caching
include MimeResponds
include ImplicitRender
include StrongParameters
include Cookies
include Flash
include RequestForgeryProtection
include ForceSSL
include Streaming
include DataStreaming
include RecordIdentifier
include HttpAuthentication::Basic::ControllerMethods
include HttpAuthentication::Digest::ControllerMethods

Chapter 3. Retrieving View Templates from Custom Stores • 58

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/jvrails2/code/rails/actionpack/lib/action_controller/base.rb
http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

include HttpAuthentication::Token::ControllerMethods
include AbstractController::Callbacks
include Rescue
include Instrumentation
include ParamsWrapper

ActiveSupport.run_load_hooks(:action_controller, self)
end

end

Let’s reimplement CmsController, but this time we’ll inherit from ActionController::Metal
and include only the modules we need, which reduces the overhead in a
request:

templater/3_final/app/controllers/cms_controller.rb
class CmsController < ActionController::Metal

include ActionController::Rendering
include AbstractController::Helpers
prepend_view_path ::SqlTemplate::Resolver.instance
helper CmsHelper

def respond
render template: params[:page]

end
end

module CmsHelper
end

After these changes, our tests should still be green, showing that our new
controller implementation using ActionController::Metal works as expected.

If we need more functionality, we add the required modules. For instance, if
we want to add layouts, we include the AbstractController::Layouts module, create
a layout in the database with the path layouts/cms, and specify layout "cms" in
the controller. Try it!

3.5 Wrapping Up

We’ve covered a lot in this chapter. We analyzed Action View’s rendering stack
and developed a resolver that reads templates from a database with cache-
expiration mechanisms. Then we created a controller to dynamically access
the pages in the resolver and optimized it by making it an ActionController::Metal
object. If you’re eager to see more examples of using resolvers, check the Rails
source code and discover how it implements the filesystem resolver, which
retrieves templates from the filesystem.3

3. https://github.com/rails/rails/blob/4-0-stable/actionpack/lib/action_view/template/resolver.rb

report erratum • discuss

Wrapping Up • 59

www.it-ebooks.info

http://media.pragprog.com/titles/jvrails2/code/templater/3_final/app/controllers/cms_controller.rb
https://github.com/rails/rails/blob/4-0-stable/actionpack/lib/action_view/template/resolver.rb
http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

On the other hand, if you’re already familiar with Rails’s internals (such as
resolvers and metal) and are still looking for a challenge, you can learn more
about Ruby hashes by checking the Rubinius source code. Rubinius imple-
ments most of the Ruby language in Ruby itself, including the Hash class, so
you can learn a lot by looking through its source code.4

In the next chapter, we’ll discuss template handlers such as ERB, Builder,
and Haml. We’ll create our own handler using Markdown and ERB, and we’ll
hook it into Rails’s generators.

4. https://github.com/rubinius/rubinius/blob/v2.1.0/kernel/common/hash.rb

Chapter 3. Retrieving View Templates from Custom Stores • 60

report erratum • discusswww.it-ebooks.info

https://github.com/rubinius/rubinius/blob/v2.1.0/kernel/common/hash.rb
http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

CHAPTER 4

Sending Multipart Emails
Using Template Handlers

To finish our tour of the Rails rendering stack, let’s look at how Rails compiles
and renders templates. So far, we’ve seen that a controller’s responsibility is
to normalize the rendering options and send them to the view renderer. Based
on these options, the view renderer asks the lookup context to search for a
specific template in the available resolvers, also taking into account the locale
and format values the lookup context holds.

As we saw in Writing the Code, on page 43, the resolver returns instances of
ActionView::Template, and at the moment those instances are initialized, we need
to pass along an object called handler as an argument. Each extension, such
as .erb or .haml, has its own template handler:

ActionView::Template.registered_template_handler("erb")
#=> #<ActionView::Template::Handlers::ERB:0x007fc722516490>

The template handler’s responsibility in the rendering stack is to compile a
template to Ruby source code. This source code is executed inside the view
context and must return the rendered template as a string. Figure 8, Objects
involved in the rendering stack, on page 62 summarizes this process.

To understand how a template handler works, we’ll build a template handler
to solve a particular issue. Even though the foundation for today’s emails was
created in 1970 and version 4 of the HTML specification dates from 1997, we
still cannot rely on sending HTML emails to everyone since many email clients
can’t render these properly.

This implies that whenever we configure an application to send an HTML
email, we should also send a plain-text version of the same, creating a “mul-

In this chapter, we’ll see
• The Rails template-handler API
• Multipart templates with Action Mailer
• Rails generators and railties

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

Figure 8—Objects involved in the rendering stack

tipart” email. If the email’s recipient uses a client that cannot read HTML, it
will fall back to the plain-text part.

Action Mailer makes creating multipart emails a breeze, but with this approach
we have to maintain two versions of the same email message. Wouldn’t it be
nice if we had one template that could be rendered both as plain text and as
HTML?

Here’s where Markdown comes in. Markdown is a lightweight markup lan-
guage, created by John Gruber and Aaron Swartz, that is intended to be as
easy as possible to read and write.1 Markdown’s syntax consists entirely of
punctuation characters and allows you to embed custom HTML whenever
required. Here’s an example of Markdown text:

Welcome
=======

Hi, José Valim!

Thanks for choosing our product. Before you use it, you just need
to confirm your account by accessing the following link:

http://example.com/confirmation?token=ASDFGHJK

1. http://daringfireball.net/projects/markdown

Chapter 4. Sending Multipart Emails Using Template Handlers • 62

report erratum • discusswww.it-ebooks.info

http://daringfireball.net/projects/markdown
http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

Remember, you have *7 days* to confirm it. For more information,
you can visit our [FAQ][1] or our [Customer Support page][2].

Regards,

The Team.

[1]: http://example.com/faq
[2]: http://example.com/customer

Indeed, it’s quite readable! The best part is that it can be transformed into
HTML, which is rendered as shown in the following figure.

Figure 9—HTML generated from a Markdown template

Our template handler will use Markdown’s features to generate both plain-
text and HTML views using just one template. The only issue with Markdown
is that it does not interpret Ruby code. To circumvent this, we must compile
our templates with ERB and then convert them using the Markdown compiler.

At the end of this chapter, we’ll hook into Rails’s generators and configure
the mailer generator to use our new template handler by default.

4.1 Playing with the Template-Handler API

For an object to be compliant with the handler API, it needs to respond to the
call() method. This method receives as an argument an instance of ActionView::Tem-
plate, which we introduced in Writing the Code, on page 43, and should return
a string containing valid Ruby code. The Ruby code the handler returns is

report erratum • discuss

Playing with the Template-Handler API • 63

www.it-ebooks.info

http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

then compiled into a method, so rendering a template is as simple as invoking
this compiled method.

Before diving into our Markdown + ERB handler, let’s create a few template
handlers to get acquainted with the API.

Ruby Template Handler

Our first template handler simply allows arbitrary Ruby code as a template.
This means the following template is valid:

body = ""
body << "This is my first "
body << content_tag(:b, "template handler")
body << "!"
body

To implement this, let’s craft a new plug-in called handlers using rails plugin:

$ rails plug-in new handlers

Next, let’s write a simple integration test for our template handler. Our goal
is to render a dummy template at test/dummy/app/views/handlers/rb_handler.html.rb:

handlers/1_first_handlers/test/dummy/app/views/handlers/rb_handler.html.rb
body = ""
body << "This is my first "
body << content_tag(:b, "template handler")
body << "!"
body

Our integration test will need routes and a controller to serve that template,
so let’s add them:

handlers/1_first_handlers/test/dummy/config/routes.rb
Dummy::Application.routes.draw do

get "/handlers/:action", to: "handlers"
end

handlers/1_first_handlers/test/dummy/app/controllers/handlers_controller.rb
class HandlersController < ApplicationController
end

Our integration test should make a request to the defined route at /han-
dlers/rb_handler and assert our template was properly rendered:

handlers/1_first_handlers/test/integration/rendering_test.rb
require "test_helper"

class RenderingTest < ActionDispatch::IntegrationTest
test ".rb template handler" do

get "/handlers/rb_handler"

Chapter 4. Sending Multipart Emails Using Template Handlers • 64

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/jvrails2/code/handlers/1_first_handlers/test/dummy/app/views/handlers/rb_handler.html.rb
http://media.pragprog.com/titles/jvrails2/code/handlers/1_first_handlers/test/dummy/config/routes.rb
http://media.pragprog.com/titles/jvrails2/code/handlers/1_first_handlers/test/dummy/app/controllers/handlers_controller.rb
http://media.pragprog.com/titles/jvrails2/code/handlers/1_first_handlers/test/integration/rendering_test.rb
http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

expected = "This is my first template handler!"
assert_match expected, response.body

end
end

When we run the test suite, it fails because Rails still does not recognize the
.rb extension in templates. To register a new template handler, we invoke
ActionView::Template.register_template_handler() with two arguments: the template
extension and the handler object. Because the handler object is anything that
responds to call() and returns a String, we can implement our handler simply
using Ruby’s lambda:

handlers/1_first_handlers/lib/handlers.rb
require "action_view/template"
ActionView::Template.register_template_handler :rb,

lambda { |template| template.source }
module Handlers
end

When we run the test suite, the test we just wrote now passes. Our lambda
receives an ActionView::Template instance as an argument. Since our template
handler needs to return a String with Ruby code and our template in the
filesystem is written in Ruby, we just need to return the template.source().

As Ruby symbols implement a to_proc() method and :source.to_proc is exactly the
same as lambda { |arg| arg.source }, we can make our template handler even
shorter:

ActionView::Template.register_template_handler :rb, :source.to_proc

String Template Handler

Our .rb template handler is quite simple but has limited usage. Rails views
usually have big chunks of static contents, and handling those in the Ruby
code would quickly become messy. That said, let’s implement another template
handler that is more suited to handling static content but that still allows us
to embed Ruby code. Since strings in Ruby support interpolation, our next
template handler will be based on Ruby strings. Let’s add a sample template
to the dummy app:

handlers/1_first_handlers/test/dummy/app/views/handlers/string_handler.html.string
Congratulations! You just created another #{@what}!

Our new template uses string interpolation, and the interpolated Ruby code
references an instance variable named @what. Let’s define a new action with
this instance variable in our HandlersController for our tests to use as a fixture:

report erratum • discuss

Playing with the Template-Handler API • 65

www.it-ebooks.info

http://media.pragprog.com/titles/jvrails2/code/handlers/1_first_handlers/lib/handlers.rb
http://media.pragprog.com/titles/jvrails2/code/handlers/1_first_handlers/test/dummy/app/views/handlers/string_handler.html.string
http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

handlers/1_first_handlers/test/dummy/app/controllers/handlers_controller.rb
class HandlersController < ApplicationController

def string_handler
@what = "template handler"

end
end

Now let’s write a small test for it in our integration suite:

handlers/1_first_handlers/test/integration/rendering_test.rb
test ".string template handler" do

get "/handlers/string_handler"
expected = "Congratulations! You just created another template handler!"
assert_match expected, response.body

end

To make our new test pass, let’s implement this new template handler, once
again in lib/handlers.rb:

handlers/1_first_handlers/lib/handlers.rb
ActionView::Template.register_template_handler :string,

lambda { |template| "%Q{#{template.source}}" }

Run the test suite, and our new test passes. Our template handler returns a
string created with the Ruby shortcut %Q{}, which Rails then compiles to a
method. When this method is invoked, the Ruby interpreter evaluates the
string and returns the interpolated result.

This template handler works fine for simple cases, but has two major flaws:
adding the } character to the template causes syntax errors unless the char-
acter is escaped, and the block support is limited because it needs to be
wrapped in the whole interpolation syntax. That means both of the following
examples are invalid:

This } causes a syntax error

#{2.times do}
This does not work as in ERB and is invalid

#{end}

So it’s time to look at more-robust template handlers.

4.2 Building a Template Handler with Markdown + ERB

Several gems can compile Markdown syntax to HTML. For our template
handler, let’s use RDiscount,2 which is a Ruby wrapper to the fast Markdown
compiler library called Discount, written in C.

2. https://github.com/rtomayko/rdiscount

Chapter 4. Sending Multipart Emails Using Template Handlers • 66

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/jvrails2/code/handlers/1_first_handlers/test/dummy/app/controllers/handlers_controller.rb
http://media.pragprog.com/titles/jvrails2/code/handlers/1_first_handlers/test/integration/rendering_test.rb
http://media.pragprog.com/titles/jvrails2/code/handlers/1_first_handlers/lib/handlers.rb
https://github.com/rtomayko/rdiscount
http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

Markdown Template Handler

We can create a template handler that compiles to Markdown in just a couple
lines of code. Let’s first add another test to our suite:

handlers/1_first_handlers/test/integration/rendering_test.rb
test ".md template handler" do

get "/handlers/rdiscount"
expected = "<p>RDiscount is cool and fast!</p>"
assert_match expected, response.body

end

And then let’s write our template in the filesystem:

handlers/1_first_handlers/test/dummy/app/views/handlers/rdiscount.html.md
RDiscount is *cool* and **fast**!

Note that our template uses .md as the extension for Markdown. Let’s register
it in Rails:

handlers/1_first_handlers/lib/handlers.rb
require "rdiscount"
ActionView::Template.register_template_handler :md,

lambda { |template| "RDiscount.new(#{template.source.inspect}).to_html" }

Since our template handler relies on RDiscount, let’s add it as a dependency
to our plug-in and run bundle install just afterward:

handlers/1_first_handlers/handlers.gemspec
s.add_dependency "rdiscount", "~> 2.0.0"

When we run the test suite, our new test passes. Our Markdown template
handler works like a charm, but it doesn’t allow us to embed Ruby code, so
its usage becomes quite limited.

To circumvent this limitation, we could use the same technique we used in
our .string template handler, but it also has limitations. Therefore, we’ll use
ERB to embed Ruby code in our Markdown template and create a new template
handler named .merb.

MERB Template Handler

First let’s add an example of our new template handler to the filesystem. This
example should be inside our dummy app, and we’ll use it in our tests:

handlers/1_first_handlers/test/dummy/app/views/handlers/merb.html.merb
MERB template handler is **<%= %w(cool fast).to_sentence %>**!

And then let’s write a test that renders this template and check the desired
output:

report erratum • discuss

Building a Template Handler with Markdown + ERB • 67

www.it-ebooks.info

http://media.pragprog.com/titles/jvrails2/code/handlers/1_first_handlers/test/integration/rendering_test.rb
http://media.pragprog.com/titles/jvrails2/code/handlers/1_first_handlers/test/dummy/app/views/handlers/rdiscount.html.md
http://media.pragprog.com/titles/jvrails2/code/handlers/1_first_handlers/lib/handlers.rb
http://media.pragprog.com/titles/jvrails2/code/handlers/1_first_handlers/handlers.gemspec
http://media.pragprog.com/titles/jvrails2/code/handlers/1_first_handlers/test/dummy/app/views/handlers/merb.html.merb
http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

handlers/1_first_handlers/test/integration/rendering_test.rb
test ".merb template handler" do

get "/handlers/merb"
expected = "<p>MERB template handler is cool and fast!</p>"
assert_match expected, response.body.strip

end

This time, to implement our template handler we won’t use a lambda. Instead,
let’s create a module that responds to call(), allowing us to break our imple-
mentation into smaller methods. To compile to ERB, we’ll simply use the ERB
handler that ships with Rails, which we can retrieve using the ActionView::Tem-
plate.registered_template_handler() method, as we did in Writing the Code, on page
43. Here’s our .merb template handler:

handlers/1_first_handlers/lib/handlers.rb
module Handlers

module MERB
def self.erb_handler
@@erb_handler ||= ActionView::Template.registered_template_handler(:erb)

end

def self.call(template)
compiled_source = erb_handler.call(template)
"RDiscount.new(begin;#{compiled_source};end).to_html"

end
end

end

ActionView::Template.register_template_handler :merb, Handlers::MERB

The ERB handler compiles the template, and like any other template handler,
it returns a string with valid Ruby code. The result this Ruby code returns is
a String containing Markdown syntax that is then converted to HTML using
RDiscount.

Finally, look at how we wrapped the code returned by ERB in an inline begin/end
clause. We have to do this inline, or it will mess up backtrace lines. For
instance, imagine the following template:

<% nil.this_method_does_not_exist! %>

This template will raise an error when rendered. However, consider those two
ways to compile the template:

RDiscount.new(begin
nil.this_method_does_not_exist!

end).to_html

RDiscount.new(begin;nil.this_method_does_not_exist!;end).to_html

Chapter 4. Sending Multipart Emails Using Template Handlers • 68

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/jvrails2/code/handlers/1_first_handlers/test/integration/rendering_test.rb
http://media.pragprog.com/titles/jvrails2/code/handlers/1_first_handlers/lib/handlers.rb
http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

In the first example, since we introduced new lines in the compiled template,
the exception backtrace would say the error happened in the second line of
the template, which would be misleading. Notice we also need to use begin/end
to wrap the code; otherwise, our handler would generate invalid Ruby code
when the template contains more than one Ruby expression. Let’s verify this
by trying the following sample code in irb:

puts(a=1;b=a+1) # => raises syntax error
puts(begin;a=1;b=a+1;end) # => prints 2 properly

The last line in our implementation registers our new handler, making all
tests pass. Our .merb template handler is already implemented, but it still
does not render both plain-text and HTML templates as described at the
beginning of this chapter—it renders only the latter. We need to make a couple
of changes to our template handler to output different results depending on
the template format.

Multipart Emails

We’ll use multipart emails in Action Mailer to showcase the behavior we want
to add to our template handler. Let’s create a mailer inside our dummy
application to be used by our tests:

handlers/2_final/test/dummy/app/mailers/notifier.rb
class Notifier < ActionMailer::Base

def contact(recipient)
@recipient = recipient

mail(to: @recipient, from: "john.doe@example.com") do |format|
format.text
format.html

end
end

end

This code should look familiar; just like respond_to() in your controllers, you
can give a block to mail() to specify which templates to render. However, in
controllers Rails chooses only one template to render, whereas in mailers the
block specifies several templates that are used to create a single multipart
email.

Our email has two parts, one in plain text and another in HTML. Since both
parts will use the same template, let’s create a template inside our dummy
app, but without adding a format to its filename:

handlers/2_final/test/dummy/app/views/notifier/contact.merb
Dual templates **rock**!

report erratum • discuss

Building a Template Handler with Markdown + ERB • 69

www.it-ebooks.info

http://media.pragprog.com/titles/jvrails2/code/handlers/2_final/test/dummy/app/mailers/notifier.rb
http://media.pragprog.com/titles/jvrails2/code/handlers/2_final/test/dummy/app/views/notifier/contact.merb
http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

And let’s write a test for that using this mailer and view:

handlers/2_final/test/integration/rendering_test.rb
test "dual template with .merb" do

email = Notifier.contact("you@example.com")
assert_equal 2, email.parts.size
assert_equal "multipart/alternative", email.mime_type

assert_equal "text/plain", email.parts[0].mime_type
assert_equal "Dual templates **rock**!",

email.parts[0].body.encoded.strip

assert_equal "text/html", email.parts[1].mime_type
assert_equal "<p>Dual templates rock!</p>",

email.parts[1].body.encoded.strip
end

The test asserts that our email has two parts. Since the plain-text part is an
alternative representation of the HTML part, the email should have a MIME
type equal to multipart/alternative, which is automatically set by Action Mailer.
The test then proceeds by checking the MIME type and body of each part.
The order of the parts is also important; if the parts were inverted, most clients
would simply ignore the HTML part, showing only plain text.

When we run this test, it fails because our text/plain part contains HTML code,
not only plain text. This is expected, since our template handler always returns
HTML code. To make it pass, we’ll need to slightly change the implementation
of Handlers::MERB.call() to consider the template.formats:

handlers/2_final/lib/handlers.rb
def self.call(template)

compiled_source = erb_handler.call(template)
if template.formats.include?(:html)

"RDiscount.new(begin;#{compiled_source};end).to_html"
else

compiled_source
end

end

We inspect template.formats and check whether it includes the :html format. If
so, we render the template as HTML; otherwise, we return the code that ERB
compiled, resulting in a plain-text template written in Markdown syntax. This
allows us to send an email with both plain-text and HTML parts using just
one template!

With this last change, our template handler does exactly what we planned at
the beginning of this chapter. Before we create generators for our new template
handler, let’s discuss how template.formats is set.

Chapter 4. Sending Multipart Emails Using Template Handlers • 70

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/jvrails2/code/handlers/2_final/test/integration/rendering_test.rb
http://media.pragprog.com/titles/jvrails2/code/handlers/2_final/lib/handlers.rb
http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

Formats Lookup

In Writing the Code, on page 43, we discussed that the resolver is responsible
for giving the :format option to templates. The resolver does the following lookup
to decide which format to use:

1. If the template found has a valid format, it is used. In templates placed
in the filesystem, the format is specified in the template filename, as in
index.html.erb.

2. If the template found does not specify a format, the resolver asks the
template handler whether it has a default format.

3. If the template handler has no preferred format, the resolver should return
the same formats used in the lookup.

Because our contact.merb template doesn’t specify a format, the resolver tries
to retrieve the default format from our Handlers::MERB template handler. This
default format is retrieved through Handlers::MERB.default_format(), but since our
template handler does not respond to default_format(), the second step is also
skipped. The resolver’s last option is to return the formats used in the lookup.
As we’re using format.text and format.html methods, they automatically set the
formats in the lookup to plain text and HTML, respectively.

For instance, if we defined Handlers::MERB.default_format() in our implementation
to return :text or :html, our last test would fail. Our resolver would never reach
the third step and would always return a specific format in the second step.

4.3 Customizing Rails Generators

With our template handler in hand and rendering multipart emails, the final
step is to create a generator for our plug-in. Our generator will hook into
Rails’s mailer generator and configure it to create .merb instead of .erb templates.

Rails generators provide hooks to allow other generators to extend and cus-
tomize the generated code. A quick look at the mailer generator in the Rails
source code reveals the hooks it provides:

rails/railties/lib/rails/generators/rails/mailer/mailer_generator.rb
module Rails

module Generators
class MailerGenerator < NamedBase
source_root File.expand_path("../templates", __FILE__)
argument :actions, type: :array,

default: [], banner: "method method"
check_class_collision
def create_mailer_file

template "mailer.rb",

report erratum • discuss

Customizing Rails Generators • 71

www.it-ebooks.info

http://media.pragprog.com/titles/jvrails2/code/rails/railties/lib/rails/generators/rails/mailer/mailer_generator.rb
http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

File.join("app/mailers", class_path, "#{file_name}.rb")
end
hook_for :template_engine, :test_framework

end
end

end

Although we haven’t covered the whole Generators API yet, we can see that
its main behavior is to copy a mailer template to app/mailers, which is imple-
mented in the create_mailer_file() method. Notice the mailer generator does not
say anything about the template engine or the test framework; it provides
only hooks. This allows other libraries, like Haml and RSpec, to hook into the
mailer generator, customizing the generation process.

The Active Model API and the decoupling in Rails generators provide important
abstractions that allow us to replace Rails’s defaults with our own conventions.
We discussed the former in Chapter 2, Building Models with Active Model, on
page 17, and now we’ll play with the latter.

A Generator’s Structure

To see how a generator works, let’s take a deeper look at the Rails::Generators::Mai-
lerGenerator shown in the code on page 71. The mailer generator inherits from
Rails::Generators::NamedBase. All generators that inherit from it expect an argument
called NAME to be given when the generator is invoked from the command line.
We can verify the arguments and options the mailer generator expects by
executing the following command inside a Rails application:

$ rails g mailer --help
Usage:

rails generate mailer NAME [method method] [options]

Options:
-e, [--template-engine=NAME] # Template engine to be invoked

Default: erb
-t, [--test-framework=NAME] # Test framework to be invoked

Default: test_unit

Back to our generator code—the Rails::Generators::MailerGenerator class also defines
:actions as an argument, on line 6. Since a default value was provided (an
empty array), these actions are optional and appear between brackets in the
preceding help message.

Next, we invoke the class_collisions_check() method, which verifies that the NAME
given to the generator is not already defined in our application. This is useful
since it raises an error if we try to define a mailer named, for instance, Object.

Chapter 4. Sending Multipart Emails Using Template Handlers • 72

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

On the next lines, we define the create_mailer_file() method, reproduced here for
convenience:

def create_mailer_file
template "mailer.rb",

File.join("app/mailers", class_path, "#{file_name}.rb")
end

Rails generators work by invoking all public methods in the sequence they
are defined. This construction is interesting because it plays well with inher-
itance: if you have to extend the mailer generator to do some extra tasks, you
just need to inherit from it and define more public methods. Skipping a task
is a matter of undefining some method. Whenever your new generator is
invoked, it will execute the inherited methods and then the new public
methods you defined. As with Rails controllers, you can expose or run actions
by accident by leaving a method declared as public.

The create_mailer_file() method invokes three methods: template(), class_path(), and
file_name(). The first one is a helper defined in Thor,3 which is the basis for
Rails generators, and the others are defined by Rails::Generators::NamedBase.

Thor has a module called Thor::Actions, which contains several methods to assist
in generating tasks. One of them is the previously discussed template() method,
which accepts two arguments: a source file and a destination.

The template() method reads the source file in the filesystem, executes the
embedded Ruby code in it using ERB, and then copies the result to the given
destination. All ERB templates in Thor are evaluated in the generator context,
which means that instance variables defined in your generator are also
available in your templates, as well as in protected/private methods.

The values returned by the two other methods, class_path() and file_name(), are
inflected from the NAME given as an argument. To see all the defined methods
and what they return, let’s peek at the named_base_test.rb file in the Rails source
code:

rails/railties/test/generators/named_base_test.rb
def test_named_generator_attributes

g = generator ['admin/foo']
assert_name g, 'admin/foo', :name
assert_name g, %w(admin), :class_path
assert_name g, 'Admin::Foo', :class_name
assert_name g, 'admin/foo', :file_path
assert_name g, 'foo', :file_name
assert_name g, 'Foo', :human_name

3. https://github.com/wycats/thor

report erratum • discuss

Customizing Rails Generators • 73

www.it-ebooks.info

http://media.pragprog.com/titles/jvrails2/code/rails/railties/test/generators/named_base_test.rb
https://github.com/wycats/thor
http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

assert_name g, 'foo', :singular_name
assert_name g, 'foos', :plural_name
assert_name g, 'admin.foo', :i18n_scope
assert_name g, 'admin_foos', :table_name

end

This test asserts that when admin/foo is given as NAME, as in rails g mailer admin/foo,
we can access all those methods, and each of them will return the respective
value given in the assertion.

Finally, the mailer generator provides two hooks: one for the template engine
and another for the test framework. Those hooks become options that can be
given through the command line, as well. Summing it all up, the previous
generator accepts a range of arguments and options and could be invoked as
follows:

$ rails g mailer Notifier welcome contact --test-framework=rspec

Generators’ Hooks

We already know Rails generators provide hooks. However, when we ask to
use ERB as the template engine, how does the mailer generator know how to
find and use it? Generators’ hooks work thanks to a set of conventions. When
you pick a template engine named :erb, the Rails::Generators::MailerGenerator will
try to load one of the following three generators:

• Rails::Generators::ErbGenerator
• Erb::Generators::MailerGenerator
• ErbGenerator

And since all generators should be in the $LOAD_PATH, under the rails/generators
or the generators folder, finding these generators is as simple as trying to require
the following files:

• (rails/)generators/rails/erb/erb_generator
• (rails/)generators/rails/erb_generator
• (rails/)generators/erb/mailer/mailer_generator
• (rails/)generators/erb/mailer_generator
• (rails/)generators/erb/erb_generator
• (rails/)generators/erb_generator

If one of those generators is found, it is invoked with the same command-line
arguments given to the mailer generator. In this case, the generator found is
Erb::Generators::MailerGenerator, which we’ll discuss next.

Chapter 4. Sending Multipart Emails Using Template Handlers • 74

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

Template-Engine Hooks

Rails exposes three hooks for template engines: one for the controller, one
for the mailer, and one for the scaffold generators. The first two generate files
only if some actions are supplied on the command line, such as in rails g mailer
Notifier welcome contact or rails g controller Info about contact. For each action given, the
template engine should create a template for it.

On the other hand, the scaffold hook creates all views used in the scaffold:
index, edit, show, new, and the _form partial.

The implementation of Erb::Generators::ControllerGenerator in Rails is as follows:

rails/railties/lib/rails/generators/erb/controller/controller_generator.rb
require "rails/generators/erb"
module Erb

module Generators
class ControllerGenerator < Base
argument :actions, type: :array,

default: [], banner: "action action"

def copy_view_files
base_path = File.join("app/views", class_path, file_name)
empty_directory base_path
actions.each do |action|

@action = action
@path = File.join(base_path, filename_with_extensions(action))
template filename_with_extensions(:view), @path

end
end

end
end

end

The only method we haven’t discussed yet is filename_with_extensions(), defined
in Erb::Generators::Base:

rails/railties/lib/rails/generators/erb.rb
require "rails/generators/named_base"

module Erb
module Generators

class Base < Rails::Generators::NamedBase
protected
def format

:html
end
def handler

:erb
end

report erratum • discuss

Customizing Rails Generators • 75

www.it-ebooks.info

http://media.pragprog.com/titles/jvrails2/code/rails/railties/lib/rails/generators/erb/controller/controller_generator.rb
http://media.pragprog.com/titles/jvrails2/code/rails/railties/lib/rails/generators/erb.rb
http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

def filename_with_extensions(name)
[name, format, handler].compact.join(".")

end
end

end
end

The Erb::Generators::ControllerGenerator creates a view file in app/views using the
configured format and handler for each action given. The template used to
create such views in the Rails source code looks like this:

rails/railties/lib/rails/generators/erb/controller/templates/view.html.erb
<h1><%= class_name %>#<%= @action %></h1>
<p>Find me in <%= @path %></p>

This, for rails g controller admin/foo bar, outputs the following in the file
app/views/admin/foo/bar.html.erb:

<h1>Admin::Foo#bar</h1>
<p>Find me in app/views/admin/foo/bar</p>

The Erb::Generators::MailerGenerator class simply inherits from the previous con-
troller generator and changes the default format to be :text, reusing the same
logic:

rails/railties/lib/rails/generators/erb/mailer/mailer_generator.rb
require "rails/generators/erb/controller/controller_generator"

module Erb
module Generators

class MailerGenerator < ControllerGenerator
protected

def format
:text

end
end

end
end

And the template created for mailers looks like this:

rails/railties/lib/rails/generators/erb/mailer/templates/view.text.erb
<%= class_name %>#<%= @action %>

<%%= @greeting %>, find me in app/views/<%= @path %>

If we glance at the ERB generator’s directory structure in the Rails source
code at the railties/lib directory, we can easily see which templates are available,
as in Figure 10, Structure for ERB generators, on page 77.

Chapter 4. Sending Multipart Emails Using Template Handlers • 76

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/jvrails2/code/rails/railties/lib/rails/generators/erb/controller/templates/view.html.erb
http://media.pragprog.com/titles/jvrails2/code/rails/railties/lib/rails/generators/erb/mailer/mailer_generator.rb
http://media.pragprog.com/titles/jvrails2/code/rails/railties/lib/rails/generators/erb/mailer/templates/view.text.erb
http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

Figure 10—Structure for ERB generators

Therefore, if we want to completely replace ERB generators, we need to create
those generators and templates. And since Rails generators play well with
inheritance, we can do that by inheriting from the respective ERB generator
and overwriting a few configuration methods.

Creating Our First Generator

All we need to do to implement our .merb mailer generator is inherit from
Erb::Generators::MailerGenerator and overwrite both format() and handler() methods
defined in Erb::Generators::Base. Our generator implementation looks like this:

handlers/2_final/lib/generators/merb/mailer/mailer_generator.rb
require "rails/generators/erb/mailer/mailer_generator"

module Merb
module Generators

class MailerGenerator < Erb::Generators::MailerGenerator
source_root File.expand_path("../templates", __FILE__)

protected
def format

nil # Our templates have no format
end

report erratum • discuss

Customizing Rails Generators • 77

www.it-ebooks.info

http://media.pragprog.com/titles/jvrails2/code/handlers/2_final/lib/generators/merb/mailer/mailer_generator.rb
http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

def handler
:merb

end
end

end
end

We need to invoke a method called source_root() at the class level to tell Rails
the templates for our generator can be found at lib/generators/merb/mailer/templates.

Since we chose nil as the format and :merb as the handler, let’s create our
template view.merb with the following content:

handlers/2_final/lib/generators/merb/mailer/templates/view.merb
<%= class_name %>#<%= @action %>

<%%= @greeting %>, find me in app/views/<%= @path %>

And that’s it. Our template has the same contents as in the ERB generator,
but we could modify it to include some Markdown by default. To try the gen-
erator, let’s move to the dummy application inside our plug-in at test/dummy
and invoke the following command:

$ rails g mailer Mailer contact welcome --template-engine=merb

That command creates a mailer named Mailer with two templates, contact.merb
and welcome.merb. The generator runs, showing us the following output:

create app/mailers/mailer.rb
invoke merb
create app/views/mailer
create app/views/mailer/contact.merb
create app/views/mailer/welcome.merb

You can also configure your application at test/dummy/config/application.rb to use
the merb generator by default, by adding the following line:

config.generators.mailer template_engine: :merb

However, you may not want to add this line to each new application you start.
It would be nice if we could set this value as the default inside our plug-in
and not always in the application. Rails allows us to do it with a Rails::Railtie.

4.4 Extending Rails with Railties

A Rails::Railtie (pronounced “Rails Rail-tie”) allows you to hook into Rails’s ini-
tialization and configure some defaults. Such tools allow frameworks like
Active Record to tell Rails how it should be initialized and configured by pro-
viding a railtie.

Chapter 4. Sending Multipart Emails Using Template Handlers • 78

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/jvrails2/code/handlers/2_final/lib/generators/merb/mailer/templates/view.merb
http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

You should include a railtie in your plug-in only if at least one of the following
is true:

• Your plug-in needs to perform a given task while or after the Rails appli-
cation is initialized.

• Your plug-in needs to change a configuration value—for instance, setting
a generator.

• Your plug-in must provide Rake tasks and generators in nondefault
locations (the default location for the former is lib/tasks, and it’s lib/generators
or lib/rails/generators for the latter).

• Your plug-in wants to run custom code whenever the Rails console or the
Rails runner is started.

• You want your plug-in to provide configuration options to the application,
such as config.my_plugin.key = :value.

Let’s look at an excerpt of ActiveRecord::Railtie in the Rails source code that con-
tains a few examples of these scenarios:

rails/activerecord/lib/active_record/railtie.rb
module ActiveRecord

class Railtie < Rails::Railtie
config.active_record = ActiveSupport::OrderedOptions.new
config.app_generators.orm :active_record, migration: true,

timestamps: true
config.app_middleware.insert_after "::ActionDispatch::Callbacks",
"ActiveRecord::QueryCache"

config.eager_load_namespaces << ActiveRecord
rake_tasks do
require "active_record/base"
load "active_record/railties/databases.rake"

end
runner do
require "active_record/base"

end
initializer "active_record.initialize_timezone" do
ActiveSupport.on_load(:active_record) do

self.time_zone_aware_attributes = true
self.default_timezone = :utc

end
end
initializer "active_record.migration_error" do
if config.active_record.delete(:migration_error) == :page_load

config.app_middleware.insert_after "::ActionDispatch::Callbacks",
"ActiveRecord::Migration::CheckPending"

end
end

end
end

report erratum • discuss

Extending Rails with Railties • 79

www.it-ebooks.info

http://media.pragprog.com/titles/jvrails2/code/rails/activerecord/lib/active_record/railtie.rb
http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

After such examples, we are ready to create our first railtie and configure the
mailer generator to use our new template handler by default:

handlers/2_final/lib/handlers/railtie.rb
module Handlers

class Railtie < Rails::Railtie
config.app_generators.mailer template_engine: :merb

end
end

Since our railtie must be loaded when our plug-in is loaded, we need to add
a require in lib/handlers.rb:

handlers/2_final/lib/handlers.rb
require "handlers/railtie"

And that’s all! Let’s go to the dummy application at test/dummy and invoke the
generator helper once again with rails g mailer --help. Notice the default template
engine has changed to merb. Therefore, we don’t need to pass it as an option
when invoking it!

All major Rails generators, such as model, controller, and scaffold, rely on
hooks. As we’ve just seen, this allows us to adapt them to our workflow and
preferred tools.

Importantly, this mechanism works only if our railtie is loaded before our
application is initialized. This is why, in a freshly generated Rails application,
we require our dependencies before we define the Rails application. You can
verify that our dependencies are required early on by opening config/application.rb
in any Rails application and observing that the Bundler.require line comes before
we inherit from Rails::Application.

Furthermore, even though plug-ins are allowed to change Rails defaults, the
application still has the final word about it. For instance, we changed Rails
to use our :merb template engine in the mailer generator by default. However,
if developers want to set this value back to :erb, they can simply do it inside
the application definition at config/application.rb.

4.5 Wrapping Up

In this chapter, we finished our discussion about Rails’s rendering stack by
building a few template handlers. Our main template handler with the .merb
extension mixes Markdown with ERB, allowing it to render both HTML and
plain-text parts in an email by using just one template.

At the end of the chapter, we created a generator and customized Rails to use
our new template handler by default. There is much more to discover in the

Chapter 4. Sending Multipart Emails Using Template Handlers • 80

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/jvrails2/code/handlers/2_final/lib/handlers/railtie.rb
http://media.pragprog.com/titles/jvrails2/code/handlers/2_final/lib/handlers.rb
http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

Generators API. Besides the methods seen in this chapter, Thor::Actions defines
copy_file(), inject_into_file(), create_file(), run(), and a few more. In addition, Rails has
a module called Rails::Generators::Actions that provides methods specific to Rails,
such as gem(), environment(), route(), and many others. Rails also provides a
testing facility to generators called Rails::Generators::TestCase, which is useful
when testing our generators. Here is an example of how Rails uses Rails::Gener-
ators::TestCase to test its own mailer generator:

rails/railties/test/generators/mailer_generator_test.rb
require "generators/generators_test_helper"
require "rails/generators/mailer/mailer_generator"

class MailerGeneratorTest < Rails::Generators::TestCase
arguments %w(notifier foo bar)

def test_mailer_skeleton_is_created
run_generator
assert_file "app/mailers/notifier.rb" do |mailer|
assert_match(/class Notifier < ActionMailer::Base/, mailer)
assert_match(/default from: "from@example.com"/, mailer)

end
end

def test_mailer_with_i18n_helper
run_generator
assert_file "app/mailers/notifier.rb" do |mailer|
assert_match(/en\.notifier\.foo\.subject/, mailer)
assert_match(/en\.notifier\.bar\.subject/, mailer)

end
end

def test_invokes_default_test_framework
run_generator
assert_file "test/mailers/notifier_test.rb" do |test|
assert_match(/class NotifierTest < ActionMailer::TestCase/, test)
assert_match(/test "foo"/, test)
assert_match(/test "bar"/, test)

end
end

end

Be sure to explore all the tools available to you! Next we’ll build a Rails engine
that uses Rails’s streaming functionalities to push updates to the browser as
changes happen in our system.

report erratum • discuss

Wrapping Up • 81

www.it-ebooks.info

http://media.pragprog.com/titles/jvrails2/code/rails/railties/test/generators/mailer_generator_test.rb
http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

CHAPTER 5

Streaming Server Events
to Clients Asynchronously

In the previous chapters, we analyzed the Rails rendering stack inside and
out. You learned that when a request reaches a controller, the controller
gathers the required information to render a template. The template is retrieved
from one of the resolvers, compiled, rendered fully, and embedded in a layout.
At the end of this process, you have a Ruby string representing this template.
The string is set as the HTTP response and sent back to the client.

This approach works fine for the vast majority of applications. However, in
some cases we need to send our response in smaller chunks. Sometimes,
those smaller chunks may be infinite; we keep on sending chunks to the
client until the connection between the server and the client is closed.

Whenever we send a response in chunks, we say the server is streaming data
to the client. Since Rails was built with the more traditional request-response
scenario in mind, streaming support was added and improved in Rails over
time, and we’ll explore it in this chapter.

To explore how streaming works, let’s write a Rails plug-in that sends data
to the browser whenever one of our style sheets changes. The browser will
use this information to reload the current page style sheets, allowing develop-
ers to see changes in the HTML page as they modify their assets file, without
a need to manually refresh the page in the web browser.

Since this plug-in is going to have its own controller, assets, routes, and more,
we’ll rely on the power provided by Rails engines so we can add those func-
tionalities as if they were part of a Rails application, but then bundle it in a
gem to share across different projects.

In this chapter, we’ll see
• Rails engines
• Rails live-streaming functionality
• Ruby threads and queues
• Eager loading of code in Rails

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

5.1 Extending Rails with Engines

Rails engines allow our plug-in to have its own controllers, models, helpers,
views, assets, and routes, just like in a regular Rails application. Let’s generate
a plug-in called live_assets using the Rails plug-in generator. But this time we’ll
pass the --full flag, which will generate directories for models, controllers,
routes, and more:

$ rails plug-in new live_assets --full

In addition to the files the generator normally creates for us, the --full flag also
generates these files:

• An app directory with controllers, models, and others seen in a regular
application

• A config/routes.rb file for routes

• A lib/live_assets/engine.rb file declaring our engine

• An empty test/integration/navigation_test.rb file to which we can add our integra-
tion tests

The most important file here is lib/live_assets/engine.rb, so let’s take a closer look
at it:

live_assets/1_live/lib/live_assets/engine.rb
module LiveAssets

class Engine < ::Rails::Engine
end

end

To create an engine, we need to inherit from Rails::Engine and ensure our new
engine is loaded as soon as possible. The generator we ran already did this
for us by placing this line in lib/live_assets.rb:

live_assets/1_live/lib/live_assets.rb
require "live_assets/engine"

module LiveAssets
end

Creating a Rails::Engine is quite similar to creating a Rails::Railtie. This is because
a Rails::Engine is nothing more than a Rails::Railtie with some default initializers
and the Paths application programming interface (API), which we’ll see next.

Paths

A Rails::Engine does not have hard-coded paths. This means we are not required
to place our models or controllers in app/; we can put them anywhere we

Chapter 5. Streaming Server Events to Clients Asynchronously • 84

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/jvrails2/code/live_assets/1_live/lib/live_assets/engine.rb
http://media.pragprog.com/titles/jvrails2/code/live_assets/1_live/lib/live_assets.rb
http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

choose. For instance, we can configure our engine to load our controllers from
lib/controllers instead of app/controllers, as follows:

module LiveAssets
class Engine < Rails::Engine

paths["app/controllers"] = ["lib/controllers"]
end

end

We can also have Rails load our controllers from both app/controllers and
lib/controllers:

module LiveAssets
class Engine < Rails::Engine

paths["app/controllers"] << "lib/controllers"
end

end

Those paths have the same semantics as in a Rails application: if you have
a controller named LiveAssetsController inside app/controllers/live_assets_controller.rb or
lib/controllers/live_assets_controller.rb, the controller will be loaded automatically
when you need it. It doesn’t need to be explicitly required.

For now, we’ll follow the conventional path and stick our controllers in
app/controllers, so don’t apply the previous changes. We can check all customiz-
able paths for an engine by inspecting the Rails source code:

rails/railties/lib/rails/engine/configuration.rb
def paths

@paths ||= begin
paths = Rails::Paths::Root.new(@root)

paths.add "app", eager_load: true, glob: "*"
paths.add "app/assets", glob: "*"
paths.add "app/controllers", eager_load: true
paths.add "app/helpers", eager_load: true
paths.add "app/models", eager_load: true
paths.add "app/mailers", eager_load: true
paths.add "app/views"

paths.add "app/controllers/concerns", eager_load: true
paths.add "app/models/concerns", eager_load: true

paths.add "lib", load_path: true
paths.add "lib/assets", glob: "*"
paths.add "lib/tasks", glob: "**/*.rake"

paths.add "config"
paths.add "config/environments", glob: "#{Rails.env}.rb"
paths.add "config/initializers", glob: "**/*.rb"

report erratum • discuss

Extending Rails with Engines • 85

www.it-ebooks.info

http://media.pragprog.com/titles/jvrails2/code/rails/railties/lib/rails/engine/configuration.rb
http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

paths.add "config/locales", glob: "*.{rb,yml}"
paths.add "config/routes.rb"

paths.add "db"
paths.add "db/migrate"
paths.add "db/seeds.rb"

paths.add "vendor", load_path: true
paths.add "vendor/assets", glob: "*"

paths
end

end

The previous snippet shows that the engine also specifies which paths should
be eager-loaded and which ones should not, plus it lists paths to locales,
migrations, and more. However, declaring a path is not enough; something
has to be done with the path. That’s where initializers come in.

Initializers

An engine has several initializers that are responsible for booting the engine.
These initializers are relatively low-level and should not be confused with the
ones available inside your application’s config/initializers. Let’s explore an example:

rails/railties/lib/rails/engine.rb
initializer :add_view_paths do

views = paths["app/views"].existent
unless views.empty?

ActiveSupport.on_load(:action_controller){ prepend_view_path(views) }
ActiveSupport.on_load(:action_mailer){ prepend_view_path(views) }

end
end

This initializer is responsible for adding our engine views, usually defined in
app/views, to ActionController::Base and ActionMailer::Base as soon as they are loaded,
allowing a Rails application to use the templates defined in an engine. To see
all initializers defined in a Rails::Engine, we can start a new Rails console under
test/dummy with rails console and type the following:

Rails::Engine.initializers.map(&:name) # =>
[:set_load_path, :set_autoload_paths, :add_routing_paths,
:add_locales, :add_view_paths, :load_environment_config,
:append_assets_path, :prepend_helpers_path,
:load_config_initializers, :engines_blank_point]

Working with an engine is pretty much the same as working with a Rails
application. Since we know how to build applications, implementing our
streaming plug-in should feel familiar.

Chapter 5. Streaming Server Events to Clients Asynchronously • 86

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/jvrails2/code/rails/railties/lib/rails/engine.rb
http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

5.2 Live Streaming

To see how streaming works, let’s create a controller called LiveAssetsController
at app/controllers/live_assets_controller.rb that includes the ActionController::Live function-
ality and streams “hello world” continuously:

live_assets/1_live/app/controllers/live_assets_controller.rb
class LiveAssetsController < ActionController::Base

include ActionController::Live

def hello
while true
response.stream.write "Hello World\n"
sleep 1

end
rescue IOError

response.stream.close
end

end

Our controller provides an action named hello() that streams Hello World every
second. If, for any reason, the connection between the server and the client
drops, response.stream.write will fail with IOError, which we need to rescue before
properly closing our stream.

We also need a route for the action hello():

live_assets/1_live/config/routes.rb
Rails.application.routes.draw do

get "/live_assets/:action", to: "live_assets"
end

We are almost ready to try out our streaming endpoint. However, since a Rails
engine cannot run on its own, we need to start it via the application in
test/dummy. Furthermore, the streaming functionality doesn’t work in WEBrick,
the server that ships with Ruby and that Rails uses by default; WEBrick
would buffer our response before sending it to the client and, given that our
response is infinite, we would never see anything. For this reason, let’s add
Puma to our gemspec as a development dependency:1

live_assets/1_live/live_assets.gemspec
s.add_development_dependency "puma"

Finally, let’s go into the test/dummy directory and run rails s. Rails now starts
Puma instead of WEBrick:

1. http://puma.io/

report erratum • discuss

Live Streaming • 87

www.it-ebooks.info

http://media.pragprog.com/titles/jvrails2/code/live_assets/1_live/app/controllers/live_assets_controller.rb
http://media.pragprog.com/titles/jvrails2/code/live_assets/1_live/config/routes.rb
http://media.pragprog.com/titles/jvrails2/code/live_assets/1_live/live_assets.gemspec
http://puma.io/
http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

=> Booting Puma
=> Rails 4.0.0 application starting in development on http://0.0.0.0:3000
=> Call with -d to detach
=> Ctrl-C to shutdown server

Most browsers will also try to buffer the streaming response, and it may take
a while before they decide to show us anything. So, to test that our streaming
endpoint really works, we’ll use cURL,2 which works via the command line.
Let’s give curl a try:

$ curl -v localhost:3000/live_assets/hello
> GET /live_assets/hello HTTP/1.1
> User-Agent: curl/7.24.0 (x86_64-apple-darwin12.0)
> Host: localhost:3000
> Accept: */*
>
< HTTP/1.1 200 OK
< X-Frame-Options: SAMEORIGIN
< X-XSS-Protection: 1; mode=block
< X-Content-Type-Options: nosniff
< X-UA-Compatible: chrome=1
< Cache-Control: no-cache
< Content-Type: text/html; charset=utf-8
< X-Request-Id: f21f8c0d-d496-4bfa-944c-cd01b44b87ee
< X-Runtime: 0.003120
< Transfer-Encoding: chunked
<
Hello World
Hello World

Each second, you will see a new “Hello World” line appear on the screen. This
means our streaming endpoint is working. Press CTRL+C on your keyboard to
stop it, as we are ready to move on to more complex examples!

Server-Sent Events

Developers have always needed to receive updates from the server in the
browser. For a long time, polling was the most common technique to solve
this problem. In polling, the browser makes frequent requests to the server,
asking for new data. In case no new information is available, the server returns
an empty response and the browser starts a new request. Depending on the
frequency, the browser ends up sending many requests to the server, gener-
ating a lot of overhead.

2. http://curl.haxx.se/

Chapter 5. Streaming Server Events to Clients Asynchronously • 88

report erratum • discusswww.it-ebooks.info

http://curl.haxx.se/
http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

Over time, techniques like long polling appeared. With it, the browser period-
ically sends requests the server, and if no updates are available the server
waits for some amount of time before sending an empty response. Although
it performs better than traditional polling, it’s plagued with cross-compatibil-
ity issues between browsers. Furthermore, many proxies and servers drop a
connection if no communication happens for a while, making this approach
ineffective.

To address developers’ update needs, the HTML5 specification includes two
new APIs: Server Sent Events (SSE) and WebSockets. WebSockets allows both
the client and server to exchange information over the same connection, but
since it is a new protocol, it may require changes in your deployment stack
to support it. On the other hand, Server Sent Events is a one-way communi-
cation channel from the server to the client, and can be used with any web
server that is able to stream responses. For those reasons, SSE is our tool of
choice for this chapter.

SSE’s underpinning is the event stream format; here is a sample event stream
response for an HTTP request:

< HTTP/1.1 200 OK
< Content-Type: text/event-stream
<
< event: some_channel
< data: {"hello":"world"}
<
< event: other_channel
< data: {"another":"message"}

Messages are delimited by two new lines. Each message may have an event
and associated data. In this case, the data is a JavaScript Object Notation
(JSON) payload, but it could be any text. This is the format we need to return
from the server when streaming. Let’s create a new action called sse in our
LiveAssetsController that streams a reloadCSS event every second:

live_assets/1_live/app/controllers/live_assets_controller.rb
def sse

response.headers["Cache-Control"] = "no-cache"
response.headers["Content-Type"] = "text/event-stream"

while true
response.stream.write "event: reloadCSS\ndata: {}\n\n"
sleep 1

end
rescue IOError

response.stream.close
end

report erratum • discuss

Live Streaming • 89

www.it-ebooks.info

http://media.pragprog.com/titles/jvrails2/code/live_assets/1_live/app/controllers/live_assets_controller.rb
http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

It is similar to our first action except now we need to set the proper response
content type and disable any caching. With the server ready, let’s implement
the client side with JavaScript:

live_assets/1_live/app/assets/javascripts/live_assets/application.js
window.onload = function() {

// 1. Connect to our event-stream
var source = new EventSource('/live_assets/sse');

// 2. This callback will be triggered on every reloadCSS event
source.addEventListener('reloadCSS', function(e) {

// 3. Load all CSS entries
var sheets = document.querySelectorAll("[rel=stylesheet]");
var forEach = Array.prototype.forEach;

// 4. For each entry, clone it, add it to the
// document and remove the original after
forEach.call(sheets, function(sheet){
var clone = sheet.cloneNode();
clone.addEventListener('load', function() {

sheet.parentNode.removeChild(sheet);
});
document.head.appendChild(clone);

});

});
};

Our JavaScript file connects to our new endpoint and, on every reloadCSS event,
it reloads all the style sheets on the page. Our assets file was defined at
app/assets/live_assets/application.js; this structure is required because by default
Rails precompiles only asset files matching application.*. Since they are the only
files precompiled, such files usually include all other existing files in the
project. That’s why they are frequently called manifests.

Finally, let’s create a helper that will make it easy for applications to load our
assets:

live_assets/1_live/app/helpers/live_assets_helper.rb
module LiveAssetsHelper

def live_assets
javascript_include_tag "live_assets/application"

end
end

With our Server Sent Events mechanism ready, let’s try it out. Go to our
test/dummy application and create a controller and route:

Chapter 5. Streaming Server Events to Clients Asynchronously • 90

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/jvrails2/code/live_assets/1_live/app/assets/javascripts/live_assets/application.js
http://media.pragprog.com/titles/jvrails2/code/live_assets/1_live/app/helpers/live_assets_helper.rb
http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

live_assets/1_live/test/dummy/app/controllers/home_controller.rb
class HomeController < ApplicationController

def index
render text: "Hello", layout: true

end
end

live_assets/1_live/test/dummy/config/routes.rb
Dummy::Application.routes.draw do

root to: "home#index"
end

Change our layout to include the engine assets, but only in development:

live_assets/1_live/test/dummy/app/views/layouts/application.html.erb
<!DOCTYPE html>
<html>

<head>
<title>Dummy</title>
<%= stylesheet_link_tag "application", media: "all" %>
<%= javascript_include_tag "application" %>
<%= live_assets if Rails.env.development? %>
<%= csrf_meta_tags %>

</head>

<body>
<%= yield %>
</body>

</html>

Restart the dummy app and point the browser to localhost:3000. If your
browser has a network panel that shows all HTTP requests sent by the
browser, you might expect each style sheet to be reloaded every second, but
that’s not what happens, as shown in Figure 11, Pending application.css
request on Google Chrome's network panel, on page 92.

Even though Puma is a threaded web server, Rails allows only one thread to
run at a time. Let’s work around this issue by changing the dummy application
to allow concurrency:

live_assets/1_live/test/dummy/config/application.rb
config.allow_concurrency = true

Since the browser is connected to the web server, waiting for the server to
accept requests, we need to close the browser before restarting the web server.
Close the browser, restart the server, then reopen localhost:3000; we can
finally see the stylesheet files reloading every second. To verify that our style

report erratum • discuss

Live Streaming • 91

www.it-ebooks.info

http://media.pragprog.com/titles/jvrails2/code/live_assets/1_live/test/dummy/app/controllers/home_controller.rb
http://media.pragprog.com/titles/jvrails2/code/live_assets/1_live/test/dummy/config/routes.rb
http://media.pragprog.com/titles/jvrails2/code/live_assets/1_live/test/dummy/app/views/layouts/application.html.erb
http://media.pragprog.com/titles/jvrails2/code/live_assets/1_live/test/dummy/config/application.rb
http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

Figure 11—Pending application.css request on Google Chrome’s network panel

sheets reload, we can edit test/dummy/app/assets/stylesheets/application.css and observe
that the changes happen live, without refreshing the page. For example, try
setting the text color to red:

body { color: red; }

As you can see, our streaming of server-sent events works! However, we can
make a few improvements. First, we want to reload the style sheets only when
changes happen in the filesystem—not every second. Watching for those
changes should be efficient. If we have five pages open, we don’t want to query
our filesystem for each open page; ideally, we’d have one main filesystem lis-
tener entity that each request can subscribe to.

The second problem in our code so far is that we haven’t written any tests.
This feature is particularly hard to test because we’re streaming an infinite
amount of data, so instead of testing it directly from the controller, we need
to break all the existing components into smaller, testable chunks.

Finally, since we’ve enabled config.allow_concurrency, we need to understand how
such a configuration will affect the deployment of applications that rely on
streaming. So don’t go anywhere yet: we still have a lot to do!

5.3 Filesystem Notifications with Threads

A Rails application is generated with three assets directories by default:
app/assets, lib/assets, and vendor/assets. Our assets should be split between those
directories in the same way we’d split our code: the app directory should con-
tain assets related directly to our application, the lib directory should hold

Chapter 5. Streaming Server Events to Clients Asynchronously • 92

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

isolated JavaScript or stylesheet components that would be useful beyond
our application, and the vendor directory should contain third-party files.

We’d like to watch for filesystem changes in each of these directories. One
option is to manually check the modification time of each file in those direc-
tories every second or less. This is filesystem polling. Polling may be a good
starting point, but as the number of assets grows, it can become very CPU
intensive.

Luckily, most operating systems provide a notification mechanism for
filesystem changes. We simply pass to the operating system all the directories
we want to watch and, if a file is added, removed, or changed, our code will
be notified. The listen gem exposes all major operating-system notifications
mechanisms under a single, easy-to-use API.3

Also, given our requirement of having one main entity watching the filesystem
that our requests can subscribe to, let’s wrap all the listening functionality
inside a thread, which will run alongside our requests concurrently. Let’s
open lib/live_assets.rb and implement it:

live_assets/2_listener/lib/live_assets.rb
require "live_assets/engine"
require "thread"
require "listen"
module LiveAssets

mattr_reader :subscribers
@@subscribers = []
Subscribe to all published events.
def self.subscribe(subscriber)

subscribers << subscriber
end
Unsubscribe an existing subscriber.
def self.unsubscribe(subscriber)

subscribers.delete(subscriber)
end
Start a listener for the following directories.
Every time a change happens, publish the given
event to all subscribers available.
def self.start_listener(event, directories)

Thread.new do
Listen.to(*directories, latency: 0.5) do |_modified, _added, _removed|

subscribers.each { |s| s << event }
end

end
end

end

3. https://github.com/guard/listen

report erratum • discuss

Filesystem Notifications with Threads • 93

www.it-ebooks.info

http://media.pragprog.com/titles/jvrails2/code/live_assets/2_listener/lib/live_assets.rb
https://github.com/guard/listen
http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

Our code provides a mechanism for starting listeners inside a thread. These
listeners watch a given set of directories and, every time a change happens,
they push the registered event to each of the subscribers. Since we’re using
the listen gem, let’s add it to the gemspec, too:

live_assets/2_listener/live_assets.gemspec
s.add_dependency "listen"

Although we can’t write integration tests for an action that streams filesystem
updates infinitely, our listener functionality is decoupled from the streaming
system, allowing us to test it in isolation. Let’s write a test that starts a listener
and verifies that an event will be pushed to our subscriber whenever a change
happens in the test/tmp directory:

live_assets/2_listener/test/live_assets_test.rb
require "test_helper"
require "fileutils"

class LiveAssetsTest < ActiveSupport::TestCase
setup do

FileUtils.mkdir_p "test/tmp"
end

teardown do
FileUtils.rm_rf "test/tmp"

end

test "can subscribe to listener events" do
Create a listener
l = LiveAssets.start_listener(:reload, ["test/tmp"])
Our subscriber is a simple array
subscriber = []
LiveAssets.subscribe(subscriber)

begin
while subscriber.empty?

Trigger changes in a file until we get an event
File.write("test/tmp/sample", SecureRandom.hex(20))

end

Assert we got the event
assert_includes subscriber, :reload

ensure
Clean up
LiveAssets.unsubscribe(subscriber)
l.kill

end
end

end

Chapter 5. Streaming Server Events to Clients Asynchronously • 94

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/jvrails2/code/live_assets/2_listener/live_assets.gemspec
http://media.pragprog.com/titles/jvrails2/code/live_assets/2_listener/test/live_assets_test.rb
http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

Excellent! It seems our listener works as expected. As you run the test suite,
you may get some warnings from the listen gem. This is because it uses
filesystem polling unless you install a gem specific to your operating system
that uses the filesystem notifications. Feel free to add such a gem to your
Gemfile (and not to the gemspec, since it is not a strict dependency of our
plug-in).

Finally, we need to ensure a listener that watches over the assets directories
starts whenever our application boots, and pushes a :reloadCSS whenever there
is a change. Let’s write a test:

live_assets/2_listener/test/live_assets_test.rb
test "can subscribe to existing reloadCSS events" do

subscriber = []
LiveAssets.subscribe(subscriber)

begin
while subscriber.empty?
FileUtils.touch("test/dummy/app/assets/stylesheets/application.css")

end

assert_includes subscriber, :reloadCSS
ensure

LiveAssets.unsubscribe(subscriber)
end

end

Our test assumes the listener is already available by the time the test runs.
To make the test pass, let’s define an initializer inside our engine, similar to
the ones we saw earlier in this chapter, that starts the listener, passing all
the asset directories as arguments:

live_assets/2_listener/lib/live_assets/engine.rb
module LiveAssets

class Engine < ::Rails::Engine
initializer "live_assets.start_listener" do |app|
paths = app.paths["app/assets"].existent +

app.paths["lib/assets"].existent +
app.paths["vendor/assets"].existent

paths = paths.select { |p| p =~ /stylesheets/ }

if app.config.assets.compile
LiveAssets.start_listener :reloadCSS, paths

end
end

end
end

report erratum • discuss

Filesystem Notifications with Threads • 95

www.it-ebooks.info

http://media.pragprog.com/titles/jvrails2/code/live_assets/2_listener/test/live_assets_test.rb
http://media.pragprog.com/titles/jvrails2/code/live_assets/2_listener/lib/live_assets/engine.rb
http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

Notice we start the listener only if our assets are being dynamically compiled;
this avoids starting the listener in production, where assets are usually pre-
compiled and the compile configuration is set to false.

Now that our listener is started by default and is ready to push events to
subscribers, every time a new request is made of /live_assets/sse, we need
to create a new subscriber, add it to the subscribers list, and wait until a
new event is pushed to our subscriber. Once the event arrives, we stream a
server-sent event to the browser, as the following figure shows.

Figure 12—Visualization of the filesystem notifications stack

The tricky part in this schema is waiting: we want each request to be idle
until an event arrives. Checking for a new event in a loop, as we did in the
test, is not an option since it will cause the CPU to spike. We could work
around this by sleeping for a specific amount of time, like half second, and
then checking for an event, but this is also suboptimal. Ideally, we want to
sleep for whatever time is necessary and automatically wake up as soon as
an event arrives.

Ruby ships with a perfect solution in its Standard Library: the Queue class.
Let’s take a look at it.

Chapter 5. Streaming Server Events to Clients Asynchronously • 96

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

Threads and Queues

A queue is a first-in, first-out data structure. We can make a queue implemen-
tation accessible to any Ruby code by requiring thread, and it provides a very
simple API:

require "thread"
q = Queue.new

t = Thread.new do
while last = q.pop

sleep(1) # simulate cost
puts last

end
end

q << :foo
sleep(1)
$stdout.flush

This code creates a new Queue and a new Thread. Inside the thread is a loop
that calls Queue#pop(). If there is no item in the queue, the thread will block
until an item is pushed to the queue. In the last three lines, we push a symbol
to the queue, which will wake up the thread. After one second, if we flush
what was written to $stdout, we’ll see “foo” printed.

This means queues are the perfect structure for us to use as subscribers! If
the queue is empty, the request is going to sleep until a new event arrives;
then we stream this new event and go back to sleep. Let’s create a class named
LiveAssets::SSESubscriber that will receive those events and output them in the
server-sent event stream format, as in the following test:

live_assets/2_listener/test/live_assets/subscriber_test.rb
require "test_helper"
require "thread"
class LiveAssets::SubscriberTest < ActiveSupport::TestCase

test "yields server sent events from the queue" do
Let's start our queue with some events
queue = Queue.new
queue << :reloadCSS
queue << :ping
queue << nil

And create a subscriber on top of it
subscriber = LiveAssets::SSESubscriber.new(queue)
stream = []
subscriber.each do |msg|
stream << msg

end

report erratum • discuss

Filesystem Notifications with Threads • 97

www.it-ebooks.info

http://media.pragprog.com/titles/jvrails2/code/live_assets/2_listener/test/live_assets/subscriber_test.rb
http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

assert_equal 2, stream.length
assert_includes stream, "event: reloadCSS\ndata: {}\n\n"
assert_includes stream, "event: ping\ndata: {}\n\n"

end
end

Our test creates a queue, passes it to a subscriber, and then consumes all
events emitted by the subscriber. Notice we push nil to the queue as a way to
signal we have no more events to consume. Let’s implement the subscriber:

live_assets/2_listener/lib/live_assets/sse_subscriber.rb
require "thread"
module LiveAssets

class SSESubscriber
def initialize(queue = Queue.new)
@queue = queue
LiveAssets.subscribe(@queue)

end

def each
while event = @queue.pop

yield "event: #{event}\ndata: {}\n\n"
end

end

def close
LiveAssets.unsubscribe(@queue)

end
end

end

and autoload it:

live_assets/2_listener/lib/live_assets.rb
module LiveAssets

autoload :SSESubscriber, "live_assets/sse_subscriber"
end

Finally, let’s rewrite our live_assets#sse action to make use of our new subscriber:

live_assets/2_listener/app/controllers/live_assets_controller.rb
def sse

response.headers["Cache-Control"] = "no-cache"
response.headers["Content-Type"] = "text/event-stream"

sse = LiveAssets::SSESubscriber.new
sse.each { |msg| response.stream.write msg }

rescue IOError
sse.close
response.stream.close

end

Chapter 5. Streaming Server Events to Clients Asynchronously • 98

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/jvrails2/code/live_assets/2_listener/lib/live_assets/sse_subscriber.rb
http://media.pragprog.com/titles/jvrails2/code/live_assets/2_listener/lib/live_assets.rb
http://media.pragprog.com/titles/jvrails2/code/live_assets/2_listener/app/controllers/live_assets_controller.rb
http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

Once again, restart the Puma server running inside test/dummy and verify that
event streams come only after you edit app/assets/stylesheets/application.css,
reflecting immediate changes on the page. This time, let’s make the font bigger:

body { font-size: 32px; }

We are almost done with our implementation; there’s one last problem we
have to tackle. In case no changes happen in a style sheet for some time, we
can remain for a long period without streaming any data to the browser. This
may cause the browser, the server, or even a proxy in between to close the
connection.

Timer

To ensure the connection won’t be closed due to long idle periods, we need a
timer whose sole responsibility is to push a ping event to subscribers every
ten seconds. Let’s start by writing a test:

live_assets/3_final/test/live_assets_test.rb
test "receives timer notifications" do

Create a timer
l = LiveAssets.start_timer(:ping, 0.5)

Our subscriber is a simple array
subscriber = []
LiveAssets.subscribe(subscriber)

begin
Wait until we get an event
true while subscriber.empty?
assert_includes subscriber, :ping

ensure
Clean up
LiveAssets.unsubscribe(subscriber)

end
end

Our timer will also run on its own thread and push events to the subscribers
synchronously:

live_assets/3_final/lib/live_assets.rb
def self.start_timer(event, time)

Thread.new do
while true
subscribers.each { |s| s << event }
sleep(time)

end
end

end

report erratum • discuss

Filesystem Notifications with Threads • 99

www.it-ebooks.info

http://media.pragprog.com/titles/jvrails2/code/live_assets/3_final/test/live_assets_test.rb
http://media.pragprog.com/titles/jvrails2/code/live_assets/3_final/lib/live_assets.rb
http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

This implementation is enough to make our test pass! Finally, let’s add to
our engine another initializer responsible for starting the timer:

live_assets/3_final/lib/live_assets/engine.rb
initializer "live_assets.start_timer" do |app|

if app.config.assets.compile
LiveAssets.start_timer :ping, 10

end
end

Restart the Puma web server; now ping events should be sent every ten sec-
onds. We have not registered any callback for such events on the JavaScript
side, but we could if we desired. The JavaScript EventSource object also emits
open and close events for when the connection is opened and closed. Mozilla’s
Developer Network has more information on server-sent events that you can
explore.4

Throughout our implementation, one of the details we just glanced over was
the need for setting config.allow_concurrency to true. Now, with the live-assets
implementation out of the way, we have the perfect opportunity to discuss it.

5.4 Code-Loading Techniques

To understand why we need to explicitly turn on allow_concurrency, we need to
analyze the mechanisms available in Ruby and Rails to load code.

The most common form of loading code is Ruby’s require() method:

require "live_assets"

Some libraries work fine by simply using require, but as they grow, some of
them tend to rely on autoload techniques to avoid loading all their files up
front. Autoload is particularly important in Rails plug-ins because it helps
application boot time to stay low in development and test environments, since
we load modules only when we first need them.

Autoload techniques

We’ve used Ruby’s autoload in this chapter with the LiveAssets::SSESubscriber
class:

module LiveAssets
autoload :SSESubscriber, "live_assets/sse_subscriber"

end

4. https://developer.mozilla.org/en-US/docs/Server-sent_events/Using_server-sent_events

Chapter 5. Streaming Server Events to Clients Asynchronously • 100

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/jvrails2/code/live_assets/3_final/lib/live_assets/engine.rb
https://developer.mozilla.org/en-US/docs/Server-sent_events/Using_server-sent_events
http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

Now the first time LiveAssets::SSESubscriber is accessed, it will be automatically
loaded. Rails plug-ins and applications have another code-loading technique,
which is Rails’s autoload. For example, our LiveAssetsController is automatically
loaded when we first need it. But this case is not handled by Ruby, but rather
by ActiveSupport::Dependencies, which ships with Rails.

The issue with both the Ruby and Rails approaches is that loading code in
Ruby is not atomic—it does not occur in a single step. For example, if you
have a request happening inside Thread A and that thread starts loading
LiveAssetsController, the LiveAssetsController class can be visible from Thread B in
another request before Thread A has finished loading the app/controllers/
live_assets_controller.rb file. In this scenario, Thread B has a partial implementation
of the controller, which, for example, could contain only the hello() action (and
not the sse() one), leading to a failure.

Although some Ruby implementations have been working toward making
Ruby’s autoload thread-safe (so the scenario previously described won’t
happen), Rails’s autoload is not thread-safe. To work around this fact,
whenever Rails needs to autoload code, Rails allows only one thread to run
by default, which means it can serve only one request at a time. That’s why
we could not serve assets at the same time the server-sent events connection
was open. To work around this limitation, we have set config.allow_concurrency to
true at our own risk.

What does this mean for production? Do we need to allow concurrency
explicitly in production? What are our options to deploy this application?

Eager-Load Techniques

In production, Rails eager-loads your code: all of your models, controllers,
helpers, and more are loaded on boot. Since all Rails code is loaded up front
and there is no code reloading, autoloading is disabled. And when there is
no autoload, we are safe to run our Rails application with config.allow_concurrency
set to true, which Rails does for us by default.

However, Rails is only going to eager-load the code defined inside the app
directory. If we’re relying on Ruby autoload, we need to eager-load the code
ourselves! Otherwise, we’re possibly autoloading code in the middle of a
request. This is what could happen with LiveAssets::SSESubscriber. Imagine this
scenario:

On the first request to /live_assets/sse, Ruby will start to load LiveAssets::SSESub-
scriber. If many requests happen to this endpoint at the same time, the first
request may not have finished loading the subscriber, leading the following

report erratum • discuss

Code-Loading Techniques • 101

www.it-ebooks.info

http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

requests to see a partial definition of the subscriber. The solution is to ensure
LiveAssets::SSESubscriber is eager-loaded when the Rails application boots. Since
this is a common need in Rails plug-ins and in the Rails codebase itself, Rails
provides some conveniences for us.

The first convenience is the config.eager_load_namespaces configuration option,
available in any railtie or engine, that keeps a list of namespaces to eager-
load. Let’s add LiveAssets to this list in our engine definition:

live_assets/3_final/lib/live_assets/engine.rb
config.eager_load_namespaces << LiveAssets

Now Rails will call LiveAssets.eager_load! to explicitly eager-load our code on
production. However, we haven’t implemented the eager_load!() yet. Let’s define
it with the help of ActiveSupport::Autoload:

live_assets/3_final/lib/live_assets.rb
module LiveAssets

extend ActiveSupport::Autoload

eager_autoload do
autoload :SSESubscriber

end
end

By extending our module with ActiveSupport::Autoload, we automatically get a
LiveAssets.eager_load! method that eager-loads everything defined inside the
eager_autoload() block. We no longer need to pass a path to autoload(); Rails does
its best to guess it based on the constant name.

That’s all we need to do for Rails to eager-load the rest of our code. Remem-
ber—we’ll use this technique every time we have code that Rails doesn’t load
automatically, usually set up via Ruby autoloads. We can open a console in
the test/dummy directory to check all namespaces that Rails eager-loads:

Rails.application.config.eager_load_namespaces # =>
[ActiveSupport, ActionDispatch, ActiveModel, ActionView,

ActionController, ActiveRecord, ActionMailer, LiveAssets::Engine,
LiveAssets, Dummy::Application]

Keep in mind that eager loading is not only beneficial for threaded web servers
like Puma, but also for fork-based servers like Unicorn.5 Unicorn operates by
taking a snapshot of our Rails application just after it boots. By eager-loading
our code, we guarantee that this snapshot contains all of our code loaded up
front and we don’t need to spend time autoloading the code on every request.

5. http://unicorn.bogomips.org/

Chapter 5. Streaming Server Events to Clients Asynchronously • 102

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/jvrails2/code/live_assets/3_final/lib/live_assets/engine.rb
http://media.pragprog.com/titles/jvrails2/code/live_assets/3_final/lib/live_assets.rb
http://unicorn.bogomips.org/
http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

Therefore, the decision of which web server to use when streaming is involved
(and for long-lived requests it usually boils down to your web server’s ability
to handle many concurrent connections. For example, Unicorn works by
starting a pool of web-server processes, and each web server is able to handle
only one request at a time (the single-threaded multiprocess model). If one
web server is streaming data or receiving a huge uploaded file, it is unable to
serve other requests, even if data is streamed though the connection only
every ten seconds! On the other hand, the Puma web server we used in this
chapter is able to handle other requests even while we’re streaming.

Unfortunately, there’s no silver bullet, and the best option when it comes to
deployment is to benchmark the different web servers available. Multithreaded
web servers like Puma can handle multiple requests, as can evented servers
like Thin; however, as of version 1.5, Thin still does not support streaming.6

Servers like Passenger and Rainbows! allow you to mix different concurrency
styles, so you have a hybrid multithreaded multiprocess deployment option.7,8

To add more options to the mix, you may even get better results by deploying
on platforms like JRuby and Rubinius.9,10

Different platforms offer developers different thread-safety guarantees. For
instance, array operations in JRuby are not guaranteed to be safe, which is
an issue in our plug-in. The LiveAssets.subscribers array is a global data structure,
and it could happen that two requests try to subscribe at the exactly same
time, corrupting our array. That said, we need to wrap our subscriber opera-
tions in a mutex, a structure that guarantees just one thread can execute a
particular piece of code at a given moment:

live_assets/3_final/lib/live_assets.rb
@@mutex = Mutex.new
def self.subscribe(subscriber)

@@mutex.synchronize do
subscribers << subscriber

end
end
def self.unsubscribe(subscriber)

@@mutex.synchronize do
subscribers.delete(subscriber)

end
end

6. http://code.macournoyer.com/thin/
7. https://www.phusionpassenger.com/
8. http://rainbows.rubyforge.org
9. http://jruby.org/
10. http://rubini.us/

report erratum • discuss

Code-Loading Techniques • 103

www.it-ebooks.info

http://media.pragprog.com/titles/jvrails2/code/live_assets/3_final/lib/live_assets.rb
http://code.macournoyer.com/thin/
https://www.phusionpassenger.com/
http://rainbows.rubyforge.org
http://jruby.org/
http://rubini.us/
http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

By running the tests again, our test suite should remain green and our code
is now also thread-safe on JRuby! This is important to keep in mind: every
time global state is manipulated in the middle of a request, we need to check
which thread-safety guarantee each Ruby implementation gives us, and act
accordingly. Only by writing thread-safe code we can rely on a variety of
available deployment options.

5.5 Wrapping Up

In this chapter, we used Rails live-streaming functionalities to push server-
sent events to the browser. Our implementation had a central entity listening
for filesystem changes, which were pushed to a group of subscribers. We used
Ruby’s built-in threads and queues to control the information flow throughout
our system.

The topics discussed in this chapter are a basis to introduce code-loading
techniques in Rails, and how those techniques affect the deployment of our
applications. We glanced over thread safety and the subtleties involved with
different web servers and Ruby implementations.

Next let’s see how to encapsulate our controllers’ behavior in an object called
ActionController::Responder and customize it to suit our needs! Then we’ll discuss
Rails generators and learn other ways to customize them.

Chapter 5. Streaming Server Events to Clients Asynchronously • 104

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

CHAPTER 6

Writing DRY Controllers with Responders
Rails’s scaffold generator is a great tool to help us prototype a new application.
Its flexibility lets us swap the default template engine, test framework, and
object-relational mapper (ORM) for our favorite options, ensuring we are
productive regardless of the tools we choose. The only problem with scaffolding
is that the generated controllers are still a little bit verbose, and we end up
with a lot of behavior duplicated across different controllers. For example,
here are the create() and destroy() actions similar to what would be generated
by the scaffold generator when invoked with a name attribute:

class UsersController < ApplicationController
def create

@user = User.new(user_params)
respond_to do |format|
if @user.save

format.html { redirect_to @user, notice: 'User was successfully created.' }
format.json { render action: 'show', status: :created, location: @user }

else
format.html { render action: 'new' }
format.json { render json: @user.errors, status: :unprocessable_entity }

end
end

end

def destroy
@user = User.find(params[:id])
@user.destroy
respond_to do |format|
format.html { redirect_to users_url }
format.json { head :no_content }

end
end

private

In this chapter, we’ll see
• Rails responders and the respond_with() method
• Rails generators’ template customization

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

def user_params
params.require(:user).permit(:name)

end
end

All of these respond_to() blocks are very similar from one controller to another.
To solve this issue, Rails provides a method called respond_with(), which uses
an ActionController::Responder to abstract how our controllers respond. Using this
new application programming interface (API), these actions are reduced to
the following:

class UsersController < ApplicationController
respond_to :html, :json

def create
@user = User.new(user_params)
flash[:notice] = 'User was successfully created.' if @user.save
respond_with(@user)

end

def destroy
@user = User.find(params[:id])
@user.destroy
respond_with(@user)

end

private

def user_params
params.require(:user).permit(:name)

end
end

At the top we declare which formats our controller responds to, and delegate
all the hard work to respond_with(). We could rewrite all of our actions using
this cleaner API.

In this chapter, we’ll cover how responders work, customize them to handle
HTTP caching and flash messages automatically, and finally customize the
scaffold generator to use respond_with() by default.

6.1 Understanding Responders

To understand the concepts behind responders, we must understand the
three variables that affect how controllers respond: request type, HTTP verb,
and resource status.

Chapter 6. Writing DRY Controllers with Responders • 106

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

Navigational and API Requests

A controller the scaffold generator creates responds to two formats by default:
HTML and JavaScript Object Notation (JSON). The scaffold generator uses
these two formats because they represent two types of requests: navigational
and API. The former is handled by a browser and holds formats like HTML
and MOBILE, whereas the latter is used by machines and represents formats
like XML and JSON.

def index
@users = User.all
respond_to do |format|

format.html # index.html.erb
format.json { render json: @users }

end
end

Let’s analyze this index() action, common to many Rails applications. The HTML
format receives no block, so it renders a template, and the JSON format ren-
ders the JSON representation of the resource with render json: @users.

This means the controllers’ behavior depends on the request type. Consequent-
ly, to abstract how controllers work, responders should take the request type
into account.

HTTP Verb

The show() and new() actions in a Rails controller respond similarly to index(),
by rendering a template or a representation of the requested object. And what
do all these actions have in common? The HTTP verb.

The remaining actions, such as create() and destroy(), are triggered by the POST
and DELETE verbs, respectively, and they respond in a different fashion,
redirecting to distinct places, returning distinct status codes and HTTP
headers. In other words, the HTTP verb is another variable that affects how
a controller responds.

Given the number of possible outcomes from a request, let’s look closely at
the scaffold controller Rails generates, and create a table representing how
it responds depending on the request type and HTTP verb.

By default all GET requests, usually handled by actions like index(), show(), and
new(), render a template for navigational requests. If we have an API request,
we may either render a template (like a .jbuilder template) or render the resource
representation (for example, by calling to_json() on it). Table 1, Scaffold Resource
Behavior for GET, on page 108 summarizes this information.

report erratum • discuss

Understanding Responders • 107

www.it-ebooks.info

http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

API RequestNavigational Request

render template or render resource.to_formatrender templateGET

POST

PUT

DELETE

Table 1—Scaffold Resource Behavior for GET

So far we know how a scaffolded controller responds to GET in both request
types. Now let’s run through the other HTTP verbs and fill in the whole table.

Resource Status

If we analyze the create() action, which represents a POST request, we realize
that it has two branches: one if the resource is saved successfully, and the
other if not. Each of these branches responds in a different way:

def create
@user = User.new(user_params)

respond_to do |format|
if @user.save
format.html { redirect_to @user, notice: 'User was successfully created.' }
format.json { render action: 'show', status: :created, location: @user }

else
format.html { render action: "new" }
format.json { render json: @user.errors, status: :unprocessable_entity }

end
end

end

The status of the resource determines how the scaffolded controller responds.
In this case, we redirect if the resource is successfully created, but render a
page with errors if creation fails. We can also see this pattern in the update()
action, which is invoked by PATCH and PUT requests.

Although the destroy() action the scaffolding generates does not seem to depend
on the resource status, we may eventually need to change the destroy() action
to handle cases where resource.destroy returns false. For example, imagine a
setup where a group has several managers. Because a group needs to have
at least one manager, we implement a before_destroy() callback that checks for
this condition every time we try to remove a manager. If the condition isn’t
met, both the callback and the destroy() method return false. This new scenario
needs to be handled in the controller, usually by changing the destroy() action
to show a flash message and redirect to the group page. In other words, even

Chapter 6. Writing DRY Controllers with Responders • 108

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

though the destroy() action the scaffold generates does not depend on the
resource status, DELETE requests may.

That said, the controller needs to know the resource status in order to respond
to POST, PUT, and DELETE requests. Our table is modified to represent this
new scenario and filled in accordingly for each request type, HTTP verb, and
resource status:

APINavigational

render template or resource.to_
format

render templateGET

render template or resource.to_
format

redirect_to resourceSuccessPOST

render resource.errorsrender :newFailurePOST

head :no_contentredirect_to resourceSuccessPUT

render resource.errorsrender :editFailurePUT

head :no_contentredirect_to collectionSuccessDELETE

render resource.errorsredirect_to collectionFailureDELETE

Table 2—Scaffold Resource Behavior

Whenever you invoke respond_with() in your controllers, it calls the ActionCon-
troller::Responder class, which is nothing more than this whole table written in
Ruby code. Let’s explore how ActionController::Responder is implemented and how
we can modify it to behave in a custom way.

6.2 Exploring ActionController::Responder
Anything that responds to call(), accepting three arguments, can be a respon-
der. The three arguments given to call() are the current controller, the resource
(or a nested resource or an array of resources), and a hash of options. All the
options given to respond_with() are forwarded to the responder as the third
argument.

ActionController::Responder implements the call() method in a single line of code, as
we can see in the Rails source code:

rails/actionpack/lib/action_controller/metal/responder.rb
def self.call(*args)

new(*args).respond
end

The call() method forwards these three arguments to the ActionController::Responder
initialization and then calls respond():

report erratum • discuss

Exploring ActionController::Responder • 109

www.it-ebooks.info

http://media.pragprog.com/titles/jvrails2/code/rails/actionpack/lib/action_controller/metal/responder.rb
http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

rails/actionpack/lib/action_controller/metal/responder.rb
Main entry point for responder responsible
for dispatching to the proper format.
def respond

method = "to_#{format}"
respond_to?(method) ? send(method) : to_format

end

HTML format does not render the resource,
it always attempts to render a template.
def to_html

default_render
rescue ActionView::MissingTemplate => e

navigation_behavior(e)
end

to_js simply tries to render a template.
If no template is found, raises the error.
def to_js

default_render
end

All other formats follow the procedure below. First we
try to render a template. If the template is not available,
we verify if the resource responds to :to_format and display it.
def to_format

if get? || !has_errors? || response_overridden?
default_render

else
display_errors

end
rescue ActionView::MissingTemplate => e

api_behavior(e)
end

The respond() method checks whether the responder handles the current request
format. If so, it calls the specific method for this format; otherwise, it calls
to_format(). Since ActionController::Responder defines only to_html() and to_js(), only
HTML and JavaScript (JS) requests have a custom behavior, and all others
fall back to the to_format() case.

By analyzing both to_html() and to_format() implementations, we see that the
former responds with navigational_behavior() and the latter responds with
api_behavior(). If we add a new navigational format to an application, such as
MOBILE, the responder will treat it as an API format, not a navigational one.
Luckily, because of how responders work, we can make MOBILE requests
use the navigational behavior by simply aliasing the :to_mobile method to :to_html
in an initializer.

Chapter 6. Writing DRY Controllers with Responders • 110

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/jvrails2/code/rails/actionpack/lib/action_controller/metal/responder.rb
http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

ActionController::Responder.class_eval do
alias :to_iphone :to_html

end

Additionally, note that a responder always invokes the default_render() method
before falling back to the API or navigational behavior:

rails/actionpack/lib/action_controller/metal/responder.rb
def to_html

default_render
rescue ActionView::MissingTemplate => e

navigation_behavior(e)
end

default_render() simply tries to render a template in case none was rendered yet
(performed?() must return false), and in case the template is not found, it raises
an ActionView::MissingTemplate, which is properly rescued, allowing responders
behavior to kick in.

Here’s how Rails implements the navigational_behavior() and api_behavior() methods:

rails/actionpack/lib/action_controller/metal/responder.rb
DEFAULT_ACTIONS_FOR_VERBS = {

post: :new,
patch: :edit,
put: :edit

}
This is the common behavior for formats associated
with browsing, like :html, :iphone and so forth.
def navigation_behavior(error)

if get?
raise error

elsif has_errors? && default_action
render :action => default_action

else
redirect_to navigation_location

end
end

This is the common behavior for formats associated
with APIs, such as :xml and :json.
def api_behavior(error)

raise error unless resourceful?
if get?

display resource
elsif post?

display resource, :status => :created, :location => api_location
else

head :no_content
end

end

report erratum • discuss

Exploring ActionController::Responder • 111

www.it-ebooks.info

http://media.pragprog.com/titles/jvrails2/code/rails/actionpack/lib/action_controller/metal/responder.rb
http://media.pragprog.com/titles/jvrails2/code/rails/actionpack/lib/action_controller/metal/responder.rb
http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

def resourceful?
resource.respond_to?("to_#{format}")

end

def has_errors?
resource.respond_to?(:errors) && !resource.errors.empty?

end

def resource_location
options[:location] || resources

end
alias :navigation_location :resource_location
alias :api_location :resource_location

Display is just a shortcut to render a resource with the current format.
#
display @user, status: :ok
#
For XML requests it's equivalent to:
#
render xml: @user, status: :ok
#
Options sent by the user are also used:
#
respond_with(@user, status: :created)
display(@user, status: :ok)
#
Results in:
#
render xml: @user, status: :created
#
def display(resource, given_options={})

controller.render given_options.merge!(options).merge!(format => resource)
end

The navigational_behavior() implementation maps straight to the table in Resource
Status, on page 108. For a GET request, it raises a missing-template error,
because the only option for GET requests is to render a template, which we
already tried and did not succeed with.

For other HTTP verbs, the navigational behavior checks whether the resource
has errors. If so and a default action is given, it renders the default action
specified by the DEFAULT_ACTIONS_FOR_VERBS hash. Finally, if the resource does
not have errors, it redirects to the resource, which is what we expect in success
cases.

The api_behavior() implementation goes through a different path. It uses the
display() method, which merges the options given to respond_with() and adds a
format before calling render. In other words, when we call respond_with() like this:

Chapter 6. Writing DRY Controllers with Responders • 112

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

respond_with @user, status: :created

on GET requests for JSON format, the controller responds as follows:

render json: @user, status: :created

It’s important to realize Rails responders do not call @user.to_json. They simply
delegate this responsibility to the render() method and consequently to the :json
renderer, as we saw in Section 1.2, Writing the Renderer, on page 5. This is
important because people can add new renderers, and they work in responders
without adding any other line of code.

Finally, the last customization available in responders can be done in our
own controller. Imagine that we have a responder that works great in all
cases, except for one specific action and format where we want it to behave
differently. We can customize the responder for this scenario using the same
block API as in respond_to():

def index
@users = User.all
respond_with(@users) do |format|

format.json { render json: @users.to_json(some_specific_option: true) }
end

end

And this all works because respond_with() forwards the block given to format.json
to the responder when the request format is JSON. The default_render() seen in
the previous responder snippets calls this block whenever the block is
available.

The great advantage in using ActionController::Responder is that it centralizes how
our application should behave per format. That said, if we want to change
how all controllers behave at once, we just need to create our own responder
and configure Rails to use it, as shown here:

ApplicationController.responder = MyAppResponder

Furthermore, we can set custom responders for specific controllers in our
application:

class UsersController < ApplicationController
self.responder = MyCustomUsersResponder

end

Let’s create a responder with some extra behavior and configure Rails to use
it.

report erratum • discuss

Exploring ActionController::Responder • 113

www.it-ebooks.info

http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

6.3 The Flash Responder

The scaffolded controller uses flash messages in both create() and update()
actions. These messages are quite similar across different controllers. Wouldn’t
it be nice if we could set these flash messages by default inside responders
but still provide a nice API to change them?

Let’s implement this feature using the internationalization framework (I18n)
so we can easily look up flash messages from YAML files, configure default
values, and make it possible to translate such messages in the future. Let’s
use rails plugin to create a new project called responders:

$ rails plugin new responders

Let’s start by writing some tests that access create(), update(), and destroy() actions
and ensure a flash message is being exhibited to the client:

responders/1_flash/test/responders/flash_test.rb
require "test_helper"
class FlashTest < ActionController::TestCase

tests UsersController

test "sets notice message on successful creation" do
post :create, user: { name: "John Doe" }
assert_equal "User was successfully created.", flash[:notice]

end

test "sets notice message on successful update" do
user = User.create!(name: "John Doe")
put :update, id: user.id, user: { name: "Another John Doe" }
assert_equal "User was successfully updated.", flash[:notice]

end

test "sets notice message on successful destroy" do
user = User.create!(name: "John Doe")
delete :destroy, id: user.id
assert_equal "User was successfully destroyed.", flash[:notice]

end
end

The test relies on the existence of a UsersController, which we can define by
invoking the scaffold generator inside the dummy application at test/dummy.
When invoking the generator, let’s skip the test files, guaranteeing they won’t
conflict with our plug-in tests:

$ rails g scaffold User name:string --no-test-framework

Next run migrations and set up our test database:

$ rake db:migrate db:test:clone

Chapter 6. Writing DRY Controllers with Responders • 114

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/jvrails2/code/responders/1_flash/test/responders/flash_test.rb
http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

Notice, however, that the scaffold generator does not use the responder API.
Let’s change the generated controller to use respond_with() and then remove all
flash messages, as our responders will set them automatically. This is our
UsersController after these changes:

responders/1_flash/test/dummy/app/controllers/users_controller.rb
class UsersController < ApplicationController

respond_to :html, :json
before_action :set_user, only: [:show, :edit, :update, :destroy]
def index

@users = User.all
respond_with(@users)

end
def show

respond_with(@user)
end
def new

@user = User.new
respond_with(@user)

end
def edit
end

def create
@user = User.new(user_params)
@user.save
respond_with(@user)

end

def update
@user.update(user_params)
respond_with(@user)

end

def destroy
@user.destroy
respond_with(@user)

end

private
Use callbacks to share common setup or constraints between actions.
def set_user

@user = User.find(params[:id])
end

Only allow a trusted parameter "white list" through.
def user_params

params.require(:user).permit(:name)
end

end

report erratum • discuss

The Flash Responder • 115

www.it-ebooks.info

http://media.pragprog.com/titles/jvrails2/code/responders/1_flash/test/dummy/app/controllers/users_controller.rb
http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

All the actions in this controller should invoke respond_with(), with the exception
of the edit() action. This is because the edit() action is used only by navigational
requests, as its main responsibility is to show the form to edit the resource.

When we run the test suite, it fails with the following message:

1) Failure:
test_sets_notice_message_on_successful_creation(FlashTest):
Expected: "User was successfuly created."

Actual: nil

The failure is expected because we haven’t implemented our responders yet.
Since we’ll develop two responder extensions in this chapter, let’s write each
extension as a module, allowing developers to include such functionality
wherever they desire. Our first module is called Responders::Flash, and it looks
up flash messages via the I18n framework.

Imagine a request with valid parameters at the create() action in the UsersCon-
troller. When respond_with() is called and no flash message is set, the responder
should try to find an I18n message under the controller namespace and
action, which in this case is "flash.users.create.notice". If an I18n message is found,
the responder should set it in flash[:notice], and it will be properly exhibited in
the next request.

Alternatively, if the request at UsersController#create does not have valid parame-
ters (that is, the created user is invalid), the responder should search for a
message at "flash.users.create.alert" and set flash[:alert] instead.

With these requirements in mind, let’s write our Responders::Flash module:

responders/1_flash/lib/responders/flash.rb
module Responders

module Flash
def to_html
set_flash_message! unless get?
super

end
private
def set_flash_message!
status = has_errors? ? :alert : :notice
return if controller.flash[status].present?

message = i18n_lookup(status)
controller.flash[status] = message if message.present?

end

def i18n_lookup(status)
namespace = controller.controller_path.gsub("/", ".")
action = controller.action_name

Chapter 6. Writing DRY Controllers with Responders • 116

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/jvrails2/code/responders/1_flash/lib/responders/flash.rb
http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

lookup = [namespace, action, status].join(".").to_sym
default = ["actions", action, status].join(".").to_sym
I18n.t(lookup, scope: :flash, default: default,

resource_name: resource.class.model_name.human)
end

end
end

Our module overwrites the to_html() behavior to set flash messages for non-
GET requests and then calls super, allowing the responder behavior and other
extensions to kick in.

Besides setting flash messages based in the controller namespace, our
implementation gives an "actions" namespace as a :default option to I18n.t. This
allows I18n to fall back to "flash.actions.create.notice" if a message cannot be found
at "flash.users.create.notice".

This fallback mechanism lets us provide application-wide default messages
so we don’t need to repeat ourselves in each controller. Let’s set the default
scaffold messages inside our plug-in by simply creating a YAML file with the
following:

responders/1_flash/lib/responders/locales/en.yml
en:

flash:
actions:
create:

notice: "%{resource_name} was successfully created."
alert: ""

update:
notice: "%{resource_name} was successfully updated."
alert: ""

destroy:
notice: "%{resource_name} was successfully destroyed."
alert: "%{resource_name} could not be destroyed."

Now any controller will use the flash messages configured in this YAML file,
unless we define a specific key for the controller to customize its message.
To achieve this, we use I18n interpolation, which allows us to use
%{resource_name} in our messages, and it will be replaced by the resource human
name given to :resource_name when I18n.t is invoked.

To finally make our tests pass, we need to make our Responders::Flash available.
Instead of monkey-patching the Rails default responder, let’s inherit from it
and add our own customizations. We’ll set our new responders as the default
ones and add our default YAML file with translations to I18n’s load path:

report erratum • discuss

The Flash Responder • 117

www.it-ebooks.info

http://media.pragprog.com/titles/jvrails2/code/responders/1_flash/lib/responders/locales/en.yml
http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

responders/1_flash/lib/responders.rb
require "action_controller"
require "responders/flash"
module Responders

class AppResponder < ActionController::Responder
include Flash

end
end

ActionController::Base.responder = Responders::AppResponder
require "active_support/i18n"
I18n.load_path << File.expand_path("../responders/locales/en.yml", __FILE__)

Run the test suite, and you’ll see that our responder is properly triggered and
is using the default flash messages in the YAML file! Since our tests only
assert for “notice” messages, let’s write one extra test asserting that “alert”
messages will be shown in case of failures:

responders/1_flash/test/responders/flash_test.rb
test "sets alert messages from the controller scope" do

begin
I18n.backend.store_translations :en,
flash: { users: { destroy: { alert: "Cannot destroy!" } } }

user = User.create!(name: "Undestroyable")
delete :destroy, id: user.id
assert_equal "Cannot destroy!", flash[:alert]

ensure
I18n.reload!

end
end

The test creates a resource and tries to destroy it, but fails, showing a message
that the resource cannot be destroyed. As we did in Aiming for an Active
Model–Compliant API, on page 21, we’re using the I18n API to store translations
on the fly for the failure scenario.

To make the test pass, let’s add a before_destroy() callback that adds error
messages to @user.errors and returns false if the username is “Undestroyable”:

responders/1_flash/test/dummy/app/models/user.rb
class User < ActiveRecord::Base

before_destroy do
if name == "Undestroyable"
errors.add(:base, "is undestroyable")
false

end
end

end

Chapter 6. Writing DRY Controllers with Responders • 118

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/jvrails2/code/responders/1_flash/lib/responders.rb
http://media.pragprog.com/titles/jvrails2/code/responders/1_flash/test/responders/flash_test.rb
http://media.pragprog.com/titles/jvrails2/code/responders/1_flash/test/dummy/app/models/user.rb
http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

We need to attach errors to the model to signal to the responder that some-
thing went wrong. With this final change, our tests pass again! There are
other features we could add to our flash responder, but let’s move on and
make our responder a better HTTP citizen.

6.4 HTTP Cache Responder

Rails has embraced REST since version 1.2, and since then, developing APIs
has become easier and easier. However, as your application grows, you may
have to focus more on your API implementation and find ways to optimize
the number of requests it can handle.

When you expose an API, it’s common that a client requests a resource to the
server several times, and the client always gets the same response back since
the requested resource has not changed. In these cases, the server is wasting
time rendering the same resource all over again, and the client is parsing the
same response just to find out that nothing has changed.

Luckily, the HTTP 1.1 specification has a section dedicated to caching. The
previous problem could be easily solved if the server appends a Last-Modified
header to the response with a timestamp representing when the resource was
last modified. For subsequent requests, the client should add an If-Modified-
Since header with this timestamp, and if the resource has not changed, the
server should return a 304 Not Modified status and does not need to render the
resource again. Upon receiving a 304 status, the client knows that nothing
has changed. Figure 13, Client and server interaction with HTTP cache, on
page 120 illustrates this scenario.

As usual, let’s start our implementation by writing tests. There are at least
three scenarios to take into account:

• When If-Modified-Since is not provided, our controller responds normally but
adds a Last-Modified header.

• When If-Modified-Since is provided and fresh, our controller responds with a
status of 304 and a blank body.

• When If-Modified-Since is provided and not fresh, our controller responds
normally but adds a new Last-Modified header.

To write these tests, we need to modify some request headers and verify that
a few response headers are being properly set. Let’s once again use the
existing UsersController, available from the dummy app, to support our tests:

report erratum • discuss

HTTP Cache Responder • 119

www.it-ebooks.info

http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

Figure 13—Client and server interaction with HTTP cache

responders/2_http_cache/test/responders/http_cache_test.rb
require "test_helper"
class HttpCacheTest < ActionController::TestCase

tests UsersController

setup do
@request.accept = "application/json"
ActionController::Base.perform_caching = true

User.create(name: "First", updated_at: Time.utc(2009))
User.create(name: "Second", updated_at: Time.utc(2008))

end

test "responds with last modified using the latest timestamp" do
get :index
assert_equal Time.utc(2009).httpdate, @response.headers["Last-Modified"]
assert_match '"name":"First"', @response.body
assert_equal 200, @response.status

end

Chapter 6. Writing DRY Controllers with Responders • 120

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/jvrails2/code/responders/2_http_cache/test/responders/http_cache_test.rb
http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

test "responds with not modified if request is still fresh" do
@request.env["HTTP_IF_MODIFIED_SINCE"] = Time.utc(2009, 6).httpdate
get :index
assert_equal 304, @response.status
assert @response.body.blank?

end

test "responds with last modified if request is not fresh" do
@request.env["HTTP_IF_MODIFIED_SINCE"] = Time.utc(2008, 6).httpdate
get :index
assert_equal Time.utc(2009).httpdate, @response.headers["Last-Modified"]
assert_match '"name":"First"', @response.body
assert_equal 200, @response.status

end
end

Rails provides several helpers on top of the HTTP cache specification, and
we’ll use them to create a new module called Responders::HttpCache that automat-
ically adds HTTP cache functionality to all GET requests:

responders/2_http_cache/lib/responders/http_cache.rb
module Responders

module HttpCache
delegate :response, to: :controller
def to_format
return if do_http_cache? && do_http_cache!
super

end

private

def do_http_cache!
response.last_modified ||= max_timestamp if max_timestamp
head :not_modified if fresh = request.fresh?(response)
fresh

end

Iterate through all resources and find the last updated.
def max_timestamp
@max_timestamp ||= resources.flatten.map do |resource|

resource.updated_at.try(:utc) if resource.respond_to?(:updated_at)
end.compact.max

end
Just trigger the cache if it's a GET request and
perform caching is enabled.
def do_http_cache?
get? && ActionController::Base.perform_caching

end
end

end

report erratum • discuss

HTTP Cache Responder • 121

www.it-ebooks.info

http://media.pragprog.com/titles/jvrails2/code/responders/2_http_cache/lib/responders/http_cache.rb
http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

Our implementation mainly loops through all given resources and retrieves
the timestamp of the last updated one. We then update the response object,
and if the request is fresh (that is, if the resource was not modified in between
requests), we return a 304 status to the client and don’t render any resource,
since to_format() returns before calling super.

Before running our new tests, let’s require responders/http_cache and include
Responders::HttpCache in our AppResponder, modifying the top of the lib/responders.rb
file:

responders/2_http_cache/lib/responders.rb
require "responders/flash"
require "responders/http_cache"

module Responders
class AppResponder < ActionController::Responder

include Flash
include HttpCache

end
end

And that’s it! Our test suite is green again! We extracted the flash and HTTP
cache responsibility from our controllers, and now it’s handled automatically
by our responder!

6.5 More Ways to Customize Generators

Now that we understand how responders work and how to adapt them to our
needs, we can feel confident about using them more and more in our con-
trollers. The only issue is that the scaffold generator uses respond_to() by default,
and not respond_with().

On the other hand, in Generators' Hooks, on page 74, we discussed how to
customize generators, and there must be a hook to customize the controller
generated in scaffold, right? Let’s look at the scaffold’s output:

invoke active_record
create db/migrate/20130415031520_create_users.rb
create app/models/user.rb
invoke resource_route
route resources :users

invoke scaffold_controller
create app/controllers/users_controller.rb
invoke erb
create app/views/users
create app/views/users/index.html.erb
create app/views/users/edit.html.erb
create app/views/users/show.html.erb

Chapter 6. Writing DRY Controllers with Responders • 122

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/jvrails2/code/responders/2_http_cache/lib/responders.rb
http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

create app/views/users/new.html.erb
create app/views/users/_form.html.erb
invoke helper
create app/helpers/users_helper.rb
invoke assets
invoke js
create app/assets/javascripts/users.js
invoke css
create app/assets/stylesheets/users.css
invoke css
create app/assets/stylesheets/scaffold.css

Each invoke in the output is a hook that we can overwrite. This means we can
indeed replace the scaffold_controller generator with another one that fits our
needs.

However, this is not how we’ll solve this problem. Instead, let’s use another
Rails-generator feature to customize templates without a need to use generator
hooks.

Generators’ Source Path

Consider the following line in a Rails generator:

copy_file "controller.rb", "app/controller/#{file_name}_controller.rb"

It simply copies the controller.rb file from the generators’ source to the given
destination, which for a UsersController would be app/controllers/users_controller.rb.

However, a generator can have more than one source! Before copying a file
to a given location, the generator searches for this source file in several loca-
tions, called source paths. The source_root() class method we specified in Creating
Our First Generator, on page 77, is actually the last place a generator
searches for a template.

This behavior is built into Thor,1 but Rails wraps the behavior nicely by
automatically adding the lib/templates directory inside your application to all
generators’ source paths. This means the Rails::Generators::ScaffoldControllerGenerator
used in the scaffold will always try to find a template at lib/templates/rails/scaf-
fold_controller before using the one Rails provides.

When we look at the implementation of Rails::Generators::ScaffoldControllerGenerator
in the Rails source code, we can easily see the logic that copies the controller
template:

1. https://github.com/wycats/thor

report erratum • discuss

More Ways to Customize Generators • 123

www.it-ebooks.info

https://github.com/wycats/thor
http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

rails/railties/lib/rails/generators/rails/scaffold_controller/scaffold_controller_generator.rb
module Rails

module Generators
class ScaffoldControllerGenerator < NamedBase
def create_controller_files

template "controller.rb", File.join("app/controllers", class_path,
"#{controller_file_name}_controller.rb")

end
end

end
end

It uses a template named controller.rb, which is available at railties/lib/rails/genera-
tors/rails/scaffold_controller/templates/controller.rb. According to the source paths, if we
place a file at lib/templates/rails/scaffold_controller/controller.rb inside our application,
Rails will use this application file instead of the one that ships with Rails!

You can easily try this by creating a new Rails application, placing an empty
file in lib/templates/rails/scaffold_controller/controller.rb inside your application, and
running the scaffold command. When you check the controller the scaffold
creates, it’s empty!

Let’s use this awesome feature to customize the scaffold to use respond_with()
by default.

Using respond_with by Default

To use respond_with() by default in the scaffold, let’s place a template in our
application’s lib/templates. However, to avoid doing this in each new application,
we’ll create a generator that copies a file to the proper location.

Let’s call this generator Responders::Generators::InstallGenerator and implement it as
follows:

responders/3_final/lib/generators/responders/install/install_generator.rb
module Responders

module Generators
class InstallGenerator < Rails::Generators::Base
source_root File.expand_path("../templates", __FILE__)
def copy_template_file

copy_file "controller.rb",
"lib/templates/rails/scaffold_controller/controller.rb"

end
end

end
end

Here is the template our generator uses:

Chapter 6. Writing DRY Controllers with Responders • 124

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/jvrails2/code/rails/railties/lib/rails/generators/rails/scaffold_controller/scaffold_controller_generator.rb
http://media.pragprog.com/titles/jvrails2/code/responders/3_final/lib/generators/responders/install/install_generator.rb
http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

responders/3_final/lib/generators/responders/install/templates/controller.rb
<% module_namespacing do -%>

class <%= controller_class_name %>Controller < ApplicationController
before_action :set_<%= singular_table_name %>,

only: [:show, :edit, :update, :destroy]

GET <%= route_url %>
def index

@<%= plural_table_name %> = <%= orm_class.all(class_name) %>
respond_with(@<%= plural_table_name %>)

end

GET <%= route_url %>/1
def show

respond_with(@<%= singular_table_name %>)
end

GET <%= route_url %>/new
def new

@<%= singular_table_name %> = <%= orm_class.build(class_name) %>
respond_with(@<%= singular_table_name %>)

end

GET <%= route_url %>/1/edit
def edit
end

POST <%= route_url %>
def create

@<%= singular_table_name %> = <%= orm_class.build(class_name,
"#{singular_table_name}_params") %>

@<%= orm_instance.save %>
respond_with(@<%= singular_table_name %>)

end

PATCH/PUT <%= route_url %>/1
def update

@<%= orm_instance.update("#{singular_table_name}_params") %>
respond_with(@<%= singular_table_name %>)

end

DELETE <%= route_url %>/1
def destroy

@<%= orm_instance.destroy %>
respond_with(@<%= singular_table_name %>)

end

private

report erratum • discuss

More Ways to Customize Generators • 125

www.it-ebooks.info

http://media.pragprog.com/titles/jvrails2/code/responders/3_final/lib/generators/responders/install/templates/controller.rb
http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

Use callbacks to share common setup or constraints between actions.
def set_<%= singular_table_name %>

@<%= singular_table_name %> = <%= orm_class.find(class_name, "params[:id]") %>
end

Only allow a trusted parameter "white list" through.
def <%= "#{singular_table_name}_params" %>

<%- if attributes_names.empty? -%>
params[<%= ":#{singular_table_name}" %>]
<%- else -%>
params.require(<%= ":#{singular_table_name}" %>).
permit(<%= attributes_names.map { |name| ":#{name}" }.join(', ') %>)

<%- end -%>
end

end
<% end -%>

The previous template is based on the one that ships with Rails, but it replaces
all respond_to() calls with respond_with(). It also uses several methods we’ve already
discussed, except orm_class() and orm_instance(), which we’ll cover soon.

To try the new generator, simply move to the dummy application and invoke
it:

$ rails g responders:install

Now when you scaffold any new resource, it will use the template we just
installed! This means the Rails scaffold is flexible not only for Rails extensions
like Haml or RSpec, but also for application developers, because they can
customize the scaffold to fit their workflow, application structure, and markup.

Generators and ORM Agnosticism

We already discussed Active Model and its role in ORM agnosticism. We also
talked about generator hooks, which provide a way for other ORMs to hook
into model and scaffold generators. Whenever we use the scaffold generator,
those two roles intersect and Rails provides a custom API to allow ORMs to
customize the generated code.

Rails controllers are responsible for interacting with the model and passing
the desired objects to the view. In other words, controllers should interact
with the current ORM and retrieve the required information from it. The
controller generated by scaffolding should change depending on the ORM
used. Rails solves this problem by creating an object responsible for telling
the scaffold generator how the interaction with the ORM happens. The basic
implementation for this object is available in the Rails source code, and it
looks like this:

Chapter 6. Writing DRY Controllers with Responders • 126

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

rails/railties/lib/rails/generators/active_model.rb
module Rails

module Generators
class ActiveModel
attr_reader :name
def initialize(name)

@name = name
end
GET index
def self.all(klass)

"#{klass}.all"
end

GET show
GET edit
PATCH/PUT update
DELETE destroy
def self.find(klass, params=nil)

"#{klass}.find(#{params})"
end
GET new
POST create
def self.build(klass, params=nil)

if params
"#{klass}.new(#{params})"

else
"#{klass}.new"

end
end

POST create
def save

"#{name}.save"
end
PATCH/PUT update
def update(params=nil)

"#{name}.update(#{params})"
end
POST create
PATCH/PUT update
def errors

"#{name}.errors"
end
DELETE destroy
def destroy

"#{name}.destroy"
end

end
end

end

report erratum • discuss

More Ways to Customize Generators • 127

www.it-ebooks.info

http://media.pragprog.com/titles/jvrails2/code/rails/railties/lib/rails/generators/active_model.rb
http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

The orm_class() points to Rails::Generators::ActiveModel, and orm_instance() points to an
instance of this same class. So, whenever we invoke orm_class.all("User") in the
template, it invokes Rails::Generators::ActiveModel.all("User") and returns User.all, which
is the normal Active Record behavior.

The orm_instance() behaves similarly, except we don’t need to pass the resource
name as an argument, since we already did that in initialization. For this
reason, orm_instance.save successfully returns user.save for Active Record.

All interaction between the controller and the ORM is specified in Rails::Genera-
tors::ActiveModel. The agnosticism comes from the fact that any ORM can provide
its own implementation of this class. We only need to define an Active Model
class inside the ORM’s generator namespace.

For example, DataMapper has different syntax for finding and updating
records. So, it needs to inherit from Rails::Generators::ActiveModel and implement
the new API:

module DataMapper
module Generators

class ActiveModel < ::Rails::Generators::ActiveModel
def self.find(klass, params=nil)

"#{klass}.get(#{params})"
end

end
end

end

The structure generators provide, along with the Active Model API, make
agnosticism possible in Rails, allowing developers to choose the tools that
best fit their workflow.

6.6 Wrapping Up

In this chapter, we looked into responders to understand how they work and
how to customize them. As a proof of concept, we developed two extensions
for responders, one to handle flash messages and another to handle HTTP
caching.

There is much more we could delegate to responders. In the HTTP layer, we
could use the If-Unmodified-Since request-header to provide conditional PUT
requests, wherein the resource is updated only if it’s not modified after the
given date; otherwise, we return a 409 Conflict status. Figure 14, Client and
server interaction with HTTP conditional requests, on page 129 shows this
scenario.

Chapter 6. Writing DRY Controllers with Responders • 128

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

Figure 14—Client and server interaction with HTTP conditional requests

We also took another look at Rails generators and learned more about ORM
agnosticism.

If you want to bring responders and respond_with() to your workflow, you may
want to try the Responders gem by Plataformatec,2 which implements both
extensions developed in this chapter and contributes some extra features,
such as the ability to change responders to redirect to the index() action instead
of the show() action when a user is created or updated.

Next let’s hook into Rails’s Notifications API to store all queries Rails sends
to the database, and use a Rails mountable engine to expose those queries
through a web interface isolated from our application!

2. https://github.com/plataformatec/responders

report erratum • discuss

Wrapping Up • 129

www.it-ebooks.info

https://github.com/plataformatec/responders
http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

CHAPTER 7

Managing Application Events
with Mountable Engines

Since Ruby on Rails’s early days, people have wondered what happens inside
of their applications. How many queries were performed in this request? How
long did this request take?

To address this common concern, a few open source projects (such as Foot-
notes and Bullet1,2) and services (such as Scout and New Relic’s RPM3,4) were
built. Since all those different tools needed to extract this information from
Rails, Rails evolved to provide a centralized way to publish and subscribe to
events happening inside an application with the ActiveSupport::Notifications appli-
cation programming interface (API).

In this chapter, we’ll use this API to subscribe to all actions processed by our
application and store them in a MongoDB database. Then we’ll use a Rails
engine to create a set of routes, controllers, and views to navigate through
the stored data. This engine can then be shared between Rails applications
and mounted at specific endpoints.

7.1 Mountable and Isolated Engines

In Chapter 5, Streaming Server Events to Clients Asynchronously, on page 83,
we created a Rails engine that streams data to our application. In addition
to providing a controller, the engine added new routes to our application, and
helper methods like live_assets. In a way, that engine was directly extending

1. https://github.com/josevalim/rails-footnotes
2. https://github.com/flyerhzm/bullet
3. http://scoutapp.com/
4. http://www.newrelic.com/features.html

In this chapter, we’ll see
• ActiveSupport::Notifications API
• Rails mountable and isolated engines
• Rack, middleware stacks, and custom middleware

report erratum • discusswww.it-ebooks.info

https://github.com/josevalim/rails-footnotes
https://github.com/flyerhzm/bullet
http://scoutapp.com/
http://www.newrelic.com/features.html
http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

our Rails application with its own components. However, this behavior is not
always desirable.

Take for instance the plug-in we’ll build in this chapter. It’s going to provide
its own models, controllers, and views. As the plug-in grows, the number of
routes will start to multiply, as will the number of helper methods. If our
plug-in implements a show_paginated_results() helper and a Rails application uses
our plugin, we don’t want our helper to be available inside the Rails applica-
tion, since the helper is internal to our plugin. Even worse, if the application
has its own show_paginated_results() helper, it would override the helper defined
in our plugin, which can lead to failures!

Rails solves those issues by providing mountable and isolated engines. A
mountable engine uses its own router instead of adding routes directly to the
application router. An isolated engine is built inside its own namespace, with
its own models, controllers, views, assets, and helpers. Let’s generate our
first mountable engine with the rails plugin command, passing --mountable as an
option:

$ rails plugin new mongo_metrics --mountable

The --mountable option generates a mountable and isolated engine. We can
observe this by checking a couple of different files. First, let’s open up the
plug-in’s config/routes.rb:

mongo_metrics/1_engine/config/routes.rb
MongoMetrics::Engine.routes.draw do
end

Notice how the routes are drawn through the engine. Compare them to the
config/routes.rb generated in rake Section 5.1, Extending Rails with Engines, on
page 84, which are drawn directly on the application:

live_assets/1_live/config/routes.rb
Rails.application.routes.draw do

get "/live_assets/:action", to: "live_assets"
end

Since the routes are no longer added to the application, the engine needs to
be explicitly mounted in the application router, which is done automatically
by the rails plugin command in the test/dummy application:

mongo_metrics/1_engine/test/dummy/config/routes.rb
Rails.application.routes.draw do

mount MongoMetrics::Engine => "/mongo_metrics"
end

Chapter 7. Managing Application Events with Mountable Engines • 132

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/jvrails2/code/mongo_metrics/1_engine/config/routes.rb
http://media.pragprog.com/titles/jvrails2/code/live_assets/1_live/config/routes.rb
http://media.pragprog.com/titles/jvrails2/code/mongo_metrics/1_engine/test/dummy/config/routes.rb
http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

That’s all it takes to make our engine mountable. To have an isolated engine,
we need to explicitly declare it as isolated and choose a namespace. The
--mountable option automatically generates an engine definition with MongoMetrics
as the isolated namespace:

mongo_metrics/1_engine/lib/mongo_metrics/engine.rb
module MongoMetrics

class Engine < ::Rails::Engine
isolate_namespace MongoMetrics

end
end

Because we’re declaring an isolated namespace, all of our controllers, models,
and helpers should be defined inside this namespace, guaranteeing they will
be isolated from the rest of the application. Now helper files defined in the
engine won’t be automatically included by the application and vice versa. It
also sets up many conveniences—for example, if we were using Active Record,
it would prefix all model table names with mongo_metrics_ and ensure Rails
generates namespaced models, controllers, and helpers.

Besides those changes, the rails plugin command with the --mountable option
generates a couple of extra files, like assets manifests and a MongoMetrics::Appli-
cationController at app/controllers/mongo_metrics/application_controller.rb, making our engine
closer to how a brand-new Rails application would look.

With our plug-in setup ready, it’s time to explore Rails’s ActiveSupport::Notifications
API and start storing those notifications in the database.

7.2 Storing Notifications in the Database

Before we implement the logic to store notifications in the database, let’s look
at the Notifications API.

The Notifications API

The Notifications API consists of just two methods: instrument() and subscribe().
The former is called when we want to instrument and publish an event, and
for Action Controller processing, it looks like this:

ActiveSupport::Notifications.instrument("process_action.action_controller",
format: :html, path: "/", action: "index") do

process_action("index")
end

The first argument is the name of the event published, which in this case is
process_action.action_controller, and the second is a hash with information about

report erratum • discuss

Storing Notifications in the Database • 133

www.it-ebooks.info

http://media.pragprog.com/titles/jvrails2/code/mongo_metrics/1_engine/lib/mongo_metrics/engine.rb
http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

the event, called payload. To subscribe to those notifications, we just need to
pass the event name and a block to subscribe(), as follows:

event = "process_action.action_controller"
ActiveSupport::Notifications.subscribe(event) do |*args|

do something
end

where args is an array with five items:

• name: A String with the name of the event

• started_at: A Time object representing when the event started

• ended_at: A Time object representing when the event ended

• instrumenter_id: A String containing the unique ID of the object instrumenting
the event

• payload: A Hash with the information given as payload to the instrument()
method

And that’s all we need to know. Next let’s take a look at the database where
we’ll store the notifications.

Using MongoDB

MongoDB is a fast and document-oriented database perfectly suited to storing
notifications since it’s high-volume, low-value data. You can read more about
MongoDB at its website,5 which also includes installation instructions for
different operating systems.

Currently, there are several object-relational mappers to interact with Mon-
goDB, and we’ll use Mongoid for this project.6 We won’t cover installation
instructions, so if you don’t have MongoDB installed, please do it now! After
MongoDB is installed and running, let’s add Mongoid as a dependency to our
plugin:

mongo_metrics/1_engine/mongo_metrics.gemspec
s.add_dependency "mongoid", "~> 4.0.0"

Let’s also generate the Mongoid configuration inside our test/dummy application:

$ rails g mongoid:config

and require mongoid as soon as we load up our metrics plug-in:

5. http://www.mongodb.org/
6. http://mongoid.org/

Chapter 7. Managing Application Events with Mountable Engines • 134

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/jvrails2/code/mongo_metrics/1_engine/mongo_metrics.gemspec
http://www.mongodb.org/
http://mongoid.org/
http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

mongo_metrics/1_engine/lib/mongo_metrics.rb
require "mongoid"
require "mongo_metrics/engine"

module MongoMetrics
end

With Mongoid configured, let’s create our first model, properly namespaced
at app/models/mongo_metrics/metric.rb:

mongo_metrics/1_engine/app/models/mongo_metrics/metric.rb
module MongoMetrics

class Metric
include Mongoid::Document

end
end

Before writing any logic that stores documents in MongoDB, let’s write a test
in test/mongo_metrics_test.rb. The test instruments an event with the name
process_action.action_controller and asserts a metric was stored in MongoDB with
all relevant fields:

mongo_metrics/1_engine/test/mongo_metrics_test.rb
require "test_helper"

class MongoMetricsTest < ActiveSupport::TestCase
setup { MongoMetrics::Metric.delete_all }

test "process_action notification is saved in the mongo database" do
event = "process_action.action_controller"
payload = { "path" => "/" }

ActiveSupport::Notifications.instrument event, payload do
sleep(0.001) # simulate work

end

metric = MongoMetrics::Metric.first
assert_equal 1, MongoMetrics::Metric.count
assert_equal event, metric.name
assert_equal "/", metric.payload["path"]

assert metric.duration
assert metric.instrumenter_id
assert metric.started_at
assert metric.created_at

end
end

When we run the test, it fails since we are not storing anything yet:

report erratum • discuss

Storing Notifications in the Database • 135

www.it-ebooks.info

http://media.pragprog.com/titles/jvrails2/code/mongo_metrics/1_engine/lib/mongo_metrics.rb
http://media.pragprog.com/titles/jvrails2/code/mongo_metrics/1_engine/app/models/mongo_metrics/metric.rb
http://media.pragprog.com/titles/jvrails2/code/mongo_metrics/1_engine/test/mongo_metrics_test.rb
http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

1) Failure:
test_process_action_notification_is_saved_in_the_mongo_database(MongoMetricsTest)
Expected: 1

Actual: 0

To make the test pass, let’s first subscribe to ActiveSupport::Notifications at the end
of lib/mongo_metrics.rb:

mongo_metrics/2_metrics/lib/mongo_metrics.rb
require "active_support/notifications"

module MongoMetrics
EVENT = "process_action.action_controller"
ActiveSupport::Notifications.subscribe EVENT do |*args|

MongoMetrics::Metric.store!(args)
end

end

Our notification hook is simply calling the store!() method in our MongoMetrics::Met-
ric, which will be responsible for parsing the arguments and creating a record
in the database, as follows:

mongo_metrics/2_metrics/app/models/mongo_metrics/metric.rb
module MongoMetrics

class Metric
include Mongoid::Document

field :name, type: String
field :duration, type: Integer
field :instrumenter_id, type: String
field :payload, type: Hash
field :started_at, type: DateTime
field :created_at, type: DateTime

def self.store!(args)
metric = new
metric.parse(args)
metric.save!

end

def parse(args)
self.name = args[0]
self.started_at = args[1]
self.duration = (args[2] - args[1]) * 1000000
self.instrumenter_id = args[3]
self.payload = args[4]
self.created_at = Time.now.utc

end
end

end

Chapter 7. Managing Application Events with Mountable Engines • 136

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/jvrails2/code/mongo_metrics/2_metrics/lib/mongo_metrics.rb
http://media.pragprog.com/titles/jvrails2/code/mongo_metrics/2_metrics/app/models/mongo_metrics/metric.rb
http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

After this change, our test suite is green! To look at how our plug-in works
outside the test environment, let’s create a controller HomeController with three
actions inside test/dummy and then boot the dummy application:

$ rails g controller Home foo bar baz
$ rails s

Now make a few requests over /home/foo, /home/bar, and /home/baz to generate
some data. When you’re done, start a new console session with rails console and
see all notifications created by these requests by typing MongoMetrics::Metric.all.to_a
in the command line.

Although our subscriber works as expected, wouldn’t it be nice if we had a
page where we could see these notifications instead of using the Rails console?
Let’s harness the power provided by Rails engines once again!

The Notifications Page

To create our notifications page, let’s create a controller, a view, and routes
inside our engine. We’ll start with the controller:

mongo_metrics/2_metrics/app/controllers/mongo_metrics/metrics_controller.rb
module MongoMetrics

class MetricsController < ApplicationController
respond_to :html, :json

def index
@metrics = Metric.all
respond_with(@metrics)

end

def destroy
@metric = Metric.find(params[:id])
@metric.destroy
respond_with(@metric)

end
end

end

Our controller has two actions: index() and destroy(). For the first one, we need
to create a view:

mongo_metrics/2_metrics/app/views/mongo_metrics/metrics/index.html.erb
<h1>Listing Metrics</h1>

<table>
<tr>

<th>Name</th>
<th>Duration</th>
<th>Started at</th>

report erratum • discuss

Storing Notifications in the Database • 137

www.it-ebooks.info

http://media.pragprog.com/titles/jvrails2/code/mongo_metrics/2_metrics/app/controllers/mongo_metrics/metrics_controller.rb
http://media.pragprog.com/titles/jvrails2/code/mongo_metrics/2_metrics/app/views/mongo_metrics/metrics/index.html.erb
http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

<th>Payload</th>
<th></th>

</tr>
<%= content_tag_for :tr, @metrics do |metric| %>

<td><%= metric.name %></td>
<td><%= metric.duration / 1000 %>ms</td>
<td><%= time_ago_in_words metric.started_at %> ago</td>
<td>

<% metric.payload.each do |k, v| %>

<%= k.humanize %>: <%= v %>
<% end %>

</td>
<td><%= link_to 'Destroy', metric_path(metric),
method: :delete, data: { confirm: 'Are you sure?' } %></td>

<% end %>
</table>

For the Destroy links in our view to work in the browser, we need to add the
jquery-rails gem as a dependency:

mongo_metrics/2_metrics/mongo_metrics.gemspec
s.add_dependency "jquery-rails", "~> 3.0.1"

then require the dependency at the top of lib/mongo_metrics.rb, as we did for
mongoid:

mongo_metrics/2_metrics/lib/mongo_metrics.rb
require "jquery-rails"

then require both jquery and jquery_ujs in the javascript manifest file:

mongo_metrics/2_metrics/app/assets/javascripts/mongo_metrics/application.js
//= require jquery
//= require jquery_ujs
//= require_tree .

Finally, let’s add some routes at config/routes.rb:

mongo_metrics/2_metrics/config/routes.rb
MongoMetrics::Engine.routes.draw do

root to: "metrics#index"
resources :metrics, only: [:index, :destroy]

end

Notice how we declared the routes without worrying about namespaces. Since
our engine is mountable and isolated, Rails saves us the trouble of specifying
the namespace on every route. Furthermore, in our view, we simply called
metric_path() and Rails automatically looked up this route in the engine router

Chapter 7. Managing Application Events with Mountable Engines • 138

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/jvrails2/code/mongo_metrics/2_metrics/mongo_metrics.gemspec
http://media.pragprog.com/titles/jvrails2/code/mongo_metrics/2_metrics/lib/mongo_metrics.rb
http://media.pragprog.com/titles/jvrails2/code/mongo_metrics/2_metrics/app/assets/javascripts/mongo_metrics/application.js
http://media.pragprog.com/titles/jvrails2/code/mongo_metrics/2_metrics/config/routes.rb
http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

and not in the application router. Even if the application had a metric_path()
named route, the routes wouldn’t conflict!

However, this raises a question: what if we want to access an application
route from the engine, or an engine route from the application?

To illustrate the issue, we’ll write integration tests. Our tests need to access
a couple of pages in the dummy application and then go over our plug-in
pages to guarantee the notifications are being exhibited properly:

mongo_metrics/2_metrics/test/integration/navigation_test.rb
require "test_helper"
class NavigationTest < ActionDispatch::IntegrationTest

setup { MongoMetrics::Metric.delete_all }

test "can visualize notifications" do
get main_app.home_foo_path
get main_app.home_bar_path
get main_app.home_baz_path

get mongo_metrics.root_path
assert_match "Path: /home/foo", response.body
assert_match "Path: /home/bar", response.body
assert_match "Path: /home/baz", response.body

end

test "can destroy notifications" do
get main_app.home_foo_path
metric = MongoMetrics::Metric.first
delete mongo_metrics.metric_path(metric)
assert_empty MongoMetrics::Metric.where(id: metric.id)

end
end

Our new tests should pass right off the bat. Notice that every time we want
to access an application page, we use the main_app() proxy and the mongo_metrics()
proxy for the mountable engine pages. The Rails application will always be
accessible through main_app(); the name of the engine proxy can be found by
running rake routes in the dummy application:

Prefix Verb URI Pattern Controller#Action
home_foo GET /home/foo(.:format) home#foo
home_bar GET /home/bar(.:format) home#bar
home_baz GET /home/baz(.:format) home#baz

mongo_metrics /mongo_metrics MongoMetrics::Engine

Routes for MongoMetrics::Engine:
root GET / mongo_metrics/metrics#index

metrics GET /metrics(.:format) mongo_metrics/metrics#index
metric DELETE /metrics/:id(.:format) mongo_metrics/metrics#destroy

report erratum • discuss

Storing Notifications in the Database • 139

www.it-ebooks.info

http://media.pragprog.com/titles/jvrails2/code/mongo_metrics/2_metrics/test/integration/navigation_test.rb
http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

The name of the proxy is under the Prefix column. Notice rake routes convenient-
ly shows the routes of the mounted engine, as well! If desired, you can also
boot up the dummy app and access the notifications page in your browser.

Now that we’re properly storing and exhibiting information from MongoDB,
we can see that every time we access our engine pages, it also stores data in
MongoDB. It would be impractical if we turned off the metrics storage every
time we accessed the plug-in itself. To solve this problem, let’s provide a
mechanism to mute notifications in some selected places. To do that, we need
to understand how Rails integrates with Rack.

7.3 Rails and Rack

Quoting the Rack documentation:7

Rack provides a minimal, modular, and adaptable interface for developing web
applications in Ruby. By wrapping HTTP requests and responses in the simplest
way possible, it unifies and distills the API for web servers, web frameworks, and
software in between (the so-called middleware) into a single method call.

Rails applications need a web server in order to interact through the HTTP
protocol. And since the early days, the Rails community has seen a huge
range of web servers available to deploy applications.

Early on, Rails was responsible for providing an adapter to each web server
it supported: one for Mongrel, another for WEBrick, another for Thin, and so
on. Similarly, other frameworks had to provide different adapters for the same
web servers since they had a different API than Rails.

This quickly proved to be a duplication of efforts, and at the beginning of
2007, Rack was released with the goal of unifying the APIs used by web servers
and web frameworks. By following the Rack API, a web framework could use
Rack web-server adapters instead of providing its own, removing the duplica-
tion of effort that exists in the Ruby community.

Although Rails 2.2 already provided a simple Rack interface, Rails more
closely embraced Rack and its API in version 2.3. However, the Rack revolution
really happened in Rails 3, where several parts of Rails became Rack end-
points, and you could easily mount different Rack applications in the same
process. For example, we can easily mount a Sinatra application inside the
Rails router, similar to how we mounted an engine inside the dummy appli-
cation in this chapter.

7. http://rack.rubyforge.org/doc/

Chapter 7. Managing Application Events with Mountable Engines • 140

report erratum • discusswww.it-ebooks.info

http://rack.rubyforge.org/doc/
http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

Hello, Rack!

The Rack specification clearly outlines the API that Rack applications use to
communicate with a web server and between themselves:8

A Rack application is any Ruby object that responds to call. It takes exactly one
argument, the environment, and returns an array of exactly three values: the
status, the headers, and the body.

Rack’s minimal API allows us to write a simple web application in just a few
lines of code:

require 'rack'
class HelloRack

def call(env)
[200, { 'Content-Type' => 'text/html' }, ['Hello Rack!']]

end
end
run HelloRack.new

By creating the previous config.ru file in a directory and invoking the rackup
command inside this same directory, Rack starts a web server and invokes
our HelloRack application in each request. When you fire up a browser and type
in http://localhost:9292/, you can see “Hello Rack!” returned as the response
body.

All Rails applications ship with a config.ru file, as we can see in the dummy
application inside test/dummy, with the following contents:

This file is used by Rack-based servers to start the application.
require ::File.expand_path('../config/environment', __FILE__)
run Rails.application

Every Rails application is also a Rack application: it implements the call()
method, which receives the environment and returns an array with three
elements. By default, its implementation sends the request to the application
router (the one defined in config/routes.rb), which dispatches the request to
another Rack application if any route matches. Let’s explore further.

Understanding the Rails Router

The Rails router can dispatch to any Rack application:

Rails.application.routes.draw do
match "/hello", to:

lambda { |env| [200, { "Content-Type" => "text/plain" }, ["World"]] }
end

8. http://rack.rubyforge.org/doc/SPEC.html

report erratum • discuss

Rails and Rack • 141

www.it-ebooks.info

http://rack.rubyforge.org/doc/SPEC.html
http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

When we add this route to any Rails application and type /hello in the browser,
we get “World” as the response from the server. In fact, when we have a route
like this:

Rails.application.routes.draw do
match "/hello", to: "posts#index"

end

Rails, before a request, automatically converts controller#action to a Rack
application. You can retrieve any action from a controller as a Rack application
by simply doing this:

PostsController.action(:index)
PostsController.action(:index).responds_to?(:call) # => true

Whenever you call get(), post(), put(), delete(), resources(), or resource() in the router
domain-specific language, those methods invoke to the match() method. The
only method that has different semantics is mount(), used in the dummy
application to mount our engine.

The match() method works by matching the full route. If we think in terms of
regular expressions, when we say match "/mongo_metrics", it only matches paths
as %r"\A/mongo_metrics\z" (the query string is not considered in matches). However,
when mounting an engine or any other Rack application, we don’t match
requests to only /mongo_metrics, but also to /mongo_metrics/metrics, /mongo_metrics/other,
and so on. The equivalent regular expression would be %r"\A/mongo_metrics",
without the \z anchor.

You may have noticed there is something more going on. To access the
mounted engine, we issue requests to /mongo_metrics/metrics, but the engine
router matches only on /metrics, ignoring the /mongo_metrics prefix. Why?

Whenever a request hits a Rack server, the server gets the request path, stores
it in the environment hash as env["PATH_INFO"], and passes it down to the
underlying Rack application. Mounting works because, when dispatching to
a mounted engine, Rails removes /mongo_metrics from env["PATH_INFO"], so the
engine sees only /metrics (as if a browser were accessing /metrics straight in the
engine).

This mechanism works not only with engines, but with any Rack application,
since this is outlined in the Rack specification itself. The specification also
dictates that Rails should set env["SCRIPT_NAME"] = "/mongo_metrics" before calling
the mounted engine. This tells the engine it is mounted at a specific point,
allowing the engine to still generate full URLs.

Chapter 7. Managing Application Events with Mountable Engines • 142

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

To sum it up, we have a Rails application, which is a Rack application, that
invokes our router, which is another Rack application, that finally dispatches
to another Rack application—a controller and action, an engine, or even a
Sinatra application. It’s Rack applications all the way! And to make things
even more interesting, Rack provides the concept of middleware, which allows
us to add custom code between those Rack applications, giving us even more
flexibility. We’ll explore that next.

7.4 Middleware Stacks

Although web-server adapters and the Rack application API revolutionized
the way Ruby web frameworks are developed, you’re probably more familiar
with another term related to Rack: middleware.

A middleware wraps around a Rack application. It lets us manipulate both
the request sent down to the application and the response the application
returns. By piling up many middleware before an application, we create a
middleware stack. Any request to an action in a Rails controller passes through
three middleware stacks, as the following figure shows.

Figure 15—The middleware stacks involved in a request to an action in a Rails controller

report erratum • discuss

Middleware Stacks • 143

www.it-ebooks.info

http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

Rails hides the first of these three middleware stacks. It sits between the web
server and the Rails::Application object and contains only two middleware components:

• Rails::Rack::LogTailer: Parses the log file and prints it on the console
• Rails::Rack::Debugger: Requires and enables debugger

After passing through this middleware stack, the request hits a Rails::Application
(for example, our Dummy::Application inside test/dummy), which is nothing more
than another middleware stack with the router sitting at the end.

The stack that the Rails::Application contains is the most known middleware
stack in Rails. You can add or remove middleware from this stack through
config.middlewares, available inside config/application.rb. To see all available middle-
ware in the stack, we need to invoke rake middleware from the command line at
the application root.

For our dummy application inside test/dummy, rake middleware returns the
following:

use ActionDispatch::Static
use Rack::Lock
use #<ActiveSupport::Cache::Strategy::LocalCache::Middleware:0x007fed3d5eddf0>
use Rack::Runtime
use Rack::MethodOverride
use ActionDispatch::RequestId
use Rails::Rack::Logger
use ActionDispatch::ShowExceptions
use ActionDispatch::DebugExceptions
use ActionDispatch::RemoteIp
use ActionDispatch::Reloader
use ActionDispatch::Callbacks
use ActiveRecord::Migration::CheckPending
use ActiveRecord::ConnectionAdapters::ConnectionManagement
use ActiveRecord::QueryCache
use ActionDispatch::Cookies
use ActionDispatch::Session::EncryptedCookieStore
use ActionDispatch::Flash
use ActionDispatch::ParamsParser
use Rack::Head
use Rack::ConditionalGet
use Rack::ETag
use Rack::Mongoid::Middleware::IdentityMap
run Dummy::Application.routes

The middleware stack will change based on your dependencies and your Rails
environment. For example, Rack::Mongoid::Middleware::IdentityMap is a Mongoid
dependency, whereas ActionDispatch::Reloader is usually available only in develop-
ment. Let’s run down the list of middleware:

Chapter 7. Managing Application Events with Mountable Engines • 144

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

• ActionDispatch::Static: Serves public assets in development.

• Rack::Lock: Wraps a Mutex around the application so just one thread can
access it at a given time. When we set config.allow_concurrency to true in Sec-
tion 5.3, Filesystem Notifications with Threads, on page 92, we instructed
Rails to remove this middleware.

• ActiveSupport::Cache::Strategy::LocalCache: Uses an in-memory cache store to
provide a local cache during requests.

• Rack::Runtime: Measures the request time and returns it as an X-Runtime
header.

• Rack::MethodOverride: Checks POST requests and converts them to PUT or
DELETE if _method is present in parameters.

• ActionDispatch::RequestId: Sets the request ID information, which is shown in logs.

• Rails::Rack::Logger: Logs each request

• ActionDispatch::DebugExceptions and ActionDispatch::ShowExceptions: Is responsible
for showing helpful error pages in development and rendering status pages
in production from the public directory.

• ActionDispatch::RemoteIp: Handles IP spoof–checking.

• ActionDispatch::Callbacks and ActionDispatch::Reloader: Run the to_prepare call-
backs—once on application boot in production, and before each request
in development (such as I18n and route reloading).

The next three middleware are all related to Active Record, followed by mid-
dleware responsible for managing cookies, session, and flash messages. The
last few middleware are as follows:

• ActionDispatch::ParamsParser: Parses the parameters given in the request, both
from a query string or in the POST body

• Rack::Head: Converts HEAD requests to GET requests

• Rack::ConditionalGet: Returns a 304 status code in case the appropriate HTTP
cache headers match

• Rack::ETag: Calculates the digest of the response body using the MD5
algorithm and sets it as the HTTP response ETag header

The last stop in the stack is the application router, which is yet another Rack
application. If the router dispatches the request to a specific action in a controller,
it’ll also pass through another middleware stack since each controller has its own
middleware stack. We can add a middleware to a controller as follows:

report erratum • discuss

Middleware Stacks • 145

www.it-ebooks.info

http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

class UsersController < ApplicationController
use MyMiddleware
use AnotherMiddleware

end

The controller middleware stack is invoked before any filters and before the
action is processed. As Rails provides many options to hook up a middleware,
a middleware seems to be a good choice to implement the mechanism that
turns off our metrics store, so let’s write our first middleware!

Building the MuteMiddleware
Before writing our middleware, we need to ensure MongoMetrics provides a
method to mute notifications for a specific block of code. Let’s call this method
mute!() and provide a mute?() that returns true whenever notifications are muted.
Let’s write a test:

mongo_metrics/3_final/test/mongo_metrics_test.rb
test 'can ignore notifications when specified' do

MongoMetrics.mute! do
assert MongoMetrics.mute?
event = "process_action.action_controller"
ActiveSupport::Notifications.instrument event do
sleep(0.001) # simulate work

end
end
assert !MongoMetrics.mute?
assert_equal 0, MongoMetrics::Metric.count

end

To make our test pass, let’s implement these two methods and change the
block passed to subscribe to respect the mute condition:

mongo_metrics/3_final/lib/mongo_metrics.rb
require "mongoid"
require "jquery-rails"
require "mongo_metrics/engine"
require "active_support/notifications"
module MongoMetrics

EVENT = "process_action.action_controller"
ActiveSupport::Notifications.subscribe EVENT do |*args|

MongoMetrics::Metric.store!(args) unless mute?
end

def self.mute!
Thread.current["sql_metrics.mute"] = true
yield

ensure
Thread.current["sql_metrics.mute"] = false

end

Chapter 7. Managing Application Events with Mountable Engines • 146

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/jvrails2/code/mongo_metrics/3_final/test/mongo_metrics_test.rb
http://media.pragprog.com/titles/jvrails2/code/mongo_metrics/3_final/lib/mongo_metrics.rb
http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

def self.mute?
Thread.current["sql_metrics.mute"] || false

end
end

Notice we used thread variables to ensure that muting a request in a thread
won’t affect other threads in a threaded environment. Also, we need to wrap
the yield() call in an ensure block, allowing the mute status to be reverted even
if an exception happens while executing the block. Let’s write a test for it,
too:

mongo_metrics/3_final/test/mongo_metrics_test.rb
test 'does not leak mute state on failures' do

MongoMetrics.mute! do
assert MongoMetrics.mute?
raise "oops"

end rescue nil

assert !MongoMetrics.mute?
end

With our mute!() implementation ready, we can write the MuteMiddleware. To
guarantee our middleware works as expected, let’s write an integration test
that asserts that accessing our metrics controller doesn’t generate any event:

mongo_metrics/3_final/test/integration/navigation_test.rb
test "does not log engine actions" do

get mongo_metrics.root_path
assert 0, MongoMetrics::Metric.count

end

Any Rack middleware is initialized with the application or the middleware it
should call next in the stack. Whenever our MuteMiddleware middleware is
invoked, it only has to invoke the underlying application inside a mute!() block,
effectively muting everything happening downstream. Let’s implement it:

mongo_metrics/3_final/lib/mongo_metrics/mute_middleware.rb
module MongoMetrics

class MuteMiddleware
def initialize(app)
@app = app

end

def call(env)
MongoMetrics.mute! { @app.call(env) }

end
end

end

report erratum • discuss

Middleware Stacks • 147

www.it-ebooks.info

http://media.pragprog.com/titles/jvrails2/code/mongo_metrics/3_final/test/mongo_metrics_test.rb
http://media.pragprog.com/titles/jvrails2/code/mongo_metrics/3_final/test/integration/navigation_test.rb
http://media.pragprog.com/titles/jvrails2/code/mongo_metrics/3_final/lib/mongo_metrics/mute_middleware.rb
http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

Since a usual Rails request goes through three different middleware stacks,
we need to evaluate the best place to use our middleware:

• A stack between the web server and the Rails application is inaccessible,
so it is out of the question.

• A stack inside the application that finishes with the router isn’t appropriate
since adding our middleware to this stack would mute all requests.

• A stack inside each controller is our best option since we can add it
directly to MongoMetrics::ApplicationController.

However, when a request goes to an engine, there is another middleware stack
sitting between the application router and the engine router; it’s the engine’s
own middleware stack, as the following figure shows.

Figure 16—All the middleware stacks involved in a request that includes a Rails engine

This middleware stack is similar to a Rails application stack, but empty by
default. If we add our middleware to the engine stack, any request that goes
to our metrics plug-in, regardless of the controller, will be automatically
muted. That seems handy; let’s add our middleware to this stack:

Chapter 7. Managing Application Events with Mountable Engines • 148

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

mongo_metrics/3_final/lib/mongo_metrics/engine.rb
require "mongo_metrics/mute_middleware"

module MongoMetrics
class Engine < ::Rails::Engine

isolate_namespace MongoMetrics
config.middleware.use MuteMiddleware

end
end

We can configure the engine middleware stack via config.middleware. If we were
inside a Rails application, we would have used config.middleware too. config.middle-
ware always points to the current engine’s or application’s middleware stack.
If we wanted to modify the application middleware stack from the engine, we
could access it via config.app_middleware.

After those changes, our tests will be green once again. By using middleware,
we can easily disable metrics storage for specific sections of our plug-ins and
applications. If we want to disable it for a specific controller in an application,
or even for specific actions, we can do so:

class AdminController < ApplicationController
You could also use :only and :except options.
use MuteControllerMiddleware, only: :index
use MuteControllerMiddleware

end

Every time a Rack application is involved, it is trivial to add a middleware
stack around it, and Rails does it often to provide different points for us to
extend our applications.

Trimming Down the Middleware Stack

When we executed rake middleware in the dummy application, it contained a
bunch of middleware related to Active Record. In fact, our plug-in has a
dependency on the rails gem, which depends on Active Record and other gems,
like Action Mailer, that we’re not using. Let’s break our rails dependency in
the gemspec into two smaller ones:

mongo_metrics/3_final/mongo_metrics.gemspec
s.add_dependency "railties", "~> 4.0.0"
s.add_dependency "sprockets-rails", "~> 2.0.0"

The rails gem is a “meta gem.” It doesn’t ship with any code; instead, it simply
contains Rails’s default stack as a dependency. That’s why it depends on
Active Record, Action Mailer, Sprockets, and more. In our case, we’ve replaced
the rails gem with the railties gem, which is Rails’s backbone containing the
booting processes, railties, engine and application definitions, as well as the

report erratum • discuss

Middleware Stacks • 149

www.it-ebooks.info

http://media.pragprog.com/titles/jvrails2/code/mongo_metrics/3_final/lib/mongo_metrics/engine.rb
http://media.pragprog.com/titles/jvrails2/code/mongo_metrics/3_final/mongo_metrics.gemspec
http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

sprockets-rails, which allows us to serve our assets. The railties gem already de-
pends on actionpack (for routes, controllers, and views) and on activesupport (Ruby
extensions), so we don’t need to add them explicitly.

After making those changes, our application will no longer boot since our
application configuration files were generated expecting some of the removed
dependencies to be present. That said, be sure to remove any config.active_record
and config.action_mailer from the environment files at test/dummy/config/environments.
Also, check your test files to ensure you don’t have any calls related to fixtures,
like fixtures :all, in the test/integration/navigation_test.rb.

If you run rake middleware once again, Active Record middleware will no longer
be in our stack. The process we’ve just completed is similar to how we would
have trimmed down dependencies in a Rails application. The main step is to
replace the rails gem in the Gemfile by direct dependencies and then clean up
the application configuration files. We can even remove some components,
such as Sprockets and Active Record, when generating the application or the
plug-in; we simply pass --skip-sprockets or --skip-active-record when invoking rails new
or rails plugin new.

7.5 Streaming with Rack

Although we could improve our metrics application to show beautiful graphics
and reports, we will instead provide a way to export the data stored in the
database so it can be rendered in a third-party service or tool.

The default approach to send data from the server to the client in Rails is to
use the send_data() method. However, this approach requires us to generate
upfront the whole string we want to send, which may take time and require
a lot of memory as we store more metrics in our database. To solve this
problem, we’ll stream data, allowing us to send data to the client in chunks
without allocating a huge blob of memory.

In Chapter 5, Streaming Server Events to Clients Asynchronously, on page 83,
we used Rails’s live-streaming facilities to stream data from the server. Now
we’ll rely solely on the Rack specification’s flexibility to implement this feature.
Our streaming format of choice is CSV because a client can consume the data
row by row and Ruby has built-in tools to convert data to CSV.

Streaming Redux

The Rack specification outlines that a valid response body is any Ruby object
that responds to the method each(). That’s why we commonly use arrays in
Rack applications to hold the response body:

Chapter 7. Managing Application Events with Mountable Engines • 150

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

class HelloRack
def call(env)

[200, { 'Content-Type' => 'text/html' }, ['Hello Rack!']]
end

end

The Rack web server will loop over the response body, using the each() method,
and output the data yielded. Since the array responds to each(), it yields once
with value “Hello Rack!”

This API contract means we can implement streaming in Rack by simply
having a custom response body that implements a custom iteration mecha-
nism via each(). Here’s how we could implement streaming using only Rack:

require 'rack'

class StreamingRack
def call(env)

[200, { 'Content-Type' => 'text/html' }, self]
end
def each

while true
yield 'Hello Rack!\n'

end
end

end
run StreamingRack.new

Write the previous code to a config.ru file and then run rackup -s puma to boot the
Rack application. Let’s once again use cURL through the command line and
see data streaming through:9

$ curl -v localhost:9292/

And that’s it! Streaming data with Rack is quite accessible. Press CTRL+C to
shut down the Rack application and the cURL process.

CSV Streamer

Let’s start our CSV-streamer implementation by writing a test that accesses
the metrics path with .csv, and get the CSV document back from the server:

mongo_metrics/3_final/test/integration/navigation_test.rb
test "exports data to csv" do

get main_app.home_foo_path
get mongo_metrics.metrics_path(format: :csv)
assert_match "process_action.action_controller,", response.body

end

9. http://curl.haxx.se/

report erratum • discuss

Streaming with Rack • 151

www.it-ebooks.info

http://media.pragprog.com/titles/jvrails2/code/mongo_metrics/3_final/test/integration/navigation_test.rb
http://curl.haxx.se/
http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

Because the route that handles the CSV request is already defined, we just
need to change the MongoMetrics::MetricsController controller to respond to CSV
requests on the index action. Our index() already uses respond_with(), so the fol-
lowing should be enough to get a CSV response back:

mongo_metrics/3_final/app/controllers/mongo_metrics/metrics_controller.rb
module MongoMetrics

class MetricsController < ApplicationController
respond_to :html, :json
respond_to :csv, only: :index

However, recall the discussion from Section 6.2, Exploring ActionCon-
troller::Responder, on page 109; Rails will first try to render a template, which
does not exist, and then fall back to calling render csv: @metrics. The issue here
is that Rails does not implement a CSV renderer, so we need to write it our-
selves. Luckily, we discussed how to write renderers in Chapter 1, Creating
Our Own Renderer, on page 1.

We want our CSV renderer to send a file back to the user, streaming each
chunk little by little. The renderer should also set the response body to be a
custom object, which we’ll call CSVStreamer. Let’s implement it:

mongo_metrics/3_final/lib/mongo_metrics/csv_streamer.rb
module MongoMetrics

ActionController::Renderers.add :csv do |model, options|
headers = self.response.headers
headers["Content-Disposition"] =
%(attachment; filename="#{controller_name}.csv")

headers["Cache-Control"] = "no-cache"
headers.delete "Content-Length"
self.content_type ||= Mime::CSV
self.response_body = CSVStreamer.new(model)

end
class CSVStreamer

def initialize(scope)
@scope = scope

end
def each
@scope.each do |record|

yield record.to_csv
end

end
end

end

First we set the Content-Disposition header to tell the browser we’re sending
an attachment. Second, we turn off the cache and remove the Content-Length,
notifying the underlying Rack server that we want to stream the data. Finally,

Chapter 7. Managing Application Events with Mountable Engines • 152

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/jvrails2/code/mongo_metrics/3_final/app/controllers/mongo_metrics/metrics_controller.rb
http://media.pragprog.com/titles/jvrails2/code/mongo_metrics/3_final/lib/mongo_metrics/csv_streamer.rb
http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

we assign the proper content type and set the response body to our custom
CSVStreamer object.

Notice our streamer object calls to_csv() on each metrics record, so we need to
implement to_csv(), too. Since Ruby provides a library named csv to generate
and consume CSV in its standard library, let’s require it and use it to convert
an array with metrics information to CSV:

mongo_metrics/3_final/app/models/mongo_metrics/metric.rb
require "csv"
def to_csv

[name, started_at, duration, instrumenter_id, created_at].to_csv
end

The last step to make our test pass is to require mongo_metrics/csv_streamer, the file
where we defined our custom CSV renderer, making it available to our controllers:

mongo_metrics/3_final/lib/mongo_metrics.rb
require "mongo_metrics/csv_streamer"

Our new test now passes! Although the implementation of CSV streaming
with Rack is a bit different from how we would implement it using ActionCon-
troller::Live, it suffers from the same limitations and requires the same care
when deployed. We were able to test our endpoint because we weren’t
streaming infinitely, unlike with our project in Chapter 5, Streaming Server
Events to Clients Asynchronously, on page 83.

So, which option should we choose to implement streaming: ActionController::Live
or Rack streaming? In general, live streaming is preferable. Because Rack
streaming relies on Rack’s basic API, a web server doesn’t know up front
which kind of response it will send back—long (streaming) or short (regu-
lar)—making it hard for web servers to optimize such scenarios. Live
streaming, on the other hand, is a Rails abstraction that can evolve transpar-
ently from the developer code as Rack improves the underlying streaming
functionality. In any case, streaming with Rack may be convenient for small
Rack applications that do not have access to all the conveniences Rails
provides.

This particular feature could even be implemented without streaming, simply
by using one of the many background processing tools available to Rails,
such as Delayed Job and Resque, to generate the CSV file in the background
and send an email once it is done.10,11

10. https://github.com/collectiveidea/delayed_job
11. https://github.com/resque/resque

report erratum • discuss

Streaming with Rack • 153

www.it-ebooks.info

http://media.pragprog.com/titles/jvrails2/code/mongo_metrics/3_final/app/models/mongo_metrics/metric.rb
http://media.pragprog.com/titles/jvrails2/code/mongo_metrics/3_final/lib/mongo_metrics.rb
https://github.com/collectiveidea/delayed_job
https://github.com/resque/resque
http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

7.6 Wrapping Up

In this chapter, we developed a Rails engine that listens to all actions an
application processes, and stores them in MongoDB. We can see these notifi-
cations by accessing /mongo_metrics in the browser.

Our implementation was built atop a mountable and isolated engine, which
allows us to build our features isolated from a Rails application, guaranteeing
we won’t have conflicts in the most likely places, such as routes and helpers.
We also explored Rack by creating middleware that allows us to mute the
metrics storage on particular areas of our plug-in and by using a custom
Rack body to stream data.

There’s still a lot to be done in our plug-in when it comes to the visualization
part. We could, for instance, allow the developer to sort metrics by duration
and provide charts. Even more interestingly, we could use the streaming
techniques we’ve covered so far to stream events to the visualization page as
they happen.

Next let’s create a Rails application that allows us to translate I18n messages
through a Sinatra app authenticated with Devise, a popular authentication
library.

Chapter 7. Managing Application Events with Mountable Engines • 154

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

CHAPTER 8

Translating Applications
Using Key-Value Back Ends

The internationalization framework (I18n) added in Rails 2.2 played a key
role in increasing Rails adoption around the world. Although we can easily
make an application available in different languages, the biggest issue is
maintaining this translation data. Some companies have a team of translators
available, while others choose a collaborative approach and allow their own
users to translate the web app. In both cases, it is common to develop a web
interface to aid with the translation process.

By default I18n stores translation data in YAML files, which can be difficult
to manipulate through the web interface. In fact, using YAML would require
a mechanism to tell all servers to sync and reload the YAML files once they’re
updated. As you can imagine, such a solution could grow in complexity
quickly.

Luckily, the I18n framework comes with different back ends that allow us to
store translations in places other than YAML files. This makes it much easier
to manipulate the translations table through a web interface and update the
site translations on demand. There is no need to synchronize YAML files
between web servers. On the downside, retrieving translations from the
database instead of an in-memory hash has a huge impact on performance.

A key-value store is a solution that can comply with both the simplicity and
performance requirements. In this chapter, we’ll store translations in a Redis
store and use a key-value back end to retrieve them. Additionally, we’ll build

In this chapter, we’ll see
• The I18n framework
• The Sinatra web framework
• The Rails router
• Devise (for authentication) and Capybara (for integration

testing) gems

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

a simple Sinatra application to expose a web interface to read, create, and
update these translations on the fly.1

Unlike in previous chapters, we’ll develop all this functionality as a Rails
application instead of a plug-in. After studying and analyzing railties and
engines, we can now build Rails applications with a different perspective.

8.1 Revisiting Rails::Application
In previous chapters, we discussed Rails::Engine and how it exhibits several
behaviors similar to a Rails application. When we look at the Rails source
code, we find the following:

module Rails
class Application < Engine

...
end

end

The Rails::Application class inherits from Rails::Engine! This means an application
can do everything an engine does, plus has some specific behavior:

• An application is responsible for all bootstrapping (for example, loading
Active Support, setting up load paths, and configuring the logger).

• An application has its own router and middleware stack (as we discussed
in Section 7.4, Middleware Stacks, on page 143).

• An application should load and initialize all plug-ins.

• An application is responsible for reloading code and routes between
requests if they changed.

• An application is responsible for loading tasks and generators when
appropriate.

To take a closer look at these responsibilities, let’s start developing our
Translator app:

$ rails new translator

When we studied the dummy application in Chapter 1, Creating Our Own Renderer,
on page 1, we discussed the responsibilities of the config/boot.rb, config/application.rb,
and config/environment.tb files. In particular, the boot file is responsible for setting
our load paths, the application file defines our Rails application, and the environ-
ment file finally initializes the app by calling the initialize!() method:

1. http://www.sinatrarb.com/

Chapter 8. Translating Applications Using Key-Value Back Ends • 156

report erratum • discusswww.it-ebooks.info

http://www.sinatrarb.com/
http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

translator/1_app/config/environment.rb
Load the rails application.
require File.expand_path('../application', __FILE__)

Initialize the rails application.
Translator::Application.initialize!

In Initializers, on page 86, we showed how engines provide a set of initializers
that drive how the engine boots. It’s no surprise that a Rails application pro-
vides such initializers too:

module Translator
class Application < Rails::Application

initializer "translator.say_hello" do
puts "hello on initialization"

end
end

end

To see all initializers available in a Rails application, open a Rails console on
our newly generated app and type the following:

Rails.application.initializers.map(&:name)

The difference here is that the application contains not only its own initializers,
but also the initializers defined on all railties and engines. Initializing a Rails
application is just a matter of executing those initializers one by one.

Everything else in a Rails application is built around the boot, application,
and environment files. If we open the Rakefile, we’ll see the following:

translator/1_app/Rakefile
require File.expand_path('../config/application', __FILE__)
Translator::Application.load_tasks

First, the application file is required, defining the Rails application. Next,
load_tasks() is invoked, loading all Rake tasks provided by the application, plug-
ins, and Rails itself. Note that we don’t require the environment file at any
point. This allows basic rake commands to run fast since they don’t initialize
the application; they just define it.

However, many tasks need the application to be initialized. For example, rake
db:migrate works only if the database is configured. That’s why Rails provides
a Rake task called :environment; this task merely requires config/environment.rb to
initialize our application. Whenever you need to access the database or any
of your application classes in a Rake task, you need to depend on the :environ-
ment task.

report erratum • discuss

Revisiting Rails::Application • 157

www.it-ebooks.info

http://media.pragprog.com/titles/jvrails2/code/translator/1_app/config/environment.rb
http://media.pragprog.com/titles/jvrails2/code/translator/1_app/Rakefile
http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

Finally, let’s look at config.ru in the root of our application. It requires the
environment file, effectively initializing the application, and runs the current
Rails application as a Rack application:

translator/1_app/config.ru
This file is used by Rack-based servers to start the application.

require ::File.expand_path('../config/environment', __FILE__)
run Rails.application

The application initialization process is broken into many files, but only
because we need to hook into different points. The config.ru file needs the whole
environment up front, whereas Rakefile loads it in steps. However, nothing is
stopping us from merging all these files into a single-file Rails application!

The Single-File Rails Application

Bundling a Rails application into a single file helps us understand how to set
up and initialize Rails. Let’s look at a sample single-file Rails application and
discuss it next. Create an empty directory and add a config.ru file with the fol-
lowing contents:

translator/config.ru
We will simply use rubygems to set our load paths
require "rubygems"
Require our dependencies
require "rails"
require "active_support/railtie"
require "action_dispatch/railtie"
require "action_controller/railtie"

class SingleFile < Rails::Application
Set up production configuration
config.eager_load = true
config.cache_classes = true

A key base is required for our app to boot
config.secret_key_base = "pa34u13hsleuowi1aisejkez12u39201pluaep2ejlkwhkj"

Define a basic route
routes.append do

root to: lambda { |env|
[200, { "Content-Type" => "text/plain" }, ["Hello world"]]

}
end

end

SingleFile.initialize!
run Rails.application

Chapter 8. Translating Applications Using Key-Value Back Ends • 158

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/jvrails2/code/translator/1_app/config.ru
http://media.pragprog.com/titles/jvrails2/code/translator/config.ru
http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

We can initialize this application by running rackup in the same directory as
the config.ru. Open your browser at localhost:9292, and you should get “Hello
world” back!

A single-file Rails application is not much different from a regular Rails
application. It sets up the load path, in this case by simply using RubyGems
instead of Bundler. Then it loads all dependencies one by one instead of using
require "rails/all", usually found at the top of config/application.rb. Finally, it defines,
initializes, and runs the application.

Note that Rails requires us to define some configuration options, such as the
confsig.secret_key_base. All this is already familiar to us; the only new method
used in this file is routes.append.

In general, the only method Rails developers access on the router is draw(), as
found in a config/routes.rb file:

Translator::Application.routes.draw do
...

end

The draw() method is meant to work with code reloading. Every time a route
file changes, all previously drawn routes are cleared and they are redrawn
from scratch by reloading all config/routes.rb entries in the application and plug-
ins. However, in some cases, some routes may be defined during initialization
or inside a file that is never reloaded. For such scenarios, Rails provides both
routes.prepend and routes.append to define sticky routes.

For example, if you use routes.draw to define routes inside config/application.rb,
which is not reloaded in development, as soon as your routes are reloaded
because you changed something in config/routes.rb, the routes defined in the
application will effectively be lost.

A request to this single-file Rails application works as in any other Rails
application. The web server invokes the SingleFile#call() method, passing through
a middleware stack that ends with the router. In our case, the router simply
matches on the root action to a custom Rack application.

Since we now understand the application responsibilities and how it’s built
on top of railties and engines, it’s time to move back to the Translator app
and create our translation back end using the I18n API.

8.2 I18n Back Ends and Extensions

Whenever we invoke I18n.translate() (also aliased as I18n.t()) or I18n.localize() (also
aliased as I18n.l()) in our application, it is delegating these methods to the I18n

report erratum • discuss

I18n Back Ends and Extensions • 159

www.it-ebooks.info

http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

back end stored in I18n.backend(). By replacing this back end, you can completely
modify how the I18n library works. The I18n framework ships with three
different back ends:

• I18n::Backend::Simple: Keeps translations in an in-memory hash populated
from YAML files; this is the default back end.

• I18n::Backend::KeyValue: Uses any key-value store as a back end, as long it
complies with a minimum API.

• I18n::Backend::Chain: Allows you to chain several back ends; in other words,
if a translation cannot be found in one back end, it searches for it in the
next back end in the chain.

Rails relies on many features I18n provides. For example, in our translator
app, we can see the following line in config/environments/production.rb:

config.i18n.fallbacks = true

Whenever this configuration option is set to true, Rails configures the I18n
framework to include the fallbacks functionality in the current back end,
allowing any lookup to fall back to the default locale if a translation cannot
be found in the current locale. If you’re using I18n outside of a Rails applica-
tion, you can also use the fallbacks behavior with one line of code:

I18n.backend.class.send(:include, I18n::Backend::Fallbacks)

Another I18n feature Rails uses is transliteration support. The transliteration
that ships with Rails allows you to replace accented Latin characters with
their correspondent unaccented ones, as shown here:

I18n.transliterate("dziękuję") # => "dziekuje"

If you need to transliterate Hebraic, Cyrillic, Chinese, or other characters,
you can add new transliteration rules on demand. Keep in mind that fallbacks
and transliterations are not a back end, but rather one of the several exten-
sions listed here, provided by the I18n library:

• I18n::Backend::Cache: Uses a cache store in front of I18n.t to store translation
results; that is, the string after lookup, interpolation, and pluralization
took place.

• I18n::Backend::Cascade: Cascades lookups by removing nested scopes from
the lookup key; in other words, if :"foo.bar.baz" cannot be found, it automat-
ically searches for :"foo.bar".

• I18n::Backend::Fallbacks: Provides locale fallbacks, falling back to the default
locale if a translation cannot be found in the current one.

Chapter 8. Translating Applications Using Key-Value Back Ends • 160

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

• I18n::Backend::Gettext: Provides support to gettext and .po files.

• I18n::Backend::InterpolationCompiler: Compiles interpolation keys (like %{model})
into translation data to speed up performance.

• I18n::Backend::Memoize: Memoizes lookup results; in contrast to I18n::Back-
end::Cache, it uses an in-memory hash and is useful if you are using the
key-value back end.

• I18n::Backend::Metadata: Adds metadata (such as pluralization count and
interpolation values) to translation results.

• I18n::Backend::Pluralization: Adds support to pluralization rules under
:"i18n.plural.rule".

• I18n::Backend::Transliterator: Adds support to transliteration rules (as discussed
earlier) under :"i18n.transliterate.rule".

The I18n library provides several back ends and extensions for different areas,
such as improving performance or adding more flexibility for languages with
specific needs, such as custom pluralization. In this chapter, we’ll use just
two of them: I18n::Backend::KeyValue and I18n::Backend::Memoize.

The key-value back end for I18n can accept any object as a store, as long as
it complies with the following API:

• @store[]: A method to read a value given a key
• @store[]=: A method to set a value given a key
• @store.keys: A method to retrieve all stored keys

Since providing a compliant API is trivial, almost all key-value stores can be
used with this back end. In this chapter, let’s use Redis since it is generally
available and is used widely in production.2

After Redis is installed and running, let’s integrate it with our Rails application
by adding the redis gem,3 a pure-Ruby client library for Redis, to our Gemfile:

translator/1_app/Gemfile
gem 'redis', '~> 3.0.3'

And then install the added gem:

bundle install

Now let’s fire up a Rails console with rails console and check that Redis conforms
with the API that I18n expects:

2. http://redis.io
3. https://github.com/redis/redis-rb

report erratum • discuss

I18n Back Ends and Extensions • 161

www.it-ebooks.info

http://media.pragprog.com/titles/jvrails2/code/translator/1_app/Gemfile
http://redis.io
https://github.com/redis/redis-rb
http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

db = Redis.new
db["foo"] = "bar"
db["foo"] # => bar
db.keys # => ["foo"]

Going back to our I18n setup, let’s create a file called lib/translator.rb, which will
be responsible for setting up a Redis instance pointing to the appropriate
database (the database is referenced as an integer in Redis). Let’s also create
a customized key-value back end that includes the I18n::Backend::Memoize module
to cache lookups and uses the Redis store on initialization:

translator/1_app/lib/translator.rb
module Translator

DATABASES = {
"development" => 0,
"test" => 1,
"production" => 2

}

def self.store
@store ||= Redis.new(db: DATABASES[Rails.env.to_s])

end

class Backend < I18n::Backend::KeyValue
include I18n::Backend::Memoize

def initialize
super(Translator.store)

end
end

end

Next, let’s configure the I18n framework to use our new back end at
Translator::Application:

translator/1_app/config/application.rb
module Translator

class Application < Rails::Application
Set translator backend for I18n
require "translator"
config.i18n.backend = Translator::Backend.new

In contrast to the default I18n back end, the key-value back end does not
load translations from YAML files before each request, but rather on demand
(since it would be slow). That said, to store all default translations in our
Redis store, we just need to execute the following command in a terminal:

$ rails runner "I18n.backend.load_translations"

Chapter 8. Translating Applications Using Key-Value Back Ends • 162

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/jvrails2/code/translator/1_app/lib/translator.rb
http://media.pragprog.com/titles/jvrails2/code/translator/1_app/config/application.rb
http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

When we start the Rails console again, we can access all new translations
stored in our Redis store:

db = Translator.store
db.keys
db["en.errors.messages.blank"] # => "can't be blank"
db["en.number.precision"] # => "{\"format\":{\"delimiter\":\"\"}}"

Notice that the key-value store automatically encodes the values to JavaScript
Object Notation (JSON).

8.3 Rails and Sinatra

With translations properly stored, we can now write our Translator app using
Sinatra. Sinatra is a domain-specific language (DSL) for quickly creating web
applications in Ruby with minimal effort. The “Hello world” is just a few lines
of code:

myapp.rb
require 'sinatra'
get '/' do

'Hello world!'
end

We won’t access the Sinatra application directly, but we’ll integrate it with
our Rails app. This allows us to reuse all the structure we already have in
the Rails ecosystem, such as tests, sessions, authentication, and so on. Before
we develop our Sinatra application, let’s write an integration test once again
using Capybara to make our tests more robust and readable. First, let’s define
ActiveSupport::IntegrationCase inside our test/test_helper.rb, which includes Capybara’s
DSL:

translator/1_app/test/test_helper.rb
require "capybara"
require "capybara/rails"
Define a bare test case to use with Capybara
class ActiveSupport::IntegrationCase < ActiveSupport::TestCase

include Capybara::DSL
include Rails.application.routes.url_helpers

end

Our test-case definition is exactly the same as the one we used back in Section
2.2, Integration Tests with Capybara, on page 28. Now add Capybara to the
Gemfile:

translator/1_app/Gemfile
group :test do

gem 'capybara', '~> 2.0.0'
end

report erratum • discuss

Rails and Sinatra • 163

www.it-ebooks.info

http://media.pragprog.com/titles/jvrails2/code/translator/1_app/test/test_helper.rb
http://media.pragprog.com/titles/jvrails2/code/translator/1_app/Gemfile
http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

Our test attempts to localize a date using the Polish locale, but will fail because
we don’t have any translation data for this locale. Next, we should visit the
translation URL /translator/en/pl, meaning we want to translate messages from
English to Polish, then fill in the appropriate translation field and store this
new translation. After that, we can assert that our translation was success-
fully stored because we’re able to localize a date. The implementation goes
like this:

translator/1_app/test/integration/translator_app_test.rb
require "test_helper"

class TranslatorAppTest < ActiveSupport::IntegrationCase
Set up store and load default translations
setup { Translator.reload! }

test "can translate messages from a given locale to another" do
assert_raise I18n::MissingTranslationData do
I18n.l(Date.new(2010, 4, 17), locale: :pl)

end

visit "/translator/en/pl"
fill_in "date.formats.default", with: %{"%d-%m-%Y"}
click_button "Store translations"

assert_match "Translations stored with success!", page.body
assert_equal "17-04-2010", I18n.l(Date.new(2010, 4, 17), locale: :pl)

end
end

Our test setup invokes a method called Translator.reload!(). This method will be
responsible for removing all keys from the database and reloading the trans-
lation data. Let’s implement it next:

translator/1_app/lib/translator.rb
def self.reload!

store.flushdb
I18n.backend.load_translations

end

Our tests are ready to run with rake test, but they fail because our Sinatra
application is not built yet. So, let’s add both Sinatra and Haml to our project
Gemfile (and install these new dependencies with bundle install):

translator/1_app/Gemfile
gem 'sinatra', '~> 1.4.2', require: 'sinatra/base'
gem 'haml', '~> 4.0.2'

Our Sinatra application should define a route as /:from/:to, which, when
accessed, renders a view with all translation data available in the :from locale,

Chapter 8. Translating Applications Using Key-Value Back Ends • 164

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/jvrails2/code/translator/1_app/test/integration/translator_app_test.rb
http://media.pragprog.com/titles/jvrails2/code/translator/1_app/lib/translator.rb
http://media.pragprog.com/titles/jvrails2/code/translator/1_app/Gemfile
http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

ready to be translated to the :to locale. Our first code iteration for our Sinatra
application is shown here:

translator/1_app/lib/translator/app.rb
module Translator

class App < Sinatra::Base
set :environment, Rails.env
enable :inline_templates

get "/:from/:to" do |from, to|
exhibit_translations(from, to)

end

protected

Store from and to locales in variables and retrieve
all keys available for translation.
def exhibit_translations(from, to)
@from, @to, @keys = from, to, available_keys(from)
haml :index

end

Get all keys for a locale. Remove the locale from the key and sort them.
If a key is named "en.foo.bar", this method will return it as "foo.bar".
def available_keys(locale)
keys = Translator.store.keys("#{locale}.*")
range = Range.new(locale.size + 1, -1)
keys.map { |k| k.slice(range) }.sort!

end

Get the value in the translator store for a given locale. This method
decodes values and checks if they are a hash, as we don't want subtrees
available for translation since they are managed automatically by I18n.
def locale_value(locale, key)
value = Translator.store["#{locale}.#{key}"]
value if value && !ActiveSupport::JSON.decode(value).is_a?(Hash)

end
end

end
__END__

@@ index
!!!
%html

%head
%title
Translator::App

%body
%h2= "From #{@from} to #{@to}"

report erratum • discuss

Rails and Sinatra • 165

www.it-ebooks.info

http://media.pragprog.com/titles/jvrails2/code/translator/1_app/lib/translator/app.rb
http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

%p(style="color:green")= @message

- if @keys.empty?
No translations available for #{@from}

- else
%form(method="post" action="")

- @keys.each do |key|
- from_value = locale_value(@from, key)
- next unless from_value
- to_value = locale_value(@to, key) || from_value
%p
%label(for=key)

%small= key
= from_value

%br
%input(id=key name=key type="text" value=to_value size="120")

%p
%input(type="submit" value="Store translations")

There are a few things to discuss in this implementation. First, notice we
explicitly forward the Rails environment to the Sinatra application environ-
ment. Next, we define the /:from/:to route available through the request method
GET. If a route matches, Sinatra will yield both parameters to the block, which
will be executed. The block simply invokes exhibit_translations(), which assigns
these parameters to instance variables, gets all locale keys available for
translation, and renders the index template.

In this case, we chose to use Haml as template markup for the index page.4

The template is just a few lines of code and was defined in the same file as
the application via Sinatra’s inline templates feature, which we enabled at
the top of the application. However, it’s important to notice that templates
are evaluated in the same context as the application. This means any method
defined in our Sinatra application is also available in the template, as are the
application’s instance variables. This approach is different from that in Rails,
because Rails templates are not evaluated in the same context as controllers,
but rather in a specific view context, so Rails needs to copy all instance vari-
ables from controllers to views behind the scenes, as we saw in Section 1.3,
Understanding the Rails Rendering Stack, on page 9, and controller methods
should be called explicitly as controller.method().

Finally, notice our template calls the locale_value() method. This method receives
a locale and a key and returns the value stored in Redis. This method should

4. Haml stands for HTML Abstraction Markup Language, and you can find some examples
at http://haml-lang.com/.

Chapter 8. Translating Applications Using Key-Value Back Ends • 166

report erratum • discusswww.it-ebooks.info

http://haml-lang.com/
http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

also handle hashes, which are created and stored by default by the I18n
framework, to allow you to retrieve subtrees from back ends.

In I18n, whenever you store a translation { "foo.bar" => "baz" }, it decomposes
the "foo.bar" key and stores { "foo" => { "bar" => "baz"} } as the translation. This
allows you to retrieve either the specific translation with I18n.t("foo.bar") #=>
"bar" or a subtree hash with I18n.t("foo") #=> { "bar" => "baz" }. That said, if we
show hashes in our Sinatra interface, several translations would be duplicated
because they would appear either in the subtree hash in the foo key, or in the
full key foo.bar.

Before we try our Sinatra application, let’s autoload it from lib/translator.rb, as
shown here:

translator/1_app/lib/translator.rb
autoload :App, "translator/app"

And finally, let’s mount it in the router at "translator":

translator/1_app/config/routes.rb
Translator::Application.routes.draw do

mount Translator::App, at: "/translator"
end

Let’s verify this now works by starting the server using rails server as usual and
accessing /translator/en/pl in the browser. We get a translation page similar to
the one in the following figure.

Figure 17—Translator app

report erratum • discuss

Rails and Sinatra • 167

www.it-ebooks.info

http://media.pragprog.com/titles/jvrails2/code/translator/1_app/lib/translator.rb
http://media.pragprog.com/titles/jvrails2/code/translator/1_app/config/routes.rb
http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

This page automatically sets up a page to translate a message from English
to Polish, but don’t click the Submit button yet; we still haven’t implemented
the POST behavior. In fact, when we run the tests again, they fail for this
reason. Clicking the button in integration tests returns a “No route matches”
error:

1) Error:
test_can_translate_messages_from_a_given_locale_to_another(TranslatorAppTest)

ActionController::RoutingError: No route matches [POST] "/translator/en/pl"

To make the test pass, let’s add a new route to Sinatra for POST requests.
This new route should store the translation in the I18n back end, passing
the destination locale and the translations decoded from JSON to Ruby; call
save() in the Redis store, forcing it to be dumped to the filesystem; and exhibit
the translation page once again:

translator/2_final/lib/translator/app.rb
post "/:from/:to" do |from, to|

I18n.backend.store_translations to, decoded_translations, escape: false
Translator.store.save
@message = "Translations stored with success!"
exhibit_translations(from, to)

end
protected
Get all translations sent through the form and decode
their JSON values to check validity.
def decoded_translations

translations = params.except("from", "to")
translations.each do |key, value|

translations[key] = ActiveSupport::JSON.decode(value) rescue nil
end

end

Notice we set :escape to false when storing translations so I18n can properly
generate subtrees. By default, if you give a translation as { "foo.bar" => "baz" },
I18n will treat it as a single key, escaped as { "foo\000.bar" => "baz" }. When it’s
stored this way, we cannot retrieve its subtree as I18n.t("foo"). However, if we
turn escaping to false, I18n will break the key apart, converting it to { "foo" =>
{ "bar" => "baz" } } and allowing us to retrieve it as I18n.t("foo") or I18n.t("foo.bar").

Feel free to restart the server and translate all data from any locale to
another! Notice I chose to represent the data as JSON in the interface, because
we can easily represent arrays, strings, numbers, or Booleans.

At this point, all our tests are green! Our translator application is almost
ready; now it’s time to add authentication with Devise and improve the
robustness of our tests with Capybara!

Chapter 8. Translating Applications Using Key-Value Back Ends • 168

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/jvrails2/code/translator/2_final/lib/translator/app.rb
http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

8.4 Taking It to the Next Level with Devise and Capybara

If any of our applications are going to provide an interface for translations,
we should make sure this interface is password-protected and that we can
properly test its functionality. In this section, let’s look at Devise,5 a full-stack
authentication solution based on Rack, and take a deeper look at how we can
use Capybara to test Rack applications.6

Adding Cross-Application Authentication

Devise is an interesting solution for authentication because it provides, in
very few lines of code, a whole authentication stack, with sign-in, sign-up,
password recovery, and more. It uses Warden to move the authentication
handling to the middleware stack,7 allowing any application, whether it’s
Sinatra or a Rails controller, to use the same authentication rules.

To add Devise to our Translator app, we first need to add it to our Gemfile and
run bundle install to install it:

translator/2_final/Gemfile
gem 'devise', '~> 3.0.0'

With the gem installed in our machine, we need to invoke the devise:install
generator:

$ rails g devise:install

The generator copies to our application a locale file and an initializer with
several configuration options. At the end, it also prints some steps we need
to do manually.

The first step is to configure Action Mailer for development:

translator/2_final/config/environments/development.rb
config.action_mailer.default_url_options = { host: 'localhost:3000' }

Then we add flash messages to our layout:

translator/2_final/app/views/layouts/application.html.erb
<p class="notice"><%= notice %></p>
<p class="alert"><%= alert %></p>

And finally we add a root route:

translator/2_final/config/routes.rb
root to: "home#index"

5. http://devise.plataformatec.com.br/
6. https://github.com/jnicklas/capybara
7. https://github.com/hassox/warden

report erratum • discuss

Taking It to the Next Level with Devise and Capybara • 169

www.it-ebooks.info

http://media.pragprog.com/titles/jvrails2/code/translator/2_final/Gemfile
http://media.pragprog.com/titles/jvrails2/code/translator/2_final/config/environments/development.rb
http://media.pragprog.com/titles/jvrails2/code/translator/2_final/app/views/layouts/application.html.erb
http://media.pragprog.com/titles/jvrails2/code/translator/2_final/config/routes.rb
http://devise.plataformatec.com.br/
https://github.com/jnicklas/capybara
https://github.com/hassox/warden
http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

Since our root route points to a HomeController, let’s implement that controller.
For now, the index action just renders a link to the mounted Sinatra
application:

translator/2_final/app/controllers/home_controller.rb
class HomeController < ApplicationController

def index
render inline:
"<%= link_to 'Translate from English to Polish', '/translator/en/pl' %>"

end
end

With the setup done, we’re ready to create our first Devise model, called Admin:

$ rails g devise Admin

and then run the migration the generator adds:

$ bundle exec rake db:migrate

At this point, we haven’t made any significant changes to our application,
but if we run our integration tests, they will fail. This is because the fixtures
generated for the Admin have to be properly filled in. However, since we won’t
need those fixtures for now, let’s delete the fixtures file at test/fixtures/admins.yml
to make our tests pass again.

To see how Devise works with our application, feel free to fire up a new server,
visit /admins/sign_up, create a new admin account, and sign in. You can also
access /admins/edit if you want to change your account (although you may want
to disable this sign-up ability before deploying the app).

Devise provides several helpers to restrict access to Rails controllers. Since
we created a model called Admin, we can use authenticate_admin!() as a before filter,
and the request will proceed only if an admin model is authenticated:

class PostsController < ApplicationController
before_filter :authenticate_admin!

end

However, we want to add authentication to our Sinatra app, where Devise
doesn’t include any helpers. Fortunately, this is still trivial to achieve with
Devise because of Warden. Whenever we invoke authenticate_admin!() in a Rails
controller, it executes the following:

env["warden"].authenticate!(scope: "admin")

The env["warden"] object is a proxy Warden middleware created, and Devise
adds this middleware to the Rails middleware stack via a Rails::Engine. Since
this middleware is executed before the request hits the router, the proxy

Chapter 8. Translating Applications Using Key-Value Back Ends • 170

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/jvrails2/code/translator/2_final/app/controllers/home_controller.rb
http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

object is also available in Sinatra, and we can easily add authentication to
Translator::App in a before callback:

translator/2_final/lib/translator/app.rb
before do

env["warden"].authenticate!(scope: "admin")
end

Overall, our request goes through our application and middleware stack, as
the following figure shows.

Figure 18—The middleware stack and Rack applications involved in a request to a Rails
app with Sinatra, Warden, and Devise

Now when you request the Sinatra application without an admin signed in,
the before filter will throw an error. The Warden middleware catches this error
using Ruby’s throw/catch, allowing Warden to redirect you to the sign-in page
inside Devise. Once you sign in, the previous code will simply return the
current admin in session, proceeding with the Sinatra request.

Although this approach allows us to use the same authentication mechanism
across different Rack applications, it has one issue: it requires us to change
the Sinatra application by adding a before filter. That said, if we’re using a
third-party Sinatra application, like the one provided in the Resque gem,8 we
won’t be able to modify it.

8. https://github.com/resque/resque

report erratum • discuss

Taking It to the Next Level with Devise and Capybara • 171

www.it-ebooks.info

http://media.pragprog.com/titles/jvrails2/code/translator/2_final/lib/translator/app.rb
https://github.com/resque/resque
http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

In this case, we could ensure authentication at the router level without
needing to change the Sinatra application, as shown here:

authenticate "admin" do
mount Translator::App, at: "/translator"

end

Devise adds the previously shown authenticate() to the Rails router, and it simply
uses the router’s constraint API to ensure the "admin" role is authenticated.
Let’s check the method implementation in the Devise source code:

def authenticate(scope)
constraint = lambda do |request|

request.env["warden"].authenticate!(:scope => scope)
end
constraints(constraint) do

yield
end

end

Regardless of whether we choose a before filter or a router constraint to require
authentication in our Sinatra application, we can check if the translator back
end is now secure by rerunning our test suite and watching it fail.

1) Error:
test_can_translate_messages_from_a_given_locale_to_another(TranslatorAppTest)

Capybara::ElementNotFound: Unable to find field "date.formats.default"

The test cannot find the "date.formats.default" label given to fill_in() because it is
showing the /admin/sign_in page instead of the translations page. To fix it, let’s
authenticate an admin in our integration test using a setup hook:

translator/2_final/test/integration/translator_app_test.rb
setup { sign_in(admin) }

def admin
@admin ||= Admin.create!(

email: "admin_#{Admin.count}@example.org",
password: "12345678"

)
end

def sign_in(admin)
visit "/admins/sign_in"
fill_in "Email", with: admin.email
fill_in "Password", with: admin.password
click_button "Sign in"

end

Chapter 8. Translating Applications Using Key-Value Back Ends • 172

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/jvrails2/code/translator/2_final/test/integration/translator_app_test.rb
http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

With this code in place, let’s run our test suite again and watch it pass! Notice
we decided to manually sign in the admin by filling out the form instead of
using a hack that modifies the session or passes in a cookie. In fact, even if
we wanted to modify the session or a cookie, Capybara would not allow us to
do that—for good reason, as we’ll see next.

Adding Cross-Browser Testing

Every time we’ve used Capybara throughout the book, we’ve created our own
test case called ActiveSupport::IntegrationCase instead of using ActionController::Integra-
tionTest:

Define a bare test case to use with Capybara
class ActiveSupport::IntegrationCase < ActiveSupport::TestCase

include Capybara
include Rails.application.routes.url_helpers

end

While writing Rails integration tests using ActionController::IntegrationTest, we have
full access to the raw request and response objects, allowing us to check and
manipulate cookies, sessions, headers, and so on. Capybara, on the other
hand, has a very closed API that does not expose these. That said, if we simply
included Capybara in ActionController::IntegrationTest, we would be tempted to
access and manipulate these objects, leading to both conceptual and practical
issues.

Let’s discuss the conceptual issues a bit. Capybara was designed to let us
write integration tests from the mindset of an end user. For example, imagine
we’re building an ecommerce site that keeps in the footer the last five products
we viewed. If our implementation is simply storing these product IDs in the
session, a naive integration test would simply assert that, after accessing a
product page, the product ID was added to the session.

The issue with this kind of test is that the ecommerce user does not care if
something was stored in the session. The user just wants to see the last-vis-
ited products in the footer and be able to click them, something we did not
assert in our tests.

Besides, the fact that we store this information in the session is an implemen-
tation detail. If at some point we decide to keep this data in a cookie, our
naive test will fail, but it should pass since the user interface has not changed
at all. This is a common symptom in tests too coupled to their implementation.

For this reason, Capybara hides all these internals from you, which works
out well considering that one of Capybara’s most important features is that

report erratum • discuss

Taking It to the Next Level with Devise and Capybara • 173

www.it-ebooks.info

http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

it supports different drivers. Capybara drivers manipulate a browser, which
then accesses our application through a web server, as the following figure
shows.

Figure 19—Call trace when using Capybara with a Selenium driver and Firefox

Some drivers, such as Selenium, use common browsers (Firefox, Internet
Explorer, and Chrome), while others interact with a headless browser like
PhantomJS.

As you may expect, each browser Selenium supports must expose a limited
API. Some may expose access to cookies; others may not. Some headless
browsers may give you full control of request headers, but others do not. To
allow you to switch drivers and browsers without a need to rewrite a huge
part of your integration tests, Capybara focuses on the common set that most
of them support.

By default, Capybara uses the Rack test driver, which bypasses the whole
browser and accesses the Rack application directly. This is very convenient
in terms of performance, but it’s also very limited. For example, any feature
that relies on JavaScript can’t be tested with the default driver. Luckily, we
can easily change our applications to use another driver. Let’s give Selenium
a try in our application by adding the following lines to our test helper:9

translator/2_final/test/test_helper.rb
require "selenium-webdriver"

Can be :chrome, :firefox or :ie
Selenium::WebDriver.for :firefox
Capybara.default_driver = :selenium

class ActiveSupport::TestCase
Disable transactional fixtures for integration testing
self.use_transactional_fixtures = false

end

9. http://seleniumhq.org/

Chapter 8. Translating Applications Using Key-Value Back Ends • 174

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/jvrails2/code/translator/2_final/test/test_helper.rb
http://seleniumhq.org/
http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

Selenium uses real browsers to test our application. By default it uses Fire-
fox,10 which you need to have installed before running tests again. After you
install it, run our integration tests, and notice that Selenium is automatically
starting Firefox and driving it against our website! At the end, our tests still
pass!

Because Selenium needs to access a web server for each request, Capybara
automatically starts one up. Since Capybara fires this new web server in a
thread, the database connection used in tests is not the same one the server
uses in each request. That said, if we use transactional fixtures to wrap each
test in a database transaction, the data created in tests won’t be available in
the server since transactional data is not shared between database connections
until it is committed. This is why we need to disable transactional fixtures in
our test/test_helper.rb file, even though it reduces performance.

Another consequence of disabling transactional fixtures is that the data stored
in our database is not cleaned up between tests, and this will definitely get
in the way as we add new tests to our suite. Fortunately, a few solutions do
all this work for us. One that stands out is Database Cleaner,11 since it sup-
ports different object-relational mappers and databases.

8.5 Wrapping Up

In this chapter, we created another Rails application and used the opportunity
to better describe how Rails applications are structured and designed. We’ve
once again seen the importance of the Rack specification and how it makes
it easy for different frameworks (such as Rails and Sinatra) to play along with
each other without hassle. We also talked more about I18n, its back ends,
and its extensions. Plus, we found a good case for using a simple key-value
store as Redis.

Finally, we discussed two gems that are widely used in the Rails community:
Devise and Capybara. I advise you to take the next step and play with them
a bit more—not only using them, but checking out their source code. You’ll
notice how Devise uses ActionController::Metal, as we saw in Playing with Metal,
on page 57, to define a bare-bones controller, and you’ll learn how Capybara
uses Rack applications and handlers to automatically start up servers.

That concludes our tour of Rails. The tools we discussed (the rendering stack,
railties, engines, generators, Active Model, and so on) are powerful not only

10. http://www.mozilla.com/firefox/
11. https://github.com/bmabey/database_cleaner

report erratum • discuss

Wrapping Up • 175

www.it-ebooks.info

http://www.mozilla.com/firefox/
https://github.com/bmabey/database_cleaner
http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

for the development of Rails extensions and applications, but also for the
development of Rails itself.

While developing your next web application or maintaining an existing one,
remember all the tools available to make your code cleaner. You can use
responders to DRY up your controller and use generators to keep you and
your team productive. Now you can analyze other Rails extension source code,
submit changes, and debug problems with greater ease.

Finally, you understand Rails better. You can explore other areas of the source
code; study other Action Controller and Active Model modules; check other
generator implementations; or read the source of railties, engines, and
applications in detail! Rails also has detailed guides on how to contribute to
Rails,12 so if you haven’t done so yet, this is the time to propose improvements
or fix some bugs that may have been bothering you.

I hope this book has taught you new ways to improve your Ruby code and
Rails applications. Most of all, I hope you had fun.

—José Valim

12. http://guides.rubyonrails.org/contributing_to_rails.html

Chapter 8. Translating Applications Using Key-Value Back Ends • 176

report erratum • discusswww.it-ebooks.info

http://guides.rubyonrails.org/contributing_to_rails.html
http://pragprog.com/titles/jvrails2/errata/add
http://forums.pragprog.com/forums/jvrails2
http://www.it-ebooks.info/

Index
SYMBOLS
%{resource_name}, 117

/:from/:to, 164

<%% ... %>, escaping ERB tags
with, 48

} character, escaping, 66

DIGITS
304 status

HTTP cache responders,
119, 122

middleware, 145

409 status, 128

A
:absence, 33

absence validators, 33–35

AbsenceValidator, 33

Abstract Controller, in Rails
rendering stack, 9–14

AbstractController::Layouts, 12

AbstractController::Rendering, 9
AbstractController::Rendering#_nor-
malize_options(), 11

accents transliteration sup-
port, 160

Action Controller
engine views, 86
Metal class, 55–59, 175
in Rails rendering stack,

9–14
responders, 106, 109–

116

Action Mailer
about, 9
authentication with De-

vise, 169
engines, 86

Mail Form plug-in, 27
sending multipart emails

with template handlers,
62, 69–71

ActionController::Base, 57, 86

ActionController::Instrumentation,
13–14

ActionController::Metal, 55–59, 175

ActionController::Renderers, 12

ActionController::Rendering, 12

ActionController::Responder, 106,
109–116

ActionController::Streaming, 13

ActionDispatch::Callbacks, 145

ActionDispatch::DebugExceptions,
145

ActionDispatch::ParamsParser, 145

ActionDispatch::Reloader, 145

ActionDispatch::RemoteIp, 145

ActionDispatch::RequestId, 145

ActionDispatch::ShowExceptions, 145

ActionDispatch::Static, 145

ActionMailer::Base, engines, 86

:actions argument for genera-
tors, 72

"actions" namespace, 117

ActionView::LookupContext, 39

ActionView::MissingTemplate class,
111

ActionView::Renderer, 11

ActionView::Resolver, 41–42

ActionView::Template, 43, 63–66,
68

Active Model
about, 17
attribute methods, 19–21

callbacks, 35
compliance, 21–26
creating model for Mail

Form plug-in, 17–28
generators and ORM ag-

nosticism, 128
Mail Form integration

testing, 28–32
Mail Form plug-in, 17–37
validators, 32–35

Active Record
behavior sharing, 17
middleware, 145, 149

Active Resource, behavior
sharing, 17

ActiveModel::AttributeMethods, 19–
21

ActiveModel::Callbacks, 35

ActiveModel::Conversion, 22–26

ActiveModel::Dirty, 37

ActiveModel::Lint::Tests, 21, 36

ActiveModel::Model, 36

ActiveModel::Name, 24

ActiveModel::Naming, 24

ActiveModel::Serialization, 37

ActiveModel::Translation, 24

ActiveModel::Validations, 25–26

ActiveModel::Validations::PresenceVal-
idator class, 32

ActiveRecord::Railtie, 79

ActiveSupport::Autoload, 102

ActiveSupport::Cache::Strategy::Local-
Cache, 145

ActiveSupport::IntegrationCase, 29,
163, 173

ActiveSupport::IntegrationTest, 173

www.it-ebooks.info

http://www.it-ebooks.info/

ActiveSupport::Notifications, 131,
136

Admin, 170–173

after_deliver(), 35

after_save, 54

agnosticism, 72, 126–128

allow_concurrency, 100

api_behavior(), 110–112

app/assets, 92, 96

app/mailers, 72

app/views
engines, 86
generators, 76
view paths, 40

append_view_path(), 27

application.rb, 4
arguments, normalization and

rendering stack, 11

array operations in JRuby
and thread safety, 103

asset files
filesystem notifications

with threads, 92–99
streaming server-sent

events, 90

asynchronous streaming
concurrency, 100–104
extending Rails with en-

gines, 84–86
filesystem notifications

with threads, 92–99
live-streaming controller,

87–92
server events, 83–104

atomicity in loading code, 101

attr_accessor(), 18

attribute_before_type_cast(), 21

attribute_method_affix(), 21

attribute_method_suffix(), 20

AttributeMethods, 19–21

attributes
listing, 28
Mail Form plug-in, 18–

21, 26, 32, 34

attributes() method, 18, 28

attributes_names(), 28

authenticate(), 172

authenticate_admin!(), 170

authentication with Devise,
169–173, 175

Autoload, 102

autoload(), 18

autoloading
attributes for Mail Form

plug-in, 18
Sinatra, 167
techniques, 100–104

B
back ends

cross-browser testing
with Capybara, 169–
175

extensions, 160–163
Rails::Application class, 156–

159
Sinatra library, 163–168
translating with, 155–175

Base class, engines, 86

Base constant, 19

before filter, 171

before_deliver(), 35

before_destroy(), 108, 118

_before_type_cast, 21

begin/end clause, 68

body attribute, template
stores, 41

Booleans, hash keys, 51

boot time, autoloading, 100

boot.rb, 4, 156

booting
dummy application, 3
Rails applications, 156

bootstrapping, 156

buffering, streaming events,
88

Bullet, 131

bundle install, 3
bundle update, 3
Bundler, 3

C
C/C++ extensions and Win-

dows, x

cURL
streaming data, 151
streaming events, 88

Cache class, I18n::Backend, 160

cache keys, 48

cache responders, HTTP,
119–122

cache_classes(), 55

cache_key attribute, template
resolver, 42, 48, 52

cache_template_loading(), 55

cached(), 43

@cached variable, 49

caching
expiring resolver cache,

48, 53–55
HTTP cache responders,

119–122
I18n framework, 160
middleware, 145
streaming metrics, 152
templates, 42, 48–49, 51–

55

call()
Rack applications, 141
responders, 109
template handler, 63,

68, 70

callbacks
destroying resources, 108
flash messages, 118
Mail Form plug-in, 35
middleware, 145, 170
streaming server events,

100
template resolver, 54

Callbacks class, 35, 145

Capybara
about, 173
cross-browser testing,

169–175
integration testing, 28–

32, 56, 163, 173
Mail Form plug-in, 28–32
Rack and, 175
template resolver, 56
translation app, 163

Cascade class, I18n::Backend, 160

catch/throw, 171

Chain class, I18n::Backend, 160

characters transliteration
support, 160

Chinese characters transliter-
ation support, 160

class_attribute(), 28

class_collisions_check(), 72

class_path(), 73

clear_attribute(), 20

clear_cache(), 49, 53

clear_email(), 19

clear_name(), 19

clearing, resolver cache, 49,
53–55

close events, 100

Index • 178

www.it-ebooks.info

http://www.it-ebooks.info/

CmsController, serving templates
with Metal, 55–59

code-loading techniques,
100–104, 159

compliance, Active Model, 21–
26

compliance_test.rb, 21

concurrency
filesystem notifications,

93
streaming server-sent

events, 91, 100–104

conditional requests, 128

ConditionalGet, 145

config.action_mailer, 150

config.active_record, 150

config.app_middleware, 149

config.eager_load_namespaces, 102

config.middleware, 149

config.middlewares, 144

config.ru, 141, 158

config/application.rb, 4, 156

config/boot.rb, 4, 156

config/environment.rb, 157

config/environment.tb, 156

config/routes.rb, 132

configuring
concurrency, 100, 102
dummy applications for

testing, 4
engine middleware stack,

149
I18n framework, 160,

162
Rails applications, 156
railties for middleware,

150
template resolvers, 48–55
test environment, 5

constants, autoloading, 19

contact(), 27

contact.merb, 78

content types, setting in PDF
renderer, 8

Content-Disposition, 152

Content-Length, 152

context
lookup, 39, 52
view, 11, 39

controller#action, 142

controller.method(), 166

ControllerGenerator, 75–78

controllers
authentication with De-

vise, 170
disabling metric storage,

149
engine views, 86
engines, 83
instance variables, 166
lookup context, 39
middleware stack, 145,

148
model manipulation, 22
MVC pattern, 1
notifications page, 137
ORM agnosticism, 126–

128
PDF renderer plug-in, 7,

15
persisted?(), 25
Rack applications, 142
request type and, 107
serving templates with
Metal, 55–59

streaming server events,
87–92

template engine hooks,
75

view paths, 40
writing with responders,

105–129

convention over configura-
tion, ix

Conversion, Active Model, 22–26

cookies, 145, 173

copy_file(), generators, 80

create()
flash responders, 114–

119
scaffold generators, 105

create_file(), generators, 80

create_mailer_file(), 72–73

cross-browser testing with
Devise and Capybara, 169–
175

cross-site request forgery
protection, 57

CSS
absence validator honey

pot, 33, 35
style sheets streaming

plug-in, 83, 89–104

CSV, streaming data with,
150–153

csv library, 153

customizing, generators, 71–
80, 122–128

Cyrillic characters translitera-
tion support, 160

D
Database Cleaner, 175

databases
managing with mount-

able engines, 131–153
muting notifications,

146–149
Notifications API setup,

133–137
notifications page, 137–

140
persistence, 25
rendering stack, 39
resolver setup, 41–55
retrieving view templates

from, 39–59
serving templates with
Metal, 55–59

streaming metrics with
Rack, 150–153

DataMapper, ix, 128

"date.formats.default" label, 172

DebugExceptions, 145

debugger, 3, 144

decoupling in generators, 72

DEFAULT_ACTIONS_FOR_VERBS
hash, 112

:default option, 117

default_format(), 71

default_render(), 111, 113

Delayed Job, 153

delete(), Rack applications, 142

DELETE requests
generators and ORM ag-

nosticism, 126
middleware, 145
navigational behavior,

112
respond_with() as default in

scaffolded controllers,
124

responders and, 107–109

deliver(), 26, 35

dependencies
configuration, 4
gems, 3
middleware, 144, 149
single-file Rails applica-

tions, 159

Index • 179

www.it-ebooks.info

http://www.it-ebooks.info/

destroy()
flash responders, 114–

119
notifications controller,

137
resources, 108
scaffold generators, 105
writing controllers with

responders, 107

details attribute, 42, 52

Devise, authentication with,
169–173, 175

devise:install, 169

DevKit, x

directories and filesystem no-
tifications with threads, 92–
99

Dirty class, 37

disabling metric storage, 149

Discount library, 66

display(), 112

div_for(@post), 22

dom_class(), 22

dom_id(), 22

Don’t Repeat Yourself princi-
ple, ix, 176, see also respon-
ders

draw(), 159

drivers and Capybara, 173

DRY principle, ix, 176, see
also responders

dummy application for test-
ing, 2–3

E
each(), 150

EachValidator class, 34

eager-loading, 101

eager_autoload(), 102

eager_load!(), 102

edit(), flash responders, 116

email
about template handlers,

61–63
building template han-

dlers with Markdown +
ERB, 66–71

creating model for Mail
Form plug-in, 17–28

customizing generators,
71–80

Mail Form callbacks, 35
Mail Form integration

testing, 28–32

Mail Form plug-in, 17–37
Mail Form validators, 32–

35
sending multipart emails

with template handlers,
61–80

using template handlers,
63–66

email attribute, Mail Form
plug-in, 18–19, 26

email?(), 20

ended_at variable, 133

endpoints
CSV streamer, 153
streaming server-sent

events, 87, 90

Engine class, 84–86, 156

engines
eager-loading, 102
extending Rails with, 84–

86
isolated, 131, 133
managing events with

mountable engines,
131–153

middleware, 143–150
middleware stack, 148
Notifications API setup,

133–137
notifications page, 137–

140
Rack integration, 140–

143
Rails applications and,

156
streaming metrics with

Rack, 150–153
template hooks, 75–77

English to Polish translating
applications example, 164–
168

ensure, 147

env["PATH_INFO"], 142

env["warden"], 170

environment
configuring test, 5
generators, 80
initializing in Rails appli-

cations, 157
middleware stack and,

144
Sinatra and, 166

environment() method, genera-
tors, 80

:environment task, 157

eql?(), 49

ERB
customizing generators,

71–80
escaping tags, 48
template handler, 66–71

Erb::Generators::Base, 75

Erb::Generators::ControllerGenerator,
75–78

Erb::Generators::MailerGenerator ,
74–80

error pages, middleware, 145

errors(), Active Model valida-
tions, 25

escaping
} character, 66
ERB tags, 48

ETag, 145

evaluated_callbacks(), 35

event stream format, 89

evented servers, 103

events
concurrency, 100–104
extending Rails with en-

gines, 84–86
filesystem notifications

with threads, 92–99
live-streaming controller,

87–92
managing with mount-

able engines, 131–153
Notifications API setup,

133–137
notifications page, 137–

140
streaming asynchronous-

ly, 83–104
streaming metrics with

Rack, 150–153

EventSource, 100

:escape, 168

exhibit_translations(), 166

expiring resolver cache, 48,
53–55

F
Fallbacks class, 160

fallbacks
flash responders, 117
I18n framework, 160

:file, render(), 1
file_name(), 73

filename_with_extensions(), 75

filesystem notifications with
threads, 92–99

Index • 180

www.it-ebooks.info

http://www.it-ebooks.info/

fill_in(), 172

find_all()
about, 41–44
cache keys, 48, 51, 54

find_templates(), 42, 45

fixtures
middleware and, 150
transactional, 175

flash messages
authentication with De-

vise, 169
callbacks, 118
Mail Form plug in, 31
middleware, 145
template resolvers, 57

flash responders, 114–119

"flash.users.create.alert", 116

"flash.users.create.notice", 116

flash[:alert], 116

flash[:notice], 116

Flying Saucer, 16

Footnotes, 131

form_for(@model), 25

format(), mailer generator, 77

format attribute
Active Model API compli-

ance, 23
template stores, 41, 47,

52

:format key
template handlers, 70
template stores, 44

format.json, 113

formats
default in scaffold genera-

tors, 107
event stream, 89
mailer generator, 77
Post, 23
render(), 1
responders, 110, 113
template handlers, 70
template stores, 41, 44,

47, 52

forms
creating model for Mail

Form plug-in, 17–28
Mail Form callbacks, 35
Mail Form integration

testing, 28–32
Mail Form plug-in, 17–37
Mail Form validators, 32–

35

/:from, 164

/:from/:to, 164

--full, 84

G
gem(), generators, 80

gem install, x
Gemfile, 2–3

gems
dependencies, 3
Gemfile, 2
loading constants, 19

generators, see also scaffold
generator

customizing, 122–128
customizing for multipart

emails, 71–80
decoupling in, 72
Devise, 169
extending with railties,

78–80
hooks, 71, 74–77, 122
ORM agnosticism, 126–

128
Rails::Application and, 156
source paths, 123
structure, 72–74

Generators API, 72–80

Generators::InstallGenerator, 124

get(), Rack applications, 142

GET requests
conditional, 128
generators and ORM ag-

nosticism, 126
HTTP cache responders,

119–122
middleware, 145
navigational behavior,

112
respond_with() as default in

scaffolded controllers,
124

responders and, 107–
109, 112

Sinatra translation app,
166

Gettext class, 161

golden path, ix

groups, destroying and, 108

Gruber, John, 62

H
Haml markup, 164, 166

handler(), mailer generator, 77

handler attribute
template resolver, 44
template stores, 41, 47

handlers plug-in, 64–66

HandlersController, 65

hash(), 49

hashes
locale_value(), 166
lookups in Ruby, 49–51,

60

Head class, 145

HEAD requests, middleware,
145

headers
HTTP cache responders,

119
Mail Form plug-in, 27
PDF renderer plug-in, 7
rendering stack, 13

headers() method, Mail Form
plug-in, 27

headless browsers, 174

Hebraic characters transliter-
ation support, 160

hello(), 87

Hello world examples
Sinatra, 163
single-file Rails applica-

tions, 159
streaming server events,

87–92

HelloRack, 141, 151

hide_action(), 57

hiding
absence validator, 35
actions in template re-

solvers, 57

HomeController
authentication with De-

vise, 170
PDF renderer plug-in, 7,

15
storing notifications plug-

in, 137

honey pot, spam, 33–35

hooks
callbacks in Mail Form

plug-in, 35
generators, 71, 74–77,

122
notifications, 136
railties and, 80
template engine, 75–77
translations app, 172

Index • 181

www.it-ebooks.info

http://www.it-ebooks.info/

HTML, see also multipart
emails; translating applica-
tions

custom behavior in re-
sponders, 110

default format in scaffold
generators, 107

Markdown, 62
PDFs from, 6, 16

HTML Abstraction Markup
Language, see Haml
markup

:html format, 70

HTTP
cache headers middle-

ware, 145
cache responders, 119–

122
conditional requests, 128
Haml markup, 164, 166
headers and rendering

stack, 13
serving templates with
Metal, 57

verb and responders,
106–109, 112

HttpCache module, 121

human(), 24

I
I18n::Backend::Cache class, 160

I18n::Backend::Cascade class, 160

I18n::Backend::Chain class, 160

I18n::Backend::Fallbacks class, 160

I18n::Backend::Gettext class, 161

I18n::Backend::InterpolationCompiler
class, 161

I18n::Backend::KeyValue class, 160

I18n::Backend::Memoize class,
161–162

I18n::Backend::Metadata class, 161

I18n::Backend::Pluralization class,
161

I18n::Backend::Simple class, 160

I18n::Backend::Transliterator class,
161

I18n framework
about, 155
back ends and exten-

sions, 160–163
cross-browser testing

with Capybara, 169–
175

flash responder, 114–119
Mail Form plug-in, 24

Rails::Application class, 156–
159

Sinatra library, 163–168
template stores, 44
translating, 155–175

I18n.backend(), 159

I18n.l(), 159

I18n.localize(), 159

I18n.t(), 159

I18n.translate(), 159

identifier attribute, template re-
solver, 44

IDs
Active Model methods, 22
events in Notifications

API, 133
middleware, 145
template resolver, 44

If-Modified-Since header, 119

If-Unmodified-Since header, 128

index
notifications controller,

137
PDF renderer plug-in, 7
responders, 129
scaffold generators, 107
streaming metrics, 152
template resolver, 47

index() method
notifications controller,

137
responders, 129
scaffold generators, 107
streaming metrics, 152
template resolver, 47

inheritance, generators, 73,
77

initialize(), 31

initialize!(), 156

initializers
engines, 86, 95, 100
Mail Form plug-in, 31
Rails applications, 156

inject_into_file(), generators, 80

installation, x

InstallGenerator, 124

instance(), SqlTemplate, 53

instance variables
Sinatra and, 166
view context, 11

instrument(), 133

instrumentation events, ren-
dering stack, 13–14

instrumenter_id variable, 133

integration testing with
Capybara

about, 173
Mail Form plug-in, 28–32
template resolver, 56
translation app, 163

IntegrationCase, 29, 163, 173

IntegrationTest, 173

internationalization, see I18n
framework

InterpolationCompiler, 161

invoke, hooks and, 123

IOError, streaming server
events, 87

IP spoof–checking, 145

isolated engines, 131, 133

J
JavaScript

cross-browser testing,
174

custom behavior in re-
sponders, 110

notifications controller,
138

streaming server-sent
events, 90, 100

JavaScript Object Notations,
see JSON

jquery, 138

jquery-rails, 138

jquery_ujs, 138

JRuby, 103

:js, render(), 1
JSON

default format in scaffold
generators, 107

key-value stores, 163
rendering, 1, 5
requests and MVC pat-

tern, 1
responders, 113
Sinatra translator app,

168

:json, render(), 1, 5

K
key-value stores

about, 155
I18n back ends and exten-

sions, 160–163
Rails::Application class, 156–

159
Sinatra library, 163–168

Index • 182

www.it-ebooks.info

http://www.it-ebooks.info/

translating with, 155–175
using Devise and Capy-

bara, 169–175

keys, see also key-value
stores

Active Model methods, 22
cache keys, 42, 48
hash lookups in Ruby, 49

KeyValue class, 160

L
lambda keyword, 65

Last-Modified header, 119

Latin characters translitera-
tion support, 160

Layouts, rendering stack, 12

lib folder, 2, 4

lib/assets, 92, 96

lib/live_assets.rb, 93

lib/live_assets/engine.rb, 84

lib/mail_form/base.rb, 18

lib/pdf_renderer.rb, 8
lib/translator.rb, 162

link_to(), rendering stack, 11

listen gem, 93

listeners, notifications, 93

listing attributes, 28

live_assets plug-in, 84–104
concurrency, 100–104
extending Rails with en-

gines, 84–86
filesystem notifications

with threads, 92–99
live-streaming controller,

87–92

live_assets#sse, 98

LiveAssets.eager_load!, 102

LiveAssets::SSESubscriber, 97, 100

LiveAssetsController, 87–92

load_tasks(), 157

loading
attributes for Mail Form

plug-in, 18
autoloading, 100
eager, 101
Rake tasks, 157
Sinatra, 167
single-file Rails applica-

tions, 159

LocalCache class, 145

locale attribute, template
stores, 41, 47, 52

locale_value(), 166

locals attribute, template re-
solver, 42, 49

Lock class, 145

Logger class, 145

logs, middleware and, 144–
145

LogTailer class, 144

long polling, 89

LookupContext class, 39

lookups
cascades, 160
lookup context, 39, 52
memoization, 161

looping, streaming with Rack,
151

M
mail(), 69

Mail Form plug-in, 17–37
callbacks, 35
creating model for, 17–28
integration testing, 28–32
validators, 32–35

@mail_form, 27

mail_form/base.rb, 18

mail_form_test.rb, 26

MailerGenerator, 72–78

MailForm::Base, 17

MailForm::Notifier, 27, 40

MailForm::Validators, 34

main_app(), 139

manifests, 90, 133

Markdown, template handler,
62, 66–71, 78

match(), 142

.md extension, 67

MD5, 145

memcached, 55

Memoize class, 161–162

MERB
customizing generators,

71–80
template handler, 66–71

_merge_attributes(), 32

Metadata class, 161

Metal
Devise and, 175
serving templates with,

55–59

method_missing(), 20

MethodOverride class, 145

metric_path(), 138

metrics
muting notifications,

146–149
notifications page, 137–

140
storing setup in Notifica-

tions API, 133–137
streaming, 150–153

middleware
defined, 143
mute condition, 146–149
stacks, 143–146, 148–

149, 169

migrations, template stores,
41, 47

MIME types, 8, 70

MissingTemplate class, 111

Model class, Active Model, 36

@model variable, 21

model-view-controller (MVC)
pattern, 1, 17

model_name(), 24

models
callbacks, 35
creating model for Mail

Form plug-in, 17–28
Mail Form integration

testing, 28–32
Mail Form plug-in, 17–37
MVC pattern, 1, 17
naming, 24
persistence, 25
validators, 32–35

mongo_metrics(), 139

MongoDB
managing events with

mountable engines,
132–153

muting notifications,
146–149

Notifications API setup,
134–137

notifications page, 137–
140

streaming metrics with
Rack, 150–153

Mongoid, 134

MongoMetrics
managing events with

mountable engines,
132–153

muting notifications,
146–149

Notifications API setup,
134–137

Index • 183

www.it-ebooks.info

http://www.it-ebooks.info/

notifications page, 137–
140

streaming metrics with
Rack, 150–153

MongoMetrics::MetricsController, 152

mount(), 142

--mountable, 132

mountable engines
about, 131
managing events with,

131–153
middleware, 143–150
namespaces and, 138
Notifications API setup,

133–137
notifications page, 137–

140
Rack integration, 140–

143
streaming metrics with

Rack, 150–153

Mozilla, server-sent events,
100

multipart emails
about template handlers,

61–63
building template han-

dlers with Markdown +
ERB, 66–71

customizing generators,
71–80

sending with template
handlers, 61–80

using template handlers,
63–66

multipart/alternative, 70

Multipurpose Internet Mail
Extensions (MIME) types,
8, 70

multithreaded servers, 103

mute!(), 146–149

mute?(), 146

MuteMiddleware, 146–149

mutex, 103, 145

muting notifications, 140,
146–149

MVC pattern, 1, 17

N
NAME argument for generators,

72

name attribute
Mail Form plug-in, 18–19
template resolver, 42, 49

Name class, Active Model, 24

name variable in Notifications
API, 133

name?(), 20

named_base_test.rb, 73

NamedBase class, 72

namespaces
"actions" namespace in

I18n, 117
eager-loading, 102
isolated engines, 133
mountable engines and,

138

naming
Active Model, 24
conventions, 2
events in Notifications

API, 133
listing attribute names,

28
template resolver, 42

Naming class, Active Model, 24

navigation
responders, 110–112
scaffolded generators,

107

navigational_behavior(), respon-
ders, 110–112

nested-hash implementation,
51

new()
SqlTemplate, 53
writing controllers with

responders, 107

New Relic, 131

nickname, absence validator
honey pot, 33, 35

normalization
rendering stack, 11, 15
template resolver, 43

_normalize_args(), 11

_normalize_options(), 11–12, 15

_normalize_render(), 11

notifications
filesystem notifications

with threads, 92–99
managing events with

mountable engines,
131–153

muting, 140, 146–149
page, 137–140
storing setup in Notifica-

tions API, 133–137
streaming metrics with

Rack, 150–153

Notifications API
notifications page, 137–

140
setup, 133–137

Notifier class, Mail Form, 27,
40

O
Object#hash(), 49–52

object-relational mappers,
see ORMs

online resources, xii, 176

open events, 100

options
render(), 1, 6
render_to_string(), 15
rendering stack, 11–12,

15
responders and, 109

options object, 6

order clause in finding tem-
plates, 45

orm_class(), 126, 128

orm_instance(), 126, 128

ORMs
Active Model, 17, 22
agnosticism, 72, 126–128

overloading, rendering stack,
13–14

overriding, in rendering stack,
12

P
ParamsParser, 145

partial attribute
template resolver, 42, 49
template stores, 41, 47

partials
rendering to, 22–23
template resolver, 42, 49
template stores, 41, 47

Passengers, 103

PATCH requests
navigational behavior,

112
responders and, 108

path attribute, template stores,
41

paths
engines, 84–86
generator source, 123
rendering to partial, 22–

23
single-file Rails applica-

tions, 159

Index • 184

www.it-ebooks.info

http://www.it-ebooks.info/

template stores, 41, 44,
47

view, 40

payload variable, 133

PDF renderer plug-in, 1–16
creating, 1–5
Rails rendering stack, 9–

15
writing, 5–9

pdf_renderer, 2–16
creating, 2–5
Rails rendering stack, 9–

15
writing, 5–9

pdf_renderer.gemspec, 2
pdf_renderer_test.rb, 5
performance

cross-browser testing,
174

hash lookup, 51–53
send_data() method, 150

performed?(), 111

persisted?(), 25

ping timer for streaming
server-sent events, 99

Plataformatec, 37, 129

Pluralization class, 161

.po files, 161

Polish translating applica-
tions example, 164–168

polling, 88, 93, 95

post(), Rack applications, 142

Post class, Active Model meth-
ods, 22

@post object
Active Model methods, 22
render(), 6

POST requests
generators and ORM ag-

nosticism, 126
Mail Form plug-in, 17
middleware, 145
navigational behavior,

112
persistence, 25
respond_with() as default in

scaffolded controllers,
124

responders and, 107–109
Sinatra translator app,

168

post_path(@post), 22

Prawn, 1, 6–9, 14

prefix attribute, template re-
solver, 42, 49

prefix attributes
Active Model methods, 19
template resolver, 42, 49

:presence key, 33

PresenceValidator, 32

Prince XML library, 16

_process_options(), 11–12

proxies
Active Model methods, 22
middleware, 170
notifications routes, 139

pry gem, 3

Puma
eager-loading, 102
streaming server events,

87

put(), Rack applications, 142

PUT requests
conditional, 128
generators and ORM ag-

nosticism, 126
middleware, 145
navigational behavior,

112
persistence, 25
respond_with() as default in

scaffolded controllers,
124

responders and, 107–109

Q
%Q{} shortcut (Ruby), 66

Queue class, filesystem notifica-
tions, 96–99

Queue#pop(), 97

queues
cache expiration, 55
filesystem notifications,

96–99

R
Rack

Capybara and, 175
integration with Rails,

140–143
middleware, 143–150
streaming metrics with,

150–153

Rack::ConditionalGet, 145

Rack::ETag, 145

Rack::Head, 145

Rack::Lock, 145

Rack::MethodOverride, 145

Rack::Runtime, 145

rackup, 141

rackup -s puma, 151

Rails
extending with engines,

84–86
importance of, ix
Rack integration, 140–

143
rendering stack, 9–14
resources, xii, 176
single-file applications,

158
versions, x, 12, 140

rails gem, middleware stack,
149

Rails router, Rack applica-
tions, 141

rails server, testing, 8

Rails::Application, 144, 156–159

Rails::Engine, 84–86, 156

Rails::Generators::Actions, 80

Rails::Generators::ActiveModel, 128

Rails::Generators::MailerGenerator,
72–78

Rails::Generators::NamedBase, 72

Rails::Generators::ScaffoldController-
Generator, 123

Rails::Generators::TestCase, 80

Rails::Rack::Debugger, 144

Rails::Rack::Logger, 145

Rails::Rack::LogTailer, 144

Rails::Railtie, 84

RailsInstaller, x

railties
eager-loading, 102
engines and, 84
extending generators

with, 78–80
initializing in Rails appli-

cations, 157
middleware stack, 149

railties gem, middleware stack,
149

Rainbows, 103

rake -T, 3
rake middleware, 144, 149–150

rake routes, 139

Rake tasks, loading, 157

Rakefile, 2–3

.rb extension, 65

RDiscount, 66

Index • 185

www.it-ebooks.info

http://www.it-ebooks.info/

Redis
reimplementing cache

with, 55
storing translation data,

155, 161, 168

redis gem, 161

register_template_handler(), 65, 68

registered_template_handler(), 44

registering, template han-
dlers, 44, 65, 67

regular expressions in Rack
applications, 142

reloadCSS, 89

Reloader class, 145

reloading
middleware, 145
in Rails::Application, 156
single-file Rails applica-

tions, 159
style sheets with stream-

ing plug-in, 89–92

RemoteIp class, 145

render()
adding options, 1
modifying for PDFs, 1–

13, 15
overloading, 13
overriding, 12
partials, 23
rendering stack, 9
responders, 112

render csv: @metrics, 152

render json: @users, 107

render(:new), 11

render(action: "new"), 11

render(partial: action_name), 11

render(partial: true), 11

_render_template(), 11

render_to_body(), 11

render_to_string(), 9, 13–15

renderers
CSV, 152
defined, 5
PDF renderer plug-in, 1–

16
view paths, 40

rendering stack, see also mid-
dleware

Rails, 9–14
template handler, 61
templates, 11, 15, 39,

53, 61

request headers, Capybara
testing, 174

request type, responders, 106

RequestId class, 145

Resolver class, Action View, 41–
42

Resolver API, 41–44

Resolver#clear_cache(), 53

resolvers, template
configuring, 48–55
formats, 71
serving templates with
Metal, 55–59

setting up, 41–48

resource() method, Rack appli-
cations, 142

resource status, responders
and, 108

resource.destroy, 108

%{resource_name}, 117

:resource_name, 117

resources
HTTP verb and, 106,

109, 112
Rack applications, 142
server-sent events, 100

resources() method, Rack appli-
cations, 142

resources, online Rails, xii,
176

respond(), 109

respond_to(), 57, 106, 122

respond_with()
api_behavior(), 112
controllers, 106, 109, 115
customizing generators,

122–126
Responders gem, 129
streaming metrics, 152

responders
about, 106
call(), 109–113
customizing generators,

122–128
flash responders, 114–

119
HTTP cache responders,

119–122
HTTP verb and, 106–

109, 112
navigation, 110–112
request type, 106
resource status, 108
writing DRY controllers

with, 105–129

Responders gem, 129

Responders::HttpCache module,
121

responders/http_cache, 122

Responders::Flash, 114–119

Responders::Generators::InstallGener-
ator, 124

response headers, PDF render-
er plug-in, 7

response.stream.write, 87

Resque, 153, 171

REST, 119

route(), generators, 80

routers
authentication with De-

vise, 172
middleware stack, 144–

145, 148, 159
mountable engines, 132,

138
Rack applications, 140–

141
single-file Rails applica-

tions, 159

routes
mountable engines, 132
notifications page, 137–

140
PDF renderer plug-in, 7
Rack applications, 141
single-file Rails applica-

tions, 159
sticky, 159
template resolver, 56

routes.append, 159

routes.prepend, 159

RPM, 131

Rubinius, 60, 103

Ruby
autoloading, 100
CSV data conversion, 150
gems and loading con-

stants, 19
hash lookups, 49–51, 60
objects and Rack applica-

tions, 141
%Q{} shortcut, 66
template handler, 64–66

run(), generators, 80

Runtime class, 145

runtime, middleware, 145

S
SampleMail, 17–37

callbacks, 35

Index • 186

www.it-ebooks.info

http://www.it-ebooks.info/

creating model for Mail
Form plug-in, 17–28

Mail Form integration
testing, 28–32

validators, 32–35

save(), 168

scaffold generator
duplication in, 105
formats default, 107
ORM agnosticism, 126–

128
respond_to() as default, 122
template engine hooks,

75
template resolver, 41, 46

ScaffoldControllerGenerator, 123

scaffolded controllers
flash messages, 114–119
formats default, 107
HTTP verb, 107–109
resource status, 108
respond_with() as default,

124–126

Scout, 131

Selenium, 174

send_data(), 8, 150

Serialization class, 37

server-sent events, 83–104
concurrency, 100–104
extending Rails with en-

gines, 84–86
filesystem notifications

with threads, 92–99
live-streaming controller,

87–92

sessions
middleware, 145
modifying, 173

show()
rendering stack, 11
writing controllers with

responders, 107

ShowExceptions, 145

sign-in, see authentication
with Devise

Simple class, I18n::Backend, 160

Sinatra, translating applica-
tions, 155, 163–168

single-file Rails applications,
158

SingleFile#call(), 159

Singleton module, 53

singleton resolvers, 53

singular(), 24

--skip-active-record, 150

--skip-sprockets, 150

sleeping, 96

source attribute, template re-
solver, 44

source paths, 123

:source.to_proc, 65

source_root(), 78, 123

spam, absence validators, 33–
35

spoof–checking, 145

sprockets-rails, 149

SqlTemplate::Resolver
configuring, 48–55
serving templates with
Metal, 55–59

setting up, 41–48

SqlTemplate::Resolver.instance(), 53

SqlTemplate::Resolver.new(), 53

sse, 89

SSESubscriber, 97, 100

stacks
filesystem notifications,

96
middleware, 143–146,

148–149, 169
Rails rendering, 9–14,

39, 53, 61

started_at variable, 133

Static class, 145

:status
rendering stack, 11
resource, 108

sticky routes, 159

store!(), 136

@store.keys, 161

@store[], 161

@store[]=, 161

storing templates, 39–59
rendering stack, 39
resolver setup, 41–55
serving with Metal, 55–59

storing translation data,
see key-value stores

streaming
concurrency, 100–104
defined, 83
extending Rails with en-

gines, 84–86
filesystem notifications

with threads, 92–99
live-streaming controller,

87–92

metrics with Rack, 150–
153

rendering stack, 13
server events, 83–104

strings
hash keys, 51
rendering to, 9, 13–15
template handler, 65, 68

style sheets streaming plug-
in, 83, 89–104

subscribe(), 133

subscribers
filesystem notifications,

96–100
thread safety, 103

subtrees, retrieving from back
ends, 166, 168

suffix attribute methods, 20

super keyword, 117, 122

Swartz, Aaron, 62

T
tags, escaping ERB, 48

Template class, Action View,
43, 63–66

template engine hooks, 75–77

template handlers
about, 61–63
customizing generators,

71–80
Markdown and ERB, 66–

71
registering, 65
rendering stack, 61
retrieving templates from

custom stores, 41
Ruby, 64–66
sending multipart emails

with, 61–80
strings, 65, 68
using, 63–66

template() method, 73

:template option, render(), 1
template resolvers

configuring, 48–55
formats, 71
serving templates with
Metal, 55–59

setting up, 41–48

Template-Handler API, 63–66

template.formats, 70

template.source(), 65

templater, 41–48

Index • 187

www.it-ebooks.info

http://www.it-ebooks.info/

templates, see also template
handlers; template re-
solvers

caching, 42, 48–49, 51–
55

customizing generators,
71–80

Haml markup, 166
Mail Form plug-in, 27
missing templates and
default_render(), 111

PDF renderer, 15
render(), 1
rendering stack, 11, 15,

39, 53, 61
resolver setup, 41–55
retrieving from custom

stores, 39–59
serving templates with
Metal, 55–59

using respond_with() as de-
fault, 124–126

view paths, 40

test, creating, 2

test environment, configuring,
5

test/compliance_test.rb, 21

test/fixtures/sample_mail.rb, 18

test/mail_form_test.rb, 26

test/pdf_renderer_test.rb, 5
test/test_helper.rb, 5
test_helper.rb, 5
TestCase class, generators, 80

testing, see also Capybara
ActiveModel::Lint::Tests, 21,

36
streaming events, 92, 94

:text
render(), 1
template handlers, 71

text/plain, 70

Thin, 103

Thor, 73, 80, 123

Thor::Actions module, 73, 80

Thread class, 97

threads
autoloading and, 101
cross-browser testing

with Capybara, 175
filesystem notifications

with, 92–99
muting notifications, 147
queues and, 97–99
streaming server-sent

events, 91

throw/catch, 171

timers, streaming server-sent
events, 99

timestamps, HTTP cache re-
sponders, 119, 122

/:to locale, 164

to_csv(), 153

to_format(), 110, 122

to_html(), 110, 117

:to_iphone, 110

to_js(), 110

to_key(), 22–23

to_model(), 22

to_param(), 22–23

to_partial_path(), 22–23

to_prepare, 145

to_proc(), 65

transactional fixtures, 175

translating applications
I18n back ends and exten-

sions, 160–163
Mail Form plug-in, 24
Rails::Application class, 156–

159
Sinatra library, 163–168
using Devise and Capy-

bara, 169–175
using key-value back

ends, 155–175

Translation, Active Model, 24

Translator.reload!(), 164

transliteration support, 160–
161

Transliterator class, 161

U
Unicorn, 102

update(), 108, 114–119

:updated_at key, template
stores, 44, 55

url_for(), 25

URLs, models, 22, 25

@user.to_json, 113

@user.errors, 118

UsersController
flash responders, 114–

119
HTTP cache responders,

119–122
template stores, 47

V
valid?(), 25–26

validate_each(), 34

validates(), 25, 32–35

validates_format_of(), 25

validates_inclusion_of(), 25

validates_presence_of(), 32

validates_with(), 32

Validations class, Active Model,
25–26

validators
absence, 33–35
Mail Form plug-in, 32–35

values, see key-value stores

vendor/assets, 92, 96

versions
Rails, x, 12, 140
Ruby gems, 3

view context, rendering stack,
11, 39

view paths, 40

view templates
rendering stack, 39
resolver setup, 41–55
retrieving from custom

stores, 39–59
serving with Metal, 55–59

view_assigns(), 11

view_context, 11, 39

view_renderer, 11

views
engines, 86
model keys, 22
model manipulation, 22
MVC pattern, 1
notifications page, 137
PDF renderer plug-in, 7
persisted?(), 25
rendering stack, 11, 39

:virtual_path key, template
stores, 44

W
Warden, 169–171

WEBrick, streaming server
events, 87

WebSockets API, 89

welcome.merb, 78

@what variable, string template
handler, 65

Windows installation, x

Index • 188

www.it-ebooks.info

http://www.it-ebooks.info/

X
X-Runtime header, middle-

ware, 145

Y
YAML

flash responder, 114–119
storing translation data,

155, 160

yield(), 147

Index • 189

www.it-ebooks.info

http://www.it-ebooks.info/

Put the "Fun" in Functional
Elixir puts the "fun" back into functional programming, on top of the robust, battle-tested,
industrial-strength environment of Erlang.

You want to explore functional programming, but are
put off by the academic feel (tell me about monads just
one more time). You know you need concurrent appli-
cations, but also know these are almost impossible to
get right. Meet Elixir, a functional, concurrent language
built on the rock-solid Erlang VM. Elixir’s pragmatic
syntax and built-in support for metaprogramming will
make you productive and keep you interested for the
long haul. This book is the introduction to Elixir for
experienced programmers.

Dave Thomas
(240 pages) ISBN: 9781937785581. $36
http://pragprog.com/book/elixir

A multi-user game, web site, cloud application, or
networked database can have thousands of users all
interacting at the same time. You need a powerful, in-
dustrial-strength tool to handle the really hard prob-
lems inherent in parallel, concurrent environments.
You need Erlang. In this second edition of the best-
selling Programming Erlang, you’ll learn how to write
parallel programs that scale effortlessly on multicore
systems.

Joe Armstrong
(548 pages) ISBN: 9781937785536. $42
http://pragprog.com/book/jaerlang2

www.it-ebooks.info

http://pragprog.com/book/elixir
http://pragprog.com/book/jaerlang2
http://www.it-ebooks.info/

The Joy of Math and Healthy Programming
Rediscover the joy and fascinating weirdness of pure mathematics, and learn how to take
a healthier approach to programming.

Mathematics is beautiful—and it can be fun and excit-
ing as well as practical. Good Math is your guide to
some of the most intriguing topics from two thousand
years of mathematics: from Egyptian fractions to Tur-
ing machines; from the real meaning of numbers to
proof trees, group symmetry, and mechanical compu-
tation. If you’ve ever wondered what lay beyond the
proofs you struggled to complete in high school geom-
etry, or what limits the capabilities of the computer on
your desk, this is the book for you.

Mark C. Chu-Carroll
(282 pages) ISBN: 9781937785338. $34
http://pragprog.com/book/mcmath

To keep doing what you love, you need to maintain
your own systems, not just the ones you write code
for. Regular exercise and proper nutrition help you
learn, remember, concentrate, and be creative—skills
critical to doing your job well. Learn how to change
your work habits, master exercises that make working
at a computer more comfortable, and develop a plan
to keep fit, healthy, and sharp for years to come.

This book is intended only as an informative guide for
those wishing to know more about health issues. In no
way is this book intended to replace, countermand, or
conflict with the advice given to you by your own
healthcare provider including Physician, Nurse Practi-
tioner, Physician Assistant, Registered Dietician, and
other licensed professionals.

Joe Kutner
(254 pages) ISBN: 9781937785314. $36
http://pragprog.com/book/jkthp

www.it-ebooks.info

http://pragprog.com/book/mcmath
http://pragprog.com/book/jkthp
http://www.it-ebooks.info/

The Modern Web
Get up to speed on the latest HTML, CSS, and JavaScript techniques.

HTML5 and CSS3 are more than just buzzwords—
they’re the foundation for today’s web applications.
This book gets you up to speed on the HTML5 elements
and CSS3 features you can use right now in your cur-
rent projects, with backwards compatible solutions
that ensure that you don’t leave users of older browsers
behind. This new edition covers even more new fea-
tures, including CSS animations, IndexedDB, and
client-side validations.

Brian P. Hogan
(300 pages) ISBN: 9781937785598. $38
http://pragprog.com/book/bhh52e

With the advent of HTML5, front-end MVC, and
Node.js, JavaScript is ubiquitous—and still messy.
This book will give you a solid foundation for managing
async tasks without losing your sanity in a tangle of
callbacks. It’s a fast-paced guide to the most essential
techniques for dealing with async behavior, including
PubSub, evented models, and Promises. With these
tricks up your sleeve, you’ll be better prepared to
manage the complexity of large web apps and deliver
responsive code.

Trevor Burnham
(104 pages) ISBN: 9781937785277. $17
http://pragprog.com/book/tbajs

www.it-ebooks.info

http://pragprog.com/book/bhh52e
http://pragprog.com/book/tbajs
http://www.it-ebooks.info/

Explore Testing and Cucumber
Explore the uncharted waters of exploratory testing and delve deeper into Cucumber.

Uncover surprises, risks, and potentially serious bugs
with exploratory testing. Rather than designing all tests
in advance, explorers design and execute small, rapid
experiments, using what they learned from the last
little experiment to inform the next. Learn essential
skills of a master explorer, including how to analyze
software to discover key points of vulnerability, how
to design experiments on the fly, how to hone your
observation skills, and how to focus your efforts.

Elisabeth Hendrickson
(160 pages) ISBN: 9781937785024. $29
http://pragprog.com/book/ehxta

Your customers want rock-solid, bug-free software that
does exactly what they expect it to do. Yet they can’t
always articulate their ideas clearly enough for you to
turn them into code. The Cucumber Book dives straight
into the core of the problem: communication between
people. Cucumber saves the day; it’s a testing, commu-
nication, and requirements tool – all rolled into one.

Matt Wynne and Aslak Hellesøy
(336 pages) ISBN: 9781934356807. $30
http://pragprog.com/book/hwcuc

www.it-ebooks.info

http://pragprog.com/book/ehxta
http://pragprog.com/book/hwcuc
http://www.it-ebooks.info/

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles
continue the well-known Pragmatic Programmer style and continue to garner awards and
rave reviews. As development gets more and more difficult, the Pragmatic Programmers will
be there with more titles and products to help you stay on top of your game.

Visit Us Online
This Book’s Home Page
http://pragprog.com/book/jvrails2
Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates
http://pragprog.com/updates
Be notified when updates and new books become available.

Join the Community
http://pragprog.com/community
Read our weblogs, join our online discussions, participate in our mailing list, interact with
our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy
http://pragprog.com/news
Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book
If you liked this eBook, perhaps you'd like to have a paper copy of the book. It's available
for purchase at our store: http://pragprog.com/book/jvrails2

Contact Us
http://pragprog.com/catalogOnline Orders:

support@pragprog.comCustomer Service:

translations@pragprog.comInternational Rights:

academic@pragprog.comAcademic Use:

http://pragprog.com/write-for-usWrite for Us:

+1 800-699-7764Or Call:

www.it-ebooks.info

http://pragprog.com/book/jvrails2
http://pragprog.com/updates
http://pragprog.com/community
http://pragprog.com/news
http://pragprog.com/book/jvrails2
http://pragprog.com/catalog
support@pragprog.com
translations@pragprog.com
academic@pragprog.com
http://pragprog.com/write-for-us
http://www.it-ebooks.info/

	Cover
	Table of Contents
	Acknowledgments
	Preface
	Who Should Read This Book?
	What Is in the Book?
	Changes in the Second Edition
	How to Read This Book
	Online Resources

	1. Creating Our Own Renderer
	Creating Your First Rails Plug-in
	Writing the Renderer
	Understanding the Rails Rendering Stack
	Taking It to the Next Level
	Wrapping Up

	2. Building Models with Active Model
	Creating Our Model
	Integration Tests with Capybara
	Taking It to the Next Level
	Wrapping Up

	3. Retrieving View Templates from Custom Stores
	Revisiting the Rendering Stack
	Setting Up a SqlResolver
	Configuring Our Resolver for Production
	Serving Templates with Metal
	Wrapping Up

	4. Sending Multipart Emails Using Template Handlers
	Playing with the Template-Handler API
	Building a Template Handler with Markdown + ERB
	Customizing Rails Generators
	Extending Rails with Railties
	Wrapping Up

	5. Streaming Server Events to Clients Asynchronously
	Extending Rails with Engines
	Live Streaming
	Filesystem Notifications with Threads
	Code-Loading Techniques
	Wrapping Up

	6. Writing DRY Controllers with Responders
	Understanding Responders
	Exploring ActionController::Responder
	The Flash Responder
	HTTP Cache Responder
	More Ways to Customize Generators
	Wrapping Up

	7. Managing Application Events with Mountable Engines
	Mountable and Isolated Engines
	Storing Notifications in the Database
	Rails and Rack
	Middleware Stacks
	Streaming with Rack
	Wrapping Up

	8. Translating Applications Using Key-Value Back Ends
	Revisiting Rails::Application
	I18n Back Ends and Extensions
	Rails and Sinatra
	Taking It to the Next Level with Devise and Capybara
	Wrapping Up

	Index
	– SYMBOLS –
	– DIGITS –
	– A –
	– B –
	– C –
	– D –
	– E –
	– F –
	– G –
	– H –
	– I –
	– J –
	– K –
	– L –
	– M –
	– N –
	– O –
	– P –
	– Q –
	– R –
	– S –
	– T –
	– U –
	– V –
	– W –
	– X –
	– Y –

