&GLOBAL £
"L EDITION '

—

\ rtogréphy and
Network Security

Principles and Practice

SEVENTH EDITION

William Stallings

P Pearson

CRYPTOGRAPHY AND
NETWORK SECURITY
PRINCIPLES AND PRACTICE
SEVENTH EDITION

GLoBAL EDITION

William Stallings

PEARSON

Boston Columbus Indianapolis New York San Francisco Hoboken
Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montréal Toronto
Delhi Mexico City S3o Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo

For ‘Tricia: never dull, never boring,
the smartest and bravest person
I know

Vice President and Editorial Director, ECS: Inventory Manager: Meredith Maresca
Marcia J. Horton Senior Manufacturing Controller, Global Editions:
Executive Editor: Tracy Johnson (Dunkelberger) Trudy Kimber
Editorial Assistant: Kristy Alaura Media Production Manager, Global Editions:
Acquisitions Editor, Global Editions: Abhijit Baroi Vikram Kumar
Program Manager: Carole Snyder Product Marketing Manager: Bram Van Kempen
Project Manager: Robert Engelhardt Marketing Assistant: Jon Bryant
Project Editor, Global Editions: K.K. Neelakantan Cover Designer: Lumina Datamatics
Media Team Lead: Steve Wright Cover Art: © goghy73 / Shutterstock
R&P Manager: Rachel Youdelman Full-Service Project Management:
R&P Senior Project Manager: William Opaluch Chandrakala Prakash, SPi Global
Senior Operations Specialist: Maura Zaldivar-Garcia Composition: SPi Global

Inventory Manager: Meredith Maresca

Credits and acknowledgments borrowed from other sources and reproduced, with permission, in this textbook
appear on page 753.

Pearson Education Limited
Edinburgh Gate

Harlow

Essex CM20 2JE

England

and Associated Companies throughout the world

Visit us on the World Wide Web at:
www.pearsonglobaleditions.com

© Pearson Education Limited 2017

The right of William Stallings to be identified as the author of this work has been asserted by him in accordance
with the Copyright, Designs and Patents Act 1988.

Authorized adaptation from the United States edition, entitled Cryptography and Network Security: Principles and
Practice, 7" Edition, ISBN 978-0-13-444428-4, by William Stallings published by Pearson Education © 2017.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without either the prior
written permission of the publisher or a license permitting restricted copying in the United Kingdom issued by the
Copyright Licensing Agency Ltd, Saffron House, 6-10 Kirby Street, London ECIN 8TS.

All trademarks used herein are the property of their respective owners. The use of any trademark in this text does
not vest in the author or publisher any trademark ownership rights in such trademarks, nor does the use of such
trademarks imply any affiliation with or endorsement of this book by such owners.

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library

10987654321

ISBN 10:1-292-15858-1
ISBN 13: 978-1-292-15858-7

Typeset by SPi Global
Printed and bound in Malaysia.

http://www.pearsonglobaleditions.com

CONTENTS

Notation 10
Preface 12
About the Author 18

PART ONE: BACKGROUND 19
Chapter 1 Computer and Network Security Concepts 19

1.1 Computer Security Concepts 21

1.2 The OSI Security Architecture 26

1.3 Security Attacks 27

14 Security Services 29

1.5 Security Mechanisms 32

1.6 Fundamental Security Design Principles 34

1.7 Attack Surfaces and Attack Trees 37

1.8 A Model for Network Security 41

1.9 Standards 43

1.10 Key Terms, Review Questions, and Problems 44

Chapter 2 Introduction to Number Theory 46

21 Divisibility and the Division Algorithm 47

2.2 The Euclidean Algorithm 49

2.3 Modular Arithmetic 53

24 Prime Numbers 61

2.5 Fermat’s and Euler’s Theorems 64

2.6 Testing for Primality 68

2.7 The Chinese Remainder Theorem 71

2.8 Discrete Logarithms 73

2.9 Key Terms, Review Questions, and Problems 78
Appendix 2A The Meaning of Mod 82

PART TWO: SYMMETRIC CIPHERS 85
Chapter 3 Classical Encryption Techniques 85

31 Symmetric Cipher Model 86

3.2 Substitution Techniques 92

3.3 Transposition Techniques 107

34 Rotor Machines 108

3.5 Steganography 110

3.6 Key Terms, Review Questions, and Problems 112

Chapter 4 Block Ciphers and the Data Encryption Standard 118
4.1 Traditional Block Cipher Structure 119
4.2 The Data Encryption Standard 129

4.3 A DES Example 131
44 The Strength of DES 134

4 CONTENTS

4.5 Block Cipher Design Principles 135
4.6 Key Terms, Review Questions, and Problems 137

Chapter 5 Finite Fields 141

51 Groups 143

5.2 Rings 145

5.3 Fields 146

54 Finite Fields of the Form GF(p) 147

5.5 Polynomial Arithmetic 151

5.6 Finite Fields of the Form GF(2") 157

5.7 Key Terms, Review Questions, and Problems 169

Chapter 6 Advanced Encryption Standard 171

6.1 Finite Field Arithmetic 172

6.2 AES Structure 174

6.3 AES Transformation Functions 179

6.4 AES Key Expansion 190

6.5 An AES Example 193

6.6 AES Implementation 197

6.7 Key Terms, Review Questions, and Problems 202
Appendix 6A Polynomials with Coefficients in GE(2%) 203

Chapter 7 Block Cipher Operation 207

71 Multiple Encryption and Triple DES 208

7.2 Electronic Codebook 213

7.3 Cipher Block Chaining Mode 216

74 Cipher Feedback Mode 218

7.5 Output Feedback Mode 220

7.6 Counter Mode 222

7.7 XTS-AES Mode for Block-Oriented Storage Devices 224
7.8 Format-Preserving Encryption 231

7.9 Key Terms, Review Questions, and Problems 245

Chapter 8 Random Bit Generation and Stream Ciphers 250

8.1 Principles of Pseudorandom Number Generation 252

8.2 Pseudorandom Number Generators 258

8.3 Pseudorandom Number Generation Using a Block Cipher 261
8.4 Stream Ciphers 267

8.5 RC4 269

8.0 True Random Number Generators 271

8.7 Key Terms, Review Questions, and Problems 280

PART THREE: ASYMMETRIC CIPHERS 283
Chapter 9 Public-Key Cryptography and RSA 283

9.1 Principles of Public-Key Cryptosystems 285
9.2 The RSA Algorithm 294
9.3 Key Terms, Review Questions, and Problems 308

CONTENTS 5

Chapter 10 Other Public-Key Cryptosystems 313

10.1 Diffie-Hellman Key Exchange 314

10.2 Elgamal Cryptographic System 318

10.3 Elliptic Curve Arithmetic 321

104 Elliptic Curve Cryptography 330

10.5 Pseudorandom Number Generation Based on an Asymmetric Cipher 334
10.6 Key Terms, Review Questions, and Problems 336

PART FOUR: CRYPTOGRAPHIC DATA INTEGRITY ALGORITHMS 339
Chapter 11 Cryptographic Hash Functions 339

111 Applications of Cryptographic Hash Functions 341
11.2 Two Simple Hash Functions 346

11.3 Requirements and Security 348

114 Hash Functions Based on Cipher Block Chaining 354
11.5 Secure Hash Algorithm (SHA) 355

11.6 SHA-3 365

11.7 Key Terms, Review Questions, and Problems 377

Chapter 12 Message Authentication Codes 381

121 Message Authentication Requirements 382

12.2 Message Authentication Functions 383

12.3 Requirements for Message Authentication Codes 391

124 Security of MACs 393

12.5 MACs Based on Hash Functions: HMAC 394

12.6 MAC:s Based on Block Ciphers: DAA and CMAC 399

12.7 Authenticated Encryption: CCM and GCM 402

12.8 Key Wrapping 408

129 Pseudorandom Number Generation Using Hash Functions and MACs 413
1210 Key Terms, Review Questions, and Problems 416

Chapter 13 Digital Signatures 419

131 Digital Signatures 421

13.2 Elgamal Digital Signature Scheme 424

13.3 Schnorr Digital Signature Scheme 425

134 NIST Digital Signature Algorithm 426

13.5 Elliptic Curve Digital Signature Algorithm 430
13.6 RSA-PSS Digital Signature Algorithm 433

13.7 Key Terms, Review Questions, and Problems 438

PART FIVE: MUTUAL TRUST 441

Chapter 14 Key Management and Distribution 441
14.1 Symmetric Key Distribution Using Symmetric Encryption 442
14.2 Symmetric Key Distribution Using Asymmetric Encryption 451
14.3 Distribution of Public Keys 454
144 X.509 Certificates 459

6 CONTENTS

14.5 Public-Key Infrastructure 467
14.6 Key Terms, Review Questions, and Problems 469

Chapter 15 User Authentication 473

151 Remote User-Authentication Principles 474

15.2 Remote User-Authentication Using Symmetric Encryption 478
15.3 Kerberos 482

154 Remote User-Authentication Using Asymmetric Encryption 500
15.5 Federated Identity Management 502

15.6 Personal Identity Verification 508

15.7 Key Terms, Review Questions, and Problems 515

PART SIX: NETWORK AND INTERNET SECURITY 519
Chapter 16 Network Access Control and Cloud Security 519

16.1 Network Access Control 520

16.2 Extensible Authentication Protocol 523

16.3 IEEE 802.1X Port-Based Network Access Control 527
16.4 Cloud Computing 529

16.5 Cloud Security Risks and Countermeasures 535

16.6 Data Protection in the Cloud 537

16.7 Cloud Security as a Service 541

16.8 Addressing Cloud Computing Security Concerns 544
16.9 Key Terms, Review Questions, and Problems 545

Chapter 17 Transport-Level Security 546

171 Web Security Considerations 547

17.2 Transport Layer Security 549

17.3 HTTPS 566

174 Secure Shell (SSH) 567

17.5 Key Terms, Review Questions, and Problems 579

Chapter 18 Wireless Network Security 581

18.1 Wireless Security 582

18.2 Mobile Device Security 585

18.3 IEEE 802.11 Wireless LAN Overview 589

18.4 IEEE 802.11i Wireless LAN Security 595

18.5 Key Terms, Review Questions, and Problems 610

Chapter 19 Electronic Mail Security 612

19.1 Internet Mail Architecture 613

19.2 Email Formats 617

19.3 Email Threats and Comprehensive Email Security 625
194 S/MIME 627

19.5 Pretty Good Privacy 638

19.6 DNSSEC 639

19.7 DNS-Based Authentication of Named Entities 643
19.8 Sender Policy Framework 645

19.9 DomainKeys Identified Mail 648

CONTENTS 7

19.10 Domain-Based Message Authentication, Reporting, and Conformance 654
19.11 Key Terms, Review Questions, and Problems 659

Chapter 20 IP Security 661

20.1 IP Security Overview 662

20.2 IP Security Policy 668

20.3 Encapsulating Security Payload 673

20.4 Combining Security Associations 681

20.5 Internet Key Exchange 684

20.6 Cryptographic Suites 692

20.7 Key Terms, Review Questions, and Problems 694

APPENDICES 696
Appendix A Projects for Teaching Cryptography and Network Security 696

Al Sage Computer Algebra Projects 697
A2 Hacking Project 698

A3 Block Cipher Projects 699

A4 Laboratory Exercises 699

A5 Research Projects 699

A.6 Programming Projects 700

A7 Practical Security Assessments 700
A8 Firewall Projects 701

A9 Case Studies 701

A10 Writing Assignments 701

A1 Reading/Report Assignments 702
A.12 Discussion Topics 702

Appendix B Sage Examples 703

B.1 Linear Algebra and Matrix Functionality 704

B.2 Chapter 2: Number Theory 705

B.3 Chapter 3: Classical Encryption 710

B.4 Chapter 4: Block Ciphers and the Data Encryption Standard 713
B.5S Chapter 5: Basic Concepts in Number Theory and Finite Fields 717
B.6 Chapter 6: Advanced Encryption Standard 724

B.7 Chapter 8: Pseudorandom Number Generation and Stream Ciphers 729
B.8 Chapter 9: Public-Key Cryptography and RSA 731

B.9 Chapter 10: Other Public-Key Cryptosystems 734

B.10 Chapter 11: Cryptographic Hash Functions 739

B.11 Chapter 13: Digital Signatures 741

References 744
Credits 753
Index 754

8

ONLINE CHAPTERS AND APPENDICES!

PART SEVEN: SYSTEM SECURITY
Chapter 21 Malicious Software

21.1 Types of Malicious Software (Malware)
21.2 Advanced Persistent Threat

21.3 Propagation—Infected Content—Viruses
21.4 Propagation—Vulnerability Exploit—Worms
21.5 Propagation—Social Engineering—Spam E-mail, Trojans

21.6 Payload—System Corruption

21.7 Payload—Attack Agent—Zombie, Bots

21.8 Payload—Information Theft—Keyloggers, Phishing, Spyware
21.9 Payload—Stealthing—Backdoors, Rootkits

21.10 Countermeasures

21.11 Distributed Denial of Service Attacks

21.12 References

21.13 Key Terms, Review Questions, and Problems

Chapter 22 Intruders
22.1 Intruders

22.2 Intrusion Detection

22.3 Password Management

22.4 References

22.5 Key Terms, Review Questions, and Problems

Chapter 23 Firewalls

23.1 The Need for Firewalls

23.2 Firewall Characteristics and Access Policy
23.3 Types of Firewalls

23.4 Firewall Basing

23.5 Firewall Location and Configurations
23.6 References
23.7 Key Terms, Review Questions, and Problems

PART EIGHT: LEGAL AND ETHICAL ISSUES
Chapter 24 Legal and Ethical Aspects

24.1 Cybercrime and Computer Crime

24.2 Intellectual Property

24.3 Privacy

24.4 Ethical Issues

24.5 Recommended Reading

24.6 References

24.7 Key Terms, Review Questions, and Problems
24.A Information Privacy

!Online chapters, appendices, and other documents are at the Companion Website, available via the
access card at the front of this book.

Appendix C
Appendix D
Appendix E
Appendix F
Appendix G
Appendix H
Appendix I
Appendix J
Appendix K
Appendix L
Appendix M
Appendix N
Appendix O
Appendix P
Appendix Q
Appendix R
Appendix S
Appendix T
Appendix U
Appendix V
Appendix W
Appendix X
Appendix Y
Glossary

Sage Exercises

Standards and Standard-Setting Organizations
Basic Concepts from Linear Algebra
Measures of Secrecy and Security
Simplified DES

Evaluation Criteria for AES

Simplified AES

The Knapsack Algorithm

Proof of the Digital Signature Algorithm
TCP/IP and OSI

Java Cryptographic APIs

MD5 Hash Function

Data Compression Using ZIP

PGP

The International Reference Alphabet
Proof of the RSA Algorithm

Data Encryption Standard

Kerberos Encryption Techniques
Mathematical Basis of the Birthday Attack
Evaluation Criteria for SHA-3

The Complexity of Algorithms

Radix-64 Conversion

The Base Rate Fallacy

NOTATION

Symbol Expression Meaning
D, K D(K,Y) Symmetric decryption of ciphertext Y using secret key K
D, PR, D(PR,, Y) Asymmetric decryption of ciphertext Y using A’s private key PR,
D, PU, D(PU, Y) Asymmetric decryption of ciphertext Y using A’s public key PU,,
E, K E(K, X) Symmetric encryption of plaintext X using secret key K
E, PR, E(PR,, X) Asymmetric encryption of plaintext X using A’s private key PR,
E, PU, E(PU,, X) Asymmetric encryption of plaintext X using A’s public key PU,,
K Secret key
PR, Private key of user A
PU, Public key of user A
MAC, K MAC(K, X) Message authentication code of message X using secret key K
GF(p) The finite field of order p, where p is prime.The field is defined as
the set Z, together with the arithmetic operations modulo p.
GF(2") The finite field of order 2"
Py Set of nonnegative integers less than n
od) Greatest common divisor; the largest positive integer that
& geclny divides both i and j with no remainder on division.
mod a mod m Remainder after division of a by m
mod, = a=b(modm) | amodm = bmodm
mod, # a #b(modm) | amodm # bmodm
dlog dlog,,(b) Discrete logarithm of the number b for the base a (mod p)
The number of positive integers less than # and relatively
1G] o(n) prime to n.
This is Euler’s totient function.
n
2 a; al+a2+--~+an
i=1
n
H a; a1><a2><-~><an
i=1
e i divides j, which means that there is no remainder when j is
| ilj . .
divided by i
[, | |al Absolute value of a

10

NOTATION 11
Symbol Expression Meaning
I x|y x concatenated with y
~ x =y x is approximately equal to y
® 2@y E?(cllilsive-ORiof x and y for single-bit Va.riable.s; .
Bitwise exclusive-OR of x and y for multiple-bit variables
L, | | x| The largest integer less than or equal to x
€ x€S The element x is contained in the set S.
- A — (a1, ar, The integer A corresponds to the sequence of integers

° dk)

(al, a, ... ak)

PREFACE

WHAT’S NEW IN THE SEVENTH EDITION

In the four years since the sixth edition of this book was published, the field has seen contin-
ued innovations and improvements. In this new edition, I try to capture these changes while
maintaining a broad and comprehensive coverage of the entire field. To begin this process of
revision, the sixth edition of this book was extensively reviewed by a number of professors
who teach the subject and by professionals working in the field. The result is that, in many
places, the narrative has been clarified and tightened, and illustrations have been improved.

Beyond these refinements to improve pedagogy and user-friendliness, there have been

substantive changes throughout the book. Roughly the same chapter organization has been
retained, but much of the material has been revised and new material has been added. The
most noteworthy changes are as follows:

12

Fundamental security design principles: Chapter 1 includes a new section discussing the
security design principles listed as fundamental by the National Centers of Academic
Excellence in Information Assurance/Cyber Defense, which is jointly sponsored by the
U.S. National Security Agency and the U.S. Department of Homeland Security.

Attack surfaces and attack trees: Chapter 1 includes a new section describing these two
concepts, which are useful in evaluating and classifying security threats.

Number theory coverage: The material on number theory has been consolidated
into a single chapter, Chapter 2. This makes for a convenient reference. The relevant
portions of Chapter 2 can be assigned as needed.

Finite fields: The chapter on finite fields has been revised and expanded with addi-
tional text and new figures to enhance understanding.

Format-preserving encryption: This relatively new mode of encryption is enjoying
increasing commercial success. A new section in Chapter 7 covers this method.
Conditioning and health testing for true random number generators: Chapter 8 now
provides coverage of these important topics.

User authentication model: Chapter 15 includes a new description of a general model
for user authentication, which helps to unify the discussion of the various approaches
to user authentication.

Cloud security: The material on cloud security in Chapter 16 has been updated and
expanded to reflect its importance and recent developments.

Transport Layer Security (TLS): The treatment of TLS in Chapter 17 has been updated,
reorganized to improve clarity, and now includes a discussion of the new TLS version 1.3.

Email Security: Chapter 19 has been completely rewritten to provide a comprehensive
and up-to-date discussion of email security. It includes:

— New: discussion of email threats and a comprehensive approach to email security.

— New: discussion of STARTTLS, which provides confidentiality and authentication
for SMTP.

PREFACE 13

— Revised: treatment of S/MIME has been updated to reflect the latest version 3.2.
— New: discussion of DNSSEC and its role in supporting email security.

— New: discussion of DNS-based Authentication of Named Entities (DANE) and the
use of this approach to enhance security for certificate use in SMTP and S/MIME.

— New: discussion of Sender Policy Framework (SPF), which is the standardized way
for a sending domain to identify and assert the mail senders for a given domain.

— Revised: discussion of DomainKeys Identified Mail (DKIM) has been revised.

— New: discussion of Domain-based Message Authentication, Reporting, and Confor-
mance (DMARC) allows email senders to specify policy on how their mail should
be handled, the types of reports that receivers can send back, and the frequency
those reports should be sent.

OBJECTIVES

It is the purpose of this book to provide a practical survey of both the principles and practice
of cryptography and network security. In the first part of the book, the basic issues to be
addressed by a network security capability are explored by providing a tutorial and survey
of cryptography and network security technology. The latter part of the book deals with the
practice of network security: practical applications that have been implemented and are in
use to provide network security.

The subject, and therefore this book, draws on a variety of disciplines. In particular,
it is impossible to appreciate the significance of some of the techniques discussed in this
book without a basic understanding of number theory and some results from probability
theory. Nevertheless, an attempt has been made to make the book self-contained. The book
not only presents the basic mathematical results that are needed but provides the reader
with an intuitive understanding of those results. Such background material is introduced
as needed. This approach helps to motivate the material that is introduced, and the author
considers this preferable to simply presenting all of the mathematical material in a lump at
the beginning of the book.

SUPPORT OF ACM/IEEE COMPUTER SCIENCE CURRICULA 2013

The book is intended for both academic and professional audiences. As a textbook, it is
intended as a one-semester undergraduate course in cryptography and network security for
computer science, computer engineering, and electrical engineering majors. The changes to
this edition are intended to provide support of the ACM/IEEE Computer Science Curricula
2013 (CS2013). CS2013 adds Information Assurance and Security (IAS) to the curriculum rec-
ommendation as one of the Knowledge Areas in the Computer Science Body of Knowledge.
The document states that IAS is now part of the curriculum recommendation because of the
critical role of IAS in computer science education. CS2013 divides all course work into three
categories: Core-Tier 1 (all topics should be included in the curriculum), Core-Tier-2 (all or
almost all topics should be included), and elective (desirable to provide breadth and depth).
In the IAS area, CS2013 recommends topics in Fundamental Concepts and Network Security

14 PREFACE

in Tier 1 and Tier 2, and Cryptography topics as elective. This text covers virtually all of the
topics listed by CS2013 in these three categories.
The book also serves as a basic reference volume and is suitable for self-study.

PLAN OF THE TEXT

The book is divided into eight parts.

m Background

Symmetric Ciphers

Asymmetric Ciphers

Cryptographic Data Integrity Algorithms
Mutual Trust

Network and Internet Security

System Security

Legal and Ethical Issues

The book includes a number of pedagogic features, including the use of the computer
algebra system Sage and numerous figures and tables to clarify the discussions. Each chap-
ter includes a list of key words, review questions, homework problems, and suggestions
for further reading. The book also includes an extensive glossary, a list of frequently used
acronyms, and a bibliography. In addition, a test bank is available to instructors.

INSTRUCTOR SUPPORT MATERIALS

The major goal of this text is to make it as effective a teaching tool for this exciting and
fast-moving subject as possible. This goal is reflected both in the structure of the book and in
the supporting material. The text is accompanied by the following supplementary material
that will aid the instructor:

m Solutions manual: Solutions to all end-of-chapter Review Questions and Problems.

m Projects manual: Suggested project assignments for all of the project categories listed
below.

PowerPoint slides: A set of slides covering all chapters, suitable for use in lecturing.
PDF files: Reproductions of all figures and tables from the book.

Test bank: A chapter-by-chapter set of questions with a separate file of answers.

Sample syllabuses: The text contains more material than can be conveniently covered
in one semester. Accordingly, instructors are provided with several sample syllabuses
that guide the use of the text within limited time.

All of these support materials are available at the Instructor Resource Center
(IRC) for this textbook, which can be reached through the publisher’s Web site
www.pearsonglobaleditions.com/stallings. To gain access to the IRC, please contact your
local Pearson sales representative.

http://www.pearsonglobaleditions.com/stallings

PREFACE 15

PROJECTS AND OTHER STUDENT EXERCISES

For many instructors, an important component of a cryptography or network security course
is a project or set of projects by which the student gets hands-on experience to reinforce
concepts from the text. This book provides an unparalleled degree of support, including a
projects component in the course. The IRC not only includes guidance on how to assign and
structure the projects, but also includes a set of project assignments that covers a broad range
of topics from the text:

m Sage projects: Described in the next section.

m Hacking project: Exercise designed to illuminate the key issues in intrusion detection
and prevention.

u Block cipher projects: A lab that explores the operation of the AES encryption algo-
rithm by tracing its execution, computing one round by hand, and then exploring the
various block cipher modes of use. The lab also covers DES. In both cases, an online
Java applet is used (or can be downloaded) to execute AES or DES.

m Lab exercises: A series of projects that involve programming and experimenting with
concepts from the book.

m Research projects: A series of research assignments that instruct the student to research
a particular topic on the Internet and write a report.

® Programming projects: A series of programming projects that cover a broad range of
topics and that can be implemented in any suitable language on any platform.

m Practical security assessments: A set of exercises to examine current infrastructure and
practices of an existing organization.

m Firewall projects: A portable network firewall visualization simulator, together with
exercises for teaching the fundamentals of firewalls.

m Case studies: A set of real-world case studies, including learning objectives, case
description, and a series of case discussion questions.

B Writing assignments: A set of suggested writing assignments, organized by chapter.

u Reading/report assignments: A list of papers in the literature —one for each chapter—
that can be assigned for the student to read and then write a short report.

This diverse set of projects and other student exercises enables the instructor to use
the book as one component in a rich and varied learning experience and to tailor a course
plan to meet the specific needs of the instructor and students. See Appendix A in this book
for details.

THE SAGE COMPUTER ALGEBRA SYSTEM

One of the most important features of this book is the use of Sage for cryptographic examples
and homework assignments. Sage is an open-source, multiplatform, freeware package that
implements a very powerful, flexible, and easily learned mathematics and computer algebra
system. Unlike competing systems (such as Mathematica, Maple, and MATLAB), there are

16 PREFACE

no licensing agreements or fees involved. Thus, Sage can be made available on computers
and networks at school, and students can individually download the software to their own
personal computers for use at home. Another advantage of using Sage is that students learn
a powerful, flexible tool that can be used for virtually any mathematical application, not
just cryptography.

The use of Sage can make a significant difference to the teaching of the mathematics
of cryptographic algorithms. This book provides a large number of examples of the use of
Sage covering many cryptographic concepts in Appendix B, which is included in this book.

Appendix C lists exercises in each of these topic areas to enable the student to gain
hands-on experience with cryptographic algorithms. This appendix is available to instruc-
tors at the IRC for this book. Appendix C includes a section on how to download and get
started with Sage, a section on programming with Sage, and exercises that can be assigned to
students in the following categories:

® Chapter 2—Number Theory and Finite Fields: Euclidean and extended Euclidean
algorithms, polynomial arithmetic, GF(2*), Euler’s Totient function, Miller—Rabin, fac-
toring, modular exponentiation, discrete logarithm, and Chinese remainder theorem.
m Chapter 3— Classical Encryption: Affine ciphers and the Hill cipher.

m Chapter 4—Block Ciphers and the Data Encryption Standard: Exercises based
on SDES.

Chapter 6— Advanced Encryption Standard: Exercises based on SAES.

Chapter 8 —Pseudorandom Number Generation and Stream Ciphers: Blum Blum
Shub, linear congruential generator, and ANSI X9.17 PRNG.

Chapter 9—Public-Key Cryptography and RSA: RSA encrypt/decrypt and signing.
Chapter 10— Other Public-Key Cryptosystems: Diffie-Hellman, elliptic curve.
Chapter 11— Cryptographic Hash Functions: Number-theoretic hash function.
Chapter 13— Digital Signatures: DSA.

ONLINE DOCUMENTS FOR STUDENTS

For this new edition, a tremendous amount of original supporting material for students has
been made available online.

Purchasing this textbook new also grants the reader six months of access to the
Companion Website, which includes the following materials:

B Online chapters: To limit the size and cost of the book, four chapters of the book are
provided in PDF format. This includes three chapters on computer security and one on
legal and ethical issues. The chapters are listed in this book’s table of contents.

® Online appendices: There are numerous interesting topics that support material found
in the text but whose inclusion is not warranted in the printed text. A total of 20 online
appendices cover these topics for the interested student. The appendices are listed in
this book’s table of contents.

PREFACE 17

= Homework problems and solutions: To aid the student in understanding the material,
a separate set of homework problems with solutions are available.

m Key papers: A number of papers from the professional literature, many hard to find,
are provided for further reading.

® Supporting documents: A variety of other useful documents are referenced in the text
and provided online.

m Sage code: The Sage code from the examples in Appendix B is useful in case the student
wants to play around with the examples.

To access the Companion Website, follow the instructions for “digital resources for
students” found in the front of this book.

ACKNOWLEDGMENTS

This new edition has benefited from review by a number of people who gave generously
of their time and expertise. The following professors reviewed all or a large part of the
manuscript: Hossein Beyzavi (Marymount University), Donald F. Costello (University of
Nebraska-Lincoln), James Haralambides (Barry University), Anand Seetharam (California
State University at Monterey Bay), Marius C. Silaghi (Florida Institute of Technology),
Shambhu Upadhyaya (University at Buffalo), Zhengping Wu (California State University
at San Bernardino), Liangliang Xiao (Frostburg State University), Seong-Moo (Sam) Yoo
(The University of Alabama in Huntsville), and Hong Zhang (Armstrong State University).

Thanks also to the people who provided detailed technical reviews of one or more
chapters: Dino M. Amaral, Chris Andrew, Prof. (Dr). C. Annamalai, Andrew Bain, Riccardo
Bernardini, Olivier Blazy, Zervopoulou Christina, Maria Christofi, Dhananjoy Dey, Mario
Emmanuel, Mike Fikuart, Alexander Fries, Pierpaolo Giacomin, Pedro R. M. Inécio,
Daniela Tamy Iwassa, Krzysztof Janowski, Sergey Katsev, Adnan Kilic, Rob Knox, Mina
Pourdashty, Yuri Poeluev, Pritesh Prajapati, Venkatesh Ramamoorthy, Andrea Razzini,
Rami Rosen, Javier Scodelaro, Jamshid Shokrollahi, Oscar So, and David Tillemans.

In addition, I was fortunate to have reviews of individual topics by “subject-area
gurus,” including Jesse Walker of Intel (Intel’s Digital Random Number Generator), Russ
Housley of Vigil Security (key wrapping), Joan Daemen (AES), Edward F. Schaefer of
Santa Clara University (Simplified AES), Tim Mathews, formerly of RSA Laboratories
(S'MIME), Alfred Menezes of the University of Waterloo (elliptic curve cryptography),
William Sutton, Editor/Publisher of The Cryptogram (classical encryption), Avi Rubin of
Johns Hopkins University (number theory), Michael Markowitz of Information Security
Corporation (SHA and DSS), Don Davis of IBM Internet Security Systems (Kerberos),
Steve Kent of BBN Technologies (X.509), and Phil Zimmerman (PGP).

Nikhil Bhargava (IIT Delhi) developed the set of online homework problems and
solutions. Dan Shumow of Microsoft and the University of Washington developed all of
the Sage examples and assignments in Appendices B and C. Professor Sreekanth Malladi of
Dakota State University developed the hacking exercises. Lawrie Brown of the Australian
Defence Force Academy provided the AES/DES block cipher projects and the security
assessment assignments.

18 PREFACE

Sanjay Rao and Ruben Torres of Purdue University developed the laboratory exercises
that appear in the IRC. The following people contributed project assignments that appear in
the instructor’s supplement: Henning Schulzrinne (Columbia University); Cetin Kaya Koc
(Oregon State University); and David Balenson (Trusted Information Systems and George
Washington University). Kim McLaughlin developed the test bank.

Finally, I thank the many people responsible for the publication of this book, all of
whom did their usual excellent job. This includes the staff at Pearson, particularly my editor
Tracy Johnson, program manager Carole Snyder, and production manager Bob Engelhardt.
Thanks also to the marketing and sales staffs at Pearson, without whose efforts this book
would not be in front of you.

ACKNOWLEDGMENTS FOR THE GLOBAL EDITION

Pearson would like to thank and acknowledge Somitra Kumar Sanadhya (Indraprastha
Institute of Information Technology Delhi), and Somanath Tripathy (Indian Institute of
Technology Patna) for contributing to the Global Edition, and Anwitaman Datta (Nanyang
Technological University Singapore), Atul Kahate (Pune University), Goutam Paul (Indian
Statistical Institute Kolkata), and Khyat Sharma for reviewing the Global Edition.

ABOUT THE AUTHOR

Dr. William Stallings has authored 18 titles, and counting revised editions, over 40 books
on computer security, computer networking, and computer architecture. His writings have
appeared in numerous publications, including the Proceedings of the IEEE, ACM Computing
Reviews, and Cryptologia.

He has 13 times received the award for the best Computer Science textbook of the
year from the Text and Academic Authors Association.

In over 30 years in the field, he has been a technical contributor, technical manager,
and an executive with several high-technology firms. He has designed and implemented
both TCP/IP-based and OSI-based protocol suites on a variety of computers and operating
systems, ranging from microcomputers to mainframes. As a consultant, he has advised gov-
ernment agencies, computer and software vendors, and major users on the design, selection,
and use of networking software and products.

He created and maintains the Computer Science Student Resource Site at
ComputerScienceStudent.com. This site provides documents and links on a variety of
subjects of general interest to computer science students (and professionals). He is a member
of the editorial board of Cryptologia, a scholarly journal devoted to all aspects of cryptology.

Dr. Stallings holds a PhD from MIT in computer science and a BS from Notre Dame
in electrical engineering.

PART ONE: BACKGROUND

COMPUTER AND NETWORK
SECURITY CONCEPTS

1.1 Computer Security Concepts

A Definition of Computer Security
Examples
The Challenges of Computer Security

1.2 The OSI Security Architecture
1.3 Security Attacks

Passive Attacks
Active Attacks

1.4 Security Services

Authentication
Access Control
Data Confidentiality
Data Integrity
Nonrepudiation
Availability Service

1.5 Security Mechanisms
1.6 Fundamental Security Design Principles
1.7 Attack Surfaces and Attack Trees

Attack Surfaces
Attack Trees

1.8 A Model for Network Security
1.9 Standards

1.10 Key Terms, Review Questions, and Problems

19

20 CHAPTER 1 / COMPUTER AND NETWORK SECURITY CONCEPTS

LEARNING OBJECTIVES

After studying this chapter, you should be able to:

¢ Describe the key security requirements of confidentiality, integrity, and
availability.

¢ Describe the X.800 security architecture for OSI.

¢ Discuss the types of security threats and attacks that must be dealt with
and give examples of the types of threats and attacks that apply to differ-
ent categories of computer and network assets.

¢ Explain the fundamental security design principles.
¢ Discuss the use of attack surfaces and attack trees.

¢ List and briefly describe key organizations involved in cryptography
standards.

This book focuses on two broad areas: cryptographic algorithms and protocols, which
have a broad range of applications; and network and Internet security, which rely
heavily on cryptographic techniques.

Cryptographic algorithms and protocols can be grouped into four main areas:

= Symmetric encryption: Used to conceal the contents of blocks or streams of
data of any size, including messages, files, encryption keys, and passwords.

® Asymmetric encryption: Used to conceal small blocks of data, such as encryp-
tion keys and hash function values, which are used in digital signatures.

m Data integrity algorithms: Used to protect blocks of data, such as messages,
from alteration.

® Authentication protocols: These are schemes based on the use of crypto-
graphic algorithms designed to authenticate the identity of entities.

The field of network and Internet security consists of measures to deter, prevent,
detect, and correct security violations that involve the transmission of information.
That is a broad statement that covers a host of possibilities. To give you a feel for the
areas covered in this book, consider the following examples of security violations:

1. User A transmits a file to user B. The file contains sensitive information
(e.g., payroll records) that is to be protected from disclosure. User C, who is
not authorized to read the file, is able to monitor the transmission and capture
a copy of the file during its transmission.

2. A network manager, D, transmits a message to a computer, E, under its man-
agement. The message instructs computer E to update an authorization file to
include the identities of a number of new users who are to be given access to
that computer. User F intercepts the message, alters its contents to add or delete
entries, and then forwards the message to computer E, which accepts the mes-
sage as coming from manager D and updates its authorization file accordingly.

1.1 / COMPUTER SECURITY CONCEPTS 21

3. Rather than intercept a message, user F constructs its own message with the
desired entries and transmits that message to computer E as if it had come
from manager D. Computer E accepts the message as coming from manager D
and updates its authorization file accordingly.

4. An employee is fired without warning. The personnel manager sends a mes-
sage to a server system to invalidate the employee’s account. When the invali-
dation is accomplished, the server is to post a notice to the employee’s file as
confirmation of the action. The employee is able to intercept the message and
delay it long enough to make a final access to the server to retrieve sensitive
information. The message is then forwarded, the action taken, and the confir-
mation posted. The employee’s action may go unnoticed for some consider-
able time.

5. A message is sent from a customer to a stockbroker with instructions for vari-
ous transactions. Subsequently, the investments lose value and the customer
denies sending the message.

Although this list by no means exhausts the possible types of network security viola-
tions, it illustrates the range of concerns of network security.

1.1 COMPUTER SECURITY CONCEPTS

A Definition of Computer Security

The NIST Computer Security Handbook [NIST95] defines the term computer secu-
rity as follows:

Computer Security: The protection afforded to an automated information system
in order to attain the applicable objectives of preserving the integrity, availability,
and confidentiality of information system resources (includes hardware, software,
firmware, information/data, and telecommunications).

This definition introduces three key objectives that are at the heart of com-
puter security:

u Confidentiality: This term covers two related concepts:

Data' confidentiality: Assures that private or confidential information is
not made available or disclosed to unauthorized individuals.

Privacy: Assures that individuals control or influence what information re-
lated to them may be collected and stored and by whom and to whom that
information may be disclosed.

'RFC 4949 defines information as “facts and ideas, which can be represented (encoded) as various forms
of data,” and data as “information in a specific physical representation, usually a sequence of symbols
that have meaning; especially a representation of information that can be processed or produced by a
computer.” Security literature typically does not make much of a distinction, nor does this book.

22

CHAPTER 1 / COMPUTER AND NETWORK SECURITY CONCEPTS

m Integrity: This term covers two related concepts:

Data integrity: Assures that information (both stored and in transmit-
ted packets) and programs are changed only in a specified and authorized
manner.

System integrity: Assures that a system performs its intended function in
an unimpaired manner, free from deliberate or inadvertent unauthorized
manipulation of the system.

m Availability: Assures that systems work promptly and service is not denied to
authorized users.

These three concepts form what is often referred to as the CIA triad. The
three concepts embody the fundamental security objectives for both data and for
information and computing services. For example, the NIST standard FIPS 199
(Standards for Security Categorization of Federal Information and Information
Systems) lists confidentiality, integrity, and availability as the three security objec-
tives for information and for information systems. FIPS 199 provides a useful char-
acterization of these three objectives in terms of requirements and the definition of
a loss of security in each category:

m Confidentiality: Preserving authorized restrictions on information access
and disclosure, including means for protecting personal privacy and propri-
etary information. A loss of confidentiality is the unauthorized disclosure of
information.

m Integrity: Guarding against improper information modification or destruc-
tion, including ensuring information nonrepudiation and authenticity. A loss
of integrity is the unauthorized modification or destruction of information.

B Availability: Ensuring timely and reliable access to and use of information.
A loss of availability is the disruption of access to or use of information or an
information system.

Although the use of the CIA triad to define security objectives is well estab-
lished, some in the security field feel that additional concepts are needed to present a
complete picture (Figure 1.1). Two of the most commonly mentioned are as follows:

services

Abvailability

Figure 1.1 Essential Network and Computer Security
Requirements

1.1 / COMPUTER SECURITY CONCEPTS 23

m Authenticity: The property of being genuine and being able to be verified and
trusted; confidence in the validity of a transmission, a message, or message
originator. This means verifying that users are who they say they are and that
each input arriving at the system came from a trusted source.

m Accountability: The security goal that generates the requirement for actions
of an entity to be traced uniquely to that entity. This supports nonrepudia-
tion, deterrence, fault isolation, intrusion detection and prevention, and after-
action recovery and legal action. Because truly secure systems are not yet an
achievable goal, we must be able to trace a security breach to a responsible
party. Systems must keep records of their activities to permit later forensic
analysis to trace security breaches or to aid in transaction disputes.

Examples

We now provide some examples of applications that illustrate the requirements just
enumerated.? For these examples, we use three levels of impact on organizations or
individuals should there be a breach of security (i.e., a loss of confidentiality, integ-
rity, or availability). These levels are defined in FIPS PUB 199:

m Low: The loss could be expected to have a limited adverse effect on organi-
zational operations, organizational assets, or individuals. A limited adverse
effect means that, for example, the loss of confidentiality, integrity, or avail-
ability might (i) cause a degradation in mission capability to an extent and
duration that the organization is able to perform its primary functions, but the
effectiveness of the functions is noticeably reduced; (ii) result in minor dam-
age to organizational assets; (iii) result in minor financial loss; or (iv) result in
minor harm to individuals.

B Moderate: The loss could be expected to have a serious adverse effect on
organizational operations, organizational assets, or individuals. A serious
adverse effect means that, for example, the loss might (i) cause a signifi-
cant degradation in mission capability to an extent and duration that the
organization is able to perform its primary functions, but the effectiveness
of the functions is significantly reduced; (ii) result in significant damage to
organizational assets; (iii) result in significant financial loss; or (iv) result in
significant harm to individuals that does not involve loss of life or serious,
life-threatening injuries.

m High: The loss could be expected to have a severe or catastrophic adverse
effect on organizational operations, organizational assets, or individuals.
A severe or catastrophic adverse effect means that, for example, the loss
might (i) cause a severe degradation in or loss of mission capability to an
extent and duration that the organization is not able to perform one or more
of its primary functions; (ii) result in major damage to organizational assets;
(iii) result in major financial loss; or (iv) result in severe or catastrophic harm
to individuals involving loss of life or serious, life-threatening injuries.

These examples are taken from a security policy document published by the Information Technology
Security and Privacy Office at Purdue University.

24 CHAPTER 1 / COMPUTER AND NETWORK SECURITY CONCEPTS

ConrmenTIALITY Student grade information is an asset whose confidentiality is
considered to be highly important by students. In the United States, the release of
such information is regulated by the Family Educational Rights and Privacy Act
(FERPA). Grade information should only be available to students, their parents,
and employees that require the information to do their job. Student enrollment
information may have a moderate confidentiality rating. While still covered by
FERPA, this information is seen by more people on a daily basis, is less likely to be
targeted than grade information, and results in less damage if disclosed. Directory
information, such as lists of students or faculty or departmental lists, may be as-
signed a low confidentiality rating or indeed no rating. This information is typically
freely available to the public and published on a school’s Web site.

InTEGRITY Several aspects of integrity are illustrated by the example of a hospital
patient’s allergy information stored in a database. The doctor should be able to
trust that the information is correct and current. Now suppose that an employee
(e.g., a nurse) who is authorized to view and update this information deliberately
falsifies the data to cause harm to the hospital. The database needs to be restored
to a trusted basis quickly, and it should be possible to trace the error back to the
person responsible. Patient allergy information is an example of an asset with a high
requirement for integrity. Inaccurate information could result in serious harm or
death to a patient and expose the hospital to massive liability.

An example of an asset that may be assigned a moderate level of integrity
requirement is a Web site that offers a forum to registered users to discuss some
specific topic. Either a registered user or a hacker could falsify some entries or
deface the Web site. If the forum exists only for the enjoyment of the users, brings
in little or no advertising revenue, and is not used for something important such
as research, then potential damage is not severe. The Web master may experience
some data, financial, and time loss.

An example of a low integrity requirement is an anonymous online poll. Many
Web sites, such as news organizations, offer these polls to their users with very few
safeguards. However, the inaccuracy and unscientific nature of such polls is well
understood.

Avarasicity The more critical a component or service, the higher is the level of
availability required. Consider a system that provides authentication services for
critical systems, applications, and devices. An interruption of service results in the
inability for customers to access computing resources and staff to access the re-
sources they need to perform critical tasks. The loss of the service translates into a
large financial loss in lost employee productivity and potential customer loss.

An example of an asset that would typically be rated as having a moderate
availability requirement is a public Web site for a university; the Web site provides
information for current and prospective students and donors. Such a site is not a
critical component of the university’s information system, but its unavailability will
cause some embarrassment.

An online telephone directory lookup application would be classified as a low
availability requirement. Although the temporary loss of the application may be
an annoyance, there are other ways to access the information, such as a hardcopy
directory or the operator.

1.1 / COMPUTER SECURITY CONCEPTS 25

The Challenges of Computer Security

Computer and network security is both fascinating and complex. Some of the
reasons follow:

1.

n

6.

9.

Security is not as simple as it might first appear to the novice. The require-
ments seem to be straightforward; indeed, most of the major requirements for
security services can be given self-explanatory, one-word labels: confidential-
ity, authentication, nonrepudiation, or integrity. But the mechanisms used to
meet those requirements can be quite complex, and understanding them may
involve rather subtle reasoning.

In developing a particular security mechanism or algorithm, one must always
consider potential attacks on those security features. In many cases, successful
attacks are designed by looking at the problem in a completely different way,
therefore exploiting an unexpected weakness in the mechanism.

Because of point 2, the procedures used to provide particular services are
often counterintuitive. Typically, a security mechanism is complex, and it is not
obvious from the statement of a particular requirement that such elaborate
measures are needed. It is only when the various aspects of the threat are con-
sidered that elaborate security mechanisms make sense.

Having designed various security mechanisms, it is necessary to decide where
to use them. This is true both in terms of physical placement (e.g.,at what points
in a network are certain security mechanisms needed) and in a logical sense
(e.g., at what layer or layers of an architecture such as TCP/IP [Transmission
Control Protocol/Internet Protocol] should mechanisms be placed).

Security mechanisms typically involve more than a particular algorithm or
protocol. They also require that participants be in possession of some secret in-
formation (e.g., an encryption key), which raises questions about the creation,
distribution, and protection of that secret information. There also may be a re-
liance on communications protocols whose behavior may complicate the task
of developing the security mechanism. For example, if the proper functioning
of the security mechanism requires setting time limits on the transit time of a
message from sender to receiver, then any protocol or network that introduces
variable, unpredictable delays may render such time limits meaningless.

Computer and network security is essentially a battle of wits between a per-
petrator who tries to find holes and the designer or administrator who tries to
close them. The great advantage that the attacker has is that he or she need
only find a single weakness, while the designer must find and eliminate all
weaknesses to achieve perfect security.

There is a natural tendency on the part of users and system managers to per-
ceive little benefit from security investment until a security failure occurs.
Security requires regular, even constant, monitoring, and this is difficult in
today’s short-term, overloaded environment.

Security is still too often an afterthought to be incorporated into a system
after the design is complete rather than being an integral part of the design
process.

26 CHAPTER 1 / COMPUTER AND NETWORK SECURITY CONCEPTS

10. Many users and even security administrators view strong security as an
impediment to efficient and user-friendly operation of an information system
or use of information.

The difficulties just enumerated will be encountered in numerous ways as we
examine the various security threats and mechanisms throughout this book.

1.2 THE OSI SECURITY ARCHITECTURE

To assess effectively the security needs of an organization and to evaluate and
choose various security products and policies, the manager responsible for security
needs some systematic way of defining the requirements for security and character-
izing the approaches to satisfying those requirements. This is difficult enough in a
centralized data processing environment; with the use of local and wide area net-
works, the problems are compounded.

ITU-T? Recommendation X.800, Security Architecture for OSI, defines such a
systematic approach.* The OSI security architecture is useful to managers as a way
of organizing the task of providing security. Furthermore, because this architecture
was developed as an international standard, computer and communications vendors
have developed security features for their products and services that relate to this
structured definition of services and mechanisms.

For our purposes, the OSI security architecture provides a useful, if abstract,
overview of many of the concepts that this book deals with. The OSI security archi-
tecture focuses on security attacks, mechanisms, and services. These can be defined
briefly as

B Security attack: Any action that compromises the security of information
owned by an organization.

m Security mechanism: A process (or a device incorporating such a process)
that is designed to detect, prevent, or recover from a security attack.

B Security service: A processing or communication service that enhances the
security of the data processing systems and the information transfers of an
organization. The services are intended to counter security attacks, and they
make use of one or more security mechanisms to provide the service.

In the literature, the terms threat and attack are commonly used to mean more
or less the same thing. Table 1.1 provides definitions taken from RFC 4949, Internet
Security Glossary.

3The International Telecommunication Union (ITU) Telecommunication Standardization Sector (ITU-T)
is a United Nations-sponsored agency that develops standards, called Recommendations, relating to tele-
communications and to open systems interconnection (OSI).

“The OSI security architecture was developed in the context of the OSI protocol architecture, which is
described in Appendix L. However, for our purposes in this chapter, an understanding of the OSI proto-
col architecture is not required.

1.3 / SECURITY ATTACKS 27

Table 1.1 Threats and Attacks (RFC 4949)

Threat

A potential for violation of security, which exists when there is a circumstance, capability, action,
or event that could breach security and cause harm. That is, a threat is a possible danger that might
exploit a vulnerability.

Attack

An assault on system security that derives from an intelligent threat; that is, an intelligent act that
is a deliberate attempt (especially in the sense of a method or technique) to evade security services
and violate the security policy of a system.

1.3 SECURITY ATTACKS

A useful means of classifying security attacks, used both in X.800 and RFC 4949, is
in terms of passive attacks and active attacks (Figure 1.2). A passive attack attempts
to learn or make use of information from the system but does not affect system re-
sources. An active attack attempts to alter system resources or affect their operation.

Passive Attacks

Passive attacks (Figure 1.2a) are in the nature of eavesdropping on, or monitoring
of, transmissions. The goal of the opponent is to obtain information that is being
transmitted. Two types of passive attacks are the release of message contents and
traffic analysis.

The release of message contents is easily understood. A telephone conver-
sation, an electronic mail message, and a transferred file may contain sensitive or
confidential information. We would like to prevent an opponent from learning the
contents of these transmissions.

A second type of passive attack, traffic analysis, is subtler. Suppose that we
had a way of masking the contents of messages or other information traffic so that
opponents, even if they captured the message, could not extract the information
from the message. The common technique for masking contents is encryption. If we
had encryption protection in place, an opponent might still be able to observe the
pattern of these messages. The opponent could determine the location and identity
of communicating hosts and could observe the frequency and length of messages
being exchanged. This information might be useful in guessing the nature of the
communication that was taking place.

Passive attacks are very difficult to detect, because they do not involve any
alteration of the data. Typically, the message traffic is sent and received in an appar-
ently normal fashion, and neither the sender nor receiver is aware that a third party
has read the messages or observed the traffic pattern. However, it is feasible to pre-
vent the success of these attacks, usually by means of encryption. Thus, the empha-
sis in dealing with passive attacks is on prevention rather than detection.

Active Attacks

Active attacks (Figure 1.2b) involve some modification of the data stream or the
creation of a false stream and can be subdivided into four categories: masquerade,
replay, modification of messages, and denial of service.

28

CHAPTER 1 / COMPUTER AND NETWORK SECURITY CONCEPTS

Internet or
other communications facility

(a) Passive attacks

Internet or
other communications facility

(b) Active attacks

Figure 1.2 Security Attacks

A masquerade takes place when one entity pretends to be a different entity
(path 2 of Figure 1.2b is active). A masquerade attack usually includes one of the
other forms of active attack. For example, authentication sequences can be captured
and replayed after a valid authentication sequence has taken place, thus enabling an
authorized entity with few privileges to obtain extra privileges by impersonating an
entity that has those privileges.

Replay involves the passive capture of a data unit and its subsequent retrans-
mission to produce an unauthorized effect (paths 1, 2, and 3 active).

Modification of messages simply means that some portion of a legitimate mes-
sage is altered, or that messages are delayed or reordered, to produce an unauthor-
ized effect (paths 1 and 2 active). For example, a message meaning “Allow John
Smith to read confidential file accounts” is modified to mean “Allow Fred Brown to
read confidential file accounts.”

1.4 / SECURITY SERVICES 29

The denial of service prevents or inhibits the normal use or management of
communications facilities (path 3 active). This attack may have a specific target; for
example, an entity may suppress all messages directed to a particular destination
(e.g., the security audit service). Another form of service denial is the disruption of
an entire network, either by disabling the network or by overloading it with mes-
sages so as to degrade performance.

Active attacks present the opposite characteristics of passive attacks. Whereas
passive attacks are difficult to detect, measures are available to prevent their success.
On the other hand, it is quite difficult to prevent active attacks absolutely because
of the wide variety of potential physical, software, and network vulnerabilities.
Instead, the goal is to detect active attacks and to recover from any disruption or
delays caused by them. If the detection has a deterrent effect, it may also contribute
to prevention.

1.4 SECURITY SERVICES

X.800 defines a security service as a service that is provided by a protocol layer of
communicating open systems and that ensures adequate security of the systems or
of data transfers. Perhaps a clearer definition is found in RFC 4949, which provides
the following definition: a processing or communication service that is provided by
a system to give a specific kind of protection to system resources; security services
implement security policies and are implemented by security mechanisms.

X.800 divides these services into five categories and fourteen specific services
(Table 1.2). We look at each category in turn.’

Authentication

The authentication service is concerned with assuring that a communication is au-
thentic. In the case of a single message, such as a warning or alarm signal, the function
of the authentication service is to assure the recipient that the message is from the
source that it claims to be from. In the case of an ongoing interaction, such as the con-
nection of a terminal to a host, two aspects are involved. First, at the time of connec-
tion initiation, the service assures that the two entities are authentic, that is, that each
is the entity that it claims to be. Second, the service must assure that the connection is
not interfered with in such a way that a third party can masquerade as one of the two
legitimate parties for the purposes of unauthorized transmission or reception.
Two specific authentication services are defined in X.800:

u Peer entity authentication: Provides for the corroboration of the identity of a
peer entity in an association. Two entities are considered peers if they imple-
ment to same protocol in different systems; for example two TCP modules
in two communicating systems. Peer entity authentication is provided for

SThere is no universal agreement about many of the terms used in the security literature. For example, the
term integrity is sometimes used to refer to all aspects of information security. The term authentication is
sometimes used to refer both to verification of identity and to the various functions listed under integrity
in this chapter. Our usage here agrees with both X.800 and RFC 4949.

30

Security Services (X.800)

AUTHENTICATION DATA INTEGRITY
The assurance that the communicating entity is the The assurance that data received are exactly as
one that it claims to be. sent by an authorized entity (i.e., contain no modi-

fication, insertion, deletion, or replay).
Peer Entity Authentication

Used in association with a logical connection to Connection Integrity with Recovery
provide confidence in the identity of the entities Provides for the integrity of all user data on a connec-
connected. tion and detects any modification, insertion, deletion,
or replay of any data within an entire data sequence,
Data-Origin Authentication with recovery attempted.
In a connectionless transfer, provides assurance that
the source of received data is as claimed. Connection Integrity without Recovery
As above, but provides only detection without
ACCESS CONTROL recovery.

The prevention of unauthorized use of a resource
(i.e., this service controls who can have access to a
resource, under what conditions access can occur,
and what those accessing the resource are allowed

Selective-Field Connection Integrity

Provides for the integrity of selected fields within the
user data of a data block transferred over a connec-
tion and takes the form of determination of whether

LI} the selected fields have been modified, inserted,
DATA CONFIDENTIALITY deleted, or replayed.
The protection of data from unauthorized Connectionless Integrity
disclosure. Provides for the integrity of a single connectionless
data block and may take the form of detection of

Connection Confidentiality data modification. Additionally, a limited form of
The protection of all user data on a connection. replay detection may be provided.
Connectionless Confidentiality Selective-Field Connectionless Integrity
The protection of all user data in a single data block. Provides for the integrity of selected fields within a

single connectionless data block; takes the form of
determination of whether the selected fields have
been modified.

Selective-Field Confidentiality
The confidentiality of selected fields within the user
data on a connection or in a single data block.

Traffic-Flow Confidentiality NONREPUDIATION
The protection of the information that might be Provides protection against denial by one of the
derived from observation of traffic flows. entities involved in a communication of having par-

ticipated in all or part of the communication.

Nonrepudiation, Origin
Proof that the message was sent by the specified
party.

Nonrepudiation, Destination
Proof that the message was received by the specified
party.

use at the establishment of, or at times during the data transfer phase of, a
connection. It attempts to provide confidence that an entity is not performing
either a masquerade or an unauthorized replay of a previous connection.

Data origin authentication: Provides for the corroboration of the source of a
data unit. It does not provide protection against the duplication or modifica-
tion of data units. This type of service supports applications like electronic mail,
where there are no prior interactions between the communicating entities.

1.4 / SECURITY SERVICES 31

Access Control

In the context of network security, access control is the ability to limit and control
the access to host systems and applications via communications links. To achieve
this, each entity trying to gain access must first be identified, or authenticated,
so that access rights can be tailored to the individual.

Data Confidentiality

Confidentiality is the protection of transmitted data from passive attacks. With re-
spect to the content of a data transmission, several levels of protection can be iden-
tified. The broadest service protects all user data transmitted between two users
over a period of time. For example, when a TCP connection is set up between two
systems, this broad protection prevents the release of any user data transmitted over
the TCP connection. Narrower forms of this service can also be defined, including
the protection of a single message or even specific fields within a message. These
refinements are less useful than the broad approach and may even be more complex
and expensive to implement.

The other aspect of confidentiality is the protection of traffic flow from
analysis. This requires that an attacker not be able to observe the source and desti-
nation, frequency, length, or other characteristics of the traffic on a communications
facility.

Data Integrity

As with confidentiality, integrity can apply to a stream of messages, a single mes-
sage, or selected fields within a message. Again, the most useful and straightforward
approach is total stream protection.

A connection-oriented integrity service, one that deals with a stream of mes-
sages, assures that messages are received as sent with no duplication, insertion,
modification, reordering, or replays. The destruction of data is also covered under
this service. Thus, the connection-oriented integrity service addresses both mes-
sage stream modification and denial of service. On the other hand, a connection-
less integrity service, one that deals with individual messages without regard to any
larger context, generally provides protection against message modification only.

We can make a distinction between service with and without recovery. Because
the integrity service relates to active attacks, we are concerned with detection rather
than prevention. If a violation of integrity is detected, then the service may simply
report this violation, and some other portion of software or human intervention is
required to recover from the violation. Alternatively, there are mechanisms avail-
able to recover from the loss of integrity of data, as we will review subsequently. The
incorporation of automated recovery mechanisms is, in general, the more attractive
alternative.

Nonrepudiation

Nonrepudiation prevents either sender or receiver from denying a transmitted mes-
sage. Thus, when a message is sent, the receiver can prove that the alleged sender in
fact sent the message. Similarly, when a message is received, the sender can prove
that the alleged receiver in fact received the message.

32 CHAPTER 1 / COMPUTER AND NETWORK SECURITY CONCEPTS

Availability Service

Both X.800 and RFC 4949 define availability to be the property of a system or a
system resource being accessible and usable upon demand by an authorized system
entity, according to performance specifications for the system (i.e., a system is avail-
able if it provides services according to the system design whenever users request
them). A variety of attacks can result in the loss of or reduction in availability. Some
of these attacks are amenable to automated countermeasures, such as authentica-
tion and encryption, whereas others require some sort of physical action to prevent
or recover from loss of availability of elements of a distributed system.

X.800 treats availability as a property to be associated with various security
services. However, it makes sense to call out specifically an availability service. An
availability service is one that protects a system to ensure its availability. This ser-
vice addresses the security concerns raised by denial-of-service attacks. It depends
on proper management and control of system resources and thus depends on access
control service and other security services.

1.5 SECURITY MECHANISMS

Table 1.3 lists the security mechanisms defined in X.800. The mechanisms are
divided into those that are implemented in a specific protocol layer, such as TCP or
an application-layer protocol, and those that are not specific to any particular pro-
tocol layer or security service. These mechanisms will be covered in the appropriate

Table 1.3 Security Mechanisms (X.800)

SPECIFIC SECURITY MECHANISMS
May be incorporated into the appropriate protocol
layer in order to provide some of the OSI security
services.

PERVASIVE SECURITY MECHANISMS

Mechanisms that are not specific to any particular
OSI security service or protocol layer.

Trusted Functionality
That which is perceived to be correct with respect
to some criteria (e.g., as established by a security

Encipherment
The use of mathematical algorithms to transform

data into a form that is not readily intelligible. The ;

! policy).
transformation and subsequent recovery of the data
depend on an algorithm and zero or more encryption Security Label

Data appended to, or a cryptographic transformation
of, a data unit that allows a recipient of the data unit

to prove the source and integrity of the data unit and
protect against forgery (e.g., by the recipient).

Access Control
A variety of mechanisms that enforce access rights to
resources.

Data Integrity
A variety of mechanisms used to assure the integrity
of a data unit or stream of data units.

keys. The marking bound to a resource (which may be a
L data unit) that names or designates the security attri-
Digital Signature butes of that resource.

Event Detection
Detection of security-relevant events.

Security Audit Trail

Data collected and potentially used to facilitate a
security audit, which is an independent review and
examination of system records and activities.

Security Recovery

Deals with requests from mechanisms, such as event
handling and management functions, and takes
recovery actions.

1.5 / SECURITY MECHANISMS 33

SPECIFIC SECURITY MECHANISMS

Authentication Exchange
A mechanism intended to ensure the identity of an
entity by means of information exchange.

Traffic Padding
The insertion of bits into gaps in a data stream to
frustrate traffic analysis attempts.

Routing Control

Enables selection of particular physically secure
routes for certain data and allows routing changes,
especially when a breach of security is suspected.

Notarization
The use of a trusted third party to assure certain
properties of a data exchange.

places in the book. So we do not elaborate now, except to comment on the defini-
tion of encipherment. X.800 distinguishes between reversible encipherment mech-
anisms and irreversible encipherment mechanisms. A reversible encipherment
mechanism is simply an encryption algorithm that allows data to be encrypted and
subsequently decrypted. Irreversible encipherment mechanisms include hash algo-
rithms and message authentication codes, which are used in digital signature and
message authentication applications.

Table 1.4, based on one in X.800, indicates the relationship between security
services and security mechanisms.

Table 1.4 Relationship Between Security Services and Mechanisms

MECHANISM
2
S
g A
LSS g S
S/ QS SSLLE
&‘6 -\%& o‘y‘é @%O \cif’0 @® s IL;&\OQ
'é&'&% %%Q YOS S
Y E IO YESOTEIES
SERVICE S/ QNSO KRS /20
Peer entity authentication Y|Y Y
Data origin authentication
Access control Y
Confidentiality
Traffic flow confidentiality Y Y
Data integrity
Nonrepudiation Y Y Y
Availability Y|Y

34 CHAPTER 1 / COMPUTER AND NETWORK SECURITY CONCEPTS

1.6 FUNDAMENTAL SECURITY DESIGN PRINCIPLES

Despite years of research and development, it has not been possible to develop
security design and implementation techniques that systematically exclude security
flaws and prevent all unauthorized actions. In the absence of such foolproof tech-
niques, it is useful to have a set of widely agreed design principles that can guide
the development of protection mechanisms. The National Centers of Academic
Excellence in Information Assurance/Cyber Defense, which is jointly sponsored by
the U.S. National Security Agency and the U.S. Department of Homeland Security,
list the following as fundamental security design principles [NCAE13]:

Economy of mechanism
Fail-safe defaults
Complete mediation
Open design

Separation of privilege
Least privilege

Least common mechanism
Psychological acceptability
Isolation

Encapsulation

Modularity

Layering

Least astonishment

The first eight listed principles were first proposed in [SALT75] and have withstood
the test of time. In this section, we briefly discuss each principle.

Economy of mechanism means that the design of security measures embod-
ied in both hardware and software should be as simple and small as possible.
The motivation for this principle is that relatively simple, small design is eas-
ier to test and verify thoroughly. With a complex design, there are many more
opportunities for an adversary to discover subtle weaknesses to exploit that may
be difficult to spot ahead of time. The more complex the mechanism, the more
likely it is to possess exploitable flaws. Simple mechanisms tend to have fewer
exploitable flaws and require less maintenance. Further, because configuration
management issues are simplified, updating or replacing a simple mechanism
becomes a less intensive process. In practice, this is perhaps the most difficult
principle to honor. There is a constant demand for new features in both hard-
ware and software, complicating the security design task. The best that can be
done is to keep this principle in mind during system design to try to eliminate
unnecessary complexity.

Fail-safe defaults means that access decisions should be based on permission
rather than exclusion. That is, the default situation is lack of access, and the protec-
tion scheme identifies conditions under which access is permitted. This approach

1.6 / FUNDAMENTAL SECURITY DESIGN PRINCIPLES 35

exhibits a better failure mode than the alternative approach, where the default is
to permit access. A design or implementation mistake in a mechanism that gives
explicit permission tends to fail by refusing permission, a safe situation that can
be quickly detected. On the other hand, a design or implementation mistake in a
mechanism that explicitly excludes access tends to fail by allowing access, a failure
that may long go unnoticed in normal use. Most file access systems and virtually all
protected services on client/server systems use fail-safe defaults.

Complete mediation means that every access must be checked against the
access control mechanism. Systems should not rely on access decisions retrieved
from a cache. In a system designed to operate continuously, this principle requires
that, if access decisions are remembered for future use, careful consideration be
given to how changes in authority are propagated into such local memories. File
access systems appear to provide an example of a system that complies with this
principle. However, typically, once a user has opened a file, no check is made to see
if permissions change. To fully implement complete mediation, every time a user
reads a field or record in a file, or a data item in a database, the system must exercise
access control. This resource-intensive approach is rarely used.

Open design means that the design of a security mechanism should be open
rather than secret. For example, although encryption keys must be secret, encryption
algorithms should be open to public scrutiny. The algorithms can then be reviewed
by many experts, and users can therefore have high confidence in them. This is the
philosophy behind the National Institute of Standards and Technology (NIST)
program of standardizing encryption and hash algorithms, and has led to the wide-
spread adoption of NIST-approved algorithms.

Separation of privilege is defined in [SALT75] as a practice in which mul-
tiple privilege attributes are required to achieve access to a restricted resource.
A good example of this is multifactor user authentication, which requires the use of
multiple techniques, such as a password and a smart card, to authorize a user. The
term is also now applied to any technique in which a program is divided into parts
that are limited to the specific privileges they require in order to perform a specific
task. This is used to mitigate the potential damage of a computer security attack.
One example of this latter interpretation of the principle is removing high privilege
operations to another process and running that process with the higher privileges
required to perform its tasks. Day-to-day interfaces are executed in a lower privi-
leged process.

Least privilege means that every process and every user of the system should
operate using the least set of privileges necessary to perform the task. A good
example of the use of this principle is role-based access control. The system security
policy can identify and define the various roles of users or processes. Each role is
assigned only those permissions needed to perform its functions. Each permission
specifies a permitted access to a particular resource (such as read and write access
to a specified file or directory, connect access to a given host and port). Unless a
permission is granted explicitly, the user or process should not be able to access the
protected resource. More generally, any access control system should allow each
user only the privileges that are authorized for that user. There is also a temporal
aspect to the least privilege principle. For example, system programs or administra-
tors who have special privileges should have those privileges only when necessary;

36 CHAPTER 1 / COMPUTER AND NETWORK SECURITY CONCEPTS

when they are doing ordinary activities the privileges should be withdrawn. Leaving
them in place just opens the door to accidents.

Least common mechanism means that the design should minimize the func-
tions shared by different users, providing mutual security. This principle helps
reduce the number of unintended communication paths and reduces the amount of
hardware and software on which all users depend, thus making it easier to verify if
there are any undesirable security implications.

Psychological acceptability implies that the security mechanisms should not
interfere unduly with the work of users, while at the same time meeting the needs of
those who authorize access. If security mechanisms hinder the usability or accessibil-
ity of resources, then users may opt to turn off those mechanisms. Where possible,
security mechanisms should be transparent to the users of the system or at most
introduce minimal obstruction. In addition to not being intrusive or burdensome,
security procedures must reflect the user’s mental model of protection. If the protec-
tion procedures do not make sense to the user or if the user must translate his image
of protection into a substantially different protocol, the user is likely to make errors.

Isolation is a principle that applies in three contexts. First, public access sys-
tems should be isolated from critical resources (data, processes, etc.) to prevent dis-
closure or tampering. In cases where the sensitivity or criticality of the information
is high, organizations may want to limit the number of systems on which that data is
stored and isolate them, either physically or logically. Physical isolation may include
ensuring that no physical connection exists between an organization’s public access
information resources and an organization’s critical information. When implement-
ing logical isolation solutions, layers of security services and mechanisms should be
established between public systems and secure systems responsible for protecting
critical resources. Second, the processes and files of individual users should be iso-
lated from one another except where it is explicitly desired. All modern operating
systems provide facilities for such isolation, so that individual users have separate,
isolated process space, memory space, and file space, with protections for prevent-
ing unauthorized access. And finally, security mechanisms should be isolated in the
sense of preventing access to those mechanisms. For example, logical access control
may provide a means of isolating cryptographic software from other parts of the
host system and for protecting cryptographic software from tampering and the keys
from replacement or disclosure.

Encapsulation can be viewed as a specific form of isolation based on object-
oriented functionality. Protection is provided by encapsulating a collection of pro-
cedures and data objects in a domain of its own so that the internal structure of a
data object is accessible only to the procedures of the protected subsystem, and the
procedures may be called only at designated domain entry points.

Modularity in the context of security refers both to the development of security
functions as separate, protected modules and to the use of a modular architecture for
mechanism design and implementation. With respect to the use of separate security
modules, the design goal here is to provide common security functions and services,
such as cryptographic functions, as common modules. For example, numerous proto-
cols and applications make use of cryptographic functions. Rather than implement-
ing such functions in each protocol or application, a more secure design is provided
by developing a common cryptographic module that can be invoked by numerous

1.7 / ATTACK SURFACES AND ATTACK TREES 37

protocols and applications. The design and implementation effort can then focus on
the secure design and implementation of a single cryptographic module and includ-
ing mechanisms to protect the module from tampering. With respect to the use of a
modular architecture, each security mechanism should be able to support migration
to new technology or upgrade of new features without requiring an entire system
redesign. The security design should be modular so that individual parts of the secu-
rity design can be upgraded without the requirement to modify the entire system.

Layering refers to the use of multiple, overlapping protection approaches
addressing the people, technology, and operational aspects of information systems.
By using multiple, overlapping protection approaches, the failure or circumven-
tion of any individual protection approach will not leave the system unprotected.
We will see throughout this book that a layering approach is often used to provide
multiple barriers between an adversary and protected information or services. This
technique is often referred to as defense in depth.

Least astonishment means that a program or user interface should always
respond in the way that is least likely to astonish the user. For example, the mechanism
for authorization should be transparent enough to a user that the user has a good intui-
tive understanding of how the security goals map to the provided security mechanism.

1.7 ATTACK SURFACES AND ATTACK TREES

In Section 1.3, we provided an overview of the spectrum of security threats and
attacks facing computer and network systems. Section 22.1 goes into more detail
about the nature of attacks and the types of adversaries that present security threats.
In this section, we elaborate on two concepts that are useful in evaluating and clas-
sifying threats: attack surfaces and attack trees.

Attack Surfaces

An attack surface consists of the reachable and exploitable vulnerabilities in a sys-
tem [MANA11, HOWAO3]. Examples of attack surfaces are the following:

m Open ports on outward facing Web and other servers, and code listening on
those ports
m Services available on the inside of a firewall

m Code that processes incoming data, email, XML, office documents, and indus-
try-specific custom data exchange formats

m Interfaces, SQL, and Web forms
B An employee with access to sensitive information vulnerable to a social
engineering attack

Attack surfaces can be categorized as follows:

m Network attack surface: This category refers to vulnerabilities over an enterprise
network, wide-area network, or the Internet. Included in this category are net-
work protocol vulnerabilities, such as those used for a denial-of-service attack,
disruption of communications links, and various forms of intruder attacks.

38 CHAPTER 1 / COMPUTER AND NETWORK SECURITY CONCEPTS

m Software attack surface: This refers to vulnerabilities in application, utility,
or operating system code. A particular focus in this category is Web server
software.

® Human attack surface: This category refers to vulnerabilities created by
personnel or outsiders, such as social engineering, human error, and trusted
insiders.

An attack surface analysis is a useful technique for assessing the scale and
severity of threats to a system. A systematic analysis of points of vulnerability
makes developers and security analysts aware of where security mechanisms are
required. Once an attack surface is defined, designers may be able to find ways to
make the surface smaller, thus making the task of the adversary more difficult. The
attack surface also provides guidance on setting priorities for testing, strengthening
security measures, and modifying the service or application.

As illustrated in Figure 1.3, the use of layering, or defense in depth, and attack
surface reduction complement each other in mitigating security risk.

Attack Trees

An attack tree is a branching, hierarchical data structure that represents a set of poten-
tial techniques for exploiting security vulnerabilities [MAUWO05, MOORO01, SCHN99].
The security incident that is the goal of the attack is represented as the root node of
the tree, and the ways that an attacker could reach that goal are iteratively and incre-
mentally represented as branches and subnodes of the tree. Each subnode defines a
subgoal, and each subgoal may have its own set of further subgoals, and so on. The
final nodes on the paths outward from the root, that is, the leaf nodes, represent differ-
ent ways to initiate an attack. Each node other than a leaf is either an AND-node or an
OR-node. To achieve the goal represented by an AND-node, the subgoals represented
by all of that node’s subnodes must be achieved; and for an OR-node, at least one of
the subgoals must be achieved. Branches can be labeled with values representing dif-
ficulty, cost, or other attack attributes, so that alternative attacks can be compared.

z . .
2 Medium High
S| security risk security risk
7

o0

£

5

=)

<

-
5 Low Medium
jo]
o) security risk security risk

Small Large

Attack surface

Figure 1.3 Defense in Depth and Attack Surface

1.7 / ATTACK SURFACES AND ATTACK TREES 39

The motivation for the use of attack trees is to effectively exploit the infor-
mation available on attack patterns. Organizations such as CERT publish security
advisories that have enabled the development of a body of knowledge about both
general attack strategies and specific attack patterns. Security analysts can use the
attack tree to document security attacks in a structured form that reveals key vul-
nerabilities. The attack tree can guide both the design of systems and applications,
and the choice and strength of countermeasures.

Figure 1.4, based on a figure in [DIMIO7], is an example of an attack tree
analysis for an Internet banking authentication application. The root of the tree is
the objective of the attacker, which is to compromise a user’s account. The shaded
boxes on the tree are the leaf nodes, which represent events that comprise the
attacks. Note that in this tree, all the nodes other than leaf nodes are OR-nodes.
The analysis to generate this tree considered the three components involved in
authentication:

| Bank account compromise |

—| User credential compromise |——| UT/Ula User surveillance

UT/U1b Theft of token and
handwritten notes

Malicious software pon -
™ installation Vulnerability exploit |

—|UT/U3a Smartcard analyzers UT/U2a Hidden code |

| | UT/U3b Smartcard reader UT/U2b Worms
manipulator
UT/U2¢ Emails with
|| UT/U3c Brute force attacks malicious code
with PIN calculators

— CC2 Sniffing

User communication I : - ;
1 with attacker I UT/U4a Social engineering

UT/U4b Web page
obfuscation

Redirection of

—| Injection of commands |— CC3 Active man-in-the —— communication toward
middle attacks fraudulent site

—| User credential guessing |—| IBS1 Brute force attacks | CC1 Pharming

|| IBS2 Security policy —| IBS3 Web site manipulation |
violation
Use of known authenticated Normal user authentication CC4 Pre-defined session
session by attacker with specified session ID IDs (session hijacking)

Figure 1.4 An Attack Tree for Internet Banking Authentication

40 CHAPTER 1 / COMPUTER AND NETWORK SECURITY CONCEPTS

User terminal and user (UT/U): These attacks target the user equipment,
including the tokens that may be involved, such as smartcards or other pass-
word generators, as well as the actions of the user.

Communications channel (CC): This type of attack focuses on communica-
tion links.

Internet banking server (IBS): These types of attacks are offline attacks against
the servers that host the Internet banking application.

Five overall attack strategies can be identified, each of which exploits one or

more of the three components. The five strategies are as follows:

User credential compromise: This strategy can be used against many ele-
ments of the attack surface. There are procedural attacks, such as monitoring
a user’s action to observe a PIN or other credential, or theft of the user’s
token or handwritten notes. An adversary may also compromise token
information using a variety of token attack tools, such as hacking the smart-
card or using a brute force approach to guess the PIN. Another possible
strategy is to embed malicious software to compromise the user’s login and
password. An adversary may also attempt to obtain credential information
via the communication channel (sniffing). Finally, an adversary may use
various means to engage in communication with the target user, as shown
in Figure 1.4.

Injection of commands: In this type of attack, the attacker is able to intercept
communication between the UT and the IBS. Various schemes can be used
to be able to impersonate the valid user and so gain access to the banking
system.

User credential guessing: It is reported in [HILT06] that brute force attacks
against some banking authentication schemes are feasible by sending ran-
dom usernames and passwords. The attack mechanism is based on distributed
zombie personal computers, hosting automated programs for username- or
password-based calculation.

Security policy violation: For example, violating the bank’s security policy
in combination with weak access control and logging mechanisms, an em-
ployee may cause an internal security incident and expose a customer’s
account.

Use of known authenticated session: This type of attack persuades or forces
the user to connect to the IBS with a preset session ID. Once the user authen-
ticates to the server, the attacker may utilize the known session ID to send
packets to the IBS, spoofing the user’s identity.

Figure 1.4 provides a thorough view of the different types of attacks on an

Internet banking authentication application. Using this tree as a starting point, secu-
rity analysts can assess the risk of each attack and, using the design principles out-
lined in the preceding section, design a comprehensive security facility. [DIMOO07]
provides a good account of the results of this design effort.

1.8 / A MODEL FOR NETWORK SECURITY 41

1.8 A MODEL FOR NETWORK SECURITY

A model for much of what we will be discussing is captured, in very general terms, in
Figure 1.5. A message is to be transferred from one party to another across some sort
of Internet service. The two parties, who are the principals in this transaction, must
cooperate for the exchange to take place. A logical information channel is established
by defining a route through the Internet from source to destination and by the coop-
erative use of communication protocols (e.g., TCP/IP) by the two principals.
Security aspects come into play when it is necessary or desirable to protect the
information transmission from an opponent who may present a threat to confidentiality,
authenticity, and so on. All the techniques for providing security have two components:

B A security-related transformation on the information to be sent. Examples
include the encryption of the message, which scrambles the message so that it
is unreadable by the opponent, and the addition of a code based on the con-
tents of the message, which can be used to verify the identity of the sender.

m Some secret information shared by the two principals and, it is hoped,
unknown to the opponent. An example is an encryption key used in conjunc-
tion with the transformation to scramble the message before transmission
and unscramble it on reception.6

A trusted third party may be needed to achieve secure transmission. For
example, a third party may be responsible for distributing the secret information

Trusted third party
(e.g., arbiter, distributer
of secret information)

Sender . Recipient
Information

Security-related channel Security-related
2, transformation 0 08 transformation 2
17} Q ©» O ©» 7]
2 D O D O O
< \T/ &8 38 KT/ <

Secret Secret
information information
Opponent

Figure 1.5 Model for Network Security

SPart Two discusses a form of encryption, known as a symmetric encryption, in which only one of the two
principals needs to have the secret information.

42 CHAPTER 1 / COMPUTER AND NETWORK SECURITY CONCEPTS

to the two principals while keeping it from any opponent. Or a third party may be
needed to arbitrate disputes between the two principals concerning the authenticity
of a message transmission.

This general model shows that there are four basic tasks in designing a par-
ticular security service:

1. Design an algorithm for performing the security-related transformation. The
algorithm should be such that an opponent cannot defeat its purpose.

. Generate the secret information to be used with the algorithm.

@Pw N

. Develop methods for the distribution and sharing of the secret information.

F N

. Specify a protocol to be used by the two principals that makes use of the
security algorithm and the secret information to achieve a particular security
service.

Parts One through Five of this book concentrate on the types of security
mechanisms and services that fit into the model shown in Figure 1.5. However,
there are other security-related situations of interest that do not neatly fit this
model but are considered in this book. A general model of these other situations
is illustrated in Figure 1.6, which reflects a concern for protecting an information
system from unwanted access. Most readers are familiar with the concerns caused
by the existence of hackers, who attempt to penetrate systems that can be accessed
over a network. The hacker can be someone who, with no malign intent, simply gets
satisfaction from breaking and entering a computer system. The intruder can be a
disgruntled employee who wishes to do damage or a criminal who seeks to exploit
computer assets for financial gain (e.g., obtaining credit card numbers or perform-
ing illegal money transfers).

Another type of unwanted access is the placement in a computer system of
logic that exploits vulnerabilities in the system and that can affect application pro-
grams as well as utility programs, such as editors and compilers. Programs can pres-
ent two kinds of threats:

m Information access threats: Intercept or modify data on behalf of users who
should not have access to that data.

m Service threats: Exploit service flaws in computers to inhibit use by legitimate

users.
Information system
S~ Computing resources
Opponent (processor, memory, 1/0)
—human (e.g., hacker) Data
—software ())
(e.g., virus, worm) Processes
Access channel
Software
Gatekeeper
function Internal security controls

Figure 1.6 Network Access Security Model

1.9 / STANDARDS 43

Viruses and worms are two examples of software attacks. Such attacks can be
introduced into a system by means of a disk that contains the unwanted logic con-
cealed in otherwise useful software. They can also be inserted into a system across a
network; this latter mechanism is of more concern in network security.

The security mechanisms needed to cope with unwanted access fall into two
broad categories (see Figure 1.6). The first category might be termed a gatekeeper
function. It includes password-based login procedures that are designed to deny
access to all but authorized users and screening logic that is designed to detect and
reject worms, viruses, and other similar attacks. Once either an unwanted user
or unwanted software gains access, the second line of defense consists of a vari-
ety of internal controls that monitor activity and analyze stored information in an
attempt to detect the presence of unwanted intruders. These issues are explored
in Part Six.

1.9 STANDARDS

Many of the security techniques and applications described in this book have been
specified as standards. Additionally, standards have been developed to cover man-
agement practices and the overall architecture of security mechanisms and services.
Throughout this book, we describe the most important standards in use or that are
being developed for various aspects of cryptography and network security. Various
organizations have been involved in the development or promotion of these stan-
dards. The most important (in the current context) of these organizations are as
follows:

= National Institute of Standards and Technology: NIST is a U.S. federal agency
that deals with measurement science, standards, and technology related to
U.S. government use and to the promotion of U.S. private-sector innovation.
Despite its national scope, NIST Federal Information Processing Standards
(FIPS) and Special Publications (SP) have a worldwide impact.

m Internet Society: ISOC is a professional membership society with world-
wide organizational and individual membership. It provides leadership in
addressing issues that confront the future of the Internet and is the organiza-
tion home for the groups responsible for Internet infrastructure standards,
including the Internet Engineering Task Force (IETF) and the Internet
Architecture Board (IAB). These organizations develop Internet stan-
dards and related specifications, all of which are published as Requests for
Comments (RFCs).

m ITU-T: The International Telecommunication Union (ITU) is an interna-
tional organization within the United Nations System in which governments
and the private sector coordinate global telecom networks and services. The
ITU Telecommunication Standardization Sector (ITU-T) is one of the three
sectors of the ITU. ITU-T’s mission is the development of technical standards
covering all fields of telecommunications. ITU-T standards are referred to as
Recommendations.

44 CHAPTER 1 / COMPUTER AND NETWORK SECURITY CONCEPTS

ISO: The International Organization for Standardization (ISO)’ is a world-
wide federation of national standards bodies from more than 140 countries,
one from each country. ISO is a nongovernmental organization that promotes
the development of standardization and related activities with a view to fa-
cilitating the international exchange of goods and services and to developing
cooperation in the spheres of intellectual, scientific, technological, and eco-
nomic activity. ISO’s work results in international agreements that are pub-
lished as International Standards.

A more detailed discussion of these organizations is contained in Appendix D.

1.10 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms
access control denial of service passive attack
active attack encryption replay
authentication integrity security attacks
authenticity intruder security mechanisms
availability masquerade security services
data confidentiality nonrepudiation traffic analysis
data integrity OSI security architecture

Review Questions

1.1 What is the OSI security architecture?

1.2 List and briefly define the three key objectives of computer security.

1.3 List and briefly define categories of passive and active security attacks.

1.4 List and briefly define categories of security services.

1.5 List and briefly define categories of security mechanisms.

1.6 List and briefly define the fundamental security design principles.

1.7 Explain the difference between an attack surface and an attack tree.

Problems

1.1 Consider an automated cash deposit machine in which users provide a card or an ac-
count number to deposit cash. Give examples of confidentiality, integrity, and avail-
ability requirements associated with the system, and, in each case, indicate the degree
of importance of the requirement.

1.2 Repeat Problem 1.1 for a payment gateway system where a user pays for an item

using their account via the payment gateway.

7ISO is not an acronym (in which case it would be IOS), but it is a word, derived from the Greek, mean-
ing equal.

1.3

1.4

1.9

1.10 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 45

Consider a financial report publishing system used to produce reports for various

organizations.

a. Give an example of a type of publication in which confidentiality of the stored
data is the most important requirement.

b. Give an example of a type of publication in which data integrity is the most im-
portant requirement.

c. Give an example in which system availability is the most important requirement.

For each of the following assets, assign a low, moderate, or high impact level for the
loss of confidentiality, availability, and integrity, respectively. Justify your answers.
a. A student maintaining a blog to post public information.

b. An examination section of a university that is managing sensitive information

about exam papers.

An information system in a pathological laboratory maintaining the patient’s data.

d. A student information system used for maintaining student data in a university
that contains both personal, academic information and routine administrative in-
formation (not privacy related). Assess the impact for the two data sets separately
and the information system as a whole.

e. A University library contains a library management system which controls the
distribution of books amongst the students of various departments. The library
management system contains both the student data and the book data. Assess the
impact for the two data sets separately and the information system as a whole.

Draw a matrix similar to Table 1.4 that shows the relationship between security ser-
vices and attacks.

e

Draw a matrix similar to Table 1.4 that shows the relationship between security
mechanisms and attacks.

Develop an attack tree for gaining access to the contents of a physical safe.

Consider a company whose operations are housed in two buildings on the same prop-
erty; one building is headquarters, the other building contains network and computer
services. The property is physically protected by a fence around the perimeter, and
the only entrance to the property is through this fenced perimeter. In addition to
the perimeter fence, physical security consists of a guarded front gate. The local net-
works are split between the Headquarters’ LAN and the Network Services” LAN.
Internet users connect to the Web server through a firewall. Dial-up users get access
to a particular server on the Network Services’ LAN. Develop an attack tree in which
the root node represents disclosure of proprietary secrets. Include physical, social
engineering, and technical attacks. The tree may contain both AND and OR nodes.
Develop a tree that has at least 15 leaf nodes.

Read all of the classic papers cited in the Recommended Reading section for this
chapter, available at the Author Web site at WilliamStallings.com/Cryptography. The
papers are available at box.com/Crypto7e. Compose a 500-1000 word paper (or 8-12
slide PowerPoint presentation) that summarizes the key concepts that emerge from
these papers, emphasizing concepts that are common to most or all of the papers.

INTRODUCTION TO NUMBER THEORY

2.1

46

2.2

23

24
2.5

2.6

2.7
2.8

2.9

Divisibility and The Division Algorithm
Divisibility
The Division Algorithm
The Euclidean Algorithm
Greatest Common Divisor
Finding the Greatest Common Divisor

Modular Arithmetic
The Modulus
Properties of Congruences
Modular Arithmetic Operations
Properties of Modular Arithmetic
Euclidean Algorithm Revisited
The Extended Euclidean Algorithm

Prime Numbers
Fermat’s and Euler’s Theorems

Fermat’s Theorem
Euler’s Totient Function
Euler’s Theorem

Testing for Primality

Miller—Rabin Algorithm
A Deterministic Primality Algorithm
Distribution of Primes

The Chinese Remainder Theorem
Discrete Logarithms

The Powers of an Integer, Modulo n
Logarithms for Modular Arithmetic
Calculation of Discrete Logarithms

Key Terms, Review Questions, and Problems

Appendix 2A The Meaning of Mod

2.1 / DIVISIBILITY AND THE DIVISION ALGORITHM 47

LEARNING OBJECTIVES

After studying this chapter, you should be able to:

¢ Understand the concept of divisibility and the division algorithm.

¢ Understand how to use the Euclidean algorithm to find the greatest com-
mon divisor.

Present an overview of the concepts of modular arithmetic.
Explain the operation of the extended Euclidean algorithm.
Discuss key concepts relating to prime numbers.
Understand Fermat’s theorem.

Understand Euler’s theorem.

Define Euler’s totient function.

Make a presentation on the topic of testing for primality.
Explain the Chinese remainder theorem.

L R K SR 2R 2R 2R 2R 2K 2

Define discrete logarithms.

Number theory is pervasive in cryptographic algorithms. This chapter provides
sufficient breadth and depth of coverage of relevant number theory topics for under-
standing the wide range of applications in cryptography. The reader familiar with these
topics can safely skip this chapter.

The first three sections introduce basic concepts from number theory that are
needed for understanding finite fields; these include divisibility, the Euclidian algo-
rithm, and modular arithmetic. The reader may study these sections now or wait until
ready to tackle Chapter 5 on finite fields.

Sections 2.4 through 2.8 discuss aspects of number theory related to prime num-
bers and discrete logarithms. These topics are fundamental to the design of asymmetric
(public-key) cryptographic algorithms. The reader may study these sections now or
wait until ready to read Part Three.

The concepts and techniques of number theory are quite abstract, and it is often
difficult to grasp them intuitively without examples. Accordingly, this chapter includes
a number of examples, each of which is highlighted in a shaded box.

DIVISIBILITY AND THE DIVISION ALGORITHM

Divisibility
We say that a nonzero b divides a if a = mb for some m, where a, b, and m are

integers. That is, b divides a if there is no remainder on division. The notation b|a
is commonly used to mean b divides a. Also, if b|a, we say that b is a divisor of a.

48 CHAPTER 2 / INTRODUCTION TO NUMBER THEORY

The positive divisors of 24 are 1,2,3,4,6,8,12, and 24.
13]|182; —5|30; 17|289; —3|33;17|0

Subsequently, we will need some simple properties of divisibility for integers,
which are as follows:

m Ifa|l,thena = *1.

Ifa|b and b|a, thena = *b.
Any b # 0 divides 0.

If a| b and b|c, then a|c:

11]66 and 66198 = 11]|198

m If b|gand b|h, then b|(mg + nh) for arbitrary integers m and n.
To see this last point, note that

m If b|g, then gis of the form g = b X g; for some integer g;.
m If b|h, then h is of the form h = b X h, for some integer h;.

So
mg + nh = mbg, + nbhy = b X (mg, + nhy)

and therefore b divides mg + nh.

b=Tg=14h=63m=3;n =2
7|14 and 7|63.
To show 7| (3 X 14 + 2 X 63),

we have (3 X 14 +2 X 63) = 7(3 X 2 + 2 X 9),
and it is obvious that 7| (7(3 X 2 + 2 X 9)).

The Division Algorithm

Given any positive integer n and any nonnegative integer a, if we divide a by n,
we get an integer quotient ¢ and an integer remainder r that obey the following
relationship:

a=qn+r 0=r<mnq=|an] 2.1

where | x | is the largest integer less than or equal to x. Equation (2.1) is referred to
as the division algorithm.!

'Equation (2.1) expresses a theorem rather than an algorithm, but by tradition, this is referred to as the
division algorithm.

2.2 / THE EUCLIDEAN ALGORITHM 49

1

(a) General relationship r
r-\i/\
| | | | | | |
| | | | | | |
0 15 30 45 60 70 75
=2x15 =3x15 =4x15 =5x%x15
(b) Example: 70 = (4 x 15) + 10 10

Figure 2.1 The Relationshipa = gn + 0 =r <n

Figure 2.1a demonstrates that, given a and positive #, it is always possible to
find g and r that satisfy the preceding relationship. Represent the integers on the
number line; a will fall somewhere on that line (positive a is shown, a similar dem-
onstration can be made for negative a). Starting at 0, proceed to n, 2n, up to gn, such
that gn = a and (¢ + 1)n > a. The distance from gn to a is r, and we have found
the unique values of ¢ and r. The remainder r is often referred to as a residue.

a = 11; n=7, 11 =1X7+ 4, r=4 qg=1
a=-11; n=7 -11=(2)X7+3 r=3 g=-2

Figure 2.1b provides another example.

2.2 THE EUCLIDEAN ALGORITHM

One of the basic techniques of number theory is the Euclidean algorithm, which
is a simple procedure for determining the greatest common divisor of two positive
integers. First, we need a simple definition: Two integers are relatively prime if and
only if their only common positive integer factor is 1.

Greatest Common Divisor

Recall that nonzero b is defined to be a divisor of a if a = mb for some m, where
a, b, and m are integers. We will use the notation gcd(a, b) to mean the greatest
common divisor of a and b. The greatest common divisor of a and b is the largest
integer that divides both a and b. We also define ged(0, 0) = 0.

50

CHAPTER 2 / INTRODUCTION TO NUMBER THEORY

More formally, the positive integer c is said to be the greatest common divisor
of a and b if

1. cis a divisor of a and of b.

2. any divisor of a and b is a divisor of c.
An equivalent definition is the following:
gcd(a, b) = max[k, such that k|a and k|b]

Because we require that the greatest common divisor be positive, gcd(a, b) =
ged(a, —b) = ged(—a, b) = ged(—a, —b). In general, ged(a, b) = ged(|al, |b|).

bl

gcd(60, 24) = ged(60, —24) = 12

Also, because all nonzero integers divide 0, we have ged(a, 0) = |a].

We stated that two integers a and b are relatively prime if and only if their
only common positive integer factor is 1. This is equivalent to saying that a and b are
relatively prime if ged(a, b) = 1.

8 and 15 are relatively prime because the positive divisors of 8 are 1,2,4,and 8, and
the positive divisors of 15 are 1,3, 5, and 15. So 1 is the only integer on both lists.

Finding the Greatest Common Divisor

We now describe an algorithm credited to Euclid for easily finding the greatest
common divisor of two integers (Figure 2.2). This algorithm has broad significance
in cryptography. The explanation of the algorithm can be broken down into the fol-
lowing points:

1. Suppose we wish to determine the greatest common divisor d of the integers
a and b; that is determine d = gcd(a, b). Because ged(|al, |b|) = ged(a, b),
there is no harm in assuminga = b > 0.

2. Dividing a by b and applying the division algorithm, we can state:
a=qb+r 0=r, <b 2.2)

3. First consider the case in which r; = 0. Therefore b divides a and clearly no
larger number divides both b and a, because that number would be larger
than b. So we have d = gcd(a, b) = b.

4. The other possibility from Equation (2.2) is r; # 0. For this case, we can state
that d|r;. This is due to the basic properties of divisibility: the relations d|a
and d| b together imply that d|(a — q;b), which is the same as d| ;.

n

Before proceeding with the Euclidian algorithm, we need to answer the ques-
tion: What is the ged(b, r1)? We know that d|b and d|r,. Now take any arbi-
trary integer ¢ that divides both b and r;. Therefore, c¢| (q;b + r;) = a. Because
¢ divides both a and b, we must have ¢ = d, which is the greatest common
divisor of @ and b. Therefore d = ged(b, ry).

2.2 / THE EUCLIDEAN ALGORITHM 51

Divide a by b, eI
Yes calling the b with r
remainder r
Same GCD
No Replace GCD GCD
Swap a with b
aand b 710 =2 x 310 + 90
GCD is 310 =3 x 90 + 40
the final
value of b 90=2x40+10
40=4x10
Figure 2.3 Euclidean
Algorithm Example:
Figure 2.2 Euclidean Algorithm gcd(710, 310)

Let us now return to Equation (2.2) and assume that r; # 0. Because b > ry,
we can divide b by r{ and apply the division algorithm to obtain:

b=qy +nr 0=rn<n

As before, if r, = 0, then d = r| and if r, # 0, then d = gcd(ry, r,). Note that the
remainders form a descending series of nonnegative values and so must terminate
when the remainder is zero. This happens, say, at the (n + 1)th stage where r,,_; is
divided by r,,. The result is the following system of equations:

a=qb+nr 0<r <b
b=q2r1+r2 O<r2<r1
= qary T3 0<r<n
. . ; (2.3)

rn72:cbzrn71+rn O<rn<rn71
-1 = qn+1n +0 J
d = ged(a,b) = r,

At each iteration, we have d = gcd(r;, r;41) until finally d = gcd(r,, 0) = r,.
Thus, we can find the greatest common divisor of two integers by repetitive appli-
cation of the division algorithm. This scheme is known as the Euclidean algorithm.
Figure 2.3 illustrates a simple example.

We have essentially argued from the top down that the final result is the
gcd(a, b). We can also argue from the bottom up. The first step is to show that r,
divides a and b. It follows from the last division in Equation (2.3) that r, divides
r,—1. The next to last division shows that r, divides r,_, because it divides both

52 CHAPTER 2 / INTRODUCTION TO NUMBER THEORY

terms on the right. Successively, one sees that r, divides all r;’s and finally a and b.
It remains to show that r, is the largest divisor that divides a and b. If we take any
arbitrary integer that divides a and b, it must also divide ry, as explained previously.
We can follow the sequence of equations in Equation (2.3) down and show that ¢
must divide all 7;’s. Therefore ¢ must divide r,, so that r, = gcd(a, b).

Let us now look at an example with relatively large numbers to see the power
of this algorithm:

To find d = ged(a, b) = ged(1160718174, 316258250)

a=qb+r |1160718174 = 3 X 316258250 + 211943424 | d = gcd(316258250, 211943424)
b=qr +r, | 316258250 = 1 X 211943424 + 104314826 | d = gcd(211943424, 104314826)
Fo=qars by | 211943424 = 2 X 104314826 + 3313772 | d = gcd(104314826, 3313772)
ro=qus +ry | 104314826 = 31 X 3313772 + 1587894 |d = gcd(3313772, 1587894)

ry = qsra + s 3313772 = 2 X 1587894 + 137984 |d = ged(1587894, 137984)

ra = qers + 1 1587894 = 11 x 137984 + 70070 |d = ged(137984, 70070)

rs = qirg + 17 137984 = 1 X 70070 + 67914 | d = ged(70070, 67914)

re = qgrs + 1y 70070 = 1 X 67914 + 2156 | d = ged(67914, 2156)

7 = qorg + 1o 67914 = 31 X 2156 + 1078 | d = ged(2156, 1078)

s = quofe + 1o 2156 = 2 X 1078 + 0 | d = ged(1078,0) = 1078

Therefore, d = gcd(1160718174, 316258250) = 1078

In this example, we begin by dividing 1160718174 by 316258250, which gives 3
with a remainder of 211943424, Next we take 316258250 and divide it by 211943424.
The process continues until we get a remainder of 0, yielding a result of 1078.

It will be helpful in what follows to recast the above computation in tabular
form. For every step of the iteration, we have r;_, = q;r;—; + r;, where r;_, is the
dividend, r;_ is the divisor, g; is the quotient, and r; is the remainder. Table 2.1 sum-
marizes the results.

Table 2.1 Euclidean Algorithm Example
Dividend Divisor Quotient Remainder
a = 1160718174 b = 316258250 g = 3 ry = 211943424
b = 316258250 r = 211943434 =1 r, = 104314826
rp = 211943424 r, = 104314826 gz = 2 ry = 3313772
r, = 104314826 = 3313772 g, =31 ra= 1587894
1= 3313772 ry= 1587894 gs = 2 rs= 137984
ry = 1587894 rs = 137984 qe = 11 re = 70070
rs= 137984 re= 70070 g = 1 rp= 67914
re = 70070 rp= 67914 gs = 1 o 2156
r = 67914 rg = 2156 g9 = 31 ro = 1078
rg = 2156 rg = 1078 G = 2 ry = 0

2.3 / MODULAR ARITHMETIC 53

2.3 MODULAR ARITHMETIC

The Modulus

If a is an integer and n is a positive integer, we define a mod n to be the remainder
when a is divided by n. The integer # is called the modulus. Thus, for any integer a,
we can rewrite Equation (2.1) as follows:

a=qn+r 0=r<mnq=lan]

a=lan] X n+ (amod n)

11 mod 7 = 4; —11mod7 =3

Two integers a and b are said to be congruent modulo n, if (¢ mod n) =
(b mod). This is written as @ = b (mod n).2

73 = 4 (mod 23); 21 = -9 (mod 10)

Note that if a = 0 (mod n), then n|a.

Properties of Congruences
Congruences have the following properties:
1. a = b (mod n) if n|(a — b).
2. a = b (mod n) implies b = a (mod n).
3. a = b (modn)and b = ¢ (mod n) imply a = ¢ (mod n).

To demonstrate the first point, if n|(a — b), then (a — b) = kn for some k.
So we can write a = b + kn. Therefore, (a mod n) = (remainder when b +
kn is divided by n) = (remainder when b is divided by n) = (b mod n).

23 = 8 (mod 5) because 23 —8=15=5X3
—11 = 5(mod 8) because —11 —5= —16 =8 X (-2)
81 = 0 (mod27) Dbecause 81 — 0 =81 =27 X3

The remaining points are as easily proved.

2We have just used the operator mod in two different ways: first as a binary operator that produces a re-
mainder, as in the expression @ mod b;second as a congruence relation that shows the equivalence of two
integers, as in the expression a = b (mod n). See Appendix 2A for a discussion.

54 CHAPTER 2 / INTRODUCTION TO NUMBER THEORY

Modular Arithmetic Operations

Note that, by definition (Figure 2.1), the (mod n) operator maps all integers into
the set of integers {0, 1, ... , (n — 1)}. This suggests the question: Can we perform
arithmetic operations within the confines of this set? It turns out that we can; this
technique is known as modular arithmetic.
Modular arithmetic exhibits the following properties:
1. [(amodn) + (bmodn)]modn = (a + b) modn
2. [(amod n) — (bmodn)lmodn = (a — b) mod n
3. [(amod n) X (bmodn)lmodn = (a X b) mod n
We demonstrate the first property. Define (¢ mod n) = r,and (b mod n) = ry.
Then we can write a = r, + jn for some integer jand b = r, + kn for some integer k.
Then
(a+b)modn = (r, + jn + r, + kn) mod n
= (r, + 1, + (k + j)n) mod n
= (r, + rp)modn
= [(a mod n) + (b mod n)] mod n

The remaining properties are proven as easily. Here are examples of the three
properties:

11 mod8 = 3;15mod 8 = 7

[(11 mod 8) + (15 mod 8)] mod 8 = 10 mod 8 = 2
(11 + 15) mod 8 = 26 mod 8 = 2

[(11 mod 8) — (15 mod 8)] mod 8 = —4mod 8 = 4
(11 — 15) mod 8 = —4mod 8 = 4

[(11 mod 8) X (15 mod 8)] mod 8 = 21 mod 8 = 5
(11 X 15) mod 8 = 165mod 8 = 5

Exponentiation is performed by repeated multiplication, as in ordinary
arithmetic.

To find 117 mod 13, we can proceed as follows:
112 = 121 = 4 (mod 13)
11* = (1)? = 4% = 3 (mod 13)
117 =11 x 11> x 11*
17 = 11 X 4 X 3 = 132 = 2 (mod 13)

Thus, the rules for ordinary arithmetic involving addition, subtraction, and
multiplication carry over into modular arithmetic.

2.3 / MODULAR ARITHMETIC 55

Table 2.2 provides an illustration of modular addition and multiplication
modulo 8. Looking at addition, the results are straightforward, and there is a reg-
ular pattern to the matrix. Both matrices are symmetric about the main diagonal
in conformance to the commutative property of addition and multiplication. As in
ordinary addition, there is an additive inverse, or negative, to each integer in modu-
lar arithmetic. In this case, the negative of an integer x is the integer y such that
(x + y)mod 8 = 0. To find the additive inverse of an integer in the left-hand col-
umn, scan across the corresponding row of the matrix to find the value 0; the integer
at the top of that column is the additive inverse; thus, (2 + 6) mod 8 = 0. Similarly,
the entries in the multiplication table are straightforward. In modular arithmetic mod
8, the multiplicative inverse of x is the integer y such that (x X y) mod 8 = 1 mod 8.
Now, to find the multiplicative inverse of an integer from the multiplication table,
scan across the matrix in the row for that integer to find the value 1; the integer at
the top of that column is the multiplicative inverse; thus, (3 X 3) mod 8 = 1. Note
that not all integers mod 8 have a multiplicative inverse; more about that later.

Properties of Modular Arithmetic

Define the set Z,, as the set of nonnegative integers less than #n:

Z,= 10,1, ..., (n—1)

Table 2.2 Arithmetic Modulo 8

+ 0 1 2 3 4 5 6 7

0 0 1 2 3 4 5 6 7

1 1 2 3 4 5 6 7 0

2 2 3 4 5 6 7 0 1

3 3 4 5 6 7 0 1 2

4 4 5 6 7 0 1 2 3

5 5 6 7 0 1 2 3 4

6 6 7 0 1 2 3 4 5

7 7 0 1 2 3 4 5 6

(a) Addition modulo 8
X 0 1 2 3 4 5 6 7 w -w w!
0 0 0 0 0 0 0 0 0 0 0 —
1 0 1 2 3 4 5 6 7 1 7 1
2 0 2 4 6 0 2 4 6 2 6 —
3 0 3 6 1 4 7 2 5 3 5 3
4 lolalol4a4]of4a|o]a4 4 4 _
5 0 5 2 7 4 1 6 3 5 3 5
6 0 6 4 2 0 6 4 2 6 2 —
7 0 7 6 5 4 3 2 1 7 1 7
(b) Multiplication modulo 8 (c) Additive and multiplicative

inverse modulo 8

56 CHAPTER 2/ INTRODUCTION TO NUMBER THEORY

This is referred to as the set of residues, or residue classes (mod 7). To be more pre-
cise, each integer in Z, represents a residue class. We can label the residue classes
(mod n) as [0], [1], [2], ... ,[n — 1], where

[r] = {a: ais an integer, a = r (mod n)}

The residue classes (mod 4) are
[0]={...,—16,-12,-8,-4,0,4,8,12, 16, ... }
mp={...,-15-11,-7,-3,1,5,9,13,17, ... }
2] ={...,—14,-10,-6,-2,2,6,10,14,18, ... }
Bl={...,-13,-9,-5,-1,3,7,11,15,19, ... }

Of all the integers in a residue class, the smallest nonnegative integer is the
one used to represent the residue class. Finding the smallest nonnegative integer to
which k is congruent modulo 7 is called reducing k modulo n.

If we perform modular arithmetic within Z,,, the properties shown in Table 2.3
hold for integers in Z,. We show in the next section that this implies that Z,, is a
commutative ring with a multiplicative identity element.

There is one peculiarity of modular arithmetic that sets it apart from ordinary
arithmetic. First, observe that (as in ordinary arithmetic) we can write the following:

if (a + b) = (a + ¢) (mod n) then b = ¢ (mod n) 2.4

(5 +23) = (5 + 7)(mod 8); 23 = 7(mod 8)

Equation (2.4) is consistent with the existence of an additive inverse. Adding
the additive inverse of a to both sides of Equation (2.4), we have

((=a) +a+b) = ((—a) + a+ c)(modn)
b = ¢ (mod n)

Table 2.3 Properties of Modular Arithmetic for Integers in Z,,

Property Expression

(w + x)modn = (x + w) mod n

Commutative Laws
(w X x)modn = (x X w) mod n

[w+x) +ylmodn = [w + (x + y)] mod n

Associative Laws [(w X x) X yJmodn = [w X (x X y)] mod n

Distributive Law [wX (x +y)]modn = [(w X x) + (w X y)] mod n

(0 + w)ymodn = wmod n

Identities (1 X w)ymod n = wmod n

Additive Inverse (—w) For each w € Z,,, there exists a z such that w + z = O mod n

2.3 / MODULAR ARITHMETIC 57

However, the following statement is true only with the attached condition:
if (a X b) = (a X ¢)(mod n) then b = c(mod n) if a is relatively prime ton (2.5)

Recall that two integers are relatively prime if their only common positive integer
factor is 1. Similar to the case of Equation (2.4), we can say that Equation (2.5) is
consistent with the existence of a multiplicative inverse. Applying the multiplicative
inverse of a to both sides of Equation (2.5), we have

((a™ab) = ((a~ac)(mod n)
b = c(mod n)

To see this, consider an example in which the condition of Equation (2.5) does not
hold. The integers 6 and 8 are not relatively prime, since they have the common
factor 2. We have the following:

6 X 3 = 18 = 2(mod 8)
6 X 7 =42 = 2(mod 8)
Yet 3 # 7 (mod 8).

The reason for this strange result is that for any general modulus #, a multi-
plier a that is applied in turn to the integers 0 through (n — 1) will fail to produce a
complete set of residues if @ and »n have any factors in common.

Witha = 6 and n = 8,

Zg 0o 1 2 3 4 5 6 7
Multiplyby6 0 6 12 18 24 30 36 42
Residues 0 6 4 2 0 6 4 2

Because we do not have a complete set of residues when multiplying by
6, more than one integer in Zg maps into the same residue. Specifically,
6 X 0mod8 =6 X 4mod8&;6 X 1mod8 = 6 X 5mod 8; and so on. Because
this is a many-to-one mapping, there is not a unique inverse to the multiply
operation.

However, if we take a = 5 and n = 8, whose only common factor is 1,

Zg 0O 1 2 3 4 5 6 7
MultiplybyS 0 5 10 15 20 25 30 35
Residues 0O 5 2 7 4 1 6 3

The line of residues contains all the integers in Zg, in a different order.

58 CHAPTER 2 / INTRODUCTION TO NUMBER THEORY

In general, an integer has a multiplicative inverse in Z,, if and only if that inte-
ger is relatively prime to n. Table 2.2c shows that the integers 1, 3, 5, and 7 have a
multiplicative inverse in Zg; but 2, 4, and 6 do not.

Euclidean Algorithm Revisited

The Euclidean algorithm can be based on the following theorem: For any integers
a, b,witha = b = 0,

gcd(a, b) = ged(b, a mod b) (2.6)

gcd(55,22) = ged(22, 55 mod 22) = ged(22,11) = 11

To see that Equation (2.6) works, let d = gcd(a, b). Then, by the definition of
gcd, d|a and d| b. For any positive integer b, we can express a as

a = kb + r = r(modb)
amodb =r

with k, r integers. Therefore, (a mod b) = a — kb for some integer k. But because
d| b, it also divides kb. We also have d|a. Therefore, d|(a mod b). This shows that
d is a common divisor of b and (¢ mod b). Conversely, if d is a common divisor of b
and (a mod b), then d| kb and thus d|[kb + (a mod b)], which is equivalent to d|a.
Thus, the set of common divisors of a and b is equal to the set of common divisors
of b and (a mod b). Therefore, the gcd of one pair is the same as the ged of the other
pair, proving the theorem.

Equation (2.6) can be used repetitively to determine the greatest common divisor.

gcd(18,12) = ged(12, 6) = ged(6,0) = 6
gcd(11, 10) = ged(10,1) = ged(1,0) = 1

This is the same scheme shown in Equation (2.3), which can be rewritten in
the following way.

Euclidean Algorithm

Calculate Which satisfies

ry = amod b a=qb +tn

r, = bmod ry b=gqy +np

ry; = rymod ry = qsr, + r3
rn = rn—2 mOd rﬂ—l rn72 = annfl + rn
n+1 = Ip—ymodr, =0 Tp-1 = Gpi1tn + 0
d = ged(a,b) =1,

We can define the Euclidean algorithm concisely as the following recursive
function.

2.3 / MODULAR ARITHMETIC 59

Euclid(a,b)
if (b=0) then return a;
else return Euclid (b, a mod b);

The Extended Euclidean Algorithm

We now proceed to look at an extension to the Euclidean algorithm that will be
important for later computations in the area of finite fields and in encryption algo-
rithms, such as RSA. For given integers a and b, the extended Euclidean algorithm
not only calculates the greatest common divisor d but also two additional integers x
and y that satisfy the following equation.

ax + by = d = gcd(a, b) 2.7

It should be clear that x and y will have opposite signs. Before examining the
algorithm, let us look at some of the values of x and y when a = 42 and b = 30.
Note that ged(42, 30) = 6. Here is a partial table of values® for 42x + 30y.

x -3 -2 -1 0 1 2 3

y
-3 —216 —174 —132 —90 —48 —6 36
-2 —186 —144 —102 —60 —18 24 66
-1 —156 —114 =72 =30 12 54 96
0 —126 —84 —42 0 42 84 126
1 —96 —54 —12 30 72 114 156
2 —66 —24 18 60 102 144 186
3 —36 6 48 90 132 174 216

Observe that all of the entries are divisible by 6. This is not surpris-
ing, because both 42 and 30 are divisible by 6, so every number of the form
42x + 30y = 6(7x + Sy) is a multiple of 6. Note also that gcd(42, 30) = 6 appears
in the table. In general, it can be shown that for given integers a and b, the smallest
positive value of ax + by is equal to ged(a, b).

Now let us show how to extend the Euclidean algorithm to determine (x, y, d)
given a and b. We again go through the sequence of divisions indicated in Equation
(2.3), and we assume that at each step i we can find integers x; and y; that satisfy
r; = ax; + by;. We end up with the following sequence.

a=qb+r ry = ax; + by,
b=q2r1+r2 72:[1X2+by2
ry = qsr + r3 r3 = axs + by3

rn—2:ann—l+rn rn:axn+byn
"n—1 = 4n+1Tn +0

3This example is taken from [SILVO06)].

60

CHAPTER 2 / INTRODUCTION TO NUMBER THEORY

Now, observe that we can rearrange terms to write

Ti = Ti—p — ri-14; (2.8)
Also,inrowsi — 1 and i — 2, we find the values
riey = axi5 + by, and riy = axy + by
Substituting into Equation (2.8), we have
ri = (ax—y + byi-y) — (axi—y + byi-1)q;
= a(xi—2 = qxi—1) + b(yi—2 — qi-1)
But we have already assumed that r; = ax; + by,. Therefore,
X =X — qXi—1 and y; = yi o — g1
We now summarize the calculations:
Extended Euclidean Algorithm
Calculate Which satisfies Calculate Which satisfies

r=a x1 =1Ly, =0 a=axq + by
ro=>o X =055 =1 b = axy + by,
ry = amodb a=qb +r X=X —qix =1 ry = ax; + by,
q1 = lalb| Yi=Y-1 7~ 90 = —q1
r, = bmod ry b=gqy +n X = Xg — @oXq r, = ax, + by,
g = Lbir] Y2 = Yo — g
r; = rymod ry r = q3r, + 13 X3 =X — ¢3% r; = axz + by;
g3 = Lrir] Y3 =91~ @)
Iy = ry—omodr,_ Tn2 = Guln—1 T Tn| Xy = X402 = qu¥Xn— ry = ax, + by,
an = [rpalry-1] Yn = Yn-2 = QuVn-1
Fpi1 = Fpeymodr, = 0| r,_1 = qu17, + 0 d = ged(a,b) =1,
Gui1 = [Ta-i/ry] X =259 = Yy

We need to make several additional comments here. In each row, we calculate
a new remainder 7; based on the remainders of the previous two rows, namely r;_;
and r;_,. To start the algorithm, we need values for ry and r_, which are just a and b.
It is then straightforward to determine the required values for x_, y_{, x5, and .

We know from the original Euclidean algorithm that the process ends
with a remainder of zero and that the greatest common divisor of a and b is
d = gcd(a, b) = r,. But we also have determined that d = r, = ax, + by,.
Therefore, in Equation (2.7),x = x,and y = y,.

As an example, let us use a = 1759 and b = 550 and solve for
1759x + 550y = gcd(1759, 550). The results are shown in Table 2.4. Thus, we have
1759 X (=111) + 550 X 355 = —195249 + 195250 = 1.

2.4 / PRIME NUMBERS 61

Table 2.4 Extended Euclidean Algorithm Example

i r; qi X; Yi
=il 1759 1 0
0 550 0 1

1 109 3 1 =3
2 5 5 =5 16
3 4 21 106 —339
4 1 1 =111 355
5 0 4

Result: d = 1;x = —111;y = 355

2.4 PRIME NUMBERS*

A central concern of number theory is the study of prime numbers. Indeed, whole
books have been written on the subject (e.g., [CRANO1], [RIBE96]). In this section,
we provide an overview relevant to the concerns of this book.

Aninteger p > 1is a prime number if and only if its only divisors’ are 1 and
+ p. Prime numbers play a critical role in number theory and in the techniques dis-
cussed in this chapter. Table 2.5 shows the primes less than 2000. Note the way the
primes are distributed. In particular, note the number of primes in each range of
100 numbers.

Any integer a > 1 can be factored in a unique way as

5

a=piXppx . - Xpf 2.9)

where p; < p, < ... < p,are prime numbers and where each g; is a positive inte-
ger. This is known as the fundamental theorem of arithmetic; a proof can be found
in any text on number theory.

91 =7 x 13
3600 = 2* x 32 x 52
11011 = 7 X 112 X 13

It is useful for what follows to express this another way. If P is the set of
all prime numbers, then any positive integer a can be written uniquely in the
following form:

— a
a= I;IPp » where each a, = 0
p

“In this section, unless otherwise noted, we deal only with the nonnegative integers. The use of negative
integers would introduce no essential differences.

SRecall from Section 2.1 that integer a is said to be a divisor of integer b if there is no remainder on
division. Equivalently, we say that a divides b.

HAPTER 2 / INTRODUCTION TO NUMBER THEORY

C

62

L6

68

€8

6L

661 | €L

L6l | 1L

€61 | L9

161 | 19

6611 661 181 | 6S

34 L60T 169 16¥ L6E | €6C | 6LL | €S

6691 68171 L6CL €601 L83 £89 L8y 68€ | €8C | €L1 | Lv

L691 L8Y1 16Cl 1601 | L66 £88 L6L LLY 665 6Ly €8¢ | I8¢ | L9T | ¢F

6661 €691 €811 68¢1 L801 166 188 L8L €L9 €65 L9Y 6LE | LLT | €91 | I¥
L661 | 6881 | 68LL | 6991 | L6ST | I8¥I €8¢l | €611 | 6901 €86 LL8 €LL 199 L8S €Y €LE | TLC | LST | LE
€661 | 6L8T | LSLL | L99T | €8ST | IL¥L | 66€L | 6LCL | LSIL | €901 | LL6 €98 69L 659 LLS 19¥ L9¢ | 69¢ | IST | 1€
L861 | LL8T | €8LL | €991 | 6LST | 6S¥L | I8¢l | LLZL | I8LL | 1901 1L6 658 19L €59 1LS LSY 6S€ | €9¢ | 6V1 | 6C
6L61 | €L8T | LLLY | LSOL | TLST | €S¥L | €L€1 | 6SCL | ILIT | 1SOI L96 LS8 LSL LY9 695 (544 €S¢ | LST | 6€1 | €C
€L6T | TL8T | 6SLT | LE9T | LOST | ISvL | L9ET | 6¥CL | €911 | 6¥01 £56 €68 ISL £v9 €96 947 6ve | ISC | LET | 61
IS61 | L981 | €SLL | LZ9T | 6SST | Lyvl | 19€T | LeCl | €SIT | 6€01 | Lv6 6€8 EvL 19 LSS (61914 Lve | e | 1€l | LI
6v6l | 1981 | LvLL | T¢91 | €SST | 6¢vl | Lcel | T€Cl | ISIT | €€01 176 678 6€L 1€9 LYS 394 Lee | 6€C | LTI | €1
€e6l | Ly8T | I¥LL | 6191 | 6¥ST | €evl | ICEL | 6c¢cl | 6CIL | T€0T | LE6 LT8 €eL 619 1S 159% Iee | eeC | €IT | TT
Teol | T€81 | €€LT | €I91 | €vSL | 6cvl | 6I€T | €C¢Cl | €¢IT | TC0L | 6¢6 €8 LTL L19 €¢S 1y LIE | 6¢C | 601 | L
€161l | €81 | €¢Ll | 6091 | T€ST | Lewl | LOCT | LICL | LILT | 6I0L | 616 128 61L €19 1es 6lY €le | LcC | LOT | S
L061 | TI8L | ICLL | LO9T | €CST | €cpl | €0l | €1¢l | 60L1 | €I0L 116 118 60L L09 605 60¥ 11€ | €¢C | €01 | €
1061 | TO8T | 60LL | T09T | TIST | 60vL | T0€L | TOCL | €OLL | 6001 | LO6 608 10L 109 €05 10¥ L0€ | TIC | 101 | €

000 1OpUM AW €7 I[qEL

2.4 / PRIME NUMBERS 63

The right-hand side is the product over all possible prime numbers p; for any par-
ticular value of a, most of the exponents a, will be 0.

The value of any given positive integer can be specified by simply listing all the
nonzero exponents in the foregoing formulation.

The integer 12 is represented by {a, = 2, a3 = 1}.

The integer 18 is represented by {a, = 1, a3 = 2}

The integer 91 is represented by {a; = 1, a;3 = 1}.

Multiplication of two numbers is equivalent to adding the corresponding

exponents. Given a = H pr. b = H pP. Define k = ab. We know that the inte-
pEP pEP

ger k can be expressed as the product of powers of primes: k = H pkﬂ. It follows

that k, = a, + b, forall p € P. PEP

k=12 x 18 = (22 X 3) X (2 X 3%) = 216
kb=24+1=3%k=1+2=3
216 = 23 x 3¥ =8 x 27

What does it mean, in terms of the prime factors of a and b, to say that a divides b?
Any integer of the form p" can be divided only by an integer that is of a lesser
or equal power of the same prime number, p/ with j = n. Thus, we can say the
following.

Given

a = Hpap’b — Hpbp

pEP pEP
If a| b, then a, = b, for all p.

a=12;b = 36;12|36
12 =22 % 3;36 =22 x 32
a, =2 =b,
ay=1=2=by

Thus, the inequality a, = b, is satisfied for all prime numbers.

It is easy to determine the greatest common divisor of two positive integers if
we express each integer as the product of primes.

64 CHAPTER 2 / INTRODUCTION TO NUMBER THEORY

300 = 22 x 3! x 52
18 = 2! x 32
ged(18,300) = 2! x 31 x 5 =6

The following relationship always holds:
If k = gcd(a, b), then k, = min(a,, b,) for all p.

Determining the prime factors of a large number is no easy task, so the pre-
ceding relationship does not directly lead to a practical method of calculating the
greatest common divisor.

2.5 FERMAT’S AND EULER’S THEOREMS

Two theorems that play important roles in public-key cryptography are Fermat’s
theorem and Euler’s theorem.

Fermat’s Theorem®

Fermat’s theorem states the following: If p is prime and a is a positive integer not
divisible by p, then

a’~!' =1 (mod p) (2.10)

Proof: Consider the set of positive integers less than p: {1,2, ... ,p — 1} and mul-
tiply each element by a, modulo p, to get the set X = {a mod p,2a mod p, ...,
(p — 1)a mod p}. None of the elements of X is equal to zero because p does not
divide a. Furthermore, no two of the integers in X are equal. To see this, assume that
ja = ka(mod p)), where 1 = j < k = p — 1. Because a is relatively prime’ to p, we
can eliminate a from both sides of the equation [see Equation (2.3)] resulting in
j = k(mod p). This last equality is impossible, because j and k are both positive inte-
gers less than p. Therefore, we know that the (p — 1) elements of X are all positive
integers with no two elements equal. We can conclude the X consists of the set of
integers {1,2, ... ,p — 1} in some order. Multiplying the numbers in both sets
(p and X) and taking the result mod p yields

aX2aX - X(p—Da=[1X2X -+ X(p—1)](modp)
a Y(p — D! = (p — 1)! (mod p)

We can cancel the (p — 1)! term because it is relatively prime to p [see Equation
(2.5)]. This yields Equation (2.10), which completes the proof.

OThis is sometimes referred to as Fermat’s little theorem.

"Recall from Section 2.2 that two numbers are relatively prime if they have no prime factors in common;
that is, their only common divisor is 1. This is equivalent to saying that two numbers are relatively prime
if their greatest common divisor is 1.

2.5 / FERMAT’S AND EULER’S THEOREMS 65

a="T7p=19

7 = 49 = 11 (mod 19)

7% = 121 = 7 (mod 19)

78 = 49 = 11 (mod 19)

7' = 121 = 7 (mod 19)

a1l =78 =7%x72=7x 11 = 1 (mod 19)

An alternative form of Fermat’s theorem is also useful: If p is prime and a is a
positive integer, then

a’ = a(mod p) (2.11)

Note that the first form of the theorem [Equation (2.10)] requires that a be rela-
tively prime to p, but this form does not.

p=5a=3 a? = 3% = 243 = 3(mod 5) = a(mod p)
p=5a=10 a’ = 10° = 100000 = 10(mod 5) = 0(mod 5) = a(mod p)

Euler’s Totient Function

Before presenting Euler’s theorem, we need to introduce an important quantity in
number theory, referred to as Euler’s totient function. This function, written ¢(n),
is defined as the number of positive integers less than n and relatively prime to n.
By convention, ¢(1) = 1.

Determine ¢(37) and ¢(35).

Because 37 is prime, all of the positive integers from 1 through 36 are relatively
prime to 37 Thus ¢(37) = 36.

To determine ¢(35), we list all of the positive integers less than 35 that are
relatively prime to it:

1,2,3,4,6,8,9,11, 12, 13,16, 17, 18
19,22, 23,24, 26, 27, 29, 31, 32, 33, 34
There are 24 numbers on the list, so ¢(35) = 24.

Table 2.6 lists the first 30 values of ¢(n). The value ¢(1) is without meaning
but is defined to have the value 1.
It should be clear that, for a prime number p,

¢(p) =p -1
Now suppose that we have two prime numbers p and g with p # ¢g. Then we can
show that, for n = pq,

66 CHAPTER 2/ INTRODUCTION TO NUMBER THEORY

Table 2.6 Some Values of Euler’s Totient Function ¢(n)

n b(n) n b(n) n b(n)
1 1 11 10 21 12
2 1 12 4 22 10
3 2 13 12 23 22
4 2 14 6 24 8
5 4 15 8 25 20
6 2 16 8 26 12
7 6 17 16 27 18
8 4 18 6 28 12
9 6 19 18 29 28
10 4 20 8 30 8

d(n) = d(pq) = d(p) X d(g) = (p — 1) X (¢ — 1)

To see that ¢p(n) = ¢(p) X &(q), consider that the set of positive integers less than
nistheset {1, ..., (pg — 1)}. The integers in this set that are not relatively prime
to n are the set {p,2p, ... ,(g — 1)p} and the set {q,2q, ... ,(p — 1)q}. To see
this, consider that any integer that divides » must divide either of the prime num-
bers p or g. Therefore, any integer that does not contain either p or g as a factor is
relatively prime to n. Further note that the two sets just listed are non-overlapping:
Because p and g are prime, we can state that none of the integers in the first set can
be written as a multiple of ¢, and none of the integers in the second set can be writ-
ten as a multiple of p. Thus the total number of unique integers in the two sets is
(g — 1) + (p — 1). Accordingly,

dp(n) =g -1 —[(¢g—1)+@-1)]
=pqg—(p+q) +1
=(pP-1)X(@-1
= ¢(p) X é(q)

P21 =pB) X PN =B -1 X (T-1)=2X6=12
where the 12 integers are {1, 2, 4, 5, 8, 10, 11, 13, 16, 17, 19, 20}.

Euler’s Theorem
Euler’s theorem states that for every a and » that are relatively prime:
a®™ = 1(mod n) 2.12)

Proof: Equation (2.12) is true if n is prime, because in that case, ¢(n) = (n — 1)
and Fermat’s theorem holds. However, it also holds for any integer n. Recall that

2.5 / FERMAT’S AND EULER’S THEOREMS 67

¢(n) is the number of positive integers less than n that are relatively prime to n.
Consider the set of such integers, labeled as
R = {xl,xZ, N ,Xd,(n)}
Thatis, each element x; of Ris a unique positive integer less than n with ged(x;, n) = 1.
Now multiply each element by a, modulo n:
§ = {(ax; mod n), (ax, mod n), ... , (axy,) mod n)}
The set S is a permutation® of R , by the following line of reasoning:

1. Because a is relatively prime to n and x; is relatively prime to n, ax; must also
be relatively prime to n. Thus, all the members of § are integers that are less
than n and that are relatively prime to n.

2. There are no duplicates in S. Refer to Equation (2.5). If ax; mod n= ax;
mod n, then x; = x;.

Therefore,
o) b(n)
[](aximod n) = J]x
=1 =1
o(n) o(n)
[]ax = []x (mod n)
= =1
o(n) (n)
a®™ x x; | = | | % (modn)
i=1 =1

a®™ = 1 (mod n)

which completes the proof. This is the same line of reasoning applied to the proof
of Fermat’s theorem.

a=73;n=10;¢10) =4; a?™ =3* =81 = 1(mod 10) = 1(mod n)
a=2n=11;¢11) = 10; a®®™ =21 = 1024 = 1(mod 11) = 1(mod n)

As is the case for Fermat’s theorem, an alternative form of the theorem is also
useful:

a®™* = g(mod n) (2.13)

Again, similar to the case with Fermat’s theorem, the first form of Euler’s theorem
[Equation (2.12)] requires that a be relatively prime to n, but this form does not.

8A permutation of a finite set of elements S is an ordered sequence of all the elements of S, with each
element appearing exactly once.

68 CHAPTER 2 / INTRODUCTION TO NUMBER THEORY

2.6 TESTING FOR PRIMALITY

For many cryptographic algorithms, it is necessary to select one or more very large
prime numbers at random. Thus, we are faced with the task of determining whether
a given large number is prime. There is no simple yet efficient means of accomplish-
ing this task.

In this section, we present one attractive and popular algorithm. You may be
surprised to learn that this algorithm yields a number that is not necessarily a prime.
However, the algorithm can yield a number that is almost certainly a prime. This will
be explained presently. We also make reference to a deterministic algorithm for find-
ing primes. The section closes with a discussion concerning the distribution of primes.

Miller-Rabin Algorithm’

The algorithm due to Miller and Rabin [MILL75, RABI80] is typically used to test
a large number for primality. Before explaining the algorithm, we need some back-
ground. First, any positive odd integer n = 3 can be expressed as

n—1=2 withk > 0,qodd

To see this, note that n — 1 is an even integer. Then, divide (n — 1) by 2 until the
result is an odd number ¢, for a total of k divisions. If n is expressed as a binary
number, then the result is achieved by shifting the number to the right until the
rightmost digit is a 1, for a total of k shifts. We now develop two properties of prime
numbers that we will need.

Two ProrerTiEs oF Prive NumBsers The first property is stated as follows: If p is
prime and a is a positive integer less than p, then a> mod p = 1 if and only if either
amodp = loramodp = —1modp = p — 1. By the rules of modular arithmetic
(a mod p) (a mod p) = a®> mod p. Thus, if either a mod p = 1 or amod p = —1,
then a> mod p = 1. Conversely, if > mod p = 1, then (a mod p)* = 1, which is true
only foramod p = loramod p = —1.

The second property is stated as follows: Let p be a prime number greater
than 2. We can then write p — 1 = 25g with k > 0, g odd. Let a be any integer in
the range 1 < a < p — 1. Then one of the two following conditions is true.

1. a% is congruent to 1 modulo p. That is, a?mod p = 1, or equivalently,
a? = 1(mod p).

2. One of the numbers a9, a%, a*, ... ,aqu is congruent to —1 mod-
ulglp. That is, there is some number j in the rangeﬁl(l = j = k) such that
a® “modp = —1modp = p — 1 orequivalently,a” 9= — 1(mod p).

Proof: Fermat’s theorem [Equation (2.10)] states that a" ! = 1(1{10d n) if n is
prime. We have p — 1 = 2¥g. Thus, we know that @ 'modp = a>“mod p = 1.
Thus, if we look at the sequence of numbers

a’mod p, @ mod p,a* mod p, ... ,a* '"mod p,a* 7 mod p (2.14)

9Also referred to in the literature as the Rabin-Miller algorithm, or the Rabin-Miller test, or the Miller—
Rabin test.

2.6 / TESTING FOR PRIMALITY 69

we know that the last number in the list has value 1. Further, each number in the list
is the square of the previous number. Therefore, one of the following possibilities
must be true.

1. The first number on the list, and therefore all subsequent numbers on the list,
equals 1.

[\°]

. Some number on the list does not equal 1, but its square mod p does equal 1.
By virtue of the first property of prime numbers defined above, we know that
the only number that satisfies this condition is p — 1. So, in this case, the list
contains an element equal to p — 1.

This completes the proof.

Derairs or THE Arcoritam These considerations lead to the conclusion that,
if n is prime, then either the first element in the list of residues, or remainders,
(al, ak, ... ,aZHq, aqu) modulo n equals 1; or some element in the list equals
(n — 1); otherwise n is composite (i.e., not a prime). On the other hand, if the
condition is met, that does not necessarily mean that »n is prime. For example, if
n = 2047 = 23 X 89, thenn — 1 = 2 X 1023. We compute 2!°> mod 2047 = 1, so
that 2047 meets the condition but is not prime.

We can use the preceding property to devise a test for primality. The procedure
TEST takes a candidate integer n as input and returns the result composite if n is
definitely not a prime, and the result inconclusive if » may or may not be a prime.

TEST (n)

1. Find integers %k, g, with k > 0, g odd, so that
(n -1 =2k q);

2. Select a random integer a, 1 < a < n - 1;

3. if aqg mod n = 1 then return(”inconclusive”);

4, for j = 0 to k - 1 do

5 if a?’mod n = n - 1 then return (”“inconclusive”) ;

6. return (”composite”);

Let us apply the test to the prime number n = 29. We have (n — 1) = 28 =
2%(7) = 2¥q. First, let us try a = 10. We compute 10’ mod 29 = 17, which is neither
1 nor 28, so we continue the test. The next calculation finds that (107)> mod 29 = 28,
and the test returns inconclusive (i.e., 29 may be prime). Let’s try again with
a = 2. We have the following calculations: 2’ mod 29 = 12;2!* mod 29 = 28; and
the test again returns inconclusive. If we perform the test for all integers a in
the range 1 through 28, we get the same inconclusive result, which is compatible
with n being a prime number.

Now let us apply the test to the composite number n = 13 X 17 = 221. Then
(n — 1) = 220 = 2%(55) = 2%q. Let us try a = 5. Then we have 5°° mod 221 = 112,
which is neither 1 nor 220(5°°)> mod 221 = 168. Because we have used all values of j
(ie.,j = Oandj = 1)inline 4 of the TEST algorithm, the test returns composi te,indi-
cating that 221 is definitely a composite number. But suppose we had selected a = 21.
Then we have 21 mod 221 = 200; (21°)> mod 221 = 220; and the test returns
inconclusive, indicating that 221 may be prime. In fact, of the 218 integers from 2
through 219, four of these will return an inconclusive result, namely 21,47 174, and 200.

70 CHAPTER 2 / INTRODUCTION TO NUMBER THEORY

REPEATED USE OF THE MILLER—RABIN ALcoriTHM How can we use the Miller—-Rabin
algorithm to determine with a high degree of confidence whether or not an integer
is prime? It can be shown [KNUT9S8] that given an odd number # that is not prime
and a randomly chosen integer, a with 1 < a < n — 1, the probability that TEST
will return inconclusive (i.e., fail to detect that n is not prime) is less than 1/4.
Thus, if ¢ different values of a are chosen, the probability that all of them will pass
TEST (return inconclusive) for n is less than (1/4)". For example, for r = 10, the
probability that a nonprime number will pass all ten tests is less than 107°. Thus,
for a sufficiently large value of ¢, we can be confident that # is prime if Miller’s test
always returns inconclusive.

This gives us a basis for determining whether an odd integer »n is prime with
a reasonable degree of confidence. The procedure is as follows: Repeatedly invoke
TEST (n) using randomly chosen values for a. If, at any point, TEST returns
composite, then n is determined to be nonprime. If TEST continues to return
inconclusive for f tests, then for a sufficiently large value of ¢, assume that n
is prime.

A Deterministic Primality Algorithm

Prior to 2002, there was no known method of efficiently proving the primality of
very large numbers. All of the algorithms in use, including the most popular (Miller—
Rabin), produced a probabilistic result. In 2002 (announced in 2002, published
in 2004), Agrawal, Kayal, and Saxena [AGRAO04] developed a relatively simple
deterministic algorithm that efficiently determines whether a given large number
is a prime. The algorithm, known as the AKS algorithm, does not appear to be as
efficient as the Miller—Rabin algorithm. Thus far, it has not supplanted this older,
probabilistic technique.

Distribution of Primes

It is worth noting how many numbers are likely to be rejected before a prime num-
ber is found using the Miller—Rabin test, or any other test for primality. A result
from number theory, known as the prime number theorem, states that the primes
near n are spaced on the average one every In (n) integers. Thus, on average, one
would have to test on the order of In(n) integers before a prime is found. Because
all even integers can be immediately rejected, the correct figure is 0.5 In(n). For
example, if a prime on the order of magnitude of 22 were sought, then about
0.5 In(22%°) = 69 trials would be needed to find a prime. However, this figure is just
an average. In some places along the number line, primes are closely packed, and in
other places there are large gaps.

The two consecutive odd integers 1,000,000,000,061 and 1,000,000,000,063
are both prime. On the other hand, 1001! + 2,1001! + 3, ... ,1001! + 1000,
1001! + 1001 is a sequence of 1000 consecutive composite integers.

2.7 / THE CHINESE REMAINDER THEOREM 71

2.7 THE CHINESE REMAINDER THEOREM

One of the most useful results of number theory is the Chinese remainder theorem
(CRT).!” In essence, the CRT says it is possible to reconstruct integers in a certain
range from their residues modulo a set of pairwise relatively prime moduli.

The 10 integers in Z, that is the integers 0 through 9, can be reconstructed from
their two residues modulo 2 and 5 (the relatively prime factors of 10). Say the
known residues of a decimal digit x are r, = 0 and r5 = 3; that is,x mod 2 = 0
and x mod 5 = 3. Therefore, x is an even integer in Z;, whose remainder, on divi-
sion by 5, is 3. The unique solution is x = 8.

The CRT can be stated in several ways. We present here a formulation that is most
useful from the point of view of this text. An alternative formulation is explored in
Problem 2.33. Let

where the m; are pairwise relatively prime; that is, ged(m;, m;) = 1for1 = i,j < k,
andi # j. We can represent any integer A in Z, by a k-tuple whose elements are in
Z,,, using the following correspondence:

A (a1, ady, .., [lk) (2.15)

where A € Zy,a, € Z,,, and a; = A mod m; for 1 = i = k. The CRT makes two
assertions.

1. The mapping of Equation (2.15) is a one-to-one correspondence (called a
bijection) between Z,, and the Cartesian product Z,, X Z,, X ... X Z,,.
That is, for every integer A such that 0 = A < M, there is a unique k-tuple
(a, ap, ... ,a;) with 0 = a; < m; that represents it, and for every such
k-tuple (ay, ap, ... ,a), there is a unique integer A in Z,.

2. Operations performed on the elements of Z,, can be equivalently performed
on the corresponding k-tuples by performing the operation independently in
each coordinate position in the appropriate system.

Let us demonstrate the first assertion. The transformation from A to
(ai, ay, ... ,a), is obviously unique; that is, each g; is uniquely calculated as
a; = A mod m;. Computing A from (ay, a,, ... ,a;) can be done as follows. Let

19The CRT is so called because it is believed to have been discovered by the Chinese mathematician
Sun-Tsu in around 100 A.D.

72 CHAPTER 2 / INTRODUCTION TO NUMBER THEORY

Mi = M/m,-forl =i = k.NOtethatMi =m Xnmp X ... Xm_1 XMy X ...
X my, so that M; = 0 (mod m;) for all j # i. Then let

¢; = M; X (M;' mod m;) forl=i=k (2.16)

By the definition of M, it is relatively prime to m; and therefore has a unique multi-
plicative inverse mod m;. So Equation (2.16) is well defined and produces a unique
value ¢;. We can now compute

k
A= <Eaicl~>(mod M) 2.17)
i=1

To show that the value of A produced by Equation (2.17) is correct, we must
show that @; = A mod m; for 1 = i = k. Note that ¢; = M; = 0 (mod my;) if j # i,
and that ¢; = 1 (mod my;). It follows that ; = A mod m,.

The second assertion of the CRT, concerning arithmetic operations, follows
from the rules for modular arithmetic. That is, the second assertion can be stated as

follows: If
A(—)(al,aQ, ,ak)
B(—)(bl,bz, e abk)
then
(A + Bymod M < ((a; + by) mod my, ... ,(a; + by) mod my)
(A - B)ymod M < ((a; — by) mod my, ... ,(ap — by) mod my)
(A X Bymod M <> ((a; X by) mod my, ... ,(a; X by) mod my)

One of the useful features of the Chinese remainder theorem is that it provides
a way to manipulate (potentially very large) numbers mod M in terms of tuples of
smaller numbers. This can be useful when M is 150 digits or more. However, note
that it is necessary to know beforehand the factorization of M.

To represent 973 mod 1813 as a pair of numbers mod 37 and 49, define

my = 37
my = 49
M = 1813
A =973

We also have M; = 49 and M, = 37. Using the extended Euclidean algorithm,
we compute M;! = 34 mod m; and M5! = 4 mod m,. (Note that we only need
to compute each M; and each M; ! once.) Taking residues modulo 37 and 49, our
representation of 973 is (11,42), because 973 mod 37 = 11 and 973 mod 49 = 42.

Now suppose we want to add 678 to 973. What do we do to (11, 42)? First
we compute (678) <> (678 mod 37, 678 mod 49) = (12,41). Then we add the
tuples element-wise and reduce (11 + 12 mod 37,42 + 41 mod 49) = (23, 34).
To verify that this has the correct effect, we compute

2.8 / DISCRETE LOGARITHMS 73

(23, 34) — a;M,M;' + a;M,M5"' mod M

= [(23)(49)(34) + (34)(37)(4)] mod 1813

= 43350 mod 1813

= 1651
and check that it is equal to (973 + 678) mod 1813 = 1651. Remember that in
the above derivation, M; ! is the multiplicative inverse of M; modulo 71, and M5!
is the multiplicative inverse of M, modulo m,.

Suppose we want to multiply 1651 (mod 1813) by 73. We multiply (23, 34)

by 73 and reduce to get (23 X 73 mod 37, 34 X 73 mod 49) = (14, 32). It is eas-
ily verified that

(14, 32) <> [(14)(49)(34) + (32)(37)(4)] mod 1813
= 865
= 1651 X 73 mod 1813

2.8 DISCRETE LOGARITHMS

Discrete logarithms are fundamental to a number of public-key algorithms, includ-
ing Diffie-Hellman key exchange and the digital signature algorithm (DSA). This
section provides a brief overview of discrete logarithms. For the interested reader,
more detailed developments of this topic can be found in [ORE67] and [LEVE90].

The Powers of an Integer, Modulo n
Recall from Euler’s theorem [Equation (2.12)] that, for every a and n that are rela-
tively prime,

a®™ = 1 (mod n)

where ¢(n), Euler’s totient function, is the number of positive integers less than n
and relatively prime to n. Now consider the more general expression:

a™ =1 (mod n) (2.18)

If a and n are relatively prime, then there is at least one integer m that satisfies
Equation (2.18), namely, m = ¢(n). The least positive exponent m for which
Equation (2.18) holds is referred to in several ways:

m The order of a (mod n)

m The exponent to which a belongs (mod)

m The length of the period generated by a

74 CHAPTER 2 / INTRODUCTION TO NUMBER THEORY

To see this last point, consider the powers of 7, modulo 19:

7= 7 (mod 19)
77 =49 =2x19 + 11 = 11 (mod 19)
7P =343 =18 X 19 + 1 = 1(mod19)
74 = 2401 = 126 X 19 + 7 = 7 (mod 19)
70 =16807 =884 X 19 + 11 = 11 (mod 19)

There is no point in continuing because the sequence is repeating. This can be

proven by noting that 7° = 1(mod 19), and therefore, 7°*/ = 7°7 = 7/(mod 19),

and hence, any two powers of 7 whose exponents differ by 3 (or a multiple of 3)

are congruent to each other (mod 19). In other words, the sequence is periodic,

and the length of the period is the smallest positive exponent m such that
" = 1(mod 19).

Table 2.7 shows all the powers of a, modulo 19 for all positive a < 19. The
length of the sequence for each base value is indicated by shading. Note the
following:

1. All sequences end in 1. This is consistent with the reasoning of the preceding
few paragraphs.

[\°]

. The length of a sequence divides ¢(19) = 18. That is, an integral number of
sequences occur in each row of the table.

3. Some of the sequences are of length 18. In this case, it is said that the base inte-
ger a generates (via powers) the set of nonzero integers modulo 19. Each such
integer is called a primitive root of the modulus 19.

More generally, we can say that the highest possible exponent to which a num-
ber can belong (mod n) is ¢(n). If a number is of this order, it is referred to as a
primitive root of n. The importance of this notion is that if a is a primitive root of n,
then its powers
a,a, ..., a*"™
are distinct (mod ») and are all relatively prime to n. In particular, for a prime num-
ber p, if a is a primitive root of p, then

are distinct (mod p). For the prime number 19, its primitive roots are 2, 3, 10, 13, 14,
and 15.

Not all integers have primitive roots. In fact, the only integers with primitive
roots are those of the form 2, 4, p®, and 2p“, where p is any odd prime and « is a
positive integer. The proof is not simple but can be found in many number theory
books, including [ORE76].

2.8 / DISCRETE LOGARITHMS 75

Table 2.7 Powers of Integers, Modulo 19
a8 2 B d & ad d d A a0 a' a? 4B a4 4 g7 a8

TI 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 4 8§ 16 13 7 14 9 18 17 15 11 3 6 12 5 10 1
3 9 8 5 15 7 6 18 16 10 11 14 4 12 17 13 1
4 16 7 9 17 11 5 1 4 16 7 9 17 11 6 5 1
5 6 11 17 9 7 16 4 1 5 6 11 17 9 7 16 4 1
6 17 7 4 5 11 9 16 1 6 17 7 4 5 11 9 16 1
7 11 1 7 11 1 7 1 1 7 11 1 7 11 1 7 11 1
8 7 18 11 12 1 8 7 18 11 12 1 8 7 18 11 12 1
9 7 6 16 11 4 17 1 9 5 7 6 16 11 4 17 1
10 5 12 6 3 1 15 17 18 9 14 7 13 16 8 4 2 1
1 7 1 17 1 17 1 11 7 1 11 7 1 11 1
12 11 18 8 1 12 11 18 8 1 12 11 18 7 8 1
13 17 12 4 14 11 10 16 18 6 2 7 15 5 8 9 3 1
14 6 8§ 17 10 7 3 4 18 5 13 11 2 9 12 16 15 1
15 16 12 9 2 11 13 5 18 4 3 7 10 17 8 6 14 1
16 11 4 17 6 1 16 11 5 4 17 1
17 1 16 6 7 5 9 1 17 4 11 16 6 7 5 1
18 1 | 18 1 18 1 18 1 18 1 18 1 18 1 18 1 18 1

Logarithms for Modular Arithmetic

With ordinary positive real numbers, the logarithm function is the inverse of expo-
nentiation. An analogous function exists for modular arithmetic.

Let us briefly review the properties of ordinary logarithms. The logarithm of a
number is defined to be the power to which some positive base (except 1) must be
raised in order to equal the number. That is, for base x and for a value y,

y = x'oal)

The properties of logarithms include

log, (1) =0

log (x) =1
log(yz) = log.(y) + log(z) (2.19)
log(y") = r X log,(y) (2.20)

Consider a primitive root a for some prime number p (the argument can
be developed for nonprimes as well). Then we know that the powers of a from

76 CHAPTER 2 / INTRODUCTION TO NUMBER THEORY

1 through (p — 1) produce each integer from 1 through (p — 1) exactly once. We
also know that any integer b satisfies

b = r (mod p) for some r, where 0 = r < (p — 1)

by the definition of modular arithmetic. It follows that for any integer b and a primi-
tive root a of prime number p, we can find a unique exponent i such that

b = a'(mod p) where0 =i = (p — 1)

This exponent i is referred to as the discrete logarithm of the number b for the base
a (mod p). We denote this value as dloga,p(b).11
Note the following:

dlog,,(1) = 0 because a®modp = 1modp =1 (2.21)

dlog,,(a) = 1 because a'modp = a (2.22)

Here is an example using a nonprime modulus,n = 9. Here ¢p(n) = 6 anda = 2
is a primitive root. We compute the various powers of a and find

=1 2*=7(mod9)

2! =2 2°=5(mod9)

22 =4 2°=1(mod9)

2P =38
This gives us the following table of the numbers with given discrete logarithms
(mod 9) for the root a = 2:

Logarithm 0 1 2 3 4 5
Number 1 2 4 8 7 5

To make it easy to obtain the discrete logarithms of a given number, we rearrange
the table:

Number

1 2 4 5 7 8
Logarithm 0 1 2 5 4 3

Now consider

X = adl()ga.p(x) modp y = alega.p(y) modp
xy = alega,p(XY) modp

"Many texts refer to the discrete logarithm as the index. There is no generally agreed notation for this
concept, much less an agreed name.

2.8 / DISCRETE LOGARITHMS 77
Using the rules of modular multiplication,

xymod p = [(x mod p)(y mod p)] mod p
a2, mod p = [(a®°%»® mod p)(a®'°%») mod p)] mod p

= (410, (0 + dloga.p(y)) mod p

But now consider Euler’s theorem, which states that, for every a and »n that are
relatively prime,

a®™ = 1(mod n)

Any positive integer z can be expressed in the form z = g + k¢(n), with
0 = g < ¢(n). Therefore, by Euler’s theorem,

a* = a’(mod n) if z = g mod ¢(n)
Applying this to the foregoing equality, we have

dlog,, ,(xy) = [dlog, ,(x) + dlog, ,(y)](mod &(p))

and generalizing,

dlog,, ,(y") = [r X dlog,, ,(y)](mod ¢(p))

This demonstrates the analogy between true logarithms and discrete logarithms.
Keep in mind that unique discrete logarithms mod m to some base a exist only
if a is a primitive root of m.
Table 2.8, which is directly derived from Table 2.7, shows the sets of discrete
logarithms that can be defined for modulus 19.

Calculation of Discrete Logarithms

Consider the equation
y = g"mod p

Given g, x, and p, it is a straightforward matter to calculate y. At the worst, we must
perform x repeated multiplications, and algorithms exist for achieving greater effi-
ciency (see Chapter 9).

However, given y, g, and p, it is, in general, very difficult to calculate x (take
the discrete logarithm). The difficulty seems to be on the same order of magnitude
as that of factoring primes required for RSA. At the time of this writing, the asymp-
totically fastest known algorithm for taking discrete logarithms modulo a prime
number is on the order of [BETH91]:

((In) (in(In p))*?)

which is not feasible for large primes.

78 CHAPTER 2 / INTRODUCTION TO NUMBER THEORY

Table 2.8 Tables of Discrete Logarithms, Modulo 19
(a) Discrete logarithms to the base 2, modulo 19

a 12345678 |9|to|11|12[13[14[15]|16]|17]18
logro(a) | 18 | 1 [13| 2 |16 14| 6 | 3|8 [17|12|15]5 |7 |11] 4 |[10]9

(b) Discrete logarithms to the base 3, modulo 19
a 112 |3 (4|56 |7 |89 |10|11 12|13 |14 |15 | 16 |17 | 18
logsio@ |18 | 7 | 1 [14| 4 | 8|6 |3 |2 |10]12[15[17|13|5|10]16] 9

(c) Discrete logarithms to the base 10, modulo 19
a 1 2 3 4 5 6 7 8 9 |10 | 11 | 12 | 13 | 14 [15| 16 | 17 | 18
logioqo(a)| 18 | 17 | 5 |16 | 2 | 4 |12 |15 |10 (1 [6 | 3 [13 [11| 7 |14 | 8 | 9

(d) Discrete logarithms to the base 13, modulo 19
a 1 2 3 4 5 6 7 8 9 |10 | 11 | 12 |13 | 14 [15| 16 | 17 | 18
logizpo(a)| 18 | 11 | 17 | 4 | 14 | 10 | 12 | 15 | 16 | 7 6 3 1 S |13] 8 2 9

(e) Discrete logarithms to the base 14, modulo 19
a 1 2|3 4 |5 6 | 7 8 9 |10 | 11 [12 | 13 [14 | 15 | 16 | 17 | 18
logiaqoa)| 18 | 13 | 7 | 8 [10| 2 | 6 | 3 |14 | 5 [12|15 |11 | 1 |17 |16 | 4 | 9

(f) Discrete logarithms to the base 15, modulo 19
a 1|12 |34 |5 |6 |7 |89 |10|11 12|13 |14 |15 | 16 |17 | 18
logispo(a)| 18 | 5 |11 [10| 8 |16 |12 15| 4 |13 6 |3 |7 |17 1| 2]|14]09

2.9 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms
bijection Euler’s theorem modulus
composite number Euler’s totient function order
commutative Fermat’s theorem prime number
Chinese remainder theorem greatest common divisor primitive root
discrete logarithm identity element relatively prime
divisor index residue
Euclidean algorithm modular arithmetic

2.9 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 79

Review Questions

NN
N oA W -

=)

N
% 9

What does it mean to say that b is a divisor of a?

What is the meaning of the expression a divides b?

What is the difference between modular arithmetic and ordinary arithmetic?
What is a prime number?

What is Euler’s totient function?

The Miller—Rabin test can determine if a number is not prime but cannot determine
if a number is prime. How can such an algorithm be used to test for primality?

What is a primitive root of a number?
What is the difference between an index and a discrete logarithm?

Problems

21

[
wW N

2.6

2.10
211

Reformulate Equation (2.1), removing the restriction that a is a nonnegative integer.
That is, let a be any integer.

Draw a figure similar to Figure 2.1 for a < 0.

For each of the following equations, find an integer x that satisfies the equation.

a. 4x =2 (mod 3)

b. 7x =4 (mod 9)

c. 5x =3 (mod11)

In this text, we assume that the modulus is a positive integer. But the definition of the
expression a mod n also makes perfect sense if n is negative. Determine the following:
a. 7mod4

b. 7mod —4

c¢. —7 mod 4

d. =7 mod —4

A modulus of 0 does not fit the definition but is defined by convention as follows:
amod 0 = a. With this definition in mind, what does the following expression mean:
a = b (mod 0)?

In Section 2.3, we define the congruence relationship as follows: Two integers a and
b are said to be congruent modulo 7 if (a mod n) = (b mod n). We then proved that
a = b (mod n) if n|(a — b). Some texts on number theory use this latter relation-
ship as the definition of congruence: Two integers a and b are said to be congruent
modulo n if n|(a — b). Using this latter definition as the starting point, prove that, if
(a mod n) = (b mod n), then n divides (a — b).

What is the smallest positive integer that has exactly k divisors? Provide answers for
values for1 = k = 8.

Prove the following:

a. a = b (mod n) implies b = a (mod n)

b. a = b (modn)and b = ¢ (mod n) imply a = ¢ (mod n)

Prove the following:

a. [(@amodn) — (b modn)]modn = (a — b) mod n

b. [(@amodn) X (bmodn)lmodn = (a X b) mod n

Find the multiplicative inverse of each nonzero element in Zs.

Show that an integer N is congruent modulo 9 to the sum of its decimal digits. For
example,723 =7 +2 +3 =12 =1 + 2 =3 (mod 9). This is the basis for the
familiar procedure of “casting out 9’s” when checking computations in arithmetic.

80 CHAPTER 2 / INTRODUCTION TO NUMBER THEORY

2.12

2.13

2.15

2.16

a. Determine gcd(72345, 43215)

b. Determine gcd(3486,10292)

The purpose of this problem is to set an upper bound on the number of iterations of
the Euclidean algorithm.

a. Suppose that m = gn + r withg > 0 and 0 = r < n. Show that m/2 > r.

b. Let A; be the value of A in the Euclidean algorithm after the ith iteration. Show that

A;

Ay < ?

c. Show that if m, n, and N are integers with (1 =< m,n, = 2N), then the Euclidean
algorithm takes at most 2N steps to find ged(m, n).
The Euclidean algorithm has been known for over 2000 years and has always been
a favorite among number theorists. After these many years, there is now a potential
competitor, invented by J. Stein in 1961. Stein’s algorithms is as follows: Determine
gcd(A, B) with A, B = 1.
STEP 1 SetA; = A,Bi=B,C; =1
STEP 2 Forn>1, (1)If A, = B,,stop.ged(A, B) = A,C,
(2) If A, and B, are both even, set A, = A,/2, B,.1 = B,/2,

Cn+1 = 2Cn

(3) If A,is even and B, is odd,set A, = A,/2, B,.1 = B,
Cn+1 = Cn

(4)If A,is odd and B, is even,set A, = A,, B,+1 = B,/2,
Cn+1 = Cn

(5) If A, and B, are both odd, set A,,; = |A, — B,|, Bys1 =
min (Bm An)v Cn+1 = Cn
Continue to stepn + 1.
a. To get a feel for the two algorithms, compute gcd(6150,704) using both the Euclid-
ean and Stein’s algorithm.
b. Whatis the apparent advantage of Stein’s algorithm over the Euclidean algorithm?

a. Show that if Stein’s algorithm does not stop before the nth step, then
Cn+1 X ng(An+1> Bn+1) = Cn X ng(Am Bn)
b. Show that if the algorithm does not stop before step (n — 1), then

A,B

n

2

n

An+2Bn+2 =

c. Showthatif 1 = A, B = 2V, then Stein’s algorithm takes at most 4N steps to find
gcd(m, n). Thus, Stein’s algorithm works in roughly the same number of steps as
the Euclidean algorithm.

d. Demonstrate that Stein’s algorithm does indeed return gcd(A, B).

Using the extended Euclidean algorithm, find the multiplicative inverse of
a. 135 mod 61

b. 7465 mod 2464

c. 42828 mod 6407

The purpose of this problem is to determine how many prime numbers there

are. Suppose there are a total of n prime numbers, and we list these in order:

pL=2<p=3<p3=5< ... <p,

a. Define X =1 + pip,... p,. Thatis, X is equal to one plus the product of all the
primes. Can we find a prime number P, that divides X?

b. What can you say about m?

c. Deduce that the total number of primes cannot be finite.

d. ShowthatP, i =1+ pipr... pp-

2.19
2.20
2.21

2.28

2.29

2.30

2.9 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 81

The purpose of this problem is to demonstrate that the probability that two random
numbers are relatively prime is about 0.6.
a. Let P = Pr[ged(a, b) = 1]. Show that P = Pr[ged(a, b) = d] = Pld*. Hint:

b
Consider the quantity ged (% E)
b. The sum of the result of part (a) over all possible values of d is 1. That is
34=1pr[ged(a, b) = d] = 1. Use this equality to determine the value of P. Hint:
© 1 2
Use the identity 23 = %
i=11

Why is ged(n, n + 1) = 1 for two consecutive integers n and n + 1?

Using Fermat’s theorem, find 422> mod 13.

Use Fermat’s theorem to find a number a between 0 and 92 with a congruent to 71013
modulo 93.

Use Fermat’s theorem to find a number x between 0 and 37 with x’? congruent to 4
modulo 37. (You should not need to use any brute-force searching.)

Use Euler’s theorem to find a number a between 0 and 9 such that a is congruent to
912(1] modulo 10. (Note: This is the same as the last digit of the decimal expansion of
9'%%)

Use Euler’s theorem to find a number x between 0 and 14 with x°
modulo 15. (You should not need to use any brute-force searching.)
Notice in Table 2.6 that ¢(n) is even for n > 2. This is true for all n > 2. Give a con-
cise argument why this is so.

Prove the following: If p is prime, then ¢(p') = p' — p'~!. Hint: What numbers have
a factor in common with p'?

It can be shown (see any book on number theory) that if ged(m,n) = 1 then
¢(mn) = ¢(m)dp(n). Using this property, the property developed in the preceding
problem, and the property that ¢(p) = p — 1 for p prime, it is straightforward to
determine the value of ¢(n) for any n. Determine the following:

a. ¢(29) b. ¢(51) c. p(455) d. ¢(616)

It can also be shown that for arbitrary positive integer a, ¢(a) is given by

! congruent to 7

P(a) = I:II[P?”l(pi - D]

where a is given by Equation (2.9), namely: a = P{'P%... P{". Demonstrate this result.

Consider the function: f(n) = number of elements in the set {a:0 = a < n and

gcd(a, n) = 1}. What is this function?

Although ancient Chinese mathematicians did good work coming up with their

remainder theorem, they did not always get it right. They had a test for primality. The

test said that n is prime if and only if n divides (2" — 2).

a. Give an example that satisfies the condition using an odd prime.

b. The condition is obviously true for n = 2. Prove that the condition is true if n is an
odd prime (proving the if condition).

c. Give an example of an odd » that is not prime and that does not satisfy the condi-
tion. You can do this with nonprime numbers up to a very large value. This misled
the Chinese mathematicians into thinking that if the condition is true then n is prime.

d. Unfortunately, the ancient Chinese never tried n = 341, which is nonprime
(341 = 11 X 31), yet 341 divides 2**! — 2 without remainder. Demonstrate that
2341 = 2 (mod 341) (disproving the only if condition). Hint: It is not necessary to
calculate 2°*!; play around with the congruences instead.

82 CHAPTER 2 / INTRODUCTION TO NUMBER THEORY

2.31 Show that, if n is an odd composite integer, then the Miller—Rabin test will return
inconclusivefora = landa = (n — 1).

2.32 If n is composite and passes the Miller—Rabin test for the base a, then 7 is called
a strong pseudoprime to the base a. Show that 2047 is a strong pseudoprime to the
base 2.

2.33 A common formulation of the Chinese remainder theorem (CRT) is as follows: Let
my, ... ,my beintegers that are pairwise relatively prime for 1 = i,j < k,andi # j.
Define M to be the product of all the m;’s. Let ay, ... , a; be integers. Then the set of
congruences:

= al(mod ml)

llz(mOd mz)

= a;(mod my)

=
I

has a unique solution modulo M. Show that the theorem stated in this form is true.
2.34 The example used by Sun-Tsu to illustrate the CRT was

x =2 (mod3);x = 3 (mod5); x =2 (mod 7)

Solve for x.

2.35 Six professors begin courses on Monday, Tuesday, Wednesday, Thursday, Friday,
and Saturday, respectively, and announce their intentions of lecturing at intervals of
3,2,5,6, 1, and 4 days, respectively. The regulations of the university forbid Sunday
lectures (so that a Sunday lecture must be omitted). When first will all six professors
find themselves compelled to omit a lecture? Hint: Use the CRT.

2.36 Find all primitive roots of 37.

2.37 Given 5 as a primitive root of 23, construct a table of discrete logarithms, and use it to
solve the following congruences.

a. 3x° = 2 (mod 23)
b. 7x'% + 1 = 0 (mod 23)
c. 5= 6(mod?23)

Programming Problems

2.1 Write a computer program that implements fast exponentiation (successive squaring)
modulo .

2.2 Write a computer program that implements the Miller—Rabin algorithm for a user-
specified n. The program should allow the user two choices: (1) specify a possible
witness a to test using the Witness procedure or (2) specify a number s of random
witnesses for the Miller-Rabin test to check.

APPENDIX 2A THE MEANING OF MOD

The operator mod is used in this book and in the literature in two different ways: as
a binary operator and as a congruence relation. This appendix explains the distinc-
tion and precisely defines the notation used in this book regarding parentheses. This
notation is common but, unfortunately, not universal.

APPENDIX 2A / THE MEANING OF MOD 83

The Binary Operator mod

If a is an integer and n is a positive integer, we define a mod »n to be the remainder
when a is divided by n. The integer n is called the modulus, and the remainder is
called the residue. Thus, for any integer a, we can always write

a=lan] X n+ (amod n)
Formally, we define the operator mod as
amodn =a — |aln] Xn forn # 0

As a binary operation, mod takes two integer arguments and returns the re-
mainder. For example, 7 mod 3 = 1. The arguments may be integers, integer vari-
ables, or integer variable expressions. For example, all of the following are valid,
with the obvious meanings:

7 mod 3

7 mod m

xmod 3

x mod m

(x> + y + 1) mod 2m + n)
where all of the variables are integers. In each case, the left-hand term is divided by
the right-hand term, and the resulting value is the remainder. Note that if either the
left- or right-hand argument is an expression, the expression is parenthesized. The
operator mod is not inside parentheses.

In fact, the mod operation also works if the two arguments are arbitrary real num-
bers, not just integers. In this book, we are concerned only with the integer operation.

The Congruence Relation mod

As a congruence relation, mod expresses that two arguments have the same remain-
der with respect to a given modulus. For example, 7 = 4 (mod 3) expresses the
fact that both 7 and 4 have a remainder of 1 when divided by 3. The following two
expressions are equivalent:

a = b (mod m) S amod m = b mod m

Another way of expressing it is to say that the expression a = b (mod m) is the
same as saying that a — b is an integral multiple of m. Again, all the arguments may
be integers, integer variables, or integer variable expressions. For example, all of
the following are valid, with the obvious meanings:

7 = 4 (mod 3)
x =y (mod m)
x>+ y+1) = (a+ 1)(mod[m + n])
where all of the variables are integers. Two conventions are used. The congruence

sign is =. The modulus for the relation is defined by placing the mod operator fol-
lowed by the modulus in parentheses.

84 CHAPTER 2 / INTRODUCTION TO NUMBER THEORY

The congruence relation is used to define residue classes. Those numbers that
have the same remainder r when divided by m form a residue class (mod m). There
are m residue classes (mod m). For a given remainder r, the residue class to which it
belongs consists of the numbers

rnr X mr £ 2m, ...
According to our definition, the congruence
a = b (mod m)

signifies that the numbers a and b differ by a multiple of m. Consequently, the con-
gruence can also be expressed in the terms that a and b belong to the same residue
class (mod m).

PART Two: SYMMETRIC CIPHERS

CrassicAL ENCRYPTION TECHNIQUES

3.1 Symmetric Cipher Model

Cryptography
Cryptanalysis and Brute-Force Attack

3.2 Substitution Techniques

Caesar Cipher
Monoalphabetic Ciphers
Playfair Cipher

Hill Cipher
Polyalphabetic Ciphers
One-Time Pad

3.3 Transposition Techniques
3.4 Rotor Machines
3.5 Steganography

3.6 Key Terms, Review Questions, and Problems

85

86 CHAPTER 3 / CLASSICAL ENCRYPTION TECHNIQUES

LEARNING OBJECTIVES

After studying this chapter, you should be able to:

Present an overview of the main concepts of symmetric cryptography.
Explain the difference between cryptanalysis and brute-force attack.
Understand the operation of a monoalphabetic substitution cipher.
Understand the operation of a polyalphabetic cipher.

Present an overview of the Hill cipher.

L K IR IR IR K 4

Describe the operation of a rotor machine.

Symmetric encryption, also referred to as conventional encryption or single-key
encryption, was the only type of encryption in use prior to the development of public-
key encryption in the 1970s. It remains by far the most widely used of the two types
of encryption. Part One examines a number of symmetric ciphers. In this chapter, we
begin with a look at a general model for the symmetric encryption process; this will
enable us to understand the context within which the algorithms are used. Next, we
examine a variety of algorithms in use before the computer era. Finally, we look briefly
at a different approach known as steganography. Chapters 4 and 6 introduce the two
most widely used symmetric cipher: DES and AES.

Before beginning, we define some terms. An original message is known as the
plaintext, while the coded message is called the ciphertext. The process of convert-
ing from plaintext to ciphertext is known as enciphering or encryption; restoring the
plaintext from the ciphertext is deciphering or decryption. The many schemes used
for encryption constitute the area of study known as cryptography. Such a scheme
is known as a cryptographic system or a cipher. Techniques used for deciphering a
message without any knowledge of the enciphering details fall into the area of crypt-
analysis. Cryptanalysis is what the layperson calls “breaking the code.” The areas of
cryptography and cryptanalysis together are called cryptology.

3.1 SYMMETRIC CIPHER MODEL

A symmetric encryption scheme has five ingredients (Figure 3.1):

m Plaintext: This is the original intelligible message or data that is fed into the
algorithm as input.

® Encryption algorithm: The encryption algorithm performs various substitu-
tions and transformations on the plaintext.

m Secret key: The secret key is also input to the encryption algorithm. The key is
a value independent of the plaintext and of the algorithm. The algorithm will
produce a different output depending on the specific key being used at the
time. The exact substitutions and transformations performed by the algorithm
depend on the key.

X ciphertext
—> > —>
Y=E(, X) X=D(K,Y)

Plaintext
input

Figure 3.1

3.1 / SYMMETRIC CIPHER MODEL 87

Secret key shared by Secret key shared by
sender and recipient sender and recipient
& &

1 1"
Transmitted

A

Plaintext
Encryption algorithm Decryption algorithm (:lltn 3?
(e.g., AES) (reverse of encryption P
algorithm)

Simplified Model of Symmetric Encryption

Ciphertext: This is the scrambled message produced as output. It depends on
the plaintext and the secret key. For a given message, two different keys will
produce two different ciphertexts. The ciphertext is an apparently random
stream of data and, as it stands, is unintelligible.

Decryption algorithm: This is essentially the encryption algorithm run in
reverse. It takes the ciphertext and the secret key and produces the original
plaintext.

There are two requirements for secure use of conventional encryption:

. We need a strong encryption algorithm. At a minimum, we would like the algo-

rithm to be such that an opponent who knows the algorithm and has access to
one or more ciphertexts would be unable to decipher the ciphertext or figure
out the key. This requirement is usually stated in a stronger form: The oppo-
nent should be unable to decrypt ciphertext or discover the key even if he or
she is in possession of a number of ciphertexts together with the plaintext that
produced each ciphertext.

. Sender and receiver must have obtained copies of the secret key in a secure

fashion and must keep the key secure. If someone can discover the key and
knows the algorithm, all communication using this key is readable.

We assume that it is impractical to decrypt a message on the basis of the

ciphertext plus knowledge of the encryption/decryption algorithm. In other words,
we do not need to keep the algorithm secret; we need to keep only the key secret.
This feature of symmetric encryption is what makes it feasible for widespread use.
The fact that the algorithm need not be kept secret means that manufacturers can
and have developed low-cost chip implementations of data encryption algorithms.
These chips are widely available and incorporated into a number of products. With
the use of symmetric encryption, the principal security problem is maintaining the
secrecy of the key.

Let us take a closer look at the essential elements of a symmetric encryp-

tion scheme, using Figure 3.2. A source produces a message in plaintext,

X:

[X1, X5, ..., Xy]. The M elements of X are letters in some finite alphabet.

Traditionally, the alphabet usually consisted of the 26 capital letters. Nowadays,

88 CHAPTER 3 / CLASSICAL ENCRYPTION TECHNIQUES

Cryptanalyst
—

. . X
o S o Dt e e
g Y = E(K, X) g
A
K
Secure channel
Key

source

Figure 3.2 Model of Symmetric Cryptosystem

the binary alphabet {0, 1} is typically used. For encryption, a key of the form
K = [K, K;, ... ,Kj]is generated. If the key is generated at the message source,
then it must also be provided to the destination by means of some secure channel.
Alternatively, a third party could generate the key and securely deliver it to both
source and destination.

With the message X and the encryption key K as input, the encryption algo-
rithm forms the ciphertext Y = [Y, Y5, ... , Yy]. We can write this as

Y = E(K, X)

This notation indicates that Y is produced by using encryption algorithm E as a
function of the plaintext X, with the specific function determined by the value of
the key K.

The intended receiver, in possession of the key, is able to invert the
transformation:

X = D(K,Y)

An opponent, observing Y but not having access to K or X, may attempt to
recover X or K or both X and K. It is assumed that the opponent knows the encryp-
tion (E) and decryption (D) algorithms. If the opponent is interested in only this
particular message, then the focus of the effort is to recover X by generating a plain-
text estimate X. Often, however, the opponent is interested in being able to read
future messages as well, in which case an attempt is made to recover K by generat-
ing an estimate K.

3.1 / SYMMETRIC CIPHER MODEL 89

Cryptography
Cryptographic systems are characterized along three independent dimensions:

1. The type of operations used for transforming plaintext to ciphertext. All
encryption algorithms are based on two general principles: substitution,
in which each element in the plaintext (bit, letter, group of bits or letters)
is mapped into another element, and transposition, in which elements
in the plaintext are rearranged. The fundamental requirement is that no
information be lost (i.e., that all operations are reversible). Most systems,
referred to as product systems, involve multiple stages of substitutions and
transpositions.

[}

. The number of keys used. If both sender and receiver use the same key, the
system is referred to as symmetric, single-key, secret-key, or conventional
encryption. If the sender and receiver use different keys, the system is referred
to as asymmetric, two-key, or public-key encryption.

3. The way in which the plaintext is processed. A block cipher processes the input
one block of elements at a time, producing an output block for each input
block. A stream cipher processes the input elements continuously, producing
output one element at a time, as it goes along.

Cryptanalysis and Brute-Force Attack

Typically, the objective of attacking an encryption system is to recover the key in
use rather than simply to recover the plaintext of a single ciphertext. There are two
general approaches to attacking a conventional encryption scheme:

m Cryptanalysis: Cryptanalytic attacks rely on the nature of the algorithm plus
perhaps some knowledge of the general characteristics of the plaintext or even
some sample plaintext—ciphertext pairs. This type of attack exploits the charac-
teristics of the algorithm to attempt to deduce a specific plaintext or to deduce
the key being used.

m Brute-force attack: The attacker tries every possible key on a piece of cipher-
text until an intelligible translation into plaintext is obtained. On average, half
of all possible keys must be tried to achieve success.

If either type of attack succeeds in deducing the key, the effect is catastrophic:
All future and past messages encrypted with that key are compromised.

We first consider cryptanalysis and then discuss brute-force attacks.

Table 3.1 summarizes the various types of cryptanalytic attacks based on the
amount of information known to the cryptanalyst. The most difficult problem is
presented when all that is available is the ciphertext only. In some cases, not even
the encryption algorithm is known, but in general, we can assume that the opponent
does know the algorithm used for encryption. One possible attack under these cir-
cumstances is the brute-force approach of trying all possible keys. If the key space
is very large, this becomes impractical. Thus, the opponent must rely on an analysis
of the ciphertext itself, generally applying various statistical tests to it. To use this

90 CHAPTER 3 / CLASSICAL ENCRYPTION TECHNIQUES

Table 3.1 Types of Attacks on Encrypted Messages

Type of Attack

Known to Cryptanalyst

Ciphertext Only

= Encryption algorithm
m Ciphertext

Known Plaintext

= Encryption algorithm

m Ciphertext
= One or more plaintext—ciphertext pairs formed with the secret key

Chosen Plaintext » Encryption algorithm

m Ciphertext
= Plaintext message chosen by cryptanalyst, together with its corresponding
ciphertext generated with the secret key

Chosen Ciphertext » Encryption algorithm

m Ciphertext
= Ciphertext chosen by cryptanalyst, together with its corresponding decrypted
plaintext generated with the secret key

Chosen Text = Encryption algorithm

m Ciphertext

= Plaintext message chosen by cryptanalyst, together with its corresponding
ciphertext generated with the secret key

m Ciphertext chosen by cryptanalyst, together with its corresponding decrypted
plaintext generated with the secret key

approach, the opponent must have some general idea of the type of plaintext that
is concealed, such as English or French text, an EXE file, a Java source listing, an
accounting file, and so on.

The ciphertext-only attack is the easiest to defend against because the oppo-
nent has the least amount of information to work with. In many cases, however,
the analyst has more information. The analyst may be able to capture one or more
plaintext messages as well as their encryptions. Or the analyst may know that certain
plaintext patterns will appear in a message. For example, a file that is encoded in the
Postscript format always begins with the same pattern, or there may be a standard-
ized header or banner to an electronic funds transfer message, and so on. All these
are examples of known plaintext. With this knowledge, the analyst may be able to
deduce the key on the basis of the way in which the known plaintext is transformed.

Closely related to the known-plaintext attack is what might be referred to as a
probable-word attack. If the opponent is working with the encryption of some gen-
eral prose message, he or she may have little knowledge of what is in the message.
However, if the opponent is after some very specific information, then parts of the
message may be known. For example, if an entire accounting file is being transmit-
ted, the opponent may know the placement of certain key words in the header of the
file. As another example, the source code for a program developed by Corporation
X might include a copyright statement in some standardized position.

If the analyst is able somehow to get the source system to insert into the sys-
tem a message chosen by the analyst, then a chosen-plaintext attack is possible.
An example of this strategy is differential cryptanalysis, explored in Appendix S.

3.1 / SYMMETRIC CIPHER MODEL 91

In general, if the analyst is able to choose the messages to encrypt, the analyst may
deliberately pick patterns that can be expected to reveal the structure of the key.

Table 3.1 lists two other types of attack: chosen ciphertext and chosen text.
These are less commonly employed as cryptanalytic techniques but are nevertheless
possible avenues of attack.

Only relatively weak algorithms fail to withstand a ciphertext-only attack.
Generally, an encryption algorithm is designed to withstand a known-plaintext
attack.

Two more definitions are worthy of note. An encryption scheme is
unconditionally secure if the ciphertext generated by the scheme does not contain
enough information to determine uniquely the corresponding plaintext, no matter
how much ciphertext is available. That is, no matter how much time an opponent
has, it is impossible for him or her to decrypt the ciphertext simply because the
required information is not there. With the exception of a scheme known as the
one-time pad (described later in this chapter), there is no encryption algorithm that
is unconditionally secure. Therefore, all that the users of an encryption algorithm
can strive for is an algorithm that meets one or both of the following criteria:

m The cost of breaking the cipher exceeds the value of the encrypted information.

B The time required to break the cipher exceeds the useful lifetime of the
information.

An encryption scheme is said to be computationally secure if either of the
foregoing two criteria are met. Unfortunately, it is very difficult to estimate the
amount of effort required to cryptanalyze ciphertext successfully.

All forms of cryptanalysis for symmetric encryption schemes are designed
to exploit the fact that traces of structure or pattern in the plaintext may survive
encryption and be discernible in the ciphertext. This will become clear as we exam-
ine various symmetric encryption schemes in this chapter. We will see in Part Two
that cryptanalysis for public-key schemes proceeds from a fundamentally different
premise, namely, that the mathematical properties of the pair of keys may make it
possible for one of the two keys to be deduced from the other.

A brute-force attack involves trying every possible key until an intelligible
translation of the ciphertext into plaintext is obtained. On average, half of all pos-
sible keys must be tried to achieve success. That is, if there are X different keys, on
average an attacker would discover the actual key after X/2 tries. It is important to
note that there is more to a brute-force attack than simply running through all pos-
sible keys. Unless known plaintext is provided, the analyst must be able to recognize
plaintext as plaintext. If the message is just plain text in English, then the result pops
out easily, although the task of recognizing English would have to be automated. If
the text message has been compressed before encryption, then recognition is more
difficult. And if the message is some more general type of data, such as a numeri-
cal file, and this has been compressed, the problem becomes even more difficult to
automate. Thus, to supplement the brute-force approach, some degree of knowl-
edge about the expected plaintext is needed, and some means of automatically dis-
tinguishing plaintext from garble is also needed.

92 CHAPTER 3 / CLASSICAL ENCRYPTION TECHNIQUES

3.2 SUBSTITUTION TECHNIQUES

In this section and the next, we examine a sampling of what might be called classical
encryption techniques. A study of these techniques enables us to illustrate the basic
approaches to symmetric encryption used today and the types of cryptanalytic at-
tacks that must be anticipated.

The two basic building blocks of all encryption techniques are substitution
and transposition. We examine these in the next two sections. Finally, we discuss a
system that combines both substitution and transposition.

A substitution technique is one in which the letters of plaintext are replaced
by other letters or by numbers or symbols.! If the plaintext is viewed as a sequence
of bits, then substitution involves replacing plaintext bit patterns with ciphertext bit
patterns.

Caesar Cipher

The earliest known, and the simplest, use of a substitution cipher was by Julius
Caesar. The Caesar cipher involves replacing each letter of the alphabet with the
letter standing three places further down the alphabet. For example,

plain: meet me after the toga party
cipher: PHHW PH DIWHU WKH WRJD SDUWB

Note that the alphabet is wrapped around, so that the letter following Z is A.
We can define the transformation by listing all possibilities, as follows:

plain: abcdefghijklmnopgrstuvwsxyz
cipher: DEFGHIJKLMNOPQRSTUVWIXYZABZC

Let us assign a numerical equivalent to each letter:

b | c|d|le | f]g|n]il]ijil|lk]|1]|m
203|456 |78]9|1w0|1n]12

n o P q r S t u v w X y z
13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25

Then the algorithm can be expressed as follows. For each plaintext letter p, substi-
tute the ciphertext letter C:2

C=E@B,p) = (p + 3)mod 26
A shift may be of any amount, so that the general Caesar algorithm is

C = E(k,p) = (p + k) mod 26 3.1

When letters are involved, the following conventions are used in this book. Plaintext is always in
lowercase; ciphertext is in uppercase; key values are in italicized lowercase.

2We define a mod 7 to be the remainder when a is divided by 7. For example, 11 mod 7 = 4. See Chapter 2
for a further discussion of modular arithmetic.

3.2 / SUBSTITUTION TECHNIQUES 93

where k takes on a value in the range 1 to 25. The decryption algorithm is simply
p = D(k,C) = (C — k)mod 26 3.2)

If it is known that a given ciphertext is a Caesar cipher, then a brute-force
cryptanalysis is easily performed: simply try all the 25 possible keys. Figure 3.3
shows the results of applying this strategy to the example ciphertext. In this case, the
plaintext leaps out as occupying the third line.

Three important characteristics of this problem enabled us to use a brute-
force cryptanalysis:

1. The encryption and decryption algorithms are known.
2. There are only 25 keys to try.
3. The language of the plaintext is known and easily recognizable.
In most networking situations, we can assume that the algorithms are known.

What generally makes brute-force cryptanalysis impractical is the use of an algo-
rithm that employs a large number of keys. For example, the triple DES algorithm,

PHHW PH DIWHU WKH WRJD SDUWB
KEY

1 oggv og chvgt vjg vgic rctva

2 nffu nf bgufs uif uphb gbsuz
3 meet me after the toga party
4 ldds 1ld zesdg sgd snfz ozgsx
5 kccr kc ydrcp rfc rmey nyprw
6 jbbg jb xcgbo geb gldx mxogv
7 iaap ia wbpan pda pkcw lwnpu
8 hzzo hz vaozm ocz ojbv kvmot

9 gyyn gy uznyl nby niau julns
10 fxxm fx tymxk max mhzt itkmr
11 ewwl ew sxlwj lzw lgys hsjlg
12 dvvk dv rwkvi kyv kfxr grikp
13 cuuj cu gvjuh jxu jewqg fghjo
14 btti bt puitg iwt idvp epgin
15 assh as othsf hvs hcuo dofhm
16 zrrg zr nsgre gur gbtn cnegl
17 yagf yg mrfqgd ftg fasm bmdfk
18 xppe xp lgepc esp ezrl alcej
19 wood wo kpdob dro dygk zkbdi
20 vnnc vn jocna cgn cxpj yjach
21 ummb um inbmz bpm bwoi xizbg
22 tlla tl hmaly aol avnh whyaf
23 skkz sk glzkx znk zumg vgxze
24 rijy rj fkyjw ymj ytlf ufwyd
25 giix gi ejxiv x1i xske tevxc

Figure 3.3 Brute-Force Cryptanalysis of Caesar Cipher

94 CHAPTER 3 / CLASSICAL ENCRYPTION TECHNIQUES

THHL"— Q-0)<4{ocot, &~Q%rau--I 07 z-
Uz20#A20 e«q7 Qn-@3N0U Gz’ Y-feol [0 &Q,<NO-+«“xad Aafeusl
x}68keA
_vI "AE] .= J/°iTé&1 'c<uQ-

AD(G WAC~y_18AW PO1«IUtc¢],m; Il "= L 90gflo"&ES < @O§”:
YEISCGaevo” U\, S>h<-*6p1%x " |A0#="my% " >fiP<, fi A7 A0:”zZu-
Q07 6@y {% ,QES i m+AI°102¢SY O-

28AR1 /@~ [IRe2PEr, 1é" 3X 6 021 Y-YQuY> Q+ed/ <Kfe*+~ "<~
B ZoK Qfyiif . 10fiTzsS/1>EQ U

Figure 3.4 Sample of Compressed Text

examined in Chapter 7, makes use of a 168-bit key, giving a key space of 2! or
greater than 3.7 X 10° possible keys.

The third characteristic is also significant. If the language of the plaintext is
unknown, then plaintext output may not be recognizable. Furthermore, the input
may be abbreviated or compressed in some fashion, again making recognition dif-
ficult. For example, Figure 3.4 shows a portion of a text file compressed using an
algorithm called ZIP. If this file is then encrypted with a simple substitution cipher
(expanded to include more than just 26 alphabetic characters), then the plaintext
may not be recognized when it is uncovered in the brute-force cryptanalysis.

Monoalphabetic Ciphers

With only 25 possible keys, the Caesar cipher is far from secure. A dramatic increase
in the key space can be achieved by allowing an arbitrary substitution. Before pro-
ceeding, we define the term permutation. A permutation of a finite set of elements S
is an ordered sequence of all the elements of S, with each element appearing exactly
once. For example, if S = {a, b, c}, there are six permutations of S:

abc, acb, bac, bca, cab, cba

In general, there are n! permutations of a set of n elements, because the first
element can be chosen in one of n ways, the second in # — 1 ways, the thirdinn — 2
ways, and so on.

Recall the assignment for the Caesar cipher:

plaint: abcdefghijklmnopgrstuvwzxyz
cipher: DEFGHIJKLMNOPQRSTUVWXYZABC

If, instead, the “cipher” line can be any permutation of the 26 alphabetic characters,
then there are 26! or greater than 4 X 10%° possible keys. This is 10 orders of mag-
nitude greater than the key space for DES and would seem to eliminate brute-force
techniques for cryptanalysis. Such an approach is referred to as a monoalphabetic
substitution cipher, because a single cipher alphabet (mapping from plain alphabet
to cipher alphabet) is used per message.

There is, however, another line of attack. If the cryptanalyst knows the nature
of the plaintext (e.g., noncompressed English text), then the analyst can exploit the
regularities of the language. To see how such a cryptanalysis might proceed, we give
a partial example here that is adapted from one in [SINK09]. The ciphertext to be
solved is

3.2 / SUBSTITUTION TECHNIQUES 95

UZQSOVUOHXMOPVGPOZPEVSGZWSZOPFPESXUDBMETSXATIZ
VUEPHZHMDZSHZOWSFPAPPDTSVPQUZWYMXUZUHSX
EPYEPOPDZSZUFPOMBZWPFUPZHMDJUDTMOHMQ

As a first step, the relative frequency of the letters can be determined and
compared to a standard frequency distribution for English, such as is shown in
Figure 3.5 (based on [LEWAO00]). If the message were long enough, this technique
alone might be sufficient, but because this is a relatively short message, we cannot
expect an exact match. In any case, the relative frequencies of the letters in the
ciphertext (in percentages) are as follows:

P 1333 H 583 F 333 B 167 C 0.00
Z 11.67 D 5.00 W 3.33 G 167 K 0.00
S 833 E 5.00 Q 250 Y 167 L 0.00
U 833 vV 417 T 250 I 083 N 0.00
O 750 X 417 A 167 J 083 R 0.00
M 6.67

Comparing this breakdown with Figure 3.5, it seems likely that cipher letters
P and Z are the equivalents of plain letters e and t, but it is not certain which is which.
The letters S, U, O, M, and H are all of relatively high frequency and probably

14 N
=)
=
o
—
12
10 DS
= <
=X =N
S g
z;v—t
3 o~
g5 .= 2
s 8 © bt
= AN N o~
15 >N A
9 2 ° & @
E=! S S o
= ¥}
< 6
=7
a
N &
< <
<
4
8 2
5 o = = 3
IS Q0 < Q i A Iy
I a2 a o) N a
2N i - —
2 ~ ~ 00
— Q I
o = S o
n < > o =
= =) = S
0 = =} S =}
A B CDEV FGHTIJKLMNOZP QRS STUVWXYZ

Figure 3.5 Relative Frequency of Letters in English Text

96 CHAPTER 3 / CLASSICAL ENCRYPTION TECHNIQUES

correspond to plain letters from the set {a, h, i, n, o, r, s}. The letters with the lowest
frequencies (namely, A, B, G, Y, I, J) are likely included in the set {b, j, k, q, v, X, z}.

There are a number of ways to proceed at this point. We could make some
tentative assignments and start to fill in the plaintext to see if it looks like a rea-
sonable “skeleton” of a message. A more systematic approach is to look for other
regularities. For example, certain words may be known to be in the text. Or we
could look for repeating sequences of cipher letters and try to deduce their plaintext
equivalents.

A powerful tool is to look at the frequency of two-letter combinations, known
as digrams. A table similar to Figure 3.5 could be drawn up showing the relative fre-
quency of digrams. The most common such digram is th. In our ciphertext, the most
common digram is ZW, which appears three times. So we make the correspondence
of Z with t and W with h. Then, by our earlier hypothesis, we can equate P with e.
Now notice that the sequence ZWP appears in the ciphertext, and we can translate
that sequence as “the.” This is the most frequent trigram (three-letter combination)
in English, which seems to indicate that we are on the right track.

Next, notice the sequence ZWSZ in the first line. We do not know that these
four letters form a complete word, but if they do, it is of the form th_t. If so, S
equates with a.

So far, then, we have

UZQSOVUOHXMOPVGPOZPEVSGZWSZOPFPESXUDBMETSXATIZ

t a e e te a that e e a a
VUEPHZHMDZSHZOWSFPAPPDTSVPQUZWYMXUZUHSX
e t ta t ha e ee a e th t a

EPYEPOPDZSZUFPOMBZWPFUPZHMDJUDTMOHMQ
e e e tat e the t

Only four letters have been identified, but already we have quite a bit of the
message. Continued analysis of frequencies plus trial and error should easily yield a
solution from this point. The complete plaintext, with spaces added between words,
follows:

it was disclosed yesterday that several informal but
direct contacts have been made with political
representatives of the viet cong in moscow

Monoalphabetic ciphers are easy to break because they reflect the frequency
data of the original alphabet. A countermeasure is to provide multiple substi-
tutes, known as homophones, for a single letter. For example, the letter e could
be assigned a number of different cipher symbols, such as 16, 74, 35, and 21, with
each homophone assigned to a letter in rotation or randomly. If the number of
symbols assigned to each letter is proportional to the relative frequency of that let-
ter, then single-letter frequency information is completely obliterated. The great
mathematician Carl Friedrich Gauss believed that he had devised an unbreak-
able cipher using homophones. However, even with homophones, each element
of plaintext affects only one element of ciphertext, and multiple-letter patterns

3.2 / SUBSTITUTION TECHNIQUES 97

(e.g., digram frequencies) still survive in the ciphertext, making cryptanalysis rela-
tively straightforward.

Two principal methods are used in substitution ciphers to lessen the extent to
which the structure of the plaintext survives in the ciphertext: One approach is to
encrypt multiple letters of plaintext, and the other is to use multiple cipher alpha-
bets. We briefly examine each.

Playfair Cipher

The best-known multiple-letter encryption cipher is the Playfair, which treats di-
grams in the plaintext as single units and translates these units into ciphertext
digrams.?

The Playfair algorithm is based on the use of a 5 X 5 matrix of letters con-
structed using a keyword. Here is an example, solved by Lord Peter Wimsey in

Dorothy Sayers’s Have His Carcase:*
M O N A R
C H Y B D
E F G 1] K
L P Q S T
U \'% W X z

In this case, the keyword is monarchy. The matrix is constructed by filling
in the letters of the keyword (minus duplicates) from left to right and from top to
bottom, and then filling in the remainder of the matrix with the remaining letters in
alphabetic order. The letters I and J count as one letter. Plaintext is encrypted two
letters at a time, according to the following rules:

1. Repeating plaintext letters that are in the same pair are separated with a filler
letter, such as x, so that balloon would be treated as ba 1x 1o on.

[}

. Two plaintext letters that fall in the same row of the matrix are each replaced
by the letter to the right, with the first element of the row circularly following
the last. For example, ar is encrypted as RM.

3. Two plaintext letters that fall in the same column are each replaced by the let-
ter beneath, with the top element of the column circularly following the last.
For example, mu is encrypted as CM.

4. Otherwise, each plaintext letter in a pair is replaced by the letter that lies in
its own row and the column occupied by the other plaintext letter. Thus, hs
becomes BP and ea becomes IM (or JM, as the encipherer wishes).

The Playfair cipher is a great advance over simple monoalphabetic ciphers.
For one thing, whereas there are only 26 letters, there are 26 X 26 = 676 digrams,

3This cipher was actually invented by British scientist Sir Charles Wheatstone in 1854, but it bears the
name of his friend Baron Playfair of St. Andrews, who championed the cipher at the British foreign office.

“The book provides an absorbing account of a probable-word attack.

98 CHAPTER 3 / CLASSICAL ENCRYPTION TECHNIQUES

so that identification of individual digrams is more difficult. Furthermore, the rela-
tive frequencies of individual letters exhibit a much greater range than that of
digrams, making frequency analysis much more difficult. For these reasons, the
Playfair cipher was for a long time considered unbreakable. It was used as the stan-
dard field system by the British Army in World War I and still enjoyed considerable
use by the U.S. Army and other Allied forces during World War 1L

Despite this level of confidence in its security, the Playfair cipher is relatively
easy to break, because it still leaves much of the structure of the plaintext language
intact. A few hundred letters of ciphertext are generally sufficient.

One way of revealing the effectiveness of the Playfair and other ciphers is
shown in Figure 3.6. The line labeled plaintext plots a typical frequency distribution
of the 26 alphabetic characters (no distinction between upper and lower case) in
ordinary text. This is also the frequency distribution of any monoalphabetic substi-
tution cipher, because the frequency values for individual letters are the same, just
with different letters substituted for the original letters. The plot is developed in the
following way: The number of occurrences of each letter in the text is counted and
divided by the number of occurrences of the most frequently used letter. Using the
results of Figure 3.5, we see that e is the most frequently used letter. As a result, e
has a relative frequency of 1, t of 9.056/12.702 =~ 0.72, and so on. The points on the
horizontal axis correspond to the letters in order of decreasing frequency.

Figure 3.6 also shows the frequency distribution that results when the text is
encrypted using the Playfair cipher. To normalize the plot, the number of occur-
rences of each letter in the ciphertext was again divided by the number of occur-
rences of e in the plaintext. The resulting plot therefore shows the extent to which
the frequency distribution of letters, which makes it trivial to solve substitution

1.07

0.9 —

Plaintext
0.8 —

07 — Playfair
0.6 —
0.5 —

04— /. TNl e

0.3 —

Normalized relative frequency

0.2 — Random polyalphabetic

0.1 —

0

1T 1117 17 17 T 17T 17T 17T T
1 234561 7 8 910101213 141516 17 18 19 20 21 22 23 24 25 26

Frequency ranked letters (decreasing frequency)

Figure 3.6 Relative Frequency of Occurrence of Letters

3.2 / SUBSTITUTION TECHNIQUES 99

ciphers, is masked by encryption. If the frequency distribution information were
totally concealed in the encryption process, the ciphertext plot of frequencies would
be flat, and cryptanalysis using ciphertext only would be effectively impossible. As
the figure shows, the Playfair cipher has a flatter distribution than does plaintext,
but nevertheless, it reveals plenty of structure for a cryptanalyst to work with. The
plot also shows the Vigenere cipher, discussed subsequently. The Hill and Vigenere
curves on the plot are based on results reported in [SIMM93].

Hill Cipher’

Another interesting multiletter cipher is the Hill cipher, developed by the math-
ematician Lester Hill in 1929.

Concerts FroM Linear ArcesrA Before describing the Hill cipher, let us briefly
review some terminology from linear algebra. In this discussion, we are concerned
with matrix arithmetic modulo 26. For the reader who needs a refresher on matrix
multiplication and inversion, see Appendix E.

We define the inverse M! of a square matrix M by the equation M(M ') =
M M = I, where I is the identity matrix. I is a square matrix that is all zeros except
for ones along the main diagonal from upper left to lower right. The inverse of a
matrix does not always exist, but when it does, it satisfies the preceding equation.

For example,
(5 8 4 (9 2
A—<17 3) A 1nod26—<1 15>

AA_1_<(5><9)+(8><1) (5><2)+(8><15)>
S \(17 X9+ (3 x1) (17x2)+ (3 x15)

53 130 1 0
= d26 =
(156 79 >m° (0 1)
To explain how the inverse of a matrix is computed, we begin with the concept
of determinant. For any square matrix (m X m), the determinant equals the sum of
all the products that can be formed by taking exactly one element from each row

and exactly one element from each column, with certain of the product terms pre-
ceded by a minus sign. For a 2 X 2 matrix,

<k11 k12>

kyi ky

the determinant is ky1ky, — kijrkp;. For a 3 X 3 matrix, the value of the determinant
is kijknkss + kyksokis + kaitkiokys — ksikpkis — kyikiokss — kijkskas. If a square

SThis cipher is somewhat more difficult to understand than the others in this chapter, but it illustrates an
important point about cryptanalysis that will be useful later on. This subsection can be skipped on a first
reading.

100 CHAPTER 3 / CLASSICAL ENCRYPTION TECHNIQUES

matrix A has a nonzero determinant, then the inverse of the matrix is computed
as [Afl]i}- = (det A)fl(—l)”j(Dﬁ), where (Dj;) is the subdeterminant formed by
deleting the jth row and the ith column of A, det(A) is the determinant of A, and
(det A)7!is the multiplicative inverse of (det A) mod 26.

Continuing our example,

5 8
det<17 3>=(5 X 3) — (8 X 17) = —121 mod 26 = 9

We can show that 97 mod 26 = 3, because 9 X 3 =27mod 26 = 1 (see
Chapter 2 or Appendix E). Therefore, we compute the inverse of A as

5 8
A= <17 3)
3 -8 3 18 9 54 9 2
—1 = = = =
A mod 26 3<—17 5) 3<9 5 > (27 15> <1 15)
Tue Hiir Arcorrram This encryption algorithm takes m successive plaintext let-
ters and substitutes for them m ciphertext letters. The substitution is determined

by m linear equations in which each character is assigned a numerical value
(a=0,b=1, ...,z =25).Form = 3, the system can be described as

¢; = (kupy + kypy + kszips) mod 26
¢y = (kipy + kppsy + kspps) mod 26
c3 = (kispy + kppy + ksaps) mod 26

This can be expressed in terms of row vectors and matrices:’
kiy ki ks
(creac3) = (ppap3)| kat ko kp3 [mod 26
ks ks ka3
or
C = PKmod 26

where C and P are row vectors of length 3 representing the plaintext and ciphertext,
and K'is a 3 X 3 matrix representing the encryption key. Operations are performed
mod 26.

%Some cryptography books express the plaintext and ciphertext as column vectors, so that the column
vector is placed after the matrix rather than the row vector placed before the matrix. Sage uses row vec-
tors, so we adopt that convention.

3.2 / SUBSTITUTION TECHNIQUES 101

For example, consider the plaintext “paymoremoney” and use the encryption key

17 17 5
K=121 18 21
2 2 19

The first three letters of the plaintext are represented by the vector (15 0 24).
Then (15 0 24)K = (303 303 531) mod 26 = (17 17 11) = RRL. Continuing in this
fashion, the ciphertext for the entire plaintext is RRLMWBKASPDH.

Decryption requires using the inverse of the matrix K. We can compute det

K = 23, and therefore, (det K) ! mod 26 = 17. We can then compute the inverse as’
4 9 15
K'=[15 17 6
24 0 17
This is demonstrated as
17 17 5 4 9 15 443 442 442 1 0 O
21 18 21|15 17 6 |=|[88 495 780 |mod26 =10 1 0
2 2 19/\24 0 17 494 52 365 0 0 1

It is easily seen that if the matrix K! is applied to the ciphertext, then the
plaintext is recovered.
In general terms, the Hill system can be expressed as

C = E(K, P) = PK mod 26
P =D(K,C) = CK'mod26 = PKK! = P

As with Playfair, the strength of the Hill cipher is that it completely hides
single-letter frequencies. Indeed, with Hill, the use of a larger matrix hides more
frequency information. Thus, a 3 X 3 Hill cipher hides not only single-letter but
also two-letter frequency information.

Although the Hill cipher is strong against a ciphertext-only attack, it is easily
broken with a known plaintext attack. For an m X m Hill cipher, suppose we have m
plaintext-ciphertext pairs, each of length m. We label the pairs P, = (pijpy; . . . Pj)
and Cj = (cyjcyj. .. Cyj) such that C; = PK for 1 = j = m and for some unknown
key matrix K. Now define two m X m matrices X = (p;) and Y = (c;;). Then we
can form the matrix equation Y = XK. If X has an inverse, then we can determine
K = X!Y. If X is not invertible, then a new version of X can be formed with addi-
tional plaintext—ciphertext pairs until an invertible X is obtained.

Consider this example. Suppose that the plaintext “hillcipher” is encrypted
using a 2 X 2 Hill cipher to yield the ciphertext HCRZSSXNSP. Thus, we know
that (7 8)Kmod26 = (7 2);(11 11)Kmod 26 = (17 25); and so on. Using
the first two plaintext-ciphertext pairs, we have

"The calculations for this example are provided in detail in Appendix E.

102 CHAPTER 3 / CLASSICAL ENCRYPTION TECHNIQUES

7 2 7 8
<17 25>_<11 11>Km°d26

The inverse of X can be computed:

7 8\' (25 22
11 1) \1 23

25 2\(7 2 549 600 3 2
K_<1 23)(17 25>_<398 577>m°d26_<8 5)

This result is verified by testing the remaining plaintext—ciphertext pairs.

SO

Polyalphabetic Ciphers

Another way to improve on the simple monoalphabetic technique is to use differ-
ent monoalphabetic substitutions as one proceeds through the plaintext message.
The general name for this approach is polyalphabetic substitution cipher. All these
techniques have the following features in common:

1. A set of related monoalphabetic substitution rules is used.

2. A key determines which particular rule is chosen for a given transformation.

Vicenere CripHER The best known, and one of the simplest, polyalphabetic ciphers
is the Vigenere cipher. In this scheme, the set of related monoalphabetic substitu-
tion rules consists of the 26 Caesar ciphers with shifts of 0 through 25. Each cipher is
denoted by a key letter, which is the ciphertext letter that substitutes for the plain-
text letter a. Thus, a Caesar cipher with a shift of 3 is denoted by the key value 3.2
We can express the Vigenere cipher in the following manner. Assume a

sequence of plaintext letters P = py, p1, P2, - - - > Pu—1 and a key consisting of the
sequence of letters K = ky, ki, ky, ... , k,,—1, where typically m < n. The sequence
of ciphertext letters C = Cy, Cy, C,, ... , C,_1 is calculated as follows:
C= CO’ Cl’ CZ’ e Cn,1 = E(K’ P) = E[(k()a klv kZ, e kmfl)7 (p09p17 P2 - apn*l)]
= (py + ko) mod 26, (p; + k) mod 26, ... ,(p,—1 + k,—1) mod 26,
(pm + ko) mod 26, (p,,+1 + kj) mod 26, ..., (pyn—1 + kp—1) mod?26, ...

Thus, the first letter of the key is added to the first letter of the plaintext, mod 26,
the second letters are added, and so on through the first m letters of the plaintext.
For the next m letters of the plaintext, the key letters are repeated. This process

8To aid in understanding this scheme and also to aid in it use, a matrix known as the Vigenere tableau is
often used. This tableau is discussed in a document at box.com/Crypto7e.

3.2 / SUBSTITUTION TECHNIQUES 103

continues until all of the plaintext sequence is encrypted. A general equation of the
encryption process is

C; = (p; + kimodm) mod 26 3.3)

Compare this with Equation (3.1) for the Caesar cipher. In essence, each plain-
text character is encrypted with a different Caesar cipher, depending on the corre-
sponding key character. Similarly, decryption is a generalization of Equation (3.2):

Pi = (Ci = kjmodm) mod 26 3.4)

To encrypt a message, a key is needed that is as long as the message. Usually,
the key is a repeating keyword. For example, if the keyword is deceptive, the mes-
sage “we are discovered save yourself” is encrypted as

key: deceptivedeceptivedeceptive
plaintext: wearediscoveredsaveyourself
ciphertext: ZICVIWONGRZGVTWAVZHCQYGLMGJ

Expressed numerically, we have the following result.

key 3 4 2 4 115119 | 8 | 21| 4 3 4 2 4 |15
plaintext 22 | 4 0117 | 4 3 8§ | 18| 2 [14 |21 | 4 |17 | 4
ciphertext | 25 | 8 2 21|19 |2 (16|13 6 (17 25| 6 |21 |19

key 191 8 | 21| 4 3 4 2 4 | 15119 | 8 [21| 4
plaintext 3118 0 |21 4 (2414|120 |17 | 18| 4 |11
ciphertext [22 | 0 | 21 | 25 | 7 2 16|24 6 |11 |12] 6 9

The strength of this cipher is that there are multiple ciphertext letters for
each plaintext letter, one for each unique letter of the keyword. Thus, the letter fre-
quency information is obscured. However, not all knowledge of the plaintext struc-
ture is lost. For example, Figure 3.6 shows the frequency distribution for a Vigenere
cipher with a keyword of length 9. An improvement is achieved over the Playfair
cipher, but considerable frequency information remains.

It is instructive to sketch a method of breaking this cipher, because the method
reveals some of the mathematical principles that apply in cryptanalysis.

First, suppose that the opponent believes that the ciphertext was encrypted
using either monoalphabetic substitution or a Vigenere cipher. A simple test can
be made to make a determination. If a monoalphabetic substitution is used, then
the statistical properties of the ciphertext should be the same as that of the lan-
guage of the plaintext. Thus, referring to Figure 3.5, there should be one cipher let-
ter with a relative frequency of occurrence of about 12.7%, one with about 9.06%,
and so on. If only a single message is available for analysis, we would not expect
an exact match of this small sample with the statistical profile of the plaintext lan-
guage. Nevertheless, if the correspondence is close, we can assume a monoalpha-
betic substitution.

104 CHAPTER 3 / CLASSICAL ENCRYPTION TECHNIQUES

If, on the other hand, a Vigenere cipher is suspected, then progress depends on
determining the length of the keyword, as will be seen in a moment. For now, let us
concentrate on how the keyword length can be determined. The important insight
that leads to a solution is the following: If two identical sequences of plaintext let-
ters occur at a distance that is an integer multiple of the keyword length, they will
generate identical ciphertext sequences. In the foregoing example, two instances
of the sequence “red” are separated by nine character positions. Consequently, in
both cases, r is encrypted using key letter e, e is encrypted using key letter p, and d
is encrypted using key letter ¢. Thus, in both cases, the ciphertext sequence is VITW.
We indicate this above by underlining the relevant ciphertext letters and shading
the relevant ciphertext numbers.

An analyst looking at only the ciphertext would detect the repeated sequences
VTW at a displacement of 9 and make the assumption that the keyword is either
three or nine letters in length. The appearance of VIW twice could be by chance
and may not reflect identical plaintext letters encrypted with identical key letters.
However, if the message is long enough, there will be a number of such repeated
ciphertext sequences. By looking for common factors in the displacements of the vari-
ous sequences, the analyst should be able to make a good guess of the keyword length.

Solution of the cipher now depends on an important insight. If the keyword
length is m, then the cipher, in effect, consists of m monoalphabetic substitution
ciphers. For example, with the keyword DECEPTIVE, the letters in positions 1, 10,
19, and so on are all encrypted with the same monoalphabetic cipher. Thus, we can
use the known frequency characteristics of the plaintext language to attack each of
the monoalphabetic ciphers separately.

The periodic nature of the keyword can be eliminated by using a nonrepeating
keyword that is as long as the message itself. Vigenére proposed what is referred to
as an autokey system, in which a keyword is concatenated with the plaintext itself to
provide a running key. For our example,

key: deceptivewearediscoveredsav
plaintext: wearediscoveredsaveyourself
ciphertext: ZICVTWONGKZEITIGASXSTSLVVWLA

Even this scheme is vulnerable to cryptanalysis. Because the key and the
plaintext share the same frequency distribution of letters, a statistical technique can
be applied. For example, e enciphered by e, by Figure 3.5, can be expected to occur
with a frequency of (0.127)> = 0.016, whereas t enciphered by ¢ would occur only
about half as often. These regularities can be exploited to achieve successful
cryptanalysis.”

Vernav Crpaer The ultimate defense against such a cryptanalysis is to choose a
keyword that is as long as the plaintext and has no statistical relationship to it. Such
a system was introduced by an AT&T engineer named Gilbert Vernam in 1918.

9Although the techniques for breaking a Vigenere cipher are by no means complex, a 1917 issue of
Scientific American characterized this system as “impossible of translation.” This is a point worth remem-
bering when similar claims are made for modern algorithms.

3.2 / SUBSTITUTION TECHNIQUES 105

Key stream Key stream
generator generator
Cryptographic Cryptographic
bit stream (k;) bit stream (k;)
Plaintext Ciphertext Plaintext
@) (¢;) @)

Figure 3.7 Vernam Cipher

His system works on binary data (bits) rather than letters. The system can be
expressed succinctly as follows (Figure 3.7):

¢ = piDKk

where
p; = ith binary digit of plaintext
k; = ith binary digit of key

¢; = ith binary digit of ciphertext
@ = exclusive-or (XOR) operation

Compare this with Equation (3.3) for the Vigenere cipher.

Thus, the ciphertext is generated by performing the bitwise XOR of the plain-
text and the key. Because of the properties of the XOR, decryption simply involves
the same bitwise operation:

pi = @Dk

which compares with Equation (3.4).

The essence of this technique is the means of construction of the key. Vernam
proposed the use of a running loop of tape that eventually repeated the key, so that
in fact the system worked with a very long but repeating keyword. Although such
a scheme, with a long key, presents formidable cryptanalytic difficulties, it can be
broken with sufficient ciphertext, the use of known or probable plaintext sequences,
or both.

One-Time Pad

An Army Signal Corp officer, Joseph Mauborgne, proposed an improvement to the
Vernam cipher that yields the ultimate in security. Mauborgne suggested using a
random key that is as long as the message, so that the key need not be repeated. In
addition, the key is to be used to encrypt and decrypt a single message, and then is
discarded. Each new message requires a new key of the same length as the new mes-
sage. Such a scheme, known as a one-time pad, is unbreakable. It produces random
output that bears no statistical relationship to the plaintext. Because the ciphertext

106 CHAPTER 3 / CLASSICAL ENCRYPTION TECHNIQUES

contains no information whatsoever about the plaintext, there is simply no way to
break the code.

An example should illustrate our point. Suppose that we are using a Vigenere
scheme with 27 characters in which the twenty-seventh character is the space
character, but with a one-time key that is as long as the message. Consider the
ciphertext

ANKYODKYUREPFJBYOJDSPLREYIUNOFDOIUERFPLUYTS
We now show two different decryptions using two different keys:

ciphertext: ANKYODKYUREPFJBYOJDSPLREYIUNOFDOIUERFPLUYTS
key: pxImvmsydofuyrvzwc tnlebnecvgdupahfzzlmnyih
plaintext: mr mustard with the candlestick in the hall

ciphertext: ANKYODKYUREPFJBYOJDSPLREYIUNOFDOIUERFPLUYTS
key: pftgpmiydgaxgoufhklllmhsqgdgogtewbgfgyovuhwt
plaintext: miss scarlet with the knife in the library

Suppose that a cryptanalyst had managed to find these two keys. Two plau-
sible plaintexts are produced. How is the cryptanalyst to decide which is the correct
decryption (i.e., which is the correct key)? If the actual key were produced in a truly
random fashion, then the cryptanalyst cannot say that one of these two keys is more
likely than the other. Thus, there is no way to decide which key is correct and there-
fore which plaintext is correct.

In fact, given any plaintext of equal length to the ciphertext, there is a key that
produces that plaintext. Therefore, if you did an exhaustive search of all possible
keys, you would end up with many legible plaintexts, with no way of knowing which
was the intended plaintext. Therefore, the code is unbreakable.

The security of the one-time pad is entirely due to the randomness of the key.
If the stream of characters that constitute the key is truly random, then the stream
of characters that constitute the ciphertext will be truly random. Thus, there are no
patterns or regularities that a cryptanalyst can use to attack the ciphertext.

In theory, we need look no further for a cipher. The one-time pad offers com-
plete security but, in practice, has two fundamental difficulties:

1. There is the practical problem of making large quantities of random keys. Any
heavily used system might require millions of random characters on a regular
basis. Supplying truly random characters in this volume is a significant task.

[\°]

. Even more daunting is the problem of key distribution and protection. For
every message to be sent, a key of equal length is needed by both sender and
receiver. Thus, a mammoth key distribution problem exists.

Because of these difficulties, the one-time pad is of limited utility and is useful
primarily for low-bandwidth channels requiring very high security.

The one-time pad is the only cryptosystem that exhibits what is referred to as
perfect secrecy. This concept is explored in Appendix F.

3.3 / TRANSPOSITION TECHNIQUES 107

3.3 TRANSPOSITION TECHNIQUES

All the techniques examined so far involve the substitution of a ciphertext symbol
for a plaintext symbol. A very different kind of mapping is achieved by performing
some sort of permutation on the plaintext letters. This technique is referred to as a
transposition cipher.

The simplest such cipher is the rail fence technique, in which the plaintext is
written down as a sequence of diagonals and then read off as a sequence of rows.
For example, to encipher the message “meet me after the toga party” with a rail
fence of depth 2, we write the following:

mematrhtgpry
etefeteoaat

The encrypted message is

MEMATRHTGPRYETEFETEOAAT

This sort of thing would be trivial to cryptanalyze. A more complex scheme is
to write the message in a rectangle, row by row, and read the message off, column
by column, but permute the order of the columns. The order of the columns then
becomes the key to the algorithm. For example,

Key: 4 31256067
Plaintext: attackp
O s tpone
duntil ¢t
W oamzxy z
Ciphertext: TTNAAPTMTSUOAODWCOIXKNLYPETZ

Thus, in this example, the key is 4312567. To encrypt, start with the column
that is labeled 1, in this case column 3. Write down all the letters in that column.
Proceed to column 4, which is labeled 2, then column 2, then column 1, then
columns 5, 6, and 7.

A pure transposition cipher is easily recognized because it has the same letter
frequencies as the original plaintext. For the type of columnar transposition just
shown, cryptanalysis is fairly straightforward and involves laying out the cipher-
text in a matrix and playing around with column positions. Digram and trigram fre-
quency tables can be useful.

The transposition cipher can be made significantly more secure by perform-
ing more than one stage of transposition. The result is a more complex permutation
that is not easily reconstructed. Thus, if the foregoing message is reencrypted using
the same algorithm,

108 CHAPTER 3 / CLASSICAL ENCRYPTION TECHNIQUES

Key: 4 3125

Input: t tnaa
mt s uo
dwcoldi
nlype

Output: NSCYAUO

X o T o
~ O o

-+

Z

PTTWLTMDNAOIEPAXTTOKZ

To visualize the result of this double transposition, designate the letters in the
original plaintext message by the numbers designating their position. Thus, with 28
letters in the message, the original sequence of letters is

01 02 03 04 05 06 07 08
15 16 17 18 19 20 21 22

After the first transposition, we have

03 10 17 24 04 11 18 25
15 22 05 12 19 26 06 13

09 10 11 12 13 14
23 24 25 26 27 28

02 09 16 23 01 08
20 27 07 14 21 28

which has a somewhat regular structure. But after the second transposition, we have

17 09 05 27 24 16 12 07 10 02 22 20 03 25
15 13 04 23 19 14 11 01 26 21 18 08 06 28

This is a much less structured permutation and is much more difficult to cryptanalyze.

3.4 ROTOR MACHINES

The example just given suggests that multiple stages of encryption can produce an
algorithm that is significantly more difficult to cryptanalyze. This is as true of substi-
tution ciphers as it is of transposition ciphers. Before the introduction of DES, the
most important application of the principle of multiple stages of encryption was a
class of systems known as rotor machines.!”

The basic principle of the rotor machine is illustrated in Figure 3.8. The
machine consists of a set of independently rotating cylinders through which electri-
cal pulses can flow. Each cylinder has 26 input pins and 26 output pins, with internal
wiring that connects each input pin to a unique output pin. For simplicity, only three
of the internal connections in each cylinder are shown.

If we associate each input and output pin with a letter of the alphabet, then a
single cylinder defines a monoalphabetic substitution. For example, in Figure 3.8,
if an operator depresses the key for the letter A, an electric signal is applied to

19Machines based on the rotor principle were used by both Germany (Enigma) and Japan (Purple) in
World War II. The breaking of both codes by the Allies was a significant factor in the war’s outcome.

Yy

3.4 / ROTOR MACHINES 109

Direction of motion Direction of motion
A |24~ 21 26 20, 1 8| A >A|23— 13| |26 —20] |1 — 8| A
B [25— 3 1 1 2 —18 B> —>B|[24y 21 1 1 2 18| B
C |26 15 |2 6 3 26| C > C|25 3 2 6 3 26| C
D |1 1 3 4 |4 17| D D26 15 |3 4 |4 17 D>
E |2 19| |4 15 |5 +—20] E> E|l 1 4 15 |5 20| E
F |3 10{ |5 3 6 22| F F|2 191 |5 3 6 22| F
G |4 14| |6 14 |7 10| G G|3 10 |6 14 |7 10| G
H |5 NA4-26] |7 — 12| |8 3| H H|4 14 |7 12| |8 3| H
1|6 20 |8 231 |9 131 1> 1|5 260 18 | —23] |9 — 131 T
J |7 8 9 5 10 11 J J|6 20 |9 5 10 111 J
K |8 16| (10 16 11 4] K K|7 8 10 16| |11 4] K
L |9 7 11 2 12 23| L L|8 16 |11 2 12 23| L
M |10 221 |12 —4-22 13— S5|M M|9 7 12 221 |13 5|M
N |11 4 13 19 14 24 N N|10 22| |13 19 14 241 N
O |12 11 14 11 15 9]0 O|11 4 14 11 15 — 9| O—>
P |13 5 15 18 16 12| P P12 11 15 18 16 12| P
Q |14 17 16 25 17 25| Q Q|13 5 16 25 17~ 251 Q
R |15 9 17 241 18— 16| R R|14 17| |17 241 |18 16| R
S |16 12 |18 13 19 19] S S|15 9 18 13 19 19] S
T (17 23 19 ~ 7| (20 6| T T|16 12 119 71 120 6| T
U |18 18] |20 10 |21 15| U U|17 23| |20/ 10| |21 15| U
Vv |19 21 |21 8 22 21| V V|18 18] |21 8 22 21|V
W |20 25| |22 21 23 2|W W|19 2| [22 21 23 2|W
X |21 6] |23 9| |24 7| X X120 | ~—25| |23~ 9 |24 7| X
Y [22 24 |2 26 |25 11Y Y |21 6| |24 26 |25 ~ 1l Y>
Z |23 13| |25 171 |26 14| z 7122 ~—24] |25 17| |26 14| z
Fast rotor Medium rotor Slow rotor Fast rotor Medium rotor Slow rotor
(a) Initial setting (b) Setting after one keystroke

Figure 3.8 Three-Rotor Machine with Wiring Represented by Numbered Contacts

the first pin of the first cylinder and flows through the internal connection to the
twenty-fifth output pin.

Consider a machine with a single cylinder. After each input key is depressed,
the cylinder rotates one position, so that the internal connections are shifted accord-
ingly. Thus, a different monoalphabetic substitution cipher is defined. After 26 let-
ters of plaintext, the cylinder would be back to the initial position. Thus, we have a
polyalphabetic substitution algorithm with a period of 26.

A single-cylinder system is trivial and does not present a formidable crypt-
analytic task. The power of the rotor machine is in the use of multiple cylinders, in
which the output pins of one cylinder are connected to the input pins of the next.
Figure 3.8 shows a three-cylinder system. The left half of the figure shows a position
in which the input from the operator to the first pin (plaintext letter a) is routed
through the three cylinders to appear at the output of the second pin (ciphertext
letter B).

With multiple cylinders, the one closest to the operator input rotates one
pin position with each keystroke. The right half of Figure 3.8 shows the system’s
configuration after a single keystroke. For every complete rotation of the inner
cylinder, the middle cylinder rotates one pin position. Finally, for every complete
rotation of the middle cylinder, the outer cylinder rotates one pin position. This
is the same type of operation seen with an odometer. The result is that there are
26 X 26 X 26 = 17,576 different substitution alphabets used before the system

110 CHAPTER 3 / CLASSICAL ENCRYPTION TECHNIQUES

repeats. The addition of fourth and fifth rotors results in periods of 456,976 and
11,881,376 letters, respectively. Thus, a given setting of a 5-rotor machine is equiva-
lent to a Vigenere cipher with a key length of 11,881,376.

Such a scheme presents a formidable cryptanalytic challenge. If, for example,
the cryptanalyst attempts to use a letter frequency analysis approach, the analyst
is faced with the equivalent of over 11 million monoalphabetic ciphers. We might
need on the order of 50 letters in each monalphabetic cipher for a solution, which
means that the analyst would need to be in possession of a ciphertext with a length
of over half a billion letters.

The significance of the rotor machine today is that it points the way to a large
class of symmetric ciphers, of which the Data Encryption Standard (DES) is the
most prominent. DES is introduced in Chapter 4.

3.5 STEGANOGRAPHY

We conclude with a discussion of a technique that (strictly speaking), is not encryp-
tion, namely, steganography.

A plaintext message may be hidden in one of two ways. The methods of
steganography conceal the existence of the message, whereas the methods of cryp-
tography render the message unintelligible to outsiders by various transformations
of the text.!!

A simple form of steganography, but one that is time-consuming to construct,
is one in which an arrangement of words or letters within an apparently innocuous
text spells out the real message. For example, the sequence of first letters of each
word of the overall message spells out the hidden message. Figure 3.9 shows an
example in which a subset of the words of the overall message is used to convey the
hidden message. See if you can decipher this; it’s not too hard.

Various other techniques have been used historically; some examples are the
following [MYERO1]:

m Character marking: Selected letters of printed or typewritten text are over-
written in pencil. The marks are ordinarily not visible unless the paper is held
at an angle to bright light.

m Invisible ink: A number of substances can be used for writing but leave no vis-
ible trace until heat or some chemical is applied to the paper.

m Pin punctures: Small pin punctures on selected letters are ordinarily not vis-
ible unless the paper is held up in front of a light.

m Typewriter correction ribbon: Used between lines typed with a black ribbon,
the results of typing with the correction tape are visible only under a strong
light.

USteganography was an obsolete word that was revived by David Kahn and given the meaning it has
today [KAHN96].

111

3rd March
Dear George,

Greerings o all a+ Oxford. Many +hanks for your
(etrer and for +he Summer examination package.
All Entry Forms and Fees Forms should be ready
for final despatch 3o +he Syndicare by Friday
20%+h or a+ +the very latest, /'™ Yold. by the 21s%t.
Admin has improved here, though there'!s room
for improvement still; just give us all ¥wo or +three
more years and welll really show you! Please
don't let +hese wretched 16% proposals destroy
your pasic O and A patrern. Cerrainly +his

sort of change, if implemented imwediately,
would pring chaos.

Sincerely yours.

A Puzzle for Inspector Morse
(From The Silent World of Nicholas Quinn, by Colin Dexter)

Although these techniques may seem archaic, they have contemporary equiv-
alents. [WAYNO9] proposes hiding a message by using the least significant bits of
frames on a CD. For example, the Kodak Photo CD format’s maximum resolution
is 3096 X 6144 pixels, with each pixel containing 24 bits of RGB color information.
The least significant bit of each 24-bit pixel can be changed without greatly affecting
the quality of the image. The result is that you can hide a 130-kB message in a single
digital snapshot. There are now a number of software packages available that take
this type of approach to steganography.

Steganography has a number of drawbacks when compared to encryption.
It requires a lot of overhead to hide a relatively few bits of information, although
using a scheme like that proposed in the preceding paragraph may make it more
effective. Also, once the system is discovered, it becomes virtually worthless. This
problem, too, can be overcome if the insertion method depends on some sort of key
(e.g., see Problem 3.22). Alternatively, a message can be first encrypted and then
hidden using steganography.

The advantage of steganography is that it can be employed by parties who
have something to lose should the fact of their secret communication (not necessar-
ily the content) be discovered. Encryption flags traffic as important or secret or may
identify the sender or receiver as someone with something to hide.

112 CHAPTER 3 / CLASSICAL ENCRYPTION TECHNIQUES

3.6 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms
block cipher cryptology Playfair cipher
brute-force attack deciphering polyalphabetic cipher
Caesar cipher decryption rail fence cipher
cipher digram single-key encryption
ciphertext enciphering steganography
computationally secure encryption stream cipher
conventional encryption Hill cipher symmetric encryption
cryptanalysis monoalphabetic cipher transposition cipher
cryptographic system one-time pad unconditionally secure
cryptography plaintext Vigenere cipher

Review Questions

3.1 Describe the main requirements for the secure use of symmetric encryption.
3.2 What are the two basic functions used in encryption algorithms?

3.3 Differentiate between secret-key encryption and public-key encryption.

3.4 What is the difference between a block cipher and a stream cipher?

3.5 What are the two general approaches to attacking a cipher?

3.6 List and briefly define types of cryptanalytic attacks based on what is known to the
attacker.

3.7 What is the difference between an unconditionally secure cipher and a computation-
ally secure cipher?

3.8 Whyis the Caesar cipher substitution technique vulnerable to a brute-force cryptanalysis?

3.9 How much key space is available when a monoalphabetic substitution cipher is used
to replace plaintext with ciphertext?

3.10 What is the drawback of a Playfair cipher?

3.11 Whatis the difference between a monoalphabetic cipher and a polyalphabetic cipher?
3.12 What are two problems with the one-time pad?

3.13 What is a transposition cipher?

3.14 What are the drawbacks of Steganography?

Problems

3.1 A generalization of the Caesar cipher, known as the affine Caesar cipher, has the fol-
lowing form: For each plaintext letter p, substitute the ciphertext letter C:

C = E([a, b], p) = (ap + b) mod 26

A basic requirement of any encryption algorithm is that it be one-to-one. That is, if
p # q, then E(k, p) # E(k, q). Otherwise, decryption is impossible, because more
than one plaintext character maps into the same ciphertext character. The affine
Caesar cipher is not one-to-one for all values of a. For example, fora = 2 and b = 3,
then E([a, b], 0) = E([a, b], 13) = 3.

a. Are there any limitations on the value of b? Explain why or why not.
b. Determine which values of a are not allowed.

W W

3.

W

4

n

3.6 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 113

c. Provide a general statement of which values of a are and are not allowed. Justify
your statement.

How many one-to-one affine Caesar ciphers are there?

A ciphertext has been generated with an affine cipher. The most frequent letter of
the ciphertext is “C,” and the second most frequent letter of the ciphertext is “Z.”
Break this code.

The following ciphertext was generated using a simple substitution algorithm.

hzsrngc klyy wgc flo mflwf ol zgdn nsoznj wskn 1j xzsrbjnf,
wzsxz gqv zghhnf ol ozn glco zlfnco hnlhrn; nsoznj jnrgosdnc
13 fngj kjsnfbc, wzsxz sc xnjogsfrv gljn efeceqr. zn rsdnb
grlfn sf zsc zlecn sf cgdsrrn jlw, wzsoznj flfn hnfnojgonb.
q csfyrn blgncosx cekksxnb ol cnjdn zsg. zn pjngmkgconb gfb
bsfnb go ozn xrep, go zlejc ggoznggosxqgrrv ksanb, sf ozn cggn
jllg, go ozn cggn ogprn, fndnj ogmsfy zsc gngrc wsoz loznj
gngpnjc, gexz rncc pjsfysfy g yenco wsoz zsg; gfb wnfo zlgn
go nagxorv gsbfsyzo, 1lfrv ol jnosjn go lfxn ol pnb. zn fndnj
ecnb ozn xlcv xzggpnjc wzsxz ozn jnkljg hjldsbnc klj soc
kgdlejnb gngpnjc. zn hgccnb onf zlejc leo 1k ozn ownfov-klej
sf cgdsrrn jlw, nsoznj sf crnnhsfy 1j ggmsfy zsc olsrno.

Decrypt this message.

Hints:

1. As you know, the most frequently occurring letter in English is e. Therefore, the
first or second (or perhaps third?) most common character in the message is likely
to stand for e. Also, e is often seen in pairs (e.g., meet, fleet, speed, seen, been,
agree, etc.). Try to find a character in the ciphertext that decodes to e.

2. The most common word in English is “the.” Use this fact to guess the characters
that stand for t and h.

3. Decipher the rest of the message by deducing additional words.

Warning: The resulting message is in English but may not make much sense on a first

reading.

One way to solve the key distribution problem is to use a line from a book that both

the sender and the receiver possess. Typically, at least in spy novels, the first sentence

of a book serves as the key. The particular scheme discussed in this problem is from
one of the best suspense novels involving secret codes, Talking to Strange Men, by

Ruth Rendell. Work this problem without consulting that book!

Consider the following message:

SIDKHKDM AF HCRKIABIE SHIMC KD LFEAILA

This ciphertext was produced using the first sentence of The Other Side of Silence
(a book about the spy Kim Philby):

The snow lay thick on the steps and the snowflakes driven by the wind
looked black in the headlights of the cars.

A simple substitution cipher was used.

a. What is the encryption algorithm?

b. How secure is it?

c. Tomake the key distribution problem simple, both parties can agree to use the first or
last sentence of a book as the key. To change the key, they simply need to agree on a
new book. The use of the first sentence would be preferable to the use of the last. Why?

3.6 In one of his cases, Sherlock Holmes was confronted with the following message.

534 C21312736314172141
DOUGLAS 109 293 5 37 BIRLSTONE
26 BIRLSTONE 9 127 171

114 CHAPTER 3 / CLASSICAL ENCRYPTION TECHNIQUES

3.9

Although Watson was puzzled, Holmes was able immediately to deduce the type of

cipher. Can you?

This problem uses a real-world example, from an old U.S. Special Forces manual

(public domain). The document, filename SpecialForces.pdyf, is available at box.com/

Crypto7e.

a. Using the two keys (memory words) cryptographic and network security, encrypt
the following message:

Be at the third pillar from the left outside the lyceum theatre tonight at seven.
If you are distrustful bring two friends.

Make reasonable assumptions about how to treat redundant letters and excess
letters in the memory words and how to treat spaces and punctuation. Indicate
what your assumptions are. Note: The message is from the Sherlock Holmes novel,
The Sign of Four.

b. Decrypt the ciphertext. Show your work.

¢. Comment on when it would be appropriate to use this technique and what its
advantages are.

A disadvantage of the general monoalphabetic cipher is that both sender and receiver
must commit the permuted cipher sequence to memory. A common technique for
avoiding this is to use a keyword from which the cipher sequence can be gener-
ated. For example, using the keyword CRYPTO, write out the keyword followed by
unused letters in normal order and match this against the plaintext letters:

plaint: abcdefghijklmnopgrstuvwzixyz
cipher: CRYPTOABDEFGHTIJKLMNOQSUVWXZ

If it is felt that this process does not produce sufficient mixing, write the remain-
ing letters on successive lines and then generate the sequence by reading down the
columns:

CRYPTO
ABDETFG
HI JKILM
NOQOSUVW
X Z

This yields the sequence:
CAHNXRBIOQZYDJSPEKUTPFLVOGMMW

Such a system is used in the example in Section 3.2 (the one that begins “it was
disclosed yesterday”). Determine the keyword.

When the PT-109 American patrol boat, under the command of Lieutenant John F.
Kennedy, was sunk by a Japanese destroyer, a message was received at an Australian
wireless station in Playfair code:

KXJEY UREBE ZWEHE WRYTU HEYFS
KREHE GOYFI WTTTU OLKSY CAJPO
BOTEI ZONTX BYBNT GONEY CUZWR
GDSON SXBOU YWRHE BAAHY USEDQ

The key used was royal new zealand navy. Decrypt the message. Translate TT into tt.

3.10

W W
==
s W

w
==Y
W

3.16

3.6 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 115

a. Construct a Playfair matrix with the key algorithm.
b. Construct a Playfair matrix with the key cryptography. Make a reasonable assump-
tion about how to treat redundant letters in the key.

a. Using this Playfair matrix:

JK | C D E F
U N P Q S
Z A% W X Y
R A L G O
B 1 T H M

Encrypt this message:
I only regret that I have but one life to give for my country.

Note: This message is by Nathan Hale, a soldier in the American Revolutionary War.

b. Repeat part (a) using the Playfair matrix from Problem 3.10a.

c. How do you account for the results of this problem? Can you generalize your
conclusion?

a. How many possible keys does the Playfair cipher have? Ignore the fact that
some keys might produce identical encryption results. Express your answer as an
approximate power of 2.

b. Now take into account the fact that some Playfair keys produce the same encryp-
tion results. How many effectively unique keys does the Playfair cipher have?

What substitution system results when we use a 1 X 25 Playfair matrix?
a. Encrypt the message “meet me at the usual place at ten rather than eight o clock”

2 > Show your calculations and the result.

b. Show the calculations for the corresponding decryption of the ciphertext to
recover the original plaintext.

We have shown that the Hill cipher succumbs to a known plaintext attack if sufficient

plaintext—ciphertext pairs are provided. It is even easier to solve the Hill cipher if a

chosen plaintext attack can be mounted. Describe such an attack.

7
using the Hill cipher with the key ()

b
It can be shown that the Hill cipher with the matrix <a d> requires that (ad — bc)
c

is relatively prime to 26; that is, the only common positive integer factor of (ad — bc)

and 26 is 1. Thus, if (ad — bc) = 13 or is even, the matrix is not allowed. Determine

the number of different (good) keys there are for a 2 X 2 Hill cipher without count-

ing them one by one, using the following steps:

a. Find the number of matrices whose determinant is even because one or both rows
are even. (A row is “even” if both entries in the row are even.)

b. Find the number of matrices whose determinant is even because one or both col-
umns are even. (A column is “even” if both entries in the column are even.)

c. Find the number of matrices whose determinant is even because all of the entries
are odd.

d. Taking into account overlaps, find the total number of matrices whose determi-
nant is even.

e. Find the number of matrices whose determinant is a multiple of 13 because the
first column is a multiple of 13.

116 CHAPTER 3 / CLASSICAL ENCRYPTION TECHNIQUES

3.19

3.20

[
N N
Y

w
[\

f. Find the number of matrices whose determinant is a multiple of 13 where
the first column is not a multiple of 13 but the second column is a mul-
tiple of the first modulo 13.

¢. Find the total number of matrices whose determinant is a multiple of 13.

h. Find the number of matrices whose determinant is a multiple of 26
because they fit cases parts (a) and (e), (b) and (e), (c) and (e), (a) and
(f), and so on.

i. Find the total number of matrices whose determinant is neither a mul-
tiple of 2 nor a multiple of 13.

Calculate the determinant mod 26 of

23 5 21 13 25
a. 13 7 b. 5 7 18
3 14 12
Determine the inverse mod 26 of
) 3 6 24 1
a. 1 » b. |13 16 10
20 17 15

Using the Vigenere cipher, encrypt the word “cryptographic” using the word

13 ”

eng”.
This problem explores the use of a one-time pad version of the Vigenere
cipher. In this scheme, the key is a stream of random numbers between 0
and 26. For example, if the key is 3195 .. ., then the first letter of plaintext
is encrypted with a shift of 3 letters, the second with a shift of 19 letters, the
third with a shift of 5 letters, and so on.

a. Encrypt the plaintext sendmoremoney with the key stream

311 57 17 21 0 11 14 8 7 13 9

b. Using the ciphertext produced in part (a), find a key so that the cipher-
text decrypts to the plaintext cashnotneeded.

What is the message embedded in Figure 3.9?

In one of Dorothy Sayers’s mysteries, Lord Peter is confronted with the
message shown in Figure 3.10. He also discovers the key to the message,
which is a sequence of integers:

787656543432112343456567878878765654
3432112343456567878878765654433211234

a. Decrypt the message. Hint: What is the largest integer value?
b. If the algorithm is known but not the key, how secure is the scheme?
c. If the key is known but not the algorithm, how secure is the scheme?

1 thought to see the fairies in the fields, but I saw only the evil elephants with their black
backs. Woe! how that sight awed me! The elves danced all around and about while I heard
voices calling clearly. Ah! how I tried to see—throw off the ugly cloud—but no blind eye
of a mortal was permitted to spy them. So then came minstrels, having gold trumpets, harps
and drums. These played very loudly beside me, breaking that spell. So the dream vanished,
whereat I thanked Heaven. I shed many tears before the thin moon rose up, frail and faint as
a sickle of straw. Now though the Enchanter gnash his teeth vainly, yet shall he return as the
Spring returns. Oh, wretched man! Hell gapes, Erebus now lies open. The mouths of Death
wait on thy end.

Figure 3.10

A Puzzle for Lord Peter

3.6 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 117

Programming Problems

3.23

3.24

w
[\
wn

3.26

3.27
3.28

Write a program that can encrypt and decrypt using the general Caesar
cipher, also known as an additive cipher.

Write a program that can encrypt and decrypt using the affine cipher
described in Problem 3.1.

Write a program that can perform a letter frequency attack on an additive
cipher without human intervention. Your software should produce possible
plaintexts in rough order of likelihood. It would be good if your user inter-
face allowed the user to specify “give me the top 10 possible plaintexts.”
Write a program that can perform a letter frequency attack on any mono-
alphabetic substitution cipher without human intervention. Your software
should produce possible plaintexts in rough order of likelihood. It would
be good if your user interface allowed the user to specify “give me the top
10 possible plaintexts.”

Create software that can encrypt and decrypt using a 2 X 2 Hill cipher.

Create software that can perform a fast known plaintext attack on a Hill cipher,
given the dimension m. How fast are your algorithms, as a function of m?

CHAPTER

Brock CIPHERS AND THE DATA
ENCRYPTION STANDARD

4.1 Traditional Block Cipher Structure

Stream Ciphers and Block Ciphers
Motivation for the Feistel Cipher Structure
The Feistel Cipher

4.2 The Data Encryption Standard

DES Encryption
DES Decryption

4.3 A DES Example

Results
The Avalanche Effect

4.4 The Strength of DES

The Use of 56-Bit Keys
The Nature of the DES Algorithm
Timing Attacks

4.5 Block Cipher Design Principles

Number of Rounds
Design of Function F
Key Schedule Algorithm

4.6 Key Terms, Review Questions, and Problems

118

4.1 / TRADITIONAL BLOCK CIPHER STRUCTURE 119

LEARNING OBJECTIVES

After studying this chapter, you should be able to

¢ Understand the distinction between stream ciphers and block ciphers.

¢ Present an overview of the Feistel cipher and explain how decryption is
the inverse of encryption.

Present an overview of Data Encryption Standard (DES).
Explain the concept of the avalanche effect.
Discuss the cryptographic strength of DES.

L K R IR 2

Summarize the principal block cipher design principles.

The objective of this chapter is to illustrate the principles of modern symmetric
ciphers. For this purpose, we focus on the most widely used symmetric cipher: the Data
Encryption Standard (DES). Although numerous symmetric ciphers have been devel-
oped since the introduction of DES, and although it is destined to be replaced by the
Advanced Encryption Standard (AES), DES remains the most important such algo-
rithm. Furthermore, a detailed study of DES provides an understanding of the prin-
ciples used in other symmetric ciphers.

This chapter begins with a discussion of the general principles of symmetric block
ciphers, which are the principal type of symmetric ciphers studied in this book. The
other form of symmetric ciphers, stream ciphers, are discussed in Chapter 8. Next, we
cover full DES. Following this look at a specific algorithm, we return to a more general
discussion of block cipher design.

Compared to public-key ciphers, such as RSA, the structure of DES and most
symmetric ciphers is very complex and cannot be explained as easily as RSA and simi-
lar algorithms. Accordingly, the reader may wish to begin with a simplified version of
DES, which is described in Appendix G. This version allows the reader to perform
encryption and decryption by hand and gain a good understanding of the working of
the algorithm details. Classroom experience indicates that a study of this simplified
version enhances understanding of DES.!

4.1 TRADITIONAL BLOCK CIPHER STRUCTURE

Several important symmetric block encryption algorithms in current use are based
on a structure referred to as a Feistel block cipher [FEIS73]. For that reason, it is
important to examine the design principles of the Feistel cipher. We begin with a
comparison of stream ciphers and block ciphers. Then we discuss the motivation for
the Feistel block cipher structure. Finally, we discuss some of its implications.

'However, you may safely skip Appendix G, at least on a first reading. If you get lost or bogged down in
the details of DES, then you can go back and start with simplified DES.

120 CHAPTER 4 / BLOCK CIPHERS AND THE DATA ENCRYPTION STANDARD

Stream Ciphers and Block Ciphers

A stream cipher is one that encrypts a digital data stream one bit or one byte at a
time. Examples of classical stream ciphers are the autokeyed Vigenere cipher and
the Vernam cipher. In the ideal case, a one-time pad version of the Vernam cipher
would be used (Figure 3.7), in which the keystream (k;) is as long as the plaintext bit
stream (p;). If the cryptographic keystream is random, then this cipher is unbreakable
by any means other than acquiring the keystream. However, the keystream must be
provided to both users in advance via some independent and secure channel. This
introduces insurmountable logistical problems if the intended data traffic is very large.

Accordingly, for practical reasons, the bit-stream generator must be imple-
mented as an algorithmic procedure, so that the cryptographic bit stream can be
produced by both users. In this approach (Figure 4.1a), the bit-stream generator is
a key-controlled algorithm and must produce a bit stream that is cryptographically
strong. That is, it must be computationally impractical to predict future portions of
the bit stream based on previous portions of the bit stream. The two users need only
share the generating key, and each can produce the keystream.

A block cipher is one in which a block of plaintext is treated as a whole and
used to produce a ciphertext block of equal length. Typically, a block size of 64 or

Key Bit-stre?m Key Bit-stre?m
(K) generation (K) generation
algorithm algorithm
k,.J k,.J
Plaintext C*_\ Ciphertext C*_\ Plaintext
@) & © & @)
ENCRYPTION DECRYPTION
(a) Stream cipher using algorithmic bit-stream generator
b bits b bits
Key Encryption Key Decryption
(K) algorithm (K) algorithm
b bits b bits
(b) Block cipher

Figure 4.1 Stream Cipher and Block Cipher

4.1 / TRADITIONAL BLOCK CIPHER STRUCTURE 121

128 bits is used. As with a stream cipher, the two users share a symmetric encryption
key (Figure 4.1b). Using some of the modes of operation explained in Chapter 7, a
block cipher can be used to achieve the same effect as a stream cipher.

Far more effort has gone into analyzing block ciphers. In general, they seem
applicable to a broader range of applications than stream ciphers. The vast majority
of network-based symmetric cryptographic applications make use of block ciphers.
Accordingly, the concern in this chapter, and in our discussions throughout the
book of symmetric encryption, will primarily focus on block ciphers.

Motivation for the Feistel Cipher Structure

A block cipher operates on a plaintext block of # bits to produce a ciphertext block
of n bits. There are 2" possible different plaintext blocks and, for the encryption
to be reversible (i.e., for decryption to be possible), each must produce a unique
ciphertext block. Such a transformation is called reversible, or nonsingular. The fol-
lowing examples illustrate nonsingular and singular transformations for n = 2.

Reversible Mapping Irreversible Mapping
Plaintext Ciphertext Plaintext Ciphertext
00 11 00 11
01 10 01 10
10 00 10 01
11 01 11 01

In the latter case, a ciphertext of 01 could have been produced by one of two plain-
text blocks. So if we limit ourselves to reversible mappings, the number of different
transformations is 2'!.2

Figure 4.2 illustrates the logic of a general substitution cipher for n = 4.
A 4-bit input produces one of 16 possible input states, which is mapped by the sub-
stitution cipher into a unique one of 16 possible output states, each of which is repre-
sented by 4 ciphertext bits. The encryption and decryption mappings can be defined
by a tabulation, as shown in Table 4.1. This is the most general form of block cipher
and can be used to define any reversible mapping between plaintext and ciphertext.
Feistel refers to this as the ideal block cipher, because it allows for the maximum
number of possible encryption mappings from the plaintext block [FEIS75].

But there is a practical problem with the ideal block cipher. If a small block
size, such as n = 4, is used, then the system is equivalent to a classical substitution
cipher. Such systems, as we have seen, are vulnerable to a statistical analysis of the
plaintext. This weakness is not inherent in the use of a substitution cipher but rather
results from the use of a small block size. If # is sufficiently large and an arbitrary
reversible substitution between plaintext and ciphertext is allowed, then the statisti-
cal characteristics of the source plaintext are masked to such an extent that this type
of cryptanalysis is infeasible.

The reasoning is as follows: For the first plaintext, we can choose any of 2 ciphertext blocks. For the
second plaintext, we choose from among 2" — 1 remaining ciphertext blocks, and so on.

122 CHAPTER 4 / BLOCK CIPHERS AND THE DATA ENCRYPTION STANDARD

4-bit input

4 to 16 decoder
o 1 2 3 4 5 6 7 & 9 10 11 12 13 14 15
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
16 to 4 encoder
4-bit output
Figure 4.2 General n-bit-n-bit Block Substitution (shown with n = 4)

An arbitrary reversible substitution cipher (the ideal block cipher) for a large
block size is not practical, however, from an implementation and performance
point of view. For such a transformation, the mapping itself constitutes the key.
Consider again Table 4.1, which defines one particular reversible mapping from

Table 4.1 Encryption and Decryption Tables for Substitution Cipher of Figure 4.2

Plaintext Ciphertext Ciphertext Plaintext
0000 1110 0000 1110
0001 0100 0001 0011
0010 1101 0010 0100
0011 0001 0011 1000
0100 0010 0100 0001
0101 1111 0101 1100
0110 1011 0110 1010
0111 1000 0111 1111
1000 0011 1000 0111
1001 1010 1001 1101
1010 0110 1010 1001
1011 1100 1011 0110
1100 0101 1100 1011
1101 1001 1101 0010
1110 0000 1110 0000
1111 0111 1111 0101

4.1 / TRADITIONAL BLOCK CIPHER STRUCTURE 123

plaintext to ciphertext for n = 4. The mapping can be defined by the entries in the
second column, which show the value of the ciphertext for each plaintext block.
This, in essence, is the key that determines the specific mapping from among all
possible mappings. In this case, using this straightforward method of defining the
key, the required key length is (4 bits) X (16 rows) = 64 bits. In general, for an
n-bit ideal block cipher, the length of the key defined in this fashion is n X 2" bits.
For a 64-bit block, which is a desirable length to thwart statistical attacks, the
required key length is 64 X 264 = 270 =~ 10?! bits.

In considering these difficulties, Feistel points out that what is needed is an
approximation to the ideal block cipher system for large n, built up out of compo-
nents that are easily realizable [FEIS75]. But before turning to Feistel’s approach,
let us make one other observation. We could use the general block substitution
cipher but, to make its implementation tractable, confine ourselves to a subset of
the 2""! possible reversible mappings. For example, suppose we define the mapping
in terms of a set of linear equations. In the case of n = 4, we have

Y1 = kuxy + ki + kisxg + kg
Y2 = kyxy + kppxy + kpzxz + kogxy
V3 = kaxy + kapxy + kazxg + kagxy
Va = kaxi + kapxo + kg + kyaxy

where the x; are the four binary digits of the plaintext block, the y; are the four bi-
nary digits of the ciphertext block, the k;; are the binary coefficients, and arithmetic
is mod 2. The key size is just 7%, in this case 16 bits. The danger with this kind of for-
mulation is that it may be vulnerable to cryptanalysis by an attacker that is aware of
the structure of the algorithm. In this example, what we have is essentially the Hill
cipher discussed in Chapter 3, applied to binary data rather than characters. As we
saw in Chapter 3, a simple linear system such as this is quite vulnerable.

The Feistel Cipher

Feistel proposed [FEIS73] that we can approximate the ideal block cipher by utiliz-
ing the concept of a product cipher, which is the execution of two or more simple
ciphers in sequence in such a way that the final result or product is cryptographi-
cally stronger than any of the component ciphers. The essence of the approach is
to develop a block cipher with a key length of k bits and a block length of » bits,
allowing a total of 2% possible transformations, rather than the 2! transformations
available with the ideal block cipher.

In particular, Feistel proposed the use of a cipher that alternates substitutions
and permutations, where these terms are defined as follows:

m Substitution: Each plaintext element or group of elements is uniquely replaced
by a corresponding ciphertext element or group of elements.

® Permutation: A sequence of plaintext elements is replaced by a permutation
of that sequence. That is, no elements are added or deleted or replaced in the
sequence, rather the order in which the elements appear in the sequence is
changed.

124 CHAPTER 4 / BLOCK CIPHERS AND THE DATA ENCRYPTION STANDARD

In fact, Feistel’s is a practical application of a proposal by Claude Shannon
to develop a product cipher that alternates confusion and diffusion functions
[SHAN49].> We look next at these concepts of diffusion and confusion and then
present the Feistel cipher. But first, it is worth commenting on this remarkable fact:
The Feistel cipher structure, which dates back over a quarter century and which, in
turn, is based on Shannon’s proposal of 1945, is the structure used by a number of
significant symmetric block ciphers currently in use. In particular, the Feistel struc-
ture is used for Triple Data Encryption Algorithm (TDEA), which is one of the two
encryption algorithms (along with AES), approved for general use by the National
Institute of Standards and Technology (NIST). The Feistel structure is also used for
several schemes for format-preserving encryption, which have recently come into
prominence. In addition, the Camellia block cipher is a Feistel structure; it is one
of the possible symmetric ciphers in TLS and a number of other Internet security
protocols. Both TDEA and format-preserving encryption are covered in Chapter 7.

Drrrusion AND Conrusion The terms diffusion and confusion were introduced by
Claude Shannon to capture the two basic building blocks for any cryptographic sys-
tem [SHAN49]. Shannon’s concern was to thwart cryptanalysis based on statisti-
cal analysis. The reasoning is as follows. Assume the attacker has some knowledge
of the statistical characteristics of the plaintext. For example, in a human-readable
message in some language, the frequency distribution of the various letters may be
known. Or there may be words or phrases likely to appear in the message (probable
words). If these statistics are in any way reflected in the ciphertext, the cryptanalyst
may be able to deduce the encryption key, part of the key, or at least a set of keys
likely to contain the exact key. In what Shannon refers to as a strongly ideal cipher,
all statistics of the ciphertext are independent of the particular key used. The arbi-
trary substitution cipher that we discussed previously (Figure 4.2) is such a cipher,
but as we have seen, it is impractical.*

Other than recourse to ideal systems, Shannon suggests two methods for
frustrating statistical cryptanalysis: diffusion and confusion. In diffusion, the sta-
tistical structure of the plaintext is dissipated into long-range statistics of the
ciphertext. This is achieved by having each plaintext digit affect the value of many
ciphertext digits; generally, this is equivalent to having each ciphertext digit be
affected by many plaintext digits. An example of diffusion is to encrypt a message
M = my, my, m3, ... of characters with an averaging operation:

k
Vo = <2m,,+,-> mod 26
=

3The paper is available at box.com/Crypto7e. Shannon’s 1949 paper appeared originally as a classified
report in 1945. Shannon enjoys an amazing and unique position in the history of computer and informa-
tion science. He not only developed the seminal ideas of modern cryptography but is also responsible for
inventing the discipline of information theory. Based on his work in information theory, he developed
a formula for the capacity of a data communications channel, which is still used today. In addition, he
founded another discipline, the application of Boolean algebra to the study of digital circuits; this last he
managed to toss off as a master’s thesis.

“Appendix F expands on Shannon’s concepts concerning measures of secrecy and the security of crypto-
graphic algorithms.

4.1 / TRADITIONAL BLOCK CIPHER STRUCTURE 125

adding k successive letters to get a ciphertext letter y,. One can show that the sta-
tistical structure of the plaintext has been dissipated. Thus, the letter frequencies in
the ciphertext will be more nearly equal than in the plaintext; the digram frequen-
cies will also be more nearly equal, and so on. In a binary block cipher, diffusion can
be achieved by repeatedly performing some permutation on the data followed by
applying a function to that permutation; the effect is that bits from different posi-
tions in the original plaintext contribute to a single bit of ciphertext.’

Every block cipher involves a transformation of a block of plaintext into a
block of ciphertext, where the transformation depends on the key. The mechanism
of diffusion seeks to make the statistical relationship between the plaintext and
ciphertext as complex as possible in order to thwart attempts to deduce the key. On
the other hand, confusion seeks to make the relationship between the statistics of
the ciphertext and the value of the encryption key as complex as possible, again to
thwart attempts to discover the key. Thus, even if the attacker can get some handle
on the statistics of the ciphertext, the way in which the key was used to produce that
ciphertext is so complex as to make it difficult to deduce the key. This is achieved by
the use of a complex substitution algorithm. In contrast, a simple linear substitution
function would add little confusion.

As [ROBS95b] points out, so successful are diffusion and confusion in captur-
ing the essence of the desired attributes of a block cipher that they have become the
cornerstone of modern block cipher design.

Ferster Creaer StrucTUrRE The left-hand side of Figure 4.3 depicts the encryption
structure proposed by Feistel. The inputs to the encryption algorithm are a plaintext
block of length 2w bits and a key K. The plaintext block is divided into two halves,
LEj and RE,. The two halves of the data pass through »n rounds of processing and
then combine to produce the ciphertext block. Each round i has as inputs LE;_; and
RE;_ derived from the previous round, as well as a subkey K; derived from the over-
all K. In general, the subkeys K; are different from K and from each other. In Figure
4.3, 16 rounds are used, although any number of rounds could be implemented.

All rounds have the same structure. A substitution is performed on the left
half of the data. This is done by applying a round function F to the right half of the
data and then taking the exclusive-OR of the output of that function and the left
half of the data. The round function has the same general structure for each round
but is parameterized by the round subkey K;. Another way to express this is to say
that F is a function of right-half block of w bits and a subkey of y bits, which pro-
duces an output value of length w bits: F(RE;, K;,). Following this substitution, a
permutation is performed that consists of the interchange of the two halves of the
data.® This structure is a particular form of the substitution-permutation network
(SPN) proposed by Shannon.

Some books on cryptography equate permutation with diffusion. This is incorrect. Permutation, by itself,
does not change the statistics of the plaintext at the level of individual letters or permuted blocks. For exam-
ple,in DES, the permutation swaps two 32-bit blocks, so statistics of strings of 32 bits or less are preserved.

®The final round is followed by an interchange that undoes the interchange that is part of the final round.
One could simply leave both interchanges out of the diagram, at the sacrifice of some consistency of pre-
sentation. In any case, the effective lack of a swap in the final round is done to simplify the implementa-
tion of the decryption process, as we shall see.

126 CHAPTER 4 / BLOCK CIPHERS AND THE DATA ENCRYPTION STANDARD

Output (plaintext)

| RDy; = LE,| LD;; = RE, |

Input (plaintext) *><‘
LE, | RE, | [LDy =RE,| RD\s = LE,]
E E
=
& £ K,
LDys= RE; |RD;s = LE, |
w
= = ©
s £
& < K;
LDy = RE,| RD\ = LE, |
°
°
°
LD, = REy| RD, = LE,,]|
ﬁ [\l
= 2 @
s g
= & Kis
LD, = RE;s| RD, = LE;3|
o
E Kie % O,
= =
3 ® Z Kig
| LEs | REg | LDy = REg| RDy = LEy |
Input (ciphertext)
| LE; | RE; |
Output (ciphertext)

Figure 4.3 Feistel Encryption and Decryption (16 rounds)

The exact realization of a Feistel network depends on the choice of the follow-
ing parameters and design features:

m Block size: Larger block sizes mean greater security (all other things being
equal) but reduced encryption/decryption speed for a given algorithm. The
greater security is achieved by greater diffusion. Traditionally, a block size of
64 bits has been considered a reasonable tradeoff and was nearly universal in
block cipher design. However, the new AES uses a 128-bit block size.

4.1 / TRADITIONAL BLOCK CIPHER STRUCTURE 127

m Key size: Larger key size means greater security but may decrease encryption/
decryption speed. The greater security is achieved by greater resistance to
brute-force attacks and greater confusion. Key sizes of 64 bits or less are now
widely considered to be inadequate, and 128 bits has become a common size.

® Number of rounds: The essence of the Feistel cipher is that a single round
offers inadequate security but that multiple rounds offer increasing security.
A typical size is 16 rounds.

u Subkey generation algorithm: Greater complexity in this algorithm should
lead to greater difficulty of cryptanalysis.

® Round function F: Again, greater complexity generally means greater resis-
tance to cryptanalysis.

There are two other considerations in the design of a Feistel cipher:

m Fast software encryption/decryption: In many cases, encryption is embedded
in applications or utility functions in such a way as to preclude a hardware im-
plementation. Accordingly, the speed of execution of the algorithm becomes a
concern.

m Ease of analysis: Although we would like to make our algorithm as difficult as
possible to cryptanalyze, there is great benefit in making the algorithm easy
to analyze. That is, if the algorithm can be concisely and clearly explained, it is
easier to analyze that algorithm for cryptanalytic vulnerabilities and therefore
develop a higher level of assurance as to its strength. DES, for example, does
not have an easily analyzed functionality.

Ferster. DEcryrTion Arcoritav The process of decryption with a Feistel cipher
is essentially the same as the encryption process. The rule is as follows: Use the
ciphertext as input to the algorithm, but use the subkeys K; in reverse order. That
is, use K, in the first round, K,,_; in the second round, and so on, until K is used in
the last round. This is a nice feature, because it means we need not implement two
different algorithms; one for encryption and one for decryption.

To see that the same algorithm with a reversed key order produces the cor-
rect result, Figure 4.3 shows the encryption process going down the left-hand side
and the decryption process going up the right-hand side for a 16-round algorithm.
For clarity, we use the notation LE; and RE; for data traveling through the encryp-
tion algorithm and LD; and RD; for data traveling through the decryption algo-
rithm. The diagram indicates that, at every round, the intermediate value of the
decryption process is equal to the corresponding value of the encryption process
with the two halves of the value swapped. To put this another way, let the output
of the ith encryption round be LE]|RE; (LE; concatenated with RE;). Then the cor-
responding output of the (16 — i)th decryption round is RE/|LE; or, equivalently,
LDi6_|RD14—;.

Let us walk through Figure 4.3 to demonstrate the validity of the preceding
assertions. After the last iteration of the encryption process, the two halves of the
output are swapped, so that the ciphertext is RE;4||LE;¢. The output of that round
is the ciphertext. Now take that ciphertext and use it as input to the same algorithm.
The input to the first round is RE;4||LE¢, which is equal to the 32-bit swap of the
output of the sixteenth round of the encryption process.

128

CHAPTER 4 / BLOCK CIPHERS AND THE DATA ENCRYPTION STANDARD

Now we would like to show that the output of the first round of the decryption
process is equal to a 32-bit swap of the input to the sixteenth round of the encryp-
tion process. First, consider the encryption process. We see that

LE16 - RElS
RE\s = LE;s @ F(REs, Ki6)

On the decryption side,

LDy = RDy = LE;s = RE5
RD, = LDy ® F(RDy, Kis)
= RE;s @ F(RE s, Ki¢)
= [LE;s @ F(RE;s5, Ki6)] @ F(RE;5, Ki6)

The XOR has the following properties:

[ADB]|®C=AD[BDC]
D@D =0
E®0=E

Thus, we have LD = RE 5 and RD, = LE5. Therefore, the output of the first
round of the decryption process is RE;s||LE;s, which is the 32-bit swap of the input
to the sixteenth round of the encryption. This correspondence holds all the way
through the 16 iterations, as is easily shown. We can cast this process in general
terms. For the ith iteration of the encryption algorithm,

LEi = REi_]
RE; = LE; ® F(RE; 1, K;)

Rearranging terms:

REi_] = LEZ
LE; = RE;® F(RE;_,, K;) = RE; ® F(LE,, K;)

Thus, we have described the inputs to the ith iteration as a function of the outputs, and
these equations confirm the assignments shown in the right-hand side of Figure 4.3.

Finally, we see that the output of the last round of the decryption process is
REy||LE,. A 32-bit swap recovers the original plaintext, demonstrating the validity
of the Feistel decryption process.

Note that the derivation does not require that F be a reversible function. To
see this, take a limiting case in which F produces a constant output (e.g., all ones)
regardless of the values of its two arguments. The equations still hold.

To help clarify the preceding concepts, let us look at a specific example
(Figure 4.4 and focus on the fifteenth round of encryption, corresponding to the sec-
ond round of decryption. Suppose that the blocks at each stage are 32 bits (two 16-bit
halves) and that the key size is 24 bits. Suppose that at the end of encryption round
fourteen, the value of the intermediate block (in hexadecimal) is DE7F03A6. Then
LE,, = DE7F and RE;;, = 03A6. Also assume that the value of K5 is 12DES52.
After round 15, we have LE;5s = 03A6 and RE s = F(03A6, 12DES52) @ DETF.

4.2 / THE DATA ENCRYPTION STANDARD 129

Encryption round Decryption round

F(03A6, 12DE52) ®
[F(03A6, 12DES2) @ DE7F]

DE7F 03A6 03A6 =DETF

12DES2

Round 15
Round 2

12DES2

03A6 F(03A6, 12DE52)® DETF F(03A6, 12DES2) @ DE7F 03A6
Figure 4.4 Feistel Example

Now let’s look at the decryption. We assume that LD; = RE;5s and
RD, = LEs, as shown in Figure 4.3, and we want to demonstrate that LD, = RE,
and RD, = LE4. So, we start with LD; = F(03A6, 12DES52) @ DE7F and
RD, = 03A6. Then, from Figure 4.3, LD, = 03A6 = RE;; and RD, =
F(03A6, 12DES52) @ [F(03A6, 12DES2) @ DE7F] = DE7F = LE14.

4.2 THE DATA ENCRYPTION STANDARD

Until the introduction of the Advanced Encryption Standard (AES) in 2001, the
Data Encryption Standard (DES) was the most widely used encryption scheme.
DES was issued in 1977 by the National Bureau of Standards, now the National
Institute of Standards and Technology (NIST), as Federal Information Processing
Standard 46 (FIPS PUB 46). The algorithm itself is referred to as the Data
Encryption Algorithm (DEA).” For DEA, data are encrypted in 64-bit blocks using
a 56-bit key. The algorithm transforms 64-bit input in a series of steps into a 64-bit
output. The same steps, with the same key, are used to reverse the encryption.
Over the years, DES became the dominant symmetric encryption algorithm,
especially in financial applications. In 1994, NIST reaffirmed DES for federal use
for another five years; NIST recommended the use of DES for applications other
than the protection of classified information. In 1999, NIST issued a new version
of its standard (FIPS PUB 46-3) that indicated that DES should be used only
for legacy systems and that triple DES (which in essence involves repeating the
DES algorithm three times on the plaintext using two or three different keys to
produce the ciphertext) be used. We study triple DES in Chapter 7. Because the
underlying encryption and decryption algorithms are the same for DES and triple
DES, it remains important to understand the DES cipher. This section provides an
overview.For the interested reader, Appendix S provides further detail.

"The terminology is a bit confusing. Until recently, the terms DES and DEA could be used interchange-
ably. However, the most recent edition of the DES document includes a specification of the DEA
described here plus the triple DEA (TDEA) described in Chapter 7. Both DEA and TDEA are part of
the Data Encryption Standard. Further, until the recent adoption of the official term TDEA, the triple
DEA algorithm was typically referred to as triple DES and written as 3DES. For the sake of convenience,
we will use the term 3DES.

130

CHAPTER 4 / BLOCK CIPHERS AND THE DATA ENCRYPTION STANDARD

DES Encryption

The overall scheme for DES encryption is illustrated in Figure 4.5. As with any
encryption scheme, there are two inputs to the encryption function: the plaintext to
be encrypted and the key. In this case, the plaintext must be 64 bits in length and the
key is 56 bits in length.®

Looking at the left-hand side of the figure, we can see that the processing
of the plaintext proceeds in three phases. First, the 64-bit plaintext passes through
an initial permutation (IP) that rearranges the bits to produce the permuted input.

64-bit plaintext 64-bit key

b feeeeeneae |

Initial permutation

64

Permuted choice 2

K, 48 56 . .
Round 2 Permuted choice 2 Left circular shift

Round 16 Permuted choice 2 Left circular shift

32-bit swap

Inverse initial
permutation

64-bit ciphertext

Figure 4.5 General Depiction of DES Encryption Algorithm

8 Actually, the function expects a 64-bit key as input. However, only 56 of these bits are ever used; the
other 8 bits can be used as parity bits or simply set arbitrarily.

43 / A DES EXAMPLE 131

This is followed by a phase consisting of sixteen rounds of the same function, which
involves both permutation and substitution functions. The output of the last (six-
teenth) round consists of 64 bits that are a function of the input plaintext and the
key. The left and right halves of the output are swapped to produce the preoutput.
Finally, the preoutput is passed through a permutation [IP™!] that is the inverse of
the initial permutation function, to produce the 64-bit ciphertext. With the excep-
tion of the initial and final permutations, DES has the exact structure of a Feistel
cipher, as shown in Figure 4.3.

The right-hand portion of Figure 4.5 shows the way in which the 56-bit key is
used. Initially, the key is passed through a permutation function. Then, for each of
the sixteen rounds, a subkey (K;) is produced by the combination of a left circular
shift and a permutation. The permutation function is the same for each round, but a
different subkey is produced because of the repeated shifts of the key bits.

DES Decryption

As with any Feistel cipher, decryption uses the same algorithm as encryption, except
that the application of the subkeys is reversed. Additionally, the initial and final
permutations are reversed.

4.3 A DES EXAMPLE

We now work through an example and consider some of its implications. Although
you are not expected to duplicate the example by hand, you will find it informative
to study the hex patterns that occur from one step to the next.

For this example, the plaintext is a hexadecimal palindrome. The plaintext,
key, and resulting ciphertext are as follows:

Plaintext: 02468aceeca86420
Key: 0£1571c947d9e859
Ciphertext: da02ce3a89ecac3b

Results

Table 4.2 shows the progression of the algorithm. The first row shows the 32-bit
values of the left and right halves of data after the initial permutation. The next 16
rows show the results after each round. Also shown is the value of the 48-bit subkey
generated for each round. Note that L; = R;_;. The final row shows the left- and
right-hand values after the inverse initial permutation. These two values combined
form the ciphertext.

The Avalanche Effect

A desirable property of any encryption algorithm is that a small change in either
the plaintext or the key should produce a significant change in the ciphertext. In
particular, a change in one bit of the plaintext or one bit of the key should produce

132 CHAPTER 4 / BLOCK CIPHERS AND THE DATA ENCRYPTION STANDARD

Table 4.2 DES Example

Round K; L; R;
1P 5a005a00 3cf03c0f
1 1e030£03080d2930 3cf03c0f bad22845
2 0a31293432242318 bad22845 99e9p723
3 23072318201d0cld 99e9b723 Obae3b9e
4 05261d3824311a20 Obae3b9e 42415649
5 3325340136002c25 42415649 18b3fadl
6 123a2d0d04262alc 18b3fadl 9616fe23
7 021£f120blcl30611 9616fe23 67117cf2
8 1c10372a2832002b 67117cf2 cllbfc09
9 04292a380c341£03 cllbfc09 887fbco6c
10 2703212607280403 887fbcé6e 600£7e8b
1 2826390c31261504 600f7e8b £596506e
12 12071c241a0a0£08 £596506e 738538Db8
13 300935393c0d100b 738538b8 cbab2cde
14 311e09231321182a cbab2cie 56b0bd75
15 283d3e0227072528 56b0bd75 75e8£d8f
16 2921080p13143025 75e8fd8f 25896490

P! da02ce3a 89ecac3b

Note: DES subkeys are shown as eight 6-bit values in hex format

a change in many bits of the ciphertext. This is referred to as the avalanche effect.
If the change were small, this might provide a way to reduce the size of the plaintext
or key space to be searched.

Using the example from Table 4.2, Table 4.3 shows the result when the fourth
bit of the plaintext is changed, so that the plaintext is 12468aceeca86420. The
second column of the table shows the intermediate 64-bit values at the end of each
round for the two plaintexts. The third column shows the number of bits that differ
between the two intermediate values. The table shows that, after just three rounds,
18 bits differ between the two blocks. On completion, the two ciphertexts differ in
32 bit positions.

Table 4.4 shows a similar test using the original plaintext of with two keys that
differ in only the fourth bit position: the original key, 0£1571c947d9e859, and
the altered key, 1£1571c947d9e859. Again, the results show that about half of
the bits in the ciphertext differ and that the avalanche effect is pronounced after just
a few rounds.

43 / A DES EXAMPLE 133

Table 4.3 Avalanche Effect in DES: Change in Plaintext

Round o Round o

02468aceeca86420 1 9 cllbfc09887fbcée 32
12468aceecad6420 99f911532eed7d94

1 3cf03c0fbad22845 1 10 887fbc6c600£7e8b 34
3cf03c0fbad32845 2eed7d94d0£23094

2 bad2284599e9b723 5 11 600£7e8b£f596506e 37
bad3284539a9b7a3 d0£f23094455da9c4

3 99e9b7230bae3b9e 18 12 £596506e738538b8 31
39a9b7a3171cb8b3 455da9c47f6e3cf3

4 0bae3b9%e42415649 34 13 738538b8c6ab2cide 29
171cb8b3ccacabbe 7f6e3cf34bcla8d9

5 4241564918b3fa4dl 37 14 cba62c4e56b0bd75 33
ccacab5bedl6c3653 4bcla8d91e07d409

6 18b3fadl19616fe23 33 15 56b0bd7575e8£d8f 31
dl16c3653cf402c68 1e07d4091ce2e6dc

7 9616fe2367117cf2 32 16 75e8£d8£25896490 32
cf402c682b2cefbc lce2e6dc365e5£59

8 67117cf2cllbfc09 33 P! da02ce3a89ecac3b 32
2b2cefbc99f91153 057cde97d7683f2a

Table 4.4 Avalanche Effect in DES: Change in Key

Round o Round o

02468aceeca86420 0 9 cllbfc09887fbcbe 34
02468aceeca86420 548flded71f64dfd

1 3cf03c0fbad22845 3 10 887fbc6c600f7e8b 36
3cf03c0£f9ad628cS 71£64d£d4279876¢

2 bad2284599e9b723 11 11 600f7e8bf596506e 32
9ad628c59939136b 4279876c399fdc0d

3 99e9b7230bae3b9%e 25 12 £596506e7385380b8 28
9939136b768067b7 399fdc0d6d208dbb

4 Obae3b9%9e42415649 29 13 738538b8cbab2cde 33
768067b75a8807c5 6d208dbbb9bdeecaa

5 4241564918b3fa4dl 26 14 cb6a62c4e56b0bd75 30
5a8807c5488dbe94 b9bdeeaad2c3a56f

6 18b3fadl9616fe23 26 15 56b0bd7575e8£d8f 27
488dbe9%4aba7feb53 d2c3a56£2765clfb

7 9616£fe2367117cf2 27 16 75e8£d8£25896490 30
aba7fe53177d21e4 2765c1fb01263dc4

8 67117cf2cl1lbfc09 32 P! da02ce3a89ecac3b 30
177d21e4548f1de4d ee92b50606b62b0b

134 CHAPTER 4 / BLOCK CIPHERS AND THE DATA ENCRYPTION STANDARD

4.4 THE STRENGTH OF DES

Since its adoption as a federal standard, there have been lingering concerns about
the level of security provided by DES. These concerns, by and large, fall into two
areas: key size and the nature of the algorithm.

The Use of 56-Bit Keys

With a key length of 56 bits, there are 23° possible keys, which is approximately
7.2 X 10'¢ keys. Thus, on the face of it, a brute-force attack appears impractical.
Assuming that, on average, half the key space has to be searched, a single machine
performing one DES encryption per microsecond would take more than a thousand
years to break the cipher.

However, the assumption of one encryption per microsecond is overly con-
servative. As far back as 1977, Diffie and Hellman postulated that the technology
existed to build a parallel machine with 1 million encryption devices, each of which
could perform one encryption per microsecond [DIFF77]. This would bring the
average search time down to about 10 hours. The authors estimated that the cost
would be about $20 million in 1977 dollars.

With current technology, it is not even necessary to use special, purpose-built
hardware. Rather, the speed of commercial, off-the-shelf processors threaten the
security of DES. A recent paper from Seagate Technology [SEAGO8] suggests that
a rate of 1 billion (10°) key combinations per second is reasonable for today’s mul-
ticore computers. Recent offerings confirm this. Both Intel and AMD now offer
hardware-based instructions to accelerate the use of AES. Tests run on a contem-
porary multicore Intel machine resulted in an encryption rate of about half a bil-
lion encryptions per second [BASU12]. Another recent analysis suggests that with
contemporary supercomputer technology, a rate of 10'> encryptions per second is
reasonable [ARORI12].

With these results in mind, Table 4.5 shows how much time is required for a
brute-force attack for various key sizes. As can be seen, a single PC can break DES in
about a year; if multiple PCs work in parallel, the time is drastically shortened. And
today’s supercomputers should be able to find a key in about an hour. Key sizes of
128 bits or greater are effectively unbreakable using simply a brute-force approach.
Even if we managed to speed up the attacking system by a factor of 1 trillion (10'?),
it would still take over 100,000 years to break a code using a 128-bit key.

Fortunately, there are a number of alternatives to DES, the most important of
which are AES and triple DES, discussed in Chapters 6 and 7, respectively.

The Nature of the DES Algorithm

Another concern is the possibility that cryptanalysis is possible by exploiting
the characteristics of the DES algorithm. The focus of concern has been on the
eight substitution tables, or S-boxes, that are used in each iteration (described in
Appendix S). Because the design criteria for these boxes, and indeed for the entire
algorithm, were not made public, there is a suspicion that the boxes were con-
structed in such a way that cryptanalysis is possible for an opponent who knows

4.5 / BLOCK CIPHER DESIGN PRINCIPLES 135

Table 4.5 Average Time Required for Exhaustive Key Search

Number of Time Required
Alternative Time Required at 10° at 10

Key Size (bits) Cipher Keys Decryptions/s Decryptions/s
56 DES 20 =~ 72 x 10'° 2% ns = 1.125 years 1 hour

128 AES 218 =~ 34 x10® | 2% ns =53 X 10?! years 5.3 X 10" years

168 Triple DES 218 =~ 37 %100 | 2'%ns = 5.8 X 10% years 5.8 X 10% years

192 AES 212 = 63 x 107 | 2"'ns = 9.8 X 10 years 9.8 X 10% years

256 AES 226 =~ 12 x 107 | 2% ns = 1.8 X 10 years 1.8 X 10 years

26 characters | Monoalphabetic | 21 =4 X 10 |2 X 10®°ns = 6.3 X 10°years | 6.3 X 10° years

(permutation)

the weaknesses in the S-boxes. This assertion is tantalizing, and over the years a
number of regularities and unexpected behaviors of the S-boxes have been discov-
ered. Despite this, no one has so far succeeded in discovering the supposed fatal
weaknesses in the S-boxes.’

Timing Attacks

We discuss timing attacks in more detail in Part Two, as they relate to public-key
algorithms. However, the issue may also be relevant for symmetric ciphers. In
essence, a timing attack is one in which information about the key or the plaintext is
obtained by observing how long it takes a given implementation to perform decryp-
tions on various ciphertexts. A timing attack exploits the fact that an encryption
or decryption algorithm often takes slightly different amounts of time on different
inputs. [HEVI99] reports on an approach that yields the Hamming weight (number
of bits equal to one) of the secret key. This is a long way from knowing the actual
key, but it is an intriguing first step. The authors conclude that DES appears to be
fairly resistant to a successful timing attack but suggest some avenues to explore.
Although this is an interesting line of attack, it so far appears unlikely that this tech-
nique will ever be successful against DES or more powerful symmetric ciphers such
as triple DES and AES.

4.5 BLOCK CIPHER DESIGN PRINCIPLES

Although much progress has been made in designing block ciphers that are cryp-
tographically strong, the basic principles have not changed all that much since the
work of Feistel and the DES design team in the early 1970s. In this section we look
at three critical aspects of block cipher design: the number of rounds, design of the
function F, and key scheduling.

9At least, no one has publicly acknowledged such a discovery.

136 CHAPTER 4 / BLOCK CIPHERS AND THE DATA ENCRYPTION STANDARD

Number of Rounds

The cryptographic strength of a Feistel cipher derives from three aspects of the
design: the number of rounds, the function F, and the key schedule algorithm. Let
us look first at the choice of the number of rounds.

The greater the number of rounds, the more difficult it is to perform crypt-
analysis, even for a relatively weak F. In general, the criterion should be that the
number of rounds is chosen so that known cryptanalytic efforts require greater
effort than a simple brute-force key search attack. This criterion was certainly used
in the design of DES. Schneier [SCHN96] observes that for 16-round DES, a dif-
ferential cryptanalysis attack is slightly less efficient than brute force: The differen-
tial cryptanalysis attack requires 2°>! operations,'” whereas brute force requires 2.
If DES had 15 or fewer rounds, differential cryptanalysis would require less effort
than a brute-force key search.

This criterion is attractive, because it makes it easy to judge the strength of
an algorithm and to compare different algorithms. In the absence of a cryptana-
lytic breakthrough, the strength of any algorithm that satisfies the criterion can be
judged solely on key length.

Design of Function F

The heart of a Feistel block cipher is the function F, which provides the element of
confusion in a Feistel cipher. Thus, it must be difficult to “unscramble” the substitu-
tion performed by F. One obvious criterion is that F be nonlinear, as we discussed
previously. The more nonlinear F, the more difficult any type of cryptanalysis will be.
There are several measures of nonlinearity, which are beyond the scope of this
book. In rough terms, the more difficult it is to approximate F by a set of linear
equations, the more nonlinear F is.

Several other criteria should be considered in designing F. We would like the
algorithm to have good avalanche properties. Recall that, in general, this means that
a change in one bit of the input should produce a change in many bits of the output.
A more stringent version of this is the strict avalanche criterion (SAC) [WEBS86],
which states that any output bit j of an S-box (see Appendix S for a discussion of
S-boxes) should change with probability 1/2 when any single input bit i is inverted
for all i, j. Although SAC is expressed in terms of S-boxes, a similar criterion could
be applied to F as a whole. This is important when considering designs that do not
include S-boxes.

Another criterion proposed in [WEBSS86] is the bit independence criterion
(BIC), which states that output bits j and k should change independently when any
single input bit / is inverted for all i, j, and k. The SAC and BIC criteria appear to
strengthen the effectiveness of the confusion function.

9Differential cryptanalysis of DES requires 27 chosen plaintext. If all you have to work with is known
plaintext, then you must sort through a large quantity of known plaintext—ciphertext pairs looking for the
useful ones. This brings the level of effort up to 2531,

4.6 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 137

Key Schedule Algorithm

With any Feistel block cipher, the key is used to generate one subkey for each round.
In general, we would like to select subkeys to maximize the difficulty of deducing
individual subkeys and the difficulty of working back to the main key. No general
principles for this have yet been promulgated.

Adams suggests [ADAM94] that, at minimum, the key schedule should guar-
antee key/ciphertext Strict Avalanche Criterion and Bit Independence Criterion.

4.6 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms
avalanche effect Feistel cipher round
block cipher irreversible mapping round function
confusion key subkey
Data Encryption Standard permutation substitution
(DES) product cipher
diffusion reversible mapping

Review Questions

4.1 Briefly define a nonsingular transformation.

4.2 What is the difference between a block cipher and a stream cipher?

4.3 Why is it not practical to use an arbitrary reversible substitution cipher of the kind
shown in Table 4.1?

4.4 Briefly define the terms substitution and permutation.

4.5 What is the difference between diffusion and confusion?

4.6 Which parameters and design choices determine the actual algorithm of a Feistel
cipher?

4.7 What are the critical aspects of Feistel cipher design?

Problems

4.1 a. InSection 4.1, under the subsection on the motivation for the Feistel cipher struc-
ture, it was stated that, for a block of n bits, the number of different reversible
mappings for the ideal block cipher is 2"'!. Justify.

b. Inthatsame discussion, it was stated that for the ideal block cipher, which allows all
possible reversible mappings, the size of the key is n X 2" bits. But, if there are 2"!
possible mappings, it should take log, 2! bits to discriminate among the different
mappings, and so the key length should be log, 2"!. However, log, 2"l < n X 2"
Explain the discrepancy.

138 CHAPTER 4 / BLOCK CIPHERS AND THE DATA ENCRYPTION STANDARD

4.2

4.4

4.6

Consider a Feistel cipher composed of sixteen rounds with a block length of 128 bits
and a key length of 128 bits. Suppose that, for a given k, the key scheduling algorithm
determines values for the first eight round keys, k1, k», ... kg, and then sets

ko = kg, kip = kg, kyy = ke, ... ks = Ky

Suppose you have a ciphertext c. Explain how, with access to an encryption oracle,
you can decrypt ¢ and determine m using just a single oracle query. This shows that
such a cipher is vulnerable to a chosen plaintext attack. (An encryption oracle can be
thought of as a device that, when given a plaintext, returns the corresponding cipher-
text. The internal details of the device are not known to you and you cannot break
open the device. You can only gain information from the oracle by making queries to
it and observing its responses.)
Let 7 be a permutation of the integers 0, 1,2, ... , (2" — 1), such that 7(m) gives the
permuted value of m, 0 = m < 2". Put another way, 7 maps the set of n-bit integers
into itself and no two integers map into the same integer. DES is such a permutation
for 64-bit integers. We say that 7 has a fixed point at m if w(m) = m. That is, if 7 is
an encryption mapping, then a fixed point corresponds to a message that encrypts to
itself. We are interested in the number of fixed points in a randomly chosen permuta-
tion 7r. Show the somewhat unexpected result that the number of fixed points for 7 is
1 on an average, and this number is independent of the size of the permutation.
Consider a block encryption algorithm that encrypts blocks of length n, and let
N = 2". Say we have 7 plaintext—ciphertext pairs P, C; = E(K, P,), where we assume
that the key K selects one of the N! possible mappings. Imagine that we wish to find K
by exhaustive search. We could generate key K’ and test whether C; = E(K’, P;) for
1 =i = . If K’ encrypts each P, to its proper C;, then we have evidence that K = K".
However, it may be the case that the mappings E(K, -) and E(K’, -) exactly agree
on the ¢ plaintext—cipher text pairs P;, C; and agree on no other pairs.
a. What is the probability that E(K, -) and E(K’, -) are in fact distinct mappings?
b. What is the probability that E(K, -) and E(K’, -) agree on another ¢’ plaintext—
ciphertext pairs where 0 = t' = N — ?
For any block cipher, the fact that it is a nonlinear function is crucial to its security. To
see this, suppose that we have a linear block cipher EL that encrypts 256-bit blocks
of plaintext into 256-bit blocks of ciphertext. Let EL(k, m) denote the encryption of a
256-bit message m under a key k (the actual bit length of k is irrelevant). Thus,

EL(k, [m; @ my]) = EL(k, m;) @ EL(k, m,) for all 128-bit patterns m;, m,.

Describe how, with 256 chosen ciphertexts, an adversary can decrypt any ciphertext
without knowledge of the secret key k. (A “chosen ciphertext” means that an adver-
sary has the ability to choose a ciphertext and then obtain its decryption. Here, you
have 256 plaintext/ciphertext pairs to work with and you have the ability to choose
the value of the ciphertexts.)

Suppose the DES F function mapped every 32-bit input R, regardless of the value of
the input K, to;

a. 32-bit string of zero

b. R

Then
1. What function would DES then compute?

2. What would the decryption look like?
Hint: Use the following properties of the XOR operation:

ADB)®C=ADBDO)
A®A) =0
A®0)=4

A @ 1 = bitwise complement of A

4.7
4.8

4.6 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 139

where
A, B,C are n-bit strings of bits
0 is an n-bit string of zeros
1is an n-bit string of one
Show that DES decryption is, in fact, the inverse of DES encryption.
The 32-bit swap after the sixteenth iteration of the DES algorithm is needed to make

the encryption process invertible by simply running the ciphertext back through the
algorithm with the key order reversed. This was demonstrated in the preceding prob-
lem. However, it still may not be entirely clear why the 32-bit swap is needed. To
demonstrate why, solve the following exercises. First, some notation:
AllB = the concatenation of the bit strings A and B
T(R||L) = the transformation defined by the ith iteration of the encryption
algorithmfor1 = 1 = 16
TD{(R||L) = the transformation defined by the ith iteration of the decryption
algorithmfor1 =/ = 16
Ti7(R|IL) = LR, where this transformation occurs after the sixteenth iteration
of the encryption algorithm

a. Show that the composition TD;(IP(IP"Y(Ti7(Ti6(L15lIR;5))))) is equivalent to the
transformation that interchanges the 32-bit halves, L5 and R;s. That is, show that

TD,(IP(IP " (Ti7(Tis(L15l|Ri5))))) = RisllLis

b. Now suppose that we did away with the final 32-bit swap in the encryption algo-
rithm. Then we would want the following equality to hold:

TD,(IP(IP"(Tis(L15IR15)))) = LislIRss

Does it?

Note: The following problems refer to details of DES that are described in Appendix S.

4.9

4.10

4.11

Consider the substitution defined by row 1 of S-box S; in Table S.2. Show a block
diagram similar to Figure 4.2 that corresponds to this substitution.

Compute the bits number 4, 17, 41, and 45 at the output of the first round of the DES
decryption, assuming that the ciphertext block is composed of all ones and the exter-
nal key is composed of all ones.

This problem provides a numerical example of encryption using a one-round version
of DES. We start with the same bit pattern for the key K and the plaintext, namely:

Hexadecimal notation: 0123456789ABCDEF
Binary notation: 00000001 00100011 01000101 01100111
1000 1001 1010 1011 1100 1101 1110 1111

a. Derive Kj, the first-round subkey.

b. Derive Lg, Ry.

c. Expand Ry to get E[Ry], where EJ -] is the expansion function of Table S.1.

d. Calculate A = E[R)] @ K.

e. Group the 48-bit result of (d) into sets of 6 bits and evaluate the corresponding
S-box substitutions.

f. Concatenate the results of (e) to get a 32-bit result, B.

140 CHAPTER 4 / BLOCK CIPHERS AND THE DATA ENCRYPTION STANDARD

4.14

4.15

g. Apply the permutation to get P(B).

h. Calculate R, = P(B) @ L,.

i. Write down the ciphertext.

Analyze the amount of left shifts in the DES key schedule by studying Table S.3 (d).

Is there a pattern? What could be the reason for the choice of these constants?

When using the DES algorithm for decryption, the 16 keys (K;, K>, ... , Kj¢) are

used in reverse order. Therefore, the right-hand side of Figure S.1 is not valid for

decryption. Design a key-generation scheme with the appropriate shift schedule

(analogous to Table S.3d) for the decryption process.

a. Let X' be the bitwise complement of X. Prove that if the complement of the
plaintext block is taken and the complement of an encryption key is taken, then
the result of DES encryption with these values is the complement of the original
ciphertext. That is,

If Y = EKX
Then Y = E(K,X')

Hint: Begin by showing that for any two bit strings of equal length, A and B,
(A®B) = A"®B.

b. It has been said that a brute-force attack on DES requires searching a key space of
2% keys. Does the result of part (a) change that?

a. We say that a DES key K is weak if DESg is an involution. Exhibit four weak
keys for DES.

b. We say that a DES key K is semi-weak if it is not weak and if there exists a key K’
such that DESg! = DESy.. Exhibit four semi-weak keys for DES.

Note: The following problems refer to simplified DES, described in Appendix G.

4.16

417

4.18

Refer to Figure G.3, which explains encryption function for S-DES.

a. How important is the initial permutation IP?

b. How important is the SW function in the middle?

The equations for the variables ¢ and r for S-DES are defined in the section on
S-DES analysis. Provide the equations for s and .

Using S-DES, decrypt the string 01000110 using the key 1010000010 by hand.
Show intermediate results after each function (IP, Fi, SW, Fy, IPfl). Then decode
the first 4 bits of the plaintext string to a letter and the second 4 bits to another letter
where we encode A through P in base 2 (i.e., A = 0000, B = 0001, ... ,P = 1111).
Hint: As a midway check, after the xoring with K2, the string should be 11000001.

Programming Problems

4.19

4.20

Create software that can encrypt and decrypt using a general substitution block
cipher.

Create software that can encrypt and decrypt using S-DES. Test data: use plaintext,
ciphertext, and key of Problem 4.18.

FINITE FIELDS

5.1

5.2
S
54

545

5.6

5b7/

Groups

Groups
Abelian Group
Cyclic Group

Rings
Fields
Finite Fields of the Form GF(p)

Finite Fields of Order p
Finding the Multiplicative Inverse in GF(p)
Summary

Polynomial Arithmetic

Ordinary Polynomial Arithmetic

Polynomial Arithmetic with Coefficients in Z,
Finding the Greatest Common Divisor
Summary

Finite Fields of the form GF(2")

Motivation

Modular Polynomial Arithmetic
Finding the Multiplicative Inverse
Computational Considerations
Using a Generator

Summary

Key Terms, Review Questions, and Problems

141

142 CHAPTER 5 / FINITE FIELDS

LEARNING OBJECTIVES

After studying this chapter, you should be able to:

2
*
2

Distinguish among groups, rings, and fields.
Define finite fields of the form GF(p).

Explain the differences among ordinary polynomial arithmetic, polynomial
arithmetic with coefficients in Z,, and modular polynomial arithmetic in
GF(2").

Define finite fields of the form GF(2").

Explain the two different uses of the mod operator.

Finite fields have become increasingly important in cryptography. A number of
cryptographic algorithms rely heavily on properties of finite fields, notably the
Advanced Encryption Standard (AES) and elliptic curve cryptography. Other exam-
ples include the message authentication code CMAC and the authenticated encryption
scheme GCM.

This chapter provides the reader with sufficient background on the concepts of

finite fields to be able to understand the design of AES and other cryptographic algo-
rithms that use finite fields. Because students unfamiliar with abstract algebra may find
the concepts behind finite fields somewhat difficult to grasp, we approach the topicin a
way designed to enhance understanding. Our plan of attack is as follows:

1.

2.

Fields are a subset of a larger class of algebraic structures called rings, which
are in turn a subset of the larger class of groups. In fact, as shown in Figure 5.1,
both groups and rings can be further differentiated. Groups are defined by
a simple set of properties and are easily understood. Each successive subset
(abelian group, ring, commutative ring, and so on) adds additional properties
and is thus more complex. Sections 5.1 through 5.3 will examine groups, rings,
and fields, successively.

Finite fields are a subset of fields, consisting of those fields with a finite num-
ber of elements. These are the class of fields that are found in cryptographic
algorithms. With the concepts of fields in hand, we turn in Section 5.4 to a
specific class of finite fields, namely those with p elements, where p is prime.
Certain asymmetric cryptographic algorithms make use of such fields.

. A more important class of finite fields, for cryptography, comprises those with

2" elements depicted as fields of the form GF(2"). These are used in a wide
variety of cryptographic algorithms. However, before discussing these fields, we
need to analyze the topic of polynomial arithmetic, which is done in Section 5.5.

With all of this preliminary work done, we are able at last, in Section 5.6, to
discuss finite fields of the form GF(2").

Before proceeding, the reader may wish to review Sections 2.1 through 2.3, which

cover relevant topics in number theory.

5.1/ GRouprs 143

Groups

Abelian groups

Integral domains

Fields

Finite
fields

Figure 5.1 Groups, Rings, and Fields

5.1 GROUPS

Groups, rings, and fields are the fundamental elements of a branch of mathematics
known as abstract algebra, or modern algebra. In abstract algebra, we are concerned
with sets on whose elements we can operate algebraically; that is, we can combine
two elements of the set, perhaps in several ways, to obtain a third element of the set.
These operations are subject to specific rules, which define the nature of the set. By
convention, the notation for the two principal classes of operations on set elements is
usually the same as the notation for addition and multiplication on ordinary numbers.
However, it is important to note that, in abstract algebra, we are not limited to ordi-
nary arithmetical operations. All this should become clear as we proceed.

Groups

A group G, sometimes denoted by {G, -}, is a set of elements with a binary opera-
tion denoted by - that associates to each ordered pair (a, b) of elements in G an
element (a- b) in G, such that the following axioms are obeyed:!

(A1) Closure: If a and b belong to G, then a - b is also in G.
(A2) Associative: a-(b-c) = (a+b)-cforalla, b cinG.

I'The operator - is generic and can refer to addition, multiplication, or some other mathematical operation.

144 CHAPTER 5 / FINITE FIELDS

(A3) Identity element: There is an element e in G such that
are =¢+a=aforallain G.

(A4) Inverse element: For each a in G, there is an element a’ in G
such thata-a’ = a’'-a = e.

Let N, denote a set of n distinct symbols that, for convenience, we represent as
{1,2, ..., n}. A permutation of n distinct symbols is a one-to-one mapping from
N, to N,,.2 Define S,, to be the set of all permutations of n distinct symbols. Each
element of S, is represented by a permutation 7 of the integersin 1,2, ..., n.
It is easy to demonstrate that S, is a group:

Al: If (m, p € S,), then the composite mapping 7 - p is formed by per-
muting the elements of p according to the permutation 7. For
example, {3,2, 1}-{1, 3,2} = {2, 3, 1}. The notation for this map-
ping is explained as follows: The value of the first element of
indicates which element of p is to be in the first position in 7 - p; the
value of the second element of 7 indicates which element of p is
to be in the second position in 7 - p; and so on. Clearly, 7+ p € S,,.

A2: The composition of mappings is also easily seen to be associative.

A3: The identity mapping is the permutation that does not alter the
order of the n elements. For S, the identity elementis {1, 2, ... , n}.

A4: For any 7 € §,,, the mapping that undoes the permutation defined
by & is the inverse element for 77. There will always be such an
inverse. For example {2, 3, 1}- {3, 1, 2} = {1, 2, 3}.

If a group has a finite number of elements, it is referred to as a finite group, and
the order of the group is equal to the number of elements in the group. Otherwise,
the group is an infinite group.

Abelian Group

A group is said to be abelian if it satisfies the following additional condition:

(A5) Commutative: a*b =b-aforalla binG.

The set of integers (positive, negative, and 0) under addition is an abelian group.
The set of nonzero real numbers under multiplication is an abelian group. The
set S, from the preceding example is a group but not an abelian group for n > 2.

2This is equivalent to the definition of permutation in Chapter 2, which stated that a permutation of a
finite set of elements S is an ordered sequence of all the elements of S, with each element appearing
exactly once.

5.2/ RINGS 145

When the group operation is addition, the identity element is 0; the in-
verse element of a is —a; and subtraction is defined with the following rule:
a—b=a+ (-b).

Cyclic Group

We define exponentiation within a group as a repeated application of the group
operator, so that a> = a-a-a. Furthermore, we define 4’ = e as the identity ele-
ment, and a " = (a')", where a’ is the inverse element of a within the group.
A group G is eydlic if every element of G is a power a* (k is an integer) of a fixed
element a € G. The element a is said to generate the group G or to be a generator
of G. A cyclic group is always abelian and may be finite or infinite.

The additive group of integers is an infinite cyclic group generated by the element
1. In this case, powers are interpreted additively, so that # is the nth power of 1.

5.2 RINGS

A ring R, sometimes denoted by {R, +, X }, is a set of elements with two binary
operations, called addition and multiplication,3 such that for all @, b, ¢ in R the fol-
lowing axioms are obeyed.

(A1-AS5) R is an abelian group with respect to addition; that is, R satisfies axioms
Al through AS. For the case of an additive group, we denote the identity element
as 0 and the inverse of a as —a.

(M1) Closure under multiplication: If @ and b belong to R, then ab is also in R.
(M2) Associativity of multiplication: a(bc) = (ab)c for all g, b, c in R.

(M3) Distributive laws: a(b + ¢) = ab + acforalla, b, cin R.
(a + b)c = ac + bcforalla, b, cin R.

In essence, a ring is a set of elements in which we can do addition, subtraction
[a — b = a + (—b)], and multiplication without leaving the set.

With respect to addition and multiplication, the set of all n-square matrices over
the real numbers is a ring.

Aringis said to be commutative if it satisfies the following additional condition:

(M4) Commutativity of multiplication: ab = ba for all a, b in R.

3Generally, we do not use the multiplication symbol, X, but denote multiplication by the concatenation
of two elements.

146 CHAPTER 5 / FINITE FIELDS

Let S be the set of even integers (positive, negative, and 0) under the usual
operations of addition and multiplication. S is a commutative ring. The set of all
n-square matrices defined in the preceding example is not a commutative ring.

The set Z,, of integers {0, 1, ... ,n — 1}, together with the arithmetic oper-
ations modulo #, is a commutative ring (Table 4.3).

Next, we define an integral domain, which is a commutative ring that obeys
the following axioms.

(M5) Multiplicative identity: There is an element 1 in R such that
al = la = aforallain R.

(M6) No zero divisors: If a, bin R and ab = 0, then eithera = 0
orb = 0.

Let S be the set of integers (positive, negative, and 0) under the usual operations
of addition and multiplication. S is an integral domain.

5.3 FIELDS

A field F, sometimes denoted by {F, +, X }, is a set of elements with two binary
operations, called addition and multiplication, such that for all a, b, ¢ in F the follow-
ing axioms are obeyed.

(A1-M6) Fis an integral domain; that is, F satisfies axioms A1l through A5 and
M1 through M6.

(M7) Multiplicative inverse: For each a in F, except 0, there is an element
a'in Fsuch that aa™' = (¢ M)a = 1.

In essence, a field is a set of elements in which we can do addition, subtraction,
multiplication, and division without leaving the set. Division is defined with the fol-
lowing rule: a/b = a(b™1).

Familiar examples of fields are the rational numbers, the real numbers, and the
complex numbers. Note that the set of all integers is not a field, because not every
element of the set has a multiplicative inverse;in fact, only the elements 1 and —1
have multiplicative inverses in the integers.

In gaining insight into fields, the following alternate characterization may be
useful. A field F, denoted by {F, +}, is a set of elements with two binary operations,
called addition and multiplication, such that the following conditions hold:

1. Fforms an abelian group with respect to addition.

2. The nonzero elements of Fform an abelian group with respect to multiplication.

5.4 / FINITE FIELDS OF THE FORM GF(p) 147

3. The distributive law holds. That is, for all a, b, c in F,
a(b + ¢) = ab + ac.
(a + b)c = ac + bc

4. Figure 5.2 summarizes the axioms that define groups, rings, and fields.

5.4 FINITE FIELDS OF THE FORM GE(p)

Field

Integral domain

In Section 5.3, we defined a field as a set that obeys all of the axioms of Figure 5.2
and gave some examples of infinite fields. Infinite fields are not of particular inter-
est in the context of cryptography. However, in addition to infinite fields, there are
two types of finite fields, as illustrated in Figure 5.3. Finite fields play a crucial role
in many cryptographic algorithms.

It can be shown that the order of a finite field (number of elements in the
field) must be a power of a prime p”, where n is a positive integer. The finite field
of order p" is generally written GF(p"); GF stands for Galois field, in honor of the
mathematician who first studied finite fields. Two special cases are of interest for
our purposes. For n = 1, we have the finite field GF(p); this finite field has a differ-
ent structure than that for finite fields with n > 1 and is studied in this section. For
finite fields of the form GF(p"), GF(2") fields are of particular cryptographic inter-
est, and these are covered in Section 5.6.

Finite Fields of Order p

For a given prime, p, we define the finite field of order p, GF(p), as the set Z,, of integers
{0,1, ... ,p — 1} together with the arithmetic operations modulo p. Note therefore
that we are using ordinary modular arithmetic to define the operations over these fields.

(A1) Closure under addition: If a and b belong to S, then ¢ + b is also in S

| o| (A2)Associativity of addition: a+b+c)y=(a+b)+cforalla,b,cinS

e 2| (A3) Additive identity: There is an element 0 in R such that

ol I a+0=0+a=aforallain S

= (A4) Additive inverse: For each a in S there is an element —a in S
oo 2 such thata + (—a) = (~a) +a =0
=N I
=2

(M1) Closure under multiplication: If @ and b belong to S, then ab is also in S
(M2) Associativity of multiplication: a(bc) = (ab)c for all a, b, cin S
(M3) Distributive laws: a(b+c¢)y=ab+acforalla, b,cin S

(a+ b)e=ac+ bcforalla, b,cin S

Commutative ring

(M5) Multiplicative identity: There is an element 1 in S such that
al=la=aforallain S

(M6) No zero divisors: If @, b in S and ab = 0, then either
a=0orb=0

(M7) Multiplicative inverse: If a belongs to S and a # 0, there is an
element ¢! in S such thataa ' =a-la=1

Figure 5.2 Properties of Groups, Rings, and Fields

148 CHAPTER 5 / FINITE FIELDS

Fields with an Finite fields
infinite number
of elements | | |

GF(p) GF(p")
Finite fields Finite fields
with p elements with p" elements

Figure 5.3 Types of Fields

Recallthatweshowedin Section5.2 thattheset Z,, of integers {0, 1, ... ,n — 1},
together with the arithmetic operations modulo 7, is a commutative ring (Table 2.5).
We further observed that any integer in Z,, has a multiplicative inverse if and only if
that integer is relatively prime to 7 [see discussion of Equation (2.5)].* If is prime,
then all of the nonzero integers in Z,, are relatively prime to n, and therefore there
exists a multiplicative inverse for all of the nonzero integers in Z,,. Thus, for Z, we
can add the following properties to those listed in Table 5.2:

Multiplicative Foreachw € Z,,w # 0, there existsaz € Z,,
inverse (w™1) such that w X z = 1 (mod p)

Because w is relatively prime to p, if we multiply all the elements of Z, by
w, the resulting residues are all of the elements of Z, permuted. Thus, exactly one
of the residues has the value 1. Therefore, there is some integer in Z,, that, when
multiplied by w, yields the residue 1. That integer is the multiplicative inverse of w,
designated w™!. Therefore, Z p is in fact a finite field. Furthermore, Equation (2.5) is
consistent with the existence of a multiplicative inverse and can be rewritten with-
out the condition:

if (a X b) = (a X ¢)(mod p) then b = ¢(mod p) 5.1
Multiplying both sides of Equation (5.1) by the multiplicative inverse of a, we have
(@) X a X b)=((a') X ax c)(modp)
b = ¢ (mod p)

The simplest finite field is GF(2). Its arithmetic operations are easily summarized:

+1 0 1 x| 0 1
0] O 1 0] O 0
1 1 0 1 0 1
Addition Multiplication Inverses

In this case, addition is equivalent to the exclusive-OR (XOR) operation, and
multiplication is equivalent to the logical AND operation.

4As stated in the discussion of Equation (2.5), two integers are relatively prime if their only common
positive integer factor is 1.

5.4 / FINITE FIELDS OF THE FORM GF(p) 149

The right-hand side of Table 5.1 shows arithmetic operations in GF(7). This is a
field of order 7 using modular arithmetic modulo 7 As can be seen, it satisfies all
of the properties required of a field (Figure 5.2). Compare with the left-hand side
of Table 5.1, which reproduces Table 2.2. In the latter case, we see that the set Zg,
using modular arithmetic modulo 8, is not a field. Later in this chapter, we show
how to define addition and multiplication operations on Zg in such a way as to
form a finite field.

Finding the Multiplicative Inverse in GF(p)

It is easy to find the multiplicative inverse of an element in GF(p) for small values
of p. You simply construct a multiplication table, such as shown in Table 5.1e, and
the desired result can be read directly. However, for large values of p, this approach
is not practical.

If a and b are relatively prime, then b has a multiplicative inverse modulo a.
That is, if ged(a, b) = 1, then b has a multiplicative inverse modulo a. That is, for
positive integer b < a, there exists a b! < a such that bb™! = 1moda. If a is a
prime number and b < a, then clearly a and b are relatively prime and have a great-
est common divisor of 1. We now show that we can easily compute b ™' using the
extended Euclidean algorithm.

We repeat here Equation (2.7), which we showed can be solved with the ex-
tended Euclidean algorithm:

ax + by = d = gcd(a, b)

Now, if ged(a, b) = 1, then we have ax + by = 1. Using the basic equalities of
modular arithmetic, defined in Section 2.3, we can say

[(ax mod a) + (by mod a)] moda = 1 mod a
0+ (bymoda) =1

But if by mod a = 1, then y = b ™!, Thus, applying the extended Euclidean
algorithm to Equation (2.7) yields the value of the multiplicative inverse of b if
ged(a, b) = 1.

Consider the example that was shown in Table 2.4. Here we have a = 1759,
which is a prime number, and b = 550. The solution of the equation
1759x + 550y = d yields a value of y = 355. Thus, b~ = 355. To verify, we cal-
culate 550 X 355 mod 1759 = 195250 mod 1759 = 1.

More generally, the extended Euclidean algorithm can be used to find a
multiplicative inverse in Z,, for any n. If we apply the extended Euclidean algorithm
to the equation nx + by = d, and the algorithm yieldsd = 1,theny = b 'in Z,,.

150

CHAPTER 5 / FINITE FIELDS

Table 5.1 Arithmetic Modulo 8 and Modulo 7

0|1 234|567
olo|1|2|3|4|5]6]7 +lo|1|2]3|4]5]6
11123 |4[5]6|7]0 olo|1]|2|3]4|5]6
2023 |4|5]6|7]0]1 11123 |4]5]6]0
3034|5670 1]2 2123|4560/ 1
4145|6701]2]3 313456012
5056|701 |2]3]4 41415601213
6|16 |7|0|1]|2]|3]|4]5 505/6|0[1]2]|3]4
71710123456 6|60 1|2]3|4]5s
(a) Addition modulo 8 (d) Addition modulo 7

x|lo|1|l2]3|4]5]|6]|7

ojlo|lo|o|o|o|o0o|0O]|oO X|o0J1j2]3]4|5]6
101 |2|3|4]|5]|6]7 0]0]J]0]J0]J0J0]0]0
210|246 |0|2|4]6 1o]2]3[4]5]6¢6
3lo|3|6|1|4a|7]|2]5 210124061]3]5
410|4|0|4|0|4|0]4 3101362514
5105|2741]6]3 410141]5]2]6]3
6106 |4|2|0|6]|4]2 S0 5311642
71076543211 6 |06 |5]4]3]2]1

(b) Multiplication modulo 8 (e) Multiplication modulo 7
wlo|1]|2|3[4]|5]|6]7 w |0 [1 |2 [3 |4 |5 |6
-wlo|7|6]5]|4|3]2]1 -wl0 |6 [5 [4 [3 [2 |1
wll = 1| =3 |=]5|=1]7 wll— |1 |4 |5 [2 |3 |6
(c) Additive and multiplicative (f) Additive and multiplicative
inverses modulo 8 inverses modulo 7

Summary

In this section, we have shown how to construct a finite field of order p, where p is
prime. Specifically, we defined GF(p) with the following properties.

1. GF(p) consists of p elements.

2. The binary operations + and X are defined over the set. The operations of
addition, subtraction, multiplication, and division can be performed without
leaving the set. Each element of the set other than 0 has a multiplicative in-
verse, and division is performed by multiplication by the multiplicative inverse.

We have shown that the elements of GF(p) are the integers {0,1, ... ,p — 1}
and that the arithmetic operations are addition and multiplication mod p.

5.5 / POLYNOMIAL ARITHMETIC 151

5.5 POLYNOMIAL ARITHMETIC

Before continuing our discussion of finite fields, we need to introduce the interest-
ing subject of polynomial arithmetic. We are concerned with polynomials in a single
variable x, and we can distinguish three classes of polynomial arithmetic (Figure 5.4).

B Ordinary polynomial arithmetic, using the basic rules of algebra.

m Polynomial arithmetic in which the arithmetic on the coefficients is performed
modulo p; that is, the coefficients are in GF(p).

m Polynomial arithmetic in which the coefficients are in GF(p), and the poly-
nomials are defined modulo a polynomial m(x) whose highest power is some
integer n.

This section examines the first two classes, and the next section covers the
last class.

Ordinary Polynomial Arithmetic
A polynomial of degree n (integer n = 0) is an expression of the form

n
fx) = ax" + a, X" '+ - +ax +ay= D ax
i=0
where the a; are elements of some designated set of numbers S, called the coefficient
set,and a,, # 0. We say that such polynomials are defined over the coefficient set S.

A zero-degree polynomial is called a constant polynomial and is simply an
element of the set of coefficients. An nth-degree polynomial is said to be a monic
polynomial if a, = 1.

In the context of abstract algebra, we are usually not interested in evaluating a
polynomial for a particular value of x [e.g., f(7)]. To emphasize this point, the vari-
able x is sometimes referred to as the indeterminate.

Polynomial arithmetic includes the operations of addition, subtraction, and
multiplication. These operations are defined in a natural way as though the variable

| |

x treated as a variable, x treated as an
and evaluated for indeterminate
a particular value of x

. Arithmetic on Arithmetic on coefficients is
Ordinary . g
: coefficients is performed modulo p
polynomial 5
. . performed and polynomials are defined
arithmetic :
modulo p modulo a polynomial m(x)

Figure 5.4 Treatment of Polynomials

152 CHAPTER 5 / FINITE FIELDS

x was an element of S. Division is similarly defined, but requires that S be a field.
Examples of fields include the real numbers, rational numbers, and Z,, for p prime.
Note that the set of all integers is not a field and does not support polynomial
division.

Addition and subtraction are performed by adding or subtracting correspond-
ing coefficients. Thus, if

fx) = Dlaxy gx) = Dbx'y n=m
i=0 i=0

then addition is defined as

) + 50 = e+ b+ D

i=m+1

and multiplication is defined as

n+m)
fx) X g(x) = Z)CIX‘
i=
where
Crp — (lobk + albk,1 + -+ ak,1b1 + (lkbo

In the last formula, we treat a; as zero for i > n and b; as zero for i > m. Note that
the degree of the product is equal to the sum of the degrees of the two polynomials.

As an example, let f(x) = x> + x> + 2and g(x) = x> — x + 1, where S s the set
of integers. Then

flx) +gx) =x*+2x* —x +3

fx) —gx) =¥ +x + 1

flx) X gx) =x° +3x> —2x + 2

Figures 5.5a through 5.5¢ show the manual calculations. We comment on division
subsequently.

Polynomial Arithmetic with Coefficients in Z,

Let us now consider polynomials in which the coefficients are elements of some
field F; we refer to this as a polynomial over the field F. In this case, it is easy to
show that the set of such polynomials is a ring, referred to as a polynomial ring. That
is, if we consider each distinct polynomial to be an element of the set, then that set
. . 5
is a ring.

When polynomial arithmetic is performed on polynomials over a field, then
division is possible. Note that this does not mean that exact division is possible. Let

3In fact, the set of polynomials whose coefficients are elements of a commutative ring forms a polynomial
ring, but that is of no interest in the present context.

5.5 / POLYNOMIAL ARITHMETIC 153

O+ o2 +2 o+ a2 +2
+ (P-x+1) - (FP-x+1)
B +232- x + 3 b +x+1
(a) Addition (b) Subtraction
X+ a2 +2 x +2
x (PF-x+1) 2-x+1/3+2 +2
X+ a2 + 2 -2+ x
= i = 5 - 2x 22— x + 2
X+ 22 2:2-2x+ 2
X +32-2x+ 2 x
(¢) Multiplication (d) Division

Figure 5.5 Examples of Polynomial Arithmetic

us clarify this distinction. Within a field, given two elements a and b, the quotient
a/b is also an element of the field. However, given a ring R that is not a field, in gen-
eral, division will result in both a quotient and a remainder; this is not exact division.

Consider the division 5/3 within a set S. If S is the set of rational numbers, which
is a field, then the result is simply expressed as 5/3 and is an element of S. Now
suppose that S is the field Z-. In this case, we calculate (using Table 5.1f)
53=(35X%X3Ymod7 =(5X5)mod7 = 4
which is an exact solution. Finally, suppose that S is the set of integers, which is a
ring but not a field. Then 5/3 produces a quotient of 1 and a remainder of 2:
5S3=1+273
S=1X3+2

Thus, division is not exact over the set of integers.

Now, if we attempt to perform polynomial division over a coefficient set that
is not a field, we find that division is not always defined.

If the coefficient set is the integers, then (5x%)/(3x) does not have a solution,
because it would require a coefficient with a value of 5/3, which is not in the coef-
ficient set. Suppose that we perform the same polynomial division over Z,. Then
we have (5x%)/(3x) = 4x, which is a valid polynomial over Z.

However, as we demonstrate presently, even if the coefficient set is a field,
polynomial division is not necessarily exact. In general, division will produce a quo-
tient and a remainder. We can restate the division algorithm of Equation (2.1) for
polynomials over a field as follows. Given polynomials f(x) of degree n and g(x)

154

CHAPTER 5 / FINITE FIELDS

of degree (m), (n = m), if we divide f(x) by g(x), we get a quotient g(x) and a
remainder r(x) that obey the relationship

fx) = q(x)g(x) + r(x) (52)
with polynomial degrees:

Degree f(x) = n
Degree g(x) = m
Degree g(x) = n — m
Degreer(x) = m — 1

With the understanding that remainders are allowed, we can say that poly-
nomial division is possible if the coefficient set is a field. One common technique
used for polynomial division is polynomial long division, similar to long division for
integers. Examples of this are shown subsequently.

In an analogy to integer arithmetic, we can write f(x) mod g(x) for the remain-
der r(x) in Equation (5.2). That is, r(x) = f(x) mod g(x). If there is no remainder
[i.e., r(x) = 0], then we can say g(x) divides f(x), written as g(x)|f(x). Equivalently,
we can say that g(x) is a factor of f(x) or g(x) is a divisor of f(x).

For the precedingexample [f(x) = x* + x> + 2andg(x) = x> — x + 1], f(x)/g(x)
produces a quotient of g(x) = x + 2 and a remainder r(x) = x, as shown in
Figure 5.5d. This is easily verified by noting that

qx)gx) +rx) =(x+)2 —x+ D) +x= +xX—-x+2) +x
=x3+x2+2=f(x)

For our purposes, polynomials over GF(2) are of most interest. Recall from
Section 5.4 that in GF(2), addition is equivalent to the XOR operation, and multi-
plication is equivalent to the logical AND operation. Further, addition and subtrac-
tion are equivalent mod 2:

1+1=1-1=0
1+0=1-0=1
0+1=0-1=1

Figure 5.6 shows an example of polynomial arithmetic over GF(2). For
fx)y ="+ +x*+ x>+ x + 1)and g(x) = (x* + x + 1), the figure shows
f(x) + g(x): flx) — g(x); f(x) X g(x); and f(x)/g(x). Note that g(x)| f(x).

A polynomial f(x) over a field F is called irreducible if and only if f(x) can-
not be expressed as a product of two polynomials, both over F, and both of degree
lower than that of f(x). By analogy to integers, an irreducible polynomial is also
called a prime polynomial.

The polynomial® f(x) = x* + 1 over GF(2) is reducible, because
*+1l=x+DE+x>+x+1).

%In the reminder of this chapter, unless otherwise noted, all examples are of polynomials over GF(2).

5.5 / POLYNOMIAL ARITHMETIC 155

Consider the polynomial f(x) = x> + x + 1. Itis clear by inspection that x is not
a factor of f(x). We easily show that x + 1 is not a factor of f(x):
X2+ x
x + 147 +x+1
x>+ x?
x>+ x
X2+ x

1
Thus, f(x) has no factors of degree 1. But it is clear by inspection that if f(x) is
reducible, it must have one factor of degree 2 and one factor of degree 1. There-
fore, f(x) is irreducible.

¥+ +A S +x+1
+ (3 +x+1)
X’ +X5+ 4
(a) Addition
x7 +0++ 8 +x+1
- (2 +x+1)
bl + x5 +
(b) Subtraction
5 +5+4+ 8 +x+1
x (3 +x+1)
¥+ 4+ S x4+l

B w85+ + 2+
X0 BT+ +x4 +3

x10 +4 +2 +1
(c) Multiplication
¥+
ﬁ+x+1/ﬂ +5 4+ + 3 +x+1
x! + 25+
o +x +1
0 +x +1
(d) Division

Figure 5.6 Examples of Polynomial Arithmetic over GF(2)

156

CHAPTER 5 / FINITE FIELDS

Finding the Greatest Common Divisor

We can extend the analogy between polynomial arithmetic over a field and integer
arithmetic by defining the greatest common divisor as follows. The polynomial c(x)
is said to be the greatest common divisor of a(x) and b(x) if the following are true.

1. ¢(x) divides both a(x) and b(x).
2. Any divisor of a(x) and b(x) is a divisor of c(x).
An equivalent definition is the following: ged[a(x), b(x)] is the polynomial of
maximum degree that divides both a(x) and b(x).
We can adapt the Euclidean algorithm to compute the greatest common divisor
of two polynomials. Recall Equation (2.6), from Chapter 2, which is the basis of the

Euclidean algorithm: ged(a, b) = ged(b, a mod b). This equality can be rewritten as the
following equation:

ged[a(x), b(x)] = ged[b(x), a(x) mod b(x)] (5.3)

Equation (5.3) can be used repetitively to determine the greatest common divisor.
Compare the following scheme to the definition of the Euclidean algorithm for integers.

Euclidean Algorithm for Polynomials
Calculate Which satisfies

ri(x) = a(x) mod b(x) a(x) = ()b(x) + r(x)

ra(x) = b(x) mod ry(x) b(x) = g(0)r1(x) + ry(x)

r3(x) = ri(x) mod ry(x) ri(x) = gz(x)ra(x) + r3(x)
rn(x) = rn—Z(x) mod rn—l(x) rn—2(x) = qn(x)rn—l(x) + rn(x)

— — I'p— (x) = 4n+ (x)rn(x) +0
i) = @ mod 1) = 01) = ged(ae), b)) = 1)

At each iteration, we have d(x) = gcd(r;+1(x), r(x)) until finally
d(x) = ged(r,(x),0) = r,(x). Thus, we can find the greatest common divisor of two
integers by repetitive application of the division algorithm. This is the Euclidean
algorithm for polynomials. The algorithm assumes that the degree of a(x) is greater
than the degree of b(x).

Find ged[a(x), b(x)] for a(x) = x>+ ¥ + x* + ¥* + x> + x + 1 and b(x) =
x* + x> + x + 1. First, we divide a(x) by b(x):
x>+ x
PP+ 1+ 2+ 1
x5 +xt+ 3+ X
x° +x+1
x° +x3+ 2%+ x
2+ x? + 1

5.6 / FINITE FIELDS OF THE FORM GF(2") 157

This yields 7;(x) = x*> + x> + 1and q; (x) = x> + x.
Then, we divide b(x) by rq(x).

x+ 1
2+ 2%+ 1 iy |
*+ 8 + x
X+ X +1
£ +1

This yields r,(x) = 0 and ¢»(x) = x + 1.
Therefore, ged[a(x), b(x)] = ri(x) = x° + x* + 1.

Summary

We began this section with a discussion of arithmetic with ordinary polynomials. In
ordinary polynomial arithmetic, the variable is not evaluated; that is, we do not plug
a value in for the variable of the polynomials. Instead, arithmetic operations are
performed on polynomials (addition, subtraction, multiplication, division) using the
ordinary rules of algebra. Polynomial division is not allowed unless the coefficients
are elements of a field.

Next, we discussed polynomial arithmetic in which the coefficients are ele-
ments of GF(p). In this case, polynomial addition, subtraction, multiplication, and
division are allowed. However, division is not exact; that is, in general division re-
sults in a quotient and a remainder.

Finally, we showed that the Euclidean algorithm can be extended to find the
greatest common divisor of two polynomials whose coefficients are elements of a
field.

All of the material in this section provides a foundation for the following sec-
tion, in which polynomials are used to define finite fields of order p".

5.6 FINITE FIELDS OF THE FORM GF(2")

Earlier in this chapter, we mentioned that the order of a finite field must be of the
form p", where p is a prime and # is a positive integer. In Section 5.4, we looked at
the special case of finite fields with order p. We found that, using modular arith-
metic in Z,,, all of the axioms for a field (Figure 5.2) are satisfied. For polynomials
over p', with n > 1, operations modulo p" do not produce a field. In this section,
we show what structure satisfies the axioms for a field in a set with p” elements and
concentrate on GF(2").

Motivation

Virtually all encryption algorithms, both symmetric and asymmetric, involve arith-
metic operations on integers. If one of the operations that is used in the algorithm is
division, then we need to work in arithmetic defined over a field. For convenience

158

and for implementation efficiency, we would also like to work with integers that fit
exactly into a given number of bits with no wasted bit patterns. That is, we wish to
work with integers in the range 0 through 2" — 1, which fit into an n-bit word.

Suppose we wish to define a conventional encryption algorithm that operates on
data 8 bits at a time, and we wish to perform division. With 8 bits, we can repre-
sent integers in the range 0 through 255. However, 256 is not a prime number, so
that if arithmetic is performed in Z,s4 (arithmetic modulo 256), this set of inte-
gers will not be a field. The closest prime number less than 256 is 251. Thus, the
set Z,s1, using arithmetic modulo 251, is a field. However, in this case the 8-bit
patterns representing the integers 251 through 255 would not be used, resulting
in inefficient use of storage.

As the preceding example points out, if all arithmetic operations are to be
used and we wish to represent a full range of integers in n bits, then arithmetic
modulo 2" will not work. Equivalently, the set of integers modulo 2" for n > 1, is
not a field. Furthermore, even if the encryption algorithm uses only addition and
multiplication, but not division, the use of the set Z, is questionable, as the follow-
ing example illustrates.

Suppose we wish to use 3-bit blocks in our encryption algorithm and use only the
operations of addition and multiplication. Then arithmetic modulo 8 is well defined,
as shown in Table 5.1. However, note that in the multiplication table, the nonzero
integers do not appear an equal number of times. For example, there are only four
occurrences of 3, but twelve occurrences of 4. On the other hand, as was mentioned,
there are finite fields of the form GF(2"), so there is in particular a finite field of
order 2° = 8. Arithmetic for this field is shown in Table 5.2. In this case, the number
of occurrences of the nonzero integers is uniform for multiplication. To summarize,

Integer 1 2 3 4 5 6 7
Occurrences in Zg 4 8 4 12 4 8 4
Occurrencesin GF(2®) 7 7 7 7 7 7 7

For the moment, let us set aside the question of how the matrices of Table 5.2
were constructed and instead make some observations.

The addition and multiplication tables are symmetric about the main diago-
nal, in conformance to the commutative property of addition and multiplica-
tion. This property is also exhibited in Table 5.1, which uses mod 8 arithmetic.

All the nonzero elements defined by Table 5.2 have a multiplicative inverse,
unlike the case with Table 5.1.

The scheme defined by Table 5.2 satisfies all the requirements for a finite
field. Thus, we can refer to this scheme as GF(2%).

For convenience, we show the 3-bit assignment used for each of the elements
of GF(2%).

000
001
010
011
100
101
110
111

000
001
010
011
100
101
110

5.6 / FINITE FIELDS OF THE FORM GF(2") 159

Intuitively, it would seem that an algorithm that maps the integers unevenly
onto themselves might be cryptographically weaker than one that provides a uni-
form mapping. That is, a cryptanalytic technique might be able to exploit the fact
that some integers occur more frequently and some less frequently in the ciphertext.
Thus, the finite fields of the form GF(2") are attractive for cryptographic algorithms.

To summarize, we are looking for a set consisting of 2" elements, together
with a definition of addition and multiplication over the set that define a field. We
can assign a unique integer in the range O through 2" — 1 to each element of the
set. Keep in mind that we will not use modular arithmetic, as we have seen that this
does not result in a field. Instead, we will show how polynomial arithmetic provides
a means for constructing the desired field.

Modular Polynomial Arithmetic

Consider the set § of all polynomials of degree n — 1 or less over the field Z,,. Thus,
each polynomial has the form

n—1
f(x) =a,_ X" '+ a, X"+ - tax+ay= Eaixi
=0
Table 5.2 Arithmetic in GF(2°)

000 001 010 011 100 101 110 111
+ 0 1 2 3 4 5 6 7
0 0 1 2 3 4 5 6 7
1 1 0 3 2 5 4 7 6
2 2 3 0 1 6 7 4 5
3 3 2 1 0 7 6 5 4
4 4 5 6 7 0 1 2 3
5 5 4 7 6 1 0 3 2
6 6 7 4 5 2 3 0 1
7 7 6 5 4 3 2 1 0

(a) Addition

000 001 010 011 100 101 110 111 w -w oyl
X 0 1 2 3 4 5 6 7 0 0 _
0 0 0 0 0 0 0 0 0 1 1 1
1 0 1 2 3 4 5 6 7 5 5 5
2 0 2 4 6 3 1 7 5 3 3 6
3 0 3 6 5 7 4 1 2 4 4 7
4 0 4 3 7 6 2 5 1 5 5 2
5 0 5 1 4 2 7 3 6 6 6 3
6 0 6 7 1 5 3 2 4 7 7 4
LA I A I T A T A (¢) Additive and multiplicative

111

(b) Multiplication inverses

160 CHAPTER 5 / FINITE FIELDS

where each a; takes on a value in the set {0, 1, ... ,p — 1}. There are a total of p"
different polynomials in S.

For p = 3and n = 2, the 3> = 9 polynomials in the set are
0,1,2,x,x +1,x +2,2x,2x +1,2x + 2

For p = 2and n = 3, the 2> = 8 polynomials in the set are
0,1,x,x + 1,x2 x>+ 1,x* + x,x2 +x + 1

With the appropriate definition of arithmetic operations, each such set S is a
finite field. The definition consists of the following elements.

1. Arithmetic follows the ordinary rules of polynomial arithmetic using the basic
rules of algebra, with the following two refinements.

2. Arithmetic on the coefficients is performed modulo p. That is, we use the rules
of arithmetic for the finite field Z,.

3. If multiplication results in a polynomial of degree greater than n — 1, then the
polynomial is reduced modulo some irreducible polynomial m(x) of degree n.
That is, we divide by m(x) and keep the remainder. For a polynomial f(x), the
remainder is expressed as r(x) = f(x) mod m(x).

The Advanced Encryption Standard (AES) uses arithmetic in the finite field
GF(2%), with the irreducible polynomial m(x) = x® + x* + x> + x + 1. Consider
the two polynomials f(x) = x® + x* + x> + x + 1and g(x) = x” + x + 1. Then

f)y +gx)=x*+x*+x2+x+1+x +x+1
=x" + 1%+ x* + &

flx) X gx) = x82 + x + X7 + 8 + X7

+x+ X+ P+ 2+ x

SR |
=B+l + P+ B+ S+ S+ B+

x>+ x°
B+ 3 +x+ 1B +x+ 20+ 28 +x0+ X+t + 3+ 1
x + 3% + 48 + 1%+ 5°
x!1 +x* + X3
x! + x7 + x° + x* + 3

x + x° +1

Therefore, f(x) X g(x) mod m(x) = x7 + x® + 1.

5.6 / FINITE FIELDS OF THE FORM GF(2") 161

As with ordinary modular arithmetic, we have the notion of a set of residues
in modular polynomial arithmetic. The set of residues modulo m(x), an nth-degree
polynomial, consists of p”* elements. Each of these elements is represented by one of
the p" polynomials of degree m < n.

The residue class [x + 1], (mod m(x)), consists of all polynomials a(x) such that
a(x) = (x + 1)(mod m(x)). Equivalently, the residue class [x + 1] consists of all
polynomials a(x) that satisfy the equality a(x) mod m(x) = x + 1.

It can be shown that the set of all polynomials modulo an irreducible nth-
degree polynomial m(x) satisfies the axioms in Figure 5.2, and thus forms a finite
field. Furthermore, all finite fields of a given order are isomorphic; that is, any two
finite-field structures of a given order have the same structure, but the representa-
tion or labels of the elements may be different.

To construct the finite field GF(2%), we need to choose an irreducible poly-
nomial of degree 3. There are only two such polynomials: (x*> + x> + 1) and
(x> + x + 1). Using the latter, Table 5.3 shows the addition and multiplication
tables for GF(2*). Note that this set of tables has the identical structure to those
of Table 5.2. Thus, we have succeeded in finding a way to define a field of order 2°.

We can now read additions and multiplications from the table easily. For exam-
ple, consider binary 100 + 010 = 110. This is equivalent to x> + x. Also consider
100 X 010 = 011, which is equivalent to x> X x = x> and reduces to x + 1. That
is, x> mod (x* + x + 1) = x + 1, which is equivalent to 011.

Finding the Multiplicative Inverse

Just as the Euclidean algorithm can be adapted to find the greatest common divisor
of two polynomials, the extended Euclidean algorithm can be adapted to find the
multiplicative inverse of a polynomial. Specifically, the algorithm will find the mul-
tiplicative inverse of b(x) modulo a(x) if the degree of b(x) is less than the degree of
a(x) and ged[a(x), b(x)] = 1. If a(x) is an irreducible polynomial, then it has no fac-
tor other than itself or 1, so that ged[a(x), b(x)] = 1. The algorithm can be charac-
terized in the same way as we did for the extended Euclidean algorithm for integers.
Given polynomials a(x) and b(x) with the degree of a(x) greater than the degree
of b(x), we wish to solve the following equation for the values v(x), w(x), and d(x),
where d(x) = ged[a(x), b(x)]:

a(x)v(x) + b(x)w(x) = d(x)

If d(x) = 1, then w(x) is the multiplicative inverse of b(x) modulo a(x). The calcula-
tions are as follows.

CHAPTER 5 / FINITE FIELDS

162

uonesrdnmiy (q)

I+x X T+ X I x T+ X T+ X4 ¥ 0
X X I +x T+ X 1 T +X+ X X+ X 0
X 4 X 1+ x I+ X+ x X 1 I+ X 0
1 T+ X x X 4 X I+ X+ T+ x X 0
x 1 X T+ X4 X I+ X X 4 X T+Xx 0
T+ X I +X+ X 1 I+ x X+ X X X 0
T+X+ X X+ X T+ X X IT+x X 1 0
0 0 0 0 0 0 0 0
T+ X+ X X 4 X T+ X P T+x X 1 0
111 01t 101 001 110 010 100 000
uonIppy ()
0 1 x 1+ x X T+ X X 4 X I+ X+,
1 0 T+ x T4 X X T+ X4 X 4 X
X T+ x 0 1 X 4 X T+ X+ X X T+ X
1+x x T 0 T+ X+ Yt X L+ X
X T+ X X4 X I+ X+ 0 1 x 14+ x
T+ X X T+X+4+ X X 4 X T 0 T+ x x
X+ X IT+X+ X X I+ X X I +x 0 1
T+ X+ X X 4 X T+ X P T+x X 1 0
T+ X+ X X 4 X T+ X X T+x x 1 0
11 01t 101 001 110 010 100 000

T+ X4 X
X 4 X

I+x

T+ X4 X
X4 X

I+ X

111
OrT
101
00T
110
010
100
000

111
OTT
101
001
110
010
100
000

(I + X + (X) O[NPOJN SNAWIIIY [EIWOUA[OJ €°S I[qE],

5.6 / FINITE FIELDS OF THE FORM GF(2")

163

Extended Euclidean Algorithm for Polynomials

Calculate Which satisfies Calculate Which satisfies

ri(x) = a(x) voi(x) = Liwo(x) = 0 | a(x) = a(x)v(x) +
bw_(x)

ro(x) = b(x) W) = o) = 1 | b(x) = a(owlx) +

b(x)wo(x)

ri(x) = a(x) mod b(x)
¢1(x) = quotient of
a(x)/b(x)

a(x) = q1(x)b(x) +
ri(x)

n(x) = vq(x) —

g1 (x)w(x) =1

wi(x) = w(x) —
qi()wp(x) = —q1(x)

r(x) = a(x)n(x) +
b(x)wi(x)

r5(x) = b(x) mod r(x)

b(x) = gx(x)ri(x) +

va(x) = wp(x) —

r(x) = a(x)v(x) +

¢2(x) = quotient of ra(x) G2(x)vi(x) b(x)wy(x)
b(x)/ri(x) wy(x) = wo(x) —

G2 (x)wy(x)
r3(x) = ri(x) mod ry(x) | ri(x) = gz(x)ra(x) + | v3(x) = wi(x) — r3(x) = a(x)vs(x) +
g3(x) = quotient of r3(x) g3(x)va(x) b(x)ws(x)
r1(x)/ry(x) wi(x) = wi(x) —

q3(x)wy(x)

rn(x) = rn—Z(x)
mod r,_(x)

g,(x) = quotient of
Fu—2(X)/1,—5(x)

Fpo(x) = qu(x)r,—1(x)
+ r,(x)

Vn(x) = Vn—2(x) -
Qn(x)vnfl(x)

Wn(x) = Wn*Z(x) -
qn(x)wnfl(x)

ra(x) = a(x)v,(x) +
b(x)w(x)

P (¥) = 1 1(0)
mod r,(x) = 0
qn+1(x) = quotient of
rn*l(x)/rn(x)

rnfl(x) = Qn+1(x)rn(x)
+0

d(x) = ged(a(x),
b(x)) = ru(x)

v(x) = v,(x); wlx) =
W,,(X)

Table 5.4 shows the calculation of the multiplicative inverse of (x” + x + 1)
mod (x® + x* + x> + x + 1). The result is that (x” + x + 1)™' = (x7). That is,
&7+ x + D7) = 1(mod (x® + x* + x* + x + 1)).

Computational Considerations

A polynomial f(x) in GF(2")

n—1
flx) = A X"V g, X+ e+ ax + oy = Eaixi
=0
can be uniquely represented by the sequence of its n binary coefficients
(a -1, a,—5, ... ,ay). Thus, every polynomial in GF(2") can be represented by an
n-bit number.

164 CHAPTER 5 / FINITE FIELDS

Table 5.4 Extended Euclid [(x® + x* + x* + x + 1), (x” + x + 1)]

Initialization | g(x) = 2%+ x* + X¥* + x + ;v (x) = Liw,(x) =0
b(x) = x7 + x + 1;w(x) = 0; wp(x) = 1

Iteration 1 @(x) = xr(x) = x* + 20 + 22 + 1

vi(x) = Lw(x) =x
Iteration 2 @(x) = X + 3+ Lr(x) = x

) =+ 2+ Lwy) =x'+ 2 +x+1
Iteration 3 G(x) = X+ 7+ xr(x) = 1

v(x) = x5 + x% + x + L wy(x) = x7
Iteration 4 qa(x) = x314(x) = 0

v(x) =x" +x+ Lwx) = +x* + ¥ +x+ 1
Result d(x) = r3(x) = ged(a(x), b(x)) = 1

wx) =wy(x) =" +x+ 1) Tmod(x®* + x* + ¥+ x + 1) =7

Tables 5.2 and 5.3 show the addition and multiplication tables for GF(2*) modulo
m(x) = (x> + x + 1). Table 5.2 uses the binary representation, and Table 5.3
uses the polynomial representation.

Apprrron We have seen that addition of polynomials is performed by adding cor-
responding coefficients, and, in the case of polynomials over Z,, addition is just the
XOR operation. So, addition of two polynomials in GF(2") corresponds to a bitwise
XOR operation.

Consider the two polynomials in GF(2%) from our earlier example:
fx) =xS+x*+ x> +x+landg(x) = x" + x + 1.
G+t +x+ 1)+ (" +x+1) =x" + x° + x* + x? (polynomial notation)
(01010111) @ (10000011) = (11010100) (binary notation)
{57} @ {83} = {D4} (hexadecimal notation)’

Murrirricarion There is no simple XOR operation that will accomplish multi-
plication in GF(2"). However, a reasonably straightforward, easily implemented
technique is available. We will discuss the technique with reference to GF(2%) using
m(x) = x% + x* + ¥* + x + 1, which is the finite field used in AES. The technique
readily generalizes to GF(2").

The technique is based on the observation that

¥modm(x) = [mkx) —x¥] ="+ +x+ 1) 5.4

7A basic refresher on number systems (decimal, binary, hexadecimal) can be found at the Computer
Science Student Resource Site at WilliamStallings.com/StudentSupport.html. Here each of two groups
of 4 bits in a byte is denoted by a single hexadecimal character, and the two characters are enclosed in
brackets.

5.6 / FINITE FIELDS OF THE FORM GF(2") 165

A moment’s thought should convince you that Equation (5.4) is true; if you
are not sure, divide it out. In general, in GF(2") with an nth-degree polynomial p(x),
we have x" mod p(x) = [p(x) — x"].

Now, consider a polynomial in GF(2®), which has the form
f(x) = box” + bex® + bsx® + byx* + bsx® + box? + byx + by If we multiply by x,
we have

x X f(x) = (bx® + bex” + bsx® + byx® + byx*

+ byx® + bx* + bgx) mod m(x) (5.5)
If b; = 0, then the result is a polynomial of degree less than 8, which is already
in reduced form, and no further computation is necessary. If b; = 1, then reduction

modulo m(x) is achieved using Equation (5.4):

x X f(x) = (bgx” + bsx® + byx® + bsx* + box® + bix? + byx)
+ O+ +x+1)

It follows that multiplication by x (i.e., 00000010) can be implemented as a 1-bit

left shift followed by a conditional bitwise XOR with (00011011), which represents
(x* + x* + x + 1). To summarize,

(b6b5b4b3b2blb00) if b7 =0

5.6

x X flx) = {
Multiplication by a higher power of x can be achieved by repeated application

of Equation (5.6). By adding intermediate results, multiplication by any constant in
GF(2%) can be achieved.

In an earlier example, we showed that for flx) = x® + x* + x> + x + 1,g(x) = x’ +
x + Landm(x) = x® + x* + ¥> + x + 1,wehave f(x) X g(x) mod m(x) = x” + x® + 1.
Redoing this in binary arithmetic, we need to compute (01010111) X (10000011). First,
we determine the results of multiplication by powers of x:

(01010111) X (00000010) = (10101110)
(01010111) X (00000100) = (01011100) @ (00011011) = (01000111)
(01010111) X (00001000) = (10001110)
(01010111) X (00010000) = (00011100) @ (00011011) = (00000111)
(01010111) X (00100000) = (00001110)
(01010111) X (01000000) = (00011100)
(01010111) X (10000000) = (00111000)

So,

(01010111) X (10000011) = (01010111) X [(00000001) @ (00000010) @ (10000000)]
= (01010111) @ (10101110) @® (00111000) = (11000001)

which is equivalent to x” + x® + 1.

166 CHAPTER 5 / FINITE FIELDS

Using a Generator

An equivalent technique for defining a finite field of the form GF(2"), using the
same irreducible polynomial, is sometimes more convenient. To begin, we need two
definitions: A generator g of a finite field F of order ¢ (contains ¢ elements) is an
element whose first ¢ — 1 powers generate all the nonzero elements of F. That is,
the elements of F consist of 0,g°, g', ... , g7 % Consider a field F defined by a
polynomial f(x). An element b contained in F is called a root of the polynomial if
f(b) = 0. Finally, it can be shown that a root g of an irreducible polynomial is a gen-
erator of the finite field defined on that polynomial.

Let us consider the finite field GF(2%), defined over the irreducible poly-
nomial x* + x + 1, discussed previously. Thus, the generator g must satisfy
flg) = ¢ + g + 1 = 0. Keep in mind, as discussed previously, that we need not
find a numerical solution to this equality. Rather, we deal with polynomial arith-
metic in which arithmetic on the coefficients is performed modulo 2. Therefore,
the solution to the preceding equality is g¢> = —g — 1 = g + 1. We now show
that g in fact generates all of the polynomials of degree less than 3. We have the
following.

g=g@) =g+t =g+¢g
g=86) =g+ =8 +g=g+g+1
g€=g@)=g@+g+)=g+g+g=g +gtgtl1=¢g+1
g=8g8)=g@+) =g +g=gtgt+tl=1=¢

We see that the powers of g generate all the nonzero polynomials in GF(2°).

Also, it should be clear that gk = g™’ for any integer k. Table 5.5 shows the
power representation, as well as the polynomial and binary representations.

Table 5.5 Generator for GF(2%) using x> + x + 1

Power Polynomial Binary Decimal (Hex)
Representation Representation Representation Representation
0 0 000 0

gL=g) 1 001 1
g g 010 2
& & 100 4
& g+1 011 3
g S+g 110 6
& Z+g+1 111 7
g & +1 101 5

5.6 / FINITE FIELDS OF THE FORM GE(2") 167

This power representation makes multiplication easy. To multiply in the
power notation, add exponents modulo 7. For example, g* x g6 = g(10mod?) =
g> = g + 1. The same result is achieved using polynomial arithmetic: We have
g=g>+gandgl=g>+1.Then, (@ + g X (g +1)=g*+g+g+g
Next, we need to determine (g* + g°> + g* + 1) mod (g°> + g + 1) by division:

g +1
grgrlgt+g+g+g
g+ g +g

g3

g3+ g t1
gt+t1

We get a result of g + 1, which agrees with the result obtained using the power
representation.

Table 5.6 shows the addition and multiplication tables for GF(2%) using
the power representation. Note that this yields the identical results to the
polynomial representation (Table 5.3) with some of the rows and columns
interchanged.

In general, for GF(2") with irreducible polynomial f(x), determine
g" = f(g) — g". Then calculate all of the powers of g from g"*! through g% 2.
The elements of the field correspond to the powers of g from g° through g% 2
plus the value 0. For multiplication of two elements in the field, use the equality
g~ = gkmod@"=D for any integer k.

Summary

In this section, we have shown how to construct a finite field of order 2". Specifically,
we defined GF(2") with the following properties.

1. GF(2") consists of 2" elements.

2. The binary operations + and X are defined over the set. The operations
of addition, subtraction, multiplication, and division can be performed with-
out leaving the set. Each element of the set other than 0 has a multiplicative
inverse.

We have shown that the elements of GF(2") can be defined as the set of all
polynomials of degree n — 1 or less with binary coefficients. Each such polynomial
can be represented by a unique n-bit value. Arithmetic is defined as polynomial
arithmetic modulo some irreducible polynomial of degree n. We have also seen that
an equivalent definition of a finite field GF(2") makes use of a generator and that
arithmetic is defined using powers of the generator.

CHAPTER 5 / FINITE FIELDS

168

uonesrdnmiy (q)

I+3+,8 3+ .3 I+38 2 Fi 1 1+ ,8 0
§4+ .8 148 ¥ s i T+ T+8+ .8 0
1+3 o 3 T T+ 8 L+ 343 8+ 8 0

& 3 T T+5 T+3+ 8 348 T+38 0
38 1 1+ I+3+ .8 3+ .3 1458 2 0
! T+ 3 L+3+3 5+ 8 T+3 B 3 0
1+ 8 1+8+ .8 8+ 8 1+% & o 1 0
0 0 0 0 0 0 0 0
o% mu vm mm Nm D ! 0
10T T1T OTT 110 00T 010 100 000
uonIppy (e)
0 3 1+ 38 848 1 T+38+ .8 o T+ 8
8 0 1 2 1+8 T+ 8 3+ 8 I+38+,38
I+8 1 0 1+ Fi 2 1+38+,3 3+ 8
348 P T+ 8 0 T+ 3+ .8 I 3 1+3
1 1+ 38 8 ﬂ+m+% 0 m+~m ﬁ...mm Nw
ﬁgvm‘fmuAW ~+~% NM 1 %+~% 0 1+ 38 38
8 3+ .3 T+38+,3 38 T+ 3 1+8 0 I
I+ T+8+ .8 8+ 8 1+3 5 19) 1 0
om mm vm m% Nm o ! 0
101 11T o1t 110 00T 010 100 000

]
Sl]

v
Sl

<
o

o,
o

~
%o

7]

S -

©
o

vy
S0

<
&

e,
Qo

S
o0

1)

101
ITT
011
110
001
010

100
000

101
111
0T1
110
00T
010
100
000

(T + x + ¥) [erwou£[od 243 10§ 10JBIUAD) SUIS) SPAWYPLY () D 9°S 2IqeL

5.7 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 169

5.7 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms
abelian group greatest common divisor order
associative group polynomial
coefficient set identity element polynomial arithmetic
commutative infinite field polynomial ring
commutative ring infinite group prime number
cyclic group integral domain prime polynomial
divisor inverse element relatively prime
Euclidean algorithm irreducible polynomial residue
field modular arithmetic ring
finite field modular polynomial
finite group arithmetic
generator monic polynomial

Review Questions

5.1 Briefly define a group.

5.2 Briefly define a ring.

5.3 Briefly define a field.

5.4 List three classes of polynomial arithmetic.

Problems

5.1 For the group S, of all permutations of n distinct symbols,
a. what is the number of elements in §,,?
b. show that §,, is not abelian for n > 2.
5.2 Does the set of residue classes (mod3) form a group
a. with respect to modular addition?
b. with respect to modular multiplication?
53 Let S = {0,a,b,c}. The addition and multiplication on the set S is defined in the
following tables:

+ 10 a B C X | 0 a b c
0 0 a B C 0 0 0 0 0
A a 0 c B a 0 a b c
B b c 0 A b 0 a b c
C c b a 0 c 0 0 0 0

Is S a noncommutative ring? Justify your answer.

5.4 Develop a set of tables similar to Table 5.1 for GF(5).
5.5 Demonstrate that the set of polynomials whose coefficients form a field is a ring.
5.6 Demonstrate whether each of these statements is true or false for polynomials over a

field.

170 CHAPTER 5 / FINITE FIELDS

a. The product of monic polynomials is monic.
b. The product of polynomials of degrees m and n has degree m + n.
c. The sum of polynomials of degrees m and n has degree max [m, n].
5.7 For polynomial arithmetic with coefficients in Z; ;, perform the following calculations.
a 2 H+2x + NP +11x2 +x +7)
b. 8x% +3x +2)5x% +6)
5.8 Detegmine which of the following polynomials are reducible over GF(2).
a x- +1
b, x2+x +1
e x*+x+1
5.9 Determine the gcd of the following pairs of polynomials.
a. (x* + 1) and (x> + x + 1) over GF(2)
b. (¥* + x + 1) and (x> + 1) over GF(3)
c. (x> —2x + 1)and (x* — x — 2) over GF(5)
d. (x* + 8x° + 7x + 8) and (2x* + 9x? + 10x + 1) over GF(11)

5.10 Develop a set of tables similar to Table 5.3 for GF(3) with m(x) = x> + x + 1.
5.11 Determine the multiplicative inverse of x> + 1 in GF2?) with m(x) = x> + x — 1.
5.12 Develop a table similar to Table 5.5 for GF23) withm(x) = x> + x* + x3 + x + 1.

Programming Problems

5.13 Write a simple four-function calculator in GF(2*). You may use table lookups for the
multiplicative inverses.

5.14 Write a simple four-function calculator in GF(2%). You should compute the multiplica-
tive inverses on the fly.

CHAPTER

ADVANCED ENCRYPTION STANDARD

6.1 Finite Field Arithmetic

6.2 AES Structure

General Structure
Detailed Structure

6.3 AES Transformation Functions

Substitute Bytes Transformation
ShiftRows Transformation
MixColumns Transformation
AddRoundKey Transformation

6.4 AES Key Expansion

Key Expansion Algorithm
Rationale

6.5 An AES Example

Results
Avalanche Effect

6.6 AES Implementation

Equivalent Inverse Cipher
Implementation Aspects

6.7 Key Terms, Review Questions, and Problems

Appendix 6A Polynomials with Coefficients in GF(2%)

171

172 CHAPTER 6 / ADVANCED ENCRYPTION STANDARD

LEARNING OBJECTIVES

After studying this chapter, you should be able to:

¢ Present an overview of the general structure of Advanced Encryption
Standard (AES).

¢ Understand the four transformations used in AES.

2

Explain the AES key expansion algorithm.
¢ Understand the use of polynomials with coefficients in GF(2%).

The Advanced Encryption Standard (AES) was published by the National Institute of
Standards and Technology (NIST) in 2001. AES is a symmetric block cipher that is
intended to replace DES as the approved standard for a wide range of applications.
Compared to public-key ciphers such as RSA, the structure of AES and most symmet-
ric ciphers is quite complex and cannot be explained as easily as many other
cryptographic algorithms. Accordingly, the reader may wish to begin with a simplified
version of AES, which is described in Appendix I. This version allows the reader to
perform encryption and decryption by hand and gain a good understanding of the
working of the algorithm details. Classroom experience indicates that a study of this
simplified version enhances understanding of AES." One possible approach is to read
the chapter first, then carefully read Appendix I, and then re-read the main body
of the chapter.

Appendix H looks at the evaluation criteria used by NIST to select from among
the candidates for AES, plus the rationale for picking Rijndael, which was the winning
candidate. This material is useful in understanding not just the AES design but also the
criteria by which to judge any symmetric encryption algorithm.

6.1 FINITE FIELD ARITHMETIC

In AES, all operations are performed on 8-bit bytes. In particular, the arithmetic
operations of addition, multiplication, and division are performed over the finite
field GF(2%). Section 5.6 discusses such operations in some detail. For the reader
who has not studied Chapter 5, and as a quick review for those who have, this sec-
tion summarizes the important concepts.

In essence, a field is a set in which we can do addition, subtraction, multiplica-
tion, and division without leaving the set. Division is defined with the following rule:
alb = a(b™"). An example of a finite field (one with a finite number of elements) is
the set Z,, consisting of all the integers {0,1, ... ,p — 1}, where p is a prime num-
ber and in which arithmetic is carried out modulo p.

'However, you may safely skip Appendix I, at least on a first reading. If you get lost or bogged down in
the details of AES, then you can go back and start with simplified AES.

6.1 / FINITE FIELD ARITHMETIC 173

Virtually all encryption algorithms, both conventional and public-key, involve
arithmetic operations on integers. If one of the operations used in the algorithm
is division, then we need to work in arithmetic defined over a field; this is because
division requires that each nonzero element have a multiplicative inverse. For con-
venience and for implementation efficiency, we would also like to work with inte-
gers that fit exactly into a given number of bits, with no wasted bit patterns. That is,
we wish to work with integers in the range 0 through 2" — 1, which fit into an n-bit
word. Unfortunately, the set of such integers, Z,», using modular arithmetic, is not a
field. For example, the integer 2 has no multiplicative inverse in Z,», that is, there is
no integer b, such that 26 mod 2" = 1.

There is a way of defining a finite field containing 2" elements; such a field is
referred to as GF(2"). Consider the set, S, of all polynomials of degree n — 1 or less
with binary coefficients. Thus, each polynomial has the form

n—1
fx) =a, X" '+ a, X"+ - +ax+a= Eaix’
=0

where each g; takes on the value 0 or 1. There are a total of 2" different polynomials
in S. For n = 3, the 2> = 8 polynomials in the set are

0 x x2 X2+ x
1 x+1 ¥*+1 2+x+1

With the appropriate definition of arithmetic operations, each such set S is a
finite field. The definition consists of the following elements.

1. Arithmetic follows the ordinary rules of polynomial arithmetic using the basic
rules of algebra with the following two refinements.

2. Arithmetic on the coefficients is performed modulo 2. This is the same as the
XOR operation.

3. If multiplication results in a polynomial of degree greater than n — 1, then the
polynomial is reduced modulo some irreducible polynomial m(x) of degree n.
That is, we divide by m(x) and keep the remainder. For a polynomial f(x),
the remainder is expressed as r(x) = f(x) mod m(x). A polynomial m(x) is
called irreducible if and only if m(x) cannot be expressed as a product of two
polynomials, both of degree lower than that of m(x).

For example, to construct the finite field GF(2®), we need to choose an irre-
ducible polynomial of degree 3. There are only two such polynomials: (x* + x* + 1)
and (x> + x + 1). Addition is equivalent to taking the XOR of like terms. Thus,
x+1) +x=1

A polynomial in GF(2") can be uniquely represented by its n binary coefficients
(a,-1a,—5 . .. ag). Therefore, every polynomial in GF(2") can be represented by
an n-bit number. Addition is performed by taking the bitwise XOR of the two n-bit
elements. There is no simple XOR operation that will accomplish multiplication in
GF(2"). However, a reasonably straightforward, easily implemented, technique is
available. In essence, it can be shown that multiplication of a number in GF(2") by

174 CHAPTER 6 / ADVANCED ENCRYPTION STANDARD

2 consists of a left shift followed by a conditional XOR with a constant. Multiplication
by larger numbers can be achieved by repeated application of this rule.

For example, AES uses arithmetic in the finite field GF(2%) with the irreducible
polynomial m(x) = x® + x* + x> + x + 1. Consider two elements A =
(asag . .. a1ap) and B = (b;bg ... bibg). The sum A + B = (cy¢cq. .. c1¢p), Where
¢; = a; ® b;. The multiplication {02} - A equals (ag. .. a;a00) if a; = 0 and equals
(ag . . . aa,0) @ (00011011) if a; = 1.2

To summarize, AES operates on 8-bit bytes. Addition of two bytes is defined
as the bitwise XOR operation. Multiplication of two bytes is defined as multiplica-
tionin the finite field GF(2®), with the irreducible polynomial* m(x) = x® + x* + x* +
x + 1. The developers of Rijndael give as their motivation for selecting this one of
the 30 possible irreducible polynomials of degree 8 that it is the first one on the list
given in [LIDL94].

6.2 AES STRUCTURE

General Structure

Figure 6.1 shows the overall structure of the AES encryption process. The cipher
takes a plaintext block size of 128 bits, or 16 bytes. The key length can be 16, 24, or
32 bytes (128, 192, or 256 bits). The algorithm is referred to as AES-128, AES-192,
or AES-256, depending on the key length.

The input to the encryption and decryption algorithms is a single 128-bit block.
In FIPS PUB 197, this block is depicted as a 4 X 4 square matrix of bytes. This
block is copied into the State array, which is modified at each stage of encryption or
decryption. After the final stage, State is copied to an output matrix. These opera-
tions are depicted in Figure 6.2a. Similarly, the key is depicted as a square matrix of
bytes. This key is then expanded into an array of key schedule words. Figure 6.2b
shows the expansion for the 128-bit key. Each word is four bytes, and the total key
schedule is 44 words for the 128-bit key. Note that the ordering of bytes within a ma-
trix is by column. So, for example, the first four bytes of a 128-bit plaintext input to
the encryption cipher occupy the first column of the in matrix, the second four bytes
occupy the second column, and so on. Similarly, the first four bytes of the expanded
key, which form a word, occupy the first column of the w matrix.

The cipher consists of N rounds, where the number of rounds depends on the
key length: 10 rounds for a 16-byte key, 12 rounds for a 24-byte key, and 14 rounds
for a 32-byte key (Table 6.1). The first N — 1 rounds consist of four distinct trans-
formation functions: SubBytes, ShiftRows, MixColumns, and AddRoundKey,
which are described subsequently. The final round contains only three transforma-
tions, and there is a initial single transformation (AddRoundKey) before the first
round, which can be considered Round 0. Each transformation takes one or more

2In FIPS PUB 197 a hexadecimal number is indicated by enclosing it in curly brackets. We use that convention
in this chapter.

3In the remainder of this discussion, references to GF(2®%) refer to the finite field defined with this
polynomial.

6.2 / AES STRUCTURE 175

Plaintext—16 bytes (128 bits) Key—M bytes
LITTTTTITTITTITTI LITTTTTITTITTITTI
Input state Key
(16 bytes) Round 0 key (M bytes)
(16 bytes)
| Initial transformation }
State after
initial
transformation
(16 bytes)
Round 1 Round 1 key =
(4 transformations) (16 bytes) 2
g
(=]
g
>
Y
Round 1 ~
output state
(16 bytes)
L
L]
I
Round N -1 Rourllg IbV; l)key
(4 transformations) (16 bytes
Round N-1
output state
(16 bytes)
Round N key
Round N (16 bytes)
(3 transformations)
Final state Key
(16 bytes) No. (;f Length
rounds (bthS)
COTTT I TITTITTT] 10 16
Cipehertext—16 bytes (128 bits) 12 24
14 32

Figure 6.1 AES Encryption Process

4 X 4 matrices as input and produces a 4 X 4 matrix as output. Figure 6.1 shows
that the output of each round is a 4 X 4 matrix, with the output of the final round
being the ciphertext. Also, the key expansion function generates N + 1 round keys,
each of which is a distinct 4 X 4 matrix. Each round key serves as one of the inputs
to the AddRoundKey transformation in each round.

soInjonns ele SV 7°9 2andig
A9y papuedxa pue £3Y] (q)

m_v\ :v\ hv\ mvN

v_v\ c—v\ ov\ NvN

&m | m oo n | 'm | m
m_v\ mvN mv\ G\

4 _v\ va vv\ ovN

jndjno pue ‘Aerre dje)s ‘nduy ()

Shino | 'yno | Lino | €no €'tg Teg I'eg 0'€g £'tg Teg 'ty 0'€g m:\Q ::.N EL.N m:.N
Yo | 0o | 9yno | Gno €Tg Ty 1Ty 0Cg €Tg Tty 1Ty 0Cg v:\Q o:\m.N ot.N N:.N
0
hno | 6ino | Syno | Lino €lg Nn—h I'Ig on—h €lg Nn—h I'lg on—h m:\Q m:.N mt.N :\Q
hno | 8ino | vino | Qo £0g Tog I'0g 0°0g £0g Tog 10y 0°0g N:\Q w:.N VE.N o:.N

176

6.2 / AES STRUCTURE 177

Table 6.1 AES Parameters

Key Size (words/bytes/bits) 4/16/128 6/24/192 8/32/256
Plaintext Block Size (words/bytes/bits) 4/16/128 4/16/128 4/16/128
Number of Rounds 10 12 14
Round Key Size (words/bytes/bits) 4/16/128 4/16/128 4/16/128
Expanded Key Size (words/bytes) 44/176 52/208 60/240

Detailed Structure

Figure 6.3 shows the AES cipher in more detail, indicating the sequence of transfor-
mations in each round and showing the corresponding decryption function. As was
done in Chapter 4, we show encryption proceeding down the page and decryption
proceeding up the page.

Before delving into details, we can make several comments about the overall

AES structure.

1.

One noteworthy feature of this structure is that it is not a Feistel structure.
Recall that, in the classic Feistel structure, half of the data block is used to
modify the other half of the data block and then the halves are swapped. AES
instead processes the entire data block as a single matrix during each round
using substitutions and permutation.

. The key that is provided as input is expanded into an array of forty-four 32-bit

words, w[i]. Four distinct words (128 bits) serve as a round key for each round,;
these are indicated in Figure 6.3.

. Four different stages are used, one of permutation and three of substitution:

m Substitute bytes: Uses an S-box to perform a byte-by-byte substitution of
the block.

m ShiftRows: A simple permutation.
m MixColumns: A substitution that makes use of arithmetic over GF(2%).

® AddRoundKey: A simple bitwise XOR of the current block with a portion
of the expanded key.

. The structure is quite simple. For both encryption and decryption, the cipher

begins with an AddRoundKey stage, followed by nine rounds that each in-
cludes all four stages, followed by a tenth round of three stages. Figure 6.4
depicts the structure of a full encryption round.

. Only the AddRoundKey stage makes use of the key. For this reason, the cipher

begins and ends with an AddRoundKey stage. Any other stage, applied at the
beginning or end, is reversible without knowledge of the key and so would add
no security.

. The AddRoundKey stage is, in effect, a form of Vernam cipher and by itself

would not be formidable. The other three stages together provide confusion,
diffusion, and nonlinearity, but by themselves would provide no security be-
cause they do not use the key. We can view the cipher as alternating operations
of XOR encryption (AddRoundKey) of a block, followed by scrambling of the

178 CHAPTER 6 / ADVANCED ENCRYPTION STANDARD

Key
Plaintext (16 bytes) Plaintext
(16 bytes) [Expandkey | (16 bytes)
J
v } 4
[Addround key |e wl0, 3] > Add round key |
v 1 -
| Substitute bytes | | Inverse sub bytes | ;
! —
— | Shift rows | | Inverse shift rows | &
=
E e S
2] | Mix columns | _l | Inverse mix cols |
v 1
[Addround key |e wi4, 7] > Add round key |
v 1 >
. [TInverse subbytes | B
. i g
. [Inverse shift rows |
v i
| Substitute bytes | o
i .
o | Shiftrows | .
2 ! 1
é | Mix columns | _l | Inverse mix cols |
v 1
[Addround key |&—— w[36,39] ——» Addroundkey | _
I i E
| Substitute bytes | | Inverse sub bytes | é
2 v 1
E | Shift rows | _l [Inverse shift rows |
=]
= v i
[Addround key |e Wwi40, 43] > Add round key |
v i}
Ciphertext Ciphertext
(16 bytes) (16 bytes)
(a) Encryption (b) Decryption

Figure 6.3 AES Encryption and Decryption

block (the other three stages), followed by XOR encryption, and so on. This
scheme is both efficient and highly secure.

7. Each stage is easily reversible. For the Substitute Byte, ShiftRows, and
MixColumns stages, an inverse function is used in the decryption algorithm.
For the AddRoundKey stage, the inverse is achieved by XORing the same
round key to the block, using the result that A@ B @® B = A.

8. As with most block ciphers, the decryption algorithm makes use of the
expanded key in reverse order. However, the decryption algorithm is not

6.3 / AES TRANSFORMATION FUNCTIONS 179

swive [] [‘] SEslsRS [‘] [‘] 5 [[] & [[‘] 5 [‘] [‘]
T —— e e
N E VAN E VAN VAN BV
State [l_ll | \l_‘ [J_ll | \l_l | l_ll | \l_‘ | J_ll | \l_l |
oy D OO D DDDD D DD DD D 6

State [I I I I I I I I I I

Figure 6.4 AES Encryption Round

identical to the encryption algorithm. This is a consequence of the particular
structure of AES.

9. Once it is established that all four stages are reversible, it is easy to verify
that decryption does recover the plaintext. Figure 6.3 lays out encryption
and decryption going in opposite vertical directions. At each horizontal point
(e.g., the dashed line in the figure), State is the same for both encryption and
decryption.

10. The final round of both encryption and decryption consists of only three stages.

Again, this is a consequence of the particular structure of AES and is required
to make the cipher reversible.

6.3 AES TRANSFORMATION FUNCTIONS

We now turn to a discussion of each of the four transformations used in AES. For
each stage, we describe the forward (encryption) algorithm, the inverse (decryption)
algorithm, and the rationale for the stage.

180 CHAPTER 6 / ADVANCED ENCRYPTION STANDARD

Substitute Bytes Transformation

FORWARD AND INVERSE TrANsrormATIONS The forward substitute byte
transformation, called SubBytes, is a simple table lookup (Figure 6.5a). AES
defines a 16 X 16 matrix of byte values, called an S-box (Table 6.2a), that con-
tains a permutation of all possible 256 8-bit values. Each individual byte of State
is mapped into a new byte in the following way: The leftmost 4 bits of the byte are
used as a row value and the rightmost 4 bits are used as a column value. These row
and column values serve as indexes into the S-box to select a unique 8-bit output
value. For example, the hexadecimal value {95} references row 9, column 5 of the
S-box, which contains the value {2A}. Accordingly, the value {95} is mapped into
the value {2A}.

y

y

SN ol
50,0 | So,{ | S0.2 | So3 S-box 50,0 |50,iW] S0.2 | S0,3
sll ’ s, ’ ’
51,0 » P12 | S13 S0 PLCB Prz | Sis3
820 | S2,1 | 822 | 523 820 | $2,1 | 822 | 523
830|831 | 32| 833 830 | 83,1 | 32| 833

(a) Substitute byte transformation

50,1 ,
0.2 | So3 > Poz | So3
St ko
51,2 | $1.3 Wit » Pz | S13
@ Wi Vit2| Wit3 = 5
21 L, ,
D22 | 523 D22 | 523
831 L
b3 | 833 " P32 | %53

(b) Add round key transformation
Figure 6.5 AES Byte-Level Operations

6.3 / AES TRANSFORMATION FUNCTIONS 181

Table 6.2 AES S-Boxes

y
0 1 2 3 4 5 6 7 8 9| A|B|C|D|E|F

63 |7C | 77 | 7B | F2 [6B | 6F | C5 | 30 | 01 | 67 | 2B | FE | D7 | AB | 76

CA| 8 |CYO|7D|FA |59 | 47 | FO |[AD| D4 | A2 | AF | 9C | A4 | 72 | CO

B7 |FD | 93 | 26 | 36 | 3F | F7 |[CC| 34 | AS|E5| F1 |71 | D8 | 31 | 15

04 [C7 |23 | C3[18 |9 |05 |9A |07 |12 |80 | E2 |EB| 27 | B2 | 75

09 [83 |[2C | 1A | 1B | 6E | SA | A0 | 52 (3B | D6 | B3 | 29 | E3 | 2F | 84

53 | D1 |00 |[ED| 20 | FC| Bl | 5B |6A |CB |[BE| 39 |4A | 4C | 58 | CF

DO |EF |AA|FB | 43 (4D | 33 | 8 [45 | F9 | 02 | 7F | 50 | 3C | 9F | A8

51 | A3 |40 [8F | 92 [9D | 38 | F5 | BC| B6 |[DA| 21 | 10 | FF | F3 | D2

CD|0C| 13 |[EC|S5F | 97 | 44 | 17 [C4 | A7 |7E [3D | 64 | 5D | 19 | 73

60 | 81 [4F |DC| 22 |2A | 90 | 8 | 46 | EE| B8 | 14 | DE | SE | 0B | DB

EO |32 [3A|0A | 49 | 06 | 24 [SC | C2 | D3 |AC| 62 | 91 | 95 | E4 | 79

E7 | C8| 37 | 6D [8D | D5| 4E | A9 | 6C | 56 | F4 |EA| 65 | 7TA | AE | 08

BA| 78 | 25 |2E | 1C | A6 | B4 | Co | ES |[DD| 74 | 1F | 4B | BD | 8B | 8A

70 | 3E | B5 | 66 | 48 | 03 | F6 | OE | 61 | 35 | 57 | B9 | 8 | C1 | 1D | 9E

E1 | F8 |98 | 11 [69 | D9|8E | 94 | 9B | 1IE | 87 | E9 | CE| 55 | 28 | DF

sl el A P R I N Y A N A N Y =)

8C| A1 |8 |0OD|BF|E6| 42 | 68 | 41|99 |2D | OF | BO| 54 | BB| 16
(a) S-box

0 1 2 3 4 5 6 7 8 9| A | B| C|D|E|F
52 109 |6A [D5 | 30 | 36 | AS| 38 | BF| 40 | A3 | 9E | 81 | F3 | D7 | FB
7C |E3 |39 |8 (9B |2F | FF | 87 | 34 | 8E | 43 | 44 | C4 |DE | E9 | CB
54 |7B [94|32 | A6 [C2| 23 |3D|EE|4C | 95 [0B | 42 |FA | C3 | 4E
08 |2E | A1 | 66 | 28 | D9 | 24 | B2 | 76 | 5B | A2 | 49 [6D | 8B | D1 | 25
72 | F8 | F6 | 64 | 86 | 68 | 98 | 16 | D4 | A4 | 5C |CC | 5D | 65 | B6 | 92
6C | 70 | 48 | 50 |FD |[ED | B9 |DA| SE | 15 | 46 | 57 | A7 | 8D | 9D | 84
90 | D8 [AB| 00 | 8C [BC | D3 [0A | F7 | E4 | 58 | 05 | B8 | B3 | 45 | 06
DO|2C | 1E | 8F |CA|3F | OF | 02 | Cl1 |AF [BD| 03 | 01 | 13 | 8A | 6B
3A | 91 | 11 | 41 | 4F | 67 |DC|EA| 97 | F2 [CF |CE | FO | B4 | E6 | 73
9% |AC| 74 | 22 | E7 |[AD| 35 | 8 [E2 | F9 | 37 | E8 | 1C | 75 | DF | 6E
47 | F1 [1A | 71 [1ID | 29 [C5| 89 [6F | B7 | 62 | OE [AA| 18 | BE | 1B
FC |56 |3E | 4B | C6 | D2| 79 |20 | 9A | DB | CO | FE| 78 |CD | SA | F4
1F [DD| A8 | 33 | 8 | 07 [C7 | 31 [Bl | 12 | 10 | 59 | 27 | 80 | EC | 5F
60 [51 [7F | A9 | 19 [BS |[4A [OD (2D | ES [7A | 9F | 93 | C9 | 9C | EF
A0 | EO0O 3B |4D |AE|2A | F5 | BO| C8 | EB [BB | 3C | 83 | 53 | 99 | 61
17 | 2B | 04 | 7E |BA| 77 | D6 | 26 | E1 | 69 | 14 | 63 | 55 | 21 | OC | 7D
(b) Inverse S-box

il ile e = A P R A R N A B A T N k=)

182 CHAPTER 6 / ADVANCED ENCRYPTION STANDARD

Here is an example of the SubBytes transformation:

EA| 04 | 65 | &
8 | 45 | 5D | %
5C | 33 | 98 | BO
FO | 2D | AD| C5

87 | F2 | 4D | 97
EC | 6E | 4C | 90
4A | C3 | 46 | E7
8C | D8 | 95 | A6

The S-box is constructed in the following fashion (Figure 6.6a).

Byte at row y,
column x
initialized to yx

yx

Y

Inverse
in GF(28)

0
0
1
1
1
1
1
0

=

i~
O OO = o m
[T < S S GG Y

Byte to bit

column vector

—_—_— 0 O O = -

Bit column

vector to byte

Y

S(yx)

—_—_ 0 O O = = -

—_ 0 O O = = = -

(a) Calculation of byte at
row y, column x of S-box

Figure 6.6

O = = OO O e

Constuction of S-Box and IS-Box

Byte at row y,
column x yx
initialized to yx
A4
Byte to bit

column vector

bl OO 100 1 0
bl [t 001 001
byl 101 00 100
pi| [t 010010
byl 101 01 001
byl 100 10100
bl |1 001 010

0100 101

Bit column
vector to byte

\4
Inverse
in GF(28)

Y

IS(x)

oo = o o = o =

(a) Calculation of byte at
row y, column x of IS-box

oo o o — o —

6.3 / AES TRANSFORMATION FUNCTIONS 183

1. Initialize the S-box with the byte values in ascending sequence row by row.
The first row contains {00}, {01}, {02}, ... , {OF}; the second row contains
{10}, {11}, etc.; and so on. Thus, the value of the byte at row y, column x is {yx}.
2. Map each byte in the S-box to its multiplicative inverse in the finite field
GF(2%); the value {00} is mapped to itself.

. Consider that each byte in the S-box consists of 8 bits labeled
(bq, b, bs, by, bs, by, by, by). Apply the following transformation to each bit of
each byte in the S-box:

bi = b;® b(i+4ymods D D(i+5ymods D D(i+6)ymods D D(i+7)ymoas D ¢;i (6.1)

where ¢; is the ith bit of byte ¢ with the value {63}; that is,
(c7eecscac300c1¢) = (01100011). The prime (') indicates that the variable is to
be updated by the value on the right. The AES standard depicts this transfor-
mation in matrix form as follows.

@

b 1 00 0 1 1 1 17][bg 1
b} 1 1.0 0 0 1 1 1]b 1
b 1110 0 0 1 1| b,y 0
b 1 1 1 1 0 0 0 1]|b 0
Bil |1 1 1 1 1 0 0 0]]by 1o 6.2)
b 01 1 1 1 1 0 0]]bs 1
b 0 01 1 1 1 1 0]]bg 1
b5 o 0o 0 1 1 1 1 1].b] [O]

Equation (6.2) has to be interpreted carefully. In ordinary matrix multiplica-
tion,” each element in the product matrix is the sum of products of the elements of
one row and one column. In this case, each element in the product matrix is the
bitwise XOR of products of elements of one row and one column. Furthermore, the
final addition shown in Equation (6.2) is a bitwise XOR. Recall from Section 5.6
that the bitwise XOR is addition in GF(2®).

As an example, consider the input value {95}. The multiplicative inverse in
GF(2%) is {9571 = {8A}, which is 10001010 in binary. Using Equation (6.2),

4

1 00 01 1 1 1][0 1 1 1 0
1 1.0 0 0 1 1 1|1 1 0 1 1
1 110 0 0 1 110 0 0 0 0
1 111 0 0 0 111 0 1 0 1
1111100 0/0l®ol"]ol®lo] o
01 1 1 1 10 010 1 0 1 1
001 1 1 11 0]l0 1 1 1 0
000 1 1 1 1 1]1] [o] |o] |o] [o]

4For a brief review of the rules of matrix and vector multiplication, refer to Appendix E.

184

CHAPTER 6 / ADVANCED ENCRYPTION STANDARD

The result is {2A}, which should appear in row {09} column {05} of the S-box.
This is verified by checking Table 6.2a.

The inverse substitute byte transformation, called InvSubBytes, makes use
of the inverse S-box shown in Table 6.2b. Note, for example, that the input {2A}
produces the output {95}, and the input {95} to the S-box produces {2A}. The inverse
S-box is constructed (Figure 6.6b) by applying the inverse of the transformation in
Equation (6.1) followed by taking the multiplicative inverse in GF(2%). The inverse
transformation is

bi = b(i+2)mods @ Di+5)mods D b(i+7)moas ® di

where byte d = {05}, or 00000101. We can depict this transformation as follows.

byl [0 01 0 0 1 0 1|[by] [1]
b} 1 001 0 0 1 0}b 0
b, 01 0 0 1 0 0 1]|b, 1
By _|1 0 1 .00 1 0 Ofbs| |O
b 01 01 0 0 1 0]]b, 0
b} 001 0 1 0 0 1] bs 0
by 1 0 01 0 1 0 0]}|bg 0
b5 [0 1 0 0 1 0 1 Oflb, | |O]

To see that InvSubBytes is the inverse of SubBytes, label the matrices in
SubBytes and InvSubBytes as X and Y, respectively, and the vector versions of con-
stants ¢ and d as C and D, respectively. For some 8-bit vector B, Equation (6.2)
becomes B’ = XB @ C. We need to show that Y(XB @ C) @ D = B. To multiply
out, we must show YXB @ YC @ D = B. This becomes

o 010 01 0 1|1 00 0 1 1 1 1][b]
1 001 00 1 01 1 00 0 1 1 1]b,
0100 1 0 0 1{[1 1 1 00 0 1 1] b
1 01 0 0 1 0 O0f[1 1 1 1 0 0 0 1]|bs
0101001011111000b4®
001 01 0 0 1[0 1 1 1 1 1 0 0]|bs
1 0 01 01 0 000 1 1 1 1 1 0]|bg
0010 01 0 1 0000 1 1 1 1 1] .by]

[0 0 1.0 0 1 0 1|[1] [1]

1 001 0 0 1 0fT1 0

01 00 1 0 0 110 1

1 01 001 0 010 0]

0101001 0/0l®ol”

001 01 00 1]1 0

1 0 01 0 1 0 0f1 0

L0010 01 0 1 0Jl0] [0O]

6.3 / AES TRANSFORMATION FUNCTIONS 185

1 0 0 0 0 0 0 0f[by] [1] [1] T[bo]
01 0 0 0 0 0 0]1]b 0 0 by
001 00 0 0 0]b 1 1 b,
00 01 0 0 0 0]1]b; 0 0 by
00001000bﬁt@o@o_b4
000 0 0 1 0 0]]bs 0 0 bs
00 00 0 0 1 0]]bg 0 0 b
000 0 0 0 0 1]k O] [O] [|b;

We have demonstrated that YX equals the identity matrix, and the YC = D,
so that YC @ D equals the null vector.

Ratronare The S-box is designed to be resistant to known cryptanalytic attacks.
Specifically, the Rijndael developers sought a design that has a low correlation
between input bits and output bits and the property that the output is not a linear
mathematical function of the input [DAEMO1]. The nonlinearity is due to the use
of the multiplicative inverse. In addition, the constant in Equation (6.1) was chosen
so that the S-box has no fixed points [S-box(a) = a] and no “opposite fixed points”
[S-box(a) = a], where a is the bitwise complement of a.

Of course, the S-box must be invertible, that is, IS-box[S-box(a)] = a.
However, the S-box does not self-inverse in the sense that it is not true that
S-box(a) = IS-box(a). For example, S-box({95}) = {2A}, but IS-box({95}) = {AD}.

ShiftRows Transformation

FORWARD AND INVERSE TrANSrOrMATIONS The forward shift row transformation,
called ShiftRows, is depicted in Figure 6.7a. The first row of State is not altered. For
the second row, a 1-byte circular left shift is performed. For the third row, a 2-byte
circular left shift is performed. For the fourth row, a 3-byte circular left shift is per-
formed. The following is an example of ShiftRows.

87 | F2 | 4D | 97 87 | F2 | 4D | 97
EC | 6E | 4C | 90 6E | 4C | 90 | EC
4A | C3 | 46 | E7 - 46 | E7 | 4A | C3
8C | D8 | 95 | A6 A6 | 8C | D8 | 95

The inverse shift row transformation, called InvShiftRows, performs the cir-
cular shifts in the opposite direction for each of the last three rows, with a 1-byte
circular right shift for the second row, and so on.

RationALE The shift row transformation is more substantial than it may first
appear. This is because the State, as well as the cipher input and output, is
treated as an array of four 4-byte columns. Thus, on encryption, the first 4 bytes
of the plaintext are copied to the first column of State, and so on. Furthermore,
as will be seen, the round key is applied to State column by column. Thus, a row
shift moves an individual byte from one column to another, which is a linear

186

CHAPTER 6 / ADVANCED ENCRYPTION STANDARD

50,0 | So,1 | 0,2 [S0,3 m 50,0 | So,1 | 0.2 [50,3
S1,0 | S1,1 | 1.2 S1.3

— L T T T 1
82,0 | 52,1 | 52,2 [52,3 _’@
N

——
——
§3,0 53,1832 53,3 > [933530531 [532
A4

X7

(a) Shift row transformation

S1,1 81,2 513 | S1,0

822 52,3520 52,1

2311
1231
X =

1123
I_, 3112 l
S0,0 | S0,1 | So.2 | 50,3 80,0 [S0.1 | $6.2 | S0.3
S0 | SL1 | S1,2 [S1.3 S0 | S1,1 | 1.2 [51,3
520 82,1 | 522|523 Sﬁ,o Sﬁ,l Si,z Sé,3
53,0 83,1 | 32 833 30830 532|833

(b) Mix column transformation

Figure 6.7 AES Row and Column Operations

distance of a multiple of 4 bytes. Also note that the transformation ensures that
the 4 bytes of one column are spread out to four different columns. Figure 6.4
illustrates the effect.

MixColumns Transformation

FORWARD AND INVERSE TRANSFORMATIONS The forward mix column transformation,
called MixColumns, operates on each column individually. Each byte of a column
is mapped into a new value that is a function of all four bytes in that column. The
transformation can be defined by the following matrix multiplication on State
(Figure 6.7b):

02 03 01 O1]|s0 So1 So2 So3 500 801 02 S03
01 02 03 01 || s0 si1 S12 S13| _ [Sto Si1 S22 S13 6.3
01 01 02 03| s50 %21 S22 %3 ; $20 Sh1 S Sh3 6-3)
03 01 01 02][s30 s31 32 S33 $30 831 S32 833

Each element in the product matrix is the sum of products of elements of one row
and one column. In this case, the individual additions and multiplications5 are

SWe follow the convention of FIPS PUB 197 and use the symbol - to indicate multiplication over the

finite field GF(2%) and @ to indicate bitwise XOR, which corresponds to addition in GF(2%).

6.3 / AES TRANSFORMATION FUNCTIONS 187

performed in GF(2%). The MixColumns transformation on a single column of State
can be expressed as

87 | F2 | 4D | 97
6E | 4C | 90 | EC
46 | E7 | 4A | C3
A6 | 8C | D8 | 95

= (Z'So,j)@(3°s1,j)@Sz,j@s3,j
=50, D 251,) D Brs2)) sz
=50, Ds1,;D252,) DBrs3))
= (3+50,) D51, D5y, D(2+53))

The following is an example of MixColumns:

47 | 40 | A3 | 4C
37 | D4 | 70 | 9F
94 | E4 | 3A | 42
ED | AS | A6 | BC

6.4

Let us verify the first column of this example. Recall from Section 5.6 that, in
GF(2®), addition is the bitwise XOR operation and that multiplication can be per-
formed according to the rule established in Equation (4.14). In particular, multipli-
cation of a value by x (i.e., by {02}) can be implemented as a 1-bit left shift followed
by a conditional bitwise XOR with (0001 1011) if the leftmost bit of the original
value (prior to the shift) is 1. Thus, to verify the MixColumns transformation on the
first column, we need to show that

({02}-{87)) @ ({03}-{6E}) @ {46}

{87}
{87}

@ (6E}

({03}-{87})) ® {6E}

For the first equation, we have {02}-{87} = (0000 1110) @ (0001 1011) =
(0001 0101) and {03} - {6E} = {6E} ® ({02} - {6E}) = (0110 1110) @ (1101 1100) =

(1011 0010). Then,

@ ({02}-{6E}) @ ({03}- {46}
@ ({02} - {40}
@ {40}

)
)

{02} - {87} = 0001 0101
{03} - {6E} = 1011 0010
{46}
{A6}

= 0100 0110
= 10100110
0100 0111 = {47}

The other equations can be similarly verified.

@
S)
®
@

(A6
(A
(

)
6)
(03}

{A6))
({02} - {A6})

{47)
{37}
{94}
{ED}

The inverse mix column transformation, called InvMixColumns, is defined by

the following matrix multiplication:

0OE OB
09 OE
0D 09
0B 0D

0D
0B
0E
09

09
0D
0B
0E

50,0
51,0
52,0
830

50,1
S1.1
2.1
S31

502
S12
822
$32

503
S13
823
$33

!
50,0
!
51,0
!
52,0
!
83,0

S 6,1
N i,l
Sé,l
S 3,1

!
50,2
!
S12
!
$22
!
832

i
50,3
s13

, (6.5)
823

!
833

188

CHAPTER 6 / ADVANCED ENCRYPTION STANDARD

It is not immediately clear that Equation (6.5) is the inverse of Equation (6.3).
We need to show

OE 0B 0D 09 02 03 01 01 S()’() SO,I So’z S0’3 5070 SO,I SO,Z SO,S
09 OE 0B 0D 01 02 03 01 SLQ S11 S172 S1’3 _ Sl,O Sl,l S1’2 S1’3
0D 09 OE OB 01 01 02 03 Sz’o SZ,l S2’2 S2’3 Sz’() S2’1 52’2 S2’3
0B 0D 09 OE 03 01 01 02 537() S3,1 S3’2 S3’3 5073 S3’1 S3’2 S3’3
which is equivalent to showing
OE OB OD 09 02 03 01 01 1 0 0 0
09 OE OB OD |01 02 03 01| |0 1 0 O (6.6)
0D 09 OE OB |01 01 02 03 0 0 1 0)
0B OD 09 OE ||[03 01 01 02 0 0 0 1

That is, the inverse transformation matrix times the forward transformation matrix
equals the identity matrix. To verify the first column of Equation (6.6), we need
to show

({0E} - {02}) @ {0B} @ {0D} ® ({09} - {03}) = {01}
(109} - {02)) @ {OE} @ {0B} @ ({0D} - {03}) = {00}
({0D} - {02}) @ {09} @ {0E} @ ({0B} - {03}) = {00}
({0B} - {02}) © {0D} @ {09} @ ({0E} - {03}) = {00}

For the first equation, we have {OE}-{02} = 00011100 and {09} -{03} =
{09} @ ({09} - {02}) = 00001001 @ 00010010 = 00011011. Then

[OE} - {02} 00011100
(0B} = 00001011
{0D} = 00001101
{09} - {03} 00011011

00000001

The other equations can be similarly verified.

The AES document describes another way of characterizing the MixColumns
transformation, which is in terms of polynomial arithmetic. In the standard,
MixColumns is defined by considering each column of State to be a four-term poly-
nomial with coefficients in GF(2®). Each column is multiplied modulo (x* + 1) by
the fixed polynomial a(x), given by

a(x) = {03)x® + {01)x* + {01}x + {02} (6.7)

Appendix 5SA demonstrates that multiplication of each column of State by
a(x) can be written as the matrix multiplication of Equation (6.3). Similarly, it
can be seen that the transformation in Equation (6.5) corresponds to treating

6.3 / AES TRANSFORMATION FUNCTIONS 189

each column as a four-term polynomial and multiplying each column by b(x),
given by

b(x) = {0B}x® + {OD}x* + {09)x + {OE} (6.8)
It readily can be shown that b(x) = a '(x) mod (x* + 1).

RatronarLe The coefficients of the matrix in Equation (6.3) are based on a linear
code with maximal distance between code words, which ensures a good mixing
among the bytes of each column. The mix column transformation combined with
the shift row transformation ensures that after a few rounds all output bits depend
on all input bits. See [DAEM99] for a discussion.

In addition, the choice of coefficients in MixColumns, which are all {01}, {02},
or {03}, was influenced by implementation considerations. As was discussed, multi-
plication by these coefficients involves at most a shift and an XOR. The coefficients
in InvMixColumns are more formidable to implement. However, encryption was
deemed more important than decryption for two reasons:

1. For the CFB and OFB cipher modes (Figures 75 and 7.6; described in
Chapter 7), only encryption is used.

2. As with any block cipher, AES can be used to construct a message authentica-
tion code (Chapter 13), and for this, only encryption is used.

AddRoundKey Transformation

FORWARD AND INVERSE TrANsSFORMATIONS In the forward add round key transfor-
mation, called AddRoundKey, the 128 bits of State are bitwise XORed with the
128 bits of the round key. As shown in Figure 6.5b, the operation is viewed as a
columnwise operation between the 4 bytes of a State column and one word of
the round key; it can also be viewed as a byte-level operation. The following is an
example of AddRoundKey:

47 | 40 | A3 | 4C AC| 19 | 28 | 57 EB| 59 | 8B | 1B
37 | D4 | 70 | 9F 77 | FA | D1 | 5C 40 [2E | A1 | C3
94 | E4 | 3A | 42 @ 66 | DC| 29 | 00 = F2 | 38 | 13 | 42
ED | AS | A6 | BC F3 | 21 | 41 | 6A 1E | 84 | E7 | D6

The first matrix is State, and the second matrix is the round key.
The inverse add round key transformation is identical to the forward add
round key transformation, because the XOR operation is its own inverse.

RationarLe The add round key transformation is as simple as possible and affects
every bit of State. The complexity of the round key expansion, plus the complexity
of the other stages of AES, ensure security.

Figure 6.8 is another view of a single round of AES, emphasizing the mecha-
nisms and inputs of each transformation.

190 CHAPTER 6 / ADVANCED ENCRYPTION STANDARD

State matrix
at beginning
of round

SubBytes

=

U

S-box
ShiftRows
02 03 01 o1
01 02 03 01 e l
01 01 02 03 ixColumns
03 01 01 02

MixColumns matrix

Round
key
AddRoundKey '«
State matrix
« at end \ ,
Y of round
Constant inputs Variable input

Figure 6.8 Inputs for Single AES Round

6.4 AES KEY EXPANSION

Key Expansion Algorithm

The AES key expansion algorithm takes as input a four-word (16-byte) key and
produces a linear array of 44 words (176 bytes). This is sufficient to provide a four-
word round key for the initial AddRoundKey stage and each of the 10 rounds of the
cipher. The pseudocode on the next page describes the expansion.

The key is copied into the first four words of the expanded key. The remain-
der of the expanded key is filled in four words at a time. Each added word w[i]
depends on the immediately preceding word, w[i — 1], and the word four positions
back, w[i — 4]. In three out of four cases, a simple XOR is used. For a word whose
position in the w array is a multiple of 4, a more complex function is used. Figure 6.9
illustrates the generation of the expanded key, using the symbol g to represent that
complex function. The function g consists of the following subfunctions.

191

KeyExpansion (byte key[16], word w[44])

{

word temp

for (1 = 0; 1 < 4; i++) w[i] = (key[4*1i], key[4*i+l],

key[4*i+2],
key[4*1+3]) ;
for (1 = 4; 1 < 44; i++)
{
temp = w[i - 1];
if (1 mod 4 = 0) temp = SubWord (RotWord (temp))
® Rcon[i/4];

w[i] = w[i-4] D temp
}

ko | ks | ks | k12 w

ky | ks | ko | ki3

ky | ke | ko | k1g g
k3 | k7 | k11 | ks By | B 'Bz Bs

y A\ 4 A\ 4 A 4 i § é i
Wo | W1 |W2| W3 B, | B | Bs | By
y
D D ~ '

B | By | B; | By

Wq | W5 | W | W7

Dercl 0 0|0

v

) 4) 4
AN
v v v (b) Function g
1 w

Wao | W4

42| W43

(a) Overall algorithm
AES Key Expansion

192

CHAPTER 6 / ADVANCED ENCRYPTION STANDARD

1. RotWord performs a one-byte circular left shift on a word. This means that an
input word [By, By, B,, B3] is transformed into [B4, B,, B3, Bg].

2. SubWord performs a byte substitution on each byte of its input word, using the
S-box (Table 6.2a).

3. The result of steps 1 and 2 is XORed with a round constant, Rcon[j].

The round constant is a word in which the three rightmost bytes are always 0.
Thus, the effect of an XOR of a word with Rcon is to only perform an XOR on the
leftmost byte of the word. The round constant is different for each round and is de-
fined as Reon[j] = (RCJj], 0, 0, 0), with RC[1] = 1, RC[j] = 2-RC([j — 1] and with
multiplication defined over the field GF(2®). The values of RC[j] in hexadecimal are

j 1 2 3 4 5 6 7 8 9 10
RC[j] 01 02 04 08 10 20 40 80 1B 36

For example, suppose that the round key for round 8 is
EA D273 21 B5 8D BA D231 2B F5 60 7F 8D 29 2F

Then the first 4 bytes (first column) of the round key for round 9 are calculated as
follows:

i(decimal) | temp

After After After XOR . w[i] = temp
RotWord | SubWord Reon (9) with Rcon wli = 4] @ wli — 4]

36 7F8D292F | 8D292F7F | SDAS515D2 |1B000000| 46A515D2 |EAD27321| AC7766F3

Rationale

The Rijndael developers designed the expansion key algorithm to be resistant to
known cryptanalytic attacks. The inclusion of a round-dependent round constant
eliminates the symmetry, or similarity, between the ways in which round keys are
generated in different rounds. The specific criteria that were used are [DAEM99]

m Knowledge of a part of the cipher key or round key does not enable calcula-
tion of many other round-key bits.

B An invertible transformation [i.e., knowledge of any Nk consecutive words of
the expanded key enables regeneration of the entire expanded key (Nk = key
size in words)].

m Speed on a wide range of processors.
m Usage of round constants to eliminate symmetries.

m Diffusion of cipher key differences into the round keys; that is, each key bit
affects many round key bits.

® Enough nonlinearity to prohibit the full determination of round key differ-
ences from cipher key differences only.

m Simplicity of description.

6.5 / AN AES EXAMPLE 193

The authors do not quantify the first point on the preceding list, but the idea
is that if you know less than Nk consecutive words of either the cipher key or one of
the round keys, then it is difficult to reconstruct the remaining unknown bits. The
fewer bits one knows, the more difficult it is to do the reconstruction or to deter-
mine other bits in the key expansion.

6.5 AN AES EXAMPLE

We now work through an example and consider some of its implications. Although
you are not expected to duplicate the example by hand, you will find it informative
to study the hex patterns that occur from one step to the next.

For this example, the plaintext is a hexadecimal palindrome. The plaintext,
key, and resulting ciphertext are

Plaintext: 0123456789%9abcdeffedcba9876543210
Key: 0£1571c947d9e8590cb7add6af7£6798
Ciphertext: £ff0b844a0853bf7¢c6934ab4364148fb9

Results

Table 6.3 shows the expansion of the 16-byte key into 10 round keys. As previ-
ously explained, this process is performed word by word, with each four-byte word
occupying one column of the word round-key matrix. The left-hand column shows

Table 6.3 Key Expansion for AES Example

Key Words Auxiliary Function

w0 = 0f 15 71 c9 RotWord (w3) = 7f 67 98 af = x1

wl = 47 d9 e8 59 SubWord (x1) = d2 85 46 79 = yl

w2 = Oc b7 ad dé6 Rcon (1) = 01 00 00 0O

w3 = af 7f 67 98 yl © Rcon (1) = d3 85 46 79 = z1
wad = w0 D z1 = de 90 37 b0 RotWord (w7) = 81 15 a7 38 = x2

w5 = wa D wl = 9b 49 df e9 SubWord (x2) = Oc 59 5c¢ 07 = y2

w6 = w5 @ w2 = 97 fe 72 3f Rcon (2) = 02 00 00 00

wl = w6 ® w3 = 38 81 15 a7 y2 @ Rcon (2) = O0e 59 5¢c 07 = z2
w8 = w4 D z2 = d2 c9 6b b7 RotWord (wll) = f£f d3 c6 e6 = x3
WO = w8 @ w5 = 49 80 bd 5e SubWord (x3) = 16 66 b4 83 = y3

wl0 = w9 © w6 = de 7e c6 61 Reon (3) = 04 00 00 00

wll = wl0 @ w7 = e6 ££f d3 c6 y3 © Reon (3) = 12 66 b4 8e = z3
wl2 = w8 @ z3 = c0 af df 39 RotWord (wl5) = ae 7e cO0 bl = x4
wl3 = wl2 @ w9 = 89 2f 6b 67 SubWord (x4) = e4 £3 ba c8 = y4

wld = wl3 @ wl0 = 57 51 ad 06 Rcon (4) = 08 00 00 00

wl5 = wid @ wll = bl ae 7e c0 y4 © Rcon (4) = ec £3 ba c8 = 4

(Continued)

194 CHAPTER 6 / ADVANCED ENCRYPTION STANDARD

Table 6.3 Continued

Key Words Auxiliary Function
wlé = wi2 D z4 = 2¢c 5¢c 65 f1 RotWord (wl9) = 8c dd 50 43 = x5
wl? = wlé @ wl3 = a5 73 Oe 96 SubWord (x5) = 64 cl 53 la = y5
wl8 = w17 @ wl4 = £2 22 a3 90 Reon (5) = 10 00 00 00
wl9 = wl8 & wl5 = 43 8c dd 50 y5 © Reon (5) = 74 cl 53 la = z5
w20 = wlé D z5 = 58 9d 36 eb RotWord (w23) = 40 46 bd 4c = x6
w2l = w20 ® wl7 = £d ee 38 7d SubWord (x6) = 09 S5a 7a 29 = y6
w22 = w2l & wl8 = 0f cc 9b ed Rcon (6) = 20 00 00 00
w23 = w22 ® wl9 = 4c 40 46 bd y6 @ Rcon(6) = 29 5a 7a 29 = z6
w24 = w20 ® z6 = 71 c7 4c c2 RotWord (w27) = a5 a9 ef cf = x7
w25 = w24 & w2l = 8c 29 74 bf SubWord (x7) = 06 d3 bf 8a = y7
w26 = w25 @® w22 = 83 e5 ef 52 Reon (7) = 40 00 00 00
w27 = w26 © w23 = cf a5 a9 ef y7 @ Rcon(7) = 46 d3 df 8a = z7
w28 = w24 @ z7 = 37 14 93 48 RotWord (w31l) = 7d al 4a f7 = x8
w29 = w28 @ w25 = bb 3d e7 £7 SubWord (x8) = ff 32 d6 68 = y8
w30 = w29 @ w26 = 38 d8 08 a5 Rcon (8) = 80 00 00 00
w3l = w30 @ w27 = £7 7d al 4a y8 © Rcon(8) = 7f 32 d6 68 = z8
w32 = w28 P z8 = 48 26 45 20 RotWord (w35) = be 0Ob 38 3c = x9
w33 = w32 ® w29 = £3 1b a2 d7 SubWord (x9) = ae 2b 07 eb = y9
w34 = w33 @ w30 = cb c3 aa 72 Rcon (9) = 1B 00 00 00
w35 = w34 @ w32 = 3c be 0b 3 y9 © Reon (9) = b5 2b 07 eb = 29
w36 = w32 @ z9 = £d 0d 42 cb RotWord (w39) = 6b 41 56 f9 = x10
w37 = w36 @ w33 = Oe 16 e0 1c SubWord (x10) = 7f 83 bl 99 = yl10
w38 = w37 @ w34 = c5 d5 4a 6e Reon (10) = 36 00 00 00
w39 = w38 D w35 = £9 6b 41 56 y1l0 © Rcon (10) = 49 83 bl 99 = z10
w40 = w36 & z10 = b4 8e £3 52
w4l = w40 @ w37 = ba 98 13 4e
w42 = wal @ w38 = 7f 4d 59 20
w43 = w42 D w39 = 86 26 18 76

the four round-key words generated for each round. The right-hand column shows
the steps used to generate the auxiliary word used in key expansion. We begin, of
course, with the key itself serving as the round key for round 0.

Next, Table 6.4 shows the progression of State through the AES encryption
process. The first column shows the value of State at the start of a round. For the
first row, State is just the matrix arrangement of the plaintext. The second, third, and
fourth columns show the value of State for that round after the SubBytes, ShiftRows,
and MixColumns transformations, respectively. The fifth column shows the round
key. You can verify that these round keys equate with those shown in Table 6.3. The
first column shows the value of State resulting from the bitwise XOR of State after
the preceding MixColumns with the round key for the preceding round.

Avalanche Effect

If a small change in the key or plaintext were to produce a corresponding small
change in the ciphertext, this might be used to effectively reduce the size of the

195

AES Example

Start of Round | After SubBytes | After ShiftRows | After MixColumns | Round Key
01 89 fe 76 0f 47 Oc af
23 ab dc 54 15 d9 b7 7£
45 cd ba 32 71 e8 ad 67
67 ef 98 10 c9 59 d6 98
Oe ce f2 d9 ab 8b 89 35 ab 8b 89 35 b9 94 57 75 dc 9o 97 38
36 72 6b 2b 05 40 7f f1 40 7f £1 05 ed4 8e 16 51 90 49 fe 81
34 25 17 55 18 3f f0 fc f0 fc 18 3f 47 20 9a 3f 37 df 72 15
ae b6 4e 88 ed 4e 2f c4 cd ed 4e 2f c5 d6 £5 3b b0 e9 3f a7
65 0f cO 44 4d 76 ba e3 4d 76 ba e3 8e 22 db 12 d2 49 de eb6
74 c7 e8 dO 92 c6 9 70 c6 9 70 92 b2 £f2 dc 92 c9 80 7e ff
70 £f e8 2a 51 16 9 e5 9b e5 51 16 df 80 £f7 cl 6b b4 c6 d3
75 3f ca 9c 9d 75 74 de de 94 75 74 2d c5 le 52 b7 5e 61 c6
5¢c 6b 05 f4 4a 7f 6b bf 4a 7f 6b bf bl cl 0b cc c0 89 57 bl
7b 72 a2 6d 21 40 3a 3c 40 3a 3c 21 ba £3 8b 07 af 2f 51 ae
b4 34 31 12 8d 18 c7 c9 c7 c9 8d 18 £f9 1f 6a c3 df 6b ad 7e
9a 9b 7f 94 b8 14 d2 22 22 b8 14 d2 1d 19 24 5c 39 67 06 cO
71 48 5c¢ 7d a3 52 4a ff a3 52 4a ff d4 11 fe Of 2c a5 f2 43
15 dc da a9 59 86 57 d3 86 57 d3 59 3b 44 06 73 5¢c 73 22 8c
26 74 c7 bd £7 92 c6 7Ta c6 7a £7 92 cb ab 62 37 65 O0e a3 dd
24 T7e 22 9c 36 £3 93 de de 36 £3 93 19 b7 07 ec f1 96 90 50
£f8 b4 Oc 4c 41 8d fe 29 41 8d fe 29 2a 47 c4 48 58 fd 0f 4c
67 37 24 ff 85 9a 36 16 9a 36 16 85 83 e8 18 ba 9d ee cc 40
ae a5 cl ea e4 06 78 87 78 87 e4d 06 84 18 27 23 36 38 9b 46
e8 21 97 bc 9b fd 88 65 65 9b fd 88 eb 10 0a £3 eb 7d ed bd
72 ba cb 04 40 f4 1f f£2 40 f£4 1f f2 7b 05 42 4a 71 8c 83 cf
le 06 d4 fa 72 6f 48 2d 6f 48 24 72 le dO 20 40 c7 29 e5 a5
b2 20 bc 65 37 b7 65 4d 65 4d 37 b7 94 83 18 52 4c 74 ef a9
00 6d e7 4e 63 3c 94 2f 2f 63 3c 94 94 c4 43 fb c2 bf 52 ef
Oa 89 cl 85 67 a7 78 97 67 a7 78 97 ec la cO 80 37 bb 38 £7
d9 £9 c5 e5 35 99 a6 d9 99 a6 d9 35 Oc 50 53 c7 14 3d d8 7d
d8 £7 £7 fb 61 68 68 Of 68 0f 61 68 3b d7 00 ef 93 e7 08 al
56 7b 11 14 bl 21 82 fa fa bl 21 82 b7 22 72 e0 48 £7 a5 4a
db al £8 77 b9 32 41 £5 b9 32 41 £5 bl la 44 17 48 £3 cb 3c
18 6d 8b ba ad 3c 3d f4 3c 3d f4 ad 3d 2f ec b6 26 1b c3 be
a8 30 08 4e c2 04 30 2f 30 2f c2 04 Oa 6b 2f 42 45 a2 aa Ob
ff d5 d7 aa 16 03 Oe ac ac 16 03 Oe 9f 68 £3 bl 20 d7 72 38
f9 e9 8f 2b 99 le 73 f1 99 le 73 f1 31 30 3a c2 fd O0e c5 £9
1b 34 2f 08 af 18 15 30 18 15 30 af ac 71 8c c4 0d 16 d5 6b
4f c9 85 49 84 dd 97 3b 97 3b 84 dd 46 65 48 eb 42 e0 4a 41
bf bf 81 89 08 08 Oc a7 a7 08 08 Oc 6a 1lc 31 62 cb 1lc 6e 56
cc 3e ff 3b 4b b2 16 e2 4b b2 16 e2 b4 ba 7f 86
al 67 59 af 32 85 cb 79 85 cb 79 32 8e 98 4d 26
04 85 02 aa £2 97 77 ac 77 ac £2 97 £3 13 59 18
al 00 5f 34 32 63 cf 18 18 32 63 cf 52 4e 20 76
£f 08 69 64

Ob 53 34 14

84 bf ab 8f

4a 7c 43 b9

196 CHAPTER 6 / ADVANCED ENCRYPTION STANDARD

Table 6.5 Avalanche Effect in AES: Change in Plaintext

Round Number of Bits
that Differ

0123456789abcdeffedcbad9876543210 1
0023456789%9abcdeffedcba9876543210

0 Oe3634aece7225b6£26bl74ed92b5588 1
0f£3634aece7225b6£26bl174ed92b5588

1 657470750fc7££3fc0e8e8caddd02a9c 20
c4a9ad090fc7f£3fc0e8e8caddd02a9c

2 5¢c7bb49a6b72349b05a2317££46d4d1294 58
fe2ae569f7ee8bb8clf5a2bb37e£53d5

3 7115262448dc747e5cdac7227da%bd9%¢ 59
ec093dfb7c45343d689017507d485e62

4 f867aee8b437a5210c24cl974cffeabe 61
43efdb697244d£f808e8d9364eelaebf5

5 721eb200ba06206dcbd4bce704fa654e 68
Tb28a5d5ed643287e006c099bb375302

6 0ad9d85689f9f77bclc5£71185e5fbl4 64
3bc2d8b6798d8ac4fe36ald89lacl8la

7 db18a8ffal6d30d5£88b08d777badeaa 67
9fb8b5452023c70280e5¢c4bb9%e555a4b

8 f91b4fbfe934c9bp£f8£2£85812b084989 65
20264ell26b219%aef7feb3£f9b2d6de40

9 ccal04al3e678500££59025f3bafaa34 61
b56a0341b2290ba7dfdfbddcd8578205

10 ff0b844a0853b£f7c6934ab4364148fb9 58
612b89398d0600cdel16227ce72433£0

plaintext (or key) space to be searched. What is desired is the avalanche effect, in
which a small change in plaintext or key produces a large change in the ciphertext.

Using the example from Table 6.4, Table 6.5 shows the result when the
eighth bit of the plaintext is changed. The second column of the table shows the
value of the State matrix at the end of each round for the two plaintexts. Note
that after just one round, 20 bits of the State vector differ. After two rounds,
close to half the bits differ. This magnitude of difference propagates through
the remaining rounds. A bit difference in approximately half the positions in the
most desirable outcome. Clearly, if almost all the bits are changed, this would be
logically equivalent to almost none of the bits being changed. Put another way, if
we select two plaintexts at random, we would expect the two plaintexts to differ
in about half of the bit positions and the two ciphertexts to also differ in about
half the positions.

Table 6.6 shows the change in State matrix values when the same plaintext
is used and the two keys differ in the eighth bit. That is, for the second case, the
key is 0€1571¢c947d9e8590cb7add6atf7£6798. Again, one round produces
a significant change, and the magnitude of change after all subsequent rounds
is roughly half the bits. Thus, based on this example, AES exhibits a very strong
avalanche effect.

6.6 / AES IMPLEMENTATION 197

Table 6.6 Avalanche Effect in AES: Change in Key

Round Number of Bits
that Differ

0123456789abcdeffedcba9876543210 0
0123456789abcdeffedcba9876543210

0 Oe3634aece7225b6£26bl174ed92b5588 1
0£3634aece7225b6£26b174ed92b5588

1 657470750fc7££3fc0e8e8caddd02a9c 22
c5a9%9ad090ec7ff3fcle8e8cadcd02a9c

2 5¢c7bb49a6b72349b05a2317££46d1294 58
90905£a9563356d15£3760£3b8259985

3 7115262448dc747e5cdac7227da%bd9%¢ 67
18aeb7aa794b3b66629448d575¢c7cebf

4 f867aee8b437a5210c24cl974cffeabe 63
£81015£993c978a876ae017cb49%e7eec

5 721eb200ba06206dcbd4bce704fa654e 81
5955c91b4e769£f3cb4a94768e98d5267

6 0ad9d85689£9£f77bclc5£71185e5£fb14 70
dc60a24d137662181e45b8d3726b2920

7 dbl8a8ffal6d30d5£88b08d777badeaa 74
fe8343b8£88bef66cab7e977d005a03¢c

8 £91b4fbfe934c9b£f8£2£85812b084989 67
da7dad581d1725c5b72£a0£9d9d1366a

9 ccal04al3e678500££59025f3bafaa34 59
Occb4c66bbfd912£4b511d72996345e0

10 ££f0b844a0853b£f7c6934ab4364148£fb9 53
£c8923ee501a7d207ab670686839996b

Note that this avalanche effect is stronger than that for DES (Table 4.2),
which requires three rounds to reach a point at which approximately half the bits
are changed, both for a bit change in the plaintext and a bit change in the key.

6.6 AES IMPLEMENTATION

Equivalent Inverse Cipher

As was mentioned, the AES decryption cipher is not identical to the encryption
cipher (Figure 6.3). That is, the sequence of transformations for decryption differs
from that for encryption, although the form of the key schedules for encryption
and decryption is the same. This has the disadvantage that two separate software
or firmware modules are needed for applications that require both encryption and
decryption. There is, however, an equivalent version of the decryption algorithm
that has the same structure as the encryption algorithm. The equivalent version has
the same sequence of transformations as the encryption algorithm (with transfor-
mations replaced by their inverses). To achieve this equivalence, a change in key

schedule is needed.

198

CHAPTER 6 / ADVANCED ENCRYPTION STANDARD

Two separate changes are needed to bring the decryption structure in line
with the encryption structure. As illustrated in Figure 6.3, an encryption round has
the structure SubBytes, ShiftRows, MixColumns, AddRoundKey. The standard
decryption round has the structure InvShiftRows, InvSubBytes, AddRoundKey,
InvMixColumns. Thus, the first two stages of the decryption round need to be inter-
changed, and the second two stages of the decryption round need to be interchanged.

INTERCHANGING INvSHIFTROWS AnD INvSUuBByTES InvShiftRows affects the se-
quence of bytes in State but does not alter byte contents and does not depend on
byte contents to perform its transformation. InvSubBytes affects the contents of
bytes in State but does not alter byte sequence and does not depend on byte se-
quence to perform its transformation. Thus, these two operations commute and can
be interchanged. For a given State S,

InvShiftRows [InvSubBytes (S;)] = InvSubBytes [InvShiftRows (S;)]

INTERCHANGING ADDROUNDKEY AND InvMixCorumns The transformations
AddRoundKey and InvMixColumns do not alter the sequence of bytes in State. If we
view the key as a sequence of words, then both AddRoundKey and InvMixColumns
operate on State one column at a time. These two operations are linear with respect
to the column input. That is, for a given State S; and a given round key w;,

InvMixColumns (S; ® w;) = [InvMixColumns (S;)] ® [InvMixColumns (w;)]

To see this, suppose that the first column of State S; is the sequence (yg, v1, y2, ¥3)
and the first column of the round key w; is (k, k1, k, k3). Then we need to show

OE 0B 0D 09 |[yo@® ko OE 0B 0D 09 |[y, OE OB 0D 09 |[&
09 OE OB OD || y;@k | | 09 OE OB 0D || y 09 OE 0B OD || k
0D 09 OE OB || y,@k | | 0D 09 OE OB || y, Dl op 09 0E 0B || K,
0B 0D 09 OE || y;@® ks 0B 0D 09 OE || y 0B 0D 09 OE || ks

Let us demonstrate that for the first column entry. We need to show

[{OE} - (yo @ ko)] @ [{0B} - (y1 @ k1)] @ [{0D} - (v, @ k)] @ [{09} - (y3 @ ka)]
= [{OE} - yo] ® [{0B} - y1] @ [{OD} - y,] ® [{09} - y3] @
[{OE} - ko] ® [{OB} - k1] ® [{OD} - ko] ® [{09} - k3]

This equation is valid by inspection. Thus, we can interchange AddRoundKey
and InvMixColumns, provided that we first apply InvMixColumns to the round
key. Note that we do not need to apply InvMixColumns to the round key for the
input to the first AddRoundKey transformation (preceding the first round) nor to
the last AddRoundKey transformation (in round 10). This is because these two
AddRoundKey transformations are not interchanged with InvMixColumns to pro-
duce the equivalent decryption algorithm.

Figure 6.10 illustrates the equivalent decryption algorithm.

6.6 / AES IMPLEMENTATION 199

Ciphertext

W[40, 43] [Addround key |

| Inverse sub bytes |

| Inverse shift rows |

¥

| Inverse mix cols |

Round 1

| Inverse mix cols l— | Add round key |

> W[36, 39] —T

| Inverse sub bytes |

'

| Inverse shift rows |

¥

| Inverse mix cols |

Round 9

| Inverse mix cols |—>| Add round key |

w4, 7] T |

| Inverse sub bytes

| Expand key | | Inverse shift rows |

'

wl0, 3] I Add round key |

\

Key Plaintext

Round 10

Figure 6.10 Equivalent Inverse Cipher

Implementation Aspects

The Rijndael proposal [DAEMY99] provides some suggestions for efficient im-
plementation on 8-bit processors, typical for current smart cards, and on 32-bit
processors, typical for PCs.

8-Brr Processor AES can be implemented very efficiently on an 8-bit proces-
sor. AddRoundKey is a bytewise XOR operation. ShiftRows is a simple byte-
shifting operation. SubBytes operates at the byte level and only requires a table
of 256 bytes.

The transformation MixColumns requires matrix multiplication in the field
GF(2%), which means that all operations are carried out on bytes. MixColumns only
requires multiplication by {02} and {03}, which, as we have seen, involved simple
shifts, conditional XORs, and XORs. This can be implemented in a more efficient

200 CHAPTER 6 / ADVANCED ENCRYPTION STANDARD

way that eliminates the shifts and conditional XORs. Equation set (6.4) shows the
equations for the MixColumns transformation on a single column. Using the iden-
tity {03} -x = ({02} - x) @ x, we can rewrite Equation set (6.4) as follows.

Tmp = SO,j@Sl,j@S2,j@s3,j
50,; = 80,; @ Tmp @D [2- (s0,; D 51,)]
51, =81, @ Tmp @ [2-(s1,; D 52,)] (6.9)
55 =8, @ Tmp D [2-(s55,; D s3,))]
Sé,j = 83, ®Tmp DI[2- (53,j ® So,j)]
Equation set (6.9) is verified by expanding and eliminating terms.

The multiplication by {02} involves a shift and a conditional XOR. Such
an implementation may be vulnerable to a timing attack of the sort described in
Section 4.4. To counter this attack and to increase processing efficiency at the
cost of some storage, the multiplication can be replaced by a table lookup. Define
the 256-byte table X2, such that X2[i] = {02} -i. Then Equation set (6.9) can be
rewritten as

Tmp = sO,j®sl,j®52,j®53,j

36,/ = So,j ® Tmp ® XZ[SO,j ® Sl,j]

Ste = 51,; D Tmp @D X2[s1,; D 52,]

S'z,c = 8, ® Tmp ® Xz[SZ,j ® S3,j]

55 = 83, @ Tmp @ X2[s3 ; D sp ;]
32-Brr Processor The implementation described in the preceding subsection uses
only 8-bit operations. For a 32-bit processor, a more efficient implementation can be
achieved if operations are defined on 32-bit words. To show this, we first define the

four transformations of a round in algebraic form. Suppose we begin with a State

matrix consisting of elements a; ; and a round-key matrix consisting of elements k; ;.

Then the transformations can be expressed as follows.

SubBytes b;; = Sla;]
Co.j by, ;
1 by i
ShiftRows CL/ _ bl, j-1
2, 2,j-2
. b3 -3
dyj 02 03 01 01| co,
MixCol dij|_ 101 02 03 01| ¢
ixColumns dy 01 01 02 03| c,;
ds, 03 01 01 02| cs;
€, do,j ko, j
; d, ; ki
AddRoundKey ZLJ - dl,.z ® kl,]
2,j 2,j 2,j
€. ds ks,

6.6 / AES IMPLEMENTATION 201

In the ShiftRows equation, the column indices are taken mod 4. We can
combine all of these expressions into a single equation:

eo,j
61’]'
62,]'
€3J

S)

02
01
01
03

01
01
03

01
03

2]

01 |

02]

03 01 01]
02 03 01
01 02 03
01 01 02|
: S[ao, j] ®
*Slas 3]

Slaq,]
S[al,j—ﬂ
S[az,j—z]
S[az, j-3]

03
02
01

: 5[01,]'—1] ®

ko j
ki
ky
ks j

@

: S[ﬂz, j—z]

In the second equation, we are expressing the matrix multiplication as a linear com-
bination of vectors. We define four 256-word (1024-byte) tables as follows.

Tolx] =

- S[x]

T[x] =

- S[x]

T[]

01 01
03 01
. Tix] = .
o S || 7 = [| g |51
01 02

Thus, each table takes as input a byte value and produces a column vector (a 32-bit
word) that is a function of the S-box entry for that byte value. These tables can be
calculated in advance.

We can define a round function operating on a column in the following fashion.

= Tolso, ;1 ® Tils1,j-1] @ Tals,j-2] @ Tx[s3,;-3] @

k()’j
ky
ky
ks,

7j

As aresult, an implementation based on the preceding equation requires only
four table lookups and four XORs per column per round, plus 4 Kbytes to store the
table. The developers of Rijndael believe that this compact, efficient implementa-
tion was probably one of the most important factors in the selection of Rijndael

for AES.

202 CHAPTER 6 / ADVANCED ENCRYPTION STANDARD

6.7 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms
Advanced Encryption finite field National Institute of Standards
Standard (AES) irreducible and Technology (NIST)
avalanche effect polynomial Rijndael
field key expansion S-box

Review Questions

6.1 What was the original set of criteria used by NIST to evaluate candidate AES ciphers?
6.2 What was the final set of criteria used by NIST to evaluate candidate AES ciphers?
6.3 What is the difference between Rijndael and AES?
6.4 What is the purpose of the State array?
6.5 How is the S-box constructed?
6.6 Briefly describe SubBytes.
6.7 Briefly describe ShiftRows.
6.8 How many bytes in State are affected by ShiftRows?
6.9 Briefly describe MixColumns.
6.10 Briefly describe AddRoundKey.
6.11 Briefly describe the key expansion algorithm.
6.12 What is the difference between SubBytes and SubWord?
6.13 What is the difference between ShiftRows and RotWord?

6.14 What is the difference between the AES decryption algorithm and the equivalent
inverse cipher?

Problems

6.1 In the discussion of MixColumns and InvMixColumns, it was stated that
b(x) = a }(x) mod(x* + 1)

where a(x) = {03)x® + {01}x? + {01)x + {02}and b(x) = {0B)x® + {OD}x? + {09)x +
{OE.} Show that this is true.

6.2 a. Whatis {02} in GF(2%)?
b. Verify the entry for {02} in the S-box.

6.3 Show the first eight words of the key expansion for a 128-bit key of all ones.

6.4 Given the plaintext {OFOEODOCOB0A09080706050403020100} and the key
{02020202020202020202020202020202}:

Show the original contents of State, displayed as a 4 X 4 matrix.

Show the value of State after initial AddRoundKey.

Show the value of State after SubBytes.

Show the value of State after ShiftRows.

Show the value of State after MixColumns.

6.5 Verify Equation (6.11) in Appendix 6A. That is, show that x' mod (x* + 1) = x'mod4,

IR

6.6

6.7

6.8

6.9

6.10

6.11

6.12

6.13

APPENDIX 6A / POLYNOMIALS WITH COEFFICIENTS IN GF(2%) 203

Compare AES to DES. For each of the following elements of DES, indicate the com-
parable element in AES or explain why it is not needed in AES.

a. XOR of subkey material with the input to the f function

b. XOR of the f function output with the left half of the block

c. ffunction

d. permutation P

e. swapping of halves of the block

In the subsection on implementation aspects, it is mentioned that the use of tables
helps thwart timing attacks. Suggest an alternative technique.

In the subsection on implementation aspects, a single algebraic equation is developed
that describes the four stages of a typical round of the encryption algorithm. Provide
the equivalent equation for the tenth round.

Compute the output of the MixColumns transformation for the following sequence
of input bytes “A1 B2 C3 D4.” Apply the InvMixColumns transformation to the ob-
tained result to verify your calculations. Change the first byte of the input from “A1”
to “A3” perform the MixColumns transformation again for the new input, and deter-
mine how many bits have changed in the output.

Note: You can perform all calculations by hand or write a program supporting these
computations. If you choose to write a program, it should be written entirely by you;
no use of libraries or public domain source code is allowed in this assignment.

Use the key 1010 1001 1100 0011 to encrypt the plaintext “hi” as expressed in ASCII
as 0110 1000 0110 1001. The designers of S-AES got the ciphertext 0011 1110 1111
1011. Do you?

Show that the matrix given here, with entries in GF(2%), is the inverse of the matrix
used in the MixColumns step of S-AES.

2+ X
x X +1
Carefully write up a complete decryption of the ciphertext 0011 1110 1111 1011 using
the key 1010 1001 1100 0011 and the S-AES algorithm. You should get the plaintext
we started with in Problem 6.10. Note that the inverse of the S-boxes can be done
with a reverse table lookup. The inverse of the MixColumns step is given by the ma-

trix in the previous problem.
Demonstrate that Equation (6.9) is equivalent to Equation (6.4).

Programming Problems

6.14

6.15

Create software that can encrypt and decrypt using S-AES. Test data: A binary
plaintext of 0110 1111 0110 1011 encrypted with a binary key of 10100111 0011 1011
should give a binary ciphertext of 0000 0111 0011 1000. Decryption should work
correspondingly.

Implement a differential cryptanalysis attack on 1-round S-AES.

APPENDIX 6A POLYNOMIALS WITH COEFFICIENTS IN GF(2%)

In Section 5.5, we discussed polynomial arithmetic in which the coefficients are in Z,
and the polynomials are defined modulo a polynomial m(x) whose highest power
is some integer n. In this case, addition and multiplication of coefficients occurred
within the field Z,; that is, addition and multiplication were performed modulo p.

204 CHAPTER 6 / ADVANCED ENCRYPTION STANDARD

The AES document defines polynomial arithmetic for polynomials of degree 3
or less with coefficients in GF(2%). The following rules apply.

1. Addition is performed by adding corresponding coefficients in GF(2%). As was
pointed out Section 5.4, if we treat the elements of GF(2%) as 8-bit strings, then
addition is equivalent to the XOR operation. So, if we have

a(x) = asx® + ax* + aix + ag (6.10)
and

b(x) = b3x® + bx* + bix + by (6.11)
then

a(x) + b(x) = (a3 D b3)x” + (ay D by)x* + (a1 @ by)x + (ag @ by)

2. Multiplication is performed as in ordinary polynomial multiplication with two
refinements:

a. Coefficients are multiplied in GF(2®).
b. The resulting polynomial is reduced mod (x* + 1).

We need to keep straight which polynomial we are talking about. Recall from
Section 5.6 that each element of GF(2%) is a polynomial of degree 7 or less with bi-
nary coefficients, and multiplication is carried out modulo a polynomial of degree
8. Equivalently, each element of GF(2%) can be viewed as an 8-bit byte whose bit
values correspond to the binary coefficients of the corresponding polynomial. For
the sets defined in this section, we are defining a polynomial ring in which each ele-
ment of this ring is a polynomial of degree 3 or less with coefficients in GF(2®), and
multiplication is carried out modulo a polynomial of degree 4. Equivalently, each
element of this ring can be viewed as a 4-byte word whose byte values are elements
of GF(2%) that correspond to the 8-bit coefficients of the corresponding polynomial.

We denote the modular product of a(x) and b(x) by a(x) @ b(x). To com-
pute d(x) = a(x) @ b(x), the first step is to perform a multiplication without the
modulo operation and to collect coefficients of like powers. Let us express this as
c(x) = a(x) X b(x). Then

c(x) = cex® + csx® + cgx + 3 + X + ox + ¢ (6.12)
where
co = ap* by ¢y = (a3 by) @ (a* by) @ (a; - b3)
c1 = (a1 by) D (ap* by) ¢s = (az*by) @ (ar* b3)
¢, = (ay°bo) @ (a;*by) D (ay* by) Ce = a3 b

c3 = (a3 by) @ (ay*b1) D (ar+by) D (ap* b3)

The final step is to perform the modulo operation

d(x) = c(x) mod (x* + 1)

APPENDIX 6A / POLYNOMIALS WITH COEFFICIENTS IN GF(2%) 205

That is, d(x) must satisfy the equation

c(x) = [(+* + 1) X g(x)] @ d(x)

such that the degree of d(x) is 3 or less.
A practical technique for performing multiplication over this polynomial ring
is based on the observation that

x'mod (x* + 1) = x/mod4 (6.13)
If we now combine Equations (6.12) and (6.13), we end up with
d(x) = c(x) mod (x* + 1)
[cex® + csx + cax® + c3x® + X + ¢x + co] mod (x* + 1)
= o8’ + (@ ¥ + (¢ D es)x + (co D cq)

Expanding the c; coefficients, we have the following equations for the coef-
ficients of d(x).

dy = (ag*bo) @ (a3 b)) @ (ay*by) D (a; * b3)
d; = (a;*bo) D (ap*by) @ (a3 bzg @ (az b3)
)

dy = (ay*bo) @ (a;*by) D (ag*by) @ (az+ b3)
dsy = (a3*bo) @ (a2 b1) D (a;+by) @ (ap* b3)

This can be written in matrix form:

dy ap a3 @ 0 by
dy a a as b,
= (6.14)
d, G 4 a as b,
ds a dy ap 4y bs

MixColumns Transformation

In the discussion of MixColumns, it was stated that there were two equivalent
ways of defining the transformation. The first is the matrix multiplication shown in
Equation (6.3), which is repeated here:

02 03 01 O1 || so0 So1 So2 503 50,0 S0.1 S0.2 S0.3
01 02 03 O1 {|s0 s,1 S22 S13|_|So Sut Su2 Sis
01 01 02 03 |0 S21 S22 S23 - S0 Sh1 Sho2 Sha
03 01 01 02][s30 $31 $32 933 S30 S31 S32 33

The second method is to treat each column of State as a four-term polynomial
with coefficients in GF(2%). Each column is multiplied modulo (x* + 1) by the fixed
polynomial a(x), given by

a(x) = {03} + {01)x* + {01}x + {02}

206

CHAPTER 6 / ADVANCED ENCRYPTION STANDARD

From Equation (6.10), we have a3 = {03};a, = {01}; a; = {01}; and
ap = {02}. For the jth column of State, we have the polynomial col;(x) = s3,]-x3 +
sszz + six + 50,;. Substituting into Equation (6.14), we can express
d(x) = a(x) X colx) as

dy a az a ap || S 02 03 01 01 || s
di| _|a a a3 ayf[sy; | _ |01 02 03 01| s
d, B a a ay az || sy 1ot 01 02 03 $2j
ds a a ay ay_|| 83 03 01 01 02| s3

which is equivalent to Equation (6.3).

Multiplication by x

Consider the multiplication of a polynomial in the ring by x: c(x) = x @ b(x).
We have
c(x) = x @ b(x) = [x X (b3x® + byx? + byx + byl mod (x* + 1)

= (byx* + bx® + bix* + bgx) mod (x* + 1)
= b2X3 + b1X2 + box + b3

Thus, multiplication by x corresponds to a 1-byte circular left shift of the
4 bytes in the word representing the polynomial. If we represent the polynomial as
a 4-byte column vector, then we have

<o 00 00 00 017][b
e | o1t 00 00 00| b
¢ 00 01 00 00|l b,

e 00 00 01 00]| bs

Brock CipPHER OPERATION

71

7.2
7.3
74
7.5
7.6
7.7

7.8

7.9

Multiple Encryption and Triple DES

Double DES
Triple DES with Two Keys
Triple DES with Three Keys

Electronic Codebook

Cipher Block Chaining Mode

Cipher Feedback Mode

Output Feedback Mode

Counter Mode

XTS-AES Mode for Block-Oriented Storage Devices

Tweakable Block Ciphers

Storage Encryption Requirements
Operation on a Single Block
Operation on a Sector

Format-Preserving Encryption

Motivation

Difficulties in Designing an FPE

Feistel Structure for Format-Preserving Encryption
NIST Methods for Format-Preserving Encryption

Key Terms, Review Questions, and Problems

207

208 CHAPTER 7 / BLOCK CIPHER OPERATION

LEARNING OBJECTIVES

After studying this chapter, you should be able to:

¢ Analyze the security of multiple encryption schemes.

¢ Explain the meet-in-the-middle attack.

¢ Compare and contrast ECB, CBC, CFB, OFB, and counter modes of operation.
¢ Present an overview of the XTS-AES mode of operation.

This chapter continues our discussion of symmetric ciphers. We begin with the topic of
multiple encryption, looking in particular at the most widely used multiple-encryption
scheme: triple DES.

The chapter next turns to the subject of block cipher modes of operation. We
find that there are a number of different ways to apply a block cipher to plaintext, each
with its own advantages and particular applications.

7.1 MULTIPLE ENCRYPTION AND TRIPLE DES

Because of its vulnerability to brute-force attack, DES, once the most widely used
symmetric cipher, has been largely replaced by stronger encryption schemes. Two
approaches have been taken. One approach is to design a completely new algo-
rithm that is resistant to both cryptanalytic and brute-force attacks, of which AES
is a prime example. Another alternative, which preserves the existing investment in
software and equipment, is to use multiple encryption with DES and multiple keys.
We begin by examining the simplest example of this second alternative. We then
look at the widely accepted triple DES (3DES) algorithm.

Double DES

The simplest form of multiple encryption has two encryption stages and two keys
(Figure 7.1a). Given a plaintext P and two encryption keys K; and K,, ciphertext C
is generated as

C = E(K;, E(K,, P))
Decryption requires that the keys be applied in reverse order:
P = D(Kb D(KZ’ C))

For DES, this scheme apparently involves a key length of 56 X 2 = 112 bits, and
should result in a dramatic increase in cryptographic strength. But we need to exam-
ine the algorithm more closely.

7.1 / MULTIPLE ENCRYPTION AND TRIPLE DES 209

Decryption
(a) Double encryption
Ky (-key)
or
K K K, (2-key)

K; (3-key)
or
K K, Ky (2-key)

Decryption

(b) Triple encryption
Figure 7.1 Multiple Encryption

RepucTION TO A SINGLE STAGE Suppose it were true for DES, for all 56-bit key val-
ues, that given any two keys K; and K, it would be possible to find a key K3 such that

E(Ky, E(K;, P)) = E(Ks, P) (7.1)

If this were the case, then double encryption, and indeed any number of stages of
multiple encryption with DES, would be useless because the result would be equiv-
alent to a single encryption with a single 56-bit key.

On the face of it, it does not appear that Equation (7.1) is likely to hold.
Consider that encryption with DES is a mapping of 64-bit blocks to 64-bit blocks.
In fact, the mapping can be viewed as a permutation. That is, if we consider all 2
possible input blocks, DES encryption with a specific key will map each block into a
unique 64-bit block. Otherwise, if, say, two given input blocks mapped to the same
output block, then decryption to recover the original plaintext would be impossible.

210 CHAPTER 7 / BLOCK CIPHER OPERATION

With 2% possible inputs, how many different mappings are there that generate a
permutation of the input blocks? The value is easily seen to be

(264) | = 1()347380000000000000000 ~, (101020)

On the other hand, DES defines one mapping for each different key, for a total
number of mappings:

256 < 1017

Therefore, it is reasonable to assume that if DES is used twice with different keys, it
will produce one of the many mappings that are not defined by a single application
of DES. Although there was much supporting evidence for this assumption, it was
not until 1992 that the assumption was proven [CAMP92].

MEeET-IN-THE-MIDDLE ATTACK Thus, the use of double DES results in a mapping
that is not equivalent to a single DES encryption. But there is a way to attack this
scheme, one that does not depend on any particular property of DES but that will
work against any block encryption cipher.

The algorithm, known as a meet-in-the-middle attack, was first described in
[DIFF77]. It is based on the observation that, if we have

C= E(KZs E(Kla P))
then (see Figure 7.1a)
X = E(Kl’ P) = D(KZ’ C)

Given a known pair, (P, C), the attack proceeds as follows. First, encrypt P for all
2% possible values of K. Store these results in a table and then sort the table by the
values of X. Next, decrypt C using all 2% possible values of K. As each decryption
is produced, check the result against the table for a match. If a match occurs, then
test the two resulting keys against a new known plaintext—ciphertext pair. If the two
keys produce the correct ciphertext, accept them as the correct keys.

For any given plaintext P, there are 2 possible ciphertext values that could be
produced by double DES. Double DES uses, in effect, a 112-bit key, so that there
are 2'2 possible keys. Therefore, for a given plaintext P, the maximum number
of different 112-bit keys that could produce a given ciphertext C is 2112/264 = 24,
Thus, the foregoing procedure can produce about 2* false alarms on the first (P, C)
pair. A similar argument indicates that with an additional 64 bits of known plaintext
and ciphertext, the false alarm rate is reduced to 2*~% = 271 Put another way,
if the meet-in-the-middle attack is performed on two blocks of known plaintext—
ciphertext, the probability that the correct keys are determined is 1 — 276, The
result is that a known plaintext attack will succeed against double DES, which has a
key size of 112 bits, with an effort on the order of 256 which is not much more than
the 2% required for single DES.

Triple DES with Two Keys

An obvious counter to the meet-in-the-middle attack is to use three stages of
encryption with three different keys. Using DES as the underlying algorithm,
this approach is commonly referred to as 3DES, or Triple Data Encryption

7.1 / MULTIPLE ENCRYPTION AND TRIPLE DES 211

Algorithm (TDEA). As shown in Figure 7.1b, there are two versions of 3DES;
one using two keys and one using three keys. NIST SP 800-67 (Recommendation
for the Triple Data Encryption Block Cipher, January 2012) defines the two-key
and three-key versions. We look first at the strength of the two-key version and
then examine the three-key version.

Two-key triple encryption was first proposed by Tuchman [TUCH79]. The
function follows an encrypt-decrypt-encrypt (EDE) sequence (Figure 7.1b):

C = E(K;, D(K,, E(K;, P)))
P = D(K;, E(K;, D(K;, €)))

There is no cryptographic significance to the use of decryption for the second
stage. Its only advantage is that it allows users of 3DES to decrypt data encrypted by
users of the older single DES:

C = E(Ki, D(Ky, E(Ky, P))) = E(K, P)
P = D(Kla E(Kh D(Kl’ C))) = D(Kl’ C)

3DES with two keys is a relatively popular alternative to DES and has been
adopted for use in the key management standards ANSI X9.17 and ISO 8732.!

Currently, there are no practical cryptanalytic attacks on 3DES. Coppersmith
[COPP94] notes that the cost of a brute-force key search on 3DES is on the order of
2112 =~ (5 X 10*) and estimates that the cost of differential cryptanalysis suffers an
exponential growth, compared to single DES, exceeding 10°2.

It is worth looking at several proposed attacks on 3DES that, although not
practical, give a flavor for the types of attacks that have been considered and that
could form the basis for more successful future attacks.

The first serious proposal came from Merkle and Hellman [MERKS81]. Their
plan involves finding plaintext values that produce a first intermediate value of
A = 0 (Figure 7.1b) and then using the meet-in-the-middle attack to determine
the two keys. The level of effort is 2%, but the technique requires 2% chosen plain-
text—ciphertext pairs, which is a number unlikely to be provided by the holder of
the keys.

A known-plaintext attack is outlined in [VANO90]. This method is an im-
provement over the chosen-plaintext approach but requires more effort. The attack
is based on the observation that if we know A and C (Figure 7.1b), then the problem
reduces to that of an attack on double DES. Of course, the attacker does not know
A, even if P and C are known, as long as the two keys are unknown. However, the
attacker can choose a potential value of A and then try to find a known (P, C) pair
that produces A. The attack proceeds as follows.

1. Obtain n (P, C) pairs. This is the known plaintext. Place these in a table
(Table 1) sorted on the values of P (Figure 7.2b).

' American National Standards Institute (ANSI): Financial Institution Key Management (Wholesale).
From its title, X9.17 appears to be a somewhat obscure standard. Yet a number of techniques specified in
this standard have been adopted for use in other standards and applications, as we shall see throughout
this book.

212

CHAPTER 7 / BLOCK CIPHER OPERATION

2.

(a) Two-key triple encryption with candidate pair of keys

P; G
B; Key i
(b) Table of n known (c) Table of intermediate
plaintext—ciphertext values and candidate
pairs, sorted on P keys

Figure 7.2 Known-Plaintext Attack on Triple DES

Pick an arbitrary value a for A, and create a second table (Figure 7.2¢) with en-
tries defined in the following fashion. For each of the 2°° possible keys K; = i,
calculate the plaintext value P; such that

P; = D(i, a)

For each P, that matches an entry in Table 1, create an entry in Table 2 consist-
ing of the K, value and the value of B that is produced for the (P, C) pair from
Table 1, assuming that value of K;:

B =D(, C)
At the end of this step, sort Table 2 on the values of B.

. We now have a number of candidate values of K; in Table 2 and are in a

position to search for a value of K,. For each of the 2% possible keys K, = j,
calculate the second intermediate value for our chosen value of a:

B; = D(j, a)

At each step, look up B, in Table 2. If there is a match, then the corresponding
key i from Table 2 plus this value of j are candidate values for the unknown
keys (K, K;). Why? Because we have found a pair of keys (i, j) that produce a
known (P, C) pair (Figure 7.2a).

. Test each candidate pair of keys (i, j) on a few other plaintext—ciphertext pairs.

If a pair of keys produces the desired ciphertext, the task is complete. If no pair
succeeds, repeat from step 1 with a new value of a.

7.2 / ELECTRONIC CODEBOOK 213

For a given known (P, C), the probability of selecting the unique value of a
that leads to success is 1/2%. Thus, given n (P, C) pairs, the probability of success for
a single selected value of a is n/2%4. A basic result from probability theory is that the
expected number of draws required to draw one red ball out of a bin containing n
red balls and N — n green balls is (N + 1)/(n + 1) if the balls are not replaced. So
the expected number of values of a that must be tried is, for large n,

264 +1 264

n+1 n

Thus, the expected running time of the attack is on the order of

264
(256) 7 — 2120—10g2 n

Triple DES with Three Keys

Although the attacks just described appear impractical, anyone using two-key 3DES
may feel some concern. Thus, many researchers now feel that three-key 3DES is the
preferred alternative (e.g., [KALI96a]). In SP 800-57, Part 1 (Recommendation for
Key Management— Part 1: General, July 2012) NIST recommends that 2-key 3DES
be retired as soon as practical and replaced with 3-key 3DES.

Three-key 3DES is defined as

C = E(K;, D(Ky, E(Ky, P)))

Backward compatibility with DES is provided by putting K3 = K, or K; = K,. One
might expect that 3TDEA would provide 56 + 3 = 168 bits of strength. However,
there is an attack on 3TDEA that reduces the strength to the work that would be
involved in exhausting a 112-bit key [MERKS1].

A number of Internet-based applications have adopted three-key 3DES, in-
cluding PGP and S/MIME, both discussed in Chapter 19.

7.2 ELECTRONIC CODEBOOK

A block cipher takes a fixed-length block of text of length b bits and a key as input
and produces a b-bit block of ciphertext. If the amount of plaintext to be encrypted
is greater than b bits, then the block cipher can still be used by breaking the plain-
text up into b-bit blocks. When multiple blocks of plaintext are encrypted using the
same key, a number of security issues arise. To apply a block cipher in a variety of
applications, five modes of operation have been defined by NIST (SP 800-38A).
In essence, a mode of operation is a technique for enhancing the effect of a cryp-
tographic algorithm or adapting the algorithm for an application, such as applying
a block cipher to a sequence of data blocks or a data stream. The five modes are
intended to cover a wide variety of applications of encryption for which a block
cipher could be used. These modes are intended for use with any symmetric block
cipher, including triple DES and AES. The modes are summarized in Table 7.1 and
described in this and the following sections.

214 CHAPTER 7 / BLOCK CIPHER OPERATION

Table 7.1 Block Cipher Modes of Operation

Mode

Description

Typical Application

Electronic Codebook (ECB)

Each block of plaintext bits is
encoded independently using the
same key.

Secure transmission of
single values (e.g., an
encryption key)

Cipher Block Chaining (CBC)

The input to the encryption algo-
rithm is the XOR of the next block
of plaintext and the preceding
block of ciphertext.

General-purpose block-
oriented transmission
Authentication

Cipher Feedback (CFB)

Input is processed s bits at a time.
Preceding ciphertext is used as
input to the encryption algorithm
to produce pseudorandom output,
which is XORed with plaintext to
produce next unit of ciphertext.

General-purpose
stream-oriented
transmission
Authentication

with an encrypted counter. The
counter is incremented for each
subsequent block.

Output Feedback (OFB) Similar to CFB, except that the Stream-oriented
input to the encryption algorithm transmission over noisy
is the preceding encryption output, channel (e.g., satellite
and full blocks are used. communication)
Counter (CTR) Each block of plaintext is XORed General-purpose block-

oriented transmission
Useful for high-speed
requirements

The simplest mode is the electronic codebook (ECB) mode, in which plaintext
is handled one block at a time and each block of plaintext is encrypted using the
same key (Figure 7.3). The term codebook is used because, for a given key, there is
a unique ciphertext for every b-bit block of plaintext. Therefore, we can imagine a
gigantic codebook in which there is an entry for every possible b-bit plaintext pat-
tern showing its corresponding ciphertext.

For a message longer than b bits, the procedure is simply to break the message
into b-bit blocks, padding the last block if necessary. Decryption is performed one
block at a time, always using the same key. In Figure 7.3, the plaintext (padded as
necessary) consists of a sequence of b-bit blocks, Pj, P, ... , Py; the correspond-
ing sequence of ciphertext blocks is Cy, C5, ... , Cy. We can define ECB mode as
follows.

ECB C; = E(K, P) j=1,...,N | P=D(,C) j=1,...,N

The ECB mode should be used only to secure messages shorter than a single
block of underlying cipher (i.e., 64 bits for 3DES and 128 bits for AES), such as to
encrypt a secret key. Because in most of the cases messages are longer than the en-
cryption block mode, this mode has a minimum practical value.

The most significant characteristic of ECB is that if the same b-bit block of
plaintext appears more than once in the message, it always produces the same
ciphertext.

7.2 / ELECTRONIC CODEBOOK 215

|—> Encrypt |—> Encrypt o o o |—> Encrypt

|—> Decrypt |—> Decrypt o o o |—> Decrypt

(b) Decryption
Figure 7.3 Electronic Codebook (ECB) Mode

For lengthy messages, the ECB mode may not be secure. If the message is
highly structured, it may be possible for a cryptanalyst to exploit these regularities.
For example, if it is known that the message always starts out with certain predefined
fields, then the cryptanalyst may have a number of known plaintext—ciphertext pairs
to work with. If the message has repetitive elements with a period of repetition a
multiple of b bits, then these elements can be identified by the analyst. This may help
in the analysis or may provide an opportunity for substituting or rearranging blocks.

We now turn to more complex modes of operation. [KNUDOO] lists the fol-
lowing criteria and properties for evaluating and constructing block cipher modes of
operation that are superior to ECB:

B Overhead: The additional operations for the encryption and decryption opera-
tion when compared to encrypting and decrypting in the ECB mode.

m Error recovery: The property that an error in the ith ciphertext block is inher-
ited by only a few plaintext blocks after which the mode resynchronizes.

m Error propagation: The property that an error in the ith ciphertext block is
inherited by the ith and all subsequent plaintext blocks. What is meant here is
a bit error that occurs in the transmission of a ciphertext block, not a computa-
tional error in the encryption of a plaintext block.

216 CHAPTER 7 / BLOCK CIPHER OPERATION

m Diffusion: How the plaintext statistics are reflected in the ciphertext. Low en-
tropy plaintext blocks should not be reflected in the ciphertext blocks. Roughly,
low entropy equates to predictability or lack of randomness (see Appendix F).

m Security: Whether or not the ciphertext blocks leak information about the
plaintext blocks.

7.3 CIPHER BLOCK CHAINING MODE

To overcome the security deficiencies of ECB, we would like a technique in which
the same plaintext block, if repeated, produces different ciphertext blocks. A
simple way to satisfy this requirement is the cipher block chaining (CBC) mode
(Figure 7.4). In this scheme, the input to the encryption algorithm is the XOR of the
current plaintext block and the preceding ciphertext block; the same key is used for
each block. In effect, we have chained together the processing of the sequence of
plaintext blocks. The input to the encryption function for each plaintext block bears
no fixed relationship to the plaintext block. Therefore, repeating patterns of b bits
are not exposed. As with the ECB mode, the CBC mode requires that the last block
be padded to a full b bits if it is a partial block.

VB . Y Ca VB

K \ A K \/ K \/

|—> Encrypt
Y Y Y.
| G |— G | Cy |

(a) Encryption

| Cy I— G | Cy |

K A4 K v K A4
|—> Decrypt |—> Decrypt o o o |—> Decrypt
Y } Y
o s o

\d A \d
[~] [~] [2]
(b) Decryption
Figure 7.4 Cipher Block Chaining (CBC) Mode

7.3 / CIPHER BLOCK CHAINING MODE 217

For decryption, each cipher block is passed through the decryption algorithm.
The result is XORed with the preceding ciphertext block to produce the plaintext
block. To see that this works, we can write

C = EK,[C-1®PF)
Then
D(K. C) = D(K. E(K.[C;- ® P)))
DK, C) =Ci-i @ P
C1@®DK,C) =Co i @C1DF =P
To produce the first block of ciphertext, an initialization vector (IV) is XORed
with the first block of plaintext. On decryption, the IV is XORed with the output

of the decryption algorithm to recover the first block of plaintext. The IV is a data
block that is the same size as the cipher block. We can define CBC mode as

CBC . .
Ci=EKI[P®C])j=2...,N| P=DK C)®Cj=2,... ,N

The IV must be known to both the sender and receiver but be unpredictable
by a third party. In particular, for any given plaintext, it must not be possible to
predict the IV that will be associated to the plaintext in advance of the generation
of the I'V. For maximum security, the IV should be protected against unauthorized
changes. This could be done by sending the I'V using ECB encryption. One reason
for protecting the IV is as follows: If an opponent is able to fool the receiver into
using a different value for IV, then the opponent is able to invert selected bits in the
first block of plaintext. To see this, consider

C = E(K, [IV® A1)
P =1V® DK, Cy)
Now use the notation that X[i] denotes the ith bit of the b-bit quantity X. Then
Pi[i] = 1V[i] @ D(K, Cy)[i]
Then, using the properties of XOR, we can state
P[i]" = 1V[i]' ® D(K, Cy)li]

where the prime notation denotes bit complementation. This means that if an oppo-
nent can predictably change bits in IV, the corresponding bits of the received value
of P; can be changed.

For other possible attacks based on prior knowledge of IV, see [VOYDS3].

So long as it is unpredictable, the specific choice of IV is unimportant.
SP 800-38A recommends two possible methods: The first method is to apply
the encryption function, under the same key that is used for the encryption of the
plaintext, to a nonce.> The nonce must be a data block that is unique to each

2NIST SP 800-90 (Recommendation for Random Number Generation Using Deterministic Random Bit
Generators) defines nonce as follows: A time-varying value that has at most a negligible chance of repeat-
ing, for example, a random value that is generated anew for each use, a timestamp, a sequence number,
or some combination of these.

218 CHAPTER 7 / BLOCK CIPHER OPERATION

execution of the encryption operation. For example, the nonce may be a counter,
a timestamp, or a message number. The second method is to generate a random
data block using a random number generator.

In conclusion, because of the chaining mechanism of CBC, it is an appropriate
mode for encrypting messages of length greater than b bits.

In addition to its use to achieve confidentiality, the CBC mode can be used for
authentication. This use is described in Chapter 12.

7.4 CIPHER FEEDBACK MODE

For AES, DES, or any block cipher, encryption is performed on a block of b bits.
In the case of DES, b = 64 and in the case of AES, b = 128. However, it is pos-
sible to convert a block cipher into a stream cipher, using one of the three modes
to be discussed in this and the next two sections: cipher feedback (CFB) mode,
output feedback (OFB) mode, and counter (CTR) mode. A stream cipher elimi-
nates the need to pad a message to be an integral number of blocks. It also can
operate in real time. Thus, if a character stream is being transmitted, each char-
acter can be encrypted and transmitted immediately using a character-oriented
stream cipher.

One desirable property of a stream cipher is that the ciphertext be of the same
length as the plaintext. Thus, if 8-bit characters are being transmitted, each charac-
ter should be encrypted to produce a ciphertext output of 8 bits. If more than 8 bits
are produced, transmission capacity is wasted.

Figure 7.5 depicts the CFB scheme. In the figure, it is assumed that the unit of
transmission is s bits; a common value is s = 8. As with CBC, the units of plaintext
are chained together, so that the ciphertext of any plaintext unit is a function of all
the preceding plaintext. In this case, rather than blocks of b bits, the plaintext is
divided into segments of s bits.

First, consider encryption. The input to the encryption function is a b-bit shift
register that is initially set to some initialization vector (IV). The leftmost (most
significant) s bits of the output of the encryption function are XORed with the first
segment of plaintext P; to produce the first unit of ciphertext C;, which is then
transmitted. In addition, the contents of the shift register are shifted left by s bits,
and C is placed in the rightmost (least significant) s bits of the shift register. This
process continues until all plaintext units have been encrypted.

For decryption, the same scheme is used, except that the received ciphertext
unit is XORed with the output of the encryption function to produce the plaintext
unit. Note that it is the encryption function that is used, not the decryption function.
This is easily explained. Let MSB(X) be defined as the most significant s bits of X.
Then

Ci = P, @ MSB,[E(K,1V)]
Therefore, by rearranging terms:
Pi = C, ® MSB,[E(K, V)]

The same reasoning holds for subsequent steps in the process.

bI

v

- Y

Shift register
b — s bits | s bits

K K I,
I—) Encrypt I—) Encrypt
0y 0,

Select| Discard
s bits [b — s bits
s bits

s bits

Select| Discard
s bits [b — s bits

7.4 / CIPHER FEEDBACK MODE 219

Croi

K

-«

Y

Shift register

b — s bits

s bits
IN

N

Encrypt

Oy

Select| Discard
s bits [b — s bits

s bits

S Y

hift register
b — s bits | s bits

Iy

Encrypt

Oy

Select| Discard
s bits [b — s bits

L 4
s bits ’ s bits
[2v]
s bits

V} \79
Y Y
[G}F— G
s bits s bits
(a) Encryption
< Y
hift register
B bits 05 bits
K I K L
I—) Encrypt I—) Encrypt
0, 0,
Select| Di d Select| Di d
) 4) 4
P—-G] q
s bits
Y Y
(7] []
s bits s bits
(b) Decryption

Figure 7.5

s-bit Cipher Feedback (CFB) Mode

We can define CFB mode as follows.

L=1v L =1V
CFB L= LSBy (f;-)|Cj-y j=2,...,N L= LSBy ((,-)|Cjmy j=2,....N
0, = E(K. 1) j=1.....N | 0,=EK.I) i=1,...,N

Although CFB can be viewed as a stream cipher, it does not conform to the
typical construction of a stream cipher. In a typical stream cipher, the cipher takes

220 CHAPTER 7 / BLOCK CIPHER OPERATION

as input some initial value and a key and generates a stream of bits, which is then
XORed with the plaintext bits (see Figure 4.1). In the case of CFB, the stream of
bits that is XORed with the plaintext also depends on the plaintext.

In CFB encryption, like CBC encryption, the input block to each forward
cipher function (except the first) depends on the result of the previous forward
cipher function; therefore, multiple forward cipher operations cannot be performed
in parallel. In CFB decryption, the required forward cipher operations can be per-
formed in parallel if the input blocks are first constructed (in series) from the IV
and the ciphertext.

7.5 OUTPUT FEEDBACK MODE

The output feedback (OFB) mode is similar in structure to that of CFB. For OFB,
the output of the encryption function is fed back to become the input for encrypting
the next block of plaintext (Figure 7.6). In CFB, the output of the XOR unit is fed
back to become input for encrypting the next block. The other difference is that the
OFB mode operates on full blocks of plaintext and ciphertext, whereas CFB oper-
ates on an s-bit subset. OFB encryption can be expressed as
;= FOEK, 0;)
where

01;1 - E(K, 0]',2)

Some thought should convince you that we can rewrite the encryption expres-
sion as:

Ci=PF®EK,[Ci-1 @ P-1])
By rearranging terms, we can demonstrate that decryption works.

P. = C;®E(K, [Ci-1 ® P_1])

We can define OFB mode as follows.

I, = Nonce I, = Nonce

=0, j=2 ...,N =0, j=2,....N
OFB 0,=E(K.,I) j=1,...,N 0, =EK,I) j=1,...,N

¢=P®0; j=1..,N-1 P=C®0;, j=1,...,N-1

Cy = Py @ MSB,(Oy) Py = Cy ®MSB,(Oy)

Let the size of a block be b. If the last block of plaintext contains u bits (indi-
cated by *), with u < b, the most significant u bits of the last output block Oy are
used for the XOR operation; the remaining b — u bits of the last output block are
discarded.

As with CBC and CFB, the OFB mode requires an initialization vector. In
the case of OFB, the IV must be a nonce; that is, the IV must be unique to each
execution of the encryption operation. The reason for this is that the sequence of

7.5 / OUTPUT FEEDBACK MODE 221

4
<
]
=
>
<
<
>
>
<
<
]
=

I—> Encrypt I—> Encrypt o o o I—> Encrypt
................................ ﬁ!-------------------------.|
0Oy 0, Oy
V} V} \VB
Y \ y
[& 1] [&] [& 1]
(a) Encryption

<
<
~
z

[0 [0) [0
\ 79 \ 79 A VB
\ 4 \ 4 y
(b) Decryption

Figure 7.6 Output Feedback (OFB) Mode

encryption output blocks, O,, depends only on the key and the IV and does not de-
pend on the plaintext. Therefore, for a given key and IV, the stream of output bits
used to XOR with the stream of plaintext bits is fixed. If two different messages had
an identical block of plaintext in the identical position, then an attacker would be
able to determine that portion of the O; stream.

One advantage of the OFB method is that bit errors in transmission do not
propagate. For example, if a bit error occurs in Cy, only the recovered value of P is
affected; subsequent plaintext units are not corrupted. With CFB, C; also serves as
input to the shift register and therefore causes additional corruption downstream.

The disadvantage of OFB is that it is more vulnerable to a message stream
modification attack than is CFB. Consider that complementing a bit in the cipher-
text complements the corresponding bit in the recovered plaintext. Thus, controlled

222 CHAPTER 7 / BLOCK CIPHER OPERATION

changes to the recovered plaintext can be made. This may make it possible for an
opponent, by making the necessary changes to the checksum portion of the message
as well as to the data portion, to alter the ciphertext in such a way that it is not de-
tected by an error-correcting code. For a further discussion, see [VOYDS83].

OFB has the structure of a typical stream cipher, because the cipher gener-
ates a stream of bits as a function of an initial value and a key, and that stream of
bits is XORed with the plaintext bits (see Figure 4.1). The generated stream that is
XORed with the plaintext is itself independent of the plaintext; this is highlighted
by dashed boxes in Figure 7.6. One distinction from the stream ciphers we discuss
in Chapter 8 is that OFB encrypts plaintext a full block at a time, where typically a
block is 64 or 128 bits. Many stream ciphers encrypt one byte at a time.

7.6 COUNTER MODE

Although interest in the counter (CTR) mode has increased recently with appli-
cations to ATM (asynchronous transfer mode) network security and IPsec
(IP security), this mode was proposed in 1979 (e.g., [DIFF79)).

Figure 7.7 depicts the CTR mode. A counter equal to the plaintext block size
is used. The only requirement stated in SP 800-38A is that the counter value must be
different for each plaintext block that is encrypted. Typically, the counter is initial-
ized to some value and then incremented by 1 for each subsequent block (modulo 2?,
where b is the block size). For encryption, the counter is encrypted and then XORed
with the plaintext block to produce the ciphertext block; there is no chaining. For
decryption, the same sequence of counter values is used, with each encrypted coun-
ter XORed with a ciphertext block to recover the corresponding plaintext block.
Thus, the initial counter value must be made available for decryption. Given a

sequence of counters 71, T, ... , Ty, we can define CTR mode as follows.
C;=P®EKT) j=1,...,N-1| P=C®EKT) j=1...,N—1
CTR * *
Cy = Py @ MSB,[E(K, Ty)] Py = Cy @ MSB,[E(K, Ty)]

For the last plaintext block, which may be a partial block of u bits, the most
significant u bits of the last output block are used for the XOR operation; the re-
maining b — u bits are discarded. Unlike the ECB, CBC, and CFB modes, we do
not need to use padding because of the structure of the CTR mode.

As with the OFB mode, the initial counter value must be a nonce; that is, T}
must be different for all of the messages encrypted using the same key. Further,
all 7; values across all messages must be unique. If, contrary to this requirement, a
counter value is used multiple times, then the confidentiality of all of the plaintext
blocks corresponding to that counter value may be compromised. In particular, if
any plaintext block that is encrypted using a given counter value is known, then
the output of the encryption function can be determined easily from the associated
ciphertext block. This output allows any other plaintext blocks that are encrypted
using the same counter value to be easily recovered from their associated ciphertext
blocks.

7.6 / COUNTER MODE 223

(b) Decryption

Figure 7.7 Counter (CTR) Mode

One way to ensure the uniqueness of counter values is to continue to incre-
ment the counter value by 1 across messages. That is, the first counter value of the
each message is one more than the last counter value of the preceding message.

[LIPMOO0] lists the following advantages of CTR mode.

m Hardware efficiency: Unlike the three chaining modes, encryption (or decryp-
tion) in CTR mode can be done in parallel on multiple blocks of plaintext or
ciphertext. For the chaining modes, the algorithm must complete the computa-
tion on one block before beginning on the next block. This limits the maximum
throughput of the algorithm to the reciprocal of the time for one execution of
block encryption or decryption. In CTR mode, the throughput is only limited
by the amount of parallelism that is achieved.

224 CHAPTER 7 / BLOCK CIPHER OPERATION

Software efficiency: Similarly, because of the opportunities for parallel execu-
tion in CTR mode, processors that support parallel features, such as aggressive
pipelining, multiple instruction dispatch per clock cycle, a large number of reg-
isters, and SIMD instructions, can be effectively utilized.

Preprocessing: The execution of the underlying encryption algorithm does
not depend on input of the plaintext or ciphertext. Therefore, if sufficient
memory is available and security is maintained, preprocessing can be used to
prepare the output of the encryption boxes that feed into the XOR functions,
as in Figure 7.7. When the plaintext or ciphertext input is presented, then
the only computation is a series of XORs. Such a strategy greatly enhances
throughput.

Random access: The ith block of plaintext or ciphertext can be processed in
random-access fashion. With the chaining modes, block C; cannot be com-
puted until the i — 1 prior blocks are computed. There may be applications in
which a ciphertext is stored and it is desired to decrypt just one block; for such
applications, the random access feature is attractive.

Provable security: It can be shown that CTR is at least as secure as the other
modes discussed in this chapter.

Simplicity: Unlike ECB and CBC modes, CTR mode requires only the imple-
mentation of the encryption algorithm and not the decryption algorithm. This
matters most when the decryption algorithm differs substantially from the en-
cryption algorithm, as it does for AES. In addition, the decryption key schedul-
ing need not be implemented.

Note that, with the exception of ECB, all of the NIST-approved block ci-

pher modes of operation involve feedback. This is clearly seen in Figure 7.8. To
highlight the feedback mechanism, it is useful to think of the encryption function
as taking input from an input register whose length equals the encryption block
length and with output stored in an output register. The input register is updated
one block at a time by the feedback mechanism. After each update, the encryp-
tion algorithm is executed, producing a result in the output register. Meanwhile,
a block of plaintext is accessed. Note that both OFB and CTR produce output
that is independent of both the plaintext and the ciphertext. Thus, they are natu-
ral candidates for stream ciphers that encrypt plaintext by XOR one full block at
a time.

7.7 XTS-AES MODE FOR BLOCK-ORIENTED
STORAGE DEVICES
In 2010, NIST approved an additional block cipher mode of operation, XTS-AES.
This mode is also an IEEE standard, IEEE Std 1619-2007, which was developed
by the IEEE Security in Storage Working Group (P1619). The standard describes
a method of encryption for data stored in sector-based devices where the threat

model includes possible access to stored data by the adversary. The standard has
received widespread industry support.

7.7 / XTS-AES MODE FOR. BLOCK-ORIENTED STORAGE DEVICES 225

Plaintext block
y
:j
g
| Input register | Encrypt <—|
Key
Encrypt <—| |Output register |

Y
|Output register | E Plaintext block
Y

Y
Ciphertext Ciphertext

(a) Cipher block chaining (CBC) mode (b) Cipher feedback (CFB) mode

Key

Encrypt Encrypt

|Output register | |Output register |

0 4
% Plaintext block % Plaintext block

y y
Ciphertext Ciphertext

I
Input register

1
1
1
1
1
1
1
1
1
1
Key '
1
1
1
1
1
1
1
1
1
1

(c) Output feedback (OFB) mode (d) Counter (CTR) mode
Figure 7.8 Feedback Characteristic of Modes of Operation

Tweakable Block Ciphers

The XTS-AES mode is based on the concept of a tweakable block cipher, intro-
duced in [LISKO02], which functions in much the same manner as a salt used with
passwords, as described in Chapter 22. The form of this concept used in XTS-AES
was first described in [ROGA04].

Before examining XTS-AES, let us consider the general structure of a tweak-
able block cipher. A tweakable block cipher is one that has three inputs: a plain-
text P, a symmetric key K, and a tweak 7; and produces a ciphertext output C. We
can write this as C = E(K, T, P). The tweak need not be kept secret. Whereas the

226 CHAPTER 7 / BLOCK CIPHER OPERATION

Lz 1 [_&] Lz |1 [_¢g]
Hash H(Tj) Hash
function function

K K

Encrypt <J Decrypt <J

(a) Encryption (b) Decryption
Figure 7.9 Tweakable Block Cipher

purpose of the key is to provide security, the purpose of the tweak is to provide
variability. That is, the use of different tweaks with the same plaintext and same key
produces different outputs. The basic structure of several tweakable clock ciphers
that have been implemented is shown in Figure 7.9. Encryption can be expressed as:

C = H(T) ® E(K,H(T) @ P)

where H is a hash function. For decryption, the same structure is used with the
plaintext as input and decryption as the function instead of encryption. To see that
this works, we can write

H(T) ® C = E(K,H(T) ® P)
D[K, H(T) ® C] = H(T) ® P
H(T) ® DK, H(T) ® C) = P
It is now easy to construct a block cipher mode of operation by using a differ-
ent tweak value on each block. In essence, the ECB mode is used but for each block

the tweak is changed. This overcomes the principal security weakness of ECB,
which is that two encryptions of the same block yield the same ciphertext.

Storage Encryption Requirements

The requirements for encrypting stored data, also referred to as “data at rest” dif-
fer somewhat from those for transmitted data. The P1619 standard was designed to
have the following characteristics:

1. The ciphertext is freely available for an attacker. Among the circumstances
that lead to this situation:

a. A group of users has authorized access to a database. Some of the records in
the database are encrypted so that only specific users can successfully read/

7.7 / XTS-AES MODE FOR. BLOCK-ORIENTED STORAGE DEVICES 227

write them. Other users can retrieve an encrypted record but are unable to
read it without the key.
b. An unauthorized user manages to gain access to encrypted records.
c. A data disk or laptop is stolen, giving the adversary access to the encrypted
data.
. The data layout is not changed on the storage medium and in transit. The en-
crypted data must be the same size as the plaintext data.

[\

3. Data are accessed in fixed sized blocks, independently from each other. That is,
an authorized user may access one or more blocks in any order.

4. Encryption is performed in 16-byte blocks, independently from other blocks
(except the last two plaintext blocks of a sector, if its size is not a multiple of
16 bytes).

. There are no other metadata used, except the location of the data blocks
within the whole data set.

9]

6. The same plaintext is encrypted to different ciphertexts at different locations,
but always to the same ciphertext when written to the same location again.

7. A standard conformant device can be constructed for decryption of data en-
crypted by another standard conformant device.

The P1619 group considered some of the existing modes of operation for use with
stored data. For CTR mode, an adversary with write access to the encrypted media can
flip any bit of the plaintext simply by flipping the corresponding ciphertext bit.

Next, consider requirement 6 and the use of CBC. To enforce the requirement
that the same plaintext encrypts to different ciphertext in different locations, the IV
could be derived from the sector number. Each sector contains multiple blocks. An
adversary with read/write access to the encrypted disk can copy a ciphertext sec-
tor from one position to another, and an application reading the sector off the new
location will still get the same plaintext sector (except perhaps the first 128 bits).
For example, this means that an adversary that is allowed to read a sector from the
second position but not the first can find the content of the sector in the first posi-
tion by manipulating the ciphertext. Another weakness is that an adversary can flip
any bit of the plaintext by flipping the corresponding ciphertext bit of the previous
block, with the side-effect of “randomizing” the previous block.

Operation on a Single Block

Figure 7.10 shows the encryption and decryption of a single block. The operation in-
volves two instances of the AES algorithm with two keys. The following parameters
are associated with the algorithm.

Key The 256 or 512 bit XTS-AES key; this is parsed as a concatenation of two
fields of equal size called Key; and Key,, such that Key = Key, ||Key,.

P The jth block of plaintext. All blocks except possibly the final block have a
length of 128 bits. A plaintext data unit, typically a disk sector, consists of a
sequence of plaintext blocks Py, Ps, ... , P,.

C; The jth block of ciphertext. All blocks except possibly the final block have a

length of 128 bits.

228 CHAPTER 7 / BLOCK CIPHER OPERATION

j The sequential number of the 128-bit block inside the data unit.

i The value of the 128-bit tweak. Each data unit (sector) is assigned a
tweak value that is a nonnegative integer. The tweak values are assigned
consecutively, starting from an arbitrary nonnegative integer.

a A primitive element of GF(2!?%) that corresponds to polynomial x
(i.e., 0000 ... 010,).
o/ « multiplied by itself j times, in GF(2!%%).
@ Bitwise XOR.
® Modular multiplication of two polynomials with binary coefficients modulo

' + x7 + x> + x + 1. Thus, this is multiplication in GF(2'%%).

Key, \ 4
Y
| , AES r oD
Encrypt YV
v PP
AES
Encrypt Key,
y CC
>N
VYV
\ 4

(a) Encryption

Key, \ 4
Y
|) AES r o+ D
Encrypt Y
v cC
AES
Decrypt Key,
y PP
>N
YV
\ 4

(b) Decryption
Figure 7.10 XTS-AES Operation on Single Block

7.7 / XTS-AES MODE FOR. BLOCK-ORIENTED STORAGE DEVICES 229

In essence, the parameter j functions much like the counter in CTR mode. It
assures that if the same plaintext block appears at two different positions within a
data unit, it will encrypt to two different ciphertext blocks. The parameter i functions
much like a nonce at the data unit level. It assures that, if the same plaintext block
appears at the same position in two different data units, it will encrypt to two differ-
ent ciphertext blocks. More generally, it assures that the same plaintext data unit will
encrypt to two different ciphertext data units for two different data unit positions.

The encryption and decryption of a single block can be described as

T=EK,i)®d T=EK,i)Rd
XTS-AESblock | PP=P®T CC=CO®T
operation CC = E(K;, PP) PP = D(K;, CC)
C=CCO®T P=PPPT

To see that decryption recovers the plaintext, let us expand the last line of both en-
cryption and decryption. For encryption, we have

C=CCOH»T=EK,PP)OT=EK,PERTPT
and for decryption, we have
P=PPOHT=DK,CO)PT=DK,CETPT

Now, we substitute for C:

P=DK,CAOTDT
= DK, [E(K, POT)DTI@TDT
=D(K, E(Ki,P®T) DT
=POTY®T =P

Operation on a Sector

The plaintext of a sector or data unit is organized into blocks of 128 bits. Blocks are
labeled Py, Py, ... , P,. The last block my be null or may contain from 1 to 127 bits.
In other words, the input to the XTS-AES algorithm consists of m 128-bit blocks
and possibly a final partial block.

For encryption and decryption, each block is treated independently and en-
crypted/decrypted as shown in Figure 7.10. The only exception occurs when the
last block has less than 128 bits. In that case, the last two blocks are encrypted/de-
crypted using a ciphertext-stealing technique instead of padding. Figure 7.11 shows
the scheme. P,,_; is the last full plaintext block, and P, is the final plaintext block,
which contains s bits with 1 = s = 127. C,,_ is the last full ciphertext block, and
C,, is the final ciphertext block, which contains s bits. This technique is commonly
called ciphertext stealing because the processing of the last block “steals” a tempo-
rary ciphertext of the penultimate block to complete the cipher block.

Let us label the block encryption and decryption algorithms of Figure 7.10 as

Block encryption: XTS-AES-blockEnc(K, P, i, j)
Block decryption: XTS-AES-blockDec(K, Cj, i, j)

230 CHAPTER 7 / BLOCK CIPHER OPERATION

[~ 1 [&] 21| [l]
YY
i,0 i1 i, m—-1 i,m
Key v Key Key v Key l v
XTS-AES I_> XTS-AES I_> XTS-AES I_> XTS-AES
block block e o o block block
encryption encryption encryption encryption
¥ X v
2 Y I G l cr I' I G l

Cm—l Cm

(a) Encryption

XX
i, 0 i1 iym i, m-1

Key l v Key l \ Key v Key v

I_> XTS-AES I_> XTS-AES I_> XTS-AES I_> XTS-AES
block block o o o block block

decryption decryption decryption decryption

vy v

\ 4 ¥ I P l cp I' I Pt l
[~ 1 []
P, m-1 P m

Figure 7.11 XTS-AES Mode

(b) Decryption

Then, XTS-AES mode is defined as follows:

XTS-AES mode with final
block containing s bits

XTS-AES mode with null C; = XTS-AES-blockEnc(K, P, i,j) j=0,...,m—1
final block N
P; = XTS-AES-blockEnc(K, C,i,j) j=0,... ,m—1
C; = XTS-AES-blockEnc(K, P, i,j)j =0, ... ,m — 2

XX = XTS-AES-blockEnc(K, P,,_1,i,m — 1)
CP = LSBy-(XX)
YY = B,|CF
C,,—1 = XTS-AES-blockEnc(K, YY, i, m)
C,, = MSB(XX)

P, = XTS-AES-blockDec(K, Cj,i,j)j =0, ... ,m — 2
YY = XTS-AES-blockDec(K, C,,,—1,i,m — 1)
CP = LSB55_,(YY)
XX = C,|cp
P, = XTS-AES-blockDec(K, XX, i, m)
P,, = MSB(YY)

7.8 / FORMAT-PRESERVING ENCRYPTION 231

As can be seen, XTS-AES mode, like CTR mode, is suitable for parallel oper-
ation. Because there is no chaining, multiple blocks can be encrypted or decrypted
simultaneously. Unlike CTR mode, XTS-AES mode includes a nonce (the param-
eter i) as well as a counter (parameter j).

7.8 FORMAT-PRESERVING ENCRYPTION

Format-preserving encryption (FPE) refers to any encryption technique that takes
a plaintext in a given format and produces a ciphertext in the same format. For
example, credit cards consist of 16 decimal digits. An FPE that can accept this type of
input would produce a ciphertext output of 16 decimal digits. Note that the ciphertext
need not be, and in fact is unlikely to be, a valid credit card number. But it will have
the same format and can be stored in the same way as credit card number plaintext.

A simple encryption algorithm is not format preserving, with the exception
that it preserves the format of binary strings. For example, Table 7.2 shows three
types of plaintext for which it might be desired to perform FPE. The third row
shows examples of what might be generated by an FPE algorithm. The fourth row
shows (in hexadecimal) what is produced by AES with a given key.

Motivation

FPE facilitates the retrofitting of encryption technology to legacy applications,
where a conventional encryption mode might not be feasible because it would dis-
rupt data fields/pathways. FPE has emerged as a useful cryptographic tool, whose
applications include financial-information security, data sanitization, and transpar-
ent encryption of fields in legacy databases.

The principal benefit of FPE is that it enables protection of particular data
elements in a legacy database that did not provide encryption of those data ele-
ments, while still enabling workflows that were in place before FPE was in use. With
FPE, as opposed to ordinary AES encryption or TDEA encryption, no database
schema changes and minimal application changes are required. Only applications
that need to see the plaintext of a data element need to be modified and generally
these modifications will be minimal.

Some examples of legacy applications where FPE is desirable:

m COBOL data-processing applications: Any changes in the structure of a re-
cord requires corresponding changes in all code that references that record
structure. Typical code sizes involve hundreds of modules, each containing
around 5,000-10,000 lines on average.

Table 7.2 Comparison of Format-Preserving Encryption and AES

Credit Card Tax ID Bank Account Number
Plaintext 8123 4512 3456 6780 219-09-9999 800N2982K-22
FPE 8123 4521 7292 6780 078-05-1120 709G9242H-35
AES (hex) af411326466add24 7b9af4£3f218ab25 9720ec7t793096ft
c86abd8aa525db7a 07¢7376869313afa d37141242elc51bd

232 CHAPTER 7 / BLOCK CIPHER OPERATION

m Database applications: Fields that are specified to take only character strings
cannot be used to store conventionally encrypted binary ciphertext. Base64
encoding of such binary ciphertext is not always feasible without increase in
data lengths, requiring augmentation of corresponding field lengths.

m FPE-encrypted characters can be significantly compressed for efficient trans-
mission. This cannot be said about AES-encrypted binary ciphertext.

Difficulties in Designing an FPE
A general-purpose standardized FPE should meet a number of requirements:

1. The ciphertext is of the same length and format as the plaintext.

2. It should be adaptable to work with a variety of character and number types.
Examples include decimal digits, lowercase alphabetic characters, and the full
character set of a standard keyboard or international keyboard.

@

. It should work with variable plaintext lengths.
. Security strength should be comparable to that achieved with AES.

wn A

. Security should be strong even for very small plaintext lengths.

Meeting the first requirement is not at all straightforward. As illustrated in
Table 7.2, a straightforward encryption with AES yields a 128-bit binary block that
does not resemble the required format. Also, a standard symmetric block cipher is
not easily adaptable to produce an FPE.

Consider a simple example. Assume that we want an algorithm that can en-
crypt decimal digit strings of maximum length of 32 digits. The input to the algo-
rithm can be stored in 16 bytes (128 bits) by encoding each digit as four bits and
using the corresponding binary value for each digit (e.g., 6 is encoded as 0101).
Next, we use AES to encrypt the 128-bit block, in the following fashion:

1. The plaintext input X is represented by the string of 4-bit decimal digits
X[1] ... X[16]. If the plaintext is less than 16 digits long, it is padded out to the
left (most significant) with zeros.

[\

. Treating X as a 128-bit binary string and using key K, form ciphertext
Y = AESk(X).
3. Treat Y as a string of length 16 of 4-bit elements.

4. Some of the entries in Y may have values greater than 9 (e.g., 1100). To gener-
ate ciphertext Z in the required format, calculate

Z[i] = Y[iimod 10, 1=i=16

This generates a ciphertext of 16 decimal digits, which conforms to the de-
sired format. However, this algorithm does not meet the basic requirement of
any encryption algorithm of reversibility. It is impossible to decrypt Z to recover
the original plaintext X because the operation is one-way; that is, it is a many-
to-one function. For example, 12 mod 10 = 2 mod 10 = 2. Thus, we need to de-
sign a reversible function that is both a secure encryption algorithm and format
preserving.

7.8 / FORMAT-PRESERVING ENCRYPTION 233

A second difficulty in designing an FPE is that some of the input strings are
quite short. For example, consider the 16-digit credit card number (CCN). The first
six digits provide the issuer identification number (IIN), which identifies the insti-
tution that issued the card. The final digit is a check digit to catch typographical
errors or other mistakes. The remaining nine digits are the user’s account number.
However, a number of applications require that the last four digits be in the clear
(the check digit plus three account digits) for applications such as credit card re-
ceipts, which leaves only six digits for encryption. Now suppose that an adversary
is able to obtain a number of plaintext/ciphertext pairs. Each such pair corresponds
to not just one CCN, but multiple CCNs that have the same middle six digits. In a
large database of credit card numbers, there may be multiple card numbers with
the same middle six digits. An adversary may be able to assemble a large diction-
ary mapping known as six-digit plaintexts to their corresponding ciphertexts. This
could be used to decrypt unknown ciphertexts from the database. As pointed out
in [BELL10a], in a database of 100 million entries, on average about 100 CCNs
will share any given middle-six digits. Thus, if the adversary has learned k& CCNs
and gains access to such a database, the adversary can decrypt approximately
100k CCNes.

The solution to this second difficulty is to use a tweakable block cipher; this
concept is described in Section 7.7. For example, the tweak for CCNs could be the
first two and last four digits of the CCN. Prior to encryption, the tweak is added,
digit-by-digit mod 10, to the middle six-digit plaintext, and the result is then en-
crypted. Two different CCNs with identical middle six digits will yield different
tweaked inputs and therefore different ciphertexts. Consider the following:

CCN Tweak Plaintext Plaintext + Tweak
4012 8812 3456 1884 401884 123456 524230
5105 1012 3456 6782 516782 123456 639138

Two CCNs with the same middle six digits have different tweaks and there-
fore different values to the middle six digits after the tweak is added.

Feistel Structure for Format-Preserving Encryption

As the preceding discussion shows, the challenge with FPE is to design an algo-
rithm for scrambling the plaintext that is secure, preserves format, and is reversible.
A number of approaches have been proposed in recent years [ROGA10, BELL09]
for FPE algorithms. The majority of these proposals use a Feistel structure.
Although IBM introduced this structure with their Lucifer cipher [SMIT71] almost
half a century ago, it remains a powerful basis for implementing ciphers.

This section provides a general description of how the Feistel structure can
be used to implement an FPE. In the following section, we look at three specific
Feistel-based algorithms that are in the process of receiving NIST approval.

Encryrrion AND Decryprion Figure 7.12 shows the Feistel structure used in all of
the NIST algorithms, with encryption shown on the left-hand side and decryption
on the right-hand side. The structure in Figure 7.12 is the same as that shown in

234 CHAPTER 7 / BLOCK CIPHER OPERATION

Input (plaintext) Output (plaintext)
u characters v characters u characters v characters

< ‘I Cﬂ

E -g 11, T) 0
:

- 7

=

| E

2 5

R &
o

L =
E |
g =]
~ &
p—
T =
E E
- g
-7
Ar - Br—l | Br‘_ Cr—l | Ar | Br
Output (ciphertext) Input (ciphertext)
(a) Encryption (b) Decryption

Figure 7.12 Feistel Structure for Format-Preserving Encryption

Figure 4.3 but, to simplify the presentation, it is untwisted, not illustrating the swap
that occurs at the end of each round.

The input to the encryption algorithm is a plaintext character string of
n = u + v characters. If n is even, then u = v, otherwise u and v differ by 1. The
two parts of the string pass through an even number of rounds of processing to
produce a ciphertext block of n characters and the same format as the plaintext.
Each round i has inputs A; and B;, derived from the preceding round (or plaintext
for round 0).

All rounds have the same structure. On even-numbered rounds, a substitution
is performed on the left part (length u) of the data, A;. This is done by applying the
round function Fx to the right part (length v) of the data, B, and then performing

7.8 / FORMAT-PRESERVING ENCRYPTION 235

a modular addition of the output of Fx with A;. The modular addition function and
the selection of modulus are described subsequently. On odd-numbered rounds,
the substitution is done on the right part of the data. Fx is a one-way function that
converts the input into a binary string, performs a scrambling transformation on the
string, and then converts the result back into a character string of suitable format
and length. The function has as parameters the secret key K, the plaintext length n,
a tweak 7, and the round number i.

Note that on even-numbered rounds, Fx has an input of v characters, and that
the modular addition produces a result of u characters, whereas on odd-numbered
rounds, Fx has an input of u characters, and that the modular addition produces a
result of v characters. The total number of rounds is even, so that the output consists
of an A portion of length u concatenated with a B portion of length v, matching the
partition of the plaintext.

The process of decryption is essentially the same as the encryption process.
The differences are: (1) the addition function is replaced by a subtraction function
that is its inverse; and (2) the order of the round indices is reversed.

To demonstrate that the decryption produces the correct result, Figure 7.12b
shows the encryption process going down the left-hand side and the decryption pro-
cess going up the right-hand side. The diagram indicates that, at every round, the
intermediate value of the decryption process is equal to the corresponding value of
the encryption process. We can walk through the figure to validate this, starting at
the bottom. The ciphertext is produced at the end of round r — 1 as a string of the
form A, || B,, with A, and B, having string lengths u and v, respectively. Encryption
round r — 1 can be described with the following equations:

Ar = Br—l
Br = Arfl + FK[Brfl]

Because we define the subtraction function to be the inverse of the addition
function, these equations can be rewritten:

Br—l = Ar
Ar*l = Br - FK[Brfl]

It can be seen that the last two equations describe the action of round 0 of the
decryption function, so that the output of round 0 of decryption equals the input
of round r — 1 of encryption. This correspondence holds all the way through the r
iterations, as is easily shown.

Note that the derivation does not require that F be a reversible function. To
see this, take a limiting case in which F produces a constant output (e.g., all ones)
regardless of the values of its input. The equations still hold.

Craracter STriNGs The NIST algorithms, and the other FPE algorithms that have
been proposed, are used with plaintext consisting of a string of elements, called
characters. Specifically, a finite set of two or more symbols is called an alphabet,
and the elements of an alphabet are called characters. A character string is a finite
sequence of characters from an alphabet. Individual characters may repeat in the
string. The number of different characters in an alphabet is called the base, also

236 CHAPTER 7 / BLOCK CIPHER OPERATION

referred to as the radix of the alphabet. For example, the lowercase English alpha-
beta, b, c,...has aradix, or base, of 26. For purposes of encryption and decryption,
the plaintext alphabet must be converted to numerals, where a numeral is a non-
negative integer that is less than the base. For example, for the lowercase alphabet,
the assignment could be characters a, b, c,...,zmapinto 0,1, 2,...,25.

A limitation of this approach is that all of the elements in a plaintext format
must have the same radix. So, for example, an identification number that consists
of an alphabetic character followed by nine numeric digits cannot be handled in
format-preserving fashion by the FPEs that have been implemented so far.

The NIST document defines notation for specifying these conversions
(Table 7.3a). To begin, it is assumed that the character string is represented by
a numeral string. To convert a numeral string X into a number x, the function
NUM, 4i:(X) is used. Viewing X as the string X[1] . .. X[m] with the most signifi-
cant numeral first, the function is defined as

m m—1
NUM,,o(X) = D X[i] radix™ ™" = > X[m — i] radix’
i=1 i=0

Observe that 0 = NUM,,4;(X) < radix™ and that 0 = X[i] < radix.

Table 7.3 Notation and Parameters Used in FPE Algorithms

[x]* Converts an integer into a byte string; it is the string of s bytes that encodes the
number x, with 0 = x < 2%, The equivalent notation is STRS'(x).

LEN(X) Length of the character string X.

NUM,,4i(X) Converts strings to numbers. The number that the numeral string X represents

in base radix, with the most significant character first. In other words, it is the
nonnegative integer less than radix™®® whose most-significant-character-first
representation in base radix is X.

PRF(X) A pseudorandom function that produces a 128-bit output with X as the input,
using encryption key K.

STRZ 4i(x) Given a nonnegative integer x less than radix™, this function produces a repre-
sentation of x as a string of m characters in base radix, with the most significant
character first.

[i..]] The set of integers between two integers i and j, including i and j.
X[i..j] The substring of characters of a string X from X[i] to X[;], including X[i] and X[j].
REV(X) Given a bit string, X, the string that consists of the bits of X in reverse order.

(a) Notation

radix The base, or number of characters, in a given plaintext alphabet.

tweak Input parameter to the encryption and decryption functions whose confidentiality
is not protected by the mode.

tweakradix The base for tweak strings

minlen Minimum message length, in characters.

maxlen Maximum message length, in characters.

maxTlen Maximum tweak length

(b) Parameters

7.8 / FORMAT-PRESERVING ENCRYPTION 237

For example, consider the string zaby in radix 26, which converts to the
numeral string 25 0 1 24. This converts to the number x = (25 X 26%) + (1 X 26%)
+ 24 = 439450. To go in the opposite direction and convert from a number

x < radix™ to a numeral string X of length m, the function STR}}. ;; (x) is used:

STR}yic(x) = X[1]... X[m], where

X[i] = {

.X,Jmod radix, i=1,...,m
radix™™"

With the mapping of characters to numerals and the use of the NUM func-
tion, a plaintext character string can be mapped to a number and stored as an
unsigned integer. We would like to treat this unsigned integer as a bit string that
can be input to a bit-scrambling algorithm in Fg. However, different platforms store
unsigned integers differently, some in little-endian and some in big-endian fashion.
So one more step is needed. By the definition of the STR function, STR5(x) will
generate a bit string of length 8s, equivalently a byte string of length s, which is a
binary integer with the most significant bit first, regardless of how x is stored as an
unsigned integer. For convenience the following notation is used: [x]* = STR5(x).
Thus, [NUM, 4 (X)]® will convert the character string X into an unsigned integer
and then convert that to a byte string of length s bytes with the most significant
bit first.

Continuing, the preceding example should help clarify the issues involved.

Character string “zaby”

Numeral string X representation of |25 0 1 24
character string

Convert X to number decimal: 439450
x = NUM(X) hex: 6B49A
binary: