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NOTATION

Symbol Expression Meaning

D, K D(K, Y) Symmetric decryption of ciphertext Y using secret key K

D, PRa D(PRa, Y) Asymmetric decryption of ciphertext Y using A’s private key PRa

D, PUa D(PUa, Y) Asymmetric decryption of ciphertext Y using A’s public key PUa

E, K E(K, X) Symmetric encryption of plaintext X using secret key K

E, PRa E(PRa, X) Asymmetric encryption of plaintext X using A’s private key PRa

E, PUa E(PUa, X) Asymmetric encryption of plaintext X using A’s public key PUa

K Secret key

PRa Private key of user A

PUa Public key of user A

MAC, K MAC(K, X) Message authentication code of message X using secret key K

GF(p)
The finite field of order p, where p is prime.The field is defined as 

the set Zp together with the arithmetic operations modulo p.

GF(2n) The finite field of order 2n

Zn Set of nonnegative integers less than n

gcd gcd(i, j)
Greatest common divisor; the largest positive integer that 

divides both i and j with no remainder on division.

mod a mod m Remainder after division of a by m

mod, K a K b (mod m) a mod m = b mod m

mod, [ a [ b (mod m) a mod m ≠ b mod m

dlog dloga,p(b) Discrete logarithm of the number b for the base a (mod p)

w f(n)

The number of positive integers less than n and relatively 

prime to n.

This is Euler’s totient function.

Σ a
n

i=1

ai
a1 + a2 + g + an

Π q
n

i=1

ai
a1 * a2 * g * an

� i � j
i divides j, which means that there is no remainder when j is 

divided by i

� , � �a � Absolute value of a

10



NOTATION 11

Symbol Expression Meaning

} x } y x concatenated with y

≈ x ≈ y x is approximately equal to y

⊕ x⊕ y
Exclusive-OR of x and y for single-bit variables;

Bitwise exclusive-OR of x and y for multiple-bit variables

:, ; :x; The largest integer less than or equal to x

∈ x∈ S The element x is contained in the set S.

·
A · (a1, a2, 

c ak)

The integer A corresponds to the sequence of integers 

(a1, a2, c ak)



PREFACE

WHAT’S NEW IN THE SEVENTH EDITION

In the four years since the sixth edition of this book was published, the field has seen contin-

ued innovations and improvements. In this new edition, I try to capture these changes while 

maintaining a broad and comprehensive coverage of the entire field. To begin this process of 

revision, the sixth edition of this book was extensively reviewed by a number of professors 

who teach the subject and by professionals working in the field. The result is that, in many 

places, the narrative has been clarified and tightened, and illustrations have been improved.

Beyond these refinements to improve pedagogy and user-friendliness, there have been 

substantive changes throughout the book. Roughly the same chapter organization has been 

retained, but much of the material has been revised and new material has been added. The 

most noteworthy changes are as follows:

 ■ Fundamental security design principles: Chapter 1 includes a new section discussing the 

security design principles listed as fundamental by the National Centers of Academic 

Excellence in Information Assurance/Cyber Defense, which is jointly sponsored by the 

U.S. National Security Agency and the U.S. Department of Homeland Security.

 ■ Attack surfaces and attack trees: Chapter 1 includes a new section describing these two 

concepts, which are useful in evaluating and classifying security threats.

 ■ Number theory coverage: The material on number theory has been consolidated 

into a single chapter, Chapter 2. This makes for a convenient reference. The relevant 

 portions of Chapter 2 can be assigned as needed.

 ■ Finite fields: The chapter on finite fields has been revised and expanded with addi-

tional text and new figures to enhance understanding.

 ■ Format-preserving encryption: This relatively new mode of encryption is enjoying 

 increasing commercial success. A new section in Chapter 7 covers this method.

 ■ Conditioning and health testing for true random number generators: Chapter 8 now 

provides coverage of these important topics.

 ■ User authentication model: Chapter 15 includes a new description of a general model 

for user authentication, which helps to unify the discussion of the various approaches 

to user authentication.

 ■ Cloud security: The material on cloud security in Chapter 16 has been updated and 

expanded to reflect its importance and recent developments.

 ■ Transport Layer Security (TLS): The treatment of TLS in Chapter 17 has been  updated, 

reorganized to improve clarity, and now includes a discussion of the new TLS version 1.3.

 ■ Email Security: Chapter 19 has been completely rewritten to provide a comprehensive 

and up-to-date discussion of email security. It includes:

 — New: discussion of email threats and a comprehensive approach to email security.

 — New: discussion of STARTTLS, which provides confidentiality and authentication 

for SMTP.
12
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 — Revised: treatment of S/MIME has been updated to reflect the latest version 3.2.

 — New: discussion of DNSSEC and its role in supporting email security.

 — New: discussion of DNS-based Authentication of Named Entities (DANE) and the 

use of this approach to enhance security for certificate use in SMTP and S/MIME.

 — New: discussion of Sender Policy Framework (SPF), which is the standardized way 

for a sending domain to identify and assert the mail senders for a given domain.

 — Revised: discussion of DomainKeys Identified Mail (DKIM) has been revised.

 — New: discussion of Domain-based Message Authentication, Reporting, and Confor-

mance (DMARC) allows email senders to specify policy on how their mail should 

be handled, the types of reports that receivers can send back, and the frequency 

those reports should be sent.

OBJECTIVES

It is the purpose of this book to provide a practical survey of both the principles and practice 

of cryptography and network security. In the first part of the book, the basic issues to be 

addressed by a network security capability are explored by providing a tutorial and survey 

of cryptography and network security technology. The latter part of the book deals with the 

practice of network security: practical applications that have been implemented and are in 

use to provide network security.

The subject, and therefore this book, draws on a variety of disciplines. In particular, 

it is impossible to appreciate the significance of some of the techniques discussed in this 

book without a basic understanding of number theory and some results from probability 

theory. Nevertheless, an attempt has been made to make the book self-contained. The book 

not only presents the basic mathematical results that are needed but provides the reader 

with an intuitive understanding of those results. Such background material is introduced 

as needed. This approach helps to motivate the material that is introduced, and the author 

considers this preferable to simply presenting all of the mathematical material in a lump at 

the  beginning of the book.

SUPPORT OF ACM/IEEE COMPUTER SCIENCE CURRICULA 2013

The book is intended for both academic and professional audiences. As a textbook, it is 

 intended as a one-semester undergraduate course in cryptography and network security for 

computer science, computer engineering, and electrical engineering majors. The changes to 

this edition are intended to provide support of the ACM/IEEE Computer Science Curricula 

2013 (CS2013). CS2013 adds Information Assurance and Security (IAS) to the curriculum rec-

ommendation as one of the Knowledge Areas in the Computer Science Body of Knowledge. 

The document states that IAS is now part of the curriculum recommendation because of the 

critical role of IAS in computer  science education. CS2013 divides all course work into three 

categories: Core-Tier 1 (all topics should be  included in the curriculum), Core-Tier-2 (all or 

almost all topics should be included), and elective (desirable to provide breadth and depth). 

In the IAS area, CS2013  recommends  topics in Fundamental Concepts and Network Security 
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in Tier 1 and Tier 2, and Cryptography topics as elective. This text covers virtually all of the 

topics listed by CS2013 in these three categories.

The book also serves as a basic reference volume and is suitable for self-study.

PLAN OF THE TEXT

The book is divided into eight parts.

 ■ Background

 ■ Symmetric Ciphers

 ■ Asymmetric Ciphers

 ■ Cryptographic Data Integrity Algorithms

 ■ Mutual Trust

 ■ Network and Internet Security

 ■ System Security

 ■ Legal and Ethical Issues

The book includes a number of pedagogic features, including the use of the computer 

algebra system Sage and numerous figures and tables to clarify the discussions. Each chap-

ter includes a list of key words, review questions, homework problems, and suggestions 

for further reading. The book also includes an extensive glossary, a list of frequently used 

 acronyms, and a bibliography. In addition, a test bank is available to instructors.

INSTRUCTOR SUPPORT MATERIALS

The major goal of this text is to make it as effective a teaching tool for this exciting and 

 fast-moving subject as possible. This goal is reflected both in the structure of the book and in 

the supporting material. The text is accompanied by the following supplementary material 

that will aid the instructor:

 ■ Solutions manual: Solutions to all end-of-chapter Review Questions and Problems.

 ■ Projects manual: Suggested project assignments for all of the project categories listed 

below.

 ■ PowerPoint slides: A set of slides covering all chapters, suitable for use in lecturing.

 ■ PDF files: Reproductions of all figures and tables from the book.

 ■ Test bank: A chapter-by-chapter set of questions with a separate file of answers.

 ■ Sample syllabuses: The text contains more material than can be conveniently covered 

in one semester. Accordingly, instructors are provided with several sample syllabuses 

that guide the use of the text within limited time.

All of these support materials are available at the Instructor Resource Center 
(IRC) for this textbook, which can be reached through the publisher’s Web site  

www.pearsonglobaleditions.com/stallings. To gain  access to the IRC, please contact your 

local Pearson sales representative.

http://www.pearsonglobaleditions.com/stallings
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PROJECTS AND OTHER STUDENT EXERCISES

For many instructors, an important component of a cryptography or network security course 

is a project or set of projects by which the student gets hands-on experience to reinforce 

concepts from the text. This book provides an unparalleled degree of support, including a 

projects component in the course. The IRC not only includes guidance on how to assign and 

structure the projects, but also includes a set of project assignments that covers a broad range 

of topics from the text:

 ■ Sage projects: Described in the next section.

 ■ Hacking project: Exercise designed to illuminate the key issues in intrusion detection 

and prevention.

 ■ Block cipher projects: A lab that explores the operation of the AES encryption algo-

rithm by tracing its execution, computing one round by hand, and then exploring the 

various block cipher modes of use. The lab also covers DES. In both cases, an online 

Java applet is used (or can be downloaded) to execute AES or DES.

 ■ Lab exercises: A series of projects that involve programming and experimenting with 

concepts from the book.

 ■ Research projects: A series of research assignments that instruct the student to  research 

a particular topic on the Internet and write a report.

 ■ Programming projects: A series of programming projects that cover a broad range of 

topics and that can be implemented in any suitable language on any platform.

 ■ Practical security assessments: A set of exercises to examine current infrastructure and 

practices of an existing organization.

 ■ Firewall projects: A portable network firewall visualization simulator, together with 

exercises for teaching the fundamentals of firewalls.

 ■ Case studies: A set of real-world case studies, including learning objectives, case 

 description, and a series of case discussion questions.

 ■ Writing assignments: A set of suggested writing assignments, organized by chapter.

 ■ Reading/report assignments: A list of papers in the literature—one for each chapter—

that can be assigned for the student to read and then write a short report.

This diverse set of projects and other student exercises enables the instructor to use 

the book as one component in a rich and varied learning experience and to tailor a course 

plan to meet the specific needs of the instructor and students. See Appendix A in this book 

for details.

THE SAGE COMPUTER ALGEBRA SYSTEM

One of the most important features of this book is the use of Sage for cryptographic  examples 

and homework assignments. Sage is an open-source, multiplatform, freeware package that 

implements a very powerful, flexible, and easily learned mathematics and computer algebra 

system. Unlike competing systems (such as Mathematica, Maple, and MATLAB), there are 
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no licensing agreements or fees involved. Thus, Sage can be made available on computers 

and networks at school, and students can individually download the software to their own 

personal computers for use at home. Another advantage of using Sage is that students learn 

a powerful, flexible tool that can be used for virtually any mathematical application, not 

just cryptography.

The use of Sage can make a significant difference to the teaching of the mathematics 

of cryptographic algorithms. This book provides a large number of examples of the use of 

Sage covering many cryptographic concepts in Appendix B, which is included in this book.

Appendix C lists exercises in each of these topic areas to enable the student to gain 

hands-on experience with cryptographic algorithms. This appendix is available to instruc-

tors at the IRC for this book. Appendix C includes a section on how to download and get 

started with Sage, a section on programming with Sage, and exercises that can be assigned to 

students in the following categories:

 ■ Chapter 2—Number Theory and Finite Fields: Euclidean and extended Euclidean 

 algorithms, polynomial arithmetic, GF(24), Euler’s Totient function, Miller–Rabin, fac-

toring, modular exponentiation, discrete logarithm, and Chinese remainder theorem.

 ■ Chapter 3—Classical Encryption: Affine ciphers and the Hill cipher.

 ■ Chapter 4—Block Ciphers and the Data Encryption Standard: Exercises based 

on SDES.

 ■ Chapter 6—Advanced Encryption Standard: Exercises based on SAES.

 ■ Chapter 8—Pseudorandom Number Generation and Stream Ciphers: Blum Blum 

Shub, linear congruential generator, and ANSI X9.17 PRNG.

 ■ Chapter 9—Public-Key Cryptography and RSA: RSA encrypt/decrypt and signing.

 ■ Chapter 10—Other Public-Key Cryptosystems: Diffie–Hellman, elliptic curve.

 ■ Chapter 11—Cryptographic Hash Functions: Number-theoretic hash function.

 ■ Chapter 13—Digital Signatures: DSA.

ONLINE DOCUMENTS FOR STUDENTS

For this new edition, a tremendous amount of original supporting material for  students has 

been made available online.

Purchasing this textbook new also grants the reader six months of access to the 

Companion Website, which includes the following materials:

 ■ Online chapters: To limit the size and cost of the book, four chapters of the book are 

provided in PDF format. This includes three chapters on computer security and one on 

legal and ethical issues. The chapters are listed in this book’s table of contents.

 ■ Online appendices: There are numerous interesting topics that support material found 

in the text but whose inclusion is not warranted in the printed text. A total of 20 online 

appendices cover these topics for the interested student. The appendices are listed in 

this book’s table of contents.
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 ■ Homework problems and solutions: To aid the student in understanding the material, 

a separate set of homework problems with solutions are available.

 ■ Key papers: A number of papers from the professional literature, many hard to find, 

are provided for further reading.

 ■ Supporting documents: A variety of other useful documents are referenced in the text 

and provided online.

 ■ Sage code: The Sage code from the examples in Appendix B is useful in case the  student 

wants to play around with the examples.

To access the Companion Website, follow the instructions for “digital resources for 

students” found in the front of this book.
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This book focuses on two broad areas: cryptographic algorithms and protocols, which 

have a broad range of applications; and network and Internet security, which rely 

heavily on cryptographic techniques.

Cryptographic algorithms and protocols can be grouped into four main areas:

 ■ Symmetric encryption: Used to conceal the contents of blocks or streams of 

data of any size, including messages, files, encryption keys, and passwords.

 ■ Asymmetric encryption: Used to conceal small blocks of data, such as encryp-

tion keys and hash function values, which are used in digital signatures.

 ■ Data integrity algorithms: Used to protect blocks of data, such as messages, 

from alteration.

 ■ Authentication protocols: These are schemes based on the use of crypto-

graphic algorithms designed to authenticate the identity of entities.

The field of network and Internet security consists of measures to deter, prevent, 

detect, and correct security violations that involve the transmission of information. 

That is a broad statement that covers a host of possibilities. To give you a feel for the 

areas covered in this book, consider the following examples of security violations:

1. User A transmits a file to user B. The file contains sensitive information 

(e.g., payroll records) that is to be protected from disclosure. User C, who is 

not authorized to read the file, is able to monitor the transmission and capture 

a copy of the file during its transmission.

2. A network manager, D, transmits a message to a computer, E, under its man-

agement. The message instructs computer E to update an authorization file to 

include the identities of a number of new users who are to be given access to 

that computer. User F intercepts the message, alters its contents to add or delete 

entries, and then forwards the message to computer E, which accepts the mes-

sage as coming from manager D and updates its authorization file accordingly.

LEARNING OBJECTIVES

After studying this chapter, you should be able to:

 ◆ Describe the key security requirements of confidentiality, integrity, and 

availability.

 ◆ Describe the X.800 security architecture for OSI.

 ◆ Discuss the types of security threats and attacks that must be dealt with 

and give examples of the types of threats and attacks that apply to differ-

ent categories of computer and network assets.

 ◆ Explain the fundamental security design principles.

 ◆ Discuss the use of attack surfaces and attack trees.

 ◆ List and briefly describe key organizations involved in cryptography 

standards.
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3. Rather than intercept a message, user F constructs its own message with the 

desired entries and transmits that message to computer E as if it had come 

from manager D. Computer E accepts the message as coming from manager D 

and updates its authorization file accordingly.

4. An employee is fired without warning. The personnel manager sends a mes-

sage to a server system to invalidate the employee’s account. When the invali-

dation is accomplished, the server is to post a notice to the employee’s file as 

confirmation of the action. The employee is able to intercept the message and 

delay it long enough to make a final access to the server to retrieve sensitive 

information. The message is then forwarded, the action taken, and the confir-

mation posted. The employee’s action may go unnoticed for some consider-

able time.

5. A message is sent from a customer to a stockbroker with instructions for vari-

ous transactions. Subsequently, the investments lose value and the customer 

denies sending the message.

Although this list by no means exhausts the possible types of network security viola-

tions, it illustrates the range of concerns of network security.

 1.1 COMPUTER SECURITY CONCEPTS

A Definition of Computer Security

The NIST Computer Security Handbook [NIST95] defines the term computer secu-
rity as follows:

Computer Security: The protection afforded to an automated information system 

in order to attain the applicable objectives of preserving the integrity, availability, 

and confidentiality of information system resources (includes hardware, software, 

firmware, information/data, and telecommunications).

This definition introduces three key objectives that are at the heart of com-

puter security:

 ■ Confidentiality: This term covers two related concepts:

Data1 confidentiality: Assures that private or confidential information is 

not made available or disclosed to unauthorized individuals.

Privacy: Assures that individuals control or influence what information re-

lated to them may be collected and stored and by whom and to whom that 

information may be disclosed.

1RFC 4949 defines information as “facts and ideas, which can be represented (encoded) as various forms 
of data,” and data as “information in a specific physical representation, usually a sequence of symbols 
that have meaning; especially a representation of information that can be processed or produced by a 
computer.” Security literature typically does not make much of a distinction, nor does this book.
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 ■ Integrity: This term covers two related concepts:

Data integrity: Assures that information (both stored and in transmit-

ted packets) and programs are changed only in a specified and authorized 

manner.

System integrity: Assures that a system performs its intended function in 

an unimpaired manner, free from deliberate or inadvertent unauthorized 

manipulation of the system.

 ■ Availability: Assures that systems work promptly and service is not denied to 

authorized users.

These three concepts form what is often referred to as the CIA triad. The 

three concepts embody the fundamental security objectives for both data and for 

information and computing services. For example, the NIST standard FIPS 199 

(Standards for Security Categorization of Federal Information and Information 
Systems) lists confidentiality, integrity, and availability as the three security objec-

tives for information and for information systems. FIPS 199 provides a useful char-

acterization of these three objectives in terms of requirements and the definition of 

a loss of security in each category:

 ■ Confidentiality: Preserving authorized restrictions on information access 

and disclosure, including means for protecting personal privacy and propri-

etary information. A loss of confidentiality is the unauthorized disclosure of 

information.

 ■ Integrity: Guarding against improper information modification or destruc-

tion, including ensuring information nonrepudiation and authenticity. A loss 

of integrity is the unauthorized modification or destruction of information.

 ■ Availability: Ensuring timely and reliable access to and use of information. 

A loss of availability is the disruption of access to or use of information or an 

information system.

Although the use of the CIA triad to define security objectives is well estab-

lished, some in the security field feel that additional concepts are needed to present a 

complete picture (Figure 1.1). Two of the most commonly mentioned are as follows:

Figure 1.1  Essential Network and Computer Security 
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 ■ Authenticity: The property of being genuine and being able to be verified and 

trusted; confidence in the validity of a transmission, a message, or message 

originator. This means verifying that users are who they say they are and that 

each input arriving at the system came from a trusted source.

 ■ Accountability: The security goal that generates the requirement for actions 

of an entity to be traced uniquely to that entity. This supports nonrepudia-

tion, deterrence, fault isolation, intrusion detection and prevention, and after-

action recovery and legal action. Because truly secure systems are not yet an 

achievable goal, we must be able to trace a security breach to a responsible 

party. Systems must keep records of their activities to permit later forensic 

analysis to trace security breaches or to aid in transaction disputes.

Examples

We now provide some examples of applications that illustrate the requirements just 

enumerated.2 For these examples, we use three levels of impact on organizations or 

individuals should there be a breach of security (i.e., a loss of confidentiality, integ-

rity, or availability). These levels are defined in FIPS PUB 199:

 ■ Low: The loss could be expected to have a limited adverse effect on organi-

zational operations, organizational assets, or individuals. A limited adverse 

effect means that, for example, the loss of confidentiality, integrity, or avail-

ability might (i) cause a degradation in mission capability to an extent and 

duration that the organization is able to perform its primary functions, but the 

effectiveness of the functions is noticeably reduced; (ii) result in minor dam-

age to organizational assets; (iii) result in minor financial loss; or (iv) result in 

minor harm to individuals.

 ■ Moderate: The loss could be expected to have a serious adverse effect on 

organizational operations, organizational assets, or individuals. A serious 

adverse effect means that, for example, the loss might (i) cause a signifi-

cant degradation in mission capability to an extent and duration that the 

organization is able to perform its primary functions, but the effectiveness 

of the functions is significantly reduced; (ii) result in significant damage to 

organizational assets; (iii) result in significant financial loss; or (iv) result in 

significant harm to individuals that does not involve loss of life or serious, 

life-threatening injuries.

 ■ High: The loss could be expected to have a severe or catastrophic adverse 

effect on organizational operations, organizational assets, or individuals. 

A   severe or catastrophic adverse effect means that, for example, the loss 

might (i) cause a severe degradation in or loss of mission capability to an 

extent and duration that the organization is not able to perform one or more 

of its primary functions; (ii) result in major damage to organizational assets; 

(iii) result in major financial loss; or (iv) result in severe or catastrophic harm 

to individuals involving loss of life or serious, life-threatening injuries.

2These examples are taken from a security policy document published by the Information Technology 
Security and Privacy Office at Purdue University.
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CONFIDENTIALITY Student grade information is an asset whose confidentiality is 

considered to be highly important by students. In the United States, the release of 

such information is regulated by the Family Educational Rights and Privacy Act 

(FERPA). Grade information should only be available to students, their parents, 

and employees that require the information to do their job. Student enrollment 

information may have a moderate confidentiality rating. While still covered by 

FERPA, this information is seen by more people on a daily basis, is less likely to be 

targeted than grade information, and results in less damage if disclosed. Directory 

information, such as lists of students or faculty or departmental lists, may be as-

signed a low confidentiality rating or indeed no rating. This information is typically 

freely available to the public and published on a school’s Web site.

INTEGRITY Several aspects of integrity are illustrated by the example of a hospital 

patient’s allergy information stored in a database. The doctor should be able to 

trust that the information is correct and current. Now suppose that an employee 

(e.g., a nurse) who is authorized to view and update this information deliberately 

falsifies the data to cause harm to the hospital. The database needs to be restored 

to a trusted basis quickly, and it should be possible to trace the error back to the 

person responsible. Patient allergy information is an example of an asset with a high 

requirement for integrity. Inaccurate information could result in serious harm or 

death to a patient and expose the hospital to massive liability.

An example of an asset that may be assigned a moderate level of integrity 

requirement is a Web site that offers a forum to registered users to discuss some 

specific topic. Either a registered user or a hacker could falsify some entries or 

deface the Web site. If the forum exists only for the enjoyment of the users, brings 

in little or no advertising revenue, and is not used for something important such 

as research, then potential damage is not severe. The Web master may experience 

some data, financial, and time loss.

An example of a low integrity requirement is an anonymous online poll. Many 

Web sites, such as news organizations, offer these polls to their users with very few 

safeguards. However, the inaccuracy and unscientific nature of such polls is well 

understood.

AVAILABILITY The more critical a component or service, the higher is the level of 

availability required. Consider a system that provides authentication services for 

critical systems, applications, and devices. An interruption of service results in the 

inability for customers to access computing resources and staff to access the re-

sources they need to perform critical tasks. The loss of the service translates into a 

large financial loss in lost employee productivity and potential customer loss.

An example of an asset that would typically be rated as having a moderate 

availability requirement is a public Web site for a university; the Web site provides 

information for current and prospective students and donors. Such a site is not a 

critical component of the university’s information system, but its unavailability will 

cause some embarrassment.

An online telephone directory lookup application would be classified as a low 

availability requirement. Although the temporary loss of the application may be 

an annoyance, there are other ways to access the information, such as a hardcopy 

directory or the operator.
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The Challenges of Computer Security

Computer and network security is both fascinating and complex. Some of the 

 reasons follow:

1. Security is not as simple as it might first appear to the novice. The require-

ments seem to be straightforward; indeed, most of the major requirements for 

security services can be given self-explanatory, one-word labels: confidential-

ity, authentication, nonrepudiation, or integrity. But the mechanisms used to 

meet those requirements can be quite complex, and understanding them may 

involve rather subtle reasoning.

2. In developing a particular security mechanism or algorithm, one must always 

consider potential attacks on those security features. In many cases, successful 

attacks are designed by looking at the problem in a completely different way, 

therefore exploiting an unexpected weakness in the mechanism.

3. Because of point 2, the procedures used to provide particular services are 

often counterintuitive. Typically, a security mechanism is complex, and it is not 

obvious from the statement of a particular requirement that such elaborate 

measures are needed. It is only when the various aspects of the threat are con-

sidered that elaborate security mechanisms make sense.

4. Having designed various security mechanisms, it is necessary to decide where 

to use them. This is true both in terms of physical placement (e.g., at what points 

in a network are certain security mechanisms needed) and in a logical sense 

(e.g., at what layer or layers of an architecture such as TCP/IP [Transmission 

Control Protocol/Internet Protocol] should mechanisms be placed).

5. Security mechanisms typically involve more than a particular algorithm or 

protocol. They also require that participants be in possession of some secret in-

formation (e.g., an encryption key), which raises questions about the creation, 

distribution, and protection of that secret information. There also may be a re-

liance on communications protocols whose behavior may complicate the task 

of developing the security mechanism. For example, if the proper functioning 

of the security mechanism requires setting time limits on the transit time of a 

message from sender to receiver, then any protocol or network that introduces 

variable, unpredictable delays may render such time limits meaningless.

6. Computer and network security is essentially a battle of wits between a per-

petrator who tries to find holes and the designer or administrator who tries to 

close them. The great advantage that the attacker has is that he or she need 

only find a single weakness, while the designer must find and eliminate all 

weaknesses to achieve perfect security.

7. There is a natural tendency on the part of users and system managers to per-

ceive little benefit from security investment until a security failure occurs.

8. Security requires regular, even constant, monitoring, and this is difficult in 

today’s short-term, overloaded environment.

9. Security is still too often an afterthought to be incorporated into a system 

after the design is complete rather than being an integral part of the design 

process.
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10. Many users and even security administrators view strong security as an 

impediment to efficient and user-friendly operation of an information system 

or use of information.

The difficulties just enumerated will be encountered in numerous ways as we 

examine the various security threats and mechanisms throughout this book.

 1.2 THE OSI SECURITY ARCHITECTURE

To assess effectively the security needs of an organization and to evaluate and 

choose various security products and policies, the manager responsible for security 

needs some systematic way of defining the requirements for security and character-

izing the approaches to satisfying those requirements. This is difficult enough in a 

centralized data processing environment; with the use of local and wide area net-

works, the problems are compounded.

ITU-T3 Recommendation X.800, Security Architecture for OSI, defines such a 

systematic approach.4 The OSI security architecture is useful to managers as a way 

of organizing the task of providing security. Furthermore, because this architecture 

was developed as an international standard, computer and communications vendors 

have developed security features for their products and services that relate to this 

structured definition of services and mechanisms.

For our purposes, the OSI security architecture provides a useful, if abstract, 

overview of many of the concepts that this book deals with. The OSI security archi-

tecture focuses on security attacks, mechanisms, and services. These can be defined 

briefly as

 ■ Security attack: Any action that compromises the security of information 

owned by an organization.

 ■ Security mechanism: A process (or a device incorporating such a process) 

that is designed to detect, prevent, or recover from a security attack.

 ■ Security service: A processing or communication service that enhances the 

security of the data processing systems and the information transfers of an 

organization. The services are intended to counter security attacks, and they 

make use of one or more security mechanisms to provide the service.

In the literature, the terms threat and attack are commonly used to mean more 

or less the same thing. Table 1.1 provides definitions taken from RFC 4949, Internet 
Security Glossary.

3The International Telecommunication Union (ITU) Telecommunication Standardization Sector (ITU-T)  
is a United Nations-sponsored agency that develops standards, called Recommendations, relating to tele-
communications and to open systems interconnection (OSI).
4The OSI security architecture was developed in the context of the OSI protocol architecture, which is 
described in Appendix L. However, for our purposes in this chapter, an understanding of the OSI proto-
col architecture is not required.
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 1.3 SECURITY ATTACKS

A useful means of classifying security attacks, used both in X.800 and RFC 4949, is 

in terms of passive attacks and active attacks (Figure 1.2). A passive attack attempts 

to learn or make use of information from the system but does not affect system re-

sources. An active attack attempts to alter system resources or affect their operation.

Passive Attacks

Passive attacks (Figure 1.2a) are in the nature of eavesdropping on, or monitoring 

of, transmissions. The goal of the opponent is to obtain information that is being 

transmitted. Two types of passive attacks are the release of message contents and 

traffic analysis.

The release of message contents is easily understood. A telephone conver-

sation, an electronic mail message, and a transferred file may contain sensitive or 

confidential information. We would like to prevent an opponent from learning the 

contents of these transmissions.

A second type of passive attack, traffic analysis, is subtler. Suppose that we 

had a way of masking the contents of messages or other information traffic so that 

opponents, even if they captured the message, could not extract the information 

from the message. The common technique for masking contents is encryption. If we 

had encryption protection in place, an opponent might still be able to observe the 

pattern of these messages. The opponent could determine the location and identity 

of communicating hosts and could observe the frequency and length of messages 

being exchanged. This information might be useful in guessing the nature of the 

communication that was taking place.

Passive attacks are very difficult to detect, because they do not involve any 

alteration of the data. Typically, the message traffic is sent and received in an appar-

ently normal fashion, and neither the sender nor receiver is aware that a third party 

has read the messages or observed the traffic pattern. However, it is feasible to pre-

vent the success of these attacks, usually by means of encryption. Thus, the empha-

sis in dealing with passive attacks is on prevention rather than detection.

Active Attacks

Active attacks (Figure 1.2b) involve some modification of the data stream or the 

creation of a false stream and can be subdivided into four categories: masquerade, 

replay, modification of messages, and denial of service.

Threat
A potential for violation of security, which exists when there is a circumstance, capability, action, 

or event that could breach security and cause harm. That is, a threat is a possible danger that might 

exploit a vulnerability.

Attack
An assault on system security that derives from an intelligent threat; that is, an intelligent act that 

is a deliberate attempt (especially in the sense of a method or technique) to evade security services 

and violate the security policy of a system.

Table 1.1 Threats and Attacks (RFC 4949)
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A masquerade takes place when one entity pretends to be a different entity 

(path 2 of Figure 1.2b is active). A masquerade attack usually includes one of the 

other forms of active attack. For example, authentication sequences can be captured 

and replayed after a valid authentication sequence has taken place, thus enabling an 

authorized entity with few privileges to obtain extra privileges by impersonating an 

entity that has those privileges.

Replay involves the passive capture of a data unit and its subsequent retrans-

mission to produce an unauthorized effect (paths 1, 2, and 3 active).

Modification of messages simply means that some portion of a legitimate mes-

sage is altered, or that messages are delayed or reordered, to produce an unauthor-

ized effect (paths 1 and 2 active). For example, a message meaning “Allow John 

Smith to read confidential file accounts” is modified to mean “Allow Fred Brown to 

read confidential file accounts.”

Figure 1.2 Security Attacks
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The denial of service prevents or inhibits the normal use or management of 

communications facilities (path 3 active). This attack may have a specific target; for 

example, an entity may suppress all messages directed to a particular destination 

(e.g., the security audit service). Another form of service denial is the disruption of 

an entire network, either by disabling the network or by overloading it with mes-

sages so as to degrade performance.

Active attacks present the opposite characteristics of passive attacks. Whereas 

passive attacks are difficult to detect, measures are available to prevent their success. 

On the other hand, it is quite difficult to prevent active attacks absolutely because 

of the wide variety of potential physical, software, and network  vulnerabilities. 

Instead, the goal is to detect active attacks and to recover from any disruption or 

delays caused by them. If the detection has a deterrent effect, it may also contribute 

to prevention.

 1.4 SECURITY SERVICES

X.800 defines a security service as a service that is provided by a protocol layer of 

communicating open systems and that ensures adequate security of the systems or 

of data transfers. Perhaps a clearer definition is found in RFC 4949, which provides 

the following definition: a processing or communication service that is provided by 

a system to give a specific kind of protection to system resources; security services 

implement security policies and are implemented by security mechanisms.

X.800 divides these services into five categories and fourteen specific services 

(Table 1.2). We look at each category in turn.5

Authentication

The authentication service is concerned with assuring that a communication is au-

thentic. In the case of a single message, such as a warning or alarm signal, the function 

of the authentication service is to assure the recipient that the message is from the 

source that it claims to be from. In the case of an ongoing interaction, such as the con-

nection of a terminal to a host, two aspects are involved. First, at the time of connec-

tion initiation, the service assures that the two entities are authentic, that is, that each 

is the entity that it claims to be. Second, the service must assure that the connection is 

not interfered with in such a way that a third party can masquerade as one of the two 

legitimate parties for the purposes of unauthorized transmission or reception.

Two specific authentication services are defined in X.800:

 ■ Peer entity authentication: Provides for the corroboration of the identity of a 

peer entity in an association. Two entities are considered peers if they imple-

ment to same protocol in different systems; for example two TCP modules 

in two communicating systems. Peer entity authentication is provided for 

5There is no universal agreement about many of the terms used in the security literature. For example, the 
term integrity is sometimes used to refer to all aspects of information security. The term authentication is 
sometimes used to refer both to verification of identity and to the various functions listed under integrity 
in this chapter. Our usage here agrees with both X.800 and RFC 4949.
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AUTHENTICATION

The assurance that the communicating entity is the 

one that it claims to be.

Peer Entity Authentication
Used in association with a logical connection to 

provide confidence in the identity of the entities 

 connected.

Data-Origin Authentication
In a connectionless transfer, provides assurance that 

the source of received data is as claimed.

ACCESS CONTROL

The prevention of unauthorized use of a resource 

(i.e., this service controls who can have access to a 

resource, under what conditions access can occur, 

and what those accessing the resource are allowed 

to do).

DATA CONFIDENTIALITY

The protection of data from unauthorized 

disclosure.

Connection Confidentiality
The protection of all user data on a connection.

Connectionless Confidentiality
The protection of all user data in a single data block.

Selective-Field Confidentiality
The confidentiality of selected fields within the user 

data on a connection or in a single data block.

Traffic-Flow Confidentiality
The protection of the information that might be 

derived from observation of traffic flows.

DATA INTEGRITY

The assurance that data received are exactly as 

sent by an authorized entity (i.e., contain no modi-

fication, insertion, deletion, or replay).

Connection Integrity with Recovery
Provides for the integrity of all user data on a connec-

tion and detects any modification, insertion, deletion, 

or replay of any data within an entire data sequence, 

with recovery attempted.

Connection Integrity without Recovery
As above, but provides only detection without 

 recovery.

Selective-Field Connection Integrity
Provides for the integrity of selected fields within the 

user data of a data block transferred over a connec-

tion and takes the form of determination of whether 

the selected fields have been modified, inserted, 

deleted, or replayed.

Connectionless Integrity
Provides for the integrity of a single connectionless 

data block and may take the form of detection of 

data modification. Additionally, a limited form of 

replay detection may be provided.

Selective-Field Connectionless Integrity
Provides for the integrity of selected fields within a 

single connectionless data block; takes the form of 

determination of whether the selected fields have 

been modified.

NONREPUDIATION

Provides protection against denial by one of the 

entities involved in a communication of having par-

ticipated in all or part of the communication.

Nonrepudiation, Origin
Proof that the message was sent by the specified 

party.

Nonrepudiation, Destination
Proof that the message was received by the specified 

party.

Table 1.2 Security Services (X.800)

use at the establishment of, or at times during the data transfer phase of, a 

connection. It attempts to provide confidence that an entity is not performing 

either a masquerade or an unauthorized replay of a previous connection.

 ■ Data origin authentication: Provides for the corroboration of the source of a 

data unit. It does not provide protection against the duplication or modifica-

tion of data units. This type of service supports applications like electronic mail, 

where there are no prior interactions between the communicating entities.
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Access Control

In the context of network security, access control is the ability to limit and control 

the access to host systems and applications via communications links. To achieve 

this, each entity trying to gain access must first be identified, or authenticated, 

so that access rights can be tailored to the individual.

Data Confidentiality

Confidentiality is the protection of transmitted data from passive attacks. With re-

spect to the content of a data transmission, several levels of protection can be iden-

tified. The broadest service protects all user data transmitted between two users 

over a period of time. For example, when a TCP connection is set up between two 

systems, this broad protection prevents the release of any user data transmitted over 

the TCP connection. Narrower forms of this service can also be defined, including 

the protection of a single message or even specific fields within a message. These 

refinements are less useful than the broad approach and may even be more complex 

and expensive to implement.

The other aspect of confidentiality is the protection of traffic flow from 

 analysis. This requires that an attacker not be able to observe the source and desti-

nation, frequency, length, or other characteristics of the traffic on a communications 

facility.

Data Integrity

As with confidentiality, integrity can apply to a stream of messages, a single mes-

sage, or selected fields within a message. Again, the most useful and straightforward 

approach is total stream protection.

A connection-oriented integrity service, one that deals with a stream of mes-

sages, assures that messages are received as sent with no duplication, insertion, 

modification, reordering, or replays. The destruction of data is also covered under 

this service. Thus, the connection-oriented integrity service addresses both mes-

sage stream modification and denial of service. On the other hand, a connection-

less integrity service, one that deals with individual messages without regard to any 

larger context, generally provides protection against message modification only.

We can make a distinction between service with and without recovery. Because 

the integrity service relates to active attacks, we are concerned with detection rather 

than prevention. If a violation of integrity is detected, then the service may simply 

report this violation, and some other portion of software or human  intervention is 

required to recover from the violation. Alternatively, there are mechanisms avail-

able to recover from the loss of integrity of data, as we will review subsequently. The 

incorporation of automated recovery mechanisms is, in general, the more attractive 

alternative.

Nonrepudiation

Nonrepudiation prevents either sender or receiver from denying a transmitted mes-

sage. Thus, when a message is sent, the receiver can prove that the alleged sender in 

fact sent the message. Similarly, when a message is received, the sender can prove 

that the alleged receiver in fact received the message.
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Availability Service

Both X.800 and RFC 4949 define availability to be the property of a system or a 

system resource being accessible and usable upon demand by an authorized system 

entity, according to performance specifications for the system (i.e., a system is avail-

able if it provides services according to the system design whenever users request 

them). A variety of attacks can result in the loss of or reduction in availability. Some 

of these attacks are amenable to automated countermeasures, such as authentica-

tion and encryption, whereas others require some sort of physical action to prevent 

or recover from loss of availability of elements of a distributed system.

X.800 treats availability as a property to be associated with various security 

services. However, it makes sense to call out specifically an availability service. An 

availability service is one that protects a system to ensure its availability. This ser-

vice addresses the security concerns raised by denial-of-service attacks. It depends 

on proper management and control of system resources and thus depends on access 

control service and other security services.

 1.5 SECURITY MECHANISMS

Table 1.3 lists the security mechanisms defined in X.800. The mechanisms are 

 divided into those that are implemented in a specific protocol layer, such as TCP or 

an  application-layer protocol, and those that are not specific to any particular pro-

tocol layer or security service. These mechanisms will be covered in the appropriate 

SPECIFIC SECURITY MECHANISMS
May be incorporated into the appropriate protocol 

layer in order to provide some of the OSI security 

services.

Encipherment
The use of mathematical algorithms to transform 

data into a form that is not readily intelligible. The 

transformation and subsequent recovery of the data 

depend on an algorithm and zero or more encryption 

keys.

Digital Signature
Data appended to, or a cryptographic transformation 

of, a data unit that allows a recipient of the data unit 

to prove the source and integrity of the data unit and 

protect against forgery (e.g., by the recipient).

Access Control
A variety of mechanisms that enforce access rights to 

resources.

Data Integrity
A variety of mechanisms used to assure the integrity 

of a data unit or stream of data units.

PERVASIVE SECURITY MECHANISMS

Mechanisms that are not specific to any particular 

OSI security service or protocol layer.

Trusted Functionality
That which is perceived to be correct with respect 

to some criteria (e.g., as established by a security 

policy).

Security Label
The marking bound to a resource (which may be a 

data unit) that names or designates the security attri-

butes of that resource.

Event Detection
Detection of security-relevant events.

Security Audit Trail
Data collected and potentially used to facilitate a 

security audit, which is an independent review and 

examination of system records and activities.

Security Recovery
Deals with requests from mechanisms, such as event 

handling and management functions, and takes 

recovery actions.

Table 1.3 Security Mechanisms (X.800)
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places in the book. So we do not elaborate now, except to comment on the defini-

tion of encipherment. X.800 distinguishes between reversible encipherment mech-

anisms and irreversible encipherment mechanisms. A reversible encipherment 

mechanism is simply an encryption algorithm that allows data to be encrypted and 

subsequently decrypted. Irreversible encipherment mechanisms include hash algo-

rithms and message authentication codes, which are used in digital signature and 

message  authentication applications.

Table 1.4, based on one in X.800, indicates the relationship between security 

services and security mechanisms.

SPECIFIC SECURITY MECHANISMS

Authentication Exchange
A mechanism intended to ensure the identity of an 

entity by means of information exchange.

Traffic Padding
The insertion of bits into gaps in a data stream to 

frustrate traffic analysis attempts.

Routing Control
Enables selection of particular physically secure 

routes for certain data and allows routing changes, 

especially when a breach of security is suspected.

Notarization
The use of a trusted third party to assure certain 

properties of a data exchange.
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 1.6 FUNDAMENTAL SECURITY DESIGN PRINCIPLES

Despite years of research and development, it has not been possible to develop 

security design and implementation techniques that systematically exclude security 

flaws and prevent all unauthorized actions. In the absence of such foolproof tech-

niques, it is useful to have a set of widely agreed design principles that can guide 

the development of protection mechanisms. The National Centers of Academic 

Excellence in Information Assurance/Cyber Defense, which is jointly sponsored by 

the U.S. National Security Agency and the U.S. Department of Homeland Security, 

list the following as fundamental security design principles [NCAE13]:

 ■ Economy of mechanism

 ■ Fail-safe defaults

 ■ Complete mediation

 ■ Open design

 ■ Separation of privilege

 ■ Least privilege

 ■ Least common mechanism

 ■ Psychological acceptability

 ■ Isolation

 ■ Encapsulation

 ■ Modularity

 ■ Layering

 ■ Least astonishment

The first eight listed principles were first proposed in [SALT75] and have withstood 

the test of time. In this section, we briefly discuss each principle.

Economy of mechanism means that the design of security measures embod-

ied in both hardware and software should be as simple and small as possible. 

The motivation for this principle is that relatively simple, small design is eas-

ier to test and verify thoroughly. With a complex design, there are many more 

opportunities for an adversary to discover subtle weaknesses to exploit that may 

be  difficult to spot ahead of time. The more complex the mechanism, the more 

likely it is to possess exploitable flaws. Simple mechanisms tend to have fewer 

exploitable flaws and require less maintenance. Further, because configuration 

management issues are simplified, updating or replacing a simple mechanism 

becomes a less intensive process. In practice, this is perhaps the most difficult 

principle to honor. There is a constant demand for new features in both hard-

ware and software, complicating the security design task. The best that can be 

done is to keep this principle in mind during system design to try to eliminate 

unnecessary complexity.

Fail-safe defaults means that access decisions should be based on permission 

rather than exclusion. That is, the default situation is lack of access, and the protec-

tion scheme identifies conditions under which access is permitted. This approach 
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exhibits a better failure mode than the alternative approach, where the default is 

to permit access. A design or implementation mistake in a mechanism that gives 

explicit permission tends to fail by refusing permission, a safe situation that can 

be quickly detected. On the other hand, a design or implementation mistake in a 

mechanism that explicitly excludes access tends to fail by allowing access, a failure 

that may long go unnoticed in normal use. Most file access systems and virtually all 

protected services on client/server systems use fail-safe defaults.

Complete mediation means that every access must be checked against the 

 access control mechanism. Systems should not rely on access decisions retrieved 

from a cache. In a system designed to operate continuously, this principle requires 

that, if access decisions are remembered for future use, careful consideration be 

given to how changes in authority are propagated into such local memories. File 

access systems appear to provide an example of a system that complies with this 

principle. However, typically, once a user has opened a file, no check is made to see 

if permissions change. To fully implement complete mediation, every time a user 

reads a field or record in a file, or a data item in a database, the system must exercise 

access control. This resource-intensive approach is rarely used.

Open design means that the design of a security mechanism should be open 

rather than secret. For example, although encryption keys must be secret, encryption 

algorithms should be open to public scrutiny. The algorithms can then be reviewed 

by many experts, and users can therefore have high confidence in them. This is the 

philosophy behind the National Institute of Standards and Technology (NIST) 

 program of standardizing encryption and hash algorithms, and has led to the wide-

spread adoption of NIST-approved algorithms.

Separation of privilege is defined in [SALT75] as a practice in which mul-

tiple privilege attributes are required to achieve access to a restricted resource. 

A good example of this is multifactor user authentication, which requires the use of 

multiple techniques, such as a password and a smart card, to authorize a user. The 

term is also now applied to any technique in which a program is divided into parts 

that are limited to the specific privileges they require in order to perform a specific 

task. This is used to mitigate the potential damage of a computer security attack. 

One example of this latter interpretation of the principle is removing high privilege 

 operations to another process and running that process with the higher privileges 

required to perform its tasks. Day-to-day interfaces are executed in a lower privi-

leged process.

Least privilege means that every process and every user of the system should 

operate using the least set of privileges necessary to perform the task. A good 

example of the use of this principle is role-based access control. The system security 

policy can identify and define the various roles of users or processes. Each role is 

assigned only those permissions needed to perform its functions. Each permission 

specifies a permitted access to a particular resource (such as read and write access 

to a specified file or directory, connect access to a given host and port). Unless a 

permission is granted explicitly, the user or process should not be able to access the 

protected resource. More generally, any access control system should allow each 

user only the privileges that are authorized for that user. There is also a temporal 

aspect to the least privilege principle. For example, system programs or administra-

tors who have special privileges should have those privileges only when necessary; 
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when they are doing ordinary activities the privileges should be withdrawn. Leaving 

them in place just opens the door to accidents.

Least common mechanism means that the design should minimize the func-

tions shared by different users, providing mutual security. This principle helps 

reduce the number of unintended communication paths and reduces the amount of 

hardware and software on which all users depend, thus making it easier to verify if 

there are any undesirable security implications.

Psychological acceptability implies that the security mechanisms should not 

interfere unduly with the work of users, while at the same time meeting the needs of 

those who authorize access. If security mechanisms hinder the usability or accessibil-

ity of resources, then users may opt to turn off those mechanisms. Where possible, 

security mechanisms should be transparent to the users of the system or at most 

introduce minimal obstruction. In addition to not being intrusive or burdensome, 

security procedures must reflect the user’s mental model of protection. If the protec-

tion procedures do not make sense to the user or if the user must translate his image 

of protection into a substantially different protocol, the user is likely to make errors.

Isolation is a principle that applies in three contexts. First, public access sys-

tems should be isolated from critical resources (data, processes, etc.) to prevent dis-

closure or tampering. In cases where the sensitivity or criticality of the information 

is high, organizations may want to limit the number of systems on which that data is 

stored and isolate them, either physically or logically. Physical isolation may include 

ensuring that no physical connection exists between an organization’s public access 

information resources and an organization’s critical information. When implement-

ing logical isolation solutions, layers of security services and mechanisms should be 

established between public systems and secure systems responsible for protecting 

critical resources. Second, the processes and files of individual users should be iso-

lated from one another except where it is explicitly desired. All modern operating 

systems provide facilities for such isolation, so that individual users have separate, 

isolated process space, memory space, and file space, with protections for prevent-

ing unauthorized access. And finally, security mechanisms should be isolated in the 

sense of preventing access to those mechanisms. For example, logical access control 

may provide a means of isolating cryptographic software from other parts of the 

host system and for protecting cryptographic software from tampering and the keys 

from replacement or disclosure.

Encapsulation can be viewed as a specific form of isolation based on object-

oriented functionality. Protection is provided by encapsulating a collection of pro-

cedures and data objects in a domain of its own so that the internal structure of a 

data object is accessible only to the procedures of the protected subsystem, and the 

procedures may be called only at designated domain entry points.

Modularity in the context of security refers both to the development of security 

functions as separate, protected modules and to the use of a modular architecture for 

mechanism design and implementation. With respect to the use of separate security 

modules, the design goal here is to provide common security functions and services, 

such as cryptographic functions, as common modules. For example, numerous proto-

cols and applications make use of cryptographic functions. Rather than implement-

ing such functions in each protocol or application, a more secure design is provided 

by developing a common cryptographic module that can be invoked by numerous 
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protocols and applications. The design and implementation effort can then focus on 

the secure design and implementation of a single cryptographic module and includ-

ing mechanisms to protect the module from tampering. With respect to the use of a 

modular architecture, each security mechanism should be able to support migration 

to new technology or upgrade of new features without requiring an entire system 

redesign. The security design should be modular so that individual parts of the secu-

rity design can be upgraded without the requirement to modify the entire system.

Layering refers to the use of multiple, overlapping protection approaches 

addressing the people, technology, and operational aspects of information systems. 

By using multiple, overlapping protection approaches, the failure or circumven-

tion of any individual protection approach will not leave the system unprotected. 

We will see throughout this book that a layering approach is often used to provide 

multiple barriers between an adversary and protected information or services. This 

technique is often referred to as defense in depth.

Least astonishment means that a program or user interface should always 

respond in the way that is least likely to astonish the user. For example, the mechanism 

for authorization should be transparent enough to a user that the user has a good intui-

tive understanding of how the security goals map to the provided security mechanism.

 1.7 ATTACK SURFACES AND ATTACK TREES

In Section 1.3, we provided an overview of the spectrum of security threats and 

attacks facing computer and network systems. Section 22.1 goes into more detail 

about the nature of attacks and the types of adversaries that present security threats. 

In this section, we elaborate on two concepts that are useful in evaluating and clas-

sifying threats: attack surfaces and attack trees.

Attack Surfaces

An attack surface consists of the reachable and exploitable vulnerabilities in a sys-

tem [MANA11, HOWA03]. Examples of attack surfaces are the following:

 ■ Open ports on outward facing Web and other servers, and code listening on 

those ports

 ■ Services available on the inside of a firewall

 ■ Code that processes incoming data, email, XML, office documents, and indus-

try-specific custom data exchange formats

 ■ Interfaces, SQL, and Web forms

 ■ An employee with access to sensitive information vulnerable to a social 

 engineering attack

Attack surfaces can be categorized as follows:

 ■ Network attack surface: This category refers to vulnerabilities over an enterprise 

network, wide-area network, or the Internet. Included in this category are net-

work protocol vulnerabilities, such as those used for a denial-of-service attack, 

disruption of communications links, and various forms of intruder attacks.
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 ■ Software attack surface: This refers to vulnerabilities in application, utility, 

or operating system code. A particular focus in this category is Web server 

software.

 ■ Human attack surface: This category refers to vulnerabilities created by 

personnel or outsiders, such as social engineering, human error, and trusted 

insiders.

An attack surface analysis is a useful technique for assessing the scale and 

severity of threats to a system. A systematic analysis of points of vulnerability 

makes developers and security analysts aware of where security mechanisms are 

required. Once an attack surface is defined, designers may be able to find ways to 

make the surface smaller, thus making the task of the adversary more difficult. The 

attack surface also provides guidance on setting priorities for testing, strengthening 

security measures, and modifying the service or application.

As illustrated in Figure 1.3, the use of layering, or defense in depth, and attack 

surface reduction complement each other in mitigating security risk.

Attack Trees

An attack tree is a branching, hierarchical data structure that represents a set of poten-

tial techniques for exploiting security vulnerabilities [MAUW05, MOOR01, SCHN99]. 

The security incident that is the goal of the attack is represented as the root node of 

the tree, and the ways that an attacker could reach that goal are iteratively and incre-

mentally represented as branches and subnodes of the tree. Each subnode defines a 

subgoal, and each subgoal may have its own set of further subgoals, and so on. The 

final nodes on the paths outward from the root, that is, the leaf nodes, represent differ-

ent ways to initiate an attack. Each node other than a leaf is either an AND-node or an 

OR-node. To achieve the goal represented by an AND-node, the subgoals represented 

by all of that node’s subnodes must be achieved; and for an OR-node, at least one of 

the subgoals must be achieved. Branches can be labeled with values representing dif-

ficulty, cost, or other attack attributes, so that alternative attacks can be compared.

Figure 1.3 Defense in Depth and Attack Surface

Attack surface

Medium
security risk

High
security risk

Low
security riskD

ee
p

L
ay

er
in

g

Sh
al

lo
w

Small Large

Medium
security risk



1.7 / ATTACK SURFACES AND ATTACK TREES 39

The motivation for the use of attack trees is to effectively exploit the infor-

mation available on attack patterns. Organizations such as CERT publish security 

advisories that have enabled the development of a body of knowledge about both 

general attack strategies and specific attack patterns. Security analysts can use the 

attack tree to document security attacks in a structured form that reveals key vul-

nerabilities. The attack tree can guide both the design of systems and applications, 

and the choice and strength of countermeasures.

Figure 1.4, based on a figure in [DIMI07], is an example of an attack tree 

analysis for an Internet banking authentication application. The root of the tree is 

the objective of the attacker, which is to compromise a user’s account. The shaded 

boxes on the tree are the leaf nodes, which represent events that comprise the 

attacks. Note that in this tree, all the nodes other than leaf nodes are OR-nodes. 

The analysis to generate this tree considered the three components involved in 

authentication:

Figure 1.4 An Attack Tree for Internet Banking Authentication
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 ■ User terminal and user (UT/U): These attacks target the user equipment, 

including the tokens that may be involved, such as smartcards or other pass-

word generators, as well as the actions of the user.

 ■ Communications channel (CC): This type of attack focuses on communica-

tion links.

 ■ Internet banking server (IBS): These types of attacks are offline attacks against 

the servers that host the Internet banking application.

Five overall attack strategies can be identified, each of which exploits one or 

more of the three components. The five strategies are as follows:

 ■ User credential compromise: This strategy can be used against many ele-

ments of the attack surface. There are procedural attacks, such as monitoring 

a user’s action to observe a PIN or other credential, or theft of the user’s 

token or handwritten notes. An adversary may also compromise token 

information using a variety of token attack tools, such as hacking the smart-

card or using a brute force approach to guess the PIN. Another possible 

strategy is to embed malicious software to compromise the user’s login and 

password. An adversary may also attempt to obtain credential information 

via the communication channel (sniffing). Finally, an adversary may use 

 various means to engage in communication with the target user, as shown 

in Figure 1.4.

 ■ Injection of commands: In this type of attack, the attacker is able to intercept 

communication between the UT and the IBS. Various schemes can be used 

to be able to impersonate the valid user and so gain access to the banking 

system.

 ■ User credential guessing: It is reported in [HILT06] that brute force attacks 

against some banking authentication schemes are feasible by sending ran-

dom usernames and passwords. The attack mechanism is based on distributed 

zombie personal computers, hosting automated programs for username- or 

password-based calculation.

 ■ Security policy violation: For example, violating the bank’s security policy 

in combination with weak access control and logging mechanisms, an em-

ployee may cause an internal security incident and expose a customer’s 

account.

 ■ Use of known authenticated session: This type of attack persuades or forces 

the user to connect to the IBS with a preset session ID. Once the user authen-

ticates to the server, the attacker may utilize the known session ID to send 

packets to the IBS, spoofing the user’s identity.

Figure 1.4 provides a thorough view of the different types of attacks on an 

Internet banking authentication application. Using this tree as a starting point, secu-

rity analysts can assess the risk of each attack and, using the design principles out-

lined in the preceding section, design a comprehensive security facility. [DIMO07] 

provides a good account of the results of this design effort.



1.8 / A MODEL FOR NETWORK SECURITY 41

 1.8 A MODEL FOR NETWORK SECURITY

A model for much of what we will be discussing is captured, in very general terms, in 

Figure 1.5. A message is to be transferred from one party to another across some sort 

of Internet service. The two parties, who are the principals in this transaction, must 

cooperate for the exchange to take place. A logical information channel is  established 

by defining a route through the Internet from source to destination and by the coop-

erative use of communication protocols (e.g., TCP/IP) by the two principals.

Security aspects come into play when it is necessary or desirable to protect the 

information transmission from an opponent who may present a threat to confidentiality, 

authenticity, and so on. All the techniques for providing security have two components:

 ■ A security-related transformation on the information to be sent. Examples 

include the encryption of the message, which scrambles the message so that it 

is unreadable by the opponent, and the addition of a code based on the con-

tents of the message, which can be used to verify the identity of the sender.

 ■ Some secret information shared by the two principals and, it is hoped, 

 unknown to the opponent. An example is an encryption key used in conjunc-

tion with the transformation to scramble the message before transmission 

and unscramble it on reception.6

A trusted third party may be needed to achieve secure transmission. For 

example, a third party may be responsible for distributing the secret information 

6Part Two discusses a form of encryption, known as a symmetric encryption, in which only one of the two 
principals needs to have the secret information.

Figure 1.5 Model for Network Security
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to the two principals while keeping it from any opponent. Or a third party may be 

needed to arbitrate disputes between the two principals concerning the authenticity 

of a message transmission.

This general model shows that there are four basic tasks in designing a par-

ticular security service:

1. Design an algorithm for performing the security-related transformation. The 

algorithm should be such that an opponent cannot defeat its purpose.

2. Generate the secret information to be used with the algorithm.

3. Develop methods for the distribution and sharing of the secret information.

4. Specify a protocol to be used by the two principals that makes use of the 

 security algorithm and the secret information to achieve a particular security 

service.

Parts One through Five of this book concentrate on the types of security 

mechanisms and services that fit into the model shown in Figure 1.5. However, 

there are other security-related situations of interest that do not neatly fit this 

model but are considered in this book. A general model of these other situations 

is illustrated in Figure 1.6, which reflects a concern for protecting an information 

system from unwanted access. Most readers are familiar with the concerns caused 

by the existence of hackers, who attempt to penetrate systems that can be accessed 

over a network. The hacker can be someone who, with no malign intent, simply gets 

satisfaction from breaking and entering a computer system. The intruder can be a 

disgruntled employee who wishes to do damage or a criminal who seeks to exploit 

computer assets for financial gain (e.g., obtaining credit card numbers or perform-

ing illegal money transfers).

Another type of unwanted access is the placement in a computer system of 

logic that exploits vulnerabilities in the system and that can affect application pro-

grams as well as utility programs, such as editors and compilers. Programs can pres-

ent two kinds of threats:

 ■ Information access threats: Intercept or modify data on behalf of users who 

should not have access to that data.

 ■ Service threats: Exploit service flaws in computers to inhibit use by legitimate 

users.

Figure 1.6 Network Access Security Model
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Viruses and worms are two examples of software attacks. Such attacks can be 

introduced into a system by means of a disk that contains the unwanted logic con-

cealed in otherwise useful software. They can also be inserted into a system across a 

network; this latter mechanism is of more concern in network security.

The security mechanisms needed to cope with unwanted access fall into two 

broad categories (see Figure 1.6). The first category might be termed a gatekeeper 

function. It includes password-based login procedures that are designed to deny 

access to all but authorized users and screening logic that is designed to detect and 

reject worms, viruses, and other similar attacks. Once either an unwanted user 

or unwanted software gains access, the second line of defense consists of a vari-

ety of internal controls that monitor activity and analyze stored information in an 

attempt to detect the presence of unwanted intruders. These issues are explored 

in Part Six.

 1.9 STANDARDS

Many of the security techniques and applications described in this book have been 

specified as standards. Additionally, standards have been developed to cover man-

agement practices and the overall architecture of security mechanisms and services. 

Throughout this book, we describe the most important standards in use or that are 

being developed for various aspects of cryptography and network security. Various 

organizations have been involved in the development or promotion of these stan-

dards. The most important (in the current context) of these organizations are as 

follows:

 ■ National Institute of Standards and Technology: NIST is a U.S. federal agency 

that deals with measurement science, standards, and technology related to 

U.S. government use and to the promotion of U.S. private-sector innovation. 

Despite its national scope, NIST Federal Information Processing Standards 

(FIPS) and Special Publications (SP) have a worldwide impact.

 ■ Internet Society: ISOC is a professional membership society with world-

wide organizational and individual membership. It provides leadership in 

addressing issues that confront the future of the Internet and is the organiza-

tion home for the groups responsible for Internet infrastructure standards, 

including the Internet Engineering Task Force (IETF) and the Internet 

Architecture Board (IAB). These organizations develop Internet stan-

dards and related specifications, all of which are published as Requests for 

Comments (RFCs).

 ■ ITU-T: The International Telecommunication Union (ITU) is an interna-

tional organization within the United Nations System in which governments 

and the private sector coordinate global telecom networks and services. The 

ITU Telecommunication Standardization Sector (ITU-T) is one of the three 

sectors of the ITU. ITU-T’s mission is the development of technical standards 

covering all fields of telecommunications. ITU-T standards are referred to as 

Recommendations.
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 ■ ISO: The International Organization for Standardization (ISO)7 is a world-

wide federation of national standards bodies from more than 140 countries, 

one from each country. ISO is a nongovernmental organization that promotes 

the development of standardization and related activities with a view to fa-

cilitating the international exchange of goods and services and to developing 

cooperation in the spheres of intellectual, scientific, technological, and eco-

nomic activity. ISO’s work results in international agreements that are pub-

lished as International Standards.

A more detailed discussion of these organizations is contained in Appendix D.

 1.10 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

7ISO is not an acronym (in which case it would be IOS), but it is a word, derived from the Greek, mean-
ing equal.

Key Terms 

access control

active attack

authentication

authenticity

availability

data confidentiality

data integrity

denial of service

encryption

integrity

intruder

masquerade

nonrepudiation

OSI security architecture

passive attack

replay

security attacks

security mechanisms

security services

traffic analysis

Review Questions 

 1.1 What is the OSI security architecture?

 1.2 List and briefly define the three key objectives of computer security.

 1.3 List and briefly define categories of passive and active security attacks.

 1.4 List and briefly define categories of security services.

 1.5 List and briefly define categories of security mechanisms.

 1.6 List and briefly define the fundamental security design principles.

 1.7 Explain the difference between an attack surface and an attack tree.

Problems 

 1.1 Consider an automated cash deposit machine in which users provide a card or an ac-
count number to deposit cash. Give examples of confidentiality, integrity, and avail-
ability requirements associated with the system, and, in each case, indicate the degree 
of importance of the requirement.

 1.2 Repeat Problem 1.1 for a payment gateway system where a user pays for an item 
using their account via the payment gateway.
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 1.3 Consider a financial report publishing system used to produce reports for various 
organizations.
a. Give an example of a type of publication in which confidentiality of the stored 

data is the most important requirement.
b. Give an example of a type of publication in which data integrity is the most im-

portant requirement.
c. Give an example in which system availability is the most important requirement.

 1.4 For each of the following assets, assign a low, moderate, or high impact level for the 
loss of confidentiality, availability, and integrity, respectively. Justify your answers.
a. A student maintaining a blog to post public information.
b. An examination section of a university that is managing sensitive information 

about exam papers.
c. An information system in a pathological laboratory maintaining the patient’s data.
d. A student information system used for maintaining student data in a university 

that contains both personal, academic information and routine administrative in-
formation (not privacy related). Assess the impact for the two data sets separately 
and the information system as a whole.

e. A University library contains a library management system which controls the 
distribution of books amongst the students of various departments. The library 
management system contains both the student data and the book data. Assess the 
impact for the two data sets separately and the information system as a whole.

 1.5 Draw a matrix similar to Table 1.4 that shows the relationship between security ser-
vices and attacks.

 1.6 Draw a matrix similar to Table 1.4 that shows the relationship between security 
mechanisms and attacks.

 1.7 Develop an attack tree for gaining access to the contents of a physical safe.

 1.8 Consider a company whose operations are housed in two buildings on the same prop-
erty; one building is headquarters, the other building contains network and computer 
services. The property is physically protected by a fence around the perimeter, and 
the only entrance to the property is through this fenced perimeter. In addition to 
the perimeter fence, physical security consists of a guarded front gate. The local net-
works are split between the Headquarters’ LAN and the Network Services’ LAN. 
Internet users connect to the Web server through a firewall. Dial-up users get access 
to a particular server on the Network Services’ LAN. Develop an attack tree in which 
the root node represents disclosure of proprietary secrets. Include physical, social 
engineering, and technical attacks. The tree may contain both AND and OR nodes. 
Develop a tree that has at least 15 leaf nodes.

 1.9 Read all of the classic papers cited in the Recommended Reading section for this 
chapter, available at the Author Web site at WilliamStallings.com/Cryptography. The 
papers are available at box.com/Crypto7e. Compose a 500–1000 word paper (or 8–12 
slide PowerPoint presentation) that summarizes the key concepts that emerge from 
these papers, emphasizing concepts that are common to most or all of the papers.
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Number theory is pervasive in cryptographic algorithms. This chapter provides 

 sufficient breadth and depth of coverage of relevant number theory topics for under-

standing the wide range of applications in cryptography. The reader familiar with these 

topics can safely skip this chapter.

The first three sections introduce basic concepts from number theory that are 

needed for understanding finite fields; these include divisibility, the Euclidian algo-

rithm, and modular arithmetic. The reader may study these sections now or wait until 

ready to tackle Chapter 5 on finite fields.

Sections 2.4 through 2.8 discuss aspects of number theory related to prime num-

bers and discrete logarithms. These topics are fundamental to the design of  asymmetric 

(public-key) cryptographic algorithms. The reader may study these sections now or 

wait until ready to read Part Three.

The concepts and techniques of number theory are quite abstract, and it is often 

difficult to grasp them intuitively without examples. Accordingly, this chapter includes 

a number of examples, each of which is highlighted in a shaded box.

 2.1 DIVISIBILITY AND THE DIVISION ALGORITHM

Divisibility

We say that a nonzero b divides a if a = mb for some m, where a, b, and m are 

integers. That is, b divides a if there is no remainder on division. The notation b � a 

is commonly used to mean b divides a. Also, if b � a, we say that b is a divisor of a.

LEARNING OBJECTIVES

After studying this chapter, you should be able to:

 ◆ Understand the concept of divisibility and the division algorithm.

 ◆ Understand how to use the Euclidean algorithm to find the greatest com-

mon divisor.

 ◆ Present an overview of the concepts of modular arithmetic.

 ◆ Explain the operation of the extended Euclidean algorithm.

 ◆ Discuss key concepts relating to prime numbers.

 ◆ Understand Fermat’s theorem.

 ◆ Understand Euler’s theorem.

 ◆ Define Euler’s totient function.

 ◆ Make a presentation on the topic of testing for primality.

 ◆ Explain the Chinese remainder theorem.

 ◆ Define discrete logarithms.



48  CHAPTER 2 / INTRODUCTION TO NUMBER THEORY

Subsequently, we will need some simple properties of divisibility for integers, 

which are as follows:

 ■ If a � 1, then a = {1.

 ■ If a �b and b � a, then a = {b.

 ■ Any b ≠ 0 divides 0.

 ■ If a �b and b � c, then a � c:

 The positive divisors of 24 are 1, 2, 3, 4, 6, 8, 12, and 24.

13 � 182; -5 � 30; 17 � 289; -3 � 33; 17 � 0

11 � 66 and 66 � 198 1  11 � 198

 b = 7; g = 14; h = 63; m = 3; n = 2

7 � 14 and 7 � 63.

To show 7 � (3 * 14 + 2 * 63),

we have (3 * 14 + 2 * 63) = 7(3 * 2 + 2 * 9), 

and it is obvious that 7 � (7(3 * 2 + 2 * 9)).

 ■ If b � g and b �h, then b � (mg + nh) for arbitrary integers m and n.

To see this last point, note that

 ■ If b � g, then g is of the form g = b * g1 for some integer g1.

 ■ If b �h, then h is of the form h = b * h1 for some integer h1.

So

mg + nh = mbg1 + nbh1 = b * (mg1 + nh1)

and therefore b divides mg + nh.

The Division Algorithm

Given any positive integer n and any nonnegative integer a, if we divide a by n, 

we get an integer quotient q and an integer remainder r that obey the following 

relationship:

  a = qn + r  0 … r 6 n; q = :a/n;    (2.1)

where :x;  is the largest integer less than or equal to x. Equation (2.1) is referred to 

as the division algorithm.1

1Equation (2.1) expresses a theorem rather than an algorithm, but by tradition, this is referred to as the 
division algorithm.
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Figure 2.1a demonstrates that, given a and positive n, it is always possible to 

find q and r that satisfy the preceding relationship. Represent the integers on the 

number line; a will fall somewhere on that line (positive a is shown, a similar dem-

onstration can be made for negative a). Starting at 0, proceed to n, 2n, up to qn, such 

that qn … a and (q + 1)n 7 a. The distance from qn to a is r, and we have found 

the unique values of q and r. The remainder r is often referred to as a residue.

a = 11; n = 7; 11 = 1 * 7 + 4; r = 4 q = 1

a = -11; n = 7; -11 = (-2) * 7 + 3; r = 3 q = -2

Figure 2.1b provides another example.

Figure 2.1 The Relationship a = qn + r; 0 … r 6 n

0

n 2n 3n qn (q + 1)na

n

r(a) General relationship

0 15

15

10

30
= 2 × 15

70

(b) Example: 70 = (4 × 15) + 10

45
= 3 × 15

60
= 4 × 15

75
= 5 × 15

 2.2 THE EUCLIDEAN ALGORITHM

One of the basic techniques of number theory is the Euclidean algorithm, which 

is a simple procedure for determining the greatest common divisor of two positive 

integers. First, we need a simple definition: Two integers are relatively prime if and 

only if their only common positive integer factor is 1.

Greatest Common Divisor

Recall that nonzero b is defined to be a divisor of a if a = mb for some m, where 

a, b, and m are integers. We will use the notation gcd(a, b) to mean the greatest 
 common divisor of a and b. The greatest common divisor of a and b is the largest 

integer that divides both a and b. We also define gcd(0, 0) = 0.
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More formally, the positive integer c is said to be the greatest common divisor 

of a and b if

1. c is a divisor of a and of b.

2. any divisor of a and b is a divisor of c.

An equivalent definition is the following:

gcd(a, b) = max[k, such that k � a and k �b]

Because we require that the greatest common divisor be  positive, gcd(a, b) =
gcd(a, -b) = gcd(-a, b) = gcd(-a, -b). In general, gcd(a, b) = gcd( � a � , �b � ).

gcd(60, 24) = gcd(60, -24) = 12

8 and 15 are relatively prime because the positive divisors of 8 are 1, 2, 4, and 8, and 

the positive divisors of 15 are 1, 3, 5, and 15. So 1 is the only integer on both lists.

Also, because all nonzero integers divide 0, we have gcd(a, 0) = � a � .
We stated that two integers a and b are relatively prime if and only if their 

only common positive integer factor is 1. This is equivalent to saying that a and b are 

relatively prime if gcd(a, b) = 1.

Finding the Greatest Common Divisor

We now describe an algorithm credited to Euclid for easily finding the greatest 

common divisor of two integers (Figure 2.2). This algorithm has broad significance 

in cryptography. The explanation of the algorithm can be broken down into the fol-

lowing points:

1. Suppose we wish to determine the greatest common divisor d of the integers 

a and b; that is determine d = gcd(a, b). Because gcd( � a � , �b � ) = gcd(a, b), 

there is no harm in assuming a Ú b 7 0.

2. Dividing a by b and applying the division algorithm, we can state:

  a = q1b + r1    0 … r1 6 b   (2.2)

3. First consider the case in which r1 = 0. Therefore b divides a and clearly no 

larger number divides both b and a, because that number would be larger 

than b. So we have d = gcd(a, b) = b.

4. The other possibility from Equation (2.2) is r1 ≠ 0. For this case, we can state 

that d � r1. This is due to the basic properties of divisibility: the relations d � a 

and d �b together imply that d � (a - q1b), which is the same as d � r1.

5. Before proceeding with the Euclidian algorithm, we need to answer the ques-

tion: What is the gcd(b, r1)? We know that d �b and d � r1. Now take any arbi-

trary integer c that divides both b and r1. Therefore, c � (q1b + r1) = a. Because 

c divides both a and b, we must have c … d, which is the greatest common 

 divisor of a and b. Therefore d = gcd(b, r1).
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Let us now return to Equation (2.2) and assume that r1 ≠ 0. Because b 7 r1, 

we can divide b by r1 and apply the division algorithm to obtain:

b = q2r1 + r2  0 … r2 6 r1

As before, if r2 = 0, then d = r1 and if r2 ≠ 0, then d = gcd(r1, r2). Note that the 

remainders form a descending series of nonnegative values and so must terminate 

when the remainder is zero. This happens, say, at the (n + 1)th stage where rn - 1 is 

divided by rn. The result is the following system of equations:

  

a = q1b + r1 0 6 r1 6 b
b = q2r1 + r2 0 6 r2 6 r1

r1 = q3r2 + r3 0 6 r3 6 r2

~ ~

 ~ ~

~ ~

rn - 2 = qnrn - 1 + rn 0 6 rn 6 rn - 1

rn - 1 = qn + 1rn + 0

d = gcd(a, b) = rn

w    (2.3)

At each iteration, we have d = gcd(ri, ri+ 1) until finally d = gcd(rn, 0) = rn. 

Thus, we can find the greatest common divisor of two integers by repetitive appli-

cation of the division algorithm. This scheme is known as the Euclidean algorithm. 

Figure 2.3 illustrates a simple example.

We have essentially argued from the top down that the final result is the 

gcd(a, b). We can also argue from the bottom up. The first step is to show that rn 

divides a and b. It follows from the last division in Equation (2.3) that rn divides 

rn - 1. The next to last division shows that rn divides rn - 2 because it divides both 

Figure 2.2 Euclidean Algorithm

No

No Yes
a > b?

r > 0?
Swap

a and b

Replace
b with r

Replace
a with b

Divide a by b,
calling the

remainder r

GCD is
the final

value of b

START

END Figure 2.3 Euclidean 
Algorithm Example: 
gcd(710, 310)

710 = 2 × 310 + 90

310 = 3 × 90 + 40

90 = 2 × 40 + 10

40 = 4 × 10

GCDGCD

Same GCD
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terms on the right. Successively, one sees that rn divides all ri>s and finally a and b. 

It remains to show that rn is the largest divisor that divides a and b. If we take any 

arbitrary integer that divides a and b, it must also divide r1, as explained previously. 

We can follow the sequence of equations in Equation (2.3) down and show that c 

must divide all ri>s. Therefore c must divide rn, so that rn = gcd(a, b).

Let us now look at an example with relatively large numbers to see the power 

of this algorithm:

To find d = gcd(a, b) = gcd(1160718174, 316258250)

a = q1b + r1 1160718174 = 3 * 316258250 + 211943424 d = gcd(316258250, 211943424)

b = q2r1 + r2 316258250 = 1 * 211943424 + 104314826 d = gcd(211943424, 104314826)

r1 = q3r2 + r3 211943424 = 2 * 104314826 +     3313772 d = gcd(104314826, 3313772)

r2 = q4r3 + r4 104314826 =   31 * 3313772 +     1587894 d = gcd(3313772, 1587894)

r3 = q5r4 + r5 3313772 =  2 * 1587894 +       137984 d = gcd(1587894, 137984)

r4 = q6r5 + r6 1587894 =  11 * 137984 +         70070 d = gcd(137984, 70070)

r5 = q7r6 + r7 137984 =      1 * 70070 +         67914 d = gcd(70070, 67914)

r6 = q8r7 + r8 70070 =         1 * 67914 +           2156 d = gcd(67914, 2156)

r7 = q9r8 + r9 67914 =         31 * 2156 +           1078 d = gcd(2156, 1078)

r8 = q10r9 + r10 2156 =           2 * 1078 +                 0 d = gcd(1078, 0) = 1078

Therefore, d = gcd(1160718174, 316258250) = 1078

In this example, we begin by dividing 1160718174 by 316258250, which gives 3 

with a remainder of 211943424. Next we take 316258250 and divide it by 211943424. 

The process continues until we get a remainder of 0, yielding a result of 1078.

It will be helpful in what follows to recast the above computation in tabular 

form. For every step of the iteration, we have ri- 2 = qiri- 1 + ri, where ri- 2 is the 

dividend, ri- 1 is the divisor, qi is the quotient, and ri is the remainder. Table 2.1 sum-

marizes the results.

Dividend Divisor Quotient Remainder

a = 1160718174 b = 316258250 q1 =   3 r1 = 211943424

b =   316258250 r1 = 211943434 q2 =   1 r2 = 104314826

r1 =   211943424 r2 = 104314826 q3 =   2 r3 =     3313772

r2 =   104314826 r3 =     3313772 q4 = 31 r4 =     1587894

r3 =       3313772 r4 =     1587894 q5 =   2 r5 =       137984

r4 =       1587894 r5 =       137984 q6 = 11 r6 =         70070

r5 =         137984 r6 =         70070 q7 =   1 r7 =         67914

r6 =           70070 r7 =         67914 q8 =   1 r8 =           2156

r7 =           67914 r8 =           2156 q9 = 31 r9 =           1078

r8 =             2156 r9 =           1078 q10 =   2 r10 =                 0

Table 2.1 Euclidean Algorithm Example
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 2.3 MODULAR ARITHMETIC

The Modulus

If a is an integer and n is a positive integer, we define a mod n to be the remainder 

when a is divided by n. The integer n is called the modulus. Thus, for any integer a, 

we can rewrite Equation (2.1) as follows:

 a = qn + r  0 … r 6 n; q = :a/n;
 a = :a/n; * n + (a mod n)

11 mod 7 = 4;  -11 mod 7 = 3

73 K 4 (mod 23);    21 K -9 (mod 10)

Two integers a and b are said to be congruent modulo n, if (a mod n) =
(b mod n). This is written as a K b (mod n).2

2We have just used the operator mod in two different ways: first as a binary operator that produces a re-
mainder, as in the expression a mod b; second as a congruence relation that shows the equivalence of two 
integers, as in the expression a K b (mod n). See Appendix 2A for a discussion.

Note that if a K 0 (mod n), then n � a.

Properties of Congruences

Congruences have the following properties:

1. a K b (mod n) if n � (a - b).

2. a K b (mod n) implies b K a (mod n).

3. a K b (mod n) and b K c (mod n) imply a K c (mod n).

To demonstrate the first point, if n � (a - b), then (a - b) = kn for some k.  

So we can write a = b + kn. Therefore, (a mod n) = (remainder when b +
kn is divided by n) = (remainder when b is divided by n) = (b mod n).

23 K 8 (mod 5) because 23 - 8 = 15 = 5 * 3

-11 K 5 (mod 8) because -11 - 5 = -16 = 8 * (-2)

81 K 0 (mod 27) because 81 - 0 = 81 = 27 * 3

The remaining points are as easily proved.
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Modular Arithmetic Operations

Note that, by definition (Figure 2.1), the (mod n) operator maps all integers into 

the set of integers {0, 1, c , (n - 1)}. This suggests the question: Can we perform 

arithmetic operations within the confines of this set? It turns out that we can; this 

technique is known as modular arithmetic.

Modular arithmetic exhibits the following properties:

1. [(a mod n) + (b mod n)] mod n = (a + b) mod n

2. [(a mod n) - (b mod n)] mod n = (a - b) mod n

3. [(a mod n) * (b mod n)] mod n = (a * b) mod n

We demonstrate the first property. Define (a mod n) = ra and (b mod n) = rb. 

Then we can write a = ra + jn for some integer j and b = rb + kn for some integer k.  

Then

 (a + b) mod n = (ra + jn + rb + kn) mod n

 = (ra + rb + (k + j)n) mod n

 = (ra + rb) mod n

 = [(a mod n) + (b mod n)] mod n

The remaining properties are proven as easily. Here are examples of the three 

properties:

11 mod 8 = 3; 15 mod 8 = 7

[(11 mod 8) + (15 mod 8)] mod 8 = 10 mod 8 = 2

(11 + 15) mod 8 = 26 mod 8 = 2

[(11 mod 8) - (15 mod 8)] mod 8 = -4 mod 8 = 4

(11 - 15) mod 8 = -4 mod 8 = 4

[(11 mod 8) * (15 mod 8)] mod 8 = 21 mod 8 = 5

(11 * 15) mod 8 = 165 mod 8 = 5

To find 117 mod 13, we can proceed as follows:

 112 = 121 K 4 (mod 13)

 114 = (112)2 K 42 K 3 (mod 13) 

 117 = 11 * 112 * 114

 117 K 11 * 4 * 3 K 132 K 2 (mod 13)

Exponentiation is performed by repeated multiplication, as in ordinary 

arithmetic.

Thus, the rules for ordinary arithmetic involving addition, subtraction, and 

multiplication carry over into modular arithmetic.
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Table 2.2 provides an illustration of modular addition and multiplication 

modulo 8. Looking at addition, the results are straightforward, and there is a reg-

ular pattern to the matrix. Both matrices are symmetric about the main diagonal 

in conformance to the commutative property of addition and multiplication. As in 

ordinary addition, there is an additive inverse, or negative, to each integer in modu-

lar arithmetic. In this case, the negative of an integer x is the integer y such that 

(x + y) mod 8 = 0. To find the additive inverse of an integer in the left-hand col-

umn, scan across the corresponding row of the matrix to find the value 0; the integer 

at the top of that column is the additive inverse; thus, (2 + 6) mod 8 = 0. Similarly, 

the entries in the multiplication table are straightforward. In modular arithmetic mod 

8, the multiplicative inverse of x is the integer y such that (x * y) mod 8 = 1 mod 8. 

Now, to find the multiplicative inverse of an integer from the multiplication table, 

scan across the matrix in the row for that integer to find the value 1; the integer at 

the top of that column is the multiplicative inverse; thus, (3 * 3) mod 8 = 1. Note 

that not all integers mod 8 have a multiplicative inverse; more about that later.

Properties of Modular Arithmetic

Define the set Zn as the set of nonnegative integers less than n:

Zn = {0, 1, c , (n - 1)}

Table 2.2 Arithmetic Modulo 8

+ 0 1 2 3 4 5 6 7

0 0 1 2 3 4 5 6 7

1 1 2 3 4 5 6 7 0

2 2 3 4 5 6 7 0 1

3 3 4 5 6 7 0 1 2

4 4 5 6 7 0 1 2 3

5 5 6 7 0 1 2 3 4

6 6 7 0 1 2 3 4 5

7 7 0 1 2 3 4 5 6

(a) Addition modulo 8

* 0 1 2 3 4 5 6 7

0 0 0 0 0 0 0 0 0

1 0 1 2 3 4 5 6 7

2 0 2 4 6 0 2 4 6

3 0 3 6 1 4 7 2 5

4 0 4 0 4 0 4 0 4

5 0 5 2 7 4 1 6 3

6 0 6 4 2 0 6 4 2

7 0 7 6 5 4 3 2 1

(b) Multiplication modulo 8

w -w w-1

0 0 —

1 7 1

2 6 —

3 5 3

4 4 —

5 3 5

6 2 —

7 1 7

(c) Additive and multiplicative 

inverse modulo 8
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This is referred to as the set of residues, or residue classes (mod n). To be more pre-

cise, each integer in Zn represents a residue class. We can label the residue classes 

(mod n) as [0], [1], [2], c , [n - 1], where

[r] = {a: a is an integer, a K r (mod n)}

The residue classes (mod 4) are

 [0] = {c , -16, -12, -8, -4, 0, 4, 8, 12, 16, c }

 [1] = {c , -15, -11, -7, -3, 1, 5, 9, 13, 17, c }

 [2] = {c , -14, -10, -6, -2, 2, 6, 10, 14, 18, c }

 [3] = {c , -13, -9, -5, -1, 3, 7, 11, 15, 19, c }

Property Expression

Commutative Laws
(w + x) mod n = (x + w) mod n
(w * x) mod n = (x * w) mod n

Associative Laws
[(w + x) + y] mod n = [w + (x + y)] mod n
[(w * x) * y] mod n = [w * (x * y)] mod n

Distributive Law [w * (x + y)] mod n = [(w * x) + (w * y)] mod n

Identities
(0 + w) mod n = w mod n
(1 * w) mod n = w mod n

Additive Inverse (-w) For each w∈ Zn, there exists a z such that w + z K 0 mod n

Table 2.3 Properties of Modular Arithmetic for Integers in Zn

Of all the integers in a residue class, the smallest nonnegative integer is the 

one used to represent the residue class. Finding the smallest nonnegative integer to 

which k is congruent modulo n is called reducing k modulo n.

If we perform modular arithmetic within Zn, the properties shown in Table 2.3 

hold for integers in Zn. We show in the next section that this implies that Zn is a 

commutative ring with a multiplicative identity element.

There is one peculiarity of modular arithmetic that sets it apart from ordinary 

arithmetic. First, observe that (as in ordinary arithmetic) we can write the following:

 if (a + b) K (a + c) (mod n) then b K c (mod n) (2.4)

(5 + 23) K (5 + 7)(mod 8); 23 K 7(mod 8)

Equation (2.4) is consistent with the existence of an additive inverse. Adding 

the additive inverse of a to both sides of Equation (2.4), we have

 ((-a) + a + b) K ((-a) + a + c)(mod n)

 b K c (mod n)
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However, the following statement is true only with the attached condition:

  if (a * b) K (a * c)(mod n) then b K c(mod n) if a is relatively prime to n   (2.5)

Recall that two integers are relatively prime if their only common positive integer 

factor is 1. Similar to the case of Equation (2.4), we can say that Equation (2.5) is 

consistent with the existence of a multiplicative inverse. Applying the multiplicative 

inverse of a to both sides of Equation (2.5), we have

 ((a-1)ab) K ((a-1)ac)(mod n)

 b K c(mod n)

To see this, consider an example in which the condition of Equation (2.5) does not 

hold. The integers 6 and 8 are not relatively prime, since they have the  common 

factor 2. We have the following:

 6 * 3 = 18 K 2(mod 8)

 6 * 7 = 42 K 2(mod 8)

Yet 3 [ 7 (mod 8).

The reason for this strange result is that for any general modulus n, a multi-

plier a that is applied in turn to the integers 0 through (n - 1) will fail to produce a 

complete set of residues if a and n have any factors in common.

With a = 6 and n = 8,

Z8 0 1 2 3 4 5 6 7

Multiply by 6 0 6 12 18 24 30 36 42

Residues 0 6 4 2 0 6 4 2

Because we do not have a complete set of residues when multiplying by 

6, more than one integer in Z8 maps into the same residue. Specifically, 

6 * 0 mod 8 = 6 * 4 mod 8; 6 * 1 mod 8 = 6 * 5 mod 8; and so on. Because 

this is a many-to-one mapping, there is not a unique inverse to the multiply 

 operation.

However, if we take a = 5 and n = 8, whose only common factor is 1,

Z8 0 1 2 3 4 5 6 7

Multiply by 5 0 5 10 15 20 25 30 35

Residues 0 5 2 7 4 1 6 3

The line of residues contains all the integers in Z8, in a different order.
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In general, an integer has a multiplicative inverse in Zn if and only if that inte-

ger is relatively prime to n. Table 2.2c shows that the integers 1, 3, 5, and 7 have a 

multiplicative inverse in Z8; but 2, 4, and 6 do not.

Euclidean Algorithm Revisited

The Euclidean algorithm can be based on the following theorem: For any integers 

a, b, with a Ú b Ú 0,

  gcd(a, b) = gcd(b, a mod b)   (2.6)

gcd(55, 22) = gcd(22, 55 mod 22) = gcd(22, 11) = 11

 gcd(18, 12) = gcd(12, 6) = gcd(6, 0) = 6

 gcd(11, 10) = gcd(10, 1) = gcd(1, 0) = 1

To see that Equation (2.6) works, let d = gcd(a, b). Then, by the definition of 

gcd, d � a and d �b. For any positive integer b, we can express a as

a = kb + r K r (mod b)

a mod b = r

with k, r integers. Therefore, (a mod b) = a - kb for some integer k. But because 

d �b, it also divides kb. We also have d � a. Therefore, d � (a mod b). This shows that 

d is a common divisor of b and (a mod b). Conversely, if d is a common divisor of b 

and (a mod b), then d �kb and thus d � [kb + (a mod b)], which is equivalent to d � a. 

Thus, the set of common divisors of a and b is equal to the set of common divisors 

of b and (a mod b). Therefore, the gcd of one pair is the same as the gcd of the other 

pair, proving the theorem.

Equation (2.6) can be used repetitively to determine the greatest common divisor.

This is the same scheme shown in Equation (2.3), which can be rewritten in 

the following way.

Euclidean Algorithm

Calculate Which satisfies

r1 = a mod b a = q1b + r1

r2 = b mod r1 b = q2r1 + r2

r3 = r1 mod r2 r1 = q3r2 + r3

~

~

~

~

~

~

rn = rn - 2 mod rn - 1 rn - 2 = qnrn - 1 + rn

rn + 1 = rn - 1 mod rn = 0 rn - 1 = qn + 1rn + 0

d = gcd(a, b) = rn

We can define the Euclidean algorithm concisely as the following recursive 

function.
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Euclid(a,b)
if (b=0) then return a;
else return Euclid(b, a mod b);

The Extended Euclidean Algorithm

We now proceed to look at an extension to the Euclidean algorithm that will be 

important for later computations in the area of finite fields and in encryption algo-

rithms, such as RSA. For given integers a and b, the extended Euclidean algorithm 

not only calculates the greatest common divisor d but also two additional integers x 

and y that satisfy the following equation.

  ax + by = d = gcd(a, b)   (2.7)

It should be clear that x and y will have opposite signs. Before examining the 

algorithm, let us look at some of the values of x and y when a = 42 and b = 30. 

Note that gcd(42, 30) = 6. Here is a partial table of values3 for 42x + 30y.

x − 3 − 2 − 1 0 1 2 3

y

-3 -216 -174 -132 -90 -48 -6 36

-2 -186 -144 -102 -60 -18 24 66

-1 -156 -114 -72 -30 12 54 96

0 -126 -84 -42 0 42 84 126

1 -96 -54 -12 30 72 114 156

2 -66 -24 18 60 102 144 186

3 -36 6 48 90 132 174 216

Observe that all of the entries are divisible by 6. This is not surpris-

ing, because both 42 and 30 are divisible by 6, so every number of the form 

42x + 30y = 6(7x + 5y) is a multiple of 6. Note also that gcd(42, 30) = 6 appears 

in the table. In general, it can be shown that for given integers a and b, the smallest 

positive value of ax + by is equal to gcd(a, b).

Now let us show how to extend the Euclidean algorithm to determine (x, y, d) 

given a and b. We again go through the sequence of divisions indicated in Equation 

(2.3), and we assume that at each step i we can find integers xi and yi that satisfy 

ri = axi + byi. We end up with the following sequence.

a = q1b + r1 r1 = ax1 + by1

b = q2r1 + r2 r2 = ax2 + by2

r1 = q3r2 + r3 r3 = ax3 + by3

f f
rn - 2 = qnrn - 1 + rn rn = axn + byn

rn - 1 = qn + 1rn + 0

3This example is taken from [SILV06].
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Now, observe that we can rearrange terms to write

  ri = ri- 2 - ri- 1qi   (2.8)

Also, in rows i - 1 and i - 2, we find the values

ri- 2 = axi- 2 + byi- 2 and ri- 1 = axi- 1 + byi- 1

Substituting into Equation (2.8), we have

 ri = (axi- 2 + byi- 2) - (axi- 1 + byi- 1)qi

 = a(xi- 2 - qixi- 1) + b(yi- 2 - qiyi- 1)

But we have already assumed that ri = axi + byi. Therefore,

xi = xi- 2 - qixi- 1 and yi = yi- 2 - qiyi- 1

We now summarize the calculations:

Extended Euclidean Algorithm

Calculate Which satisfies Calculate Which satisfies

r-1 = a x-1 = 1; y-1 = 0 a = ax-1 + by-1

r0 = b x0 = 0; y0 = 1 b = ax0 + by0

r1 = a mod b
q1 = :a/b; a = q1b + r1 x1 = x-1 - q1x0 = 1

y1 = y-1 - q1y0 = -q1

r1 = ax1 + by1

r2 = b mod r1

q2 = :b/r1;
b = q2r1 + r2 x2 = x0 - q2x1

y2 = y0 - q2y1

r2 = ax2 + by2

r3 = r1 mod r2

q3 = :r1/r2;
r1 = q3r2 + r3 x3 = x1 - q3x2

y3 = y1 - q3y2

r3 = ax3 + by3

~

~

~

~

~

~

~

~

~

~

~

~

rn = rn - 2 mod rn - 1

qn = :rn - 2/rn - 1;
rn - 2 = qnrn - 1 + rn xn = xn - 2 - qnxn - 1

yn = yn - 2 - qnyn - 1

rn = axn + byn

rn + 1 = rn - 1 mod rn = 0

qn + 1 = :rn - 1/rn;
rn - 1 = qn + 1rn + 0 d = gcd(a, b) = rn

x = xn; y = yn

We need to make several additional comments here. In each row, we calculate 

a new remainder ri based on the remainders of the previous two rows, namely ri- 1 

and ri- 2. To start the algorithm, we need values for r0 and r-1, which are just a and b.  

It is then straightforward to determine the required values for x-1, y-1, x0, and y0.

We know from the original Euclidean algorithm that the process ends 

with a remainder of zero and that the greatest common divisor of a and b is 

d = gcd(a, b) = rn. But we also have determined that d = rn = axn + byn. 

Therefore, in Equation (2.7), x = xn and y = yn.

As an example, let us use a = 1759 and b = 550 and solve for 

1759x + 550y = gcd(1759, 550). The results are shown in Table 2.4. Thus, we have 

1759 * (-111) + 550 * 355 = -195249 + 195250 = 1.
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 2.4 PRIME NUMBERS4

A central concern of number theory is the study of prime numbers. Indeed, whole 

books have been written on the subject (e.g., [CRAN01], [RIBE96]). In this section, 

we provide an overview relevant to the concerns of this book.

An integer p 7 1 is a prime number if and only if its only divisors5 are {1 and 

{p. Prime numbers play a critical role in number theory and in the techniques dis-

cussed in this chapter. Table 2.5 shows the primes less than 2000. Note the way the 

primes are distributed. In particular, note the number of primes in each range of 

100 numbers.

Any integer a 7 1 can be factored in a unique way as

  a = p1
a1 * p2

a2 * g * pt
at   (2.9)

where p1 6 p2 6 c 6 pt are prime numbers and where each ai is a positive inte-

ger. This is known as the fundamental theorem of arithmetic; a proof can be found 

in any text on number theory.

4In this section, unless otherwise noted, we deal only with the nonnegative integers. The use of negative 
integers would introduce no essential differences. 
5Recall from Section 2.1 that integer a is said to be a divisor of integer b if there is no remainder on 
 division. Equivalently, we say that a divides b.

i ri qi xi yi

-1 1759 1 0

0 550 0 1

1 109 3 1 -3

2 5 5 -5 16

3 4 21 106 -339

4 1 1 -111 355

5 0 4

Result: d = 1; x = -111; y = 355

Table 2.4 Extended Euclidean Algorithm Example

 91 = 7 * 13

 3600 = 24 * 32 * 52

 11011 = 7 * 112 * 13

It is useful for what follows to express this another way. If P is the set of 

all prime numbers, then any positive integer a can be written uniquely in the 

 following form:

a = q
p∈P

pap where each ap Ú 0
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The right-hand side is the product over all possible prime numbers p; for any par-

ticular value of a, most of the exponents ap will be 0.

The value of any given positive integer can be specified by simply listing all the 

nonzero exponents in the foregoing formulation.

The integer 12 is represented by {a2 = 2, a3 = 1}.

The integer 18 is represented by {a2 = 1, a3 = 2}.

The integer 91 is represented by {a7 = 1, a13 = 1}.

Multiplication of two numbers is equivalent to adding the corresponding 

exponents. Given a = q
p∈P

pap, b = q
p∈P

pbp. Define k = ab. We know that the inte-

ger k can be expressed as the product of powers of primes: k = q
p∈P

pkp. It follows 

that kp = ap + bp for all p ∈ P.

 k = 12 * 18 = (22 * 3) * (2 * 32) = 216

 k2 = 2 + 1 = 3; k3 = 1 + 2 = 3

 216 = 23 * 33 = 8 * 27

 a = 12; b = 36; 12 � 36

 12 = 22 * 3; 36 = 22 * 32

 a2 = 2 = b2

 a3 = 1 … 2 = b3

 Thus, the inequality ap … bp is satisfied for all prime numbers.

What does it mean, in terms of the prime factors of a and b, to say that a divides b?  

Any integer of the form pn can be divided only by an integer that is of a lesser 

or equal power of the same prime number, pj with j … n. Thus, we can say the 

following.

Given

a = q
p∈P

pap, b = q
p∈P

pbp

If a �b, then ap … bp for all p.

It is easy to determine the greatest common divisor of two positive integers if 

we express each integer as the product of primes.
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The following relationship always holds:

If k = gcd(a, b), then kp = min(ap, bp) for all p.

Determining the prime factors of a large number is no easy task, so the pre-

ceding relationship does not directly lead to a practical method of calculating the 

greatest common divisor.

 2.5 FERMAT’S AND EULER’S THEOREMS

Two theorems that play important roles in public-key cryptography are Fermat’s 

theorem and Euler’s theorem.

Fermat’s Theorem6

Fermat’s theorem states the following: If p is prime and a is a positive integer not 

divisible by p, then

 ap - 1 K 1 (mod p)   (2.10)

Proof: Consider the set of positive integers less than p: {1, 2, c , p - 1} and mul-

tiply each element by a, modulo p, to get the set X = {a mod p, 2a mod p, c , 

(p - 1)a mod p}. None of the elements of X is equal to zero because p does not 

divide a. Furthermore, no two of the integers in X are equal. To see this, assume that 

ja K ka(mod p)), where 1 … j 6 k … p - 1. Because a is relatively prime7 to p, we 

can eliminate a from both sides of the equation [see Equation (2.3)] resulting in 

j K k(mod p). This last equality is impossible, because j and k are both positive inte-

gers less than p. Therefore, we know that the (p - 1) elements of X are all positive 

integers with no two elements equal. We can conclude the X consists of the set of 

integers {1, 2, c , p - 1} in some order. Multiplying the numbers in both sets 

(p and X) and taking the result mod p yields

 a * 2a * g * (p - 1)a K [(1 * 2 * g * (p - 1)](mod p)

 ap - 1(p - 1)! K (p - 1)! (mod p)

We can cancel the (p - 1)! term because it is relatively prime to p [see Equation 

(2.5)]. This yields Equation (2.10), which completes the proof.

6This is sometimes referred to as Fermat’s little theorem. 
7Recall from Section 2.2 that two numbers are relatively prime if they have no prime factors in common; 
that is, their only common divisor is 1. This is equivalent to saying that two numbers are relatively prime 
if their greatest common divisor is 1.

 300 = 22 * 31 * 52

 18 = 21 * 32

 gcd(18,300) = 21 * 31 * 50 = 6
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An alternative form of Fermat’s theorem is also useful: If p is prime and a is a 

positive integer, then

  ap K a(mod p)   (2.11)

Note that the first form of the theorem [Equation (2.10)] requires that a be rela-

tively prime to p, but this form does not.

a = 7, p = 19

72 = 49 K 11 (mod 19)

74 K 121 K 7 (mod 19)

78 K 49 K 11 (mod 19)

716 K 121 K 7 (mod 19)

ap - 1 = 718 = 716 * 72 K 7 * 11 K 1 (mod 19)

  p = 5, a = 3    ap = 35 = 243 K 3(mod 5) = a(mod p)  

  p = 5, a = 10  ap = 105 = 100000 K 10(mod 5) K 0(mod 5) = a(mod p)

Euler’s Totient Function

Before presenting Euler’s theorem, we need to introduce an important quantity in 

number theory, referred to as Euler’s totient function. This function, written f(n), 

is defined as the number of positive integers less than n and relatively prime to n. 

By convention, f(1) = 1.

Determine f(37) and f(35).

Because 37 is prime, all of the positive integers from 1 through 36 are relatively 

prime to 37. Thus f(37) = 36.

To determine f(35), we list all of the positive integers less than 35 that are 

 relatively prime to it:

1, 2, 3, 4, 6, 8, 9, 11, 12, 13, 16, 17, 18

19, 22, 23, 24, 26, 27, 29, 31, 32, 33, 34

There are 24 numbers on the list, so f(35) = 24.

Table 2.6 lists the first 30 values of f(n). The value f(1) is without meaning 

but is defined to have the value 1.

It should be clear that, for a prime number p,

f(p) = p - 1

Now suppose that we have two prime numbers p and q with p ≠ q. Then we can 

show that, for n = pq,
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f(n) = f(pq) = f(p) * f(q) = (p - 1) * (q - 1)

To see that f(n) = f(p) * f(q), consider that the set of positive integers less than 

n is the set {1, c , (pq - 1)}. The integers in this set that are not relatively prime 

to n are the set {p, 2p, c , (q - 1)p} and the set {q, 2q, c , (p - 1)q}. To see 

this, consider that any integer that divides n must divide either of the prime num-

bers p or q. Therefore, any integer that does not contain either p or q as a factor is 

relatively prime to n. Further note that the two sets just listed are non-overlapping: 

Because p and q are prime, we can state that none of the integers in the first set can 

be written as a multiple of q, and none of the integers in the second set can be writ-

ten as a multiple of p. Thus the total number of unique integers in the two sets is 

(q - 1) + (p - 1). Accordingly,

 f(n) = (pq - 1) - [(q - 1) + (p - 1)]

 = pq - (p + q) + 1 

 = (p - 1) * (q - 1) 

 = f(p) * f(q)

f(21) = f(3) * f(7) = (3 - 1) * (7 - 1) = 2 * 6 = 12

where the 12 integers are {1, 2, 4, 5, 8, 10, 11, 13, 16, 17, 19, 20}.

Table 2.6 Some Values of Euler’s Totient Function f(n)

n f(n)

1 1

2 1

3 2

4 2

5 4

6 2

7 6

8 4

9 6

10 4

n f(n)

11 10

12 4

13 12

14 6

15 8

16 8

17 16

18 6

19 18

20 8

n f(n)

21 12

22 10

23 22

24 8

25 20

26 12

27 18

28 12

29 28

30 8

Euler’s Theorem

Euler’s theorem states that for every a and n that are relatively prime:

  af(n) K 1(mod n)   (2.12)

Proof: Equation (2.12) is true if n is prime, because in that case, f(n) = (n - 1) 

and Fermat’s theorem holds. However, it also holds for any integer n. Recall that 
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f(n) is the number of positive integers less than n that are relatively prime to n. 

Consider the set of such integers, labeled as

R = {x1, x2, c , xf(n)}

That is, each element xi of R is a unique positive integer less than n with gcd(xi, n) = 1. 

Now multiply each element by a, modulo n:

S = {(ax1 mod n), (ax2 mod n), c , (axf(n) mod n)}

The set S is a permutation8 of R , by the following line of reasoning:

1. Because a is relatively prime to n and xi is relatively prime to n, axi must also 

be relatively prime to n. Thus, all the members of S are integers that are less 

than n and that are relatively prime to n.

2. There are no duplicates in S. Refer to Equation (2.5). If axi mod n=  axj 

mod n, then xi = xj.

Therefore,

 q
f(n)

i=1

(axi mod n) = q
f(n)

i=1

xi

 q
f(n)

i=1

axi K q
f(n)

i=1

xi (mod n)

 af(n) * Jqf(n)

i=1

xiR K q
f(n)

i=1

xi (mod n)

 af(n) K 1 (mod n)

which completes the proof. This is the same line of reasoning applied to the proof 

of Fermat’s theorem.

8A permutation of a finite set of elements S is an ordered sequence of all the elements of S, with each 
element appearing exactly once.

 a = 3; n = 10; f(10) = 4;       af(n) = 34 = 81 = 1(mod 10) = 1(mod n)

 a = 2; n = 11; f(11) = 10;     af(n) = 210 = 1024 = 1(mod 11) = 1(mod n)

As is the case for Fermat’s theorem, an alternative form of the theorem is also 

useful:

  af(n) + 1 K a(mod n)   (2.13)

Again, similar to the case with Fermat’s theorem, the first form of Euler’s theorem 

[Equation (2.12)] requires that a be relatively prime to n, but this form does not.
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 2.6 TESTING FOR PRIMALITY

For many cryptographic algorithms, it is necessary to select one or more very large 

prime numbers at random. Thus, we are faced with the task of determining whether 

a given large number is prime. There is no simple yet efficient means of accomplish-

ing this task.

In this section, we present one attractive and popular algorithm. You may be 

surprised to learn that this algorithm yields a number that is not necessarily a prime. 

However, the algorithm can yield a number that is almost certainly a prime. This will 

be explained presently. We also make reference to a deterministic algorithm for find-

ing primes. The section closes with a discussion concerning the distribution of primes.

Miller–Rabin Algorithm9

The algorithm due to Miller and Rabin [MILL75, RABI80] is typically used to test 

a large number for primality. Before explaining the algorithm, we need some back-

ground. First, any positive odd integer n Ú 3 can be expressed as

n - 1 = 2kq  with k 7 0, q odd

To see this, note that n - 1 is an even integer. Then, divide (n - 1) by 2 until the 

result is an odd number q, for a total of k divisions. If n is expressed as a binary 

number, then the result is achieved by shifting the number to the right until the 

rightmost digit is a 1, for a total of k shifts. We now develop two properties of prime 

numbers that we will need.

TWO PROPERTIES OF PRIME NUMBERS The first property is stated as follows: If p is 

prime and a is a positive integer less than p, then a2 mod p = 1 if and only if either 

a mod p = 1 or a mod p = -1 mod p = p - 1. By the rules of modular arithmetic 

(a mod p) (a mod p) = a2 mod p. Thus, if either a mod p = 1 or a mod p = -1, 

then a2 mod p = 1. Conversely, if a2 mod p = 1, then (a mod p)2 = 1, which is true 

only for a mod p = 1 or a mod p = -1.

The second property is stated as follows: Let p be a prime number greater 

than 2. We can then write p - 1 = 2kq with k 7 0, q odd. Let a be any integer in 

the range 1 6 a 6 p - 1. Then one of the two following conditions is true.

1. aq is congruent to 1 modulo p. That is, aq mod p = 1, or equivalently, 

aq K 1(mod p).

2. One of the numbers aq, a2q, a4q, c , a2k - 1q is congruent to -1 mod-

ulo p. That is, there is some number j in the range (1 … j … k) such that 

a2j - 1q mod p = -1 mod p = p - 1 or equivalently, a2j - 1q K - 1(mod p).

Proof: Fermat’s theorem [Equation (2.10)] states that an - 1 K 1(mod n) if n is 

prime. We have p - 1 = 2kq. Thus, we know that ap - 1 mod p = a2kq mod p = 1. 

Thus, if we look at the sequence of numbers

  aq mod p, a2q mod p, a4q mod p, c , a2k - 1q mod p, a2kq mod p   (2.14)

9Also referred to in the literature as the Rabin-Miller algorithm, or the Rabin-Miller test, or the Miller–
Rabin test. 
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we know that the last number in the list has value 1. Further, each number in the list 

is the square of the previous number. Therefore, one of the following possibilities 

must be true.

1. The first number on the list, and therefore all subsequent numbers on the list, 

equals 1.

2. Some number on the list does not equal 1, but its square mod p does equal 1. 

By virtue of the first property of prime numbers defined above, we know that 

the only number that satisfies this condition is p - 1. So, in this case, the list 

contains an element equal to p - 1.

This completes the proof.

DETAILS OF THE ALGORITHM These considerations lead to the conclusion that, 

if n is prime, then either the first element in the list of residues, or remainders, 

(aq, a2q, c , a2k - 1q, a2kq) modulo n equals 1; or some element in the list equals 

(n - 1); otherwise n is composite (i.e., not a prime). On the other hand, if the 

condition is met, that does not necessarily mean that n is prime. For example, if 

n = 2047 = 23 * 89, then n - 1 = 2 * 1023. We compute 21023 mod 2047 = 1, so 

that 2047 meets the condition but is not prime.

We can use the preceding property to devise a test for primality. The procedure 

TEST takes a candidate integer n as input and returns the result composite if n is 

definitely not a prime, and the result inconclusive if n may or may not be a prime.

TEST (n)
1.  Find integers k, q, with k > 0, q odd, so that  

(n − 1 = 2k q);
2. Select a random integer a, 1 < a < n - 1;
3. if aq mod n = 1 then return(”inconclusive”);
4. for j = 0 to k - 1 do
5.   if a2

j
qmod n = n - 1 then return(”inconclusive”);

6. return(”composite”);

 Let us apply the test to the prime number n = 29. We have (n - 1) = 28 =
22(7) = 2kq. First, let us try a = 10. We compute 107 mod 29 = 17, which is neither 

1 nor 28, so we continue the test. The next calculation finds that (107)2 mod 29 = 28, 

and the test  returns inconclusive (i.e., 29 may be prime). Let’s try again with 

a = 2. We have the following calculations: 27 mod 29 = 12; 214 mod 29 = 28; and 

the test again returns inconclusive. If we perform the test for all integers a in 

the range 1 through 28, we get the same inconclusive result, which is compatible 

with n being a prime number.

Now let us apply the test to the composite number n = 13 * 17 = 221. Then 

(n - 1) = 220 = 22(55) = 2kq. Let us try a = 5. Then we have 555 mod 221 = 112, 

which is neither 1 nor 220(555)2 mod 221 = 168. Because we have used all values of j 
(i.e., j = 0 and j = 1) in line 4 of the TEST algorithm, the test returns  composite, indi-

cating that 221 is definitely a composite number. But suppose we had selected a = 21. 

Then we have 2155 mod 221 = 200; (2155)2 mod 221 = 220; and the test returns 

inconclusive, indicating that 221 may be prime. In fact, of the 218 integers from 2 

through 219, four of these will return an inconclusive result, namely 21, 47, 174, and 200.
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REPEATED USE OF THE MILLER–RABIN ALGORITHM How can we use the Miller–Rabin 

algorithm to determine with a high degree of confidence whether or not an integer 

is prime? It can be shown [KNUT98] that given an odd number n that is not prime 

and a randomly chosen integer, a with 1 6 a 6 n - 1, the probability that TEST 

will return inconclusive (i.e., fail to detect that n is not prime) is less than 1/4. 

Thus, if t different values of a are chosen, the probability that all of them will pass 

TEST (return inconclusive) for n is less than (1/4)t. For example, for t = 10, the 

probability that a nonprime number will pass all ten tests is less than 10-6. Thus, 

for a sufficiently large value of t , we can be confident that n is prime if Miller’s test 

always returns inconclusive.

This gives us a basis for determining whether an odd integer n is prime with 

a reasonable degree of confidence. The procedure is as follows: Repeatedly invoke 

TEST (n) using randomly chosen values for a. If, at any point, TEST returns 

 composite, then n is determined to be nonprime. If TEST continues to return 

inconclusive for t tests, then for a sufficiently large value of t, assume that n 

is prime.

A Deterministic Primality Algorithm

Prior to 2002, there was no known method of efficiently proving the primality of 

very large numbers. All of the algorithms in use, including the most popular (Miller–

Rabin), produced a probabilistic result. In 2002 (announced in 2002, published 

in 2004), Agrawal, Kayal, and Saxena [AGRA04] developed a relatively simple 

deterministic algorithm that efficiently determines whether a given large number 

is a prime. The algorithm, known as the AKS algorithm, does not appear to be as 

efficient as the Miller–Rabin algorithm. Thus far, it has not supplanted this older, 

probabilistic technique.

Distribution of Primes

It is worth noting how many numbers are likely to be rejected before a prime num-

ber is found using the Miller–Rabin test, or any other test for primality. A result 

from number theory, known as the prime number theorem, states that the primes 

near n are spaced on the average one every ln (n) integers. Thus, on average, one 

would have to test on the order of ln(n) integers before a prime is found. Because 

all even integers can be immediately rejected, the correct figure is 0.5 ln(n). For 

example, if a prime on the order of magnitude of 2200 were sought, then about 

0.5 ln(2200) = 69 trials would be needed to find a prime. However, this figure is just 

an average. In some places along the number line, primes are closely packed, and in 

other places there are large gaps.

The two consecutive odd integers 1,000,000,000,061 and 1,000,000,000,063 

are both prime. On the other hand, 1001! + 2, 1001! + 3, c , 1001! + 1000, 

1001! + 1001 is a sequence of 1000 consecutive composite integers.
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 2.7 THE CHINESE REMAINDER THEOREM

One of the most useful results of number theory is the Chinese remainder theorem 

(CRT).10 In essence, the CRT says it is possible to reconstruct integers in a certain 

range from their residues modulo a set of pairwise relatively prime moduli.

10The CRT is so called because it is believed to have been discovered by the Chinese mathematician 
 Sun-Tsu in around 100 A.D.

The 10 integers in Z10, that is the integers 0 through 9, can be reconstructed from 

their two residues modulo 2 and 5 (the relatively prime factors of 10). Say the 

known residues of a decimal digit x are r2 = 0 and r5 = 3; that is, x mod 2 = 0 

and x mod 5 = 3. Therefore, x is an even integer in Z10 whose remainder, on divi-

sion by 5, is 3. The unique solution is x = 8.

The CRT can be stated in several ways. We present here a formulation that is most 

useful from the point of view of this text. An alternative formulation is explored in 

Problem 2.33. Let

M = q
k

i=1

mi

where the mi are pairwise relatively prime; that is, gcd(mi, mj) = 1 for 1 … i, j … k, 

and i ≠ j. We can represent any integer A in ZM by a k-tuple whose elements are in 

Zmi
 using the following correspondence:

  A 4 (a1, a2, c , ak)   (2.15)

where A ∈ ZM, ai∈ Zmi
, and ai = A mod mi for 1 … i … k. The CRT makes two 

assertions.

1. The mapping of Equation (2.15) is a one-to-one correspondence (called a 

 bijection) between ZM and the Cartesian product Zm1
* Zm2

* c * Zmk
. 

That is, for every integer A such that 0 … A 6 M, there is a unique k- tuple 

(a1, a2, c , ak) with 0 … ai 6 mi that represents it, and for every such  

k- tuple (a1, a2, c , ak), there is a unique integer A in ZM.

2. Operations performed on the elements of ZM can be equivalently performed 

on the corresponding k-tuples by performing the operation independently in 

each coordinate position in the appropriate system.

Let us demonstrate the first assertion. The transformation from A to 

(a1, a2, c , ak), is obviously unique; that is, each ai is uniquely calculated as 

ai = A mod mi. Computing A from (a1, a2, c , ak) can be done as follows. Let 
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Mi = M/mi for 1 … i … k. Note that Mi = m1 * m2 * c * mi- 1 * mi+ 1 * c 

* mk, so that Mi K 0 (mod mj) for all j ≠ i. Then let

  ci = Mi * (Mi
-1 mod mi)   for 1 … i … k   (2.16)

By the definition of Mi, it is relatively prime to mi and therefore has a unique multi-

plicative inverse mod mi. So Equation (2.16) is well defined and produces a unique 

value ci. We can now compute

  A K ¢ ak
i=1

aici≤(mod M)   (2.17)

To show that the value of A produced by Equation (2.17) is correct, we must 

show that ai = A mod mi for 1 … i … k. Note that cj K Mj K 0 (mod mi) if j ≠ i, 
and that ci K 1 (mod mi). It follows that ai = A mod mi.

The second assertion of the CRT, concerning arithmetic operations, follows 

from the rules for modular arithmetic. That is, the second assertion can be stated as 

follows: If

A 4 (a1, a2, c , ak)

B 4 (b1, b2, c , bk)

then

(A + B) mod M 4 ((a1 + b1) mod m1, c , (ak + bk) mod mk)

(A - B) mod M 4 ((a1 - b1) mod m1, c , (ak - bk) mod mk)

(A * B) mod M 4 ((a1 * b1) mod m1, c , (ak * bk) mod mk)

One of the useful features of the Chinese remainder theorem is that it provides 

a way to manipulate (potentially very large) numbers mod M in terms of tuples of 

smaller numbers. This can be useful when M is 150 digits or more. However, note 

that it is necessary to know beforehand the factorization of M.

 To represent 973 mod 1813 as a pair of numbers mod 37 and 49, define

 m1 = 37

 m2 = 49

 M = 1813

 A = 973

We also have M1 = 49 and M2 = 37. Using the extended Euclidean algorithm, 

we compute M1
-1 = 34 mod m1 and M2

-1 = 4 mod m2. (Note that we only need 

to compute each Mi and each Mi
-1 once.) Taking residues modulo 37 and 49, our 

representation of 973 is (11, 42), because 973 mod 37 = 11 and 973 mod 49 = 42.

Now suppose we want to add 678 to 973. What do we do to (11, 42)? First 

we compute (678) 4 (678 mod 37, 678 mod 49) = (12, 41). Then we add the 

tuples element-wise and reduce (11 + 12 mod 37, 42 + 41 mod 49) = (23, 34). 

To verify that this has the correct effect, we compute
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 2.8 DISCRETE LOGARITHMS

Discrete logarithms are fundamental to a number of public-key algorithms, includ-

ing Diffie–Hellman key exchange and the digital signature algorithm (DSA). This 

section provides a brief overview of discrete logarithms. For the interested reader, 

more detailed developments of this topic can be found in [ORE67] and [LEVE90].

The Powers of an Integer, Modulo n

Recall from Euler’s theorem [Equation (2.12)] that, for every a and n that are rela-

tively prime,

af(n) K 1 (mod n)

where f(n), Euler’s totient function, is the number of positive integers less than n 

and relatively prime to n. Now consider the more general expression:

  am K 1 (mod n)   (2.18)

If a and n are relatively prime, then there is at least one integer m that satisfies 

Equation (2.18), namely, m = f(n). The least positive exponent m for which 

Equation (2.18) holds is referred to in several ways:

 ■ The order of a (mod n)

 ■ The exponent to which a belongs (mod n)

 ■ The length of the period generated by a

 (23, 34) 4 a1M1M1
-1 + a2M2M2

-1 mod M

 = [(23)(49)(34) + (34)(37)(4)] mod 1813

 = 43350 mod 1813

 = 1651

and check that it is equal to (973 + 678) mod 1813 = 1651. Remember that in 

the above derivation, Mi
-1 is the multiplicative inverse of M1 modulo m1 and M2

-1 

is the multiplicative inverse of M2 modulo m2.

Suppose we want to multiply 1651 (mod 1813) by 73. We multiply (23, 34) 

by 73 and reduce to get (23 * 73 mod 37, 34 * 73 mod 49) = (14, 32). It is eas-

ily verified that

 (14, 32) 4 [(14)(49)(34) + (32)(37)(4)] mod 1813

 = 865

 = 1651 * 73 mod 1813
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Table 2.7 shows all the powers of a, modulo 19 for all positive a 6 19. The 

length of the sequence for each base value is indicated by shading. Note the 

following:

1. All sequences end in 1. This is consistent with the reasoning of the preceding 

few paragraphs.

2. The length of a sequence divides f(19) = 18. That is, an integral number of 

sequences occur in each row of the table.

3. Some of the sequences are of length 18. In this case, it is said that the base inte-

ger a generates (via powers) the set of nonzero integers modulo 19. Each such 

integer is called a primitive root of the modulus 19.

More generally, we can say that the highest possible exponent to which a num-

ber can belong (mod n) is f(n). If a number is of this order, it is referred to as a 

primitive root of n. The importance of this notion is that if a is a primitive root of n, 

then its powers

a, a2, c , af(n)

are distinct (mod n) and are all relatively prime to n. In particular, for a prime num-

ber p, if a is a primitive root of p, then

a, a2, c , ap - 1

are distinct (mod p). For the prime number 19, its primitive roots are 2, 3, 10, 13, 14, 

and 15.

Not all integers have primitive roots. In fact, the only integers with primitive 

roots are those of the form 2, 4, pa, and 2pa, where p is any odd prime and a is a 

positive integer. The proof is not simple but can be found in many number theory 

books, including [ORE76].

To see this last point, consider the powers of 7, modulo 19:

71 K 7 (mod 19)

72 = 49 = 2 * 19 + 11 K 11 (mod 19)

73 = 343 = 18 * 19 + 1 K 1 (mod 19)

74 = 2401 = 126 * 19 + 7 K 7 (mod 19)

75 = 16807 = 884 * 19 + 11 K 11 (mod 19)

There is no point in continuing because the sequence is repeating. This can be 

proven by noting that 73 K 1(mod 19), and therefore, 73 + j K 737j K 7j(mod 19), 

and hence, any two powers of 7 whose exponents differ by 3 (or a multiple of 3)  

are congruent to each other (mod 19). In other words, the sequence is  periodic, 

and the length of the period is the smallest positive exponent m such that 

7m K 1(mod 19).
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Logarithms for Modular Arithmetic

With ordinary positive real numbers, the logarithm function is the inverse of expo-

nentiation. An analogous function exists for modular arithmetic.

Let us briefly review the properties of ordinary logarithms. The logarithm of a 

number is defined to be the power to which some positive base (except 1) must be 

raised in order to equal the number. That is, for base x and for a value y,

y = xlogx(y)

The properties of logarithms include

 logx(1) = 0

 logx(x) = 1

  logx(yz) = logx(y) + logx(z)   (2.19)

  logx(yr) = r * logx(y)   (2.20)

Consider a primitive root a for some prime number p (the argument can 

be developed for nonprimes as well). Then we know that the powers of a from 

a a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15 a16 a17 a18

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 4 8 16 13 7 14 9 18 17 15 11 3 6 12 5 10 1

3 9 8 5 15 7 2 6 18 16 10 11 14 4 12 17 13 1

4 16 7 9 17 11 6 5 1 4 16 7 9 17 11 6 5 1

5 6 11 17 9 7 16 4 1 5 6 11 17 9 7 16 4 1

6 17 7 4 5 11 9 16 1 6 17 7 4 5 11 9 16 1

7 11 1 7 11 1 7 11 1 7 11 1 7 11 1 7 11 1

8 7 18 11 12 1 8 7 18 11 12 1 8 7 18 11 12 1

9 5 7 6 16 11 4 17 1 9 5 7 6 16 11 4 17 1

10 5 12 6 3 11 15 17 18 9 14 7 13 16 8 4 2 1

11 7 1 11 7 1 11 7 1 11 7 1 11 7 1 11 7 1

12 11 18 7 8 1 12 11 18 7 8 1 12 11 18 7 8 1

13 17 12 4 14 11 10 16 18 6 2 7 15 5 8 9 3 1

14 6 8 17 10 7 3 4 18 5 13 11 2 9 12 16 15 1

15 16 12 9 2 11 13 5 18 4 3 7 10 17 8 6 14 1

16 9 11 5 4 7 17 6 1 16 9 11 5 4 7 17 6 1

17 4 11 16 6 7 5 9 1 17 4 11 16 6 7 5 9 1

18 1 18 1 18 1 18 1 18 1 18 1 18 1 18 1 18 1

Table 2.7 Powers of Integers, Modulo 19
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1 through (p - 1) produce each integer from 1 through (p - 1) exactly once. We 

also know that any integer b satisfies

b K r (mod p) for some r, where 0 … r … (p - 1)

by the definition of modular arithmetic. It follows that for any integer b and a primi-

tive root a of prime number p, we can find a unique exponent i such that

b K ai(mod p) where 0 … i … (p - 1)

This exponent i is referred to as the discrete logarithm of the number b for the base 

a (mod p). We denote this value as dloga,p(b).11

Note the following:

  dloga,p(1) = 0 because a0 mod p = 1 mod p = 1   (2.21)

  dloga,p(a) = 1 because a1 mod p = a   (2.22)

11Many texts refer to the discrete logarithm as the index. There is no generally agreed notation for this 
concept, much less an agreed name.

Here is an example using a nonprime modulus, n = 9. Here f(n) = 6 and a = 2 

is a primitive root. We compute the various powers of a and find

20 = 1 24 K 7 (mod 9)

21 = 2 25 K 5 (mod 9)

22 = 4 26 K 1 (mod 9)

23 = 8

This gives us the following table of the numbers with given discrete logarithms 

(mod 9) for the root a = 2:

Logarithm 0 1 2 3 4 5

Number 1 2 4 8 7 5

To make it easy to obtain the discrete logarithms of a given number, we rearrange 

the table:

Number 1 2 4 5 7 8

Logarithm 0 1 2 5 4 3

Now consider

x = adloga, p(x) mod p y = adloga, p(y) mod p
xy = adloga, p(xy) mod p



2.8 / DISCRETE LOGARITHMS 77

Using the rules of modular multiplication,

 xy mod p = [(x mod p)(y mod p)] mod p

 adloga, p(xy) mod p = [(adloga, p(x) mod p)(adloga, p(y) mod p)] mod p

 = (adloga, p(x) +  dloga, p(y)) mod p

But now consider Euler’s theorem, which states that, for every a and n that are 

relatively prime,

af(n) K 1(mod n)

Any positive integer z can be expressed in the form z = q + kf(n), with 

0 … q 6 f(n). Therefore, by Euler’s theorem,

az K aq(mod n)    if z K q mod f(n)

Applying this to the foregoing equality, we have

dloga, p(xy) K [dloga, p(x) + dloga, p(y)](mod f(p))

and generalizing,

dloga, p(yr) K [r * dloga, p(y)](mod f(p))

This demonstrates the analogy between true logarithms and discrete logarithms.

Keep in mind that unique discrete logarithms mod m to some base a exist only 

if a is a primitive root of m.

Table 2.8, which is directly derived from Table 2.7, shows the sets of discrete 

logarithms that can be defined for modulus 19.

Calculation of Discrete Logarithms

Consider the equation

y = gx mod p

Given g, x, and p, it is a straightforward matter to calculate y. At the worst, we must 

perform x repeated multiplications, and algorithms exist for achieving greater effi-

ciency (see Chapter 9).

However, given y, g, and p, it is, in general, very difficult to calculate x (take 

the discrete logarithm). The difficulty seems to be on the same order of magnitude 

as that of factoring primes required for RSA. At the time of this writing, the asymp-

totically fastest known algorithm for taking discrete logarithms modulo a prime 

number is on the order of [BETH91]:

e((ln p)1/3(ln(ln p))2/3)

which is not feasible for large primes.
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 2.9 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

(a) Discrete logarithms to the base 2, modulo 19

a 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

log2,19(a) 18 1 13 2 16 14 6 3 8 17 12 15 5 7 11 4 10 9

(b) Discrete logarithms to the base 3, modulo 19

a 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

log3,19(a) 18 7 1 14 4 8 6 3 2 11 12 15 17 13 5 10 16 9

(c) Discrete logarithms to the base 10, modulo 19

a 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

log10,19(a) 18 17 5 16 2 4 12 15 10 1 6 3 13 11 7 14 8 9

(d) Discrete logarithms to the base 13, modulo 19

a 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

log13,19(a) 18 11 17 4 14 10 12 15 16 7 6 3 1 5 13 8 2 9

(e) Discrete logarithms to the base 14, modulo 19

a 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

log14,19(a) 18 13 7 8 10 2 6 3 14 5 12 15 11 1 17 16 4 9

(f) Discrete logarithms to the base 15, modulo 19

a 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

log15,19(a) 18 5 11 10 8 16 12 15 4 13 6 3 7 17 1 2 14 9

Table 2.8 Tables of Discrete Logarithms, Modulo 19

Key Terms 

bijection

composite number

commutative

Chinese remainder theorem

discrete logarithm

divisor

Euclidean algorithm

Euler’s theorem

Euler’s totient function

Fermat’s theorem

greatest common divisor

identity element

index

modular arithmetic

modulus

order

prime number

primitive root

relatively prime

residue
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Review Questions 

 2.1 What does it mean to say that b is a divisor of a?

 2.2 What is the meaning of the expression a divides b?

 2.3 What is the difference between modular arithmetic and ordinary arithmetic?

 2.4 What is a prime number?

 2.5 What is Euler’s totient function?

 2.6 The Miller–Rabin test can determine if a number is not prime but cannot determine 
if a number is prime. How can such an algorithm be used to test for primality?

 2.7 What is a primitive root of a number?

 2.8 What is the difference between an index and a discrete logarithm?

Problems 

 2.1 Reformulate Equation (2.1), removing the restriction that a is a nonnegative integer. 
That is, let a be any integer.

 2.2 Draw a figure similar to Figure 2.1 for a 6 0.

 2.3 For each of the following equations, find an integer x that satisfies the equation.
a. 4 x K 2  (mod 3 )
b. 7 x K 4  (mod 9 )
c. 5 x K 3  (mod 1 1 )

 2.4 In this text, we assume that the modulus is a positive integer. But the definition of the 
expression a mod n also makes perfect sense if n is negative. Determine the following:
a. 7 mod 4
b. 7 mod -4
c. -7  mod 4
d. -7  mod -4

 2.5 A modulus of 0 does not fit the definition but is defined by convention as follows: 
a mod 0 = a. With this definition in mind, what does the following expression mean: 
a K b (mod 0)?

 2.6 In Section 2.3, we define the congruence relationship as follows: Two integers a and 
b are said to be congruent modulo n if (a mod n) = (b mod n). We then proved that 
a K b (mod n) if n � (a - b). Some texts on number theory use this latter relation-
ship as the definition of congruence: Two integers a and b are said to be congruent 
modulo n if n � (a - b). Using this latter definition as the starting point, prove that, if 
(a mod n) = (b mod n), then n divides (a - b).

 2.7 What is the smallest positive integer that has exactly k divisors? Provide answers for 
values for 1 … k … 8.

 2.8 Prove the following:
a. a K b (mod n) implies b K a (mod n)
b. a K b (mod n) and b K c (mod n) imply a K c (mod n)

 2.9 Prove the following:
a. [(a mod n) - (b mod n)] mod n = (a - b) mod n
b. [(a mod n) * (b mod n)] mod n = (a * b) mod n

 2.10 Find the multiplicative inverse of each nonzero element in Z5.

 2.11 Show that an integer N is congruent modulo 9 to the sum of its decimal digits. For 
example, 7 2 3 K 7 + 2 + 3 K 1 2 K 1 + 2 K 3  (mod 9 ).  This is the basis for the 
familiar procedure of “casting out 9’s” when checking computations in arithmetic.
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 2.12 a. Determine gcd(72345, 43215)
b. Determine gcd(3486, 10292)

 2.13 The purpose of this problem is to set an upper bound on the number of iterations of 
the Euclidean algorithm.
a. Suppose that m = qn + r with q 7 0 and 0 … r 6 n. Show that m/2 7 r.
b. Let Ai be the value of A in the Euclidean algorithm after the ith iteration. Show that

Ai+ 2 6
Ai

2

c. Show that if m, n, and N are integers with (1 … m, n, … 2N), then the Euclidean 
algorithm takes at most 2N steps to find gcd(m, n).

 2.14 The Euclidean algorithm has been known for over 2000 years and has always been 
a favorite among number theorists. After these many years, there is now a potential 
competitor, invented by J. Stein in 1961. Stein’s algorithms is as follows: Determine 
gcd(A, B) with A, B Ú 1.

STEP  1 Set A1 = A, B1 = B, C1 = 1

STEP  2 For n > 1,  (1) If An = Bn, stop. gcd(A, B) = AnCn

       (2)  If An and Bn are both even, set An + 1 = An/2, Bn + 1 = Bn/2, 

Cn + 1 = 2Cn

       (3)  If An is even and Bn is odd, set An + 1 = An/2, Bn + 1 = Bn,

Cn + 1 = Cn

       (4)  If An is odd and Bn is even, set An + 1 = An, Bn + 1 = Bn/2,

 Cn + 1 = Cn

       (5)  If An and Bn are both odd, set An + 1 = �An - Bn � , Bn + 1 =  

min (Bn, An), Cn + 1 = Cn

  Continue to step n + 1.
a. To get a feel for the two algorithms, compute gcd(6150, 704) using both the Euclid-

ean and Stein’s algorithm.
b. What is the apparent advantage of Stein’s algorithm over the Euclidean algorithm?

 2.15 a. Show that if Stein’s algorithm does not stop before the nth step, then

Cn + 1 * gcd(An + 1, Bn + 1) = Cn * gcd(An, Bn)

b. Show that if the algorithm does not stop before step (n - 1), then

An + 2Bn + 2 …
AnBn

2

c. Show that if 1 … A, B … 2N, then Stein’s algorithm takes at most 4N steps to find 
gcd(m, n). Thus, Stein’s algorithm works in roughly the same number of steps as 
the Euclidean algorithm.

d. Demonstrate that Stein’s algorithm does indeed return gcd(A, B).

 2.16 Using the extended Euclidean algorithm, find the multiplicative inverse of
a. 135 mod 61
b. 7465 mod 2464
c. 42828 mod 6407

 2.17 The purpose of this problem is to determine how many prime numbers there 
are. Suppose there are a total of n prime numbers, and we list these in order: 
p1 = 2 6 p2 = 3 6 p3 = 5 6 c 6 pn.
a. Define X = 1 + p1p2 c pn. That is, X is equal to one plus the product of all the 

primes. Can we find a prime number Pm that divides X?
b. What can you say about m?
c. Deduce that the total number of primes cannot be finite.
d. Show that Pn + 1 … 1 + p1p2 c pn.
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 2.18 The purpose of this problem is to demonstrate that the probability that two random 
numbers are relatively prime is about 0.6.
a. Let P = Pr[gcd(a, b) = 1]. Show that P = Pr[gcd(a, b) = d] = P/d2. Hint: 

 Consider the quantity gcd aa
d

, 
b
d
b .

b. The sum of the result of part (a) over all possible values of d is 1. That is 
Σd Ú1Pr[gcd(a, b) = d] = 1. Use this equality to determine the value of P. Hint: 

Use the identity a
∞

i=1

1

i2
=
p2

6
.

 2.19 Why is gcd(n, n + 1) = 1 for two consecutive integers n and n + 1?

 2.20 Using Fermat’s theorem, find 4 2 2 5  mod 13.

 2.21 Use Fermat’s theorem to find a number a between 0 and 92 with a congruent to 71013 
modulo 93.

 2.22 Use Fermat’s theorem to find a number x between 0 and 37 with x 7 3  congruent to 4 
modulo 37. (You should not need to use any brute-force searching.)

 2.23 Use Euler’s theorem to find a number a between 0 and 9 such that a is congruent to 
9 1 0 1  modulo 10. (Note: This is the same as the last digit of the decimal expansion of 
9 1 0 0.)

 2.24 Use Euler’s theorem to find a number x between 0 and 14 with x 6 1  congruent to 7 
 modulo 15. (You should not need to use any brute-force searching.)

 2.25 Notice in Table 2.6 that f(n) is even for n 7 2. This is true for all n 7 2. Give a con-
cise argument why this is so.

 2.26 Prove the following: If p is prime, then f(pi) = pi - pi- 1. Hint: What numbers have 
a factor in common with pi?

 2.27 It can be shown (see any book on number theory) that if gcd(m, n) = 1 then 
f(mn) = f(m)f(n). Using this property, the property developed in the preceding 
problem, and the property that f(p) = p - 1 for p prime, it is straightforward to 
determine the value of f(n) for any n. Determine the following:
a. f(29)    b.   f(51)    c.   f(455)    d.   f(616)

 2.28 It can also be shown that for arbitrary positive integer a, f(a) is given by

f(a) = q
t

i=1

[pi
ai - 1(pi - 1)]

  where a is given by Equation (2.9), namely: a = P1
a1P2

a2 c Pt
at. Demonstrate this result.

 2.29 Consider the function: f(n) = number of elements in the set {a: 0 … a 6 n and 
gcd(a, n) = 1}. What is this function?

 2.30 Although ancient Chinese mathematicians did good work coming up with their 
remainder theorem, they did not always get it right. They had a test for primality. The 
test said that n is prime if and only if n divides (2n - 2).
a. Give an example that satisfies the condition using an odd prime.
b. The condition is obviously true for n = 2. Prove that the condition is true if n is an 

odd prime (proving the if condition).
c. Give an example of an odd n that is not prime and that does not satisfy the condi-

tion. You can do this with nonprime numbers up to a very large value. This misled 
the Chinese mathematicians into thinking that if the condition is true then n is prime.

d. Unfortunately, the ancient Chinese never tried n = 341, which is nonprime 
(341 = 11 * 31), yet 341 divides 2341 - 2 without remainder. Demonstrate that 
2341 K 2 (mod 341) (disproving the only if condition). Hint: It is not necessary to 
calculate 2341; play around with the congruences instead.
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 2.31 Show that, if n is an odd composite integer, then the Miller–Rabin test will return 
inconclusive for a = 1 and a = (n - 1).

 2.32 If n is composite and passes the Miller–Rabin test for the base a, then n is called 
a strong pseudoprime to the base a. Show that 2047 is a strong pseudoprime to the 
base 2.

 2.33 A common formulation of the Chinese remainder theorem (CRT) is as follows: Let 
m1, c , mk be integers that are pairwise relatively prime for 1 … i, j … k, and i ≠ j. 
Define M to be the product of all the mi>s. Let a1, c , ak be integers. Then the set of 
congruences:

 x K a1(mod m1)

 x K a2(mod m2)
~

~

~

 x K ak(mod mk)

  has a unique solution modulo M. Show that the theorem stated in this form is true.

 2.34 The example used by Sun-Tsu to illustrate the CRT was

 x K 2 (mod 3); x K 3 (mod 5); x K 2 (mod 7) 

  Solve for x.

 2.35 Six professors begin courses on Monday, Tuesday, Wednesday, Thursday, Friday, 
and Saturday, respectively, and announce their intentions of lecturing at intervals of 
3, 2, 5, 6, 1, and 4 days, respectively. The regulations of the university forbid Sunday 
lectures (so that a Sunday lecture must be omitted). When first will all six professors 
find themselves compelled to omit a lecture? Hint: Use the CRT.

 2.36 Find all primitive roots of 37.

 2.37 Given 5 as a primitive root of 23, construct a table of discrete logarithms, and use it to 
solve the following congruences.
a. 3x5 K 2 (mod 23)
b. 7x10 + 1 K 0 (mod 23)
c. 5x K 6 (mod 23)

Programming Problems 

 2.1 Write a computer program that implements fast exponentiation (successive squaring) 
modulo n.

 2.2 Write a computer program that implements the Miller–Rabin algorithm for a user-
specified n. The program should allow the user two choices: (1) specify a possible 
witness a to test using the Witness procedure or (2) specify a number s of random 
witnesses for the Miller–Rabin test to check.

 APPENDIX 2A  THE MEANING OF MOD

The operator mod is used in this book and in the literature in two different ways: as 

a binary operator and as a congruence relation. This appendix explains the distinc-

tion and precisely defines the notation used in this book regarding parentheses. This 

notation is common but, unfortunately, not universal.
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The Binary Operator mod 

If a is an integer and n is a positive integer, we define a mod n to be the remainder 

when a is divided by n. The integer n is called the modulus, and the remainder is 

called the residue. Thus, for any integer a, we can always write

 a = :a/n; * n + (a mod n) 

Formally, we define the operator mod as

 a mod n = a - :a/n; * n for n ≠ 0 

As a binary operation, mod takes two integer arguments and returns the re-

mainder. For example, 7 mod 3 = 1. The arguments may be integers, integer vari-

ables, or integer variable expressions. For example, all of the following are valid, 

with the obvious meanings:

7 mod 3

7 mod m

x mod 3

x mod m

(x2 + y + 1) mod (2m + n)

where all of the variables are integers. In each case, the left-hand term is divided by 

the right-hand term, and the resulting value is the remainder. Note that if either the 

left- or right-hand argument is an expression, the expression is parenthesized. The 

operator mod is not inside parentheses.

In fact, the mod operation also works if the two arguments are arbitrary real num-

bers, not just integers. In this book, we are concerned only with the integer operation.

The Congruence Relation mod 

As a congruence relation, mod expresses that two arguments have the same remain-

der with respect to a given modulus. For example, 7 K 4 (mod 3) expresses the 

fact that both 7 and 4 have a remainder of 1 when divided by 3. The following two 

expressions are equivalent:

 a K b (mod m)  3  a mod m = b mod m 

Another way of expressing it is to say that the expression a K b (mod m) is the 

same as saying that a - b is an integral multiple of m. Again, all the arguments may 

be integers, integer variables, or integer variable expressions. For example, all of 

the following are valid, with the obvious meanings:

7 K 4 (mod 3)

x K y (mod m)

(x2 + y + 1) K (a + 1)(mod [m + n])

where all of the variables are integers. Two conventions are used. The congruence 

sign is K . The modulus for the relation is defined by placing the mod operator fol-

lowed by the modulus in parentheses.
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The congruence relation is used to define residue classes. Those numbers that 

have the same remainder r when divided by m form a residue class (mod m). There 

are m residue classes (mod m). For a given remainder r, the residue class to which it 

belongs consists of the numbers

 r, r { m, r { 2m, c  

According to our definition, the congruence

 a K b (mod m) 

signifies that the numbers a and b differ by a multiple of m. Consequently, the con-

gruence can also be expressed in the terms that a and b belong to the same residue 

class (mod m).
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Symmetric encryption, also referred to as conventional encryption or single-key 

encryption, was the only type of encryption in use prior to the development of public-

key encryption in the 1970s. It remains by far the most widely used of the two types 

of encryption. Part One examines a number of symmetric ciphers. In this chapter, we 

begin with a look at a general model for the symmetric encryption process; this will 

enable us to understand the context within which the algorithms are used. Next, we 

examine a variety of algorithms in use before the computer era. Finally, we look briefly 

at a different approach known as steganography. Chapters 4 and 6 introduce the two 

most widely used symmetric cipher: DES and AES.

Before beginning, we define some terms. An original message is known as the 

plaintext, while the coded message is called the ciphertext. The process of convert-

ing from plaintext to ciphertext is known as enciphering or encryption; restoring the 

plaintext from the ciphertext is deciphering or decryption. The many schemes used 

for encryption constitute the area of study known as cryptography. Such a scheme 

is known as a cryptographic system or a cipher. Techniques used for deciphering a 

message without any knowledge of the enciphering details fall into the area of crypt-
analysis. Cryptanalysis is what the layperson calls “breaking the code.” The areas of 

cryptography and cryptanalysis together are called cryptology.

 3.1 SYMMETRIC CIPHER MODEL

A symmetric encryption scheme has five ingredients (Figure 3.1):

 ■ Plaintext:  This is the original intelligible message or data that is fed into the 

algorithm as input.

 ■ Encryption algorithm:  The encryption algorithm performs various substitu-

tions and transformations on the plaintext.

 ■ Secret key:  The secret key is also input to the encryption algorithm. The key is 

a value independent of the plaintext and of the algorithm. The algorithm will 

produce a different output depending on the specific key being used at the 

time. The exact substitutions and transformations performed by the  algorithm 

depend on the key.

LEARNING OBJECTIVES

After studying this chapter, you should be able to:

 ◆ Present an overview of the main concepts of symmetric cryptography.

 ◆ Explain the difference between cryptanalysis and brute-force attack.

 ◆ Understand the operation of a monoalphabetic substitution cipher.

 ◆ Understand the operation of a polyalphabetic cipher.

 ◆ Present an overview of the Hill cipher.

 ◆ Describe the operation of a rotor machine.
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 ■ Ciphertext:  This is the scrambled message produced as output. It depends on 

the plaintext and the secret key. For a given message, two different keys will 

produce two different ciphertexts. The ciphertext is an apparently random 

stream of data and, as it stands, is unintelligible.

 ■ Decryption algorithm:  This is essentially the encryption algorithm run in 

reverse. It takes the ciphertext and the secret key and produces the original 

plaintext.

There are two requirements for secure use of conventional encryption:

1. We need a strong encryption algorithm. At a minimum, we would like the algo-

rithm to be such that an opponent who knows the algorithm and has access to 

one or more ciphertexts would be unable to decipher the ciphertext or figure 

out the key. This requirement is usually stated in a stronger form: The oppo-

nent should be unable to decrypt ciphertext or discover the key even if he or 

she is in possession of a number of ciphertexts together with the plaintext that 

produced each ciphertext.

2. Sender and receiver must have obtained copies of the secret key in a secure 

fashion and must keep the key secure. If someone can discover the key and 

knows the algorithm, all communication using this key is readable.

We assume that it is impractical to decrypt a message on the basis of the 

ciphertext plus knowledge of the encryption/decryption algorithm. In other words, 

we do not need to keep the algorithm secret; we need to keep only the key secret. 

This feature of symmetric encryption is what makes it feasible for widespread use. 

The fact that the algorithm need not be kept secret means that manufacturers can 

and have developed low-cost chip implementations of data encryption algorithms. 

These chips are widely available and incorporated into a number of products. With 

the use of symmetric encryption, the principal security problem is maintaining the 

secrecy of the key.

Let us take a closer look at the essential elements of a symmetric encryp-

tion scheme, using Figure 3.2. A source produces a message in plaintext, 

X = [X1, X2, c , XM]. The M elements of X are letters in some finite alphabet. 

Traditionally, the alphabet usually consisted of the 26 capital letters. Nowadays, 

Figure 3.1 Simplified Model of Symmetric Encryption

Plaintext
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Y = E(K, X ) X = D(K, Y )

X

KK
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ciphertext

Plaintext
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Secret key shared by
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Decryption algorithm
(reverse of encryption

algorithm)
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the binary alphabet {0, 1} is typically used. For encryption, a key of the form 

K = [K1, K2, c , KJ] is generated. If the key is generated at the message source, 

then it must also be provided to the destination by means of some secure channel. 

Alternatively, a third party could generate the key and securely deliver it to both 

source and destination.

With the message X and the encryption key K as input, the encryption algo-

rithm forms the ciphertext Y = [Y1, Y2, c , YN]. We can write this as

 Y = E(K, X) 

This notation indicates that Y is produced by using encryption algorithm E as a 

function of the plaintext X, with the specific function determined by the value of 

the key K.

The intended receiver, in possession of the key, is able to invert the 

transformation:

 X = D(K, Y) 

An opponent, observing Y but not having access to K or X, may attempt to 

recover X or K or both X and K. It is assumed that the opponent knows the encryp-

tion (E) and decryption (D) algorithms. If the opponent is interested in only this 

particular message, then the focus of the effort is to recover X by generating a plain-

text estimate Xn . Often, however, the opponent is interested in being able to read 

future messages as well, in which case an attempt is made to recover K by generat-

ing an estimate Kn .

Figure 3.2 Model of Symmetric Cryptosystem
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Cryptography

Cryptographic systems are characterized along three independent dimensions:

1. The type of operations used for transforming plaintext to ciphertext. All 

encryption algorithms are based on two general principles: substitution, 

in which each element in the plaintext (bit, letter, group of bits or letters) 

is mapped into another element, and transposition, in which elements 

in the plaintext are rearranged. The fundamental requirement is that no 

information be lost (i.e., that all operations are reversible). Most systems, 

referred to as product systems, involve multiple stages of substitutions and 

transpositions.

2. The number of keys used. If both sender and receiver use the same key, the 

system is referred to as symmetric, single-key, secret-key, or conventional 

 encryption. If the sender and receiver use different keys, the system is referred 

to as asymmetric, two-key, or public-key encryption.

3. The way in which the plaintext is processed. A block cipher processes the input 

one block of elements at a time, producing an output block for each input 

block. A stream cipher processes the input elements continuously, producing 

output one element at a time, as it goes along.

Cryptanalysis and Brute-Force Attack

Typically, the objective of attacking an encryption system is to recover the key in 

use rather than simply to recover the plaintext of a single ciphertext. There are two 

general approaches to attacking a conventional encryption scheme:

 ■ Cryptanalysis:  Cryptanalytic attacks rely on the nature of the algorithm plus 

perhaps some knowledge of the general characteristics of the plaintext or even 

some sample plaintext–ciphertext pairs. This type of attack exploits the charac-

teristics of the algorithm to attempt to deduce a specific plaintext or to deduce 

the key being used.

 ■ Brute-force attack:  The attacker tries every possible key on a piece of cipher-

text until an intelligible translation into plaintext is obtained. On average, half 

of all possible keys must be tried to achieve success.

If either type of attack succeeds in deducing the key, the effect is catastrophic: 

All future and past messages encrypted with that key are compromised.

We first consider cryptanalysis and then discuss brute-force attacks.

Table 3.1 summarizes the various types of cryptanalytic attacks based on the 

amount of information known to the cryptanalyst. The most difficult problem is 

presented when all that is available is the ciphertext only. In some cases, not even 

the encryption algorithm is known, but in general, we can assume that the opponent 

does know the algorithm used for encryption. One possible attack under these cir-

cumstances is the brute-force approach of trying all possible keys. If the key space 

is very large, this becomes impractical. Thus, the opponent must rely on an analysis 

of the ciphertext itself, generally applying various statistical tests to it. To use this 
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approach, the opponent must have some general idea of the type of plaintext that 

is concealed, such as English or French text, an EXE file, a Java source listing, an 

accounting file, and so on.

The ciphertext-only attack is the easiest to defend against because the oppo-

nent has the least amount of information to work with. In many cases, however, 

the analyst has more information. The analyst may be able to capture one or more 

plaintext messages as well as their encryptions. Or the analyst may know that certain 

plaintext patterns will appear in a message. For example, a file that is encoded in the 

Postscript format always begins with the same pattern, or there may be a standard-

ized header or banner to an electronic funds transfer message, and so on. All these 

are examples of known plaintext. With this knowledge, the analyst may be able to 

deduce the key on the basis of the way in which the known plaintext is transformed.

Closely related to the known-plaintext attack is what might be referred to as a 

probable-word attack. If the opponent is working with the encryption of some gen-

eral prose message, he or she may have little knowledge of what is in the message. 

However, if the opponent is after some very specific information, then parts of the 

message may be known. For example, if an entire accounting file is being transmit-

ted, the opponent may know the placement of certain key words in the header of the 

file. As another example, the source code for a program developed by Corporation 

X might include a copyright statement in some standardized position.

If the analyst is able somehow to get the source system to insert into the sys-

tem a message chosen by the analyst, then a chosen-plaintext attack is possible. 

An example of this strategy is differential cryptanalysis, explored in Appendix S. 

Type of Attack Known to Cryptanalyst

Ciphertext Only ■ Encryption algorithm

■ Ciphertext

Known Plaintext ■ Encryption algorithm

■ Ciphertext

■ One or more plaintext–ciphertext pairs formed with the secret key

Chosen Plaintext ■ Encryption algorithm

■ Ciphertext

■  Plaintext message chosen by cryptanalyst, together with its corresponding 

 ciphertext generated with the secret key

Chosen Ciphertext ■ Encryption algorithm

■ Ciphertext

■  Ciphertext chosen by cryptanalyst, together with its corresponding decrypted 

plaintext generated with the secret key

Chosen Text ■ Encryption algorithm

■ Ciphertext

■  Plaintext message chosen by cryptanalyst, together with its corresponding 

 ciphertext generated with the secret key

■  Ciphertext chosen by cryptanalyst, together with its corresponding decrypted 

plaintext generated with the secret key

Table 3.1 Types of Attacks on Encrypted Messages
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In general, if the analyst is able to choose the messages to encrypt, the analyst may 

deliberately pick patterns that can be expected to reveal the structure of the key.

Table 3.1 lists two other types of attack: chosen ciphertext and chosen text. 

These are less commonly employed as cryptanalytic techniques but are nevertheless 

possible avenues of attack.

Only relatively weak algorithms fail to withstand a ciphertext-only attack. 

Generally, an encryption algorithm is designed to withstand a known-plaintext 

attack.

Two more definitions are worthy of note. An encryption scheme is 

 unconditionally secure if the ciphertext generated by the scheme does not contain 

enough information to determine uniquely the corresponding plaintext, no matter 

how much ciphertext is available. That is, no matter how much time an opponent 

has, it is impossible for him or her to decrypt the ciphertext simply because the 

required information is not there. With the exception of a scheme known as the 

one-time pad (described later in this chapter), there is no encryption algorithm that 

is unconditionally secure. Therefore, all that the users of an encryption algorithm 

can strive for is an algorithm that meets one or both of the following criteria:

 ■ The cost of breaking the cipher exceeds the value of the encrypted information.

 ■ The time required to break the cipher exceeds the useful lifetime of the 

information.

An encryption scheme is said to be computationally secure if either of the 

foregoing two criteria are met. Unfortunately, it is very difficult to estimate the 

amount of effort required to cryptanalyze ciphertext successfully.

All forms of cryptanalysis for symmetric encryption schemes are designed 

to exploit the fact that traces of structure or pattern in the plaintext may survive 

encryption and be discernible in the ciphertext. This will become clear as we exam-

ine various symmetric encryption schemes in this chapter. We will see in Part Two 

that cryptanalysis for public-key schemes proceeds from a fundamentally different 

premise, namely, that the mathematical properties of the pair of keys may make it 

possible for one of the two keys to be deduced from the other.

A brute-force attack involves trying every possible key until an intelligible 

translation of the ciphertext into plaintext is obtained. On average, half of all pos-

sible keys must be tried to achieve success. That is, if there are X different keys, on 

average an attacker would discover the actual key after X/2 tries. It is important to 

note that there is more to a brute-force attack than simply running through all pos-

sible keys. Unless known plaintext is provided, the analyst must be able to recognize 

plaintext as plaintext. If the message is just plain text in English, then the result pops 

out easily, although the task of recognizing English would have to be automated. If 

the text message has been compressed before encryption, then recognition is more 

difficult. And if the message is some more general type of data, such as a numeri-

cal file, and this has been compressed, the problem becomes even more difficult to 

automate. Thus, to supplement the brute-force approach, some degree of knowl-

edge about the expected plaintext is needed, and some means of automatically dis-

tinguishing plaintext from garble is also needed.
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 3.2 SUBSTITUTION TECHNIQUES

In this section and the next, we examine a sampling of what might be called classical 

encryption techniques. A study of these techniques enables us to illustrate the basic 

approaches to symmetric encryption used today and the types of cryptanalytic at-

tacks that must be anticipated.

The two basic building blocks of all encryption techniques are substitution 

and transposition. We examine these in the next two sections. Finally, we discuss a 

system that combines both substitution and transposition.

A substitution technique is one in which the letters of plaintext are replaced 

by other letters or by numbers or symbols.1 If the plaintext is viewed as a sequence 

of bits, then substitution involves replacing plaintext bit patterns with ciphertext bit 

patterns.

Caesar Cipher

The earliest known, and the simplest, use of a substitution cipher was by Julius 

Caesar. The Caesar cipher involves replacing each letter of the alphabet with the 

letter standing three places further down the alphabet. For example,

plain:   meet me after the toga party
cipher: PHHW PH DIWHU WKH WRJD SDUWB

Note that the alphabet is wrapped around, so that the letter following Z is A. 

We can define the transformation by listing all possibilities, as follows:

plain:   a b c d e f g h i j k l m n o p q r s t u v w x y z
cipher: D E F G H I J K L M N O P Q R S T U V W X Y Z A B C

Let us assign a numerical equivalent to each letter:

a b c d e f g h i j k l m

0 1 2 3 4 5 6 7 8 9 10 11 12

n o p q r s t u v w x y z

13 14 15 16 17 18 19 20 21 22 23 24 25

Then the algorithm can be expressed as follows. For each plaintext letter p, substi-

tute the ciphertext letter C:2

 C = E(3, p) = (p + 3) mod 26 

A shift may be of any amount, so that the general Caesar algorithm is

  C = E(k, p) = (p + k) mod 26   (3.1)

1When letters are involved, the following conventions are used in this book. Plaintext is always in 
 lowercase; ciphertext is in uppercase; key values are in italicized lowercase.
2We define a mod n to be the remainder when a is divided by n. For example, 11 mod 7 = 4. See Chapter  2 
for a further discussion of modular arithmetic.
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where k takes on a value in the range 1 to 25. The decryption algorithm is simply

  p = D(k, C) = (C - k) mod 26   (3.2)

If it is known that a given ciphertext is a Caesar cipher, then a brute-force 

cryptanalysis is easily performed: simply try all the 25 possible keys. Figure 3.3 

shows the results of applying this strategy to the example ciphertext. In this case, the 

plaintext leaps out as occupying the third line.

Three important characteristics of this problem enabled us to use a brute-

force cryptanalysis:

1. The encryption and decryption algorithms are known.

2. There are only 25 keys to try.

3. The language of the plaintext is known and easily recognizable.

In most networking situations, we can assume that the algorithms are known. 

What generally makes brute-force cryptanalysis impractical is the use of an algo-

rithm that employs a large number of keys. For example, the triple DES algorithm, 

Figure 3.3 Brute-Force Cryptanalysis of Caesar Cipher

PHHW PH DIWHU WKH WRJD SDUWB
KEY

1 oggv og chvgt vjg vqic rctva

2 nffu nf bgufs uif uphb qbsuz

3 meet me after the toga party

4 ldds ld zesdq sgd snfz ozqsx

5 kccr kc ydrcp rfc rmey nyprw

6 jbbq jb xcqbo qeb qldx mxoqv

7 iaap ia wbpan pda pkcw lwnpu

8 hzzo hz vaozm ocz ojbv kvmot

9 gyyn gy uznyl nby niau julns

10 fxxm fx tymxk max mhzt itkmr

11 ewwl ew sxlwj lzw lgys hsjlq

12 dvvk dv rwkvi kyv kfxr grikp

13 cuuj cu qvjuh jxu jewq fqhjo

14 btti bt puitg iwt idvp epgin

15 assh as othsf hvs hcuo dofhm

16 zrrg zr nsgre gur gbtn cnegl

17 yqqf yq mrfqd ftq fasm bmdfk

18 xppe xp lqepc esp ezrl alcej

19 wood wo kpdob dro dyqk zkbdi

20 vnnc vn jocna cqn cxpj yjach

21 ummb um inbmz bpm bwoi xizbg

22 tlla tl hmaly aol avnh whyaf

23 skkz sk glzkx znk zumg vgxze

24 rjjy rj fkyjw ymj ytlf ufwyd

25 qiix qi ejxiv xli xske tevxc
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examined in Chapter 7, makes use of a 168-bit key, giving a key space of 2168 or 

greater than 3.7 * 1050 possible keys.

The third characteristic is also significant. If the language of the plaintext is 

unknown, then plaintext output may not be recognizable. Furthermore, the input 

may be abbreviated or compressed in some fashion, again making recognition dif-

ficult. For example, Figure 3.4 shows a portion of a text file compressed using an 

algorithm called ZIP. If this file is then encrypted with a simple substitution cipher 

(expanded to include more than just 26 alphabetic characters), then the plaintext 

may not be recognized when it is uncovered in the brute-force cryptanalysis.

Monoalphabetic Ciphers

With only 25 possible keys, the Caesar cipher is far from secure. A dramatic increase 

in the key space can be achieved by allowing an arbitrary substitution. Before pro-

ceeding, we define the term permutation. A permutation of a finite set of elements S 

is an ordered sequence of all the elements of S, with each element appearing exactly 

once. For example, if S = {a, b, c}, there are six permutations of S:

 abc, acb, bac, bca, cab, cba 

In general, there are n! permutations of a set of n elements, because the first 

element can be chosen in one of n ways, the second in n - 1 ways, the third in n - 2 

ways, and so on.

Recall the assignment for the Caesar cipher:

plain:  a b c d e f g h i j k l m n o p q r s t u v w x y z
cipher: D E F G H I J K L M N O P Q R S T U V W X Y Z A B C

If, instead, the “cipher” line can be any permutation of the 26 alphabetic characters, 

then there are 26! or greater than 4 * 1026 possible keys. This is 10 orders of mag-

nitude greater than the key space for DES and would seem to eliminate brute-force 

techniques for cryptanalysis. Such an approach is referred to as a monoalphabetic 
substitution cipher, because a single cipher alphabet (mapping from plain alphabet 

to cipher alphabet) is used per message.

There is, however, another line of attack. If the cryptanalyst knows the nature 

of the plaintext (e.g., noncompressed English text), then the analyst can exploit the 

regularities of the language. To see how such a cryptanalysis might proceed, we give 

a partial example here that is adapted from one in [SINK09]. The ciphertext to be 

solved is

Figure 3.4 Sample of Compressed Text
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UZQSOVUOHXMOPVGPOZPEVSGZWSZOPFPESXUDBMETSXAIZ
VUEPHZHMDZSHZOWSFPAPPDTSVPQUZWYMXUZUHSX
EPYEPOPDZSZUFPOMBZWPFUPZHMDJUDTMOHMQ

As a first step, the relative frequency of the letters can be determined and 

compared to a standard frequency distribution for English, such as is shown in 

Figure 3.5 (based on [LEWA00]). If the message were long enough, this technique 

alone might be sufficient, but because this is a relatively short message, we cannot 

expect an exact match. In any case, the relative frequencies of the letters in the 

ciphertext (in percentages) are as follows:

P 13.33 H 5.83 F  3.33 B  1.67 C 0.00

Z 11.67 D 5.00 W  3.33 G 1.67 K 0.00

S   8.33 E 5.00 Q 2.50 Y 1.67 L 0.00

U  8.33 V 4.17 T  2.50 I   0.83 N 0.00

O  7.50 X 4.17 A 1.67 J   0.83 R 0.00

M   6.67

Comparing this breakdown with Figure 3.5, it seems likely that cipher letters 

P and Z are the equivalents of plain letters e and t, but it is not certain which is which. 

The letters S, U, O, M, and H are all of relatively high frequency and probably 

Figure 3.5 Relative Frequency of Letters in English Text
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correspond to plain letters from the set {a, h, i, n, o, r, s}. The letters with the lowest 

frequencies (namely, A, B, G, Y, I, J) are likely included in the set {b, j, k, q, v, x, z}.

There are a number of ways to proceed at this point. We could make some 

tentative assignments and start to fill in the plaintext to see if it looks like a rea-

sonable “skeleton” of a message. A more systematic approach is to look for other 

regularities. For example, certain words may be known to be in the text. Or we 

could look for repeating sequences of cipher letters and try to deduce their plaintext 

equivalents.

A powerful tool is to look at the frequency of two-letter combinations, known 

as digrams. A table similar to Figure 3.5 could be drawn up showing the relative fre-

quency of digrams. The most common such digram is th. In our ciphertext, the most 

common digram is ZW, which appears three times. So we make the correspondence 

of Z with t and W with h. Then, by our earlier hypothesis, we can equate P with e. 

Now notice that the sequence ZWP appears in the ciphertext, and we can translate 

that sequence as “the.” This is the most frequent trigram (three-letter combination) 

in English, which seems to indicate that we are on the right track.

Next, notice the sequence ZWSZ in the first line. We do not know that these 

four letters form a complete word, but if they do, it is of the form th_t. If so, S 

equates with a.

So far, then, we have

UZQSOVUOHXMOPVGPOZPEVSGZWSZOPFPESXUDBMETSXAIZ
t a       e  e te  a that e e a     a
VUEPHZHMDZSHZOWSFPAPPDTSVPQUZWYMXUZUHSX

e t   ta t ha e ee  a e  th     t  a
EPYEPOPDZSZUFPOMBZWPFUPZHMDJUDTMOHMQ
e  e e tat  e   the   t

Only four letters have been identified, but already we have quite a bit of the 

message. Continued analysis of frequencies plus trial and error should easily yield a 

solution from this point. The complete plaintext, with spaces added between words, 

follows:

it was disclosed yesterday that several informal but
direct contacts have been made with political
representatives of the viet cong in moscow

Monoalphabetic ciphers are easy to break because they reflect the frequency 

data of the original alphabet. A countermeasure is to provide multiple substi-

tutes, known as homophones, for a single letter. For example, the letter e could 

be assigned a number of different cipher symbols, such as 16, 74, 35, and 21, with 

each homophone assigned to a letter in rotation or randomly. If the number of 

symbols assigned to each letter is proportional to the relative frequency of that let-

ter, then single-letter frequency information is completely obliterated. The great 

mathematician Carl Friedrich Gauss believed that he had devised an unbreak-

able cipher using homophones. However, even with homophones, each element 

of plaintext affects only one element of ciphertext, and multiple-letter patterns 
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(e.g., digram frequencies) still survive in the ciphertext, making cryptanalysis rela-

tively straightforward.

Two principal methods are used in substitution ciphers to lessen the extent to 

which the structure of the plaintext survives in the ciphertext: One approach is to 

encrypt multiple letters of plaintext, and the other is to use multiple cipher alpha-

bets. We briefly examine each.

Playfair Cipher

The best-known multiple-letter encryption cipher is the Playfair, which treats di-

grams in the plaintext as single units and translates these units into ciphertext 

digrams.3

The Playfair algorithm is based on the use of a 5 * 5 matrix of letters con-

structed using a keyword. Here is an example, solved by Lord Peter Wimsey in 

Dorothy Sayers’s Have His Carcase:4

M O N A R

C H Y B D

E F G I/J K

L P Q S T

U V W X Z

In this case, the keyword is monarchy. The matrix is constructed by filling 

in the letters of the keyword (minus duplicates) from left to right and from top to 

bottom, and then filling in the remainder of the matrix with the remaining letters in 

alphabetic order. The letters I and J count as one letter. Plaintext is encrypted two 

letters at a time, according to the following rules:

1. Repeating plaintext letters that are in the same pair are separated with a filler 

letter, such as x, so that balloon would be treated as ba lx lo on.

2. Two plaintext letters that fall in the same row of the matrix are each replaced 

by the letter to the right, with the first element of the row circularly following 

the last. For example, ar is encrypted as RM.

3. Two plaintext letters that fall in the same column are each replaced by the let-

ter beneath, with the top element of the column circularly following the last. 

For example, mu is encrypted as CM.

4. Otherwise, each plaintext letter in a pair is replaced by the letter that lies in 

its own row and the column occupied by the other plaintext letter. Thus, hs 

becomes BP and ea becomes IM (or JM, as the encipherer wishes).

The Playfair cipher is a great advance over simple monoalphabetic ciphers. 

For one thing, whereas there are only 26 letters, there are 26 * 26 = 676 digrams, 

3This cipher was actually invented by British scientist Sir Charles Wheatstone in 1854, but it bears the 
name of his friend Baron Playfair of St. Andrews, who championed the cipher at the British foreign office.
4The book provides an absorbing account of a probable-word attack.
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so that identification of individual digrams is more difficult. Furthermore, the rela-

tive frequencies of individual letters exhibit a much greater range than that of 

digrams, making frequency analysis much more difficult. For these reasons, the 

Playfair cipher was for a long time considered unbreakable. It was used as the stan-

dard field system by the British Army in World War I and still enjoyed considerable 

use by the U.S. Army and other Allied forces during World War II.

Despite this level of confidence in its security, the Playfair cipher is relatively 

easy to break, because it still leaves much of the structure of the plaintext language 

intact. A few hundred letters of ciphertext are generally sufficient.

One way of revealing the effectiveness of the Playfair and other ciphers is 

shown in Figure 3.6. The line labeled plaintext plots a typical frequency distribution 

of the 26 alphabetic characters (no distinction between upper and lower case) in 

ordinary text. This is also the frequency distribution of any monoalphabetic substi-

tution cipher, because the frequency values for individual letters are the same, just 

with different letters substituted for the original letters. The plot is developed in the 

following way: The number of occurrences of each letter in the text is counted and 

divided by the number of occurrences of the most frequently used letter. Using the 

results of Figure 3.5, we see that e is the most frequently used letter. As a result, e 

has a relative frequency of 1, t of 9.056/12.702 ≈ 0.72, and so on. The points on the 

horizontal axis correspond to the letters in order of decreasing frequency.

Figure 3.6 also shows the frequency distribution that results when the text is 

encrypted using the Playfair cipher. To normalize the plot, the number of occur-

rences of each letter in the ciphertext was again divided by the number of occur-

rences of e in the plaintext. The resulting plot therefore shows the extent to which 

the frequency distribution of letters, which makes it trivial to solve substitution 

Figure 3.6 Relative Frequency of Occurrence of Letters
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ciphers, is masked by encryption. If the frequency distribution information were 

totally concealed in the encryption process, the ciphertext plot of frequencies would 

be flat, and cryptanalysis using ciphertext only would be effectively impossible. As 

the figure shows, the Playfair cipher has a flatter distribution than does plaintext, 

but nevertheless, it reveals plenty of structure for a cryptanalyst to work with. The 

plot also shows the Vigenère cipher, discussed subsequently. The Hill and Vigenère 

curves on the plot are based on results reported in [SIMM93].

Hill Cipher5

Another interesting multiletter cipher is the Hill cipher, developed by the math-

ematician Lester Hill in 1929.

CONCEPTS FROM LINEAR ALGEBRA Before describing the Hill cipher, let us briefly 

review some terminology from linear algebra. In this discussion, we are concerned 

with matrix arithmetic modulo 26. For the reader who needs a refresher on matrix 

multiplication and inversion, see Appendix E.

We define the inverse M-1 of a square matrix M by the equation M(M-1) =
M-1M = I, where I is the identity matrix. I is a square matrix that is all zeros except 

for ones along the main diagonal from upper left to lower right. The inverse of a 

matrix does not always exist, but when it does, it satisfies the preceding equation. 

For example,

 A = ¢ 5 8

17 3
≤  A-1 mod 26 = ¢9 2

1 15
≤

 AA-1 = ¢ (5 * 9) + (8 * 1) (5 * 2) + (8 * 15)

(17 * 9) + (3 * 1) (17 * 2) + (3 * 15)
≤

 = ¢ 53 130

156 79
≤ mod 26 = ¢1 0

0 1
≤

To explain how the inverse of a matrix is computed, we begin with the concept 

of determinant. For any square matrix (m * m), the determinant equals the sum of 

all the products that can be formed by taking exactly one element from each row 

and exactly one element from each column, with certain of the product terms pre-

ceded by a minus sign. For a 2 * 2 matrix,

 ¢k11 k12

k21 k22

≤ 

the determinant is k11k22 - k12k21. For a 3 * 3 matrix, the value of the determinant 

is k11k22k33 + k21k32k13 + k31k12k23 - k31k22k13 - k21k12k33 - k11k32k23. If a square 

5This cipher is somewhat more difficult to understand than the others in this chapter, but it illustrates an 
important point about cryptanalysis that will be useful later on. This subsection can be skipped on a first 
reading.
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matrix A has a nonzero determinant, then the inverse of the matrix is computed 

as [A-1]ij = (det A)-1(-1)i+ j(Dji), where (Dji) is the subdeterminant formed by 

deleting the jth row and the ith column of A, det(A) is the determinant of A, and 

(det A)-1 is the multiplicative inverse of (det A) mod 26.

Continuing our example,

 det ¢ 5 8

17 3
≤ = (5 * 3) - (8 * 17) = -121 mod 26 = 9 

We can show that 9-1 mod 26 = 3, because 9 * 3 = 27 mod 26 = 1 (see 

Chapter 2 or Appendix E). Therefore, we compute the inverse of A as

 A = ¢ 5 8

17 3
≤

  A-1 mod 26 = 3¢ 3 -8

-17 5
≤ = 3¢3 18

9 5
≤ = ¢ 9 54

27 15
≤ = ¢9 2

1 15
≤ 

THE HILL ALGORITHM This encryption algorithm takes m successive plaintext let-

ters and substitutes for them m ciphertext letters. The substitution is determined 

by m linear equations in which each character is assigned a numerical value 

(a = 0, b = 1, c , z = 25). For m = 3, the system can be described as

 c1 = (k11p1 + k21p2 + k31p3) mod 26

 c2 = (k12p1 + k22p2 + k32p3) mod 26

 c3 = (k13p1 + k23p2 + k33p3) mod 26

This can be expressed in terms of row vectors and matrices:6

 (c1 c2 c3) = (p1 p2 p3)£k11 k12 k13

k21 k22 k23

k31 k32 k33

≥ mod 26 

or

 C = PK mod 26 

where C and P are row vectors of length 3 representing the plaintext and ciphertext, 

and K is a 3 * 3 matrix representing the encryption key. Operations are performed 

mod 26.

6Some cryptography books express the plaintext and ciphertext as column vectors, so that the column 
vector is placed after the matrix rather than the row vector placed before the matrix. Sage uses row vec-
tors, so we adopt that convention.
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For example, consider the plaintext “paymoremoney” and use the encryption key

 K = £17 17 5

21 18 21

2 2 19

≥ 

The first three letters of the plaintext are represented by the vector (15 0 24). 

Then (15 0 24)K = (303 303 531) mod 26 = (17 17 11) = RRL. Continuing in this 

fashion, the ciphertext for the entire plaintext is RRLMWBKASPDH.

Decryption requires using the inverse of the matrix K. We can compute det 

K = 23, and therefore, (det K)-1 mod 26 = 17. We can then compute the inverse as7

 K-1 = £ 4 9 15

15 17 6

24 0 17

≥ 

This is demonstrated as

 £17 17 5

21 18 21

2 2 19

≥£ 4 9 15

15 17 6

24 0 17

≥ = £443 442 442

858 495 780

494 52 365

≥ mod 26 = £1 0 0

0 1 0

0 0 1

≥ 

It is easily seen that if the matrix K-1 is applied to the ciphertext, then the 

plaintext is recovered.

In general terms, the Hill system can be expressed as

 C = E(K, P) = PK mod 26

 P = D(K, C) = CK-1 mod 26 = PKK-1 = P

As with Playfair, the strength of the Hill cipher is that it completely hides 

single-letter frequencies. Indeed, with Hill, the use of a larger matrix hides more 

frequency information. Thus, a 3 * 3 Hill cipher hides not only single-letter but 

also two-letter frequency information.

Although the Hill cipher is strong against a ciphertext-only attack, it is easily 

broken with a known plaintext attack. For an m * m Hill cipher, suppose we have m 

plaintext–ciphertext pairs, each of length m. We label the pairs Pj = (p1jp1j c pmj) 

and Cj = (c1jc1j c cmj) such that Cj = PjK for 1 … j … m and for some unknown 

key matrix K. Now define two m * m matrices X = (pij) and Y = (cij). Then we 

can form the matrix equation Y = XK. If X has an inverse, then we can determine 

K = X-1Y. If X is not invertible, then a new version of X can be formed with addi-

tional plaintext–ciphertext pairs until an invertible X is obtained.

Consider this example. Suppose that the plaintext “hillcipher” is encrypted 

using a 2 * 2 Hill cipher to yield the ciphertext HCRZSSXNSP. Thus, we know 

that (7 8)K mod 26 = (7 2); (11 11)K mod 26 = (17 25); and so on. Using 

the first two plaintext-ciphertext pairs, we have

7The calculations for this example are provided in detail in Appendix E.
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 ¢ 7 2

17 25
≤ = ¢ 7 8

11 11
≤K mod 26 

The inverse of X can be computed:

 ¢ 7 8

11 11
≤-1

= ¢25 22

1 23
≤ 

so

 K = ¢25 22

1 23
≤ ¢ 7 2

17 25
≤ = ¢549 600

398 577
≤ mod 26 = ¢3 2

8 5
≤ 

This result is verified by testing the remaining plaintext–ciphertext pairs.

Polyalphabetic Ciphers

Another way to improve on the simple monoalphabetic technique is to use differ-

ent monoalphabetic substitutions as one proceeds through the plaintext message. 

The general name for this approach is polyalphabetic substitution cipher. All these 

techniques have the following features in common:

1. A set of related monoalphabetic substitution rules is used.

2. A key determines which particular rule is chosen for a given transformation.

VIGENÈRE CIPHER The best known, and one of the simplest, polyalphabetic ciphers 

is the Vigenère cipher. In this scheme, the set of related monoalphabetic substitu-

tion rules consists of the 26 Caesar ciphers with shifts of 0 through 25. Each cipher is 

denoted by a key letter, which is the ciphertext letter that substitutes for the plain-

text letter a. Thus, a Caesar cipher with a shift of 3 is denoted by the key value 3.8

We can express the Vigenère cipher in the following manner. Assume a 

sequence of plaintext letters P = p0, p1, p2, c , pn - 1 and a key consisting of the 

sequence of letters K = k0, k1, k2, c , km - 1, where typically m 6 n. The sequence 

of ciphertext letters C = C0, C1, C2, c , Cn - 1 is calculated as follows:

 C = C0, C1, C2, c , Cn - 1 = E(K, P) = E[(k0, k1, k2, c , km - 1), (p0, p1, p2, c , pn - 1)]

 = (p0 + k0) mod 26, (p1 + k1) mod 26, c ,(pm - 1 + km - 1) mod 26,

(pm + k0) mod 26, (pm + 1 + k1) mod 26, c , (p2m - 1 + km - 1) mod 26, c

Thus, the first letter of the key is added to the first letter of the plaintext, mod 26, 

the second letters are added, and so on through the first m letters of the plaintext. 

For the next m letters of the plaintext, the key letters are repeated. This process 

8To aid in understanding this scheme and also to aid in it use, a matrix known as the Vigenère tableau is 
often used. This tableau is discussed in a document at box.com/Crypto7e.
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continues until all of the plaintext sequence is encrypted. A general equation of the 

encryption process is

  Ci = (pi + ki mod m) mod 26   (3.3)

Compare this with Equation (3.1) for the Caesar cipher. In essence, each plain-

text character is encrypted with a different Caesar cipher, depending on the corre-

sponding key character. Similarly, decryption is a generalization of Equation (3.2):

  pi = (Ci - ki mod m) mod 26   (3.4)

To encrypt a message, a key is needed that is as long as the message. Usually, 

the key is a repeating keyword. For example, if the keyword is deceptive, the mes-

sage “we are discovered save yourself” is encrypted as

key:  deceptivedeceptivedeceptive
plaintext: wearediscoveredsaveyourself
ciphertext: ZICVTWQNGRZGVTWAVZHCQYGLMGJ

Expressed numerically, we have the following result.

key 3 4 2 4 15 19 8 21 4 3 4 2 4 15

plaintext 22 4 0 17 4 3 8 18 2 14 21 4 17 4

ciphertext 25 8 2 21 19 22 16 13 6 17 25 6 21 19

key 19 8 21 4 3 4 2 4 15 19 8 21 4

plaintext 3 18 0 21 4 24 14 20 17 18 4 11 5

ciphertext 22 0 21 25 7 2 16 24 6 11 12 6 9

The strength of this cipher is that there are multiple ciphertext letters for 

each plaintext letter, one for each unique letter of the keyword. Thus, the letter fre-

quency information is obscured. However, not all knowledge of the plaintext struc-

ture is lost. For example, Figure 3.6 shows the frequency distribution for a Vigenère 

cipher with a keyword of length 9. An improvement is achieved over the Playfair 

cipher, but considerable frequency information remains.

It is instructive to sketch a method of breaking this cipher, because the method 

reveals some of the mathematical principles that apply in cryptanalysis.

First, suppose that the opponent believes that the ciphertext was encrypted 

using either monoalphabetic substitution or a Vigenère cipher. A simple test can 

be made to make a determination. If a monoalphabetic substitution is used, then 

the statistical properties of the ciphertext should be the same as that of the lan-

guage of the plaintext. Thus, referring to Figure 3.5, there should be one cipher let-

ter with a relative frequency of occurrence of about 12.7%, one with about 9.06%, 

and so on. If only a single message is available for analysis, we would not expect 

an exact match of this small sample with the statistical profile of the plaintext lan-

guage. Nevertheless, if the correspondence is close, we can assume a monoalpha-

betic substitution.
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If, on the other hand, a Vigenère cipher is suspected, then progress depends on 

determining the length of the keyword, as will be seen in a moment. For now, let us 

concentrate on how the keyword length can be determined. The important insight 

that leads to a solution is the following: If two identical sequences of plaintext let-

ters occur at a distance that is an integer multiple of the keyword length, they will 

generate identical ciphertext sequences. In the foregoing example, two instances 

of the sequence “red” are separated by nine character positions. Consequently, in 

both cases, r is encrypted using key letter e, e is encrypted using key letter p, and d 

is encrypted using key letter t. Thus, in both cases, the ciphertext sequence is VTW. 

We indicate this above by underlining the relevant ciphertext letters and shading 

the relevant ciphertext numbers.

An analyst looking at only the ciphertext would detect the repeated sequences 

VTW at a displacement of 9 and make the assumption that the keyword is either 

three or nine letters in length. The appearance of VTW twice could be by chance 

and may not reflect identical plaintext letters encrypted with identical key letters. 

However, if the message is long enough, there will be a number of such repeated 

ciphertext sequences. By looking for common factors in the displacements of the vari-

ous sequences, the analyst should be able to make a good guess of the keyword length.

Solution of the cipher now depends on an important insight. If the keyword 

length is m, then the cipher, in effect, consists of m monoalphabetic substitution 

ciphers. For example, with the keyword DECEPTIVE, the letters in positions 1, 10, 

19, and so on are all encrypted with the same monoalphabetic cipher. Thus, we can 

use the known frequency characteristics of the plaintext language to attack each of 

the monoalphabetic ciphers separately.

The periodic nature of the keyword can be eliminated by using a nonrepeating 

keyword that is as long as the message itself. Vigenère proposed what is referred to 

as an autokey system, in which a keyword is concatenated with the plaintext itself to 

provide a running key. For our example,

key:  deceptivewearediscoveredsav
plaintext: wearediscoveredsaveyourself
ciphertext: ZICVTWQNGKZEIIGASXSTSLVVWLA

Even this scheme is vulnerable to cryptanalysis. Because the key and the 

plaintext share the same frequency distribution of letters, a statistical technique can 

be applied. For example, e enciphered by e, by Figure 3.5, can be expected to occur 

with a frequency of (0.127)2 ≈ 0.016, whereas t enciphered by t would occur only 

about half as often. These regularities can be exploited to achieve successful 

cryptanalysis.9

VERNAM CIPHER The ultimate defense against such a cryptanalysis is to choose a 

keyword that is as long as the plaintext and has no statistical relationship to it. Such 

a system was introduced by an AT&T engineer named Gilbert Vernam in 1918.

9Although the techniques for breaking a Vigenère cipher are by no means complex, a 1917 issue of 
Scientific American characterized this system as “impossible of translation.” This is a point worth remem-
bering when similar claims are made for modern algorithms.
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His system works on binary data (bits) rather than letters. The system can be 

expressed succinctly as follows (Figure 3.7):

 ci = pi⊕ ki 

where

pi = ith binary digit of plaintext

ki = ith binary digit of key

ci = ith binary digit of ciphertext

⊕ = exclusive@or (XOR) operation

Compare this with Equation (3.3) for the Vigenère cipher.

Thus, the ciphertext is generated by performing the bitwise XOR of the plain-

text and the key. Because of the properties of the XOR, decryption simply involves 

the same bitwise operation:

 pi = ci⊕ ki 

which compares with Equation (3.4).

The essence of this technique is the means of construction of the key. Vernam 

proposed the use of a running loop of tape that eventually repeated the key, so that 

in fact the system worked with a very long but repeating keyword. Although such 

a scheme, with a long key, presents formidable cryptanalytic difficulties, it can be 

broken with sufficient ciphertext, the use of known or probable plaintext sequences, 

or both.

One-Time Pad

An Army Signal Corp officer, Joseph Mauborgne, proposed an improvement to the 

Vernam cipher that yields the ultimate in security. Mauborgne suggested using a 

random key that is as long as the message, so that the key need not be repeated. In 

addition, the key is to be used to encrypt and decrypt a single message, and then is 

discarded. Each new message requires a new key of the same length as the new mes-

sage. Such a scheme, known as a one-time pad, is unbreakable. It produces random 

output that bears no statistical relationship to the plaintext. Because the ciphertext 

Figure 3.7 Vernam Cipher
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contains no information whatsoever about the plaintext, there is simply no way to 

break the code.

An example should illustrate our point. Suppose that we are using a Vigenère 

scheme with 27 characters in which the twenty-seventh character is the space 

character, but with a one-time key that is as long as the message. Consider the 

ciphertext

ANKYODKYUREPFJBYOJDSPLREYIUNOFDOIUERFPLUYTS

We now show two different decryptions using two different keys:

ciphertext: ANKYODKYUREPFJBYOJDSPLREYIUNOFDOIUERFPLUYTS
key:  pxlmvmsydofuyrvzwc tnlebnecvgdupahfzzlmnyih
plaintext: mr mustard with the candlestick in the hall

ciphertext: ANKYODKYUREPFJBYOJDSPLREYIUNOFDOIUERFPLUYTS
key:  pftgpmiydgaxgoufhklllmhsqdqogtewbqfgyovuhwt
plaintext: miss scarlet with the knife in the library

Suppose that a cryptanalyst had managed to find these two keys. Two plau-

sible plaintexts are produced. How is the cryptanalyst to decide which is the correct 

decryption (i.e., which is the correct key)? If the actual key were produced in a truly 

random fashion, then the cryptanalyst cannot say that one of these two keys is more 

likely than the other. Thus, there is no way to decide which key is correct and there-

fore which plaintext is correct.

In fact, given any plaintext of equal length to the ciphertext, there is a key that 

produces that plaintext. Therefore, if you did an exhaustive search of all possible 

keys, you would end up with many legible plaintexts, with no way of knowing which 

was the intended plaintext. Therefore, the code is unbreakable.

The security of the one-time pad is entirely due to the randomness of the key. 

If the stream of characters that constitute the key is truly random, then the stream 

of characters that constitute the ciphertext will be truly random. Thus, there are no 

patterns or regularities that a cryptanalyst can use to attack the ciphertext.

In theory, we need look no further for a cipher. The one-time pad offers com-

plete security but, in practice, has two fundamental difficulties:

1. There is the practical problem of making large quantities of random keys. Any 

heavily used system might require millions of random characters on a regular 

basis. Supplying truly random characters in this volume is a significant task.

2. Even more daunting is the problem of key distribution and protection. For 

every message to be sent, a key of equal length is needed by both sender and 

receiver. Thus, a mammoth key distribution problem exists.

Because of these difficulties, the one-time pad is of limited utility and is useful 

primarily for low-bandwidth channels requiring very high security.

The one-time pad is the only cryptosystem that exhibits what is referred to as 

perfect secrecy. This concept is explored in Appendix F.
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 3.3 TRANSPOSITION TECHNIQUES

All the techniques examined so far involve the substitution of a ciphertext symbol 

for a plaintext symbol. A very different kind of mapping is achieved by performing 

some sort of permutation on the plaintext letters. This technique is referred to as a 

transposition cipher.

The simplest such cipher is the rail fence technique, in which the plaintext is 

written down as a sequence of diagonals and then read off as a sequence of rows. 

For example, to encipher the message “meet me after the toga party” with a rail 

fence of depth 2, we write the following:

m e m a t r h t g p r y
e t e f e t e o a a t

The encrypted message is

MEMATRHTGPRYETEFETEOAAT

This sort of thing would be trivial to cryptanalyze. A more complex scheme is 

to write the message in a rectangle, row by row, and read the message off, column 

by column, but permute the order of the columns. The order of the columns then 

becomes the key to the algorithm. For example,

Key:  4 3 1 2 5 6 7
Plaintext: a t t a c k p
   o s t p o n e
   d u n t i l t
   w o a m x y z
Ciphertext: TTNAAPTMTSUOAODWCOIXKNLYPETZ

Thus, in this example, the key is 4312567. To encrypt, start with the  column 

that is labeled 1, in this case column 3. Write down all the letters in that column. 

Proceed to column 4, which is labeled 2, then column 2, then column 1, then 

 columns 5, 6, and 7.

A pure transposition cipher is easily recognized because it has the same letter 

frequencies as the original plaintext. For the type of columnar transposition just 

shown, cryptanalysis is fairly straightforward and involves laying out the cipher-

text in a matrix and playing around with column positions. Digram and trigram fre-

quency tables can be useful.

The transposition cipher can be made significantly more secure by perform-

ing more than one stage of transposition. The result is a more complex permutation 

that is not easily reconstructed. Thus, if the foregoing message is reencrypted using 

the same algorithm,
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Key:  4 3 1 2 5 6 7
Input: t t n a a p t
  m t s u o a o
  d w c o i x k
  n l y p e t z
Output: NSCYAUOPTTWLTMDNAOIEPAXTTOKZ

To visualize the result of this double transposition, designate the letters in the 

original plaintext message by the numbers designating their position. Thus, with 28 

letters in the message, the original sequence of letters is

01 02 03 04 05 06 07 08 09 10 11 12 13 14
15 16 17 18 19 20 21 22 23 24 25 26 27 28

After the first transposition, we have

03 10 17 24 04 11 18 25 02 09 16 23 01 08
15 22 05 12 19 26 06 13 20 27 07 14 21 28

which has a somewhat regular structure. But after the second transposition, we have

17 09 05 27 24 16 12 07 10 02 22 20 03 25
15 13 04 23 19 14 11 01 26 21 18 08 06 28

This is a much less structured permutation and is much more difficult to cryptanalyze.

 3.4 ROTOR MACHINES

The example just given suggests that multiple stages of encryption can produce an 

algorithm that is significantly more difficult to cryptanalyze. This is as true of substi-

tution ciphers as it is of transposition ciphers. Before the introduction of DES, the 

most important application of the principle of multiple stages of encryption was a 

class of systems known as rotor machines.10

The basic principle of the rotor machine is illustrated in Figure 3.8. The 

machine consists of a set of independently rotating cylinders through which electri-

cal pulses can flow. Each cylinder has 26 input pins and 26 output pins, with internal 

wiring that connects each input pin to a unique output pin. For simplicity, only three 

of the internal connections in each cylinder are shown.

If we associate each input and output pin with a letter of the alphabet, then a 

single cylinder defines a monoalphabetic substitution. For example, in Figure 3.8, 

if an operator depresses the key for the letter A, an electric signal is applied to 

10Machines based on the rotor principle were used by both Germany (Enigma) and Japan (Purple) in 
World War II. The breaking of both codes by the Allies was a significant factor in the war’s outcome.
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the first pin of the first cylinder and flows through the internal connection to the 

twenty-fifth output pin.

Consider a machine with a single cylinder. After each input key is depressed, 

the cylinder rotates one position, so that the internal connections are shifted accord-

ingly. Thus, a different monoalphabetic substitution cipher is defined. After 26 let-

ters of plaintext, the cylinder would be back to the initial position. Thus, we have a 

polyalphabetic substitution algorithm with a period of 26.

A single-cylinder system is trivial and does not present a formidable crypt-

analytic task. The power of the rotor machine is in the use of multiple cylinders, in 

which the output pins of one cylinder are connected to the input pins of the next. 

Figure 3.8 shows a three-cylinder system. The left half of the figure shows a position 

in which the input from the operator to the first pin (plaintext letter a) is routed 

through the three cylinders to appear at the output of the second pin (ciphertext 

letter B).

With multiple cylinders, the one closest to the operator input rotates one 

pin position with each keystroke. The right half of Figure 3.8 shows the system’s 

configuration after a single keystroke. For every complete rotation of the inner 

cylinder, the middle cylinder rotates one pin position. Finally, for every complete 

rotation of the middle cylinder, the outer cylinder rotates one pin position. This 

is the same type of operation seen with an odometer. The result is that there are 

26 * 26 * 26 = 17,576 different substitution alphabets used before the system 

Figure 3.8 Three-Rotor Machine with Wiring Represented by Numbered Contacts
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repeats. The addition of fourth and fifth rotors results in periods of 456,976 and 

11,881,376 letters, respectively. Thus, a given setting of a 5-rotor machine is equiva-

lent to a Vigenère cipher with a key length of 11,881,376.

Such a scheme presents a formidable cryptanalytic challenge. If, for example, 

the cryptanalyst attempts to use a letter frequency analysis approach, the analyst 

is faced with the equivalent of over 11 million monoalphabetic ciphers. We might 

need on the order of 50 letters in each monalphabetic cipher for a solution, which 

means that the analyst would need to be in possession of a ciphertext with a length 

of over half a billion letters.

The significance of the rotor machine today is that it points the way to a large 

class of symmetric ciphers, of which the Data Encryption Standard (DES) is the 

most prominent. DES is introduced in Chapter 4. 

 3.5 STEGANOGRAPHY

We conclude with a discussion of a technique that (strictly speaking), is not encryp-

tion, namely, steganography.

A plaintext message may be hidden in one of two ways. The methods of 

 steganography conceal the existence of the message, whereas the methods of cryp-

tography render the message unintelligible to outsiders by various transformations 

of the text.11

A simple form of steganography, but one that is time-consuming to construct, 

is one in which an arrangement of words or letters within an apparently innocuous 

text spells out the real message. For example, the sequence of first letters of each 

word of the overall message spells out the hidden message. Figure 3.9 shows an 

example in which a subset of the words of the overall message is used to convey the 

hidden message. See if you can decipher this; it’s not too hard.

Various other techniques have been used historically; some examples are the 

following [MYER91]:

 ■ Character marking: Selected letters of printed or typewritten text are over-

written in pencil. The marks are ordinarily not visible unless the paper is held 

at an angle to bright light.

 ■ Invisible ink: A number of substances can be used for writing but leave no vis-

ible trace until heat or some chemical is applied to the paper.

 ■ Pin punctures: Small pin punctures on selected letters are ordinarily not vis-

ible unless the paper is held up in front of a light.

 ■ Typewriter correction ribbon: Used between lines typed with a black ribbon, 

the results of typing with the correction tape are visible only under a strong 

light.

11Steganography was an obsolete word that was revived by David Kahn and given the meaning it has 
today [KAHN96].
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Although these techniques may seem archaic, they have contemporary equiv-

alents. [WAYN09] proposes hiding a message by using the least significant bits of 

frames on a CD. For example, the Kodak Photo CD format’s maximum resolution 

is 3096 * 6144 pixels, with each pixel containing 24 bits of RGB color information. 

The least significant bit of each 24-bit pixel can be changed without greatly affecting 

the quality of the image. The result is that you can hide a 130-kB message in a single 

digital snapshot. There are now a number of software packages available that take 

this type of approach to steganography.

Steganography has a number of drawbacks when compared to encryption. 

It requires a lot of overhead to hide a relatively few bits of information, although 

using a scheme like that proposed in the preceding paragraph may make it more 

effective. Also, once the system is discovered, it becomes virtually worthless. This 

problem, too, can be overcome if the insertion method depends on some sort of key 

(e.g., see Problem 3.22). Alternatively, a message can be first encrypted and then 

hidden using steganography.

The advantage of steganography is that it can be employed by parties who 

have something to lose should the fact of their secret communication (not necessar-

ily the content) be discovered. Encryption flags traffic as important or secret or may 

identify the sender or receiver as someone with something to hide.

Figure 3.9 A Puzzle for Inspector Morse

(From The Silent World of Nicholas Quinn, by Colin Dexter)
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 3.6 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms 

block cipher

brute-force attack

Caesar cipher

cipher

ciphertext

computationally secure

conventional encryption

cryptanalysis

cryptographic system

cryptography

cryptology

deciphering

decryption

digram

enciphering

encryption

Hill cipher

monoalphabetic cipher

one-time pad

plaintext

Playfair cipher

polyalphabetic cipher

rail fence cipher

single-key encryption

steganography

stream cipher

symmetric encryption

transposition cipher

unconditionally secure

Vigenère cipher

Review Questions 

 3.1 Describe the main requirements for the secure use of symmetric encryption.

 3.2 What are the two basic functions used in encryption algorithms?

 3.3 Differentiate between secret-key encryption and public-key encryption.

 3.4 What is the difference between a block cipher and a stream cipher?

 3.5 What are the two general approaches to attacking a cipher?

 3.6 List and briefly define types of cryptanalytic attacks based on what is known to the 
attacker.

 3.7 What is the difference between an unconditionally secure cipher and a computation-
ally secure cipher?

 3.8 Why is the Caesar cipher substitution technique vulnerable to a brute-force cryptanalysis?

 3.9 How much key space is available when a monoalphabetic substitution cipher is used 
to replace plaintext with ciphertext?

 3.10 What is the drawback of a Playfair cipher?

 3.11 What is the difference between a monoalphabetic cipher and a polyalphabetic cipher?

 3.12 What are two problems with the one-time pad?

 3.13 What is a transposition cipher?

 3.14 What are the drawbacks of Steganography?

Problems 

 3.1 A generalization of the Caesar cipher, known as the affine Caesar cipher, has the fol-
lowing form: For each plaintext letter p, substitute the ciphertext letter C:

 C = E([a, b], p) = (ap + b) mod 26 

  A basic requirement of any encryption algorithm is that it be one-to-one. That is, if 
p ≠ q, then E(k, p) ≠ E(k, q). Otherwise, decryption is impossible, because more 
than one plaintext character maps into the same ciphertext character. The affine 
Caesar cipher is not one-to-one for all values of a. For example, for a = 2 and b = 3, 
then E([a, b], 0) = E([a, b], 13) = 3.

a. Are there any limitations on the value of b? Explain why or why not.
b. Determine which values of a are not allowed.
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c. Provide a general statement of which values of a are and are not allowed. Justify 
your statement.

 3.2 How many one-to-one affine Caesar ciphers are there?

 3.3 A ciphertext has been generated with an affine cipher. The most frequent letter of 
the ciphertext is “C,” and the second most frequent letter of the ciphertext is “Z.” 
Break this code.

 3.4 The following ciphertext was generated using a simple substitution algorithm.

hzsrnqc klyy wqc flo mflwf ol zqdn nsoznj wskn lj xzsrbjnf, 
wzsxz gqv zqhhnf ol ozn glco zlfnco hnlhrn; nsoznj jnrqosdnc 
lj fnqj kjsnfbc, wzsxz sc xnjoqsfrv gljn efeceqr. zn rsdnb 
qrlfn sf zsc zlecn sf cqdsrrn jlw, wzsoznj flfn hnfnojqonb. 
q csfyrn blgncosx cekksxnb ol cnjdn zsg. zn pjnqmkqconb qfb 
bsfnb qo ozn xrep, qo zlejc gqozngqosxqrrv ksanb, sf ozn cqgn 
jllg, qo ozn cqgn oqprn, fndnj oqmsfy zsc gnqrc wsoz loznj 
gngpnjc, gexz rncc pjsfysfy q yenco wsoz zsg; qfb wnfo zlgn 
qo naqxorv gsbfsyzo, lfrv ol jnosjn qo lfxn ol pnb. zn fndnj 
ecnb ozn xlcv xzqgpnjc wzsxz ozn jnkljg hjldsbnc klj soc 
kqdlejnb gngpnjc. zn hqccnb onf zlejc leo lk ozn ownfov-klej 
sf cqdsrrn jlw, nsoznj sf crnnhsfy lj gqmsfy zsc olsrno.

  Decrypt this message.

  Hints:
1. As you know, the most frequently occurring letter in English is e. Therefore, the 

first or second (or perhaps third?) most common character in the message is likely 
to stand for e. Also, e is often seen in pairs (e.g., meet, fleet, speed, seen, been, 
agree, etc.). Try to find a character in the ciphertext that decodes to e.

2. The most common word in English is “the.” Use this fact to guess the characters 
that stand for t and h.

3. Decipher the rest of the message by deducing additional words.

  Warning: The resulting message is in English but may not make much sense on a first 
reading.

 3.5 One way to solve the key distribution problem is to use a line from a book that both 
the sender and the receiver possess. Typically, at least in spy novels, the first sentence 
of a book serves as the key. The particular scheme discussed in this problem is from 
one of the best suspense novels involving secret codes, Talking to Strange Men, by 
Ruth Rendell. Work this problem without consulting that book!

  Consider the following message:

SIDKHKDM AF HCRKIABIE SHIMC KD LFEAILA

  This ciphertext was produced using the first sentence of The Other Side of Silence 
(a book about the spy Kim Philby):

The snow lay thick on the steps and the snowflakes driven by the wind 
looked black in the headlights of the cars.

  A simple substitution cipher was used.
a. What is the encryption algorithm?
b. How secure is it?
c. To make the key distribution problem simple, both parties can agree to use the first or 

last sentence of a book as the key. To change the key, they simply need to agree on a 
new book. The use of the first sentence would be preferable to the use of the last. Why?

 3.6 In one of his cases, Sherlock Holmes was confronted with the following message.

534 C2 13 127 36 31 4 17 21 41

DOUGLAS 109 293 5 37 BIRLSTONE

26 BIRLSTONE 9 127 171
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  Although Watson was puzzled, Holmes was able immediately to deduce the type of 
cipher. Can you?

 3.7 This problem uses a real-world example, from an old U.S. Special Forces manual 
(public domain). The document, filename SpecialForces.pdf, is available at box.com/
Crypto7e.
a. Using the two keys (memory words) cryptographic and network security, encrypt 

the following message:

Be at the third pillar from the left outside the lyceum theatre tonight at seven. 
If you are distrustful bring two friends.

Make reasonable assumptions about how to treat redundant letters and excess 
letters in the memory words and how to treat spaces and punctuation. Indicate 
what your assumptions are. Note: The message is from the Sherlock Holmes novel, 
The Sign of Four.

b. Decrypt the ciphertext. Show your work.
c. Comment on when it would be appropriate to use this technique and what its 

advantages are.

 3.8 A disadvantage of the general monoalphabetic cipher is that both sender and receiver 
must commit the permuted cipher sequence to memory. A common technique for 
avoiding this is to use a keyword from which the cipher sequence can be gener-
ated. For example, using the keyword CRYPTO, write out the keyword followed by 
unused letters in normal order and match this against the plaintext letters:

plain:  a b c d e f g h i j k l m n o p q r s t u v w x y z

cipher: C R Y P T O A B D E F G H I J K L M N Q S U V W X Z

  If it is felt that this process does not produce sufficient mixing, write the remain-
ing letters on successive lines and then generate the sequence by reading down the 
columns:

C R Y P T O

A B D E F G

H I J K L M

N Q S U V W

X Z

  This yields the sequence:

C A H N X R B I Q Z Y D J S P E K U T F L V O G M W

  Such a system is used in the example in Section 3.2 (the one that begins “it was 
 disclosed yesterday”). Determine the keyword.

 3.9 When the PT-109 American patrol boat, under the command of Lieutenant John F. 
Kennedy, was sunk by a Japanese destroyer, a message was received at an Australian 
wireless station in Playfair code:

KXJEY UREBE ZWEHE WRYTU HEYFS

KREHE GOYFI WTTTU OLKSY CAJPO

BOTEI ZONTX BYBNT GONEY CUZWR

GDSON SXBOU YWRHE BAAHY USEDQ

  The key used was royal new zealand navy. Decrypt the message. Translate TT into tt.
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 3.10 a. Construct a Playfair matrix with the key algorithm.
b. Construct a Playfair matrix with the key cryptography. Make a reasonable assump-

tion about how to treat redundant letters in the key.

 3.11 a. Using this Playfair matrix:

J/K C D E F

U N P Q S

Z V W X Y

R A L G O

B I T H M

Encrypt this message:

I only regret that I have but one life to give for my country.

Note: This message is by Nathan Hale, a soldier in the American Revolutionary War.
b. Repeat part (a) using the Playfair matrix from Problem 3.10a.
c. How do you account for the results of this problem? Can you generalize your 

conclusion?

 3.12 a.  How many possible keys does the Playfair cipher have? Ignore the fact that 
some keys might produce identical encryption results. Express your answer as an 
approximate power of 2.

b. Now take into account the fact that some Playfair keys produce the same encryp-
tion results. How many effectively unique keys does the Playfair cipher have?

 3.13 What substitution system results when we use a 1 * 25 Playfair matrix?

 3.14 a.  Encrypt the message “meet me at the usual place at ten rather than eight o clock” 

using the Hill cipher with the key ¢7 3

2 5
≤.  Show your calculations and the result.

b. Show the calculations for the corresponding decryption of the ciphertext to 
recover the original plaintext.

 3.15 We have shown that the Hill cipher succumbs to a known plaintext attack if sufficient 
plaintext–ciphertext pairs are provided. It is even easier to solve the Hill cipher if a 
chosen plaintext attack can be mounted. Describe such an attack.

 3.16 It can be shown that the Hill cipher with the matrix ¢a b
c d

≤ requires that (ad - bc) 

is relatively prime to 26; that is, the only common positive integer factor of (ad - bc) 
and 26 is 1. Thus, if (ad - bc) = 13 or is even, the matrix is not allowed. Determine 
the number of different (good) keys there are for a 2 * 2 Hill cipher without count-
ing them one by one, using the following steps:
a. Find the number of matrices whose determinant is even because one or both rows 

are even. (A row is “even” if both entries in the row are even.)
b. Find the number of matrices whose determinant is even because one or both col-

umns are even. (A column is “even” if both entries in the column are even.)
c. Find the number of matrices whose determinant is even because all of the entries 

are odd.
d. Taking into account overlaps, find the total number of matrices whose determi-

nant is even.
e. Find the number of matrices whose determinant is a multiple of 13 because the 

first column is a multiple of 13.
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f. Find the number of matrices whose determinant is a multiple of 13 where 
the first column is not a multiple of 13 but the second column is a mul-
tiple of the first modulo 13.

g. Find the total number of matrices whose determinant is a multiple of 13.
h. Find the number of matrices whose determinant is a multiple of 26 

 because they fit cases parts (a) and (e), (b) and (e), (c) and (e), (a) and 
(f), and so on.

i. Find the total number of matrices whose determinant is neither a mul-
tiple of 2 nor a multiple of 13.

 3.17 Calculate the determinant mod 26 of

a. ¢2 3 5

1 3 7
≤ b. £2 1 1 3 2 5

5 7 1 8

3 1 4 1 2

≥
 3.18 Determine the inverse mod 26 of

a. ¢2 3

1 22
≤ b. £ 6 24 1

13 16 10

20 17 15

≥
 3.19 Using the Vigenère cipher, encrypt the word “cryptographic” using the word 

“eng”.

 3.20 This problem explores the use of a one-time pad version of the Vigenère 
cipher. In this scheme, the key is a stream of random numbers between 0 
and 26. For example, if the key is 3 19 5 . . . , then the first letter of plaintext 
is encrypted with a shift of 3 letters, the second with a shift of 19 letters, the 
third with a shift of 5 letters, and so on.
a. Encrypt the plaintext sendmoremoney with the key stream

3 11 5 7 17 21 0 11 14 8 7 13 9

b. Using the ciphertext produced in part (a), find a key so that the cipher-
text decrypts to the plaintext cashnotneeded.

 3.21 What is the message embedded in Figure 3.9?

 3.22 In one of Dorothy Sayers’s mysteries, Lord Peter is confronted with the 
message shown in Figure 3.10. He also discovers the key to the message, 
which is a sequence of integers:

787656543432112343456567878878765654

3432112343456567878878765654433211234

a. Decrypt the message. Hint: What is the largest integer value?
b. If the algorithm is known but not the key, how secure is the scheme?
c. If the key is known but not the algorithm, how secure is the scheme?

Figure 3.10 A Puzzle for Lord Peter

I thought to see the fairies in the fields, but I saw only the evil elephants with their black 
backs. Woe! how that sight awed me! The elves danced all around and about while I heard 
voices calling clearly. Ah! how I tried to see—throw off the ugly cloud—but no blind eye 
of a mortal was permitted to spy them. So then came minstrels, having gold trumpets, harps 
and drums. These played very loudly beside me, breaking that spell. So the dream vanished, 
whereat I thanked Heaven. I shed many tears before the thin moon rose up, frail and faint as 
a sickle of straw. Now though the Enchanter gnash his teeth vainly, yet shall he return as the 
Spring returns. Oh, wretched man! Hell gapes, Erebus now lies open. The mouths of Death 
wait on thy end.
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Programming Problems 

 3.23 Write a program that can encrypt and decrypt using the general Caesar 
cipher, also known as an additive cipher.

 3.24 Write a program that can encrypt and decrypt using the affine cipher 
described in Problem 3.1.

 3.25 Write a program that can perform a letter frequency attack on an additive 
cipher without human intervention. Your software should produce possible 
plaintexts in rough order of likelihood. It would be good if your user inter-
face allowed the user to specify “give me the top 10 possible plaintexts.”

 3.26 Write a program that can perform a letter frequency attack on any mono-
alphabetic substitution cipher without human intervention. Your software 
should produce possible plaintexts in rough order of likelihood. It would 
be good if your user interface allowed the user to specify “give me the top 
10 possible plaintexts.”

 3.27 Create software that can encrypt and decrypt using a 2 * 2 Hill cipher.

 3.28 Create software that can perform a fast known plaintext attack on a Hill cipher, 
given the dimension m. How fast are your algorithms, as a function of m?
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The objective of this chapter is to illustrate the principles of modern symmetric 

ciphers. For this purpose, we focus on the most widely used symmetric cipher: the Data 

Encryption Standard (DES). Although numerous symmetric ciphers have been devel-

oped since the introduction of DES, and although it is destined to be replaced by the 

Advanced Encryption Standard (AES), DES remains the most important such algo-

rithm. Furthermore, a detailed study of DES provides an understanding of the prin-

ciples used in other symmetric ciphers.

This chapter begins with a discussion of the general principles of symmetric block 

ciphers, which are the principal type of symmetric ciphers studied in this book. The 

other form of symmetric ciphers, stream ciphers, are discussed in Chapter 8. Next, we 

cover full DES. Following this look at a specific algorithm, we return to a more general 

discussion of block cipher design.

Compared to public-key ciphers, such as RSA, the structure of DES and most 

symmetric ciphers is very complex and cannot be explained as easily as RSA and simi-

lar algorithms. Accordingly, the reader may wish to begin with a simplified version of 

DES, which is described in Appendix G. This version allows the reader to perform 

encryption and decryption by hand and gain a good understanding of the working of 

the algorithm details. Classroom experience indicates that a study of this simplified 

version enhances understanding of DES.1

 4.1 TRADITIONAL BLOCK CIPHER STRUCTURE

Several important symmetric block encryption algorithms in current use are based 

on a structure referred to as a Feistel block cipher [FEIS73]. For that reason, it is 

important to examine the design principles of the Feistel cipher. We begin with a 

comparison of stream ciphers and block ciphers. Then we discuss the motivation for 

the Feistel block cipher structure. Finally, we discuss some of its implications.

1However, you may safely skip Appendix G, at least on a first reading. If you get lost or bogged down in 
the details of DES, then you can go back and start with simplified DES.

LEARNING OBJECTIVES

After studying this chapter, you should be able to

 ◆ Understand the distinction between stream ciphers and block ciphers.

 ◆ Present an overview of the Feistel cipher and explain how decryption is 

the inverse of encryption.

 ◆ Present an overview of Data Encryption Standard (DES).

 ◆ Explain the concept of the avalanche effect.

 ◆ Discuss the cryptographic strength of DES.

 ◆ Summarize the principal block cipher design principles.
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Stream Ciphers and Block Ciphers

A stream cipher is one that encrypts a digital data stream one bit or one byte at a 

time. Examples of classical stream ciphers are the autokeyed Vigenère cipher and 

the Vernam cipher. In the ideal case, a one-time pad version of the Vernam cipher 

would be used (Figure 3.7), in which the keystream (ki) is as long as the plaintext bit 

stream (pi). If the cryptographic keystream is random, then this cipher is unbreakable 

by any means other than acquiring the keystream. However, the keystream must be 

provided to both users in advance via some independent and secure channel. This 

introduces insurmountable logistical problems if the intended data traffic is very large.

Accordingly, for practical reasons, the bit-stream generator must be imple-

mented as an algorithmic procedure, so that the cryptographic bit stream can be 

produced by both users. In this approach (Figure 4.1a), the bit-stream generator is 

a key-controlled algorithm and must produce a bit stream that is cryptographically 

strong. That is, it must be computationally impractical to predict future portions of 

the bit stream based on previous portions of the bit stream. The two users need only 

share the generating key, and each can produce the keystream.

A block cipher is one in which a block of plaintext is treated as a whole and 

used to produce a ciphertext block of equal length. Typically, a block size of 64 or 

Figure 4.1 Stream Cipher and Block Cipher
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128 bits is used. As with a stream cipher, the two users share a symmetric encryption 

key (Figure 4.1b). Using some of the modes of operation explained in Chapter 7, a 

block cipher can be used to achieve the same effect as a stream cipher.

Far more effort has gone into analyzing block ciphers. In general, they seem 

applicable to a broader range of applications than stream ciphers. The vast majority 

of network-based symmetric cryptographic applications make use of block ciphers. 

Accordingly, the concern in this chapter, and in our discussions throughout the 

book of symmetric encryption, will primarily focus on block ciphers.

Motivation for the Feistel Cipher Structure

A block cipher operates on a plaintext block of n bits to produce a ciphertext block 

of n bits. There are 2n possible different plaintext blocks and, for the encryption 

to be reversible (i.e., for decryption to be possible), each must produce a unique 

ciphertext block. Such a transformation is called reversible, or nonsingular. The fol-

lowing examples illustrate nonsingular and singular transformations for n = 2.

Reversible Mapping Irreversible Mapping

Plaintext Ciphertext Plaintext Ciphertext

00 11 00 11

01 10 01 10

10 00 10 01

11 01 11 01

In the latter case, a ciphertext of 01 could have been produced by one of two plain-

text blocks. So if we limit ourselves to reversible mappings, the number of different 

transformations is 2n!.2

Figure 4.2 illustrates the logic of a general substitution cipher for n = 4.  

A 4-bit input produces one of 16 possible input states, which is mapped by the sub-

stitution cipher into a unique one of 16 possible output states, each of which is repre-

sented by 4 ciphertext bits. The encryption and decryption mappings can be defined 

by a tabulation, as shown in Table 4.1. This is the most general form of block cipher 

and can be used to define any reversible mapping between plaintext and ciphertext. 

Feistel refers to this as the ideal block cipher, because it allows for the maximum 

number of possible encryption mappings from the plaintext block [FEIS75].

But there is a practical problem with the ideal block cipher. If a small block 

size, such as n = 4, is used, then the system is equivalent to a classical substitution 

cipher. Such systems, as we have seen, are vulnerable to a statistical analysis of the 

plaintext. This weakness is not inherent in the use of a substitution cipher but rather 

results from the use of a small block size. If n is sufficiently large and an arbitrary 

reversible substitution between plaintext and ciphertext is allowed, then the statisti-

cal characteristics of the source plaintext are masked to such an extent that this type 

of cryptanalysis is infeasible.

2The reasoning is as follows: For the first plaintext, we can choose any of 2n ciphertext blocks. For the 
second plaintext, we choose from among 2n - 1 remaining ciphertext blocks, and so on.
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An arbitrary reversible substitution cipher (the ideal block cipher) for a large 

block size is not practical, however, from an implementation and performance 

point of view. For such a transformation, the mapping itself constitutes the key. 

Consider again Table 4.1, which defines one particular reversible mapping from 

Figure 4.2 General n-bit-n-bit Block Substitution (shown with n = 4)

4-bit input

4 to 16 decoder

16 to 4 encoder

4-bit output

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Table 4.1 Encryption and Decryption Tables for Substitution Cipher of Figure 4.2

Plaintext Ciphertext

0000 1110

0001 0100

0010 1101

0011 0001

0100 0010

0101 1111

0110 1011

0111 1000

1000 0011

1001 1010

1010 0110

1011 1100

1100 0101

1101 1001

1110 0000

1111 0111

Ciphertext Plaintext

0000 1110

0001 0011

0010 0100

0011 1000

0100 0001

0101 1100

0110 1010

0111 1111

1000 0111

1001 1101

1010 1001

1011 0110

1100 1011

1101 0010

1110 0000

1111 0101
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plaintext to ciphertext for n = 4. The mapping can be defined by the entries in the 

second column, which show the value of the ciphertext for each plaintext block. 

This, in essence, is the key that determines the specific mapping from among all 

possible mappings. In this case, using this straightforward method of defining the 

key, the required key length is (4 bits) * (16 rows) = 64 bits. In general, for an  

n-bit ideal block cipher, the length of the key defined in this fashion is n * 2n bits. 

For a 64-bit block, which is a desirable length to thwart statistical attacks, the 

required key length is 64 * 264 = 270 ≈ 1021 bits.

In considering these difficulties, Feistel points out that what is needed is an 

approximation to the ideal block cipher system for large n, built up out of compo-

nents that are easily realizable [FEIS75]. But before turning to Feistel’s approach, 

let us make one other observation. We could use the general block substitution 

cipher but, to make its implementation tractable, confine ourselves to a subset of 

the 2n! possible reversible mappings. For example, suppose we define the mapping 

in terms of a set of linear equations. In the case of n = 4, we have

 y1 = k11x1 + k12x2 + k13x3 + k14x4

 y2 = k21x1 + k22x2 + k23x3 + k24x4

 y3 = k31x1 + k32x2 + k33x3 + k34x4

 y4 = k41x1 + k42x2 + k43x3 + k44x4

where the xi are the four binary digits of the plaintext block, the yi are the four bi-

nary digits of the ciphertext block, the kij are the binary coefficients, and arithmetic 

is mod 2. The key size is just n2, in this case 16 bits. The danger with this kind of for-

mulation is that it may be vulnerable to cryptanalysis by an attacker that is aware of 

the structure of the algorithm. In this example, what we have is essentially the Hill 

cipher discussed in Chapter 3, applied to binary data rather than characters. As we 

saw in Chapter 3, a simple linear system such as this is quite vulnerable.

The Feistel Cipher

Feistel proposed [FEIS73] that we can approximate the ideal block cipher by utiliz-

ing the concept of a product cipher, which is the execution of two or more simple 

ciphers in sequence in such a way that the final result or product is cryptographi-

cally stronger than any of the component ciphers. The essence of the approach is 

to develop a block cipher with a key length of k bits and a block length of n bits, 

allowing a total of 2k possible transformations, rather than the 2n! transformations 

available with the ideal block cipher.

In particular, Feistel proposed the use of a cipher that alternates substitutions 

and permutations, where these terms are defined as follows:

 ■ Substitution: Each plaintext element or group of elements is uniquely  replaced 

by a corresponding ciphertext element or group of elements.

 ■ Permutation: A sequence of plaintext elements is replaced by a permutation 

of that sequence. That is, no elements are added or deleted or replaced in the 

sequence, rather the order in which the elements appear in the sequence is 

changed.
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In fact, Feistel’s is a practical application of a proposal by Claude Shannon 

to develop a product cipher that alternates confusion and diffusion functions 

[SHAN49].3 We look next at these concepts of diffusion and confusion and then 

present the Feistel cipher. But first, it is worth commenting on this remarkable fact: 

The Feistel cipher structure, which dates back over a quarter century and which, in 

turn, is based on Shannon’s proposal of 1945, is the structure used by a number of 

significant symmetric block ciphers currently in use. In particular, the Feistel struc-

ture is used for Triple Data Encryption Algorithm (TDEA), which is one of the two 

encryption algorithms (along with AES), approved for general use by the National 

Institute of Standards and Technology (NIST). The Feistel structure is also used for 

several schemes for format-preserving encryption, which have recently come into 

prominence. In addition, the Camellia block cipher is a Feistel structure; it is one 

of the possible symmetric ciphers in TLS and a number of other Internet security 

protocols. Both TDEA and format-preserving encryption are covered in Chapter 7. 

DIFFUSION AND CONFUSION The terms diffusion and confusion were introduced by 

Claude Shannon to capture the two basic building blocks for any cryptographic sys-

tem [SHAN49]. Shannon’s concern was to thwart cryptanalysis based on statisti-

cal analysis. The reasoning is as follows. Assume the attacker has some knowledge 

of the statistical characteristics of the plaintext. For example, in a human-readable 

message in some language, the frequency distribution of the various letters may be 

known. Or there may be words or phrases likely to appear in the message (probable 

words). If these statistics are in any way reflected in the ciphertext, the cryptanalyst 

may be able to deduce the encryption key, part of the key, or at least a set of keys 

likely to contain the exact key. In what Shannon refers to as a strongly ideal cipher, 

all statistics of the ciphertext are independent of the particular key used. The arbi-

trary substitution cipher that we discussed previously (Figure 4.2) is such a cipher, 

but as we have seen, it is impractical.4

Other than recourse to ideal systems, Shannon suggests two methods for 

frustrating statistical cryptanalysis: diffusion and confusion. In diffusion, the sta-

tistical structure of the plaintext is dissipated into long-range statistics of the 

ciphertext. This is achieved by having each plaintext digit affect the value of many 

ciphertext digits; generally, this is equivalent to having each ciphertext digit be 

affected by many plaintext digits. An example of diffusion is to encrypt a message 

M = m1, m2, m3, c  of characters with an averaging operation:

 yn = ¢ ak
i=1

mn + i≤ mod 26 

3The paper is available at box.com/Crypto7e. Shannon’s 1949 paper appeared originally as a classified 
report in 1945. Shannon enjoys an amazing and unique position in the history of computer and informa-
tion science. He not only developed the seminal ideas of modern cryptography but is also responsible for 
inventing the discipline of information theory. Based on his work in information theory, he developed 
a formula for the capacity of a data communications channel, which is still used today. In addition, he 
founded another discipline, the application of Boolean algebra to the study of digital circuits; this last he 
managed to toss off as a master’s thesis.

4Appendix F expands on Shannon’s concepts concerning measures of secrecy and the security of crypto-
graphic algorithms.
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adding k successive letters to get a ciphertext letter yn. One can show that the sta-

tistical structure of the plaintext has been dissipated. Thus, the letter frequencies in 

the ciphertext will be more nearly equal than in the plaintext; the digram frequen-

cies will also be more nearly equal, and so on. In a binary block cipher, diffusion can 

be achieved by repeatedly performing some permutation on the data followed by 

applying a function to that permutation; the effect is that bits from different posi-

tions in the original plaintext contribute to a single bit of ciphertext.5

Every block cipher involves a transformation of a block of plaintext into a 

block of ciphertext, where the transformation depends on the key. The mechanism 

of diffusion seeks to make the statistical relationship between the plaintext and 

ciphertext as complex as possible in order to thwart attempts to deduce the key. On 

the other hand, confusion seeks to make the relationship between the statistics of 

the ciphertext and the value of the encryption key as complex as possible, again to 

thwart attempts to discover the key. Thus, even if the attacker can get some handle 

on the statistics of the ciphertext, the way in which the key was used to produce that 

ciphertext is so complex as to make it difficult to deduce the key. This is achieved by 

the use of a complex substitution algorithm. In contrast, a simple linear substitution 

function would add little confusion.

As [ROBS95b] points out, so successful are diffusion and confusion in captur-

ing the essence of the desired attributes of a block cipher that they have become the 

cornerstone of modern block cipher design.

FEISTEL CIPHER STRUCTURE The left-hand side of Figure 4.3 depicts the encryption 

structure proposed by Feistel. The inputs to the encryption algorithm are a plaintext 

block of length 2w bits and a key K. The plaintext block is divided into two halves, 

LE0 and RE0. The two halves of the data pass through n rounds of processing and 

then combine to produce the ciphertext block. Each round i has as inputs LEi- 1 and 

REi- 1 derived from the previous round, as well as a subkey Ki derived from the over-

all K. In general, the subkeys Ki are different from K and from each other. In Figure 

4.3, 16 rounds are used, although any number of rounds could be implemented.

All rounds have the same structure. A substitution is performed on the left 

half of the data. This is done by applying a round function F to the right half of the 

data and then taking the exclusive-OR of the output of that function and the left 

half of the data. The round function has the same general structure for each round 

but is parameterized by the round subkey Ki. Another way to express this is to say 

that F is a function of right-half block of w bits and a subkey of y bits, which pro-

duces an output value of length w bits: F(REi, Ki+ 1). Following this substitution, a 

permutation is performed that consists of the interchange of the two halves of the 

data.6 This structure is a particular form of the substitution-permutation network 

(SPN) proposed by Shannon.

5Some books on cryptography equate permutation with diffusion. This is incorrect. Permutation, by itself, 
does not change the statistics of the plaintext at the level of individual letters or permuted blocks. For exam-
ple, in DES, the permutation swaps two 32-bit blocks, so statistics of strings of 32 bits or less are preserved.
6The final round is followed by an interchange that undoes the interchange that is part of the final round. 
One could simply leave both interchanges out of the diagram, at the sacrifice of some consistency of pre-
sentation. In any case, the effective lack of a swap in the final round is done to simplify the implementa-
tion of the decryption process, as we shall see.
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The exact realization of a Feistel network depends on the choice of the follow-

ing parameters and design features:

 ■ Block size: Larger block sizes mean greater security (all other things being 

equal) but reduced encryption/decryption speed for a given algorithm. The 

greater security is achieved by greater diffusion. Traditionally, a block size of 

64 bits has been considered a reasonable tradeoff and was nearly universal in 

block cipher design. However, the new AES uses a 128-bit block size.

Figure 4.3 Feistel Encryption and Decryption (16 rounds)
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 ■ Key size: Larger key size means greater security but may decrease encryption/

decryption speed. The greater security is achieved by greater resistance to 

brute-force attacks and greater confusion. Key sizes of 64 bits or less are now 

widely considered to be inadequate, and 128 bits has become a common size.

 ■ Number of rounds: The essence of the Feistel cipher is that a single round 

offers inadequate security but that multiple rounds offer increasing security. 

A typical size is 16 rounds.

 ■ Subkey generation algorithm: Greater complexity in this algorithm should 

lead to greater difficulty of cryptanalysis.

 ■ Round function F: Again, greater complexity generally means greater resis-

tance to cryptanalysis.

There are two other considerations in the design of a Feistel cipher:

 ■ Fast software encryption/decryption: In many cases, encryption is embedded 

in applications or utility functions in such a way as to preclude a hardware im-

plementation. Accordingly, the speed of execution of the algorithm becomes a 

concern.

 ■ Ease of analysis: Although we would like to make our algorithm as difficult as 

possible to cryptanalyze, there is great benefit in making the algorithm easy 

to analyze. That is, if the algorithm can be concisely and clearly explained, it is 

easier to analyze that algorithm for cryptanalytic vulnerabilities and therefore 

develop a higher level of assurance as to its strength. DES, for example, does 

not have an easily analyzed functionality.

FEISTEL DECRYPTION ALGORITHM The process of decryption with a Feistel cipher 

is essentially the same as the encryption process. The rule is as follows: Use the 

ciphertext as input to the algorithm, but use the subkeys Ki in reverse order. That 

is, use Kn in the first round, Kn - 1 in the second round, and so on, until K1 is used in 

the last round. This is a nice feature, because it means we need not implement two 

different algorithms; one for encryption and one for decryption.

To see that the same algorithm with a reversed key order produces the cor-

rect result, Figure 4.3 shows the encryption process going down the left-hand side 

and the decryption process going up the right-hand side for a 16-round algorithm. 

For clarity, we use the notation LEi and REi for data traveling through the encryp-

tion algorithm and LDi and RDi for data traveling through the decryption algo-

rithm. The diagram indicates that, at every round, the intermediate value of the 

decryption process is equal to the corresponding value of the encryption process 

with the two halves of the value swapped. To put this another way, let the output 

of the ith encryption round be LEi ‘REi (LEi concatenated with REi). Then the cor-

responding output of the (16 - i)th decryption round is REi ‘LEi or, equivalently, 

LD16 - i ‘RD16 - i.

Let us walk through Figure 4.3 to demonstrate the validity of the preceding 

assertions. After the last iteration of the encryption process, the two halves of the 

output are swapped, so that the ciphertext is RE16 ‘LE16. The output of that round 

is the ciphertext. Now take that ciphertext and use it as input to the same algorithm. 

The input to the first round is RE16 ‘LE16, which is equal to the 32-bit swap of the 

output of the sixteenth round of the encryption process.
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Now we would like to show that the output of the first round of the decryption 

process is equal to a 32-bit swap of the input to the sixteenth round of the encryp-

tion process. First, consider the encryption process. We see that

 LE16 = RE15

 RE16 = LE15⊕ F(RE15, K16)

On the decryption side,

 LD1 = RD0 = LE16 = RE15

 RD1 = LD0⊕ F(RD0, K16)

 = RE16⊕ F(RE15, K16)

 = [LE15⊕ F(RE15, K16)]⊕ F(RE15, K16)

The XOR has the following properties:

 [A⊕ B]⊕ C = A⊕ [B⊕ C]

 D⊕D = 0

 E⊕ 0 = E

Thus, we have LD1 = RE15 and RD1 = LE15. Therefore, the output of the first 

round of the decryption process is RE15 ‘LE15, which is the 32-bit swap of the input 

to the sixteenth round of the encryption. This correspondence holds all the way 

through the 16 iterations, as is easily shown. We can cast this process in general 

terms. For the ith iteration of the encryption algorithm,

 LEi = REi- 1

 REi = LEi- 1⊕ F(REi- 1, Ki)

Rearranging terms:

 REi- 1 = LEi

 LEi- 1 = REi⊕ F(REi- 1, Ki) = REi⊕ F(LEi, Ki)

Thus, we have described the inputs to the ith iteration as a function of the outputs, and 

these equations confirm the assignments shown in the right-hand side of Figure 4.3.

Finally, we see that the output of the last round of the decryption process is 

RE0 ‘LE0. A 32-bit swap recovers the original plaintext, demonstrating the validity 

of the Feistel decryption process.

Note that the derivation does not require that F be a reversible function. To 

see this, take a limiting case in which F produces a constant output (e.g., all ones) 

regardless of the values of its two arguments. The equations still hold.

To help clarify the preceding concepts, let us look at a specific example 

(Figure 4.4 and focus on the fifteenth round of encryption, corresponding to the sec-

ond round of decryption. Suppose that the blocks at each stage are 32 bits (two 16-bit 

halves) and that the key size is 24 bits. Suppose that at the end of encryption round 

fourteen, the value of the intermediate block (in hexadecimal) is DE7F03A6. Then 

LE14 = DE7F and RE14 = 03A6. Also assume that the value of K15 is 12DE52. 

After round 15, we have LE15 = 03A6 and RE15 = F(03A6, 12DE52)⊕DE7F.



4.2 / THE DATA ENCRYPTION STANDARD 129

Now let’s look at the decryption. We assume that LD1 = RE15 and 

RD1 = LE15, as shown in Figure 4.3, and we want to demonstrate that LD2 = RE14 

and RD2 = LE14. So, we start with LD1 = F(03A6, 12DE52)⊕DE7F and 

RD1 = 03A6. Then, from Figure 4.3, LD2 = 03A6 = RE14 and RD2 =
F(03A6, 12DE52)⊕ [F(03A6, 12DE52)⊕DE7F] = DE7F = LE14.

 4.2 THE DATA ENCRYPTION STANDARD

Until the introduction of the Advanced Encryption Standard (AES) in 2001, the 

Data Encryption Standard (DES) was the most widely used encryption scheme. 

DES was issued in 1977 by the National Bureau of Standards, now the National 

Institute of Standards and Technology (NIST), as Federal Information Processing 

Standard 46 (FIPS PUB 46). The algorithm itself is referred to as the Data 

Encryption Algorithm (DEA).7 For DEA, data are encrypted in 64-bit blocks using 

a 56-bit key. The algorithm transforms 64-bit input in a series of steps into a 64-bit 

output. The same steps, with the same key, are used to reverse the encryption.

Over the years, DES became the dominant symmetric encryption algorithm, 

especially in financial applications. In 1994, NIST reaffirmed DES for federal use 

for another five years; NIST recommended the use of DES for applications other 

than the protection of classified information. In 1999, NIST issued a new version 

of its standard (FIPS PUB 46-3) that indicated that DES should be used only 

for legacy systems and that triple DES (which in essence involves repeating the 

DES algorithm three times on the plaintext using two or three different keys to 

produce the ciphertext) be used. We study triple DES in Chapter 7. Because the 

underlying encryption and decryption algorithms are the same for DES and triple 

DES, it remains important to understand the DES cipher. This section provides an 

overview.For the interested reader, Appendix S provides further detail.

7The terminology is a bit confusing. Until recently, the terms DES and DEA could be used interchange-
ably. However, the most recent edition of the DES document includes a specification of the DEA 
described here plus the triple DEA (TDEA) described in Chapter 7. Both DEA and TDEA are part of 
the Data Encryption Standard. Further, until the recent adoption of the official term TDEA, the triple 
DEA algorithm was typically referred to as triple DES and written as 3DES. For the sake of convenience, 
we will use the term 3DES.

Figure 4.4 Feistel Example
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DES Encryption

The overall scheme for DES encryption is illustrated in Figure 4.5. As with any 

encryption scheme, there are two inputs to the encryption function: the plaintext to 

be encrypted and the key. In this case, the plaintext must be 64 bits in length and the 

key is 56 bits in length.8

Looking at the left-hand side of the figure, we can see that the processing 

of the plaintext proceeds in three phases. First, the 64-bit plaintext passes through 

an initial permutation (IP) that rearranges the bits to produce the permuted input. 

8Actually, the function expects a 64-bit key as input. However, only 56 of these bits are ever used; the 
other 8 bits can be used as parity bits or simply set arbitrarily.

Figure 4.5 General Depiction of DES Encryption Algorithm
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This is followed by a phase consisting of sixteen rounds of the same function, which 

involves both permutation and substitution functions. The output of the last (six-

teenth) round consists of 64 bits that are a function of the input plaintext and the 

key. The left and right halves of the output are swapped to produce the preoutput. 

Finally, the preoutput is passed through a permutation [IP-1] that is the inverse of 

the initial permutation function, to produce the 64-bit ciphertext. With the excep-

tion of the initial and final permutations, DES has the exact structure of a Feistel 

cipher, as shown in Figure 4.3.

The right-hand portion of Figure 4.5 shows the way in which the 56-bit key is 

used. Initially, the key is passed through a permutation function. Then, for each of 

the sixteen rounds, a subkey (Ki) is produced by the combination of a left circular 

shift and a permutation. The permutation function is the same for each round, but a 

different subkey is produced because of the repeated shifts of the key bits.

DES Decryption

As with any Feistel cipher, decryption uses the same algorithm as encryption, except 

that the application of the subkeys is reversed. Additionally, the initial and final 

permutations are reversed.

 4.3 A DES EXAMPLE

We now work through an example and consider some of its implications. Although 

you are not expected to duplicate the example by hand, you will find it informative 

to study the hex patterns that occur from one step to the next.

For this example, the plaintext is a hexadecimal palindrome. The plaintext, 

key, and resulting ciphertext are as follows:

Plaintext: 02468aceeca86420

Key: 0f1571c947d9e859

Ciphertext: da02ce3a89ecac3b

Results

Table 4.2 shows the progression of the algorithm. The first row shows the 32-bit 

values of the left and right halves of data after the initial permutation. The next 16 

rows show the results after each round. Also shown is the value of the 48-bit subkey 

generated for each round. Note that Li = Ri- 1. The final row shows the left- and 

right-hand values after the inverse initial permutation. These two values combined 

form the ciphertext.

The Avalanche Effect

A desirable property of any encryption algorithm is that a small change in either 

the plaintext or the key should produce a significant change in the ciphertext. In 

particular, a change in one bit of the plaintext or one bit of the key should produce 
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a change in many bits of the ciphertext. This is referred to as the avalanche effect. 

If the change were small, this might provide a way to reduce the size of the plaintext 

or key space to be searched.

Using the example from Table 4.2, Table 4.3 shows the result when the fourth 

bit of the plaintext is changed, so that the plaintext is 12468aceeca86420. The 

second column of the table shows the intermediate 64-bit values at the end of each 

round for the two plaintexts. The third column shows the number of bits that differ 

between the two intermediate values. The table shows that, after just three rounds, 

18 bits differ between the two blocks. On completion, the two ciphertexts differ in 

32 bit positions.

Table 4.4 shows a similar test using the original plaintext of with two keys that 

differ in only the fourth bit position: the original key, 0f1571c947d9e859, and 

the altered key, 1f1571c947d9e859. Again, the results show that about half of 

the bits in the ciphertext differ and that the avalanche effect is pronounced after just 

a few rounds.

Round Ki Li Ri

IP 5a005a00 3cf03c0f

1 1e030f03080d2930 3cf03c0f bad22845

2 0a31293432242318 bad22845 99e9b723

3 23072318201d0c1d 99e9b723 0bae3b9e

4 05261d3824311a20 0bae3b9e 42415649

5 3325340136002c25 42415649 18b3fa41

6 123a2d0d04262a1c 18b3fa41 9616fe23

7 021f120b1c130611 9616fe23 67117cf2

8 1c10372a2832002b 67117cf2 c11bfc09

9 04292a380c341f03 c11bfc09 887fbc6c

10 2703212607280403 887fbc6c 600f7e8b

11 2826390c31261504 600f7e8b f596506e

12 12071c241a0a0f08 f596506e 738538b8

13 300935393c0d100b 738538b8 c6a62c4e

14 311e09231321182a c6a62c4e 56b0bd75

15 283d3e0227072528 56b0bd75 75e8fd8f

16 2921080b13143025 75e8fd8f 25896490

IP−1 da02ce3a 89ecac3b

Note: DES subkeys are shown as eight 6-bit values in hex format

Table 4.2 DES Example
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Table 4.3 Avalanche Effect in DES: Change in Plaintext

Round D

9 c11bfc09887fbc6c
99f911532eed7d94

32

10 887fbc6c600f7e8b
2eed7d94d0f23094

34

11 600f7e8bf596506e
d0f23094455da9c4

37

12 f596506e738538b8
455da9c47f6e3cf3

31

13 738538b8c6a62c4e
7f6e3cf34bc1a8d9

29

14 c6a62c4e56b0bd75
4bc1a8d91e07d409

33

15 56b0bd7575e8fd8f
1e07d4091ce2e6dc

31

16 75e8fd8f25896490
1ce2e6dc365e5f59

32

IP−1 da02ce3a89ecac3b
057cde97d7683f2a

32

Round D

02468aceeca86420
12468aceeca86420

1

1 3cf03c0fbad22845
3cf03c0fbad32845

1

2 bad2284599e9b723
bad3284539a9b7a3

5

3 99e9b7230bae3b9e
39a9b7a3171cb8b3

18

4 0bae3b9e42415649
171cb8b3ccaca55e

34

5 4241564918b3fa41
ccaca55ed16c3653

37

6 18b3fa419616fe23
d16c3653cf402c68

33

7 9616fe2367117cf2
cf402c682b2cefbc

32

8 67117cf2c11bfc09
2b2cefbc99f91153

33

Table 4.4 Avalanche Effect in DES: Change in Key

Round D

02468aceeca86420
02468aceeca86420

0

1 3cf03c0fbad22845
3cf03c0f9ad628c5

3

2 bad2284599e9b723
9ad628c59939136b

11

3 99e9b7230bae3b9e
9939136b768067b7

25

4 0bae3b9e42415649
768067b75a8807c5

29

5 4241564918b3fa41
5a8807c5488dbe94

26

6 18b3fa419616fe23
488dbe94aba7fe53

26

7 9616fe2367117cf2
aba7fe53177d21e4

27

8 67117cf2c11bfc09
177d21e4548f1de4

32

Round D

9 c11bfc09887fbc6c
548f1de471f64dfd

34

10 887fbc6c600f7e8b
71f64dfd4279876c

36

11 600f7e8bf596506e
4279876c399fdc0d

32

12 f596506e738538b8
399fdc0d6d208dbb

28

13 738538b8c6a62c4e
6d208dbbb9bdeeaa

33

14 c6a62c4e56b0bd75
b9bdeeaad2c3a56f

30

15 56b0bd7575e8fd8f
d2c3a56f2765c1fb

27

16 75e8fd8f25896490
2765c1fb01263dc4

30

IP−1 da02ce3a89ecac3b
ee92b50606b62b0b

30
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 4.4 THE STRENGTH OF DES

Since its adoption as a federal standard, there have been lingering concerns about 

the level of security provided by DES. These concerns, by and large, fall into two 

areas: key size and the nature of the algorithm.

The Use of 56-Bit Keys

With a key length of 56 bits, there are 256 possible keys, which is approximately 

7.2 * 1016 keys. Thus, on the face of it, a brute-force attack appears impractical. 

Assuming that, on average, half the key space has to be searched, a single machine 

performing one DES encryption per microsecond would take more than a thousand 

years to break the cipher.

However, the assumption of one encryption per microsecond is overly con-

servative. As far back as 1977, Diffie and Hellman postulated that the technology 

existed to build a parallel machine with 1 million encryption devices, each of which 

could perform one encryption per microsecond [DIFF77]. This would bring the 

average search time down to about 10 hours. The authors estimated that the cost 

would be about $20 million in 1977 dollars.

With current technology, it is not even necessary to use special, purpose-built 

hardware. Rather, the speed of commercial, off-the-shelf processors threaten the 

security of DES. A recent paper from Seagate Technology [SEAG08] suggests that 

a rate of 1 billion (109) key combinations per second is reasonable for today’s mul-

ticore computers. Recent offerings confirm this. Both Intel and AMD now offer 

hardware-based instructions to accelerate the use of AES. Tests run on a contem-

porary multicore Intel machine resulted in an encryption rate of about half a bil-

lion encryptions per second [BASU12]. Another recent analysis suggests that with 

contemporary supercomputer technology, a rate of 1013 encryptions per second is 

reasonable [AROR12].

With these results in mind, Table 4.5 shows how much time is required for a 

brute-force attack for various key sizes. As can be seen, a single PC can break DES in 

about a year; if multiple PCs work in parallel, the time is drastically shortened. And 

today’s supercomputers should be able to find a key in about an hour. Key sizes of 

128 bits or greater are effectively unbreakable using simply a brute-force approach. 

Even if we managed to speed up the attacking system by a factor of 1  trillion (1012), 

it would still take over 100,000 years to break a code using a 128-bit key.

Fortunately, there are a number of alternatives to DES, the most important of 

which are AES and triple DES, discussed in Chapters 6 and 7, respectively.

The Nature of the DES Algorithm

Another concern is the possibility that cryptanalysis is possible by exploiting 

the characteristics of the DES algorithm. The focus of concern has been on the 

eight substitution tables, or S-boxes, that are used in each iteration (described in 

Appendix S). Because the design criteria for these boxes, and indeed for the entire 

algorithm, were not made public, there is a suspicion that the boxes were con-

structed in such a way that cryptanalysis is possible for an opponent who knows 
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Key Size (bits) Cipher

Number of 
Alternative 

Keys
Time Required at 109 

Decryptions/s

Time Required 
at 1013 

Decryptions/s

56 DES 256 ≈ 7.2 * 1016 255 ns = 1.125 years 1 hour

128 AES 2128 ≈ 3.4 * 1038 2127 ns = 5.3 * 1021 years 5.3 * 1017 years

168 Triple DES 2168 ≈ 3.7 * 1050 2167 ns = 5.8 * 1033 years 5.8 * 1029 years

192 AES 2192 ≈ 6.3 * 1057 2191 ns = 9.8 * 1040 years 9.8 * 1036 years

256 AES 2256 ≈ 1.2 * 1077 2255 ns = 1.8 * 1060 years 1.8 * 1056 years

26 characters 

(permutation)

Monoalphabetic 2! = 4 * 1026 2 * 1026 ns = 6.3 * 109 years 6.3 * 106 years

Table 4.5 Average Time Required for Exhaustive Key Search

the weaknesses in the S-boxes. This assertion is tantalizing, and over the years a 

number of regularities and unexpected behaviors of the S-boxes have been discov-

ered. Despite this, no one has so far succeeded in discovering the supposed fatal 

 weaknesses in the S-boxes.9

Timing Attacks

We discuss timing attacks in more detail in Part Two, as they relate to public-key 

algorithms. However, the issue may also be relevant for symmetric ciphers. In 

essence, a timing attack is one in which information about the key or the plaintext is 

obtained by observing how long it takes a given implementation to perform decryp-

tions on various ciphertexts. A timing attack exploits the fact that an encryption 

or decryption algorithm often takes slightly different amounts of time on different 

inputs. [HEVI99] reports on an approach that yields the Hamming weight (number 

of bits equal to one) of the secret key. This is a long way from knowing the actual 

key, but it is an intriguing first step. The authors conclude that DES appears to be 

fairly resistant to a successful timing attack but suggest some avenues to explore. 

Although this is an interesting line of attack, it so far appears unlikely that this tech-

nique will ever be successful against DES or more powerful symmetric ciphers such 

as triple DES and AES.

 4.5 BLOCK CIPHER DESIGN PRINCIPLES

Although much progress has been made in designing block ciphers that are cryp-

tographically strong, the basic principles have not changed all that much since the 

work of Feistel and the DES design team in the early 1970s. In this section we look 

at three critical aspects of block cipher design: the number of rounds, design of the 

function F, and key scheduling.

9At least, no one has publicly acknowledged such a discovery.
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Number of Rounds

The cryptographic strength of a Feistel cipher derives from three aspects of the 

design: the number of rounds, the function F, and the key schedule algorithm. Let 

us look first at the choice of the number of rounds.

The greater the number of rounds, the more difficult it is to perform crypt-

analysis, even for a relatively weak F. In general, the criterion should be that the 

number of rounds is chosen so that known cryptanalytic efforts require greater 

effort than a simple brute-force key search attack. This criterion was certainly used 

in the design of DES. Schneier [SCHN96] observes that for 16-round DES, a dif-

ferential cryptanalysis attack is slightly less efficient than brute force: The differen-

tial cryptanalysis attack requires 255.1 operations,10 whereas brute force requires 255. 

If DES had 15 or fewer rounds, differential cryptanalysis would require less effort 

than a brute-force key search.

This criterion is attractive, because it makes it easy to judge the strength of 

an algorithm and to compare different algorithms. In the absence of a cryptana-

lytic breakthrough, the strength of any algorithm that satisfies the criterion can be 

judged solely on key length.

Design of Function F

The heart of a Feistel block cipher is the function F, which provides the element of 

confusion in a Feistel cipher. Thus, it must be difficult to “unscramble” the substitu-

tion performed by F. One obvious criterion is that F be nonlinear, as we discussed 

previously. The more nonlinear F, the more difficult any type of cryptanalysis will be.  

There are several measures of nonlinearity, which are beyond the scope of this 

book. In rough terms, the more difficult it is to approximate F by a set of linear 

equations, the more nonlinear F is.

Several other criteria should be considered in designing F. We would like the 

algorithm to have good avalanche properties. Recall that, in general, this means that 

a change in one bit of the input should produce a change in many bits of the output. 

A more stringent version of this is the strict avalanche criterion (SAC) [WEBS86], 

which states that any output bit j of an S-box (see Appendix S for a discussion of 

S-boxes) should change with probability 1/2 when any single input bit i is inverted 

for all i, j. Although SAC is expressed in terms of S-boxes, a similar criterion could 

be applied to F as a whole. This is important when considering designs that do not 

include S-boxes.

Another criterion proposed in [WEBS86] is the bit independence criterion 
(BIC), which states that output bits j and k should change independently when any 

single input bit i is inverted for all i, j, and k. The SAC and BIC criteria appear to 

strengthen the effectiveness of the confusion function.

10Differential cryptanalysis of DES requires 247 chosen plaintext. If all you have to work with is known 
plaintext, then you must sort through a large quantity of known plaintext–ciphertext pairs looking for the 
useful ones. This brings the level of effort up to 255.1.
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Key Schedule Algorithm

With any Feistel block cipher, the key is used to generate one subkey for each round. 

In general, we would like to select subkeys to maximize the difficulty of deducing 

individual subkeys and the difficulty of working back to the main key. No general 

principles for this have yet been promulgated.

Adams suggests [ADAM94] that, at minimum, the key schedule should guar-

antee key/ciphertext Strict Avalanche Criterion and Bit Independence Criterion.

 4.6 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms 

avalanche effect

block cipher

confusion

Data Encryption Standard 

(DES)

diffusion

Feistel cipher

irreversible mapping

key

permutation

product cipher

reversible mapping

round

round function

subkey

substitution

Review Questions 
 4.1 Briefly define a nonsingular transformation.

 4.2 What is the difference between a block cipher and a stream cipher?

 4.3 Why is it not practical to use an arbitrary reversible substitution cipher of the kind 
shown in Table 4.1?

 4.4 Briefly define the terms substitution and permutation.

 4.5 What is the difference between diffusion and confusion?

 4.6 Which parameters and design choices determine the actual algorithm of a Feistel 
cipher?

 4.7 What are the critical aspects of Feistel cipher design?

Problems 

 4.1 a.  In Section 4.1, under the subsection on the motivation for the Feistel cipher struc-
ture, it was stated that, for a block of n bits, the number of different reversible 
mappings for the ideal block cipher is 2n!. Justify.

b. In that same discussion, it was stated that for the ideal block cipher, which allows all 
possible reversible mappings, the size of the key is n * 2n bits. But, if there are 2n! 
possible mappings, it should take log2 2

n! bits to discriminate among the different 
mappings, and so the key length should be log2 2

n!. However, log2 2
n! 6 n * 2n. 

Explain the discrepancy.
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 4.2 Consider a Feistel cipher composed of sixteen rounds with a block length of 128 bits 
and a key length of 128 bits. Suppose that, for a given k, the key scheduling algorithm 
determines values for the first eight round keys, k1, k2, c  k8, and then sets

 k9 = k8, k10 = k7, k11 = k6, c , k16 = k1 

  Suppose you have a ciphertext c. Explain how, with access to an encryption oracle, 
you can decrypt c and determine m using just a single oracle query. This shows that 
such a cipher is vulnerable to a chosen plaintext attack. (An encryption oracle can be 
thought of as a device that, when given a plaintext, returns the corresponding cipher-
text. The internal details of the device are not known to you and you cannot break 
open the device. You can only gain information from the oracle by making queries to 
it and observing its responses.)

 4.3 Let p be a permutation of the integers 0, 1, 2, c , (2n - 1), such that p(m) gives the 
permuted value of m, 0 … m 6 2n. Put another way, p maps the set of n-bit integers 
into itself and no two integers map into the same integer. DES is such a permutation 
for 64-bit integers. We say that p has a fixed point at m if p(m) = m. That is, if p is 
an encryption mapping, then a fixed point corresponds to a message that encrypts to 
itself. We are interested in the number of fixed points in a randomly chosen permuta-
tion p. Show the somewhat unexpected result that the number of fixed points for p is 
1 on an average, and this number is independent of the size of the permutation.

 4.4 Consider a block encryption algorithm that encrypts blocks of length n, and let 
N = 2n. Say we have t plaintext–ciphertext pairs Pi, Ci = E(K, Pi), where we assume 
that the key K selects one of the N! possible mappings. Imagine that we wish to find K 
by exhaustive search. We could generate key K′ and test whether Ci = E(K′, Pi) for 
1 … i … t. If K′ encrypts each Pi to its proper Ci, then we have evidence that K = K′. 
However, it may be the case that the mappings E(K, # ) and E(K′, # ) exactly agree 
on the t plaintext–cipher text pairs Pi, Ci and agree on no other pairs.
a. What is the probability that E(K, # ) and E(K′, # ) are in fact distinct mappings?
b. What is the probability that E(K, # ) and E(K′, # ) agree on another t′ plaintext–

ciphertext pairs where 0 … t′ … N - t?
 4.5 For any block cipher, the fact that it is a nonlinear function is crucial to its security. To 

see this, suppose that we have a linear block cipher EL that encrypts 256-bit blocks 
of plaintext into 256-bit blocks of ciphertext. Let EL(k, m) denote the encryption of a 
256-bit message m under a key k (the actual bit length of k is irrelevant). Thus,

 EL(k, [m1⊕ m2]) = EL(k, m1)⊕ EL(k, m2) for all 128@bit patterns m1, m2. 

  Describe how, with 256 chosen ciphertexts, an adversary can decrypt any ciphertext 
without knowledge of the secret key k. (A “chosen ciphertext” means that an adver-
sary has the ability to choose a ciphertext and then obtain its decryption. Here, you 
have 256 plaintext/ciphertext pairs to work with and you have the ability to choose 
the value of the ciphertexts.)

 4.6 Suppose the DES F function mapped every 32-bit input R, regardless of the value of 
the input K, to;
a. 32-bit string of zero
b. R

  Then
1. What function would DES then compute?

2. What would the decryption look like?

  Hint: Use the following properties of the XOR operation:

 (A⊕ B)⊕ C = A⊕ (B⊕ C)

 (A⊕ A) = 0

 (A⊕ 0 ) = A

 A⊕ 1 = bitwise complement of A
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  where

A,B,C are n-bit strings of bits

0 is an n-bit string of zeros

1 is an n-bit string of one

 4.7 Show that DES decryption is, in fact, the inverse of DES encryption.

 4.8 The 32-bit swap after the sixteenth iteration of the DES algorithm is needed to make 
the encryption process invertible by simply running the ciphertext back through the 
algorithm with the key order reversed. This was demonstrated in the preceding prob-
lem. However, it still may not be entirely clear why the 32-bit swap is needed. To 
demonstrate why, solve the following exercises. First, some notation:

 A ‘B = the concatenation of the bit strings A and B

 Ti(R ‘L) = the transformation defined by the ith iteration of the encryption 

algorithm for 1 … I … 16

 TDi(R ‘L) = the transformation defined by the ith iteration of the decryption 

algorithm for 1 … I … 16

 T17(R ‘L) = L ‘R, where this transformation occurs after the sixteenth iteration 

of the encryption algorithm

a. Show that the composition TD1(IP(IP-1(T17(T16(L15 ‘R15))))) is equivalent to the 
transformation that interchanges the 32-bit halves, L15 and R15. That is, show that

 TD1(IP(IP-1(T17(T16(L15 ‘R15))))) = R15 ‘L15 

b. Now suppose that we did away with the final 32-bit swap in the encryption algo-
rithm. Then we would want the following equality to hold:

 TD1(IP(IP-1(T16(L15 ‘R15)))) = L15 ‘R15 

Does it?

Note: The following problems refer to details of DES that are described in Appendix S.

 4.9 Consider the substitution defined by row 1 of S-box S1 in Table S.2. Show a block 
diagram similar to Figure 4.2 that corresponds to this substitution.

 4.10 Compute the bits number 4, 17, 41, and 45 at the output of the first round of the DES 
decryption, assuming that the ciphertext block is composed of all ones and the exter-
nal key is composed of all ones.

 4.11 This problem provides a numerical example of encryption using a one-round version 
of DES. We start with the same bit pattern for the key K and the plaintext, namely:

Hexadecimal notation: 0 1 2 3 4 5 6 7 8 9 A B C D E F

Binary notation: 0000 0001 0010 0011 0100 0101 0110 0111

1000 1001 1010 1011 1100 1101 1110 1111

a. Derive K1, the first-round subkey.
b. Derive L0, R0.
c. Expand R0 to get E[R0], where E[ # ] is the expansion function of Table S.1.
d. Calculate A = E[R0]⊕ K1.
e. Group the 48-bit result of (d) into sets of 6 bits and evaluate the corresponding 

S-box substitutions.
f. Concatenate the results of (e) to get a 32-bit result, B.
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g. Apply the permutation to get P(B).
h. Calculate R1 = P(B)⊕ L0.
i. Write down the ciphertext.

 4.12 Analyze the amount of left shifts in the DES key schedule by studying Table S.3 (d). 
Is there a pattern? What could be the reason for the choice of these constants?

 4.13 When using the DES algorithm for decryption, the 16 keys (K1, K2, c , K16) are 
used in reverse order. Therefore, the right-hand side of Figure S.1 is not valid for 
decryption. Design a key-generation scheme with the appropriate shift schedule 
(analogous to Table S.3d) for the decryption process.

 4.14 a.  Let X′ be the bitwise complement of X. Prove that if the complement of the 
plaintext block is taken and the complement of an encryption key is taken, then 
the result of DES encryption with these values is the complement of the original 
ciphertext. That is,

 
If Y = E(K, X)

Then Y′ = E(K′, X′)
 

Hint: Begin by showing that for any two bit strings of equal length, A and B, 
(A⊕ B)′ = A′ ⊕ B.

b. It has been said that a brute-force attack on DES requires searching a key space of 
256 keys. Does the result of part (a) change that?

 4.15 a.  We say that a DES key K is weak if DESK is an involution. Exhibit four weak 
keys for DES.

b. We say that a DES key K is semi-weak if it is not weak and if there exists a key K′ 
such that DESK

- 1 = DESK′. Exhibit four semi-weak keys for DES.

Note: The following problems refer to simplified DES, described in Appendix G.
 4.16 Refer to Figure G.3, which explains encryption function for S-DES.

a. How important is the initial permutation IP?
b. How important is the SW function in the middle?

 4.17 The equations for the variables q and r for S-DES are defined in the section on 
S-DES analysis. Provide the equations for s and t.

 4.18 Using S-DES, decrypt the string 01000110 using the key 1010000010 by hand. 
Show intermediate results after each function (IP, FK, SW, FK, IP-1). Then decode 
the first 4 bits of the plaintext string to a letter and the second 4 bits to another letter 
where we encode A through P in base 2 (i.e., A = 0000, B = 0001, c , P = 1111). 
Hint: As a midway check, after the xoring with K2, the string should be 11000001.

Programming Problems 

 4.19 Create software that can encrypt and decrypt using a general substitution block 
 cipher.

 4.20 Create software that can encrypt and decrypt using S-DES. Test data: use plaintext, 
ciphertext, and key of Problem 4.18.
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Finite fields have become increasingly important in cryptography. A number of 

 cryptographic algorithms rely heavily on properties of finite fields, notably the 

Advanced Encryption Standard (AES) and elliptic curve cryptography. Other exam-

ples include the message authentication code CMAC and the authenticated encryption 

scheme GCM.

This chapter provides the reader with sufficient background on the concepts of 

finite fields to be able to understand the design of AES and other cryptographic algo-

rithms that use finite fields. Because students unfamiliar with abstract algebra may find 

the concepts behind finite fields somewhat difficult to grasp, we approach the topic in a 

way designed to enhance understanding. Our plan of attack is as follows:

1. Fields are a subset of a larger class of algebraic structures called rings, which 

are in turn a subset of the larger class of groups. In fact, as shown in Figure 5.1, 

both groups and rings can be further differentiated. Groups are defined by 

a simple set of properties and are easily understood. Each successive subset 

(abelian group, ring, commutative ring, and so on) adds additional properties 

and is thus more complex. Sections 5.1 through 5.3 will examine groups, rings, 

and fields, successively.

2. Finite fields are a subset of fields, consisting of those fields with a finite num-

ber of elements. These are the class of fields that are found in cryptographic 

algorithms. With the concepts of fields in hand, we turn in Section 5.4 to a 

specific class of finite fields, namely those with p elements, where p is prime. 

Certain asymmetric cryptographic algorithms make use of such fields.

3. A more important class of finite fields, for cryptography, comprises those with 

2n elements depicted as fields of the form GF(2n). These are used in a wide 

variety of cryptographic algorithms. However, before discussing these fields, we 

need to analyze the topic of polynomial arithmetic, which is done in Section 5.5.

4. With all of this preliminary work done, we are able at last, in Section 5.6, to 

discuss finite fields of the form GF(2n).

Before proceeding, the reader may wish to review Sections 2.1 through 2.3, which 

cover relevant topics in number theory.

LEARNING OBJECTIVES

After studying this chapter, you should be able to:

 ◆ Distinguish among groups, rings, and fields.

 ◆ Define finite fields of the form GF(p).

 ◆ Explain the differences among ordinary polynomial arithmetic,  polynomial 

arithmetic with coefficients in Zp, and modular polynomial arithmetic in 

GF(2n).

 ◆ Define finite fields of the form GF(2n).

 ◆ Explain the two different uses of the mod operator.
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 5.1 GROUPS

Groups, rings, and fields are the fundamental elements of a branch of mathematics 

known as abstract algebra, or modern algebra. In abstract algebra, we are concerned 

with sets on whose elements we can operate algebraically; that is, we can combine 

two elements of the set, perhaps in several ways, to obtain a third element of the set. 

These operations are subject to specific rules, which define the nature of the set. By 

convention, the notation for the two principal classes of operations on set elements is 

usually the same as the notation for addition and multiplication on ordinary numbers. 

However, it is important to note that, in abstract algebra, we are not limited to ordi-

nary arithmetical operations. All this should become clear as we proceed.

Groups

A group G, sometimes denoted by {G, # }, is a set of elements with a binary opera-

tion denoted by #  that associates to each ordered pair (a, b) of elements in G an 

element (a # b) in G, such that the following axioms are obeyed:1

(A1) Closure: If a and b belong to G, then a # b is also in G.

(A2) Associative: a # (b # c) = (a # b) # c for all a, b, c in G.

1 The operator # is generic and can refer to addition, multiplication, or some other mathematical operation.

Figure 5.1 Groups, Rings, and Fields

Groups

Abelian groups

Rings

Commutative rings

Integral domains

Fields

Finite
fields



144  CHAPTER 5 / FINITE FIELDS

(A3) Identity element: There is an element e in G such that 

a # e = e # a = a for all a in G.

(A4) Inverse element: For each a in G, there is an element a′ in G 

such that a # a′ = a′ # a = e.

Let Nn denote a set of n distinct symbols that, for convenience, we represent as 

{1, 2, c , n}. A permutation of n distinct symbols is a one-to-one mapping from 

Nn to Nn.2 Define Sn to be the set of all permutations of n distinct symbols. Each 

element of Sn is represented by a permutation p of the integers in 1, 2, . . . , n.  

It is easy to demonstrate that Sn is a group:

A1:   If (p, r∈ Sn), then the composite mapping p # r is formed by per-

muting the elements of r according to the permutation p. For 

 example, {3, 2, 1} # {1, 3, 2} = {2, 3, 1}. The notation for this map-

ping is explained as follows: The value of the first element of p 

indicates which element of r is to be in the first position in p # r; the 

value of the second element of p indicates which element of r is 

to be in the second position in p # r; and so on. Clearly, p # r∈ Sn.

A2:   The composition of mappings is also easily seen to be associative.

A3:   The identity mapping is the permutation that does not alter the 

order of the n elements. For Sn, the identity element is {1, 2, c , n}.

A4:   For any p∈ Sn, the mapping that undoes the permutation defined 

by p is the inverse element for p. There will always be such an 

inverse. For example {2, 3, 1} # {3, 1, 2} = {1, 2, 3}.

2This is equivalent to the definition of permutation in Chapter 2, which stated that a permutation of a 
finite set of elements S is an ordered sequence of all the elements of S, with each element appearing 
exactly once.

The set of integers (positive, negative, and 0) under addition is an abelian group. 

The set of nonzero real numbers under multiplication is an abelian group. The 

set Sn from the preceding example is a group but not an abelian group for n 7 2.

If a group has a finite number of elements, it is referred to as a finite group, and 

the order of the group is equal to the number of elements in the group. Otherwise, 

the group is an infinite group.

Abelian Group

A group is said to be abelian if it satisfies the following additional condition:

(A5) Commutative: a # b = b # a for all a, b in G.
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When the group operation is addition, the identity element is 0; the in-

verse element of a is -a; and subtraction is defined with the following rule: 

a - b = a + (-b).

Cyclic Group

We define exponentiation within a group as a repeated application of the group 

operator, so that a3 = a # a # a. Furthermore, we define a0 = e as the identity ele-

ment, and a-n = (a′)n, where a′ is the inverse element of a within the group. 

A group G is cyclic if every element of G is a power ak (k is an integer) of a fixed 

element a∈G. The element a is said to generate the group G or to be a generator 

of G. A cyclic group is always abelian and may be finite or infinite.

The additive group of integers is an infinite cyclic group generated by the element 

1. In this case, powers are interpreted additively, so that n is the nth power of 1.

 5.2 RINGS

A ring R, sometimes denoted by {R, + , * }, is a set of elements with two binary 

operations, called addition and multiplication,3 such that for all a, b, c in R the fol-

lowing axioms are obeyed.

(A1–A5) R is an abelian group with respect to addition; that is, R satisfies axioms 

A1 through A5. For the case of an additive group, we denote the identity element 

as 0 and the inverse of a as -a.

(M1) Closure under multiplication: If a and b belong to R, then ab is also in R.

(M2) Associativity of multiplication: a(bc) = (ab)c for all a, b, c in R.

(M3) Distributive laws: a(b + c) = ab + ac for all a, b, c in R.

(a + b)c = ac + bc for all a, b, c in R.

In essence, a ring is a set of elements in which we can do addition, subtraction 

[a - b = a + (-b)], and multiplication without leaving the set.

3Generally, we do not use the multiplication symbol, * ,  but denote multiplication by the concatenation 
of two elements.

With respect to addition and multiplication, the set of all n-square matrices over 

the real numbers is a ring.

A ring is said to be commutative if it satisfies the following additional condition:

(M4) Commutativity of multiplication: ab = ba for all a, b in R.
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Next, we define an integral domain, which is a commutative ring that obeys 

the following axioms.

(M5) Multiplicative identity: There is an element 1 in R such that 

a1 = 1a = a for all a in R.

(M6) No zero divisors: If a, b in R and ab = 0, then either a = 0 

or b = 0.

Let S be the set of even integers (positive, negative, and 0) under the usual 

operations of addition and multiplication. S is a commutative ring. The set of all 

n-square matrices defined in the preceding example is not a commutative ring.

The set Zn of integers {0, 1, c , n - 1}, together with the arithmetic oper-

ations modulo n, is a commutative ring (Table 4.3).

Let S be the set of integers (positive, negative, and 0) under the usual operations 

of addition and multiplication. S is an integral domain.

Familiar examples of fields are the rational numbers, the real numbers, and the 

complex numbers. Note that the set of all integers is not a field, because not every 

element of the set has a multiplicative inverse; in fact, only the elements 1 and -1 

have multiplicative inverses in the integers.

 5.3 FIELDS

A field F, sometimes denoted by {F, + , * }, is a set of elements with two binary 

operations, called addition and multiplication, such that for all a, b, c in F the follow-

ing axioms are obeyed.

(A1–M6)  F is an integral domain; that is, F satisfies axioms A1 through A5 and 

M1 through M6.

(M7) Multiplicative inverse: For each a in F, except 0, there is an element 

a-1 in F such that aa-1 = (a-1)a = 1.

In essence, a field is a set of elements in which we can do addition, subtraction, 

multiplication, and division without leaving the set. Division is defined with the fol-

lowing rule: a/b = a(b-1).

In gaining insight into fields, the following alternate characterization may be 

useful. A field F, denoted by {F, +}, is a set of elements with two binary operations, 

called addition and multiplication, such that the following conditions hold:

1. F forms an abelian group with respect to addition.

2. The nonzero elements of F form an abelian group with respect to multiplication.
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3. The distributive law holds. That is, for all a, b, c in F,

 a(b + c) = ab + ac.

 (a + b)c = ac + bc

4. Figure 5.2 summarizes the axioms that define groups, rings, and fields.

 5.4 FINITE FIELDS OF THE FORM GF(p)

In Section 5.3, we defined a field as a set that obeys all of the axioms of Figure 5.2 

and gave some examples of infinite fields. Infinite fields are not of particular inter-

est in the context of cryptography. However, in addition to infinite fields, there are 

two types of finite fields, as illustrated in Figure 5.3. Finite fields play a crucial role 

in many cryptographic algorithms.

It can be shown that the order of a finite field (number of elements in the 

field) must be a power of a prime pn, where n is a positive integer. The finite field 

of order pn is generally written GF(pn); GF stands for Galois field, in honor of the 

mathematician who first studied finite fields. Two special cases are of interest for 

our purposes. For n = 1, we have the finite field GF(p); this finite field has a differ-

ent structure than that for finite fields with n 7 1 and is studied in this section. For 

finite fields of the form GF(pn), GF(2n) fields are of particular cryptographic inter-

est, and these are covered in Section 5.6.

Finite Fields of Order p

For a given prime, p, we define the finite field of order p, GF(p), as the set Zp of integers 

{0, 1, c , p - 1} together with the arithmetic operations modulo p. Note therefore 

that we are using ordinary modular arithmetic to define the operations over these fields.

Figure 5.2 Properties of Groups, Rings, and Fields

(A1) Closure under addition: If a and b belong to S, then a + b is also in S
(A2) Associativity of addition: a  + (b + c) = (a + b) + c for all a, b, c in S
(A3) Additive identity: There is an element 0 in R such that

a  + 0 = 0 + a = a for all a in S
(A4) Additive inverse: For each a in S there is an element –a in S

such that a + (–a) = (–a) + a = 0

(A5) Commutativity of addition: a  + b = b + a for all a, b in S

(M1) Closure under multiplication: If a and b belong to S, then ab is also in S
(M2) Associativity of multiplication: a(bc) = (ab)c for all a, b, c in S
(M3) Distributive laws: a(b + c) = ab + ac for all a, b, c in S

(a + b)c = ac + bc for all a, b, c in S

(M4) Commutativity of multiplication: ab  = ba for all a, b in S

(M5) Multiplicative identity: There is an element 1 in S such that
a1 = 1a = a for all a in S

(M6) No zero divisors: If a, b in S and ab = 0, then either
a = 0 or b = 0

(M7) Multiplicative inverse: If a belongs to S and a ≠ 0, there is an
element a –1 in S such that aa –1 = a –1a = 1 
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Recall that we showed in Section 5.2 that the set Zn of integers {0, 1, c , n - 1}, 

together with the arithmetic operations modulo n, is a commutative ring (Table 2.5). 

We further observed that any integer in Zn has a multiplicative inverse if and only if 

that integer is relatively prime to n [see discussion of Equation (2.5)].4 If n is prime, 

then all of the nonzero integers in Zn are relatively prime to n, and therefore there 

exists a multiplicative inverse for all of the nonzero integers in Zn. Thus, for Zp we 

can add the following properties to those listed in Table 5.2:

Multiplicative 

inverse (w-1)

For each w ∈ Zp, w ≠ 0, there exists a z∈ Zp 

such that w * z K 1 (mod p)

Because w is relatively prime to p, if we multiply all the elements of Zp by 

w, the resulting residues are all of the elements of Zp permuted. Thus, exactly one 

of the residues has the value 1. Therefore, there is some integer in Zp that, when 

multiplied by w, yields the residue 1. That integer is the multiplicative inverse of w, 

designated w-1. Therefore, Zp is in fact a finite field. Furthermore, Equation (2.5) is 

consistent with the existence of a multiplicative inverse and can be rewritten with-

out the condition:

  if (a * b) K (a * c)(mod p) then b K c(mod p)   (5.1)

Multiplying both sides of Equation (5.1) by the multiplicative inverse of a, we have

  ((a-1) * a * b) K ((a-1) * a * c)(mod p) 

 b K c (mod p)

4As stated in the discussion of Equation (2.5), two integers are relatively prime if their only common 
positive integer factor is 1.

Figure 5.3 Types of Fields

Fields

Fields with an
infinite number

of elements

Finite fields

GF(p)
Finite fields

with p elements

GF(pn)
Finite fields

with pn elements

The simplest finite field is GF(2). Its arithmetic operations are easily summarized:

+ 0 1

0 0 1

1 1 0

Addition

* 0 1

0 0 0

1 0 1

Multiplication

w -w w-1

0 0 -
1 1 1

Inverses

In this case, addition is equivalent to the exclusive-OR (XOR) operation, and 

multiplication is equivalent to the logical AND operation.
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The right-hand side of Table 5.1 shows arithmetic operations in GF(7). This is a 

field of order 7 using modular arithmetic modulo 7. As can be seen, it satisfies all 

of the properties required of a field (Figure 5.2). Compare with the left-hand side 

of Table 5.1, which reproduces Table 2.2. In the latter case, we see that the set Z8, 

using modular arithmetic modulo 8, is not a field. Later in this chapter, we show 

how to define addition and multiplication operations on Z8 in such a way as to 

form a finite field.

Finding the Multiplicative Inverse in GF(p)

It is easy to find the multiplicative inverse of an element in GF(p) for small values 

of p. You simply construct a multiplication table, such as shown in Table 5.1e, and 

the desired result can be read directly. However, for large values of p, this approach 

is not practical.

If a and b are relatively prime, then b has a multiplicative inverse modulo a. 

That is, if gcd(a, b) = 1, then b has a multiplicative inverse modulo a. That is, for 

positive integer b 6 a, there exists a b-1 6 a such that bb-1 = 1 mod a. If a is a 

prime number and b 6 a, then clearly a and b are relatively prime and have a great-

est common divisor of 1. We now show that we can easily compute b-1 using the 

extended Euclidean algorithm.

We repeat here Equation (2.7), which we showed can be solved with the ex-

tended Euclidean algorithm:

 ax + by = d = gcd(a, b) 

Now, if gcd(a, b) = 1, then we have ax + by = 1. Using the basic equalities of 

modular arithmetic, defined in Section 2.3, we can say

[(ax mod a) + (by mod a)] mod a = 1 mod a

0 + (by mod a) = 1

But if by mod a = 1, then y = b-1. Thus, applying the extended Euclidean 

algorithm to Equation (2.7) yields the value of the multiplicative inverse of b if 

gcd(a, b) = 1. 

Consider the example that was shown in Table 2.4. Here we have a = 1759, 

which is a prime number, and b = 550. The solution of the equation 

1759x + 550y = d yields a value of y = 355. Thus, b-1 = 355. To verify, we cal-

culate 550 * 355 mod 1759 = 195250 mod 1759 = 1.

More generally, the extended Euclidean algorithm can be used to find a 

 multiplicative inverse in Zn for any n. If we apply the extended Euclidean algorithm 

to the equation nx + by = d, and the algorithm yields d = 1, then y = b-1 in Zn.
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+ 0 1 2 3 4 5 6 7

0 0 1 2 3 4 5 6 7

1 1 2 3 4 5 6 7 0

2 2 3 4 5 6 7 0 1

3 3 4 5 6 7 0 1 2

4 4 5 6 7 0 1 2 3

5 5 6 7 0 1 2 3 4

6 6 7 0 1 2 3 4 5

7 7 0 1 2 3 4 5 6

(a) Addition modulo 8

* 0 1 2 3 4 5 6 7

0 0 0 0 0 0 0 0 0

1 0 1 2 3 4 5 6 7

2 0 2 4 6 0 2 4 6

3 0 3 6 1 4 7 2 5

4 0 4 0 4 0 4 0 4

5 0 5 2 7 4 1 6 3

6 0 6 4 2 0 6 4 2

7 0 7 6 5 4 3 2 1

(b) Multiplication modulo 8

w 0 1 2 3 4 5 6 7

-w 0 7 6 5 4 3 2 1

w-1 — 1 — 3 — 5 — 7

(c) Additive and multiplicative  

inverses modulo 8

+ 0 1 2 3 4 5 6

0 0 1 2 3 4 5 6

1 1 2 3 4 5 6 0

2 2 3 4 5 6 0 1

3 3 4 5 6 0 1 2

4 4 5 6 0 1 2 3

5 5 6 0 1 2 3 4

6 6 0 1 2 3 4 5

(d) Addition modulo 7

* 0 1 2 3 4 5 6

0 0 0 0 0 0 0 0

1 0 1 2 3 4 5 6

2 0 2 4 6 1 3 5

3 0 3 6 2 5 1 4

4 0 4 1 5 2 6 3

5 0 5 3 1 6 4 2

6 0 6 5 4 3 2 1

(e) Multiplication modulo 7

w 0 1 2 3 4 5 6

-w 0 6 5 4 3 2 1

w-1 — 1 4 5 2 3 6

(f) Additive and multiplicative  

inverses modulo 7

Table 5.1 Arithmetic Modulo 8 and Modulo 7

Summary

In this section, we have shown how to construct a finite field of order p, where p is 

prime. Specifically, we defined GF(p) with the following properties.

1. GF(p) consists of p elements.

2. The binary operations + and * are defined over the set. The operations of 

addition, subtraction, multiplication, and division can be performed without 

leaving the set. Each element of the set other than 0 has a multiplicative in-

verse, and division is performed by multiplication by the multiplicative inverse.

We have shown that the elements of GF(p) are the integers {0, 1, c , p - 1} 

and that the arithmetic operations are addition and multiplication mod p.
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 5.5 POLYNOMIAL ARITHMETIC

Before continuing our discussion of finite fields, we need to introduce the interest-

ing subject of polynomial arithmetic. We are concerned with polynomials in a single 

variable x, and we can distinguish three classes of polynomial arithmetic (Figure 5.4).

 ■ Ordinary polynomial arithmetic, using the basic rules of algebra.

 ■ Polynomial arithmetic in which the arithmetic on the coefficients is performed 

modulo p; that is, the coefficients are in GF(p).

 ■ Polynomial arithmetic in which the coefficients are in GF(p), and the poly-

nomials are defined modulo a polynomial m(x) whose highest power is some 

integer n.

This section examines the first two classes, and the next section covers the 

last class.

Ordinary Polynomial Arithmetic

A polynomial of degree n (integer n Ú 0) is an expression of the form

 f(x) = anxn + an - 1x
n - 1 + g + a1x + a0 = a

n

i=0

aix
i 

where the ai are elements of some designated set of numbers S, called the coefficient 
set, and an ≠ 0. We say that such polynomials are defined over the coefficient set S.

A zero-degree polynomial is called a constant polynomial and is simply an 

element of the set of coefficients. An nth-degree polynomial is said to be a monic 
polynomial if an = 1.

In the context of abstract algebra, we are usually not interested in evaluating a 

polynomial for a particular value of x [e.g., f(7)]. To emphasize this point, the vari-

able x is sometimes referred to as the indeterminate.

Polynomial arithmetic includes the operations of addition, subtraction, and 

multiplication. These operations are defined in a natural way as though the variable 

Figure 5.4 Treatment of Polynomials

Polynomial f(x)

x treated as a variable,
and evaluated for

a particular value of x

x treated as an
indeterminate

Ordinary
polynomial
arithmetic

Arithmetic on
coefficients is

performed
modulo p

Arithmetic on coefficients is
performed modulo p

and polynomials are defined
modulo a polynomial m(x)
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x was an element of S. Division is similarly defined, but requires that S be a field. 

Examples of fields include the real numbers, rational numbers, and Zp for p prime. 

Note that the set of all integers is not a field and does not support polynomial 

division.

Addition and subtraction are performed by adding or subtracting correspond-

ing coefficients. Thus, if

 f(x) = a
n

i=0

aix
i; g(x) = a

m

i=0

bix
i; n Ú m 

then addition is defined as

 f(x) + g(x) = a
m

i=0

(ai + bi)xi + a
n

i=m + 1

aix
i 

and multiplication is defined as

 f(x) * g(x) = a
n + m

i=0

cix
i 

where

 ck = a0bk + a1bk - 1 + g + ak - 1b1 + akb0 

In the last formula, we treat ai as zero for i 7 n and bi as zero for i 7 m. Note that 

the degree of the product is equal to the sum of the degrees of the two polynomials.

As an example, let f(x) = x3 + x2 + 2 and g(x) = x2 - x + 1, where S is the set 

of integers. Then

 f(x) + g(x) = x3 + 2x2 - x + 3

 f(x) - g(x) = x3 + x + 1

 f(x) * g(x) = x5 + 3x2 - 2x + 2

Figures 5.5a through 5.5c show the manual calculations. We comment on division 

subsequently.

Polynomial Arithmetic with Coefficients in Zp

Let us now consider polynomials in which the coefficients are elements of some 

field F; we refer to this as a polynomial over the field F. In this case, it is easy to 

show that the set of such polynomials is a ring, referred to as a polynomial ring. That 

is, if we consider each distinct polynomial to be an element of the set, then that set 

is a ring.5

When polynomial arithmetic is performed on polynomials over a field, then 

division is possible. Note that this does not mean that exact division is possible. Let 

5In fact, the set of polynomials whose coefficients are elements of a commutative ring forms a polynomial 
ring, but that is of no interest in the present context.
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us clarify this distinction. Within a field, given two elements a and b, the quotient 

a/b is also an element of the field. However, given a ring R that is not a field, in gen-

eral, division will result in both a quotient and a remainder; this is not exact division.

Figure 5.5 Examples of Polynomial Arithmetic

x3

x3

+ +x2

+2x2

x2 x

2

+–+ ( )

× ( )

– ( )

x–

1

+ 3

(a) Addition

(d) Division(c) Multiplication

x3

x3

+ +x2

+ x2

x2 x

2

x3

x 2

+

+

+x2

x3 – x2

2x2

+ x

– x

x

2

+ 2

2x2– 2x + 2

x4 –– –x3 2x

– 2x

x5 + +x4 2x2

x5 +3x2

+– 1 x2 x +– 1

+ 2

+ 2

x3

x3

+ +x2

x2 x

2

+–

x+

1

+ 1

(b) Subtraction

Consider the division 5/3 within a set S. If S is the set of rational numbers, which 

is a field, then the result is simply expressed as 5/3 and is an element of S. Now 

suppose that S is the field Z7. In this case, we calculate (using Table 5.1f)

5/3 = (5 * 3-1) mod 7 = (5 * 5) mod 7 = 4

which is an exact solution. Finally, suppose that S is the set of integers, which is a 

ring but not a field. Then 5/3 produces a quotient of 1 and a remainder of 2:

 5/3 = 1 + 2/3

 5 = 1 * 3 + 2

Thus, division is not exact over the set of integers.

Now, if we attempt to perform polynomial division over a coefficient set that 

is not a field, we find that division is not always defined.

If the coefficient set is the integers, then (5x2)/(3x) does not have a solution, 

because it would require a coefficient with a value of 5/3, which is not in the coef-

ficient set. Suppose that we perform the same polynomial division over Z7. Then 

we have (5x2)/(3x) = 4x, which is a valid polynomial over Z7.

However, as we demonstrate presently, even if the coefficient set is a field, 

polynomial division is not necessarily exact. In general, division will produce a quo-

tient and a remainder. We can restate the division algorithm of Equation (2.1) for 

polynomials over a field as follows. Given polynomials f(x) of degree n and g(x) 
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of degree (m), (n Ú m), if we divide f(x) by g(x), we get a quotient q(x) and a 

 remainder r(x) that obey the relationship

  f(x) = q(x)g(x) + r(x)   (5.2)

with polynomial degrees:

 Degree f(x) = n
 Degree g(x) = m
 Degree q(x) = n - m
 Degree r(x) … m - 1

With the understanding that remainders are allowed, we can say that poly-

nomial division is possible if the coefficient set is a field. One common technique 

used for polynomial division is polynomial long division, similar to long division for 

integers. Examples of this are shown subsequently.

In an analogy to integer arithmetic, we can write f(x) mod g(x) for the remain-

der r(x) in Equation (5.2). That is, r(x) = f(x) mod g(x). If there is no remainder 

[i.e., r(x) = 0], then we can say g(x) divides f(x), written as g(x) � f(x). Equivalently, 

we can say that g(x) is a factor of f(x) or g(x) is a divisor of f(x).

For the preceding example [f(x) = x3 + x2 + 2 and g(x) = x2 - x + 1], f(x)/g(x) 

produces a quotient of q(x) = x + 2 and a remainder r(x) = x, as shown in 

 Figure 5.5d. This is easily verified by noting that

 q(x)g(x) + r(x) = (x + 2)(x2 - x + 1) + x = (x3 + x2 - x + 2) + x

 = x3 + x2 + 2 = f(x)

For our purposes, polynomials over GF(2) are of most interest. Recall from 

Section 5.4 that in GF(2), addition is equivalent to the XOR operation, and multi-

plication is equivalent to the logical AND operation. Further, addition and subtrac-

tion are equivalent mod 2:

 1 + 1 = 1 - 1 = 0

 1 + 0 = 1 - 0 = 1

 0 + 1 = 0 - 1 = 1

Figure 5.6 shows an example of polynomial arithmetic over GF(2). For 

f(x) = (x7 + x5 + x4 + x3 + x + 1) and g(x) = (x3 + x + 1), the figure shows 

f(x) + g(x); f(x) - g(x); f(x) * g(x); and f(x)/g(x). Note that g(x) � f(x).

A polynomial f(x) over a field F is called irreducible if and only if f(x) can-

not be expressed as a product of two polynomials, both over F, and both of degree 

lower than that of f(x). By analogy to integers, an irreducible polynomial is also 

called a prime polynomial.

 The polynomial6 f(x) = x4 + 1 over GF(2) is reducible, because

x4 + 1 = (x + 1)(x3 + x2 + x + 1).

6In the reminder of this chapter, unless otherwise noted, all examples are of polynomials over GF(2).
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Consider the polynomial f(x) = x3 + x + 1. It is clear by inspection that x is not 

a factor of f(x). We easily show that x + 1 is not a factor of f(x):

x2 + x
x + 1�x3 + x + 1

x3 + x2

x2 + x
x2 + x

1

Thus, f(x) has no factors of degree 1. But it is clear by inspection that if f(x) is 

reducible, it must have one factor of degree 2 and one factor of degree 1. There-

fore, f(x) is irreducible.

Figure 5.6 Examples of Polynomial Arithmetic over GF(2)

(a) Addition

(c) Multiplication

(d) Division

x4x5 ++x7

xx3

x3x4 ++x5 ++x7 +x 1

+++ ( )1

x3x4 ++x5 ++x7 +x 1

x4x5 ++x7

x3 x

x3 ++ +x 1

+ 1

x5x6 ++x8 x4 ++ +x2

+ x2

x

x7x8 ++x10 x6 ++ +x4

x10 + x4

x3

++× ( )1

x3x4 ++x5 ++x7

x4x5 ++x7

+x

x3 x

1

++– ( )1

(b) Subtraction

x3x4 ++x5 ++

++

x7

x4x5x7

+x 1

x3 + +x 1

x3 + +x 1

x4 1+

x3 x ++ 1
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Finding the Greatest Common Divisor

We can extend the analogy between polynomial arithmetic over a field and integer 

arithmetic by defining the greatest common divisor as follows. The polynomial c(x) 

is said to be the greatest common divisor of a(x) and b(x) if the following are true.

1. c(x) divides both a(x) and b(x).

2. Any divisor of a(x) and b(x) is a divisor of c(x).

An equivalent definition is the following: gcd[a(x), b(x)] is the polynomial of 

maximum degree that divides both a(x) and b(x).

We can adapt the Euclidean algorithm to compute the greatest common divisor 

of two polynomials. Recall Equation (2.6), from Chapter 2, which is the basis of the 

Euclidean algorithm: gcd(a, b) = gcd(b, a mod b). This equality can be rewritten as the 

following equation:

  gcd[a(x), b(x)] = gcd[b(x), a(x) mod b(x)]   (5.3)

Equation (5.3) can be used repetitively to determine the greatest common divisor. 

Compare the following scheme to the definition of the Euclidean algorithm for integers.

Euclidean Algorithm for Polynomials

Calculate Which satisfies

r1(x) = a(x) mod b(x) a(x) = q1(x)b(x) + r1(x)

r2(x) = b(x) mod r1(x) b(x) = q2(x)r1(x) + r2(x)

r3(x) = r1(x) mod r2(x) r1(x) = q3(x)r2(x) + r3(x)

rn(x) = rn - 2(x) mod rn - 1(x) rn - 2(x) = qn(x)rn - 1(x) + rn(x)

rn + 1(x) = rn - 1(x) mod rn(x) = 0
rn - 1(x) = qn + 1(x)rn(x) + 0

d(x) = gcd(a(x), b(x)) = rn(x)

At each iteration, we have d(x) = gcd(ri+ 1(x), ri(x)) until finally 

d(x) = gcd(rn(x), 0) = rn(x). Thus, we can find the greatest common divisor of two 

integers by repetitive application of the division algorithm. This is the Euclidean 

algorithm for polynomials. The algorithm assumes that the degree of a(x) is greater 

than the degree of b(x).

Find gcd[a(x), b(x)] for a(x) = x6 + x5 + x4 + x3 + x2 + x + 1 and b(x) =
x4 + x2 + x + 1. First, we divide a(x) by b(x):

x2 + x
x4 + x2 + x + 1�x6 + x5 + x4 + x3 + x2 + x + 1

x6 + x4 + x3 + x2

x5 + x + 1

x5 + x3 + x2 + x
x3 + x2 + 1
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Summary

We began this section with a discussion of arithmetic with ordinary polynomials. In 

ordinary polynomial arithmetic, the variable is not evaluated; that is, we do not plug 

a value in for the variable of the polynomials. Instead, arithmetic operations are 

performed on polynomials (addition, subtraction, multiplication, division) using the 

ordinary rules of algebra. Polynomial division is not allowed unless the coefficients 

are elements of a field.

Next, we discussed polynomial arithmetic in which the coefficients are ele-

ments of GF(p). In this case, polynomial addition, subtraction, multiplication, and 

division are allowed. However, division is not exact; that is, in general division re-

sults in a quotient and a remainder.

Finally, we showed that the Euclidean algorithm can be extended to find the 

greatest common divisor of two polynomials whose coefficients are elements of a 

field.

All of the material in this section provides a foundation for the following sec-

tion, in which polynomials are used to define finite fields of order pn.

 5.6 FINITE FIELDS OF THE FORM GF(2n)

Earlier in this chapter, we mentioned that the order of a finite field must be of the 

form pn, where p is a prime and n is a positive integer. In Section 5.4, we looked at 

the special case of finite fields with order p. We found that, using modular arith-

metic in Zp, all of the axioms for a field (Figure 5.2) are satisfied. For polynomials 

over pn, with n 7 1, operations modulo pn do not produce a field. In this section, 

we show what structure satisfies the axioms for a field in a set with pn elements and 

concentrate on GF(2n).

Motivation

Virtually all encryption algorithms, both symmetric and asymmetric, involve arith-

metic operations on integers. If one of the operations that is used in the algorithm is 

division, then we need to work in arithmetic defined over a field. For convenience 

This yields r1(x) = x3 + x2 + 1 and q1 (x) = x2 + x.

Then, we divide b(x) by r1(x).

x + 1

x3 + x2 + 1�x4 + x2 + x + 1

x4 + x3 + x
x3 + x2 + 1

x3 + x2 + 1

This yields r2(x) = 0 and q2(x) = x + 1.

Therefore, gcd[a(x), b(x)] = r1(x) = x3 + x2 + 1.
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and for implementation efficiency, we would also like to work with integers that fit 

exactly into a given number of bits with no wasted bit patterns. That is, we wish to 

work with integers in the range 0 through 2n - 1, which fit into an n-bit word.

Suppose we wish to define a conventional encryption algorithm that operates on 

data 8 bits at a time, and we wish to perform division. With 8 bits, we can repre-

sent integers in the range 0 through 255. However, 256 is not a prime number, so 

that if arithmetic is performed in Z256 (arithmetic modulo 256), this set of inte-

gers will not be a field. The closest prime number less than 256 is 251. Thus, the 

set Z251, using arithmetic modulo 251, is a field. However, in this case the 8-bit 

patterns representing the integers 251 through 255 would not be used, resulting 

in inefficient use of storage.

As the preceding example points out, if all arithmetic operations are to be 

used and we wish to represent a full range of integers in n bits, then arithmetic 

modulo 2n will not work. Equivalently, the set of integers modulo 2n for n 7 1, is 

not a field. Furthermore, even if the encryption algorithm uses only addition and 

multiplication, but not division, the use of the set Z2n is questionable, as the follow-

ing example illustrates.

Suppose we wish to use 3-bit blocks in our encryption algorithm and use only the 

operations of addition and multiplication. Then arithmetic modulo 8 is well defined, 

as shown in Table 5.1. However, note that in the multiplication table, the nonzero 

integers do not appear an equal number of times. For example, there are only four 

occurrences of 3, but twelve occurrences of 4. On the other hand, as was mentioned, 

there are finite fields of the form GF(2n), so there is in particular a finite field of 

order 23 = 8. Arithmetic for this field is shown in Table 5.2. In this case, the number 

of occurrences of the nonzero integers is uniform for multiplication. To summarize,

Integer 1 2 3   4 5 6 7

Occurrences in Z8 4 8 4 12 4 8 4

Occurrences in GF(23) 7 7 7   7 7 7 7

For the moment, let us set aside the question of how the matrices of Table 5.2 

were constructed and instead make some observations.

1. The addition and multiplication tables are symmetric about the main diago-

nal, in conformance to the commutative property of addition and multiplica-

tion. This property is also exhibited in Table 5.1, which uses mod 8 arithmetic.

2. All the nonzero elements defined by Table 5.2 have a multiplicative inverse, 

unlike the case with Table 5.1.

3. The scheme defined by Table 5.2 satisfies all the requirements for a finite 

field. Thus, we can refer to this scheme as GF(23).

4. For convenience, we show the 3-bit assignment used for each of the elements 

of GF(23).
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Intuitively, it would seem that an algorithm that maps the integers unevenly 

onto themselves might be cryptographically weaker than one that provides a uni-

form mapping. That is, a cryptanalytic technique might be able to exploit the fact 

that some integers occur more frequently and some less frequently in the ciphertext. 

Thus, the finite fields of the form GF(2n) are attractive for cryptographic algorithms.

To summarize, we are looking for a set consisting of 2n elements, together 

with a definition of addition and multiplication over the set that define a field. We 

can assign a unique integer in the range 0 through 2n - 1 to each element of the 

set. Keep in mind that we will not use modular arithmetic, as we have seen that this 

does not result in a field. Instead, we will show how polynomial arithmetic provides 

a means for constructing the desired field.

Modular Polynomial Arithmetic

Consider the set S of all polynomials of degree n - 1 or less over the field Zp. Thus, 

each polynomial has the form

 f(x) = an - 1x
n - 1 + an - 2x

n - 2 + g + a1x + a0 = a
n - 1

i=0

aix
i 

000 001 010 011 100 101 110 111

+ 0 1 2 3 4 5 6 7

000 0 0 1 2 3 4 5 6 7

001 1 1 0 3 2 5 4 7 6

010 2 2 3 0 1 6 7 4 5

011 3 3 2 1 0 7 6 5 4

100 4 4 5 6 7 0 1 2 3

101 5 5 4 7 6 1 0 3 2

110 6 6 7 4 5 2 3 0 1

111 7 7 6 5 4 3 2 1 0

(a) Addition

000 001 010 011 100 101 110 111

* 0 1 2 3 4 5 6 7

000 0 0 0 0 0 0 0 0 0

001 1 0 1 2 3 4 5 6 7

010 2 0 2 4 6 3 1 7 5

011 3 0 3 6 5 7 4 1 2

100 4 0 4 3 7 6 2 5 1

101 5 0 5 1 4 2 7 3 6

110 6 0 6 7 1 5 3 2 4

111 7 0 7 5 2 1 6 4 3

(b) Multiplication

w -w w-1

0 0 -

1 1 1

2 2 5

3 3 6

4 4 7

5 5 2

6 6 3

7 7 4

(c) Additive and multiplicative 

inverses

Table 5.2 Arithmetic in GF(23)
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where each ai takes on a value in the set {0, 1, c , p - 1}. There are a total of pn 

different polynomials in S.

For p = 3 and n = 2, the 32 = 9 polynomials in the set are

0, 1, 2, x, x + 1, x + 2, 2x, 2x + 1, 2x + 2

For p = 2 and n = 3, the 23 = 8 polynomials in the set are

0, 1, x, x + 1, x2, x2 + 1, x2 + x, x2 + x + 1

With the appropriate definition of arithmetic operations, each such set S is a 

finite field. The definition consists of the following elements.

1. Arithmetic follows the ordinary rules of polynomial arithmetic using the basic 

rules of algebra, with the following two refinements.

2. Arithmetic on the coefficients is performed modulo p. That is, we use the rules 

of arithmetic for the finite field Zp.

3. If multiplication results in a polynomial of degree greater than n - 1, then the 

polynomial is reduced modulo some irreducible polynomial m(x) of degree n. 

That is, we divide by m(x) and keep the remainder. For a polynomial f(x), the 

remainder is expressed as r(x) = f(x) mod m(x).

The Advanced Encryption Standard (AES) uses arithmetic in the finite field 

GF(28), with the irreducible polynomial m(x) = x8 + x4 + x3 + x + 1. Consider 

the two polynomials f(x) = x6 + x4 + x2 + x + 1 and g(x) = x7 + x + 1. Then

 f(x) + g(x) = x6 + x4 + x2 + x + 1 + x7 + x + 1

 = x7 + x6 + x4 + x2

 f(x) * g(x) = x13 + x11 + x9 + x8 + x7

+ x7 + x5 + x3 + x2 + x

+ x6 + x4 + x2 + x + 1

 = x13 + x11 + x9 + x8 + x6 + x5 + x4 + x3 + 1

x5 + x3

x8 + x4 + x3 + x + 1 >x13 + x11 + x9 + x8 + x6 + x5 + x4 + x3 + 1

x13 + x9 + x8 + x6 + x5

x11 + x4 + x3

x11 + x7 + x6 + x4 + x3

x7 + x6 + 1

Therefore, f(x) * g(x) mod m(x) = x7 + x6 + 1.
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As with ordinary modular arithmetic, we have the notion of a set of residues 

in modular polynomial arithmetic. The set of residues modulo m(x), an nth-degree 

polynomial, consists of pn elements. Each of these elements is represented by one of 

the pn polynomials of degree m 6 n.

The residue class [x + 1], (mod m(x)), consists of all polynomials a(x) such that 

a(x) K (x + 1)(mod m(x)). Equivalently, the residue class [x + 1] consists of all 

polynomials a(x) that satisfy the equality a(x) mod m(x) = x + 1.

It can be shown that the set of all polynomials modulo an irreducible nth-

degree polynomial m(x) satisfies the axioms in Figure 5.2, and thus forms a finite 

field. Furthermore, all finite fields of a given order are isomorphic; that is, any two 

finite-field structures of a given order have the same structure, but the representa-

tion or labels of the elements may be different.

To construct the finite field GF(23), we need to choose an irreducible poly-

nomial of degree 3. There are only two such polynomials: (x3 + x2 + 1) and 

(x3 + x + 1). Using the latter, Table 5.3 shows the addition and multiplication 

tables for GF(23). Note that this set of tables has the identical structure to those 

of Table 5.2. Thus, we have succeeded in finding a way to define a field of order 23.

We can now read additions and multiplications from the table easily. For exam-

ple, consider binary 100 + 010 = 110. This is equivalent to x2 + x. Also consider 

100 * 010 = 011, which is equivalent to x2 * x = x3 and reduces to x + 1. That 

is, x3 mod (x3 + x + 1) = x + 1, which is equivalent to 011.

Finding the Multiplicative Inverse

Just as the Euclidean algorithm can be adapted to find the greatest common divisor 

of two polynomials, the extended Euclidean algorithm can be adapted to find the 

multiplicative inverse of a polynomial. Specifically, the algorithm will find the mul-

tiplicative inverse of b(x) modulo a(x) if the degree of b(x) is less than the degree of 

a(x) and gcd[a(x), b(x)] = 1. If a(x) is an irreducible polynomial, then it has no fac-

tor other than itself or 1, so that gcd[a(x), b(x)] = 1. The algorithm can be charac-

terized in the same way as we did for the extended Euclidean algorithm for integers. 

Given polynomials a(x) and b(x) with the degree of a(x) greater than the degree 

of b(x), we wish to solve the following equation for the values v(x), w(x), and d(x), 

where d(x) = gcd[a(x), b(x)]:

 a(x)v(x) + b(x)w(x) = d(x) 

If d(x) = 1, then w(x) is the multiplicative inverse of b(x) modulo a(x). The calcula-

tions are as follows.
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Extended Euclidean Algorithm for Polynomials

Calculate Which satisfies Calculate Which satisfies

r-1(x) = a(x) v-1(x) = 1; w-1(x) = 0 a(x) = a(x)v-1(x) +
bw-1(x)

r0(x) = b(x) v0(x) = 0; w0(x) = 1 b(x) = a(x)v0(x) +
b(x)w0(x)

r1(x) = a(x) mod b(x)

q1(x) = quotient of

a(x)/b(x)

a(x) = q1(x)b(x) +
r1(x)

v1(x) = v-1(x) -
q1(x)v0(x) = 1

w1(x) = w-1(x) -
q1(x)w0(x) = -q1(x)

r1(x) = a(x)v1(x) +
b(x)w1(x)

r2(x) = b(x) mod r1(x)

q2(x) = quotient of

b(x)/r1(x)

b(x) = q2(x)r1(x) +
r2(x)

v2(x) = v0(x) -
q2(x)v1(x)

w2(x) = w0(x) -
q2(x)w1(x)

r2(x) = a(x)v2(x) +
b(x)w2(x)

r3(x) = r1(x) mod r2(x)

q3(x) = quotient of

r1(x)/r2(x)

r1(x) = q3(x)r2(x) +
r3(x)

v3(x) = v1(x) -
q3(x)v2(x)

w3(x) = w1(x) -
q3(x)w2(x)

r3(x) = a(x)v3(x) +
b(x)w3(x)

f

rn(x) = rn - 2(x)

mod rn - 1(x)

qn(x) = quotient of

rn - 2(x)/rn - 2(x)

rn - 2(x) = qn(x)rn - 1(x)

+  rn(x)

vn(x) = vn - 2(x) -
qn(x)vn - 1(x)

wn(x) = wn - 2(x) -
qn(x)wn - 1(x)

rn(x) = a(x)vn(x) +
b(x)wn(x)

rn + 1(x) = rn - 1(x)

mod rn(x) = 0

qn + 1(x) = quotient of

rn - 1(x)/rn(x)

rn - 1(x) = qn + 1(x)rn(x)

+  0

d(x) = gcd(a(x),

b(x)) = rn(x)

v(x) = vn(x); w(x) =
wn(x)

Table 5.4 shows the calculation of the multiplicative inverse of (x7 + x + 1)

mod (x8 + x4 + x3 + x + 1). The result is that (x7 + x + 1)-1 = (x7). That is, 

(x7 + x + 1)(x7) K 1(mod (x8 + x4 + x3 + x + 1)).

Computational Considerations

A polynomial f(x) in GF(2n)

 f(x) = an - 1x
n - 1 + an - 2x

n - 2 + g + a1x + a0 = a
n - 1

i=0

aix
i 

can be uniquely represented by the sequence of its n binary coefficients 

(an - 1, an - 2, c , a0). Thus, every polynomial in GF(2n) can be represented by an 

n-bit number.
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ADDITION We have seen that addition of polynomials is performed by adding cor-

responding coefficients, and, in the case of polynomials over Z2, addition is just the 

XOR operation. So, addition of two polynomials in GF(2n) corresponds to a bitwise 

XOR operation.

Initialization a(x) = x8 + x4 + x3 + x + 1; v-1(x) = 1; w-1(x) = 0

b(x) = x7 + x + 1; v0(x) = 0; w0(x) = 1

Iteration 1 q1(x) = x; r1(x) = x4 + x3 + x2 + 1

v1(x) = 1; w1(x) = x

Iteration 2 q2(x) = x3 + x2 + 1; r2(x) = x
v2(x) = x3 + x2 + 1; w2(x) = x4 + x3 + x + 1

Iteration 3 q3(x) = x3 + x2 + x; r3(x) = 1

v3(x) = x6 + x2 + x + 1; w3(x) = x7

Iteration 4 q4(x) = x; r4(x) = 0

v4(x) = x7 + x + 1; w4(x) = x8 + x4 + x3 + x + 1

Result d(x) = r3(x) = gcd(a(x), b(x)) = 1

w(x) = w3(x) = (x7 + x + 1)-1 mod (x8 + x4 + x3 + x + 1) = x7

Table 5.4 Extended Euclid [(x8 + x4 + x3 + x + 1), (x7 + x + 1)]

Tables 5.2 and 5.3 show the addition and multiplication tables for GF(23) modulo 

m(x) = (x3 + x + 1). Table 5.2 uses the binary representation, and Table 5.3 

uses the polynomial representation.

Consider the two polynomials in GF(28) from our earlier example:

 f(x) = x6 + x4 + x2 + x + 1 and g(x) = x7 + x + 1. 

 

(x6 + x4 + x2 + x + 1) + (x7 + x + 1) = x7 + x6 + x4 + x2 (polynomial notation)

(01010111)⊕ (10000011) = (11010100)  (binary notation)

{57}⊕ {83} = {D4}  (hexadecimal notation)7
 

7A basic refresher on number systems (decimal, binary, hexadecimal) can be found at the Computer 
Science Student Resource Site at WilliamStallings.com/StudentSupport.html. Here each of two groups 
of 4 bits in a byte is denoted by a single hexadecimal character, and the two characters are enclosed in 
brackets.

MULTIPLICATION There is no simple XOR operation that will accomplish multi-

plication in GF(2n). However, a reasonably straightforward, easily implemented 

technique is available. We will discuss the technique with reference to GF(28) using 

m(x) = x8 + x4 + x3 + x + 1, which is the finite field used in AES. The technique 

readily generalizes to GF(2n).

The technique is based on the observation that

  x8 mod m(x) = [m(x) - x8] = (x4 + x3 + x + 1)   (5.4)
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A moment’s thought should convince you that Equation (5.4) is true; if you 

are not sure, divide it out. In general, in GF(2n) with an nth-degree polynomial p(x), 

we have xn mod p(x) = [p(x) - xn].

Now, consider a polynomial in GF(28), which has the form 

f(x) = b7x
7 + b6x

6 + b5x
5 + b4x

4 + b3x
3 + b2x

2 + b1x + b0. If we multiply by x, 

we have

  x * f(x) = (b7x
8 + b6x

7 + b5x
6 + b4x

5 + b3x
4

  + b2x
3 + b1x

2 + b0x) mod m(x)   (5.5)

If b7 = 0, then the result is a polynomial of degree less than 8, which is already 

in reduced form, and no further computation is necessary. If b7 = 1, then reduction 

modulo m(x) is achieved using Equation (5.4):

  x * f(x) = (b6x
7 + b5x

6 + b4x
5 + b3x

4 + b2x
3 + b1x

2 + b0x)

  + (x4 + x3 + x + 1) 

It follows that multiplication by x (i.e., 00000010) can be implemented as a 1-bit 

left shift followed by a conditional bitwise XOR with (00011011), which represents 

(x4 + x3 + x + 1). To summarize,

  x * f(x) = b (b6b5b4b3b2b1b00) if b7 = 0

(b6b5b4b3b2b1b00)⊕ (00011011) if b7 = 1
   (5.6)

Multiplication by a higher power of x can be achieved by repeated application 

of Equation (5.6). By adding intermediate results, multiplication by any constant in 

GF(28) can be achieved.

In an earlier example, we showed that for f(x) = x6 + x4 + x2 + x + 1, g(x) = x7 +
x + 1, and m(x) = x8 + x4 + x3 + x + 1, we have f(x) * g(x) mod m(x) = x7 + x6 + 1. 

Redoing this in binary arithmetic, we need to compute (01010111) * (10000011). First, 

we determine the results of multiplication by powers of x:

 (01010111) * (00000010) = (10101110)

 (01010111) * (00000100) = (01011100)⊕ (00011011) = (01000111)

 (01010111) * (00001000) = (10001110)

 (01010111) * (00010000) = (00011100)⊕ (00011011) = (00000111)

 (01010111) * (00100000) = (00001110)

 (01010111) * (01000000) = (00011100)

 (01010111) * (10000000) = (00111000)

So,

 

 (01010111) * (10000011) = (01010111) * [(00000001)⊕ (00000010)⊕ (10000000)]

 = (01010111)⊕ (10101110)⊕ (00111000) = (11000001)

which is equivalent to x7 + x6 + 1.
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Using a Generator

An equivalent technique for defining a finite field of the form GF(2n), using the 

same irreducible polynomial, is sometimes more convenient. To begin, we need two 

definitions: A generator g of a finite field F of order q (contains q elements) is an 

element whose first q - 1 powers generate all the nonzero elements of F. That is, 

the elements of F consist of 0, g0, g1, c , gq - 2. Consider a field F defined by a 

polynomial f(x). An element b contained in F is called a root of the polynomial if 

f(b) = 0. Finally, it can be shown that a root g of an irreducible polynomial is a gen-

erator of the finite field defined on that polynomial.

Power 
Representation

Polynomial 
Representation

Binary 
Representation

Decimal (Hex) 
Representation

0 0 000 0

g0(=  g7) 1 001 1

g1 g 010 2

g2 g2 100 4

g3 g + 1 011 3

g4 g2 + g 110 6

g5 g2 + g + 1 111 7

g6 g2 + 1 101 5

Table 5.5 Generator for GF(23) using x3 + x + 1

Let us consider the finite field GF(23), defined over the irreducible poly-

nomial x3 + x + 1, discussed previously. Thus, the generator g must satisfy 

f(g) = g3 + g + 1 = 0. Keep in mind, as discussed previously, that we need not 

find a numerical solution to this equality. Rather, we deal with polynomial arith-

metic in which arithmetic on the coefficients is performed modulo 2. Therefore, 

the solution to the preceding equality is g3 = -g - 1 = g + 1. We now show 

that g in fact generates all of the polynomials of degree less than 3. We have the 

following.

 g4 = g(g3) = g(g + 1) = g2 + g
 g5 = g(g4) = g(g2 + g) = g3 + g2 = g2 + g + 1

 g6 = g(g5) = g(g2 + g + 1) = g3 + g2 + g = g2 + g + g + 1 = g2 + 1

 g7 = g(g6) = g(g2 + 1) = g3 + g = g + g + 1 = 1 = g0

We see that the powers of g generate all the nonzero polynomials in GF(23). 

Also, it should be clear that gk = gk mod7 for any integer k. Table 5.5 shows the 

power representation, as well as the polynomial and binary representations.
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In general, for GF(2n) with irreducible polynomial f(x), determine 

gn = f(g) - gn. Then calculate all of the powers of g from gn + 1 through g2n - 2. 

The elements of the field correspond to the powers of g from g0 through g2n - 2 

plus the value 0. For multiplication of two elements in the field, use the equality 

gk = gk mod(2n - 1) for any integer k.

Summary

In this section, we have shown how to construct a finite field of order 2n. Specifically, 

we defined GF(2n) with the following properties.

1. GF(2n) consists of 2n elements.

2. The binary operations +  and *  are defined over the set. The operations 

of addition, subtraction, multiplication, and division can be performed with-

out leaving the set. Each element of the set other than 0 has a multiplicative 

inverse.

We have shown that the elements of GF(2n) can be defined as the set of all 

polynomials of degree n - 1 or less with binary coefficients. Each such polynomial 

can be represented by a unique n-bit value. Arithmetic is defined as polynomial 

arithmetic modulo some irreducible polynomial of degree n. We have also seen that 

an equivalent definition of a finite field GF(2n) makes use of a generator and that 

arithmetic is defined using powers of the generator.

This power representation makes multiplication easy. To multiply in the 

power notation, add exponents modulo 7. For example, g4 * g6 = g(10 mod 7) =
g3 = g + 1. The same result is achieved using polynomial arithmetic: We have 

g4 = g2 + g and g6 = g2 + 1. Then, (g2 + g) * (g2 + 1) = g4 + g3 + g2 + g. 

Next, we need to determine (g4 + g3 + g2 + 1) mod (g3 + g + 1) by division:

g + 1

g3 + g + 1�g4 + g3 + g2 + g
g4 + g2 + g

g3

g3 + g + 1

g + 1

We get a result of g + 1, which agrees with the result obtained using the power 

representation.

Table 5.6 shows the addition and multiplication tables for GF(23) using 

the power representation. Note that this yields the identical results to the 

polynomial representation (Table 5.3) with some of the rows and columns 

i nterchanged.
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 5.7 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms 

abelian group

associative

coefficient set

commutative

commutative ring

cyclic group

divisor

Euclidean algorithm

field

finite field

finite group

generator

greatest common divisor

group

identity element

infinite field

infinite group

integral domain

inverse element

irreducible polynomial

modular arithmetic

modular polynomial 

arithmetic

monic polynomial

order

polynomial

polynomial arithmetic

polynomial ring

prime number

prime polynomial

relatively prime

residue

ring

Review Questions 

 5.1 Briefly define a group.

 5.2 Briefly define a ring.

 5.3 Briefly define a field.

 5.4 List three classes of polynomial arithmetic.

Problems 

 5.1 For the group Sn of all permutations of n distinct symbols,
a. what is the number of elements in Sn?
b. show that Sn is not abelian for n 7 2.

 5.2 Does the set of residue classes (mod3) form a group
a. with respect to modular addition?
b. with respect to modular multiplication?

 5.3 Let S = {0, a, b, c}. The addition and multiplication on the set S is defined in the 
 following tables:

+ 0 a B C

0 0 a B C

A a 0 c B

B b c 0 A

C c b a 0

* 0 a b c

0 0 0 0 0

a 0 a b c

b 0 a b c

c 0 0 0 0

  Is S a noncommutative ring? Justify your answer.

 5.4 Develop a set of tables similar to Table 5.1 for GF(5).

 5.5 Demonstrate that the set of polynomials whose coefficients form a field is a ring.

 5.6 Demonstrate whether each of these statements is true or false for polynomials over a 
field.
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a. The product of monic polynomials is monic.
b. The product of polynomials of degrees m and n has degree m + n.
c. The sum of polynomials of degrees m and n has degree max [m, n].

 5.7 For polynomial arithmetic with coefficients in Z1 1, perform the following calculations.
a. (x 2 + 2 x + 9 )(x 3 + 1 1 x 2 + x + 7 )
b. (8 x 2 + 3 x + 2 )(5 x 2 + 6 )

 5.8 Determine which of the following polynomials are reducible over GF(2).
a. x 2 + 1
b. x 2 + x + 1
c. x 4 + x + 1

 5.9 Determine the gcd of the following pairs of polynomials.
a. (x3 + 1) and (x2 + x + 1) over GF(2)
b. (x3 + x + 1) and (x2 + 1) over GF(3)

c. (x3 - 2x + 1) and (x2 - x - 2) over GF(5)
d. (x4 + 8x3 + 7x + 8) and (2x3 + 9x2 + 10x + 1) over GF(11)

 5.10 Develop a set of tables similar to Table 5.3 for GF(3) with m(x) = x2 + x + 1.

 5.11 Determine the multiplicative inverse of x 2 + 1  in GF(23) with m(x) = x 3 + x - 1 .

 5.12 Develop a table similar to Table 5.5 for GF(25) with m(x) = x 5 + x 4 + x 3 + x + 1 .

Programming Problems 

 5.13 Write a simple four-function calculator in GF(24). You may use table lookups for the 
multiplicative inverses.

 5.14 Write a simple four-function calculator in GF(28). You should compute the multiplica-
tive inverses on the fly.
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The Advanced Encryption Standard (AES) was published by the National Institute of 

Standards and Technology (NIST) in 2001. AES is a symmetric block cipher that is 

intended to replace DES as the approved standard for a wide range of applications. 

Compared to public-key ciphers such as RSA, the structure of AES and most symmet-

ric ciphers is quite complex and cannot be explained as easily as many other 

 cryptographic algorithms. Accordingly, the reader may wish to begin with a simplified 

 version of AES, which is described in Appendix I. This version allows the reader to 

perform encryption and decryption by hand and gain a good understanding of the 

working of the algorithm details. Classroom experience indicates that a study of this 

simplified version enhances understanding of AES.1 One possible approach is to read 

the chapter first, then carefully read Appendix I, and then re-read the main body 

of the chapter.

Appendix H looks at the evaluation criteria used by NIST to select from among 

the candidates for AES, plus the rationale for picking Rijndael, which was the winning 

candidate. This material is useful in understanding not just the AES design but also the 

criteria by which to judge any symmetric encryption algorithm.

 6.1 FINITE FIELD ARITHMETIC

In AES, all operations are performed on 8-bit bytes. In particular, the arithmetic 

operations of addition, multiplication, and division are performed over the finite 

field GF(28). Section 5.6 discusses such operations in some detail. For the reader 

who has not studied Chapter 5, and as a quick review for those who have, this sec-

tion summarizes the important concepts.

In essence, a field is a set in which we can do addition, subtraction, multiplica-

tion, and division without leaving the set. Division is defined with the following rule: 

a/b = a(b-1). An example of a finite field (one with a finite number of elements) is 

the set Zp consisting of all the integers {0, 1, c , p - 1}, where p is a prime num-

ber and in which arithmetic is carried out modulo p.

1However, you may safely skip Appendix I, at least on a first reading. If you get lost or bogged down in 
the details of AES, then you can go back and start with simplified AES.

LEARNING OBJECTIVES

After studying this chapter, you should be able to:

 ◆ Present an overview of the general structure of Advanced Encryption 

Standard (AES).

 ◆ Understand the four transformations used in AES.

 ◆ Explain the AES key expansion algorithm.

 ◆ Understand the use of polynomials with coefficients in GF(28).
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Virtually all encryption algorithms, both conventional and public-key, involve 

arithmetic operations on integers. If one of the operations used in the algorithm 

is division, then we need to work in arithmetic defined over a field; this is because 

division requires that each nonzero element have a multiplicative inverse. For con-

venience and for implementation efficiency, we would also like to work with inte-

gers that fit exactly into a given number of bits, with no wasted bit patterns. That is, 

we wish to work with integers in the range 0 through 2n - 1, which fit into an n-bit 

word. Unfortunately, the set of such integers, Z2n, using modular arithmetic, is not a 

field. For example, the integer 2 has no multiplicative inverse in Z2n, that is, there is 

no integer b, such that 2b mod 2n = 1.

There is a way of defining a finite field containing 2n elements; such a field is 

referred to as GF(2n). Consider the set, S, of all polynomials of degree n - 1 or less 

with binary coefficients. Thus, each polynomial has the form

 f(x) = an - 1x
n - 1 + an - 2x

n - 2 + g + a1x + a0 = a
n - 1

i=0

aix
i 

where each ai takes on the value 0 or 1. There are a total of 2n different polynomials 

in S. For n = 3, the 23 = 8 polynomials in the set are

 
0 x x2 x2 + x
1 x + 1 x2 + 1 x2 + x + 1

 

With the appropriate definition of arithmetic operations, each such set S is a 

finite field. The definition consists of the following elements.

1. Arithmetic follows the ordinary rules of polynomial arithmetic using the basic 

rules of algebra with the following two refinements.

2. Arithmetic on the coefficients is performed modulo 2. This is the same as the 

XOR operation.

3. If multiplication results in a polynomial of degree greater than n - 1, then the 

polynomial is reduced modulo some irreducible polynomial m(x) of  degree n. 

That is, we divide by m(x) and keep the remainder. For a polynomial f(x), 

the remainder is expressed as r(x) = f(x) mod m(x). A polynomial m(x) is 

called irreducible if and only if m(x) cannot be expressed as a product of two 

 polynomials, both of degree lower than that of m(x).

For example, to construct the finite field GF(23), we need to choose an irre-

ducible polynomial of degree 3. There are only two such polynomials: (x3 + x2 + 1) 

and (x3 + x + 1). Addition is equivalent to taking the XOR of like terms. Thus, 

(x + 1) + x = 1.

A polynomial in GF(2n) can be uniquely represented by its n binary coeffi cients 

(an - 1an - 2 c a0). Therefore, every polynomial in GF(2n) can be  represented by 

an n-bit number. Addition is performed by taking the bitwise XOR of the two n-bit  

elements. There is no simple XOR operation that will accomplish multiplication in 

GF(2n). However, a reasonably straightforward, easily implemented,  technique is 

available. In essence, it can be shown that multiplication of a number in GF(2n) by 
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2 consists of a left shift followed by a conditional XOR with a constant. Multiplication 

by larger numbers can be achieved by repeated application of this rule.

For example, AES uses arithmetic in the finite field GF(28) with the  irreducible 

polynomial m(x) = x8 + x4 + x3 + x + 1. Consider two elements A =
(a7a6 c a1a0) and B = (b7b6 c b1b0). The sum A + B = (c7c6 c c1c0), where 

ci = ai⊕ bi. The multiplication {02} # A equals (a6 c a1a00) if a7 = 0 and equals 

(a6 c a1a00)⊕ (00011011) if a7 = 1.2

To summarize, AES operates on 8-bit bytes. Addition of two bytes is defined 

as the bitwise XOR operation. Multiplication of two bytes is defined as multiplica-

tion in the finite field GF(28), with the irreducible polynomial3 m(x) = x8 + x4 + x3 +  

x + 1. The developers of Rijndael give as their motivation for selecting this one of 

the 30 possible irreducible polynomials of degree 8 that it is the first one on the list 

given in [LIDL94].

 6.2 AES STRUCTURE

General Structure

Figure 6.1 shows the overall structure of the AES encryption process. The cipher 

takes a plaintext block size of 128 bits, or 16 bytes. The key length can be 16, 24, or 

32 bytes (128, 192, or 256 bits). The algorithm is referred to as AES-128, AES-192, 

or AES-256, depending on the key length.

The input to the encryption and decryption algorithms is a single 128-bit block. 

In FIPS PUB 197, this block is depicted as a 4 * 4 square matrix of bytes. This 

block is copied into the State array, which is modified at each stage of encryption or 

decryption. After the final stage, State is copied to an output matrix. These opera-

tions are depicted in Figure 6.2a. Similarly, the key is depicted as a square matrix of 

bytes. This key is then expanded into an array of key schedule words. Figure 6.2b 

shows the expansion for the 128-bit key. Each word is four bytes, and the total key 

schedule is 44 words for the 128-bit key. Note that the ordering of bytes within a ma-

trix is by column. So, for example, the first four bytes of a 128-bit plaintext input to 

the encryption cipher occupy the first column of the in matrix, the second four bytes 

occupy the second column, and so on. Similarly, the first four bytes of the expanded 

key, which form a word, occupy the first column of the w matrix.

The cipher consists of N rounds, where the number of rounds depends on the 

key length: 10 rounds for a 16-byte key, 12 rounds for a 24-byte key, and 14 rounds 

for a 32-byte key (Table 6.1). The first N - 1 rounds consist of four distinct trans-

formation functions: SubBytes, ShiftRows, MixColumns, and AddRoundKey, 

which are described subsequently. The final round contains only three transforma-

tions, and there is a initial single transformation (AddRoundKey) before the first 

round, which can be considered Round 0. Each transformation takes one or more 

2In FIPS PUB 197, a hexadecimal number is indicated by enclosing it in curly brackets. We use that convention 
in this chapter.
3In the remainder of this discussion, references to GF(28) refer to the finite field defined with this 
polynomial.
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Figure 6.1 AES Encryption Process
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4 * 4 matrices as input and produces a 4 * 4 matrix as output. Figure 6.1 shows 

that the output of each round is a 4 * 4 matrix, with the output of the final round 

being the ciphertext. Also, the key expansion function generates N + 1 round keys, 

each of which is a distinct 4 * 4 matrix. Each round key serves as one of the inputs 

to the AddRoundKey transformation in each round.
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Key Size (words/bytes/bits) 4/16/128 6/24/192 8/32/256

Plaintext Block Size (words/bytes/bits) 4/16/128 4/16/128 4/16/128

Number of Rounds 10 12 14

Round Key Size (words/bytes/bits) 4/16/128 4/16/128 4/16/128

Expanded Key Size (words/bytes) 44/176 52/208 60/240

Table 6.1 AES Parameters

Detailed Structure

Figure 6.3 shows the AES cipher in more detail, indicating the sequence of transfor-

mations in each round and showing the corresponding decryption function. As was 

done in Chapter 4, we show encryption proceeding down the page and decryption 

proceeding up the page.

Before delving into details, we can make several comments about the overall 

AES structure.

1. One noteworthy feature of this structure is that it is not a Feistel structure. 

Recall that, in the classic Feistel structure, half of the data block is used to 

modify the other half of the data block and then the halves are swapped. AES 

instead processes the entire data block as a single matrix during each round 

using substitutions and permutation.

2. The key that is provided as input is expanded into an array of forty-four 32-bit 

words, w[i]. Four distinct words (128 bits) serve as a round key for each round; 

these are indicated in Figure 6.3.

3. Four different stages are used, one of permutation and three of substitution:

 ■ Substitute bytes: Uses an S-box to perform a byte-by-byte substitution of 

the block.

 ■ ShiftRows: A simple permutation.

 ■ MixColumns: A substitution that makes use of arithmetic over GF(28).

 ■ AddRoundKey: A simple bitwise XOR of the current block with a portion 

of the expanded key.

4. The structure is quite simple. For both encryption and decryption, the cipher 

begins with an AddRoundKey stage, followed by nine rounds that each in-

cludes all four stages, followed by a tenth round of three stages. Figure 6.4 

depicts the structure of a full encryption round.

5. Only the AddRoundKey stage makes use of the key. For this reason, the cipher 

begins and ends with an AddRoundKey stage. Any other stage, applied at the 

beginning or end, is reversible without knowledge of the key and so would add 

no security.

6. The AddRoundKey stage is, in effect, a form of Vernam cipher and by itself 

would not be formidable. The other three stages together provide confusion, 

diffusion, and nonlinearity, but by themselves would provide no security be-

cause they do not use the key. We can view the cipher as alternating operations 

of XOR encryption (AddRoundKey) of a block, followed by scrambling of the 
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Figure 6.3 AES Encryption and Decryption
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block (the other three stages), followed by XOR encryption, and so on. This 

scheme is both efficient and highly secure.

7. Each stage is easily reversible. For the Substitute Byte, ShiftRows, and 

MixColumns stages, an inverse function is used in the decryption algorithm. 

For the AddRoundKey stage, the inverse is achieved by XORing the same 

round key to the block, using the result that A⊕ B⊕ B = A.

8. As with most block ciphers, the decryption algorithm makes use of the 

 expanded key in reverse order. However, the decryption algorithm is not 



6.3 / AES TRANSFORMATION FUNCTIONS 179

Figure 6.4 AES Encryption Round
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identical to the encryption algorithm. This is a consequence of the particular 

structure of AES.

9. Once it is established that all four stages are reversible, it is easy to verify 

that decryption does recover the plaintext. Figure 6.3 lays out encryption 

and decryption going in opposite vertical directions. At each horizontal point 

(e.g., the dashed line in the figure), State is the same for both encryption and 

decryption.

10. The final round of both encryption and decryption consists of only three stages. 

Again, this is a consequence of the particular structure of AES and is required 

to make the cipher reversible.

 6.3 AES TRANSFORMATION FUNCTIONS

We now turn to a discussion of each of the four transformations used in AES. For 

each stage, we describe the forward (encryption) algorithm, the inverse ( decryption) 

algorithm, and the rationale for the stage.
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Substitute Bytes Transformation

FORWARD AND INVERSE TRANSFORMATIONS The forward substitute byte 
 transformation, called SubBytes, is a simple table lookup (Figure 6.5a). AES 

 defines a 16 * 16 matrix of byte values, called an S-box (Table 6.2a), that con-

tains a permutation of all possible 256 8-bit values. Each individual byte of State 

is mapped into a new byte in the following way: The leftmost 4 bits of the byte are 

used as a row value and the rightmost 4 bits are used as a column value. These row 

and column values serve as indexes into the S-box to select a unique 8-bit output 

value. For  example, the hexadecimal value {95} references row 9, column 5 of the 

S-box, which contains the value {2A}. Accordingly, the value {95} is mapped into 

the value {2A}.

Figure 6.5 AES Byte-Level Operations

s0,0 s0,1 s0,2 s0,3

s1,0 s1,2 s1,3

s2,0 s2,1 s2,2 s2,3

s3,0 s3,1 s3,2 s3,3

s0,0 s0,1 s0,2 s0,3

s1,0 s1,2 s1,3

s2,0 s2,1 s2,2 s2,3

s3,0 s3,1 s3,2 s3,3

(b) Add round key transformation

(a) Substitute byte transformation

S-box

x

y

¿ ¿ ¿ ¿

¿ ¿¿¿

s1,1

s0,0

wi wi+2 wi+3

s0,2 s0,3

s1,0 s1,2 s1,3

=
s2,0 s2,2 s2,3

s3,0 s3,2 s3,3

s1,1

s0,0 s0,2 s0,3

s1,0 s1,2 s1,3

s2,0 s2,2 s2,3

s3,0 s3,2 s3,3

s1,1

s0,1

s2,1

s3,1

wi+1

s0,1

s2,1

s3,1

s1,1

¿¿¿

¿ ¿ ¿ ¿

¿

¿

¿

¿
¿

¿ ¿

¿ ¿ ¿ ¿

¿ ¿ ¿

¿
¿ ¿



6.3 / AES TRANSFORMATION FUNCTIONS 181

y
0 1 2 3 4 5 6 7 8 9 A B C D E F

0 63 7C 77 7B F2 6B 6F C5 30 01 67 2B FE D7 AB 76

1 CA 82 C9 7D FA 59 47 F0 AD D4 A2 AF 9C A4 72 C0

2 B7 FD 93 26 36 3F F7 CC 34 A5 E5 F1 71 D8 31 15

3 04 C7 23 C3 18 96 05 9A 07 12 80 E2 EB 27 B2 75

4 09 83 2C 1A 1B 6E 5A A0 52 3B D6 B3 29 E3 2F 84

5 53 D1 00 ED 20 FC B1 5B 6A CB BE 39 4A 4C 58 CF

6 D0 EF AA FB 43 4D 33 85 45 F9 02 7F 50 3C 9F A8

x
7 51 A3 40 8F 92 9D 38 F5 BC B6 DA 21 10 FF F3 D2

8 CD 0C 13 EC 5F 97 44 17 C4 A7 7E 3D 64 5D 19 73

9 60 81 4F DC 22 2A 90 88 46 EE B8 14 DE 5E 0B DB

A E0 32 3A 0A 49 06 24 5C C2 D3 AC 62 91 95 E4 79

B E7 C8 37 6D 8D D5 4E A9 6C 56 F4 EA 65 7A AE 08

C BA 78 25 2E 1C A6 B4 C6 E8 DD 74 1F 4B BD 8B 8A

D 70 3E B5 66 48 03 F6 0E 61 35 57 B9 86 C1 1D 9E

E E1 F8 98 11 69 D9 8E 94 9B 1E 87 E9 CE 55 28 DF

F 8C A1 89 0D BF E6 42 68 41 99 2D 0F B0 54 BB 16

(a) S-box

y
0 1 2 3 4 5 6 7 8 9 A B C D E F

0 52 09 6A D5 30 36 A5 38 BF 40 A3 9E 81 F3 D7 FB

1 7C E3 39 82 9B 2F FF 87 34 8E 43 44 C4 DE E9 CB

2 54 7B 94 32 A6 C2 23 3D EE 4C 95 0B 42 FA C3 4E

3 08 2E A1 66 28 D9 24 B2 76 5B A2 49 6D 8B D1 25

4 72 F8 F6 64 86 68 98 16 D4 A4 5C CC 5D 65 B6 92

5 6C 70 48 50 FD ED B9 DA 5E 15 46 57 A7 8D 9D 84

6 90 D8 AB 00 8C BC D3 0A F7 E4 58 05 B8 B3 45 06

x
7 D0 2C 1E 8F CA 3F 0F 02 C1 AF BD 03 01 13 8A 6B

8 3A 91 11 41 4F 67 DC EA 97 F2 CF CE F0 B4 E6 73

9 96 AC 74 22 E7 AD 35 85 E2 F9 37 E8 1C 75 DF 6E

A 47 F1 1A 71 1D 29 C5 89 6F B7 62 0E AA 18 BE 1B

B FC 56 3E 4B C6 D2 79 20 9A DB C0 FE 78 CD 5A F4

C 1F DD A8 33 88 07 C7 31 B1 12 10 59 27 80 EC 5F

D 60 51 7F A9 19 B5 4A 0D 2D E5 7A 9F 93 C9 9C EF

E A0 E0 3B 4D AE 2A F5 B0 C8 EB BB 3C 83 53 99 61

F 17 2B 04 7E BA 77 D6 26 E1 69 14 63 55 21 0C 7D

(b) Inverse S-box

Table 6.2 AES S-Boxes
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Here is an example of the SubBytes transformation:

EA 04 65 85 87 F2 4D 97

83 45 5D 96 EC 6E 4C 90

5C 33 98 B0 S 4A C3 46 E7

F0 2D AD C5 8C D8 95 A6

The S-box is constructed in the following fashion (Figure 6.6a).

Figure 6.6 Constuction of S-Box and IS-Box
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1. Initialize the S-box with the byte values in ascending sequence row by row. 

The  first row contains {00}, {01}, {02}, c , {0F}; the second row contains 

{10}, {11}, etc.; and so on. Thus, the value of the byte at row y, column x is {yx}.

2. Map each byte in the S-box to its multiplicative inverse in the finite field 

GF(28); the value {00} is mapped to itself.

3. Consider that each byte in the S-box consists of 8 bits labeled 

(b7, b6, b5, b4, b3, b2, b1, b0). Apply the following transformation to each bit of 

each byte in the S-box:

 bi
= = bi⊕ b(i+ 4) mod 8 ⊕ b(i+ 5) mod 8 ⊕ b(i+ 6) mod 8 ⊕ b(i+ 7) mod 8 ⊕ ci (6.1)

 where ci is the ith bit of byte c with the value {63}; that is, 

(c7c6c5c4c3c2c1c0) = (01100011). The prime (′) indicates that the variable is to 

be updated by the value on the right. The AES standard depicts this transfor-

mation in matrix form as follows.

  H
b0
=

b1
=

b2
=

b3
=

b4
=

b5
=

b6
=

b7
=

X = H
1 0 0 0 1 1 1 1

1 1 0 0 0 1 1 1

1 1 1 0 0 0 1 1

1 1 1 1 0 0 0 1

1 1 1 1 1 0 0 0

0 1 1 1 1 1 0 0

0 0 1 1 1 1 1 0

0 0 0 1 1 1 1 1

X H
b0

b1

b2

b3

b4

b5

b6

b7

X + H
1

1

0

0

0

1

1

0

X    (6.2)

Equation (6.2) has to be interpreted carefully. In ordinary matrix multiplica-

tion,4 each element in the product matrix is the sum of products of the elements of 

one row and one column. In this case, each element in the product matrix is the 

bitwise XOR of products of elements of one row and one column. Furthermore, the 

final addition shown in Equation (6.2) is a bitwise XOR. Recall from Section 5.6 

that the bitwise XOR is addition in GF(28).

As an example, consider the input value {95}. The multiplicative inverse in 

GF(28) is {95}-1 = {8A}, which is 10001010 in binary. Using Equation (6.2),

 H
1 0 0 0 1 1 1 1

1 1 0 0 0 1 1 1

1 1 1 0 0 0 1 1

1 1 1 1 0 0 0 1

1 1 1 1 1 0 0 0

0 1 1 1 1 1 0 0

0 0 1 1 1 1 1 0

0 0 0 1 1 1 1 1

X H
0

1

0

1

0

0

0

1

X ⊕ H
1

1

0

0

0

1

1

0

X = H
1

0

0

1

0

0

1

0

X ⊕ H
1

1

0

0

0

1

1

0

X = H
0

1

0

1

0

1

0

0

X  

4For a brief review of the rules of matrix and vector multiplication, refer to Appendix E.
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The result is {2A}, which should appear in row {09} column {05} of the S-box. 

This is verified by checking Table 6.2a.

The inverse substitute byte transformation, called InvSubBytes, makes use 

of the inverse S-box shown in Table 6.2b. Note, for example, that the input {2A} 

produces the output {95}, and the input {95} to the S-box produces {2A}. The inverse 

S-box is constructed (Figure 6.6b) by applying the inverse of the transformation in 

Equation (6.1) followed by taking the multiplicative inverse in GF(28). The inverse 

transformation is

 bi
= = b(i+ 2) mod 8 ⊕ b(i+ 5) mod 8 ⊕ b(i+ 7) mod 8 ⊕ di 

where byte d = {05}, or 00000101. We can depict this transformation as follows.

 
H

b0
=

b1
=

b2
=

b3
=

b4
=

b5
=

b6
=

b7
=

X = H
0 0 1 0 0 1 0 1

1 0 0 1 0 0 1 0

0 1 0 0 1 0 0 1

1 0 1 0 0 1 0 0

0 1 0 1 0 0 1 0

0 0 1 0 1 0 0 1

1 0 0 1 0 1 0 0

0 1 0 0 1 0 1 0

X H
b0

b1

b2

b3

b4

b5

b6

b7

X + H
1

0

1

0

0

0

0

0

X
 

To see that InvSubBytes is the inverse of SubBytes, label the matrices in 

SubBytes and InvSubBytes as X and Y, respectively, and the vector versions of con-

stants c and d as C and D, respectively. For some 8-bit vector B, Equation (6.2) 

becomes B= = XB⊕ C. We need to show that Y(XB⊕ C)⊕D = B. To multiply 

out, we must show YXB⊕ YC⊕D = B. This becomes

 
H

0 0 1 0 0 1 0 1

1 0 0 1 0 0 1 0

0 1 0 0 1 0 0 1

1 0 1 0 0 1 0 0

0 1 0 1 0 0 1 0

0 0 1 0 1 0 0 1

1 0 0 1 0 1 0 0

0 1 0 0 1 0 1 0

X H
1 0 0 0 1 1 1 1

1 1 0 0 0 1 1 1

1 1 1 0 0 0 1 1

1 1 1 1 0 0 0 1

1 1 1 1 1 0 0 0

0 1 1 1 1 1 0 0

0 0 1 1 1 1 1 0

0 0 0 1 1 1 1 1

X H
b0

b1

b2

b3

b4

b5

b6

b7

X ⊕
 

 H
0 0 1 0 0 1 0 1

1 0 0 1 0 0 1 0

0 1 0 0 1 0 0 1

1 0 1 0 0 1 0 0

0 1 0 1 0 0 1 0

0 0 1 0 1 0 0 1

1 0 0 1 0 1 0 0

0 1 0 0 1 0 1 0

X H
1

1

0

0

0

1

1

0

X ⊕ H
1

0

1

0

0

0

0

0

X =  
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 H
1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

X H
b0

b1

b2

b3

b4

b5

b6

b7

X ⊕ H
1

0

1

0

0

0

0

0

X ⊕ H
1

0

1

0

0

0

0

0

X = H
b0

b1

b2

b3

b4

b5

b6

b7

X  

We have demonstrated that YX equals the identity matrix, and the YC = D, 

so that YC⊕D equals the null vector.

RATIONALE The S-box is designed to be resistant to known cryptanalytic attacks. 

Specifically, the Rijndael developers sought a design that has a low correlation 

 between input bits and output bits and the property that the output is not a linear 

mathematical function of the input [DAEM01]. The nonlinearity is due to the use 

of the multiplicative inverse. In addition, the constant in Equation (6.1) was chosen 

so that the S-box has no fixed points [S@box(a) = a] and no “opposite fixed points” 

[S@box(a) = a], where a is the bitwise complement of a.

Of course, the S-box must be invertible, that is, IS@box[S@box(a)] = a. 

However, the S-box does not self-inverse in the sense that it is not true that 

S@box(a) = IS@box(a). For example, S@box({95}) = {2A}, but IS@box({95}) = {AD}.

ShiftRows Transformation

FORWARD AND INVERSE TRANSFORMATIONS The forward shift row transformation, 

called ShiftRows, is depicted in Figure 6.7a. The first row of State is not altered. For 

the second row, a 1-byte circular left shift is performed. For the third row, a 2-byte 

circular left shift is performed. For the fourth row, a 3-byte circular left shift is per-

formed. The following is an example of ShiftRows.

87 F2 4D 97 87 F2 4D 97

EC 6E 4C 90 6E 4C 90 EC

4A C3 46 E7 S 46 E7 4A C3

8C D8 95 A6 A6 8C D8 95

The inverse shift row transformation, called InvShiftRows, performs the cir-

cular shifts in the opposite direction for each of the last three rows, with a 1-byte 

circular right shift for the second row, and so on.

RATIONALE The shift row transformation is more substantial than it may first 

 appear. This is because the State, as well as the cipher input and output, is 

treated as an array of four 4-byte columns. Thus, on encryption, the first 4 bytes 

of the plaintext are copied to the first column of State, and so on. Furthermore, 

as will be seen, the round key is applied to State column by column. Thus, a row 

shift moves an individual byte from one column to another, which is a linear 
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5We follow the convention of FIPS PUB 197 and use the symbol #  to indicate multiplication over the 
finite field GF(28) and ⊕  to indicate bitwise XOR, which corresponds to addition in GF(28).

distance of a multiple of 4 bytes. Also note that the transformation ensures that 

the 4 bytes of one column are spread out to four different columns. Figure 6.4 

 illustrates the effect.

MixColumns Transformation

FORWARD AND INVERSE TRANSFORMATIONS The forward mix column  transformation, 

called MixColumns, operates on each column individually. Each byte of a column 

is mapped into a new value that is a function of all four bytes in that column. The 

transformation can be defined by the following matrix multiplication on State 

(Figure 6.7b):

  D02 03 01 01

01 02 03 01

01 01 02 03

03 01 01 02

T D s0,0 s0,1 s0,2 s0,3

s1,0 s1,1 s1,2 s1,3

s2,0 s2,1 s2,2 s2,3

s3,0 s3,1 s3,2 s3,3

T = D s0,0
= s0,1

= s0,2
= s0,3

=

s1,0
= s1,1

= s1,2
= s1,3

=

s2,0
= s2,1

= s2,2
= s2,3

=

s3,0
= s3,1

= s3,2
= s3,3

=

T    (6.3)

Each element in the product matrix is the sum of products of elements of one row 

and one column. In this case, the individual additions and multiplications5 are 

Figure 6.7 AES Row and Column Operations

s0,0 s0,1 s0,2 s0,3

s1,0 s1,1 s1,2 s1,3

s2,0 s2,1 s2,2 s2,3

s3,0 s3,1 s3,2 s3,3

s0,0 s0,1 s0,2 s0,3

s1,0 s1,1 s1,2 s1,3

s2,0 s2,1 s2,2 s2,3

s3,0 s3,1 s3,2 s3,3

s0,0 s0,1 s0,2 s0,3

s1,0 s1,1 s1,2 s1,3

s2,0 s2,1 s2,2 s2,3

s3,0 s3,1 s3,2 s3,3

s0,0 s0,1 s0,2 s0,3

s1,1 s1,2 s1,3 s1,0

s2,2 s2,3 s2,0 s2,1

s3,3 s3,0 s3,1 s3,2

(a) Shift row transformation

(b) Mix column transformation

2  3  1  1
1  2  3  1
1  1  2  3
3  1  1  2

=*

¿ ¿ ¿ ¿

¿¿¿¿

¿ ¿ ¿ ¿

¿¿¿¿
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performed in GF(28). The MixColumns transformation on a single column of State 

can be expressed as

 s0, j
= = (2 # s0, j)⊕ (3 # s1, j)⊕ s2, j⊕ s3, j

 s1, j
= = s0, j⊕ (2 # s1, j)⊕ (3 # s2, j)⊕ s3, j

 s2, j
= = s0, j⊕ s1, j⊕ (2 # s2, j)⊕ (3 # s3, j)

  s3, j
= = (3 # s0, j)⊕ s1, j⊕ s2, j⊕ (2 # s3, j)  

 (6.4)

The following is an example of MixColumns:

87 F2 4D 97 47 40 A3 4C

6E 4C 90 EC 37 D4 70 9F

46 E7 4A C3 S 94 E4 3A 42

A6 8C D8 95 ED A5 A6 BC

Let us verify the first column of this example. Recall from Section 5.6 that, in 

GF(28), addition is the bitwise XOR operation and that multiplication can be per-

formed according to the rule established in Equation (4.14). In particular, multipli-

cation of a value by x (i.e., by {02}) can be implemented as a 1-bit left shift followed 

by a conditional bitwise XOR with (0001 1011) if the leftmost bit of the original 

value (prior to the shift) is 1. Thus, to verify the MixColumns transformation on the 

first column, we need to show that

({02} # {87}) ⊕ ({03} # {6E}) ⊕ {46} ⊕ {A6} = {47}

{87} ⊕ ({02} # {6E}) ⊕ ({03} # {46}) ⊕ {A6} = {37}

{87} ⊕ {6E} ⊕ ({02} # {46}) ⊕ ({03} # {A6}) = {94}

({03} # {87}) ⊕ {6E} ⊕ {46} ⊕ ({02} # {A6}) = {ED}

For the first equation, we have {02} # {87} = (0000 1110)⊕ (0001 1011) =  

(0001 0101) and {03} # {6E} = {6E}⊕ ({02} # {6E}) = (0110 1110)⊕ (1101 1100) =  

(1011 0010). Then,

 

{02} # {87} = 0001 0101

{03} # {6E} = 1011 0010

{46} = 0100 0110

{A6} = 1010 0110

0100 0111 = {47}

 

The other equations can be similarly verified.

The inverse mix column transformation, called InvMixColumns, is defined by 

the following matrix multiplication:

 D 0E 0B 0D 09

09 0E 0B 0D

0D 09 0E 0B

0B 0D 09 0E

T D s0,0 s0,1 s0,2 s0,3

s1,0 s1,1 s1,2 s1,3

s2,0 s2,1 s2,2 s2,3

s3,0 s3,1 s3,2 s3,3

T = D s0,0
= s0,1

= s0,2
= s0,3

=

s1,0
= s1,1

= s1,2
= s1,3

=

s2,0
= s2,1

= s2,2
= s2,3

=

s3,0
= s3,1

= s3,2
= s3,3

=

T    (6.5)
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It is not immediately clear that Equation (6.5) is the inverse of Equation (6.3). 

We need to show

D 0E 0B 0D 09

09 0E 0B 0D

0D 09 0E 0B

0B 0D 09 0E

T D02 03 01 01

01 02 03 01

01 01 02 03

03 01 01 02

T D s0,0 s0,1 s0,2 s0,3

s1,0 s1,1 s1,2 s1,3

s2,0 s2,1 s2,2 s2,3

s3,0 s3,1 s3,2 s3,3

T = D s0,0 s0,1 s0,2 s0,3

s1,0 s1,1 s1,2 s1,3

s2,0 s2,1 s2,2 s2,3

s0,3 s3,1 s3,2 s3,3

T
which is equivalent to showing

  D 0E 0B 0D 09

09 0E 0B 0D

0D 09 0E 0B

0B 0D 09 0E

T D02 03 01 01

01 02 03 01

01 01 02 03

03 01 01 02

T = D1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

T    (6.6)

That is, the inverse transformation matrix times the forward transformation matrix 

equals the identity matrix. To verify the first column of Equation (6.6), we need 

to show

 ({0E} # {02})⊕ {0B}⊕ {0D}⊕ ({09} # {03}) = {01}

 ({09} # {02})⊕ {0E}⊕ {0B}⊕ ({0D} # {03}) = {00}

 ({0D} # {02})⊕ {09}⊕ {0E}⊕ ({0B} # {03}) = {00} 

  ({0B} # {02})⊕ {0D}⊕ {09}⊕ ({0E} # {03}) = {00} 

For the first equation, we have {0E} # {02} = 00011100 and {09} # {03} =  

{09}⊕ ({09} # {02}) = 00001001⊕ 00010010 = 00011011. Then

 

{0E} # {02} = 00011100

{0B} = 00001011

{0D} = 00001101

{09} # {03} = 00011011

00000001

 

The other equations can be similarly verified.

The AES document describes another way of characterizing the MixColumns 

transformation, which is in terms of polynomial arithmetic. In the standard, 

MixColumns is defined by considering each column of State to be a four-term poly-

nomial with coefficients in GF(28). Each column is multiplied modulo (x4 + 1) by 

the fixed polynomial a(x), given by

  a(x) = {03}x3 + {01}x2 + {01}x + {02}   (6.7)

Appendix 5A demonstrates that multiplication of each column of State by 

a(x) can be written as the matrix multiplication of Equation (6.3). Similarly, it 

can be seen that the transformation in Equation (6.5) corresponds to treating 
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each column as a four-term polynomial and multiplying each column by b(x), 

given by

  b(x) = {0B}x3 + {0D}x2 + {09}x + {0E}   (6.8)

It readily can be shown that b(x) = a-1(x) mod (x4 + 1).

RATIONALE The coefficients of the matrix in Equation (6.3) are based on a linear 

code with maximal distance between code words, which ensures a good mixing 

among the bytes of each column. The mix column transformation combined with 

the shift row transformation ensures that after a few rounds all output bits depend 

on all input bits. See [DAEM99] for a discussion.

In addition, the choice of coefficients in MixColumns, which are all {01}, {02}, 

or {03}, was influenced by implementation considerations. As was discussed, multi-

plication by these coefficients involves at most a shift and an XOR. The coefficients 

in InvMixColumns are more formidable to implement. However, encryption was 

deemed more important than decryption for two reasons:

1. For the CFB and OFB cipher modes (Figures 7.5 and 7.6; described in 

Chapter 7), only encryption is used.

2. As with any block cipher, AES can be used to construct a message authentica-

tion code (Chapter 13), and for this, only encryption is used.

AddRoundKey Transformation

FORWARD AND INVERSE TRANSFORMATIONS In the forward add round key transfor-
mation, called AddRoundKey, the 128 bits of State are bitwise XORed with the 

128 bits of the round key. As shown in Figure 6.5b, the operation is viewed as a 

columnwise operation between the 4 bytes of a State column and one word of 

the round key; it can also be viewed as a byte-level operation. The following is an 

 example of AddRoundKey:

47 40 A3 4C AC 19 28 57 EB 59 8B 1B

37 D4 70 9F 77 FA D1 5C 40 2E A1 C3

94 E4 3A 42 ⊕ 66 DC 29 00 = F2 38 13 42

ED A5 A6 BC F3 21 41 6A 1E 84 E7 D6

The first matrix is State, and the second matrix is the round key.

The inverse add round key transformation is identical to the forward add 

round key transformation, because the XOR operation is its own inverse.

RATIONALE The add round key transformation is as simple as possible and affects 

every bit of State. The complexity of the round key expansion, plus the complexity 

of the other stages of AES, ensure security.

Figure 6.8 is another view of a single round of AES, emphasizing the mecha-

nisms and inputs of each transformation.



190  CHAPTER 6 / ADVANCED ENCRYPTION STANDARD

 6.4 AES KEY EXPANSION

Key Expansion Algorithm

The AES key expansion algorithm takes as input a four-word (16-byte) key and 

produces a linear array of 44 words (176 bytes). This is sufficient to provide a four-

word round key for the initial AddRoundKey stage and each of the 10 rounds of the 

cipher. The pseudocode on the next page describes the expansion.

The key is copied into the first four words of the expanded key. The remain-

der of the expanded key is filled in four words at a time. Each added word w[i] 

depends on the immediately preceding word, w[i - 1], and the word four positions 

back, w[i - 4]. In three out of four cases, a simple XOR is used. For a word whose 

position in the w array is a multiple of 4, a more complex function is used. Figure 6.9 

illustrates the generation of the expanded key, using the symbol g to represent that 

complex function. The function g consists of the following subfunctions.

Figure 6.8 Inputs for Single AES Round

SubBytes

State matrix
at beginning

of round

State matrix
at end

of round

MixColumns matrix
Round

key

Variable inputConstant inputs

ShiftRows

MixColumns

AddRoundKey

S-box

02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02
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KeyExpansion (byte key[16], word w[44])
{
    word temp
    for (i = 0; i < 4; i++) w[i] = (key[4*i], key[4*i+1],
      key[4*i+2],
      key[4*i+3]);
    for (i = 4; i < 44; i++)
    {
    temp = w[i − 1];
    if (i mod 4 = 0) temp = SubWord (RotWord (temp))
     ⊕ Rcon[i/4];
    w[i] = w[i−4] ⊕ temp
    }
}

Figure 6.9 AES Key Expansion

k3

(a) Overall algorithm

(b) Function g
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k2 k6 k10 k14
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w0 w1 w2 w3 g
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w

w

B1 B2 B3 B0

0 0 0
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1. RotWord performs a one-byte circular left shift on a word. This means that an 

input word [B0, B1, B2, B3] is transformed into [B1, B2, B3, B0].

2. SubWord performs a byte substitution on each byte of its input word, using the 

S-box (Table 6.2a).

3. The result of steps 1 and 2 is XORed with a round constant, Rcon[j].

The round constant is a word in which the three rightmost bytes are always 0. 

Thus, the effect of an XOR of a word with Rcon is to only perform an XOR on the 

leftmost byte of the word. The round constant is different for each round and is de-

fined as Rcon[j] = (RC[j], 0, 0, 0), with RC[1] = 1, RC[j] = 2 # RC[j - 1] and with 

multiplication defined over the field GF(28). The values of RC[j] in hexadecimal are

j 1 2 3 4 5 6 7 8 9 10

RC[j] 01 02 04 08 10 20 40 80 1B 36

For example, suppose that the round key for round 8 is

 EA D2 73 21 B5 8D BA D2 31 2B F5 60 7F 8D 29 2F 

Then the first 4 bytes (first column) of the round key for round 9 are calculated as 

follows:

i (decimal) temp
After 

RotWord

After 

SubWord
Rcon (9)

After XOR 

with Rcon
w[i - 4]

w[i] = temp

⊕ w[i - 4]

36 7F8D292F 8D292F7F 5DA515D2 1B000000 46A515D2 EAD27321 AC7766F3

Rationale

The Rijndael developers designed the expansion key algorithm to be resistant to 

known cryptanalytic attacks. The inclusion of a round-dependent round constant 

eliminates the symmetry, or similarity, between the ways in which round keys are 

generated in different rounds. The specific criteria that were used are [DAEM99]

 ■ Knowledge of a part of the cipher key or round key does not enable calcula-

tion of many other round-key bits.

 ■ An invertible transformation [i.e., knowledge of any Nk consecutive words of 

the expanded key enables regeneration of the entire expanded key (Nk = key 

size in words)].

 ■ Speed on a wide range of processors.

 ■ Usage of round constants to eliminate symmetries.

 ■ Diffusion of cipher key differences into the round keys; that is, each key bit 

affects many round key bits.

 ■ Enough nonlinearity to prohibit the full determination of round key differ-

ences from cipher key differences only.

 ■ Simplicity of description.
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The authors do not quantify the first point on the preceding list, but the idea 

is that if you know less than Nk consecutive words of either the cipher key or one of 

the round keys, then it is difficult to reconstruct the remaining unknown bits. The 

fewer bits one knows, the more difficult it is to do the reconstruction or to deter-

mine other bits in the key expansion.

 6.5 AN AES EXAMPLE

We now work through an example and consider some of its implications. Although 

you are not expected to duplicate the example by hand, you will find it informative 

to study the hex patterns that occur from one step to the next.

For this example, the plaintext is a hexadecimal palindrome. The plaintext, 

key, and resulting ciphertext are

Plaintext: 0123456789abcdeffedcba9876543210

Key: 0f1571c947d9e8590cb7add6af7f6798

Ciphertext: ff0b844a0853bf7c6934ab4364148fb9

Results

Table 6.3 shows the expansion of the 16-byte key into 10 round keys. As previ-

ously explained, this process is performed word by word, with each four-byte word 

 occupying one column of the word round-key matrix. The left-hand column shows 

Key Words Auxiliary Function

w0 = 0f 15 71 c9
w1 = 47 d9 e8 59
w2 = 0c b7 ad d6
w3 = af 7f 67 98

RotWord (w3) = 7f 67 98 af = x1
SubWord (x1) = d2 85 46 79 = y1
Rcon (1) = 01 00 00 00
y1 ⊕ Rcon (1) = d3 85 46 79 = z1

w4 = w0 ⊕ z1 = dc 90 37 b0
w5 = w4 ⊕ w1 = 9b 49 df e9
w6 = w5 ⊕ w2 = 97 fe 72 3f
w7 = w6 ⊕ w3 = 38 81 15 a7

RotWord (w7) = 81 15 a7 38 = x2
SubWord (x2) = 0c 59 5c 07 = y2
Rcon (2) = 02 00 00 00
y2 ⊕ Rcon (2) = 0e 59 5c 07 = z2

w8 = w4 ⊕ z2 = d2 c9 6b b7
w9 = w8 ⊕ w5 = 49 80 b4 5e
w10 = w9 ⊕ w6 = de 7e c6 61
w11 = w10 ⊕ w7 = e6 ff d3 c6

RotWord (w11) = ff d3 c6 e6 = x3
SubWord (x3) = 16 66 b4 83 = y3
Rcon (3) = 04 00 00 00
y3 ⊕ Rcon (3) = 12 66 b4 8e = z3

w12 = w8 ⊕ z3 = c0 af df 39
w13 = w12 ⊕ w9 = 89 2f 6b 67
w14 = w13 ⊕ w10 = 57 51 ad 06
w15 = w14 ⊕ w11 = b1 ae 7e c0

RotWord (w15) = ae 7e c0 b1 = x4
SubWord (x4) = e4 f3 ba c8 = y4
Rcon (4) = 08 00 00 00
y4 ⊕ Rcon (4) = ec f3 ba c8 = 4

Table 6.3 Key Expansion for AES Example

(Continued)
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Key Words Auxiliary Function

w16 = w12 ⊕ z4 = 2c 5c 65 f1
w17 = w16 ⊕ w13 = a5 73 0e 96
w18 = w17 ⊕ w14 = f2 22 a3 90
w19 = w18 ⊕ w15 = 43 8c dd 50

RotWord (w19) = 8c dd 50 43 = x5
SubWord (x5) = 64 c1 53 1a = y5
Rcon(5) = 10 00 00 00
y5 ⊕ Rcon (5) = 74 c1 53 1a = z5

w20 = w16 ⊕ z5 = 58 9d 36 eb
w21 = w20 ⊕ w17 = fd ee 38 7d
w22 = w21 ⊕ w18 = 0f cc 9b ed
w23 = w22 ⊕ w19 = 4c 40 46 bd

RotWord (w23) = 40 46 bd 4c = x6
SubWord (x6) = 09 5a 7a 29 = y6
Rcon(6) = 20 00 00 00
y6 ⊕ Rcon(6) = 29 5a 7a 29 = z6

w24 = w20 ⊕ z6 = 71 c7 4c c2
w25 = w24 ⊕ w21 = 8c 29 74 bf
w26 = w25 ⊕ w22 = 83 e5 ef 52
w27 = w26 ⊕ w23 = cf a5 a9 ef

RotWord (w27) = a5 a9 ef cf = x7
SubWord (x7) = 06 d3 bf 8a = y7
Rcon (7) = 40 00 00 00
y7 ⊕ Rcon(7) = 46 d3 df 8a = z7

w28 = w24 ⊕ z7 = 37 14 93 48
w29 = w28 ⊕ w25 = bb 3d e7 f7
w30 = w29 ⊕ w26 = 38 d8 08 a5
w31 = w30 ⊕ w27 = f7 7d a1 4a

RotWord (w31) = 7d a1 4a f7 = x8
SubWord (x8) = ff 32 d6 68 = y8
Rcon (8) = 80 00 00 00
y8 ⊕ Rcon(8) = 7f 32 d6 68 = z8

w32 = w28 ⊕ z8 = 48 26 45 20
w33 = w32 ⊕ w29 = f3 1b a2 d7
w34 = w33 ⊕ w30 = cb c3 aa 72
w35 = w34 ⊕ w32 = 3c be 0b 3

RotWord (w35) = be 0b 38 3c = x9
SubWord (x9) = ae 2b 07 eb = y9
Rcon (9) = 1B 00 00 00
y9 ⊕ Rcon (9) = b5 2b 07 eb = z9

w36 = w32 ⊕ z9 = fd 0d 42 cb
w37 = w36 ⊕ w33 = 0e 16 e0 1c
w38 = w37 ⊕ w34 = c5 d5 4a 6e
w39 = w38 ⊕ w35 = f9 6b 41 56

RotWord (w39) = 6b 41 56 f9 = x10
SubWord (x10) = 7f 83 b1 99 = y10
Rcon (10) = 36 00 00 00
y10 ⊕ Rcon (10) = 49 83 b1 99 = z10

w40 = w36 ⊕ z10 = b4 8e f3 52
w41 = w40 ⊕ w37 = ba 98 13 4e
w42 = w41 ⊕ w38 = 7f 4d 59 20
w43 = w42 ⊕ w39 = 86 26 18 76

Table 6.3 Continued

the four round-key words generated for each round. The right-hand column shows 

the steps used to generate the auxiliary word used in key expansion. We begin, of 

course, with the key itself serving as the round key for round 0.

Next, Table 6.4 shows the progression of State through the AES encryption 

process. The first column shows the value of State at the start of a round. For the 

first row, State is just the matrix arrangement of the plaintext. The second, third, and 

fourth columns show the value of State for that round after the SubBytes, ShiftRows, 

and MixColumns transformations, respectively. The fifth column shows the round 

key. You can verify that these round keys equate with those shown in Table 6.3. The 

first column shows the value of State resulting from the bitwise XOR of State after 

the preceding MixColumns with the round key for the preceding round.

Avalanche Effect

If a small change in the key or plaintext were to produce a corresponding small 

change in the ciphertext, this might be used to effectively reduce the size of the 
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Start of Round After SubBytes After ShiftRows After MixColumns Round Key

01 89 fe 76
23 ab dc 54
45 cd ba 32
67 ef 98 10

0f 47 0c af
15 d9 b7 7f
71 e8 ad 67
c9 59 d6 98

0e ce f2 d9
36 72 6b 2b
34 25 17 55
ae b6 4e 88

ab 8b 89 35
05 40 7f f1
18 3f f0 fc
e4 4e 2f c4

ab 8b 89 35
40 7f f1 05
f0 fc 18 3f
c4 e4 4e 2f

b9 94 57 75
e4 8e 16 51
47 20 9a 3f
c5 d6 f5 3b

dc 9b 97 38
90 49 fe 81
37 df 72 15
b0 e9 3f a7

65 0f c0 4d
74 c7 e8 d0
70 ff e8 2a
75 3f ca 9c

4d 76 ba e3
92 c6 9b 70
51 16 9b e5
9d 75 74 de

4d 76 ba e3
c6 9b 70 92
9b e5 51 16
de 9d 75 74

8e 22 db 12
b2 f2 dc 92
df 80 f7 c1
2d c5 1e 52

d2 49 de e6
c9 80 7e ff
6b b4 c6 d3
b7 5e 61 c6

5c 6b 05 f4
7b 72 a2 6d
b4 34 31 12
9a 9b 7f 94

4a 7f 6b bf
21 40 3a 3c
8d 18 c7 c9
b8 14 d2 22

4a 7f 6b bf
40 3a 3c 21
c7 c9 8d 18
22 b8 14 d2

b1 c1 0b cc
ba f3 8b 07
f9 1f 6a c3
1d 19 24 5c

c0 89 57 b1
af 2f 51 ae
df 6b ad 7e
39 67 06 c0

71 48 5c 7d
15 dc da a9
26 74 c7 bd
24 7e 22 9c

a3 52 4a ff
59 86 57 d3
f7 92 c6 7a
36 f3 93 de

a3 52 4a ff
86 57 d3 59
c6 7a f7 92
de 36 f3 93

d4 11 fe 0f
3b 44 06 73
cb ab 62 37
19 b7 07 ec

2c a5 f2 43
5c 73 22 8c
65 0e a3 dd
f1 96 90 50

f8 b4 0c 4c
67 37 24 ff
ae a5 c1 ea
e8 21 97 bc

41 8d fe 29
85 9a 36 16
e4 06 78 87
9b fd 88 65

41 8d fe 29
9a 36 16 85
78 87 e4 06
65 9b fd 88

2a 47 c4 48
83 e8 18 ba
84 18 27 23
eb 10 0a f3

58 fd 0f 4c
9d ee cc 40
36 38 9b 46
eb 7d ed bd

72 ba cb 04
1e 06 d4 fa
b2 20 bc 65
00 6d e7 4e

40 f4 1f f2
72 6f 48 2d
37 b7 65 4d
63 3c 94 2f

40 f4 1f f2
6f 48 2d 72
65 4d 37 b7
2f 63 3c 94

7b 05 42 4a
1e d0 20 40
94 83 18 52
94 c4 43 fb

71 8c 83 cf
c7 29 e5 a5
4c 74 ef a9
c2 bf 52 ef

0a 89 c1 85
d9 f9 c5 e5
d8 f7 f7 fb
56 7b 11 14

67 a7 78 97
35 99 a6 d9
61 68 68 0f
b1 21 82 fa

67 a7 78 97
99 a6 d9 35
68 0f 61 68
fa b1 21 82

ec 1a c0 80
0c 50 53 c7
3b d7 00 ef
b7 22 72 e0

37 bb 38 f7
14 3d d8 7d
93 e7 08 a1
48 f7 a5 4a

db a1 f8 77
18 6d 8b ba
a8 30 08 4e
ff d5 d7 aa

b9 32 41 f5
ad 3c 3d f4
c2 04 30 2f
16 03 0e ac

b9 32 41 f5
3c 3d f4 ad
30 2f c2 04
ac 16 03 0e

b1 1a 44 17
3d 2f ec b6
0a 6b 2f 42
9f 68 f3 b1

48 f3 cb 3c
26 1b c3 be
45 a2 aa 0b
20 d7 72 38

f9 e9 8f 2b
1b 34 2f 08
4f c9 85 49
bf bf 81 89

99 1e 73 f1
af 18 15 30
84 dd 97 3b
08 08 0c a7

99 1e 73 f1
18 15 30 af
97 3b 84 dd
a7 08 08 0c

31 30 3a c2
ac 71 8c c4
46 65 48 eb
6a 1c 31 62

fd 0e c5 f9
0d 16 d5 6b
42 e0 4a 41
cb 1c 6e 56

cc 3e ff 3b
a1 67 59 af
04 85 02 aa
a1 00 5f 34

4b b2 16 e2
32 85 cb 79
f2 97 77 ac
32 63 cf 18

4b b2 16 e2
85 cb 79 32
77 ac f2 97
18 32 63 cf

b4 ba 7f 86
8e 98 4d 26
f3 13 59 18
52 4e 20 76

ff 08 69 64
0b 53 34 14
84 bf ab 8f
4a 7c 43 b9

Table 6.4 AES Example
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Round
Number of Bits 

that Differ

0123456789abcdeffedcba9876543210
0023456789abcdeffedcba9876543210

1

0 0e3634aece7225b6f26b174ed92b5588
0f3634aece7225b6f26b174ed92b5588

1

1 657470750fc7ff3fc0e8e8ca4dd02a9c
c4a9ad090fc7ff3fc0e8e8ca4dd02a9c

20

2 5c7bb49a6b72349b05a2317ff46d1294
fe2ae569f7ee8bb8c1f5a2bb37ef53d5

58

3 7115262448dc747e5cdac7227da9bd9c
ec093dfb7c45343d689017507d485e62

59

4 f867aee8b437a5210c24c1974cffeabc
43efdb697244df808e8d9364ee0ae6f5

61

5 721eb200ba06206dcbd4bce704fa654e
7b28a5d5ed643287e006c099bb375302

68

6 0ad9d85689f9f77bc1c5f71185e5fb14
3bc2d8b6798d8ac4fe36a1d891ac181a

64

7 db18a8ffa16d30d5f88b08d777ba4eaa
9fb8b5452023c70280e5c4bb9e555a4b

67

8 f91b4fbfe934c9bf8f2f85812b084989
20264e1126b219aef7feb3f9b2d6de40

65

9 cca104a13e678500ff59025f3bafaa34
b56a0341b2290ba7dfdfbddcd8578205

61

10 ff0b844a0853bf7c6934ab4364148fb9
612b89398d0600cde116227ce72433f0

58

Table 6.5 Avalanche Effect in AES: Change in Plaintext

plaintext (or key) space to be searched. What is desired is the avalanche  effect, in 

which a small change in plaintext or key produces a large change in the ciphertext.

Using the example from Table 6.4, Table 6.5 shows the result when the 

eighth bit of the plaintext is changed. The second column of the table shows the 

value of the State matrix at the end of each round for the two plaintexts. Note 

that after just one round, 20 bits of the State vector differ. After two rounds, 

close to half the bits differ. This magnitude of difference propagates through 

the remaining rounds. A bit difference in approximately half the positions in the 

most desirable outcome. Clearly, if almost all the bits are changed, this would be 

logically equivalent to almost none of the bits being changed. Put another way, if 

we select two plaintexts at random, we would expect the two plaintexts to differ 

in about half of the bit positions and the two ciphertexts to also differ in about 

half the positions.

Table 6.6 shows the change in State matrix values when the same plaintext 

is used and the two keys differ in the eighth bit. That is, for the second case, the 

key is 0e1571c947d9e8590cb7add6af7f6798. Again, one round produces 

a significant change, and the magnitude of change after all subsequent rounds 

is roughly half the bits. Thus, based on this example, AES exhibits a very strong 

avalanche effect.
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Round
Number of Bits 

that Differ

0123456789abcdeffedcba9876543210
0123456789abcdeffedcba9876543210

0

0 0e3634aece7225b6f26b174ed92b5588
0f3634aece7225b6f26b174ed92b5588

1

1 657470750fc7ff3fc0e8e8ca4dd02a9c
c5a9ad090ec7ff3fc1e8e8ca4cd02a9c

22

2 5c7bb49a6b72349b05a2317ff46d1294
90905fa9563356d15f3760f3b8259985

58

3 7115262448dc747e5cdac7227da9bd9c
18aeb7aa794b3b66629448d575c7cebf

67

4 f867aee8b437a5210c24c1974cffeabc
f81015f993c978a876ae017cb49e7eec

63

5 721eb200ba06206dcbd4bce704fa654e
5955c91b4e769f3cb4a94768e98d5267

81

6 0ad9d85689f9f77bc1c5f71185e5fb14
dc60a24d137662181e45b8d3726b2920

70

7 db18a8ffa16d30d5f88b08d777ba4eaa
fe8343b8f88bef66cab7e977d005a03c

74

8 f91b4fbfe934c9bf8f2f85812b084989
da7dad581d1725c5b72fa0f9d9d1366a

67

9 cca104a13e678500ff59025f3bafaa34
0ccb4c66bbfd912f4b511d72996345e0

59

10 ff0b844a0853bf7c6934ab4364148fb9
fc8923ee501a7d207ab670686839996b

53

Table 6.6 Avalanche Effect in AES: Change in Key

Note that this avalanche effect is stronger than that for DES (Table 4.2), 

which requires three rounds to reach a point at which approximately half the bits 

are changed, both for a bit change in the plaintext and a bit change in the key.

 6.6 AES IMPLEMENTATION

Equivalent Inverse Cipher

As was mentioned, the AES decryption cipher is not identical to the encryption 

cipher (Figure 6.3). That is, the sequence of transformations for decryption differs 

from that for encryption, although the form of the key schedules for encryption 

and decryption is the same. This has the disadvantage that two separate software 

or firmware modules are needed for applications that require both encryption and 

decryption. There is, however, an equivalent version of the decryption algorithm 

that has the same structure as the encryption algorithm. The equivalent version has 

the same sequence of transformations as the encryption algorithm (with transfor-

mations replaced by their inverses). To achieve this equivalence, a change in key 

schedule is needed.
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Two separate changes are needed to bring the decryption structure in line 

with the encryption structure. As illustrated in Figure 6.3, an encryption round has 

the structure SubBytes, ShiftRows, MixColumns, AddRoundKey. The standard 

decryption round has the structure InvShiftRows, InvSubBytes, AddRoundKey, 

InvMixColumns. Thus, the first two stages of the decryption round need to be inter-

changed, and the second two stages of the decryption round need to be interchanged.

INTERCHANGING INVSHIFTROWS AND INVSUBBYTES InvShiftRows affects the se-

quence of bytes in State but does not alter byte contents and does not depend on 

byte contents to perform its transformation. InvSubBytes affects the contents of 

bytes in State but does not alter byte sequence and does not depend on byte se-

quence to perform its transformation. Thus, these two operations commute and can 

be interchanged. For a given State Si,

 InvShiftRows [InvSubBytes (Si)] = InvSubBytes [InvShiftRows (Si)] 

INTERCHANGING ADDROUNDKEY AND INVMIXCOLUMNS The transformations 

AddRoundKey and InvMixColumns do not alter the sequence of bytes in State. If we 

view the key as a sequence of words, then both AddRoundKey and InvMixColumns 

operate on State one column at a time. These two operations are linear with respect 

to the column input. That is, for a given State Si and a given round key wj,

 InvMixColumns (Si⊕ wj) = [InvMixColumns (Si)]⊕ [InvMixColumns (wj)] 

To see this, suppose that the first column of State Si is the sequence (y0, y1, y2, y3) 

and the first column of the round key wj is (k0, k1, k2, k3). Then we need to show

D 0E 0B 0D 09

09 0E 0B 0D

0D 09 0E 0B

0B 0D 09 0E

T Dy0⊕ k0

y1⊕ k1

y2⊕ k2

y3⊕ k3

T = D 0E 0B 0D 09

09 0E 0B 0D

0D 09 0E 0B

0B 0D 09 0E

T Dy0

y1

y2

y3

T ⊕ D 0E 0B 0D 09

09 0E 0B 0D

0D 09 0E 0B

0B 0D 09 0E

T Dk0

k1

k2

k3

T
Let us demonstrate that for the first column entry. We need to show

 [{0E} # (y0⊕ k0)]⊕ [{0B} # (y1⊕ k1)]⊕ [{0D} # (y2⊕ k2)]⊕ [{09} # (y3⊕ k3)]

= [{0E} # y0]⊕ [{0B} # y1]⊕ [{0D} # y2]⊕ [{09} # y3]⊕
 [{0E} # k0]⊕ [{0B} # k1]⊕ [{0D} # k2]⊕ [{09} # k3] 

This equation is valid by inspection. Thus, we can interchange AddRoundKey 

and InvMixColumns, provided that we first apply InvMixColumns to the round 

key. Note that we do not need to apply InvMixColumns to the round key for the 

input to the first AddRoundKey transformation (preceding the first round) nor to 

the last AddRoundKey transformation (in round 10). This is because these two 

AddRoundKey transformations are not interchanged with InvMixColumns to pro-

duce the equivalent decryption algorithm.

Figure 6.10 illustrates the equivalent decryption algorithm.
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Figure 6.10 Equivalent Inverse Cipher
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Implementation Aspects

The Rijndael proposal [DAEM99] provides some suggestions for efficient im-

plementation on 8-bit processors, typical for current smart cards, and on 32-bit 

 processors, typical for PCs.

8-BIT PROCESSOR AES can be implemented very efficiently on an 8-bit proces-

sor. AddRoundKey is a bytewise XOR operation. ShiftRows is a simple byte-

shifting operation. SubBytes operates at the byte level and only requires a table 

of 256 bytes.

The transformation MixColumns requires matrix multiplication in the field 

GF(28), which means that all operations are carried out on bytes. MixColumns only 

requires multiplication by {02} and {03}, which, as we have seen, involved simple 

shifts, conditional XORs, and XORs. This can be implemented in a more efficient 
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way that eliminates the shifts and conditional XORs. Equation set (6.4) shows the 

equations for the MixColumns transformation on a single column. Using the iden-

tity {03} # x = ({02} # x)⊕ x, we can rewrite Equation set (6.4) as follows.

  Tmp = s0, j⊕ s1, j⊕ s2, j⊕ s3, j

 s0, j
= = s0, j⊕ Tmp⊕ [2 # (s0, j⊕ s1, j)]

 s1, j
= = s1, j⊕ Tmp⊕ [2 # (s1, j⊕ s2, j)]   (6.9)

 s2, j
= = s2, j⊕ Tmp⊕ [2 # (s2, j⊕ s3, j)]

 s3, j
= = s3, j⊕ Tmp⊕ [2 # (s3, j⊕ s0, j)]

Equation set (6.9) is verified by expanding and eliminating terms.

The multiplication by {02} involves a shift and a conditional XOR. Such 

an  implementation may be vulnerable to a timing attack of the sort described in 

Section 4.4. To counter this attack and to increase processing efficiency at the 

cost of some storage, the multiplication can be replaced by a table lookup. Define 

the 256-byte table X2, such that X2[i] = {02} # i. Then Equation set (6.9) can be 

 rewritten as

 Tmp = s0, j⊕ s1, j⊕ s2, j⊕ s3, j

 s0, j
= = s0, j⊕ Tmp⊕ X2[s0, j⊕ s1, j]

 s1, c
= = s1, j⊕ Tmp⊕ X2[s1, j⊕ s2, j]

 s2, c
= = s2, j⊕ Tmp⊕ X2[s2, j⊕ s3, j]

  s3, j
= = s3, j⊕ Tmp⊕ X2[s3, j⊕ s0, j] 

32-BIT PROCESSOR The implementation described in the preceding subsection uses 

only 8-bit operations. For a 32-bit processor, a more efficient implementation can be 

achieved if operations are defined on 32-bit words. To show this, we first define the 

four transformations of a round in algebraic form. Suppose we begin with a State 

matrix consisting of elements ai, j and a round-key matrix consisting of  elements ki, j. 

Then the transformations can be expressed as follows.

SubBytes bi, j = S[ai, j]

ShiftRows D c0, j

c1, j

c2, j

c3, j

T = D b0, j

b1, j- 1

b2, j- 2

b3, j- 3

T
MixColumns Dd0, j

d1, j

d2, j

d3, j

T = D02 03 01 01

01 02 03 01

01 01 02 03

03 01 01 02

T D c0, j

c1, j

c2, j

c3, j

T
AddRoundKey D e0, j

e1, j

e2, j

e3, j

T = Dd0, j

d1, j

d2, j

d3, j

T ⊕ Dk0, j

k1, j

k2, j

k3, j

T
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In the ShiftRows equation, the column indices are taken mod 4. We can 

 combine all of these expressions into a single equation:

 D e0, j

e1, j

e2, j

e3, j

T = D02 03 01 01

01 02 03 01

01 01 02 03

03 01 01 02

T D S[a0, j]

S[a1, j- 1]

S[a2, j- 2]

S[a3, j- 3]

T ⊕ Dk0, j

k1, j

k2, j

k3, j

T
 = § D02

01

01

03

T # S[a0, j]¥ ⊕ § D03

02

01

01

T # S[a1, j- 1]¥ ⊕ § D01

03

02

01

T # S[a2, j- 2]¥
⊕ § D01

01

03

02

T # S[a3, j- 3]¥ ⊕ Dk0, j

k1, j

k2, j

k3, j

T  

In the second equation, we are expressing the matrix multiplication as a linear com-

bination of vectors. We define four 256-word (1024-byte) tables as follows.

T0[x] = § D02

01

01

03

T # S[x]¥ T1[x] = § D03

02

01

01

T # S[x]¥ T2[x] = § D01

03

02

01

T # S[x]¥ T3[x] = § D01

01

03

02

T # S[x]¥
Thus, each table takes as input a byte value and produces a column vector (a 32-bit 

word) that is a function of the S-box entry for that byte value. These tables can be 

calculated in advance.

We can define a round function operating on a column in the following fashion.

 D s0, j
=

s1, j
=

s2, j
=

s3, j
=

T = T0[s0, j]⊕ T1[s1, j- 1]⊕ T2[s2, j- 2]⊕ T3[s3, j- 3]⊕ Dk0, j

k1, j

k2, j

k3, j

T  

As a result, an implementation based on the preceding equation requires only 

four table lookups and four XORs per column per round, plus 4 Kbytes to store the 

table. The developers of Rijndael believe that this compact, efficient implementa-

tion was probably one of the most important factors in the selection of Rijndael 

for AES.
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 6.7 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Advanced Encryption 

Standard (AES)

avalanche effect

field

finite field

irreducible 

polynomial

key expansion

National Institute of Standards 

and Technology (NIST)

Rijndael

S-box

Key Terms 

Review Questions 

 6.1 What was the original set of criteria used by NIST to evaluate candidate AES ciphers?

 6.2 What was the final set of criteria used by NIST to evaluate candidate AES ciphers?

 6.3 What is the difference between Rijndael and AES?

 6.4 What is the purpose of the State array?

 6.5 How is the S-box constructed?

 6.6 Briefly describe SubBytes.

 6.7 Briefly describe ShiftRows.

 6.8 How many bytes in State are affected by ShiftRows?

 6.9 Briefly describe MixColumns.

 6.10 Briefly describe AddRoundKey.

 6.11 Briefly describe the key expansion algorithm.

 6.12 What is the difference between SubBytes and SubWord?

 6.13 What is the difference between ShiftRows and RotWord?

 6.14 What is the difference between the AES decryption algorithm and the equivalent 
inverse cipher?

Problems 

 6.1 In the discussion of MixColumns and InvMixColumns, it was stated that

 b(x) = a-1(x) mod(x4 + 1) 

  where a(x) = {03}x3 + {01}x2 + {01}x + {02} and b(x) = {0B}x3 + {0D}x2 + {09}x +  
{0E.} Show that this is true.

 6.2 a. What is {0 2 }-1  in GF(28)?
b. Verify the entry for {0 2 } in the S-box.

 6.3 Show the first eight words of the key expansion for a 128-bit key of all ones.

 6.4 Given the plaintext {0F0E0D0C0B0A09080706050403020100} and the key 
{02020202020202020202020202020202}:
a. Show the original contents of State, displayed as a 4 * 4 matrix.
b. Show the value of State after initial AddRoundKey.
c. Show the value of State after SubBytes.
d. Show the value of State after ShiftRows.
e. Show the value of State after MixColumns.

 6.5 Verify Equation (6.11) in Appendix 6A. That is, show that xi mod (x4 + 1) = xi mod 4.
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 6.6 Compare AES to DES. For each of the following elements of DES, indicate the com-
parable element in AES or explain why it is not needed in AES.
a. XOR of subkey material with the input to the f function
b. XOR of the f function output with the left half of the block
c. f function
d. permutation P
e. swapping of halves of the block

 6.7 In the subsection on implementation aspects, it is mentioned that the use of tables 
helps thwart timing attacks. Suggest an alternative technique.

 6.8 In the subsection on implementation aspects, a single algebraic equation is developed 
that describes the four stages of a typical round of the encryption algorithm. Provide 
the equivalent equation for the tenth round.

 6.9 Compute the output of the MixColumns transformation for the following sequence 
of input bytes “A1 B2 C3 D4.” Apply the InvMixColumns transformation to the ob-
tained result to verify your calculations. Change the first byte of the input from “A1” 
to “A3” perform the MixColumns transformation again for the new input, and deter-
mine how many bits have changed in the output.

  Note: You can perform all calculations by hand or write a program supporting these 
computations. If you choose to write a program, it should be written entirely by you; 
no use of libraries or public domain source code is allowed in this assignment.

 6.10 Use the key 1010 1001 1100 0011 to encrypt the plaintext “hi” as expressed in ASCII 
as 0110 1000 0110 1001. The designers of S-AES got the ciphertext 0011 1110 1111 
1011. Do you?

 6.11 Show that the matrix given here, with entries in GF(24), is the inverse of the matrix 
used in the MixColumns step of S-AES.¢x3 + 1 x

x x3 + 1
≤

 6.12 Carefully write up a complete decryption of the ciphertext 0011 1110 1111 1011 using 
the key 1010 1001 1100 0011 and the S-AES algorithm. You should get the plaintext 
we started with in Problem 6.10. Note that the inverse of the S-boxes can be done 
with a reverse table lookup. The inverse of the MixColumns step is given by the ma-
trix in the previous problem.

 6.13 Demonstrate that Equation (6.9) is equivalent to Equation (6.4).

Programming Problems 

 6.14 Create software that can encrypt and decrypt using S-AES. Test data: A binary 
 plaintext of 0110 1111 0110 1011 encrypted with a binary key of 1010 0111 0011 1011 
should give a binary ciphertext of 0000 0111 0011 1000. Decryption should work 
 correspondingly.

 6.15 Implement a differential cryptanalysis attack on 1-round S-AES.

 APPENDIX 6A POLYNOMIALS WITH COEFFICIENTS IN GF(28)

In Section 5.5, we discussed polynomial arithmetic in which the coefficients are in Zp  

and the polynomials are defined modulo a polynomial m(x) whose highest power 

is some integer n. In this case, addition and multiplication of coefficients occurred 

within the field Zp; that is, addition and multiplication were performed modulo p.
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The AES document defines polynomial arithmetic for polynomials of degree 3 

or less with coefficients in GF(28). The following rules apply.

1. Addition is performed by adding corresponding coefficients in GF(28). As was 

pointed out Section 5.4, if we treat the elements of GF(28) as 8-bit strings, then 

addition is equivalent to the XOR operation. So, if we have

  a(x) = a3x
3 + a2x

2 + a1x + a0   (6.10)

and

  b(x) = b3x
3 + b2x

2 + b1x + b0   (6.11)

then

 a(x) + b(x) = (a3⊕ b3)x3 + (a2⊕ b2)x2 + (a1 ⊕ b1)x + (a0⊕ b0) 

2. Multiplication is performed as in ordinary polynomial multiplication with two 

refinements:

a. Coefficients are multiplied in GF(28).

b. The resulting polynomial is reduced mod (x4 + 1).

We need to keep straight which polynomial we are talking about. Recall from 

Section 5.6 that each element of GF(28) is a polynomial of degree 7 or less with bi-

nary coefficients, and multiplication is carried out modulo a polynomial of degree 

8. Equivalently, each element of GF(28) can be viewed as an 8-bit byte whose bit 

values correspond to the binary coefficients of the corresponding polynomial. For 

the sets defined in this section, we are defining a polynomial ring in which each ele-

ment of this ring is a polynomial of degree 3 or less with coefficients in GF(28), and 

multiplication is carried out modulo a polynomial of degree 4. Equivalently, each 

element of this ring can be viewed as a 4-byte word whose byte values are elements 

of GF(28) that correspond to the 8-bit coefficients of the corresponding polynomial.

We denote the modular product of a(x) and b(x) by a(x)⊕ b(x). To com-

pute d(x) = a(x)⊕ b(x), the first step is to perform a multiplication without the 

modulo operation and to collect coefficients of like powers. Let us express this as 

c(x) = a(x) * b(x). Then

  c(x) = c6x
6 + c5x

5 + c4x
4 + c3x

3 + c2x
2 + c1x + c0   (6.12)

where

 

c0 = a0
# b0 c4 = (a3

# b1)⊕ (a2
# b2)⊕ (a1

# b3)

c1 = (a1
# b0)⊕ (a0

# b1) c5 = (a3
# b2)⊕ (a2

# b3)

c2 = (a2
# b0)⊕ (a1

# b1)⊕ (a0
# b2) c6 = a3

# b3

c3 = (a3
# b0)⊕ (a2

# b1)⊕ (a1
# b2)⊕ (a0

# b3)

 

The final step is to perform the modulo operation

 d(x) = c(x) mod (x4 + 1) 



That is, d(x) must satisfy the equation

 c(x) = [(x4 + 1) * q(x)]⊕ d(x) 

such that the degree of d(x) is 3 or less.

A practical technique for performing multiplication over this polynomial ring 

is based on the observation that

  xi mod (x4 + 1) = xi mod 4   (6.13)

If we now combine Equations (6.12) and (6.13), we end up with

 d(x) = c(x) mod (x4 + 1)

 = [c6x
6 + c5x

5 + c4x
4 + c3x

3 + c2x
2 + c1x + c0] mod (x4 + 1)

 = c3x
3 + (c2⊕ c6)x2 + (c1⊕ c5)x + (c0⊕ c4)

Expanding the ci coefficients, we have the following equations for the coef-

ficients of d(x).

 d0 = (a0
# b0)⊕ (a3

# b1)⊕ (a2
# b2)⊕ (a1

# b3)

 d1 = (a1
# b0)⊕ (a0

# b1)⊕ (a3
# b2)⊕ (a2

# b3)

 d2 = (a2
# b0)⊕ (a1

# b1)⊕ (a0
# b2)⊕ (a3

# b3)

 d3 = (a3
# b0)⊕ (a2

# b1)⊕ (a1
# b2)⊕ (a0

# b3)

This can be written in matrix form:

 Dd0

d1

d2

d3

T = Da0 a3 a2 a1

a1 a0 a3 a2

a2 a1 a0 a3

a3 a2 a1 a0

T Db0

b1

b2

b3

T  (6.14)

MixColumns Transformation 

In the discussion of MixColumns, it was stated that there were two equivalent 

ways of defining the transformation. The first is the matrix multiplication shown in 

Equation (6.3), which is repeated here:

 D02 03 01 01

01 02 03 01

01 01 02 03

03 01 01 02

T D s0, 0 s0, 1 s0, 2 s0, 3

s1, 0 s1, 1 s1, 2 s1, 3

s2, 0 s2, 1 s2, 2 s2, 3

s3, 0 s3, 1 s3, 2 s3, 3

T = D s0, 0
= s0, 1

= s0, 2
= s0, 3

=

s1, 0
= s1, 1

= s1, 2
= s1, 3

=

s2, 0
= s2, 1

= s2, 2
= s2, 3

=

s3, 0
= s3, 1

= s3, 2
= s3, 3

=

T  

The second method is to treat each column of State as a four-term polynomial 

with coefficients in GF(28). Each column is multiplied modulo (x4 + 1) by the fixed 

polynomial a(x), given by

 a(x) = {03}x3 + {01}x2 + {01}x + {02} 
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From Equation (6.10), we have a3 = {03}; a2 = {01}; a1 = {01}; and 

a0 = {02}. For the jth column of State, we have the polynomial colj(x) = s3,jx
3 +

s2,jx
2 + s1,jx + s0, j. Substituting into Equation (6.14), we can  express 

d(x) = a(x) * colj(x) as

 Dd0

d1

d2

d3

T = Da0 a3 a2 a1

a1 a0 a3 a2

a2 a1 a0 a3

a3 a2 a1 a0

T D s0,j

s1,j

s2,j

s3,j

T = D02 03 01 01

01 02 03 01

01 01 02 03

03 01 01 02

T D s0,j

s1,j

s2,j

s3,j

T  

which is equivalent to Equation (6.3).

Multiplication by x 

Consider the multiplication of a polynomial in the ring by x: c(x) = x⊕ b(x). 

We have

 c(x) = x⊕ b(x) = [x * (b3x
3 + b2x

2 + b1x + b0] mod (x4 + 1) 

 = (b3x
4 + b2x

3 + b1x
2 + b0x) mod (x4 + 1)

 = b2x
3 + b1x

2 + b0x + b3

Thus, multiplication by x corresponds to a 1-byte circular left shift of the 

4 bytes in the word representing the polynomial. If we represent the polynomial as 

a 4-byte column vector, then we have

 D c0

c1

c2

c3

T = D00 00 00 01

01 00 00 00

00 01 00 00

00 00 01 00

T Db0

b1

b2

b3

T  
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This chapter continues our discussion of symmetric ciphers. We begin with the topic of 

multiple encryption, looking in particular at the most widely used multiple-encryption 

scheme: triple DES.

The chapter next turns to the subject of block cipher modes of operation. We 

find that there are a number of different ways to apply a block cipher to plaintext, each 

with its own advantages and particular applications.

 7.1 MULTIPLE ENCRYPTION AND TRIPLE DES

Because of its vulnerability to brute-force attack, DES, once the most widely used 

symmetric cipher, has been largely replaced by stronger encryption schemes. Two 

approaches have been taken. One approach is to design a completely new algo-

rithm that is resistant to both cryptanalytic and brute-force attacks, of which AES 

is a prime example. Another alternative, which preserves the existing investment in 

software and equipment, is to use multiple encryption with DES and multiple keys. 

We begin by examining the simplest example of this second alternative. We then 

look at the widely accepted triple DES (3DES) algorithm.

Double DES

The simplest form of multiple encryption has two encryption stages and two keys 

(Figure 7.1a). Given a plaintext P and two encryption keys K1 and K2, ciphertext C 

is generated as

 C = E(K2, E(K1, P)) 

Decryption requires that the keys be applied in reverse order:

 P = D(K1, D(K2, C)) 

For DES, this scheme apparently involves a key length of 56 * 2 = 112 bits, and 

should result in a dramatic increase in cryptographic strength. But we need to exam-

ine the algorithm more closely.

LEARNING OBJECTIVES

After studying this chapter, you should be able to:

 ◆ Analyze the security of multiple encryption schemes.

 ◆ Explain the meet-in-the-middle attack.

 ◆ Compare and contrast ECB, CBC, CFB, OFB, and counter modes of operation.

 ◆ Present an overview of the XTS-AES mode of operation.
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REDUCTION TO A SINGLE STAGE Suppose it were true for DES, for all 56-bit key val-

ues, that given any two keys K1 and K2, it would be possible to find a key K3 such that

  E(K2, E(K1, P)) = E(K3, P)   (7.1)

If this were the case, then double encryption, and indeed any number of stages of 

multiple encryption with DES, would be useless because the result would be equiv-

alent to a single encryption with a single 56-bit key.

On the face of it, it does not appear that Equation (7.1) is likely to hold. 

Consider that encryption with DES is a mapping of 64-bit blocks to 64-bit blocks. 

In fact, the mapping can be viewed as a permutation. That is, if we consider all 264 

possible input blocks, DES encryption with a specific key will map each block into a 

unique 64-bit block. Otherwise, if, say, two given input blocks mapped to the same 

output block, then decryption to recover the original plaintext would be impossible. 

Figure 7.1 Multiple Encryption
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D D
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X
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E D E
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Encryption
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K2
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(b) Triple encryption
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With 264 possible inputs, how many different mappings are there that generate a 

permutation of the input blocks? The value is easily seen to be

 (264)! = 10347380000000000000000 7 (101020

) 

On the other hand, DES defines one mapping for each different key, for a total 

number of mappings:

 256 6 1017 

Therefore, it is reasonable to assume that if DES is used twice with different keys, it 

will produce one of the many mappings that are not defined by a single application 

of DES. Although there was much supporting evidence for this assumption, it was 

not until 1992 that the assumption was proven [CAMP92].

MEET-IN-THE-MIDDLE ATTACK Thus, the use of double DES results in a mapping 

that is not equivalent to a single DES encryption. But there is a way to attack this 

scheme, one that does not depend on any particular property of DES but that will 

work against any block encryption cipher.

The algorithm, known as a meet-in-the-middle attack, was first described in 

[DIFF77]. It is based on the observation that, if we have

 C = E(K2, E(K1, P)) 

then (see Figure 7.1a)

 X = E(K1, P) = D(K2, C) 

Given a known pair, (P, C), the attack proceeds as follows. First, encrypt P for all 

256 possible values of K1. Store these results in a table and then sort the table by the 

values of X. Next, decrypt C using all 256 possible values of K2. As each decryption 

is produced, check the result against the table for a match. If a match occurs, then 

test the two resulting keys against a new known plaintext–ciphertext pair. If the two 

keys produce the correct ciphertext, accept them as the correct keys.

For any given plaintext P, there are 264 possible ciphertext values that could be 

produced by double DES. Double DES uses, in effect, a 112-bit key, so that there 

are 2112 possible keys. Therefore, for a given plaintext P, the maximum number 

of different 112-bit keys that could produce a given ciphertext C is 2112/264 = 248. 

Thus, the foregoing procedure can produce about 248 false alarms on the first (P, C) 

pair. A similar argument indicates that with an additional 64 bits of known plaintext 

and ciphertext, the false alarm rate is reduced to 248 - 64 = 2-16. Put another way, 

if the meet-in-the-middle attack is performed on two blocks of known plaintext– 

ciphertext, the probability that the correct keys are determined is 1 - 2-16. The 

 result is that a known plaintext attack will succeed against double DES, which has a 

key size of 112 bits, with an effort on the order of 256, which is not much more than 

the 255 required for single DES.

Triple DES with Two Keys

An obvious counter to the meet-in-the-middle attack is to use three stages of 

encryption with three different keys. Using DES as the underlying algorithm, 

this approach is commonly referred to as 3DES, or Triple Data Encryption 
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Algorithm (TDEA). As shown in Figure 7.1b, there are two versions of 3DES; 

one using two keys and one using three keys. NIST SP 800-67 (Recommendation 
for the Triple Data Encryption Block Cipher, January 2012) defines the two-key 

and three-key versions. We look first at the strength of the two-key version and 

then examine the three-key version.

Two-key triple encryption was first proposed by Tuchman [TUCH79]. The 

function follows an encrypt-decrypt-encrypt (EDE) sequence (Figure 7.1b):

 C = E(K1, D(K2, E(K1, P)))

 P = D(K1, E(K2, D(K1, C)))

There is no cryptographic significance to the use of decryption for the second 

stage. Its only advantage is that it allows users of 3DES to decrypt data encrypted by 

users of the older single DES:

 C = E(K1, D(K1, E(K1, P))) = E(K1, P)

 P = D(K1, E(K1, D(K1, C))) = D(K1, C)

3DES with two keys is a relatively popular alternative to DES and has been 

adopted for use in the key management standards ANSI X9.17 and ISO 8732.1

Currently, there are no practical cryptanalytic attacks on 3DES. Coppersmith 

[COPP94] notes that the cost of a brute-force key search on 3DES is on the order of 

2112 ≈ (5 * 1033) and estimates that the cost of differential cryptanalysis suffers an 

exponential growth, compared to single DES, exceeding 1052.

It is worth looking at several proposed attacks on 3DES that, although not 

practical, give a flavor for the types of attacks that have been considered and that 

could form the basis for more successful future attacks.

The first serious proposal came from Merkle and Hellman [MERK81]. Their 

plan involves finding plaintext values that produce a first intermediate value of 

A = 0 (Figure 7.1b) and then using the meet-in-the-middle attack to determine 

the two keys. The level of effort is 256, but the technique requires 256 chosen plain-

text–ciphertext pairs, which is a number unlikely to be provided by the holder of 

the keys.

A known-plaintext attack is outlined in [VANO90]. This method is an im-

provement over the chosen-plaintext approach but requires more effort. The attack 

is based on the observation that if we know A and C (Figure 7.1b), then the problem 

reduces to that of an attack on double DES. Of course, the attacker does not know 

A, even if P and C are known, as long as the two keys are unknown. However, the 

attacker can choose a potential value of A and then try to find a known (P, C) pair 

that produces A. The attack proceeds as follows.

1. Obtain n (P, C) pairs. This is the known plaintext. Place these in a table 

(Table 1) sorted on the values of P (Figure 7.2b).

1American National Standards Institute (ANSI): Financial Institution Key Management (Wholesale). 
From its title, X9.17 appears to be a somewhat obscure standard. Yet a number of techniques specified in 
this standard have been adopted for use in other standards and applications, as we shall see throughout 
this book.
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2. Pick an arbitrary value a for A, and create a second table (Figure 7.2c) with en-

tries defined in the following fashion. For each of the 256 possible keys K1 = i, 
calculate the plaintext value Pi such that

Pi = D(i, a)

For each Pi that matches an entry in Table 1, create an entry in Table 2 consist-

ing of the K1 value and the value of B that is produced for the (P, C) pair from 

Table 1, assuming that value of K1:

B = D(i, C)

At the end of this step, sort Table 2 on the values of B.

3. We now have a number of candidate values of K1 in Table 2 and are in a 

 position to search for a value of K2. For each of the 256 possible keys K2 = j, 
 calculate the second intermediate value for our chosen value of a:

Bj = D(j, a)

At each step, look up Bj in Table 2. If there is a match, then the corresponding 

key i from Table 2 plus this value of j are candidate values for the unknown 

keys (K1, K2). Why? Because we have found a pair of keys (i, j) that produce a 

known (P, C) pair (Figure 7.2a).

4. Test each candidate pair of keys (i, j) on a few other plaintext–ciphertext pairs. 

If a pair of keys produces the desired ciphertext, the task is complete. If no pair 

succeeds, repeat from step 1 with a new value of a.

Figure 7.2 Known-Plaintext Attack on Triple DES
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For a given known (P, C), the probability of selecting the unique value of a 

that leads to success is 1/264. Thus, given n (P, C) pairs, the probability of success for 

a single selected value of a is n/264. A basic result from probability theory is that the 

expected number of draws required to draw one red ball out of a bin containing n 

red balls and N - n green balls is (N + 1)/(n + 1) if the balls are not replaced. So 

the expected number of values of a that must be tried is, for large n,

 
264 + 1

n + 1
≈

264

n
 

Thus, the expected running time of the attack is on the order of

 (256) 
264

n
= 2120 - log2 n 

Triple DES with Three Keys

Although the attacks just described appear impractical, anyone using two-key 3DES 

may feel some concern. Thus, many researchers now feel that three-key 3DES is the 

preferred alternative (e.g., [KALI96a]). In SP 800-57, Part 1 (Recommendation for 
Key Management—Part 1: General, July 2012) NIST recommends that 2-key 3DES 

be retired as soon as practical and replaced with 3-key 3DES. 

Three-key 3DES is defined as

 C = E(K3, D(K2, E(K1, P))) 

Backward compatibility with DES is provided by putting K3 = K2 or K1 = K2. One 

might expect that 3TDEA would provide 56 #  3 = 168 bits of strength. However, 

there is an attack on 3TDEA that reduces the strength to the work that would be 

involved in exhausting a 112-bit key [MERK81].

A number of Internet-based applications have adopted three-key 3DES, in-

cluding PGP and S/MIME, both discussed in Chapter 19.

 7.2 ELECTRONIC CODEBOOK

A block cipher takes a fixed-length block of text of length b bits and a key as input 

and produces a b-bit block of ciphertext. If the amount of plaintext to be encrypted 

is greater than b bits, then the block cipher can still be used by breaking the plain-

text up into b-bit blocks. When multiple blocks of plaintext are encrypted using the 

same key, a number of security issues arise. To apply a block cipher in a variety of 

applications, five modes of operation have been defined by NIST (SP 800-38A). 

In essence, a mode of operation is a technique for enhancing the effect of a cryp-

tographic algorithm or adapting the algorithm for an application, such as applying 

a block cipher to a sequence of data blocks or a data stream. The five modes are 

intended to cover a wide variety of applications of encryption for which a block 

cipher could be used. These modes are intended for use with any symmetric block 

cipher, including triple DES and AES. The modes are summarized in Table 7.1 and 

described in this and the following sections.
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The simplest mode is the electronic codebook (ECB) mode, in which plaintext 

is handled one block at a time and each block of plaintext is encrypted using the 

same key (Figure 7.3). The term codebook is used because, for a given key, there is 

a unique ciphertext for every b-bit block of plaintext. Therefore, we can imagine a 

gigantic codebook in which there is an entry for every possible b-bit plaintext pat-

tern showing its corresponding ciphertext.

For a message longer than b bits, the procedure is simply to break the message 

into b-bit blocks, padding the last block if necessary. Decryption is performed one 

block at a time, always using the same key. In Figure 7.3, the plaintext (padded as 

necessary) consists of a sequence of b-bit blocks, P1, P2, c , PN; the correspond-

ing sequence of ciphertext blocks is C1, C2, c , CN. We can define ECB mode as 

follows.

ECB C j = E(K, Pj)   j = 1, c , N Pj = D(K, Cj)   j = 1, c , N

The ECB mode should be used only to secure messages shorter than a single 

block of underlying cipher (i.e., 64 bits for 3DES and 128 bits for AES), such as to 

encrypt a secret key. Because in most of the cases messages are longer than the en-

cryption block mode, this mode has a minimum practical value.

The most significant characteristic of ECB is that if the same b-bit block of 

plaintext appears more than once in the message, it always produces the same 

ciphertext.

Mode Description Typical Application

Electronic Codebook (ECB) Each block of plaintext bits is 

encoded independently using the 

same key.

Secure transmission of 

single values (e.g., an 

encryption key)

Cipher Block Chaining (CBC) The input to the encryption algo-

rithm is the XOR of the next block 

of plaintext and the preceding 

block of ciphertext.

General-purpose block-

oriented transmission

Authentication

Cipher Feedback (CFB) Input is processed s bits at a time. 

Preceding ciphertext is used as 

input to the encryption algorithm 

to produce pseudorandom output, 

which is XORed with plaintext to 

produce next unit of ciphertext.

General-purpose 

stream-oriented 

transmission

Authentication

Output Feedback (OFB) Similar to CFB, except that the 

input to the encryption algorithm 

is the preceding encryption output, 

and full blocks are used.

Stream-oriented 

transmission over noisy 

channel (e.g., satellite 

communication)

Counter (CTR) Each block of plaintext is XORed 

with an encrypted counter. The 

counter is incremented for each 

subsequent block.

General-purpose block-

oriented transmission

Useful for high-speed 

requirements

Table 7.1 Block Cipher Modes of Operation
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For lengthy messages, the ECB mode may not be secure. If the message is 

highly structured, it may be possible for a cryptanalyst to exploit these regularities. 

For example, if it is known that the message always starts out with certain predefined 

fields, then the cryptanalyst may have a number of known plaintext–ciphertext pairs 

to work with. If the message has repetitive elements with a period of repetition a 

multiple of b bits, then these elements can be identified by the analyst. This may help 

in the analysis or may provide an opportunity for substituting or rearranging blocks.

We now turn to more complex modes of operation. [KNUD00] lists the fol-

lowing criteria and properties for evaluating and constructing block cipher modes of 

operation that are superior to ECB:

 ■ Overhead: The additional operations for the encryption and decryption opera-

tion when compared to encrypting and decrypting in the ECB mode.

 ■ Error recovery: The property that an error in the ith ciphertext block is inher-

ited by only a few plaintext blocks after which the mode resynchronizes.

 ■ Error propagation: The property that an error in the ith ciphertext block is 

inherited by the ith and all subsequent plaintext blocks. What is meant here is 

a bit error that occurs in the transmission of a ciphertext block, not a computa-

tional error in the encryption of a plaintext block.

Figure 7.3 Electronic Codebook (ECB) Mode
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 ■ Diffusion: How the plaintext statistics are reflected in the ciphertext. Low en-

tropy plaintext blocks should not be reflected in the ciphertext blocks. Roughly, 

low entropy equates to predictability or lack of randomness (see Appendix F).

 ■ Security: Whether or not the ciphertext blocks leak information about the 

plaintext blocks.

 7.3 CIPHER BLOCK CHAINING MODE

To overcome the security deficiencies of ECB, we would like a technique in which 

the same plaintext block, if repeated, produces different ciphertext blocks. A 

simple way to satisfy this requirement is the cipher block chaining (CBC) mode 

(Figure 7.4). In this scheme, the input to the encryption algorithm is the XOR of the 

current plaintext block and the preceding ciphertext block; the same key is used for 

each block. In effect, we have chained together the processing of the sequence of 

plaintext blocks. The input to the encryption function for each plaintext block bears 

no fixed relationship to the plaintext block. Therefore, repeating patterns of b bits 

are not exposed. As with the ECB mode, the CBC mode requires that the last block 

be padded to a full b bits if it is a partial block.

Figure 7.4 Cipher Block Chaining (CBC) Mode
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For decryption, each cipher block is passed through the decryption algorithm. 

The result is XORed with the preceding ciphertext block to produce the plaintext 

block. To see that this works, we can write

 Cj = E(K, [Cj- 1⊕ Pj]) 

Then

D(K, Cj) = D(K, E(K, [Cj- 1⊕ Pj]))

D(K, Cj) = Cj- 1⊕ Pj

Cj- 1⊕D(K, Cj) = Cj- 1⊕ Cj- 1⊕ Pj = Pj

To produce the first block of ciphertext, an initialization vector (IV) is XORed 

with the first block of plaintext. On decryption, the IV is XORed with the output 

of the decryption algorithm to recover the first block of plaintext. The IV is a data 

block that is the same size as the cipher block. We can define CBC mode as

CBC
 C1 = E(K, [P1⊕ IV])

 Cj = E(K, [Pj⊕ Cj- 1])j = 2, c , N

 P1 = D(K, C1)⊕ IV

 Pj = D(K, Cj)⊕ Cj- 1 j = 2, c , N

The IV must be known to both the sender and receiver but be unpredictable 

by a third party. In particular, for any given plaintext, it must not be possible to 

predict the IV that will be associated to the plaintext in advance of the generation 

of the IV. For maximum security, the IV should be protected against unauthorized 

changes. This could be done by sending the IV using ECB encryption. One reason 

for protecting the IV is as follows: If an opponent is able to fool the receiver into 

using a different value for IV, then the opponent is able to invert selected bits in the 

first block of plaintext. To see this, consider

 C1 = E(K, [IV⊕ P1])

 P1 = IV⊕D(K, C1)

Now use the notation that X[i] denotes the ith bit of the b-bit quantity X. Then

 P1[i] = IV[i]⊕D(K, C1)[i] 

Then, using the properties of XOR, we can state

 P1[i]′ = IV[i]′ ⊕D(K, C1)[i] 

where the prime notation denotes bit complementation. This means that if an oppo-

nent can predictably change bits in IV, the corresponding bits of the received value 

of P1 can be changed.

For other possible attacks based on prior knowledge of IV, see [VOYD83].

So long as it is unpredictable, the specific choice of IV is unimportant. 

 SP  800-38A recommends two possible methods: The first method is to apply 

the encryption function, under the same key that is used for the encryption of the 

plaintext, to a nonce.2 The nonce must be a data block that is unique to each 

2NIST SP 800-90 (Recommendation for Random Number Generation Using Deterministic Random Bit 
Generators) defines nonce as follows: A time-varying value that has at most a negligible chance of repeat-
ing, for example, a random value that is generated anew for each use, a timestamp, a sequence number, 
or some combination of these.
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 execution of the encryption operation. For example, the nonce may be a counter, 

a timestamp, or a message number. The second method is to generate a random 

data block using a random number generator.

In conclusion, because of the chaining mechanism of CBC, it is an appropriate 

mode for encrypting messages of length greater than b bits.

In addition to its use to achieve confidentiality, the CBC mode can be used for 

authentication. This use is described in Chapter 12.

 7.4 CIPHER FEEDBACK MODE

For AES, DES, or any block cipher, encryption is performed on a block of b bits. 

In the case of DES, b = 64 and in the case of AES, b = 128. However, it is pos-

sible to convert a block cipher into a stream cipher, using one of the three modes 

to be discussed in this and the next two sections: cipher feedback (CFB) mode, 

output feedback (OFB) mode, and counter (CTR) mode. A stream cipher elimi-

nates the need to pad a message to be an integral number of blocks. It also can 

operate in real time. Thus, if a character stream is being transmitted, each char-

acter can be encrypted and transmitted immediately using a character-oriented 

stream cipher.

One desirable property of a stream cipher is that the ciphertext be of the same 

length as the plaintext. Thus, if 8-bit characters are being transmitted, each charac-

ter should be encrypted to produce a ciphertext output of 8 bits. If more than 8 bits 

are produced, transmission capacity is wasted.

Figure 7.5 depicts the CFB scheme. In the figure, it is assumed that the unit of 

transmission is s bits; a common value is s = 8. As with CBC, the units of plaintext 

are chained together, so that the ciphertext of any plaintext unit is a function of all 

the preceding plaintext. In this case, rather than blocks of b bits, the plaintext is 

divided into segments of s bits.

First, consider encryption. The input to the encryption function is a b-bit shift 

register that is initially set to some initialization vector (IV). The leftmost (most 

significant) s bits of the output of the encryption function are XORed with the first 

segment of plaintext P1 to produce the first unit of ciphertext C1, which is then 

transmitted. In addition, the contents of the shift register are shifted left by s bits, 

and C1 is placed in the rightmost (least significant) s bits of the shift register. This 

process continues until all plaintext units have been encrypted.

For decryption, the same scheme is used, except that the received ciphertext 

unit is XORed with the output of the encryption function to produce the plaintext 

unit. Note that it is the encryption function that is used, not the decryption function. 

This is easily explained. Let MSBs(X) be defined as the most significant s bits of X. 

Then

 C1 = P1⊕MSBs[E(K, IV)] 

Therefore, by rearranging terms:

 P1 = C1⊕MSBs[E(K, IV)] 

The same reasoning holds for subsequent steps in the process.
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We can define CFB mode as follows.

CFB

 I1 = IV

 Ij = LSBb - s(Ij- 1) }Cj- 1   j = 2, c , N

 Oj = E(K, Ij)       j = 1, c , N

 Cj = Pj⊕MSBs(Oj)   j = 1, c , N

 I1 = IV

 Ij = LSBb - s(Ij- 1) }Cj- 1 j = 2, c , N

 Oj = E(K, Ij)       j = 1, c , N

 Pj = Cj⊕MSBs(Oj)   j = 1, c , N

Although CFB can be viewed as a stream cipher, it does not conform to the 

typical construction of a stream cipher. In a typical stream cipher, the cipher takes 

Figure 7.5 s-bit Cipher Feedback (CFB) Mode
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as input some initial value and a key and generates a stream of bits, which is then 

XORed with the plaintext bits (see Figure 4.1). In the case of CFB, the stream of 

bits that is XORed with the plaintext also depends on the plaintext.

In CFB encryption, like CBC encryption, the input block to each forward 

 cipher function (except the first) depends on the result of the previous forward 

 cipher function; therefore, multiple forward cipher operations cannot be performed 

in parallel. In CFB decryption, the required forward cipher operations can be per-

formed in parallel if the input blocks are first constructed (in series) from the IV 

and the ciphertext.

 7.5 OUTPUT FEEDBACK MODE

The output feedback (OFB) mode is similar in structure to that of CFB. For OFB, 

the output of the encryption function is fed back to become the input for encrypting 

the next block of plaintext (Figure 7.6). In CFB, the output of the XOR unit is fed 

back to become input for encrypting the next block. The other difference is that the 

OFB mode operates on full blocks of plaintext and ciphertext, whereas CFB oper-

ates on an s-bit subset. OFB encryption can be expressed as

 Cj = Pj⊕ E(K, Oj- 1) 

where

 Oj- 1 = E(K, Oj- 2) 

Some thought should convince you that we can rewrite the encryption expres-

sion as:

 Cj = Pj⊕ E(K, [Cj- 1⊕ Pj- 1]) 

By rearranging terms, we can demonstrate that decryption works.

 Pj = Cj⊕ E(K, [Cj- 1⊕ Pj- 1]) 

We can define OFB mode as follows.

OFB

I1 = Nonce

Ij = Oj- 1         j = 2, c , N

Oj = E(K, Ij)  j = 1, c , N

Cj = Pj⊕ Oj  j = 1, c , N - 1

CN
* = PN

* ⊕MSBu(ON)

I1 = Nonce

Ij = Oj- 1          j = 2, c , N

Oj = E(K, Ij)      j = 1, c , N

Pj = Cj⊕ Oj  j = 1, c , N - 1

PN
* = CN

* ⊕MSBu(ON)

Let the size of a block be b. If the last block of plaintext contains u bits (indi-

cated by *), with u 6 b, the most significant u bits of the last output block ON are 

used for the XOR operation; the remaining b - u bits of the last output block are 

discarded.

As with CBC and CFB, the OFB mode requires an initialization vector. In 

the case of OFB, the IV must be a nonce; that is, the IV must be unique to each 

execution of the encryption operation. The reason for this is that the sequence of 
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encryption output blocks, Oi, depends only on the key and the IV and does not de-

pend on the plaintext. Therefore, for a given key and IV, the stream of output bits 

used to XOR with the stream of plaintext bits is fixed. If two different messages had 

an identical block of plaintext in the identical position, then an attacker would be 

able to determine that portion of the Oi stream.

One advantage of the OFB method is that bit errors in transmission do not 

propagate. For example, if a bit error occurs in C1, only the recovered value of P1 is 

affected; subsequent plaintext units are not corrupted. With CFB, C1 also serves as 

input to the shift register and therefore causes additional corruption downstream.

The disadvantage of OFB is that it is more vulnerable to a message stream 

modification attack than is CFB. Consider that complementing a bit in the cipher-

text complements the corresponding bit in the recovered plaintext. Thus, controlled 

Figure 7.6 Output Feedback (OFB) Mode
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changes to the recovered plaintext can be made. This may make it possible for an 

opponent, by making the necessary changes to the checksum portion of the message 

as well as to the data portion, to alter the ciphertext in such a way that it is not de-

tected by an error-correcting code. For a further discussion, see [VOYD83].

OFB has the structure of a typical stream cipher, because the cipher gener-

ates a stream of bits as a function of an initial value and a key, and that stream of 

bits is XORed with the plaintext bits (see Figure 4.1). The generated stream that is 

XORed with the plaintext is itself independent of the plaintext; this is highlighted 

by dashed boxes in Figure 7.6. One distinction from the stream ciphers we discuss 

in Chapter 8 is that OFB encrypts plaintext a full block at a time, where typically a 

block is 64 or 128 bits. Many stream ciphers encrypt one byte at a time.

 7.6 COUNTER MODE

Although interest in the counter (CTR) mode has increased recently with appli-

cations to ATM (asynchronous transfer mode) network security and IPsec  

(IP  security), this mode was proposed in 1979 (e.g., [DIFF79]).

Figure 7.7 depicts the CTR mode. A counter equal to the plaintext block size 

is used. The only requirement stated in SP 800-38A is that the counter value must be 

different for each plaintext block that is encrypted. Typically, the counter is initial-

ized to some value and then incremented by 1 for each subsequent block (modulo 2b, 

where b is the block size). For encryption, the counter is encrypted and then XORed 

with the plaintext block to produce the ciphertext block; there is no chaining. For 

decryption, the same sequence of counter values is used, with each encrypted coun-

ter XORed with a ciphertext block to recover the corresponding plaintext block. 

Thus, the initial counter value must be made available for decryption. Given a 

sequence of counters T1, T2, c , TN, we can define CTR mode as follows.

CTR
Cj = Pj⊕ E(K, Tj)  j = 1, c , N - 1

CN
* = PN

* ⊕MSBu[E(K, TN)]

Pj = Cj⊕ E(K, Tj)  j = 1, c , N - 1

PN
* = CN

* ⊕MSBu[E(K, TN)]

For the last plaintext block, which may be a partial block of u bits, the most 

significant u bits of the last output block are used for the XOR operation; the re-

maining b - u bits are discarded. Unlike the ECB, CBC, and CFB modes, we do 

not need to use padding because of the structure of the CTR mode.

As with the OFB mode, the initial counter value must be a nonce; that is, T1 

must be different for all of the messages encrypted using the same key. Further, 

all Ti values across all messages must be unique. If, contrary to this requirement, a 

counter value is used multiple times, then the confidentiality of all of the plaintext 

blocks corresponding to that counter value may be compromised. In particular, if 

any plaintext block that is encrypted using a given counter value is known, then 

the output of the encryption function can be determined easily from the associated 

ciphertext block. This output allows any other plaintext blocks that are encrypted 

using the same counter value to be easily recovered from their associated ciphertext 

blocks.
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One way to ensure the uniqueness of counter values is to continue to incre-

ment the counter value by 1 across messages. That is, the first counter value of the 

each message is one more than the last counter value of the preceding message.

[LIPM00] lists the following advantages of CTR mode.

 ■ Hardware efficiency: Unlike the three chaining modes, encryption (or decryp-

tion) in CTR mode can be done in parallel on multiple blocks of plaintext or 

ciphertext. For the chaining modes, the algorithm must complete the computa-

tion on one block before beginning on the next block. This limits the maximum 

throughput of the algorithm to the reciprocal of the time for one execution of 

block encryption or decryption. In CTR mode, the throughput is only limited 

by the amount of parallelism that is achieved.

Figure 7.7 Counter (CTR) Mode
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 ■ Software efficiency: Similarly, because of the opportunities for parallel execu-

tion in CTR mode, processors that support parallel features, such as aggressive 

pipelining, multiple instruction dispatch per clock cycle, a large number of reg-

isters, and SIMD instructions, can be effectively utilized.

 ■ Preprocessing: The execution of the underlying encryption algorithm does 

not depend on input of the plaintext or ciphertext. Therefore, if sufficient 

memory is available and security is maintained, preprocessing can be used to 

prepare the output of the encryption boxes that feed into the XOR functions, 

as in Figure 7.7. When the plaintext or ciphertext input is presented, then 

the only computation is a series of XORs. Such a strategy greatly enhances 

throughput.

 ■ Random access: The ith block of plaintext or ciphertext can be processed in 

random-access fashion. With the chaining modes, block Ci cannot be com-

puted until the i - 1 prior blocks are computed. There may be applications in 

which a ciphertext is stored and it is desired to decrypt just one block; for such 

applications, the random access feature is attractive.

 ■ Provable security: It can be shown that CTR is at least as secure as the other 

modes discussed in this chapter.

 ■ Simplicity: Unlike ECB and CBC modes, CTR mode requires only the imple-

mentation of the encryption algorithm and not the decryption algorithm. This 

matters most when the decryption algorithm differs substantially from the en-

cryption algorithm, as it does for AES. In addition, the decryption key schedul-

ing need not be implemented.

Note that, with the exception of ECB, all of the NIST-approved block ci-

pher modes of operation involve feedback. This is clearly seen in Figure 7.8. To 

highlight the feedback mechanism, it is useful to think of the encryption function 

as taking input from an input register whose length equals the encryption block 

length and with output stored in an output register. The input register is updated 

one block at a time by the feedback mechanism. After each update, the encryp-

tion algorithm is executed, producing a result in the output register. Meanwhile, 

a block of plaintext is accessed. Note that both OFB and CTR produce output 

that is independent of both the plaintext and the ciphertext. Thus, they are natu-

ral candidates for stream ciphers that encrypt plaintext by XOR one full block at 

a time.

 7.7 XTS-AES MODE FOR BLOCK-ORIENTED 
STORAGE DEVICES

In 2010, NIST approved an additional block cipher mode of operation, XTS-AES. 

This mode is also an IEEE standard, IEEE Std 1619-2007, which was developed 

by the IEEE Security in Storage Working Group (P1619). The standard describes 

a method of encryption for data stored in sector-based devices where the threat 

model includes possible access to stored data by the adversary. The standard has 

received widespread industry support.
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Tweakable Block Ciphers

The XTS-AES mode is based on the concept of a tweakable block cipher, intro-

duced in [LISK02], which functions in much the same manner as a salt used with 

passwords, as described in Chapter 22. The form of this concept used in XTS-AES 

was first described in [ROGA04].

Before examining XTS-AES, let us consider the general structure of a tweak-

able block cipher. A tweakable block cipher is one that has three inputs: a plain-

text P, a symmetric key K, and a tweak T; and produces a ciphertext output C. We 

can write this as C = E(K, T, P). The tweak need not be kept secret. Whereas the 

Figure 7.8 Feedback Characteristic of Modes of Operation
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purpose of the key is to provide security, the purpose of the tweak is to provide 

variability. That is, the use of different tweaks with the same plaintext and same key 

produces different outputs. The basic structure of several tweakable clock ciphers 

that have been implemented is shown in Figure 7.9. Encryption can be expressed as:

 C = H(T)⊕ E(K, H(T)⊕ P) 

where H is a hash function. For decryption, the same structure is used with the 

plaintext as input and decryption as the function instead of encryption. To see that 

this works, we can write

H(T)⊕ C = E(K, H(T)⊕ P)

D[K, H(T)⊕ C] = H(T)⊕ P

H(T)⊕D(K, H(T)⊕ C) = P

It is now easy to construct a block cipher mode of operation by using a differ-

ent tweak value on each block. In essence, the ECB mode is used but for each block 

the tweak is changed. This overcomes the principal security weakness of ECB, 

which is that two encryptions of the same block yield the same ciphertext.

Storage Encryption Requirements

The requirements for encrypting stored data, also referred to as “data at rest” dif-

fer somewhat from those for transmitted data. The P1619 standard was designed to 

have the following characteristics:

1. The ciphertext is freely available for an attacker. Among the circumstances 

that lead to this situation:

a. A group of users has authorized access to a database. Some of the records in 

the database are encrypted so that only specific users can successfully read/

Figure 7.9 Tweakable Block Cipher
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write them. Other users can retrieve an encrypted record but are unable to 

read it without the key.

b. An unauthorized user manages to gain access to encrypted records.

c. A data disk or laptop is stolen, giving the adversary access to the encrypted 

data.

2. The data layout is not changed on the storage medium and in transit. The en-

crypted data must be the same size as the plaintext data.

3. Data are accessed in fixed sized blocks, independently from each other. That is, 

an authorized user may access one or more blocks in any order.

4. Encryption is performed in 16-byte blocks, independently from other blocks 

(except the last two plaintext blocks of a sector, if its size is not a multiple of 

16 bytes).

5. There are no other metadata used, except the location of the data blocks 

within the whole data set.

6. The same plaintext is encrypted to different ciphertexts at different locations, 

but always to the same ciphertext when written to the same location again.

7. A standard conformant device can be constructed for decryption of data en-

crypted by another standard conformant device.

The P1619 group considered some of the existing modes of operation for use with 

stored data. For CTR mode, an adversary with write access to the encrypted media can 

flip any bit of the plaintext simply by flipping the corresponding ciphertext bit.

Next, consider requirement 6 and the use of CBC. To enforce the requirement 

that the same plaintext encrypts to different ciphertext in different locations, the IV 

could be derived from the sector number. Each sector contains multiple blocks. An 

adversary with read/write access to the encrypted disk can copy a ciphertext sec-

tor from one position to another, and an application reading the sector off the new 

location will still get the same plaintext sector (except perhaps the first 128 bits). 

For example, this means that an adversary that is allowed to read a sector from the 

second position but not the first can find the content of the sector in the first posi-

tion by manipulating the ciphertext. Another weakness is that an adversary can flip 

any bit of the plaintext by flipping the corresponding ciphertext bit of the previous 

block, with the side-effect of “randomizing” the previous block.

Operation on a Single Block

Figure 7.10 shows the encryption and decryption of a single block. The operation in-

volves two instances of the AES algorithm with two keys. The following parameters 

are associated with the algorithm.

Key The 256 or 512 bit XTS-AES key; this is parsed as a concatenation of two 

fields of equal size called Key1 and Key2, such that Key = Key1 }Key2 .

Pj The jth block of plaintext. All blocks except possibly the final block have a 

length of 128 bits. A plaintext data unit, typically a disk sector, consists of a 

sequence of plaintext blocks P1, P2, c , Pm.

Cj The jth block of ciphertext. All blocks except possibly the final block have a 

length of 128 bits.
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j The sequential number of the 128-bit block inside the data unit.

i The value of the 128-bit tweak. Each data unit (sector) is assigned a 

tweak value that is a nonnegative integer. The tweak values are assigned 

 consecutively, starting from an arbitrary nonnegative integer.

a A primitive element of GF(2128) that corresponds to polynomial x 

(i.e., 0000c 0102).

aj a multiplied by itself j times, in GF(2128).

⊕ Bitwise XOR.

⊗ Modular multiplication of two polynomials with binary coefficients modulo 

x128 + x7 + x2 + x + 1. Thus, this is multiplication in GF(2128).

Figure 7.10 XTS-AES Operation on Single Block
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In essence, the parameter j functions much like the counter in CTR mode. It 

assures that if the same plaintext block appears at two different positions within a 

data unit, it will encrypt to two different ciphertext blocks. The parameter i functions 

much like a nonce at the data unit level. It assures that, if the same plaintext block 

appears at the same position in two different data units, it will encrypt to two differ-

ent ciphertext blocks. More generally, it assures that the same plaintext data unit will 

encrypt to two different ciphertext data units for two different data unit positions.

The encryption and decryption of a single block can be described as

XTS-AES block 

operation

 T = E(K2, i)⊗ aj

 PP = P⊕ T

 CC = E(K1, PP)

 C = CC⊕ T

 T = E(K2, i)⊗ aj

 CC = C⊕ T

 PP = D(K1, CC)

 P = PP⊕ T

To see that decryption recovers the plaintext, let us expand the last line of both en-

cryption and decryption. For encryption, we have

 C = CC⊕ T = E(K1, PP)⊕ T = E(K1, P⊕ T)⊕ T 

and for decryption, we have

 P = PP⊕ T = D(K1, CC)⊕ T = D(K1, C⊕ T)⊕ T 

Now, we substitute for C:

 P = D(K1, C⊕ T)⊕ T

 = D(K1, [E(K1, P⊕ T)⊕ T]⊕ T)⊕ T

 = D(K1, E(K1, P⊕ T))⊕ T

 = (P⊕ T)⊕ T = P

Operation on a Sector

The plaintext of a sector or data unit is organized into blocks of 128 bits. Blocks are 

labeled P0, P1, c , Pm. The last block my be null or may contain from 1 to 127 bits. 

In other words, the input to the XTS-AES algorithm consists of m 128-bit blocks 

and possibly a final partial block.

For encryption and decryption, each block is treated independently and en-

crypted/decrypted as shown in Figure 7.10. The only exception occurs when the 

last block has less than 128 bits. In that case, the last two blocks are encrypted/de-

crypted using a ciphertext-stealing technique instead of padding. Figure 7.11 shows 

the scheme. Pm - 1 is the last full plaintext block, and Pm is the final plaintext block, 

which contains s bits with 1 … s … 127. Cm - 1 is the last full ciphertext block, and 

Cm is the final ciphertext block, which contains s bits. This technique is commonly 

called ciphertext stealing because the processing of the last block “steals” a tempo-

rary ciphertext of the penultimate block to complete the cipher block.

Let us label the block encryption and decryption algorithms of Figure 7.10 as

Block encryption: XTS-AES-blockEnc(K, Pj, i, j)
Block decryption: XTS-AES-blockDec(K, Cj, i, j)
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Then, XTS-AES mode is defined as follows:

XTS-AES mode with null 

final block
Cj = XTS@AES@blockEnc(K, Pj, i, j) j = 0, c , m - 1

Pj = XTS@AES@blockEnc(K, Cj, i, j) j = 0, c , m - 1

XTS-AES mode with final 

block containing s bits

Cj = XTS@AES@blockEnc(K, Pj, i, j) j = 0, c , m - 2

XX = XTS@AES@blockEnc(K, Pm - 1, i, m - 1)

CP = LSB128 - s(XX)

YY = Pm }CP
Cm - 1 = XTS@AES@blockEnc(K, YY, i, m)

Cm = MSBs(XX)

Pj = XTS@AES@blockDec(K, Cj, i, j) j = 0, c , m - 2

YY = XTS@AES@blockDec(K, Cm - 1, i, m - 1)

CP = LSB128 - s(YY)

XX = Cm }CP

Pm - 1 = XTS@AES@blockDec(K, XX, i, m)

Pm = MSBs(YY)

Figure 7.11 XTS-AES Mode
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As can be seen, XTS-AES mode, like CTR mode, is suitable for parallel oper-

ation. Because there is no chaining, multiple blocks can be encrypted or decrypted 

simultaneously. Unlike CTR mode, XTS-AES mode includes a nonce (the param-

eter i) as well as a counter (parameter j).

 7.8 FORMAT-PRESERVING ENCRYPTION

Format-preserving encryption (FPE) refers to any encryption technique that takes 

a plaintext in a given format and produces a ciphertext in the same format. For 

 example, credit cards consist of 16 decimal digits. An FPE that can accept this type of 

input would produce a ciphertext output of 16 decimal digits. Note that the ciphertext 

need not be, and in fact is unlikely to be, a valid credit card number. But it will have 

the same format and can be stored in the same way as credit card number plaintext.

A simple encryption algorithm is not format preserving, with the exception 

that it preserves the format of binary strings. For example, Table 7.2 shows three 

types of plaintext for which it might be desired to perform FPE. The third row 

shows examples of what might be generated by an FPE algorithm. The fourth row 

shows (in hexadecimal) what is produced by AES with a given key.

Motivation

FPE facilitates the retrofitting of encryption technology to legacy applications, 

where a conventional encryption mode might not be feasible because it would dis-

rupt data fields/pathways. FPE has emerged as a useful cryptographic tool, whose 

applications include financial-information security, data sanitization, and transpar-

ent encryption of fields in legacy databases.

The principal benefit of FPE is that it enables protection of particular data 

 elements in a legacy database that did not provide encryption of those data ele-

ments, while still enabling workflows that were in place before FPE was in use. With 

FPE, as opposed to ordinary AES encryption or TDEA encryption, no database 

schema changes and minimal application changes are required. Only applications 

that need to see the plaintext of a data element need to be modified and generally 

these modifications will be minimal.

Some examples of legacy applications where FPE is desirable:

 ■ COBOL data-processing applications: Any changes in the structure of a re-

cord requires corresponding changes in all code that references that record 

structure. Typical code sizes involve hundreds of modules, each containing 

around 5,000–10,000 lines on average.

Credit Card Tax ID Bank Account Number

Plaintext 8123 4512 3456 6780 219-09-9999 800N2982K-22

FPE 8123 4521 7292 6780 078-05-1120 709G9242H-35

AES (hex) af411326466add24

c86abd8aa525db7a

7b9af4f3f218ab25

07c7376869313afa

9720ec7f793096ff

d37141242e1c51bd

Table 7.2 Comparison of Format-Preserving Encryption and AES
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 ■ Database applications: Fields that are specified to take only character strings 

cannot be used to store conventionally encrypted binary ciphertext. Base64 

encoding of such binary ciphertext is not always feasible without increase in 

data lengths, requiring augmentation of corresponding field lengths.

 ■ FPE-encrypted characters can be significantly compressed for efficient trans-

mission. This cannot be said about AES-encrypted binary ciphertext.

Difficulties in Designing an FPE

A general-purpose standardized FPE should meet a number of requirements:

1. The ciphertext is of the same length and format as the plaintext.

2. It should be adaptable to work with a variety of character and number types. 

Examples include decimal digits, lowercase alphabetic characters, and the full 

character set of a standard keyboard or international keyboard.

3. It should work with variable plaintext lengths.

4. Security strength should be comparable to that achieved with AES.

5. Security should be strong even for very small plaintext lengths.

Meeting the first requirement is not at all straightforward. As illustrated in 

Table 7.2, a straightforward encryption with AES yields a 128-bit binary block that 

does not resemble the required format. Also, a standard symmetric block cipher is 

not easily adaptable to produce an FPE.

Consider a simple example. Assume that we want an algorithm that can en-

crypt decimal digit strings of maximum length of 32 digits. The input to the algo-

rithm can be stored in 16 bytes (128 bits) by encoding each digit as four bits and 

using the corresponding binary value for each digit (e.g., 6 is encoded as 0101). 

Next, we use AES to encrypt the 128-bit block, in the following fashion:

1. The plaintext input X is represented by the string of 4-bit decimal digits 

X[1] . . . X[16]. If the plaintext is less than 16 digits long, it is padded out to the 

left (most significant) with zeros.

2. Treating X as a 128-bit binary string and using key K, form ciphertext 

Y = AESK(X).

3. Treat Y as a string of length 16 of 4-bit elements.

4. Some of the entries in Y may have values greater than 9 (e.g., 1100). To gener-

ate ciphertext Z in the required format, calculate

 Z[i] = Y[i] mod 10,  1 … i … 16 

This generates a ciphertext of 16 decimal digits, which conforms to the de-

sired format. However, this algorithm does not meet the basic requirement of 

any encryption algorithm of reversibility. It is impossible to decrypt Z to recover 

the original plaintext X because the operation is one-way; that is, it is a many-

to-one function. For example, 12 mod 10 = 2 mod 10 = 2. Thus, we need to de-

sign a reversible function that is both a secure encryption algorithm and format 

preserving.
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A second difficulty in designing an FPE is that some of the input strings are 

quite short. For example, consider the 16-digit credit card number (CCN). The first 

six digits provide the issuer identification number (IIN), which identifies the insti-

tution that issued the card. The final digit is a check digit to catch typographical 

errors or other mistakes. The remaining nine digits are the user’s account number. 

However, a number of applications require that the last four digits be in the clear 

(the check digit plus three account digits) for applications such as credit card re-

ceipts, which leaves only six digits for encryption. Now suppose that an adversary 

is able to obtain a number of plaintext/ciphertext pairs. Each such pair corresponds 

to not just one CCN, but multiple CCNs that have the same middle six digits. In a 

large database of credit card numbers, there may be multiple card numbers with 

the same middle six digits. An adversary may be able to assemble a large diction-

ary mapping known as six-digit plaintexts to their corresponding ciphertexts. This 

could be used to decrypt unknown ciphertexts from the database. As pointed out 

in [BELL10a], in a database of 100 million entries, on average about 100 CCNs 

will share any given middle-six digits. Thus, if the adversary has learned k CCNs 

and gains access to such a database, the adversary can decrypt approximately 

100k CCNs.

The solution to this second difficulty is to use a tweakable block cipher; this 

concept is described in Section 7.7. For example, the tweak for CCNs could be the 

first two and last four digits of the CCN. Prior to encryption, the tweak is added, 

digit-by-digit mod 10, to the middle six-digit plaintext, and the result is then en-

crypted. Two different CCNs with identical middle six digits will yield different 

tweaked inputs and therefore different ciphertexts. Consider the following:

CCN Tweak Plaintext Plaintext + Tweak

4012 8812 3456 1884 401884 123456 524230

5105 1012 3456 6782 516782 123456 639138

Two CCNs with the same middle six digits have different tweaks and there-

fore different values to the middle six digits after the tweak is added.

Feistel Structure for Format-Preserving Encryption

As the preceding discussion shows, the challenge with FPE is to design an algo-

rithm for scrambling the plaintext that is secure, preserves format, and is  reversible. 

A number of approaches have been proposed in recent years [ROGA10, BELL09] 

for FPE algorithms. The majority of these proposals use a Feistel structure. 

Although IBM introduced this structure with their Lucifer cipher [SMIT71] almost 

half a century ago, it remains a powerful basis for implementing ciphers.

This section provides a general description of how the Feistel structure can 

be used to implement an FPE. In the following section, we look at three specific 

Feistel-based algorithms that are in the process of receiving NIST approval.

ENCRYPTION AND DECRYPTION Figure 7.12 shows the Feistel structure used in all of 

the NIST algorithms, with encryption shown on the left-hand side and decryption 

on the right-hand side. The structure in Figure 7.12 is the same as that shown in 
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Figure 4.3 but, to simplify the presentation, it is untwisted, not illustrating the swap 

that occurs at the end of each round.

The input to the encryption algorithm is a plaintext character string of 

n = u + v characters. If n is even, then u = v, otherwise u and v differ by 1. The 

two parts of the string pass through an even number of rounds of processing to 

produce a ciphertext block of n characters and the same format as the plaintext. 

Each round i has inputs Ai and Bi, derived from the preceding round (or plaintext 

for round 0).

All rounds have the same structure. On even-numbered rounds, a substitution 

is performed on the left part (length u) of the data, Ai. This is done by applying the 

round function FK to the right part (length v) of the data, Bi, and then performing 

Figure 7.12 Feistel Structure for Format-Preserving Encryption
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a modular addition of the output of FK with Ai. The modular addition function and 

the selection of modulus are described subsequently. On odd-numbered rounds, 

the substitution is done on the right part of the data. FK is a one-way function that 

converts the input into a binary string, performs a scrambling transformation on the 

string, and then converts the result back into a character string of suitable format 

and length. The function has as parameters the secret key K, the plaintext length n, 

a tweak T, and the round number i.
Note that on even-numbered rounds, FK has an input of v characters, and that 

the modular addition produces a result of u characters, whereas on odd-numbered 

rounds, FK has an input of u characters, and that the modular addition produces a 

result of v characters. The total number of rounds is even, so that the output consists 

of an A portion of length u concatenated with a B portion of length v, matching the 

partition of the plaintext.

The process of decryption is essentially the same as the encryption process. 

The differences are: (1) the addition function is replaced by a subtraction function 

that is its inverse; and (2) the order of the round indices is reversed.

To demonstrate that the decryption produces the correct result, Figure 7.12b 

shows the encryption process going down the left-hand side and the decryption pro-

cess going up the right-hand side. The diagram indicates that, at every round, the 

intermediate value of the decryption process is equal to the corresponding value of 

the encryption process. We can walk through the figure to validate this, starting at 

the bottom. The ciphertext is produced at the end of round r - 1 as a string of the 

form A
  r }B

  r, with Ar and Br having string lengths u and v, respectively. Encryption 

round r - 1 can be described with the following equations:

 Ar = Br - 1

 Br = Ar - 1 + FK[Br - 1]

Because we define the subtraction function to be the inverse of the addition 

function, these equations can be rewritten:

 Br - 1 = Ar

 Ar - 1 = Br - FK[Br - 1]

It can be seen that the last two equations describe the action of round 0 of the 

decryption function, so that the output of round 0 of decryption equals the input 

of round r - 1 of encryption. This correspondence holds all the way through the r 

iterations, as is easily shown.

Note that the derivation does not require that F be a reversible function. To 

see this, take a limiting case in which F produces a constant output (e.g., all ones) 

regardless of the values of its input. The equations still hold.

CHARACTER STRINGS The NIST algorithms, and the other FPE algorithms that have 

been proposed, are used with plaintext consisting of a string of elements, called 

characters. Specifically, a finite set of two or more symbols is called an alphabet, 
and the elements of an alphabet are called characters. A character string is a finite 

sequence of characters from an alphabet. Individual characters may repeat in the 

string. The number of different characters in an alphabet is called the base, also 



236  CHAPTER 7 / BLOCK CIPHER OPERATION

referred to as the radix of the alphabet. For example, the lowercase English alpha-

bet a, b, c, . . . has a radix, or base, of 26. For purposes of encryption and decryption, 

the plaintext alphabet must be converted to numerals, where a numeral is a non-

negative integer that is less than the base. For example, for the lowercase alphabet, 

the assignment could be characters a, b, c, . . . , z map into 0, 1, 2, . . . , 25.

A limitation of this approach is that all of the elements in a plaintext format 

must have the same radix. So, for example, an identification number that consists 

of an alphabetic character followed by nine numeric digits cannot be handled in 

format-preserving fashion by the FPEs that have been implemented so far.

The NIST document defines notation for specifying these conversions 

(Table 7.3a). To begin, it is assumed that the character string is represented by 

a numeral string. To convert a numeral string X into a number x, the function 

NUMradix(X) is used. Viewing X as the string X[1] . . . X [m] with the most signifi-

cant numeral first, the function is defined as

 NUMradix(X) = a
m

i=1

X[i] radixm - i = a
m - 1

i=0

X[m - i] radixi 

Observe that 0 … NUMradix(X) 6 radixm and that 0 … X[i] 6 radix.

[x]s Converts an integer into a byte string; it is the string of s bytes that encodes the 

number x, with 0 … x 6 28s. The equivalent notation is STR2
8s(x).

LEN(X) Length of the character string X.

NUMradix(X) Converts strings to numbers. The number that the numeral string X represents 

in base radix, with the most significant character first. In other words, it is the 

nonnegative integer less than radixLEN(X) whose most-significant-character-first 

representation in base radix is X.

PRFK(X) A pseudorandom function that produces a 128-bit output with X as the input, 

using encryption key K.

STRradix
m (x) Given a nonnegative integer x less than radixm, this function produces a repre-

sentation of x as a string of m characters in base radix, with the most significant 

character first.

[i .. j] The set of integers between two integers i and j, including i and j.

X[i .. j] The substring of characters of a string X from X[i] to X[j], including X[i] and X[j].

REV(X) Given a bit string, X, the string that consists of the bits of X in reverse order.

(a) Notation

radix The base, or number of characters, in a given plaintext alphabet.

tweak Input parameter to the encryption and decryption functions whose confidentiality 

is not protected by the mode.

tweakradix The base for tweak strings

minlen Minimum message length, in characters.

maxlen Maximum message length, in characters.

maxTlen Maximum tweak length

(b) Parameters

Table 7.3 Notation and Parameters Used in FPE Algorithms
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For example, consider the string zaby in radix 26, which converts to the 

 numeral string 25 0 1 24. This converts to the number x = (25 * 263) + (1 * 261)

+  2 4 = 4 3 9 4 5 0 . To go in the opposite direction and convert from a number 

x 6 radixm to a numeral string X of length m, the function STRradix
m (x) is used:

STRradix
m (x) = X[1]c X[m], where

X[i] = j x

radixm - i kmod radix, i = 1, c, m

With the mapping of characters to numerals and the use of the NUM func-

tion, a plaintext character string can be mapped to a number and stored as an 

 unsigned integer. We would like to treat this unsigned integer as a bit string that 

can be input to a bit-scrambling algorithm in FK. However, different platforms store 

 unsigned integers differently, some in little-endian and some in big-endian fashion. 

So one more step is needed. By the definition of the STR function, STR2
8s(x) will 

generate a bit string of length 8s, equivalently a byte string of length s, which is a 

binary integer with the most significant bit first, regardless of how x is stored as an 

unsigned integer. For convenience the following notation is used: [x]s = STR2
8s(x). 

Thus, [NUMradix(X)]s will convert the character string X into an unsigned integer 

and then convert that to a byte string of length s bytes with the most significant  

bit first.

Continuing, the preceding example should help clarify the issues involved.

Character string “zaby”

Numeral string X representation of 

character string

25 0 1 24

Convert X to number 

x = NUM26(X)

decimal: 439450
hex: 6B49A
binary: 1101011010010011010

x stored on big-endian byte order 

machine as a 32-bit unsigned 

 integer

hex: 00 06 B4 9A
binary: 00000000000001101011010010011010

x stored on little-endian byte 

order machine as a 32-bit unsigned 

 integer

hex: 9A B4 06 00
binary: 10011010101101000000011000000000

Convert x, regardless of endian 

 format, to a bit string of length 

32 bits (4 bytes), expressed as [x]4

00000000000001101011010010011010

THE FUNCTION FK  We can now define in general terms the function FK. The 

core of FK is some type of randomizing function whose input and output are bit 

strings. For convenience, the strings should be multiples of 8 bits, forming byte 

strings. Define m to be u for even rounds and v for odd rounds; this specifies 

the desired output character string length. Define b to be the number of bytes 

needed to store the number representing a character string of m bytes. Then the 
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round, including FK, consists of the following general steps (A and B refer to Ai 

and Bi for round i):

1. Q d [NUMradix(B)]b Converts numeral string X into byte string Q of 

length b bytes.

2. Y d RAN[Q] A pseudorandom function PRNF that produces 

a pseudorandom byte string Y as a function of 

the bits of Q.

3. y d NUM2(Y) Converts Y into unsigned integer.

4. c d (NUMradix(A) + y) mod radixm Converts numeral string A into an integer and 

adds to y, modulo radixm.

5. C d STRradix
m (c) Converts c into a numeral string C of length m.

6. A d B;

B d C
Completes the round by placing the unchanged 

value of B from the preceding round into A, and 

placing C into B.

Steps 1 through 3 constitute the round function FK. Step 3 is presented with Y, 

which is an unstructured bit string. Because different platforms may store unsigned 

integers using different word lengths and endian conventions, it is necessary to per-

form NUM2(Y) to get an unsigned integer y. The stored bit sequence for y may or 

may not be identical to the bit sequence for Y.

As mentioned, the pseudorandom function in step 2 need not be reversible. Its 

purpose is to provide a randomized, scrambled bit string. For DES, this is achieved 

by using fixed S-boxes, as described in Appendix S. Virtually all FPE schemes that 

use the Feistel structure use AES as the basis for the scrambling function to achieve 

stronger security.

RELATIONSHIP BETWEEN RADIX, MESSAGE LENGTH, AND BIT LENGTH Consider 

a numeral string X of length len and base radix. If we convert this to a number 

x = NUMradix(X), then the maximum value of x is radixlen - 1. The number of bits 

needed to encode x is

 bitlen = <LOG2(radixlen)= = <lenLOG2(radix)=  
Observe that an increase in either radix or len increases bitlen. Often, we want 

to limit the value of bitlen to some fixed upper limit, for example, 128 bits, which is 

the size of the input to AES encryption. We also want the FPE to handle a variety of 

radix values. The typical FPE, and all of those discussed subsequently, allow a given 

range of radix values and then define a maximum character string length in order to 

provide the algorithm with a fixed value of bitlen. Let the range of radix values be 

from 2 to maxradix, and the maximum allowable character string value be maxlen. 

Then the following relationship holds:

 maxlen … :bitlen/LOG2(radix); , or equivalently

 maxlen … :bitlen * LOGradix(2);
For example, for a radix of 10, maxlen … :0.3 * bitlen; ; for a radix of 26, 

maxlen … :0.21 * bitlen; . The larger the radix, the smaller the maximum charac-

ter length for a given bit length.
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NIST Methods for Format-Preserving Encryption

In 2013, NIST issued SP 800-38G: Recommendation for Block Cipher Modes of 
Operation: Methods for Format-Preserving Encryption. This Recommendation 

specifies three methods for format-preserving encryption, called FF1, FF2, and FF3. 

The three methods all use the Feistel structure shown in Figure 7.12. They employ 

somewhat different round functions FK, which are built using AES. Important dif-

ferences are the following:

 ■ FF1 supports the greatest range of lengths for the plaintext character string 

and the tweak. To achieve this, the round function uses a cipher-block-chaining 

(CBC) style of encryption, whereas FF2 and FF3 employ simple electronic 

codebook (ECB) encryption.

 ■ FF2 uses a subkey generated from the encryption key and the tweak, whereas 

FF1 and FF3 use the encryption key directly. The use of a subkey may help 

protect the original key from side-channel analysis, which is an attack based 

on information gained from the physical implementation of a cryptosystem, 

rather than brute force or cryptanalysis. Examples of such attacks are attempts 

to deduce key bits based on power consumption or execution time.

 ■ FF3 offers the lowest round count, eight, compared to ten for FF1 and FF2, 

and is the least flexible in the tweaks that it supports.

ALGORITHM FF1 Algorithm FF1 was submitted to NIST as a proposed FPE mode 

[BELL10a, BELL10b] with the name FFX[Radix]. FF1 uses a pseudorandom func-

tion PRFK(X) that produces a 128-bit output with inputs X that is a multiple of 128 

bits and encryption key K (Figure 7.13). In essence, PRFK(X) use CBC encryption 

(Figure 7.4) with X as the plaintext input, encryption key K, and an initial vector 

(IV) of all zeros. The output is the last block of ciphertext produced. This is also 

Figure 7.13 Algorithm PRF(X)

Prerequisites:

Approved, 128-bit block cipher, CIPH;

Key, K, for the block cipher; 

Input:

Nonempty bit string, X, such that LEN(X) is a multiple of 128.

Output:
128-bit block, Y

Steps:

 1. Let m = LEN(X)/128.

 2. Partition X into m 128-bit blocks X1, c , Xm, so that X = X1 } c  }Xm

 3. Let Y0 = [0]16

 4. For j from 1 to m:

 4.i let Yj = CIPHK(Yj - 1⊕ Xj).

 6. Return Ym.
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equivalent to the message authentication code known as CBC-MAC, or CMAC, 

described in Chapter 12.

The FF1 encryption algorithm is illustrated in Figure 7.14. The shaded lines 

correspond to the function FK. The algorithm has 10 rounds and the following 

 parameters (Table 7.3b):

 ■ radix∈ [2 .. 216]

 ■ radixminlen Ú 100

 ■ minlen Ú 2

 ■ maxlen 6 232. For the maximum radix value of 216, the maximum bit length to 

store the integer value of X is 16 * 232 bits; for the minimum radix value of 2, 

the maximum bit length to store the integer value of X is 232 bits.

 ■ maxTlen 6 232

The inputs to the encryption algorithm are a character string X of length n 

and a tweak T of length t. The tweak is optional in that it may be the empty string. 

Prerequisites:

Approved, 128-bit block cipher, CIPH;

Key, K, for the block cipher; 

Base, radix, for the character alphabet;

Range of supported message lengths, [minlen .. maxlen];

Maximum byte length for tweaks, maxTlen.

Inputs: 

Character string, X, in base radix of length n such that n ∈ [minlen .. maxlen];

Tweak T, a byte string of byte length t, such that t ∈ [0 .. maxTlen].

Output:

Character string, Y, such that LEN(Y) = n. 

Steps:

1. Let u = :n/2; ; v = n - u.

2. Let A = X[1 .. u]; B = X[u + 1 .. n].

3. Let b = < <v LOG2(radix)= /8= ; d = 4<b/4= + 4

4. Let P = [1]1 } [2]1 } [1]1 } [radix]3 } [10]1 } [u mod 256]1 } [n]4 } [t]4.

5. For i from 0 to 9:

i. Let Q = T } [0](-t - b - 1) mod 16 } [i]1 } [NUMradix(B)]b.

ii. Let R = PRFK(P}Q).

iii. Let S be the first d bytes of the following string of [d/16] 128-bit blocks: 

R }CIPHK(R⊕ [1]16) }CIPHK(R⊕ [2]16) } c }CIPHK(R⊕ [<d/16= - 1]16).

iv. Let y = NUM2(S).

v. If i is even, let m = u; else, let m = v.

vi. Let c = (NUMradix(A) + y) mod radixm.

vii. Let C = STRradix
m (c).

viii. Let A = B.

ix. Let B = C.

6. Return Y = A}B.

Figure 7.14 Algorithm FF1 (FFX[Radix])
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The output is the encrypted character string Y of length n. What follows is a step-by-

step description of the algorithm.

 1., 2.  The input X is split into two substrings A and B. If n is even, A and B are 

of equal length. Otherwise, B is one character longer than A.

 3.  The expression <v LOG2(radix)=  equals the number of bits needed to 

encode B, which is v characters long. Encoding B as a byte string, b is 

the number of bytes in the encoding. The definition of d ensures that the 

output of the Feistel round function is at least 4 bytes longer than this 

encoding of B, which minimizes any bias in the modular reduction in 

step 5.vi, as explained subsequently.

 4. P is a 128-bit (16-byte) block that is a function of radix, u, n, and t. It 

serves as the first block of plaintext input to the CBC encryption mode 

used in 5.ii, and is intended to increase security.

 5. The loop through the 10 rounds of encryption.

 5.i The tweak, T, the substring, B, and the round number, i, are encoded 

as a binary string, Q, which is one or more 128-bit blocks in length. To 

understand this step, first note that the value NUMradix(B) produces a 

numeral string that represents B in base radix. How this numeral string is 

formatted and stored is outside the scope of the standard. Then, the value 

[NUMradix(B)]b produces the representation of the numerical value of B 

as a binary number in a string of b bytes. We also have the length of T 

is t bytes, and the round number is stored in a single byte. This yields a 

length of (t + b + 1) bytes. This is padded out with z = (- t - b - 1) 

mod 16 bytes. From the rules of modular arithmetic, we know that 

(z + t + b + 1) mod 16 = 0. Thus the length of Q is one or more 128-

bit blocks.

 5.ii The concatenation of P and Q is input to the pseudorandom func-

tion PRF to produce a 128-bit output R. This function is the pseudo-

random core of the Feistel round function. It scrambles the bits of Bi 

 (Figure 7.12).

 5.iii This step either truncates or expands R to a byte string S of length d 

bytes. That is, if d … 16 bytes, then R is the first d bytes of R. Otherwise 

the 16-byte R is concatenated with successive encryptions of R XORed 

with successive constants to produce the shortest string of 16-byte blocks 

whose length is greater than or equal to d bytes.

 5.iv This step begins the process of converting the results of the scrambling 

of Bi into a form suitable for combining with Ai. In this step, the d-byte 

string S is converted into a numeral string in base 2 that represents S. 

That is, S is represented as a binary string y.

 5.v This step determines the length m of the character string output that is 

required to match the length of the B portion of the round output. For 

even-numbered rounds, the length is u characters, and for odd- numbered 

rounds it is v characters, as shown in Figure 7.12.

 5.vi The numerical values of A and y are added modulo radixm. This trun-

cates the value of the sum to a value c that can be stored in m characters.
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 5.vii This step converts the c into the proper representation C as a string of m 

characters.

 5.viii, 5.ix  These steps complete the round by placing the unchanged value of B 

from the preceding round into A, and placing C into B.

 6. After the final round, the result is returned as the concatenation of A and B.

It may be worthwhile to clarify the various uses of the NUM function in FF1. 

NUM converts strings with a given radix into integers. In step 5.i, B is a character 

string in base radix, so NUMradix(B) converts this into an integer, which is stored 

as a byte string, suitable for encryption in step 5.ii. For step 5.iv, S is a byte string 

output of an encryption function, which can be viewed a bit string, so NUM2(S) 

converts this into an integer.

Finally, a brief explanation of the variable d is in order, which is best ex-

plained by example. Let radix = 26 and v = 30 characters. Then b = 18 bytes, 

and d = 24 bytes. Step 5.ii produces an output R of 16 bytes. We desire a scram-

bled output of b bytes to match the input, and so R needs to be padded out. Rather 

than padding with a constant value such as all zeros, step 5.iii pads out with random 

bits. The result, in step 5.iv is a number greater than radixm of fully randomized 

bits. The use of randomized padding avoids a potential security risk of using a fixed 

padding.

ALGORITHM FF2 Algorithm FF2 was submitted to NIST as a proposed FPE 

mode with the name VAES3 [VANC11]. The encryption algorithm is defined in 

Figure 7.15. The shaded lines correspond to the function FK. The algorithm has the 

following parameters:

 ■ radix∈ [2 .. 28]

 ■ tweakradix∈ [2 .. 28]

 ■ radixminlen Ú 100

 ■ minlen Ú 2

 ■ maxlen … 2:120/LOG2(radix);  if radix is a power of 2. For the maximum radix 

value of 28, maxlen … 30; for the minimum radix value of 2, maxlen … 240. In 

both cases, the maximum bit length to store the integer value of X is 240 bits, 

or 30 bytes.

 ■ maxlen … 2:98/LOG2(radix);  if radix is a not a power of 2. For the maxi-

mum radix value of 255, maxlen … 24; for the minimum radix value of 3, 

maxlen … 124.

 ■ maxTlen … :104/LOG2(tweakradix); . For the maximum tweakradix value of 

28, maxTlen … 13.

For FF2, the plaintext character alphabet and that of the tweak may be different.

The first two steps of FF2 are the same as FF1, setting values for v, u, A, and B.  

FF2 proceeds with the following steps:

3. P is a 128-bit (16-byte) block. If there is a tweak, then P is a function of 

 radix, t, n, and the 13-byte numerical value of the tweak. If there is no tweak 

(t = 0), then P is a function of radix and n. P is used to form an encryption key 

in step 4.
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4. J is the encryption of P using the input key K.

5. The loop through the 10 rounds of encryption.

5.i B is converted into a 15-byte number, prepended by the round number to 

form a 16-byte block Q.

5.ii Q is encrypted using the encryption key J to yield Y.

The remaining steps are the same as for FF1. The essential difference is in the 

way in which all of the parameters are incorporated into the encryption that takes 

place in the block FK. In both cases, the encryption is not simply an encryption of B 

using key K. For FF1, B is combined with the tweak, the round number, t, n, u, and 

radix to form a string of multiple 16-byte blocks. Then CBC encryption is used with 

K to produce a 16-byte output. For FF2, all of the parameters besides B are com-

bined to form a 16-byte block, which is then encrypted with K to form the key value 

J. J is then used as the key for the one-block encryption of B.

The structure of FF2 explains the maximum length restrictions. In step 3, P 

incorporates the radix, tweak length, the numeral string length, and the tweak into 

the calculation. As input to AES, P is restricted to 16 bytes. With a maximum radix 

value of 28, the radix value can be stored in one byte (byte value 0 corresponds 

to 256). The string length n and tweak length t each easily fits into one byte. This 

leaves a  restriction that the value of the tweak should be stored in at most 13 bytes,  

Approved, 128-bit block cipher, CIPH;

Key, K, for the block cipher; 

Base, tweakradix, for the tweak character alphabet;

Range of supported message lengths, [minlen .. maxlen];

Maximum supported tweak length, maxTlen.

Inputs:

Numeral string, X, in base radix, of length n such that n ∈ [minlen .. maxlen];

Tweak numeral string, T, in base tweakradix, of length t such that t ∈ [0 .. maxTlen].

Output:
Numeral string, Y, such that LEN(Y) = n.

Steps:

1. Let u = :n/2; ; v = n - u.

2. Let A = X[1 .. u]; B = X[u + 1 .. n].

3. If t 7 0, P = [radix]1 }  [t]1 }  [n]1 }  [NUM tweakradix(T)]13; else P = [radix]1 }  [0]1 }  [n]1 }  [0]13.

4. Let J = CIPHK(P).

5. For i from 0 to 9:

i. Let Q d [i]1 }  [NUMradix(B)]15

ii. Let Y d CIPHJ(Q).

iii. Let y d NUM2(Y).

iv. If i is even, let m = u; else, let m = v.

v. Let c = (NUMradix(A) + y) mod radixm.

vi. Let C = STRradix
m (c).

vii. Let A = B.

viii. Let B = C.

6. Return Y = A}B.

Figure 7.15 Algorithm FF2 (VAES3)



244  CHAPTER 7 / BLOCK CIPHER OPERATION

or 104 bits. The number of bits to store the tweak is LOG2(tweakradixTlen). This 

leads to the restriction maxTlen Ú :104/LOG2(tweakradix); . Similarly step 5i  

incorporates B and the round number into a 16-byte input to AES, leaving  

15 bytes to encode B, or 120 bits, so that the length must be less than or equal to :120/LOG2(radix); . The parameter maxlen refers to the entire block, consisting of 

partitions A and B, thus maxlen Ú 2:120/LOG2(radix); .
There is a further restriction on maxlen for a radix that is not a power of 2. 

As explained in [VANC11], when the radix is not a power of 2, modular arithme-

tic causes the value (y mod radixm) to not have uniform distribution in the output 

space, which can result in a cryptographic weakness.

ALGORITHM FF3 Algorithm FF3 was submitted to NIST as a proposed FPE mode 

with the name BPS-BC [BRIE10]. The encryption algorithm is illustrated in 

Figure 7.16. The shaded lines correspond to the function FK. The algorithm has the 

following parameters:

 ■ radix∈ [2 .. 216]

 ■ radixminlen Ú 100

 ■ minlen Ú 2

Approved, 128-bit block cipher, CIPH;

Key, K, for the block cipher;

Base, radix, for the character alphabet such that radix ∈ [2..216];

Range of supported message lengths, [minlen .. maxlen], such that minlen Ú 2 and 

maxlen … 2:logradix(296); .
Inputs:

Numeral string, X, in base radix of length n such that n ∈ [minlen .. maxlen];

Tweak bit string, T, such that LEN(T) = 64.

Output:
Numeral string, Y, such that LEN(Y) = n.

Steps:

1. Let u = <n/2= ; v = n - u.

2. Let A = X[1 .. u]; B = X[u + 1 .. n].

3. Let TL = T[0 .. 31] and TR = T[32 .. 63].

4. For i from 0 to 7:

i. If i is even, let m = u and W = TR, else let m = v and W = TL.

ii. Let P = REV([NUMradix(REV(B))]12) } [W⊕ REV([i]4]).

iii. Let Y = CIPHK(P).

iv. Let y = NUM2(REV(Y)).

v. Let c = (NUMradix(REV(A)) + y) mod radixm.

vi. Let C = REV(STRradix
m (c)).

vii. Let A = B.

viii. Let B = C.

5. Return A}B.

Figure 7.16 Algorithm FF3 (BPS-BC)
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 ■ maxlen … 2:LOGradix(296); . For the maximum radix value of 216, maxlen … 12; 

for the minimum radix value of 2, maxlen … 192. In both cases, the maximum 

bit length to store the integer value of X is 192 bits, or 24 bytes.

 ■ Tweak length = 64 bits

FF3 proceeds with the following steps:

1., 2. The input X is split into two substrings A and B. If n is even, A and B are 

of equal length. Otherwise, A is one character longer than B, in contrast 

to FF1 and FF2, where B is one character longer than A.

3. The tweak is partitioned into a 32-bit left tweak TL and a 32-bit right 

tweak TR.

4. The loop through the 8 rounds of encryption.

4.i As in FF1 and FF2, this step determines the length m of the character 

string output that is required to match the length of the B portion of the 

round output. The step also determines whether TL or TR will be used as 

W in step 4ii.

4.ii The bits of B are reversed, then NUMradix(B) produces a 12-byte numeral 

string in base radix; the results are again reversed. A 32-bit encoding of 

the round number i is stored in a 4-byte unit, which is reversed and then 

XORed with W. P is formed by concatenating these two results to form a 

16-byte block.

4.iii P is encrypted using the encryption key K to yield Y.

4.iv This is similar to step 5.iv in FF1, except that Y is reversed before convert-

ing it into a numeral string in base 2.

4.v The numerical values of the reverse of A and y are added modulo radixm. 

This truncates the value of the sum to a value c that can be stored in m 

characters.

4.vi This step converts c to a numeral string C.

The remaining steps are the same as for FF1.

 7.9 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms 

block cipher modes of 

operation

cipher block chaining mode 

(CBC)

cipher feedback mode  

(CFB)

ciphertext stealing

counter mode (CTR)

electronic codebook mode 

(ECB)

meet-in-the-middle attack 

nonce

output feedback mode  

(OFB)

Triple DES (3DES)

tweakable block cipher

XTS-AES mode
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Review Questions 

 7.1 What is triple encryption?

 7.2 What is a meet-in-the-middle attack?

 7.3 How many keys are used in triple encryption?

 7.4 List and briefly define the block cipher modes of operation.

 7.5 Why do some block cipher modes of operation only use encryption while others use 
both encryption and decryption?

Problems 

 7.1 You want to build a hardware device to do block encryption in the cipher block chain-
ing (CBC) mode using an algorithm stronger than DES. 3DES is a good candidate. 
Figure 7.17 shows two possibilities, both of which follow from the definition of CBC. 
Which of the two would you choose:
a. For security?
b. For performance?

 7.2 Can you suggest a security improvement to either option in Figure 7.17, using only 
three DES chips and some number of XOR functions? Assume you are still limited to 
two keys.

Figure 7.17 Use of Triple DES in CBC Mode
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 7.3 The Merkle–Hellman attack on 3DES begins by assuming a value of A = 0 
(Figure 7.1b). Then, for each of the 256 possible values of K1, the plaintext P that 
produces A = 0 is determined. Describe the rest of the algorithm.

 7.4 With the ECB mode, if there is an error in a block of the transmitted ciphertext, only 
the corresponding plaintext block is affected. However, in the CBC mode, this error 
propagates. For example, an error in the transmitted C1 (Figure 7.4) obviously cor-
rupts P1 and P2.
a. Are any blocks beyond P2 affected?
b. Suppose that there is a bit error in the source version of P1. Through how many 

ciphertext blocks is this error propagated? What is the effect at the receiver?

 7.5 Is it possible to perform encryption operations in parallel on multiple blocks of plain-
text in CBC mode? How about decryption?

 7.6 CBC-Pad is a block cipher mode of operation used in the RC5 block cipher, but it 
could be used in any block cipher. CBC-Pad handles plaintext of any length. The 
ciphertext is longer then the plaintext by at most the size of a single block. Padding is 
used to assure that the plaintext input is a multiple of the block length. It is assumed 
that the original plaintext is an integer number of bytes. This plaintext is padded at 
the end by from 1 to bb bytes, where bb equals the block size in bytes. The pad bytes 
are all the same and set to a byte that represents the number of bytes of padding. For 
example, if there are 8 bytes of padding, each byte has the bit pattern 00001000. Why 
not allow zero bytes of padding? That is, if the original plaintext is an integer multiple 
of the block size, why not refrain from padding?

 7.7 For the ECB, CBC, and CFB modes, the plaintext must be a sequence of one or more 
complete data blocks (or, for CFB mode, data segments). In other words, for these 
three modes, the total number of bits in the plaintext must be a positive multiple of 
the block (or segment) size. One common method of padding, if needed, consists of a 
1 bit followed by as few zero bits, possibly none, as are necessary to complete the final 
block. It is considered good practice for the sender to pad every message, including 
messages in which the final message block is already complete. What is the motiva-
tion for including a padding block when padding is not needed?

 7.8 If a bit error occurs in the transmission of a ciphertext character in 8-bit CFB mode, 
how far does the error propagate?

 7.9 In discussing OFB, it was mentioned that if it was known that two different messages 
had an identical block of plaintext in the identical position, it is possible to recover 
the corresponding Oi block. Show the calculation.

 7.10 In discussing the CTR mode, it was mentioned that if any plaintext block that is 
encrypted using a given counter value is known, then the output of the encryption 
function can be determined easily from the associated ciphertext block. Show the 
calculation.

 7.11 Padding may not always be appropriate. For example, one might wish to store the 
encrypted data in the same memory buffer that originally contained the plaintext. In that 
case, the ciphertext must be the same length as the original plaintext. We saw the use 
of ciphertext stealing in the case of XTS-AES to deal with partial blocks. Figure 7.18a 
shows the use of ciphertext stealing to modify CBC mode, called CBC-CTS.
a. Explain how it works.
b. Describe how to decrypt Cn - 1 and Cn.

 7.12 Figure 7.18b shows an alternative to CBC-CTS for producing ciphertext of equal 
length to the plaintext when the plaintext is not an integer multiple of the block size.
a. Explain the algorithm.
b. Explain why CBC-CTS is preferable to this approach illustrated in Figure 7.18b.

 7.13 Draw a figure similar to those of Figure 7.8 for XTS-AES mode.

 7.14 Work out the following problems from first principles without converting to binary 
and counting the bits. Then compare with the formulae presented for encoding a 
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character string into an integer, and vice-versa, in the specified radix. (Hint: Consider 
the next-lower and next-higher power of two for each integer.)
a. How many bits are exactly required to encode the following integers? (The num-

ber shown as an integer’s subscript refers to the radix of that integer.)
i. 2 0 4 71 0

ii. 2 0 4 8 1 0

iii. 3 2 7 6 71 0

iv. 3 2 7 6 8 1 0

v. 3 2 7 6 71 6

vi. 3 2 7 6 8 1 6

vii. 5 3 7 F1 6

viii. 2 9 4 3 11 0

b. Exactly how many bytes are required to represent the numbers in (a) above?

 7.15 a.  In radix-26, write down the numeral string X for each of the following character 
strings, followed by the number of “digits” (i.e., the length of the numeral string) 
in each case.
i. “hex”

ii. “cipher”
iii. “not”
iv. “symbol”

Figure 7.18 Block Cipher Modes for Plaintext not a Multiple of Block Size
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b. For each case of problem (a), determine the number x = NUM26(X)
c. Determine the byte form [x] for each number x computed in problem (b).
d. What is the smallest power of the radix (26) that is greater than each of the nu-

merical strings determined in (b)?
e. Is it related to the length of the numeral string in each case, in problem (a)? If so, 

what is this relationship?

 7.16 Refer to algorithms FF1 and FF2.
a. For step 1, for each algorithm, u d :n/2;  and v d <n - u= . Show that for any 

three integers x, y, and n:
if x = :n/2;  and y = <n - x= , then:

i. Either x = n/2, or x = (n - 1)/2.
ii. Either y = n/2, or y = (n + 1)/2.

iii. x … y. (Under what condition is x = y?)
b. What is the significance of result in the previous sub-problem (iii), in terms of the 

lengths u and v of the left and right half-strings, respectively?

 7.17 In step 3 of Algorithm FF1, what do b and d represent? What is the unit of measure-
ment (bits, bytes, digits, characters) of each of these quantities?

 7.18 In the inputs to algorithms FF1, FF2, and FF3, why are the specified radix ranges 
important? For example, why should radix∈ [0..28] for Algorithm FF2, or 
radix∈ [2..216] in the case of Algorithm FF3?

Programming Problems 

 7.19 Create software that can encrypt and decrypt in cipher block chaining mode using one 
of the following ciphers: affine modulo 256, Hill modulo 256, S-DES, DES.

  Test data for S-DES using a binary initialization vector of 1010 1010. A binary plain-
text of 0000 0001 0010 0011 encrypted with a binary key of 01111 11101 should give 
a binary plaintext of 1111 0100 0000 1011. Decryption should work correspondingly.

 7.20 Create software that can encrypt and decrypt in 4-bit cipher feedback mode using one 
of the following ciphers: additive modulo 256, affine modulo 256, S-DES;

or
  8-bit cipher feedback mode using one of the following ciphers: 2 * 2 Hill modulo 256. 

Test data for S-DES using a binary initialization vector of 1010 1011. A binary plain-
text of 0001 0010 0011 0100 encrypted with a binary key of 01111 11101 should give 
a binary plaintext of 1110 1100 1111 1010. Decryption should work correspondingly.

 7.21 Create software that can encrypt and decrypt in counter mode using one of the follow-
ing ciphers: affine modulo 256, Hill modulo 256, S-DES.

  Test data for S-DES using a counter starting at 0000 0000. A binary plaintext of 0000 
0001 0000 0010 0000 0100 encrypted with a binary key of 01111 11101 should give 
a binary plaintext of 0011 1000 0100 1111 0011 0010. Decryption should work cor-
respondingly.

 7.22 Implement a differential cryptanalysis attack on 3-round S-DES.
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An important cryptographic function is the generation of random bit streams. Random 

bits streams are used in a wide variety of contexts, including key generation and 

 encryption. In essence, there are two fundamentally different strategies for generating 

random bits or random numbers. One strategy, which until recently dominated in cryp-

tographic applications, computes bits deterministically using an algorithm. This class of 

random bit generators is known as pseudorandom number generators (PRNGs) or 

deterministic random bit generators (DRBGs). The other strategy is to produce bits 

non-deterministically using some physical source that produces some sort of random 

output. This latter class of random bit generators is known as true random number 

generators (TRNGs) or non-deterministic random bit generators (NRBGs).

The chapter begins with an analysis of the basic principles of PRNGs. Next, we 

look at some common PRNGs, including PRNGs based on the use of a symmetric 

block cipher. The chapter then moves on to the topic of symmetric stream ciphers, 

which are based on the use of a PRNG. The chapter next examines the most important 

stream cipher, RC4.

The remainder of the chapter is devoted to TRNGs. We look first at the basic 

principles and structure of TRNGs, and then examine a specific product, the Intel 

Digital Random Number Generator.

Throughout this chapter, reference is made to four important NIST documents:

 ■ SP 800-90A (Recommendation for Random Number Generation Using 
Deterministic Random Bit Generators, January 2012) covers DRNGs.

 ■ SP 800-90B (Recommendation for the Entropy Sources Used for Random Bit 
Generation, August 2012) covers criteria for entropy sources (ES), the devices 

from which we get unpredictable randomness and NRNGs.

 ■ SP 800-90C (Recommendation for Random Bit Generator (RBG) 
Constructions, August 2012) discusses how to combine the entropy sources in 

90B with the DRNG’s from 90A to provide large quantities of unpredictable 

bits for cryptographic applications.

LEARNING OBJECTIVES

After studying this chapter, you should be able to:

 ◆ Explain the concepts of randomness and unpredictability with respect to 

random numbers.

 ◆ Understand the differences among true random number generators, 

 pseudorandom number generators, and pseudorandom functions.

 ◆ Present an overview of requirements for pseudorandom number  generators.

 ◆ Explain how a block cipher can be used to construct a pseudorandom 

number generator.

 ◆ Present an overview of stream ciphers and RC4.

 ◆ Explain the significance of skew.
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 ■ SP 800-22 (A Statistical Test Suite for Random and Pseudorandom Number 
Generators for Cryptographic Applications, April 2010) discusses the selection 

and testing of NRBGs and DRBGs.

These specifications have heavily influenced the implementation of random bit 

generators in industry both in the U.S. and worldwide.

 8.1 PRINCIPLES OF PSEUDORANDOM NUMBER GENERATION

Random numbers play an important role in the use of encryption for various net-

work security applications. In this section, we provide a brief overview of the use 

of random numbers in cryptography and network security and then focus on the 

principles of pseudorandom number generation.

The Use of Random Numbers

A number of network security algorithms and protocols based on cryptography 

make use of random binary numbers. For example,

 ■ Key distribution and reciprocal (mutual) authentication schemes, such as 

those discussed in Chapters 14 and 15. In such schemes, two communicating 

parties cooperate by exchanging messages to distribute keys and/or authen-

ticate each other. In many cases, nonces are used for handshaking to prevent 

replay attacks. The use of random numbers for the nonces frustrates an oppo-

nent’s efforts to determine or guess the nonce, in order to repeat an obsolete 

transaction.

 ■ Session key generation. We will see a number of protocols in this book where a 

secret key for symmetric encryption is generated for use for a particular trans-

action (or session) and is valid for a short period of time. This key is generally 

called a session key.

 ■ Generation of keys for the RSA public-key encryption algorithm (described 

in Chapter 9).

 ■ Generation of a bit stream for symmetric stream encryption (described in this 

chapter).

These applications give rise to two distinct and not necessarily compatible 

 requirements for a sequence of random numbers: randomness and unpredictability.

RANDOMNESS Traditionally, the concern in the generation of a sequence of alleg-

edly random numbers has been that the sequence of numbers be random in some 

well-defined statistical sense. The following two criteria are used to validate that a 

sequence of numbers is random:

 ■ Uniform distribution: The distribution of bits in the sequence should be 

 uniform; that is, the frequency of occurrence of ones and zeros should be 

 approximately equal.

 ■ Independence: No one subsequence in the sequence can be inferred from the 

others.
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Although there are well-defined tests for determining that a sequence of bits 

matches a particular distribution, such as the uniform distribution, there is no such 

test to “prove” independence. Rather, a number of tests can be applied to demon-

strate if a sequence does not exhibit independence. The general strategy is to apply 

a number of such tests until the confidence that independence exists is sufficiently 

strong. That is, if each of a number of tests fails to show that a sequence of bits is 

not independent, then we can have a high level of confidence that the sequence is in 

fact independent.

In the context of our discussion, the use of a sequence of numbers that appear 

statistically random often occurs in the design of algorithms related to cryptography. 

For example, a fundamental requirement of the RSA public-key encryption scheme 

discussed in Chapter 9 is the ability to generate prime numbers. In general, it is 

difficult to determine if a given large number N is prime. A brute-force approach 

would be to divide N by every odd integer less than 2N. If N is on the order, say, 

of 10150, which is a not uncommon occurrence in public-key cryptography, such a 

brute-force approach is beyond the reach of human analysts and their computers. 

However, a number of effective algorithms exist that test the primality of a num-

ber by using a sequence of randomly chosen integers as input to relatively simple 

computations. If the sequence is sufficiently long (but far, far less than 210150), the 

primality of a number can be determined with near certainty. This type of approach, 

known as randomization, crops up frequently in the design of algorithms. In es-

sence, if a problem is too hard or time-consuming to solve exactly, a simpler, shorter 

 approach based on randomization is used to provide an answer with any desired 

level of confidence.

UNPREDICTABILITY In applications such as reciprocal authentication, session key 

generation, and stream ciphers, the requirement is not just that the sequence of 

numbers be statistically random but that the successive members of the sequence 

are unpredictable. With “true” random sequences, each number is statistically inde-

pendent of other numbers in the sequence and therefore unpredictable. Although 

true random numbers are used in some applications, they have their limitations, 

such as inefficiency, as is discussed shortly. Thus, it is more common to imple-

ment algorithms that generate sequences of numbers that appear to be random. In 

this latter case, care must be taken that an opponent not be able to predict future 

 elements of the sequence on the basis of earlier elements.

TRNGs, PRNGs, and PRFs

Cryptographic applications typically make use of algorithmic techniques for ran-

dom number generation. These algorithms are deterministic and therefore produce 

sequences of numbers that are not statistically random. However, if the algorithm is 

good, the resulting sequences will pass many tests of randomness. Such numbers are 

referred to as pseudorandom numbers.

You may be somewhat uneasy about the concept of using numbers generated 

by a deterministic algorithm as if they were random numbers. Despite what might be 

called philosophical objections to such a practice, it generally works. That is, under 

most circumstances, pseudorandom numbers will perform as well as if they were 

random for a given use. The phrase “as well as” is unfortunately subjective, but the 
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use of pseudorandom numbers is widely accepted. The same principle  applies in 

statistical applications, in which a statistician takes a sample of a population and 

assumes that the results will be approximately the same as if the whole population 

were measured.

Figure 8.1 contrasts a true random number generator (TRNG) with two forms 

of pseudorandom number generators. A TRNG takes as input a source that is 

 effectively random; the source is often referred to as an entropy source. We discuss 

such sources in Section 8.6. In essence, the entropy source is drawn from the physi-

cal environment of the computer and could include things such as keystroke timing 

patterns, disk electrical activity, mouse movements, and instantaneous values of the 

system clock. The source, or combination of sources, serve as input to an algorithm 

that produces random binary output. The TRNG may simply involve conversion of 

an analog source to a binary output. The TRNG may involve additional processing 

to overcome any bias in the source; this is discussed in Section 8.6.

In contrast, a PRNG takes as input a fixed value, called the seed, and produces 

a sequence of output bits using a deterministic algorithm. Quite often, the seed is 

generated by a TRNG. Typically, as shown, there is some feedback path by which 

some of the results of the algorithm are fed back as input as additional output bits 

are produced. The important thing to note is that the output bit stream is deter-

mined solely by the input value or values, so that an adversary who knows the algo-

rithm and the seed can reproduce the entire bit stream.

Figure 8.1 shows two different forms of PRNGs, based on application.

 ■ Pseudorandom number generator: An algorithm that is used to produce an 

open-ended sequence of bits is referred to as a PRNG. A common application 

for an open-ended sequence of bits is as input to a symmetric stream cipher, 

as discussed in Section 8.4. Also, see Figure 4.1a.

Figure 8.1 Random and Pseudorandom Number Generators
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 ■ Pseudorandom function (PRF): A PRF is used to produce a pseudorandom 

string of bits of some fixed length. Examples are symmetric encryption keys 

and nonces. Typically, the PRF takes as input a seed plus some context specific 

values, such as a user ID or an application ID. A number of examples of PRFs 

will be seen throughout this book, notably in Chapters 17 and 18.

Other than the number of bits produced, there is no difference between a 

PRNG and a PRF. The same algorithms can be used in both applications. Both 

require a seed and both must exhibit randomness and unpredictability. Further, 

a PRNG application may also employ context-specific input. In what follows, we 

make no distinction between these two applications.

PRNG Requirements

When a PRNG or PRF is used for a cryptographic application, then the basic 

 requirement is that an adversary who does not know the seed is unable to determine 

the pseudorandom string. For example, if the pseudorandom bit stream is used in 

a stream cipher, then knowledge of the pseudorandom bit stream would enable the 

adversary to recover the plaintext from the ciphertext. Similarly, we wish to pro-

tect the output value of a PRF. In this latter case, consider the following scenario. 

A 128-bit seed, together with some context-specific values, are used to generate a 

128-bit secret key that is subsequently used for symmetric encryption. Under nor-

mal circumstances, a 128-bit key is safe from a brute-force attack. However, if the 

PRF does not generate effectively random 128-bit output values, it may be possible 

for an adversary to narrow the possibilities and successfully use a brute force attack.

This general requirement for secrecy of the output of a PRNG or PRF leads 

to specific requirements in the areas of randomness, unpredictability, and the char-

acteristics of the seed. We now look at these in turn.

RANDOMNESS In terms of randomness, the requirement for a PRNG is that the gen-

erated bit stream appear random even though it is deterministic. There is no single 

test that can determine if a PRNG generates numbers that have the characteristic 

of randomness. The best that can be done is to apply a sequence of tests to the 

PRNG. If the PRNG exhibits randomness on the basis of multiple tests, then it can 

be  assumed to satisfy the randomness requirement. NIST SP 800-22 specifies that 

the tests should seek to establish the following three characteristics.

 ■ Uniformity: At any point in the generation of a sequence of random or pseu-

dorandom bits, the occurrence of a zero or one is equally likely, that is, the 

probability of each is exactly 1/2. The expected number of zeros (or ones) is 

n/2, where n = the sequence length.

 ■ Scalability: Any test applicable to a sequence can also be applied to subse-

quences extracted at random. If a sequence is random, then any such extracted 

subsequence should also be random. Hence, any extracted subsequence should 

pass any test for randomness.

 ■ Consistency: The behavior of a generator must be consistent across starting 

values (seeds). It is inadequate to test a PRNG based on the output from 

a  single seed or a TRNG on the basis of an output produced from a single 

physical output.
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SP 800-22 lists 15 separate tests of randomness. An understanding of these 

tests requires a basic knowledge of statistical analysis, so we don’t attempt a techni-

cal description here. Instead, to give some flavor for the tests, we list three of the 

tests and the purpose of each test, as follows.

 ■ Frequency test: This is the most basic test and must be included in any test 

suite. The purpose of this test is to determine whether the number of ones and 

zeros in a sequence is approximately the same as would be expected for a truly 

random sequence.

 ■ Runs test: The focus of this test is the total number of runs in the sequence, 

where a run is an uninterrupted sequence of identical bits bounded before 

and after with a bit of the opposite value. The purpose of the runs test is to 

determine whether the number of runs of ones and zeros of various lengths is 

as expected for a random sequence.

 ■ Maurer’s universal statistical test: The focus of this test is the number of 

bits between matching patterns (a measure that is related to the length of a 

compressed sequence). The purpose of the test is to detect whether or not 

the  sequence can be significantly compressed without loss of information. 

A  significantly compressible sequence is considered to be non-random.

UNPREDICTABILITY A stream of pseudorandom numbers should exhibit two forms 

of unpredictability:

 ■ Forward unpredictability: If the seed is unknown, the next output bit in the 

sequence should be unpredictable in spite of any knowledge of previous bits 

in the sequence.

 ■ Backward unpredictability: It should also not be feasible to determine the 

seed from knowledge of any generated values. No correlation between a seed 

and any value generated from that seed should be evident; each element of the 

sequence should appear to be the outcome of an independent random event 

whose probability is 1/2.

The same set of tests for randomness also provide a test of unpredictability. If 

the generated bit stream appears random, then it is not possible to predict some bit 

or bit sequence from knowledge of any previous bits. Similarly, if the bit sequence 

appears random, then there is no feasible way to deduce the seed based on the bit 

sequence. That is, a random sequence will have no correlation with a fixed value 

(the seed).

SEED REQUIREMENTS For cryptographic applications, the seed that serves as input to 

the PRNG must be secure. Because the PRNG is a deterministic algorithm, if the 

adversary can deduce the seed, then the output can also be determined. Therefore, 

the seed must be unpredictable. In fact, the seed itself must be a random or pseudo-

random number.

Typically, the seed is generated by a TRNG, as shown in Figure 8.2. This is 

the scheme recommended by SP 800-90A. The reader may wonder, if a TRNG is 

available, why it is necessary to use a PRNG. If the application is a stream cipher, 

then a TRNG is not practical. The sender would need to generate a keystream of 
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bits as long as the plaintext and then transmit the keystream and the ciphertext 

 securely to the receiver. If a PRNG is used, the sender need only find a way to 

deliver the stream cipher key, which is typically 54 or 128 bits, to the receiver in a 

secure fashion.

Even in the case of a PRF application, in which only a limited number of bits 

is generated, it is generally desirable to use a TRNG to provide the seed to the 

PRF and use the PRF output rather than use the TRNG directly. As is explained in 

Section 8.6, a TRNG may produce a binary string with some bias. The PRF would 

have the effect of conditioning the output of the TRNG so as to eliminate that bias.

Finally, the mechanism used to generate true random numbers may not be 

able to generate bits at a rate sufficient to keep up with the application requiring 

the random bits.

Algorithm Design

Cryptographic PRNGs have been the subject of much research over the years, 

and a wide variety of algorithms have been developed. These fall roughly into two 

categories.

 ■ Purpose-built algorithms: These are algorithms designed specifically and 

solely for the purpose of generating pseudorandom bit streams. Some of these 

algorithms are used for a variety of PRNG applications; several of these are 

described in the next section. Others are designed specifically for use in a 

stream cipher. The most important example of the latter is RC4, described in 

Section 8.5.

 ■ Algorithms based on existing cryptographic algorithms: Cryptographic 

 algorithms have the effect of randomizing input data. Indeed, this is a require-

ment of such algorithms. For example, if a symmetric block cipher produced 

ciphertext that had certain regular patterns in it, it would aid in the process of 

Figure 8.2 Generation of Seed Input to PRNG
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cryptanalysis. Thus, cryptographic algorithms can serve as the core of PRNGs. 

Three broad categories of cryptographic algorithms are commonly used to 

 create PRNGs:

–Symmetric block ciphers: This approach is discussed in Section 8.3.

–Asymmetric ciphers: The number theoretic concepts used for an asymmet-

ric cipher can also be adapted for a PRNG; this approach is examined in 

Chapter 10.

–Hash functions and message authentication codes: This approach is exam-

ined in Chapter 12.

Any of these approaches can yield a cryptographically strong PRNG. 

A  purpose-built algorithm may be provided by an operating system for general use. 

For applications that already use certain cryptographic algorithms for encryption or 

 authentication, it makes sense to reuse the same code for the PRNG. Thus, all of 

these approaches are in common use.

 8.2 PSEUDORANDOM NUMBER GENERATORS

In this section, we look at two types of algorithms for PRNGs.

Linear Congruential Generators

A widely used technique for pseudorandom number generation is an algorithm first 

proposed by Lehmer [LEHM51], which is known as the linear congruential method. 

The algorithm is parameterized with four numbers, as follows:

m the modulus m 7 0

a the multiplier 0 6 a 6 m
c the increment 0 … c 6 m
X0 the starting value, or seed 0 … X0 6 m

The sequence of random numbers {Xn} is obtained via the following iterative 

equation:

 Xn + 1 = (aXn + c) mod m 

If m, a, c, and X0 are integers, then this technique will produce a sequence of inte-

gers with each integer in the range 0 … Xn 6 m.

The selection of values for a, c, and m is critical in developing a good ran-

dom number generator. For example, consider a = c = 1. The sequence produced 

is obviously not satisfactory. Now consider the values a = 7, c = 0, m = 32, and 

X0 = 1. This generates the sequence {7, 17, 23, 1, 7, etc.}, which is also clearly 

 unsatisfactory. Of the 32 possible values, only four are used; thus, the sequence 

is said to have a period of 4. If, instead, we change the value of a to 5, then the 

 sequence is {5, 25, 29, 17, 21, 9, 13, 1, 5, etc. }, which increases the period to 8.

We would like m to be very large, so that there is the potential for producing 

a long series of distinct random numbers. A common criterion is that m be nearly 
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equal to the maximum representable nonnegative integer for a given computer. 

Thus, a value of m near to or equal to 231 is typically chosen.

[PARK88] proposes three tests to be used in evaluating a random number 

generator:

T1: The function should be a full-period generating function. That is, the function 

should generate all the numbers from 0 through m - 1 before repeating.

T2: The generated sequence should appear random.

T3: The function should implement efficiently with 32-bit arithmetic.

With appropriate values of a, c, and m, these three tests can be passed. With 

respect to T1, it can be shown that if m is prime and c = 0, then for certain values 

of a the period of the generating function is m - 1, with only the value 0 missing. 

For 32-bit arithmetic, a convenient prime value of m is 231 - 1. Thus, the generating 

function becomes

 Xn + 1 = (aXn) mod (231 - 1) 

Of the more than 2 billion possible choices for a, only a handful of multipliers 

pass all three tests. One such value is a = 75 = 16807, which was originally selected 

for use in the IBM 360 family of computers [LEWI69]. This generator is widely 

used and has been subjected to a more thorough testing than any other PRNG. It is 

 frequently recommended for statistical and simulation work (e.g., [JAIN91]).

The strength of the linear congruential algorithm is that if the multiplier and 

modulus are properly chosen, the resulting sequence of numbers will be statistically 

indistinguishable from a sequence drawn at random (but without replacement) from 

the set 1, 2, c , m - 1. But there is nothing random at all about the algorithm, apart 

from the choice of the initial value X0. Once that value is chosen, the remaining num-

bers in the sequence follow deterministically. This has implications for cryptanalysis.

If an opponent knows that the linear congruential algorithm is being used and 

if the parameters are known (e.g., a = 75, c = 0, m = 231 - 1), then once a single 

number is discovered, all subsequent numbers are known. Even if the opponent 

knows only that a linear congruential algorithm is being used, knowledge of a small 

part of the sequence is sufficient to determine the parameters of the algorithm. 

Suppose that the opponent is able to determine values for X0, X1, X2, and X3. Then

 X1 = (aX0 + c) mod m
 X2 = (aX1 + c) mod m
 X3 = (aX2 + c) mod m

These equations can be solved for a, c, and m.

Thus, although it is nice to be able to use a good PRNG, it is desirable to make 

the actual sequence used nonreproducible, so that knowledge of part of the se-

quence on the part of an opponent is insufficient to determine future elements of the 

sequence. This goal can be achieved in a number of ways. For example, [BRIG79] 

suggests using an internal system clock to modify the random number stream. One 

way to use the clock would be to restart the sequence after every N numbers using 

the current clock value (mod m) as the new seed. Another way would be simply to 

add the current clock value to each random number (mod m).
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Blum Blum Shub Generator

A popular approach to generating secure pseudorandom numbers is known as 

the Blum Blum Shub (BBS) generator (see Figure 8.3), named for its developers 

[BLUM86]. It has perhaps the strongest public proof of its cryptographic strength 

of any purpose-built algorithm. The procedure is as follows. First, choose two large 

prime numbers, p and q, that both have a remainder of 3 when divided by 4. That is,

 p K q K 3(mod 4) 

This notation, explained more fully in Chapter 4, simply means that (p mod 4) =
(q mod 4) = 3. For example, the prime numbers 7 and 11 satisfy 7 K 11 K 3(mod 4). 

Let n = p * q. Next, choose a random number s, such that s is relatively prime to n; 

this is equivalent to saying that neither p nor q is a factor of s. Then the BBS genera-

tor produces a sequence of bits Bi according to the following algorithm:

X0 = s2 mod n
for i = 1 to ∞

Xi = (Xi−1)2 mod n
Bi = Xi mod 2

Thus, the least significant bit is taken at each iteration. Table 8.1 shows an example 

of BBS operation. Here, n = 192649 = 383 * 503, and the seed s = 101355.

The BBS is referred to as a cryptographically secure pseudorandom bit 
 generator (CSPRBG). A CSPRBG is defined as one that passes the next-bit test, 
which, in turn, is defined as follows [MENE97]: A pseudorandom bit generator is 

said to pass the next-bit test if there is not a polynomial-time algorithm1 that, on 

input of the first k bits of an output sequence, can predict the (k + 1)st bit with 

probability significantly greater than 1/2. In other words, given the first k bits of the 

1A polynomial-time algorithm of order k is one whose running time is bounded by a polynomial of order k.

Figure 8.3 Blum Blum Shub Block Diagram
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sequence, there is not a practical algorithm that can even allow you to state that the 

next bit will be 1 (or 0) with probability greater than 1/2. For all practical purposes, 

the sequence is unpredictable. The security of BBS is based on the difficulty of 

 factoring n. That is, given n, we need to determine its two prime factors p and q.

 8.3 PSEUDORANDOM NUMBER GENERATION USING 
A BLOCK CIPHER

A popular approach to PRNG construction is to use a symmetric block cipher as 

the heart of the PRNG mechanism. For any block of plaintext, a symmetric block 

cipher produces an output block that is apparently random. That is, there are no 

patterns or regularities in the ciphertext that provide information that can be used 

to deduce the plaintext. Thus, a symmetric block cipher is a good candidate for 

building a pseudorandom number generator.

If an established, standardized block cipher is used, such as DES or AES, then 

the security characteristics of the PRNG can be established. Further, many applica-

tions already make use of DES or AES, so the inclusion of the block cipher as part 

of the PRNG algorithm is straightforward.

PRNG Using Block Cipher Modes of Operation

Two approaches that use a block cipher to build a PNRG have gained widespread 

acceptance: the CTR mode and the OFB mode. The CTR mode is recommended in 

NIST SP 800-90A, in the ANSI standard X9.82 (Random Number Generation), and 

in RFC 4086 (Randomness Requirements for Security, June 2005). The OFB mode is 

recommended in X9.82 and RFC 4086.

Figure 8.4 illustrates the two methods. In each case, the seed consists of two 

parts: the encryption key value and a value V that will be updated after each block 

of pseudorandom numbers is generated. Thus, for AES-128, the seed consists of a 

128-bit key and a 128-bit V value. In the CTR case, the value of V is incremented 

Table 8.1 Example Operation of BBS Generator

i Xi Bi

0 20749

1 143135 1

2 177671 1

3 97048 0

4 89992 0

5 174051 1

6 80649 1

7 45663 1

8 69442 0

9 186894 0

10 177046 0

i Xi Bi

11 137922 0

12 123175 1

13 8630 0

14 114386 0

15 14863 1

16 133015 1

17 106065 1

18 45870 0

19 137171 1

20 48060 0
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by 1 after each encryption. In the case of OFB, the value of V is updated to equal the 

value of the preceding PRNG block. In both cases, pseudorandom bits are produced 

one block at a time (e.g., for AES, PRNG bits are generated 128 bits at a time).

The CTR algorithm for PRNG, called CTR_DRBG, can be summarized 

as follows.

while (len (temp) < requested_number_of_bits) do
 V = (V + 1) mod 2128

 output_block = E(Key, V)
 temp = temp || output_block

The OFB algorithm can be summarized as follows.

while (len (temp) < requested_number_of_bits) do
 V = E(Key, V)
 temp = temp || V

To get some idea of the performance of these two PRNGs, consider the fol-

lowing short experiment. A random bit sequence of 256 bits was obtained from 

random.org, which uses three radios tuned between stations to pick up atmospheric 

noise. These 256 bits form the seed, allocated as

Key: cfb0ef3108d49cc4562d5810b0a9af60

V: 4c89af496176b728ed1e2ea8ba27f5a4

The total number of one bits in the 256-bit seed is 124, or a fraction of 0.48, 

which is reassuringly close to the ideal of 0.5.

For the OFB PRNG, Table 8.2 shows the first eight output blocks (1024 bits) 

with two rough measures of security. The second column shows the fraction of one 

bits in each 128-bit block. This corresponds to one of the NIST tests. The results 

indicate that the output is split roughly equally between zero and one bits. The 

third column shows the fraction of bits that match between adjacent blocks. If this 

Figure 8.4 PRNG Mechanisms Based on Block Ciphers
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Output Block
Fraction of 
One Bits

Fraction of Bits 
that Match with 
Preceding Block

1786f4c7ff6e291dbdfdd90ec3453176 0.57 —

5e17b22b14677a4d66890f87565eae64 0.51 0.52

fd18284ac82251dfb3aa62c326cd46cc 0.47 0.54

c8e545198a758ef5dd86b41946389bd5 0.50 0.44

fe7bae0e23019542962e2c52d215a2e3 0.47 0.48

14fdf5ec99469598ae0379472803accd 0.49 0.52

6aeca972e5a3ef17bd1a1b775fc8b929 0.57 0.48

f7e97badf359d128f00d9b4ae323db64 0.55 0.45

Table 8.2 Example Results for PRNG Using OFB

Output Block
Fraction of 
One Bits

Fraction of Bits 
that Match with 
Preceding Block

1786f4c7ff6e291dbdfdd90ec3453176 0.57 —

60809669a3e092a01b463472fdcae420 0.41 0.41

d4e6e170b46b0573eedf88ee39bff33d 0.59 0.45

5f8fcfc5deca18ea246785d7fadc76f8 0.59 0.52

90e63ed27bb07868c753545bdd57ee28 0.53 0.52

0125856fdf4a17f747c7833695c52235 0.50 0.47

f4be2d179b0f2548fd748c8fc7c81990 0.51 0.48

1151fc48f90eebac658a3911515c3c66 0.47 0.45

Table 8.3 Example Results for PRNG Using CTR

number differs substantially from 0.5, that suggests a correlation between blocks, 

which could be a security weakness. The results suggest no correlation.

Table 8.3 shows the results using the same key and V values for CTR mode. 

Again, the results are favorable.

ANSI X9.17 PRNG

One of the strongest (cryptographically speaking) PRNGs is specified in ANSI 

X9.17. A number of applications employ this technique, including financial security 

applications and PGP (the latter described in Chapter 19).

Figure 8.5 illustrates the algorithm, which makes use of triple DES for encryp-

tion. The ingredients are as follows.

 ■ Input: Two pseudorandom inputs drive the generator. One is a 64-bit represen-

tation of the current date and time, which is updated on each number genera-

tion. The other is a 64-bit seed value; this is initialized to some arbitrary value 

and is updated during the generation process.

 ■ Keys: The generator makes use of three triple DES encryption modules. All 

three make use of the same pair of 56-bit keys, which must be kept secret and 

are used only for pseudorandom number generation.
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 ■ Output: The output consists of a 64-bit pseudorandom number and a 64-bit 

seed value.

Let us define the following quantities.

DTi Date/time value at the beginning of ith generation stage

Vi Seed value at the beginning of ith generation stage

Ri Pseudorandom number produced by the ith generation stage

K1, K2 DES keys used for each stage

Then

 Ri = EDE([K1, K2], [Vi⊕ EDE([K1, K2], DTi)])

 Vi+ 1 = EDE([K1, K2], [Ri⊕ EDE([K1, K2], DTi)])

where EDE([K1, K2], X) refers to the sequence encrypt-decrypt-encrypt using two-

key triple DES to encrypt X.

Several factors contribute to the cryptographic strength of this method. The 

technique involves a 112-bit key and three EDE encryptions for a total of nine DES 

encryptions. The scheme is driven by two independent inputs, the date and time 

value, and a seed produced by the generator that is distinct from the pseudorandom 

number produced by the generator. Thus, the amount of material that must be com-

promised by an opponent appears to be overwhelming. Even if a pseudorandom 

number Ri were compromised, it would be impossible to deduce the Vi+ 1 from the 

Ri, because an additional EDE operation is used to produce the Vi+ 1.

NIST CTR_DRBG

We now look more closely at the details of the PRNG defined in NIST SP 800-90A 

based on the CTR mode of operation. The PRNG is referred to as CTRDRBG 

(counter mode–deterministic random bit generator). CTR_DRBG is widely imple-

mented and is part of the hardware random number generator implemented on all 

recent Intel processor chips (discussed in Section 8.6).

Figure 8.5 ANSI X9.17 Pseudorandom Number Generator
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The DRBG assumes that an entropy source is available to provide random 

bits. Typically, the entropy source will be a TRNG based on some physical source. 

Other sources are possible if they meet the required entropy measure of the appli-

cation. Entropy is an information theoretic concept that measures unpredictability, 

or randomness; see Appendix F for details. The encryption algorithm used in the 

DRBG may be 3DES with three keys or AES with a key size of 128, 192, or 256 bits.

Four parameters are associated with the algorithm:

 ■ Output block length (outlen): Length of the output block of the encryption 

algorithm.

 ■ Key length (keylen): Length of the encryption key.

 ■ Seed length (seedlen): The seed is a string of bits that is used as input to a 

DRBG mechanism. The seed will determine a portion of the internal state of 

the DRBG, and its entropy must be sufficient to support the security strength 

of the DRBG. seedlen = outlen + keylen.

 ■ Reseed interval (reseed_interval): Length of the encryption key. It is the maxi-

mum number of output blocks generated before updating the algorithm with 

a new seed.

Table 8.4 lists the values specified in SP 800-90A for these parameters.

INITIALIZE Figure 8.6 shows the two principal functions that comprise CTR_DRBG. 

We first consider how CTR_DRBG is initialized, using the initialize and update 

function (Figure 8.6a). Recall that the CTR block cipher mode requires both an 

 encryption key K and an initial counter value, referred to in SP 800-90A as the 

counter V. The combination of K and V is referred to as the seed. To start the 

DRGB operation, initial values for K and V are needed, and can be chosen arbi-

trarily. As an example, the Intel Digital Random Number Generator, discussed in 

Section 8.6, uses the values K = 0 and V = 0. These values are used as param-

eters for the CTR mode of operation to produce at least seedlen bits. In addition, 

 exactly seedlen bits must be supplied from what is referred to as an entropy source. 

Typically, the  entropy source would be some form of TRNG.

With these inputs, the CTR mode of encryption is iterated to produce a 

 sequence of output blocks, with V incremented by 1 after each encryption. The pro-

cess continues until at least seedlen bits have been generated. The leftmost seedlen 

bits of output are then XORed with the seedlen entropy bits to produce a new seed. 

In turn, the leftmost keylen bits of the seed form the new key and the rightmost 

 outlen bits of the seed form the new counter value V.

3DES AES-128 AES-192 AES-256

outlen 64 128 128 128

keylen 168 128 192 256

seedlen 232 256 320 384

reseed_interval …232 …248 …248 …248

Table 8.4 CTR_DRBG Parameters
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GENERATE Once values of Key and V are obtained, the DRBG enters the  generate 

phase and is able to generate pseudorandom bits, one output block at a time 

(Figure 8.6b). The encryption function is iterated to generate the number of pseu-

dorandom bits desired. Each iteration uses the same encryption key. The counter 

value V is incremented by 1 for each iteration.

UPDATE To enhance security, the number of bits generated by any PRNG should be 

limited. CTR_DRGB uses the parameter reseed_interval to set that limit. During the 

generate phase, a reseed counter is initialized to 1 and then incremented with each 

Figure 8.6 CTR_DRBG Functions
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iteration (each production of an output block). When the reseed counter reaches 

reseed_interval, the update function is invoked (Figure 8.6a). The update function 

is the same as the initialize function. In the update case, the Key and V  values last 

used by the generate function serve as the input parameters to the update function. 

The update function takes seedlen new bits from an entropy source and produces a 

new seed (Key, V). The generate function can then resume production of pseudo-

random bits. Note that the result of the update function is to change both the Key 

and V values used by the generate function.

 8.4 STREAM CIPHERS

A typical stream cipher encrypts plaintext one byte at a time, although a stream 

cipher may be designed to operate on one bit at a time or on units larger than a byte 

at a time. Figure 8.7 is a representative diagram of stream cipher structure. In this 

structure, a key is input to a pseudorandom bit generator that produces a stream 

of 8-bit numbers that are apparently random. The output of the generator, called 

a keystream, is combined one byte at a time with the plaintext stream using the 

bitwise exclusive-OR (XOR) operation. For example, if the next byte generated by 

the generator is 01101100 and the next plaintext byte is 11001100, then the resulting 

ciphertext byte is

11001100 plaintext
⊕ 01101100 key stream

10100000 ciphertext

Decryption requires the use of the same pseudorandom sequence:

10100000 ciphertext
⊕ 01101100 key stream

11001100 plaintext

Figure 8.7 Stream Cipher Diagram
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The stream cipher is similar to the one-time pad discussed in Chapter 3. The 

difference is that a one-time pad uses a genuine random number stream, whereas a 

stream cipher uses a pseudorandom number stream.

[KUMA97] lists the following important design considerations for a stream cipher.

1. The encryption sequence should have a large period. A pseudorandom num-

ber generator uses a function that produces a deterministic stream of bits that 

eventually repeats. The longer the period of repeat the more difficult it will be  

to do cryptanalysis. This is essentially the same consideration that was discussed  

with reference to the Vigenère cipher, namely that the longer the keyword  

the more difficult the cryptanalysis.

2. The keystream should approximate the properties of a true random number 

stream as close as possible. For example, there should be an approximately 

equal number of 1s and 0s. If the keystream is treated as a stream of bytes, 

then all of the 256 possible byte values should appear approximately equally 

often. The more random-appearing the keystream is, the more randomized the 

ciphertext is, making cryptanalysis more difficult.

3. Note from Figure 8.7 that the output of the pseudorandom number genera-

tor is conditioned on the value of the input key. To guard against brute-force 

 attacks, the key needs to be sufficiently long. The same considerations that 

apply to block ciphers are valid here. Thus, with current technology, a key 

length of at least 128 bits is desirable.

With a properly designed pseudorandom number generator, a stream cipher 

can be as secure as a block cipher of comparable key length. A potential advantage 

of a stream cipher is that stream ciphers that do not use block ciphers as a building 

block are typically faster and use far less code than do block ciphers. The example 

in this chapter, RC4, can be implemented in just a few lines of code. In recent years, 

this advantage has diminished with the introduction of AES, which is quite efficient 

in software. Furthermore, hardware acceleration techniques are now available for 

AES. For example, the Intel AES Instruction Set has machine instructions for one 

round of encryption and decryption and key generation. Using the hardware in-

structions results in speedups of about an order of magnitude compared to pure 

software implementations [XU10].

One advantage of a block cipher is that you can reuse keys. In contrast, if two 

plaintexts are encrypted with the same key using a stream cipher, then cryptanalysis 

is often quite simple [DAWS96]. If the two ciphertext streams are XORed together, 

the result is the XOR of the original plaintexts. If the plaintexts are text strings, 

credit card numbers, or other byte streams with known properties, then cryptanaly-

sis may be successful.

For applications that require encryption/decryption of a stream of data, such as 

over a data communications channel or a browser/Web link, a stream cipher might 

be the better alternative. For applications that deal with blocks of data, such as file 

transfer, email, and database, block ciphers may be more appropriate. However, 

either type of cipher can be used in virtually any application.

A stream cipher can be constructed with any cryptographically strong PRNG, 

such as the ones discussed in Sections 8.2 and 8.3. In the next section, we look at a 

stream cipher that uses a PRNG designed specifically for the stream cipher.
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 8.5 RC4

RC4 is a stream cipher designed in 1987 by Ron Rivest for RSA Security. It is a 

variable key size stream cipher with byte-oriented operations. The algorithm is 

based on the use of a random permutation. Analysis shows that the period of the 

cipher is overwhelmingly likely to be greater than 10100 [ROBS95a]. Eight to sixteen 

 machine operations are required per output byte, and the cipher can be expected 

to run very quickly in software. RC4 is used in the WiFi Protected Access (WPA) 

protocol that are part of the IEEE 802.11 wireless LAN standard. It is optional for 

use in Secure Shell (SSH) and Kerberos. RC4 was kept as a trade secret by RSA 

Security. In September 1994, the RC4 algorithm was anonymously posted on the 

Internet on the Cypherpunks anonymous remailers list.

The RC4 algorithm is remarkably simple and quite easy to explain. 

A  variable-length key of from 1 to 256 bytes (8 to 2048 bits) is used to initialize a 

256-byte state vector S, with elements S[0],S[1], . . . ,S[255]. At all times, S contains 

a permutation of all 8-bit numbers from 0 through 255. For encryption and decryp-

tion, a byte k (see Figure 8.7) is generated from S by selecting one of the 255 entries 

in a systematic fashion. As each value of k is generated, the entries in S are once 

again permuted.

Initialization of S

To begin, the entries of S are set equal to the values from 0 through 255 in ascending 

order; that is, S[0] = 0, S[1] = 1, c , S[255] = 255. A temporary vector, T, is also 

created. If the length of the key K is 256 bytes, then K is transferred to T. Otherwise, 

for a key of length keylen bytes, the first keylen elements of T are copied from K, 

and then K is repeated as many times as necessary to fill out T. These preliminary 

operations can be summarized as

/* Initialization */
for i = 0 to 255 do
S[i] = i;
T[i] = K[i mod keylen];

Next we use T to produce the initial permutation of S. This involves starting 

with S[0] and going through to S[255], and for each S[i], swapping S[i] with another 

byte in S according to a scheme dictated by T[i]:

/* Initial Permutation of S */
j = 0;
for i = 0 to 255 do

 j = (j + S[i] + T[i]) mod 256;
 Swap (S[i], S[j]);

Because the only operation on S is a swap, the only effect is a permutation. 

S still contains all the numbers from 0 through 255.
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Stream Generation

Once the S vector is initialized, the input key is no longer used. Stream generation 

involves cycling through all the elements of S[i], and for each S[i], swapping S[i] 

with another byte in S according to a scheme dictated by the current configuration 

of S. After S[255] is reached, the process continues, starting over again at S[0]:

/* Stream Generation */
i, j = 0;
while (true)
i = (i + 1) mod 256;
j = (j + S[i]) mod 256;
Swap (S[i], S[j]);
t = (S[i] + S[j]) mod 256;
k = S[t];

To encrypt, XOR the value k with the next byte of plaintext. To decrypt, XOR 

the value k with the next byte of ciphertext.

Figure 8.8 illustrates the RC4 logic.

Figure 8.8 RC4

25525425343210S

T

S

(a) Initial state of S and T

(b) Initial permutation of S

Swap

T

K

T[i]

j = j + S[i] + T[i]

t = S[i] + S[j]

]j[S]i[S

Keylen

i

S

(c) Stream generation

Swap

j = j + S[i]

]t[S]j[S]i[S

k

i



8.6 / TRUE RANDOM NUMBER GENERATORS 271

Strength of RC4

A number of papers have been published analyzing methods of attacking RC4 (e.g., 

[KNUD98], [FLUH00], [MANT01]). None of these approaches is practical against 

RC4 with a reasonable key length, such as 128 bits. A more serious problem is  reported 

in [FLUH01]. The authors demonstrate that the WEP protocol, intended to provide 

confidentiality on 802.11 wireless LAN networks, is vulnerable to a particular attack 

approach. In essence, the problem is not with RC4 itself but the way in which keys are 

generated for use as input to RC4. This particular problem does not appear to be rele-

vant to other applications using RC4 and can be remedied in WEP by changing the way 

in which keys are generated. This problem points out the difficulty in designing a secure 

system that involves both cryptographic functions and protocols that make use of them. 

More recently, [PAUL07] revealed a more fundamental vulnerability in the 

RC4 key scheduling algorithm that reduces the amount of effort to discover the 

key. Recent cryptanalysis results [ALFA13] exploit biases in the RC4 keystream to 

recover repeatedly encrypted plaintexts. As a result of the discovered weaknesses, 

particularly those reported in [ALFA13], the IETF issued RFC 7465 prohibiting the 

use of RC4 in TLS (Prohibiting RC4 Cipher Suites, February 2015). In its latest TLS 

guidelines, NIST also prohibited the use of RC4 for government use (SP 800-52,  

Guidelines for the Selection, Configuration, and Use of Transport Layer Security 
(TLS) Implementations, September 2013).

 8.6 TRUE RANDOM NUMBER GENERATORS

Entropy Sources

A true random number generator (TRNG) uses a nondeterministic source to pro-

duce randomness. Most operate by measuring unpredictable natural processes, such 

as pulse detectors of ionizing radiation events, gas discharge tubes, and leaky capac-

itors. Intel has developed a commercially available chip that samples thermal noise 

by sampling the output of a coupled pair of inverters. LavaRnd is an open source 

project for creating truly random numbers using inexpensive cameras, open source 

code, and inexpensive hardware. The system uses a saturated CCD in a light-tight 

can as a chaotic source to produce the seed. Software processes the result into truly 

random numbers in a variety of formats.

RFC 4086 lists the following possible sources of randomness that, with care, 

easily can be used on a computer to generate true random sequences.

 ■ Sound/video input: Many computers are built with inputs that digitize some 

real-world analog source, such as sound from a microphone or video input 

from a camera. The “input” from a sound digitizer with no source plugged in or 

from a camera with the lens cap on is essentially thermal noise. If the system 

has enough gain to detect anything, such input can provide reasonably high 

quality random bits.

 ■ Disk drives: Disk drives have small random fluctuations in their rotational 

speed due to chaotic air turbulence [JAKO98]. The addition of low-level disk 

seek-time instrumentation produces a series of measurements that contain this 



272  CHAPTER 8 / RANDOM BIT GENERATION AND STREAM CIPHERS

randomness. Such data is usually highly correlated, so significant processing is 

needed. Nevertheless, experimentation a decade ago showed that, with such 

processing, even slow disk drives on the slower computers of that day could 

easily produce 100 bits a minute or more of excellent random data.

There is also an online service (random.org), which can deliver random 

 sequences securely over the Internet.

Comparison of PRNGs and TRNGs

Table 8.5 summarizes the principal differences between PRNGs and TRNGs. 

PRNGs are efficient, meaning they can produce many numbers in a short time, and 

deterministic, meaning that a given sequence of numbers can be reproduced at a 

later date if the starting point in the sequence is known. Efficiency is a nice char-

acteristic if your application needs many numbers, and determinism is handy if you 

need to replay the same sequence of numbers again at a later stage. PRNGs are 

typically also periodic, which means that the sequence will eventually repeat itself. 

While periodicity is hardly ever a desirable characteristic, modern PRNGs have a 

period that is so long that it can be ignored for most practical purposes.

TRNGs are generally rather inefficient compared to PRNGs, taking consid-

erably longer time to produce numbers. This presents a difficulty in many applica-

tions. For example, cryptography system in banking or national security might need 

to generate millions of random bits per second. TRNGs are also nondeterministic, 

meaning that a given sequence of numbers cannot be reproduced, although the same 

sequence may of course occur several times by chance. TRNGs have no period.

Conditioning2

A TRNG may produce an output that is biased in some way, such as having more 

ones than zeros or vice versa. More generally, NIST SP 800-90B defines a random 

process as biased with respect to an assumed discrete set of potential outcomes 

(i.e., possible output values) if some of those outcomes have a greater probability 

of occurring than do others. For example, a physical source such as electronic noise 

may contain a superposition of regular structures, such as waves or other periodic 

phenomena, which may appear to be random, yet are determined to be non-random 

using statistical tests.

2 The reader unfamiliar with the concepts of entropy and min-entropy should read Appendix F before 
proceeding.

Pseudorandom Number 
Generators

True Random Number 
Generators

Efficiency Very efficient Generally inefficient

Determinism Deterministic Nondeterministic

Periodicity Periodic Aperiodic

Table 8.5 Comparison of PRNGs and TRNGs
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In addition to bias, another concept used by SP 800-98B is that of entropy rate. 

SP 800-90B defines entropy rate as the rate at which a digitized noise source (or 

entropy source) provides entropy; it is computed as the assessed amount of  entropy 

provided by a bit string output from the source, divided by the total number of 

bits in the bit string (yielding assessed bits of entropy per output bit). This will be 

a value between 0 (no entropy) and 1 (full entropy). Entropy rate is a measure 

of the randomness or unpredictability of a bit string. Another way of express-

ing it is that the entropy rate is k/n for a random source of length n bits and min- 

entropy k.  Min-entropy is a measure of the number of random bits and is explained 

in Appendix F. In essence, a block of bits or a bit stream that is unbiased, and in 

which each bit and each group of bits is independent of all other bits and groups of 

bits will have an entropy rate of 1.

For hardware sources of random bits, the recommended approach is to assume 

that there may be bias and/or an entropy rate of less than 1 and to apply techniques 

to further “randomize” the bits. Various methods of modifying a bit stream for this 

purpose have been developed. These are referred to as conditioning algorithms or 

deskewing algorithms.

Typically, conditioning is done by using a cryptographic algorithm to “ scramble” 

the random bits so as to eliminate bias and increase entropy. The two most common 

approaches are the use of a hash function or a symmetric block cipher.

HASH FUNCTION As we describe in Chapter 11, a hash function produces an n-bit 

output from an input of arbitrary length. A simple way to use a hash function for 

conditioning is as follows. Blocks of m input bits, with m Ú n, are passed through 

the hash function and the n output bits are used as random bits. To generate a 

stream of random bits, successive input blocks pass through the hash function to 

produce successive hashed output blocks.

Operating systems typically provide a built-in mechanism for generating ran-

dom numbers. For example, Linux uses four entropy sources: mouse and keyboard 

activity, disk I/O operations, and specific interrupts. Bits are generated from these 

four sources and combined in a pooled buffer. When random bits are needed, the 

appropriate number of bits are read from the buffer and passed through the SHA-1 

hash function [GUTT06].

A more complex approach is the hash derivation function specified in  

SP800-90A. Hash_df can be defined as follows:

Parameters:

input_string: The string to be hashed.

outlen: Output length.

no_of_bits_to_return: The number of bits to be returned by Hash_df.  The maxi-

mum length (max_number_of_bits) is implementation dependent, but shall be 

less than or equal to (255 * outlen). no_of_bits_to_return is represented as a 

32-bit integer.

requested_bits: The result of performing the Hash_df.
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Hash_df Process:

1. temp = the Null string

2. len = l no_of_bits_to_return

outlen
m

3. counter = 0x01 Comment: An 8-bit binary value representing the integer “1”.

4. For i = 1 to len do  Comment: In 4.1, no_of_bits_to_return is used as a 32-bit 

string.

4.1. temp = temp }  Hash (counter }  no_of_bits_to_return }  input_string).

4.2. counter = counter + 1.

5. requested_bits = leftmost (temp, no_of_bits_to_return).

6. Return (SUCCESS, requested_bits).

This algorithm takes an input block of bits of arbitrary length and returns the 

requested number of bits, which may be up to 255 times as long as the hash output 

length.

The reader may be uneasy that the output consists of hashed blocks in which 

the input to the hash function for each block is the same input string and differs 

only by the value of the counter. However, cryptographically strong hash functions, 

such as the SHA family, provide excellent diffusion (as defined in Chapter 4) so that 

change in the counter value results in dramatically different outputs.

BLOCK CIPHER Instead of a hash function, a block cipher such as AES can be 

used to scramble the TRNG bits. Using AES, a simple approach would be to take  

128-bit blocks of TRNG bits and encrypt each block with AES and some arbitrary 

key. SP 800-90B outlines an approach similar to the hash_df function described pre-

viously. The Intel implementation discussed subsequently provides an example of 

using AES for conditioning.

Health Testing

Figure 8.9 provides a general model for a nondeterministic random bit generator. 

A hardware noise source produces a true random output. This is digitized to pro-

duce true, or nondeterministic, source of bits. This bit source then passes through a 

conditioning module to mitigate bias and maximize entropy.

Figure 8.9 also shows a health-testing module, which is used on the outputs 

of both the digitizer and conditioner. In essence, health testing is used to validate 

that the noise source is working as expected and that the conditioning module is 

produced output with the desired characteristics. Both forms of health testing are 

recommended by SP 800-90B.

HEALTH TESTS ON THE NOISE SOURCE The nature of the health testing of the noise 

source depends strongly on the technology used to produce noise. In general, we 

can assume that the digitized output of the noise source will exhibit some bias. Thus, 

the traditional statistical tests, such as those defined in SP 800-22 and discussed in 

Section 8.1, are not useful for monitoring the noise source, because the noise source 
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Figure 8.9 NRBG Model
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is likely to always fail. Rather, the tests on the noise source need to be tailored to 

the expected statistical behavior of the correctly operating noise source. The goal 

is not to determine if the source is unbiased, which it isn’t, but if it is operating 

as expected.

SP 800-90B specifies that continuous tests be done on digitized samples 

 obtained from the noise source (point A in Figure 8.9). The purpose is to test for 

variability. More specifically, the purpose is to determine if the noise source is pro-

ducing at the expected entropy rate. SP 800-909B mandates the use of two tests: the 

Repetition Count Test and the Adaptive Proportion Test.

The Repetition Count Test is designed to quickly detect a catastrophic failure 

that causes the noise source to become “stuck” on a single output value for a long 

time. For this test, it is assumed that a given noise source is assessed to have a given 

min-entropy value of H. The entropy is expressed as the amount of  entropy per sam-

ple, where a sample could be a single bit or some block of bits of length n. With an 

assessed value of H, it is straightforward to calculate the probability that a sequence 

of C consecutive samples will yield identical sample values. For example, a noise 

source with one bit of min-entropy per sample has no more than a 1/2  probability 

of repeating some sample value twice in a row, no more than 1/4 probability of 

repeating some sample value three times in a row, and in general, no more than 

(1/2)C - 1 probability of repeating some sample value C times in a row. To generalize, 

for a noise source with H bits of min-entropy per sample, we have:

 Pr[C identical samples in a row] … (2-H)(C - 1) 

The Repetition Count Test involves looking for consecutive identical sam-

ples. If the count reaches some cutoff value C, then an error condition is raised. 

To determine the value of C used in the test, the test must be configured with 
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a parameter W, which is the acceptable false-positive probability associated with 

an alarm triggered by C repeated sample values. To avoid false positives, W should 

be set at some very small number greater than 0. Given W, we can now determine 

the value of C. Specifically, we want C to be the smallest number that satisfies the 

 equation W … (2-H)(C - 1). Reworking terms, this gives us a value of:

 C = l 1 +
- log(W)

H
m  

For example, for W = 2-30, an entropy source with H = 7.3 bits per sample 

would have a cutoff value C of l 1 +
30

7.3
m = 6.

The Repetition Count Test starts by recording a sample value and then count-

ing the number of repetitions of the same value. If the counter reaches the cutoff 

value C, an error is reported. If a sample value is encountered that differs from the 

preceding sample, then the counter is reset to 1 and the algorithm starts over.

The Adaptive Proportion Test is designed to detect a large loss of entropy, 

such as might occur as a result of some physical failure or environmental change 

affecting the noise source. The test continuously measures the local frequency of 

 occurrence of some sample value in a sequence of noise source samples to  determine 

if the sample occurs too frequently.

The test starts by recording a sample value and then observes N successive 

sample values. If the initial sample value is observed at least C times, then an error 

condition is reported. SP 800-90B recommends that a probability of a false positive 

of W = 2-30 be used for the test and provides guidance on the selection of values 

for N and C.

HEALTH TESTS ON THE CONDITIONING FUNCTION SP 800-90B specifies that health 

tests should also be applied to the output of the conditioning component (point B 

in Figure 8.9), but does not indicate which tests to use. The purpose of the health 

tests on the conditioning component is to assure that the output behaves as a true 

random bit stream. Thus, it is reasonable to use the tests for randomness defined in 

SP 800-22, and described in Section 8.1.

Intel Digital Random Number Generator

As was mentioned, TRNGs have traditionally been used only for key generation 

and other applications where only a small number of random bits were required. 

This is because TRNGs have generally been inefficient, with a low bit rate of 

 random bit production.

The first commercially available TRNG that achieves bit production rates 

comparable with that of PRNGs is the Intel digital random number generator 

(DRNG) [TAYL11, MECH14], offered on new multicore chips since May 2012.3

3It is unfortunate that Intel chose the acronym DRNG for an NRBG. It confuses with DRBG, which is 
a pseudorandom number bit generator.
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Two notable aspects of the DRNG:

1. It is implemented entirely in hardware. This provides greater security than a 

facility that includes a software component. A hardware-only implementa-

tion should also be able to achieve greater computation speed than a software 

module.

2. The entire DRNG is on the same multicore chip as the processors. This elimi-

nates the I/O delays found in other hardware random number generators.

DRNG HARDWARE ARCHITECTURE Figure 8.10 shows the overall structure of the 

DRNG. The first stage of the DRNG generates random numbers from thermal 

noise. The heart of the stage consists of two inverters (NOT gates), with the output 

of each inverter connected to the input of the other. Such an arrangement has two 

stable states, with one inverter having an output of logical 1 and the other having an 

output of logical 0. The circuit is then configured so that both inverters are forced 

to have the same indeterminate state (both inputs and both outputs at logical 1) by 

clock pulses. Random thermal noise within the inverters soon jostles the two invert-

ers into a mutually stable state. Additional circuitry is intended to compensate for 

any biases or correlations. This stage is capable, with current hardware, of generat-

ing random bits at a rate of 4 Gbps.

Figure 8.10 Intel Processor Chip with Random Number Generator
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The output of the first stage is generated 512 bits at a time. To assure that 

the bit stream does not have skew or bias, a conditioner randomizes its input using 

a cryptographic function. In this case, the function is referred to as CBC-MAC or 

CMAC, as specified in NIST SP 800-38B. In essence, CMAC encrypts its input using 

the cipher block chaining (CBC) mode (Figure 8.4) and outputs the final block. 

We examine CMAC in detail in Chapter 12. The output of this stage is generated 

256 bits at a time and is intended to exhibit true randomness with no skew or bias.

While the hardware’s circuitry generates random numbers from thermal noise 

much more quickly than its predecessors, it is still not fast enough for some of to-

day’s computing requirements. To enable the DRNG to generate random  numbers 

as quickly as a software DRBG, and also maintain the high quality of the random 

numbers, a third stage is added. This stage uses the 256-bit random  numbers to 

seed a cryptographically secure DRBG that creates 128-bit numbers. From one 

256-bit seed, the DRBG can output many pseudorandom numbers, exceeding the 

3-Gbps rate of the entropy source. An upper bound of 511 128-bit samples can 

be generated per seed. The algorithm used for this stage is CTR_DRBG, described 

in Section 8.3.

The output of the PRNG stage is available to each of the cores on the chip via 

the RDRAND instruction. RDRAND retrieves a 16-, 32-, or 64-bit random value 

and makes it available in a software-accessible register.

Preliminary data from a pre-production sample on a system with a third 

generation Intel® Core™ family processor produced the following performance 

[INTE12]: up to 70 million RDRAND invocations per second, and a random data 

production rate of over 4 Gbps.

The output of the conditioner is also made available to another module, 

known as an enhanced nondeterministic random number generator (ENRNG) that 

provides random numbers that can be used as seeds for various cryptographic algo-

rithms. The ENRNG is compliant with specifications in SP 800-90B and 900-90C. 

The output of the ENRNG stage is available to each of the cores on the chip via 

the RDSEED instruction. RDSEED retrieves a hardware-generated random seed 

value from the ENRNG and stores it in the destination register given as an argu-

ment to the instruction.

DRNG LOGICAL STRUCTURE Figure 8.11 provides a simplified view of the logical 

flow of the Intel DRBG. As was described, the heart of the hardware entropy source 

is a pair of inverters that feed each other. Two transistors, driven by the same clock, 

force the inputs and outputs of both inverters to the logical 1 state. Because this is 

an unstable state, thermal noise will cause the configuration to settle randomly into 

a stable state with either Node A at logical 1 and Node B at logical 0, or the reverse. 

Thus the module generates random bits at the clock rate.

The output of the entropy source is collected 512 bits at a time and used to 

feed to two CBC hardware implementations using AES encryption. Each imple-

mentation takes two blocks of 128 bits of “plaintext” and encrypts using the CBC 

mode. The output of the second encryption is retained. For both CBC modules, an 

all-zeros key is used initially. Subsequently, the output of the PRNG stage is fed 

back to become the key for the conditioner stage.
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Figure 8.11 Intel DRNG Logical Structure
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The output of the conditioner stage consists of 256 bits. This block is provided 

as input to the update function of the DRGB stage. The update function is initial-

ized with the all-zeros key and the counter value 0. The function is iterated twice 

to produce a 256-block, which is then XORed with the input from the conditioner 

stage. The results are used as the 128-bit key and the 128-bit seed for the generate 

function. The generate function produces pseudorandom bits in 128-bit blocks.
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 8.7 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms 

backward unpredictability

Blum Blum Shub generator

deskewing

entropy source

forward unpredictability

keystream

linear congruential generator

pseudorandom function 

(PRF)

pseudorandom number 

 generator (PRNG)

randomness

RC4

seed

stream cipher

skew

true random number 

 generator (TRNG)

unpredictability

Review Questions 

 8.1 List two criteria to validate the randomness of a sequence of numbers.

 8.2 What is ANSI X9.17 PRNG?

 8.3 What is the difference between a one-time pad and a stream cipher?

 8.4 List a few applications of stream ciphers and block ciphers.

Problems 

 8.1 If we take the linear congruential algorithm with an additive component of 0,

 Xn + 1 = (aXn) mod m 

  Then it can be shown that if m is prime and if a given value of a produces the maxi-
mum period of m - 1, then ak will also produce the maximum period, provided that 
k is less than m and that k and m - 1 are relatively prime. Demonstrate this by using 
X0 = 1 and m = 31 and producing the sequences for ak = 3, 32, 33, and 34.

 8.2 a. What is the maximum period obtainable from the following generator?

 Xn + 1 = (aXn) mod 24 

b. What should be the value of a?
c. What restrictions are required on the seed?

 8.3 You may wonder why the modulus m = 231 - 1 was chosen for the linear congruen-
tial method instead of simply 231, because this latter number can be represented with 
no additional bits and the mod operation should be easier to perform. In general, the 
modulus 2k - 1 is preferable to 2k. Why is this so?

 8.4 With the linear congruential algorithm, a choice of parameters that provides a full 
period does not necessarily provide a good randomization. For example, consider the 
following two generators:

 Xn + 1 = (11Xn) mod 13

 Xn + 1 = (2Xn) mod 13

  Write out the two sequences to show that both are full period. Which one appears 
more random to you?



8.7 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 281

 8.5 In any use of pseudorandom numbers, whether for encryption, simulation, or statisti-
cal design, it is dangerous to trust blindly the random number generator that happens 
to be available in your computer’s system library. [PARK88] found that many con-
temporary textbooks and programming packages make use of flawed algorithms for 
pseudorandom number generation. This exercise will enable you to test your system.

The test is based on a theorem attributed to Ernesto Cesaro (see [KNUT98] for a 
proof), which states the following: Given two randomly chosen integers, x and y, the 
probability that gcd(x, y) = 1 is 6/p2. Use this theorem in a program to determine 
statistically the value of p. The main program should call three subprograms: the ran-
dom number generator from the system library to generate the random integers; a 
subprogram to calculate the greatest common divisor of two integers using Euclid’s 
Algorithm; and a subprogram that calculates square roots. If these latter two pro-
grams are not available, you will have to write them as well. The main program should 
loop through a large number of random numbers to give an estimate of the afore-
mentioned probability. From this, it is a simple matter to solve for your estimate of p.

If the result is close to 3.14, congratulations! If not, then the result is probably low, 
usually a value of around 2.7. Why would such an inferior result be obtained?

 8.6 What RC4 key value will leave S unchanged during initialization? That is, after the 
initial permutation of S, the entries of S will be equal to the values from 0 through 255 
in ascending order.

 8.7 RC4 has a secret internal state which is a permutation of all the possible values of the 
vector S and the two indices i and j.
a. Using a straightforward scheme to store the internal state, how many bits are used?
b. Suppose we think of it from the point of view of how much information is repre-

sented by the state. In that case, we need to determine how may different states 
there are, then take the log to base 2 to find out how many bits of information this 
represents. Using this approach, how many bits would be needed to represent the 
state?

 8.8 Alice and Bob agree to communicate privately via email using a scheme based on 
RC4, but they want to avoid using a new secret key for each transmission. Alice and 
Bob privately agree on a 128-bit key k. To encrypt a message m, consisting of a string 
of bits, the following procedure is used.
1. Choose a random 64-bit value v
2. Generate the ciphertext c = RC4(v }k)⊕ m
3. Send the bit string (v } c)

a. Suppose Alice uses this procedure to send a message m to Bob. Describe how 
Bob can recover the message m from (v } c) using k.

b. If an adversary observes several values (v1 } c1), (v2 } c2), c transmitted 
between Alice and Bob, how can he/she determine when the same key stream 
has been used to encrypt two messages?

c. Approximately how many messages can Alice expect to send before the same 
key stream will be used twice? Use the result from the birthday paradox 
described in Appendix U.

d. What does this imply about the lifetime of the key k (i.e., the number of mes-
sages that can be encrypted using k)?

 8.9 Suppose you have a true random bit generator where each bit in the generated stream 
has the same probability of being a 0 or 1 as any other bit in the stream and that the 
bits are not correlated; that is the bits are generated from identical independent dis-
tribution. However, the bit stream is biased. The probability of a 1 is 0.5 + 0 and the 
probability of a 0 is 0.5 - 0, where 0 6 0 6 0.5. A simple conditioning algorithm is 
as follows: Examine the bit stream as a sequence of nonoverlapping pairs. Discard all 
00 and 11 pairs. Replace each 01 pair with 0 and each 10 pair with 1.
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a. What is the probability of occurrence of each pair in the original sequence?
b. What is the probability of occurrence of 0 and 1 in the modified sequence?
c. What is the expected number of input bits to produce x output bits?
d. Suppose that the algorithm uses overlapping successive bit pairs instead of non-

overlapping successive bit pairs. That is, the first output bit is based on input bits 1 
and 2, the second output bit is based on input bits 2 and 3, and so on. What can you 
say about the output bit stream?

 8.10 Another approach to conditioning is to consider the bit stream as a sequence of non-
overlapping groups of n bits each and output the parity of each group. That is, if a 
group contains an odd number of ones, the output is 1; otherwise the output is 0.
a. Express this operation in terms of a basic Boolean function.
b. Assume, as in the preceding problem, that the probability of a 1 is 0.5 + 0. If each 

group consists of 2 bits, what is the probability of an output of 1?
c. If each group consists of 4 bits, what is the probability of an output of 1?
d. Generalize the result to find the probability of an output of 1 for input groups of 

n bits.

 8.11 It is important to note that the Repetition Count Test described in Section 8.6 is not a 
very powerful health test. It is able to detect only catastrophic failures of an entropy 
source. For example, a noise source evaluated at 8 bits of min-entropy per sample 
has a cutoff value of 5 repetitions to ensure a false-positive rate of approximately 
once per four billion samples generated. If that noise source somehow failed to the 
point that it was providing only 6 bits of min-entropy per sample, how many samples 
would be expected to be needed before the Repetition Count Test would notice the 
problem?
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The development of public-key, or asymmetric, cryptography is the greatest and per-

haps the only true revolution in the entire history of cryptography. From its earliest 

beginnings to modern times, virtually all cryptographic systems have been based on 

the elementary tools of substitution and permutation. After millennia of working with 

algorithms that could be calculated by hand, a major advance in symmetric cryptogra-

phy occurred with the development of the rotor encryption/decryption machine. The 

electromechanical rotor enabled the development of fiendishly complex cipher sys-

tems. With the availability of computers, even more complex systems were devised, 

the most prominent of which was the Lucifer effort at IBM that culminated in the Data 

Encryption Standard (DES). But both rotor machines and DES, although represent-

ing significant advances, still relied on the bread-and-butter tools of substitution and 

permutation.

Public-key cryptography provides a radical departure from all that has gone be-

fore. For one thing, public-key algorithms are based on mathematical functions rather 

than on substitution and permutation. More important, public-key cryptography is 

asymmetric, involving the use of two separate keys, in contrast to symmetric encryp-

tion, which uses only one key. The use of two keys has profound consequences in the 

areas of confidentiality, key distribution, and authentication, as we shall see.

Before proceeding, we should mention several common misconceptions con-

cerning public-key encryption. One such misconception is that public-key encryption 

is more secure from cryptanalysis than is symmetric encryption. In fact, the security of 

any encryption scheme depends on the length of the key and the computational work 

involved in breaking a cipher. There is nothing in principle about either symmetric or 

public-key encryption that makes one superior to another from the point of view of 

resisting cryptanalysis.

A second misconception is that public-key encryption is a general-purpose tech-

nique that has made symmetric encryption obsolete. On the contrary, because of the 

computational overhead of current public-key encryption schemes, there seems no 

foreseeable likelihood that symmetric encryption will be abandoned. As one of the 

inventors of public-key encryption has put it [DIFF88], “the restriction of public-key 

cryptography to key management and signature applications is almost universally 

accepted.”

LEARNING OBJECTIVES

After studying this chapter, you should be able to:

 ◆ Present an overview of the basic principles of public-key cryptosystems.

 ◆ Explain the two distinct uses of public-key cryptosystems.

 ◆ List and explain the requirements for a public-key cryptosystem.

 ◆ Present an overview of the RSA algorithm.

 ◆ Understand the timing attack.

 ◆ Summarize the relevant issues related to the complexity of algorithms.
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Finally, there is a feeling that key distribution is trivial when using public-key 

encryption, compared to the rather cumbersome handshaking involved with key dis-

tribution centers for symmetric encryption. In fact, some form of protocol is needed, 

generally involving a central agent, and the procedures involved are not simpler nor 

any more efficient than those required for symmetric encryption (e.g., see analysis in 

[NEED78]).

This chapter and the next provide an overview of public-key cryptography. First, 

we look at its conceptual framework. Interestingly, the concept for this technique was 

developed and published before it was shown to be practical to adopt it. Next, we ex-

amine the RSA algorithm, which is the most important encryption/decryption algo-

rithm that has been shown to be feasible for public-key encryption. Other important 

public-key cryptographic algorithms are covered in Chapter 10.

Much of the theory of public-key cryptosystems is based on number theory. If 

one is prepared to accept the results given in this chapter, an understanding of  number 

theory is not strictly necessary. However, to gain a full appreciation of public-key 

 algorithms, some understanding of number theory is required. Chapter 2 provides the 

necessary background in number theory.

Table 9.1 defines some key terms.

 9.1 PRINCIPLES OF PUBLIC-KEY CRYPTOSYSTEMS

The concept of public-key cryptography evolved from an attempt to attack two of 

the most difficult problems associated with symmetric encryption. The first problem 

is that of key distribution, which is examined in some detail in Chapter 14.

As Chapter 14 discusses, key distribution under symmetric encryption requires 

either (1) that two communicants already share a key, which somehow has been dis-

tributed to them; or (2) the use of a key distribution center. Whitfield Diffie, one 

Asymmetric Keys
Two related keys, a public key and a private key, that are used to perform complementary operations, such as 

encryption and decryption or signature generation and signature verification.

Public Key Certificate
A digital document issued and digitally signed by the private key of a Certification Authority that binds the 

name of a subscriber to a public key. The certificate indicates that the subscriber identified in the certificate 

has sole control and access to the corresponding private key.

Public Key (Asymmetric) Cryptographic Algorithm
A cryptographic algorithm that uses two related keys, a public key and a private key. The two keys have the 

property that deriving the private key from the public key is computationally infeasible.

Public Key Infrastructure (PKI)
A set of policies, processes, server platforms, software and workstations used for the purpose of administer-

ing certificates and public-private key pairs, including the ability to issue, maintain, and revoke public key 

 certificates.

Source: Glossary of Key Information Security Terms, NIST IR 7298 [KISS06].

Table 9.1 Terminology Related to Asymmetric Encryption
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of the discoverers of public-key encryption (along with Martin Hellman, both at 

Stanford University at the time), reasoned that this second requirement negated the 

very essence of cryptography: the ability to maintain total secrecy over your own 

communication. As Diffie put it [DIFF88], “what good would it do after all to de-

velop impenetrable cryptosystems, if their users were forced to share their keys with 

a KDC that could be compromised by either burglary or subpoena?”

The second problem that Diffie pondered, and one that was apparently un-

related to the first, was that of digital signatures. If the use of cryptography was to 

become widespread, not just in military situations but for commercial and private 

purposes, then electronic messages and documents would need the equivalent of 

signatures used in paper documents. That is, could a method be devised that would 

stipulate, to the satisfaction of all parties, that a digital message had been sent by a 

particular person? This is a somewhat broader requirement than that of authentica-

tion, and its characteristics and ramifications are explored in Chapter 13.

Diffie and Hellman achieved an astounding breakthrough in 1976 [DIFF76 a, b] 

by coming up with a method that addressed both problems and was radically different 

from all previous approaches to cryptography, going back over four millennia.1

In the next subsection, we look at the overall framework for public-key cryp-

tography. Then we examine the requirements for the encryption/decryption algo-

rithm that is at the heart of the scheme.

Public-Key Cryptosystems

Asymmetric algorithms rely on one key for encryption and a different but related 

key for decryption. These algorithms have the following important characteristic.

 ■ It is computationally infeasible to determine the decryption key given only 

knowledge of the cryptographic algorithm and the encryption key.

In addition, some algorithms, such as RSA, also exhibit the following characteristic.

 ■ Either of the two related keys can be used for encryption, with the other used 

for decryption.

A public-key encryption scheme has six ingredients (Figure 9.1a; compare 

with Figure 3.1).

 ■ Plaintext: This is the readable message or data that is fed into the algorithm 

as input.

 ■ Encryption algorithm: The encryption algorithm performs various transfor-

mations on the plaintext.

1Diffie and Hellman first publicly introduced the concepts of public-key cryptography in 1976. Hellman 
credits Merkle with independently discovering the concept at that same time, although Merkle did not 
publish until 1978 [MERK78]. In fact, the first unclassified document describing public-key distribution 
and public-key cryptography was a 1974 project proposal by Merkle (http://merkle.com/1974). However, 
this is not the true beginning. Admiral Bobby Inman, while director of the National Security Agency 
(NSA), claimed that public-key cryptography had been discovered at NSA in the mid-1960s [SIMM93]. 
The first documented introduction of these concepts came in 1970, from the Communications-Electronics 
Security Group, Britain’s counterpart to NSA, in a classified report by James Ellis [ELLI70]. Ellis re-
ferred to the technique as nonsecret encryption and describes the discovery in [ELLI99].

http://merkle.com/1974
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 ■ Public and private keys: This is a pair of keys that have been selected so that if 

one is used for encryption, the other is used for decryption. The exact transfor-

mations performed by the algorithm depend on the public or private key that 

is provided as input.

 ■ Ciphertext: This is the encrypted message produced as output. It depends on 

the plaintext and the key. For a given message, two different keys will produce 

two different ciphertexts.

Figure 9.1 Public-Key Cryptography
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 ■ Decryption algorithm: This algorithm accepts the ciphertext and the matching 

key and produces the original plaintext.

The essential steps are the following.

1. Each user generates a pair of keys to be used for the encryption and decryp-

tion of messages.

2. Each user places one of the two keys in a public register or other accessible 

file. This is the public key. The companion key is kept private. As Figure 9.1a 

suggests, each user maintains a collection of public keys obtained from others.

3. If Bob wishes to send a confidential message to Alice, Bob encrypts the mes-

sage using Alice’s public key.

4. When Alice receives the message, she decrypts it using her private key. No 

other recipient can decrypt the message because only Alice knows Alice’s pri-

vate key.

With this approach, all participants have access to public keys, and private 

keys are generated locally by each participant and therefore need never be distrib-

uted. As long as a user’s private key remains protected and secret, incoming com-

munication is secure. At any time, a system can change its private key and publish 

the companion public key to replace its old public key.

Table 9.2 summarizes some of the important aspects of symmetric and public-

key encryption. To discriminate between the two, we refer to the key used in sym-

metric encryption as a secret key. The two keys used for asymmetric encryption are 

referred to as the public key and the private key.2 Invariably, the private key is kept 

secret, but it is referred to as a private key rather than a secret key to avoid confu-

sion with symmetric encryption.

Let us take a closer look at the essential elements of a public-key encryption 

scheme, using Figure 9.2 (compare with Figure 3.2). There is some source A that 

produces a message in plaintext, X = [X1, X2, c , XM]. The M elements of X are 

letters in some finite alphabet. The message is intended for destination B. B gener-

ates a related pair of keys: a public key, PUb, and a private key, PRb. PRb is known 

only to B, whereas PUb is publicly available and therefore accessible by A.

With the message X and the encryption key PUb as input, A forms the cipher-

text Y = [Y1, Y2, c , YN]:

 Y = E(PUb, X) 

The intended receiver, in possession of the matching private key, is able to invert 

the transformation:

 X = D(PRb,Y) 

2The following notation is used consistently throughout. A secret key is represented by Km, where m is 
some modifier; for example, Ka is a secret key owned by user A. A public key is represented by PUa, for 
user A, and the corresponding private key is PRa. Encryption of plaintext X can be performed with a 
secret key, a public key, or a private key, denoted by E(Ka, X), E(PUa, X), and E(PRa, X), respectively. 
Similarly, decryption of ciphertext Y can be performed with a secret key, a public key, or a private key, 
denoted by D(Ka, Y), D(PUa, Y), and D(PRa, Y), respectively.
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An adversary, observing Y and having access to PUb, but not having access to PRb 

or X, must attempt to recover X and/or PRb. It is assumed that the adversary does 

have knowledge of the encryption (E) and decryption (D) algorithms. If the ad-

versary is interested only in this particular message, then the focus of effort is to 

recover X by generating a plaintext estimate Xn . Often, however, the adversary is 

interested in being able to read future messages as well, in which case an attempt is 

made to recover PRb by generating an estimate PRnb.

Conventional Encryption Public-Key Encryption

Needed to Work:

1. The same algorithm with the same key is 

used for encryption and decryption.

2. The sender and receiver must share the 

algorithm and the key.

Needed for Security:

1. The key must be kept secret.

2. It must be impossible or at least impractical 

to decipher a message if the key is kept 

secret.

3. Knowledge of the algorithm plus samples of 

ciphertext must be insufficient to determine 

the key.

Needed to Work:

1. One algorithm is used for encryption and a related 

algorithm for decryption with a pair of keys, one for 

encryption and one for decryption.

2. The sender and receiver must each have one of the 

matched pair of keys (not the same one).

Needed for Security:

1. One of the two keys must be kept secret.

2. It must be impossible or at least impractical to 

decipher a message if one of the keys is kept secret.

3. Knowledge of the algorithm plus one of the keys 

plus samples of ciphertext must be insufficient to 

determine the other key.

Table 9.2 Conventional and Public-Key Encryption

Figure 9.2 Public-Key Cryptosystem: Confidentiality
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Figure 9.3 Public-Key Cryptosystem: Authentication
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We mentioned earlier that either of the two related keys can be used for en-

cryption, with the other being used for decryption. This enables a rather differ-

ent cryptographic scheme to be implemented. Whereas the scheme illustrated in 

Figure 9.2 provides confidentiality, Figures 9.1b and 9.3 show the use of public-key 

encryption to provide authentication:

 Y = E(PRa,X)

 X = D(PUa,Y)

In this case, A prepares a message to B and encrypts it using A’s private key 

before transmitting it. B can decrypt the message using A’s public key. Because the 

message was encrypted using A’s private key, only A could have prepared the mes-

sage. Therefore, the entire encrypted message serves as a digital  signature. In addi-

tion, it is impossible to alter the message without access to A’s private key, so the 

message is authenticated both in terms of source and in terms of data integrity.

In the preceding scheme, the entire message is encrypted, which, although val-

idating both author and contents, requires a great deal of storage. Each document 

must be kept in plaintext to be used for practical purposes. A copy also must be 

stored in ciphertext so that the origin and contents can be verified in case of a dis-

pute. A more efficient way of achieving the same results is to encrypt a small block 

of bits that is a function of the document. Such a block, called an authenticator, 

must have the property that it is infeasible to change the document without chang-

ing the authenticator. If the authenticator is encrypted with the sender’s private 

key, it serves as a signature that verifies origin, content, and sequencing. Chapter 13 

examines this technique in detail.
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It is important to emphasize that the encryption process depicted in Figures 9.1b  

and 9.3 does not provide confidentiality. That is, the message being sent is safe from 

alteration but not from eavesdropping. This is obvious in the case of a signature 

based on a portion of the message, because the rest of the message is transmitted in 

the clear. Even in the case of complete encryption, as shown in Figure 9.3, there is 

no protection of confidentiality because any observer can decrypt the message by 

using the sender’s public key.

It is, however, possible to provide both the authentication function and confi-

dentiality by a double use of the public-key scheme (Figure 9.4):

 Z = E(PUb, E(PRa,X))

 X = D(PUa, D(PRb,Z))

In this case, we begin as before by encrypting a message, using the sender’s private 

key. This provides the digital signature. Next, we encrypt again, using the receiver’s 

public key. The final ciphertext can be decrypted only by the intended receiver, who 

alone has the matching private key. Thus, confidentiality is provided. The disadvan-

tage of this approach is that the public-key algorithm, which is complex, must be 

exercised four times rather than two in each communication.

Applications for Public-Key Cryptosystems

Before proceeding, we need to clarify one aspect of public-key cryptosystems that 

is otherwise likely to lead to confusion. Public-key systems are characterized by the 

use of a cryptographic algorithm with two keys, one held private and one available 

publicly. Depending on the application, the sender uses either the sender’s private 

key or the receiver’s public key, or both, to perform some type of cryptographic 

Figure 9.4 Public-Key Cryptosystem: Authentication and Secrecy
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function. In broad terms, we can classify the use of public-key cryptosystems into 

three categories

 ■ Encryption/decryption: The sender encrypts a message with the recipient’s 

public key, and the recipient decrypts the message with the recipient’s private 

key.

 ■ Digital signature: The sender “signs” a message with its private key. Signing 

is achieved by a cryptographic algorithm applied to the message or to a small 

block of data that is a function of the message.

 ■ Key exchange: Two sides cooperate to exchange a session key, which is a secret 

key for symmetric encryption generated for use for a particular transaction (or 

session) and valid for a short period of time. Several different approaches are 

possible, involving the private key(s) of one or both parties; this is discussed in 

Chapter 10.

Some algorithms are suitable for all three applications, whereas others can be 

used only for one or two of these applications. Table 9.3 indicates the applications 

supported by the algorithms discussed in this book.

Requirements for Public-Key Cryptography

The cryptosystem illustrated in Figures 9.2 through 9.4 depends on a cryptographic 

algorithm based on two related keys. Diffie and Hellman postulated this system 

without demonstrating that such algorithms exist. However, they did lay out the 

conditions that such algorithms must fulfill [DIFF76b].

1. It is computationally easy for a party B to generate a key pair (public key PUb, 

private key PRb).

2. It is computationally easy for a sender A, knowing the public key and the mes-

sage to be encrypted, M, to generate the corresponding ciphertext:

C = E(PUb, M)

3. It is computationally easy for the receiver B to decrypt the resulting ciphertext 

using the private key to recover the original message:

M = D(PRb, C) = D[PRb, E(PUb, M)]

4. It is computationally infeasible for an adversary, knowing the public key, PUb, 

to determine the private key, PRb.

Algorithm Encryption/Decryption Digital Signature Key Exchange

RSA Yes Yes Yes

Elliptic Curve Yes Yes Yes

Diffie–Hellman No No Yes

DSS No Yes No

Table 9.3 Applications for Public-Key Cryptosystems
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5. It is computationally infeasible for an adversary, knowing the public key, PUb, 

and a ciphertext, C, to recover the original message, M.

We can add a sixth requirement that, although useful, is not necessary for all 

public-key applications:

6. The two keys can be applied in either order:

M = D[PUb, E(PRb, M)] = D[PRb, E(PUb, M)]

These are formidable requirements, as evidenced by the fact that only a few 

algorithms (RSA, elliptic curve cryptography, Diffie–Hellman, DSS) have received 

widespread acceptance in the several decades since the concept of public-key cryp-

tography was proposed.

Before elaborating on why the requirements are so formidable, let us first re-

cast them. The requirements boil down to the need for a trap-door one-way func-

tion. A one-way function3 is one that maps a domain into a range such that every 

function value has a unique inverse, with the condition that the calculation of the 

function is easy, whereas the calculation of the inverse is infeasible:

 Y = f(X)     easy

 X = f-1(Y) infeasible

Generally, easy is defined to mean a problem that can be solved in polynomial 

time as a function of input length. Thus, if the length of the input is n bits, then the 

time to compute the function is proportional to na, where a is a fixed constant. Such 

algorithms are said to belong to the class P. The term infeasible is a much fuzzier 

concept. In general, we can say a problem is infeasible if the effort to solve it grows 

faster than polynomial time as a function of input size. For example, if the length 

of the input is n bits and the time to compute the function is proportional to 2n, 

the problem is considered infeasible. Unfortunately, it is difficult to determine if a 

particular algorithm exhibits this complexity. Furthermore, traditional notions of 

computational complexity focus on the worst-case or average-case complexity of 

an algorithm. These measures are inadequate for cryptography, which requires that 

it be infeasible to invert a function for virtually all inputs, not for the worst case or 

even average case. A brief introduction to some of these concepts is provided in 

Appendix W.

We now turn to the definition of a trap-door one-way function, which is easy 

to calculate in one direction and infeasible to calculate in the other direction un-

less certain additional information is known. With the additional information the 

inverse can be calculated in polynomial time. We can summarize as follows: A trap-

door one-way function is a family of invertible functions fk, such that

 Y = fk(X)   easy, if k and X are known

 X = fk
-1(Y) easy, if k and Y are known

 X = fk
-1(Y) infeasible, if Y is known but k is not known

3Not to be confused with a one-way hash function, which takes an arbitrarily large data field as its 
 argument and maps it to a fixed output. Such functions are used for authentication (see Chapter 11).
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Thus, the development of a practical public-key scheme depends on discovery of a 

suitable trap-door one-way function.

Public-Key Cryptanalysis

As with symmetric encryption, a public-key encryption scheme is vulnerable to a 

brute-force attack. The countermeasure is the same: Use large keys. However, there 

is a tradeoff to be considered. Public-key systems depend on the use of some sort of 

invertible mathematical function. The complexity of calculating these functions may 

not scale linearly with the number of bits in the key but grow more rapidly than that. 

Thus, the key size must be large enough to make brute-force attack impractical but 

small enough for practical encryption and decryption. In practice, the key sizes that 

have been proposed do make brute-force attack impractical but result in encryp-

tion/decryption speeds that are too slow for general-purpose use. Instead, as was 

mentioned earlier, public-key encryption is currently confined to key management 

and signature applications.

Another form of attack is to find some way to compute the private key given 

the public key. To date, it has not been mathematically proven that this form of at-

tack is infeasible for a particular public-key algorithm. Thus, any given algorithm, 

including the widely used RSA algorithm, is suspect. The history of cryptanalysis 

shows that a problem that seems insoluble from one perspective can be found to 

have a solution if looked at in an entirely different way.

Finally, there is a form of attack that is peculiar to public-key systems. This is, 

in essence, a probable-message attack. Suppose, for example, that a message were 

to be sent that consisted solely of a 56-bit DES key. An adversary could encrypt all 

possible 56-bit DES keys using the public key and could discover the encrypted key 

by matching the transmitted ciphertext. Thus, no matter how large the key size of the 

public-key scheme, the attack is reduced to a brute-force attack on a 56-bit key. This 

attack can be thwarted by appending some random bits to such simple messages.

 9.2 THE RSA ALGORITHM

The pioneering paper by Diffie and Hellman [DIFF76b] introduced a new approach 

to cryptography and, in effect, challenged cryptologists to come up with a crypto-

graphic algorithm that met the requirements for public-key systems. A number of 

algorithms have been proposed for public-key cryptography. Some of these, though 

initially promising, turned out to be breakable.4

One of the first successful responses to the challenge was developed in 1977 

by Ron Rivest, Adi Shamir, and Len Adleman at MIT and first published in 1978 

[RIVE78].5 The Rivest-Shamir-Adleman (RSA) scheme has since that time reigned 

supreme as the most widely accepted and implemented general-purpose approach 

to public-key encryption.

4The most famous of the fallen contenders is the trapdoor knapsack proposed by Ralph Merkle. We 
describe this in Appendix J.
5Apparently, the first workable public-key system for encryption/decryption was put forward by Clifford 
Cocks of Britain’s CESG in 1973 [COCK73]; Cocks’ method is virtually identical to RSA.
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The RSA scheme is a cipher in which the plaintext and ciphertext are integers 

between 0 and n - 1 for some n. A typical size for n is 1024 bits, or 309 decimal 

digits. That is, n is less than 21024. We examine RSA in this section in some detail, 

beginning with an explanation of the algorithm. Then we examine some of the com-

putational and cryptanalytical implications of RSA.

Description of the Algorithm

RSA makes use of an expression with exponentials. Plaintext is encrypted in blocks, 

with each block having a binary value less than some number n. That is, the block 

size must be less than or equal to log2(n) + 1; in practice, the block size is i bits, 

where 2i 6 n … 2i+ 1. Encryption and decryption are of the following form, for 

some plaintext block M and ciphertext block C.

 C = Me mod n

 M = Cd mod n = (Me)d mod n = Med mod n

Both sender and receiver must know the value of n. The sender knows 

the value of e, and only the receiver knows the value of d. Thus, this is a public-

key encryption algorithm with a public key of PU = {e, n} and a private key of 

PR = {d, n}. For this algorithm to be satisfactory for public-key encryption, the fol-

lowing requirements must be met.

1. It is possible to find values of e, d, and n such that Med mod n = M for all M 6 n.

2. It is relatively easy to calculate Me mod n and Cd mod n for all values of M 6 n.

3. It is infeasible to determine d given e and n.

For now, we focus on the first requirement and consider the other questions 

later. We need to find a relationship of the form

 Med mod n = M 

The preceding relationship holds if e and d are multiplicative inverses modulo f(n), 

where f(n) is the Euler totient function. It is shown in Chapter 2 that for p, q prime, 

f(pq) = (p - 1)(q - 1). The relationship between e and d can be expressed as

  ed mod f(n) = 1   (9.1)

This is equivalent to saying

 ed K 1 mod f(n)

 d K e-1 mod f(n)

That is, e and d are multiplicative inverses mod f(n). Note that, according to the 

rules of modular arithmetic, this is true only if d (and therefore e) is relatively 

prime to f(n). Equivalently, gcd(f(n), d) = 1. See Appendix R for a proof that 

Equation (9.1) satisfies the requirement for RSA.

We are now ready to state the RSA scheme. The ingredients are the following:

p, q, two prime numbers (private, chosen)

n = pq (public, calculated)

e, with gcd(f(n), e) = 1; 1 6 e 6 f(n) (public, chosen)

d K e-1 (mod f(n)) (private, calculated)
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The private key consists of {d, n} and the public key consists of {e, n}. Suppose 

that user A has published its public key and that user B wishes to send the message 

M to A. Then B calculates C = Me mod n and transmits C. On receipt of this ci-

phertext, user A decrypts by calculating M = Cd mod n.

Figure 9.5 summarizes the RSA algorithm. It corresponds to Figure 9.1a: Alice 

generates a public/private key pair; Bob encrypts using Alice’s public key; and Alice 

decrypts using her private key. An example from [SING99] is shown in Figure 9.6. 

For this example, the keys were generated as follows.

1. Select two prime numbers, p = 17 and q = 11.

2. Calculate n = pq = 17 * 11 = 187.

3. Calculate f(n) = (p - 1)(q - 1) = 16 * 10 = 160.

4. Select e such that e is relatively prime to f(n) = 160 and less than f(n); we 

choose e = 7.

5. Determine d such that de K 1 (mod 160) and d 6 160. The correct value is 

d = 23, because 23 * 7 = 161 = (1 * 160) + 1; d can be calculated using 

the extended Euclid’s algorithm (Chapter 2).

The resulting keys are public key PU = {7, 187} and private key PR = {23, 187}. 

The example shows the use of these keys for a plaintext input of M = 88. For 

 encryption, we need to calculate C = 887 mod 187. Exploiting the properties of 

modular arithmetic, we can do this as follows.

 887 mod 187 = [(884 mod 187) * (882 mod 187)

        * (881 mod 187)] mod 187

 881 mod 187 = 88

 882 mod 187 = 7744 mod 187 = 77

 884 mod 187 = 59,969,536 mod 187 = 132

 887 mod 187 = (88 * 77 * 132) mod 187 = 894,432 mod 187 = 11

For decryption, we calculate M = 1123 mod 187:

 1123 mod 187 = [(111 mod 187) * (112 mod 187) * (114 mod 187)

        * (118 mod 187) * (118 mod 187)] mod 187

 111 mod 187 = 11

 112 mod 187 = 121

 114 mod 187 = 14,641 mod 187 = 55

 118 mod 187 = 214,358,881 mod 187 = 33

 1123 mod 187 = (11 * 121 * 55 * 33 * 33) mod 187

       = 79,720,245 mod 187 = 88

We now look at an example from [HELL79], which shows the use of RSA to 

process multiple blocks of data. In this simple example, the plaintext is an alpha-

numeric string. Each plaintext symbol is assigned a unique code of two decimal 
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digits (e.g., a = 00, A = 26).6 A plaintext block consists of four decimal digits, or 

two alphanumeric characters. Figure 9.7a illustrates the sequence of events for the 

encryption of multiple blocks, and Figure 9.7b gives a specific example. The circled 

numbers indicate the order in which operations are performed.

Computational Aspects

We now turn to the issue of the complexity of the computation required to use 

RSA. There are actually two issues to consider: encryption/decryption and key 

 generation. Let us look first at the process of encryption and decryption and then 

consider key generation.

6 The complete mapping of alphanumeric characters to decimal digits is at box.com/Crypto7e in the doc-
ument RSAexample.pdf.

Figure 9.6 Example of RSA Algorithm
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Encryption by Bob with Alice’s Public Key
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Plaintext: M = Cd mod n
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EXPONENTIATION IN MODULAR ARITHMETIC Both encryption and decryption in RSA 

involve raising an integer to an integer power, mod n. If the exponentiation is done 

over the integers and then reduced modulo n, the intermediate values would be 

gargantuan. Fortunately, as the preceding example shows, we can make use of a 

property of modular arithmetic:

 [(a mod n) * (b mod n)] mod n = (a * b) mod n 

Thus, we can reduce intermediate results modulo n. This makes the calculation 

practical.

Another consideration is the efficiency of exponentiation, because with RSA, 

we are dealing with potentially large exponents. To see how efficiency might be in-

creased, consider that we wish to compute x16. A straightforward approach requires 

15 multiplications:

 x16 = x * x * x * x * x * x * x * x * x * x * x * x * x * x * x * x 

Figure 9.7 RSA Processing of Multiple Blocks
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However, we can achieve the same final result with only four multiplications if we 

 repeatedly take the square of each partial result, successively forming (x2, x4, x8, x16). 

As another example, suppose we wish to calculate x11 mod n for some integers x  

and n. Observe that x11 = x1 + 2 + 8 = (x)(x2)(x8). In this case, we compute x mod n,  

x2 mod n, x4 mod n, and x8 mod n and then calculate [(x mod n) * (x2 mod n) *
(x8 mod n)] mod n.

More generally, suppose we wish to find the value ab mod n with a, b, and m 

positive integers. If we express b as a binary number bkbk - 1 c b0, then we have

b = a
bi≠0

2i

Therefore,

ab = a
¢ Σ2i

bi≠0
≤
= q

bi≠0

a(2i)

ab mod n = J q
bi≠0

a(2i) R  mod n = ¢ q
bi≠0

Ja(2i) mod nR ≤ mod n

We can therefore develop the algorithm7 for computing ab mod n, shown in 

Figure 9.8. Table 9.4 shows an example of the execution of this algorithm. Note that 

the variable c is not needed; it is included for explanatory purposes. The final value 

of c is the value of the exponent.

EFFICIENT OPERATION USING THE PUBLIC KEY To speed up the operation of the 

RSA algorithm using the public key, a specific choice of e is usually made. The most 

common choice is 65537 (216 + 1); two other popular choices are 3 and 17. Each of 

these choices has only two 1 bits, so the number of multiplications required to per-

form exponentiation is minimized.

7The algorithm has a long history; this particular pseudocode expression is from [CORM09].

Figure 9.8 Algorithm for Computing ab mod n

c   0; f   1

c   2 × cdo

bi = 1

then c   c + 1

if

f   (f × f) mod n

f   (f × a) mod n

for i   k downto 0

return f

Note: The integer b is expressed as a 

binary number bkbk - 1cb0.
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However, with a very small public key, such as e = 3, RSA becomes vulner-

able to a simple attack. Suppose we have three different RSA users who all use 

the value e = 3 but have unique values of n, namely (n1, n2, n3). If user A sends 

the same encrypted message M to all three users, then the three ciphertexts are 

C1 = M3 mod n1, C2 = M3 mod n2, and C3 = M3 mod n3. It is likely that n1, n2, 

and n3 are pairwise relatively prime. Therefore, one can use the Chinese remainder 

theorem (CRT) to compute M3 mod (n1n2n3). By the rules of the RSA algorithm, 

M is less than each of the ni; therefore M3 6 n1n2n3. Accordingly, the attacker need 

only compute the cube root of M3. This attack can be countered by adding a unique 

pseudorandom bit string as padding to each instance of M to be encrypted. This ap-

proach is discussed subsequently.

The reader may have noted that the definition of the RSA algorithm 

(Figure 9.5) requires that during key generation the user selects a value of e that is 

relatively prime to f(n). Thus, if a value of e is selected first and the primes p and q  

are generated, it may turn out that gcd(f(n), e) ≠ 1. In that case, the user must 

reject the p, q values and generate a new p, q pair.

EFFICIENT OPERATION USING THE PRIVATE KEY We cannot similarly choose a small 

constant value of d for efficient operation. A small value of d is vulnerable to a 

brute-force attack and to other forms of cryptanalysis [WIEN90]. However, there 

is a way to speed up computation using the CRT. We wish to compute the value 

M = Cd mod n. Let us define the following intermediate results:

 Vp = Cd mod p Vq = Cd mod q 

Following the CRT using Equation (8.8), define the quantities

 Xp = q * (q-1 mod p) Xq = p * (p-1 mod q) 

The CRT then shows, using Equation (8.9), that

 M = (VpXp + VqXq) mod n 

Furthermore, we can simplify the calculation of Vp and Vq using Fermat’s 

theorem, which states that ap - 1 K 1 (mod p) if p and a are relatively prime. Some 

thought should convince you that the following are valid.

 Vp = Cd mod p = Cd mod(p - 1) mod p Vq = Cd mod q = Cd mod(q - 1) mod q 

i 9 8 7 6 5 4 3 2 1 0

bi 1 0 0 0 1 1 0 0 0 0

c 1 2 4 8 17 35 70 140 280 560

f 7 49 157 526 160 241 298 166 67 1

Table 9.4 Result of the Fast Modular Exponentiation Algorithm for ab mod n, where a = 7, 

b = 560 = 1000110000, and n = 561
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The quantities d mod (p - 1) and d mod (q - 1) can be precalculated. The 

end result is that the calculation is approximately four times as fast as evaluating 

M = Cd mod n directly [BONE02].

KEY GENERATION Before the application of the public-key cryptosystem, each par-

ticipant must generate a pair of keys. This involves the following tasks.

 ■ Determining two prime numbers, p and q.

 ■ Selecting either e or d and calculating the other.

First, consider the selection of p and q. Because the value of n = pq will be 

known to any potential adversary, in order to prevent the discovery of p and q 

by exhaustive methods, these primes must be chosen from a sufficiently large set  

(i.e., p and q must be large numbers). On the other hand, the method used for find-

ing large primes must be reasonably efficient.

At present, there are no useful techniques that yield arbitrarily large primes, 

so some other means of tackling the problem is needed. The procedure that is gen-

erally used is to pick at random an odd number of the desired order of magnitude 

and test whether that number is prime. If not, pick successive random numbers until 

one is found that tests prime.

A variety of tests for primality have been developed (e.g., see [KNUT98] for 

a description of a number of such tests). Almost invariably, the tests are probabi-

listic. That is, the test will merely determine that a given integer is probably prime. 

Despite this lack of certainty, these tests can be run in such a way as to make the 

probability as close to 1.0 as desired. As an example, one of the more efficient 

and popular algorithms, the Miller–Rabin algorithm, is described in Chapter 2. 

With this algorithm and most such algorithms, the procedure for testing whether 

a given integer n is prime is to perform some calculation that involves n and a 

randomly chosen integer a. If n “fails” the test, then n is not prime. If n “passes” 

the test, then n may be prime or nonprime. If n passes many such tests with many 

different randomly chosen values for a, then we can have high confidence that n 

is, in fact, prime.

In summary, the procedure for picking a prime number is as follows.

1. Pick an odd integer n at random (e.g., using a pseudorandom number 

generator).

2. Pick an integer a 6 n at random.

3. Perform the probabilistic primality test, such as Miller–Rabin, with a as a 

 parameter. If n fails the test, reject the value n and go to step 1.

4. If n has passed a sufficient number of tests, accept n; otherwise, go to step 2.

This is a somewhat tedious procedure. However, remember that this process is per-

formed relatively infrequently: only when a new pair (PU, PR) is needed.

It is worth noting how many numbers are likely to be rejected before a 

prime number is found. A result from number theory, known as the prime  number 

theorem, states that the primes near N are spaced on the average one every  
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ln (N) integers. Thus, on average, one would have to test on the order of ln(N) 

integers before a prime is found. Actually, because all even integers can be im-

mediately rejected, the correct figure is ln(N)/2. For example, if a prime on the 

order of magnitude of 2200 were sought, then about ln(2200)/2 = 70 trials would be 

needed to find a prime.

Having determined prime numbers p and q, the process of key generation is 

completed by selecting a value of e and calculating d or, alternatively, selecting a 

value of d and calculating e. Assuming the former, then we need to select an e such 

that gcd(f(n), e) = 1 and then calculate d K e-1 (mod f(n)). Fortunately, there is 

a single algorithm that will, at the same time, calculate the greatest common divi-

sor of two integers and, if the gcd is 1, determine the inverse of one of the integers 

modulo the other. The algorithm, referred to as the extended Euclid’s algorithm, 

is explained in Chapter 2. Thus, the procedure is to generate a series of random 

numbers, testing each against f(n) until a number relatively prime to f(n) is found. 

Again, we can ask the question: How many random numbers must we test to find 

a usable number, that is, a number relatively prime to f(n)? It can be shown easily 

that the probability that two random numbers are relatively prime is about 0.6; thus, 

very few tests would be needed to find a suitable integer (see Problem 2.18).

The Security of RSA

Five possible approaches to attacking the RSA algorithm are

 ■ Brute force: This involves trying all possible private keys.

 ■ Mathematical attacks: There are several approaches, all equivalent in effort to 

factoring the product of two primes.

 ■ Timing attacks: These depend on the running time of the decryption algorithm.

 ■ Hardware fault-based attack: This involves inducing hardware faults in the 

processor that is generating digital signatures.

 ■ Chosen ciphertext attacks: This type of attack exploits properties of the RSA 

algorithm.

The defense against the brute-force approach is the same for RSA as for other 

cryptosystems, namely, to use a large key space. Thus, the larger the number of bits 

in d, the better. However, because the calculations involved, both in key generation 

and in encryption/decryption, are complex, the larger the size of the key, the slower 

the system will run.

In this subsection, we provide an overview of mathematical and timing attacks.

THE FACTORING PROBLEM We can identify three approaches to attacking RSA 

mathematically.

1. Factor n into its two prime factors. This enables calculation of f(n) =
(p - 1) * (q - 1), which in turn enables determination of d K e-1 (mod f(n)).

2. Determine f(n) directly, without first determining p and q. Again, this enables 

determination of d K e-1 (mod f(n)).

3. Determine d directly, without first determining f(n).
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Most discussions of the cryptanalysis of RSA have focused on the task of 

 factoring n into its two prime factors. Determining f(n) given n is equivalent to 

factoring n [RIBE96]. With presently known algorithms, determining d given  

e and n appears to be at least as time-consuming as the factoring problem [KALI95]. 

Hence, we can use factoring performance as a benchmark against which to evaluate 

the security of RSA.

For a large n with large prime factors, factoring is a hard problem, but it is not 

as hard as it used to be. A striking illustration of this is the following. In 1977, the 

three inventors of RSA dared Scientific American readers to decode a cipher they 

printed in Martin Gardner’s “Mathematical Games” column [GARD77]. They of-

fered a $100 reward for the return of a plaintext sentence, an event they predicted 

might not occur for some 40 quadrillion years. In April of 1994, a group working 

over the Internet claimed the prize after only eight months of work [LEUT94]. This 

challenge used a public key size (length of n) of 129 decimal digits, or around 428 

bits. In the meantime, just as they had done for DES, RSA Laboratories had issued 

challenges for the RSA cipher with key sizes of 100, 110, 120, and so on, digits. The 

latest challenge to be met is the RSA-768 challenge with a key length of 232 decimal 

digits, or 768 bits. Table 9.5 shows the results.

A striking fact about the progress reflected in Table 9.5 concerns the method 

used. Until the mid-1990s, factoring attacks were made using an approach known 

as the quadratic sieve. The attack on RSA-130 used a newer algorithm, the gen-

eralized number field sieve (GNFS), and was able to factor a larger number than  

RSA-129 at only 20% of the computing effort.

The threat to larger key sizes is twofold: the continuing increase in computing 

power and the continuing refinement of factoring algorithms. We have seen that 

the move to a different algorithm resulted in a tremendous speedup. We can expect 

further refinements in the GNFS, and the use of an even better algorithm is also 

a possibility. In fact, a related algorithm, the special number field sieve (SNFS), 

Number of Decimal Digits Number of Bits Date Achieved

100 332 April 1991

110 365 April 1992

120 398 June 1993

129 428 April 1994

130 431 April 1996

140 465 February 1999

155 512 August 1999

160 530 April 2003

174 576 December 2003

200 663 May 2005

193 640 November 2005

232 768 December 2009

Table 9.5 Progress in RSA Factorization



304  CHAPTER 9 / PUBLIC-KEY CRYPTOGRAPHY AND RSA

can factor numbers with a specialized form considerably faster than the generalized 

number field sieve. Figure 9.9 compares the performance of the two algorithms. It is 

reasonable to expect a breakthrough that would enable a general factoring perfor-

mance in about the same time as SNFS, or even better [ODLY95]. Thus, we need 

to be careful in choosing a key size for RSA. The team that produced the 768-bit 

factorization [KLEI10] observed that factoring a 1024-bit RSA modulus would be 

about a thousand times harder than factoring a 768-bit modulus, and a 768-bit RSA 

modulus is several thousands times harder to factor than a 512-bit one. Based on the 

amount of time between the 512-bit and 768-bit factorization successes, the team 

felt it to be reasonable to expect that the 1024-bit RSA moduli could be factored 

well within the next decade by a similar academic effort. Thus, they recommended 

phasing out usage of 1024-bit RSA within the next few years (from 2010).

Figure 9.9 MIPS-years Needed to Factor
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In addition to specifying the size of n, a number of other constraints have been 

suggested by researchers. To avoid values of n that may be factored more easily, the 

algorithm’s inventors suggest the following constraints on p and q.

1. p and q should differ in length by only a few digits. Thus, for a 1024-bit key 

(309 decimal digits), both p and q should be on the order of magnitude of 

1075 to 10100.

2. Both (p - 1) and (q - 1) should contain a large prime factor.

3. gcd(p - 1, q - 1) should be small.

In addition, it has been demonstrated that if e 6 n and d 6 n1/4, then d can be  easily 

determined [WIEN90].

TIMING ATTACKS If one needed yet another lesson about how difficult it is to  assess 

the security of a cryptographic algorithm, the appearance of timing attacks  provides 

a stunning one. Paul Kocher, a cryptographic consultant, demonstrated that a 

snooper can determine a private key by keeping track of how long a computer takes 

to decipher messages [KOCH96, KALI96b]. Timing attacks are applicable not just 

to RSA, but to other public-key cryptography systems. This attack is alarming for 

two reasons: It comes from a completely unexpected direction, and it is a ciphertext-

only attack.

A timing attack is somewhat analogous to a burglar guessing the combi-

nation of a safe by observing how long it takes for someone to turn the dial 

from number to number. We can explain the attack using the modular expo-

nentiation algorithm of Figure 9.8, but the attack can be adapted to work with 

any implementation that does not run in fixed time. In this algorithm, modular 

exponentiation is accomplished bit by bit, with one modular multiplication per-

formed at each iteration and an additional modular multiplication performed 

for each 1 bit.

As Kocher points out in his paper, the attack is simplest to understand in an 

extreme case. Suppose the target system uses a modular multiplication function that 

is very fast in almost all cases but in a few cases takes much more time than an entire 

average modular exponentiation. The attack proceeds bit-by-bit starting with the 

leftmost bit, bk. Suppose that the first j bits are known (to obtain the entire exponent, 

start with j = 0 and repeat the attack until the entire exponent is known). For a 

given ciphertext, the attacker can complete the first j iterations of the for loop. The 

operation of the subsequent step depends on the unknown exponent bit. If the bit 

is set, d d (d * a) mod n will be executed. For a few values of a and d, the modu-

lar multiplication will be extremely slow, and the attacker knows which these are. 

Therefore, if the observed time to execute the decryption algorithm is always slow 

when this particular iteration is slow with a 1 bit, then this bit is assumed to be 1. 

If a number of observed execution times for the entire algorithm are fast, then this 

bit is assumed to be 0.

In practice, modular exponentiation implementations do not have such ex-

treme timing variations, in which the execution time of a single iteration can ex-

ceed the mean execution time of the entire algorithm. Nevertheless, there is enough 

variation to make this attack practical. For details, see [KOCH96].
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Although the timing attack is a serious threat, there are simple countermea-

sures that can be used, including the following.

 ■ Constant exponentiation time: Ensure that all exponentiations take the same 

amount of time before returning a result. This is a simple fix but does degrade 

performance.

 ■ Random delay: Better performance could be achieved by adding a random 

delay to the exponentiation algorithm to confuse the timing attack. Kocher 

points out that if defenders don’t add enough noise, attackers could still suc-

ceed by collecting additional measurements to compensate for the random 

delays.

 ■ Blinding: Multiply the ciphertext by a random number before performing ex-

ponentiation. This process prevents the attacker from knowing what cipher-

text bits are being processed inside the computer and therefore prevents the 

bit-by-bit analysis essential to the timing attack.

RSA Data Security incorporates a blinding feature into some of its products. 

The private-key operation M = Cd mod n is implemented as follows.

1. Generate a secret random number r between 0 and n - 1.

2. Compute C′ = C(r e) mod n, where e is the public exponent.

3. Compute M′ = (C′)d mod n with the ordinary RSA implementation.

4. Compute M = M′r -1 mod n. In this equation, r -1 is the multiplicative inverse 

of r mod n; see Chapter 2 for a discussion of this concept. It can be demon-

strated that this is the correct result by observing that r ed mod n = r mod n.

RSA Data Security reports a 2 to 10% performance penalty for blinding.

FAULT-BASED ATTACK Still another unorthodox approach to attacking RSA is re-

ported in [PELL10]. The approach is an attack on a processor that is generating 

RSA digital signatures. The attack induces faults in the signature computation by 

reducing the power to the processor. The faults cause the software to produce in-

valid signatures, which can then be analyzed by the attacker to recover the private 

key. The authors show how such an analysis can be done and then demonstrate it 

by extracting a 1024-bit private RSA key in approximately 100 hours, using a com-

mercially available microprocessor.

The attack algorithm involves inducing single-bit errors and observing the re-

sults. The details are provided in [PELL10], which also references other proposed 

hardware fault-based attacks against RSA.

This attack, while worthy of consideration, does not appear to be a serious 

threat to RSA. It requires that the attacker have physical access to the target ma-

chine and that the attacker is able to directly control the input power to the pro-

cessor. Controlling the input power would for most hardware require more than 

simply controlling the AC power, but would also involve the power supply control 

hardware on the chip.
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CHOSEN CIPHERTEXT ATTACK AND OPTIMAL ASYMMETRIC ENCRYPTION PADDING The 

basic RSA algorithm is vulnerable to a chosen ciphertext attack (CCA). CCA is 

defined as an attack in which the adversary chooses a number of ciphertexts and 

is then given the corresponding plaintexts, decrypted with the target’s private key. 

Thus, the adversary could select a plaintext, encrypt it with the target’s public key, 

and then be able to get the plaintext back by having it decrypted with the private 

key. Clearly, this provides the adversary with no new information. Instead, the ad-

versary exploits properties of RSA and selects blocks of data that, when processed 

using the target’s private key, yield information needed for cryptanalysis.

A simple example of a CCA against RSA takes advantage of the following 

property of RSA:

  E(PU, M1) * E(PU, M2) = E(PU, [M1 * M2])   (9.2)

We can decrypt C = Me mod n using a CCA as follows.

1. Compute X = (C * 2e) mod n.

2. Submit X as a chosen ciphertext and receive back Y = Xd mod n.

But now note that

 X = (C mod n) * (2e mod n)

 = (Me mod n) * (2e mod n)

 = (2M)e mod n

Therefore, Y = (2M) mod n. From this, we can deduce M. To overcome this 

simple attack, practical RSA-based cryptosystems randomly pad the plaintext prior 

to encryption. This randomizes the ciphertext so that Equation (9.2) no longer 

holds. However, more sophisticated CCAs are possible, and a simple padding with a 

random value has been shown to be insufficient to provide the desired security. To 

counter such attacks, RSA Security Inc., a leading RSA vendor and former holder 

of the RSA patent, recommends modifying the plaintext using a procedure known 

as optimal asymmetric encryption padding (OAEP). A full discussion of the threats 

and OAEP are beyond our scope; see [POIN02] for an introduction and [BELL94] 

for a thorough analysis. Here, we simply summarize the OAEP procedure.

Figure 9.10 depicts OAEP encryption. As a first step, the message M to be en-

crypted is padded. A set of optional parameters, P, is passed through a hash func-

tion, H.8 The output is then padded with zeros to get the desired length in the overall 

data block (DB). Next, a random seed is generated and passed through another hash 

function, called the mask generating function (MGF). The resulting hash value is bit-

by-bit XORed with DB to produce a maskedDB. The maskedDB is in turn passed 

through the MGF to form a hash that is XORed with the seed to produce the masked-

seed. The concatenation of the maskedseed and the maskedDB forms the encoded 

message EM. Note that the EM includes the padded message, masked by the seed, 

and the seed, masked by the maskedDB. The EM is then encrypted using RSA.

8A hash function maps a variable-length data block or message into a fixed-length value called a hash 
code. Hash functions are discussed in depth in Chapter 11.
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 9.3 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Figure 9.10  Encryption Using Optimal Asymmetric 
Encryption Padding (OAEP)
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Key Terms 

chosen ciphertext attack  

(CCA)

digital signature

key exchange

one-way function

optimal asymmetric  encryption 

padding (OAEP)

private key

public key

public-key cryptography

public-key cryptosystems

public-key encryption

RSA

timing attack

trap-door one-way function

Review Questions 

 9.1 What is a public key certificate?

 9.2 What are the roles of the public and private key?

 9.3 What are three broad categories of applications of public-key cryptosystems?
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 9.4 What requirements must a public-key cryptosystems fulfill to be a secure algorithm?

 9.5 How can a probable-message attack be used for public-key cryptanalysis?

 9.6 List the different approaches to attack the RSA algorithm.

 9.7 Describe the countermeasures to be used against the timing attack.

Problems 

 9.1 Prior to the discovery of any specific public-key schemes, such as RSA, an existence 
proof was developed whose purpose was to demonstrate that public-key encryption is 
possible in theory. Consider the functions f1(x1) = z1; f2(x2, y2) = z2; f3(x3, y3) = z3, 
where all values are integers with 1 … xi, yi, zi … N. Function f1 can be represented 
by a vector M1 of length N, in which the kth entry is the value of f1(k). Similarly, f2 
and f3 can be represented by N * N matrices M2 and M3. The intent is to represent 
the encryption/decryption process by table lookups for tables with very large values 
of N. Such tables would be impractically huge but could be constructed in principle. 
The scheme works as follows: Construct M1 with a random permutation of all inte-
gers between 1 and N; that is, each integer appears exactly once in M1. Construct M2 
so that each row contains a random permutation of the first N integers. Finally, fill in 
M3 to satisfy the following condition:

f3(f2(f1(k), p), k) = p    for all k, p  with 1 … k, p , … N

To summarize,
1. M1 takes an input k and produces an output x.
2. M2 takes inputs x and p giving output z.
3. M3 takes inputs z and k and produces p.

The three tables, once constructed, are made public.
a. It should be clear that it is possible to construct M3 to satisfy the preceding condi-

tion. As an example, fill in M3 for the following simple case:

4 3 5 2 4 1

3 4 2 5 3 1

M1 = 2 M2 = 5 4 3 1 2 M3 =

5 1 3 2 5 4

1 2 1 4 3 5

Convention: The ith element of M1 corresponds to k = i. The ith row of M2 cor-
responds to x = i; the jth column of M2 corresponds to p = j. The ith row of M3 
corresponds to z = i; the jth column of M3 corresponds to k = j.

b. Describe the use of this set of tables to perform encryption and decryption be-
tween two users.

c. Argue that this is a secure scheme.

 9.2 Perform encryption and decryption using the RSA algorithm, as in Figure 9.5, for the 
following:
a. p = 3 ; q = 7 , e = 5 ; M = 1 0
b. p = 5 ; q = 1 3 , e = 5 ; M = 8
c. p = 7 ; q = 1 7 , e = 1 1 ; M = 1 1
d. p = 7 ; q = 1 3 , e = 1 1 ; M = 2
e. p = 1 7 ; q = 2 3 , e = 9 ; M = 7

Hint: Decryption is not as hard as you think; use some finesse.

 9.3 In a public-key system using RSA, you intercept the ciphertext C = 2 0  sent to a user 
whose public key is e = 1 3 , n = 7 7 . What is the plaintext M?
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 9.4 In an RSA system, the public key of a given user is e = 6 5 , n = 2 8 8 1 . What is the 
private key of this user? Hint: First use trial-and-error to determine p and q; then use 
the extended Euclidean algorithm to find the multiplicative inverse of 31 modulo 
f(n).

 9.5 In using the RSA algorithm, if a small number of repeated encodings give back the 
plaintext, what is the likely cause?

 9.6 Suppose we have a set of blocks encoded with the RSA algorithm and we don’t have 
the private key. Assume n = pq, e is the public key. Suppose also someone tells us 
they know one of the plaintext blocks has a common factor with n. Does this help us 
in any way?

 9.7 In the RSA public-key encryption scheme, each user has a public key, e, and a private 
key, d. Suppose Bob leaks his private key. Rather than generating a new modulus, he 
decides to generate a new public and a new private key. Is this safe?

 9.8 Suppose Bob uses the RSA cryptosystem with a very large modulus n for which the 
factorization cannot be found in a reasonable amount of time. Suppose Alice sends 
a message to Bob by representing each alphabetic character as an integer between 
0 and 25 (A S 0, c , Z S 25) and then encrypting each number separately using 
RSA with large e and large n. Is this method secure? If not, describe the most effi-
cient attack against this encryption method.

 9.9 Using a spreadsheet (such as Excel) or a calculator, perform the operations described 
below. Document results of all intermediate modular multiplications. Determine a 
number of modular multiplications per each major transformation (such as encryp-
tion, decryption, primality testing, etc.).

a. Test all odd numbers in the range from 215 to 223 for primality using the Miller–
Rabin test with base 2.

b. Encrypt the message block M = 2 using RSA with the following parameters: 
e = 23 and n = 233 * 241.

c. Compute a private key (d, p, q) corresponding to the given above public key (e, n).
d. Perform the decryption of the obtained ciphertext

1. without using the Chinese Remainder Theorem, and
2. using the Chinese Remainder Theorem.

 9.10 Assume that you generate an authenticated and encrypted message by first applying the 
RSA transformation determined by your private key, and then enciphering the mes-
sage using recipient’s public key (note that you do NOT use hash function before the 
first transformation). Will this scheme work correctly [i.e., give the possibility to recon-
struct the original message at the recipient’s side, for all possible relations between the 
sender’s modulus nS and the recipient’s modulus nR (nS 7 nR, nS 6 nR, nS = nR)]? 
Explain your answer. In case your answer is “no,” how would you correct this scheme?

 9.11 “I want to tell you, Holmes,” Dr. Watson’s voice was enthusiastic, “that your recent 
activities in network security have increased my interest in cryptography. And just 
yesterday I found a way to make one-time pad encryption practical.”

“Oh, really?” Holmes’ face lost its sleepy look.

“Yes, Holmes. The idea is quite simple. For a given one-way function F, I gener-
ate a long pseudorandom sequence of elements by applying F to some standard se-
quence of arguments. The cryptanalyst is assumed to know F and the general nature 
of the sequence, which may be as simple as S, S + 1, S + 2, c , but not secret S. 
And due to the one-way nature of F, no one is able to extract S given F(S + i) for 
some i, thus even if he somehow obtains a certain segment of the sequence, he will 
not be able to determine the rest.”

“I am afraid, Watson, that your proposal isn’t without flaws and at least it needs 
some additional conditions to be satisfied by F. Let’s consider, for instance, the RSA 
encryption function, that is F(M) = MK mod N, K is secret. This function is believed 
to be one-way, but I wouldn’t recommend its use, for example, on the sequence 
M = 2, 3, 4, 5, 6, . . . ”
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“But why, Holmes?” Dr. Watson apparently didn’t understand. “Why do you 
think that the resulting sequence 2K mod N, 3K mod N, 4K mod N, . . . is not appropri-
ate for one-time pad encryption if K is kept secret?”

“Because it is—at least partially—predictable, dear Watson, even if K is kept se-
cret. You have said that the cryptanalyst is assumed to know F and the general nature 
of the sequence. Now let’s assume that he will obtain somehow a short segment of the 
output sequence. In crypto circles, this assumption is generally considered to be a vi-
able one. And for this output sequence, knowledge of just the first two elements will 
allow him to predict quite a lot of the next elements of the sequence, even if not all of 
them, thus this sequence can’t be considered to be cryptographically strong. And with 
the knowledge of a longer segment he could predict even more of the next elements 
of the sequence. Look, knowing the general nature of the sequence and its first two 
elements 2K mod N and 3K mod N, you can easily compute its following elements.”

Show how this can be done.

 9.12 Show how RSA can be represented by matrices M1, M2, and M3 of Problem 9.1.

 9.13 Consider the following scheme:

1. Pick an odd number, E.
2. Pick two prime numbers, P and Q, where (P - 1)(Q - 1) - 1 is evenly divisible 

by E.
3. Multiply P and Q to get N.

4. Calculate D =
(P - 1)(Q - 1)(E - 1) + 1

E

Is this scheme equivalent to RSA? Show why or why not.

 9.14 Consider the following scheme by which B encrypts a message for A.

1. A chooses two large primes P and Q that are also relatively prime to (P - 1) 
and (Q - 1).

2. A publishes N = PQ as its public key.
3. A calculates P= and Q= such that PP= K 1 (mod Q - 1) and QQ= K 1 (mod P - 1).
4. B encrypts message M as C = MN mod N.
5. A finds M by solving M K CP= (mod Q) and M K CQ=

 (mod P).
a. Explain how this scheme works.
b. How does it differ from RSA?
c. Is there any particular advantage to RSA compared to this scheme?
d. Show how this scheme can be represented by matrices M1, M2, and M3 of 

Problem 9.1.

 9.15 “This is a very interesting case, Watson,” Holmes said. “The young man loves a girl, 
and she loves him too. However, her father is a strange fellow who insists that his 
would-be son-in-law must design a simple and secure protocol for an appropriate 
public-key cryptosystem he could use in his company’s computer network. The young 
man came up with the following protocol for communication between two parties. 
For example, user A wishing to send message M to user B: (messages exchanged are 
in the format sender’s name, text, receiver’s name)”
1. A sends B the following block: (A, E(PUb, [M, A]), B).
2. B acknowledges receipt by sending to A the following block: (B, E(PUa, [M, B]), A).

“You can see that the protocol is really simple. But the girl’s father claims that the 
young man has not satisfied his call for a simple protocol, because the proposal con-
tains a certain redundancy and can be further simplified to the following:”
1. A sends B the block: (A, E(PUb, M), B).
2. B acknowledges receipt by sending to A the block: (B, E(PUa, M), A).

“On the basis of that, the girl’s father refuses to allow his daughter to marry the 
young man, thus making them both unhappy. The young man was just here to ask 
me for help.”
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“Hmm, I don’t see how you can help him.” Watson was visibly unhappy with the 
idea that the sympathetic young man has to lose his love.

“Well, I think I could help. You know, Watson, redundancy is sometimes good to 
ensure the security of protocol. Thus, the simplification the girl’s father has proposed 
could make the new protocol vulnerable to an attack the original protocol was able 
to resist,” mused Holmes. “Yes, it is so, Watson. Look, all an adversary needs is to 
be one of the users of the network and to be able to intercept messages exchanged 
between A and B. Being a user of the network, he has his own public encryption key 
and is able to send his own messages to A or to B and to receive theirs. With the help 
of the simplified protocol, he could then obtain message M user A has previously sent 
to B using the following procedure:”

Complete the description.

 9.16 Use the fast exponentiation algorithm of Figure 9.8 to determine 6 4 7 2  mod 3415. 
Show the steps involved in the computation.

 9.17 Here is another realization of the fast exponentiation algorithm. Demonstrate that it 
is equivalent to the one in Figure 9.8.
1. f d  1; T d  a; E d  b
2. if odd(E) then f d  f : T
3. E d  [ E/2 ]
4. T d  T : T
5. if E + 0 then goto 2
6. output f

 9.18 This problem illustrates a simple application of the chosen ciphertext attack. Bob 
intercepts a ciphertext C intended for Alice and encrypted with Alice’s public key e.  
Bob wants to obtain the original message M = Cd mod n. Bob chooses a random 
value r less than n and computes

 Z = r e mod n

 X = ZC mod n

 t = r -1 mod n

Next, Bob gets Alice to authenticate (sign) X with her private key (as in Figure 9.3), 
thereby decrypting X. Alice returns Y = Xd mod n. Show how Bob can use the infor-
mation now available to him to determine M.

 9.19 Show the OAEP decoding operation used for decryption that corresponds to the 
encoding operation of Figure 9.10.

 9.20 Improve on algorithm P1 in Appendix W.
a. Develop an algorithm that requires 2n multiplications and n + 1 additions. Hint: 

xi+ 1 = xi * x.
b. Develop an algorithm that requires only n + 1 multiplications and n + 1 addi-

tions. Hint: P(x) = a0 + x * q(x), where q(x) is a polynomial of degree (n - 1).

Note: The remaining problems concern the knapsack public-key algorithm  described 
in Appendix J.

 9.21 What items are in the knapsack in Figure F.1?

 9.22 Perform encryption and decryption using the knapsack algorithm for the following:
a. a= = (1, 5, 7, 14); w = 11; m = 30; x = 1011
b. a= = (1, 2, 7, 12, 23, 38, 116, 248); w = 201; m = 457; x = 10101010
c. a= = (2, 4, 7, 15, 29); w = 36; m = 47; x = 10011
d. a= = (15, 92, 108, 279, 563, 1172, 2243, 4468); w = 2033; m = 8764; x = 10110011

 9.23 Why is it a requirement that m 7 a
n

1=1

a= i?
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This chapter begins with a description of one of the earliest and simplest PKCS:   

Diffie–Hellman key exchange. The chapter then looks at another important scheme, 

the Elgamal PKCS. Next, we look at the increasingly important PKCS known as  elliptic 

curve cryptography. Finally, the use of public-key algorithms for pseudorandom num-

ber generation is examined.

 10.1 DIFFIE–HELLMAN KEY EXCHANGE

The first published public-key algorithm appeared in the seminal paper by Diffie 

and Hellman that defined public-key cryptography [DIFF76b] and is generally re-

ferred to as Diffie–Hellman key exchange.1 A number of commercial products em-

ploy this key exchange technique.

The purpose of the algorithm is to enable two users to securely exchange a 

key that can then be used for subsequent symmetric encryption of messages. The 

algorithm itself is limited to the exchange of secret values.

The Diffie–Hellman algorithm depends for its effectiveness on the difficulty 

of computing discrete logarithms. Briefly, we can define the discrete logarithm in 

the following way. Recall from Chapter 2 that a primitive root of a prime number p 

is one whose powers modulo p generate all the integers from 1 to p - 1. That is, if 

a is a primitive root of the prime number p, then the numbers

 a mod p, a2 mod p, c , ap - 1 mod p 

are distinct and consist of the integers from 1 through p - 1 in some permutation.

For any integer b and a primitive root a of prime number p, we can find a 

unique exponent i such that

 b K ai (mod p)  where 0 … i … (p - 1) 

1Williamson of Britain’s CESG published the identical scheme a few months earlier in a classified docu-
ment [WILL76] and claims to have discovered it several years prior to that; see [ELLI99] for a discussion.

LEARNING OBJECTIVES

After studying this chapter, you should be able to:

 ◆ Define Diffie–Hellman key exchange.

 ◆ Understand the man-in-the-middle attack.

 ◆ Present an overview of the Elgamal cryptographic system.

 ◆ Understand elliptic curve arithmetic.

 ◆ Present an overview of elliptic curve cryptography.

 ◆ Present two techniques for generating pseudorandom numbers using an 

asymmetric cipher.
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The exponent i is referred to as the discrete logarithm of b for the base a, mod p. We 

express this value as dloga,p(b). See Chapter 2 for an extended discussion of discrete 

logarithms.

The Algorithm

Figure 10.1 summarizes the Diffie–Hellman key exchange algorithm. For this 

scheme, there are two publicly known numbers: a prime number q and an inte-

ger a that is a primitive root of q. Suppose the users A and B wish to create a 

shared key.

User A selects a random integer XA 6 q and computes YA = aXA mod q. 

Similarly, user B independently selects a random integer XB 6 q and computes 

YB = aXB mod q. Each side keeps the X value private and makes the Y value avail-

able publicly to the other side. Thus, XA is A’s private key and YA is A’s correspond-

ing public key, and similarly for B. User A computes the key as K = (YB)XA mod q 

and user B computes the key as K = (YA)XB mod q. These two calculations produce 

identical results:

Figure 10.1 The Diffie–Hellman Key Exchange

Alice Bob

Alice and Bob share a
prime number q and an
integer A, such that A < q and
A is a primitive root of q

Alice generates a private
key XA such that XA < q

Alice calculates a public
key YA = AXA mod q

Alice receives Bob’s
public key YB in plaintext

Alice calculates shared
secret key K = (YB)XA mod q

Bob calculates shared
secret key K = (YA)XB mod q

Bob receives Alice’s
public key YA in plaintext

Bob calculates a public
key YB = AXB mod q

Bob generates a private
key XB such that XB < q

Alice and Bob share a
prime number q and an
integer A, such that A < q and
A is a primitive root of q

YA YB
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 K = (YB)XA mod q

 = (aXB mod q)XA mod q

 = (aXB)XA mod q       by the rules of modular arithmetic

 = aXBXA mod q

 = (aXA)XB mod q

 = (aXA mod q)XB mod q

 = (YA)XB mod q

The result is that the two sides have exchanged a secret value. Typically, this 

secret value is used as shared symmetric secret key. Now consider an adversary who 

can observe the key exchange and wishes to determine the secret key K. Because 

XA and XB are private, an adversary only has the following ingredients to work with: 

q, a, YA, and YB. Thus, the adversary is forced to take a discrete logarithm to deter-

mine the key. For example, to determine the private key of user B, an adversary 

must compute

 XB = dloga,q(YB) 

The adversary can then calculate the key K in the same manner as user B calculates 

it. That is, the adversary can calculate K as

 K = (YA)XB mod q 

The security of the Diffie–Hellman key exchange lies in the fact that, while 

it is relatively easy to calculate exponentials modulo a prime, it is very difficult 

to calculate discrete logarithms. For large primes, the latter task is considered 

infeasible.

Here is an example. Key exchange is based on the use of the prime number 

q = 353 and a primitive root of 353, in this case a = 3. A and B select private keys 

XA = 97 and XB = 233, respectively. Each computes its public key:

A computes YA = 397 mod 353 = 40.

B computes YB = 3233 mod 353 = 248.

After they exchange public keys, each can compute the common secret key:

A computes K = (YB)XA mod 353 = 24897 mod 353 = 160.

B computes K = (YA)XB mod 353 = 40233 mod 353 = 160.

We assume an attacker would have available the following information:

 q = 353; a = 3; YA = 40; YB = 248 

In this simple example, it would be possible by brute force to determine the secret 

key 160. In particular, an attacker E can determine the common key by discovering 

a solution to the equation 3a mod 353 = 40 or the equation 3b mod 353 = 248. The 

brute-force approach is to calculate powers of 3 modulo 353, stopping when the re-

sult equals either 40 or 248. The desired answer is reached with the exponent value 

of 97, which provides 397 mod 353 = 40.

With larger numbers, the problem becomes impractical.
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Key Exchange Protocols

Figure 10.1 shows a simple protocol that makes use of the Diffie–Hellman calcula-

tion. Suppose that user A wishes to set up a connection with user B and use a secret 

key to encrypt messages on that connection. User A can generate a one-time pri-

vate key XA, calculate YA, and send that to user B. User B responds by generating 

a private value XB, calculating YB, and sending YB to user A. Both users can now 

calculate the key. The necessary public values q and a would need to be known 

ahead of time. Alternatively, user A could pick values for q and a and include those 

in the first message.

As an example of another use of the Diffie–Hellman algorithm, suppose that a 

group of users (e.g., all users on a LAN) each generate a long-lasting private value Xi 

(for user i) and calculate a public value Yi. These public values, together with global 

public values for q and a, are stored in some central directory. At any time, user j 
can access user i’s public value, calculate a secret key, and use that to send an en-

crypted message to user A. If the central directory is trusted, then this form of com-

munication provides both confidentiality and a degree of authentication. Because 

only i and j can determine the key, no other user can read the message (confidential-

ity). Recipient i knows that only user j could have created a message using this key 

(authentication). However, the technique does not protect against replay attacks.

Man-in-the-Middle Attack

The protocol depicted in Figure 10.1 is insecure against a man-in-the-middle attack. 

Suppose Alice and Bob wish to exchange keys, and Darth is the adversary. The at-

tack proceeds as follows (Figure 10.2).

1. Darth prepares for the attack by generating two random private keys XD1 and 

XD2 and then computing the corresponding public keys YD1 and YD2.

2. Alice transmits YA to Bob.

3. Darth intercepts YA and transmits YD1 to Bob. Darth also calculates 

K2 = (YA)XD2 mod q.

4. Bob receives YD1 and calculates K1 = (YD1)
XB mod q.

5. Bob transmits YB to Alice.

6. Darth intercepts YB and transmits YD2 to Alice. Darth calculates  

K1 = (YB)XD1 mod q.

7. Alice receives YD2 and calculates K2 = (YD2)
XA mod q.

At this point, Bob and Alice think that they share a secret key, but instead 

Bob and Darth share secret key K1 and Alice and Darth share secret key K2. All 

future communication between Bob and Alice is compromised in the following way.

1. Alice sends an encrypted message M: E(K2, M).

2. Darth intercepts the encrypted message and decrypts it to recover M.

3. Darth sends Bob E(K1, M) or E(K1, M=), where M= is any message. In the first 

case, Darth simply wants to eavesdrop on the communication without altering 

it. In the second case, Darth wants to modify the message going to Bob.



318  CHAPTER 10 / OTHER PUBLIC-KEY CRYPTOSYSTEMS

The key exchange protocol is vulnerable to such an attack because it does not 

authenticate the participants. This vulnerability can be overcome with the use of digital 

signatures and public-key certificates; these topics are explored in Chapters 13 and 14.

 10.2 ELGAMAL CRYPTOGRAPHIC SYSTEM

In 1984, T. Elgamal announced a public-key scheme based on discrete  logarithms, 

closely related to the Diffie–Hellman technique [ELGA84, ELGA85]. The Elgamal2 

cryptosystem is used in some form in a number of standards including the digital 

signature standard (DSS), which is covered in Chapter 13, and the S/MIME email 

standard (Chapter 19).

2For no apparent reason, most of the literature uses the term ElGamal, although Mr. Elgamal’s last name 
does not have a capital letter G.

Figure 10.2 Man-in-the-Middle Attack

Alice Darth Bob

Private key XA
Public key
YA = AXA mod q 

Private key XB
Public key
YB = AXB mod q 

Private keys XD1, XD2
Public keys
YD1 = AXD1 mod q
YD2 = AXD2 mod q

YA 

Secret key
K2 = (YA)XD2 mod q

Secret key
K1 = (YB)XD1 mod q

Secret key
K1 = (YD1)XB mod q

Secret key
K2 = (YD2)XA mod q

Alice and Darth
share K2

Bob and Darth
share K1

  YD2 YD1 

YB 
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As with Diffie–Hellman, the global elements of Elgamal are a prime number q and 

a, which is a primitive root of q. User A generates a private/public key pair as follows:

1. Generate a random integer XA, such that 1 6 XA 6 q - 1.

2. Compute YA = aXA mod q.

3. A’s private key is XA and A’s public key is {q, a, YA}.

Any user B that has access to A’s public key can encrypt a message as follows:

1. Represent the message as an integer M in the range 0 … M … q - 1. Longer 

messages are sent as a sequence of blocks, with each block being an integer 

less than q.

2. Choose a random integer k such that 1 … k … q - 1.

3. Compute a one-time key K = (YA)k mod q.

4. Encrypt M as the pair of integers (C1, C2) where

C1 = ak mod q; C2 = KM mod q

User A recovers the plaintext as follows:

1. Recover the key by computing K = (C1)
XA mod q.

2. Compute M = (C2K
-1) mod q.

These steps are summarized in Figure 10.3. It corresponds to Figure 9.1a: 

Alice generates a public/private key pair; Bob encrypts using Alice’s public key; and 

Alice decrypts using her private key.

Let us demonstrate why the Elgamal scheme works. First, we show how K is 

recovered by the decryption process:

 

K = (YA)k mod q   K is defined during the encryption process

K = (aXA mod q)k mod q   substitute using YA = aXA mod q
K = akXA mod q   by the rules of modular arithmetic

K = (C1)
XA mod q   substitute using C1 = ak mod q

 

Next, using K, we recover the plaintext as

C2 = KM mod q

(C2K
-1) mod q = KMK-1 mod q = M mod q = M

We can restate the Elgamal process as follows, using Figure 10.3.

1. Bob generates a random integer k.

2. Bob generates a one-time key K using Alice’s public-key components YA, q, 

and k.

3. Bob encrypts k using the public-key component a, yielding C1. C1 provides 

sufficient information for Alice to recover K.

4. Bob encrypts the plaintext message M using K.

5. Alice recovers K from C1 using her private key.

6. Alice uses K-1 to recover the plaintext message from C2.
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Thus, K functions as a one-time key, used to encrypt and decrypt the message.

For example, let us start with the prime field GF(19); that is, q = 19. It has 

primitive roots {2, 3, 10, 13, 14, 15}, as shown in Table 2.7. We choose a = 10.

Alice generates a key pair as follows:

1. Alice chooses XA = 5.

2. Then YA = aXA mod q = a5 mod 19 = 3 (see Table 2.7).

3. Alice’s private key is 5 and Alice’s public key is {q, a, YA} = {19, 10, 3}.

Suppose Bob wants to send the message with the value M = 17. Then:

Figure 10.3 The Elgamal Cryptosystem

Global Public Elements

q prime number

a a 6 q and a a primitive root of q

Key Generation by Alice

Select private XA XA 6 q - 1

Calculate YA YA = aXA mod q

Public key {q, a, YA}

Private key XA

Encryption by Bob with Alice’s Public Key

Plaintext: M 6 q

Select random integer k k 6 q

Calculate K K = (YA)k mod q

Calculate C1 C1 = ak mod q

Calculate C2 C2 = KM mod q

Ciphertext: (C1, C2)

Decryption by Alice with Alice’s Private Key

Ciphertext: (C1, C2)

Calculate K K = (C1)
XA mod q

Plaintext: M = (C2K
-1) mod q
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1. Bob chooses k = 6.

2. Then K = (YA)k mod q = 36 mod 19 = 729 mod 19 = 7.

3. So

C1 = ak mod q = a6 mod 19 = 11

C2 = KM mod q = 7 * 17 mod 19 = 119 mod 19 = 5

4. Bob sends the ciphertext (11, 5).

For decryption:

1. Alice calculates K = (C1)
XA mod q = 115 mod 19 = 161051 mod 19 = 7.

2. Then K-1 in GF(19) is 7-1 mod 19 = 11.

3. Finally, M = (C2K
-1) mod q = 5 * 11 mod 19 = 55 mod 19 = 17.

If a message must be broken up into blocks and sent as a sequence of  encrypted 

blocks, a unique value of k should be used for each block. If k is used for more than 

one block, knowledge of one block M1 of the message enables the user to compute 

other blocks as follows. Let

 C1,1 = ak mod q; C2,1 = KM1 mod q

 C1,2 = ak mod q; C2,2 = KM2 mod q

Then,

 
C2,1

C2,2

=
KM1 mod q

KM2 mod q
=

M1 mod q

M2 mod q
 

If M1 is known, then M2 is easily computed as

 M2 = (C2,1)
-1 C2,2 M1 mod q 

The security of Elgamal is based on the difficulty of computing discrete 

logarithms. To recover A’s private key, an adversary would have to compute 

XA = dloga,q(YA). Alternatively, to recover the one-time key K, an adversary 

would have to determine the random number k, and this would require computing 

the discrete logarithm k = dloga,q(C1). [STIN06] points out that these calculations 

are regarded as infeasible if p is at least 300 decimal digits and q - 1 has at least one 

“large” prime factor.

 10.3 ELLIPTIC CURVE ARITHMETIC

Most of the products and standards that use public-key cryptography for encryp-

tion and digital signatures use RSA. As we have seen, the key length for secure 

RSA use has increased over recent years, and this has put a heavier processing 

load on applications using RSA. This burden has ramifications, especially for elec-

tronic commerce sites that conduct large numbers of secure transactions. A com-

peting system challenges RSA: elliptic curve cryptography (ECC). ECC is showing 

up in standardization efforts, including the IEEE P1363 Standard for Public-Key 

Cryptography.
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The principal attraction of ECC, compared to RSA, is that it appears to offer 

equal security for a far smaller key size, thereby reducing processing overhead.

ECC is fundamentally more difficult to explain than either RSA or Diffie–

Hellman, and a full mathematical description is beyond the scope of this book. This 

section and the next give some background on elliptic curves and ECC. We begin 

with a brief review of the concept of abelian group. Next, we examine the concept 

of elliptic curves defined over the real numbers. This is followed by a look at el-

liptic curves defined over finite fields. Finally, we are able to examine elliptic curve 

ciphers.

The reader may wish to review the material on finite fields in Chapter 5 before 

proceeding.

Abelian Groups

Recall from Chapter 5 that an abelian group G, sometimes denoted by {G, # }, is a 

set of elements with a binary operation, denoted by # , that associates to each or-

dered pair (a, b) of elements in G an element (a # b) in G, such that the following 

axioms are obeyed:3

(A1) Closure: If a and b belong to G, then a # b is also in G.

(A2) Associative: a # (b # c) = (a # b) # c for all a, b, c in G.

(A3) Identity element: There is an element e in G such that a # e = e # a = a 

for all a in G.

(A4) Inverse element: For each a in G there is an element a′ in G such that 

a # a′ = a′ # a = e.

(A5) Commutative: a # b = b # a for all a, b in G.

A number of public-key ciphers are based on the use of an abelian group. 

For example, Diffie–Hellman key exchange involves multiplying pairs of nonzero 

integers modulo a prime number q. Keys are generated by exponentiation over 

the group, with exponentiation defined as repeated multiplication. For example, 

ak mod q = (a * a * c * a) mod q. To attack Diffie–Hellman, the attacker must 

k times

determine k given a and ak; this is the discrete logarithm problem.

For elliptic curve cryptography, an operation over elliptic curves, called addi-

tion, is used. Multiplication is defined by repeated addition. For example,

a * k = (a + a + c + a)

k times

where the addition is performed over an elliptic curve. Cryptanalysis involves deter-

mining k given a and (a * k).

3The operator # is generic and can refer to addition, multiplication, or some other mathematical  
operation.

v

v
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An elliptic curve is defined by an equation in two variables with coefficients. 

For cryptography, the variables and coefficients are restricted to elements in a finite 

field, which results in the definition of a finite abelian group. Before looking at this, 

we first look at elliptic curves in which the variables and coefficients are real num-

bers. This case is perhaps easier to visualize.

Elliptic Curves over Real Numbers

Elliptic curves are not ellipses. They are so named because they are described by 

cubic equations, similar to those used for calculating the circumference of an ellipse. 

In general, cubic equations for elliptic curves take the following form, known as a 

Weierstrass equation:

 y2 + axy + by = x3 + cx2 + dx + e 

where a, b, c, d, e are real numbers and x and y take on values in the real numbers.4 

For our purpose, it is sufficient to limit ourselves to equations of the form

  y2 = x3 + ax + b   (10.1)

Such equations are said to be cubic, or of degree 3, because the highest ex-

ponent they contain is a 3. Also included in the definition of an elliptic curve is a 

single element denoted O and called the point at infinity or the zero point, which we 

discuss subsequently. To plot such a curve, we need to compute

 y = 2x3 + ax + b 

For given values of a and b, the plot consists of positive and negative values of y for 

each value of x. Thus, each curve is symmetric about y = 0. Figure 10.4 shows two 

examples of elliptic curves. As you can see, the formula sometimes produces weird-

looking curves.

Now, consider the set of points E(a, b) consisting of all of the points (x, y) that 

satisfy Equation (10.1) together with the element O. Using a different value of the 

pair (a, b) results in a different set E(a, b). Using this terminology, the two curves in 

Figure 10.4 depict the sets E(-1, 0) and E(1, 1), respectively.

GEOMETRIC DESCRIPTION OF ADDITION It can be shown that a group can be defined 

based on the set E(a, b) for specific values of a and b in Equation (10.1), provided 

the following condition is met:

  4a3 + 27b2 ≠ 0   (10.2)

To define the group, we must define an operation, called addition and denoted by 

+ , for the set E(a, b), where a and b satisfy Equation (10.2). In geometric terms, the 

rules for addition can be stated as follows: If three points on an elliptic curve lie on a 

straight line, their sum is O. From this definition, we can define the rules of addition 

over an elliptic curve.

4Note that x and y are true variables, which take on values. This is in contrast to our discussion of polyno-
mial rings and fields in Chapter 5, where was treated as an indeterminate.
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1. O serves as the additive identity. Thus O = -O; for any point P on the elliptic 

curve, P + O = P. In what follows, we assume P ≠ O and Q ≠ O.

2. The negative of a point P is the point with the same x coordinate but the nega-

tive of the y coordinate; that is, if P = (x, y), then -P = (x, -y). Note that these 

two points can be joined by a vertical line. Note that P + (-P) = P - P = O.

3. To add two points P and Q with different x coordinates, draw a straight line 

between them and find the third point of intersection R. It is easily seen that 

there is a unique point R that is the point of intersection (unless the line is 

tangent to the curve at either P or Q, in which case we take R = P or R = Q, 

respectively). To form a group structure, we need to define addition on these 

three points: P + Q = -R. That is, we define P + Q to be the mirror image 

Figure 10.4 Example of Elliptic Curves
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(with respect to the x axis) of the third point of intersection. Figure 10.4 illus-

trates this construction.

4. The geometric interpretation of the preceding item also applies to two points, 

P and -P, with the same x coordinate. The points are joined by a vertical line, 

which can be viewed as also intersecting the curve at the infinity point. We 

therefore have P + (-P) = O, which is consistent with item (2).

5. To double a point Q, draw the tangent line and find the other point of intersec-

tion S. Then Q + Q = 2Q = -S.

With the preceding list of rules, it can be shown that the set E(a, b) is an abe-

lian group.

ALGEBRAIC DESCRIPTION OF ADDITION In this subsection, we present some results 

that enable calculation of additions over elliptic curves.5 For two distinct points, 

P = (xP, yP) and Q = (xQ, yQ), that are not negatives of each other, the slope of the 

line l that joins them is ∆ = (yQ - yP)/(xQ - xP). There is exactly one other point 

where l intersects the elliptic curve, and that is the negative of the sum of P and Q. 

After some algebraic manipulation, we can express the sum R = P + Q as

  xR = ∆2 - xP - xQ

  yR = -yP + ∆(xP - xR)  
(10.3)

We also need to be able to add a point to itself: P + P = 2P = R. When 

yP ≠ 0, the expressions are

 xR = ¢ 3xP
2 + a

2yP
≤2

- 2xP

  yR = ¢ 3xP
2 + a

2yP
≤(xP - xR) - yP   

(10.4)

Elliptic Curves over Zp

Elliptic curve cryptography makes use of elliptic curves in which the variables and 

coefficients are all restricted to elements of a finite field. Two families of elliptic 

curves are used in cryptographic applications: prime curves over Zp and binary 

curves over GF(2m). For a prime curve over Zp, we use a cubic equation in which 

the variables and coefficients all take on values in the set of integers from 0 through 

p - 1 and in which calculations are performed modulo p. For a binary curve de-

fined over GF(2m), the variables and coefficients all take on values in GF(2m) and 

in calculations are performed over GF(2m). [FERN99] points out that prime curves 

are best for software applications, because the extended bit-fiddling operations 

needed by binary curves are not required; and that binary curves are best for hard-

ware applications, where it takes remarkably few logic gates to create a powerful, 

fast cryptosystem. We examine these two families in this section and the next.

5For derivations of these results, see [KOBL94] or other mathematical treatments of elliptic curves.
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There is no obvious geometric interpretation of elliptic curve arithmetic over 

finite fields. The algebraic interpretation used for elliptic curve arithmetic over real 

numbers does readily carry over, and this is the approach we take.

For elliptic curves over Zp, as with real numbers, we limit ourselves to equa-

tions of the form of Equation (10.1), but in this case with coefficients and variables 

limited to Zp:

  y2 mod p = (x3 + ax + b) mod p   (10.5)

For example, Equation (10.5) is satisfied for a = 1, b = 1, x = 9, y = 7, p = 23:

 72 mod 23 = (93 + 9 + 1) mod 23

 49 mod 23 = 739 mod 23

 3 = 3

Now consider the set Ep(a, b) consisting of all pairs of integers (x, y) that sat-

isfy Equation (10.5), together with a point at infinity O. The coefficients a and b and 

the variables x and y are all elements of Zp.

For example, let p = 23 and consider the elliptic curve y2 = x3 + x + 1. In 

this case, a = b = 1. Note that this equation is the same as that of Figure 10.4b. The 

figure shows a continuous curve with all of the real points that satisfy the equation. 

For the set E23(1, 1), we are only interested in the nonnegative integers in the quad-

rant from (0, 0) through (p - 1, p - 1) that satisfy the equation mod p. Table 10.1 

lists the points (other than O) that are part of E23(1, 1). Figure 10.5 plots the points 

of E23(1, 1); note that the points, with one exception, are symmetric about y = 11.5.

It can be shown that a finite abelian group can be defined based on the set 

Ep(a, b) provided that (x3 + ax + b) mod p has no repeated factors. This is equiva-

lent to the condition

  (4a3 + 27b2) mod p ≠ 0 mod p   (10.6)

Note that Equation (10.6) has the same form as Equation (10.2).

The rules for addition over Ep(a, b), correspond to the algebraic technique de-

scribed for elliptic curves defined over real numbers. For all points P, Q∈ Ep(a, b):

(0, 1) (6, 4) (12, 19)

(0, 22) (6, 19) (13, 7)

(1, 7) (7, 11) (13, 16)

(1, 16) (7, 12) (17, 3)

(3, 10) (9, 7) (17, 20)

(3, 13) (9, 16) (18, 3)

(4, 0) (11, 3) (18, 20)

(5, 4) (11, 20) (19, 5)

(5, 19) (12, 4) (19, 18)

Table 10.1  Points (other than O) on the 

Elliptic Curve E23(1, 1)
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1. P + O = P.

2. If P = (xP, yP), then P + (xP, -yP) = O. The point (xP, -yP) is the nega-

tive of P, denoted as -P. For example, in E23(1, 1), for P = (13, 7), we have 

-P = (13, -7). But -7 mod 23 = 16. Therefore, -P = (13, 16), which is also 

in E23(1, 1).

3. If P = (xp, yp) and Q = (xQ, yQ) with P ≠ -Q, then R = P + Q = (xR, yR) 

is determined by the following rules:

 xR = (l2 - xP - xQ) mod p

 yR = (l(xP - xR) - yP) mod p

where

l = e ayQ - yP

xQ - xP
b  mod p if P ≠ Q

a3xP
2 + a

2yP

b  mod p if P = Q

Figure 10.5 The Elliptic Curve E23(1, 1)
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4. Multiplication is defined as repeated addition; for example, 4P =
P + P + P + P.

For example, let P = (3, 10) and Q = (9, 7) in E23(1, 1). Then

 l = a7 - 10

9 - 3
b  mod 23 = a -3

6
b  mod 23 = a -1

2
b  mod 23 = 11

 xR = (112 - 3 - 9) mod 23 = 109 mod 23 = 17

 yR = (11(3 - 17) - 10) mod 23 =  -164 mod 23 = 20

So P + Q = (17, 20). To find 2P,

 l = ¢ 3(32) + 1

2 * 10
≤ mod 23 = a 5

20
b  mod 23 = a1

4
b  mod 23 = 6 

The last step in the preceding equation involves taking the multiplicative in-

verse of 4 in Z23. This can be done using the extended Euclidean algorithm defined 

in Section 4.4. To confirm, note that (6 * 4) mod 23 = 24 mod 23 = 1.

 xR = (62 - 3 - 3) mod 23 = 30 mod 23 = 7

 yR = (6(3 - 7) - 10) mod 23 = (-34) mod 23 = 12

and 2P = (7, 12).

For determining the security of various elliptic curve ciphers, it is of some in-

terest to know the number of points in a finite abelian group defined over an elliptic 

curve. In the case of the finite group EP(a, b), the number of points N is bounded by

 p + 1 - 22p … N … p + 1 + 22p 

Note that the number of points in Ep(a, b) is approximately equal to the number of 

elements in Zp, namely p elements.

Elliptic Curves over GF(2m)

Recall from Chapter 5 that a finite field GF(2m) consists of 2m elements, together 

with addition and multiplication operations that can be defined over polynomials. 

For elliptic curves over GF(2m), we use a cubic equation in which the variables and 

coefficients all take on values in GF(2m) for some number m and in which calcula-

tions are performed using the rules of arithmetic in GF(2m).

(0, 1) (g5, g3) (g9, g13)

(1, g6) (g5, g11) (g10, g)

(1, g13) (g6, g8) (g10, g8)

(g3, g8) (g6, g14) (g12, 0)

(g3, g13) (g9, g10) (g12, g12)

Table 10.2  Points (other than O) on the 

Elliptic Curve E24(g4, 1)
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It turns out that the form of cubic equation appropriate for cryptographic 

 applications for elliptic curves is somewhat different for GF(2m) than for Zp. The 

form is

  y2 + xy = x3 + ax2 + b   (10.7)

where it is understood that the variables x and y and the coefficients a and b are ele-

ments of GF(2m) and that calculations are performed in GF(2m).

Now consider the set E2m(a, b) consisting of all pairs of integers (x, y) that sat-

isfy Equation (10.7), together with a point at infinity O.

For example, let us use the finite field GF(24) with the irreducible polynomial 

f(x) = x4 + x + 1. This yields a generator g that satisfies f(g) = 0 with a value of 

g4 = g + 1, or in binary, g = 0010. We can develop the powers of g as follows.

g0 = 0001 g4 = 0011 g8 = 0101 g12 = 1111

g1 = 0010 g5 = 0110 g9 = 1010 g13 = 1101

g2 = 0100 g6 = 1100 g10 = 0111 g14 = 1001

g3 = 1000 g7 = 1011 g11 = 1110 g15 = 0001

For example, g5 = (g4)(g) = (g + 1)(g) = g2 + g = 0110.

Now consider the elliptic curve y2 + xy = x3 + g4x2 + 1. In this case, a = g4 

and b = g0 = 1. One point that satisfies this equation is (g5, g3):

(g3)2 + (g5)(g3) = (g5)3 + (g4)(g5)2 + 1

g6 + g8 = g15 + g14 + 1

1100 + 0101 = 0001 + 1001 + 0001

1001 = 1001

Table 10.2 lists the points (other than O) that are part of E24(g4, 1). Figure 10.6 plots 

the points of E24(g4, 1).

It can be shown that a finite abelian group can be defined based on the set 

E2m(a, b), provided that b ≠ 0. The rules for addition can be stated as follows. For 

all points P, Q∈ E2m(a, b):

1. P + O = P.

2. If P = (xP, yP), then P + (xP, xP + yP) = O. The point (xP, xP + yP) is the 

negative of P, which is denoted as -P.

3. If P = (xP, yP) and Q = (xQ, yQ) with P ≠ -Q and P ≠ Q, then 

R = P + Q = (xR, yR) is determined by the following rules:

 xR = l2 + l + xP + xQ + a

 yR = l(xP + xR) + xR + yP

where

l =
yQ + yP

xQ + xP
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4. If P = (xP, yP) then R = 2P = (xR, yR) is determined by the following rules:

 xR = l2 + l + a

 yR = xP
2 + (l + 1)xR

where

l = xP +
yP

xP

 10.4 ELLIPTIC CURVE CRYPTOGRAPHY

The addition operation in ECC is the counterpart of modular multiplication in 

RSA, and multiple addition is the counterpart of modular exponentiation. To form 

a cryptographic system using elliptic curves, we need to find a “hard problem” cor-

responding to factoring the product of two primes or taking the discrete logarithm.

Consider the equation Q = kP where Q, P∈ EP(a, b) and k 6 p. It is rela-

tively easy to calculate Q given k and P, but it is hard to determine k given Q and P. 

This is called the discrete logarithm problem for elliptic curves.

We give an example taken from the Certicom Web site (www.certicom.

com). Consider the group E23(9,17). This is the group defined by the equation 

y2 mod 23 = (x3 + 9x + 17) mod 23. What is the discrete logarithm k of Q = (4, 5) 

to the base P = (16, 5)? The brute-force method is to compute multiples of P until 

Q is found. Thus,

 P = (16,5); 2P = (20, 20); 3P = (14, 14); 4P = (19, 20); 5P = (13, 10);

 6P = (7, 3); 7P = (8, 7); 8P = (12, 17); 9P = (4, 5)

Figure 10.6 The Elliptic Curve E24(g4, 1)
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Because 9P = (4, 5) = Q, the discrete logarithm Q = (4, 5) to the base 

P = (16, 5) is k = 9. In a real application, k would be so large as to make the brute-

force approach infeasible.

In the remainder of this section, we show two approaches to ECC that give the 

flavor of this technique.

Analog of Diffie–Hellman Key Exchange

Key exchange using elliptic curves can be done in the following manner. First pick 

a large integer q, which is either a prime number p or an integer of the form 2m, 

and elliptic curve parameters a and b for Equation (10.5) or Equation (10.7). This 

defines the elliptic group of points Eq(a, b). Next, pick a base point G = (x1, y1) in 

Ep(a, b) whose order is a very large value n. The order n of a point G on an elliptic 

curve is the smallest positive integer n such that nG = 0 and G are parameters of 

the cryptosystem known to all participants.

A key exchange between users A and B can be accomplished as follows 

(Figure 10.7).

1. A selects an integer nA less than n. This is A’s private key. A then generates a 

public key PA = nA * G; the public key is a point in Eq(a, b).

2. B similarly selects a private key nB and computes a public key PB.

3. A generates the secret key k = nA * PB. B generates the secret key 

k = nB * PA.

The two calculations in step 3 produce the same result because

 nA * PB = nA * (nB * G) = nB * (nA * G) = nB * PA 

To break this scheme, an attacker would need to be able to compute k given G 

and kG, which is assumed to be hard.

As an example,6 take p = 211; Ep(0, -4), which is equivalent to the curve 

y2 = x3 - 4; and G = (2, 2). One can calculate that 240G = O. A’s private key 

is  nA = 121, so A’s public key is PA = 121(2, 2) = (115, 48). B’s private key is 

nB = 203, so B’s public key is 203(2, 3) = (130, 203). The shared secret key is 

121(130, 203) = 203(115, 48) = (161, 69).

Note that the secret key is a pair of numbers. If this key is to be used as a ses-

sion key for conventional encryption, then a single number must be generated. We 

could simply use the x coordinates or some simple function of the x coordinate.

Elliptic Curve Encryption/Decryption

Several approaches to encryption/decryption using elliptic curves have been ana-

lyzed in the literature. In this subsection, we look at perhaps the simplest. The 

first task in this system is to encode the plaintext message m to be sent as an (x, y) 

point Pm.

6Provided by Ed Schaefer of Santa Clara University.
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It is the point Pm that will be encrypted as a ciphertext and subsequently decrypted. 

Note that we cannot simply encode the message as the x or y coordinate of a point, 

because not all such coordinates are in Eq(a, b); for example, see Table 10.1. Again, 

there are several approaches to this encoding, which we will not address here, but 

suffice it to say that there are relatively straightforward techniques that can be 

used.

As with the key exchange system, an encryption/decryption system requires a 

point G and an elliptic group Eq(a, b) as parameters. Each user A selects a private 

key nA and generates a public key PA = nA * G.

To encrypt and send a message Pm to B, A chooses a random positive integer 

k and produces the ciphertext Cm consisting of the pair of points:

 Cm = {kG, Pm + kPB} 

Note that A has used B’s public key PB. To decrypt the ciphertext, B multiplies the 

first point in the pair by B’s private key and subtracts the result from the second 

point:

 Pm + kPB - nB(kG) = Pm + k(nBG) - nB(kG) = Pm 

Figure 10.7 ECC Diffie–Hellman Key Exchange

 Global Public Elements

Eq(a, b) elliptic curve with parameters a, b, and q, where q is a  
 prime or an integer of the form 2m

G point on elliptic curve whose order is large value n

User A Key Generation

Select private nA nA 6 n

Calculate public PA PA = nA * G

User B Key Generation

Select private nB nB 6 n

Calculate public PB PB = nB * G

Calculation of Secret Key by User A

K = nA * PB

Calculation of Secret Key by User B

K = nB * PA
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A has masked the message Pm by adding kPB to it. Nobody but A knows 

the value of k, so even though Pb is a public key, nobody can remove the mask 

kPB. However, A also includes a “clue,” which is enough to remove the mask if 

one knows the private key nB. For an attacker to recover the message, the attacker 

would have to compute k given G and kG, which is assumed to be hard.

Let us consider a simple example. The global public elements are q = 257; 

Eq(a, b) = E257(0, -4), which is equivalent to the curve y2 = x3 - 4; and G =  

(2, 2). Bob’s private key is nB = 101, and his public key is  PB = nBG = 101(2, 2) =  

(197, 167). Alice wishes to send a message to Bob that is encoded in the elliptic 

point Pm = (112, 26). Alice chooses random integer k = 41 and computes kG =  

41(2, 2) = (136, 128), kPB = 41(197, 167) = (68, 84) and Pm + kPB = (112, 26) 

+  (68, 84) = (246, 174). Alice sends the ciphertext Cm = (C1, C2) = {(136, 128),

(246, 174)} to Bob. Bob receives the ciphertext and computes C2 - nBC1 =
(246, 174) - 101(136, 128) = (246, 174) - (68, 84) = (112, 26).

Security of Elliptic Curve Cryptography

The security of ECC depends on how difficult it is to determine k given kP and P. 

This is referred to as the elliptic curve logarithm problem. The fastest known tech-

nique for taking the elliptic curve logarithm is known as the Pollard rho method. 

Table 10.3, from NIST SP 800-57 (Recommendation for Key Management—Part 1: 
General, September 2015), compares various algorithms by showing comparable 

key sizes in terms of computational effort for cryptanalysis. As can be seen, a con-

siderably smaller key size can be used for ECC compared to RSA.

Based on this analysis, SP 800-57 recommends that at least through 2030, ac-

ceptable key lengths are from 3072 to 14,360 bits for RSA and 256 to 512 bits for 

ECC. Similarly, the European Union Agency for Network and Information Security 

(ENISA) recommends in their 2014 report (Algorithms, Key Size and Parameters 
report—2014, November 2014) minimum key lengths for future system of 3072 bits 

and 256 bits for RSA and ECC, respectively.

Symmetric Key 
Algorithms

Diffie–Hellman, Digital 
Signature Algorithm

RSA  
(size of n in bits)

ECC  
(modulus size in bits)

80
L = 1024

N = 160
1024 160–223

112
L = 2048

N = 224
2048 224–255

128
L = 3072

N = 256
3072 256–383

192
L = 7680

N = 384
7680 384–511

256
L = 15,360

N = 512
15,360 512+

Note: L = size of public key, N = size of private key.

Table 10.3 Comparable Key Sizes in Terms of Computational  

Effort for Cryptanalysis (NIST SP-800-57)
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Analysis indicates that for equal key lengths, the computational effort re-

quired for ECC and RSA is comparable [JURI97]. Thus, there is a computational 

advantage to using ECC with a shorter key length than a comparably secure RSA.

 10.5 PSEUDORANDOM NUMBER GENERATION BASED 
ON AN ASYMMETRIC CIPHER

We noted in Chapter 8 that because a symmetric block cipher produces an appar-

ently random output, it can serve as the basis of a pseudorandom number generator 

(PRNG). Similarly, an asymmetric encryption algorithm produces apparently ran-

dom output and can be used to build a PRNG. Because asymmetric algorithms are 

typically much slower than symmetric algorithms, asymmetric algorithms are not 

used to generate open-ended PRNG bit streams. Rather, the asymmetric approach 

is useful for creating a pseudorandom function (PRF) for generating a short pseu-

dorandom bit sequence. 

In this section, we examine two PRNG designs based on pseudorandom 

functions.

PRNG Based on RSA

For a sufficient key length, the RSA algorithm is considered secure and is a good 

candidate to form the basis of a PRNG. Such a PRNG, known as the Micali–Schnorr 

PRNG [MICA91], is recommended in the ANSI standard X9.82 (Random Number 
Generation) and in the ISO standard 18031 (Random Bit Generation).

The PRNG is illustrated in Figure 10.8. As can be seen, this PRNG has much 

the same structure as the output feedback (OFB) mode used as a PRNG (see Figure 

8.4b and the portion of Figure 7.6a enclosed with a dashed box). In this case, the 

encryption algorithm is RSA rather than a symmetric block cipher. Also, a portion 

of the output is fed back to the next iteration of the encryption algorithm and the 

remainder of the output is used as pseudorandom bits. The motivation for this sepa-

ration of the output into two distinct parts is so that the pseudorandom bits from 

one stage do not provide input to the next stage. This separation should contribute 

to forward unpredictability.

Figure 10.8 Micali–Schnorr Pseudorandom Bit Generator
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We can define the PRNG as follows.

Setup Select p, q primes; n = pq; f(n) = (p - 1)(q - 1). Select e such 

that gcd(e, f(n)) = 1. These are the standard RSA setup selections  

(see Figure 9.5). In addition, let N = [log2n] + 1 (the bitlength of n). 

Select r, k such that r + k = N.

Seed Select a random seed x0 of bitlength r.

Generate Generate a pseudorandom sequence of length k * m using the loop 

for i from 1 to m do 

 yi = xi- 1
e  mod n

 xi = r most significant bits of yi
 zi = k least significant bits of yi

Output The output sequence is z1 }z2 } c }zm.

The parameters n, r, e, and k are selected to satisfy the following six 

requirements.

1. n = pq n is chosen as the product of two primes to 

have the cryptographic strength required of 

RSA.

2. 1 6 e 6 f(n); gcd (e, f(n)) = 1 Ensures that the mapping s S se mod n is 

1 to 1.

3. re Ú 2N Ensures that the exponentiation requires a 

full modular reduction.

4. r Ú 2 * strength Protects against a cryptographic attacks.

5. k, r are multiples of 8 An implementation convenience.

6. k Ú 8; r + k = N All bits are used.

The variable strength in requirement 4 is defined in NIST SP 800-90 as fol-

lows: A number associated with the amount of work (that is, the number of opera-

tions) required to break a cryptographic algorithm or system; a security strength 

is specified in bits and is a specific value from the set (112, 128, 192, 256) for this 

Recommendation. The amount of work needed is 2strength.

There is clearly a tradeoff between r and k. Because RSA is computation-

ally intensive compared to a block cipher, we would like to generate as many 

pseudorandom bits per iteration as possible and therefore would like a large 

value of k. However, for cryptographic strength, we would like r to be as large as 

possible.

For example, if e = 3 and N = 1024, then we have the inequality 3r 7 1024, 

yielding a minimum required size for r of 683 bits. For r set to that size, k = 341 

bits are generated for each exponentiation (each RSA encryption). In this case, 

each exponentiation requires only one modular squaring of a 683-bit number and 

one modular multiplication. That is, we need only calculate (xi * (xi
2 mod n)) 

mod n.
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PRNG Based on Elliptic Curve Cryptography

In this subsection, we briefly summarize a technique developed by the U.S. National 

Security Agency (NSA) known as dual elliptic curve PRNG (DEC PRNG). This 

technique is recommended in NIST SP 800-90, the ANSI standard X9.82, and the 

ISO standard 18031. There has been some controversy regarding both the security 

and efficiency of this algorithm compared to other alternatives (e.g., see [SCHO06], 

[BROW07]).

[SCHO06] summarizes the algorithm as follows: Let P and Q be two known 

points on a given elliptic curve. The seed of the DEC PRNG is a random integer 

s0 ∈ {0, 1, c , #E(GF(p)) - 1}, where # E(GF(p)) denotes the number of points 

on the curve. Let x denote a function that gives the x-coordinate of a point of the 

curve. Let lsbi(s) denote the i least significant bits of an integer s. The DEC PRNG 

transforms the seed into the pseudorandom sequence of length 240k, k 7 0, as 

follows.

for i = 1 to k do
Set si d  x(Si-1 P)
Set ri d  lsb240 (x(si Q))

end for
Return r1,...,rk

Given the security concerns expressed for this PRNG, the only motivation for 

its use would be that it is used in a system that already implements ECC but does 

not implement any other symmetric, asymmetric, or hash cryptographic algorithm 

that could be used to build a PRNG.

 10.6 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms 

abelian group

binary curve

cubic equation

Diffie–Hellman key exchange

discrete logarithm

elliptic curve

elliptic curve arithmetic

elliptic curve cryptography

finite field

man-in-the-middle attack

Micali–Schnorr

prime curve

primitive root

zero point

Review Questions 

 10.1 Briefly explain Diffie–Hellman key exchange.

 10.2 What is an elliptic curve?

 10.3 What is the zero point of an elliptic curve?

 10.4 What is the sum of three points on an elliptic curve that lie on a straight line?
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Problems 

 10.1 Alice and Bob use the Diffie–Hellman key exchange technique with a common prime 
q = 1 5 7  and a primitive root a = 5.
a. If Alice has a private key XA = 15, find her public key YA.
b. If Bob has a private key XB = 27, find his public key YB.
c. What is the shared secret key between Alice and Bob?

 10.2 Alice and Bob use the Diffie-Hellman key exchange technique with a common prime 
q = 2 3  and a primitive root a = 5 .
a. If Bob has a public key YB = 1 0 , what is Bob’s private key YB?
b. If Alice has a public key YA = 8 , what is the shared key K  with Bob?
c. Show that 5 is a primitive root of 23.

 10.3 In the Diffie–Hellman protocol, each participant selects a secret number x and sends 
the other participant ax mod q for some public number a. What would happen if the 
participants sent each other xa for some public number a instead? Give at least one 
method Alice and Bob could use to agree on a key. Can Eve break your system with-
out finding the secret numbers? Can Eve find the secret numbers?

 10.4 This problem illustrates the point that the Diffie–Hellman protocol is not secure 
without the step where you take the modulus; i.e. the “Indiscrete Log Problem” is 
not a hard problem! You are Eve and have captured Alice and Bob and imprisoned 
them. You overhear the following dialog.

Bob: Oh, let’s not bother with the prime in the Diffie–Hellman protocol, it will 

make things easier.

Alice: Okay, but we still need a base a to raise things to. How about a = 3?

Bob: All right, then my result is 27.

Alice: And mine is 243.

What is Bob’s private key XB and Alice’s private key XA? What is their secret com-
bined key? (Don’t forget to show your work.)

 10.5 Section 10.1 describes a man-in-the-middle attack on the Diffie–Hellman key 
 exchange protocol in which the adversary generates two public–private key pairs for 
the attack. Could the same attack be accomplished with one pair? Explain.

 10.6 Suppose Alice and Bob use an Elgamal scheme with a common prime q = 1 5 7  and 
a primitive root a = 5 .
a. If Bob has public key YB = 1 0  and Alice chose the random integer k = 3 , what 

is the ciphertext of M = 9 ?
b. If Alice now chooses a different value of k so that the encoding of M = 9  is 

C = (2 5 , C2), what is the integer C2?

 10.7 Rule (5) for doing arithmetic in elliptic curves over real numbers states that to double 
a point Q2, draw the tangent line and find the other point of intersection S. Then 
Q + Q = 2Q = -S. If the tangent line is not vertical, there will be exactly one point 
of intersection. However, suppose the tangent line is vertical? In that case, what is the 
value 2Q? What is the value 3Q?

 10.8 Demonstrate that the two elliptic curves of Figure 10.4 each satisfy the conditions for 
a group over the real numbers.

 10.9 Is (5, 12) a point on the elliptic curve y2 = x 3 + 4 x - 1  over real numbers?

 10.10 On the elliptic curve over the real numbers y2 = x3 -
17

12
 x + 1, Let P = (0,1) and 

Q = (1.5,1.5). Find P + Q and 2P.

 10.11 Does the elliptic curve equation y2 = x 3 + x + 2  define a group over Z7?
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 10.12 Consider the elliptic curve E7(2,1); that is, the curve is defined by y2 = x 3 + 2 x + 1  
with a modulus of p = 7 . Determine all of the points in E7(2, 1). Hint: Start by calcu-
lating the right-hand side of the equation for all values of x.

 10.13 What are the negatives of the following elliptic curve points over Z7? P = (3, 5);
Q = (2, 5); R = (5, 0).

 10.14 For E11(1, 7), consider the point G = (3, 2). Compute the multiple of G from 2G 
through 13G.

 10.15 This problem performs elliptic curve encryption/decryption using the scheme out-
lined in Section 10.4. The cryptosystem parameters are E11(1, 7) and G = (3, 2). B’s 
private key is nB = 7.
a. Find B’s public key PB.
b. A wishes to encrypt the message Pm = (10, 7) and chooses the random value 

k = 5. Determine the ciphertext Cm.
c. Show the calculation by which B recovers Pm from Cm.

 10.16 The following is a first attempt at an elliptic curve signature scheme. We have a global 
elliptic curve, prime p, and “generator” G. Alice picks a private signing key XA and 
forms the public verifying key YA = XAG. To sign a message M:

 ■ Alice picks a value k.
 ■ Alice sends Bob M, k, and the signature S = M - kXAG.
 ■ Bob verifies that M = S + kYA.

a. Show that this scheme works. That is, show that the verification process produces 
an equality if the signature is valid.

b. Show that the scheme is unacceptable by describing a simple technique for forging 
a user’s signature on an arbitrary message.

 10.17 Here is an improved version of the scheme given in the previous problem. As before, 
we have a global elliptic curve, prime p, and “generator” G. Alice picks a private 
signing key XA and forms the public verifying key YA = XAG. To sign a message M:

 ■ Bob picks a value k.
 ■ Bob sends Alice C1 = kG.
 ■ Alice sends Bob M and the signature S = M - XAC1.
 ■ Bob verifies that M = S + kYA.

a. Show that this scheme works. That is, show that the verification process produces 
an equality if the signature is valid.

b. Show that forging a message in this scheme is as hard as breaking (Elgamal) 
 elliptic curve cryptography. (Or find an easier way to forge a message?)

c. This scheme has an extra “pass” compared to other cryptosystems and signature 
schemes we have looked at. What are some drawbacks to this?
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A hash function H accepts a variable-length block of data M as input and produces 

a fixed-size hash value h = H(M). A “good” hash function has the property that the 

results of applying the function to a large set of inputs will produce outputs that are 

evenly distributed and apparently random. In general terms, the principal object of 

a hash function is data integrity. A change to any bit or bits in M results, with high 

probability, in a change to the hash value.

The kind of hash function needed for security applications is referred to as a 

cryptographic hash function. A cryptographic hash function is an algorithm for which 

it is computationally infeasible (because no attack is significantly more efficient than 

brute force) to find either (a) a data object that maps to a pre-specified hash result 

(the one-way property) or (b) two data objects that map to the same hash result (the 

collision-free property). Because of these characteristics, hash functions are often used 

to determine whether or not data has changed.

Figure 11.1 depicts the general operation of a cryptographic hash function. 

Typically, the input is padded out to an integer multiple of some fixed length 

(e.g., 1024 bits), and the padding includes the value of the length of the original mes-

sage in bits. The length field is a security measure to increase the difficulty for an 

 attacker to produce an alternative message with the same hash value, as explained 

subsequently.

This chapter begins with a discussion of the wide variety of applications for 

cryptographic hash functions. Next, we look at the security requirements for such 

functions. Then we look at the use of cipher block chaining to implement a crypto-

graphic hash function. The remainder of the chapter is devoted to the most important 

and widely used family of cryptographic hash functions, the Secure Hash Algorithm 

(SHA) family.

Appendix N describes MD5, a well-known cryptographic hash function with 

similarities to SHA-1.

LEARNING OBJECTIVES

After studying this chapter, you should be able to:

 ◆ Summarize the applications of cryptographic hash functions.

 ◆ Explain why a hash function used for message authentication needs to be 

secured.

 ◆ Understand the differences among preimage resistant, second preimage 

resistant, and collision resistant properties.

 ◆ Present an overview of the basic structure of cryptographic hash functions.

 ◆ Describe how cipher block chaining can be used to construct a hash function.

 ◆ Understand the operation of SHA-512.

 ◆ Understand the birthday paradox and present an overview of the birthday 

attack.
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 11.1 APPLICATIONS OF CRYPTOGRAPHIC HASH FUNCTIONS

Perhaps the most versatile cryptographic algorithm is the cryptographic hash func-

tion. It is used in a wide variety of security applications and Internet protocols. 

To better understand some of the requirements and security implications for cryp-

tographic hash functions, it is useful to look at the range of applications in which it 

is employed.

Message Authentication

Message authentication is a mechanism or service used to verify the integrity of 

a message. Message authentication assures that data received are exactly as sent 

(i.e., there is no modification, insertion, deletion, or replay). In many cases, there is 

a requirement that the authentication mechanism assures that purported identity of 

the sender is valid. When a hash function is used to provide message authentication, 

the hash function value is often referred to as a message digest.1

The essence of the use of a hash function for message integrity is as follows. 

The sender computes a hash value as a function of the bits in the message and trans-

mits both the hash value and the message. The receiver performs the same hash cal-

culation on the message bits and compares this value with the incoming hash value. 

Figure 11.1 Cryptographic Hash Function; h = H(M)

Message or data block M (variable length) P, L

P, L = padding plus length field

L bits

Hash value h
(fixed length)

H

1The topic of this section is invariably referred to as message authentication. However, the concepts and 
techniques apply equally to data at rest. For example, authentication techniques can be applied to a file 
in storage to assure that the file is not tampered with.
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If there is a mismatch, the receiver knows that the message (or possibly the hash 

value) has been altered (Figure 11.2a).

The hash value must be transmitted in a secure fashion. That is, the hash value 

must be protected so that if an adversary alters or replaces the message, it is not 

feasible for adversary to also alter the hash value to fool the receiver. This type 

of attack is shown in Figure 11.2b. In this example, Alice transmits a data block 

and  attaches a hash value. Darth intercepts the message, alters or replaces the data 

block, and calculates and attaches a new hash value. Bob receives the altered data 

with the new hash value and does not detect the change. To prevent this attack, the 

hash value generated by Alice must be protected.

Figure 11.2 Attack Against Hash Function

(b) Man-in-the-middle attack

Alice

Darth

Bob

BobAlice

COMPARE

data

data
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H

data

data

data
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H

(a) Use of hash function to check data integrity
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H
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Figure 11.3 illustrates a variety of ways in which a hash code can be used to 

provide message authentication, as follows.

a. The message plus concatenated hash code is encrypted using symmetric 

encryption. Because only A and B share the secret key, the message must have 

come from A and has not been altered. The hash code provides the structure or 

redundancy required to achieve authentication. Because encryption is applied 

to the entire message plus hash code, confidentiality is also provided.

b. Only the hash code is encrypted, using symmetric encryption. This reduces the 

processing burden for those applications that do not require confidentiality.

Figure 11.3 Simplified Examples of the Use of a Hash Function for Message Authentication
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c. It is possible to use a hash function but no encryption for message authentica-

tion. The technique assumes that the two communicating parties share a common 

secret value S. A computes the hash value over the concatenation of M and S and 

appends the resulting hash value to M. Because B possesses S, it can recompute 

the hash value to verify. Because the secret value itself is not sent, an opponent 

cannot modify an intercepted message and cannot generate a false message.

d. Confidentiality can be added to the approach of method (c) by encrypting the 

entire message plus the hash code.

When confidentiality is not required, method (b) has an advantage over 

methods (a) and (d), which encrypts the entire message, in that less computa-

tion is required. Nevertheless, there has been growing interest in techniques that 

avoid encryption (Figure 11.3c). Several reasons for this interest are pointed out 

in [TSUD92].

 ■ Encryption software is relatively slow. Even though the amount of data to be 

encrypted per message is small, there may be a steady stream of messages into 

and out of a system.

 ■ Encryption hardware costs are not negligible. Low-cost chip implementations 

of DES are available, but the cost adds up if all nodes in a network must have 

this capability.

 ■ Encryption hardware is optimized toward large data sizes. For small blocks of 

data, a high proportion of the time is spent in initialization/invocation overhead.

 ■ Encryption algorithms may be covered by patents, and there is a cost associ-

ated with licensing their use.

More commonly, message authentication is achieved using a message 
 authentication code (MAC), also known as a keyed hash function. Typically, MACs 

are used between two parties that share a secret key to authenticate information 

 exchanged between those parties. A MAC function takes as input a secret key and 

a data block and produces a hash value, referred to as the MAC, which is associ-

ated with the protected message. If the integrity of the message needs to be checked, 

the MAC function can be applied to the message and the result compared with the 

 associated MAC value. An attacker who alters the message will be unable to alter the 

associated MAC value without knowledge of the secret key. Note that the verifying 

party also knows who the sending party is because no one else knows the secret key.

Note that the combination of hashing and encryption results in an overall 

function that is, in fact, a MAC (Figure 11.3b). That is, E(K, H(M)) is a function of 

a variable-length message M and a secret key K, and it produces a fixed-size output 

that is secure against an opponent who does not know the secret key. In practice, 

specific MAC algorithms are designed that are generally more efficient than an 

 encryption algorithm.

We discuss MACs in Chapter 12.

Digital Signatures

Another important application, which is similar to the message authentication 

 application, is the digital signature. The operation of the digital signature is similar 

to that of the MAC. In the case of the digital signature, the hash value of a message 
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is encrypted with a user’s private key. Anyone who knows the user’s public key can 

verify the integrity of the message that is associated with the digital signature. In 

this case, an attacker who wishes to alter the message would need to know the user’s 

private key. As we shall see in Chapter 14, the implications of digital signatures go 

beyond just message authentication.

Figure 11.4 illustrates, in a simplified fashion, how a hash code is used to 

 provide a digital signature.

a. The hash code is encrypted, using public-key encryption with the sender’s 

 private key. As with Figure 11.3b, this provides authentication. It also provides 

a digital signature, because only the sender could have produced the encrypted 

hash code. In fact, this is the essence of the digital signature technique.

b. If confidentiality as well as a digital signature is desired, then the message 

plus the private-key-encrypted hash code can be encrypted using a symmetric 

 secret key. This is a common technique.

Other Applications

Hash functions are commonly used to create a one-way password file. Chapter 21 

explains a scheme in which a hash of a password is stored by an operating system 

rather than the password itself. Thus, the actual password is not retrievable by a 

hacker who gains access to the password file. In simple terms, when a user enters a 

password, the hash of that password is compared to the stored hash value for veri-

fication. This approach to password protection is used by most operating systems.

Hash functions can be used for intrusion detection and virus detection. Store 

H(F) for each file on a system and secure the hash values (e.g., on a CD-R that is 

Figure 11.4 Simplified Examples of Digital Signatures
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kept secure). One can later determine if a file has been modified by recomputing 

H(F). An intruder would need to change F without changing H(F).

A cryptographic hash function can be used to construct a pseudorandom 
 function (PRF) or a pseudorandom number generator (PRNG). A common 

 application for a hash-based PRF is for the generation of symmetric keys. We  discuss 

this  application in Chapter 12.

 11.2 TWO SIMPLE HASH FUNCTIONS

To get some feel for the security considerations involved in cryptographic hash 

functions, we present two simple, insecure hash functions in this section. All hash 

functions operate using the following general principles. The input (message, file, 

etc.) is viewed as a sequence of n -bit blocks. The input is processed one block at a 

time in an iterative fashion to produce an n-bit hash function.

One of the simplest hash functions is the bit-by-bit exclusive-OR (XOR) of 

every block. This can be expressed as

 Ci = bi1 ⊕ bi2 ⊕ g ⊕ bim 

where

Ci = ith bit of the hash code, 1 … i … n

m = number of n@bit blocks in the input

bij = ith bit in jth block

⊕ = XOR operation

This operation produces a simple parity bit for each bit position and is known 

as a longitudinal redundancy check. It is reasonably effective for random data as a 

data integrity check. Each n-bit hash value is equally likely. Thus, the probability 

that a data error will result in an unchanged hash value is 2-n. With more predict-

ably formatted data, the function is less effective. For example, in most normal text 

files, the high-order bit of each octet is always zero. So if a 128-bit hash value is 

used, instead of an effectiveness of 2-128, the hash function on this type of data has 

an effectiveness of 2-112.

A simple way to improve matters is to perform a one-bit circular shift, or 

 rotation, on the hash value after each block is processed. The procedure can be 

summarized as follows.

1. Initially set the n-bit hash value to zero.

2. Process each successive n-bit block of data as follows:

a. Rotate the current hash value to the left by one bit.

b. XOR the block into the hash value.

This has the effect of “randomizing” the input more completely and overcoming 

any regularities that appear in the input. Figure 11.5 illustrates these two types of 

hash functions for 16-bit hash values.
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Although the second procedure provides a good measure of data integrity, it is 

virtually useless for data security when an encrypted hash code is used with a plain-

text message, as in Figures 11.3b and 11.4a. Given a message, it is an easy  matter 

to produce a new message that yields that hash code: Simply prepare the  desired 

alternate message and then append an n-bit block that forces the new  message plus 

block to yield the desired hash code.

Although a simple XOR or rotated XOR (RXOR) is insufficient if only the 

hash code is encrypted, you may still feel that such a simple function could be 

 useful when the message together with the hash code is encrypted (Figure 11.3a). 

But you must be careful. A technique originally proposed by the National 

Bureau of Standards used the simple XOR applied to 64-bit blocks of the mes-

sage and then an encryption of the entire message that used the cipher block 

chaining (CBC) mode. We can define the scheme as follows: Given a message M 

consisting of a sequence of 64-bit blocks X1, X2, c , XN, define the hash code 

Figure 11.5 Two Simple Hash Functions

XOR of every 16-bit blockXOR with 1-bit r otation to the right

16 bits
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h = H(M) as the block-by-block XOR of all blocks and append the hash code as 

the final block:

 h = XN + 1 = X1 ⊕ X2 ⊕ c ⊕ XN 

Next, encrypt the entire message plus hash code using CBC mode to produce the 

encrypted message Y1, Y2, c , YN + 1. [JUEN85] points out several ways in which 

the ciphertext of this message can be manipulated in such a way that it is not detect-

able by the hash code. For example, by the definition of CBC (Figure 6.4), we have

 X1 = IV⊕D(K,Y1)

 Xi = Yi- 1⊕D(K, Yi)

 XN + 1 = YN⊕D(K, YN + 1)

But XN + 1 is the hash code:

 XN + 1 = X1⊕ X2⊕ c⊕ XN

 = [IV⊕D(K, Y1)]⊕ [Y1⊕D(K, Y2)]⊕ c⊕ [YN - 1⊕D(K, YN)]  

Because the terms in the preceding equation can be XORed in any order, it follows 

that the hash code would not change if the ciphertext blocks were permuted.

 11.3 REQUIREMENTS AND SECURITY

Before proceeding, we need to define two terms. For a hash value h = H(x), we 

say that x is the preimage of h. That is, x is a data block whose hash value, using the 

function H, is h. Because H is a many-to-one mapping, for any given hash value h, 

there will in general be multiple preimages. A collision occurs if we have x ≠ y and 

H(x) = H(y). Because we are using hash functions for data integrity, collisions are 

clearly undesirable.

Let us consider how many preimages are there for a given hash value, which is 

a measure of the number of potential collisions for a given hash value. Suppose the 

length of the hash code is n bits, and the function H takes as input messages or data 

blocks of length b bits with b 7 n. Then, the total number of possible messages is 

2b and the total number of possible hash values is 2n. On average, each hash value 

corresponds to 2b - n preimages. If H tends to uniformly distribute hash values then, 

in fact, each hash value will have close to 2b - n preimages. If we now allow inputs 

of arbitrary length, not just a fixed length of some number of bits, then the number 

of preimages per hash value is arbitrarily large. However, the security risks in the 

use of a hash function are not as severe as they might appear from this analysis. 

To  understand better the security implications of cryptographic hash functions, we 

need precisely define their security requirements.

Security Requirements for Cryptographic Hash Functions

Table 11.1 lists the generally accepted requirements for a cryptographic hash func-

tion. The first three properties are requirements for the practical application of a 

hash function.
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The fourth property, preimage resistant, is the one-way property: it is easy 

to generate a code given a message, but virtually impossible to generate a message 

given a code. This property is important if the authentication technique involves the 

use of a secret value (Figure 11.3c). The secret value itself is not sent. However, if 

the hash function is not one way, an attacker can easily discover the secret value: 

If the attacker can observe or intercept a transmission, the attacker obtains the 

message M, and the hash code h = H(S }M). The attacker then inverts the hash 

function to obtain S }M = H-1(MDM). Because the attacker now has both M and 

SAB }M, it is a trivial matter to recover SAB.

The fifth property, second preimage resistant, guarantees that it is infeasible to 

find an alternative message with the same hash value as a given message. This pre-

vents forgery when an encrypted hash code is used (Figures 11.3b and 11.4a). If this 

property were not true, an attacker would be capable of the following  sequence: 

First, observe or intercept a message plus its encrypted hash code; second, generate 

an unencrypted hash code from the message; third, generate an alternate message 

with the same hash code.

A hash function that satisfies the first five properties in Table 11.1 is referred 

to as a weak hash function. If the sixth property, collision resistant, is also satis-

fied, then it is referred to as a strong hash function. A strong hash function protects 

against an attack in which one party generates a message for another party to sign. 

For example, suppose Bob writes an IOU message, sends it to Alice, and she signs 

it. Bob finds two messages with the same hash, one of which requires Alice to pay a 

small amount and one that requires a large payment. Alice signs the first message, 

and Bob is then able to claim that the second message is authentic.

Figure 11.6 shows the relationships among the three resistant properties. 

A  function that is collision resistant is also second preimage resistant, but the 

 reverse is not necessarily true. A function can be collision resistant but not preim-

age resistant and vice versa. A function can be preimage resistant but not second 

preimage resistant and vice versa. See [MENE97] for a discussion.

Requirement Description

Variable input size H can be applied to a block of data of any size.

Fixed output size H produces a fixed-length output.

Efficiency H(x) is relatively easy to compute for any 

given x, making both hardware and software 

implementations practical.

Preimage resistant (one-way property) For any given hash value h, it is computationally 

infeasible to find y such that H(y) = h.

Second preimage resistant (weak collision 

 resistant)

For any given block x, it is computationally 

 infeasible to find y ≠ x with H(y) = H(x).

Collision resistant (strong collision resistant) It is computationally infeasible to find any pair 

(x, y) with x ≠ y, such that H(x) = H(y).

Pseudorandomness Output of H meets standard tests for 

 pseudorandomness.

Table 11.1 Requirements for a Cryptographic Hash Function H
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Table 11.2 shows the resistant properties required for various hash function 

applications.

The final requirement in Table 11.1, pseudorandomness, has not tradition-

ally been listed as a requirement of cryptographic hash functions but is more or 

less  implied. [JOHN05] points out that cryptographic hash functions are commonly 

used for key derivation and pseudorandom number generation, and that in message 

 integrity applications, the three resistant properties depend on the output of the 

hash function appearing to be random. Thus, it makes sense to verify that in fact a 

given hash function produces pseudorandom output.

Brute-Force Attacks

As with encryption algorithms, there are two categories of attacks on hash func-

tions: brute-force attacks and cryptanalysis. A brute-force attack does not depend 

on the specific algorithm but depends only on bit length. In the case of a hash func-

tion, a brute-force attack depends only on the bit length of the hash value. A crypt-

analysis, in contrast, is an attack based on weaknesses in a particular cryptographic 

algorithm. We look first at brute-force attacks.

Figure 11.6 Relationship Among Hash Function Properties

Second
preimage resistant

Preimage
resistant

Collision
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Second Preimage 

Resistant Collision Resistant

Hash + digital signature yes yes yes*

Intrusion detection and virus 

 detection
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Hash + symmetric encryption

One-way password file yes

MAC yes yes yes*

Table 11.2 Hash Function Resistance Properties Required for Various Data Integrity Applications

*Resistance required if attacker is able to mount a chosen message attack
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PREIMAGE AND SECOND PREIMAGE ATTACKS For a preimage or second preimage 

 attack, an adversary wishes to find a value y such that H(y) is equal to a given hash 

value h. The brute-force method is to pick values of y at random and try each value 

until a collision occurs. For an m-bit hash value, the level of effort is proportional 

to 2m. Specifically, the adversary would have to try, on average, 2m - 1 values of y to 

find one that generates a given hash value h. This result is derived in Appendix U 

[Equation (U.1)].

COLLISION RESISTANT ATTACKS For a collision resistant attack, an adversary wishes 

to find two messages or data blocks, x and y, that yield the same hash function: 

H(x) = H(y). This turns out to require considerably less effort than a preimage or 

second preimage attack. The effort required is explained by a mathematical result 

referred to as the birthday paradox. In essence, if we choose random variables from 

a uniform distribution in the range 0 through N - 1, then the probability that a 

repeated element is encountered exceeds 0.5 after 2N choices have been made. 

Thus, for an m-bit hash value, if we pick data blocks at random, we can expect to 

find two data blocks with the same hash value within 22m = 2m/2 attempts. The 

mathematical derivation of this result is found in Appendix U.

Yuval proposed the following strategy to exploit the birthday paradox in a 

 collision resistant attack [YUVA79].

1. The source, A, is prepared to sign a legitimate message x by appending the 

 appropriate m-bit hash code and encrypting that hash code with A’s private 

key (Figure 11.4a).

2. The opponent generates 2m/2 variations x′ of x, all of which convey essentially 

the same meaning, and stores the messages and their hash values.

3. The opponent prepares a fraudulent message y for which A’s signature is 

desired.

4. The opponent generates minor variations y′ of y, all of which convey essen-

tially the same meaning. For each y′, the opponent computes H(y′), checks 

for matches with any of the H(x′) values, and continues until a match is found. 

That is, the process continues until a y′ is generated with a hash value equal to 

the hash value of one of the x′ values.

5. The opponent offers the valid variation to A for signature. This signature can 

then be attached to the fraudulent variation for transmission to the intended 

recipient. Because the two variations have the same hash code, they will pro-

duce the same signature; the opponent is assured of success even though the 

encryption key is not known.

Thus, if a 64-bit hash code is used, the level of effort required is only on the 

order of 232 [see Appendix U, Equation (U.7)].

The generation of many variations that convey the same meaning is not diffi-

cult. For example, the opponent could insert a number of “space-space- backspace” 

character pairs between words throughout the document. Variations could then 

be generated by substituting “space-backspace-space” in selected  instances. 
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Alternatively, the opponent could simply reword the message but retain the 

 meaning. Figure 11.7 provides an example.

To summarize, for a hash code of length m, the level of effort required, as we 

have seen, is proportional to the following.

Preimage resistant 2m

Second preimage resistant 2m

Collision resistant 2m/2

Figure 11.7 A Letter in 238 Variations
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If collision resistance is required (and this is desirable for a general-purpose 

 secure hash code), then the value 2m/2 determines the strength of the hash code 

against brute-force attacks. Van Oorschot and Wiener [VANO94] presented 

a  design for a $10 million collision search machine for MD5, which has a 128-bit hash 

length, that could find a collision in 24 days. Thus, a 128-bit code may be viewed as 

inadequate. The next step up, if a hash code is treated as a sequence of 32 bits, 

is a 160-bit hash length. With a hash length of 160 bits, the same search machine 

would require over four thousand years to find a collision. With today’s technology, 

the time would be much shorter, so that 160 bits now appears suspect.

Cryptanalysis

As with encryption algorithms, cryptanalytic attacks on hash functions seek to 

 exploit some property of the algorithm to perform some attack other than an 

 exhaustive search. The way to measure the resistance of a hash algorithm to crypt-

analysis is to compare its strength to the effort required for a brute-force attack. 

That is, an ideal hash algorithm will require a cryptanalytic effort greater than or 

equal to the brute-force effort.

In recent years, there has been considerable effort, and some successes, 

in developing cryptanalytic attacks on hash functions. To understand these, we 

need to look at the overall structure of a typical secure hash function, indicated 

in Figure 11.8. This structure, referred to as an iterated hash function, was pro-

posed by Merkle [MERK79, MERK89] and is the structure of most hash func-

tions in use today, including SHA, which is discussed later in this chapter. The 

hash function takes an input message and partitions it into L fixed-sized blocks 

of b bits each. If necessary, the final block is padded to b bits. The final block 

also includes the value of the total length of the input to the hash function. The 

inclusion of the length makes the job of the opponent more difficult. Either the 

opponent must find two messages of equal length that hash to the same value or 

two messages of differing lengths that, together with their length values, hash to 

the same value.

Figure 11.8 General Structure of Secure Hash Code
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The hash algorithm involves repeated use of a compression function, f, that 

takes two inputs (an n-bit input from the previous step, called the chaining  variable, 

and a b-bit block) and produces an n-bit output. At the start of hashing, the chaining 

variable has an initial value that is specified as part of the algorithm. The final value 

of the chaining variable is the hash value. Often, b 7 n; hence the term  compression. 

The hash function can be summarized as

 CV0 = IV = initial n@bit value

 CVi = f(CVi- 1, Yi- 1) 1 … i … L

 H(M) = CVL

where the input to the hash function is a message M consisting of the blocks 

Y0, Y1, c , YL - 1.

The motivation for this iterative structure stems from the observation by 

Merkle [MERK89] and Damgard [DAMG89] that if the length field is included in 

the input, and if the compression function is collision resistant, then so is the resul-

tant iterated hash function.2 Therefore, the structure can be used to  produce 

a  secure hash function to operate on a message of any length. The problem of 

 designing a secure hash function reduces to that of designing a collision-resistant 

compression function that operates on inputs of some fixed size.

Cryptanalysis of hash functions focuses on the internal structure of f and is 

based on attempts to find efficient techniques for producing collisions for a single 

execution of f. Once that is done, the attack must take into account the fixed value 

of IV. The attack on f depends on exploiting its internal structure. Typically, as with 

symmetric block ciphers, f consists of a series of rounds of processing, so that the 

attack involves analysis of the pattern of bit changes from round to round.

Keep in mind that for any hash function there must exist collisions, because 

we are mapping a message of length at least equal to twice the block size b (because 

we must append a length field) into a hash code of length n, where b Ú n. What is 

required is that it is computationally infeasible to find collisions.

The attacks that have been mounted on hash functions are rather complex and 

beyond our scope here. For the interested reader, [DOBB96] and [BELL97] are 

recommended.

 11.4 HASH FUNCTIONS BASED ON CIPHER BLOCK CHAINING

A number of proposals have been made for hash functions based on using a cipher 

block chaining technique, but without using the secret key. One of the first such 

proposals was that of Rabin [RABI78]. Divide a message M into fixed-size blocks 

M1, M2, c , MN and use a symmetric encryption system such as DES to compute 

the hash code G as

 H0 = initial value

 Hi = E(Mi, Hi- 1)

 G = HN

2The converse is not necessarily true.
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This is similar to the CBC technique, but in this case, there is no secret key. As with 

any hash code, this scheme is subject to the birthday attack, and if the encryp-

tion  algorithm is DES and only a 64-bit hash code is produced, then the  system 

is vulnerable.

Furthermore, another version of the birthday attack can be used even if the 

opponent has access to only one message and its valid signature and cannot  obtain 

multiple signings. Here is the scenario: We assume that the opponent intercepts 

a message with a signature in the form of an encrypted hash code and that the 

 unencrypted hash code is m bits long.

1. Use the algorithm defined at the beginning of this subsection to calculate the 

unencrypted hash code G.

2. Construct any desired message in the form Q1, Q2, c , QN - 2.

3. Compute Hi = E(Qi, Hi- 1) for 1 … i … (N - 2).

4. Generate 2m/2 random blocks; for each block X, compute E(X, HN - 2). 

Generate an additional 2m/2 random blocks; for each block Y, compute D(Y, 

G), where D is the decryption function corresponding to E.

5. Based on the birthday paradox, with high probability there will be an X and Y 

such that E(X, HN - 2) = D(Y, G).

6. Form the message Q1, Q2, c , QN - 2, X, Y. This message has the hash code G 

and therefore can be used with the intercepted encrypted signature.

This form of attack is known as a meet-in-the-middle-attack. A number of 

 researchers have proposed refinements intended to strengthen the basic block 

chaining approach. For example, Davies and Price [DAVI89] describe the variation:

 Hi = E(Mi, Hi- 1)⊕Hi- 1 

Another variation, proposed in [MEYE88], is

 Hi = E(Hi- 1, Mi)⊕Mi 

However, both of these schemes have been shown to be vulnerable to a  variety 

of attacks [MIYA90]. More generally, it can be shown that some form of birthday 

attack will succeed against any hash scheme involving the use of cipher block chain-

ing without a secret key, provided that either the resulting hash code is small enough 

(e.g., 64 bits or less) or that a larger hash code can be decomposed into independent 

subcodes [JUEN87].

Thus, attention has been directed at finding other approaches to hashing. 

Many of these have also been shown to have weaknesses [MITC92].

 11.5 SECURE HASH ALGORITHM (SHA)

In recent years, the most widely used hash function has been the Secure Hash 

Algorithm (SHA). Indeed, because virtually every other widely used hash function 

had been found to have substantial cryptanalytic weaknesses, SHA was more or 

less the last remaining standardized hash algorithm by 2005. SHA was developed 
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by the National Institute of Standards and Technology (NIST) and published as a 

federal information processing standard (FIPS 180) in 1993. When weaknesses were 

discovered in SHA, now known as SHA-0, a revised version was issued as FIPS 

180-1 in 1995 and is referred to as SHA-1. The actual standards document is entitled 

“Secure Hash Standard.” SHA is based on the hash function MD4, and its design 

closely models MD4.

SHA-1 produces a hash value of 160 bits. In 2002, NIST produced a revised 

version of the standard, FIPS 180-2, that defined three new versions of SHA, with 

hash value lengths of 256, 384, and 512 bits, known as SHA-256, SHA-384, and 

SHA-512, respectively. Collectively, these hash algorithms are known as SHA-2. 

These new versions have the same underlying structure and use the same types of 

 modular arithmetic and logical binary operations as SHA-1. A  revised document 

was  issued as FIP PUB 180-3 in 2008, which added a 224-bit version (Table 11.3). 

In 2015, NIST issued FIPS 180-4, which added two additional  algorithms:  

SHA-512/224 and SHA-512/256. SHA-1 and SHA-2 are also specified in RFC 

6234, which essentially duplicates the material in FIPS 180-3 but adds a C code 

implementation.

In 2005, NIST announced the intention to phase out approval of SHA-1 and 

move to a reliance on SHA-2 by 2010. Shortly thereafter, a research team  described 

an attack in which two separate messages could be found that deliver the same 

SHA-1 hash using 269 operations, far fewer than the 280 operations previously 

thought needed to find a collision with an SHA-1 hash [WANG05]. This result 

should hasten the transition to SHA-2.

In this section, we provide a description of SHA-512. The other versions are 

quite similar.

SHA-512 Logic

The algorithm takes as input a message with a maximum length of less than 2128 bits 

and produces as output a 512-bit message digest. The input is processed in 1024-bit 

blocks. Figure 11.9 depicts the overall processing of a message to produce a digest. 

Algorithm Message Size Block Size Word Size
Message 

Digest Size

SHA-1 6  264 512 32 160

SHA-224 6  264 512 32 224

SHA-256 6  264 512 32 256

SHA-384 6  2128 1024 64 384

SHA-512 6  2128 1024 64 512

SHA-512/224 6  2128 1024 64 224

SHA-512/256 6  2128 1024 64 256

Note: All sizes are measured in bits.

Table 11.3 Comparison of SHA Parameters
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This follows the general structure depicted in Figure 11.8. The processing consists 

of the following steps.

Step 1 Append padding bits. The message is padded so that its length is congruent 

to 896 modulo 1024 [length K 896(mod 1024)]. Padding is always added, 

even if the message is already of the desired length. Thus, the number of 

padding bits is in the range of 1 to 1024. The padding consists of a single 1 bit 

followed by the necessary number of 0 bits.

Step 2 Append length. A block of 128 bits is appended to the message. This block 

is treated as an unsigned 128-bit integer (most significant byte first) and 

contains the length of the original message in bits (before the padding).

The outcome of the first two steps yields a message that is an integer 

multiple of 1024 bits in length. In Figure 11.9, the expanded message is rep-

resented as the sequence of 1024-bit blocks M1, M2, c , MN, so that the 

total length of the expanded message is N * 1024 bits.

Step 3 Initialize hash buffer. A 512-bit buffer is used to hold intermediate and final 

results of the hash function. The buffer can be represented as eight 64-bit 

registers (a, b, c, d, e, f, g, h). These registers are initialized to the following 

64-bit integers (hexadecimal values):

a = 6A09E667F3BCC908 e = 510E527FADE682D1

b = BB67AE8584CAA73B f = 9B05688C2B3E6C1F

c = 3C6EF372FE94F82B g = 1F83D9ABFB41BD6B

d = A54FF53A5F1D36F1 h = 5BE0CD19137E2179

Figure 11.9 Message Digest Generation Using SHA-512
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These values are stored in big-endian format, which is the most significant 

byte of a word in the low-address (leftmost) byte position. These words 

were obtained by taking the first sixty-four bits of the fractional parts of the 

square roots of the first eight prime numbers.

Step 4 Process message in 1024-bit (128-byte) blocks. The heart of the algorithm is 

a module that consists of 80 rounds; this module is labeled F in Figure 11.9. 

The logic is illustrated in Figure 11.10.

Each round takes as input the 512-bit buffer value, abcdefgh, and 

updates the contents of the buffer. At input to the first round, the buffer 

has the value of the intermediate hash value, Hi- 1. Each round t makes 

use of a 64-bit value Wt, derived from the current 1024-bit block being pro-

cessed (Mi). These values are derived using a message schedule described 

subsequently. Each round also makes use of an additive constant Kt, where 

0 … t … 79 indicates one of the 80 rounds. These words represent the first 

64 bits of the fractional parts of the cube roots of the first 80 prime numbers. 

The constants provide a “randomized” set of 64-bit patterns, which should 

eliminate any regularities in the input data. Table 11.4 shows these constants 

in hexadecimal format (from left to right).

Figure 11.10 SHA-512 Processing of a Single 1024-Bit Block
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The output of the eightieth round is added to the input to the first 

round (Hi- 1) to produce Hi. The addition is done independently for each of 

the eight words in the buffer with each of the corresponding words in Hi- 1, 

using addition modulo 264.

Step 5 Output. After all N 1024-bit blocks have been processed, the output from 

the Nth stage is the 512-bit message digest.

We can summarize the behavior of SHA-512 as follows:

 H0 = IV

 Hi = SUM64(Hi- 1, abcdefghi)

 MD = HN

where

IV            = initial value of the abcdefgh buffer, defined in step 3

abcdefghi =  the output of the last round of processing of the ith message block

N              =  the number of blocks in the message (including padding and 

length fields)

SUM64      =  addition modulo 264 performed separately on each word of the 

pair of inputs

MD         = final message digest value

428a2f98d728ae22 7137449123ef65cd b5c0fbcfec4d3b2f e9b5dba58189dbbc

3956c25bf348b538 59f111f1b605d019 923f82a4af194f9b ab1c5ed5da6d8118

d807aa98a3030242 12835b0145706fbe 243185be4ee4b28c 550c7dc3d5ffb4e2

72be5d74f27b896f 80deb1fe3b1696b1 9bdc06a725c71235 c19bf174cf692694

e49b69c19ef14ad2 efbe4786384f25e3 0fc19dc68b8cd5b5 240ca1cc77ac9c65

2de92c6f592b0275 4a7484aa6ea6e483 5cb0a9dcbd41fbd4 76f988da831153b5

983e5152ee66dfab a831c66d2db43210 b00327c898fb213f bf597fc7beef0ee4

c6e00bf33da88fc2 d5a79147930aa725 06ca6351e003826f 142929670a0e6e70

27b70a8546d22ffc 2e1b21385c26c926 4d2c6dfc5ac42aed 53380d139d95b3df

650a73548baf63de 766a0abb3c77b2a8 81c2c92e47edaee6 92722c851482353b

a2bfe8a14cf10364 a81a664bbc423001 c24b8b70d0f89791 c76c51a30654be30

d192e819d6ef5218 d69906245565a910 f40e35855771202a 106aa07032bbd1b8

19a4c116b8d2d0c8 1e376c085141ab53 2748774cdf8eeb99 34b0bcb5e19b48a8

391c0cb3c5c95a63 4ed8aa4ae3418acb 5b9cca4f7763e373 682e6ff3d6b2b8a3

748f82ee5defb2fc 78a5636f43172f60 84c87814a1f0ab72 8cc702081a6439ec

90befffa23631e28 a4506cebde82bde9 bef9a3f7b2c67915 c67178f2e372532b

ca273eceea26619c d186b8c721c0c207 eada7dd6cde0eb1e f57d4f7fee6ed178

06f067aa72176fba 0a637dc5a2c898a6 113f9804bef90dae 1b710b35131c471b

28db77f523047d84 32caab7b40c72493 3c9ebe0a15c9bebc 431d67c49c100d4c

4cc5d4becb3e42b6 597f299cfc657e2a 5fcb6fab3ad6faec 6c44198c4a475817

Table 11.4 SHA-512 Constants
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SHA-512 Round Function

Let us look in more detail at the logic in each of the 80 steps of the processing 

of one 512-bit block (Figure 11.11). Each round is defined by the following set of 

equations:

 T1 = h + Ch(e, f, g) + (a
512
1 e) + Wt + Kt

 T2 = (a
512
0 a) + Maj(a, b, c)

 h = g

 g = f

 f = e

 e = d + T1

 d = c

 c = b

 b = a

 a = T1 + T2

where

t                   = step number; 0 … t … 79

Ch(e, f, g)   = (e AND f)⊕ (NOT e AND g) 

  the conditional function: If e then f else g

Maj(a, b, c) = (a AND b)⊕ (a AND c)⊕ (b AND c) 

   the function is true only of the majority (two or three) of the 
 arguments are true

(Σ512
0 a)        = ROTR28(a)⊕ ROTR34(a)⊕ ROTR39(a)

(Σ512
1 e)        = ROTR14(e)⊕ ROTR18(e)⊕ ROTR41(e)

ROTRn(x) = circular right shift (rotation) of the 64-bit argument x by n bits

Figure 11.11 Elementary SHA-512 Operation (single round)
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Wt = a 64-bit word derived from the current 1024-bit input block

Kt = a 64-bit additive constant

+ = addition modulo 264

Two observations can be made about the round function.

1. Six of the eight words of the output of the round function involve simply per-

mutation (b, c, d, f, g, h) by means of rotation. This is indicated by shading in 

Figure 11.11.

2. Only two of the output words (a, e) are generated by substitution. Word e is a 

function of input variables (d, e, f, g, h), as well as the round word Wt and the 

constant Kt. Word a is a function of all of the input variables except d, as well 

as the round word Wt and the constant Kt.

It remains to indicate how the 64-bit word values Wt are derived from the  

1024-bit message. Figure 11.12 illustrates the mapping. The first 16 values of Wt are 

taken directly from the 16 words of the current block. The remaining values are 

defined as

 Wt = s1
512(Wt- 2) + Wt- 7 + s0

512(Wt- 15) + Wt- 16 

where

 s0
512(x) = ROTR1(x)⊕ ROTR8(x)⊕ SHR7(x)

 s1
512(x) = ROTR19(x)⊕ ROTR61(x)⊕ SHR6(x)

ROTRn(x) = circular right shift (rotation) of the 64-bit argument x by n bits

SHRn(x) = right shift of the 64-bit argument x by n bits with padding by zeros on 

the left

+ = addition modulo 264

Thus, in the first 16 steps of processing, the value of Wt is equal to the cor-

responding word in the message block. For the remaining 64 steps, the value of 

Wt  consists of the circular left shift by one bit of the XOR of four of the preced-

ing values of Wt, with two of those values subjected to shift and rotate operations. 

Figure 11.12 Creation of 80-word Input Sequence for SHA-512 Processing of Single Block
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This introduces a great deal of redundancy and interdependence into the  message 

blocks that are compressed, which complicates the task of finding a different 

 message block that maps to the same compression function output. Figure 11.13 

summarizes the SHA-512 logic.

The SHA-512 algorithm has the property that every bit of the hash code is a 

function of every bit of the input. The complex repetition of the basic function F 

produces results that are well mixed; that is, it is unlikely that two messages cho-

sen at random, even if they exhibit similar regularities, will have the same hash 

code. Unless there is some hidden weakness in SHA-512, which has not so far been 

published, the difficulty of coming up with two messages having the same message 

 digest is on the order of 2256 operations, while the difficulty of finding a message 

with a given digest is on the order of 2512 operations.

Example

We include here an example based on one in FIPS 180. We wish to hash a  one-block 

message consisting of three ASCII characters: “abc,” which is equivalent to the 

 following 24-bit binary string:

01100001 01100010 01100011

Recall from step 1 of the SHA algorithm, that the message is padded to a 

length congruent to 896 modulo 1024. In this case of a single block, the padding 

consists of 896 - 24 = 872 bits, consisting of a “1” bit followed by 871 “0” bits. 

Then a 128-bit length value is appended to the message, which contains the length 

of the original message in bits (before the padding). The original length is 24 bits, 

or a hexadecimal value of 18. Putting this all together, the 1024-bit message block, 

in hexadecimal, is

6162638000000000 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000018

This block is assigned to the words W0, . .  .  , W15 of the message schedule, 

which appears as follows.

 

W0 = 6162638000000000 W8 = 0000000000000000

W1 = 0000000000000000 W9 = 0000000000000000

W2 = 0000000000000000 W10 = 0000000000000000

W3 = 0000000000000000 W11 = 0000000000000000

W4 = 0000000000000000 W12 = 0000000000000000

W5 = 0000000000000000 W13 = 0000000000000000

W6 = 0000000000000000 W14 = 0000000000000000

W7 = 0000000000000000 W15 = 0000000000000018
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The padded message consists blocks M1, M2, c , MN. Each message 

block Mi consists of 16 64-bit words Mi,0, Mi,1, c , Mi,15. All addition 

is performed modulo 264.

H0,0 = 6A09E667F3BCC908 H0,4 = 510E527FADE682D1

H0,1 = BB67AE8584CAA73B H0,5 = 9B05688C2B3E6C1F

H0,2 = 3C6EF372FE94F82B H0,6 = 1F83D9ABFB41BD6B

H0,3 = A54FF53A5F1D36F1 H0,7 = 5BE0CD19137E2179

for i = 1 to N

1. Prepare the message schedule W
 for t = 0 to 15

 Wt = Mi,t

 for t = 16 to 79

 Wt = s1
512(Wt- 2) + Wt- 7 + s0

512(Wt- 15) + Wt- 16 

2. Initialize the working variables

a = Hi- 1, 0 e = Hi- 1, 4

b = Hi- 1, 1 f = Hi- 1, 5

c = Hi- 1, 2 g = Hi- 1, 6

d = Hi- 1, 3 h = Hi- 1, 7

 

3. Perform the main hash computation

 for t = 0 to 79

 T1 = h + Ch(e, f, g) + ¢Σ512
1 e≤ + Wt + Kt

 T2 = ¢Σ512
0 a≤ + Maj(a, b, c)

 h = g
 g = f
 f = e
 e = d + T1

 d = c
 c = b
 b = a
 a = T1 + T2 

4. Compute the intermediate hash value

Hi, 0 = a + Hi- 1, 0 Hi, 4 = e + Hi- 1,4

Hi, 1 = b + Hi- 1, 1 Hi, 5 = f + Hi- 1, 5

Hi, 2 = c + Hi- 1, 2 Hi, 6 = g + Hi- 1, 6

Hi, 3 = d + Hi- 1, 3 Hi, 7 = h + Hi- 1, 7

return {HN, 0 }HN, 1 }HN, 2 }HN, 3 }HN, 4 }HN, 5 }HN, 6 }HN, 7} 

Figure 11.13 SHA-512 Logic
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As indicated in Figure 11.13, the eight 64-bit variables, a through h, are 

 initialized to values H0,0 through H0,7. The following table shows the initial values of 

these variables and their values after each of the first two rounds.

a 6a09e667f3bcc908 f6afceb8bcfcddf5 1320f8c9fb872cc0

b bb67ae8584caa73b 6a09e667f3bcc908 f6afceb8bcfcddf5

c 3c6ef372fe94f82b bb67ae8584caa73b 6a09e667f3bcc908

d a54ff53a5f1d36f1 3c6ef372fe94f82b bb67ae8584caa73b

e 510e527fade682d1 58cb02347ab51f91 c3d4ebfd48650ffa

f 9b05688c2b3e6c1f 510e527fade682d1 58cb02347ab51f91

g 1f83d9abfb41bd6b 9b05688c2b3e6c1f 510e527fade682d1

h 5be0cd19137e2179 1f83d9abfb41bd6b 9b05688c2b3e6c1f

Note that in each of the rounds, six of the variables are copied directly from 

variables from the preceding round.

The process continues through 80 rounds. The output of the final round is

73a54f399fa4b1b2 10d9c4c4295599f6 d67806db8b148677 654ef9abec389ca9
d08446aa79693ed7 9bb4d39778c07f9e 25c96a7768fb2aa3 ceb9fc3691ce8326

The hash value is then calculated as

 H1,0 = 6a09e667f3bcc908 + 73a54f399fa4b1b2 = ddaf35a193617aba
 H1,1 = bb67ae8584caa73b + 10d9c4c4295599f6 = cc417349ae204131
 H1,2 = 3c6ef372fe94f82b + d67806db8b148677 = 12e6fa4e89a97ea2
 H1,3 = a54ff53a5f1d36f1 + 654ef9abec389ca9 = 0a9eeee64b55d39a
 H1,4 = 510e527fade682d1 + d08446aa79693ed7 = 2192992a274fc1a8
 H1,5 = 9b05688c2b3e6c1f + 9bb4d39778c07f9e = 36ba3c23a3feebbd
 H1,6 = 1f83d9abfb41bd6b + 25c96a7768fb2aa3 = 454d4423643ce80e
 H1,7 = 5be0cd19137e2179 + ceb9fc3691ce8326 = 2a9ac94fa54ca49f

The resulting 512-bit message digest is

ddaf35a193617aba cc417349ae204131 12e6fa4e89a97ea2 0a9eeee64b55d39a
2192992a274fc1a8 36ba3c23a3feebbd 454d4423643ce80e 2a9ac94fa54ca49f

Suppose now that we change the input message by one bit, from “abc” to 

“cbc.” Then, the 1024-bit message block is

6362638000000000 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000018

And the resulting 512-bit message digest is

531668966ee79b70 0b8e593261101354 4273f7ef7b31f279 2a7ef68d53f93264
319c165ad96d9187 55e6a204c2607e27 6e05cdf993a64c85 ef9e1e125c0f925f

The number of bit positions that differ between the two hash values is 253, 

almost exactly half the bit positions, indicating that SHA-512 has a good avalanche 

effect.
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 11.6 SHA-3

As of this writing, the Secure Hash Algorithm (SHA-1) has not yet been “broken.” 

That is, no one has demonstrated a technique for producing collisions in a practical 

amount of time. However, because SHA-1 is very similar, in structure and in the 

basic mathematical operations used, to MD5 and SHA-0, both of which have been 

broken, SHA-1 is considered insecure and has been phased out for SHA-2.

SHA-2, particularly the 512-bit version, would appear to provide unassailable 

security. However, SHA-2 shares the same structure and mathematical operations 

as its predecessors, and this is a cause for concern. Because it will take years to find 

a suitable replacement for SHA-2, should it become vulnerable, NIST decided to 

begin the process of developing a new hash standard.

Accordingly, NIST announced in 2007 a competition to produce the next gen-

eration NIST hash function, to be called SHA-3. The winning design for SHA-3 

was announced by NIST in October 2012 and published as FIP 102 in August 2015. 

SHA-3 is a cryptographic hash function that is intended to complement SHA-2 as 

the approved standard for a wide range of applications.

Appendix V looks at the evaluation criteria used by NIST to select from 

among the candidates for AES, plus the rationale for picking Keccak, which was 

the winning candidate. This material is useful in understanding not just the SHA-3 

design but also the criteria by which to judge any cryptographic hash algorithm.

The Sponge Construction

The underlying structure of SHA-3 is a scheme referred to by its designers as a 

sponge construction [BERT07, BERT11]. The sponge construction has the same 

general structure as other iterated hash functions (Figure 11.8). The sponge func-

tion takes an input message and partitions it into fixed-size blocks. Each block is 

processed in turn with the output of each iteration fed into the next iteration, finally 

producing an output block.

The sponge function is defined by three parameters:

f = the internal function used to process each input block3

r = the size in bits of the input blocks, called the bitrate
pad = the padding algorithm

A sponge function allows both variable length input and output, making it a 

flexible structure that can be used for a hash function (fixed-length output), a pseu-

dorandom number generator (fixed-length input), and other cryptographic func-

tions. Figure 11.14 illustrates this point. An input message of n bits is  partitioned 

into k fixed-size blocks of r bits each. The message is padded to achieve a length 

that is an integer multiple of r bits. The resulting partition is the sequence of blocks 

P0, P1, c , Pk - 1, with length k * r. For uniformity, padding is always added, so 

3The Keccak documentation refers to f as a permutation. As we shall see, it involves both permutations 
and substitutions. We refer to f as the iteration function, because it is the function that is executed once 
for each iteration, that is, once for each block of the message that is processed.
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that if n mod r = 0, a padding block of r bits is added. The actual padding algorithm 

is a parameter of the function. The sponge specification [BERT11] proposes two 

padding schemes:

 ■ Simple padding: Denoted by pad10*, appends a single bit 1 followed by the 

minimum number of bits 0 such that the length of the result is a multiple of the 

block length.

 ■ Multirate padding: Denoted by pad10*1, appends a single bit 1 followed by 

the minimum number of bits 0 followed by a single bit 1 such that the length 

of the result is a multiple of the block length. This is the simplest padding 

scheme that allows secure use of the same f with different rates r. FIPS 202 

uses  multirate padding.

After processing all of the blocks, the sponge function generates a sequence 

of output blocks Z0, Z1, c , Zj- 1. The number of output blocks generated is 

 determined by the number of output bits desired. If the desired output is / bits, then 

j blocks are produced, such that (j - 1) * r 6 / … j * r.

Figure 11.15 shows the iterated structure of the sponge function. The sponge 

construction operates on a state variable s of b = r + c bits, which is initialized 

to all zeros and modified at each iteration. The value r is called the bitrate. This 

value is the block size used to partition the input message. The term bitrate re-

flects the fact that r is the number of bits processed at each iteration: the larger the 

value of r, the greater the rate at which message bits are processed by the sponge 

Figure 11.14 Sponge Function Input and Output
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(b) Output
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construction. The value c is referred to as the capacity. A discussion of the secu-

rity implications of the capacity is beyond our scope. In essence, the capacity is a 

measure of the achievable complexity of the sponge construction and therefore the 

achievable level of security. A given implementation can trade claimed security for 

speed by increasing the capacity c and decreasing the bitrate r accordingly, or vice 

versa. The default values for Keccak are c = 1024 bits, r = 576 bits, and therefore 

b = 1600 bits.

The sponge construction consists of two phases. The absorbing phase proceeds 

as follows: For each iteration, the input block to be processed is padded with zeroes 

to extend its length from r bits to b bits. Then, the bitwise XOR of the extended 

Figure 11.15 Sponge Construction
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message block and s is formed to create a b-bit input to the iteration function f. The 

output of f is the value of s for the next iteration.

If the desired output length / satisfies / … b, then at the completion of the 

absorbing phase, the first / bits of s are returned and the sponge construction termi-

nates. Otherwise, the sponge construction enters the squeezing phase. To begin, the 

first / bits of s are retained as block Z0. Then, the value of s is updated with repeated 

executions of f, and at each iteration, the first / bits of s are retained as block Zi 

and concatenated with previously generated blocks. The process continues through 

(j - 1) iterations until we have (j - 1) * r 6 / … j * r. At this point the first / 

bits of the concatenated block Z are returned.

Note that the absorbing phase has the structure of a typical hash function. 

A common case will be one in which the desired hash length is less than or equal 

to the input block length; that is, / … r. In that case, the sponge construction termi-

nates after the absorbing phase. If a longer output than b bits is required, then the 

squeezing phase is employed. Thus the sponge construction is quite flexible. For 

example, a short message with a length r could be used as a seed and the sponge 

construction would function as a pseudorandom number generator.

To summarize, the sponge construction is a simple iterated construction for 

building a function F with variable-length input and arbitrary output length based 

on a fixed-length transformation or permutation f operating on a fixed number b of 

bits. The sponge construction is defined formally in [BERT11] as follows:

Algorithm The sponge construction SPONGE[f, pad, r]
Require: r < b

 Interface: Z = sponge(M,/) with M ∈ Z2*, integer / > 0 and Z ∈ Z2
/

 P  =  M }pad[r](|M|)
 s  =  0b

 for i  =  0 to |P|r − 1 do
   s  =  s⊕ (Pi }0b − r)

   s  =  f(s)
 end for
 Z  =:s;r
 while |Z|r r < / do
  s  =  f (s)
  Z  =  Z } :s; r

 end while
 return :Z; ℓ

In the algorithm definition, the following notation is used: �M �  is the length 

in bits of a bit string M. A bit string M can be considered as a sequence of blocks 

of some fixed length x, where the last block may be shorter. The number of 

blocks of M is denoted by �M � x. The blocks of M are denoted by Mi and the index 

ranges from 0 to �M � x - 1. The expression :M; / denotes the truncation of M to 

its first / bits.
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Message Digest Size 224 256 384 512

Message Size no maximum no maximum no maximum no maximum

Block Size (bitrate r) 1152 1088 832 576

Word Size 64 64 64 64

Number of Rounds 24 24 24 24

Capacity c 448 512 768 1024

Collision Resistance 2112 2128 2192 2256

Second Preimage Resistance 2224 2256 2384 2512

Note: All sizes and security levels—are measured in bits.

Table 11.5 SHA-3 Parameters

SHA-3 makes use of the iteration function f, labeled Keccak-f, which is 

 described in the next section. The overall SHA-3 function is a sponge function 

 expressed as Keccak[r, c] to reflect that SHA-3 has two operational parameters, r, 

the message block size, and c, the capacity, with the default of r + c = 1600 bits. 

Table 11.5 shows the supported values of r and c. As Table 11.5 shows, the hash 

function security associated with the sponge construction is a function of the 

 capacity c.

In terms of the sponge algorithm defined above, Keccak[r, c] is defined as

 Keccak [r, c]∆ SPONGE [Keccak@f [r + c], pad 10*1, r] 

We now turn to a discussion of the iteration function Keccak-f.

The SHA-3 Iteration Function f

We now examine the iteration function Keccak-f used to process each successive 

block of the input message. Recall that f takes as input a 1600-bit variable s consist-

ing of r bits, corresponding to the message block size followed by c bits,  referred to 

as the capacity. For internal processing within f, the input state variable s is orga-

nized as a 5 * 5 * 64 array a. The 64-bit units are referred to as lanes. For our 

 purposes, we generally use the notation a[x, y, z] to refer to an individual bit with 

the state array. When we are more concerned with operations that affect entire 

lanes, we designate the 5 * 5 matrix as L[x, y], where each entry in L is a 64-bit 

lane. The use of indices within this matrix is shown in Figure 11.16.4 Thus, the col-

umns are labeled x = 0 through x = 4, the rows are labeled y = 0 through y = 4, 

and the individual bits within a lane are labeled z = 0 through z = 63. The  mapping 

between the bits of s and those of a is

 s[64(5y + x) + z] = a[x, y, z] 

4Note that the first index (x) designates a column and the second index (y) designates a row. This is 
in conflict with the convention used in most mathematics sources, where the first index designates a 
row and the second index designates a column (e.g., Knuth, D. The Art of Computing Programming, 
Volume 1, Fundamental Algorithms; and Korn, G., and Korn, T. Mathematical Handbook for Scientists 
and Engineers).
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We can visualize this with respect to the matrix in Figure 11.16. When treat-

ing the state as a matrix of lanes, the first lane in the lower left corner, L[0, 0], cor-

responds to the first 64 bits of s. The lane in the second column, lowest row, L[1, 

0], corresponds to the next 64 bits of s. Thus, the array a is filled with the bits of s 

 starting with row y = 0 and proceeding row by row.

STRUCTURE OF f The function f is executed once for each input block of the message 

to be hashed. The function takes as input the 1600-bit state variable and converts 

it into a 5 * 5 matrix of 64-bit lanes. This matrix then passes through 24 rounds of 

processing. Each round consists of five steps, and each step updates the state matrix 

by permutation or substitution operations. As shown in Figure 11.17, the rounds are 

identical with the exception of the final step in each round, which is modified by a 

round constant that differs for each round.

The application of the five steps can be expressed as the composition5 of 

functions:

 R = i o x o p o r o u 

Table 11.6 summarizes the operation of the five steps. The steps have a sim-

ple description leading to a specification that is compact and in which no trapdoor 

can be hidden. The operations on lanes in the specification are limited to bitwise 

Boolean operations (XOR, AND, NOT) and rotations. There is no need for table 

lookups, arithmetic operations, or data-dependent rotations. Thus, SHA-3 is easily 

and efficiently implemented in either hardware or software.

We examine each of the step functions in turn.

Figure 11.16 SHA-3 State Matrix
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(a) State variable as 5    5 matrix A of 64-bit words

(b) Bit labeling of 64-bit words
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L[3, 3]

L[3, 2]

L[4, 1]

L[3, 0]

L[4, 4]

L[4, 3]

L[4, 2]
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L[4, 0]

a[x, y, 63]a[x, y, 62]a[x, y, z]

 5If f and g are two functions, then the function F with the equation y = F(x) = g[f(x)] is called the 
 composition of f and g and is denoted as F = g o f.



11.6 / SHA-3 371

Figure 11.17 SHA-3 Iteration Function f
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Function Type Description

u Substitution New value of each bit in each word depends on its current 

value and on one bit in each word of preceding column 

and one bit of each word in succeeding column.

r Permutation The bits of each word are permuted using a circular bit 

shift. W[0, 0] is not affected.

p Permutation Words are permuted in the 5 * 5 matrix. W[0, 0] is not 

affected.

x Substitution New value of each bit in each word depends on its current 

value and on one bit in next word in the same row and one 

bit in the second next word in the same row.

i Substitution W[0, 0] is updated by XOR with a round constant.

Table 11.6 Step Functions in SHA-3

THETA STEP FUNCTION The Keccak reference defines the u function as follows. For 

bit z in column x, row y,

 u: a[x, y, z] d a[x, y, z]⊕ a
4

y==0

a[(x - 1), y=, z]⊕ a
4

y==0

a[(x + 1), y=, (z - 1)]   (11.1)
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where the summations are XOR operations. We can see more clearly what this 

 operation accomplishes with reference to Figure 11.18a. First, define the bitwise 

XOR of the lanes in column x as

 C[x] = L[x, 0]⊕ L[x, 1]⊕ L[x, 2]⊕ L[x, 3]⊕ L[x, 4] 

Consider lane L[x, y] in column x, row y. The first summation in Equation 11.1 

performs a bitwise XOR of the lanes in column (x - 1) mod 4 to form the 64-bit 

lane C[x - 1]. The second summation performs a bitwise XOR of the lanes in 

 column (x + 1) mod 4, and then rotates the bits within the 64-bit lane so that the 

bit in position z is mapped into position z + 1 mod 64. This forms the lane ROT 

(C[x + 1], 1). These two lanes and L[x, y] are combined by bitwise XOR to form 

the updated value of L[x, y]. This can be expressed as

 L[x, y] d L[x, y]⊕ C[x - 1]⊕ ROT(C[x + 1], 1) 

Figure 11.18.a illustrates the operation on L[3, 2]. The same operation is 

 performed on all of the other lanes in the matrix.

Figure 11.18 Theta and Chi Step Functions
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Several observations are in order. Each bit in a lane is updated using the bit itself 

and one bit in the same bit position from each lane in the preceding column and one 

bit in the adjacent bit position from each lane in the succeeding column. Thus the up-

dated value of each bit depends on 11 bits. This provides good mixing. Also, the theta 

step provides good diffusion, as that term was defined in Chapter 4. The designers of 

Keccak state that the theta step provides a high level of diffusion on average and that 

without theta, the round function would not provide diffusion of any significance.

RHO STEP FUNCTION The r function is defined as follows:

 r: a[x, y, z] d a[x, y, z] if x = y = 0 

otherwise,

  r: a[x, y, z] d aJx, y, az -
(t + 1)(t + 2)

2
b R    (11.2)

with t satisfying 0 … t 6 24 and ¢0 1

2 3
≤t¢1

0
≤ = ¢x

y
≤ in GF(5)2 * 2

It is not immediately obvious what this step performs, so let us look at the 

process in detail.

1. The lane in position (x, y) = (0, 0), that is L[0, 0], is unaffected. For all other 

words, a circular bit shift within the lane is performed.

2. The variable t, with 0 … t 6 24, is used to determine both the amount of the 

circular bit shift and which lane is assigned which shift value.

3. The 24 individual bit shifts that are performed have the respective values 

(t + 1)(t + 2)

2
 mod 64.

4. The shift determined by the value of t is performed on the lane in position 

(x, y) in the 5 * 5 matrix of lanes. Specifically, for each value of t, the corre-

sponding matrix position is defined by ¢x
y
≤ = ¢0 1

2 3
≤t¢1

0
≤. For example, for 

t = 3, we have

 ¢x
y
≤ = ¢0 1

2 3
≤3¢1

0
≤ mod 5

 = ¢0 1

2 3
≤ ¢0 1

2 3
≤ ¢0 1

2 3
≤ ¢1

0
≤ mod 5

 = ¢0 1

2 3
≤ ¢0 1

2 3
≤ ¢0

2
≤ mod 5

 = ¢0 1

2 3
≤ ¢2

6
≤ mod 5 = ¢0 1

2 3
≤ ¢2

1
≤ mod 5

 = ¢1

7
≤ mod 5 = ¢1

2
≤
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Table 11.7 shows the calculations that are performed to determine the amount 

of the bit shift and the location of each bit shift value. Note that all of the rotation 

amounts are different.

The r function thus consists of a simple permutation (circular shift) within 

each lane. The intent is to provide diffusion within each lane. Without this function, 

diffusion between lanes would be very slow.

PI STEP FUNCTION The p function is defined as follows:

  p: a[x, y] d a[x=, y=], with¢x
y
≤ = ¢0 1

2 3
≤ ¢x=

y=
≤   (11.3)

This can be rewritten as (x, y) * (y, (2x + 3y)). Thus, the lanes within the 

5 * 5 matrix are moved so that the new x position equals the old y position and the 

Table 11.7 Rotation Values Used in SHA-3

t g(t) g (t) mod 64 x, y

0 1 1 1, 0

1 3 3 0, 2

2 6 6 2, 1

3 10 10 1, 2

4 15 15 2, 3

5 21 21 3, 3

6 28 28 3, 0

7 36 36 0, 1

8 45 45 1, 3

9 55 55 3, 1

10 66 2 1, 4

11 78 14 4, 4

(b) Rotation values by word position in matrix

x = 0 x = 1 x = 2 x = 3 x = 4

y = 4 18 2 61 56 14

y = 3 41 45 15 21 8

y = 2 3 10 43 25 39

y = 1 36 44 6 55 20

y = 0 0 1 62 28 27

t g(t) g (t) mod 64 x, y

12 91 27 4, 0

13 105 41 0, 3

14 120 56 3, 4

15 136 8 4, 3

16 153 25 3, 2

17 171 43 2, 2

18 190 62 2, 0

19 210 18 0, 4

20 231 39 4, 2

21 253 61 2, 4

22 276 20 4, 1

23 300 44 1, 1

(a) Calculation of values and positions

Note:  g(t) = (t + 1)(t + 2)/2

      ¢x
y
≤ = ¢0 1

2 3
≤t¢1

0
≤ mod 5
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Figure 11.19 Pi Step Function
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new y position is determined by (2x + 3y) mod 5. Figure 11.19 helps in visualizing 

this permutation. Lanes that are along the same diagonal (increasing in y value, 

going from left to right) prior to p are arranged on the same row in the matrix after 

p is executed. Note that the position of L[0, 0] is unchanged.

Thus the p step is a permutation of lanes: The lanes move position within the 

5 * 5 matrix. The r step is a permutation of bits: Bits within a lane are rotated. 

Note that the p step matrix positions are calculated in the same way that, for the r 

step, the one-dimensional sequence of rotation constants is mapped to the lanes of 

the matrix.

CHI STEP FUNCTION The x function is defined as follows:

  x: a[x] d a[x]⊕ ((a[x + 1]⊕ 1) AND a[x + 2])   (11.4)

This function operates to update each bit based on its current value and the 

value of the corresponding bit position in the next two lanes in the same row. The 
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Round
Constant 

 (hexadecimal)
Number 
of 1 bits

0 0000000000000001 1

1 0000000000008082 3

2 800000000000808A 5

3 8000000080008000 3

4 000000000000808B 5

5 0000000080000001 2

6 8000000080008081 5

7 8000000000008009 4

8 000000000000008A 3

9 0000000000000088 2

10 0000000080008009 4

11 000000008000000A 3

Table 11.8 Round Constants in SHA-3

Round
Constant 

 (hexadecimal)
Number 
of 1 bits

12 000000008000808B 6

13 800000000000008B 5

14 8000000000008089 5

15 8000000000008003 4

16 8000000000008002 3

17 8000000000000080 2

18 000000000000800A 3

19 800000008000000A 4

20 8000000080008081 5

21 8000000000008080 3

22 0000000080000001 2

23 8000000080008008 4

operation is more clearly seen if we consider a single bit a[x, y, z] and write out the 

Boolean expression:

 a[x, y, z] d a[x, y, z]⊕ (NOT(a[x + 1, y, z])) AND (a[x + 2, y, z]) 

Figure 11.18b illustrates the operation of the x function on the bits of the 

lane L[3, 2]. This is the only one of the step functions that is a nonlinear mapping. 

Without it, the SHA-3 round function would be linear.

IOTA STEP FUNCTION The i function is defined as follows:

  i: a d a⊕ RC[ir]   (11.5)

This function combines an array element with a round constant that differs for 

each round. It breaks up any symmetry induced by the other four step functions. In 

fact, Equation 11.5 is somewhat misleading. The round constant is applied only to 

the first lane of the internal state array. We express this is as follows:

 L[0, 0] d L[0, 0]⊕ RC[ir] 0 … ir … 24 

Table 11.8 lists the 24 64-bit round constants. Note that the Hamming weight, 

or number of 1 bits, in the round constants ranges from 1 to 6. Most of the bit posi-

tions are zero and thus do not change the corresponding bits in L[0, 0]. If we take 

the cumulative OR of all 24 round constants, we get

 RC[0] OR RC[1] OR c OR RC[23] = 800000008000808B 

Thus, only 7 bit positions are active and can affect the value of L[0, 0]. 

Of course, from round to round, the permutations and substitutions propagate the 

effects of the i function to all of the lanes and all of the bit positions in the matrix. 

It is easily seen that the disruption diffuses through u and x to all lanes of the state 

after a single round.
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 11.7 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

absorbing phase

big endian

birthday attack

birthday paradox

bitrate

capacity

Chi step function collision 

resistant

compression function

cryptographic hash function

hash code

hash function

hash value

Iota step function

Keccak

keyed hash function

lane

little endian

MD4

MD5

message authentication code 

(MAC)

message digest

one-way hash function

Pi step function

preimage resistant

Rho step function

second preimage resistant

SHA-1

SHA-224

SHA-256

SHA-3

SHA-384

SHA-512

sponge construction

squeezing phase

strong collision resistance

Theta step function

weak collision resistance

Key Terms 

Review Questions 
 11.1 What characteristics are needed in a secure hash function?

 11.2 What is the difference between weak and strong collision resistance?

 11.3 What is the role of a compression function in a hash function?

 11.4 What is the difference between little-endian and big-endian format?

 11.5 What basic arithmetical and logical functions are used in SHA?

 11.6 Describe the set of criteria used by NIST to evaluate SHA-3 candidates.

 11.7 Define the term sponge construction.

 11.8 Briefly describe the internal structure of the iteration function f.
 11.9 List and briefly describe the step functions that comprise the iteration function f.

Problems 
 11.1 The high-speed transport protocol XTP (Xpress Transfer Protocol) uses a 32-bit 

checksum function defined as the concatenation of two 16-bit functions: XOR and 
RXOR, defined in Section 11.4 as “two simple hash functions” and illustrated in 
Figure 11.5.
a. Will this checksum detect all errors caused by an odd number of error bits? 

 Explain.
b. Will this checksum detect all errors caused by an even number of error bits? If not, 

characterize the error patterns that will cause the checksum to fail.
c. Comment on the effectiveness of this function for use as a hash function for 

 authentication.

 11.2 a. Consider the Davies and Price hash code scheme described in Section 11.4 and 
assume that DES is used as the encryption algorithm:

 Hi = Hi- 1⊕ E(Mi, Hi- 1) 
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Recall the complementarity property of DES (Problem 3.14): If Y = E(K, X), 
then Y′ = E(K′, X′). Use this property to show how a message consisting of 
blocks M1, M2, c , MN can be altered without altering its hash code.

b. Show that a similar attack will succeed against the scheme proposed in [MEYE88]:

 Hi = Mi⊕ E(Hi- 1, Mi) 

 11.3 a. Consider the following hash function. Messages are in the form of a sequence of 

numbers in Zn, M = (a1, a2, c  at). The hash value h is calculated as ¢at

i=1

ai≤ for 

some predefined value n. Does this hash function satisfy any of the requirements 
for a hash function listed in Table 11.1? Explain your answer.

b. Repeat part (a) for the hash function h = ¢at

i=1

(ai)
2≤ mod n.

c. Calculate the hash function of part (b) for M = (189, 632, 900, 722, 349) and 
n = 989.

 11.4 It is possible to use a hash function to construct a block cipher with a structure similar 
to DES. Because a hash function is one way and a block cipher must be reversible (to 
decrypt), how is it possible?

 11.5 Now consider the opposite problem: using an encryption algorithm to construct 
a one-way hash function. Consider using RSA with a known key. Then process a 
message consisting of a sequence of blocks as follows: Encrypt the first block, XOR 
the result with the second block and encrypt again, etc. Show that this scheme is not 
secure by solving the following problem. Given a two-block message B1, B2, and 
its hash

 RSAH(B1,B2) = RSA(RSA(B1)⊕ B2) 

Given an arbitrary block C1, choose C2 so that RSAH(C1, C2) = RSAH(B1, B2). 
Thus, the hash function does not satisfy weak collision resistance.

 11.6 Suppose H(m) is a collision-resistant hash function that maps a message of arbitrary 
bit length into an n-bit hash value. Is it true that, for all messages x, x′ with x ≠ x′, 
we have H(x) ≠ H(x′) Explain your answer.

 11.7 In Figure 11.12, it is assumed that an array of 80 64-bit words is available to store the 
values of Wt, so that they can be precomputed at the beginning of the processing of 
a block. Now assume that space is at a premium. As an alternative, consider the use 
of a 16-word circular buffer that is initially loaded with W0 through W15. Design an 
algorithm that, for each step t, computes the required input value Wt.

 11.8 For SHA-512, show the equations for the values of W16, W18, W23, and W31.

 11.9 State the value of the padding field in SHA-512 if the length of the message is
a. 2942 bits
b. 2943 bits
c. 2944 bits

 11.10 State the value of the length field in SHA-512 if the length of the message is
a. 2942 bits
b. 2943 bits
c. 2944 bits

 11.11 Suppose a1a2a3a4 are the 4 bytes in a 32-bit word. Each ai can be viewed as an integer 
in the range 0 to 255, represented in binary. In a big-endian  architecture, this word 
represents the integer

 a12
24 + a22

16 + a32
8 + a4 
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In a little-endian architecture, this word represents the integer

 a42
24 + a32

16 + a22
8 + a1 

a. Some hash functions, such as MD5, assume a little-endian architecture. It is impor-
tant that the message digest be independent of the underlying architecture. There-
fore, to perform the modulo 2 addition operation of MD5 or RIPEMD-160 on 
a big-endian architecture, an adjustment must be made. Suppose X = x1 x2 x3 x4 
and Y = y1 y2 y3 y4. Show how the MD5 addition operation (X + Y) would be 
carried out on a big-endian machine.

b. SHA assumes a big-endian architecture. Show how the operation (X + Y) for 
SHA would be carried out on a little-endian machine.

 11.12 This problem introduces a hash function similar in spirit to SHA that operates on 
letters instead of binary data. It is called the toy tetragraph hash (tth).6 Given a mes-
sage consisting of a sequence of letters, tth produces a hash value consisting of four 
letters. First, tth divides the message into blocks of 16 letters, ignoring spaces, punc-
tuation, and capitalization. If the message length is not divisible by 16, it is padded 
out with nulls. A four-number running total is maintained that starts out with the 
value (0, 0, 0, 0); this is input to the compression function for processing the first 
block. The compression function consists of two rounds.

Round 1  Get the next block of text and arrange it as a row-wise 4 * 4 block of text 
and convert it to numbers (A = 0, B = 1, etc.). For example, for the block 
ABCDEFGHIJKLMNOP, we have

A B C D

E F G H

I J K L

M N O P

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Then, add each column mod 26 and add the result to the running total, mod 26. In this 
example, the running total is (24, 2, 6, 10).

Round 2  Using the matrix from round 1, rotate the first row left by 1, second row left by 2, 
third row left by 3, and reverse the order of the fourth row.
In our example:

B C D A

G H E F

L I J K

P O N M

1 2 3 0

6 7 4 5

11 8 9 10

15 14 13 12

Now, add each column mod 26 and add the result to the running total. The new run-
ning total is (5, 7, 9, 11). This running total is now the input into the first round of the 
compression function for the next block of text. After the final block is processed, 
convert the final running total to letters. For example, if the message is ABCDEF-
GHIJKLMNOP, then the hash is FHJL.

6I thank William K. Mason, of the magazine staff of The Cryptogram, for providing this example.
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a. Draw figures comparable to Figures 11.9 and 11.10 to depict the overall tth logic 
and the compression function logic.

b. Calculate the hash function for the 22-letter message “Practice makes us perfect.”
c. To demonstrate the weakness of tth, find a message of length 32-letter to produces 

the same hash.

 11.13 For each of the possible capacity values of SHA-3 (Table 11.5), which lanes in the 
internal 55 state matrix start out as lanes of all zeros?

 11.14 Consider the SHA-3 option with a block size of 1024 bits and assume that each of the 
lanes in the first message block (P0) has at least one nonzero bit. To start, all of the 
lanes in the internal state matrix that correspond to the capacity portion of the initial 
state are all zeros. Show how long it will take before all of these lanes have at least 
one nonzero bit. Note: Ignore the permutation. That is, keep track of the original zero 
lanes even after they have changed position in the matrix.

 11.15 Consider the state matrix as illustrated in Figure 11.16a. Now rearrange the rows and 
columns of the matrix so that L[0, 0] is in the center. Specifically, arrange the columns 
in the left-to-right order (x = 3, x = 4, x = 0, x = 1, x = 2) and arrange the rows in 
the top-to-bottom order (y = 2, y = 1, y = 0, y = 4, y = 6). This should give you 
some insight into the permutation algorithm used for the function and for permut-
ing the rotation constants in the function. Using this rearranged matrix, describe the 
permutation algorithm.

 11.16 The function only affects L[0, 0]. Section 11.6 states that the changes to L[0, 0] diffuse 
through u and to all lanes of the state after a single round.
a. Show that this is so.
b. How long before all of the bit positions in the matrix are affected by the changes 

to L[0, 0]?
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One of the most fascinating and complex areas of cryptography is that of message 

authentication and the related area of digital signatures. It would be impossible, in 

anything less than book length, to exhaust all the cryptographic functions and proto-

cols that have been proposed or implemented for message authentication and digital 

signatures. Instead, the purpose of this chapter and the next is to provide a broad 

overview of the subject and to develop a systematic means of describing the various 

approaches.

This chapter begins with an introduction to the requirements for authen-

tication and digital signature and the types of attacks to be countered. Then the 

basic approaches are surveyed. The remainder of the chapter deals with the funda-

mental approach to message authentication known as the message  authentication 

code (MAC). Following an overview of this topic, the chapter looks at  security 

 considerations for MACs. This is followed by a discussion of specific MACs in 

two categories: those built from cryptographic hash functions and those built using 

a block cipher mode of  operation. Next, we look at a relatively recent approach 

known as authenticated encryption. Finally, we look at the use of cryptographic 

hash functions and MACs for pseudorandom number generation.

 12.1 MESSAGE AUTHENTICATION REQUIREMENTS

In the context of communications across a network, the following attacks can be 

identified.

1. Disclosure: Release of message contents to any person or process not possess-

ing the appropriate cryptographic key.

LEARNING OBJECTIVES

After studying this chapter, you should be able to:

 ◆ List and explain the possible attacks that are relevant to message 

 authentication.

 ◆ Define the term message authentication code.

 ◆ List and explain the requirements for a message authentication code.

 ◆ Present an overview of HMAC.

 ◆ Present an overview of CMAC.

 ◆ Explain the concept of authenticated encryption.

 ◆ Present an overview of CCM.

 ◆ Present an overview of GCM.

 ◆ Discuss the concept of key wrapping and explain its use.

 ◆ Understand how a hash function or a message authentication code can be 

used for pseudorandom number generation.
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2. Traffic analysis: Discovery of the pattern of traffic between parties. In a 

connection-oriented application, the frequency and duration of connec-

tions could be determined. In either a connection-oriented or connectionless 

 environment, the number and length of messages between parties could be 

determined.

3. Masquerade: Insertion of messages into the network from a fraudulent source. 

This includes the creation of messages by an opponent that are purported to 

come from an authorized entity. Also included are fraudulent acknowledg-

ments of message receipt or nonreceipt by someone other than the message 

recipient.

4. Content modification: Changes to the contents of a message, including inser-

tion, deletion, transposition, and modification.

5. Sequence modification: Any modification to a sequence of messages between 

parties, including insertion, deletion, and reordering.

6. Timing modification: Delay or replay of messages. In a connection-oriented 

application, an entire session or sequence of messages could be a replay of 

some previous valid session, or individual messages in the sequence could be 

delayed or replayed. In a connectionless application, an individual message 

(e.g., datagram) could be delayed or replayed.

7. Source repudiation: Denial of transmission of message by source.

8. Destination repudiation: Denial of receipt of message by destination.

Measures to deal with the first two attacks are in the realm of message 

confidentiality and are dealt with in Part One. Measures to deal with items 

(3) through (6) in the foregoing list are generally regarded as message authentica-

tion. Mechanisms for dealing specifically with item (7) come under the heading of 

digital signatures. Generally, a digital signature technique will also counter some 

or all of the attacks listed under items (3) through (6). Dealing with item (8) may 

require a combination of the use of digital signatures and a protocol designed to 

counter this attack.

In summary, message authentication is a procedure to verify that received 

messages come from the alleged source and have not been altered. Message au-

thentication may also verify sequencing and timeliness. A digital signature is an 

authentication technique that also includes measures to counter repudiation by the 

source.

 12.2 MESSAGE AUTHENTICATION FUNCTIONS

Any message authentication or digital signature mechanism has two levels of func-

tionality. At the lower level, there must be some sort of function that produces an 

authenticator: a value to be used to authenticate a message. This lower-level func-

tion is then used as a primitive in a higher-level authentication protocol that enables 

a receiver to verify the authenticity of a message.

This section is concerned with the types of functions that may be used to pro-

duce an authenticator. These may be grouped into three classes.
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 ■ Hash function: A function that maps a message of any length into a  fixed-length 

hash value, which serves as the authenticator

 ■ Message encryption: The ciphertext of the entire message serves as its 

authenticator

 ■ Message authentication code (MAC): A function of the message and a secret 

key that produces a fixed-length value that serves as the authenticator

Hash functions, and how they may serve for message authentication, are dis-

cussed in Chapter 11. The remainder of this section briefly examines the remaining 

two topics. The remainder of the chapter elaborates on the topic of MACs.

Message Encryption

Message encryption by itself can provide a measure of authentication. The analysis 

differs for symmetric and public-key encryption schemes.

SYMMETRIC ENCRYPTION Consider the straightforward use of symmetric encryption 

(Figure 12.1a). A message M transmitted from source A to destination B is encrypted 

using a secret key K shared by A and B. If no other party knows the key, then confi-

dentiality is provided: No other party can recover the plaintext of the message.

Figure 12.1 Basic Uses of Message Encryption

Destination BSource A

M

K K

E

(a) Symmetric encryption: confidentiality and authentication

D M

PUb

(b) Public-key encryption: confidentiality
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E(PUb, M)

E(PRa, M) E(PRa, M)E(PUb, E(PRa, M))

M E D M

(c) Public-key encryption: authentication and signature

(d) Public-key encryption: confidentiality, authentication, and signature

E D

PRb

PRa

M E D M

E(PRa, M)

PRa

PUa

PUaPUb PRb
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In addition, B is assured that the message was generated by A. Why? The 

message must have come from A, because A is the only other party that possesses 

K and therefore the only other party with the information necessary to construct 

ciphertext that can be decrypted with K. Furthermore, if M is recovered, B knows 

that none of the bits of M have been altered, because an opponent that does not 

know K would not know how to alter bits in the ciphertext to produce the desired 

changes in the plaintext.

So we may say that symmetric encryption provides authentication as well as 

confidentiality. However, this flat statement needs to be qualified. Consider exactly 

what is happening at B. Given a decryption function D and a secret key K, the 

destination will accept any input X and produce output Y = D(K, X). If X is the 

 ciphertext of a legitimate message M produced by the corresponding encryption 

function, then Y is some plaintext message M. Otherwise, Y will likely be a mean-

ingless sequence of bits. There may need to be some automated means of determin-

ing at B whether Y is legitimate plaintext and therefore must have come from A.

The implications of the line of reasoning in the preceding paragraph are pro-

found from the point of view of authentication. Suppose the message M can be any 

arbitrary bit pattern. In that case, there is no way to determine automatically, at the 

destination, whether an incoming message is the ciphertext of a legitimate message. 

This conclusion is incontrovertible: If M can be any bit pattern, then regardless of 

the value of X, the value Y = D(K, X) is some bit pattern and therefore must be 

accepted as authentic plaintext.

Thus, in general, we require that only a small subset of all possible bit patterns 

be considered legitimate plaintext. In that case, any spurious ciphertext is unlikely 

to produce legitimate plaintext. For example, suppose that only one bit pattern in 

106 is legitimate plaintext. Then the probability that any randomly chosen bit pat-

tern, treated as ciphertext, will produce a legitimate plaintext message is only 10-6.

For a number of applications and encryption schemes, the desired conditions 

prevail as a matter of course. For example, suppose that we are transmitting English-

language messages using a Caesar cipher with a shift of one (K = 1). A sends the 

following legitimate ciphertext:

nbsftfbupbutboeepftfbupbutboemjuumfmbnctfbujwz

B decrypts to produce the following plaintext:

mareseatoatsanddoeseatoatsandlittlelambseativy

A simple frequency analysis confirms that this message has the profile of ordinary 

English. On the other hand, if an opponent generates the following random se-

quence of letters:

zuvrsoevgqxlzwigamdvnmhpmccxiuureosfbcebtqxsxq

this decrypts to

ytuqrndufpwkyvhfzlcumlgolbbwhttqdnreabdaspwrwp

which does not fit the profile of ordinary English.
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It may be difficult to determine automatically if incoming ciphertext de-

crypts to intelligible plaintext. If the plaintext is, say, a binary object file or digi-

tized X-rays, determination of properly formed and therefore authentic plaintext 

may be difficult. Thus, an opponent could achieve a certain level of disruption 

simply by issuing messages with random content purporting to come from a 

legitimate user.

One solution to this problem is to force the plaintext to have some structure 

that is easily recognized but that cannot be replicated without recourse to the en-

cryption function. We could, for example, append an error-detecting code, also 

known as a frame check sequence (FCS) or checksum, to each message before en-

cryption, as illustrated in Figure 12.2a. A prepares a plaintext message M and then 

provides this as input to a function F that produces an FCS. The FCS is appended to 

M and the entire block is then encrypted. At the destination, B decrypts the incom-

ing block and treats the results as a message with an appended FCS. B applies the 

same function F to attempt to reproduce the FCS. If the calculated FCS is equal to 

the incoming FCS, then the message is considered authentic. It is unlikely that any 

random sequence of bits would exhibit the desired relationship.

Note that the order in which the FCS and encryption functions are performed 

is critical. The sequence illustrated in Figure 12.2a is referred to in [DIFF79] as 

 internal error control, which the authors contrast with external error control 
(Figure 12.2b). With internal error control, authentication is provided because an 

opponent would have difficulty generating ciphertext that, when decrypted, would 

have valid error control bits. If instead the FCS is the outer code, an opponent can 

construct messages with valid error-control codes. Although the opponent cannot 

know what the decrypted plaintext will be, he or she can still hope to create confu-

sion and disrupt operations.

Figure 12.2 Internal and External Error Control

(b) External error control
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An error-control code is just one example; in fact, any sort of structuring 

added to the transmitted message serves to strengthen the authentication capability. 

Such structure is provided by the use of a communications architecture consisting 

of layered protocols. As an example, consider the structure of messages transmit-

ted using the TCP/IP protocol architecture. Figure 12.3 shows the format of a TCP 

segment, illustrating the TCP header. Now suppose that each pair of hosts shared 

a unique secret key, so that all exchanges between a pair of hosts used the same 

key, regardless of application. Then we could simply encrypt all of the datagram ex-

cept the IP header. Again, if an opponent substituted some arbitrary bit pattern for 

the encrypted TCP segment, the resulting plaintext would not include a meaning-

ful header. In this case, the header includes not only a checksum (which covers the 

header) but also other useful information, such as the sequence number. Because 

successive TCP segments on a given connection are numbered sequentially, encryp-

tion assures that an opponent does not delay, misorder, or delete any segments.

PUBLIC-KEY ENCRYPTION The straightforward use of public-key encryption 

(Figure 12.1b) provides confidentiality but not authentication. The source (A) uses 

the public key PUb of the destination (B) to encrypt M. Because only B has the cor-

responding private key PRb, only B can decrypt the message. This scheme provides 

no authentication, because any opponent could also use B’s public key to encrypt a 

message and claim to be A.

To provide authentication, A uses its private key to encrypt the message, and 

B uses A’s public key to decrypt (Figure 12.1c). This provides authentication using 

the same type of reasoning as in the symmetric encryption case: The message must 

have come from A because A is the only party that possesses PRa and therefore 

the only party with the information necessary to construct ciphertext that can be 

decrypted with PUa. Again, the same reasoning as before applies: There must be 

some internal structure to the plaintext so that the receiver can distinguish between 

well-formed plaintext and random bits.

Figure 12.3 TCP Segment
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Assuming there is such structure, then the scheme of Figure 12.1c does pro-

vide authentication. It also provides what is known as digital signature.1 Only A 

could have constructed the ciphertext because only A possesses PRa. Not even B, 

the recipient, could have constructed the ciphertext. Therefore, if B is in possession 

of the ciphertext, B has the means to prove that the message must have come from 

A. In effect, A has “signed” the message by using its private key to encrypt. Note 

that this scheme does not provide confidentiality. Anyone in possession of A’s pub-

lic key can decrypt the ciphertext.

To provide both confidentiality and authentication, A can encrypt M first 

using its private key, which provides the digital signature, and then using B’s pub-

lic key, which provides confidentiality (Figure 12.1d). The disadvantage of this ap-

proach is that the public-key algorithm, which is complex, must be exercised four 

times rather than two in each communication.

Message Authentication Code

An alternative authentication technique involves the use of a secret key to generate 

a small fixed-size block of data, known as a cryptographic checksum or MAC, that is 

appended to the message. This technique assumes that two communicating parties, 

say A and B, share a common secret key K. When A has a message to send to B, it 

calculates the MAC as a function of the message and the key:

MAC = C(K, M)

where

 M    = input message

 C     = MAC function

 K    = shared secret key

 MAC = message authentication code

The message plus MAC are transmitted to the intended recipient. The recipient 

performs the same calculation on the received message, using the same secret key, 

to generate a new MAC. The received MAC is compared to the calculated MAC 

(Figure 12.4a). If we assume that only the receiver and the sender know the identity 

of the secret key, and if the received MAC matches the calculated MAC, then

1. The receiver is assured that the message has not been altered. If an attacker al-

ters the message but does not alter the MAC, then the receiver’s calculation of 

the MAC will differ from the received MAC. Because the attacker is assumed 

not to know the secret key, the attacker cannot alter the MAC to correspond 

to the alterations in the message.

2. The receiver is assured that the message is from the alleged sender. Because 

no one else knows the secret key, no one else could prepare a message with a 

proper MAC.

1This is not the way in which digital signatures are constructed, as we shall see, but the principle is the 
same.
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3. If the message includes a sequence number (such as is used with HDLC, X.25, 

and TCP), then the receiver can be assured of the proper sequence because an 

attacker cannot successfully alter the sequence number.

A MAC function is similar to encryption. One difference is that the MAC 

algorithm need not be reversible, as it must be for decryption. In general, the MAC 

function is a many-to-one function. The domain of the function consists of messages 

of some arbitrary length, whereas the range consists of all possible MACs and all 

possible keys. If an n-bit MAC is used, then there are 2n possible MACs, whereas 

there are N possible messages with N W 2n. Furthermore, with a k-bit key, there 

are 2k possible keys.

For example, suppose that we are using 100-bit messages and a 10-bit MAC. 

Then, there are a total of 2100 different messages but only 210 different MACs. So, 

on average, each MAC value is generated by a total of 2100/210 = 290 different mes-

sages. If a 5-bit key is used, then there are 25 = 32 different mappings from the set 

of messages to the set of MAC values.

It turns out that, because of the mathematical properties of the authentication 

function, it is less vulnerable to being broken than encryption.

The process depicted in Figure 12.4a provides authentication but not confiden-

tiality, because the message as a whole is transmitted in the clear. Confidentiality 

can be provided by performing message encryption either after (Figure 12.4b) or 

before (Figure 12.4c) the MAC algorithm. In both these cases, two separate keys are 

Figure 12.4 Basic Uses of Message Authentication code (MAC)
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needed, each of which is shared by the sender and the receiver. In the first case, the 

MAC is calculated with the message as input and is then concatenated to the mes-

sage. The entire block is then encrypted. In the second case, the message is encrypted 

first. Then the MAC is calculated using the resulting ciphertext and is concatenated 

to the ciphertext to form the transmitted block. Typically, it is preferable to tie the 

authentication directly to the plaintext, so the method of Figure 12.4b is used.

Because symmetric encryption will provide authentication and because it is 

widely used with readily available products, why not simply use this instead of a 

separate message authentication code? [DAVI89] suggests three situations in which 

a message authentication code is used.

1. There are a number of applications in which the same message is broadcast to 

a number of destinations. Examples are notification to users that the network 

is now unavailable or an alarm signal in a military control center. It is cheaper 

and more reliable to have only one destination responsible for monitoring au-

thenticity. Thus, the message must be broadcast in plaintext with an associated 

message authentication code. The responsible system has the secret key and 

performs authentication. If a violation occurs, the other destination systems 

are alerted by a general alarm.

2. Another possible scenario is an exchange in which one side has a heavy load 

and cannot afford the time to decrypt all incoming messages. Authentication is 

carried out on a selective basis, messages being chosen at random for checking.

3. Authentication of a computer program in plaintext is an attractive service. The 

computer program can be executed without having to decrypt it every time, 

which would be wasteful of processor resources. However, if a message au-

thentication code were attached to the program, it could be checked whenever 

assurance was required of the integrity of the program.

Three other rationales may be added.

4. For some applications, it may not be of concern to keep messages secret, but 

it is important to authenticate messages. An example is the Simple Network 

Management Protocol Version 3 (SNMPv3), which separates the functions of 

confidentiality and authentication. For this application, it is usually important 

for a managed system to authenticate incoming SNMP messages, particularly 

if the message contains a command to change parameters at the managed sys-

tem. On the other hand, it may not be necessary to conceal the SNMP traffic.

5. Separation of authentication and confidentiality functions affords architec-

tural flexibility. For example, it may be desired to perform authentication at 

the application level but to provide confidentiality at a lower level, such as the 

transport layer.

6. A user may wish to prolong the period of protection beyond the time of recep-

tion and yet allow processing of message contents. With message encryption, the 

protection is lost when the message is decrypted, so the message is protected 

against fraudulent modifications only in transit but not within the target system.

Finally, note that the MAC does not provide a digital signature, because both 

sender and receiver share the same key.
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A MAC, also known as a cryptographic checksum, is generated by a function C of 

the form

 T = MAC(K, M) 

where M is a variable-length message, K is a secret key shared only by sender and re-

ceiver, and MAC(K, M) is the fixed-length authenticator, sometimes called a tag. The 

tag is appended to the message at the source at a time when the message is assumed or 

known to be correct. The receiver authenticates that message by recomputing the tag.

When an entire message is encrypted for confidentiality, using either symmet-

ric or asymmetric encryption, the security of the scheme generally depends on the 

bit length of the key. Barring some weakness in the algorithm, the opponent must 

resort to a brute-force attack using all possible keys. On average, such an attack will 

require 2(k - 1) attempts for a k-bit key. In particular, for a ciphertext-only attack, the 

opponent, given ciphertext C, performs Pi = D(Ki, C) for all possible key values Ki 

until a Pi is produced that matches the form of acceptable plaintext.

In the case of a MAC, the considerations are entirely different. In general, 

the MAC function is a many-to-one function, due to the many-to-one nature of 

the function. Using brute-force methods, how would an opponent attempt to dis-

cover a key? If confidentiality is not employed, the opponent has access to plain-

text messages and their associated MACs. Suppose k 7 n; that is, suppose that 

the key size is greater than the MAC size. Then, given a known M1 and T1, with 

T1 = MAC(K, M1), the cryptanalyst can perform Ti = MAC(Ki, M1) for all pos-

sible key values ki. At least one key is guaranteed to produce a match of Ti = T1. 

Note that a total of 2k tags will be produced, but there are only 2n 6 2k different tag 

values. Thus, a number of keys will produce the correct tag and the opponent has no 

way of knowing which is the correct key. On average, a total of 2k/2n = 2(k - n) keys 

will produce a match. Thus, the opponent must iterate the attack.

 ■ Round 1

Given: M1, T1 = MAC(K, M1)

Compute Ti = MAC(Ki, M1) for all 2k keys

Number of matches  L  2(k - n)

 ■ Round 2

Given: M2, T2 = MAC(K, M2)

Compute Ti = MAC(Ki, M2) for the 2(k - n) keys resulting from Round 1

Number of matches  L  2(k - 2 * n) 

And so on. On average, a rounds will be needed k = a * n. For example, if an 

80-bit key is used and the tag is 32 bits, then the first round will produce about 248 

possible keys. The second round will narrow the possible keys to about 216 possibili-

ties. The third round should produce only a single key, which must be the one used 

by the sender.
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If the key length is less than or equal to the tag length, then it is likely that a 

first round will produce a single match. It is possible that more than one key will 

produce such a match, in which case the opponent would need to perform the same 

test on a new (message, tag) pair.

Thus, a brute-force attempt to discover the authentication key is no less ef-

fort and may be more effort than that required to discover a decryption key of the 

same length. However, other attacks that do not require the discovery of the key 

are possible.

Consider the following MAC algorithm. Let M = (X1 }X2 } c }Xm) be a 

message that is treated as a concatenation of 64-bit blocks Xi. Then define

∆(M) = X1⊕ X2⊕ c ⊕ Xm

MAC(K, M) = E(K, ∆(M))

where ⊕  is the exclusive-OR (XOR) operation and the encryption algorithm 

is DES in electronic codebook mode. Thus, the key length is 56 bits, and the tag 

length is 64 bits. If an opponent observes {M }MAC(K, M)}, a brute-force attempt 

to determine K will require at least 256 encryptions. But the opponent can attack the 

system by replacing X1 through Xm - 1 with any desired values Y1 through Ym - 1 and 

replacing Xm with Ym, where Ym is calculated as

Ym = Y1⊕ Y2⊕ g ⊕ Ym - 1⊕ ∆(M)

The opponent can now concatenate the new message, which consists of Y1 

through Ym, using the original tag to form a message that will be accepted as authen-

tic by the receiver. With this tactic, any message of length 64 * (m - 1) bits can be 

fraudulently inserted.

Thus, in assessing the security of a MAC function, we need to consider the 

types of attacks that may be mounted against it. With that in mind, let us state the 

requirements for the function. Assume that an opponent knows the MAC func-

tion but does not know K. Then the MAC function should satisfy the following 

requirements.

1. If an opponent observes M and MAC(K, M), it should be computationally 

infeasible for the opponent to construct a message M′ such that

MAC(K, M′) = MAC(K, M)

2. MAC(K, M) should be uniformly distributed in the sense that for randomly 

chosen messages, M and M′, the probability that MAC(K, M) = MAC(K, M′) 

is 2-n, where n is the number of bits in the tag.

3. Let M′ be equal to some known transformation on M. That is, M′ = f(M). For 

example, f may involve inverting one or more specific bits. In that case,

Pr [MAC(K, M) = MAC(K, M′)] = 2-n

The first requirement speaks to the earlier example, in which an opponent is 

able to construct a new message to match a given tag, even though the opponent 

does not know and does not learn the key. The second requirement deals with the 

need to thwart a brute-force attack based on chosen plaintext. That is, if we assume 
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that the opponent does not know K but does have access to the MAC function and 

can present messages for MAC generation, then the opponent could try various 

messages until finding one that matches a given tag. If the MAC function exhibits 

uniform distribution, then a brute-force method would require, on average, 2(n - 1) 

attempts before finding a message that fits a given tag.

The final requirement dictates that the authentication algorithm should not be 

weaker with respect to certain parts or bits of the message than others. If this were 

not the case, then an opponent who had M and MAC(K, M) could attempt varia-

tions on M at the known “weak spots” with a likelihood of early success at produc-

ing a new message that matched the old tags.

 12.4 SECURITY OF MACs

Just as with encryption algorithms and hash functions, we can group attacks on 

MACs into two categories: brute-force attacks and cryptanalysis.

Brute-Force Attacks

A brute-force attack on a MAC is a more difficult undertaking than a brute-force 

attack on a hash function because it requires known message-tag pairs. Let us see 

why this is so. To attack a hash code, we can proceed in the following way. Given 

a fixed message x with n-bit hash code h = H(x), a brute-force method of finding 

a collision is to pick a random bit string y and check if H(y) = H(x). The attacker 

can do this repeatedly off line. Whether an off-line attack can be used on a MAC 

algorithm depends on the relative size of the key and the tag.

To proceed, we need to state the desired security property of a MAC algo-

rithm, which can be expressed as follows.

 ■ Computation resistance: Given one or more text-MAC pairs [xi, MAC(K, xi)], 

it is computationally infeasible to compute any text-MAC pair [x, MAC(K, x)] 

for any new input x ≠ xi.

In other words, the attacker would like to come up with the valid MAC code for a 

given message x. There are two lines of attack possible: attack the key space and at-

tack the MAC value. We examine each of these in turn.

If an attacker can determine the MAC key, then it is possible to generate a 

valid MAC value for any input x. Suppose the key size is k bits and that the attacker 

has one known text-tag pair. Then the attacker can compute the n-bit tag on the 

known text for all possible keys. At least one key is guaranteed to produce the cor-

rect tag, namely, the valid key that was initially used to produce the known text-tag 

pair. This phase of the attack takes a level of effort proportional to 2k (that is, one 

operation for each of the 2k possible key values). However, as was described earlier, 

because the MAC is a many-to-one mapping, there may be other keys that produce 

the correct value. Thus, if more than one key is found to produce the correct value, 

additional text-tag pairs must be tested. It can be shown that the level of effort 

drops off rapidly with each additional text-MAC pair and that the overall level of 

effort is roughly 2k [MENE97].
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An attacker can also work on the tag without attempting to recover the key. 

Here, the objective is to generate a valid tag for a given message or to find a  message 

that matches a given tag. In either case, the level of effort is comparable to that for 

attacking the one-way or weak collision-resistant property of a hash code, or 2n. 

In the case of the MAC, the attack cannot be conducted off line without further 

input; the attacker will require chosen text-tag pairs or knowledge of the key.

To summarize, the level of effort for brute-force attack on a MAC algorithm 

can be expressed as min(2k, 2n). The assessment of strength is similar to that for 

symmetric encryption algorithms. It would appear reasonable to require that the 

key length and tag length satisfy a relationship such as min(k, n) Ú N, where N is 

perhaps in the range of 128 bits.

Cryptanalysis

As with encryption algorithms and hash functions, cryptanalytic attacks on MAC 

algorithms seek to exploit some property of the algorithm to perform some attack 

other than an exhaustive search. The way to measure the resistance of a MAC algo-

rithm to cryptanalysis is to compare its strength to the effort required for a brute-

force attack. That is, an ideal MAC algorithm will require a cryptanalytic effort 

greater than or equal to the brute-force effort.

There is much more variety in the structure of MACs than in hash functions, 

so it is difficult to generalize about the cryptanalysis of MACs. Furthermore, far less 

work has been done on developing such attacks. A useful survey of some methods 

for specific MACs is [PREN96].

 12.5 MACs BASED ON HASH FUNCTIONS: HMAC

Later in this chapter, we look at examples of a MAC based on the use of a symmetric 

block cipher. This has traditionally been the most common approach to constructing 

a MAC. In recent years, there has been increased interest in developing a MAC de-

rived from a cryptographic hash function. The motivations for this interest are

1. Cryptographic hash functions such as MD5 and SHA generally execute faster 

in software than symmetric block ciphers such as DES.

2. Library code for cryptographic hash functions is widely available.

With the development of AES and the more widespread availability of code 

for encryption algorithms, these considerations are less significant, but hash-based 

MACs continue to be widely used.

A hash function such as SHA was not designed for use as a MAC and can-

not be used directly for that purpose, because it does not rely on a secret key. 

There have been a number of proposals for the incorporation of a secret key into 

an existing hash algorithm. The approach that has received the most support is 

HMAC [BELL96a, BELL96b]. HMAC has been issued as RFC 2104, has been 

chosen as the mandatory-to-implement MAC for IP security, and is used in other 

Internet protocols, such as SSL. HMAC has also been issued as a NIST standard 

(FIPS 198).
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HMAC Design Objectives

RFC 2104 lists the following design objectives for HMAC.

 ■ To use, without modifications, available hash functions. In particular, to use 

hash functions that perform well in software and for which code is freely and 

widely available.

 ■ To allow for easy replaceability of the embedded hash function in case faster 

or more secure hash functions are found or required.

 ■ To preserve the original performance of the hash function without incurring a 

significant degradation.

 ■ To use and handle keys in a simple way.

 ■ To have a well understood cryptographic analysis of the strength of the au-

thentication mechanism based on reasonable assumptions about the embed-

ded hash function.

The first two objectives are important to the acceptability of HMAC. HMAC 

treats the hash function as a “black box.” This has two benefits. First, an existing im-

plementation of a hash function can be used as a module in implementing HMAC. 

In this way, the bulk of the HMAC code is prepackaged and ready to use without 

modification. Second, if it is ever desired to replace a given hash function in an 

HMAC implementation, all that is required is to remove the existing hash function 

module and drop in the new module. This could be done if a faster hash function 

were desired. More important, if the security of the embedded hash function were 

compromised, the security of HMAC could be retained simply by replacing the em-

bedded hash function with a more secure one (e.g., replacing SHA-2 with SHA-3).

The last design objective in the preceding list is, in fact, the main advantage 

of HMAC over other proposed hash-based schemes. HMAC can be proven secure 

provided that the embedded hash function has some reasonable cryptographic 

strengths. We return to this point later in this section, but first we examine the struc-

ture of HMAC.

HMAC Algorithm

Figure 12.5 illustrates the overall operation of HMAC. Define the following terms.

H = embedded hash function (e.g., MD5, SHA-1, RIPEMD-160)

IV = initial value input to hash function

M = message input to HMAC (including the padding specified in the embedded 

hash function)

Yi = i th block of M, 0 … i … (L - 1)

L = number of blocks in M
b = number of bits in a block

n = length of hash code produced by embedded hash function

K = secret key; recommended length is Ú n; if key length is greater than b, the 

key is input to the hash function to produce an n-bit key

K+ = K padded with zeros on the left so that the result is b bits in length
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ipad  = 00110110 (36 in hexadecimal) repeated b/8 times

opad = 01011100 (5C in hexadecimal) repeated b/8 times

Then HMAC can be expressed as

 HMAC(K, M) = H[(K+ ⊕ opad) }H[(K+ ⊕ ipad) }M]] 

We can describe the algorithm as follows.

1. Append zeros to the left end of K to create a b-bit string K+ (e.g., if K is of 

length 160 bits and b = 512, then K will be appended with 44 zeroes).

2. XOR (bitwise exclusive-OR) K+ with ipad to produce the b-bit block Si.

3. Append M to Si.

4. Apply H to the stream generated in step 3.

5. XOR K+ with opad to produce the b-bit block So.

6. Append the hash result from step 4 to So.

7. Apply H to the stream generated in step 6 and output the result.

Note that the XOR with ipad results in flipping one-half of the bits of K. 

Similarly, the XOR with opad results in flipping one-half of the bits of K, using a 

Figure 12.5 HMAC Structure
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different set of bits. In effect, by passing Si and So through the compression function 

of the hash algorithm, we have pseudorandomly generated two keys from K.

HMAC should execute in approximately the same time as the embedded hash 

function for long messages. HMAC adds three executions of the hash compression 

function (for Si, So, and the block produced from the inner hash).

A more efficient implementation is possible, as shown in Figure 12.6. Two 

quantities are precomputed:

f(IV, (K+ ⊕ ipad))

f(IV, (K+ ⊕ opad))

where f(cv, block) is the compression function for the hash function, which takes as 

arguments a chaining variable of n bits and a block of b bits and produces a chain-

ing variable of n bits. These quantities only need to be computed initially and every 

time the key changes. In effect, the precomputed quantities substitute for the initial 

value (IV) in the hash function. With this implementation, only one additional in-

stance of the compression function is added to the processing normally produced 

Figure 12.6 Efficient Implementation of HMAC
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by the hash function. This more efficient implementation is especially worthwhile if 

most of the messages for which a MAC is computed are short.

Security of HMAC

The security of any MAC function based on an embedded hash function depends 

in some way on the cryptographic strength of the underlying hash function. The 

appeal of HMAC is that its designers have been able to prove an exact relation-

ship between the strength of the embedded hash function and the strength of 

HMAC.

The security of a MAC function is generally expressed in terms of the prob-

ability of successful forgery with a given amount of time spent by the forger and 

a given number of message-tag pairs created with the same key. In essence, it is 

proved in [BELL96a] that for a given level of effort (time, message–tag pairs) on 

messages generated by a legitimate user and seen by the attacker, the probability 

of successful attack on HMAC is equivalent to one of the following attacks on the 

embedded hash function.

1. The attacker is able to compute an output of the compression function even 

with an IV that is random, secret, and unknown to the attacker.

2. The attacker finds collisions in the hash function even when the IV is random 

and secret.

In the first attack, we can view the compression function as equivalent to the 

hash function applied to a message consisting of a single b-bit block. For this attack, 

the IV of the hash function is replaced by a secret, random value of n bits. An attack 

on this hash function requires either a brute-force attack on the key, which is a level 

of effort on the order of 2n, or a birthday attack, which is a special case of the second 

attack, discussed next.

In the second attack, the attacker is looking for two messages M and M′ that 

produce the same hash: H(M) = H(M′). This is the birthday attack discussed in 

Chapter 11. We have shown that this requires a level of effort of 2n/2 for a hash 

length of n. On this basis, the security of MD5 is called into question, because a 

level of effort of 264 looks feasible with today’s technology. Does this mean that 

a 128-bit hash function such as MD5 is unsuitable for HMAC? The answer is no, 

because of the following argument. To attack MD5, the attacker can choose any 

set of messages and work on these off line on a dedicated computing facility to 

find a collision. Because the attacker knows the hash algorithm and the default IV, 

the attacker can generate the hash code for each of the messages that the attacker 

generates. However, when attacking HMAC, the attacker cannot generate mes-

sage/code pairs off line because the attacker does not know K. Therefore, the at-

tacker must observe a sequence of messages generated by HMAC under the same 

key and perform the attack on these known messages. For a hash code length of 

128 bits, this requires 264 observed blocks (272 bits) generated using the same key. 

On a 1-Gbps link, one would need to observe a continuous stream of messages 

with no change in key for about 150,000 years in order to succeed. Thus, if speed 

is a concern, it is fully acceptable to use MD5 rather than SHA-1 as the embedded 

hash function for HMAC.
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 12.6 MACs BASED ON BLOCK CIPHERS: DAA AND CMAC

In this section, we look at two MACs that are based on the use of a block cipher 

mode of operation. We begin with an older algorithm, the Data Authentication 

Algorithm (DAA), which is now obsolete. Then we examine CMAC, which is de-

signed to overcome the deficiencies of DAA.

Data Authentication Algorithm

The Data Authentication Algorithm (DAA), based on DES, has been one of the 

most widely used MACs for a number of years. The algorithm is both a FIPS pub-

lication (FIPS PUB 113) and an ANSI standard (X9.17). However, as we discuss 

subsequently, security weaknesses in this algorithm have been discovered, and it is 

being replaced by newer and stronger algorithms.

The algorithm can be defined as using the cipher block chaining (CBC) mode 

of operation of DES (Figure 6.4) with an initialization vector of zero. The data (e.g., 

message, record, file, or program) to be authenticated are grouped into contiguous 

64-bit blocks: D1, D2, c , DN. If necessary, the final block is padded on the right 

with zeroes to form a full 64-bit block. Using the DES encryption algorithm E and a 

secret key K, a data authentication code (DAC) is calculated as follows (Figure 12.7).

O1  

=  E(K, D)

O2  

=  E(K, [D2⊕O1])

O3  =  E(K, [D3⊕O2])#
#
#
ON = E(K, [DN⊕ON - 1])

Figure 12.7 Data Authentication Algorithm (FIPS PUB 113)
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The DAC consists of either the entire block ON or the leftmost M bits of the 

block, with 16 … M … 64.

Cipher-Based Message Authentication Code (CMAC)

As was mentioned, DAA has been widely adopted in government and industry. 

[BELL00] demonstrated that this MAC is secure under a reasonable set of security 

criteria, with the following restriction. Only messages of one fixed length of mn bits 

are processed, where n is the cipher block size and m is a fixed positive integer. As 

a simple example, notice that given the CBC MAC of a one-block message X, say 

T = MAC(K, X), the adversary immediately knows the CBC MAC for the two-

block message X } (X⊕ T) since this is once again T.

Black and Rogaway [BLAC00] demonstrated that this limitation could be 

overcome using three keys: one key K of length k to be used at each step of the 

cipher block chaining and two keys of length b, where b is the cipher block length. 

This proposed construction was refined by Iwata and Kurosawa so that the two 

n-bit keys could be derived from the encryption key, rather than being provided 

 separately [IWAT03]. This refinement, adopted by NIST, is the Cipher-based 
Message Authentication Code (CMAC) mode of operation for use with AES and 

triple DES. It is specified in NIST Special Publication 800-38B.

First, let us define the operation of CMAC when the message is an integer 

multiple n of the cipher block length b. For AES, b = 128, and for triple DES, 

b = 64. The message is divided into n blocks (M1, M2, c , Mn). The algorithm 

makes use of a k-bit encryption key K and a b-bit constant, K1. For AES, the key 

size k is 128, 192, or 256 bits; for triple DES, the key size is 112 or 168 bits. CMAC is 

calculated as follows (Figure 12.8).

 C1 

= E(K, M1)

 C2 

= E(K, [M2⊕ C1])

 C3 

= E(K, [M3⊕ C2])#
#
#

 Cn = E(K, [Mn⊕ Cn - 1 ⊕ K1])

 T = MSBTlen(Cn)

where

 T    = message authentication code, also referred to as the tag

 Tlen   = bit length of T

 MSBs(X) = the s leftmost bits of the bit string X

If the message is not an integer multiple of the cipher block length, then the 

final block is padded to the right (least significant bits) with a 1 and as many 0s as 

necessary so that the final block is also of length b. The CMAC operation then pro-

ceeds as before, except that a different b-bit key K2 is used instead of K1.
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The two b-bit keys are derived from the k-bit encryption key as follows.

 L  = E(K, 0b)

 K1 = L # x

 K2 = L # x2 = (L # x) # x

where multiplication ( # ) is done in the finite field GF(2b) and x and x2 are first- and 

second-order polynomials that are elements of GF(2b). Thus, the binary represen-

tation of x consists of b - 2 zeros followed by 10; the binary representation of x2 

consists of b - 3 zeros followed by 100. The finite field is defined with respect to 

an irreducible polynomial that is lexicographically first among all such polynomials 

with the minimum possible number of nonzero terms. For the two approved block 

sizes, the polynomials are x64 + x4 + x3 + x + 1 and x128 + x7 + x2 + x + 1.

To generate K1 and K2, the block cipher is applied to the block that consists 

entirely of 0 bits. The first subkey is derived from the resulting ciphertext by a 

left shift of one bit and, conditionally, by XORing a constant that depends on the 

block size. The second subkey is derived in the same manner from the first subkey. 

This property of finite fields of the form GF(2b) was explained in the discussion of 

MixColumns in Chapter 6.

Figure 12.8 Cipher-Based Message Authentication Code (CMAC)
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 12.7 AUTHENTICATED ENCRYPTION: CCM AND GCM

Authenticated encryption (AE) is a term used to describe encryption systems that 

simultaneously protect confidentiality and authenticity (integrity) of communica-

tions. Many applications and protocols require both forms of security, but until re-

cently the two services have been designed separately.

There are four common approaches to providing both confidentiality and en-

cryption for a message M.

 ■ Hashing followed by encryption (H S E): First compute the cryptographic 

hash function over M as h = H(M). Then encrypt the message plus hash func-

tion: E(K, (M }h)).

 ■ Authentication followed by encryption (A S E): Use two keys. First authen-

ticate the plaintext by computing the MAC value as T = MAC(K1, M). Then 

encrypt the message plus tag: E(K2, [M }T ]). This approach is taken by the 

SSL/TLS protocols (Chapter 17).

 ■ Encryption followed by authentication (E S A): Use two keys. First encrypt 

the message to yield the ciphertext C = E(K2, M). Then authenticate the 

 ciphertext with T = MAC(K1, C) to yield the pair (C, T). This approach is 

used in the IPSec protocol (Chapter 20).

 ■ Independently encrypt and authenticate (E + A). Use two keys. Encrypt 

the message to yield the ciphertext C = E(K2, M). Authenticate the plain-

text with T = MAC(K1, M) to yield the pair (C, T). These operations can 

be  performed in either order. This approach is used by the SSH protocol 

(Chapter 17).

Both decryption and verification are straightforward for each approach. For 

H S E, A S E, and E + A, decrypt first, then verify. For E S A, verify first, then 

decrypt. There are security vulnerabilities with all of these approaches. The H S E 

approach is used in the Wired Equivalent Privacy (WEP) protocol to protect WiFi 

networks. This approach had fundamental weaknesses and led to the replacement of 

the WEP protocol. [BLAC05] and [BELL00] point out that there are security con-

cerns in each of the three encryption/MAC approaches listed above. Nevertheless, 

with proper design, any of these approaches can provide a high level of security. 

This is the goal of the two approaches discussed in this section, both of which have 

been standardized by NIST.

Counter with Cipher Block Chaining-Message 
Authentication Code

The CCM mode of operation was standardized by NIST specifically to sup-

port the security requirements of IEEE 802.11 WiFi wireless local area networks 

(Chapter 18), but can be used in any networking application requiring authenti-

cated encryption. CCM is a variation of the encrypt-and-MAC approach to authen-

ticated encryption. It is defined in NIST SP 800-38C.

The key algorithmic ingredients of CCM are the AES encryption algorithm 

(Chapter 6), the CTR mode of operation (Chapter 7), and the CMAC authentication 
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algorithm (Section 12.6). A single key K is used for both encryption and MAC algo-

rithms. The input to the CCM encryption process consists of three elements.

1. Data that will be both authenticated and encrypted. This is the plaintext mes-

sage P of data block.

2. Associated data A that will be authenticated but not encrypted. An example 

is a protocol header that must be transmitted in the clear for proper protocol 

operation but which needs to be authenticated.

3. A nonce N that is assigned to the payload and the associated data. This is a 

unique value that is different for every instance during the lifetime of a pro-

tocol association and is intended to prevent replay attacks and certain other 

types of attacks.

Figure 12.9 illustrates the operation of CCM. For authentication, the input 

includes the nonce, the associated data, and the plaintext. This input is formatted 

as a sequence of blocks B0 through Br. The first block contains the nonce plus some 

formatting bits that indicate the lengths of the N, A, and P elements. This is fol-

lowed by zero or more blocks that contain A, followed by zero of more blocks that 

contain P. The resulting sequence of blocks serves as input to the CMAC algorithm, 

which produces a MAC value with length Tlen, which is less than or equal to the 

block length (Figure 12.9a).

For encryption, a sequence of counters is generated that must be independent 

of the nonce. The authentication tag is encrypted in CTR mode using the single 

counter Ctr0. The Tlen most significant bits of the output are XORed with the tag to 

produce an encrypted tag. The remaining counters are used for the CTR mode en-

cryption of the plaintext (Figure 7.7). The encrypted plaintext is concatenated with 

the encrypted tag to form the ciphertext output (Figure 12.9b).

SP 800-38C defines the authentication/encryption process as follows.

1. Apply the formatting function to (N, A, P) to produce the blocks B0, B1, c , Br.

2. Set Y0 = E(K, B0).

3. For i = 1 to r, do Yi = E(K, (Bi⊕ Yi- 1)).

4. Set T = MSBTlen(Yr).

5. Apply the counter generation function to generate the counter blocks 

Ctr0, Ctr1, c , Ctrm, where m = <Plen/128= .
6. For j = 0 to m, do Sj = E(K, Ctrj).

7. Set S = S1 }S2 } g }Sm.

8. Return C = (P⊕MSBPlen(S)) } (T⊕MSBTlen(S0)).

For decryption and verification, the recipient requires the following input: the 

ciphertext C, the nonce N, the associated data A, the key K, and the initial counter 

Ctr0. The steps are as follows.

1. If Clen … Tlen, then return INVALID.

2. Apply the counter generation function to generate the counter blocks 

Ctr0, Ctr1, c , Ctrm, where m = <Clen/128= .
3. For j = 0 to m, do Sj = E(K, Ctrj).
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4. Set S = S1 }S2 } g }Sm.

5. Set P = MSBClen - Tlen(C)⊕MSBClen - Tlen(S).

6. Set T = LSBTlen(C)⊕MSBTlen(S0).

7. Apply the formatting function to N, A, P) to produce the blocks B0, B1, c , Br.

8. Set Y0 = E(K, B0).

9. For i = 1 to r do Yi = E(K, (Bi⊕ Yi- 1)).

10. If T ≠ MSBTlen(Yr), then return INVALID, else return P.

Figure 12.9 Counter with Cipher Block Chaining-Message Authentication Code (CCM)
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CCM is a relatively complex algorithm. Note that it requires two complete 

passes through the plaintext, once to generate the MAC value, and once for encryp-

tion. Further, the details of the specification require a tradeoff between the length 

of the nonce and the length of the tag, which is an unnecessary restriction. Also note 

that the encryption key is used twice with the CTR encryption mode: once to gener-

ate the tag and once to encrypt the plaintext plus tag. Whether these complexities 

add to the security of the algorithm is not clear. In any case, two analyses of the 

algorithm ([JONS02] and [ROGA03]) conclude that CCM provides a high level of 

security.

Galois/Counter Mode

The GCM mode of operation, standardized by NIST in NIST SP 800-38D, is de-

signed to be parallelizable so that it can provide high throughput with low cost and 

low latency. In essence, the message is encrypted in variant of CTR mode. The re-

sulting ciphertext is multiplied with key material and message length information 

over GF(2128) to generate the authenticator tag. The standard also specifies a mode 

of operation that supplies the MAC only, known as GMAC.

The GCM mode makes use of two functions: GHASH, which is a keyed hash 

function, and GCTR, which is essentially the CTR mode with the counters deter-

mined by a simple increment by one operation.

GHASHH(X) takes a input the hash key H and a bit string X such that 

len(X) = 128m bits for some positive integer m and produces a 128-bit MAC value. 

The function may be specified as follows (Figure 12.10a).

1. Let X1, X2, c , Xm - 1, Xm denote the unique sequence of blocks such that 

X = X1 }X2 } g }Xm - 1 }Xm.

2. Let Y0 be a block of 128 zeros, designated as 0128.

3. For i = 1, c , m, let Yi = (Yi- 1⊕ Xi) # H, where #  designates multiplication 

in GF(2128).

4. Return Ym.

The GHASHH(X) function can be expressed as

 (X1
# Hm)⊕ (X2

# Hm - 1)⊕ g ⊕ (Xm - 1
# H2)⊕ (Xm

# H) 

This formulation has desirable performance implications. If the same hash key 

is to be used to authenticate multiple messages, then the values H2, H3, c  can be 

precalculated one time for use with each message to be authenticated. Then, the 

blocks of the data to be authenticated (X1, X2, c , Xm) can be processed in paral-

lel, because the computations are independent of one another.

GCTRK(ICB, X) takes a input a secret key K and a bit string X arbitrary 

length and returns a ciphertext Y of bit length (X). The function may be specified as 

follows (Figure 12.10b).

1. If X is the empty string, then return the empty string as Y.

2. Let n = <(len(X)/128)= . That is, n is the smallest integer greater than or equal 

to (X)/128.
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3. Let X1, X2, c , Xn - 1, Xn
* denote the unique sequence of bit strings such that

X = X1 }X2 } g }Xn - 1 }Xn
*;

X1, X2, c , Xn - 1 are complete 128@bit blocks.

4. Let CB1 = ICB.

5. For, i = 2 to n let CBi = inc32(CBi - 1), where the inc32(S) function increments 

the rightmost 32 bits of S by 1 mod 232, and the remaining bits are unchanged.

6. For i = 1 to n - 1, do Yi = Xi⊕ E(K, CBi).

7. Let Y n
* = Xn

*⊕MSBlen(Xn
*)(E(K, CBn)).

8. Let Y = Y1 }Y2 } c }Yn - 1 }Y n
*

9. Return Y.

Note that the counter values can be quickly generated and that the encryption 

operations can be performed in parallel.

Figure 12.10 GCM Authentication and Encryption Functions
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We can now define the overall authenticated encryption function 

(Figure 12.11). The input consists of a secret key K, an initialization vector IV, a 

plaintext P, and additional authenticated data A. The notation [x]s means the s-bit 

binary representation of the nonnegative integer x. The steps are as follows.

1. Let H = E(K, 0128).

2. Define a block, J0, as

If len(IV) = 96, then let J0 = IV }031 }1.

If len (IV) ≠ 96, then let s = 128<len(IV)/128= - len(IV), and let 

J0 = GHASHH(IV }0s + 64 } [len(IV)]64).

3. Let C = GCTRK(inc32(J0), P).

4. Let u = 128<len(C)/128= - len(C) and let v = 128<len(A)/128= - len(A).

5. Define a block, S, as

S = GHASHH(A }0v }C }0u } [len(A)]64 } [len(C)]64)

6. Let T = MSBt(GCTRK(J0, S)), where t is the supported tag length.

7. Return (C, T).

Figure 12.11 Galois Counter—Message Authentication Code (GCM)
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In step 1, the hash key is generated by encrypting a block of all zeros with 

the secret key K. In step 2, the pre-counter block (J0) is generated from the IV. 

In particular, when the length of the IV is 96 bits, then the padding string 031 }1 

is appended to the IV to form the pre-counter block. Otherwise, the IV is  padded 

with the minimum number of 0 bits, possibly none, so that the length of the result-

ing string is a multiple of 128 bits (the block size); this string in turn is appended 

with 64 additional 0 bits, followed by the 64-bit representation of the length of 

the IV, and the GHASH function is applied to the resulting string to form the 

pre-counter block.

Thus, GCM is based on the CTR mode of operation and adds a MAC that au-

thenticates both the message and additional data that requires only authentication. 

The function that computes the hash uses only multiplication in a Galois field. This 

choice was made because the operation of multiplication is easy to perform within a 

Galois field and is easily implemented in hardware [MCGR05].

[MCGR04] examines the available block cipher modes of operation and 

shows that a CTR-based authenticated encryption approach is the most efficient 

mode of operation for high-speed packet networks. The paper further demonstrates 

that GCM meets a high level of security requirements.

 12.8 KEY WRAPPING

Background

The most recent block cipher mode of operation defined by NIST is the Key Wrap 

(KW) mode of operation (SP 800-38F), which uses AES or triple DEA as the un-

derlying encryption algorithm. The AES version is also documented in RFC 3394.

The purpose of key wrapping is to securely exchange a symmetric key to be 

shared by two parties, using a symmetric key already shared by those parties. The 

latter key is called a key encryption key (KEK).

Two questions need to be addressed at this point. First, why do we need to 

use a symmetric key already known to two parties to encrypt a new symmetric key? 

Such a requirement is found in a number of protocols described in this book, such 

as the key management portion of IEEE 802.11 and IPsec. Quite often, a protocol 

calls for a hierarchy of keys, with keys lower on the hierarchy used more frequently, 

and changed more frequently to thwart attacks. A higher-level key, which is used in-

frequently and therefore more resistant to cryptanalysis, is used to encrypt a newly 

created lower-level key so that it can be exchanged between parties that share the 

higher-level key.

The second question is, why do we need a new mode? The intent of the new 

mode is to operate on keys whose length is greater than the block size of the encryp-

tion algorithm. For example, AES uses a block size of 128 bits but can use a key 

size of 128, 192, or 256 bits. In the latter two cases, encryption of the key involves 

multiple blocks. We consider the value of key data to be greater than the value of 

other data, because the key will be used multiple times, and compromise of the 

key compromises all of the data encrypted with the key. Therefore, NIST desired 
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a robust encryption mode. KW is robust in the sense that each bit of output can be 

expected to depend in a nontrivial fashion on each bit of input. This is not the case 

for any of the other modes of operation that we have described. For example, in 

all of the modes so far described, the last block of plaintext only influences the last 

block of ciphertext. Similarly, the first block of ciphertext is derived only from the 

first block of plaintext.

To achieve this robust operation, KW achieves a considerably lower through-

put than the other modes, but the tradeoff may be appropriate for some key 

 management applications. Also, KW is only used for small amounts of plaintext 

compared to, say, the encryption of a message or a file.

The Key Wrapping Algorithm

The key wrapping algorithm operates on blocks of 64 bits. The input to the algo-

rithm consists of a 64-bit constant, discussed subsequently, and a plaintext key that 

is divided into blocks of 64 bits. We use the following notation:

MSB64(W) most significant 64 bits of W

LSB64(W) least significant 64 bits of W

W temporary value; output of encryption function

bitwise exclusive-OR

} concatenation

K key encryption key

n number of 64-bit key data blocks

s number of stages in the wrapping process; s = 6n

Pi ith plaintext key data block; 1 … i … n

Ci ith ciphertext data block; 0 … i … n

A(t) 64-bit integrity check register after encryption stage t; 1 … t … s

A(0) initial integrity check value (ICV); in hexadecimal:  

A6A6A6A6A6A6A6A6

R(t, i) 64-bit register i after encryption stage t; 1 … t … s; 1 … i … n

We now describe the key wrapping algorithm:

Inputs: Plaintext, n 64-bit values (P1, P2, c , Pn)

Key encryption key, K

Outputs: Ciphertext, (n + 1) 64-bit values (C0, C1, c , Cn)

1. Initialize variables.

A(0) = A6A6A6A6A6A6A6A6

 for i = 1 to n

  R(0, i) = Pi

⊕
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2. Calculate intermediate values.

for t = 1 to s

W = E(K, [A(t−1) } R(t−1, 1)])
A(t) = t⊕ MSB64(W)

R(t, n) = LSB64(W)

for i = 1 to n−1

  R(t, i) = R(t−1, i+1)

3. Output results.

C0 = A(s)

for i = 1 to n

Ci = R(s, i)

Note that the ciphertext is one block longer than the plaintext key, to ac-

commodate the ICV. Upon unwrapping (decryption), both the 64-bit ICV and the 

plaintext key are recovered. If the recovered ICV differs from the input value of 

hexadecimal A6A6A6A6A6A6A6A6, then an error or alteration has been detected 

and the plaintext key is rejected. Thus, the key wrap algorithm provides not only 

confidentiality but also data integrity.

Figure 12.12 illustrated the key wrapping algorithm for encrypting a 256-bit 

key. Each box represents one encryption stage (one value of t). Note that the A 

output is fed as input to the next stage (t + 1), whereas the R output skips forward 

n stages (t + n), which in this example is n = 4. This arrangement further increases 

the avalanche effect and the mixing of bits. To achieve this skipping of stages, a slid-

ing buffer is used, so that the R output from stage t is shifted in the buffer one posi-

tion for each stage, until it becomes the input for stage t + n. This might be clearer 

if we expand the inner for loop for a 256-bit key (n = 4). Then the assignments are 

as follows:

 R(t, 1) = R(t - 1, 2)

 R(t, 2) = R(t - 1, 3)

 R(t, 3) = R(t - 1, 4)

For example, consider that at stage 5, the R output has a value of R(5, 4) = x.  

At stage 6, we execute R(6, 3) = R(5, 4) = x. At stage 7, we execute R(7, 2) = R 

(6, 3) = x. At stage 8, we execute R(8, 1) = R(7, 2) = x. So, at stage 9, the input 

value of R(t - 1, 1) is R(8, 1) = x.

Figure 12.13 depicts the operation of stage t for a 256-bit key. The dashed 

feedback lines indicate the assignment of new values to the stage variables.

Key Unwrapping

The key unwrapping algorithm can be defined as follows:

Inputs: Ciphertext, (n + 1) 64-bit values (C0, C1, c , Cn)

Key encryption key, K
Outputs: Plaintext, n 64-bit values (P1, P2, c , Pn), ICV
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1. Initialize variables.

A(s) = C0

for i = 1 to n

R(s, i) = Ci

2. Calculate intermediate values.

for t = s to 1

W = D(K, [(A(t)⊕  t) }  R(t, n)])

Figure 12.12 Key Wrapping Operation for 256-Bit Key
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A(t–1) = MSB64(W)

R(t–1, 1) = LSB64(W)

for i = 2 to n

   R(t–1, i) = R(t, i–1)

3. Output results.

if A(0) = A6A6A6A6A6A6A6A6

then

 for i = 1 to n

  P(i) = R(0, i)

else

 return error

Note that the decryption function is used in the unwrapping algorithm.

We now demonstrate that the unwrap function is the inverse of the wrap func-

tion, that is, that the unwrap function recovers the plaintext key and the ICV. First, 

note that because the index variable t is counted down from s to 1 for unwrapping, 

stage t of the unwrap algorithm corresponds to stage t of the wrap algorithm. The 

input variables to stage t of the wrap algorithm are indexed at t - 1 and the output 

variables of stage t of the unwrap algorithm are indexed at t - 1. Thus, to demon-

strate that the two algorithms are inverses of each other, we need only demonstrate 

that the output variables of stage t of the unwrap algorithm are equal to the input 

variables to stage t of the wrap algorithm.

This demonstration is in two parts. First we demonstrate that the calculation 

of A and R variables prior to the for loop are inverses. To do this, let us simplify 

the notation a bit. Define the 128-bit value T to be the 64-bit value t followed by 64 

zeros. Then, the first three lines of step 2 of the wrap algorithm can be written as the 

following single line:

  A(t) }R(t, n) = T⊕ E(K, [A(t - 1) }R(t - 1, 1)])   (12.1)

The first three lines of step 2 of the unwrap algorithm can be written as:

  A(t - 1) }R(t - 1, 1) = D(K, ([A(t) }R(t, n)]⊕ T))   (12.2)

Figure 12.13 Key Wrapping Operation for 256-Bit Key: Stage t

A(t – 1)

Encrypt

MSB

K

t LSB

R(t – 1, 1) R(t – 1, 2)

R(t – 1, 3)

R(t – 1, 4)



12.9 / PSEUDORANDOM NUMBER GENERATION USING HASH FUNCTIONS 413

Expanding the right-hand side by substituting from Equation 12.1,

 D(K, ([A(t) }R(t, n)]⊕ T)) = D(K, ([T⊕ E(K, [A(t - 1) }R(t - 1, 1)])]⊕ T)) 

Now we recognize that T⊕ T = 0 and that for any x, x⊕ 0 = x. So,

 D(K, ([A(t) }R(t, n)]⊕ T)) = D(K, ([E(K, [A(t - 1) }R(t - 1, 1)]))

 = A(t - 1) }R(t - 1, 1)

The second part of the demonstration is to show that the for loops in step 2 

of the wrap and unwrap algorithms are inverses. For stage k of the wrap algorithm, 

the variables R(t - 1, 1) through R(t - 1, n) are input. R(t - 1, 1) is used in the 

encryption calculation. R(t - 1, 2) through R(t - 1, n) are mapped, respectively 

into R(t, 1) through R(t, n - 1), and R(t, n) is output from the encryption function. 

For stage k of the unwrap algorithm, the variables R(t, 1) through R(t, n) are input. 

R(t, n) is input to the decryption function to produce R(t - 1, 1). The remaining 

variables R(t - 1, 2) through R(t - 1, n) are generated by the for loop, such that 

they are mapped, respectively, from R(t, 1) through R(t, n - 1).

Thus, we have shown that the output variables of stage k of the unwrap algo-

rithm equal the input variables of stage k of the wrap algorithm.

 12.9 PSEUDORANDOM NUMBER GENERATION USING HASH 
FUNCTIONS AND MACs

The essential elements of any pseudorandom number generator (PRNG) are a seed 

value and a deterministic algorithm for generating a stream of pseudorandom bits. 

If the algorithm is used as a pseudorandom function (PRF) to produce a required 

value, such as a session key, then the seed should only be known to the user of the 

PRF. If the algorithm is used to produce a stream encryption function, then the seed 

has the role of a secret key that must be known to the sender and the receiver.

We noted in Chapters 8 and 10 that, because an encryption algorithm pro-

duces an apparently random output, it can serve as the basis of a (PRNG). Similarly, 

a hash function or MAC produces apparently random output and can be used to 

build a PRNG. Both ISO standard 18031 (Random Bit Generation) and NIST SP 

800-90 (Recommendation for Random Number Generation Using Deterministic 
Random Bit Generators) define an approach for random number generation using 

a cryptographic hash function. SP 800-90 also defines a random number generator 

based on HMAC. We look at these two approaches in turn.

PRNG Based on Hash Function

Figure 12.14a shows the basic strategy for a hash-based PRNG specified in SP 800-

90 and ISO 18031. The algorithm takes as input:

 V = seed

seedlen = bit length of V Ú K + 64, where k is a desired security level  

       expressed in bits

 n = desired number of output bits
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The algorithm uses the cryptographic hash function H with an hash value out-

put of outlen bits. The basic operation of the algorithm is

m = <n/outlen=
data = V

W = the null string

For i = 1 to m

wi = H (data)

W = } wi
data = (data + 1) mod 2seedlen

Return leftmost n bits of W

Thus, the pseudorandom bit stream is w1 }w2 } c }wm with the final block 

truncated if required.

The SP 800-90 specification also provides for periodically updating V to en-

hance security. The specification also indicates that there are no known or suspected 

weaknesses in the hash-based approach for a strong cryptographic hash algorithm, 

such as SHA-2.

Figure 12.14 Basic Structure of Hash-Based PRNGs (SP 800-90)

(a) PRNG using cryptographic hash function

(b) PRNG using HMAC

V

K

Cryptographic
 hash function

Pseudorandom
output

+1

V

HMAC

Pseudorandom
output
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PRNG Based on MAC Function

Although there are no known or suspected weaknesses in the use of a cryptographic 

hash function for a PRNG in the manner of Figure 12.14a, a higher degree of con-

fidence can be achieved by using a MAC. Almost invariably, HMAC is used for 

constructing a MAC-based PRNG. This is because HMAC is a widely used stan-

dardized MAC function and is implemented in many protocols and applications. As 

SP 800-90 points out, the disadvantage of this approach compared to the hash-based 

approach is that the execution time is twice as long, because HMAC involves two 

executions of the underlying hash function for each output block. The advantage of 

the HMAC approach is that it provides a greater degree of confidence in its secu-

rity, compared to a pure hash-based approach.

For the MAC-based approach, there are two inputs: a key K and a seed V. In 

effect, the combination of K and V form the overall seed for the PRNG specified 

in SP 800-90. Figure 12.14b shows the basic structure of the PRNG mechanism, and 

the leftmost column of Figure 12.15 shows the logic. Note that the key remains the 

same for each block of output, and the data input for each block is equal to the tag 

output of the previous block. The SP 800-90 specification also provides for periodi-

cally updating K and V to enhance security.

It is instructive to compare the SP 800-90 recommendation with the use of 

HMAC for a PRNG in some applications, and this is shown in Figure 12.15. For the 

IEEE 802.11i wireless LAN security standard (Chapter 18), the data input consists 

of the seed concatenated with a counter. The counter is incremented for each block 

wi of output. This approach would seem to offer enhanced security compared to the 

SP 800-90 approach. Consider that for SP 800-90, the data input for output block 

wi is just the output wi- 1 of the previous execution of HMAC. Thus, an opponent 

who is able to observe the pseudorandom output knows both the input and output 

of HMAC. Even so, with the assumption that HMAC is secure, knowledge of the 

input and output should not be sufficient to recover K and hence not sufficient to 

predict future pseudorandom bits.

The approach taken by the Transport Layer Security protocol (Chapter 17) 

and the Wireless Transport Layer Security Protocol (Chapter 18) involves invoking 

HMAC twice for each block of output wi. As with IEEE 802.11, this is done in such 

a way that the output does not yield direct information about the input. The double 

use of HMAC doubles the execution burden and would seem to be security overkill.

Figure 12.15 Three PRNGs Based on HMAC

m = <n/outlen=
w0 = V
W = the null string

For i = 1 to m
wi = MAC(K, wi- 1)

W = W }wi

Return leftmost n bits of W

m = <n/outlen=
W = the null string

For i = 1 to m
wi = MAC(K, (V } i))

W = W }wi

Return leftmost n bits of W

m = <n/outlen=
A(0) = V
W = the null string

For i = 1 to m
A(i) = MAC(K, A(i - 1))

wi = MAC(K, (A(i) }V)

W = W }wi

Return leftmost n bits of W

NIST SP 800-90 IEEE 802.11i TLS/WTLS
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 12.10 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms 

authenticator

Cipher-Based Message 

Authentication Code 

(CMAC)

CMAC

Counter with Cipher Block 

Chaining-Message 

Authentication Code 

(CCM)

cryptographic checksum

cryptographic hash  

function

Data Authentication 

Algorithm (DAA)

Galois/Counter Mode  

(GCM)

HMAC

key encryption key

Key Wrap mode

key wrapping

message authentication

message authentication code 

(MAC)

Review Questions 

 12.1 What types of attacks are addressed by message authentication?

 12.2 What two levels of functionality comprise a message authentication or digital signa-
ture mechanism?

 12.3 What are some approaches to producing message authentication?

 12.4 When a combination of symmetric encryption and an error control code is used for 
message authentication, in what order must the two functions be performed?

 12.5 What is a message authentication code?

 12.6 What is the difference between a message authentication code and a one-way hash 
function?

 12.7 In what ways can a hash value be secured so as to provide message authentication?

 12.8 Is it necessary to recover the secret key in order to attack a MAC algorithm?

 12.9 What changes in HMAC are required in order to replace one underlying hash func-
tion with another?

Problems 

 12.1 If F is an error-detection function, either internal or external use (Figure 12.2) will 
provide error-detection capability. If any bit of the transmitted message is altered, 
this will be reflected in a mismatch of the received FCS and the calculated FCS, 
whether the FCS function is performed inside or outside the encryption function. 
Some codes also provide an error-correction capability. Depending on the nature of 
the function, if one or a small number of bits is altered in transit, the error-correction 
code contains sufficient redundant information to determine the errored bit or bits 
and correct them. Clearly, an error-correction code will provide error correction ca-
pability when used external to the encryption function. Will it also provide this capa-
bility if used internal to the encryption function?

 12.2 The data authentication algorithm, described in Section 12.6, can be defined as using 
the cipher block chaining (CBC) mode of operation of DES with an initialization vec-
tor of zero (Figure 12.7). Show that the same result can be produced using the cipher 
feedback mode.
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 12.3 At the beginning of Section 12.6, it was noted that given the CBC MAC of a one-
block message X, say T = MAC(K, X), the adversary immediately knows the CBC 
MAC for the two-block message X } (X⊕ T) since this is once again T. Justify this 
statement.

 12.4 In this problem, we demonstrate that for CMAC, a variant that XORs the second 
key after applying the final encryption doesn’t work. Let us consider this for the 
case of the message being an integer multiple of the block size. Then, the variant 
can be expressed as VMAC(K, M) = CBC(K, M)⊕ K1. Now suppose an adver-
sary is able to ask for the MACs of three messages: the message 0 = 0n, where n is 
the cipher block size; the message 1 = 1n; and the message 1 } 0. As a result of these 
three queries, the adversary gets T0 = CBC(K, 0)⊕ K1; T1 = CBC(K, 1)⊕ K1 and 
T2 = CBC(K, [CBC(K, 1)])⊕ K1. Show that the adversary can compute the correct 
MAC for the (unqueried) message 0 } (T0⊕ T1).

 12.5 In the discussion of subkey generation in CMAC, it states that the block cipher is ap-
plied to the block that consists entirely of 0 bits. The first subkey is derived from the 
resulting string by a left shift of one bit and, conditionally, by XORing a constant that 
depends on the block size. The second subkey is derived in the same manner from the 
first subkey.
a. What constants are needed for block sizes of 192-bits and 256 bits?
b. Explain how the left shift and XOR accomplishes the desired result.

 12.6 Section 12.7 listed four general approaches to provide confidentiality and message 
encryption: H S E, A S E, E S A, and E + A.
a. Which of the above performs decryption before verification?
b. Which of the above performs verification before decryption?

 12.7 Show that the GHASH function calculates

 (X1
# Hm)⊕ (X2

# Hm - 1)⊕ g ⊕ (Xm - 1
# H2)⊕ (Xm

# H) 

 12.8 Draw a figure similar to Figure 12.11 that shows authenticated decryption.

 12.9 Alice want to send a single bit of information (a yes or a no) to Bob by means of a 
word of length 2. Alice and Bob have four possible keys available to perform mes-
sage authentication. The following matrix shows the 2-bit word sent for each message 
under each key:

Message

Key 0 1

1 00 11

2 01 10

3 10 01

4 11 00

a. The preceding matrix is in a useful form for Alice. Construct a matrix with the 
same information that would be more useful for Bob.

b. What is the probability that someone else can successfully impersonate Alice?
c. What is the probability that someone can replace an intercepted message with 

another message successfully?

 12.10 Draw figures similar to Figures 12.12 and 12.13 for the unwrap algorithm.
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 12.11 Consider the following key wrapping algorithm:

1. Initialize variables.
A = A6A6A6A6A6A6A6A6
for i = 1 to n
  R(i) = Pi

2. Calculate intermediate values.
for j = 0 to 5
  for i = 1 to n
   B = E(K, [A } R(i)])
   t = (n × j) + i
   A = t⊕ MSB64(B)
   R(i) = LSB64(B)

3. Output results.
C0 = A
for i = 1 to n
  Ci = R(i)

a. Compare this algorithm, functionally, with the algorithm specified in SP  800-38F 
and described in Section 12.8.

b. Write the corresponding unwrap algorithm.
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The most important development from the work on public-key cryptography is the 

digital signature. The digital signature provides a set of security capabilities that would 

be difficult to implement in any other way.

Figure 13.1 is a generic model of the process of constructing and using digital 

signatures. All of the digital signature schemes discussed in this chapter have this 

 structure. Suppose that Bob wants to send a message to Alice. Although it is not 

important that the message be kept secret, he wants Alice to be certain that the 

message is indeed from him. For this purpose, Bob uses a secure hash function, such 

as SHA-512, to generate a hash value for the message. That hash value, together 

with Bob’s private key serves as input to a digital signature generation algorithm, 

which produces a short block that functions as a digital signature. Bob sends the 

message with the signature  attached. When Alice receives the message plus signa-

ture, she (1) calculates a hash value for the message; (2) provides the hash value and 

Bob’s public key as inputs to a digital signature verification algorithm. If the algo-

rithm returns the result that the signature is valid, Alice is assured that the message 

must have been signed by Bob. No one else has Bob’s private key and therefore no 

one else could have created a signature that could be verified for this message with 

Bob’s public key. In addition, it is impossible to alter the message without access to 

Bob’s private key, so the message is authenticated both in terms of source and in 

terms of data integrity.

We begin this chapter with an overview of digital signatures. We then present the 

Elgamal and Schnorr digital signature schemes, understanding of which makes it easier 

to understand the NIST Digital Signature Algorithm (DSA). The chapter then cov-

ers the two other important standardized digital signature schemes: the Elliptic Curve 

Digital Signature Algorithm (ECDSA) and the RSA Probabilistic Signature Scheme 

(RSA-PSS).

LEARNING OBJECTIVES

After studying this chapter, you should be able to:

 ◆ Present an overview of the digital signature process.

 ◆ Understand the Elgamal digital signature scheme.

 ◆ Understand the Schnorr digital signature scheme.

 ◆ Understand the NIST digital signature scheme.

 ◆ Compare and contrast the NIST digital signature scheme with the Elgamal 

and Schnorr digital signature schemes.

 ◆ Understand the elliptic curve digital signature scheme.

 ◆ Understand the RSA-PSS digital signature scheme.
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 13.1 DIGITAL SIGNATURES

Properties

Message authentication protects two parties who exchange messages from any third 

party. However, it does not protect the two parties against each other. Several forms 

of dispute between the two parties are possible.

Figure 13.1 Simplified Depiction of Essential Elements of Digital Signature Process
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For example, suppose that John sends an authenticated message to Mary, 

using one of the schemes of Figure 12.1. Consider the following disputes that could 

arise.

1. Mary may forge a different message and claim that it came from John. Mary 

would simply have to create a message and append an authentication code 

using the key that John and Mary share.

2. John can deny sending the message. Because it is possible for Mary to forge 

a message, there is no way to prove that John did in fact send the message.

Both scenarios are of legitimate concern. Here is an example of the first 

scenario: An electronic funds transfer takes place, and the receiver increases the 

amount of funds transferred and claims that the larger amount had arrived from 

the sender. An example of the second scenario is that an electronic mail message 

contains instructions to a stockbroker for a transaction that subsequently turns out 

badly. The sender pretends that the message was never sent.

In situations where there is not complete trust between sender and receiver, 

something more than authentication is needed. The most attractive solution to 

this problem is the digital signature. The digital signature must have the following 

properties:

 ■ It must verify the author and the date and time of the signature.

 ■ It must authenticate the contents at the time of the signature.

 ■ It must be verifiable by third parties, to resolve disputes.

Thus, the digital signature function includes the authentication function.

Attacks and Forgeries

[GOLD88] lists the following types of attacks, in order of increasing severity. Here 

A denotes the user whose signature method is being attacked, and C denotes the 

attacker.

 ■ Key-only attack: C only knows A’s public key.

 ■ Known message attack: C is given access to a set of messages and their 

signatures.

 ■ Generic chosen message attack: C chooses a list of messages before attempt-

ing to breaks A’s signature scheme, independent of A’s public key. C then 

 obtains from A valid signatures for the chosen messages. The attack is generic, 

because it does not depend on A’s public key; the same attack is used against 

everyone.

 ■ Directed chosen message attack: Similar to the generic attack, except that the 

list of messages to be signed is chosen after C knows A’s public key but before 

any signatures are seen.

 ■ Adaptive chosen message attack: C is allowed to use A as an “oracle.” This 

means that C may request from A signatures of messages that depend on 

 previously obtained message-signature pairs.
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[GOLD88] then defines success at breaking a signature scheme as an outcome 

in which C can do any of the following with a non-negligible probability:

 ■ Total break: C determines A’s private key.

 ■ Universal forgery: C finds an efficient signing algorithm that provides an 

equivalent way of constructing signatures on arbitrary messages.

 ■ Selective forgery: C forges a signature for a particular message chosen by C.

 ■ Existential forgery: C forges a signature for at least one message. C has 

no  control over the message. Consequently, this forgery may only be a minor 

nuisance to A.

Digital Signature Requirements

On the basis of the properties and attacks just discussed, we can formulate the 

 following requirements for a digital signature.

 ■ The signature must be a bit pattern that depends on the message being signed.

 ■ The signature must use some information only known to the sender to prevent 

both forgery and denial.

 ■ It must be relatively easy to produce the digital signature.

 ■ It must be relatively easy to recognize and verify the digital signature.

 ■ It must be computationally infeasible to forge a digital signature, either by 

constructing a new message for an existing digital signature or by constructing 

a fraudulent digital signature for a given message.

 ■ It must be practical to retain a copy of the digital signature in storage.

A secure hash function, embedded in a scheme such as that of Figure 13.1, provides 

a basis for satisfying these requirements. However, care must be taken in the design 

of the details of the scheme.

Direct Digital Signature

The term direct digital signature refers to a digital signature scheme that involves 

only the communicating parties (source, destination). It is assumed that the destina-

tion knows the public key of the source.

Confidentiality can be provided by encrypting the entire message plus 

 signature with a shared secret key (symmetric encryption). Note that it is important 

to perform the signature function first and then an outer confidentiality function. 

In case of dispute, some third party must view the message and its signature. If the 

signature is calculated on an encrypted message, then the third party also needs 

a ccess to the decryption key to read the original message. However, if the signature 

is the inner operation, then the recipient can store the plaintext message and its 

 signature for later use in dispute resolution.

The validity of the scheme just described depends on the security of the send-

er’s private key. If a sender later wishes to deny sending a particular message, the 

sender can claim that the private key was lost or stolen and that someone else forged 

his or her signature. Administrative controls relating to the security of private keys 
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can be employed to thwart or at least weaken this ploy, but the threat is still there, 

at least to some degree. One example is to require every signed message to include 

a timestamp (date and time) and to require prompt reporting of compromised keys 

to a central authority.

Another threat is that a private key might actually be stolen from X at time T. 

The opponent can then send a message signed with X’s signature and stamped with 

a time before or equal to T.

The universally accepted technique for dealing with these threats is the use 

of a digital certificate and certificate authorities. We defer a discussion of this topic 

until Chapter 14, and focus in this chapter on digital signature algorithms.

 13.2 ELGAMAL DIGITAL SIGNATURE SCHEME

Before examining the NIST Digital Signature Algorithm, it will be helpful to under-

stand the Elgamal and Schnorr signature schemes. Recall from Chapter 10, that the 

Elgamal encryption scheme is designed to enable encryption by a user’s public key 

with decryption by the user’s private key. The Elgamal signature scheme involves 

the use of the private key for digital signature generation and the public key for 

digital signature verification [ELGA84, ELGA85].

Before proceeding, we need a result from number theory. Recall from Chapter 2 

that for a prime number q, if a is a primitive root of q, then

 a, a2, c , aq - 1 

are distinct (mod q). It can be shown that, if a is a primitive root of q, then

1. For any integer m, am K 1 (mod q) if and only if m K 0 (mod q - 1).

2. For any integers, i, j, ai K aj (mod q) if and only if i K j (mod q - 1).

As with Elgamal encryption, the global elements of Elgamal digital  signature 

are a prime number q and a, which is a primitive root of q. User A generates 

a  private/public key pair as follows.

1. Generate a random integer XA, such that 1 6 XA 6 q - 1.

2. Compute YA = aXA mod q.

3. A’s private key is XA; A’s pubic key is {q, a, YA}.

To sign a message M, user A first computes the hash m = H(M), such that 

m is an integer in the range 0 … m … q - 1. A then forms a digital signature as 

follows.

1. Choose a random integer K such that 1 … K … q - 1 and gcd(K, q - 1) = 1. 

That is, K is relatively prime to q - 1.

2. Compute S1 = aK mod q. Note that this is the same as the computation of C1 

for Elgamal encryption.

3. Compute K-1 mod (q - 1). That is, compute the inverse of K modulo q - 1.

4. Compute S2 = K-1(m - XAS1) mod (q - 1).

5. The signature consists of the pair (S1, S2).
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Any user B can verify the signature as follows.

1. Compute V1 = am mod q.

2. Compute V2 = (YA)S1(S1)
S2 mod q.

The signature is valid if V1 = V2. Let us demonstrate that this is so. Assume 

that the equality is true. Then we have

am mod q = (YA)S1(S1)
S2 mod q assume V1 = V2

am mod q = aXAS1aKS2 mod q substituting for YA and S1

am - XAS1 mod q = aKS2 mod q rearranging terms

m - XAS1 K KS2 mod (q - 1) property of primitive roots

m - XAS1 K KK-1 (m - XAS1) mod (q - 1) substituting for S2

For example, let us start with the prime field GF(19); that is, q = 19. It has 

primitive roots {2, 3, 10, 13, 14, 15}, as shown in Table 2.7. We choose a = 10.

Alice generates a key pair as follows:

1. Alice chooses XA = 16.

2. Then YA = aXA mod q = a16 mod 19 = 4.

3. Alice’s private key is 16; Alice’s pubic key is {q, a, YA} = {19, 10, 4}.

Suppose Alice wants to sign a message with hash value m = 14.

1. Alice chooses K = 5, which is relatively prime to q - 1 = 18.

2. S1 = aK mod q = 105 mod 19 = 3 (see Table 2.7).

3. K-1 mod (q - 1) = 5-1 mod 18 = 11.

4. S2 = K-1 (m - XAS1) mod (q - 1) = 11 (14 - (16)(3)) mod 18 = -374

mod 18 = 4.

Bob can verify the signature as follows.

1. V1 = am mod q = 1014 mod 19 = 16.

2. V2 = (YA)S1(S1)
S2 mod q = (43)(34) mod 19 = 5184 mod 19 = 16.

Thus, the signature is valid because V1 = V2.

 13.3 SCHNORR DIGITAL SIGNATURE SCHEME

As with the Elgamal digital signature scheme, the Schnorr signature scheme is 

based on discrete logarithms [SCHN89, SCHN91]. The Schnorr scheme minimizes 

the message-dependent amount of computation required to generate a signature. 

The main work for signature generation does not depend on the message and can 

be done during the idle time of the processor. The message-dependent part of the 

signature generation requires multiplying a 2n-bit integer with an n-bit integer.

The scheme is based on using a prime modulus p, with p - 1 having a prime 

factor q of appropriate size; that is, p - 1 K 0 (mod q). Typically, we use p ≈ 21024 

and q ≈ 2160. Thus, p is a 1024-bit number, and q is a 160-bit number, which is also 

the length of the SHA-1 hash value.
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The first part of this scheme is the generation of a private/public key pair, 

which consists of the following steps.

1. Choose primes p and q, such that q is a prime factor of p - 1.

2. Choose an integer a, such that aq = 1 mod p. The values a, p, and q comprise a 

global public key that can be common to a group of users.

3. Choose a random integer s with 0 6 s 6 q. This is the user’s private key.

4. Calculate v = a-s mod p. This is the user’s public key.

A user with private key s and public key v generates a signature as follows.

1. Choose a random integer r with 0 6 r 6 q and compute x = ar mod p. This 

computation is a preprocessing stage independent of the message M to be 

signed.

2. Concatenate the message with x and hash the result to compute the value e:

e = H(M }x)

3. Compute y = (r + se) mod q. The signature consists of the pair (e, y).

Any other user can verify the signature as follows.

1. Compute x′ = ayve mod p.

2. Verify that e = H (M }x′).

To see that the verification works, observe that

 x′ K ayve K aya-se K ay - se K ar K x (mod p) 

Hence, H (M }x′) = H (M }x).

 13.4 NIST DIGITAL SIGNATURE ALGORITHM

The National Institute of Standards and Technology (NIST) has published 

Federal Information Processing Standard FIPS 186, known as the Digital 

Signature Algorithm (DSA). The DSA makes use of the Secure Hash Algorithm 

(SHA)  described in Chapter 12. The DSA was originally proposed in 1991 and 

revised in 1993 in response to public feedback concerning the security of the 

scheme. There was a further minor revision in 1996. In 2000, an expanded version 

of the standard was issued as FIPS 186-2, subsequently updated to FIPS 186-3 in 

2009, and FIPS 186-4 in 2013. This latest version also incorporates digital signa-

ture algorithms based on RSA and on elliptic curve cryptography. In this section, 

we discuss DSA.

The DSA Approach

The DSA uses an algorithm that is designed to provide only the digital signa-

ture function. Unlike RSA, it cannot be used for encryption or key exchange. 

Nevertheless, it is a public-key technique.
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Figure 13.2 contrasts the DSA approach for generating digital signatures to 

that used with RSA. In the RSA approach, the message to be signed is input to a 

hash function that produces a secure hash code of fixed length. This hash code is 

then encrypted using the sender’s private key to form the signature. Both the mes-

sage and the signature are then transmitted. The recipient takes the message and 

produces a hash code. The recipient also decrypts the signature using the sender’s 

public key. If the calculated hash code matches the decrypted signature, the signa-

ture is accepted as valid. Because only the sender knows the private key, only the 

sender could have produced a valid signature.

The DSA approach also makes use of a hash function. The hash code is pro-

vided as input to a signature function along with a random number k generated for 

this particular signature. The signature function also depends on the sender’s  private 

key (PRa) and a set of parameters known to a group of communicating principals. 

We can consider this set to constitute a global public key (PUG).1 The result is a 

signature consisting of two components, labeled s and r.

At the receiving end, the hash code of the incoming message is generated. The 

hash code and the signature are inputs to a verification function. The verification 

function also depends on the global public key as well as the sender’s public key 

(PUa), which is paired with the sender’s private key. The output of the verification 

function is a value that is equal to the signature component r if the signature is valid. 

The signature function is such that only the sender, with knowledge of the private 

key, could have produced the valid signature.

We turn now to the details of the algorithm.

1It is also possible to allow these additional parameters to vary with each user so that they are a part of 
a user’s public key. In practice, it is more likely that a global public key will be used that is separate from 
each user’s public key.

Figure 13.2 Two Approaches to Digital Signatures
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The Digital Signature Algorithm

DSA is based on the difficulty of computing discrete logarithms (see Chapter 2) 

and is based on schemes originally presented by Elgamal [ELGA85] and Schnorr 

[SCHN91].

Figure 13.3 summarizes the algorithm. There are three parameters that are 

public and can be common to a group of users. An N-bit prime number q is chosen. 

Next, a prime number p is selected with a length between 512 and 1024 bits such 

that q divides (p - 1). Finally, g is chosen to be of the form h(p - 1)/q mod p, where h 

is an integer between 1 and (p - 1) with the restriction that g must be greater 

than 1.2 Thus, the global public-key components of DSA are the same as in the 

Schnorr signature scheme.

With these parameters in hand, each user selects a private key and generates 

a public key. The private key x must be a number from 1 to (q - 1) and should 

be  chosen randomly or pseudorandomly. The public key is calculated from the 

 private key as y = gx mod p. The calculation of y given x is relatively straight-

forward. However, given the public key y, it is believed to be computationally 

 infeasible to  determine x, which is the discrete logarithm of y to the base g, mod p 

(see Chapter 2).

2In number-theoretic terms, g is of order q mod p; see Chapter 2.

Global Public-Key Components

p prime number where 2L - 1 6 p 6 2L 

for 512 … L … 1024 and L a multiple of 64; 

i.e., bit length L between 512 and 1024 bits 

in increments of 64 bits

q prime divisor of (p - 1), where 2N - 1 6 q 6 2N 

i.e., bit length of N bits

g  = h(p - 1)/q is an exponent mod p, 

where h is any integer with 1 6 h 6 (p - 1) 

such that h(p - 1)/q mod p 7 1

User’s Private Key

x random or pseudorandom integer with 0 6 x 6 q

User’s Public Key

y  = gx mod p

User’s Per-Message Secret Number

k random or pseudorandom integer with 0 6 k 6 q

Signing

r =  (gk mod p) mod q

s =  [k-1 (H(M) + xr)] mod q

Signature = (r, s)

Verifying

w = (s′)-1 mod q

u1 = [H(M′)w] mod q

u2 = (r′)w mod q

v = [(gu1yu2) mod p] mod q

TEST: v = r′

M   = message to be signed

H(M)   = hash of M using SHA-1

M′, r′, s′ = received versions of M, r, s

Figure 13.3 The Digital Signature Algorithm (DSA)
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The signature of a message M consists of the pair of numbers r and s, which are 

functions of the public key components (p, q, g), the user’s private key (x), the hash 

code of the message H(M), and an additional integer k that should be generated 

randomly or pseudorandomly and be unique for each signing.

Let M, r′, and s′ be the received versions of M, r, and s, respectively. 

Verification is performed using the formulas shown in Figure 13.3. The receiver 

generates a quantity v that is a function of the public key components, the sender’s 

public key, the hash code of the incoming message, and the received versions of r 

and s. If this quantity matches the r component of the signature, then the signature 

is validated.

Figure 13.4 depicts the functions of signing and verifying.

Figure 13.4 DSA Signing and Verifying
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(b) Verifying
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The structure of the algorithm, as revealed in Figure 13.4, is quite interesting. 

Note that the test at the end is on the value r, which does not depend on the mes-

sage at all. Instead, r is a function of k and the three global public-key components. 

The multiplicative inverse of k (mod q) is passed to a function that also has as inputs 

the message hash code and the user’s private key. The structure of this function is 

such that the receiver can recover r using the incoming message and signature, the 

public key of the user, and the global public key. It is certainly not obvious from 

Figure 13.3 or Figure 13.4 that such a scheme would work. A proof is provided in 

Appendix K.

Given the difficulty of taking discrete logarithms, it is infeasible for an 

 opponent to recover k from r or to recover x from s.

Another point worth noting is that the only computationally demanding 

task in signature generation is the exponential calculation gk mod p. Because this 

value does not depend on the message to be signed, it can be computed ahead of 

time. Indeed, a user could precalculate a number of values of r to be used to sign 

documents as needed. The only other somewhat demanding task is the determi-

nation of a multiplicative inverse, k-1. Again, a number of these values can be 

precalculated.

 13.5 ELLIPTIC CURVE DIGITAL SIGNATURE ALGORITHM

As was mentioned, the 2009 version of FIPS 186 includes a new digital signature 

technique based on elliptic curve cryptography, known as the Elliptic Curve Digital 
Signature Algorithm (ECDSA). ECDSA is enjoying increasing acceptance due 

to  the efficiency advantage of elliptic curve cryptography, which yields security 

comparable to that of other schemes with a smaller key bit length.

First we give a brief overview of the process involved in ECDSA. In essence, 

four elements are involved.

1. All those participating in the digital signature scheme use the same global  domain 

parameters, which define an elliptic curve and a point of origin on the curve.

2. A signer must first generate a public, private key pair. For the private key, the 

signer selects a random or pseudorandom number. Using that random number 

and the point of origin, the signer computes another point on the elliptic curve. 

This is the signer’s public key.

3. A hash value is generated for the message to be signed. Using the private 

key, the domain parameters, and the hash value, a signature is generated. The 

signature consists of two integers, r and s.

4. To verify the signature, the verifier uses as input the signer’s public key, the 

domain parameters, and the integer s. The output is a value v that is compared 

to r. The signature is verified if v = r.

Let us examine each of these four elements in turn.
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Global Domain Parameters

Recall from Chapter 10 that two families of elliptic curves are used in cryptographic 

applications: prime curves over Zp and binary curves over GF(2m). For ECDSA, 

prime curves are used. The global domain parameters for ECDSA are the following:

q a prime number

a, b integers that specify the elliptic curve equation defined over Zq with the 

 equation y2 = x3 + ax + b

G a base point represented by G = (xg, yg) on the elliptic curve equation

n order of point G; that is, n is the smallest positive integer such that 

nG = O. This is also the number of points on the curve.

Key Generation

Each signer must generate a pair of keys, one private and one public. The signer, 

let us call him Bob, generates the two keys using the following steps:

1. Select a random integer d, d ∈ [1, n - 1]

2. Compute Q = dG. This is a point in Eq(a, b)

3. Bob’s public key is Q and private key is d.

Digital Signature Generation and Authentication

With the public domain parameters and a private key in hand, Bob generates 

a  digital signature of 320 bytes for message m using the following steps:

1. Select a random or pseudorandom integer k, k ∈ [1, n - 1]

2. Compute point P = (x, y) = kG and r = x mod n. If r = 0 then goto step 1

3. Compute t = k-1 mod n

4. Compute e = H(m), where H is one of the SHA-2 or SHA-3 hash functions.

5. Compute s = k-1(e + dr) mod n. If s = O then goto step 1

6. The signature of message m is the pair (r, s).

Alice knows the public domain parameters and Bob’s public key. Alice is 

 presented with Bob’s message and digital signature and verifies the signature using 

the following steps:

1. Verify that r and s are integers in the range 1 through n - 1

2. Using SHA, compute the 160-bit hash value e = H(m)

3. Compute w = s-1 mod n

4. Compute u1 = ew and u2 = rw

5. Compute the point X = (x1, y1) = u1G + u2Q

6. If X = O, reject the signature else compute v = x1 mod n

7. Accept Bob’s signature if and only if v = r
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Figure 13.5 illustrates the signature authentication process. We can verify that 

this process is valid as follows. If the message received by Alice is in fact signed by 

Bob, then

 s = k-1(e + dr) mod n 

Then

 k = s-1(e + dr) mod n

 k = (s-1e + s-1dr) mod n

 k = (we + wdr) mod n

 k = (u1 + u2d) mod n

Now consider that

 u1G + u2Q = u1G + u2dG = (u1 + u2d)G = kG 

Figure 13.5 ECDSA Signing and Verifying
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In step 6 of the verification process, we have v = x1 mod n, where point 

X = (x1, y1) = u1G + u2Q. Thus we see that v = r since r = x mod n and x is the x 

coordinate of the point kG and we have already seen that u1G + u2Q = kG.

 13.6 RSA-PSS DIGITAL SIGNATURE ALGORITHM

In addition to the NIST Digital Signature Algorithm and ECDSA, the 2009 version 

of FIPS 186 also includes several techniques based on RSA, all of which were devel-

oped by RSA Laboratories and are in wide use. A worked-out example, using RSA, 

is available at this book’s Web site.

In this section, we discuss the RSA Probabilistic Signature Scheme (RSA-PSS), 

which is the latest of the RSA schemes and the one that RSA Laboratories recom-

mends as the most secure of the RSA schemes.

Because the RSA-based schemes are widely deployed in many applications, 

including financial applications, there has been great interest in demonstrating that 

such schemes are secure. The three main RSA signature schemes differ mainly in 

the padding format the signature generation operation employs to embed the hash 

value into a message representative, and in how the signature verification opera-

tion determines that the hash value and the message representative are consistent. 

For all of the schemes developed prior to PSS, it has not been possible to develop 

a mathematical proof that the signature scheme is as secure as the underlying RSA 

encryption/decryption primitive [KALI01]. The PSS approach was first proposed by 

Bellare and Rogaway [BELL96c, BELL98]. This approach, unlike the other RSA-

based schemes, introduces a randomization process that enables the security of the 

method to be shown to be closely related to the security of the RSA algorithm itself. 

This makes RSA-PSS more desirable as the choice for RSA-based digital signature 

applications.

Mask Generation Function

Before explaining the RSA-PSS operation, we need to describe the mask gener-

ation function (MGF) used as a building block. MGF(X, maskLen) is a pseudo-

random function that has as input parameters a bit string X of any length and the 

desired length L in octets of the output. MGFs are typically based on a secure 

cryptographic hash function such as SHA-1. An MGF based on a hash function is 

intended to be a cryptographically secure way of generating a message digest, or 

hash, of variable length based on an underlying cryptographic hash function that 

produces a  fixed-length output.

The MGF function used in the current specification for RSA-PSS is MGF1, 

with the following parameters:

Options Hash hash function with output hLen octets

Input X octet string to be masked

maskLen length in octets of the mask

Output mask an octet string of length maskLen
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MGF1 is defined as follows:

1. Initialize variables.

T = empty string

k = <maskLen/hLen= - 1
2. Calculate intermediate values.

for counter = 0 to k

Represent counter as a 32-bit string C

T = T } Hash(X } C)
3. Output results.

mask = the leading maskLen octets of T

In essence, MGF1 does the following. If the length of the desired output is 

equal to the length of the hash value (maskLen = hLen), then the output is the 

hash of the input value X concatenated with a 32-bit counter value of 0. If maskLen 

is greater than hLen, the MGF1 keeps iterating by hashing X concatenated with the 

counter and appending that to the current string T. So that the output is

 Hash (X }0) }Hash(X }1) } c }Hash(X }k) 

This is repeated until the length of T is greater than or equal to maskLen, at which 

point the output is the first maskLen octets of T.

The Signing Operation

MESSAGE ENCODING The first stage in generating an RSA-PSS signature of a  message 

M is to generate from M a fixed-length message digest, called an  encoded message 

(EM). Figure 13.6 illustrates this process. We define the following  parameters and 

functions:

Options Hash hash function with output hLen octets. The current 

preferred alternative is SHA-1, which produces a 20-octet 

hash value.

MGF mask generation function. The current specification calls 

for MGF1.

sLen length in octets of the salt. Typically sLen = hLen, which 

for the current version is 20 octets.

Input M message to be encoded for signing.

emBits This value is one less than the length in bits of the RSA 

modulus n.

Output EM encoded message. This is the message digest that will be 

encrypted to form the digital signature.

Parameters emLen length of EM in octets = <emBits/8= .
padding1 hexadecimal string 00 00 00 00 00 00 00 00; that is, a string 

of 64 zero bits.
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padding2 hexadecimal string of 00 octets with a length 

(emLen - sLen - hLen - 2) octets, followed by the 

hexadecimal octet with value 01.

salt a pseudorandom number.

bc the hexadecimal value BC.

The encoding process consists of the following steps.

1. Generate the hash value of M: mHash = Hash(M)

2. Generate a pseudorandom octet string salt and form block M′ = padding1 }
mHash } salt

3. Generate the hash value of M′: H = Hash(M′)
4. Form data block DB = padding2 } salt

5. Calculate the MGF value of H: dbMask = MGF(H, emLen - hLen - 1)

6. Calculate maskedDB = DB⊕ dbMsk

7. Set the leftmost 8emLen - emBits bits of the leftmost octet in maskedDB to 0

8. EM = maskedDB }H }0xbc

We make several comments about the complex nature of this message 

 digest algorithm. All of the RSA-based standardized digital signature schemes 

 involve  appending one or more constants (e.g., padding1 and padding2) in the 

process of forming the message digest. The objective is to make it more difficult 

for an  adversary to find another message that maps to the same message digest 

Figure 13.6 RSA-PSS Encoding
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as a given message or to find two messages that map to the same message digest.  

RSA-PSS also incorporates a pseudorandom number, namely the salt. Because the 

salt changes with every use, signing the same message twice using the same private 

key will yield two different signatures. This is an added measure of security.

FORMING THE SIGNATURE We now show how the signature is formed by a signer 

with private key {d, n} and public key {e, n} (see Figure 9.5). Treat the octet string 

EM as an unsigned, nonnegative binary integer m. The signature s is formed by 

 encrypting m as follows:

 s = md mod n 

Let k be the length in octets of the RSA modulus n. For example if the key size 

for RSA is 2048 bits, then k = 2048/8 = 256. Then convert the signature value s 

into the octet string S of length k octets.

Signature Verification

DECRYPTION For signature verification, treat the signature S as an unsigned, 

 nonnegative binary integer s. The message digest m is recovered by decrypting s as 

follows:

 m = se mod n 

Then, convert the message representative m to an encoded message EM of 

length emLen = <(modBits - 1)/8=  octets, where modBits is the length in bits of 

the RSA modulus n.

EM VERIFICATION EM verification can be described as follows:

Options Hash hash function with output hLen octets.

MGF mask generation function.

sLen length in octets of the salt.

Input M message to be verified.

EM the octet string representing the decrypted signature, 

with length emLen = <emBits/8= .
emBits This value is one less than the length in bits of the RSA 

modulus n.

Parameters padding1 hexadecimal string 00 00 00 00 00 00 00 00; that is, 

a string of 64 zero bits.

padding2 hexadecimal string of 00 octets with a length 

(emLen - sLen - hLen - 2) octets, followed by the 

 hexadecimal octet with value 01.

1. Generate the hash value of M: mHash = Hash(M)

2. If emLen 6 hLen + sLen + 2, output “inconsistent” and stop

3. If the rightmost octet of EM does not have hexadecimal value BC, output 

“ inconsistent” and stop
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4. Let maskedDB be the leftmost emLen - hLen - 1 octets of EM, and let H be 

the next hLen octets

5. If the leftmost 8emLen - emBits bits of the leftmost octet in maskedDB are 

not all equal to zero, output “inconsistent” and stop

6. Calculate dbMask = MGF (H, emLen - hLen - 1)

7. Calculate DB = maskedDB⊕ dbMsk

8. Set the leftmost 8emLen - emBits bits of the leftmost octet in DB to zero

9. If the leftmost (emLen - hLen - sLen - 1) octets of DB are not equal to 

padding2, output “inconsistent” and stop

10. Let salt be the last sLen octets of DB

11. Form block M′ = padding1 }mHash } salt

12. Generate the hash value of M′: H′ = Hash(M′)
13. If H = H′, output “consistent.” Otherwise, output “inconsistent”

Figure 13.7 illustrates the process. The shaded boxes labeled H and H′ cor-

respond, respectively, to the value contained in the decrypted signature and the 

value generated from the message M associated with the signature. The remaining 

three shaded areas contain values generated from the decrypted signature and com-

pared to known constants. We can now see more clearly the different roles played 

by the constants and the pseudorandom value salt, all of which are embedded in the 

Figure 13.7 RSA-PSS EM Verification
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EM generated by the signer. The constants are known to the verifier, so that the 

 computed constants can be compared to the known constants as an additional check 

that the signature is valid (in addition to comparing H and H′). The salt results in a 

different signature every time a given message is signed with the same private key. 

The verifier does not know the value of the salt and does not attempt a comparison. 

Thus, the salt plays a similar role to the pseudorandom variable k in the NIST DSA 

and in ECDSA. In both of those schemes, k is a pseudorandom number generated by 

the signer, resulting in different signatures from multiple signings of the same mes-

sage with the same private key. A verifier does not and need not know the value of k.

 13.7 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms 

digital signature

Digital Signature Algorithm 

(DSA)

direct digital signature

Elgamal digital signature

Elliptic Curve Digital 

Signature Algorithm 

(ECDSA)

Schnorr digital signature

timestamp

Review Questions
 13.1 List two disputes that can arise in the context of message authentication.

 13.2 What are the properties a digital signature should have?

 13.3 What requirements should a digital signature scheme satisfy?

 13.4 What is the difference between direct and arbitrated digital signature?

 13.5 In what order should the signature function and the confidentiality function be 
 applied to a message, and why?

 13.6 What are some threats associated with a direct digital signature scheme?

Problems 
 13.1 Dr. Watson patiently waited until Sherlock Holmes finished. “Some interesting prob-

lem to solve, Holmes?” he asked when Holmes finally logged out.

“Oh, not exactly. I merely checked my email and then made a couple of 
 network experiments instead of my usual chemical ones. I have only one client now 
and I have already solved his problem. If I remember correctly, you once mentioned 
cryptology among your other hobbies, so it may interest you.”

“Well, I am only an amateur cryptologist, Holmes. But of course I am  interested 
in the problem. What is it about?”

“My client is Mr. Hosgrave, director of a small but progressive bank. The bank 
is fully computerized and of course uses network communications extensively. The 
bank already uses RSA to protect its data and to digitally sign documents that are 
communicated. Now the bank wants to introduce some changes in its procedures; in 
particular, it needs to digitally sign some documents by two signatories.

1. The first signatory prepares the document, forms its signature, and passes the 
 document to the second signatory.
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2. The second signatory as a first step must verify that the document was really signed 
by the first signatory. She then incorporates her signature into the document’s sig-
nature so that the recipient, as well as any member of the public, may verify that the 
document was indeed signed by both signatories. In addition, only the second signa-
tory has to be able to verify the document’s signature after the first step; that is, the 
recipient (or any member of the public) should be able to verify only the complete 
document with signatures of both signatories, but not the document in its intermedi-
ate form where only one signatory has signed it. Moreover, the bank would like to 
make use of its existing modules that support RSA-style digital signatures.”

“Hm, I understand how RSA can be used to digitally sign documents by one signatory, 
Holmes. I guess you have solved the problem of Mr. Hosgrave by appropriate gener-
alization of RSA digital signatures.”

“Exactly, Watson,” nodded Sherlock Holmes. “Originally, the RSA digital sig-
nature was formed by encrypting the document by the signatory’s private decryption 
key ‘d’, and the signature could be verified by anyone through its decryption using 
publicly known encryption key ‘e’. One can verify that the signature S was formed 
by the person who knows d, which is supposed to be the only signatory. Now the 
problem of Mr. Hosgrave can be solved in the same way by slight generalization of 
the process, that is …”

Finish the explanation.

 13.2 DSA specifies that if the signature generation process results in a value of s = 0, 
a new value of k should be generated and the signature should be recalculated. Why?

 13.3 What happens if a k value used in creating a DSA signature is compromised?

 13.4 The DSA document includes a recommended algorithm for testing a number for 
primality.
1. [Choose w] Let w be a random odd integer. Then (w - 1) is even and can be 

expressed in the form 2am with m odd. That is, 2a is the largest power of 2 that 
divides (w - 1).

2. [Generate b] Let b be a random integer in the range 1 6 b 6 w.
3. [Exponentiate] Set j = 0 and z = bm mod w.
4. [Done?] If j = 0 and z = 1, or if z = w - 1, then w passes the test and may be 

prime; go to step 8.
5. [Terminate?] If j 7 0 and z = 1, then w is not prime; terminate algorithm for this w.
6. [Increase j] Set j = j + 1. If j 6 a, set z = z2 mod w and go to step 4.
7. [Terminate] w is not prime; terminate algorithm for this w.
8. [Test again?] If enough random values of b have been tested, then accept w as 

prime and terminate algorithm; otherwise, go to step 2.
a. Explain how the algorithm works.
b. Show that it is equivalent to the Miller–Rabin test described in Chapter 2.

 13.5 With DSA, because the value of k is generated for each signature, even if the same 
message is signed twice on different occasions, the signatures will differ. This is not 
true of RSA signatures. What is the practical implication of this difference?

 13.6 Consider the problem of creating domain parameters for DSA. Suppose we have 
already found primes p and q such that q � (p - 1). Now we need to find g∈ Zp with 
g of order q mod p. Consider the following two algorithms:

Algorithm 1 Algorithm 2

repeat repeat
 select g∈ Zp  select h∈ Zp

 h d gq mod p  g d h(p - 1)/q mod p
until (h = 1 and g ≠ 1) until (g ≠ 1)

return g return g
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a. What happens in Algorithm 1 if ord(q) = q is chosen?
b. hat happens in Algorithm 2 if ord(q) = q is chosen?
c. Suppose p =  64891 and q = 421. How many loop iterations do you expect 

 Algorithm 1 to make before it finds a generator?
d. If p is 512 bits and q is 128 bits, would you recommend using Algorithm 1 to find g? 

Explain.
e. Suppose p = 64891 and q = 421. What is the probability that Algorithm 2 

 computes a generator in its very first loop iteration? (If it is helpful, you may use 

the fact that a (d�n)
c(d) = n when answering this question.)

 13.7 It is tempting to try to develop a variation on Diffie–Hellman that could be used as 
a digital signature. Here is one that is simpler than DSA and that does not require a 
secret random number in addition to the private key.

Public elements: q   prime number

a    a 6 q  and a is primitive root of q

Private key: X    X 6 q

Public key: Y = aX mod q mod q

To sign a message M, compute h = H(M), which is the hash code of the message. 
We require that gcd(h, q - 1) = 1. If not, append the hash to the message and calcu-
late a new hash. Continue this process until a hash code is produced that is relatively 
prime to (q - 1). Then calculate Z to satisfy Z K X * h(mod q - 1). The signa-
ture of the message is s = aZ. To verify the signature, a user compute t such that  
t * h = 1 mod (q - 1) and verifies Y = s t mod q.
a. Show that the scheme is unacceptable by describing a simple technique for forging 

a user’s signature on an arbitrary message.
b. Show that the scheme is unacceptable by describing a simple technique for forging 

a user’s signature on an arbitrary message.

 13.8 Assume a technique for a digital signature scheme using a cryptographic one-way 
hash function (H) as follows. To sign an n-bit message, the sender randomly gener-
ates in advance 2n 64-bit cryptographic keys:

 k1, k2, c , kn k1′, k2′, c , kn′ 

which are kept private. The sender generates the following two sets of validation 
parameters which are made public.

 v1, v2, c , vn and v1′, v2′,c , vn′ 

where

 vi = H(ki ‘0), vi′ = H(ki′‘1) 

The user sends the appropriate ki or Ki
œ according to whether Mi is 0 or 1 respectively. 

For example, if the first 3-bits of the message are 011, then the first three keys of the 
signature are k1, k œ

2,  k œ
3.

a. How does the receiver validate the message?
b. Is the technique secure?
c. How many times can the same set of secret keys be safely used for different mes-

sages?
d. What, if any, practical problems does this scheme present?
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The topics of cryptographic key management and cryptographic key distribution are 

complex, involving cryptographic, protocol, and management considerations. The pur-

pose of this chapter is to give the reader a feel for the issues involved and a broad sur-

vey of the various aspects of key management and distribution. For more information, 

the place to start is the three-volume NIST SP 800-57, followed by the recommended 

readings listed at the end of this chapter.

 14.1 SYMMETRIC KEY DISTRIBUTION USING 
SYMMETRIC ENCRYPTION

For symmetric encryption to work, the two parties to an exchange must share the 

same key, and that key must be protected from access by others. Furthermore, fre-

quent key changes are usually desirable to limit the amount of data compromised 

if an attacker learns the key. Therefore, the strength of any cryptographic system 

rests with the key distribution technique, a term that refers to the means of delivering 

a key to two parties who wish to exchange data without allowing others to see the 

key. For two parties A and B, key distribution can be achieved in a number of ways, 

as follows:

1. A can select a key and physically deliver it to B.

2. A third party can select the key and physically deliver it to A and B.

3. If A and B have previously and recently used a key, one party can transmit the 

new key to the other, encrypted using the old key.

4. If A and B each has an encrypted connection to a third party C, C can deliver 

a key on the encrypted links to A and B.

Options 1 and 2 call for manual delivery of a key. For link encryption, this 

is a reasonable requirement, because each link encryption device is going to be 

 exchanging data only with its partner on the other end of the link. However, for 

 end-to-end encryption over a network, manual delivery is awkward. In a distributed 

system, any given host or terminal may need to engage in exchanges with many other 
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hosts and terminals over time. Thus, each device needs a number of keys supplied 

dynamically. The problem is especially difficult in a wide-area distributed system.

The scale of the problem depends on the number of communicating pairs that 

must be supported. If end-to-end encryption is done at a network or IP level, then a 

key is needed for each pair of hosts on the network that wish to communicate. Thus, 

if there are N hosts, the number of required keys is [N(N - 1)]/2. If encryption is 

done at the application level, then a key is needed for every pair of users or pro-

cesses that require communication. Thus, a network may have hundreds of hosts 

but thousands of users and processes. Figure 14.1 illustrates the magnitude of the 

key distribution task for end-to-end encryption.1 A network using node-level 

 encryption with 1000 nodes would conceivably need to distribute as many as half a 

million keys. If that same network supported 10,000 applications, then as many as 

50 million keys may be required for application-level encryption.

Returning to our list, option 3 is a possibility for either link encryption or 

 end-to-end encryption, but if an attacker ever succeeds in gaining access to one key, 

then all subsequent keys will be revealed. Furthermore, the initial distribution of 

potentially millions of keys still must be made.

1Note that this figure uses a log-log scale, so that a linear graph indicates exponential growth. A basic 
review of log scales is in the math refresher document at the Computer Science Student Resource Site at 
WilliamStallings.com/StudentSupport.html.

Figure 14.1  Number of Keys Required to Support Arbitrary Connections between 
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For end-to-end encryption, some variation on option 4 has been widely 

 adopted. In this scheme, a key distribution center is responsible for distributing 

keys to pairs of users (hosts, processes, applications) as needed. Each user must 

share a unique key with the key distribution center for purposes of key distribution.

The use of a key distribution center is based on the use of a hierarchy of keys. 

At a minimum, two levels of keys are used (Figure 14.2). Communication between 

end systems is encrypted using a temporary key, often referred to as a session key. 

Typically, the session key is used for the duration of a logical connection, such as a 

frame relay connection or transport connection, and then discarded. Each session 

key is obtained from the key distribution center over the same networking facili-

ties used for end-user communication. Accordingly, session keys are transmitted in 

encrypted form, using a master key that is shared by the key distribution center and 

an end system or user.

For each end system or user, there is a unique master key that it shares with 

the key distribution center. Of course, these master keys must be securely distrib-

uted in some fashion. However, the scale of the problem is vastly reduced. If there 

are N entities that wish to communicate in pairs, then, as was mentioned, as many 

as [N(N - 1)]/2 session keys are needed at any one time. However, only N master 

keys are required, one for each entity. Thus, master keys can be distributed in some 

non-cryptographic way, such as physical delivery.

A Key Distribution Scenario

The key distribution concept can be deployed in a number of ways. A  typical 

 scenario is illustrated in Figure 14.3, which is based on a figure in [POPE79]. The sce-

nario assumes that each user shares a unique master key with the key  distribution 

center (KDC).

Let us assume that user A wishes to establish a logical connection with B and 

requires a one-time session key to protect the data transmitted over the connection. 

Figure 14.2 The Use of a Key Hierarchy
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A has a master key, Ka, known only to itself and the KDC; similarly, B shares the 

master key Kb with the KDC. The following steps occur.

1. A issues a request to the KDC for a session key to protect a logical connection 

to B. The message includes the identity of A and B and a unique identifier, N1, 

for this transaction, which we refer to as a nonce. The nonce may be a timestamp, 

a counter, or a random number; the minimum requirement is that it differs with 

each request. Also, to prevent masquerade, it should be difficult for an opponent 

to guess the nonce. Thus, a random number is a good choice for a nonce.

2. The KDC responds with a message encrypted using Ka. Thus, A is the only one 

who can successfully read the message, and A knows that it originated at the 

KDC. The message includes two items intended for A:

 ■ The one-time session key, Ks, to be used for the session

 ■ The original request message, including the nonce, to enable A to match 

this response with the appropriate request

Thus, A can verify that its original request was not altered before reception by 

the KDC and, because of the nonce, that this is not a replay of some previous 

request.

In addition, the message includes two items intended for B:

 ■ The one-time session key, Ks, to be used for the session

 ■ An identifier of A (e.g., its network address), IDA

These last two items are encrypted with Kb (the master key that the KDC 

shares with B). They are to be sent to B to establish the connection and prove 

A’s identity.

Figure 14.3 Key Distribution Scenario
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3. A stores the session key for use in the upcoming session and forwards to B 

the  information that originated at the KDC for B, namely, E(Kb,[Ks } IDA]). 

Because this information is encrypted with Kb, it is protected from eavesdrop-

ping. B now knows the session key (Ks), knows that the other party is A (from 

IDA), and knows that the information originated at the KDC  (because it is 

encrypted using Kb).

At this point, a session key has been securely delivered to A and B, and they 

may begin their protected exchange. However, two additional steps are desirable:

4. Using the newly minted session key for encryption, B sends a nonce, N2, to A.

5. Also, using Ks, A responds with f(N2), where f is a function that performs some 

transformation on N2 (e.g., adding one).

These steps assure B that the original message it received (step 3) was not a replay.

Note that the actual key distribution involves only steps 1 through 3, but that 

steps 4 and 5, as well as step 3, perform an authentication function.

Hierarchical Key Control

It is not necessary to limit the key distribution function to a single KDC. Indeed, for 

very large networks, it may not be practical to do so. As an alternative, a hierarchy 

of KDCs can be established. For example, there can be local KDCs, each respon-

sible for a small domain of the overall internetwork, such as a single LAN or a single 

building. For communication among entities within the same local domain, the local 

KDC is responsible for key distribution. If two entities in different domains desire a 

shared key, then the corresponding local KDCs can communicate through a global 

KDC. In this case, any one of the three KDCs involved can actually select the key. 

The hierarchical concept can be extended to three or even more layers, depending 

on the size of the user population and the geographic scope of the internetwork.

A hierarchical scheme minimizes the effort involved in master key distri-

bution, because most master keys are those shared by a local KDC with its local 

 entities. Furthermore, such a scheme limits the damage of a faulty or subverted 

KDC to its local area only.

Session Key Lifetime

The more frequently session keys are exchanged, the more secure they are, because 

the opponent has less ciphertext to work with for any given session key. On the 

other hand, the distribution of session keys delays the start of any exchange and 

places a burden on network capacity. A security manager must try to balance these 

competing considerations in determining the lifetime of a particular session key.

For connection-oriented protocols, one obvious choice is to use the same ses-

sion key for the length of time that the connection is open, using a new session key 

for each new session. If a logical connection has a very long lifetime, then it would 

be prudent to change the session key periodically, perhaps every time the PDU 

(protocol data unit) sequence number cycles.

For a connectionless protocol, such as a transaction-oriented protocol, there 

is no explicit connection initiation or termination. Thus, it is not obvious how often 

one needs to change the session key. The most secure approach is to use a new 
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session key for each exchange. However, this negates one of the principal benefits 

of connectionless protocols, which is minimum overhead and delay for each transac-

tion. A better strategy is to use a given session key for a certain fixed period only or 

for a certain number of transactions.

A Transparent Key Control Scheme

The approach suggested in Figure 14.3 has many variations, one of which is 

 described in this subsection. The scheme (Figure 14.4) is useful for providing 

 end-to-end  encryption at a network or transport level in a way that is transpar-

ent to the end users. The approach assumes that communication makes use of a 

connection- oriented end-to-end protocol, such as TCP. The noteworthy element of 

this  approach is a session security module (SSM), which may consist of functionality 

Figure 14.4 Automatic Key Distribution for Connection-Oriented Protocol
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at one protocol layer, that performs end-to-end encryption and obtains session keys 

on behalf of its host or terminal.

The steps involved in establishing a connection are shown in Figure 14.4. When 

one host wishes to set up a connection to another host, it transmits a connection- 

request packet (step 1). The SSM saves that packet and applies to the KDC for 

 permission to establish the connection (step 2). The communication between the 

SSM and the KDC is encrypted using a master key shared only by this SSM and 

the KDC. If the KDC approves the connection request, it generates the session 

key and delivers it to the two appropriate SSMs, using a unique permanent key for 

each SSM (step 3). The requesting SSM can now release the connection request 

packet, and a connection is set up between the two end systems (step 4). All user 

data  exchanged between the two end systems are encrypted by their respective SSMs 

using the  one-time session key.

The automated key distribution approach provides the flexibility and dynamic 

characteristics needed to allow a number of terminal users to access a number of 

hosts and for the hosts to exchange data with each other.

Decentralized Key Control

The use of a key distribution center imposes the requirement that the KDC be 

trusted and be protected from subversion. This requirement can be avoided if key 

distribution is fully decentralized. Although full decentralization is not practical for 

larger networks using symmetric encryption only, it may be useful within a local 

context.

A decentralized approach requires that each end system be able to commu-

nicate in a secure manner with all potential partner end systems for purposes of 

session key distribution. Thus, there may need to be as many as [n(n - 1)]/2 master 

keys for a configuration with n end systems.

A session key may be established with the following sequence of steps 

(Figure 14.5).

1. A issues a request to B for a session key and includes a nonce, N1.

2. B responds with a message that is encrypted using the shared master key. The 

response includes the session key selected by B, an identifier of B, the value 

f(N1), and another nonce, N2.

3. Using the new session key, A returns f(N2) to B.

Figure 14.5 Decentralized Key Distribution
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Thus, although each node must maintain at most (n - 1) master keys, as many 

session keys as required may be generated and used. Because the messages trans-

ferred using the master key are short, cryptanalysis is difficult. As before, session 

keys are used for only a limited time to protect them.

Controlling Key Usage

The concept of a key hierarchy and the use of automated key distribution techniques 

greatly reduce the number of keys that must be manually managed and  distributed. 

It also may be desirable to impose some control on the way in which automatically 

distributed keys are used. For example, in addition to separating master keys from 

session keys, we may wish to define different types of session keys on the basis of 

use, such as

 ■ Data-encrypting key, for general communication across a network

 ■ PIN-encrypting key, for personal identification numbers (PINs) used in 

 electronic funds transfer and point-of-sale applications

 ■ File-encrypting key, for encrypting files stored in publicly accessible locations

To illustrate the value of separating keys by type, consider the risk that a  master 

key is imported as a data-encrypting key into a device. Normally, the master key is 

physically secured within the cryptographic hardware of the key distribution center 

and of the end systems. Session keys encrypted with this master key are available to 

application programs, as are the data encrypted with such session keys. However, 

if a master key is treated as a session key, it may be possible for an unauthorized 
 application to obtain plaintext of session keys encrypted with that master key.

Thus, it may be desirable to institute controls in systems that limit the ways 

in which keys are used, based on characteristics associated with those keys. One 

simple plan is to associate a tag with each key ([JONE82]; see also [DAVI89]). 

The proposed technique is for use with DES and makes use of the extra 8 bits in 

each  64-bit DES key. That is, the eight non-key bits ordinarily reserved for parity 

 checking form the key tag. The bits have the following interpretation:

 ■ One bit indicates whether the key is a session key or a master key

 ■ One bit indicates whether the key can be used for encryption

 ■ One bit indicates whether the key can be used for decryption

 ■ The remaining bits are spares for future use.

Because the tag is embedded in the key, it is encrypted along with the key when that 

key is distributed, thus providing protection. The drawbacks of this scheme are

1. The tag length is limited to 8 bits, limiting its flexibility and functionality.

2. Because the tag is not transmitted in clear form, it can be used only at the 

point of decryption, limiting the ways in which key use can be controlled.

A more flexible scheme, referred to as the control vector, is described in 

[MATY91a and b]. In this scheme, each session key has an associated control vector 

consisting of a number of fields that specify the uses and restrictions for that session 

key. The length of the control vector may vary.
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The control vector is cryptographically coupled with the key at the time of 

key generation at the KDC. The coupling and decoupling processes are illustrated 

in Figure 14.6. As a first step, the control vector is passed through a hash func-

tion that produces a value whose length is equal to the encryption key length. Hash 

functions are discussed in detail in Chapter 11. In essence, a hash function maps 

values from a larger range into a smaller range with a reasonably uniform spread. 

Thus, for  example, if numbers in the range 1 to 100 are hashed into numbers in the 

range 1 to 10, approximately 10% of the source values should map into each of the 

target values.

The hash value is then XORed with the master key to produce an output that 

is used as the key input for encrypting the session key. Thus,

 Hash value = H = h(CV)

 Key input = Km⊕H

 Ciphertext = E([Km⊕H], Ks)

where Km is the master key and Ks is the session key. The session key is recovered 

in plaintext by the reverse operation:

 D([Km⊕H], E([Km⊕H], Ks)) 

When a session key is delivered to a user from the KDC, it is accompanied 

by the control vector in clear form. The session key can be recovered only by using 

both the master key that the user shares with the KDC and the control vector. Thus, 

the linkage between the session key and its control vector is maintained.

Figure 14.6 Control Vector Encryption and Decryption
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Use of the control vector has two advantages over use of an 8-bit tag. First, 

there is no restriction on length of the control vector, which enables arbitrarily com-

plex controls to be imposed on key use. Second, the control vector is available in 

clear form at all stages of operation. Thus, control of key use can be exercised in 

multiple locations.

 14.2 SYMMETRIC KEY DISTRIBUTION USING 
ASYMMETRIC ENCRYPTION

Because of the inefficiency of public-key cryptosystems, they are almost never used 

for the direct encryption of sizable blocks of data, but are limited to relatively small 

blocks. One of the most important uses of a public-key cryptosystem is to encrypt 

secret keys for distribution. We see many specific examples of this in Part Five. 

Here, we discuss general principles and typical approaches.

Simple Secret Key Distribution

An extremely simple scheme was put forward by Merkle [MERK79], as illustrated 

in Figure 14.7. If A wishes to communicate with B, the following procedure is 

employed:

1. A generates a public/private key pair {PUa, PRa} and transmits a message to B 

consisting of PUa and an identifier of A, IDA.

2. B generates a secret key, Ks, and transmits it to A, which is encrypted with A’s 

public key.

3. A computes D(PRa, E(PUa, Ks)) to recover the secret key. Because only A can 

decrypt the message, only A and B will know the identity of Ks.

4. A discards PUa and PRa and B discards PUa.

A and B can now securely communicate using conventional encryption and 

the session key Ks. At the completion of the exchange, both A and B discard Ks. 

Despite its simplicity, this is an attractive protocol. No keys exist before the start of 

the communication and none exist after the completion of communication. Thus, 

the risk of compromise of the keys is minimal. At the same time, the communication 

is secure from eavesdropping.

The protocol depicted in Figure 14.7 is insecure against an adversary who can 

 intercept messages and then either relay the intercepted message or substitute  another 

message (see Figure 1.3c). Such an attack is known as a man-in-the-middle attack 

[RIVE84]. We saw this type of attack in Chapter 10 (Figure 10.2). In the present 

Figure 14.7 Simple Use of Public-Key Encryption to Establish a Session Key
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case, if an adversary, D, has control of the intervening communication channel, 

then D can compromise the communication in the following fashion without being 

 detected (Figure 14.8).

1. A generates a public/private key pair {PUa, PRa} and transmits a message 

 intended for B consisting of PUa and an identifier of A, IDA.

2. D intercepts the message, creates its own public/private key pair {PUd, PRd} 

and transmits PUd } IDA to B.

3. B generates a secret key, Ks, and transmits E(PUd, Ks).

4. D intercepts the message and learns Ks by computing D(PRd, E(PUd, Ks)).

5. D transmits E(PUa, Ks) to A.

Figure 14.8 Another Man-in-the-Middle Attack
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The result is that both A and B know Ks and are unaware that Ks has also been 

revealed to D. A and B can now exchange messages using Ks. D no longer  actively 

interferes with the communications channel but simply eavesdrops. Knowing Ks, 

D can decrypt all messages, and both A and B are unaware of the problem. Thus, 

this simple protocol is only useful in an environment where the only threat is 

eavesdropping.

Secret Key Distribution with Confidentiality 
and Authentication

Figure 14.9, based on an approach suggested in [NEED78], provides protection 

against both active and passive attacks. We begin at a point when it is assumed that 

A and B have exchanged public keys by one of the schemes described subsequently 

in this chapter. Then the following steps occur.

1. A uses B’s public key to encrypt a message to B containing an identifier of 

A(IDA) and a nonce (N1), which is used to identify this transaction uniquely.

2. B sends a message to A encrypted with PUa and containing A’s nonce (N1) 

as  well as a new nonce generated by B (N2). Because only B could have 

 decrypted message (1), the presence of N1 in message (2) assures A that the 

correspondent is B.

3. A returns N2, encrypted using B’s public key, to assure B that its correspon-

dent is A.

4. A selects a secret key Ks and sends M = E(PUb, E(PRa, Ks)) to B. Encryption 

of this message with B’s public key ensures that only B can read it; encryption 

with A’s private key ensures that only A could have sent it.

5. B computes D(PUa, D(PRb, M)) to recover the secret key.

The result is that this scheme ensures both confidentiality and authentication 

in the exchange of a secret key.

Figure 14.9 Public-Key Distribution of Secret Keys
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A Hybrid Scheme

Yet another way to use public-key encryption to distribute secret keys is a hybrid 

approach in use on IBM mainframes [LE93]. This scheme retains the use of a key 

distribution center (KDC) that shares a secret master key with each user and dis-

tributes secret session keys encrypted with the master key. A public-key scheme is 

used to distribute the master keys. The following rationale is provided for using this 

three-level approach:

 ■ Performance: There are many applications, especially transaction-oriented 

 applications, in which the session keys change frequently. Distribution of ses-

sion keys by public-key encryption could degrade overall system performance 

because of the relatively high computational load of public-key encryption 

and decryption. With a three-level hierarchy, public-key encryption is used 

only occasionally to update the master key between a user and the KDC.

 ■ Backward compatibility: The hybrid scheme is easily overlaid on an existing 

KDC scheme with minimal disruption or software changes.

The addition of a public-key layer provides a secure, efficient means of dis-

tributing master keys. This is an advantage in a configuration in which a single KDC 

serves a widely distributed set of users.

 14.3 DISTRIBUTION OF PUBLIC KEYS

Several techniques have been proposed for the distribution of public keys. Virtually 

all these proposals can be grouped into the following general schemes:

 ■ Public announcement

 ■ Publicly available directory

 ■ Public-key authority

 ■ Public-key certificates

Public Announcement of Public Keys

On the face of it, the point of public-key encryption is that the public key is public. 

Thus, if there is some broadly accepted public-key algorithm, such as RSA, any 

participant can send his or her public key to any other participant or broadcast the 

key to the community at large (Figure 14.10). For example, because of the growing 

popularity of PGP (pretty good privacy, discussed in Chapter 19), which makes use 

of RSA, many PGP users have adopted the practice of appending their public key 

to messages that they send to public forums, such as USENET newsgroups and 

Internet mailing lists.

Although this approach is convenient, it has a major weakness. Anyone can 

forge such a public announcement. That is, some user could pretend to be user A 

and send a public key to another participant or broadcast such a public key. Until 

such time as user A discovers the forgery and alerts other participants, the forger is 

able to read all encrypted messages intended for A and can use the forged keys for 

authentication (see Figure 9.3).
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Publicly Available Directory

A greater degree of security can be achieved by maintaining a publicly available 

 dynamic directory of public keys. Maintenance and distribution of the public 

 directory would have to be the responsibility of some trusted entity or organization 

(Figure 14.11). Such a scheme would include the following elements:

1. The authority maintains a directory with a {name, public key} entry for each 

participant.

2. Each participant registers a public key with the directory authority. 

Registration would have to be in person or by some form of secure authenti-

cated communication.

3. A participant may replace the existing key with a new one at any time, either 

because of the desire to replace a public key that has already been used for 

a large amount of data, or because the corresponding private key has been 

 compromised in some way.

4. Participants could also access the directory electronically. For this purpose, 

secure, authenticated communication from the authority to the participant is 

mandatory.

Figure 14.10 Uncontrolled Public-Key Distribution
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This scheme is clearly more secure than individual public announcements 

but still has vulnerabilities. If an adversary succeeds in obtaining or computing the 

private key of the directory authority, the adversary could authoritatively pass out 

counterfeit public keys and subsequently impersonate any participant and eaves-

drop on messages sent to any participant. Another way to achieve the same end is 

for the adversary to tamper with the records kept by the authority.

Public-Key Authority

Stronger security for public-key distribution can be achieved by providing tighter 

control over the distribution of public keys from the directory. A typical scenario is 

illustrated in Figure 14.12, which is based on a figure in [POPE79]. As before, the 

scenario assumes that a central authority maintains a dynamic directory of public 

keys of all participants. In addition, each participant reliably knows a public key for 

the authority, with only the authority knowing the corresponding private key. The 

following steps (matched by number to Figure 14.12) occur.

1. A sends a timestamped message to the public-key authority containing a 

 request for the current public key of B.

2. The authority responds with a message that is encrypted using the authority’s 

private key, PRauth. Thus, A is able to decrypt the message using the author-

ity’s public key. Therefore, A is assured that the message originated with the 

authority. The message includes the following:

 ■ B’s public key, PUb, which A can use to encrypt messages destined for B

 ■ The original request used to enable A to match this response with the cor-

responding earlier request and to verify that the original request was not 

altered before reception by the authority

 ■ The original timestamp given so A can determine that this is not an old mes-

sage from the authority containing a key other than B’s current public key

3. A stores B’s public key and also uses it to encrypt a message to B containing 

an identifier of A (IDA) and a nonce (N1), which is used to identify this trans-

action uniquely.

 4, 5. B retrieves A’s public key from the authority in the same manner as A  retrieved 

B’s public key.

At this point, public keys have been securely delivered to A and B, and they 

may begin their protected exchange. However, two additional steps are desirable:

6. B sends a message to A encrypted with PUa and containing A’s nonce (N1) 

as well as a new nonce generated by B (N2). Because only B could have 

 decrypted message (3), the presence of N1 in message (6) assures A that the 

correspondent is B.

7. A returns N2, which is encrypted using B’s public key, to assure B that its 

 correspondent is A.

Thus, a total of seven messages are required. However, the initial five 

 messages need be used only infrequently because both A and B can save the other’s 

public key for future use—a technique known as caching. Periodically, a user should 

 request fresh copies of the public keys of its correspondents to ensure currency.
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Public-Key Certificates

The scenario of Figure 14.12 is attractive, yet it has some drawbacks. The  public-key 

authority could be somewhat of a bottleneck in the system, for a user must  appeal 

to the authority for a public key for every other user that it wishes to contact. 

As  before, the directory of names and public keys maintained by the authority is 

vulnerable to tampering.

An alternative approach, first suggested by Kohnfelder [KOHN78], is to use 

certificates that can be used by participants to exchange keys without contacting a 

public-key authority, in a way that is as reliable as if the keys were obtained directly 

from a public-key authority. In essence, a certificate consists of a public key, an 

identifier of the key owner, and the whole block signed by a trusted third party. 

Typically, the third party is a certificate authority, such as a government agency or 

a financial institution, that is trusted by the user community. A user can present 

his or her public key to the authority in a secure manner and obtain a certificate. 

The user can then publish the certificate. Anyone needing this user’s public key can 

obtain the certificate and verify that it is valid by way of the attached trusted signa-

ture. A participant can also convey its key information to another by transmitting 

its certificate. Other participants can verify that the certificate was created by the 

authority. We can place the following requirements on this scheme:

1. Any participant can read a certificate to determine the name and public key of 

the certificate’s owner.

2. Any participant can verify that the certificate originated from the certificate 

authority and is not counterfeit.

3. Only the certificate authority can create and update certificates.

Figure 14.12 Public-Key Distribution Scenario
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(5) E(PRauth, [PUa || Request || T2])

(6) E(PUa, [ N1 || N2])

(7) E(PUb, N2)
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These requirements are satisfied by the original proposal in [KOHN78]. Denning 

[DENN83] added the following additional requirement:

4. Any participant can verify the time validity of the certificate.

A certificate scheme is illustrated in Figure 14.13. Each participant applies 

to the certificate authority, supplying a public key and requesting a certificate. 

Application must be in person or by some form of secure authenticated communi-

cation. For participant A, the authority provides a certificate of the form

 CA = E(PRauth, [T } IDA }PUa]) 

where PRauth is the private key used by the authority and T is a timestamp. A may 

then pass this certificate on to any other participant, who reads and verifies the 

 certificate as follows:

 D(PUauth, CA) = D(PUauth, E(PRauth, [T } IDA }PUa])) = (T } IDA }PUa) 

The recipient uses the authority’s public key, PUauth, to decrypt the certifi-

cate. Because the certificate is readable only using the authority’s public key, this 

verifies that the certificate came from the certificate authority. The elements IDA 

and PUa provide the recipient with the name and public key of the certificate’s 

holder. The timestamp T validates the currency of the certificate. The timestamp 

Figure 14.13 Exchange of Public-Key Certificates
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counters the following scenario. A’s private key is learned by an adversary. 

A  generates a new private/public key pair and applies to the certificate authority 

for a new  certificate. Meanwhile, the adversary replays the old certificate to B. If B 

then  encrypts  messages using the compromised old public key, the adversary can 

read those messages.

In this context, the compromise of a private key is comparable to the loss of a 

credit card. The owner cancels the credit card number but is at risk until all possible 

communicants are aware that the old credit card is obsolete. Thus, the timestamp 

serves as something like an expiration date. If a certificate is sufficiently old, it is 

assumed to be expired.

One scheme has become universally accepted for formatting public-key 

 certificates: the X.509 standard. X.509 certificates are used in most network security 

applications, including IP security, transport layer security (TLS), and S/MIME, all 

of which are discussed in Part Five. X.509 is examined in detail in the next section.

 14.4 X.509 CERTIFICATES

ITU-T recommendation X.509 is part of the X.500 series of recommendations that 

define a directory service. The directory is, in effect, a server or distributed set 

of servers that maintains a database of information about users. The information 

 includes a mapping from user name to network address, as well as other attributes 

and information about the users.

X.509 defines a framework for the provision of authentication services by the 

X.500 directory to its users. The directory may serve as a repository of public-key 

certificates of the type discussed in Section 14.3. Each certificate contains the public 

key of a user and is signed with the private key of a trusted certification authority. 

In addition, X.509 defines alternative authentication protocols based on the use of 

public-key certificates.

X.509 is an important standard because the certificate structure and authenti-

cation protocols defined in X.509 are used in a variety of contexts. For example, the 

X.509 certificate format is used in S/MIME (Chapter 19), IP Security (Chapter 20), 

and SSL/TLS (Chapter 17).

X.509 was initially issued in 1988. The standard was subsequently revised 

in 1993 to address some of the security concerns documented in [IANS90] and 

[MITC90]. The standard is currently at version 7, issued in 2012.

X.509 is based on the use of public-key cryptography and digital signatures. 

The standard does not dictate the use of a specific digital signature algorithm nor a 

specific hash function. Figure 14.14 illustrates the overall X.509 scheme for genera-

tion of a public-key certificate. The certificate for Bob’s public key includes unique 

identifying information for Bob, Bob’s public key, and identifying information 

about the CA, plus other information as explained subsequently. This information 

is then signed by computing a hash value of the information and generating a digital 

signature using the hash value and the CA’s private key. X.509 indicates that the 

signature is formed by encrypting the hash value. This suggests the use of one of the 

RSA schemes discussed in Section 13.6. However, the current version of X.509 does 
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not dictate a specific digital signature algorithm. If the NIST DSA (Section 13.4) or 

the ECDSA (Section 13.5) scheme is used, then the hash value is not encrypted but 

serves as input to a digital signature generation algorithm.

Certificates

The heart of the X.509 scheme is the public-key certificate associated with each 

user. These user certificates are assumed to be created by some trusted certification 

authority (CA) and placed in the directory by the CA or by the user. The directory 

server itself is not responsible for the creation of public keys or for the certifica-

tion function; it merely provides an easily accessible location for users to obtain 

certificates.

Figure 14.15a shows the general format of a certificate, which includes the 

 following elements.

 ■ Version: Differentiates among successive versions of the certificate format; the 

default is version 1. If the issuer unique identifier or subject unique identifier 

are present, the value must be version 2. If one or more extensions are present, 

the version must be version 3. Although the X.509 specification is currently at 

version 7, no changes have been made to the fields that make up the certificate 

since version 3.

 ■ Serial number: An integer value unique within the issuing CA that is unam-

biguously associated with this certificate.

 ■ Signature algorithm identifier: The algorithm used to sign the certificate 

 together with any associated parameters. Because this information is repeated 

in the signature field at the end of the certificate, this field has little, if any, utility.

Figure 14.14 X.509 Public-Key Certificate Use
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 ■ Issuer name: X.500 name of the CA that created and signed this certificate.

 ■ Period of validity: Consists of two dates: the first and last on which the certifi-

cate is valid.

 ■ Subject name: The name of the user to whom this certificate refers. That is, this 

certificate certifies the public key of the subject who holds the corresponding 

private key.

 ■ Subject’s public-key information: The public key of the subject, plus an identi-

fier of the algorithm for which this key is to be used, together with any associ-

ated parameters.

 ■ Issuer unique identifier: An optional-bit string field used to identify uniquely 

the issuing CA in the event the X.500 name has been reused for different 

entities.

 ■ Subject unique identifier: An optional-bit string field used to identify uniquely 

the subject in the event the X.500 name has been reused for different entities.

 ■ Extensions: A set of one or more extension fields. Extensions were added in 

version 3 and are discussed later in this section.

 ■ Signature: Covers all of the other fields of the certificate. One component of 

this field is the digital signature applied to the other fields of the certificate. 

This field includes the signature algorithm identifier.

The unique identifier fields were added in version 2 to handle the possible 

reuse of subject and/or issuer names over time. These fields are rarely used.

Figure 14.15 X.509 Formats
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The standard uses the following notation to define a certificate:

 CA VAW = CA {V, SN, AI, CA, UCA, A, UA, Ap, TA} 

where

Y V XW = the certificate of user X issued by certification authority Y

Y {I} =  the signing of I by Y. It consists of I with an encrypted hash 

code appended

V = version of the certificate

SN = serial number of the certificate

AI = identifier of the algorithm used to sign the certificate

CA = name of certificate authority

UCA = optional unique identifier of the CA

A = name of user A

UA = optional unique identifier of the user A

Ap = public key of user A

TA = period of validity of the certificate

The CA signs the certificate with its private key. If the corresponding public 

key is known to a user, then that user can verify that a certificate signed by the CA is 

valid. This is the typical digital signature approach illustrated in Figure 13.2.

OBTAINING A USER’S CERTIFICATE User certificates generated by a CA have the 

 following characteristics:

 ■ Any user with access to the public key of the CA can verify the user public key 

that was certified.

 ■ No party other than the certification authority can modify the certificate 

 without this being detected.

Because certificates are unforgeable, they can be placed in a directory without the 

need for the directory to make special efforts to protect them.

If all users subscribe to the same CA, then there is a common trust of that CA. 

All user certificates can be placed in the directory for access by all users. In addi-

tion, a user can transmit his or her certificate directly to other users. In either case, 

once B is in possession of A’s certificate, B has confidence that messages it encrypts 

with A’s public key will be secure from eavesdropping and that messages signed 

with A’s private key are unforgeable.

If there is a large community of users, it may not be practical for all users to 

subscribe to the same CA. Because it is the CA that signs certificates, each partici-

pating user must have a copy of the CA’s own public key to verify signatures. This 

public key must be provided to each user in an absolutely secure (with respect 

to integrity and authenticity) way so that the user has confidence in the associ-

ated certificates. Thus, with many users, it may be more practical for there to be 

a number of CAs, each of which securely provides its public key to some fraction 

of the users.
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Now suppose that A has obtained a certificate from certification  authority 

X1 and B has obtained a certificate from CA X2. If A does not securely know the 

public key of X2, then B’s certificate, issued by X2, is useless to A. A can read B’s 

 certificate, but A cannot verify the signature. However, if the two CAs have  securely 

exchanged their own public keys, the following procedure will enable A to obtain 

B’s public key.

Step 1 A obtains from the directory the certificate of X2 signed by X1. Because 

A securely knows X1>s public key, A can obtain X2>s public key from its 

 certificate and verify it by means of X1>s signature on the certificate.

Step 2 A then goes back to the directory and obtains the certificate of B signed by 

X2. Because A now has a trusted copy of X2>s public key, A can verify the 

signature and securely obtain B’s public key.

A has used a chain of certificates to obtain B’s public key. In the notation of 

X.509, this chain is expressed as

 X1 V X2 W X2 V B W  

In the same fashion, B can obtain A’s public key with the reverse chain:

 X2 V X1 W X1 V A W  

This scheme need not be limited to a chain of two certificates. An arbitrarily 

long path of CAs can be followed to produce a chain. A chain with N elements 

would be expressed as

 X1 V X2 W X2 V X3 W c XN V B W  

In this case, each pair of CAs in the chain (Xi, Xi+ 1) must have created certifi-

cates for each other.

All these certificates of CAs by CAs need to appear in the directory, and the 

user needs to know how they are linked to follow a path to another user’s public-key 

certificate. X.509 suggests that CAs be arranged in a hierarchy so that  navigation is 

straightforward.

Figure 14.16, taken from X.509, is an example of such a hierarchy. The con-

nected circles indicate the hierarchical relationship among the CAs; the associated 

boxes indicate certificates maintained in the directory for each CA entry. The direc-

tory entry for each CA includes two types of certificates:

 ■ Forward certificates: Certificates of X generated by other CAs

 ■ Reverse certificates: Certificates generated by X that are the certificates of 

other CAs

In this example, user A can acquire the following certificates from the direc-

tory to establish a certification path to B:

 X V W W W V V W V V Y W Y V Z W Z V B W  

When A has obtained these certificates, it can unwrap the certification path in 

sequence to recover a trusted copy of B’s public key. Using this public key, A can 

send encrypted messages to B. If A wishes to receive encrypted messages back 
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from B, or to sign messages sent to B, then B will require A’s public key, which can 

be obtained from the following certification path:

 Z V Y W Y V V W V V W W W V X W X V A W  

B can obtain this set of certificates from the directory, or A can provide them 

as part of its initial message to B.

REVOCATION OF CERTIFICATES Recall from Figure 14.15 that each certificate  includes 

a period of validity, much like a credit card. Typically, a new certificate is issued just 

before the expiration of the old one. In addition, it may be desirable on occasion to 

revoke a certificate before it expires, for one of the following reasons.

1. The user’s private key is assumed to be compromised.

2. The user is no longer certified by this CA. Reasons for this include that the 

subject’s name has changed, the certificate is superseded, or the certificate was 

not issued in conformance with the CA’s policies.

3. The CA’s certificate is assumed to be compromised.

Each CA must maintain a list consisting of all revoked but not expired 

 certificates issued by that CA, including both those issued to users and to other 

CAs. These lists should also be posted on the directory.

Figure 14.16 X.509 Hierarchy: A Hypothetical Example
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Each certificate revocation list (CRL) posted to the directory is signed by the 

issuer and includes (Figure 14.15b) the issuer’s name, the date the list was created, 

the date the next CRL is scheduled to be issued, and an entry for each revoked 

certificate. Each entry consists of the serial number of a certificate and revocation 

date for that certificate. Because serial numbers are unique within a CA, the serial 

number is sufficient to identify the certificate.

When a user receives a certificate in a message, the user must determine 

whether the certificate has been revoked. The user could check the directory each 

time a certificate is received. To avoid the delays (and possible costs) associated 

with directory searches, it is likely that the user would maintain a local cache of 

 certificates and lists of revoked certificates.

X.509 Version 3

The X.509 version 2 format does not convey all of the information that recent  design 

and implementation experience has shown to be needed. [FORD95] lists the follow-

ing requirements not satisfied by version 2.

1. The subject field is inadequate to convey the identity of a key owner to a 

 public-key user. X.509 names may be relatively short and lacking in obvious 

identification details that may be needed by the user.

2. The subject field is also inadequate for many applications, which typically 

 recognize entities by an Internet email address, a URL, or some other Internet-

related identification.

3. There is a need to indicate security policy information. This enables a security 

application or function, such as IPSec, to relate an X.509 certificate to a given 

policy.

4. There is a need to limit the damage that can result from a faulty or malicious 

CA by setting constraints on the applicability of a particular certificate.

5. It is important to be able to identify different keys used by the same owner at 

different times. This feature supports key lifecycle management: in particular, 

the ability to update key pairs for users and CAs on a regular basis or under 

exceptional circumstances.

Rather than continue to add fields to a fixed format, standards developers 

felt that a more flexible approach was needed. Thus, version 3 includes a number 

of  optional extensions that may be added to the version 2 format. Each extension 

consists of an extension identifier, a criticality indicator, and an extension value. 

The criticality indicator indicates whether an extension can be safely ignored. If the 

indicator has a value of TRUE and an implementation does not recognize the 

 extension, it must treat the certificate as invalid.

The certificate extensions fall into three main categories: key and policy 

 information, subject and issuer attributes, and certification path constraints.

KEY AND POLICY INFORMATION These extensions convey additional information 

about the subject and issuer keys, plus indicators of certificate policy. A certif-

icate policy is a named set of rules that indicates the applicability of a certifi-

cate to a particular community and/or class of application with common security 

 requirements. For example, a policy might be applicable to the authentication of 
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electronic data interchange (EDI) transactions for the trading of goods within a 

given price range.

This area includes:

 ■ Authority key identifier: Identifies the public key to be used to verify the 

 signature on this certificate or CRL. Enables distinct keys of the same CA to 

be differentiated. One use of this field is to handle CA key pair updating.

 ■ Subject key identifier: Identifies the public key being certified. Useful for sub-

ject key pair updating. Also, a subject may have multiple key pairs and, cor-

respondingly, different certificates for different purposes (e.g., digital signature 

and encryption key agreement).

 ■ Key usage: Indicates a restriction imposed as to the purposes for which, and 

the policies under which, the certified public key may be used. May indicate 

one or more of the following: digital signature, nonrepudiation, key encryp-

tion, data encryption, key agreement, CA signature verification on certificates, 

CA signature verification on CRLs.

 ■ Private-key usage period: Indicates the period of use of the private key cor-

responding to the public key. Typically, the private key is used over a different 

period from the validity of the public key. For example, with digital signature 

keys, the usage period for the signing private key is typically shorter than that 

for the verifying public key.

 ■ Certificate policies: Certificates may be used in environments where multiple 

policies apply. This extension lists policies that the certificate is recognized as 

supporting, together with optional qualifier information.

 ■ Policy mappings: Used only in certificates for CAs issued by other CAs. Policy 

mappings allow an issuing CA to indicate that one or more of that issuer’s 

policies can be considered equivalent to another policy used in the subject 

CA’s domain.

CERTIFICATE SUBJECT AND ISSUER ATTRIBUTES These extensions support alterna-

tive names, in alternative formats, for a certificate subject or certificate issuer and 

can convey additional information about the certificate subject to increase a cer-

tificate user’s confidence that the certificate subject is a particular person or entity. 

For  example, information such as postal address, position within a corporation, or 

picture image may be required.

The extension fields in this area include:

 ■ Subject alternative name: Contains one or more alternative names, using any 

of a variety of forms. This field is important for supporting certain applications, 

such as electronic mail, EDI, and IPSec, which may employ their own name 

forms.

 ■ Issuer alternative name: Contains one or more alternative names, using any of 

a variety of forms.

 ■ Subject directory attributes: Conveys any desired X.500 directory attribute 

values for the subject of this certificate.
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CERTIFICATION PATH CONSTRAINTS These extensions allow constraint specifications 

to be included in certificates issued for CAs by other CAs. The constraints may 

 restrict the types of certificates that can be issued by the subject CA or that may 

occur subsequently in a certification chain.

The extension fields in this area include:

 ■ Basic constraints: Indicates if the subject may act as a CA. If so, a certification 

path length constraint may be specified.

 ■ Name constraints: Indicates a name space within which all subject names in 

subsequent certificates in a certification path must be located.

 ■ Policy constraints: Specifies constraints that may require explicit certifi-

cate policy identification or inhibit policy mapping for the remainder of the 

 certification path.

 14.5 PUBLIC-KEY INFRASTRUCTURE

RFC 4949 (Internet Security Glossary) defines public-key infrastructure (PKI) as 

the set of hardware, software, people, policies, and procedures needed to  create, 

manage, store, distribute, and revoke digital certificates based on asymmetric 

 cryptography. The principal objective for developing a PKI is to enable secure, 

convenient, and efficient acquisition of public keys. The Internet Engineering Task 

Force (IETF) Public Key Infrastructure X.509 (PKIX) working group has been the 

 driving force behind setting up a formal (and generic) model based on X.509 that is 

suitable for deploying a certificate-based architecture on the Internet. This section 

describes the PKIX model.

Figure 14.17 shows the interrelationship among the key elements of the PKIX 

model. These elements are

 ■ End entity: A generic term used to denote end users, devices (e.g., servers, 

routers), or any other entity that can be identified in the subject field of a 

 public-key certificate. End entities typically consume and/or support PKI-

related services.

 ■ Certification authority (CA): The issuer of certificates and (usually) certifi-

cate revocation lists (CRLs). It may also support a variety of administrative 

functions, although these are often delegated to one or more Registration 

Authorities.

 ■ Registration authority (RA): An optional component that can assume a num-

ber of administrative functions from the CA. The RA is often associated with 

the end entity registration process but can assist in a number of other areas 

as well.

 ■ CRL issuer: An optional component that a CA can delegate to publish CRLs.

 ■ Repository: A generic term used to denote any method for storing certificates 

and CRLs so that they can be retrieved by end entities.
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PKIX Management Functions

PKIX identifies a number of management functions that potentially need to be 

 supported by management protocols. These are indicated in Figure 14.17 and 

 include the following:

 ■ Registration: This is the process whereby a user first makes itself known to 

a CA (directly or through an RA), prior to that CA issuing a certificate or 

certificates for that user. Registration begins the process of enrolling in a PKI. 

Registration usually involves some offline or online procedure for mutual 

 authentication. Typically, the end entity is issued one or more shared secret 

keys used for subsequent authentication.

 ■ Initialization: Before a client system can operate securely, it is necessary to 

install key materials that have the appropriate relationship with keys stored 

elsewhere in the infrastructure. For example, the client needs to be securely 

initialized with the public key and other assured information of the trusted 

CA(s), to be used in validating certificate paths.

 ■ Certification: This is the process in which a CA issues a certificate for a user’s 

public key, returns that certificate to the user’s client system, and/or posts that 

certificate in a repository.

 ■ Key pair recovery: Key pairs can be used to support digital signature creation 

and verification, encryption and decryption, or both. When a key pair is used for 

Figure 14.17 PKIX Architectural Model
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encryption/decryption, it is important to provide a mechanism to recover the 

 necessary decryption keys when normal access to the keying material is no longer 

possible, otherwise it will not be possible to recover the encrypted data. Loss of 

access to the decryption key can result from forgotten passwords/PINs, corrupted 

disk drives, damage to hardware tokens, and so on. Key pair recovery allows end 

entities to restore their encryption/decryption key pair from an authorized key 

backup facility (typically, the CA that issued the end entity’s certificate).

 ■ Key pair update: All key pairs need to be updated regularly (i.e., replaced 

with a new key pair) and new certificates issued. Update is required when the 

 certificate lifetime expires and as a result of certificate revocation.

 ■ Revocation request: An authorized person advises a CA of an abnormal situ-

ation requiring certificate revocation. Reasons for revocation include private-

key compromise, change in affiliation, and name change.

 ■ Cross certification: Two CAs exchange information used in establishing a 

cross-certificate. A cross-certificate is a certificate issued by one CA to another 

CA that contains a CA signature key used for issuing certificates.

PKIX Management Protocols

The PKIX working group has defines two alternative management protocols 

 between PKIX entities that support the management functions listed in the pre-

ceding subsection. RFC 2510 defines the certificate management protocols (CMP). 

Within CMP, each of the management functions is explicitly identified by specific 

protocol exchanges. CMP is designed to be a flexible protocol able to accommodate 

a variety of technical, operational, and business models.

RFC 2797 defines certificate management messages over CMS (CMC), where 

CMS refers to RFC 2630, cryptographic message syntax. CMC is built on earlier work 

and is intended to leverage existing implementations. Although all of the PKIX func-

tions are supported, the functions do not all map into specific protocol exchanges.

 14.6 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms 

Review Questions 
 14.1 Explain why man-in-the-middle attacks are ineffective on the secret key distribution 

protocol discussed in Figure 14.3.

 14.2 What is the major issue in end to end key distribution? How does the key hierarchy 
concept address that issue?

 14.3 What is a nonce?

 14.4 What is a key distribution center?

 14.5 What are two different uses of public-key cryptography related to key distribution?

end-to-end encryption

key distribution

key distribution center (KDC)

key management

man-in-the-middle attack

master key

nonce

public-key certificate

public-key directory

X.509 certificate
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 14.6 List four general categories of schemes for the distribution of public keys.

 14.7 Discuss the potential security issues that arise due to public key directory based 
system.

 14.8 What is a public-key certificate?

 14.9 What are the requirements for the use of a public-key certificate scheme?

 14.10 What is the purpose of the X.509 standard?

 14.11 What is a chain of certificates?

 14.12 How is an X.509 certificate revoked?

Problems 
 14.1 One local area network vendor provides a key distribution facility, as illustrated in 

Figure 14.18.
a. Describe the scheme.
b. Compare this scheme to that of Figure 14.3. What are the pros and cons?

 14.2 “We are under great pressure, Holmes.” Detective Lestrade looked nervous. “We 
have learned that copies of sensitive government documents are stored in computers 
of one foreign embassy here in London. Normally these documents exist in electronic 
form only on a selected few government computers that satisfy the most stringent 
security requirements. However, sometimes they must be sent through the network 
connecting all government computers. But all messages in this network are encrypted 
using a top-secret encryption algorithm certified by our best crypto experts. Even the 
NSA and the KGB are unable to break it. And now these documents have appeared 
in hands of diplomats of a small, otherwise insignificant, country. And we have no 
idea how it could happen.”

“But you do have some suspicion who did it, do you?” asked Holmes.

“Yes, we did some routine investigation. There is a man who has legal access 
to one of the government computers and has frequent contacts with diplomats from 
the embassy. But the computer he has access to is not one of the trusted ones where 
these documents are normally stored. He is the suspect, but we have no idea how he 
could obtain copies of the documents. Even if he could obtain a copy of an encrypted 
document, he couldn’t decrypt it.”

Figure 14.18 Figure for Problem 14.1

 

 

Key
Distribution

Center (KDC)

B A

(1) IDA, E(Ka, Na)

(2) IDA, E(Ka, Na), IDB, E(Kb, Nb)

(4) E(Ka, [Ks, IDB, Na])

(3) E(Kb, [Ks, IDA, Nb]), E(Ka, [Ks, IDB, Na])
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“Hmm, please describe the communication protocol used on the network.” 
Holmes opened his eyes, thus proving that he had followed Lestrade’s talk with an 
attention that contrasted with his sleepy look.

“Well, the protocol is as follows. Each node N of the network has been  assigned 
a unique secret key Kn. This key is used to secure communication between the node 
and a trusted server. That is, all the keys are stored also on the server. User A,  wishing 
to send a secret message M to user B, initiates the following protocol:

1. A generates a random number R and sends to the server his name A, destination 
B, and E(Ka, R).

2. Server responds by sending E(Kb, R) to A.
3. A sends E(R, M) together with E(Kb, R) to B.
4. B knows Kb, thus decrypts E(Kb, R), to get R and will subsequently use R to 

decrypt E(R, M) to get M.

You see that a random key is generated every time a message has to be sent. I admit 
the man could intercept messages sent between the top-secret trusted nodes, but I see 
no way he could decrypt them.”

“Well, I think you have your man, Lestrade. The protocol isn’t secure because 
the server doesn’t authenticate users who send him a request. Apparently designers 
of the protocol have believed that sending E(Kx, R) implicitly authenticates user X as 
the sender, as only X (and the server) knows Kx. But you know that E(Kx, R) can be 
intercepted and later replayed. Once you understand where the hole is, you will be 
able to obtain enough evidence by monitoring the man’s use of the computer he has 
access to. Most likely he works as follows. After intercepting E(Ka, R) and E(R, M) 
(see steps 1 and 3 of the protocol), the man, let’s denote him as Z, will continue by 
pretending to be A and . . . 

Finish the sentence for Holmes.

 14.3 The 1988 version of X.509 lists properties that RSA keys must satisfy to be secure 
given current knowledge about the difficulty of factoring large numbers. The discus-
sion concludes with a constraint on the public exponent and the modulus n:

It must be ensured that e 7 log2(n) to prevent attack by taking the eth 
root mod n to disclose the plaintext.

Although the constraint is correct, the reason given for requiring it is incorrect. What 
is wrong with the reason given and what is the correct reason?

 14.4 Find at least one intermediate certification authority’s certificate and one trusted 
root certification authority’s certificate on your computer (e.g., in the browser). Print 
screenshots of both the general and details tab for each certificate.

 14.5 NIST defines the term cryptoperiod as the time span during which a specific key is 
authorized for use or in which the keys for a given system or application may remain 
in effect. One document on key management uses the following time diagram for 
a shared secret key.

Originator usage period

Recipient usage period

Cryptoperiod
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Explain the overlap by giving an example application in which the originator’s usage 
period for the shared secret key begins before the recipient’s usage period and also 
ends before the recipients usage period.

 14.6 Consider the following protocol, designed to let A and B decide on a fresh, shared 
session key KAB

= . We assume that they already share a long-term key KAB.
1. A S B: A, NA.
2. B S A: E(KAB, [NA, KAB

= ])
3. A S B: E(KAB

= , NA)
a. We first try to understand the protocol designer’s reasoning:
—Why would A and B believe after the protocol ran that they share KAB

=  with the 
other party?

—Why would they believe that this shared key is fresh?
In both cases, you should explain both the reasons of both A and B, so your answer 
should complete the sentences
A believes that she shares KAB

=  with B since . . . 
B believes that he shares KAB

=  with A since . . . 
A believes that KAB

=  is fresh since . . . 
B believes that KAB

=  is fresh since . . . 
b. Assume now that A starts a run of this protocol with B. However, the connection 

is intercepted by the adversary C. Show how C can start a new run of the protocol 
using reflection, causing A to believe that she has agreed on a fresh key with B (in 
spite of the fact that she has only been communicating with C). Thus, in particular, 
the belief in (a) is false.

c. Propose a modification of the protocol that prevents this attack.

 14.7 What are the management functions of a PKI? What is a cross certificate?

 14.8 State the significance of key pair recovery. When is the key pair updated?

Note: The remaining problems deal with the a cryptographic product developed by IBM, 
which is briefly described in a document at box.com/Crypto7e (IBMCrypto.pdf). Try these 
problems after reviewing the document.

 14.9 What is the effect of adding the instruction EMKi

 EMKi: X S E(KMHi, X) i = 0, 1 

 14.10 Suppose N different systems use the IBM Cryptographic Subsystem with host master 
keys KMH[i](i = 1, 2, c  N). Devise a method for communicating between sys-
tems without requiring the system to either share a common host master key or to 
divulge their individual host master keys. Hint: Each system needs three variants of 
its host master key.

 14.11 The principal objective of the IBM Cryptographic Subsystem is to protect transmis-
sions between a terminal and the processing system. Devise a procedure, perhaps 
adding instructions, which will allow the processor to generate a session key KS and 
distribute it to Terminal i and Terminal j without having to store a key-equivalent 
variable in the host.
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This chapter examines some of the authentication functions that have been developed 

to support network-based user authentication. The chapter begins with an introduc-

tion to some of the concepts and key considerations for user authentication over a 

network or the Internet. The next section examines user-authentication protocols that 

rely on symmetric encryption. This is followed by a section on one of the earliest and 

also one of the most widely used authentication services: Kerberos. Next, the chapter 

looks at user-authentication protocols that rely on asymmetric encryption. This is fol-

lowed by a discussion of the X.509 user-authentication protocol. Finally, the concept of 

federated identity is introduced.

 15.1 REMOTE USER-AUTHENTICATION PRINCIPLES

In most computer security contexts, user authentication is the fundamental build-

ing block and the primary line of defense. User authentication is the basis for most 

types of access control and for user accountability. RFC 4949 (Internet Security 
Glossary) defines user authentication as the process of verifying an identity claimed 

by or for a system entity. This process consists of two steps:

 ■ Identification step: Presenting an identifier to the security system. (Identifiers 

should be assigned carefully, because authenticated identities are the basis for 

other security services, such as access control service.)

 ■ Verification step: Presenting or generating authentication information that 

corroborates the binding between the entity and the identifier.

For example, user Alice Toklas could have the user identifier ABTOKLAS. 

This information needs to be stored on any server or computer system that Alice 

wishes to use and could be known to system administrators and other users. 

LEARNING OBJECTIVES

After studying this chapter, you should be able to:

 ◆ Understand the distinction between identification and verification.

 ◆ Present an overview of techniques for remote user authentication using 

symmetric encryption.

 ◆ Give a presentation on Kerberos.

 ◆ Explain the differences between versions 4 and 5 of Kerberos.

 ◆ Describe the use of Kerberos in multiple realms.

 ◆ Present an overview of techniques for remote user authentication using 

asymmetric encryption.

 ◆ Understand the need for a federated identity management system.

 ◆ Explain the use of PIV mechanisms as part of a user authentication system.
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A typical item of authentication information associated with this user ID is a pass-

word, which is kept secret (known only to Alice and to the system). If no one is 

able to obtain or guess Alice’s password, then the combination of Alice’s user ID 

and password enables administrators to set up Alice’s access permissions and audit 

her activity. Because Alice’s ID is not secret, system users can send her email, but 

because her password is secret, no one can pretend to be Alice.

In essence, identification is the means by which a user provides a claimed 

identity to the system; user authentication is the means of establishing the validity 

of the claim. Note that user authentication is distinct from message authentication. 

As defined in Chapter 12, message authentication is a procedure that allows com-

municating parties to verify that the contents of a received message have not been 

altered and that the source is authentic. This chapter is concerned solely with user 

authentication.

The NIST Model for Electronic User Authentication

NIST SP 800-63-2 (Electronic Authentication Guideline, August 2013) defines elec-

tronic user authentication as the process of establishing confidence in user identi-

ties that are presented electronically to an information system. Systems can use the 

 authenticated identity to determine if the authenticated individual is authorized to 

 perform particular functions, such as database transactions or access to system re-

sources. In many cases, the authentication and transaction or other authorized function 

takes place across an open network such as the Internet. Equally authentication and 

subsequent authorization can take place locally, such as across a local area network.

SP 800-63-2 defines a general model for user authentication that involves a num-

ber of entities and procedures. We discuss this model with reference to Figure 15.1.

The initial requirement for performing user authentication is that the user 

must be registered with the system. The following is a typical sequence for registra-

tion. An applicant applies to a registration authority (RA) to become a subscriber 

Figure 15.1 The NIST SP 800-63-2 E-Authentication Architectural Model
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of a credential service provider (CSP). In this model, the RA is a trusted entity that 

establishes and vouches for the identity of an applicant to a CSP. The CSP then 

engages in an exchange with the subscriber. Depending on the details of the over-

all authentication system, the CSP issues some sort of electronic credential to the 

subscriber. The credential is a data structure that authoritatively binds an identity 

and additional attributes to a token possessed by a subscriber, and can be verified 

when presented to the verifier in an authentication transaction. The token could 

be an encryption key or an encrypted password that identifies the subscriber. The 

token may be issued by the CSP, generated directly by the subscriber, or provided 

by a third party. The token and credential may be used in subsequent authentica-

tion events.

Once a user is registered as a subscriber, the actual authentication process can 

take place between the subscriber and one or more systems that perform authen-

tication and, subsequently, authorization. The party to be authenticated is called a 

claimant and the party verifying that identity is called a verifier. When a claimant 

successfully demonstrates possession and control of a token to a verifier through an 

authentication protocol, the verifier can verify that the claimant is the subscriber 

named in the corresponding credential. The verifier passes on an assertion about the 

identity of the subscriber to the relying party (RP). That assertion includes identity 

information about a subscriber, such as the subscriber name, an identifier assigned 

at registration, or other subscriber attributes that were verified in the registration 

process. The RP can use the authenticated information provided by the verifier to 

make access control or authorization decisions.

An implemented system for authentication will differ from or be more com-

plex than this simplified model, but the model illustrates the key roles and functions 

needed for a secure authentication system.

Means of Authentication

There are four general means of authenticating a user’s identity, which can be used 

alone or in combination:

 ■ Something the individual knows: Examples include a password, a personal 

identification number (PIN), or answers to a prearranged set of questions.

 ■ Something the individual possesses: Examples include cryptographic keys, 

electronic keycards, smart cards, and physical keys. This type of authenticator 

is referred to as a token.

 ■ Something the individual is (static biometrics): Examples include recognition 

by fingerprint, retina, and face.

 ■ Something the individual does (dynamic biometrics): Examples include recog-

nition by voice pattern, handwriting characteristics, and typing rhythm.

All of these methods, properly implemented and used, can provide secure 

user authentication. However, each method has problems. An adversary may be 

able to guess or steal a password. Similarly, an adversary may be able to forge or 

steal a token. A user may forget a password or lose a token. Furthermore, there is a 

significant administrative overhead for managing password and token information 

on systems and securing such information on systems. With respect to biometric 
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authenticators, there are a variety of problems, including dealing with false positives 

and false negatives, user acceptance, cost, and convenience. For network-based user 

authentication, the most important methods involve cryptographic keys and some-

thing the individual knows, such as a password.

Mutual Authentication

An important application area is that of mutual authentication protocols. Such pro-

tocols enable communicating parties to satisfy themselves mutually about each oth-

er’s identity and to exchange session keys. This topic was examined in Chapter 14. 

There, the focus was key distribution. We return to this topic here to consider the 

wider implications of authentication.

Central to the problem of authenticated key exchange are two issues: confi-

dentiality and timeliness. To prevent masquerade and to prevent compromise of 

session keys, essential identification and session-key information must be commu-

nicated in encrypted form. This requires the prior existence of secret or public keys 

that can be used for this purpose. The second issue, timeliness, is important because 

of the threat of message replays. Such replays, at worst, could allow an opponent to 

compromise a session key or successfully impersonate another party. At minimum, 

a successful replay can disrupt operations by presenting parties with messages that 

appear genuine but are not.

[GONG93] lists the following examples of replay attacks:

1. The simplest replay attack is one in which the opponent simply copies a mes-

sage and replays it later.

2. An opponent can replay a timestamped message within the valid time window. 

If both the original and the replay arrive within then time window, this inci-

dent can be logged.

3. As with example (2), an opponent can replay a timestamped message within 

the valid time window, but in addition, the opponent suppresses the original 

message. Thus, the repetition cannot be detected.

4. Another attack involves a backward replay without modification. This is a re-

play back to the message sender. This attack is possible if symmetric encryp-

tion is used and the sender cannot easily recognize the difference between 

messages sent and messages received on the basis of content.

One approach to coping with replay attacks is to attach a sequence number to 

each message used in an authentication exchange. A new message is accepted only 

if its sequence number is in the proper order. The difficulty with this approach is 

that it requires each party to keep track of the last sequence number for each claim-

ant it has dealt with. Because of this overhead, sequence numbers are generally not 

used for authentication and key exchange. Instead, one of the following two general 

approaches is used:

 ■ Timestamps: Party A accepts a message as fresh only if the message contains 

a timestamp that, in A’s judgment, is close enough to A’s knowledge of cur-

rent time. This approach requires that clocks among the various participants 

be synchronized.
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 ■ Challenge/response: Party A, expecting a fresh message from B, first sends B 

a nonce (challenge) and requires that the subsequent message (response) re-

ceived from B contain the correct nonce value.

It can be argued (e.g., [LAM92a]) that the timestamp approach should not be 

used for connection-oriented applications because of the inherent difficulties with 

this technique. First, some sort of protocol is needed to maintain synchronization 

among the various processor clocks. This protocol must be both fault tolerant, to 

cope with network errors, and secure, to cope with hostile attacks. Second, the oppor-

tunity for a successful attack will arise if there is a temporary loss of synchronization 

resulting from a fault in the clock mechanism of one of the parties. Finally,  because 

of the variable and unpredictable nature of network delays, distributed clocks cannot 

be expected to maintain precise synchronization. Therefore, any timestamp-based 

procedure must allow for a window of time sufficiently large to accommodate net-

work delays yet sufficiently small to minimize the opportunity for attack.

On the other hand, the challenge-response approach is unsuitable for a con-

nectionless type of application, because it requires the overhead of a handshake be-

fore any connectionless transmission, effectively negating the chief characteristic of 

a connectionless transaction. For such applications, reliance on some sort of secure 

time server and a consistent attempt by each party to keep its clocks in synchroniza-

tion may be the best approach (e.g., [LAM92b]).

One-Way Authentication

One application for which encryption is growing in popularity is electronic mail  

(email). The very nature of electronic mail, and its chief benefit, is that it is not nec-

essary for the sender and receiver to be online at the same time. Instead, the email 

message is forwarded to the receiver’s electronic mailbox, where it is buffered until 

the receiver is available to read it.

The “envelope” or header of the email message must be in the clear, so that 

the message can be handled by the store-and-forward email protocol, such as the 

Simple Mail Transfer Protocol (SMTP) or X.400. However, it is often desirable that 

the mail-handling protocol not require access to the plaintext form of the message, 

because that would require trusting the mail-handling mechanism. Accordingly, the 

email message should be encrypted such that the mail-handling system is not in 

 possession of the decryption key.

A second requirement is that of authentication. Typically, the recipient wants 

some assurance that the message is from the alleged sender.

 15.2 REMOTE USER-AUTHENTICATION USING 
SYMMETRIC ENCRYPTION

Mutual Authentication

As was discussed in Chapter 14, a two-level hierarchy of symmetric encryption keys 

can be used to provide confidentiality for communication in a distributed environ-

ment. In general, this strategy involves the use of a trusted key distribution center 
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(KDC). Each party in the network shares a secret key, known as a master key, with 

the KDC. The KDC is responsible for generating keys to be used for a short time 

over a connection between two parties, known as session keys, and for distribut-

ing those keys using the master keys to protect the distribution. This approach is 

quite common. As an example, we look at the Kerberos system in Section 15.3. 

The discussion in this subsection is relevant to an understanding of the Kerberos 

mechanisms.

Figure 14.3 illustrates a proposal initially put forth by Needham and Schroeder 

[NEED78] for secret key distribution using a KDC that, as was mentioned in 

Chapter 14, includes authentication features. The protocol can be summarized as 

follows.1

1. A S KDC: IDA } IDB }N1

2. KDC S A: E(Ka, [Ks } IDB }N1 }E(Kb, [Ks } IDA])])

3. A S B:     E(Kb, [Ks } IDA])

4. B S A:     E(Ks, N2)

5. A S B:     E(Ks, f(N2)) where f() is a generic function that modifies the  

                        value of the nonce.

Secret keys Ka and Kb are shared between A and the KDC and B and the 

KDC, respectively. The purpose of the protocol is to distribute securely a session 

key Ks to A and B. Entity A securely acquires a new session key in step 2. The mes-

sage in step 3 can be decrypted, and hence understood, only by B. Step 4 reflects B’s 

knowledge of Ks, and step 5 assures B of A’s knowledge of Ks and assures B that this 

is a fresh message because of the use of the nonce N2. Recall from our discussion in 

Chapter 14 that the purpose of steps 4 and 5 is to prevent a certain type of replay at-

tack. In particular, if an opponent is able to capture the message in step 3 and replay 

it, this might in some fashion disrupt operations at B.

Despite the handshake of steps 4 and 5, the protocol is still vulnerable to a 

form of replay attack. Suppose that an opponent, X, has been able to compromise 

an old session key. Admittedly, this is a much more unlikely occurrence than that 

an opponent has simply observed and recorded step 3. Nevertheless, it is a potential 

security risk. X can impersonate A and trick B into using the old key by simply re-

playing step 3. Unless B remembers indefinitely all previous session keys used with 

A, B will be unable to determine that this is a replay. If X can intercept the hand-

shake message in step 4, then it can impersonate A’s response in step 5. From this 

point on, X can send bogus messages to B that appear to B to come from A using an 

authenticated session key.

Denning [DENN81, DENN82] proposes to overcome this weakness by a 

modification to the Needham/Schroeder protocol that includes the addition of a 

timestamp to steps 2 and 3. Her proposal assumes that the master keys, Ka and Kb, 

are secure, and it consists of the following steps.

1The portion to the left of the colon indicates the sender and the receiver; the portion to the right indi-
cates the contents of the message; the symbol }  indicates concatenation.
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1. A S KDC: IDA } IDB

2. KDC S A: E(Ka, [Ks } IDB }T }E(Kb, [Ks } IDA }T])])

3. A S B:     E(Kb, [Ks } IDA }T])

4. B S A:     E(Ks, N1)

5. A S B:     E(Ks, f(N1))

T is a timestamp that assures A and B that the session key has only just been 

generated. Thus, both A and B know that the key distribution is a fresh exchange. 

A and B can verify timeliness by checking that

�Clock - T � 6 ∆t1 + ∆t2

where ∆t1 is the estimated normal discrepancy between the KDC’s clock and the 

local clock (at A or B) and ∆t2 is the expected network delay time. Each node can 

set its clock against some standard reference source. Because the timestamp T is 

encrypted using the secure master keys, an opponent, even with knowledge of an 

old session key, cannot succeed because a replay of step 3 will be detected by B as 

untimely.

A final point: Steps 4 and 5 were not included in the original presentation 

[DENN81] but were added later [DENN82]. These steps confirm the receipt of the 

session key at B.

The Denning protocol seems to provide an increased degree of security com-

pared to the Needham/Schroeder protocol. However, a new concern is raised: 

namely, that this new scheme requires reliance on clocks that are synchronized 

throughout the network. [GONG92] points out a risk involved. The risk is based 

on the fact that the distributed clocks can become unsynchronized as a result of 

sabotage on or faults in the clocks or the synchronization mechanism.2 The problem 

occurs when a sender’s clock is ahead of the intended recipient’s clock. In this case, 

an opponent can intercept a message from the sender and replay it later when the 

timestamp in the message becomes current at the recipient’s site. This replay could 

cause unexpected results. Gong refers to such attacks as suppress-replay attacks.

One way to counter suppress-replay attacks is to enforce the requirement that 

parties regularly check their clocks against the KDC’s clock. The other alternative, 

which avoids the need for clock synchronization, is to rely on handshaking protocols 

using nonces. This latter alternative is not vulnerable to a suppress-replay attack, 

because the nonces the recipient will choose in the future are unpredictable to the 

sender. The Needham/Schroeder protocol relies on nonces only but, as we have 

seen, has other vulnerabilities.

In [KEHN92], an attempt is made to respond to the concerns about suppress-

replay attacks and at the same time fix the problems in the Needham/Schroeder 

protocol. Subsequently, an inconsistency in this latter protocol was noted and an 

improved strategy was presented in [NEUM93a].3 The protocol is

2Such things can and do happen. In recent years, flawed chips were used in a number of computers and other 
electronic systems to track the time and date. The chips had a tendency to skip forward one day. [NEUM90]
3It really is hard to get these things right.
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1. A S B:     IDA }Na

2. B S KDC:   IDB }Nb }E(Kb, [IDA }Na }Tb])

3. KDC S A: E(Ka, [IDB }Na }Ks }Tb]) }E(Kb, [IDA }Ks }Tb]) }Nb

4. A S B:    E(Kb, [IDA }Ks }Tb]) }E(Ks, Nb)

Let us follow this exchange step by step.

1. A initiates the authentication exchange by generating a nonce, Na, and sending 

that plus its identifier to B in plaintext. This nonce will be returned to A in an 

encrypted message that includes the session key, assuring A of its timeliness.

2. B alerts the KDC that a session key is needed. Its message to the KDC in-

cludes its identifier and a nonce, Nb. This nonce will be returned to B in an 

encrypted message that includes the session key, assuring B of its timeliness. 

B’s message to the KDC also includes a block encrypted with the secret key 

shared by B and the KDC. This block is used to instruct the KDC to issue 

credentials to A; the block specifies the intended recipient of the credentials, a 

suggested expiration time for the credentials, and the nonce received from A.

3. The KDC passes on to A B’s nonce and a block encrypted with the secret key 

that B shares with the KDC. The block serves as a “ticket” that can be used 

by A for subsequent authentications, as will be seen. The KDC also sends to 

A a block encrypted with the secret key shared by A and the KDC. This block 

verifies that B has received A’s initial message (IDB) and that this is a timely 

message and not a replay (Na), and it provides A with a session key (Ks) and 

the time limit on its use (Tb).

4. A transmits the ticket to B, together with the B’s nonce, the latter encrypted 

with the session key. The ticket provides B with the secret key that is used to de-

crypt E(Ks, Nb) to recover the nonce. The fact that B’s nonce is encrypted with 

the session key authenticates that the message came from A and is not a replay.

This protocol provides an effective, secure means for A and B to establish a 

session with a secure session key. Furthermore, the protocol leaves A in posses-

sion of a key that can be used for subsequent authentication to B, avoiding the 

need to contact the authentication server repeatedly. Suppose that A and B estab-

lish a session using the aforementioned protocol and then conclude that session. 

Subsequently, but within the time limit established by the protocol, A desires a new 

session with B. The following protocol ensues:

1. A S B: E(Kb, [IDA }Ks }Tb]) }Na
=

2. B S A: Nb
= }E(Ks, Na

= )

3. A S B: E(Ks, Nb
= )

When B receives the message in step 1, it verifies that the ticket has not expired. 

The newly generated nonces Na
=  and Nb

=  assure each party that there is no replay 

attack.

In all the foregoing, the time specified in Tb is a time relative to B’s clock. 

Thus, this timestamp does not require synchronized clocks, because B checks only 

self-generated timestamps.
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One-Way Authentication

Using symmetric encryption, the decentralized key distribution scenario illustrated 

in Figure 14.5 is impractical. This scheme requires the sender to issue a request to 

the intended recipient, await a response that includes a session key, and only then 

send the message.

With some refinement, the KDC strategy illustrated in Figure 14.3 is a can-

didate for encrypted electronic mail. Because we wish to avoid requiring that the 

recipient (B) be on line at the same time as the sender (A), steps 4 and 5 must be 

eliminated. For a message with content M, the sequence is as follows:

1. A S KDC: IDA } IDB }N1

2. KDC S A: E(Ka, [Ks } IDB }N1 }E(Kb, [Ks } IDA])])

3. A S B:      E(Kb, [Ks } IDA]) }E(Ks, M)

This approach guarantees that only the intended recipient of a message will be 

able to read it. It also provides a level of authentication that the sender is A. As 

 specified, the protocol does not protect against replays. Some measure of defense 

could be provided by including a timestamp with the message. However, because 

of the potential delays in the email process, such timestamps may have limited 

usefulness.

 15.3 KERBEROS

Kerberos4 is an authentication service developed as part of Project Athena at MIT. 

The problem that Kerberos addresses is this: Assume an open distributed environ-

ment in which users at workstations wish to access services on servers distributed 

throughout the network. We would like for servers to be able to restrict access to 

authorized users and to be able to authenticate requests for service. In this envi-

ronment, a workstation cannot be trusted to identify its users correctly to network 

services. In particular, the following three threats exist:

1. A user may gain access to a particular workstation and pretend to be another 

user operating from that workstation.

2. A user may alter the network address of a workstation so that the requests 

sent from the altered workstation appear to come from the impersonated 

workstation.

3. A user may eavesdrop on exchanges and use a replay attack to gain entrance 

to a server or to disrupt operations.

In any of these cases, an unauthorized user may be able to gain access to services 

and data that he or she is not authorized to access. Rather than building in elaborate 

4“In Greek mythology, a many headed dog, commonly three, perhaps with a serpent’s tail, the guardian 
of the entrance of Hades.” From Dictionary of Subjects and Symbols in Art, by James Hall, Harper & 
Row, 1979. Just as the Greek Kerberos has three heads, the modern Kerberos was intended to have three 
components to guard a network’s gate: authentication, accounting, and audit. The last two heads were 
never implemented.
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authentication protocols at each server, Kerberos provides a centralized authenti-

cation server whose function is to authenticate users to servers and servers to users. 

Unlike most other authentication schemes described in this book, Kerberos relies 

exclusively on symmetric encryption, making no use of public-key encryption.

Two versions of Kerberos are in common use. Version 4 [MILL88, STEI88] 

implementations still exist. Version 5 [KOHL94] corrects some of the security defi-

ciencies of version 4 and has been issued as a proposed Internet Standard (RFC 

4120 and RFC 4121).5

We begin this section with a brief discussion of the motivation for the Kerberos 

approach. Then, because of the complexity of Kerberos, it is best to start with a de-

scription of the authentication protocol used in version 4. This enables us to see the 

essence of the Kerberos strategy without considering some of the details required to 

handle subtle security threats. Finally, we examine version 5.

Motivation

If a set of users is provided with dedicated personal computers that have no network 

connections, then a user’s resources and files can be protected by physically secur-

ing each personal computer. When these users instead are served by a centralized 

time-sharing system, the time-sharing operating system must provide the security. 

The operating system can enforce access-control policies based on user identity and 

use the logon procedure to identify users.

Today, neither of these scenarios is typical. More common is a distributed 

architecture consisting of dedicated user workstations (clients) and distributed 

or centralized servers. In this environment, three approaches to security can be 

envisioned.

1. Rely on each individual client workstation to assure the identity of its user or 

users and rely on each server to enforce a security policy based on user iden-

tification (ID).

2. Require that client systems authenticate themselves to servers, but trust the 

client system concerning the identity of its user.

3. Require the user to prove his or her identity for each service invoked. Also 

require that servers prove their identity to clients.

In a small, closed environment in which all systems are owned and operated 

by a single organization, the first or perhaps the second strategy may suffice.6 But 

in a more open environment in which network connections to other machines are 

supported, the third approach is needed to protect user information and resources 

housed at the server. Kerberos supports this third approach. Kerberos assumes a 

distributed client/server architecture and employs one or more Kerberos servers to 

provide an authentication service.

5Versions 1 through 3 were internal development versions. Version 4 is the “original” Kerberos.
6However, even a closed environment faces the threat of attack by a disgruntled employee.
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The first published report on Kerberos [STEI88] listed the following 

requirements.

 ■ Secure: A network eavesdropper should not be able to obtain the necessary 

information to impersonate a user. More generally, Kerberos should be strong 

enough that a potential opponent does not find it to be the weak link.

 ■ Reliable: For all services that rely on Kerberos for access control, lack of 

 availability of the Kerberos service means lack of availability of the supported 

services. Hence, Kerberos should be highly reliable and should employ a 

 distributed server architecture with one system able to back up another.

 ■ Transparent: Ideally, the user should not be aware that authentication is taking 

place beyond the requirement to enter a password.

 ■ Scalable: The system should be capable of supporting large numbers of clients 

and servers. This suggests a modular, distributed architecture.

To support these requirements, the overall scheme of Kerberos is that of a 

trusted third-party authentication service that uses a protocol based on that pro-

posed by Needham and Schroeder [NEED78], which was discussed in Section 15.2. 

It is trusted in the sense that clients and servers trust Kerberos to mediate their 

mutual authentication. Assuming the Kerberos protocol is well designed, then the 

authentication service is secure if the Kerberos server itself is secure.7

Kerberos Version 4

Version 4 of Kerberos makes use of DES, in a rather elaborate protocol, to pro-

vide the authentication service. Viewing the protocol as a whole, it is difficult to see 

the need for the many elements contained therein. Therefore, we adopt a strategy 

used by Bill Bryant of Project Athena [BRYA88] and build up to the full protocol 

by looking first at several hypothetical dialogues. Each successive dialogue adds 

additional complexity to counter security vulnerabilities revealed in the preceding 

dialogue.

After examining the protocol, we look at some other aspects of version 4.

A SIMPLE AUTHENTICATION DIALOGUE In an unprotected network environment, any 

client can apply to any server for service. The obvious security risk is that of im-

personation. An opponent can pretend to be another client and obtain unauthor-

ized privileges on server machines. To counter this threat, servers must be able to 

confirm the identities of clients who request service. Each server can be required to 

undertake this task for each client/server interaction, but in an open environment, 

this places a substantial burden on each server.

7Remember that the security of the Kerberos server should not automatically be assumed but must be 
guarded carefully (e.g., in a locked room). It is well to remember the fate of the Greek Kerberos, whom 
Hercules was ordered by Eurystheus to capture as his Twelfth Labor: “Hercules found the great dog on its 
chain and seized it by the throat. At once the three heads tried to attack, and Kerberos lashed about with 
his powerful tail. Hercules hung on grimly, and Kerberos relaxed into unconsciousness. Eurystheus may 
have been surprised to see Hercules alive—when he saw the three slavering heads and the huge dog they 
belonged to he was frightened out of his wits, and leapt back into the safety of his great bronze jar.” From 
The Hamlyn Concise Dictionary of Greek and Roman Mythology, by Michael Stapleton, Hamlyn, 1982.
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An alternative is to use an authentication server (AS) that knows the 

 passwords of all users and stores these in a centralized database. In addition, the AS 

shares a unique secret key with each server. These keys have been distributed physi-

cally or in some other secure manner. Consider the following hypothetical dialogue:

(1) C S AS:    IDC }PC } IDV

(2) AS S C:    Ticket

(3) C S V:   IDC }Ticket

Ticket = E(Kv, [IDC }ADC } IDV])

where

 C = client

 AS = authentication server

 V = server

 IDC = identifier of user on C

 IDV = identifier of V

 PC = password of user on C

 ADC = network address of C

 Kv = secret encryption key shared by AS and V

In this scenario, the user logs on to a workstation and requests access to server V. 

The client module C in the user’s workstation requests the user’s password and then 

sends a message to the AS that includes the user’s ID, the server’s ID, and the user’s 

password. The AS checks its database to see if the user has supplied the proper 

password for this user ID and whether this user is permitted access to server V. If 

both tests are passed, the AS accepts the user as authentic and must now convince 

the server that this user is authentic. To do so, the AS creates a ticket that con-

tains the user’s ID and network address and the server’s ID. This ticket is encrypted 

using the secret key shared by the AS and this server. This ticket is then sent back 

to C. Because the ticket is encrypted, it cannot be altered by C or by an opponent.

With this ticket, C can now apply to V for service. C sends a message to V con-

taining C’s ID and the ticket. V decrypts the ticket and verifies that the user ID in 

the ticket is the same as the unencrypted user ID in the message. If these two match, 

the server considers the user authenticated and grants the requested service.

Each of the ingredients of message (3) is significant. The ticket is encrypted to 

prevent alteration or forgery. The server’s ID (IDV) is included in the ticket so that 

the server can verify that it has decrypted the ticket properly. IDC is included in the 

ticket to indicate that this ticket has been issued on behalf of C. Finally, ADC serves 

to counter the following threat. An opponent could capture the ticket transmitted 

in message (2), then use the name IDC and transmit a message of form (3) from 

another workstation. The server would receive a valid ticket that matches the user 

ID and grant access to the user on that other workstation. To prevent this attack, 

the AS includes in the ticket the network address from which the original request 

came. Now the ticket is valid only if it is transmitted from the same workstation that 

initially requested the ticket.
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A MORE SECURE AUTHENTICATION DIALOGUE Although the foregoing scenario solves 

some of the problems of authentication in an open network environment, problems 

remain. Two in particular stand out. First, we would like to minimize the number 

of times that a user has to enter a password. Suppose each ticket can be used only 

once. If user C logs on to a workstation in the morning and wishes to check his or her 

mail at a mail server, C must supply a password to get a ticket for the mail server. If 

C wishes to check the mail several times during the day, each attempt requires re-

entering the password. We can improve matters by saying that tickets are reusable. 

For a single logon session, the workstation can store the mail server ticket after it is 

received and use it on behalf of the user for multiple accesses to the mail server.

However, under this scheme, it remains the case that a user would need a new 

ticket for every different service. If a user wished to access a print server, a mail 

server, a file server, and so on, the first instance of each access would require a new 

ticket and hence require the user to enter the password.

The second problem is that the earlier scenario involved a plaintext transmis-

sion of the password [message (1)]. An eavesdropper could capture the password 

and use any service accessible to the victim.

To solve these additional problems, we introduce a scheme for avoiding plain-

text passwords and a new server, known as the ticket-granting server (TGS). The 

new (but still hypothetical) scenario is as follows.

Once per user logon session:

(1) C S AS:    IDC } IDtgs

(2) AS S C:    E(Kc, Tickettgs)

Once per type of service:

(3) C S TGS: IDC } IDV }Tickettgs

(4) TGS S C: Ticketv

Once per service session:

(5) C S V:   IDC }Ticketv

Tickettgs = E(Ktgs, [IDC }ADC } IDtgs }TS1 }Lifetime1])

Ticketv = E(Kv, [IDC }ADC } IDv }TS2 }Lifetime2])

The new service, TGS, issues tickets to users who have been authenticated to 

AS. Thus, the user first requests a ticket-granting ticket (Tickettgs) from the AS. The 

client module in the user workstation saves this ticket. Each time the user requires 

access to a new service, the client applies to the TGS, using the ticket to authenti-

cate itself. The TGS then grants a ticket for the particular service. The client saves 

each service-granting ticket and uses it to authenticate its user to a server each time 

a particular service is requested. Let us look at the details of this scheme:

1. The client requests a ticket-granting ticket on behalf of the user by sending its 

user’s ID to the AS, together with the TGS ID, indicating a request to use the 

TGS service.
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2. The AS responds with a ticket that is encrypted with a key that is derived from 

the user’s password (Kc), which is already stored at the AS. When this response 

arrives at the client, the client prompts the user for his or her password, gen-

erates the key, and attempts to decrypt the incoming message. If the correct 

password is supplied, the ticket is successfully recovered.

Because only the correct user should know the password, only the correct user 

can recover the ticket. Thus, we have used the password to obtain credentials from 

Kerberos without having to transmit the password in plaintext. The ticket itself 

consists of the ID and network address of the user, and the ID of the TGS. This 

corresponds to the first scenario. The idea is that the client can use this ticket to 

request multiple service-granting tickets. So the ticket-granting ticket is to be reus-

able. However, we do not wish an opponent to be able to capture the ticket and use 

it. Consider the following scenario: An opponent captures the login ticket and waits 

until the user has logged off his or her workstation. Then the opponent either gains 

access to that workstation or configures his workstation with the same network ad-

dress as that of the victim. The opponent would be able to reuse the ticket to spoof 

the TGS. To counter this, the ticket includes a timestamp, indicating the date and 

time at which the ticket was issued, and a lifetime, indicating the length of time for 

which the ticket is valid (e.g., eight hours). Thus, the client now has a reusable ticket 

and need not bother the user for a password for each new service request. Finally, 

note that the ticket-granting ticket is encrypted with a secret key known only to the 

AS and the TGS. This prevents alteration of the ticket. The ticket is reencrypted 

with a key based on the user’s password. This assures that the ticket can be recov-

ered only by the correct user, providing the authentication.

Now that the client has a ticket-granting ticket, access to any server can be 

obtained with steps 3 and 4.

3. The client requests a service-granting ticket on behalf of the user. For this pur-

pose, the client transmits a message to the TGS containing the user’s ID, the 

ID of the desired service, and the ticket-granting ticket.

4. The TGS decrypts the incoming ticket using a key shared only by the AS and 

the TGS (Ktgs) and verifies the success of the decryption by the presence of its 

ID. It checks to make sure that the lifetime has not expired. Then it compares 

the user ID and network address with the incoming information to authenti-

cate the user. If the user is permitted access to the server V, the TGS issues a 

ticket to grant access to the requested service.

The service-granting ticket has the same structure as the ticket-granting ticket. 

Indeed, because the TGS is a server, we would expect that the same elements are 

needed to authenticate a client to the TGS and to authenticate a client to an appli-

cation server. Again, the ticket contains a timestamp and lifetime. If the user wants 

access to the same service at a later time, the client can simply use the previously 

acquired service-granting ticket and need not bother the user for a password. Note 

that the ticket is encrypted with a secret key (Kv) known only to the TGS and the 

server, preventing alteration.

Finally, with a particular service-granting ticket, the client can gain access to 

the corresponding service with step 5.
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5. The client requests access to a service on behalf of the user. For this purpose, the 

client transmits a message to the server containing the user’s ID and the service-

granting ticket. The server authenticates by using the contents of the ticket.

This new scenario satisfies the two requirements of only one password query 

per user session and protection of the user password.

THE VERSION 4 AUTHENTICATION DIALOGUE Although the foregoing scenario en-

hances security compared to the first attempt, two additional problems remain. The 

heart of the first problem is the lifetime associated with the ticket-granting ticket. 

If this lifetime is very short (e.g., minutes), then the user will be repeatedly asked 

for a password. If the lifetime is long (e.g., hours), then an opponent has a greater 

opportunity for replay. An opponent could eavesdrop on the network and capture 

a copy of the ticket-granting ticket and then wait for the legitimate user to log out. 

Then the opponent could forge the legitimate user’s network address and send the 

message of step (3) to the TGS. This would give the opponent unlimited access to 

the resources and files available to the legitimate user.

Similarly, if an opponent captures a service-granting ticket and uses it before it 

expires, the opponent has access to the corresponding service.

Thus, we arrive at an additional requirement. A network service (the TGS or 

an application service) must be able to prove that the person using a ticket is the 

same person to whom that ticket was issued.

The second problem is that there may be a requirement for servers to authen-

ticate themselves to users. Without such authentication, an opponent could sabo-

tage the configuration so that messages to a server were directed to another loca-

tion. The false server would then be in a position to act as a real server and capture 

any information from the user and deny the true service to the user.

We examine these problems in turn and refer to Table 15.1, which shows the 

actual Kerberos protocol. Figure 15.2 provides a simplified overview.

(1) C S AS IDc } IDtgs }TS1

(2) AS S C E(Kc, [Kc, tgs } IDtgs }TS2 }Lifetime2 }Tickettgs])

Tickettgs = E(Ktgs, [Kc, tgs } IDC }ADC } IDtgs }TS2 }Lifetime2])

(a) Authentication Service Exchange to obtain ticket-granting ticket

(3) C S TGS IDv }Tickettgs }Authenticatorc

(4) TGS S C E(Kc, tgs, [Kc, v } IDv }TS4 }Ticketv])

Tickettgs = E(Ktgs, [Kc, tgs } IDC }ADC } IDtgs }TS2 }Lifetime2])

Ticketv = E(Kv, [Kc, v } IDC }ADC } IDv }TS4 }Lifetime4])

Authenticatorc = E(Kc, tgs, [IDC }ADC }TS3])

(b) Ticket-Granting Service Exchange to obtain service-granting ticket

(5) C S V Ticketv }Authenticatorc

(6) V S C E(Kc,v, [TS5 + 1]) (for mutual authentication)

Ticketv = E(Kv, [Kc, v } IDC }ADC } IDv }TS4 }Lifetime4])

Authenticatorc = E(Kc, v, [IDC }ADC }TS5])

(c) Client/Server Authentication Exchange to obtain service

Table 15.1 Summary of Kerberos Version 4 Message Exchanges



15.3 / KERBEROS 489

First, consider the problem of captured ticket-granting tickets and the need 

to determine that the ticket presenter is the same as the client for whom the ticket 

was issued. The threat is that an opponent will steal the ticket and use it before it 

expires. To get around this problem, let us have the AS provide both the client and 

the TGS with a secret piece of information in a secure manner. Then the client can 

prove its identity to the TGS by revealing the secret information—again in a secure 

manner. An efficient way of accomplishing this is to use an encryption key as the 

secure information; this is referred to as a session key in Kerberos.

Table 15.1a shows the technique for distributing the session key. As before, 

the client sends a message to the AS requesting access to the TGS. The AS re-

sponds with a message, encrypted with a key derived from the user’s password 

(Kc), that contains the ticket. The encrypted message also contains a copy of the 

session key, Kc,tgs, where the subscripts indicate that this is a session key for C and 

TGS. Because this session key is inside the message encrypted with Kc, only the 

user’s client can read it. The same session key is included in the ticket, which can 

be read only by the TGS. Thus, the session key has been securely delivered to both 

C and the TGS.

Figure 15.2 Overview of Kerberos
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Note that several additional pieces of information have been added to this 

first phase of the dialogue. Message (1) includes a timestamp, so that the AS knows 

that the message is timely. Message (2) includes several elements of the ticket in a 

form accessible to C. This enables C to confirm that this ticket is for the TGS and to 

learn its expiration time.

Armed with the ticket and the session key, C is ready to approach the TGS. 

As before, C sends the TGS a message that includes the ticket plus the ID of the 

requested service [message (3) in Table 15.1b]. In addition, C transmits an authentica-

tor, which includes the ID and address of C’s user and a timestamp. Unlike the ticket, 

which is reusable, the authenticator is intended for use only once and has a very short 

lifetime. The TGS can decrypt the ticket with the key that it shares with the AS. This 

ticket indicates that user C has been provided with the session key Kc,tgs. In effect, 

the ticket says, “Anyone who uses Kc,tgs must be C.” The TGS uses the session key to 

decrypt the authenticator. The TGS can then check the name and address from the 

authenticator with that of the ticket and with the network address of the incoming 

message. If all match, then the TGS is assured that the sender of the ticket is indeed 

the ticket’s real owner. In effect, the authenticator says, “At time TS3, I hereby use 

Kc,tgs.” Note that the ticket does not prove anyone’s identity but is a way to distribute 

keys securely. It is the authenticator that proves the client’s identity. Because the au-

thenticator can be used only once and has a short lifetime, the threat of an opponent 

stealing both the ticket and the authenticator for presentation later is countered.

The reply from the TGS in message (4) follows the form of message (2). The 

message is encrypted with the session key shared by the TGS and C and includes 

a session key to be shared between C and the server V, the ID of V, and the time-

stamp of the ticket. The ticket itself includes the same session key.

C now has a reusable service-granting ticket for V. When C presents this ticket, 

as shown in message (5), it also sends an authenticator. The server can decrypt the 

ticket, recover the session key, and decrypt the authenticator.

If mutual authentication is required, the server can reply as shown in message 

(6) of Table 15.1. The server returns the value of the timestamp from the authenti-

cator, incremented by 1, and encrypted in the session key. C can decrypt this mes-

sage to recover the incremented timestamp. Because the message was encrypted by 

the session key, C is assured that it could have been created only by V. The contents 

of the message assure C that this is not a replay of an old reply.

Finally, at the conclusion of this process, the client and server share a secret 

key. This key can be used to encrypt future messages between the two or to ex-

change a new random session key for that purpose.

Figure 15.3 illustrates the Kerberos exchanges among the parties. Table 15.2 

summarizes the justification for each of the elements in the Kerberos protocol.

KERBEROS REALMS AND MULTIPLE KERBERI A full-service Kerberos environment 

consisting of a Kerberos server, a number of clients, and a number of application 

servers requires the following:

1. The Kerberos server must have the user ID and hashed passwords of all partic-

ipating users in its database. All users are registered with the Kerberos server.

2. The Kerberos server must share a secret key with each server. All servers are 

registered with the Kerberos server.
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Message (1) Client requests ticket-granting ticket.

IDC Tells AS identity of user from this client.

IDtgs Tells AS that user requests access to TGS.

TS1 Allows AS to verify that client’s clock is synchronized with that of AS.

Message (2) AS returns ticket-granting ticket.

Kc Encryption is based on user’s password, enabling AS and client to verify password, and 

protecting contents of message (2).

Kc, tgs Copy of session key accessible to client created by AS to permit secure exchange between 

client and TGS without requiring them to share a permanent key.

IDtgs Confirms that this ticket is for the TGS.

TS2 Informs client of time this ticket was issued.

Lifetime2 Informs client of the lifetime of this ticket.

Tickettgs Ticket to be used by client to access TGS.

(a) Authentication Service Exchange

Message (3) Client requests service-granting ticket.

IDV Tells TGS that user requests access to server V.

Tickettgs Assures TGS that this user has been authenticated by AS.

Authenticatorc Generated by client to validate ticket.

Table 15.2 Rationale for the Elements of the Kerberos Version 4 Protocol

Figure 15.3 Kerberos Exchanges
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Message (4) TGS returns service-granting ticket.

Kc, tgs Key shared only by C and TGS protects contents of message (4).

Kc, v Copy of session key accessible to client created by TGS to permit secure exchange between 

client and server without requiring them to share a permanent key.

IDV Confirms that this ticket is for server V.

TS4 Informs client of time this ticket was issued.

TicketV Ticket to be used by client to access server V.

Tickettgs Reusable so that user does not have to reenter password.

Ktgs Ticket is encrypted with key known only to AS and TGS, to prevent tampering.

Kc, tgs Copy of session key accessible to TGS used to decrypt authenticator, thereby  authenticating 

ticket.

IDC Indicates the rightful owner of this ticket.

ADC Prevents use of ticket from workstation other than one that initially requested the ticket.

IDtgs Assures server that it has decrypted ticket properly.

TS2 Informs TGS of time this ticket was issued.

Lifetime2 Prevents replay after ticket has expired.

Authenticatorc Assures TGS that the ticket presenter is the same as the client for whom the ticket was 

issued has very short lifetime to prevent replay.

Kc, tgs Authenticator is encrypted with key known only to client and TGS, to prevent tampering.

IDC Must match ID in ticket to authenticate ticket.

ADC Must match address in ticket to authenticate ticket.

TS3 Informs TGS of time this authenticator was generated.

(b) Ticket-Granting Service Exchange

Message (5) Client requests service.

TicketV Assures server that this user has been authenticated by AS.

Authenticatorc Generated by client to validate ticket.

Message (6) Optional authentication of server to client.

Kc, v Assures C that this message is from V.

TS5 + 1 Assures C that this is not a replay of an old reply.

Ticketv Reusable so that client does not need to request a new ticket from TGS for each access to 

the same server.

Kv Ticket is encrypted with key known only to TGS and server, to prevent tampering.

Kc, v Copy of session key accessible to client; used to decrypt authenticator, thereby  authenticating 

ticket.

IDC Indicates the rightful owner of this ticket.

ADC Prevents use of ticket from workstation other than one that initially requested the ticket.

IDV Assures server that it has decrypted ticket properly.

TS4 Informs server of time this ticket was issued.

Lifetime4 Prevents replay after ticket has expired.

Authenticatorc Assures server that the ticket presenter is the same as the client for whom the ticket was 

issued; has very short lifetime to prevent replay.

Kc, v Authenticator is encrypted with key known only to client and server, to prevent tampering.

IDC Must match ID in ticket to authenticate ticket.

ADC Must match address in ticket to authenticate ticket.

TS5 Informs server of time this authenticator was generated.

(c) Client/Server Authentication Exchange

Table 15.2 Continued
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Such an environment is referred to as a Kerberos realm. The concept of 

realm can be explained as follows. A Kerberos realm is a set of managed nodes 

that share the same Kerberos database. The Kerberos database resides on the 

Kerberos master computer system, which should be kept in a physically secure 

room. A read-only copy of the Kerberos database might also reside on other 

Kerberos computer systems. However, all changes to the database must be 

made on the master computer system. Changing or accessing the contents of a 

Kerberos database requires the Kerberos master password. A related concept 

is that of a Kerberos principal, which is a service or user that is known to the 

Kerberos system. Each Kerberos principal is identified by its principal name. 

Principal names consist of three parts: a service or user name, an instance name, 

and a realm name.

Networks of clients and servers under different administrative organizations 

typically constitute different realms. That is, it generally is not practical or does 

not conform to administrative policy to have users and servers in one administra-

tive domain registered with a Kerberos server elsewhere. However, users in one 

realm may need access to servers in other realms, and some servers may be will-

ing to provide service to users from other realms, provided that those users are 

authenticated.

Kerberos provides a mechanism for supporting such interrealm  authentication. 

For two realms to support interrealm authentication, a third requirement is added:

3. The Kerberos server in each interoperating realm shares a secret key with the 

server in the other realm. The two Kerberos servers are registered with each 

other.

The scheme requires that the Kerberos server in one realm trust the Kerberos 

server in the other realm to authenticate its users. Furthermore, the participating 

servers in the second realm must also be willing to trust the Kerberos server in the 

first realm.

With these ground rules in place, we can describe the mechanism as follows 

(Figure 15.4): A user wishing service on a server in another realm needs a ticket for 

that server. The user’s client follows the usual procedures to gain access to the local 

TGS and then requests a ticket-granting ticket for a remote TGS (TGS in another 

realm). The client can then apply to the remote TGS for a service-granting ticket for 

the desired server in the realm of the remote TGS.

The details of the exchanges illustrated in Figure 15.4 are as follows (compare 

Table 15.1).

(1) C S AS:    IDc } IDtgs }TS1

(2) AS S C:      E(Kc, [Kc, tgs } IDtgs }TS2 }Lifetime2 }Tickettgs])

(3) C S TGS:   IDtgsrem }Tickettgs }Authenticatorc

(4) TGS S C:    E(Kc,tgs, [Kc, tgsrem } IDtgsrem }TS4 }Tickettgsrem])

(5) C S TGSrem: IDvrem }Tickettgsrem }Authenticatorc

(6) TGSrem S C: E(Kc,tgsrem, [Kc, vrem } IDvrem }TS6 }Ticketvrem])

(7) C S Vrem:     Ticketvrem }Authenticatorc
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The ticket presented to the remote server (Vrem) indicates the realm in which 

the user was originally authenticated. The server chooses whether to honor the re-

mote request.

One problem presented by the foregoing approach is that it does not scale well 

to many realms. If there are N realms, then there must be N(N - 1)/2 secure key 

exchanges so that each Kerberos realm can interoperate with all other Kerberos 

realms.

Kerberos Version 5

Kerberos version 5 is specified in RFC 4120 and provides a number of improve-

ments over version 4 [KOHL94]. To begin, we provide an overview of the changes 

from version 4 to version 5 and then look at the version 5 protocol.

Figure 15.4 Request for Service in Another Realm
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DIFFERENCES BETWEEN VERSIONS 4 AND 5 Version 5 is intended to address the limita-

tions of version 4 in two areas: environmental shortcomings and technical deficien-

cies. Let us briefly summarize the improvements in each area.8

Kerberos version 4 was developed for use within the Project Athena environ-

ment and, accordingly, did not fully address the need to be of general purpose. This 

led to the following environmental shortcomings.

1. Encryption system dependence: Version 4 requires the use of DES. Export 

restriction on DES as well as doubts about the strength of DES were thus of 

concern. In version 5, ciphertext is tagged with an encryption-type identifier 

so that any encryption technique may be used. Encryption keys are tagged 

with a type and a length, allowing the same key to be used in different al-

gorithms and allowing the specification of different variations on a given 

algorithm.

2. Internet protocol dependence: Version 4 requires the use of Internet Protocol 

(IP) addresses. Other address types, such as the ISO network address, are not 

accommodated. Version 5 network addresses are tagged with type and length, 

allowing any network address type to be used.

3. Message byte ordering: In version 4, the sender of a message employs a byte 

ordering of its own choosing and tags the message to indicate least signifi-

cant byte in lowest address or most significant byte in lowest address. This 

techniques works but does not follow established conventions. In version 

5, all message structures are defined using Abstract Syntax Notation One 

(ASN.1) and Basic Encoding Rules (BER), which provide an unambiguous 

byte ordering.

4. Ticket lifetime: Lifetime values in version 4 are encoded in an 8-bit quantity 

in units of five minutes. Thus, the maximum lifetime that can be expressed is 

28 * 5 = 1280 minutes (a little over 21 hours). This may be inadequate for 

some applications (e.g., a long-running simulation that requires valid Kerberos 

credentials throughout execution). In version 5, tickets include an explicit start 

time and end time, allowing tickets with arbitrary lifetimes.

5. Authentication forwarding: Version 4 does not allow credentials issued to one 

client to be forwarded to some other host and used by some other client. This 

capability would enable a client to access a server and have that server access 

another server on behalf of the client. For example, a client issues a request to 

a print server that then accesses the client’s file from a file server, using the cli-

ent’s credentials for access. Version 5 provides this capability.

6. Interrealm authentication: In version 4, interoperability among N realms 

 requires on the order of N2 Kerberos-to-Kerberos relationships, as described 

earlier. Version 5 supports a method that requires fewer relationships, as de-

scribed shortly.

8The following discussion follows the presentation in [KOHL94].
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Apart from these environmental limitations, there are technical  deficiencies 

in the version 4 protocol itself. Most of these deficiencies were documented in 

[BELL90], and version 5 attempts to address these. The deficiencies are the 

following.

1. Double encryption: Note in Table 15.1 [messages (2) and (4)] that tickets pro-

vided to clients are encrypted twice—once with the secret key of the target 

server and then again with a secret key known to the client. The second en-

cryption is not necessary and is computationally wasteful.

2. PCBC encryption: Encryption in version 4 makes use of a nonstandard mode 

of DES known as propagating cipher block chaining (PCBC).9 It has been 

demonstrated that this mode is vulnerable to an attack involving the inter-

change of ciphertext blocks [KOHL89]. PCBC was intended to provide an in-

tegrity check as part of the encryption operation. Version 5 provides explicit 

integrity mechanisms, allowing the standard CBC mode to be used for encryp-

tion. In particular, a checksum or hash code is attached to the message prior to 

encryption using CBC.

3. Session keys: Each ticket includes a session key that is used by the client 

to encrypt the authenticator sent to the service associated with that ticket. 

In addition, the session key may subsequently be used by the client and the 

server to protect messages passed during that session. However, because 

the same ticket may be used repeatedly to gain service from a particular 

server, there is the risk that an opponent will replay messages from an old 

session to the client or the server. In version 5, it is possible for a client 

and server to negotiate a subsession key, which is to be used only for that 

one connection. A new access by the client would result in the use of a new 

subsession key.

4. Password attacks: Both versions are vulnerable to a password attack. The mes-

sage from the AS to the client includes material encrypted with a key based 

on the client’s password.10 An opponent can capture this message and attempt 

to decrypt it by trying various passwords. If the result of a test decryption is of 

the proper form, then the opponent has discovered the client’s password and 

may subsequently use it to gain authentication credentials from Kerberos. This 

is the same type of password attack described in Chapter 21, with the same 

kinds of countermeasures being applicable. Version 5 does provide a mecha-

nism known as preauthentication, which should make password attacks more 

difficult, but it does not prevent them.

THE VERSION 5 AUTHENTICATION DIALOGUE Table 15.3 summarizes the basic ver-

sion 5 dialogue. This is best explained by comparison with version 4 (Table 15.1).

First, consider the authentication service exchange. Message (1) is a client re-

quest for a ticket-granting ticket. As before, it includes the ID of the user and the TGS. 

The following new elements are added:

9This is described in Appendix T.
10Appendix T describes the mapping of passwords to encryption keys.
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(1) C S AS Options } IDc }Realmc } IDtgs }Times }Nonce1

(2) AS S C RealmC } IDC }Tickettgs }E(Kc, [Kc,tgs }Times }Nonce1 }Realmtgs } IDtgs])

Tickettgs = E(Ktgs, [Flags }Kc,tgs }Realmc } IDC }ADC }Times])

(a) Authentication Service Exchange to obtain ticket-granting ticket

(3) C S TGS Options } IDv }Times }Nonce2 }Tickettgs }Authenticatorc

(4) TGS S C Realmc } IDC }Ticketv }E(Kc,tgs, [Kc,v }Times }Nonce2 }Realmv } IDv])

Tickettgs = E(Ktgs, [Flags }Kc,tgs }Realmc } IDC }ADC }Times])

Ticketv = E(Kv, [Flags }Kc,v }Realmc } IDC }ADC }Times])

Authenticatorc = E(Kc,tgs, [IDC }Realmc }TS1])

(b) Ticket-Granting Service Exchange to obtain service-granting ticket

(5) C S V Options }Ticketv }Authenticatorc

(6) V S C EKc,v
[TS2 }Subkey }Seq #]

Ticketv = E(Kv, [Flag }Kc,v }Realmc } IDC }ADC }Times])

Authenticatorc = E(Kc,v, [IDC }Relamc }TS2 }Subkey }Seq #])

(c) Client/Server Authentication Exchange to obtain service

Table 15.3 Summary of Kerberos Version 5 Message Exchanges

 ■ Realm: Indicates realm of user

 ■ Options: Used to request that certain flags be set in the returned ticket

 ■ Times: Used by the client to request the following time settings in the ticket:

—from: the desired start time for the requested ticket

—till: the requested expiration time for the requested ticket

—rtime: requested renew-till time

 ■ Nonce: A random value to be repeated in message (2) to assure that the re-

sponse is fresh and has not been replayed by an opponent

Message (2) returns a ticket-granting ticket, identifying information for the 

client, and a block encrypted using the encryption key based on the user’s password. 

This block includes the session key to be used between the client and the TGS, 

times specified in message (1), the nonce from message (1), and TGS identifying 

information. The ticket itself includes the session key, identifying information for 

the client, the requested time values, and flags that reflect the status of this ticket 

and the requested options. These flags introduce significant new functionality to 

 version 5. For now, we defer a discussion of these flags and concentrate on the over-

all  structure of the version 5 protocol.

Let us now compare the ticket-granting service exchange for versions 

4 and 5. We see that message (3) for both versions includes an authenticator, a 

ticket, and the name of the requested service. In addition, version 5 includes re-

quested times and options for the ticket and a nonce—all with functions similar 

to those of message (1). The authenticator itself is essentially the same as the one 

used in version 4.
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Message (4) has the same structure as message (2). It returns a ticket plus 

information needed by the client, with the information encrypted using the session 

key now shared by the client and the TGS.

Finally, for the client/server authentication exchange, several new features 

 appear in version 5. In message (5), the client may request as an option that mutual 

authentication is required. The authenticator includes several new fields:

 ■ Subkey: The client’s choice for an encryption key to be used to protect this 

specific application session. If this field is omitted, the session key from the 

ticket (Kc,v) is used.

 ■ Sequence number: An optional field that specifies the starting sequence num-

ber to be used by the server for messages sent to the client during this session. 

Messages may be sequence numbered to detect replays.

If mutual authentication is required, the server responds with message (6). 

This message includes the timestamp from the authenticator. Note that in version 4, 

the timestamp was incremented by one. This is not necessary in version 5, because 

the nature of the format of messages is such that it is not possible for an oppo-

nent to create message (6) without knowledge of the appropriate encryption keys. 

The subkey field, if present, overrides the subkey field, if present, in message (5).  

The optional sequence number field specifies the starting sequence number to be 

used by the client.

TICKET FLAGS The flags field included in tickets in version 5 supports expanded 

functionality compared to that available in version 4. Table 15.4 summarizes the 

flags that may be included in a ticket.

INITIAL This ticket was issued using the AS protocol and not issued based on a 

ticket-granting ticket.

PRE-AUTHENT During initial authentication, the client was authenticated by the KDC 

before a ticket was issued.

HW-AUTHENT The protocol employed for initial authentication required the use of hard-

ware expected to be possessed solely by the named client.

RENEWABLE Tells TGS that this ticket can be used to obtain a replacement ticket that 

expires at a later date.

MAY-POSTDATE Tells TGS that a postdated ticket may be issued based on this ticket-

granting ticket.

POSTDATED Indicates that this ticket has been postdated; the end server can check the 

authtime field to see when the original authentication occurred.

INVALID This ticket is invalid and must be validated by the KDC before use.

PROXIABLE Tells TGS that a new service-granting ticket with a different network 

address may be issued based on the presented ticket.

PROXY Indicates that this ticket is a proxy.

FORWARDABLE Tells TGS that a new ticket-granting ticket with a different network 

address may be issued based on this ticket-granting ticket.

FORWARDED Indicates that this ticket has either been forwarded or was issued based on 

authentication involving a forwarded ticket-granting ticket.

Table 15.4 Kerberos Version 5 Flags
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The INITIAL flag indicates that this ticket was issued by the AS, not by the 

TGS. When a client requests a service-granting ticket from the TGS, it presents a 

ticket-granting ticket obtained from the AS. In version 4, this was the only way to 

obtain a service-granting ticket. Version 5 provides the additional capability that 

the client can get a service-granting ticket directly from the AS. The utility of this is 

as follows: A server, such as a password-changing server, may wish to know that the 

client’s password was recently tested.

The PRE-AUTHENT flag, if set, indicates that when the AS received the ini-

tial request [message (1)], it authenticated the client before issuing a ticket. The 

exact form of this preauthentication is left unspecified. As an example, the MIT 

implementation of version 5 has encrypted timestamp preauthentication, enabled 

by default. When a user wants to get a ticket, it has to send to the AS a preauthen-

tication block containing a random confounder, a version number, and a timestamp 

all encrypted in the client’s password-based key. The AS decrypts the block and will 

not send a ticket-granting ticket back unless the timestamp in the preauthentica-

tion block is within the allowable time skew (time interval to account for clock drift 

and network delays). Another possibility is the use of a smart card that generates 

continually changing passwords that are included in the preauthenticated messages. 

The passwords generated by the card can be based on a user’s password but be 

transformed by the card so that, in effect, arbitrary passwords are used. This pre-

vents an attack based on easily guessed passwords. If a smart card or similar device 

was used, this is indicated by the HW-AUTHENT flag.

When a ticket has a long lifetime, there is the potential for it to be stolen and 

used by an opponent for a considerable period. If a short lifetime is used to lessen 

the threat, then overhead is involved in acquiring new tickets. In the case of a ticket-

granting ticket, the client would either have to store the user’s secret key, which is 

clearly risky, or repeatedly ask the user for a password. A compromise scheme is 

the use of renewable tickets. A ticket with the RENEWABLE flag set includes two 

expiration times: One for this specific ticket and one that is the latest permissible 

value for an expiration time. A client can have the ticket renewed by presenting it 

to the TGS with a requested new expiration time. If the new time is within the limit 

of the latest permissible value, the TGS can issue a new ticket with a new session 

time and a later specific expiration time. The advantage of this mechanism is that 

the TGS may refuse to renew a ticket reported as stolen.

A client may request that the AS provide a ticket-granting ticket with the 

MAY-POSTDATE flag set. The client can then use this ticket to request a ticket 

that is flagged as POSTDATED and INVALID from the TGS. Subsequently, the 

client may submit the postdated ticket for validation. This scheme can be useful 

for running a long batch job on a server that requires a ticket periodically. The 

client can obtain a number of tickets for this session at once, with spread out time 

values. All but the first ticket are initially invalid. When the execution reaches a 

point in time when a new ticket is required, the client can get the appropriate ticket 

validated. With this approach, the client does not have to repeatedly use its ticket-

granting ticket to obtain a service-granting ticket.

In version 5, it is possible for a server to act as a proxy on behalf of a client, in 

effect adopting the credentials and privileges of the client to request a service from 

another server. If a client wishes to use this mechanism, it requests a ticket-granting 
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ticket with the PROXIABLE flag set. When this ticket is presented to the TGS, the 

TGS is permitted to issue a service-granting ticket with a different network address; 

this latter ticket will have its PROXY flag set. An application receiving such a ticket 

may accept it or require additional authentication to provide an audit trail.11

The proxy concept is a limited case of the more powerful forwarding procedure. 

If a ticket is set with the FORWARDABLE flag, a TGS can issue to the requestor a 

ticket-granting ticket with a different network address and the FORWARDED flag 

set. This ticket then can be presented to a remote TGS. This capability allows a cli-

ent to gain access to a server on another realm without requiring that each Kerberos 

maintain a secret key with Kerberos servers in every other realm. For example, 

realms could be structured hierarchically. Then a client could walk up the tree to a 

common node and then back down to reach a target realm. Each step of the walk 

would involve forwarding a ticket-granting ticket to the next TGS in the path.

 15.4 REMOTE USER-AUTHENTICATION USING 
ASYMMETRIC ENCRYPTION

Mutual Authentication

In Chapter 14, we presented one approach to the use of public-key encryption for 

the purpose of session-key distribution (Figure 14.9). This protocol assumes that 

each of the two parties is in possession of the current public key of the other. It may 

not be practical to require this assumption.

A protocol using timestamps is provided in [DENN81]:

1. A S AS: IDA } IDB

2. AS S A: E(PRas, [IDA }PUa }T]) }E(PRas, [IDB }PUb }T])

3. A S B:    E(PRas, [IDA }PUa }T]) }E(PRas, [IDB }PUb }T]) }  

 E(PUb, E(PRa, [Ks }T]))

In this case, the central system is referred to as an authentication server (AS), 

because it is not actually responsible for secret-key distribution. Rather, the AS pro-

vides public-key certificates. The session key is chosen and encrypted by A; hence, 

there is no risk of exposure by the AS. The timestamps protect against replays of 

compromised keys.

This protocol is compact but, as before, requires the synchronization of clocks. 

Another approach, proposed by Woo and Lam [WOO92a], makes use of nonces. 

The protocol consists of the following steps.

1. A S KDC: IDA } IDB

2. KDC S A: E(PRauth, [IDB }PUb])

3. A S B:    E(PUb, [Na } IDA])

4. B S KDC: IDA } IDB }E(PUauth, Na)

5. KDC S B: E(PRauth, [IDA }PUa]) }E(PUb, E(PRauth, [Na }Ks } IDB]))

11For a discussion of some of the possible uses of the proxy capability, see [NEUM93b].
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6. B S A:    E(PUa, [E(PRauth, [(Na }Ks } IDB)]) }Nb])

7. A S B:    E(Ks, Nb)

In step 1, A informs the KDC of its intention to establish a secure connection 

with B. The KDC returns to A a copy of B’s public-key certificate (step 2). Using B’s 

public key, A informs B of its desire to communicate and sends a nonce Na (step 3). 

In step 4, B asks the KDC for A’s public-key certificate and requests a session key; 

B includes A’s nonce so that the KDC can stamp the session key with that nonce. 

The nonce is protected using the KDC’s public key. In step 5, the KDC returns to 

B a copy of A’s public-key certificate, plus the information {Na, Ks, IDB}. This infor-

mation basically says that Ks is a secret key generated by the KDC on behalf of B 

and tied to Na; the binding of Ks and Na will assure A that Ks is fresh. This triple is 

encrypted using the KDC’s private key to allow B to verify that the triple is in fact 

from the KDC. It is also encrypted using B’s public key so that no other entity may 

use the triple in an attempt to establish a fraudulent connection with A. In step 6, 

the triple {Na, Ks, IDB}, still encrypted with the KDC’s private key, is relayed to A, 

together with a nonce Nb generated by B. All the foregoing are encrypted using A’s 

public key. A retrieves the session key Ks, uses it to encrypt Nb, and returns it to B. 

This last message assures B of A’s knowledge of the session key.

This seems to be a secure protocol that takes into account the various attacks. 

However, the authors themselves spotted a flaw and submitted a revised version of 

the algorithm in [WOO92b]:

1. A S KDC: IDA } IDB

2. KDC S A:     E(PRauth, [IDB }PUb])

3. A S B:     E(PUb, [Na } IDA])

4. B S KDC: IDA } IDB }E(PUauth, Na)

5. KDC S B: E(PRauth, [IDA }PUa]) }E(PUb, E(PRauth, [Na }Ks } IDA } IDB]))

6. B S A:    E(PUa, [Nb }E(PRauth, [Na }Ks } IDA } IDB])])

7. A S B:    E(Ks, Nb)

The identifier of A, IDA, is added to the set of items encrypted with the KDC’s 

private key in steps 5 and 6. This binds the session key Ks to the identities of the two 

parties that will be engaged in the session. This inclusion of IDA accounts for the 

fact that the nonce value Na is considered unique only among all nonces generated 

by A, not among all nonces generated by all parties. Thus, it is the pair {IDA, Na} 

that uniquely identifies the connection request of A.

In both this example and the protocols described earlier, protocols that ap-

peared secure were revised after additional analysis. These examples highlight the 

difficulty of getting things right in the area of authentication.

One-Way Authentication

We have already presented public-key encryption approaches that are suited to 

electronic mail, including the straightforward encryption of the entire message for 

confidentiality (Figure 12.1b), authentication (Figure 12.1c), or both (Figure 12.1d). 

These approaches require that either the sender know the recipient’s public key 
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(confidentiality), the recipient know the sender’s public key (authentication), or 

both (confidentiality plus authentication). In addition, the public-key algorithm 

must be applied once or twice to what may be a long message.

If confidentiality is the primary concern, then the following may be more efficient:

A S B: E(PUb, Ks) }E(Ks, M)

In this case, the message is encrypted with a one-time secret key. A also encrypts this 

one-time key with B’s public key. Only B will be able to use the corresponding private 

key to recover the one-time key and then use that key to decrypt the message. This 

scheme is more efficient than simply encrypting the entire message with B’s public key.

If authentication is the primary concern, then a digital signature may suffice, 

as was illustrated in Figure 13.2:

A S B: M }E(PRa, H(M))

This method guarantees that A cannot later deny having sent the message. 

However, this technique is open to another kind of fraud. Bob composes a mes-

sage to his boss Alice that contains an idea that will save the company money. He 

 appends his digital signature and sends it into the email system. Eventually, the 

message will get delivered to Alice’s mailbox. But suppose that Max has heard of 

Bob’s idea and gains access to the mail queue before delivery. He finds Bob’s mes-

sage, strips off his signature, appends his, and requeues the message to be delivered 

to Alice. Max gets credit for Bob’s idea.

To counter such a scheme, both the message and signature can be encrypted 

with the recipient’s public key:

A S B: E(PUb, [M }E(PRa, H(M))])

The latter two schemes require that B know A’s public key and be convinced 

that it is timely. An effective way to provide this assurance is the digital certificate, 

described in Chapter 14. Now we have

A S B: M }E(PRa, H(M)) }E(PRas, [T } IDA }PUa])

In addition to the message, A sends B the signature encrypted with A’s private 

key and A’s certificate encrypted with the private key of the authentication server. 

The recipient of the message first uses the certificate to obtain the sender’s public 

key and verify that it is authentic and then uses the public key to verify the message 

itself. If confidentiality is required, then the entire message can be encrypted with 

B’s public key. Alternatively, the entire message can be encrypted with a one-time 

secret key; the secret key is also transmitted, encrypted with B’s public key. This ap-

proach is explored in Chapter 19.

 15.5 FEDERATED IDENTITY MANAGEMENT

Federated identity management is a relatively new concept dealing with the use of 

a common identity management scheme across multiple enterprises and numerous 

applications and supporting many thousands, even millions, of users. We begin our 

overview with a discussion of the concept of identity management and then examine 

federated identity management.
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Identity Management

Identity management is a centralized, automated approach to provide enterprise-

wide access to resources by employees and other authorized individuals. The focus 

of identity management is defining an identity for each user (human or process), 

associating attributes with the identity, and enforcing a means by which a user can 

verify identity. The central concept of an identity management system is the use of 

single sign-on (SSO).

SSO enables a user to access all network resources after a single authentication.

Typical services provided by a federated identity management system include 

the following:

 ■ Point of contact: Includes authentication that a user corresponds to the user 

name provided, and management of user/server sessions.

 ■ SSO protocol services: Provides a vendor-neutral security token service for 

supporting a single sign on to federated services.

 ■ Trust services: Federation relationships require a trust relationship-based 

federation between business partners. A trust relationship is represented by 

the combination of the security tokens used to exchange information about a 

user, the cryptographic information used to protect these security tokens, and 

optionally the identity mapping rules applied to the information contained 

within this token.

 ■ Key services: Management of keys and certificates.

 ■ Identity services: services that provide the interface to local data stores, includ-

ing user registries and databases, for identity-related information management.

 ■ Authorization: Granting access to specific services and/or resources based on 

the authentication.

 ■ Provisioning: Includes creating an account in each target system for the user, 

enrollment or registration of user in accounts, establishment of access rights or 

credentials to ensure the privacy and integrity of account data.

 ■ Management: Services related to runtime configuration and deployment.

Note that Kerberos contains a number of the elements of an identity manage-

ment system.

Figure 15.5 illustrates entities and data flows in a generic identity manage-

ment architecture. A principal is an identity holder. Typically, this is a human user 

that seeks access to resources and services on the network. User devices, agent pro-

cesses, and server systems may also function as principals. Principals authenticate 

themselves to an identity provider. The identity provider associates authentication 

information with a principal, as well as attributes and one or more identifiers.

Increasingly, digital identities incorporate attributes other than simply an iden-

tifier and authentication information (such as passwords and biometric information). 

An attribute service manages the creation and maintenance of such attributes. For 

example, a user needs to provide a shipping address each time an order is placed at a 

new Web merchant, and this information needs to be revised when the user moves. 

Identity management enables the user to provide this information once, so that it 

is maintained in a single place and released to data consumers in accordance with 
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authorization and privacy policies. Users may create some of the attributes to be 

associated with their digital identity, such as an address. Administrators may also as-

sign attributes to users, such as roles, access permissions, and employee information.

Data consumers are entities that obtain and employ data maintained and 

 provided by identity and attribute providers, which are often used to support autho-

rization decisions and to collect audit information. For example, a database server 

or file server is a data consumer that needs a client’s credentials so as to know what 

access to provide to that client.

Identity Federation

Identity federation is, in essence, an extension of identity management to multiple 

security domains. Such domains include autonomous internal business units, exter-

nal business partners, and other third-party applications and services. The goal is to 

provide the sharing of digital identities so that a user can be authenticated a single 

time and then access applications and resources across multiple domains. Because 

these domains are relatively autonomous or independent, no centralized control is 

possible. Rather, the cooperating organizations must form a federation based on 

agreed standards and mutual levels of trust to securely share digital identities.

Federated identity management refers to the agreements, standards, and 

technologies that enable the portability of identities, identity attributes, and entitle-

ments across multiple enterprises and numerous applications and supporting many 

thousands, even millions, of users. When multiple organizations implement interop-

erable federated identity schemes, an employee in one organization can use a single 

sign-on to access services across the federation with trust relationships associated 

with the identity. For example, an employee may log onto her corporate intranet 

and be authenticated to perform authorized functions and access authorized ser-

vices on that intranet. The employee could then access their health benefits from an 

outside health-care provider without having to reauthenticate.

Figure 15.5 Generic Identity Management Architecture
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Beyond SSO, federated identity management provides other capabilities. One 

is a standardized means of representing attributes. Increasingly, digital identities 

incorporate attributes other than simply an identifier and authentication informa-

tion (such as passwords and biometric information). Examples of attributes include 

account numbers, organizational roles, physical location, and file ownership. A user 

may have multiple identifiers; for example, each identifier may be associated with a 

unique role with its own access permissions.

Another key function of federated identity management is identity mapping. 

Different security domains may represent identities and attributes differently. 

Further, the amount of information associated with an individual in one domain 

may be more than is necessary in another domain. The federated identity manage-

ment protocols map identities and attributes of a user in one domain to the require-

ments of another domain.

Figure 15.6 illustrates entities and data flows in a generic federated identity 

management architecture.

Figure 15.6 Federated Identity Operation
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The identity provider acquires attribute information through dialogue and pro-

tocol exchanges with users and administrators. For example, a user needs to provide 

a shipping address each time an order is placed at a new Web merchant, and this 

information needs to be revised when the user moves. Identity management enables 

the user to provide this information once, so that it is maintained in a single place and 

released to data consumers in accordance with authorization and privacy policies.

Service providers are entities that obtain and employ data maintained and pro-

vided by identity providers, often to support authorization decisions and to collect 

audit information. For example, a database server or file server is a data consumer 

that needs a client’s credentials so as to know what access to provide to that client. 

A service provider can be in the same domain as the user and the identity provider. 

The power of this approach is for federated identity management, in which the ser-

vice provider is in a different domain (e.g., a vendor or supplier network).

STANDARDS Federated identity management uses a number of standards as the 

building blocks for secure identity exchange across different domains or heteroge-

neous systems. In essence, organizations issue some form of security tickets for their 

users that can be processed by cooperating partners. Identity federation standards 

are thus concerned with defining these tickets, in terms of content and format, pro-

viding protocols for exchanging tickets and performing a number of management 

tasks. These tasks include configuring systems to perform attribute transfers and 

identity mapping, and performing logging and auditing functions. The key stan-

dards are as follows:

 ■ The Extensible Markup Language (XML): A markup language that uses sets 

of embedded tags or labels to characterize text elements within a document 

so as to indicate their appearance, function, meaning, or context. XML docu-

ments appear similar to HTML (Hypertext Markup Language) documents 

that are visible as Web pages, but provide greater functionality. XML includes 

strict definitions of the data type of each field, thus supporting database for-

mats and semantics. XML provides encoding rules for commands that are used 

to transfer and update data objects.

 ■ The Simple Object Access Protocol (SOAP): A minimal set of conventions 

for invoking code using XML over HTTP. It enables applications to request 

services from one another with XML-based requests and receive responses 

as data formatted with XML. Thus, XML defines data objects and structures, 

and SOAP provides a means of exchanging such data objects and performing 

remote procedure calls related to these objects. See [ROS06] for an informa-

tive discussion.

 ■ WS-Security: A set of SOAP extensions for implementing message integrity 

and confidentiality in Web services. To provide for secure exchange of SOAP 

messages among applications, WS-Security assigns security tokens to each 

message for use in authentication.

 ■ Security Assertion Markup Language (SAML): An XML-based language for 

the exchange of security information between online business partners. SAML 

conveys authentication information in the form of assertions about subjects. 

Assertions are statements about the subject issued by an authoritative entity.
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The challenge with federated identity management is to integrate multiple 

technologies, standards, and services to provide a secure, user-friendly utility. The 

key, as in most areas of security and networking, is the reliance on a few mature 

standards widely accepted by industry. Federated identity management seems to 

have reached this level of maturity.

EXAMPLES To get some feel for the functionality of identity federation, we look at 

three scenarios, taken from [COMP06].

In the first scenario (Figure 15.7a), Workplace.com contracts with Health.com 

to provide employee health benefits. An employee uses a Web interface to sign on to 

Workplace.com and goes through an authentication procedure there. This   enables 

the employee to access authorized services and resources at Workplace.com. When 

the employee clicks on a link to access health benefits, her browser is redirected to 

Health.com. At the same time, the Workplace.com software passes the user’s identi-

fier to Health.com in a secure manner. The two organizations are part of a federation 

that cooperatively exchanges user identifiers. Health.com maintains user identities 

Figure 15.7 Federated Identity Scenarios
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for every employee at Workplace.com and associates with each identity health-bene-

fits information and access rights. In this example, the linkage between the two com-

panies is based on account information and user participation is browser based.

Figure 15.7b shows a second type of browser-based scheme. PartsSupplier.

com is a regular supplier of parts to Workplace.com. In this case, a role-based 

access-control (RBAC) scheme is used for access to information. An engineer of 

Workplace.com authenticates at the employee portal at Workplace.com and clicks 

on a link to access information at PartsSupplier.com. Because the user is authen-

ticated in the role of an engineer, he is taken to the technical documentation and 

troubleshooting portion of PartsSupplier.com’s Web site without having to sign on. 

Similarly, an employee in a purchasing role signs on at Workplace.com and is au-

thorized, in that role, to place purchases at PartsSupplier.com without having to 

authenticate to PartsSupplier.com. For this scenario, PartsSupplier.com does not 

have identity information for individual employees at Workplace.com. Rather, the 

linkage between the two federated partners is in terms of roles.

The scenario illustrated in Figure 15.7c can be referred to as document based 

rather than browser based. In this third example, Workplace.com has a purchasing 

agreement with PinSupplies.com, and PinSupplies.com has a business relationship 

with E-Ship.com. An employee of Workplace.com signs on and is authenticated to 

make purchases. The employee goes to a procurement application that provides a 

list of Workplace.com’s suppliers and the parts that can be ordered. The user clicks 

on the PinSupplies button and is presented with a purchase order Web page (HTML 

page). The employee fills out the form and clicks the submit button. The procure-

ment application generates an XML/SOAP document that it inserts into the enve-

lope body of an XML-based message. The procurement application then inserts the 

user’s credentials in the envelope header of the message, together with Workplace.

com’s organizational identity. The procurement application posts the message to 

the PinSupplies.com’s purchasing Web service. This service authenticates the in-

coming message and processes the request. The purchasing Web service then sends 

a SOAP message to its shipping partner to fulfill the order. The message includes 

a PinSupplies.com security token in the envelope header and the list of items to be 

shipped as well as the end user’s shipping information in the envelope body. The 

shipping Web service authenticates the request and processes the shipment order.

 15.6 PERSONAL IDENTITY VERIFICATION

User authentication based on the possession of a smart card is becoming more wide-

spread. A smart card has the appearance of a credit card, has an electronic inter-

face, and may use a variety of authentication protocols.

A smart card contains within it an entire microprocessor, including processor, 

memory, and I/O ports. Some versions incorporate a special co-processing circuit 

for cryptographic operation to speed the task of encoding and decoding messages or 

generating digital signatures to validate the information transferred. In some cards, 

the I/O ports are directly accessible by a compatible reader by means of exposed 

electrical contacts. Other cards rely instead on an embedded antenna for wireless 

communication with the reader.
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A typical smart card includes three types of memory. Read-only memory 

(ROM) stores data that does not change during the card’s life, such as the card 

number and the cardholder’s name. Electrically erasable programmable ROM 

(EEPROM) holds application data and programs, such as the protocols that the 

card can execute. It also holds data that may vary with time. For example, in a tele-

phone card, the EEPROM holds the talk time remaining. Random access memory 

(RAM) holds temporary data generated when applications are executed.

For the practical application of smart card authentication, a wide range of 

vendors must conform to standards that cover smart card protocols, authentication 

and access control formats and protocols, database entries, message formats, and so 

on. An important step in this direction is FIPS 201-2 (Personal Identity Verification 
[PIV] of Federal Employees and Contractors, June 2012). The standard defines a 

 reliable, government-wide PIV system for use in applications such as access to fed-

erally controlled facilities and information systems. The standard specifies a PIV 

system within which common identification credentials can be created and later 

used to verify a claimed identity. The standard also identifies Federal government-

wide requirements for security levels that are dependent on risks to the facility or 

information being protected. The standard applies to private-sector contractors as 

well, and serves as a useful guideline for any organization.

PIV System Model

Figure 15.8 illustrates the major components of FIPS 201-2 compliant systems. The 

PIV front end defines the physical interface to a user who is requesting access to a 

facility, which could be either physical access to a protected physical area or logical 

access to an information system. The PIV front-end subsystem supports up to three-

factor authentication; the number of factors used depends on the level of security 

required. The front end makes use of a smart card, known as a PIV card, which 

is a dual-interface contact and contactless card. The card holds a cardholder pho-

tograph, X.509 certificates, cryptographic keys, biometric data, and a cardholder 

unique identifier (CHUID). Certain cardholder information may be read-protected 

and require a personal identification number (PIN) for read access by the card 

reader. The biometric reader, in the current version of the standard, is a fingerprint 

reader or an iris scanner.

The standard defines three assurance levels for verification of the card and the 

encoded data stored on the card, which in turn leads to verifying the authenticity of 

the person holding the credential. A level of some confidence corresponds to use of 

the card reader and PIN. A level of high confidence adds a biometric comparison 

of a fingerprint captured and encoded on the card during the card-issuing process 

and a fingerprint scanned at the physical access point. A very high confidence level 

requires that the process just described is completed at a control point attended by 

an official observer.

The other major component of the PIV system is the PIV card issuance and 
management subsystem. This subsystem includes the components responsible for 

identity proofing and registration, card and key issuance and management, and the 

various repositories and services (e.g., public key infrastructure [PKI] directory, 

certificate status servers) required as part of the verification infrastructure.
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The PIV system interacts with a relying subsystem, which includes compo-

nents responsible for determining a particular PIV cardholder’s access to a physical 

or logical resource. FIPS 201-2 standardizes data formats and protocols for interac-

tion between the PIV system and the relying system.

Unlike the typical card number/facility code encoded on most access control 

cards, the FIPS 201 CHUID takes authentication to a new level, through the use of 

an expiration date (a required CHUID data field) and an optional CHUID digital 

signature. A digital signature can be checked to ensure that the CHUID recorded 

on the card was digitally signed by a trusted source and that the CHUID data have 

not been altered since the card was signed. The CHUID expiration date can be 

checked to verify that the card has not expired. This is independent from whatever 

expiration date is associated with cardholder privileges. Reading and verifying the 

CHUID alone provides only some assurance of identity because it authenticates 

the card data, not the cardholder. The PIN and biometric factors provide identity 

verification of the individual.

PIV Documentation

The PIV specification is quite complex, and NIST has issued a number of docu-

ments that cover a broad range of PIV topics. These are as follows:

Figure 15.8 FIPS 201 PIV System Model
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 ■ FIPS 201-2—Personal Identity Verification (PIV) of Federal Employees 
and Contractors: Specifies the physical card characteristics, storage media, 

and data elements that make up the identity credentials resident on the PIV 

card.

 ■ SP 800-73-3—Interfaces for Personal Identity Verification: Specifies the in-

terfaces and card architecture for storing and retrieving identity credentials 

from a smart card, and provides guidelines for the use of authentication mech-

anisms and protocols.

 ■ SP 800-76-2—Biometric Data Specification for Personal Identity Verification: 
Describes technical acquisition and formatting specifications for the biometric 

credentials of the PIV system.

 ■ SP 800-78-3—Cryptographic Algorithms and Key Sizes for Personal Identity 
Verification: Identifies acceptable symmetric and asymmetric encryption algo-

rithms, digital signature algorithms, and message digest algorithms, and speci-

fies mechanisms to identify the algorithms associated with PIV keys or digital 

signatures.

 ■ SP 800-104—A Scheme for PIV Visual Card Topography: Provides additional 

recommendations on the PIV card color-coding for designating employee 

affiliation.

 ■ SP 800-116—A Recommendation for the Use of PIV Credentials in Physical 
Access Control Systems (PACS): Describes a risk-based approach for select-

ing appropriate PIV authentication mechanisms to manage physical access to 

Federal government facilities and assets.

 ■ SP 800-79-1—Guidelines for the Accreditation of Personal Identity 
Verification Card Issuers: Provides guidelines for accrediting the reliability 

of issuers of PIV cards that collect, store, and disseminate personal identity 

credentials and issue smart cards.

 ■ SP 800-96—PIV Card to Reader Interoperability Guidelines: Provides re-

quirements that facilitate interoperability between any card and any reader.

In addition there are other documents that deal with conformance testing and 

codes for identifiers.

PIV Credentials and Keys

The PIV card contains a number of mandatory and optional data elements that 

serve as identity credentials with varying levels of strength and assurance. These 

credentials are used singly or in sets to authenticate the holder of the PIV card to 

achieve the level of assurance required for a particular activity or transaction. The 

mandatory data elements are the following:

 ■ Personal Identification Number (PIN): Required to activate the card for privi-

leged operation.

 ■ Cardholder Unique Identifier (CHUID): Includes the Federal Agency Smart 

Credential Number (FASC-N) and the Global Unique Identification Number 

(GUID), which uniquely identify the card and the cardholder.
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 ■ PIV Authentication Key: Asymmetric key pair and corresponding certificate 

for user authentication.

 ■ Two fingerprint templates: For biometric authentication.

 ■ Electronic facial image: For biometric authentication.

 ■ Asymmetric Card Authentication Key: Asymmetric key pair and correspond-

ing certificate used for card authentication.

Optional elements include the following:

 ■ Digital Signature Key: Asymmetric key pair and corresponding certificate that 

supports document signing and signing of data elements such as the CHUID.

 ■ Key Management Key: Asymmetric key pair and corresponding certificate 

supporting key establishment and transport.

 ■ Symmetric Card Authentication Key: For supporting physical access applications.

 ■ PIV Card Application Administration Key: Symmetric key associated with the 

card management system.

 ■ One or two iris images: For biometric authentication.

Table 15.5 lists the algorithm and key size requirements for PIV key types.

Authentication

Using the electronic credentials resident on a PIV card, the card supports the fol-

lowing authentication mechanisms:

 ■ CHUID: The cardholder is authenticated using the signed CHUID data ele-

ment on the card. The PIN is not required. This mechanism is useful in envi-

ronments where a low level of assurance is acceptable and rapid contactless 

authentication is necessary.

PIV Key Type Algorithms Key Sizes (bits) Application

PIV Authentication Key

RSA 2048 Supports card and 

 cardholder authentication 

for an interoperable  

environmentECDSA 256

Card Authentication Key

3TDEA 168 Supports card authentication 

for physical accessAES 128, 192, or 256

RSA 2048 Supports card  

authentication for an 

interoperable environmentECDSA 256

Digital Signature Key
RSA 2048 or 3072 Supports document signing 

and nonce signing
ECDSA 256 or 384

Key Management Key
RSA 2048 Supports key establishment 

and transport
ECDH 256 or 384

Table 15.5 PIV Algorithms and Key Sizes
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 ■ Card Authentication Key: The PIV card is authenticated using the Card 

Authentication Key in a challenge response protocol. The PIN is not required. 

This mechanism allows contact (via card reader) or contactless (via radio 

waves) authentication of the PIV card without the holder’s active participa-

tion, and provides a low level of assurance.

 ■ BIO: The cardholder is authenticated by matching his or her fingerprint 

sample(s) to the signed biometric data element in an environment without a 

human attendant in view. The PIN is required to activate the card. This mecha-

nism achieves a high level of assurance and requires the cardholder’s active 

participation is submitting the PIN as well as the biometric sample.

 ■ BIO-A: The cardholder is authenticated by matching his or her fingerprint 

sample(s) to the signed biometric data element in an environment with a 

human attendant in view. The PIN is required to activate the card. This mecha-

nism achieves a very high level of assurance when coupled with full trust val-

idation of the biometric template retrieved from the card, and requires the 

cardholder’s active participation is submitting the PIN as well as the biometric 

sample.

 ■ PKI: The cardholder is authenticated by demonstrating control of the PIV au-

thentication private key in a challenge response protocol that can be validated 

using the PIV authentication certificate. The PIN is required to activate the 

card. This mechanism achieves a very high level of identity assurance and re-

quires the cardholder’s knowledge of the PIN.

In each of the above use cases, except the symmetric Card Authentication Key 

use case, the source and the integrity of the corresponding PIV credential are vali-

dated by verifying the digital signature on the credential, with the signature being 

provided by a trusted entity.

A variety of protocols can be constructed for each of these authentication 

types. SP 800-78-3 gives examples for each type. Figure 15.9 illustrates an authenti-

cation scenario that includes the use of the PIV Authentication Key. This scenario 

provides a high level of assurance. This scenario would be appropriate for authenti-

cation of a user who possesses a PIV card and seeks access to a computer resource. 

The computer, designated local system in the figure, includes PIV application soft-

ware and communicates to the card via an application program interface that en-

ables the use of relatively high-level procedure calls. These high-level commands 

are converted into PIV commands that are issued to the card through a physical 

interface via a card reader or via a wireless interface. In either case, SP 800-73 refers 

to the card command interface as the PIV card edge.

The process begins when the local system detects the card either through an 

attached card reader or wirelessly. It then selects an application on the card for au-

thentication. The local system then requests the public-key certificate for the card’s 

PIV Authentication Key. If the certificate is valid (i.e., has a valid signature, has not 

expired or been revoked), authentication continues. Otherwise the card is rejected. 

The next step is for the local system to request that the cardholder enter the PIN 

for the card. If the submitted PIN matches the PIN stored on the card, the card 

returns a positive acknowledgment; otherwise the card returns a failure message. 
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The local system either continues or rejects the card accordingly. The next phase is 

a challenge-response protocol. The local system sends a nonce to be signed by the 

PIV, and the PIV returns the signature. The local system uses the PIV authentica-

tion public key to verify the signature. If the signature is valid, the cardholder is ac-

cepted as being identified. Otherwise the local system rejects the card.

The scenario of Figure 15.9 accomplishes three types of authentication. The 

combination of possession of the card and knowledge of the PIN service authenti-

cates the cardholder. The PIV Authentication Key certificate validates the card’s 

credentials. The challenge-response protocol authenticates the card.

Figure 15.9 Authentication Using PIV Authentication Key
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 15.7 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms 

authentication

authentication server

claimant

credential

credential service provider 

(CSP)

federated identity 

management

identity management

Kerberos

Kerberos realm

mutual authentication

nonce

one-way authentication

personal identity verification 

(PIV)

realm

registration authority (RA)

relying party (RP)

replay attack

subscriber

suppress-replay attack

ticket

ticket-granting server (TGS)

timestamp

verifier

Review Questions 

 15.1 What are the steps involved in an authentication process?

 15.2 List three general approaches to dealing with replay attacks.

 15.3 What is a suppress-replay attack?

 15.4 What problem was Kerberos designed to address?

 15.5 What are three threats associated with user authentication over a network or 
Internet?

 15.6 List three approaches to secure user authentication in a distributed environment.

 15.7 What four requirements were defined for Kerberos?

 15.8 What entities constitute a full-service Kerberos environment?

 15.9 In the context of Kerberos, what is a realm?

 15.10 What are the mandatory elements to authenticate a PIV card holder?

Problems 

 15.1 In Section 15.4, we outlined the public-key scheme proposed in [WOO92a] for the 
distribution of secret keys. The revised version includes IDA in steps 5 and 6. What 
attack, specifically, is countered by this revision?

 15.2 The protocol referred to in Problem 15.1 can be reduced from seven steps to five, 
having the following sequence:
a. A S B:
b. A S KDC:
c. KDC S B:
d. B S A:
e. A S B:

Show the message transmitted at each step. Hint: The final message in this protocol is 
the same as the final message in the original protocol.

 15.3 Reference the suppress-replay attack described in Section 15.2 to answer the 
following.
a. Give an example of an attack when a party’s clock is ahead of that of the KDC.
b. Give an example of an attack when a party’s clock is ahead of that of another 

party.
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 15.4 There are three typical ways to use nonces as challenges. Suppose Na is a nonce gen-
erated by A, A and B share key K, and f() is a function (such as an increment). The 
three usages are

Usage 1 Usage 2 Usage 3

(1) A S B: Na (1) A S B: E(K, Na) (1) A S B: E(K, Na)

(2) B S A: E(K, Na) (2) B S A: Na (2) B S A: E(K, f(Na))

Describe situations for which each usage is appropriate.

 15.5 Show that a random error in one block of ciphertext is propagated to all subsequent 
blocks of plaintext in PCBC mode (See Figure T.2 in Appendix T).

 15.6 Suppose that, in PCBC mode, blocks Ci and Ci+ 1 are interchanged during transmis-
sion. Show that this affects only the decrypted blocks Pi and Pi+ 1 but not subsequent 
blocks.

 15.7 In addition to providing a standard for public-key certificate formats, X.509 specifies 
an authentication protocol. The original version of X.509 contains a security flaw. 
The essence of the protocol is as follows.

 A S B: A {tA, rA, IDB}

 B S A: B {tB, rB, IDA, rA}

 A S B: A {rB}

where tA and tB are timestamps, rA and rB are nonces and the notation X{Y} indicates 
that the message Y is transmitted, encrypted, and signed by X.

The text of X.509 states that checking timestamps tA and tB is optional for 
three-way authentication. But consider the following example: Suppose A and B 
have used the preceding protocol on some previous occasion, and that opponent C 
has intercepted the preceding three messages. In addition, suppose that timestamps 
are not used and are all set to 0. Finally, suppose C wishes to impersonate A to B. C 
initially sends the first captured message to B:

 C S B: A {0, rA, IDB} 

B responds, thinking it is talking to A but is actually talking to C:

 B S C: B {0, r B
= , IDA, rA} 

C meanwhile causes A to initiate authentication with C by some means. As a result, 
A sends C the following:

 A S C: A {0, r A
= , IDC} 

C responds to A using the same nonce provided to C by B:

 C S A: C {0, r B
= , IDA, r A

= } 

A responds with

 A S C: A {r B
= } 
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This is exactly what C needs to convince B that it is talking to A, so C now repeats the 
incoming message back out to B.

 C S B: A {r B
= } 

So B will believe it is talking to A whereas it is actually talking to C. Suggest a simple 
solution to this problem that does not involve the use of timestamps.

 15.8 Consider a one-way authentication technique based on asymmetric encryption:

 A S B: IDA

 B S A: R1

 A S B: E(PRa, R1)

a. Explain the protocol.
b. What type of attack is this protocol susceptible to?

 15.9 Consider a one-way authentication technique based on asymmetric encryption:

 A S B: IDA| | E(PUB,RA)

 BS A: RA

a. Explain the protocol.
b. What type of attack is this protocol susceptible to?

 15.10 In Kerberos, when Bob receives a Ticket from Alice, how does he know it is not 
genuine?

 15.11 In Kerberos, how does Bob know that the received token is not corresponding to 
Alice’s?

 15.12 In Kerberos, how does Alice know that a reply to an earlier message is from Bob?

 15.13 In Kerberos, what does the Ticket contain that allows Alice and Bob to talk securely?
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This chapter begins our discussion of network security, focusing on two key topics: 

 network access control and cloud security. We begin with an overview of network 

 access control systems, summarizing the principal elements and techniques involved 

in such a system. Next, we discuss the Extensible Authentication Protocol and IEEE 

802.1X, two widely implemented standards that are the foundation of many network 

access control systems.

The remainder of the chapter deals with cloud security. We begin with an 

 overview of cloud computing, and follow this with a discussion of cloud security 

issues.

 16.1 NETWORK ACCESS CONTROL

Network access control (NAC) is an umbrella term for managing access to a 

 network. NAC authenticates users logging into the network and determines what 

data they can access and actions they can perform. NAC also examines the health of 

the user’s computer or mobile device (the endpoints).

Elements of a Network Access Control System

NAC systems deal with three categories of components:

 ■ Access requestor (AR): The AR is the node that is attempting to access the 

network and may be any device that is managed by the NAC system, including 

workstations, servers, printers, cameras, and other IP-enabled devices. ARs are 

also referred to as supplicants, or simply, clients.

 ■ Policy server: Based on the AR’s posture and an enterprise’s defined policy, 

the policy server determines what access should be granted. The policy server 

often relies on backend systems, including antivirus, patch management, or a 

user directory, to help determine the host’s condition.

LEARNING OBJECTIVES

After studying this chapter, you should be able to:

 ◆ Discuss the principal elements of a network access control system.

 ◆ Discuss the principal network access enforcement methods.

 ◆ Present an overview of the Extensible Authentication Protocol.

 ◆ Understand the operation and role of the IEEE 802.1X Port-Based 

 Network Access Control mechanism.

 ◆ Present an overview of cloud computing concepts.

 ◆ Understand the unique security issues related to cloud computing.
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 ■ Network access server (NAS): The NAS functions as an access control point 

for users in remote locations connecting to an enterprise’s internal network. 

Also called a media gateway, a remote access server (RAS), or a policy server, 

an NAS may include its own authentication services or rely on a separate 

 authentication service from the policy server.

Figure 16.1 is a generic network access diagram. A variety of different ARs 

seek access to an enterprise network by applying to some type of NAS. The first 

step is generally to authenticate the AR. Authentication typically involves some 

sort of secure protocol and the use of cryptographic keys. Authentication may be 

performed by the NAS, or the NAS may mediate the authentication process. In the 

latter case, authentication takes place between the supplicant and an authentication 

server that is part of the policy server or that is accessed by the policy server.

The authentication process serves a number of purposes. It verifies a suppli-

cant’s claimed identity, which enables the policy server to determine what access 

privileges, if any, the AR may have. The authentication exchange may result in the 

Figure 16.1 Network Access Control Context
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establishment of session keys to enable future secure communication between the 

supplicant and resources on the enterprise network.

Typically, the policy server or a supporting server will perform checks on the 

AR to determine if it should be permitted interactive remote access  connectivity. 

These checks—sometimes called health, suitability, screening, or assessment 

checks—require software on the user’s system to verify compliance with certain 

 requirements from the organization’s secure configuration baseline. For example, 

the user’s antimalware software must be up-to-date, the operating system must 

be fully patched, and the remote computer must be owned and controlled by the 

 organization. These checks should be performed before granting the AR access to 

the enterprise  network. Based on the results of these checks, the organization can 

determine whether the remote computer should be permitted to use interactive 

 remote access. If the user has acceptable authorization credentials but the remote 

computer does not pass the health check, the user and remote computer should be 

denied network access or have limited access to a quarantine network so that autho-

rized personnel can fix the security deficiencies. Figure 16.1 indicates that the quar-

antine portion of the enterprise network consists of the policy server and related 

AR suitability servers. There may also be application servers that do not require the 

normal security threshold be met.

Once an AR has been authenticated and cleared for a certain level of access 

to the enterprise network, the NAS can enable the AR to interact with resources in 

the enterprise network. The NAS may mediate every exchange to enforce a security 

policy for this AR, or may use other methods to limit the privileges of the AR.

Network Access Enforcement Methods

Enforcement methods are the actions that are applied to ARs to regulate access 

to the enterprise network. Many vendors support multiple enforcement methods 

simultaneously, allowing the customer to tailor the configuration by using one or a 

combination of methods. The following are common NAC enforcement methods.

 ■ IEEE 802.1X: This is a link layer protocol that enforces authorization before 

a port is assigned an IP address. IEEE 802.1X makes use of the Extensible 

Authentication Protocol for the authentication process. Sections 16.2 and 16.3 

cover the Extensible Authentication Protocol and IEEE 802.1X, respectively.

 ■ Virtual local area networks (VLANs): In this approach, the enterprise net-

work, consisting of an interconnected set of LANs, is segmented logically into 

a number of virtual LANs.1 The NAC system decides to which of the network’s 

VLANs it will direct an AR, based on whether the device needs security reme-

diation, Internet access only, or some level of network access to enterprise 

 resources. VLANs can be created dynamically and VLAN membership, of 

both enterprise servers and ARs, may overlap. That is, an enterprise server or 

an AR may belong to more than one VLAN.

1A VLAN is a logical subgroup within a LAN that is created via software rather than manually  moving 
cables in the wiring closet. It combines user stations and network devices into a single unit regardless 
of  the physical LAN segment they are attached to and allows traffic to flow more efficiently within 
 populations of mutual interest. VLANs are implemented in port-switching hubs and LAN switches.
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 ■ Firewall: A firewall provides a form of NAC by allowing or denying network 

traffic between an enterprise host and an external user. Firewalls are discussed 

in Chapter 23.

 ■ DHCP management: The Dynamic Host Configuration Protocol (DHCP) is 

an Internet protocol that enables dynamic allocation of IP addresses to hosts. 

A DHCP server intercepts DHCP requests and assigns IP addresses instead. 

Thus, NAC enforcement occurs at the IP layer based on subnet and IP assign-

ment. A DCHP server is easy to install and configure, but is subject to various 

forms of IP spoofing, providing limited security.

There are a number of other enforcement methods available from vendors. 

The ones in the preceding list are perhaps the most common, and IEEE 802.1X is by 

far the most commonly implemented solution.

 16.2 EXTENSIBLE AUTHENTICATION PROTOCOL

The Extensible Authentication Protocol (EAP), defined in RFC 3748, acts as a 

framework for network access and authentication protocols. EAP provides a set of 

protocol messages that can encapsulate various authentication methods to be used 

between a client and an authentication server. EAP can operate over a variety of 

network and link level facilities, including point-to-point links, LANs, and other 

networks, and can accommodate the authentication needs of the various links and 

networks. Figure 16.2 illustrates the protocol layers that form the context for EAP.

Authentication Methods

EAP supports multiple authentication methods. This is what is meant by referring 

to EAP as extensible. EAP provides a generic transport service for the exchange of 

 authentication information between a client system and an authentication server. 

The basic EAP transport service is extended by using a specific authentication proto-

col, or method, that is installed in both the EAP client and the authentication server.

Figure 16.2 EAP Layered Context
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Numerous methods have been defined to work over EAP. The following are 

commonly supported EAP methods:

 ■ EAP-TLS (EAP Transport Layer Security): EAP-TLS (RFC 5216) defines 

how the TLS protocol (described in Chapter 17) can be encapsulated in EAP 

messages. EAP-TLS uses the handshake protocol in TLS, not its encryption 

method. Client and server authenticate each other using digital certificates. 

Client generates a pre-master secret key by encrypting a random number with 

the server’s public key and sends it to the server. Both client and server use the 

pre-master to generate the same secret key.

 ■ EAP-TTLS (EAP Tunneled TLS): EAP-TTLS is like EAP-TLS, except only 

the server has a certificate to authenticate itself to the client first. As in EAP-

TLS, a secure connection (the “tunnel”) is established with secret keys, but 

that connection is used to continue the authentication process by authenti-

cating the client and possibly the server again using any EAP method or 

legacy method such as PAP (Password Authentication Protocol) and CHAP 

(Challenge-Handshake Authentication Protocol). EAP-TTLS is defined in 

RFC 5281.

 ■ EAP-GPSK (EAP Generalized Pre-Shared Key): EAP-GPSK, defined in 

RFC 5433, is an EAP method for mutual authentication and session key deri-

vation using a Pre-Shared Key (PSK). EAP-GPSK specifies an EAP method 

based on pre-shared keys and employs secret key-based cryptographic algo-

rithms. Hence, this method is efficient in terms of message flows and com-

putational costs, but requires the existence of pre-shared keys between each 

peer and EAP server. The set up of these pairwise secret keys is part of the 

peer registration, and thus, must satisfy the system preconditions. It provides 

a protected communication channel when mutual authentication is success-

ful for both parties to communicate over and is designed for authentication 

over insecure networks such as IEEE 802.11. EAP-GPSK does not require 

any public-key cryptography. The EAP method protocol exchange is done in a 

minimum of four messages.

 ■ EAP-IKEv2: It is based on the Internet Key Exchange protocol version 2 

(IKEv2), which is described in Chapter 20. It supports mutual authentication 

and session key establishment using a variety of methods. EAP-TLS is defined 

in RFC 5106.

EAP Exchanges

Whatever method is used for authentication, the authentication information and 

authentication protocol information are carried in EAP messages.

RFC 3748 defines the goal of the exchange of EAP messages to be successful 

authentication. In the context of RFC 3748, successful authentication is an  exchange 

of EAP messages, as a result of which the authenticator decides to allow access 

by the peer, and the peer decides to use this access. The authenticator’s decision 

 typically involves both authentication and authorization aspects; the peer may 

 successfully authenticate to the authenticator, but access may be denied by the 

 authenticator due to policy reasons.
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Figure 16.3 indicates a typical arrangement in which EAP is used. The follow-

ing components are involved:

 ■ EAP peer: Client computer that is attempting to access a network.

 ■ EAP authenticator: An access point or NAS that requires EAP authentication 

prior to granting access to a network.

 ■ Authentication server: A server computer that negotiates the use of a  specific 

EAP method with an EAP peer, validates the EAP peer’s credentials, and 

 authorizes access to the network. Typically, the authentication server is a 

Remote Authentication Dial-In User Service (RADIUS) server.

The authentication server functions as a backend server that can authenti-

cate peers as a service to a number of EAP authenticators. The EAP authentica-

tor then makes the decision of whether to grant access. This is referred to as the 

EAP  pass-through mode. Less commonly, the authenticator takes over the role of 

the EAP server; that is, only two parties are involved in the EAP execution.

As a first step, a lower-level protocol, such as PPP (point-to-point protocol) 

or IEEE 802.1X, is used to connect to the EAP authenticator. The software entity 

in the EAP peer that operates at this level is referred to as the supplicant. EAP 

 messages containing the appropriate information for a chosen EAP method are 

then exchanged between the EAP peer and the authentication server.

EAP messages may include the following fields:

 ■ Code: Identifies the Type of EAP message. The codes are Request (1), 

Response (2), Success (3), and Failure (4).

 ■ Identifier: Used to match Responses with Requests.

 ■ Length: Indicates the length, in octets, of the EAP message, including the 

Code, Identifier, Length, and Data fields.

Figure 16.3 EAP Protocol Exchanges
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 ■ Data: Contains information related to authentication. Typically, the Data field 

consists of a Type subfield, indicating the type of data carried, and a Type-Data 

field.

The Success and Failure messages do not include a Data field.

The EAP authentication exchange proceeds as follows. After a lower-level 

exchange that established the need for an EAP exchange, the authenticator sends a 

Request to the peer to request an identity, and the peer sends a Response with the 

identity information. This is followed by a sequence of Requests by the authentica-

tor and Responses by the peer for the exchange of authentication information. The 

information exchanged and the number of Request–Response exchanges needed 

depend on the authentication method. The conversation continues until either 

(1) the authenticator determines that it cannot authenticate the peer and transmits 

an EAP Failure or (2) the authenticator determines that successful authentication 

has occurred and transmits an EAP Success.

Figure 16.4 gives an example of an EAP exchange. Not shown in the figure is a 

message or signal sent from the EAP peer to the authenticator using some protocol 

other than EAP and requesting an EAP exchange to grant network access. One 

protocol used for this purpose is IEEE 802.1X, discussed in the next section. The 

first pair of EAP Request and Response messages is of Type identity, in which the 

authenticator requests the peer’s identity, and the peer returns its claimed identity 

in the Response message. This Response is passed through the authenticator to the 

authentication server. Subsequent EAP messages are exchanged between the peer 

and the authentication server.

Figure 16.4 EAP Message Flow in Pass-Through Mode
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Upon receiving the identity Response message from the peer, the server 

 selects an EAP method and sends the first EAP message with a Type field related 

to an authentication method. If the peer supports and accepts the selected EAP 

method, it replies with the corresponding Response message of the same type. 

Otherwise, the peer sends a NAK, and the EAP server either selects another EAP 

method or aborts the EAP execution with a failure message. The selected EAP 

method determines the number of Request/Response pairs. During the exchange 

the appropriate authentication information, including key material, is exchanged. 

The exchange ends when the server determines that authentication has succeeded 

or that no further attempt can be made and authentication has failed.

 16.3 IEEE 802.1X PORT-BASED NETWORK ACCESS CONTROL

IEEE 802.1X Port-Based Network Access Control was designed to provide access 

control functions for LANs. Table 16.1 briefly defines key terms used in the IEEE 

802.11 standard. The terms supplicant, network access point, and authentication 

Authenticator
An entity at one end of a point-to-point LAN segment that facilities authentication of the entity to the other 

end of the link.

Authentication exchange

The two-party conversation between systems performing an authentication process.

Authentication process

The cryptographic operations and supporting data frames that perform the actual authentication.

Authentication server (AS)
An entity that provides an authentication service to an authenticator. This service determines, from the 

 credentials provided by supplicant, whether the supplicant is authorized to access the services provided by 

the system in which the authenticator resides.

Authentication transport
The datagram session that actively transfers the authentication exchange between two systems.

Bridge port
A port of an IEEE 802.1D or 802.1Q bridge.

Edge port
A bridge port attached to a LAN that has no other bridges attached to it.

Network access port
A point of attachment of a system to a LAN. It can be a physical port, such as a single LAN MAC attached to 

a physical LAN segment, or a logical port, for example, an IEEE 802.11 association between a station and an 

access point.

Port access entity (PAE)
The protocol entity associated with a port. It can support the protocol functionality associated with the 

authenticator, the supplicant, or both.

Supplicant
An entity at one end of a point-to-point LAN segment that seeks to be authenticated by an authenticator 

attached to the other end of that link.

Table 16.1 Terminology Related to IEEE 802.1X
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server correspond to the EAP terms peer, authenticator, and authentication server, 

respectively.

Until the AS authenticates a supplicant (using an authentication protocol), 

the authenticator only passes control and authentication messages between the sup-

plicant and the AS; the 802.1X control channel is unblocked, but the 802.11 data 

channel is blocked. Once a supplicant is authenticated and keys are provided, the 

authenticator can forward data from the supplicant, subject to predefined access 

control limitations for the supplicant to the network. Under these circumstances, 

the data channel is unblocked.

As indicated in Figure 16.5, 802.1X uses the concepts of controlled and uncon-

trolled ports. Ports are logical entities defined within the authenticator and refer to 

physical network connections. Each logical port is mapped to one of these two types 

of physical ports. An uncontrolled port allows the exchange of protocol data units 

(PDUs) between the supplicant and the AS, regardless of the authentication state 

of the supplicant. A controlled port allows the exchange of PDUs between a sup-

plicant and other systems on the network only if the current state of the supplicant 

authorizes such an exchange.

The essential element defined in 802.1X is a protocol known as EAPOL (EAP 

over LAN). EAPOL operates at the network layers and makes use of an IEEE 802 

LAN, such as Ethernet or Wi-Fi, at the link level. EAPOL enables a supplicant to 

communicate with an authenticator and supports the exchange of EAP packets for 

authentication.

Figure 16.5 802.1X Access Control
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The most common EAPOL packets are listed in Table 16.2. When the 

 supplicant first connects to the LAN, it does not know the MAC address of the 

 authenticator. Actually it doesn’t know whether there is an authenticator present 

at all. By sending an EAPOL-Start packet to a special group-multicast address 

 reserved for IEEE 802.1X authenticators, a supplicant can determine whether an 

authenticator is present and let it know that the supplicant is ready. In many cases, 

the authenticator will already be notified that a new device has connected from some 

hardware notification. For example, a hub knows that a cable is plugged in before 

the device sends any data. In this case the authenticator may preempt the Start mes-

sage with its own message. In either case the authenticator sends an  EAP-Request 

Identity message encapsulated in an EAPOL-EAP packet. The EAPOL-EAP is 

the EAPOL frame type used for transporting EAP packets.

The authenticator uses the EAP-Key packet to send cryptographic keys to the 

supplicant once it has decided to admit it to the network. The EAP-Logoff packet 

type indicates that the supplicant wishes to be disconnected from the network.

The EAPOL packet format includes the following fields:

 ■ Protocol version: version of EAPOL.

 ■ Packet type: indicates start, EAP, key, logoff, etc.

 ■ Packet body length: If the packet includes a body, this field indicates the body 

length.

 ■ Packet body: The payload for this EAPOL packet. An example is an EAP 

packet.

Figure 16.6 shows an example of exchange using EAPOL. In Chapter 18, we 

examine the use of EAP and EAPOL in the context of IEEE 802.11 wireless LAN 

security.

 16.4 CLOUD COMPUTING

There is an increasingly prominent trend in many organizations to move a substan-

tial portion of or even all information technology (IT) operations to an Internet-

connected infrastructure known as enterprise cloud computing. This  section  provides 

an overview of cloud computing. For a more detailed treatment, see [STAL16].

Frame Type Definition

EAPOL-EAP Contains an encapsulated EAP packet.

EAPOL-Start A supplicant can issue this packet instead of waiting for 

a challenge from the authenticator.

EAPOL-Logoff Used to return the state of the port to unauthorized when 

the supplicant is finished using the network.

EAPOL-Key Used to exchange cryptographic keying information.

Table 16.2 Common EAPOL Frame Types
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Cloud Computing Elements

NIST defines cloud computing, in NIST SP-800-145 (The NIST Definition of Cloud 
Computing), as follows:

Figure 16.6 Example Timing Diagram for IEEE 802.1X
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Cloud computing: A model for enabling ubiquitous, convenient, on-demand net-

work access to a shared pool of configurable computing resources (e.g., networks, 

servers, storage, applications, and services) that can be rapidly provisioned and 

 released with minimal management effort or service provider interaction. This 

cloud model promotes availability and is composed of five essential characteris-

tics, three service models, and four deployment models.

The definition refers to various models and characteristics, whose relationship is 

illustrated in Figure 16.7. The essential characteristics of cloud computing include 

the following:

 ■ Broad network access: Capabilities are available over the network and ac-

cessed through standard mechanisms that promote use by heterogeneous thin 
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or thick client platforms (e.g., mobile phones, laptops, and PDAs) as well as 

other traditional or cloud-based software services.

 ■ Rapid elasticity: Cloud computing gives you the ability to expand and reduce 

resources according to your specific service requirement. For example, you 

may need a large number of server resources for the duration of a specific task. 

You can then release these resources upon completion of the task.

 ■ Measured service: Cloud systems automatically control and optimize resource 

use by leveraging a metering capability at some level of abstraction appropri-

ate to the type of service (e.g., storage, processing, bandwidth, and active user 

accounts). Resource usage can be monitored, controlled, and reported, provid-

ing transparency for both the provider and consumer of the utilized service.

 ■ On-demand self-service: A consumer can unilaterally provision computing 

 capabilities, such as server time and network storage, as needed automati-

cally without requiring human interaction with each service provider. Because 

the service is on demand, the resources are not permanent parts of your IT 

infrastructure.

 ■ Resource pooling: The provider’s computing resources are pooled to serve 

multiple consumers using a multi-tenant model, with different physical and 

virtual resources dynamically assigned and reassigned according to consumer 

demand. There is a degree of location independence in that the customer 

Figure 16.7 Cloud Computing Elements
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 generally has no control or knowledge of the exact location of the provided 

resources, but may be able to specify location at a higher level of abstraction 

(e.g., country, state, or data center). Examples of resources include storage, 

processing, memory, network bandwidth, and virtual machines. Even private 

clouds tend to pool resources between different parts of the same organization.

NIST defines three service models, which can be viewed as nested service 

alternatives:

 ■ Software as a service (SaaS): The capability provided to the consumer is to use 

the provider’s applications running on a cloud infrastructure. The applications 

are accessible from various client devices through a thin client interface such as 

a Web browser. Instead of obtaining desktop and server licenses for software 

products it uses, an enterprise obtains the same functions from the cloud service. 

SaaS saves the complexity of software installation, maintenance, upgrades, and 

patches. Examples of services at this level are Gmail, Google’s email  service, 

and Salesforce.com, which helps firms keep track of their customers.

 ■ Platform as a service (PaaS): The capability provided to the consumer is to 

 deploy onto the cloud infrastructure consumer-created or acquired applica-

tions created using programming languages and tools supported by the pro-

vider. PaaS often provides middleware-style services such as database and 

component services for use by applications. In effect, PaaS is an operating 

 system in the cloud.

 ■ Infrastructure as a service (IaaS): The capability provided to the consumer is 

to provision processing, storage, networks, and other fundamental computing 

resources where the consumer is able to deploy and run arbitrary software, 

which can include operating systems and applications. IaaS enables custom-

ers to combine basic computing services, such as number crunching and data 

 storage, to build highly adaptable computer systems.

NIST defines four deployment models:

 ■ Public cloud: The cloud infrastructure is made available to the general public 

or a large industry group and is owned by an organization selling cloud ser-

vices. The cloud provider is responsible both for the cloud infrastructure and 

for the control of data and operations within the cloud.

 ■ Private cloud: The cloud infrastructure is operated solely for an organization. 

It may be managed by the organization or a third party and may exist on prem-

ise or off premise. The cloud provider (CP) is responsible only for the infra-

structure and not for the control.

 ■ Community cloud: The cloud infrastructure is shared by several organizations 

and supports a specific community that has shared concerns (e.g., mission,  security 

requirements, policy, and compliance considerations). It may be managed by the 

organizations or a third party and may exist on premise or off premise.

 ■ Hybrid cloud: The cloud infrastructure is a composition of two or more clouds 

(private, community, or public) that remain unique entities but are bound 

 together by standardized or proprietary technology that enables data and 

 application portability (e.g., cloud bursting for load balancing between clouds).
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Figure 16.8 illustrates the typical cloud service context. An enterprise main-

tains workstations within an enterprise LAN or set of LANs, which are connected 

by a router through a network or the Internet to the cloud service provider. The 

cloud service provider maintains a massive collection of servers, which it man-

ages with a variety of network management, redundancy, and security tools. In the 

 figure, the cloud infrastructure is shown as a collection of blade servers, which is a 

common architecture.

Cloud Computing Reference Architecture

NIST SP 500-292 (NIST Cloud Computing Reference Architecture) establishes a 

 reference architecture, described as follows:

Figure 16.8 Cloud Computing Context
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 The NIST cloud computing reference architecture focuses on the requirements 

of “what” cloud services provide, not a “how to” design solution and implemen-

tation. The reference architecture is intended to facilitate the understanding of 

the operational intricacies in cloud computing. It does not represent the system 

architecture of a specific cloud computing system; instead it is a tool for describ-

ing, discussing, and developing a system-specific architecture using a common 

framework of reference.
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NIST developed the reference architecture with the following objectives 

in mind:

 ■ to illustrate and understand the various cloud services in the context of an 

overall cloud computing conceptual model

 ■ to provide a technical reference for consumers to understand, discuss, catego-

rize, and compare cloud services

 ■ to facilitate the analysis of candidate standards for security, interoperability, 

and portability and reference implementations

The reference architecture, depicted in Figure 16.9, defines five major actors 

in terms of the roles and responsibilities:

 ■ Cloud consumer: A person or organization that maintains a business relation-

ship with, and uses service from, cloud providers.

 ■ Cloud provider: A person, organization, or entity responsible for making a 

 service available to interested parties.

 ■ Cloud auditor: A party that can conduct independent assessment of cloud 

 services, information system operations, performance, and security of the 

cloud implementation.

 ■ Cloud broker: An entity that manages the use, performance, and delivery of 

cloud services, and negotiates relationships between CPs and cloud consumers.

 ■ Cloud carrier: An intermediary that provides connectivity and transport of 

cloud services from CPs to cloud consumers.

The roles of the cloud consumer and provider have already been discussed. To 

summarize, a cloud provider can provide one or more of the cloud services to meet 

IT and business requirements of cloud consumers. For each of the three service 

Figure 16.9 NIST Cloud Computing Reference Architecture

Cloud
consumer

Cloud
auditor

Service
intermediation

Service
aggregation

Service
arbitrage

Cloud
broker

Cloud provider 

Security
audit

Performance
audit

Privacy
impact audit

SaaS
Service layer
Service orchestration Cloud

service
management

PaaS

Hardware

Physical resource layer

Facility

Resource abstraction
and control layer

IaaS

Business
support

Provisioning/
configuration

Portability/
interoperability

Se
cu

ri
ty

P
ri

va
cy

Cloud carrier



16.5 / CLOUD SECURITY RISKS AND COUNTERMEASURES 535

models (SaaS, PaaS, IaaS), the CP provides the storage and processing  facilities 

needed to support that service model, together with a cloud interface for cloud 

 service consumers. For SaaS, the CP deploys, configures, maintains, and  updates 

the operation of the software applications on a cloud infrastructure so that the 

 services are provisioned at the expected service levels to cloud consumers. The 

consumers of SaaS can be organizations that provide their members with access to 

software  applications, end users who directly use software applications, or software 

 application administrators who configure applications for end users.

For PaaS, the CP manages the computing infrastructure for the platform and 

runs the cloud software that provides the components of the platform, such as run-

time software execution stack, databases, and other middleware components. Cloud 

consumers of PaaS can employ the tools and execution resources provided by CPs to 

develop, test, deploy, and manage the applications hosted in a cloud environment.

For IaaS, the CP acquires the physical computing resources underlying the 

 service, including the servers, networks, storage, and hosting infrastructure. The 

IaaS cloud consumer in turn uses these computing resources, such as a virtual 

 computer, for their fundamental computing needs.

The cloud carrier is a networking facility that provides connectivity and trans-

port of cloud services between cloud consumers and CPs. Typically, a CP will set up 

service level agreements (SLAs) with a cloud carrier to provide services consistent 

with the level of SLAs offered to cloud consumers, and may require the cloud carrier 

to provide dedicated and secure connections between cloud consumers and CPs.

A cloud broker is useful when cloud services are too complex for a cloud con-

sumer to easily manage. Three areas of support can be offered by a cloud broker:

 ■ Service intermediation: These are value-added services, such as identity man-

agement, performance reporting, and enhanced security.

 ■ Service aggregation: The broker combines multiple cloud services to meet 

consumer needs not specifically addressed by a single CP, or to optimize per-

formance or minimize cost.

 ■ Service arbitrage: This is similar to service aggregation except that the services 

being aggregated are not fixed. Service arbitrage means a broker has the flexibil-

ity to choose services from multiple agencies. The cloud broker, for example, can 

use a credit-scoring service to measure and select an agency with the best score.

A cloud auditor can evaluate the services provided by a CP in terms of secu-

rity controls, privacy impact, performance, and so on. The auditor is an independent 

entity that can assure that the CP conforms to a set of standards.

 16.5 CLOUD SECURITY RISKS AND COUNTERMEASURES

In general terms, security controls in cloud computing are similar to the security 

controls in any IT environment. However, because of the operational models and 

technologies used to enable cloud service, cloud computing may present risks that 

are specific to the cloud environment. The essential concept in this regard is that 

the enterprise loses a substantial amount of control over resources, services, and 

 applications but must maintain accountability for security and privacy policies.
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The Cloud Security Alliance [CSA10] lists the following as the top cloud- 

specific security threats, together with suggested countermeasures:

 ■ Abuse and nefarious use of cloud computing: For many CPs, it is relatively 

easy to register and begin using cloud services, some even offering free limited 

trial periods. This enables attackers to get inside the cloud to conduct various 

attacks, such as spamming, malicious code attacks, and denial of service. PaaS 

providers have traditionally suffered most from this kind of attacks; however, 

recent evidence shows that hackers have begun to target IaaS vendors as well. 

The burden is on the CP to protect against such attacks, but cloud service cli-

ents must monitor activity with respect to their data and resources to detect 

any malicious behavior.

Countermeasures include (1) stricter initial registration and valida-

tion  processes; (2) enhanced credit card fraud monitoring and coordination; 

(3) comprehensive introspection of customer network traffic; and (4) monitor-

ing public blacklists for one’s own network blocks.

 ■ Insecure interfaces and APIs: CPs expose a set of software interfaces or APIs 

that customers use to manage and interact with cloud services. The security 

and availability of general cloud services are dependent upon the security of 

these basic APIs. From authentication and access control to encryption and 

activity monitoring, these interfaces must be designed to protect against both 

accidental and malicious attempts to circumvent policy.

Countermeasures include (1) analyzing the security model of CP inter-

faces; (2) ensuring that strong authentication and access controls are imple-

mented in concert with encrypted transmission; and (3) understanding the 

 dependency chain associated with the API.

 ■ Malicious insiders: Under the cloud computing paradigm, an organization 

 relinquishes direct control over many aspects of security and, in doing so, con-

fers an unprecedented level of trust onto the CP. One grave concern is the 

risk of malicious insider activity. Cloud architectures necessitate certain roles 

that are extremely high risk. Examples include CP system administrators and 

 managed security service providers.

Countermeasures include the following: (1) enforce strict supply chain 

management and conduct a comprehensive supplier assessment; (2) specify 

human resource requirements as part of legal contract; (3) require transpar-

ency into overall information security and management practices, as well as 

compliance reporting; and (4) determine security breach notification processes.

 ■ Shared technology issues: IaaS vendors deliver their services in a scalable way 

by sharing infrastructure. Often, the underlying components that make up this 

infrastructure (CPU caches, GPUs, etc.) were not designed to offer strong iso-

lation properties for a multi-tenant architecture. CPs typically approach this 

risk by the use of isolated virtual machines for individual clients. This approach 

is still vulnerable to attack, by both insiders and outsiders, and so can only be a 

part of an overall security strategy.

Countermeasures include the following: (1) implement security best 

practices for installation/configuration; (2) monitor environment for unauthor-

ized changes/activity; (3) promote strong authentication and access control 
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for  administrative access and operations; (4) enforce SLAs for  patching and 

 vulnerability remediation; and (5) conduct vulnerability scanning and 

 configuration audits.

 ■ Data loss or leakage: For many clients, the most devastating impact from a 

security breach is the loss or leakage of data. We address this issue in the next 

subsection.

Countermeasures include the following: (1) implement strong API ac-

cess  control; (2) encrypt and protect integrity of data in transit; (3) analyze 

data protection at both design and run time; and (4) implement strong key 

generation, storage and management, and destruction practices.

 ■ Account or service hijacking: Account or service hijacking, usually with stolen 

credentials, remains a top threat. With stolen credentials, attackers can often 

access critical areas of deployed cloud computing services, allowing them to 

compromise the confidentiality, integrity, and availability of those services.

Countermeasures include the following: (1) prohibit the sharing of 

 account credentials between users and services; (2) leverage strong two- factor 

authentication techniques where possible; (3) employ proactive monitor-

ing to detect unauthorized activity; and (4) understand CP security policies 

and SLAs.

 ■ Unknown risk profile: In using cloud infrastructures, the client necessarily 

cedes control to the CP on a number of issues that may affect security. Thus 

the client must pay attention to and clearly define the roles and responsibili-

ties involved for managing risks. For example, employees may deploy applica-

tions and data resources at the CP without observing the normal policies and 

procedures for privacy, security, and oversight.

Countermeasures include (1) disclosure of applicable logs and data; 

(2)  partial/full disclosure of infrastructure details (e.g., patch levels and 

 firewalls); and (3) monitoring and alerting on necessary information.

Similar lists have been developed by the European Network and Information 

Security Agency [ENIS09] and NIST [JANS11].

 16.6 DATA PROTECTION IN THE CLOUD

As can be seen from the previous section, there are numerous aspects to cloud 

 security and numerous approaches to providing cloud security measures. 

A  further example is seen in the NIST guidelines for cloud security, specified 

in SP-800-14 and listed in Table 16.3. Thus, the topic of cloud security is well 

 beyond the scope of this chapter. In this section, we focus on one specific element 

of cloud security.

There are many ways to compromise data. Deletion or alteration of records 

without a backup of the original content is an obvious example. Unlinking a record 

from a larger context may render it unrecoverable, as can storage on unreliable 

media. Loss of an encoding key may result in effective destruction. Finally, unau-

thorized parties must be prevented from gaining access to sensitive data.
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Governance
Extend organizational practices pertaining to the policies, procedures, and standards used for application 

development and service provisioning in the cloud, as well as the design, implementation, testing, use, and 

monitoring of deployed or engaged services.

Put in place audit mechanisms and tools to ensure organizational practices are followed throughout the 

system life cycle.

Compliance
Understand the various types of laws and regulations that impose security and privacy obligations on the 

 organization and potentially impact cloud computing initiatives, particularly those involving data location, 

 privacy and security controls, records management, and electronic discovery requirements.

Review and assess the cloud provider’s offerings with respect to the organizational requirements to be met 

and ensure that the contract terms adequately meet the requirements.

Ensure that the cloud provider’s electronic discovery capabilities and processes do not compromise the 

 privacy or security of data and applications.

Trust
Ensure that service arrangements have sufficient means to allow visibility into the security and privacy 

 controls and processes employed by the cloud provider, and their performance over time.

Establish clear, exclusive ownership rights over data.

Institute a risk management program that is flexible enough to adapt to the constantly evolving and 

 shifting risk landscape for the life cycle of the system.

Continuously monitor the security state of the information system to support ongoing risk management 

decisions.

Architecture
Understand the underlying technologies that the cloud provider uses to provision services, including the 

 implications that the technical controls involved have on the security and privacy of the system, over the full 

system life cycle and across all system components.

Identity and access management
Ensure that adequate safeguards are in place to secure authentication, authorization, and other identity and 

access management functions, and are suitable for the organization.

Software isolation
Understand virtualization and other logical isolation techniques that the cloud provider employs in its 

 multi-tenant software architecture, and assess the risks involved for the organization.

Data protection
Evaluate the suitability of the cloud provider’s data management solutions for the organizational data 

 concerned and the ability to control access to data, to secure data while at rest, in transit, and in use, and to 

sanitize data.

Take into consideration the risk of collating organizational data with those of other organizations whose 

threat profiles are high or whose data collectively represent significant concentrated value.

Fully understand and weigh the risks involved in cryptographic key management with the facilities 

 available in the cloud environment and the processes established by the cloud provider.

Availability
Understand the contract provisions and procedures for availability, data backup and recovery, and disaster 

recovery, and ensure that they meet the organization’s continuity and contingency planning requirements.

Ensure that during an intermediate or prolonged disruption or a serious disaster, critical operations 

can be immediately resumed, and that all operations can be eventually reinstituted in a timely and organized 

manner.

Incident response
Understand the contract provisions and procedures for incident response and ensure that they meet the 

requirements of the organization.

Table 16.3 NIST Guidelines on Security and Privacy Issues and Recommendations
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Ensure that the cloud provider has a transparent response process in place and sufficient mechanisms to 

share information during and after an incident.

Ensure that the organization can respond to incidents in a coordinated fashion with the cloud provider in 

accordance with their respective roles and responsibilities for the computing environment.

Table 16.3 Continued

The threat of data compromise increases in the cloud, due to the number of 

and interactions between risks and challenges that are either unique to the cloud or 

more dangerous because of the architectural or operational characteristics of the 

cloud environment.

Database environments used in cloud computing can vary significantly. Some 

providers support a multi-instance model, which provides a unique DBMS running 

on a virtual machine instance for each cloud subscriber. This gives the subscriber 

complete control over role definition, user authorization, and other administrative 

tasks related to security. Other providers support a multi-tenant model, which pro-

vides a predefined environment for the cloud subscriber that is shared with other 

tenants, typically through tagging data with a subscriber identifier. Tagging gives 

the appearance of exclusive use of the instance, but relies on the CP to establish and 

maintain a sound secure database environment.

Data must be secured while at rest, in transit, and in use, and access to the 

data must be controlled. The client can employ encryption to protect data in  transit, 

though this involves key management responsibilities for the CP. The client can 

enforce access control techniques but, again, the CP is involved to some extent 

 depending on the service model used.

For data at rest, the ideal security measure is for the client to encrypt the data-

base and only store encrypted data in the cloud, with the CP having no access to the 

encryption key. So long as the key remains secure, the CP has no ability to read the 

data, although corruption and other denial-of-service attacks remain a risk.

A straightforward solution to the security problem in this context is to  encrypt 

the entire database and not provide the encryption/decryption keys to the service 

provider. This solution by itself is inflexible. The user has little ability to access 

 individual data items based on searches or indexing on key parameters, but rather 

would have to download entire tables from the database, decrypt the tables, and 

work with the results. To provide more flexibility, it must be possible to work with 

the database in its encrypted form.

An example of such an approach, depicted in Figure 16.10, is reported in 

[DAMI05] and [DAMI03]. A similar approach is described in [HACI02]. Four enti-

ties are involved:

 ■ Data owner: An organization that produces data to be made available for 
 controlled release, either within the organization or to external users.

 ■ User: Human entity that presents requests (queries) to the system. The user 

could be an employee of the organization who is granted access to the data-

base via the server, or a user external to the organization who, after authenti-

cation, is granted access.

 ■ Client: Frontend that transforms user queries into queries on the encrypted 

data stored on the server.
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 ■ Server: An organization that receives the encrypted data from a data owner 

and makes them available for distribution to clients. The server could in fact 

be owned by the data owner but, more typically, is a facility owned and main-

tained by an external provider. For our discussion, the server is a cloud server.

Before continuing this discussion, we need to define some database terms. 

In relational database parlance, the basic building block is a relation, which is a flat 

table. Rows are referred to as tuples, and columns are referred to as attributes. 

A primary key is defined to be a portion of a row used to uniquely identify a row in 

a table; the primary key consists of one or more column names.2 For example, in 

an employee table, the employee ID is sufficient to uniquely identify a row in a 

 particular table.

Let us first examine the simplest possible arrangement based on this scenario. 

Suppose that each individual item in the database is encrypted separately, all using 

the same encryption key. The encrypted database is stored at the server, but the 

server does not have the encryption key. Thus, the data are secure at the server. 

Even if someone were able to hack into the server’s system, all he or she would have 

access to is encrypted data. The client system does have a copy of the encryption 

key. A user at the client can retrieve a record from the database with the following 

sequence:

1. The user issues a query for fields from one or more records with a specific 

value of the primary key.

2Note that a primary key has nothing to do with cryptographic keys. A primary key in a database is a 
means of indexing into the database.

Figure 16.10 An Encryption Scheme for a Cloud-Based Database
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2. The query processor at the client encrypts the primary key, modifies the query 

accordingly, and transmits the query to the server.

3. The server processes the query using the encrypted value of the primary key 

and returns the appropriate record or records.

4. The query processor decrypts the data and returns the results.

This method is certainly straightforward but is quite limited. For example, sup-

pose the Employee table contains a salary attribute and the user wishes to  retrieve 

all records for salaries less than $70K. There is no obvious way to do this, because 

the attribute value for salary in each record is encrypted. The set of encrypted  values 

does not preserve the ordering of values in the original attribute.

There are a number of ways to extend the functionality of this approach. For 

example, an unencrypted index value can be associated with a given attribute and 

the table can be partitioned based on these index values, enabling a user to retrieve 

a certain portion of the table. The details of such schemes are beyond our scope. 

See [STAL15] for more detail.

 16.7 CLOUD SECURITY AS A SERVICE

The term Security as a Service (SecaaS) has generally meant a package of security 

services offered by a service provider that offloads much of the security respon-

sibility from an enterprise to the security service provider. Among the services 

typically provided are authentication, antivirus, antimalware/-spyware, intrusion 

detection, and security event management. In the context of cloud computing, 

cloud security as a service, designated SecaaS, is a segment of the SaaS offering 

of a CP.

The Cloud Security Alliance defines SecaaS as the provision of security 

 applications and services via the cloud either to cloud-based infrastructure and soft-

ware or from the cloud to the customers’ on-premise systems [CSA11b]. The Cloud 

Security Alliance has identified the following SecaaS categories of service:

 ■ Identity and access management

 ■ Data loss prevention

 ■ Web security

 ■ Email security

 ■ Security assessments

 ■ Intrusion management

 ■ Security information and event management

 ■ Encryption

 ■ Business continuity and disaster recovery

 ■ Network security

In this section, we examine these categories with a focus on security of the 

cloud-based infrastructure and services (Figure 16.11).
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Identity and access management (IAM) includes people, processes, and 

 systems that are used to manage access to enterprise resources by assuring that the 

identity of an entity is verified, and then granting the correct level of access based 

on this assured identity. One aspect of identity management is identity provision-

ing, which has to do with providing access to identified users and subsequently 

 deprovisioning, or deny access, to users when the client enterprise designates such 

users as no  longer having access to enterprise resources in the cloud. Another  aspect 

of identity management is for the cloud to participate in the federated identity man-

agement scheme (see Chapter 15) scheme used by the client enterprise. Among 

other requirements, the cloud service provider (CSP) must be able to exchange 

identity attributes with the enterprise’s chosen identity provider.

The access management portion of IAM involves authentication and access 

control services. For example, the CSP must be able to authenticate users in a 

trustworthy manner. The access control requirements in SPI environments include 

establishing trusted user profile and policy information, using it to control access 

within the cloud service, and doing this in an auditable way.

Data loss prevention (DLP) is the monitoring, protecting, and verifying the 

security of data at rest, in motion, and in use. Much of DLP can be implemented by 

Figure 16.11 Elements of Cloud Security as a Service
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the cloud client, such as discussed in Section 16.6. The CSP can also provide DLP 

services, such as implementing rules about what functions can be performed on data 

in various contexts.

Web security is real-time protection offered either on premise through soft-

ware/appliance installation or via the cloud by proxying or redirecting Web traffic 

to the CP. This provides an added layer of protection on top of things like antivi-

ruses to prevent malware from entering the enterprise via activities such as Web 

browsing. In addition to protecting against malware, a cloud-based Web security 

service might include usage policy enforcement, data backup, traffic control, and 

Web access control.

A CSP may provide a Web-based email service, for which security measures 

are needed. Email security provides control over inbound and outbound email, 

 protecting the organization from phishing, malicious attachments, enforcing corpo-

rate polices such as acceptable use and spam prevention. The CSP may also incor-

porate digital signatures on all email clients and provide optional email encryption.

Security assessments are third-part audits of cloud services. While this service 

is outside the province of the CSP, the CSP can provide tools and access points to 

facilitate various assessment activities.

Intrusion management encompasses intrusion detection, prevention, and 

 response. The core of this service is the implementation of intrusion detection sys-

tems (IDSs) and intrusion prevention systems (IPSs) at entry points to the cloud 

and on servers in the cloud. An IDS is a set of automated tools designed to detect 

unauthorized access to a host system. We discuss this in Chapter 21. An IPS incor-

porates IDS functionality but also includes mechanisms designed to block traffic 

from intruders.

Security information and event management (SIEM) aggregates (via push or 

pull mechanisms) log and event data from virtual and real networks, applications, 

and systems. This information is then correlated and analyzed to provide real-time 

reporting and alerting on information/events that may require intervention or other 

type of response. The CSP typically provides an integrated service that can put 

 together information from a variety of sources both within the cloud and within the 

client enterprise network.

Encryption is a pervasive service that can be provided for data at rest in the 

cloud, email traffic, client-specific network management information, and identity 

information. Encryption services provided by the CSP involve a range of complex 

issues, including key management, how to implement virtual private network (VPN) 

services in the cloud, application encryption, and data content access.

Business continuity and disaster recovery comprise measures and mechanisms 

to ensure operational resiliency in the event of any service interruptions. This is 

an area where the CSP, because of economies of scale, can offer obvious benefits 

to a cloud service client [WOOD10]. The CSP can provide backup at multiple 

 locations, with reliable failover and disaster recovery facilities. This service must 

include a flexible infrastructure, redundancy of functions and hardware, monitored 

 operations, geographically distributed data centers, and network survivability.

Network security consists of security services that allocate access, distribute, 

monitor, and protect the underlying resource services. Services include perimeter 

and server firewalls and denial-of-service protection. Many of the other services 
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listed in this section, including intrusion management, identity and access man-

agement, data loss protection, and Web security, also contribute to the network 

 security service.

 16.8 ADDRESSING CLOUD COMPUTING SECURITY CONCERNS

Numerous documents have been developed to guide businesses thinking about the 

security issues associated with cloud computing. In addition to SP 800-144, which 

provides overall guidance, NIST has issued SP 800-146 (Cloud Computing Synopsis 
and Recommendations, May 2012). NIST’s recommendations systematically con-

sider each of the major types of cloud services consumed by businesses including 

Software as a Service (SaaS), Infrastructure as a Service (IaaS), and Platform as 

a Service (PaaS). While security issues vary somewhat depending on the type of 

cloud service, there are multiple NIST recommendations that are independent of 

service type. Not surprisingly, NIST recommends selecting cloud providers that 

support strong encryption, have appropriate redundancy mechanisms in place, 

 employ authentication mechanisms, and offer subscribers sufficient visibility about 

mechanisms used to protect subscribers from other subscribers and the provider. 

SP 800-146 also lists the overall security controls that are relevant in a cloud com-

puting environment and that must be assigned to the different cloud actors. These 

are shown in Table 16.4.

As more businesses incorporate cloud services into their enterprise net-

work infrastructures, cloud computing security will persist as an important issue. 

Examples of cloud computing security failures have the potential to have a chilling 

effect on business interest in cloud services and this is inspiring service providers 

to be serious about incorporating security mechanisms that will allay concerns of 

potential subscribers. Some service providers have moved their operations to Tier 4 

data centers to address user concerns about availability and redundancy. Because so 

many businesses remain reluctant to embrace cloud computing in a big way, cloud 

service providers will have to continue to work hard to convince potential  customers 

that computing support for core business processes and mission critical applications 

can be moved safely and securely to the cloud.
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Key Terms 

access requestor (AR)

authentication server

cloud

cloud auditor

cloud broker

cloud carrier

cloud computing

cloud consumer

cloud provider
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Dynamic Host Configuration 

Protocol (DHCP)

EAP authenticator
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EAP peer

EAP-TLS

EAP-TTLS

Extensible Authentication 

Protocol (EAP)

firewall

IEEE 802.1X

media gateway

Network Access Control 

(NAC)

Network Access Server 

(NAS)

Platform as a Service (PaaS)

policy server

private cloud

public cloud

Remote Access Server (RAS)

Security as a Service (SecaaS)

Software as a Service (SaaS)

supplicant

Virtual Local Area Network 

(VLAN)

 16.9 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Review Questions 
 16.1 Provide a brief definition of network access control.

 16.2 What is an EAP?

 16.3 List and briefly define four EAP authentication methods.

 16.4 What is DHCP? How useful is it to help achieve security of IP addresses?

 16.5 Why is EAPOL an essential element of IEEE 802.1X?

 16.6 What are the essential characteristics of cloud computing?

 16.7 List and briefly define the deployment models of cloud computing.

 16.8 What is the cloud computing reference architecture?

 16.9 Describe some of the main cloud-specific security threats.

Problems 
 16.1 Investigate the network access control scheme used at your school or place of 

 employment. Draw a diagram and describe the principal components.

 16.2 Figure 16.3 suggests that EAP can be described in the context of a four-layer model. 
Indicate the functions and formats of each of the four layers. You may need to refer 
to RFC 3748.

 16.3 List some commonly used cloud-based data services. Explore and compare these 
 services based on their use of encryption, flexibility, efficiency, speed, and ease of use. 
Study security breaches on these services in recent past. What changes were made by 
the services after these attacks?
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Virtually all businesses, most government agencies, and many individuals now have 

Web sites. The number of individuals and companies with Internet access is expanding 

rapidly and all of these have graphical Web browsers. As a result, businesses are enthu-

siastic about setting up facilities on the Web for electronic commerce. But the reality 

is that the Internet and the Web are extremely vulnerable to compromises of various 

sorts. As businesses wake up to this reality, the demand for secure Web services grows.

The topic of Web security is a broad one and can easily fill a book. In this chap-

ter, we begin with a discussion of the general requirements for Web security and then 

focus on three standardized schemes that are becoming increasingly important as part 

of Web commerce and that focus on security at the transport layer: SSL/TLS, HTTPS, 

and SSH.

 17.1 WEB SECURITY CONSIDERATIONS

The World Wide Web is fundamentally a client/server application running over the 

Internet and TCP/IP intranets. As such, the security tools and approaches discussed 

so far in this book are relevant to the issue of Web security. However, the following 

characteristics of Web usage suggest the need for tailored security tools:

 ■ Although Web browsers are very easy to use, Web servers are relatively easy 

to configure and manage, and Web content is increasingly easy to develop, the 

underlying software is extraordinarily complex. This complex software may 

hide many potential security flaws. The short history of the Web is filled with 

examples of new and upgraded systems, properly installed, that are vulnerable 

to a variety of security attacks.

 ■ A Web server can be exploited as a launching pad into the corporation’s or 

agency’s entire computer complex. Once the Web server is subverted, an 

attacker may be able to gain access to data and systems not part of the Web 

itself but connected to the server at the local site.

LEARNING OBJECTIVES

After studying this chapter, you should be able to:

 ◆ Summarize Web security threats and Web traffic security approaches.

 ◆ Present an overview of Transport Layer Security (TLS).

 ◆ Understand the differences between Secure Sockets Layer and Transport 

Layer Security.

 ◆ Compare the pseudorandom function used in Transport Layer Security 

with those discussed earlier in the book.

 ◆ Present an overview of HTTPS (HTTP over SSL).

 ◆ Present an overview of Secure Shell (SSH).
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 ■ Casual and untrained (in security matters) users are common clients for Web-

based services. Such users are not necessarily aware of the security risks that 

exist and do not have the tools or knowledge to take effective countermeasures.

Web Security Threats

Table 17.1 provides a summary of the types of security threats faced when using the 

Web. One way to group these threats is in terms of passive and active attacks. Passive 

attacks include eavesdropping on network traffic between browser and server and 

gaining access to information on a Web site that is supposed to be restricted. Active 

attacks include impersonating another user, altering messages in transit between 

client and server, and altering information on a Web site.

Another way to classify Web security threats is in terms of the location of the 

threat: Web server, Web browser, and network traffic between browser and server. 

Issues of server and browser security fall into the category of computer system secu-

rity; Part Six of this book addresses the issue of system security in general but is also 

applicable to Web system security. Issues of traffic security fall into the category of 

network security and are addressed in this chapter.

Web Traffic Security Approaches

A number of approaches to providing Web security are possible. The various 

approaches that have been considered are similar in the services they provide and, 

to some extent, in the mechanisms that they use, but they differ with respect to their 

scope of applicability and their relative location within the TCP/IP protocol stack.

Threats Consequences Countermeasures

Integrity Modification of user data

Trojan horse browser

Modification of memory

Modification of message 

 traffic in transit

Loss of information

Compromise of machine

Vulnerability to all other 

threats

Cryptographic 

checksums

Confidentiality Eavesdropping on the net

Theft of info from server

Theft of data from client

Info about network 

configuration

Info about which client talks 

to server

Loss of information

Loss of privacy

Encryption, Web 

proxies

Denial of 
Service

Killing of user threads

Flooding machine with bogus 

requests

Filling up disk or memory

Isolating machine by DNS 

attacks

Disruptive

Annoying

Prevent user from getting work 

done

Difficult to prevent

Authentication Impersonation of legitimate 

users

Data forgery

Misrepresentation of user

Belief that false information 

is valid

Cryptographic 

techniques

Table 17.1 A Comparison of Threats on the Web
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Figure 17.1 illustrates this difference. One way to provide Web security is 

to use IP security (IPsec) (Figure 17.1a). The advantage of using IPsec is that it is 

transparent to end users and applications and provides a general-purpose solution. 

Furthermore, IPsec includes a filtering capability so that only selected traffic need 

incur the overhead of IPsec processing.

Another relatively general-purpose solution is to implement security just 

above TCP (Figure 17.1b). The foremost example of this approach is the Secure 

Sockets Layer (SSL) and the follow-on Internet standard known as Transport 

Layer Security (TLS). At this level, there are two implementation choices. For full 

generality, SSL (or TLS) could be provided as part of the underlying protocol suite 

and therefore be transparent to applications. Alternatively, TLS can be embedded 

in specific packages. For example, virtually all browsers come equipped with TLS, 

and most Web servers have implemented the protocol.

Application-specific security services are embedded within the particular 

application. Figure 17.1c shows examples of this architecture. The advantage of this 

approach is that the service can be tailored to the specific needs of a given application.

 17.2 TRANSPORT LAYER SECURITY

One of the most widely used security services is Transport Layer Security (TSL); 

the current version is Version 1.2, defined in RFC 5246. TLS is an Internet stan-

dard that evolved from a commercial protocol known as Secure Sockets Layer 
(SSL). Although SSL implementations are still around, it has been deprecated by 

IETF and is disabled by most corporations offering TLS software. TLS is a general-

purpose service implemented as a set of protocols that rely on TCP. At this level, 

there are two implementation choices. For full generality, TLS could be provided 

as part of the underlying protocol suite and therefore be transparent to applica-

tions. Alternatively, TLS can be embedded in specific packages. For example, most 

browsers come equipped with TLS, and most Web servers have implemented the 

protocol.

TLS Architecture

TLS is designed to make use of TCP to provide a reliable end-to-end secure ser-

vice. TLS is not a single protocol but rather two layers of protocols, as illustrated in 

Figure 17.2.

Figure 17.1 Relative Location of Security Facilities in the TCP/IP Protocol Stack
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The TLS Record Protocol provides basic security services to various higher-

layer protocols. In particular, the Hypertext Transfer Protocol (HTTP), which 

provides the transfer service for Web client/server interaction, can operate on top 

of TLS. Three higher-layer protocols are defined as part of TLS: the Handshake 

Protocol; the Change Cipher Spec Protocol; and the Alert Protocol. These TLS-

specific protocols are used in the management of TLS exchanges and are examined 

later in this section. A fourth protocol, the Heartbeat Protocol, is defined in a sepa-

rate RFC and is also discussed subsequently in this section.

Two important TLS concepts are the TLS session and the TLS connection, 

which are defined in the specification as follows:

 ■ Connection: A connection is a transport (in the OSI layering model definition) 

that provides a suitable type of service. For TLS, such connections are peer-to-

peer relationships. The connections are transient. Every connection is associ-

ated with one session.

 ■ Session: A TLS session is an association between a client and a server. Sessions 

are created by the Handshake Protocol. Sessions define a set of cryptographic 

security parameters, which can be shared among multiple connections. Sessions 

are used to avoid the expensive negotiation of new security parameters for 

each connection.

Between any pair of parties (applications such as HTTP on client and server), 

there may be multiple secure connections. In theory, there may also be multiple 

simultaneous sessions between parties, but this feature is not used in practice.

There are a number of states associated with each session. Once a session is 

 established, there is a current operating state for both read and write (i.e., receive 

and send). In addition, during the Handshake Protocol, pending read and write 

states are created. Upon successful conclusion of the Handshake Protocol, the 

pending states become the current states.

A session state is defined by the following parameters:

 ■ Session identifier: An arbitrary byte sequence chosen by the server to identify 

an active or resumable session state.

 ■ Peer certificate: An X509.v3 certificate of the peer. This element of the state 

may be null.

Figure 17.2 TLS Protocol Stack
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 ■ Compression method: The algorithm used to compress data prior to encryption.

 ■ Cipher spec: Specifies the bulk data encryption algorithm (such as null, AES, 

etc.) and a hash algorithm (such as MD5 or SHA-1) used for MAC calculation. 

It also defines cryptographic attributes such as the hash_size.

 ■ Master secret: 48-byte secret shared between the client and server.

 ■ Is resumable: A flag indicating whether the session can be used to initiate new 

connections.

A connection state is defined by the following parameters:

 ■ Server and client random: Byte sequences that are chosen by the server and 

client for each connection.

 ■ Server write MAC secret: The secret key used in MAC operations on data sent 

by the server.

 ■ Client write MAC secret: The symmetric key used in MAC operations on data 

sent by the client.

 ■ Server write key: The symmetric encryption key for data encrypted by the 

server and decrypted by the client.

 ■ Client write key: The symmetric encryption key for data encrypted by the 

 client and decrypted by the server.

 ■ Initialization vectors: When a block cipher in CBC mode is used, an initial-

ization vector (IV) is maintained for each key. This field is first initialized by 

the TLS Handshake Protocol. Thereafter, the final ciphertext block from each 

 record is preserved for use as the IV with the following record.

 ■ Sequence numbers: Each party maintains separate sequence numbers for 

transmitted and received messages for each connection. When a party sends or 

receives a “change cipher spec message,” the appropriate sequence number is 

set to zero. Sequence numbers may not exceed 264 - 1.

TLS Record Protocol

The TLS Record Protocol provides two services for TLS connections:

 ■ Confidentiality: The Handshake Protocol defines a shared secret key that is 

used for conventional encryption of TLS payloads.

 ■ Message Integrity: The Handshake Protocol also defines a shared secret key 

that is used to form a message authentication code (MAC).

Figure 17.3 indicates the overall operation of the TLS Record Protocol. The 

Record Protocol takes an application message to be transmitted, fragments the data 

into manageable blocks, optionally compresses the data, applies a MAC, encrypts, 

adds a header, and transmits the resulting unit in a TCP segment. Received data 

are decrypted, verified, decompressed, and reassembled before being delivered to 

higher-level users.

The first step is fragmentation. Each upper-layer message is fragmented into 

blocks of 214 bytes (16,384 bytes) or less. Next, compression is optionally applied. 

Compression must be lossless and may not increase the content length by more than 
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1024 bytes.1 In TLSv2, no compression algorithm is specified, so the default com-

pression algorithm is null.

The next step in processing is to compute a message authentication code over 

the compressed data. TLS makes use of the HMAC algorithm defined in RFC 2104. 

Recall from Chapter 12 that HMAC is defined as

 HMACK(M) = H[(K+ ⊕ opad) ‘  H[(K+ ⊕ ipad) ‘  M]] 

where

H     = embedded hash function (for TLS, either MD5 or SHA-1)

M     = message input to HMAC

K+    = secret key padded with zeros on the left so that the result is equal to 

the block length of the hash code (for MD5 and SHA-1, block 

length = 512 bits)

ipad = 00110110 (36 in hexadecimal) repeated 64 times (512 bits)

opad = 01011100 (5C in hexadecimal) repeated 64 times (512 bits)

For TLS, the MAC calculation encompasses the fields indicated in the 

 following expression:

HMAC_hash(MAC_write_secret, seq_num ‘  TLSCompressed.type ‘  
TLSCompressed.version ‘  TLSCompressed.length ‘  TLSCompressed.fragment)

The MAC calculation covers all of the fields XXX, plus the field 

TLSCompressed.version, which is the version of the protocol being employed.

Next, the compressed message plus the MAC are encrypted using symmetric 

encryption. Encryption may not increase the content length by more than 1024 bytes, 

Figure 17.3 TLS Record Protocol Operation

Application data

Fragment

Compress

Add MAC

Encrypt

Append TLS
record header

1Of course, one hopes that compression shrinks rather than expands the data. However, for very short 
blocks, it is possible, because of formatting conventions, that the compression algorithm will actually pro-
vide output that is longer than the input.
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so that the total length may not exceed 214 + 2048. The following encryption algo-

rithms are permitted:

Block Cipher Stream Cipher

Algorithm Key Size Algorithm Key Size

AES

3DES

128, 256

168

RC4-128 128

For stream encryption, the compressed message plus the MAC are encrypted. 

Note that the MAC is computed before encryption takes place and that the MAC is 

then encrypted along with the plaintext or compressed plaintext.

For block encryption, padding may be added after the MAC prior to encryp-

tion. The padding is in the form of a number of padding bytes followed by a one-

byte indication of the length of the padding. The padding can be any amount that 

results in a total that is a multiple of the cipher’s block length, up to a maximum 

of 255 bytes. For example, if the cipher block length is 16 bytes (e.g., AES) and if 

the plaintext (or compressed text if compression is used) plus MAC plus padding 

length byte is 79 bytes long, then the padding length (in bytes) can be 1, 17, 33, and 

so on, up to 161. At a padding length of 161, the total length is 79 + 161 = 240. A 

variable padding length may be used to frustrate attacks based on an analysis of 

the lengths of exchanged messages.

The final step of TLS Record Protocol processing is to prepend a header con-

sisting of the following fields:

 ■ Content Type (8 bits): The higher-layer protocol used to process the enclosed 

fragment.

 ■ Major Version (8 bits): Indicates major version of TLS in use. For TLSv2, the 

value is 3.

 ■ Minor Version (8 bits): Indicates minor version in use. For TLSv2, the value is 1.

 ■ Compressed Length (16 bits): The length in bytes of the plaintext fragment 

(or compressed fragment if compression is used). The maximum value is 

214 + 2048.

The content types that have been defined are change_cipher_spec, 
alert, handshake, and application_data. The first three are the TLS-

specific protocols, discussed next. Note that no distinction is made among the vari-

ous applications (e.g., HTTP) that might use TLS; the content of the data created by 

such applications is opaque to TLS. 

Figure 17.4 illustrates the TLS record format.

Change Cipher Spec Protocol

The Change Cipher Spec Protocol is one of the four TLS-specific protocols that use 

the TLS Record Protocol, and it is the simplest. This protocol consists of a single 

message (Figure 17.5a), which consists of a single byte with the value 1. The sole 

purpose of this message is to cause the pending state to be copied into the current 

state, which updates the cipher suite to be used on this connection.
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Alert Protocol

The Alert Protocol is used to convey TLS-related alerts to the peer entity. As with 

other applications that use TLS, alert messages are compressed and encrypted, as 

specified by the current state.

Each message in this protocol consists of two bytes (Figure 17.5b). The first 

byte takes the value warning (1) or fatal (2) to convey the severity of the message. 

If the level is fatal, TLS immediately terminates the connection. Other connections 

on the same session may continue, but no new connections on this session may 

be established. The second byte contains a code that indicates the specific alert. 

The  following alerts are always fatal:

 ■ unexpected_message: An inappropriate message was received.

 ■ bad_record_mac: An incorrect MAC was received.

 ■ decompression_failure: The decompression function received improper input 

(e.g., unable to decompress or decompress to greater than maximum allowable 

length).

 ■ handshake_failure: Sender was unable to negotiate an acceptable set of secu-

rity parameters given the options available.

 ■ illegal_parameter: A field in a handshake message was out of range or incon-

sistent with other fields.

Figure 17.5 TLS Record Protocol Payload
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 ■ decryption_failed: A ciphertext decrypted in an invalid way; either it was not 

an even multiple of the block length or its padding values, when checked, were 

incorrect.

 ■ record_overflow: A TLS record was received with a payload (ciphertext) 

whose length exceeds 214 + 2048 bytes, or the ciphertext decrypted to a length 

of greater than 214 + 1024 bytes.

 ■ unknown_ca: A valid certificate chain or partial chain was received, but the 

certificate was not accepted because the CA certificate could not be located or 

could not be matched with a known, trusted CA.

 ■ access_denied: A valid certificate was received, but when access control was 

applied, the sender decided not to proceed with the negotiation.

 ■ decode_error: A message could not be decoded, because either a field was out 

of its specified range or the length of the message was incorrect.

 ■ export_restriction: A negotiation not in compliance with export restrictions on 

key length was detected.

 ■ protocol_version: The protocol version the client attempted to negotiate is 

recognized but not supported.

 ■ insufficient_security: Returned instead of handshake_failure when a negotia-

tion has failed specifically because the server requires ciphers more secure 

than those supported by the client.

 ■ internal_error: An internal error unrelated to the peer or the correctness of 

the protocol makes it impossible to continue.

The remaining alerts are the following.

 ■ close_notify: Notifies the recipient that the sender will not send any more mes-

sages on this connection. Each party is required to send a close_notify alert 

before closing the write side of a connection.

 ■ bad_certificate: A received certificate was corrupt (e.g., contained a signature 

that did not verify).

 ■ unsupported_certificate: The type of the received certificate is not supported.

 ■ certificate_revoked: A certificate has been revoked by its signer.

 ■ certificate_expired: A certificate has expired.

 ■ certificate_unknown: Some other unspecified issue arose in processing the 

certificate, rendering it unacceptable.

 ■ decrypt_error: A handshake cryptographic operation failed, including being 

unable to verify a signature, decrypt a key exchange, or validate a finished 

message.

 ■ user_canceled: This handshake is being canceled for some reason unrelated to 

a protocol failure.

 ■ no_renegotiation: Sent by a client in response to a hello request or by the 

server in response to a client hello after initial handshaking. Either of these 

messages would normally result in renegotiation, but this alert indicates that 

the sender is not able to renegotiate. This message is always a warning.
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Handshake Protocol

The most complex part of TLS is the Handshake Protocol. This protocol allows 

the server and client to authenticate each other and to negotiate an encryption and 

MAC algorithm and cryptographic keys to be used to protect data sent in a TLS 

record. The Handshake Protocol is used before any application data is transmitted.

The Handshake Protocol consists of a series of messages exchanged by client 

and server. All of these have the format shown in Figure 17.5c . Each message has 

three fields:

 ■ Type (1 byte): Indicates one of 10 messages. Table 17.2 lists the defined mes-

sage types.

 ■ Length (3 bytes): The length of the message in bytes.

 ■ Content (#  0 bytes): The parameters associated with this message; these are 

listed in Table 17.2.

Figure 17.6 shows the initial exchange needed to establish a logical connection 

between client and server. The exchange can be viewed as having four phases.

PHASE 1. ESTABLISH SECURITY CAPABILITIES Phase 1 initiates a logical connection 

and establishes the security capabilities that will be associated with it. The exchange 

is initiated by the client, which sends a client_hello message with the following 

parameters:

 ■ Version: The highest TLS version understood by the client.

 ■ Random: A client-generated random structure consisting of a 32-bit time-

stamp and 28 bytes generated by a secure random number generator. These 

values serve as nonces and are used during key exchange to prevent replay 

attacks.

 ■ Session ID: A variable-length session identifier. A nonzero value indicates that 

the client wishes to update the parameters of an existing connection or to cre-

ate a new connection on this session. A zero value indicates that the client 

wishes to establish a new connection on a new session.

Message Type Parameters

hello_request null

client_hello version, random, session id, cipher suite, compression method

server_hello version, random, session id, cipher suite, compression method

certificate chain of X.509v3 certificates

server_key_exchange parameters, signature

certificate_request type, authorities

server_done null

certificate_verify signature

client_key_exchange parameters, signature

finished hash value

Table 17.2 TLS Handshake Protocol Message Types
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 ■ CipherSuite: This is a list that contains the combinations of cryptographic 

algorithms supported by the client, in decreasing order of preference. Each 

element of the list (each cipher suite) defines both a key exchange algorithm 

and a CipherSpec; these are discussed subsequently.

 ■ Compression Method: This is a list of the compression methods the client 

supports.

After sending the client_hello message, the client waits for the server_
hello message, which contains the same parameters as the client_hello 

Figure 17.6 Handshake Protocol Action
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 message. For the server_hello message, the following conventions apply. The 

Version field contains the lowest of the version suggested by the client and the highest 

supported by the server. The Random field is generated by the server and is indepen-

dent of the client’s Random field. If the SessionID field of the client was nonzero, the 

same value is used by the server; otherwise the server’s SessionID field contains the 

value for a new session. The CipherSuite field contains the single cipher suite selected 

by the server from those proposed by the client. The Compression field contains the 

compression method selected by the server from those proposed by the client.

The first element of the Ciphersuite parameter is the key exchange method 

(i.e., the means by which the cryptographic keys for conventional encryption and 

MAC are exchanged). The following key exchange methods are supported.

 ■ RSA: The secret key is encrypted with the receiver’s RSA public key. A public-

key certificate for the receiver’s key must be made available.

 ■ Fixed Diffie–Hellman: This is a Diffie–Hellman key exchange in which the 

server’s certificate contains the Diffie–Hellman public parameters signed by 

the certificate authority (CA). That is, the public-key certificate contains the 

Diffie–Hellman public-key parameters. The client provides its Diffie–Hellman 

public-key parameters either in a certificate, if client authentication is re-

quired, or in a key exchange message. This method results in a fixed secret key 

between two peers based on the Diffie–Hellman calculation using the fixed 

public keys.

 ■ Ephemeral Diffie-Hellman: This technique is used to create ephemeral (tem-

porary, one-time) secret keys. In this case, the Diffie–Hellman public keys are 

exchanged and signed using the sender’s private RSA or DSS key. The receiver 

can use the corresponding public key to verify the signature. Certificates are used 

to authenticate the public keys. This would appear to be the most secure of the 

three Diffie–Hellman options because it results in a temporary, authenticated key.

 ■ Anonymous Diffie–Hellman: The base Diffie–Hellman algorithm is used 

with no authentication. That is, each side sends its public Diffie–Hellman pa-

rameters to the other with no authentication. This approach is vulnerable to 

man-in-the-middle attacks, in which the attacker conducts anonymous Diffie–

Hellman with both parties.

Following the definition of a key exchange method is the CipherSpec, which 

includes the following fields:

 ■ CipherAlgorithm: Any of the algorithms mentioned earlier: RC4, RC2, DES, 

3DES, DES40, or IDEA

 ■ MACAlgorithm: MD5 or SHA-1

 ■ CipherType: Stream or Block

 ■ IsExportable: True or False

 ■ HashSize: 0, 16 (for MD5), or 20 (for SHA-1) bytes

 ■ Key Material: A sequence of bytes that contain data used in generating the 

write keys

 ■ IV Size: The size of the Initialization Value for Cipher Block Chaining (CBC) 

encryption
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PHASE 2. SERVER AUTHENTICATION AND KEY EXCHANGE The server begins this 

phase by sending its certificate if it needs to be authenticated; the message con-

tains one or a chain of X.509 certificates. The certificate message is required for 

any agreed-on key exchange method except anonymous Diffie–Hellman. Note 

that if fixed Diffie–Hellman is used, this certificate message functions as the serv-

er’s key exchange message because it contains the server’s public Diffie–Hellman 

parameters.

Next, a server_key_exchange message may be sent if it is required. It is not 

required in two instances: (1) The server has sent a certificate with fixed Diffie–

Hellman parameters; or (2) RSA key exchange is to be used. The server_key_ 

exchange message is needed for the following:

 ■ Anonymous Diffie–Hellman: The message content consists of the two global 

Diffie–Hellman values (a prime number and a primitive root of that number) 

plus the server’s public Diffie–Hellman key (see Figure 10.1).

 ■ Ephemeral Diffie–Hellman: The message content includes the three Diffie–

Hellman parameters provided for anonymous Diffie–Hellman plus a signature 

of those parameters.

 ■ RSA key exchange (in which the server is using RSA but has a signature-only 
RSA key): Accordingly, the client cannot simply send a secret key encrypted 

with the server’s public key. Instead, the server must create a temporary RSA 

public/private key pair and use the server_key_exchange message to send the 

public key. The message content includes the two parameters of the temporary 

RSA public key (exponent and modulus; see Figure 9.5) plus a signature of 

those parameters.

Some further details about the signatures are warranted. As usual, a signature 

is created by taking the hash of a message and encrypting it with the sender’s private 

key. In this case, the hash is defined as

 hash(ClientHello.random ‘  ServerHello.random ‘  ServerParams) 

So the hash covers not only the Diffie–Hellman or RSA parameters but also the 

two nonces from the initial hello messages. This ensures against replay attacks and 

misrepresentation. In the case of a DSS signature, the hash is performed using the 

SHA-1 algorithm. In the case of an RSA signature, both an MD5 and an SHA-1 

hash are calculated, and the concatenation of the two hashes (36 bytes) is encrypted 

with the server’s private key.

Next, a nonanonymous server (server not using anonymous Diffie–Hellman) 

can request a certificate from the client. The certificate_request message includes 

two parameters: certificate_type and certificate_authorities. The certificate type in-

dicates the public-key algorithm and its use:

 ■ RSA, signature only

 ■ DSS, signature only

 ■ RSA for fixed Diffie–Hellman; in this case the signature is used only for 

authentication, by sending a certificate signed with RSA

 ■ DSS for fixed Diffie–Hellman; again, used only for authentication
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The second parameter in the certificate_request message is a list of the distin-

guished names of acceptable certificate authorities.

The final message in phase 2, and one that is always required, is the server_
done message, which is sent by the server to indicate the end of the server hello and 

associated messages. After sending this message, the server will wait for a client 

response. This message has no parameters.

PHASE 3. CLIENT AUTHENTICATION AND KEY EXCHANGE Upon receipt of the 

server_done message, the client should verify that the server provided a valid 

certificate (if required) and check that the server_hello parameters are accept-

able. If all is satisfactory, the client sends one or more messages back to the server.

If the server has requested a certificate, the client begins this phase by send-

ing a certificate message. If no suitable certificate is available, the client sends a 

no_certificate alert instead.

Next is the client_key_exchange message, which must be sent in this phase. 

The content of the message depends on the type of key exchange, as follows:

 ■ RSA: The client generates a 48-byte pre-master secret and encrypts with the 

public key from the server’s certificate or temporary RSA key from a server_

key_exchange message. Its use to compute a master secret is explained later.

 ■ Ephemeral or Anonymous Diffie–Hellman: The client’s public Diffie–Hellman 

parameters are sent.

 ■ Fixed Diffie–Hellman: The client’s public Diffie–Hellman parameters were 

sent in a certificate message, so the content of this message is null.

Finally, in this phase, the client may send a certificate_verify message to pro-

vide explicit verification of a client certificate. This message is only sent following 

any client certificate that has signing capability (i.e., all certificates except those 

containing fixed Diffie–Hellman parameters). This message signs a hash code based 

on the preceding messages, defined as

CertificateVerify.signature.md5_hash

 MD5(handshake_messages);

Certificate.signature.sha_hash

 SHA(handshake_messages);

where handshake_messages refers to all Handshake Protocol messages sent or 

received starting at client_hello but not including this message. If the user’s 

private key is DSS, then it is used to encrypt the SHA-1 hash. If the user’s private 

key is RSA, it is used to encrypt the concatenation of the MD5 and SHA-1 hashes. 

In either case, the purpose is to verify the client’s ownership of the private key for 

the client certificate. Even if someone is misusing the client’s certificate, he or she 

would be unable to send this message.

PHASE 4. FINISH Phase 4 completes the setting up of a secure connection. The  client 

sends a change_cipher_spec message and copies the pending CipherSpec into the 

current CipherSpec. Note that this message is not considered part of the Handshake 

Protocol but is sent using the Change Cipher Spec Protocol. The client then imme-

diately sends the finished message under the new algorithms, keys, and secrets. 
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The finished message verifies that the key exchange and authentication processes 

were successful. The content of the finished message is:

PRF(master_secret, finished_label, MD5(handshake_messages) ‘  SHA@1
(handshake_messages))

where finished_label is the string “client finished” for the client and “server 

finished” for the server.

In response to these two messages, the server sends its own change_ cipher_
spec message, transfers the pending to the current CipherSpec, and sends its fin-

ished message. At this point, the handshake is complete and the client and server 

may begin to exchange application-layer data.

Cryptographic Computations

Two further items are of interest: (1) the creation of a shared master secret by 

means of the key exchange; and (2) the generation of cryptographic parameters 

from the master secret.

MASTER SECRET CREATION The shared master secret is a one-time 48-byte value 

(384 bits) generated for this session by means of secure key exchange. The creation 

is in two stages. First, a pre_master_secret is exchanged. Second, the  master_
secret is calculated by both parties. For pre_master_secret exchange, there 

are two possibilities.

 ■ RSA: A 48-byte pre_master_secret is generated by the client, encrypted with 

the server’s public RSA key, and sent to the server. The server decrypts the 

ciphertext using its private key to recover the pre_master_secret.

 ■ Diffie–Hellman: Both client and server generate a Diffie–Hellman public key. 

After these are exchanged, each side performs the Diffie–Hellman calculation 

to create the shared pre_master_secret.

Both sides now compute the master_secret as

master_secret =
 PRF(pre_master_secret, “master secret”, ClientHello.random ‘  ServerHello 

.random)

where ClientHello.random and ServerHello.random are the two nonce 

values exchanged in the initial hello messages.

The algorithm is performed until 48 bytes of pseudorandom output are pro-

duced. The calculation of the key block material (MAC secret keys, session encryp-

tion keys, and IVs) is defined as

key_block =
 PRF(SecurityParameters.master_secret, “key expansion”,

SecurityParameters.server_random ‘  SecurityParameters.client_random)

until enough output has been generated.
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GENERATION OF CRYPTOGRAPHIC PARAMETERS CipherSpecs require a client write 

MAC secret, a server write MAC secret, a client write key, a server write key, a 

client write IV, and a server write IV, which are generated from the master secret 

in that order. These parameters are generated from the master secret by hashing 

the master secret into a sequence of secure bytes of sufficient length for all needed 

parameters.

The generation of the key material from the master secret uses the same for-

mat for generation of the master secret from the pre-master secret as

key_block = MD5(master_secret ‘  SHA(=A> ‘  master_secret ‘
ServerHello.random ‘  ClientHello.random)) ‘  

MD5(master_secret ‘  SHA(=BB> ‘  master_secret ‘  
ServerHello.random ‘  ClientHello.random)) ‘  

MD5(master_secret ‘  SHA(=CCC> ‘  master_secret ‘  
ServerHello.random ‘  ClientHello.random)) ‘ c

until enough output has been generated. The result of this algorithmic structure is a 

pseudorandom function. We can view the master_secret as the pseudorandom 

seed value to the function. The client and server random numbers can be viewed as 

salt values to complicate cryptanalysis (see Chapter 21 for a discussion of the use of 

salt values).

PSEUDORANDOM FUNCTION TLS makes use of a pseudorandom function referred 

to as PRF to expand secrets into blocks of data for purposes of key generation or 

validation. The objective is to make use of a relatively small, shared secret value but 

to generate longer blocks of data in a way that is secure from the kinds of attacks 

made on hash functions and MACs. The PRF is based on the data expansion func-

tion (Figure 17.7) given as

 

P_hash(secret, seed) = HMAC_hash(secret, A(1) ‘  seed) ‘
                                          HMAC_hash(secret, A(2) ‘  seed) ‘
                                         HMAC_hash(secret, A(3) ‘  seed) ‘

 

where A() is defined as

A(0) = seed

A(i) = HMAC_hash(secret, A(i - 1))

The data expansion function makes use of the HMAC algorithm with either MD5 

or SHA-1 as the underlying hash function. As can be seen, P_hash can be iterated 

as many times as necessary to produce the required quantity of data. For example, if 

P_SHA256 was used to generate 80 bytes of data, it would have to be iterated three 

times (through A(3)), producing 96 bytes of data of which the last 16 would be dis-

carded. In this case, P_MD5 would have to be iterated four times, producing exactly 

64 bytes of data. Note that each iteration involves two executions of HMAC, each 

of which in turn involves two executions of the underlying hash algorithm.
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To make PRF as secure as possible, it uses two hash algorithms in a way that 

should guarantee its security if either algorithm remains secure. PRF is defined as

 PRF(secret, label, seed) = P_6hash7(secret, label ‘  seed) 

PRF takes as input a secret value, an identifying label, and a seed value and 

produces an output of arbitrary length.

Heartbeat Protocol

In the context of computer networks, a heartbeat is a periodic signal generated by 

hardware or software to indicate normal operation or to synchronize other parts of 

a system. A heartbeat protocol is typically used to monitor the availability of a pro-

tocol entity. In the specific case of TLS, a Heartbeat protocol was defined in 2012 in 

RFC 6250 (Transport Layer Security (TLS) and Datagram Transport Layer Security 
(DTLS) Heartbeat Extension).

Figure 17.7 TLS Function P_hash(secret, seed)
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The Heartbeat protocol runs on top of the TLS Record Protocol and con-

sists of two message types: heartbeat_request and heartbeat_response. 

The use of the Heartbeat protocol is established during Phase 1 of the Handshake 

protocol (Figure 17.6). Each peer indicates whether it supports heartbeats. If heart-

beats are supported, the peer indicates whether it is willing to receive heartbeat_ 
request messages and respond with heartbeat_response messages or only 

willing to send heartbeat_request messages.

A heartbeat_request message can be sent at any time. Whenever a re-

quest message is received, it should be answered promptly with a corresponding 

heartbeat_response message. The heartbeat_request message includes 

payload length, payload, and padding fields. The payload is a random content 

between 16 bytes and 64 Kbytes in length. The corresponding heartbeat_ 
response message must include an exact copy of the received payload. The pad-

ding is also random content. The padding enables the sender to perform a path 

MTU (maximum transfer unit) discovery operation, by sending requests with in-

creasing padding until there is no answer anymore, because one of the hosts on 

the path cannot handle the message.

The heartbeat serves two purposes. First, it assures the sender that the recipi-

ent is still alive, even though there may not have been any activity over the under-

lying TCP connection for a while. Second, the heartbeat generates activity across 

the connection during idle periods, which avoids closure by a firewall that does not 

tolerate idle connections.

The requirement for the exchange of a payload was designed into the Heartbeat 

protocol to support its use in a connectionless version of TLS known as Datagram 

Transport Layer Security (DTLS). Because a connectionless service is subject 

to packet loss, the payload enables the requestor to match response messages to 

request messages. For simplicity, the same version of the Heartbeat protocol is used 

with both TLS and DTLS. Thus, the payload is required for both TLS and DTLS.

SSL/TLS ATTACKS

Since the first introduction of SSL in 1994, and the subsequent standardization of 

TLS, numerous attacks have been devised against these protocols. The appearance 

of each attack has necessitated changes in the protocol, the encryption tools used, or 

some aspect of the implementation of SSL and TLS to counter these threats.

ATTACK CATEGORIES We can group the attacks into four general categories:

 ■ Attacks on the handshake protocol: As early as 1998, an approach to com-

promising the handshake protocol based on exploiting the formatting and 

implementation of the RSA encryption scheme was presented [BLEI98]. As 

 countermeasures were implemented the attack was refined and adjusted to not 

only thwart the countermeasures but also speed up the attack [e.g., BARD12].

 ■ Attacks on the record and application data protocols: A number of vulnerabili-

ties have been discovered in these protocols, leading to patches to counter the 

new threats. As a recent example, in 2011, researchers Thai Duong and Juliano 

Rizzo demonstrated a proof of concept called BEAST (Browser Exploit Against 

SSL/TLS) that turned what had been considered only a theoretical vulnerability 
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into a practical attack [GOOD11]. BEAST leverages a type of cryptographic 

attack called a chosen-plaintext attack. The attacker mounts the attack by 

choosing a guess for the plaintext that is associated with a known ciphertext. The 

researchers developed a practical algorithm for launching successful attacks. 

Subsequent patches were able to thwart this attack. The authors of the BEAST 

attack are also the creators of the 2012 CRIME (Compression Ratio Info-leak 

Made Easy) attack, which can allow an attacker to recover the content of web 

cookies when data compression is used along with TLS [GOOD12]. When used 

to recover the content of secret authentication cookies, it allows an attacker to 

perform session hijacking on an authenticated web session.

 ■ Attacks on the PKI: Checking the validity of X.509 certificates is an activity 

subject to a variety of attacks, both in the context of SSL/TLS and elsewhere. 

For example, [GEOR12] demonstrated that commonly used libraries for 

SSL/TLS suffer from vulnerable certificate validation implementations. The 

 authors revealed weaknesses in the source code of OpenSSL, GnuTLS, JSSE, 

ApacheHttpClient, Weberknecht, cURL, PHP, Python and applications built 

upon or with these products.

 ■ Other attacks: [MEYE13] lists a number of attacks that do not fit into any of 

the preceding categories. One example is an attack announced in 2011 by the 

German hacker group The Hackers Choice, which is a DoS attack [KUMA11]. 

The attack creates a heavy processing load on a server by overwhelming the 

target with SSL/TLS handshake requests. Boosting system load is done by 

establishing new connections or using renegotiation. Assuming that the major-

ity of computation during a handshake is done by the server, the attack creates 

more system load on the server than on the source device, leading to a DoS. 

The server is forced to continuously recompute random numbers and keys.

The history of attacks and countermeasures for SSL/TLS is representative of 

that for other Internet-based protocols. A “perfect” protocol and a “perfect” imple-

mentation strategy are never achieved. A constant back-and-forth between threats 

and countermeasures determines the evolution of Internet-based protocols.

TLSv1.3

In 2014, the IETF TLS working group began work on a version 1.3 of TLS. The 

primary aim is to improve the security of TLS. As of this writing, TLSv1.3 is still 

in a draft stage, but the final standard is likely to be very close to the current draft. 

Among the significant changes from version 1.2 are the following:

 ■ TLSv1.3 removes support for a number of options and functions. Remov-

ing code that implements functions no longer needed reduces the chances 

of potentially dangerous coding errors and reduces the attack surface. The 

deleted items include:

–Compression

–Ciphers that do not offer authenticated encryption

–Static RSA and DH key exchange

–32-bit timestamp as part of the Random parameter in the client_hello 

message
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–Renegotiation

–Change Cipher Spec Protocol

–RC4

–Use of MD5 and SHA-224 hashes with signatures

 ■ TLSv1.3 uses Diffie–Hellman or Elliptic Curve Diffie–Hellman for key 

exchange and does not permit RSA. The danger with RSA is that if the private 

key is compromised, all handshakes using these cipher suites will be compro-

mised. With DH or ECDH, a new key is negotiated for each handshake.

 ■ TLSv1.3 allows for a “1 round trip time” handshake by changing the order of 

message sent with establishing a secure connection. The client sends a  Client 

Key Exchange message containing its cryptographic parameters for key estab-

lishment before a cipher suite has been negotiated. This enables a server 

to  calculate keys for encryption and authentication before sending its first 

response. Reducing the number of packets sent during this handshake phase 

speeds up the process and reduces the attack surface.

These changes should improve the efficiency and security of TLS.

 17.3 HTTPS

HTTPS (HTTP over SSL) refers to the combination of HTTP and SSL to imple-

ment secure communication between a Web browser and a Web server. The HTTPS 

capability is built into all modern Web browsers. Its use depends on the Web server 

supporting HTTPS communication. For example, some search engines do not sup-

port HTTPS.

The principal difference seen by a user of a Web browser is that URL (uniform 

resource locator) addresses begin with https:// rather than http://. A normal HTTP 

connection uses port 80. If HTTPS is specified, port 443 is used, which invokes SSL.

When HTTPS is used, the following elements of the communication are 

encrypted:

 ■ URL of the requested document

 ■ Contents of the document

 ■ Contents of browser forms (filled in by browser user)

 ■ Cookies sent from browser to server and from server to browser

 ■ Contents of HTTP header

HTTPS is documented in RFC 2818, HTTP Over TLS. There is no fundamen-

tal change in using HTTP over either SSL or TLS, and both implementations are 

referred to as HTTPS.

Connection Initiation

For HTTPS, the agent acting as the HTTP client also acts as the TLS client. The 

client initiates a connection to the server on the appropriate port and then sends 

the TLS ClientHello to begin the TLS handshake. When the TLS handshake has 

https://rather
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finished, the client may then initiate the first HTTP request. All HTTP data is to be 

sent as TLS application data. Normal HTTP behavior, including retained connec-

tions, should be followed.

There are three levels of awareness of a connection in HTTPS. At the HTTP 

level, an HTTP client requests a connection to an HTTP server by sending a con-

nection request to the next lowest layer. Typically, the next lowest layer is TCP, 

but it also may be TLS/SSL. At the level of TLS, a session is established between a 

TLS client and a TLS server. This session can support one or more connections at 

any time. As we have seen, a TLS request to establish a connection begins with the 

establishment of a TCP connection between the TCP entity on the client side and 

the TCP entity on the server side.

Connection Closure

An HTTP client or server can indicate the closing of a connection by including the 

following line in an HTTP record: Connection: close. This indicates that the 

connection will be closed after this record is delivered.

The closure of an HTTPS connection requires that TLS close the connec-

tion with the peer TLS entity on the remote side, which will involve closing the 

underlying TCP connection. At the TLS level, the proper way to close a connec-

tion is for each side to use the TLS alert protocol to send a close_notify alert. 

TLS implementations must initiate an exchange of closure alerts before closing a 

connection. A TLS implementation may, after sending a closure alert, close the 

connection without waiting for the peer to send its closure alert, generating an 

“incomplete close”. Note that an implementation that does this may choose to 

reuse the session. This should only be done when the application knows (typically 

through detecting HTTP message boundaries) that it has received all the message 

data that it cares about.

HTTP clients also must be able to cope with a situation in which the underlying 

TCP connection is terminated without a prior close_notify alert and without a 

Connection: close indicator. Such a situation could be due to a programming 

error on the server or a communication error that causes the TCP connection to drop. 

However, the unannounced TCP closure could be evidence of some sort of attack. So 

the HTTPS client should issue some sort of security warning when this occurs.

 17.4 SECURE SHELL (SSH)

Secure Shell (SSH) is a protocol for secure network communications designed to 

be relatively simple and inexpensive to implement. The initial version, SSH1 was 

focused on providing a secure remote logon facility to replace TELNET and other 

 remote logon schemes that provided no security. SSH also provides a more general 

client/server capability and can be used for such network functions as file transfer and 

email. A new version, SSH2, fixes a number of security flaws in the original scheme. 

SSH2 is documented as a proposed standard in IETF RFCs 4250 through 4256.

SSH client and server applications are widely available for most operating 

 systems. It has become the method of choice for remote login and X tunneling and 
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is rapidly becoming one of the most pervasive applications for encryption technol-

ogy outside of embedded systems.

SSH is organized as three protocols that typically run on top of TCP 

(Figure 17.8):

 ■ Transport Layer Protocol: Provides server authentication, data confidentiality, 

and data integrity with forward secrecy (i.e., if a key is compromised during 

one session, the knowledge does not affect the security of earlier sessions). The 

transport layer may optionally provide compression.

 ■ User Authentication Protocol: Authenticates the user to the server.

 ■ Connection Protocol: Multiplexes multiple logical communications channels 

over a single, underlying SSH connection.

Transport Layer Protocol

HOST KEYS Server authentication occurs at the transport layer, based on the server 

possessing a public/private key pair. A server may have multiple host keys using 

multiple different asymmetric encryption algorithms. Multiple hosts may share 

the same host key. In any case, the server host key is used during key exchange to 

authenticate the identity of the host. For this to be possible, the client must have a 

priori knowledge of the server’s public host key. RFC 4251 dictates two alternative 

trust models that can be used:

1. The client has a local database that associates each host name (as typed by the 

user) with the corresponding public host key. This method requires no centrally 

administered infrastructure and no third-party coordination. The downside is that 

the database of name-to-key associations may become burdensome to maintain.

Figure 17.8 SSH Protocol Stack
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2. The host name-to-key association is certified by a trusted certification author-

ity (CA). The client only knows the CA root key and can verify the validity of 

all host keys certified by accepted CAs. This alternative eases the maintenance 

problem, since ideally, only a single CA key needs to be securely stored on the 

client. On the other hand, each host key must be appropriately certified by a 

central authority before authorization is possible.

PACKET EXCHANGE Figure 17.9 illustrates the sequence of events in the SSH 

Transport Layer Protocol. First, the client establishes a TCP connection to the 

server. This is done via the TCP protocol and is not part of the Transport Layer 

Protocol. Once the connection is established, the client and server exchange data, 

referred to as packets, in the data field of a TCP segment. Each packet is in the 

 following format (Figure 17.10).

 ■ Packet length: Length of the packet in bytes, not including the packet length 

and MAC fields.

 ■ Padding length: Length of the random padding field.

 ■ Payload: Useful contents of the packet. Prior to algorithm negotiation, this 

field is uncompressed. If compression is negotiated, then in subsequent 

 packets, this field is compressed.

Figure 17.9 SSH Transport Layer Protocol Packet Exchanges
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 ■ Random padding: Once an encryption algorithm has been negotiated, this 

field is added. It contains random bytes of padding so that the total length of 

the packet (excluding the MAC field) is a multiple of the cipher block size, or 

8 bytes for a stream cipher.

 ■ Message authentication code (MAC): If message authentication has been 

negotiated, this field contains the MAC value. The MAC value is computed 

over the entire packet plus a sequence number, excluding the MAC field. The 

sequence number is an implicit 32-bit packet sequence that is initialized to 

zero for the first packet and incremented for every packet. The sequence num-

ber is not included in the packet sent over the TCP connection.

Once an encryption algorithm has been negotiated, the entire packet 

 (excluding the MAC field) is encrypted after the MAC value is calculated.

The SSH Transport Layer packet exchange consists of a sequence of steps 

(Figure 17.9). The first step, the identification string exchange, begins with the  client 

sending a packet with an identification string of the form:

SSH-protoversion-softwareversion SP comments CR LF

Figure 17.10 SSH Transport Layer Protocol Packet Formation
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where SP,CR, and LF are space character, carriage return, and line feed, respec-

tively. An example of a valid string is SSH-2.0-billsSSH_3.6.3q3<CR><LF>. 

The server responds with its own identification string. These strings are used in the 

Diffie–Hellman key exchange.

Next comes algorithm negotiation. Each side sends an SSH_MSG_KEXINIT 

containing lists of supported algorithms in the order of preference to the sender. 

There is one list for each type of cryptographic algorithm. The algorithms include 

key exchange, encryption, MAC algorithm, and compression algorithm. Table 17.3 

shows the allowable options for encryption, MAC, and compression. For each cat-

egory, the algorithm chosen is the first algorithm on the client’s list that is also sup-

ported by the server.

The next step is key exchange. The specification allows for alternative meth-

ods of key exchange, but at present, only two versions of Diffie–Hellman key 

exchange are specified. Both versions are defined in RFC 2409 and require only one 

packet in each direction. The following steps are involved in the exchange. In this, 

C is the  client; S is the server; p is a large safe prime; g is a generator for a subgroup 

of GF(p); q is the order of the subgroup; V_S is S’s identification string; V_C is 

Table 17.3 SSH Transport Layer Cryptographic Algorithms

MAC algorithm

hmac-sha1* HMAC-SHA1; digest 

length = key length = 20

hmac-sha1-96** First 96 bits of HMAC-

SHA1; digest length = 12; 

key length = 20

hmac-md5 HMAC-MD5; digest 

length = key length = 16

hmac-md5-96 First 96 bits of 

HMAC-MD5;  

digest length = 12;  

key length = 16

Compression algorithm

none* No compression

zlib Defined in RFC 1950 and 

RFC 1951

Cipher

3des-cbc* Three-key 3DES in CBC 

mode

blowfish-cbc Blowfish in CBC mode

twofish256-cbc Twofish in CBC mode with 

a 256-bit key

twofish192-cbc Twofish with a 192-bit key

twofish128-cbc Twofish with a 128-bit key

aes256-cbc AES in CBC mode with a 

256-bit key

aes192-cbc AES with a 192-bit key

aes128-cbc** AES with a 128-bit key

Serpent256-cbc Serpent in CBC mode with 

a 256-bit key

Serpent192-cbc Serpent with a 192-bit key

Serpent128-cbc Serpent with a 128-bit key

arcfour RC4 with a 128-bit key

cast128-cbc CAST-128 in CBC mode

* = Required

** = Recommended
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C’s identification string; K_S is S’s public host key; I_C is C’s SSH_MSG_KEXINIT 

 message and I_S is S’s SSH_MSG_KEXINIT message that have been exchanged 

before this part begins. The values of p, g, and q are known to both client and server 

as a result of the algorithm selection negotiation. The hash function hash() is also 

decided during algorithm negotiation.

1. C generates a random number x(1 6 x 6 q) and computes e = gx mod p. C 

sends e to S.

2. S generates a random number y(0 6 y 6 q) and computes f = gy mod p.  

S receives e. It computes K = ey mod p, H = hash(V_C ‘  V_S ‘  I_C ‘  I_S ‘  K_S ‘
e ‘  f ‘  K), and signature s on H with its private host key. S sends (K_S ‘  f ‘  s)  

to C. The signing operation may involve a second hashing operation.

3. C verifies that K_S really is the host key for S (e.g., using certificates or a local 

database). C is also allowed to accept the key without verification; however, 

doing so will render the protocol insecure against active attacks (but may be 

desirable for practical reasons in the short term in many environments). C then 

computes K = f x mod p, H = hash(V_C ‘  V_S ‘  I_C ‘  I_S ‘  K_S ‘  e ‘  f ‘  K), and 

verifies the signature s on H.

As a result of these steps, the two sides now share a master key K. In addition, 

the server has been authenticated to the client, because the server has used its pri-

vate key to sign its half of the Diffie-Hellman exchange. Finally, the hash value H 

serves as a session identifier for this connection. Once computed, the session identi-

fier is not changed, even if the key exchange is performed again for this connection 

to obtain fresh keys.

The end of key exchange is signaled by the exchange of SSH_MSG_NEWKEYS 

packets. At this point, both sides may start using the keys generated from K, as dis-

cussed subsequently.

The final step is service request. The client sends an SSH_MSG_SERVICE_
REQUEST packet to request either the User Authentication or the Connection 

Protocol. Subsequent to this, all data is exchanged as the payload of an SSH 

Transport Layer packet, protected by encryption and MAC.

KEY GENERATION The keys used for encryption and MAC (and any needed IVs) 

are generated from the shared secret key K, the hash value from the key exchange 

H, and the session identifier, which is equal to H unless there has been a subsequent 

key exchange after the initial key exchange. The values are computed as follows.

 ■ Initial IV client to server: HASH(K ‘  H ‘  ;A< ‘  session_id)

 ■ Initial IV server to client: HASH(K ‘  H ‘  ;B< ‘  session_id)

 ■ Encryption key client to server: HASH(K ‘  H ‘  ;C< ‘  session_id)

 ■ Encryption key server to client: HASH(K ‘  H ‘  ;D< ‘  session_id)

 ■ Integrity key client to server: HASH(K ‘  H ‘  ;E< ‘  session_id)

 ■ Integrity key server to client: HASH(K ‘  H ‘  ;F< ‘  session_id)

where HASH() is the hash function determined during algorithm negotiation.
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User Authentication Protocol

The User Authentication Protocol provides the means by which the client is 

 authenticated to the server.

MESSAGE TYPES AND FORMATS Three types of messages are always used in the User 

Authentication Protocol. Authentication requests from the client have the format:

byte SSH_MSG_USERAUTH_REQUEST (50)

string user name

string service name

string method name

 . . .  method specific fields

where user name is the authorization identity the client is claiming, service 

name is the facility to which the client is requesting access (typically the SSH 

Connection Protocol), and method name is the authentication method being 

used in this request. The first byte has decimal value 50, which is interpreted as 

SSH_MSG_USERAUTH_REQUEST.

If the server either (1) rejects the authentication request or (2) accepts the 

 request but requires one or more additional authentication methods, the server 

sends a message with the format:

byte SSH_MSG_USERAUTH_FAILURE (51)

name-list authentications that can continue

boolean partial success

where the name-list is a list of methods that may productively continue the  dialog. 

If the server accepts authentication, it sends a single byte message: SSH_MSG_ 
USERAUTH_SUCCESS (52).

MESSAGE EXCHANGE The message exchange involves the following steps.

1. The client sends a SSH_MSG_USERAUTH_REQUEST with a requested method 

of none.

2. The server checks to determine if the user name is valid. If not, the server 

 returns SSH_MSG_USERAUTH_FAILURE with the partial success value of 

false. If the user name is valid, the server proceeds to step 3.

3. The server returns SSH_MSG_USERAUTH_FAILURE with a list of one or more 

authentication methods to be used.

4. The client selects one of the acceptable authentication methods and sends a 

SSH_MSG_USERAUTH_REQUEST with that method name and the required 

method-specific fields. At this point, there may be a sequence of exchanges to 

perform the method.
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5. If the authentication succeeds and more authentication methods are required, 

the server proceeds to step 3, using a partial success value of true. If the 

authentication fails, the server proceeds to step 3, using a partial success value 

of false.

6. When all required authentication methods succeed, the server sends a  

SSH_MSG_USERAUTH_SUCCESS message, and the Authentication Protocol  

is over.

AUTHENTICATION METHODS The server may require one or more of the following 

authentication methods.

 ■ publickey: The details of this method depend on the public-key algorithm 

chosen. In essence, the client sends a message to the server that contains 

the client’s public key, with the message signed by the client’s private key. 

When the server receives this message, it checks whether the supplied key 

is acceptable for authentication and, if so, it checks whether the signature is 

correct.

 ■ password: The client sends a message containing a plaintext password, 

which is protected by encryption by the Transport Layer Protocol.

 ■ hostbased: Authentication is performed on the client’s host rather than the 

client itself. Thus, a host that supports multiple clients would provide authen-

tication for all its clients. This method works by having the client send a signa-

ture created with the private key of the client host. Thus, rather than directly 

verifying the user’s identity, the SSH server verifies the identity of the client 

host—and then believes the host when it says the user has already authenti-

cated on the client side.

Connection Protocol

The SSH Connection Protocol runs on top of the SSH Transport Layer Protocol 

and assumes that a secure authentication connection is in use.2 That secure authen-

tication connection, referred to as a tunnel, is used by the Connection Protocol to 

multiplex a number of logical channels.

CHANNEL MECHANISM All types of communication using SSH, such as a terminal 

session, are supported using separate channels. Either side may open a channel. 

For each channel, each side associates a unique channel number, which need not be 

the same on both ends. Channels are flow controlled using a window mechanism. 

No data may be sent to a channel until a message is received to indicate that window 

space is available.

2RFC 4254, The Secure Shell (SSH) Connection Protocol, states that the Connection Protocol runs on 
top of the Transport Layer Protocol and the User Authentication Protocol. RFC 4251, SSH Protocol 
Architecture, states that the Connection Protocol runs over the User Authentication Protocol. In fact, the 
Connection Protocol runs over the Transport Layer Protocol, but assumes that the User Authentication 
Protocol has been previously invoked.
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The life of a channel progresses through three stages: opening a channel, data 

transfer, and closing a channel.

When either side wishes to open a new channel, it allocates a local number for 

the channel and then sends a message of the form:

byte SSH_MSG_CHANNEL_OPEN

string channel type

uint32 sender channel

uint32 initial window size

uint32 maximum packet size

.... channel type specific data follows

where uint32 means unsigned 32-bit integer. The channel type identifies the appli-

cation for this channel, as described subsequently. The sender channel is the local 

channel number. The initial window size specifies how many bytes of channel data 

can be sent to the sender of this message without adjusting the window. The maxi-

mum packet size specifies the maximum size of an individual data packet that can 

be sent to the sender. For example, one might want to use smaller packets for inter-

active connections to get better interactive response on slow links.

If the remote side is able to open the channel, it returns a SSH_MSG_CHANNEL_
OPEN_CONFIRMATION message, which includes the sender channel number, the 

recipient channel number, and window and packet size values for  incoming  traffic. 

Otherwise, the remote side returns a SSH_MSG_CHANNEL_OPEN_FAILURE 

 message with a reason code indicating the reason for failure.

Once a channel is open, data transfer is performed using a SSH_MSG_
CHANNEL_DATA message, which includes the recipient channel number and a block 

of data. These messages, in both directions, may continue as long as the channel 

is open.

When either side wishes to close a channel, it sends a SSH_MSG_CHANNEL_

CLOSE message, which includes the recipient channel number.

Figure 17.11 provides an example of Connection Protocol Message Exchange.

CHANNEL TYPES Four channel types are recognized in the SSH Connection Protocol 

specification.

 ■ session: The remote execution of a program. The program may be a shell, an 

application such as file transfer or email, a system command, or some built-in 

subsystem. Once a session channel is opened, subsequent requests are used to 

start the remote program.

 ■ x11: This refers to the X Window System, a computer software system and 

 network protocol that provides a graphical user interface (GUI) for net-

worked computers. X allows applications to run on a network server but to be 

displayed on a desktop machine.
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 ■ forwarded-tcpip: This is remote port forwarding, as explained in the next 

subsection.

 ■ direct-tcpip: This is local port forwarding, as explained in the next subsection.

PORT FORWARDING One of the most useful features of SSH is port forwarding. In 

essence, port forwarding provides the ability to convert any insecure TCP connec-

tion into a secure SSH connection. This is also referred to as SSH tunneling. We 

need to know what a port is in this context. A port is an identifier of a user of 

TCP. So, any application that runs on top of TCP has a port number. Incoming TCP 

traffic is delivered to the appropriate application on the basis of the port number. 

An application may employ multiple port numbers. For example, for the Simple 

Mail Transfer Protocol (SMTP), the server side generally listens on port 25, so an 

Figure 17.11 Example of SSH Connection Protocol Message Exchange
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incoming SMTP request uses TCP and addresses the data to destination port 25.  

TCP recognizes that this is the SMTP server address and routes the data to the 

SMTP server application.

Figure 17.12 illustrates the basic concept behind port forwarding. We have 

a client application that is identified by port number x and a server application 

identified by port number y. At some point, the client application invokes the local 

TCP entity and requests a connection to the remote server on port y. The local 

TCP entity negotiates a TCP connection with the remote TCP entity, such that the 

 connection links local port x to remote port y.

To secure this connection, SSH is configured so that the SSH Transport Layer 

Protocol establishes a TCP connection between the SSH client and server entities, 

with TCP port numbers a and b, respectively. A secure SSH tunnel is established 

Figure 17.12 SSH Transport Layer Packet Exchanges
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over this TCP connection. Traffic from the client at port x is redirected to the local 

SSH entity and travels through the tunnel where the remote SSH entity delivers the 

data to the server application on port y. Traffic in the other direction is similarly 

redirected.

SSH supports two types of port forwarding: local forwarding and remote for-

warding. Local forwarding allows the client to set up a “hijacker” process. This will 

intercept selected application-level traffic and redirect it from an unsecured TCP 

connection to a secure SSH tunnel. SSH is configured to listen on selected ports. 

SSH grabs all traffic using a selected port and sends it through an SSH tunnel. On 

the other end, the SSH server sends the incoming traffic to the destination port dic-

tated by the client application.

The following example should help clarify local forwarding. Suppose you have 

an email client on your desktop and use it to get email from your mail server via the 

Post Office Protocol (POP). The assigned port number for POP3 is port 110. We 

can secure this traffic in the following way:

1. The SSH client sets up a connection to the remote server.

2. Select an unused local port number, say 9999, and configure SSH to accept 

traffic from this port destined for port 110 on the server.

3. The SSH client informs the SSH server to create a connection to the destina-

tion, in this case mailserver port 110.

4. The client takes any bits sent to local port 9999 and sends them to the server 

inside the encrypted SSH session. The SSH server decrypts the incoming bits 

and sends the plaintext to port 110.

5. In the other direction, the SSH server takes any bits received on port 110 and 

sends them inside the SSH session back to the client, who decrypts and sends 

them to the process connected to port 9999.

With remote forwarding, the user’s SSH client acts on the server’s behalf. 

The client receives traffic with a given destination port number, places the traf-

fic on the correct port and sends it to the destination the user chooses. A typical 

example of remote forwarding is the following. You wish to access a server at 

work from your home computer. Because the work server is behind a firewall, it 

will not accept an SSH request from your home computer. However, from work 

you can set up an SSH tunnel using remote forwarding. This involves the follow-

ing steps.

1. From the work computer, set up an SSH connection to your home computer. 

The firewall will allow this, because it is a protected outgoing connection.

2. Configure the SSH server to listen on a local port, say 22, and to deliver data 

across the SSH connection addressed to remote port, say 2222.

3. You can now go to your home computer, and configure SSH to accept traffic 

on port 2222.

4. You now have an SSH tunnel that can be used for remote logon to the work 

server.
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 17.5 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms 

Alert protocol

Change Cipher Spec protocol

Handshake protocol

HTTPS (HTTP over SSL)

Master Secret

Secure Shell (SSH)

Secure Socket Layer (SSL)

Transport Layer Security 

(TLS)

Review Questions 

 17.1 What are the advantages of each of the three approaches shown in Figure 17.1?

 17.2 What protocols comprise TLS?

 17.3 What is the difference between a TLS connection and a TLS session?

 17.4 List and briefly define the parameters that define a TLS session state.

 17.5 List and briefly define the parameters that define a TLS session connection.

 17.6 What services are provided by the TLS Record Protocol?

 17.7 What steps are involved in the TLS Record Protocol transmission?

 17.8 Give brief details about different level of awareness of a connection in HTTPS.

 17.9 Which protocol was replaced by SSH and why? Which version is currently in the pro-
cess of being standardized?

 17.10 List and briefly define the SSH protocols.

Problems 

 17.1 In SSL and TLS, why is there a separate Change Cipher Spec Protocol rather than 
including a change_cipher_spec message in the Handshake Protocol?

 17.2 What purpose does the MAC serve during the change cipher spec TLS exchange?

 17.3 Consider the following threats to Web security and describe how each is countered by 
a particular feature of TLS.
a. Brute-Force Cryptanalytic Attack: An exhaustive search of the key space for a 

conventional encryption algorithm.
b. Known Plaintext Dictionary Attack: Many messages will contain predictable 

plaintext, such as the HTTP GET command. An attacker constructs a diction-
ary containing every possible encryption of the known-plaintext message. When 
an encrypted message is intercepted, the attacker takes the portion containing 
the encrypted known plaintext and looks up the ciphertext in the dictionary. The 
ciphertext should match against an entry that was encrypted with the same secret 
key. If there are several matches, each of these can be tried against the full cipher-
text to determine the right one. This attack is especially effective against small key 
sizes (e.g., 40-bit keys).

c. Replay Attack: Earlier TLS handshake messages are replayed.
d. Man-in-the-Middle Attack: An attacker interposes during key exchange, acting as 

the client to the server and as the server to the client.
e. Password Sniffing: Passwords in HTTP or other application traffic are eaves-

dropped.
f. IP Spoofing: Uses forged IP addresses to fool a host into accepting bogus data.
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g. IP Hijacking: An active, authenticated connection between two hosts is disrupted 
and the attacker takes the place of one of the hosts.

h. SYN Flooding: An attacker sends TCP SYN messages to request a connection 
but does not respond to the final message to establish the connection fully. The 
 attacked TCP module typically leaves the “half-open connection” around for a few 
minutes. Repeated SYN messages can clog the TCP module.

 17.4 Based on what you have learned in this chapter, is it possible in TLS for the receiver 
to reorder TLS record blocks that arrive out of order? If so, explain how it can be 
done. If not, why not?

 17.5 For SSH packets, what is the advantage, if any, of not including the MAC in the scope 
of the packet encryption?
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This chapter begins with a general overview of wireless security issues. We then focus 

on the relatively new area of mobile device security, examining threats and counter-

measures for mobile devices used in the enterprise. Then, we look at the IEEE 802.11i 

standard for wireless LAN security. This standard is part of IEEE 802.11, also referred 

to as Wi-Fi. We begin the discussion with an overview of IEEE 802.11, and then we 

look in some detail at IEEE 802.11i.

 18.1 WIRELESS SECURITY

Wireless networks, and the wireless devices that use them, introduce a host of secu-

rity problems over and above those found in wired networks. Some of the key fac-

tors contributing to the higher security risk of wireless networks compared to wired 

networks include the following [MA10]:

 ■ Channel: Wireless networking typically involves broadcast communications, 

which is far more susceptible to eavesdropping and jamming than wired 

networks. Wireless networks are also more vulnerable to active attacks that 

exploit vulnerabilities in communications protocols.

 ■ Mobility: Wireless devices are, in principal and usually in practice, far more 

portable and mobile than wired devices. This mobility results in a number of 

risks, described subsequently.

 ■ Resources: Some wireless devices, such as smartphones and tablets, have 

sophisticated operating systems but limited memory and processing resources 

with which to counter threats, including denial of service and malware.

 ■ Accessibility: Some wireless devices, such as sensors and robots, may be left 

unattended in remote and/or hostile locations. This greatly increases their 

 vulnerability to physical attacks.

LEARNING OBJECTIVES

After studying this chapter, you should be able to:

 ◆ Present an overview of security threats and countermeasures for wireless 

networks.

 ◆ Understand the unique security threats posed by the use of mobile devices 

with enterprise networks.

 ◆ Describe the principal elements in a mobile device security strategy.

 ◆ Understand the essential elements of the IEEE 802.11 wireless LAN 

 standard.

 ◆ Summarize the various components of the IEEE 802.11i wireless LAN 

 security architecture.
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In simple terms, the wireless environment consists of three components that 

provide point of attack (Figure 18.1). The wireless client can be a cell phone, a 

 Wi-Fi–enabled laptop or tablet, a wireless sensor, a Bluetooth device, and so on. 

The wireless access point provides a connection to the network or service. Examples 

of access points are cell towers, Wi-Fi hotspots, and wireless access points to wired 

local or wide area networks. The transmission medium, which carries the radio 

waves for data transfer, is also a source of vulnerability.

Wireless Network Threats

[CHOI08] lists the following security threats to wireless networks:

 ■ Accidental association: Company wireless LANs or wireless access points to 

wired LANs in close proximity (e.g., in the same or neighboring buildings) 

may create overlapping transmission ranges. A user intending to connect to 

one LAN may unintentionally lock on to a wireless access point from a neigh-

boring network. Although the security breach is accidental, it nevertheless 

 exposes resources of one LAN to the accidental user.

 ■ Malicious association: In this situation, a wireless device is configured to 

 appear to be a legitimate access point, enabling the operator to steal pass-

words from legitimate users and then penetrate a wired network through a 

legitimate wireless access point.

 ■ Ad hoc networks: These are peer-to-peer networks between wireless comput-

ers with no access point between them. Such networks can pose a security 

threat due to a lack of a central point of control.

 ■ Nontraditional networks: Nontraditional networks and links, such as personal 

network Bluetooth devices, barcode readers, and handheld PDAs, pose a secu-

rity risk in terms of both eavesdropping and spoofing.

 ■ Identity theft (MAC spoofing): This occurs when an attacker is able to eaves-

drop on network traffic and identify the MAC address of a computer with 

network privileges.

 ■ Man-in-the middle attacks: This type of attack is described in Chapter 10 in 

the context of the Diffie–Hellman key exchange protocol. In a broader sense, 

this attack involves persuading a user and an access point to believe that they 

are talking to each other when in fact the communication is going through an 

intermediate attacking device. Wireless networks are particularly vulnerable 

to such attacks.

Figure 18.1 Wireless Networking Components

Endpoint Wireless medium Access point
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 ■ Denial of service (DoS): This type of attack is discussed in detail in Chapter 

21. In the context of a wireless network, a DoS attack occurs when an attacker 

continually bombards a wireless access point or some other accessible wireless 

port with various protocol messages designed to consume system resources. 

The wireless environment lends itself to this type of attack, because it is so 

easy for the attacker to direct multiple wireless messages at the target.

 ■ Network injection: A network injection attack targets wireless access points 

that are exposed to nonfiltered network traffic, such as routing protocol mes-

sages or network management messages. An example of such an attack is 

one in which bogus reconfiguration commands are used to affect routers and 

switches to degrade network performance.

Wireless Security Measures

Following [CHOI08], we can group wireless security measures into those dealing 

with wireless transmissions, wireless access points, and wireless networks (consist-

ing of wireless routers and endpoints).

SECURING WIRELESS TRANSMISSIONS The principal threats to wireless transmission 

are eavesdropping, altering or inserting messages, and disruption. To deal with 

eavesdropping, two types of countermeasures are appropriate:

 ■ Signal-hiding techniques: Organizations can take a number of measures to 

make it more difficult for an attacker to locate their wireless access points, 

including turning off service set identifier (SSID) broadcasting by wireless 

 access points; assigning cryptic names to SSIDs; reducing signal strength to the 

lowest level that still provides requisite coverage; and locating wireless access 

points in the interior of the building, away from windows and exterior walls. 

Greater security can be achieved by the use of directional antennas and of 

signal-shielding techniques.

 ■ Encryption: Encryption of all wireless transmission is effective against eaves-

dropping to the extent that the encryption keys are secured.

The use of encryption and authentication protocols is the standard method of 

countering attempts to alter or insert transmissions.

The methods discussed in Chapter 21 for dealing with DoS apply to wireless 

transmissions. Organizations can also reduce the risk of unintentional DoS attacks. 

Site surveys can detect the existence of other devices using the same frequency 

range, to help determine where to locate wireless access points. Signal strengths can 

be adjusted and shielding used in an attempt to isolate a wireless environment from 

competing nearby transmissions.

SECURING WIRELESS ACCESS POINTS The main threat involving wireless access 

points is unauthorized access to the network. The principal approach for preventing 

such access is the IEEE 802.1X standard for port-based network access control. The 

standard provides an authentication mechanism for devices wishing to attach to a 

LAN or wireless network. The use of 802.1X can prevent rogue access points and 

other unauthorized devices from becoming insecure backdoors.

Section 16.3 provides an introduction to 802.1X.
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SECURING WIRELESS NETWORKS [CHOI08] recommends the following techniques 

for wireless network security:

1. Use encryption. Wireless routers are typically equipped with built-in encryp-

tion mechanisms for router-to-router traffic.

2. Use antivirus and antispyware software, and a firewall. These facilities should 

be enabled on all wireless network endpoints.

3. Turn off identifier broadcasting. Wireless routers are typically configured to 

broadcast an identifying signal so that any device within range can learn of 

the router’s existence. If a network is configured so that authorized devices 

know the identity of routers, this capability can be disabled, so as to thwart 

attackers.

4. Change the identifier on your router from the default. Again, this measure 

thwarts attackers who will attempt to gain access to a wireless network using 

default router identifiers.

5. Change your router’s pre-set password for administration. This is another 

 prudent step.

6. Allow only specific computers to access your wireless network. A router can 

be configured to only communicate with approved MAC addresses. Of course, 

MAC addresses can be spoofed, so this is just one element of a security strategy.

 18.2 MOBILE DEVICE SECURITY

Prior to the widespread use of smartphones, the dominant paradigm for computer 

and network security in organizations was as follows. Corporate IT was tightly con-

trolled. User devices were typically limited to Windows PCs. Business applications 

were controlled by IT and either run locally on endpoints or on physical servers 

in data centers. Network security was based upon clearly defined perimeters that 

separated trusted internal networks from the untrusted Internet. Today, there have 

been massive changes in each of these assumptions. An organization’s networks 

must accommodate the following:

 ■ Growing use of new devices: Organizations are experiencing significant growth 

in employee use of mobile devices. In many cases, employees are allowed to 

use a combination of endpoint devices as part of their day-to-day activities.

 ■ Cloud-based applications: Applications no longer run solely on physical 

servers in corporate data centers. Quite the opposite, applications can run 

 anywhere—on traditional physical servers, on mobile virtual servers, or in the 

cloud. Additionally, end users can now take advantage of a wide variety of 

cloud-based applications and IT services for personal and professional use. 

Facebook can be used for an employee’s personal profiles or as a component 

of a corporate marketing campaign. Employees depend upon Skype to speak 

with friends abroad or for legitimate business video conferencing. Dropbox 

and Box can be used to distribute documents between corporate and personal 

devices for mobility and user productivity.
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 ■ De-perimeterization: Given new device proliferation, application mobility, 

and cloud-based consumer and corporate services, the notion of a static net-

work perimeter is all but gone. Now there are a multitude of network perim-

eters around devices, applications, users, and data. These perimeters have also 

become quite dynamic as they must adapt to various environmental conditions 

such as user role, device type, server virtualization mobility, network location, 

and time-of-day.

 ■ External business requirements: The enterprise must also provide guests, 

third-party contractors, and business partners network access using various 

devices from a multitude of locations.

The central element in all of these changes is the mobile computing device. 

Mobile devices have become an essential element for organizations as part of the 

overall network infrastructure. Mobile devices such as smartphones, tablets, and 

memory sticks provide increased convenience for individuals as well as the poten-

tial for increased productivity in the workplace. Because of their widespread use 

and unique characteristics, security for mobile devices is a pressing and complex 

issue. In essence, an organization needs to implement a security policy through a 

combination of security features built into the mobile devices and additional secu-

rity controls provided by network components that regulate the use of the mobile 

devices.

Security Threats

Mobile devices need additional, specialized protection measures beyond those 

 implemented for other client devices, such as desktop and laptop devices that are 

used only within the organization’s facilities and on the organization’s networks. 

SP 800-14 (Guidelines for Managing and Securing Mobile Devices in the Enterprise, 

July 2012) lists seven major security concerns for mobile devices. We examine each 

of these in turn.

LACK OF PHYSICAL SECURITY CONTROLS Mobile devices are typically under the com-

plete control of the user, and are used and kept in a variety of locations outside the 

organization’s control, including off premises. Even if a device is required to remain 

on premises, the user may move the device within the organization between secure 

and nonsecured locations. Thus, theft and tampering are realistic threats.

The security policy for mobile devices must be based on the assumption that 

any mobile device may be stolen or at least accessed by a malicious party. The threat 

is twofold: A malicious party may attempt to recover sensitive data from the device 

itself, or may use the device to gain access to the organization’s resources.

USE OF UNTRUSTED MOBILE DEVICES In addition to company-issued and company-

controlled mobile devices, virtually all employees will have personal smartphones 

and/or tablets. The organization must assume that these devices are not  trustworthy. 

That is, the devices may not employ encryption and either the user or a third party 

may have installed a bypass to the built-in restrictions on security, operating system 

use, and so on.
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USE OF UNTRUSTED NETWORKS If a mobile device is used on premises, it can  connect 

to organization resources over the organization’s own in-house wireless networks. 

However, for off-premises use, the user will typically access organizational resources 

via Wi-Fi or cellular access to the Internet and from the Internet to the organiza-

tion. Thus, traffic that includes an off-premises segment is potentially susceptible to 

eavesdropping or man-in-the-middle types of attacks. Thus, the security policy must 

be based on the assumption that the networks between the mobile  device and the 

organization are not trustworthy.

USE OF APPLICATIONS CREATED BY UNKNOWN PARTIES By design, it is easy to find 

and install third-party applications on mobile devices. This poses the obvious risk of 

installing malicious software. An organization has several options for dealing with 

this threat, as described subsequently.

INTERACTION WITH OTHER SYSTEMS A common feature found on smartphones and 

tablets is the ability to automatically synchronize data, apps, contacts, photos, and 

so on with other computing devices and with cloud-based storage. Unless an orga-

nization has control of all the devices involved in synchronization, there is consider-

able risk of the organization’s data being stored in an unsecured location, plus the 

risk of the introduction of malware.

USE OF UNTRUSTED CONTENT Mobile devices may access and use content that other 

computing devices do not encounter. An example is the Quick Response (QR) 

code, which is a two-dimensional barcode. QR codes are designed to be captured 

by a mobile device camera and used by the mobile device. The QR code translates 

to a URL, so that a malicious QR code could direct the mobile device to malicious 

Web sites.

USE OF LOCATION SERVICES The GPS capability on mobile devices can be used to 

maintain a knowledge of the physical location of the device. While this feature 

might be useful to an organization as part of a presence service, it creates security 

risks. An attacker can use the location information to determine where the device 

and user are located, which may be of use to the attacker.

Mobile Device Security Strategy

With the threats listed in the preceding discussion in mind, we outline the principal 

elements of a mobile device security strategy. They fall into three categories: device 

security, client/server traffic security, and barrier security (Figure 18.2).

DEVICE SECURITY A number of organizations will supply mobile devices for 

 employee use and preconfigure those devices to conform to the enterprise secu-

rity policy. However, many organizations will find it convenient or even necessary 

to adopt a bring-your-own-device (BYOD) policy that allows the personal mobile 

devices of employees to have access to corporate resources. IT managers should be 

able to inspect each device before allowing network access. IT will want to estab-

lish configuration guidelines for operating systems and applications. For example, 

“rooted” or “jail-broken” devices are not permitted on the network, and mobile 
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devices cannot store corporate contacts on local storage. Whether a device is owned 

by the organization or BYOD, the organization should configure the device with 

security controls, including the following:

 ■ Enable auto-lock, which causes the device to lock if it has not been used for a 

given amount of time, requiring the user to re-enter a four-digit PIN or a pass-

word to re-activate the device.

 ■ Enable password or PIN protection. The PIN or password is needed to unlock 

the device. In addition, it can be configured so that email and other data on the 

device are encrypted using the PIN or password and can only be retrieved with 

the PIN or password.

 ■ Avoid using auto-complete features that remember user names or passwords.

 ■ Enable remote wipe.

 ■ Ensure that SSL protection is enabled, if available.

 ■ Make sure that software, including operating systems and applications, is up 

to date.

 ■ Install antivirus software as it becomes available.

Figure 18.2 Mobile Device Security Elements
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 ■ Either sensitive data should be prohibited from storage on the mobile device 

or it should be encrypted.

 ■ IT staff should also have the ability to remotely access devices, wipe the device 

of all data, and then disable the device in the event of loss or theft.

 ■ The organization may prohibit all installation of third-party applications, 

 implement whitelisting to prohibit installation of all unapproved applications, 

or implement a secure sandbox that isolates the organization’s data and appli-

cations from all other data and applications on the mobile device. Any applica-

tion that is on an approved list should be accompanied by a digital signature 

and a public-key certificate from an approved authority.

 ■ The organization can implement and enforce restrictions on what devices can 

synchronize and on the use of cloud-based storage.

 ■ To deal with the threat of untrusted content, security responses can include 

training of personnel on the risks inherent in untrusted content and disabling 

camera use on corporate mobile devices.

 ■ To counter the threat of malicious use of location services, the security policy 

can dictate that such service is disabled on all mobile devices.

TRAFFIC SECURITY Traffic security is based on the usual mechanisms for encryption 

and authentication. All traffic should be encrypted and travel by secure means, such 

as SSL or IPv6. Virtual private networks (VPNs) can be configured so that all traffic 

between the mobile device and the organization’s network is via a VPN.

A strong authentication protocol should be used to limit the access from the 

device to the resources of the organization. Often, a mobile device has a single 

 device-specific authenticator, because it is assumed that the device has only one 

user. A preferable strategy is to have a two-layer authentication mechanism, which 

involves authenticating the device and then authenticating the user of the device.

BARRIER SECURITY The organization should have security mechanisms to protect 

the network from unauthorized access. The security strategy can also include fire-

wall policies specific to mobile device traffic. Firewall policies can limit the scope 

of data and application access for all mobile devices. Similarly, intrusion detection 

and intrusion prevention systems can be configured to have tighter rules for mobile 

device traffic.

 18.3 IEEE 802.11 WIRELESS LAN OVERVIEW

IEEE 802 is a committee that has developed standards for a wide range of local area 

networks (LANs). In 1990, the IEEE 802 Committee formed a new working group, 

IEEE 802.11, with a charter to develop a protocol and transmission specifications 

for wireless LANs (WLANs). Since that time, the demand for WLANs at different 

frequencies and data rates has exploded. Keeping pace with this demand, the IEEE 

802.11 working group has issued an ever-expanding list of standards. Table 18.1 

briefly defines key terms used in the IEEE 802.11 standard.
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The Wi-Fi Alliance

The first 802.11 standard to gain broad industry acceptance was 802.11b. Although 

802.11b products are all based on the same standard, there is always a concern 

whether products from different vendors will successfully interoperate. To meet 

this concern, the Wireless Ethernet Compatibility Alliance (WECA), an indus-

try consortium, was formed in 1999. This organization, subsequently renamed the 

Wi-Fi (Wireless Fidelity) Alliance, created a test suite to certify interoperability for 

802.11b products. The term used for certified 802.11b products is Wi-Fi. Wi-Fi certi-

fication has been extended to 802.11g products. The Wi-Fi Alliance has also devel-

oped a certification process for 802.11a products, called Wi-Fi5. The Wi-Fi Alliance 

is concerned with a range of market areas for WLANs, including enterprise, home, 

and hot spots.

More recently, the Wi-Fi Alliance has developed certification procedures for 

IEEE 802.11 security standards, referred to as Wi-Fi Protected Access (WPA). The 

most recent version of WPA, known as WPA2, incorporates all of the features of 

the IEEE 802.11i WLAN security specification.

IEEE 802 Protocol Architecture

Before proceeding, we need to briefly preview the IEEE 802 protocol architecture. 

IEEE 802.11 standards are defined within the structure of a layered set of protocols. 

This structure, used for all IEEE 802 standards, is illustrated in Figure 18.3.

PHYSICAL LAYER The lowest layer of the IEEE 802 reference model is the physical 
layer, which includes such functions as encoding/decoding of signals and bit trans-

mission/reception. In addition, the physical layer includes a specification of the 

transmission medium. In the case of IEEE 802.11, the physical layer also defines 

frequency bands and antenna characteristics.

Access point (AP) Any entity that has station functionality and provides access to the 

distribution system via the wireless medium for associated stations.

Basic service set (BSS) A set of stations controlled by a single coordination function.

Coordination function The logical function that determines when a station operating within a BSS 

is permitted to transmit and may be able to receive PDUs.

Distribution system (DS) A system used to interconnect a set of BSSs and integrated LANs to create 

an ESS.

Extended service set (ESS) A set of one or more interconnected BSSs and integrated LANs that 

appear as a single BSS to the LLC layer at any station associated with one 

of these BSSs.

MAC protocol data unit 

(MPDU)

The unit of data exchanged between two peer MAC entities using the 

services of the physical layer.

MAC service data unit 

(MSDU)

Information that is delivered as a unit between MAC users.

Station Any device that contains an IEEE 802.11 conformant MAC and physical 

layer.

Table 18.1 IEEE 802.11 Terminology
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MEDIA ACCESS CONTROL All LANs consist of collections of devices that share the 

network’s transmission capacity. Some means of controlling access to the transmis-

sion medium is needed to provide an orderly and efficient use of that capacity. This 

is the function of a media access control (MAC) layer. The MAC layer receives data 

from a higher-layer protocol, typically the Logical Link Control (LLC) layer, in the 

form of a block of data known as the MAC service data unit (MSDU). In general, 

the MAC layer performs the following functions:

 ■ On transmission, assemble data into a frame, known as a MAC protocol data 
unit (MPDU) with address and error-detection fields.

 ■ On reception, disassemble frame, and perform address recognition and error 

detection.

 ■ Govern access to the LAN transmission medium.

The exact format of the MPDU differs somewhat for the various MAC proto-

cols in use. In general, all of the MPDUs have a format similar to that of Figure 18.4. 

The fields of this frame are as follows.

 ■ MAC Control: This field contains any protocol control information needed for 

the functioning of the MAC protocol. For example, a priority level could be 

indicated here.

 ■ Destination MAC Address: The destination physical address on the LAN for 

this MPDU.

 ■ Source MAC Address: The source physical address on the LAN for this MPDU.

Figure 18.3 IEEE 802.11 Protocol Stack

Logical Link
Control

Medium Access
Control

Physical
Encoding/decoding of signals
Bit transmission/reception
Transmission medium

Assemble data into frame
Addressing
Error detection
Medium access

Flow control
Error control

General IEEE 802
functions

Specific IEEE 802.11
functions

Frequency band definition
Wireless signal encoding

Reliable data delivery
Wireless access control protocols



592  CHAPTER 18 / WIRELESS NETWORK SECURITY

 ■ MAC Service Data Unit: The data from the next higher layer.

 ■ CRC: The cyclic redundancy check field; also known as the Frame Check 

Sequence (FCS) field. This is an error-detecting code, such as that which is 

used in other data-link control protocols. The CRC is calculated based on the 

bits in the entire MPDU. The sender calculates the CRC and adds it to the 

frame. The receiver performs the same calculation on the incoming MPDU 

and compares that calculation to the CRC field in that incoming MPDU. If 

the two values don’t match, then one or more bits have been altered in transit.

The fields preceding the MSDU field are referred to as the MAC header, and 

the field following the MSDU field is referred to as the MAC trailer. The header 

and trailer contain control information that accompany the data field and that are 

used by the MAC protocol.

LOGICAL LINK CONTROL In most data-link control protocols, the data-link protocol 

entity is responsible not only for detecting errors using the CRC, but for recovering 

from those errors by retransmitting damaged frames. In the LAN protocol archi-

tecture, these two functions are split between the MAC and LLC layers. The MAC 

layer is responsible for detecting errors and discarding any frames that contain er-

rors. The LLC layer optionally keeps track of which frames have been successfully 

received and retransmits unsuccessful frames.

IEEE 802.11 Network Components and Architectural Model

Figure 18.5 illustrates the model developed by the 802.11 working group. The small-

est building block of a wireless LAN is a basic service set (BSS), which consists of 

wireless stations executing the same MAC protocol and competing for access to the 

same shared wireless medium. A BSS may be isolated, or it may connect to a back-

bone distribution system (DS) through an access point (AP). The AP functions as a 

bridge and a relay point. In a BSS, client stations do not communicate directly with 

one another. Rather, if one station in the BSS wants to communicate with another 

station in the same BSS, the MAC frame is first sent from the originating station to 

the AP and then from the AP to the destination station. Similarly, a MAC frame 

from a station in the BSS to a remote station is sent from the local station to the AP 

and then relayed by the AP over the DS on its way to the destination station. The 

BSS generally corresponds to what is referred to as a cell in the literature. The DS 

can be a switch, a wired network, or a wireless network.

When all the stations in the BSS are mobile stations that communicate directly 

with one another (not using an AP), the BSS is called an independent BSS (IBSS). 

An IBSS is typically an ad hoc network. In an IBSS, the stations all communicate 

directly, and no AP is involved.

Figure 18.4 General IEEE 802 MPDU Format
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A simple configuration is shown in Figure 18.5, in which each station belongs 

to a single BSS; that is, each station is within wireless range only of other stations 

within the same BSS. It is also possible for two BSSs to overlap geographically, so 

that a single station could participate in more than one BSS. Furthermore, the asso-

ciation between a station and a BSS is dynamic. Stations may turn off, come within 

range, and go out of range.

An extended service set (ESS) consists of two or more basic service sets 

 interconnected by a distribution system. The extended service set appears as a sin-

gle logical LAN to the logical link control (LLC) level.

IEEE 802.11 Services

IEEE 802.11 defines nine services that need to be provided by the wireless LAN to 

achieve functionality equivalent to that which is inherent to wired LANs. Table 18.2 

lists the services and indicates two ways of categorizing them.

1. The service provider can be either the station or the DS. Station services are 

implemented in every 802.11 station, including AP stations. Distribution ser-

vices are provided between BSSs; these services may be implemented in an AP 

or in another special-purpose device attached to the distribution system.

2. Three of the services are used to control IEEE 802.11 LAN access and confi-

dentiality. Six of the services are used to support delivery of MSDUs between 

stations. If the MSDU is too large to be transmitted in a single MPDU, it may 

be fragmented and transmitted in a series of MPDUs.

Figure 18.5 IEEE 802.11 Extended Service Set
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Following the IEEE 802.11 document, we next discuss the services in an order 

designed to clarify the operation of an IEEE 802.11 ESS network. MSDU delivery, 

which is the basic service, already has been mentioned. Services related to security 

are introduced in Section 18.4.

DISTRIBUTION OF MESSAGES WITHIN A DS The two services involved with the dis-

tribution of messages within a DS are distribution and integration. Distribution is 

the primary service used by stations to exchange MPDUs when the MPDUs must 

traverse the DS to get from a station in one BSS to a station in another BSS. For 

example, suppose a frame is to be sent from station 2 (STA 2) to station 7 (STA 7) 

in Figure 18.5. The frame is sent from STA 2 to AP 1, which is the AP for this BSS. 

The AP gives the frame to the DS, which has the job of directing the frame to the 

AP associated with STA 7 in the target BSS. AP 2 receives the frame and forwards 

it to STA 7. How the message is transported through the DS is beyond the scope of 

the IEEE 802.11 standard.

If the two stations that are communicating are within the same BSS, then the 

distribution service logically goes through the single AP of that BSS.

The integration service enables transfer of data between a station on an IEEE 

802.11 LAN and a station on an integrated IEEE 802.x LAN. The term integrated 

refers to a wired LAN that is physically connected to the DS and whose stations 

may be logically connected to an IEEE 802.11 LAN via the integration service. The 

integration service takes care of any address translation and media conversion logic 

required for the exchange of data.

ASSOCIATION-RELATED SERVICES The primary purpose of the MAC layer is to 

transfer MSDUs between MAC entities; this purpose is fulfilled by the distribu-

tion service. For that service to function, it requires information about stations 

within the ESS that is provided by the association-related services. Before the 

distribution  service can deliver data to or accept data from a station, that sta-

tion must be  associated. Before looking at the concept of association, we need 

Service Provider Used to support

Association Distribution system MSDU delivery

Authentication Station LAN access and security

Deauthentication Station LAN access and security

Disassociation Distribution system MSDU delivery

Distribution Distribution system MSDU delivery

Integration Distribution system MSDU delivery

MSDU delivery Station MSDU delivery

Privacy Station LAN access and security

Reassociation Distribution system MSDU delivery

Table 18.2 IEEE 802.11 Services
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to describe the concept of mobility. The standard defines three transition types, 

based on mobility:

 ■ No transition: A station of this type is either stationary or moves only within 

the direct communication range of the communicating stations of a single BSS.

 ■ BSS transition: This is defined as a station movement from one BSS to another 

BSS within the same ESS. In this case, delivery of data to the station requires that 

the addressing capability be able to recognize the new location of the station.

 ■ ESS transition: This is defined as a station movement from a BSS in one ESS 

to a BSS within another ESS. This case is supported only in the sense that 

the station can move. Maintenance of upper-layer connections supported by 

802.11 cannot be guaranteed. In fact, disruption of service is likely to occur.

To deliver a message within a DS, the distribution service needs to know where 

the destination station is located. Specifically, the DS needs to know the identity of 

the AP to which the message should be delivered in order for that message to reach 

the destination station. To meet this requirement, a station must maintain an asso-

ciation with the AP within its current BSS. Three services relate to this requirement:

 ■ Association: Establishes an initial association between a station and an AP. 

Before a station can transmit or receive frames on a wireless LAN, its iden-

tity and address must be known. For this purpose, a station must establish an 

 association with an AP within a particular BSS. The AP can then communicate 

this information to other APs within the ESS to facilitate routing and delivery 

of addressed frames.

 ■ Reassociation: Enables an established association to be transferred from one 

AP to another, allowing a mobile station to move from one BSS to another.

 ■ Disassociation: A notification from either a station or an AP that an existing 

association is terminated. A station should give this notification before leaving 

an ESS or shutting down. However, the MAC management facility protects 

itself against stations that disappear without notification.

 18.4 IEEE 802.11i WIRELESS LAN SECURITY

There are two characteristics of a wired LAN that are not inherent in a wireless LAN.

1. In order to transmit over a wired LAN, a station must be physically connected 

to the LAN. On the other hand, with a wireless LAN, any station within radio 

range of the other devices on the LAN can transmit. In a sense, there is a form 

of authentication with a wired LAN in that it requires some positive and pre-

sumably observable action to connect a station to a wired LAN.

2. Similarly, in order to receive a transmission from a station that is part of a 

wired LAN, the receiving station also must be attached to the wired LAN. 

On the other hand, with a wireless LAN, any station within radio range can 

 receive. Thus, a wired LAN provides a degree of privacy, limiting reception of 

data to stations connected to the LAN.
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These differences between wired and wireless LANs suggest the increased 

need for robust security services and mechanisms for wireless LANs. The original 

802.11 specification included a set of security features for privacy and authenti-

cation that were quite weak. For privacy, 802.11 defined the Wired Equivalent 
Privacy (WEP) algorithm. The privacy portion of the 802.11 standard contained 

major weaknesses. Subsequent to the development of WEP, the 802.11i task 

group has developed a set of capabilities to address the WLAN security issues. 

In order to accelerate the introduction of strong security into WLANs, the Wi-Fi 

Alliance promulgated Wi-Fi Protected Access (WPA) as a Wi-Fi standard. WPA 

is a set of security mechanisms that eliminates most 802.11 security issues and 

was based on the current state of the 802.11i standard. The final form of the 

802.11i standard is referred to as Robust Security Network (RSN). The Wi-Fi 

Alliance certifies vendors in compliance with the full 802.11i specification under 

the WPA2 program.

The RSN specification is quite complex, and occupies 145 pages of the 2012 

IEEE 802.11 standard. In this section, we provide an overview.

IEEE 802.11i Services

The 802.11i RSN security specification defines the following services.

 ■ Authentication: A protocol is used to define an exchange between a user and 

an AS that provides mutual authentication and generates temporary keys to 

be used between the client and the AP over the wireless link.

 ■ Access control:1 This function enforces the use of the authentication function, 

routes the messages properly, and facilitates key exchange. It can work with a 

variety of authentication protocols.

 ■ Privacy with message integrity: MAC-level data (e.g., an LLC PDU) are 

 encrypted along with a message integrity code that ensures that the data have 

not been altered.

Figure 18.6a indicates the security protocols used to support these services, 

while Figure 18.6b lists the cryptographic algorithms used for these services.

IEEE 802.11i Phases of Operation

The operation of an IEEE 802.11i RSN can be broken down into five distinct phases 

of operation. The exact nature of the phases will depend on the configuration and 

the end points of the communication. Possibilities include (see Figure 18.5):

1. Two wireless stations in the same BSS communicating via the access point 

(AP) for that BSS.

2. Two wireless stations (STAs) in the same ad hoc IBSS communicating directly 

with each other.

1In this context, we are discussing access control as a security function. This is a different function than 
media access control (MAC) as described in Section 18.3. Unfortunately, the literature and the standards 
use the term access control in both contexts.
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3. Two wireless stations in different BSSs communicating via their respective 

APs across a distribution system.

4. A wireless station communicating with an end station on a wired network via 

its AP and the distribution system.

IEEE 802.11i security is concerned only with secure communication between 

the STA and its AP. In case 1 in the preceding list, secure communication is assured 

if each STA establishes secure communications with the AP. Case 2 is similar, with 

the AP functionality residing in the STA. For case 3, security is not provided across 

the distribution system at the level of IEEE 802.11, but only within each BSS. End-

to-end security (if required) must be provided at a higher layer. Similarly, in case 4, 

security is only provided between the STA and its AP.

Figure 18.6 Elements of IEEE 802.11i
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With these considerations in mind, Figure 18.7 depicts the five phases of op-

eration for an RSN and maps them to the network components involved. One new 

component is the authentication server (AS). The rectangles indicate the exchange 

of sequences of MPDUs. The five phases are defined as follows.

 ■ Discovery: An AP uses messages called Beacons and Probe Responses to ad-

vertise its IEEE 802.11i security policy. The STA uses these to identify an AP 

for a WLAN with which it wishes to communicate. The STA associates with 

the AP, which it uses to select the cipher suite and authentication mechanism 

when the Beacons and Probe Responses present a choice.

 ■ Authentication: During this phase, the STA and AS prove their identities to 

each other. The AP blocks non-authentication traffic between the STA and AS 

until the authentication transaction is successful. The AP does not participate 

in the authentication transaction other than forwarding traffic between the 

STA and AS.

 ■ Key generation and distribution: The AP and the STA perform several opera-

tions that cause cryptographic keys to be generated and placed on the AP and 

the STA. Frames are exchanged between the AP and STA only.

 ■ Protected data transfer: Frames are exchanged between the STA and the end 

station through the AP. As denoted by the shading and the encryption module 

icon, secure data transfer occurs between the STA and the AP only; security is 

not provided end-to-end.

Figure 18.7 IEEE 802.11i Phases of Operation
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 ■ Connection termination: The AP and STA exchange frames. During this phase, 

the secure connection is torn down and the connection is restored to the origi-

nal state.

Discovery Phase

We now look in more detail at the RSN phases of operation, beginning with the 

discovery phase, which is illustrated in the upper portion of Figure 18.8. The pur-

pose of this phase is for an STA and an AP to recognize each other, agree on a set 

of security capabilities, and establish an association for future communication using 

those security capabilities.

Figure 18.8  IEEE 802.11i Phases of Operation: Capability Discovery, 
Authentication, and Association
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SECURITY CAPABILITIES During this phase, the STA and AP decide on specific tech-

niques in the following areas:

 ■ Confidentiality and MPDU integrity protocols for protecting unicast traffic 

(traffic only between this STA and AP)

 ■ Authentication method

 ■ Cryptography key management approach

Confidentiality and integrity protocols for protecting multicast/broadcast traf-

fic are dictated by the AP, since all STAs in a multicast group must use the same 

protocols and ciphers. The specification of a protocol, along with the chosen key 

length (if variable) is known as a cipher suite. The options for the confidentiality and 

integrity cipher suite are

 ■ WEP, with either a 40-bit or 104-bit key, which allows backward compatibility 

with older IEEE 802.11 implementations

 ■ TKIP

 ■ CCMP

 ■ Vendor-specific methods

The other negotiable suite is the authentication and key management (AKM) 

suite, which defines (1) the means by which the AP and STA perform mutual au-

thentication and (2) the means for deriving a root key from which other keys may 

be generated. The possible AKM suites are

 ■ IEEE 802.1X

 ■ Pre-shared key (no explicit authentication takes place and mutual authentica-

tion is implied if the STA and AP share a unique secret key)

 ■ Vendor-specific methods

MPDU EXCHANGE The discovery phase consists of three exchanges.

 ■ Network and security capability discovery: During this exchange, STAs dis-

cover the existence of a network with which to communicate. The AP either 

periodically broadcasts its security capabilities (not shown in figure), indicated 

by RSN IE (Robust Security Network Information Element), in a specific 

channel through the Beacon frame; or responds to a station’s Probe Request 

through a Probe Response frame. A wireless station may discover available 

access points and corresponding security capabilities by either passively moni-

toring the Beacon frames or actively probing every channel.

 ■ Open system authentication: The purpose of this frame sequence, which pro-

vides no security, is simply to maintain backward compatibility with the IEEE 

802.11 state machine, as implemented in existing IEEE 802.11 hardware. In 

essence, the two devices (STA and AP) simply exchange identifiers.

 ■ Association: The purpose of this stage is to agree on a set of security capa-

bilities to be used. The STA then sends an Association Request frame to 

the AP. In this frame, the STA specifies one set of matching capabilities 
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(one authentication and key management suite, one pairwise cipher suite, 

and one group-key cipher suite) from among those advertised by the AP. 

If there is no match in capabilities between the AP and the STA, the AP 

refuses the Association Request. The STA blocks it too, in case it has associ-

ated with a rogue AP or someone is inserting frames illicitly on its channel. 

As shown in Figure 18.8, the IEEE 802.1X controlled ports are blocked, and 

no user traffic goes beyond the AP. The concept of blocked ports is  explained 

subsequently.

Authentication Phase

As was mentioned, the authentication phase enables mutual authentication between 

an STA and an authentication server (AS) located in the DS. Authentication is 

designed to allow only authorized stations to use the network and to provide the 

STA with assurance that it is communicating with a legitimate network.

IEEE 802.1X ACCESS CONTROL APPROACH IEEE 802.11i makes use of another stan-

dard that was designed to provide access control functions for LANs. The standard 

is IEEE 802.1X, Port-Based Network Access Control. The authentication proto-

col that is used, the Extensible Authentication Protocol (EAP), is defined in the 

IEEE 802.1X standard. IEEE 802.1X uses the terms supplicant, authenticator, and 

authentication server (AS). In the context of an 802.11 WLAN, the first two terms 

correspond to the wireless station and the AP. The AS is typically a separate device 

on the wired side of the network (i.e., accessible over the DS) but could also reside 

directly on the authenticator.

Before a supplicant is authenticated by the AS using an authentication proto-

col, the authenticator only passes control or authentication messages between the 

supplicant and the AS; the 802.1X control channel is unblocked, but the 802.11 data 

channel is blocked. Once a supplicant is authenticated and keys are provided, the 

authenticator can forward data from the supplicant, subject to predefined access 

control limitations for the supplicant to the network. Under these circumstances, 

the data channel is unblocked.

As indicated in Figure 16.5, 802.1X uses the concepts of controlled and uncon-

trolled ports. Ports are logical entities defined within the authenticator and refer to 

physical network connections. For a WLAN, the authenticator (the AP) may have 

only two physical ports: one connecting to the DS and one for wireless communica-

tion within its BSS. Each logical port is mapped to one of these two physical ports. 

An uncontrolled port allows the exchange of PDUs between the supplicant and the 

other AS, regardless of the authentication state of the supplicant. A controlled port 

allows the exchange of PDUs between a supplicant and other systems on the LAN 

only if the current state of the supplicant authorizes such an exchange. IEEE 802.1X 

is covered in more detail in Chapter 16.

The 802.1X framework, with an upper-layer authentication protocol, fits 

nicely with a BSS architecture that includes a number of wireless stations and an 

AP. However, for an IBSS, there is no AP. For an IBSS, 802.11i provides a more 

complex solution that, in essence, involves pairwise authentication between stations 

on the IBSS.
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MPDU EXCHANGE The lower part of Figure 18.8 shows the MPDU exchange dic-

tated by IEEE 802.11 for the authentication phase. We can think of authentication 

phase as consisting of the following three phases.

 ■ Connect to AS: The STA sends a request to its AP (the one with which it has 

an association) for connection to the AS. The AP acknowledges this request 

and sends an access request to the AS.

 ■ EAP exchange: This exchange authenticates the STA and AS to each other. 

A number of alternative exchanges are possible, as explained subsequently.

 ■ Secure key delivery: Once authentication is established, the AS generates a 

master session key (MSK), also known as the Authentication, Authorization, 

and Accounting (AAA) key and sends it to the STA. As explained subse-

quently, all the cryptographic keys needed by the STA for secure communi-

cation with its AP are generated from this MSK. IEEE 802.11i does not pre-

scribe a method for secure delivery of the MSK but relies on EAP for this. 

Whatever method is used, it involves the transmission of an MPDU containing 

an encrypted MSK from the AS, via the AP, to the AS.

EAP EXCHANGE As mentioned, there are a number of possible EAP exchanges that 

can be used during the authentication phase. Typically, the message flow between 

STA and AP employs the EAP over LAN (EAPOL) protocol, and the message 

flow between the AP and AS uses the Remote Authentication Dial In User Service 

(RADIUS) protocol, although other options are available for both STA-to-AP and 

AP-to-AS exchanges. [FRAN07] provides the following summary of the authenti-

cation exchange using EAPOL and RADIUS.

1. The EAP exchange begins with the AP issuing an EAP-Request/Identity 

frame to the STA.

2. The STA replies with an EAP-Response/Identity frame, which the AP receives 

over the uncontrolled port. The packet is then encapsulated in RADIUS over 

EAP and passed on to the RADIUS server as a RADIUS-Access-Request packet.

3. The AAA server replies with a RADIUS-Access-Challenge packet, which is 

passed on to the STA as an EAP-Request. This request is of the appropriate 

authentication type and contains relevant challenge information.

4. The STA formulates an EAP-Response message and sends it to the AS. The 

response is translated by the AP into a Radius-Access-Request with the re-

sponse to the challenge as a data field. Steps 3 and 4 may be repeated multiple 

times, depending on the EAP method in use. For TLS tunneling methods, it is 

common for authentication to require 10 to 20 round trips.

5. The AAA server grants access with a Radius-Access-Accept packet. The AP 

issues an EAP-Success frame. (Some protocols require confirmation of the 

EAP success inside the TLS tunnel for authenticity validation.) The controlled 

port is authorized, and the user may begin to access the network.

Note from Figure 18.8 that the AP controlled port is still blocked to general 

user traffic. Although the authentication is successful, the ports remain blocked 
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until the temporal keys are installed in the STA and AP, which occurs during the 

4-Way Handshake.

Key Management Phase

During the key management phase, a variety of cryptographic keys are generated 

and distributed to STAs. There are two types of keys: pairwise keys used for com-

munication between an STA and an AP and group keys used for multicast com-

munication. Figure 18.9, based on [FRAN07], shows the two key hierarchies, and 

Table 18.3 defines the individual keys.

Figure 18.9 IEEE 802.11i Key Hierarchies
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KTKEK
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(a) Pairwise key hierarchy
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deauthentication)
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Abbreviation Name Description / Purpose Size (bits) Type

AAA Key Authentication, 

Accounting, and 

Authorization Key

Used to derive the PMK. 

Used with the IEEE 

802.1X authentication 

and key management 

approach. Same as 

MMSK.

Ú  256 Key generation key, 

root key

PSK Pre-shared Key Becomes the PMK 

in pre-shared key 

environments.

256 Key generation key, 

root key

PMK Pairwise Master Key Used with other inputs to 

derive the PTK.

256 Key generation key

GMK Group Master Key Used with other inputs to 

derive the GTK.

128 Key generation key

PTK Pair-wise Transient 

Key

Derived from the PMK. 

Comprises the EAPOL-

KCK, EAPOL-KEK, and 

TK and (for TKIP) the 

MIC key.

512 (TKIP)

384 (CCMP)

Composite key

TK Temporal Key Used with TKIP or 

CCMP to provide 

confidentiality and 

integrity protection for 

unicast user traffic.

256 (TKIP)

128 (CCMP)

Traffic key

GTK Group Temporal Key Derived from the 

GMK. Used to provide 

confidentiality and 

integrity protection for 

multicast/broadcast user 

traffic.

256 (TKIP)

128 (CCMP)

40,104 (WEP)

Traffic key

MIC Key Message Integrity 

Code Key

Used by TKIP’s Michael 

MIC to provide integrity 

protection of messages.

64 Message integrity key

EAPOL-KCK EAPOL-Key 

Confirmation Key

Used to provide integrity 

protection for key 

material distributed 

during the 4-Way 

Handshake.

128 Message integrity key

EAPOL-KEK EAPOL-Key 

Encryption Key

Used to ensure the 

confidentiality of the 

GTK and other key 

material in the 4-Way 

Handshake.

128 Traffic key / key 

encryption key

WEP Key Wired Equivalent 

Privacy Key

Used with WEP. 40,104 Traffic key

Table 18.3 IEEE 802.11i Keys for Data Confidentiality and Integrity Protocols
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PAIRWISE KEYS Pairwise keys are used for communication between a pair of de-

vices, typically between an STA and an AP. These keys form a hierarchy beginning 

with a master key from which other keys are derived dynamically and used for a 

limited period of time.

At the top level of the hierarchy are two possibilities. A pre-shared key (PSK) 

is a secret key shared by the AP and a STA and installed in some fashion outside 

the scope of IEEE 802.11i. The other alternative is the master session key (MSK), 

also known as the AAAK, which is generated using the IEEE 802.1X protocol dur-

ing the authentication phase, as described previously. The actual method of key 

generation depends on the details of the authentication protocol used. In either case 

(PSK or MSK), there is a unique key shared by the AP with each STA with which 

it communicates. All the other keys derived from this master key are also unique 

between an AP and an STA. Thus, each STA, at any time, has one set of keys, as 

depicted in the hierarchy of Figure 18.9a, while the AP has one set of such keys for 

each of its STAs.

The pairwise master key (PMK) is derived from the master key. If a PSK is 

used, then the PSK is used as the PMK; if a MSK is used, then the PMK is derived 

from the MSK by truncation (if necessary). By the end of the authentication phase, 

marked by the 802.1X EAP Success message (Figure 18.8), both the AP and the 

STA have a copy of their shared PMK.

The PMK is used to generate the pairwise transient key (PTK), which in fact 

consists of three keys to be used for communication between an STA and AP after 

they have been mutually authenticated. To derive the PTK, the HMAC-SHA-1 

function is applied to the PMK, the MAC addresses of the STA and AP, and nonces 

generated when needed. Using the STA and AP addresses in the generation of the 

PTK provides protection against session hijacking and impersonation; using nonces 

provides additional random keying material.

The three parts of the PTK are as follows.

 ■ EAP Over LAN (EAPOL) Key Confirmation Key (EAPOL-KCK): Supports 

the integrity and data origin authenticity of STA-to-AP control frames  during 

operational setup of an RSN. It also performs an access control function: 

proof-of-possession of the PMK. An entity that possesses the PMK is autho-

rized to use the link.

 ■ EAPOL Key Encryption Key (EAPOL-KEK): Protects the confidentiality of 

keys and other data during some RSN association procedures.

 ■ Temporal Key (TK): Provides the actual protection for user traffic.

GROUP KEYS Group keys are used for multicast communication in which one STA 

sends MPDU’s to multiple STAs. At the top level of the group key hierarchy is the 

group master key (GMK). The GMK is a key-generating key used with other inputs 

to derive the group temporal key (GTK). Unlike the PTK, which is generated using 

material from both AP and STA, the GTK is generated by the AP and transmitted 
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to its associated STAs. Exactly how this GTK is generated is undefined. IEEE 

802.11i, however, requires that its value is computationally indistinguishable from 

random. The GTK is distributed securely using the pairwise keys that are  already 

established. The GTK is changed every time a device leaves the network.

PAIRWISE KEY DISTRIBUTION The upper part of Figure 18.10 shows the MPDU 

 exchange for distributing pairwise keys. This exchange is known as the 4-way 
 handshake. The STA and AP use this handshake to confirm the existence of the 

Figure 18.10 IEEE 802.11i Phases of Operation: Four-Way Handshake and Group Key Handshake

STA AP
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man-in-the-middle.
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EAPOL-key (Install PTK,

Unicast, MIC) 

AP’s 802.1X-controlled port blocked

AP’s 802.1X-controlled port
 unblocked for unicast traffic
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PMK, verify the selection of the cipher suite, and derive a fresh PTK for the follow-

ing data session. The four parts of the exchange are as follows.

 ■ AP S STA: Message includes the MAC address of the AP and a nonce 

(Anonce)

 ■ STA S AP: The STA generates its own nonce (Snonce) and uses both nonces 

and both MAC addresses, plus the PMK, to generate a PTK. The STA then 

sends a message containing its MAC address and Snonce, enabling the AP to 

generate the same PTK. This message includes a message integrity code 

(MIC)2 using HMAC-MD5 or HMAC-SHA-1-128. The key used with the MIC 

is KCK.

 ■ AP S STA: The AP is now able to generate the PTK. The AP then sends a 

message to the STA, containing the same information as in the first message, 

but this time including a MIC.

 ■ STA S AP: This is merely an acknowledgment message, again protected by 

a MIC.

GROUP KEY DISTRIBUTION For group key distribution, the AP generates a GTK and 

distributes it to each STA in a multicast group. The two-message exchange with 

each STA consists of the following:

 ■ AP S STA: This message includes the GTK, encrypted either with RC4 or 

with AES. The key used for encryption is KEK, using a key wrapping algo-

rithm (as discussed in Chapter 12). A MIC value is appended.

 ■ STA S AP: The STA acknowledges receipt of the GTK. This message  includes 

a MIC value.

Protected Data Transfer Phase

IEEE 802.11i defines two schemes for protecting data transmitted in 802.11 MPDUs: 

the Temporal Key Integrity Protocol (TKIP), and the Counter Mode-CBC MAC 

Protocol (CCMP).

TKIP TKIP is designed to require only software changes to devices that are imple-

mented with the older wireless LAN security approach called Wired Equivalent 

Privacy (WEP). TKIP provides two services:

 ■ Message integrity: TKIP adds a message integrity code (MIC) to the 802.11 

MAC frame after the data field. The MIC is generated by an algorithm, called 

Michael, that computes a 64-bit value using as input the source and destination 

MAC address values and the Data field, plus key material.

 ■ Data confidentiality: Data confidentiality is provided by encrypting the 

MPDU plus MIC value using RC4.

2 While MAC is commonly used in cryptography to refer to a Message Authentication Code, the term 
MIC is used instead in connection with 802.11i because MAC has another standard meaning, Media 
Access Control, in networking.
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The 256-bit TK (Figure 18.9) is employed as follows. Two 64-bit keys are used 

with the Michael message digest algorithm to produce a message integrity code. 

One key is used to protect STA-to-AP messages, and the other key is used to pro-

tect AP-to-STA messages. The remaining 128 bits are truncated to generate the 

RC4 key used to encrypt the transmitted data.

For additional protection, a monotonically increasing TKIP sequence counter 

(TSC) is assigned to each frame. The TSC serves two purposes. First, the TSC is 

included with each MPDU and is protected by the MIC to protect against replay 

attacks. Second, the TSC is combined with the session TK to produce a dynamic en-

cryption key that changes with each transmitted MPDU, thus making cryptanalysis 

more difficult.

CCMP CCMP is intended for newer IEEE 802.11 devices that are equipped with 

the hardware to support this scheme. As with TKIP, CCMP provides two services:

 ■ Message integrity: CCMP uses the cipher block chaining message authentica-

tion code (CBC-MAC), described in Chapter 12.

 ■ Data confidentiality: CCMP uses the CTR block cipher mode of operation 

with AES for encryption. CTR is described in Chapter 7.

The same 128-bit AES key is used for both integrity and confidentiality. The 

scheme uses a 48-bit packet number to construct a nonce to prevent replay attacks.

The IEEE 802.11i Pseudorandom Function

At a number of places in the IEEE 802.11i scheme, a pseudorandom function (PRF) is 

used. For example, it is used to generate nonces, to expand pairwise keys, and to gen-

erate the GTK. Best security practice dictates that different pseudorandom number 

streams be used for these different purposes. However, for implementation  efficiency, 

we would like to rely on a single pseudorandom number generator function.

The PRF is built on the use of HMAC-SHA-1 to generate a pseudorandom 

bit stream. Recall that HMAC-SHA-1 takes a message (block of data) and a key of 

length at least 160 bits and produces a 160-bit hash value. SHA-1 has the property 

that the change of a single bit of the input produces a new hash value with no appar-

ent connection to the preceding hash value. This property is the basis for pseudo-

random number generation.

The IEEE 802.11i PRF takes four parameters as input and produces the de-

sired number of random bits. The function is of the form PRF(K, A, B, Len), where

K = a secret key

A = a text string specific to the application (e.g., nonce generation or pairwise

key expansion)

B = some data specific to each case

Len = desired number of pseudorandom bits

For example, for the pairwise transient key for CCMP:

PTK = PRF (PMK, “Pairwise key expansion”, min (AP-
Addr, STA-Addr) || max (AP-Addr, STA-Addr) || min
(Anonce, Snonce) || max (Anonce, Snonce), 384)



18.4 / IEEE 802.11i WIRELESS LAN SECURITY 609

So, in this case, the parameters are

K = PMK

A = the text string “Pairwise key expansion”

B = a sequence of bytes formed by concatenating the two MAC addresses  

and the two nonces

Len = 384 bits

Similarly, a nonce is generated by

Nonce = PRF (Random Number, “InitCounter”, MAC || Time, 256)

where Time is a measure of the network time known to the nonce generator. 

The group temporal key is generated by

GTK = PRF (GMK, “Group key expansion”, MAC || Gnonce, 256)

Figure 18.11 illustrates the function PRF(K, A, B, Len). The parameter K 

serves as the key input to HMAC. The message input consists of four items concat-

enated together: the parameter A, a byte with value 0, the parameter B, and a coun-

ter i. The counter is initialized to 0. The HMAC algorithm is run once, producing 

a 160-bit hash value. If more bits are required, HMAC is run again with the same 

inputs, except that i is incremented each time until the necessary number of bits is 

generated. We can express the logic as

PRF (K, A, B, Len)
 R 

S

 null string
 for i 

S

 0 to ((Len + 159)/160 − 1) do
 R 

S

 R || HMAC-SHA-1 (K, A || 0 || B || i)
 Return Truncate-to-Len (R, Len)

Figure 18.11 IEEE 802.11i Pseudorandom Function

HMAC-SHA-1

| |

K

A 0 B i

R = HMAC-SHA-1(K, A || 0 || B || i)

+ 1
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 18.5 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms 

4-way handshake

access point (AP)

basic service set (BSS)

Counter Mode-CBC MAC 

Protocol (CCMP)

distribution system (DS)

extended service set (ESS)

group keys

IEEE 802.1X

IEEE 802.11

IEEE 802.11i

independent BSS (IBSS)

logical link control (LLC)

media access control (MAC)

MAC protocol data unit 

(MPDU)

MAC service data unit 

(MSDU)

message integrity code  

(MIC)

Michael

pairwise keys

pseudorandom function

Robust Security Network  

(RSN)

Temporal Key Integrity 

Protocol (TKIP)

Wi-Fi

Wi-Fi Protected Access 

(WPA)

Wired Equivalent Privacy 

(WEP)

Wireless LAN (WLAN)

Review Questions 

 18.1 What is the basic building block of an 802.11 WLAN?

 18.2 List and briefly define threats to a wireless network.

 18.3 List and briefly define IEEE 802.11 services.

 18.4 List some security threats related to mobile devices.

 18.5 How is the concept of an association related to that of mobility?

 18.6 What security areas are addressed by IEEE 802.11i?

 18.7 Briefly describe the five IEEE 802.11i phases of operation.

 18.8 What is the difference between TKIP and CCMP?

Problems 

 18.1 In IEEE 802.11, open system authentication simply consists of two communications. 
An authentication is requested by the client, which contains the station ID (typically 
the MAC address). This is followed by an authentication response from the AP/router 
containing a success or failure message. An example of when a failure may occur is if 
the client’s MAC address is explicitly excluded in the AP/router configuration.
a. What are the benefits of this authentication scheme?
b. What are the security vulnerabilities of this authentication scheme?

 18.2 Prior to the introduction of IEEE 802.11i, the security scheme for IEEE 802.11 was 
Wired Equivalent Privacy (WEP). WEP assumed all devices in the network share a 
secret key. The purpose of the authentication scenario is for the STA to prove that 
it possesses the secret key. Authentication proceeds as shown in Figure 18.12. The 
STA sends a message to the AP requesting authentication. The AP issues a chal-
lenge, which is a sequence of 128 random bytes sent as plaintext. The STA encrypts 
the challenge with the shared key and returns it to the AP. The AP decrypts the 
 incoming value and compares it to the challenge that it sent. If there is a match, the 
AP confirms that authentication has succeeded.
a. What are the benefits of this authentication scheme?
b. This authentication scheme is incomplete. What is missing and why is this impor-

tant? Hint: The addition of one or two messages would fix the problem.
c. What is a cryptographic weakness of this scheme?
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 18.3 For WEP, data integrity and data confidentiality are achieved using the RC4 stream 
encryption algorithm. The transmitter of an MPDU performs the following steps, 
referred to as encapsulation:
1. The transmitter selects an initial vector (IV) value.
2. The IV value is concatenated with the WEP key shared by transmitter and receiver 

to form the seed, or key input, to RC4.
3. A 32-bit cyclic redundancy check (CRC) is computed over all the bits of the MAC 

data field and appended to the data field. The CRC is a common error-detection 
code used in data link control protocols. In this case, the CRC serves as a integrity 
check value (ICV).

4. The result of step 3 is encrypted using RC4 to form the ciphertext block.
5. The plaintext IV is prepended to the ciphertext block to form the encapsulated 

MPDU for transmission.
a. Draw a block diagram that illustrates the encapsulation process.
b. Describe the steps at the receiver end to recover the plaintext and perform the 

integrity check.
c. Draw a block diagram that illustrates part b.

 18.4 A potential weakness of the CRC as an integrity check is that it is a linear function. 
This means that you can predict which bits of the CRC are changed if a single bit of 
the message is changed. Furthermore, it is possible to determine which combination 
of bits could be flipped in the message so that the net result is no change in the CRC. 
Thus, there are a number of combinations of bit flippings of the plaintext message 
that leave the CRC unchanged, so message integrity is defeated. However, in WEP, 
if an attacker does not know the encryption key, the attacker does not have access to 
the plaintext, only to the ciphertext block. Does this mean that the ICV is protected 
from the bit flipping attack? Explain.

Figure 18.12 WEP Authentication; refer to Problem 18.2
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 19.1 INTERNET MAIL ARCHITECTURE

For an understanding of the topics in this chapter, it is useful to have a basic grasp of 

the Internet mail architecture, which is currently defined in RFC 5598 (Internet Mail 
Architecture, July 2009). This section provides an overview of the basic concepts.

19.10 Domain-Based Message Authentication, Reporting, and Conformance

Identifier Alignment

DMARC on the Sender Side

DMARC on the Receiver Side

DMARC Reports

19.11 Key Terms, Review Questions, and Problems

LEARNING OBJECTIVES

After studying this chapter, you should be able to:

 ◆ Summarize the key functional components of the Internet mail  architecture.

 ◆ Explain the basic functionality of SMTP, POP3, and IMAP.

 ◆ Explain the need for MIME as an enhancement to ordinary email.

 ◆ Describe the key elements of MIME.

 ◆ Understand the functionality of S/MIME and the security threats it  addresses.

 ◆ Understand the basic mechanisms of STARTTLS and its role in email 

 security.

 ◆ Understand the basic mechanisms of DANE and its role in email security.

 ◆ Understand the basic mechanisms of SPF and its role in email security.

 ◆ Understand the basic mechanisms of DKIM and its role in email security.

 ◆ Understand the basic mechanisms of DMARC and its role in email  security.

In virtually all distributed environments, electronic mail is the most heavily used 

 network-based application. Users expect to be able to, and do, send email to others 

who are connected directly or indirectly to the Internet, regardless of host operat-

ing system or communications suite. With the explosively growing reliance on email, 

there grows a demand for authentication and confidentiality services. Two schemes 

stand out as approaches that enjoy widespread use: Pretty Good Privacy (PGP) and  

S/MIME. Both are examined in this chapter. This chapter concludes with a discussion 

of DomainKeys Identified Mail.
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Email Components

At its most fundamental level, the Internet mail architecture consists of a user world 

in the form of Message User Agents (MUA), and the transfer world, in the form 

of the Message Handling Service (MHS), which is composed of Message Transfer 

Agents (MTA). The MHS accepts a message from one user and delivers it to one 

or more other users, creating a virtual MUA-to-MUA exchange environment. This 

architecture involves three types of interoperability. One is directly between users: 

messages must be formatted by the MUA on behalf of the message author so that 

the message can be displayed to the message recipient by the destination MUA. 

There are also interoperability requirements between the MUA and the MHS—

first when a message is posted from an MUA to the MHS and later when it is deliv-

ered from the MHS to the destination MUA. Interoperability is required among the 

MTA components along the transfer path through the MHS.

Figure 19.1 illustrates the key components of the Internet mail architecture, 

which include the following.

 ■ Message User Agent (MUA): Operates on behalf of user actors and user 

applications. It is their representative within the email service. Typically, this 

function is housed in the user’s computer and is referred to as a client email 

Figure 19.1   Function Modules and Standardized Protocols Used between 
them in the Internet Mail Architecture
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program or a local network email server. The author MUA formats a message 

and performs initial submission into the MHS via a MSA. The recipient MUA 

processes received mail for storage and/or display to the recipient user.

 ■ Mail Submission Agent (MSA): Accepts the message submitted by an MUA 

and enforces the policies of the hosting domain and the requirements of 

Internet standards. This function may be located together with the MUA or 

as a separate functional model. In the latter case, the Simple Mail Transfer 

Protocol (SMTP) is used between the MUA and the MSA.

 ■ Message Transfer Agent (MTA): Relays mail for one application-level hop. It 

is like a packet switch or IP router in that its job is to make routing assessments 

and to move the message closer to the recipients. Relaying is performed by a 

sequence of MTAs until the message reaches a destination MDA. An MTA 

also adds trace information to the message header. SMTP is used  between 

MTAs and between an MTA and an MSA or MDA.

 ■ Mail Delivery Agent (MDA): Responsible for transferring the message from 

the MHS to the MS.

 ■ Message Store (MS): An MUA can employ a long-term MS. An MS can be 

located on a remote server or on the same machine as the MUA. Typically, 

an MUA retrieves messages from a remote server using POP (Post Office 

Protocol) or IMAP (Internet Message Access Protocol).

Two other concepts need to be defined. An administrative management 
 domain (ADMD) is an Internet email provider. Examples include a  department that 

operates a local mail relay (MTA), an IT department that operates an  enterprise 

mail relay, and an ISP that operates a public shared email service. Each ADMD 

can have different operating policies and trust-based decision making. One obvi-

ous  example is the distinction between mail that is exchanged within an organiza-

tion and mail that is exchanged between independent organizations. The rules for 

 handling the two types of traffic tend to be quite different.

The Domain Name System (DNS) is a directory lookup service that provides 

a mapping between the name of a host on the Internet and its numerical address. 

DNS is discussed subsequently in this chapter.

Email Protocols

Two types of protocols are used for transferring email. The first type is used to move 

messages through the Internet from source to destination. The protocol used for 

this purpose is SMTP, with various extensions and in some cases restrictions. The 

second type consists of protocols used to transfer messages between mail  servers, of 

which IMAP and POP are the most commonly used.

SIMPLE MAIL TRANSFER PROTOCOL SMTP encapsulates an email message in an 

 envelope and is used to relay the encapsulated messages from source to  destination 

through multiple MTAs. SMTP was originally specified in 1982 as RFC 821 and has 

undergone several revisions, the most current being RFC 5321 (October 2008). These 

revisions have added additional commands and introduced extensions. The term 

Extended SMTP (ESMTP) is often used to refer to these later versions of SMTP.
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SMTP is a text-based client-server protocol where the client (email sender) 

contacts the server (next-hop recipient) and issues a set of commands to tell the 

server about the message to be sent, then sending the message itself. The majority 

of these commands are ASCII text messages sent by the client and a resulting return 

code (and additional ASCII text) returned by the server.

The transfer of a message from a source to its ultimate destination can occur 

over a single SMTP client/server conversation over a single TCP connection. 

Alternatively, an SMTP server may be an intermediate relay that assumes the role 

of an SMTP client after receiving a message and then forwards that message to an 

SMTP server along a route to the ultimate destination.

The operation of SMTP consists of a series of commands and responses 

 exchanged between the SMTP sender and receiver. The initiative is with the SMTP 

sender, who establishes the TCP connection. Once the connection is established, 

the SMTP sender sends commands over the connection to the receiver. Each com-

mand consists of a single line of text, beginning with a four-letter command code 

followed in some cases by an argument field. Each command generates exactly one 

reply from the SMTP receiver. Most replies are a single-line, although multiple-line 

replies are possible. Each reply begins with a three-digit code and may be followed 

by additional information.

Figure 19.2 illustrates the SMTP exchange between a client (C) and server (S). 

The interchange begins with the client establishing a TCP connection to TCP port 

25 on the server (not shown in figure). This causes the server to activate SMTP 

S: 220 foo.com Simple Mail Transfer Service Ready

C: HELO bar.com

S: 250 OK

C: MAIL FROM:<Smith@bar.com>

S: 250 OK

C: RCPT TO:<Jones@foo.com>

S: 250 OK

C: RCPT TO:<Green@foo.com>

S: 550 No such user here

C: RCPT TO:<Brown@foo.com>

S: 250 OK

C: DATA

S: 354 Start mail input; end with <crlf>.<crlf>

C: Blah blah blah . . . 

C: . . . etc. etc. etc.

C: <crlf><crlf>

S: 250 OK

C: QUIT

S: 221 foo.com Service closing transmission channel

Figure 19.2 Example SMTP Transaction Scenario

mailto:Smith@bar.com
mailto:Jones@foo.com
mailto:Green@foo.com
mailto:Brown@foo.com
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and send a 220 reply to the client. The HELO command identifies the sending 

domain, which the server acknowledges and accepts with a 250 reply. The SMTP 

sender is transmitting mail that originates with the user Smith@bar.com. The MAIL 

 command identifies the originator of the message. The message is addressed to 

three users on machine foo.com, namely, Jones, Green, and Brown. The client iden-

tifies each of these in a separate RCPT command. The SMTP receiver indicates 

that it has mailboxes for Jones and Brown but does not have information on Green. 

Because at least one of the intended recipients has been verified, the client proceeds 

to send the text message, by first sending a DATA command to ensure the server 

is ready for the data. After the server acknowledges receipt of all the data, it issues 

a 250 OK message. Then the client issues a QUIT command and the server closes 

the connection.

A significant security-related extension for SMTP, called STARTTLS, is 

 defined in RFC 3207 (SMTP Service Extension for Secure SMTP over Transport 
Layer Security, February 2002). STARTTLS enables the addition of confidentiality 

and authentication in the exchange between SMTP agents. This gives SMTP agents 

the ability to protect some or all of their communications from eavesdroppers 

and attackers. If the client does initiate the connection over a TLS-enabled port 

(e.g., port 465 was previously used for SMTP over SSL), the server may prompt with 

a message indicating that the STARTTLS option is available. The client can then 

issue the STARTTLS command in the SMTP command stream, and the two parties 

proceed to establish a secure TLS connection. An advantage of using STARTTLS 

is that the server can offer SMTP service on a single port, rather than requiring 

separate port numbers for secure and cleartext operations. Similar mechanisms are 

available for running TLS over IMAP and POP protocols.

Historically, MUA/MSA message transfers have used SMTP. The standard 

currently preferred is SUBMISSION, defined in RFC 6409 (Message Submission 
for Mail, November 2011). Although SUBMISSION derives from SMTP, it uses a 

separate TCP port and imposes distinct requirements, such as access authorization.

MAIL ACCESS PROTOCOLS (POP3, IMAP) Post Office Protocol (POP3) allows an 

email client (user agent) to download an email from an email server (MTA). POP3 

user agents connect via TCP to the server (typically port 110). The user agent enters 

a username and password (either stored internally for convenience or  entered each 

time by the user for stronger security). After authorization, the UA can issue POP3 

commands to retrieve and delete mail.

As with POP3, Internet Mail Access Protocol (IMAP) also enables an email 

client to access mail on an email server. IMAP also uses TCP, with server TCP port 

143. IMAP is more complex than POP3. IMAP provides stronger authentication 

than POP3 and provides other functions not supported by POP3.

 19.2 EMAIL FORMATS

To understand S/MIME, we need first to have a general understanding of the 

 underlying email format that it uses, namely, MIME. But to understand the sig-

nificance of MIME, we need to go back to the traditional email format standard, 

mailto:Smith@bar.com
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RFC 822, which is still in common use. The most recent version of this format speci-

fication is RFC 5322 (Internet Message Format, October 2008). Accordingly, this 

section first provides an introduction to these two earlier standards and then moves 

on to a discussion of S/MIME.

RFC 5322

RFC 5322 defines a format for text messages that are sent using electronic mail. It 

has been the standard for Internet-based text mail messages and remains in com-

mon use. In the RFC 5322 context, messages are viewed as having an envelope and 

contents. The envelope contains whatever information is needed to accomplish 

transmission and delivery. The contents compose the object to be delivered to the 

recipient. The RFC 5322 standard applies only to the contents. However, the con-

tent standard includes a set of header fields that may be used by the mail system to 

create the envelope, and the standard is intended to facilitate the acquisition of such 

information by programs.

The overall structure of a message that conforms to RFC 5322 is very  simple. 

A message consists of some number of header lines (the header) followed by 

 unrestricted text (the body). The header is separated from the body by a blank line. 

Put differently, a message is ASCII text, and all lines up to the first blank line are 

 assumed to be header lines used by the user agent part of the mail system.

A header line usually consists of a keyword, followed by a colon, followed by 

the keyword’s arguments; the format allows a long line to be broken up into several 

lines. The most frequently used keywords are From, To, Subject, and Date. Here is 

an example message:

Date: October 8, 2009 2:15:49 PM EDT

From: “William Stallings” <ws@shore.net>

Subject: The Syntax in RFC 5322

To: Smith@Other-host.com

Cc: Jones@Yet-Another-Host.com

Hello. This section begins the actual 

message body, which is delimited from the 

message heading by a blank line.

Another field that is commonly found in RFC 5322 headers is Message-ID. 

This field contains a unique identifier associated with this message.

Multipurpose Internet Mail Extensions

Multipurpose Internet Mail Extension (MIME) is an extension to the RFC 5322 

framework that is intended to address some of the problems and limitations of the 

use of Simple Mail Transfer Protocol (SMTP) or some other mail transfer protocol 

and RFC 5322 for electronic mail. RFCs 2045 through 2049 define MIME, and there 

have been a number of updating documents since then.

mailto:ws@shore.net
mailto:Smith@Other-host.com
mailto:Jones@Yet-Another-Host.com
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As justification for the use of MIME, [PARZ06] lists the following limitations 

of the SMTP/5322 scheme.

1. SMTP cannot transmit executable files or other binary objects. A number of 

schemes are in use for converting binary files into a text form that can be used 

by SMTP mail systems, including the popular UNIX UUencode/UUdecode 

scheme. However, none of these is a standard or even a de facto standard.

2. SMTP cannot transmit text data that includes national language characters, 

because these are represented by 8-bit codes with values of 128 decimal or 

higher, and SMTP is limited to 7-bit ASCII.

3. SMTP servers may reject mail message over a certain size.

4. SMTP gateways that translate between ASCII and the character code EBCDIC 

do not use a consistent set of mappings, resulting in translation problems.

5. SMTP gateways to X.400 electronic mail networks cannot handle nontextual 

data included in X.400 messages.

6. Some SMTP implementations do not adhere completely to the SMTP 

 standards defined in RFC 821. Common problems include:

—Deletion, addition, or reordering of carriage return and linefeed

—Truncating or wrapping lines longer than 76 characters

—Removal of trailing white space (tab and space characters)

—Padding of lines in a message to the same length

—Conversion of tab characters into multiple space characters

MIME is intended to resolve these problems in a manner that is compatible 

with existing RFC 5322 implementations.

OVERVIEW The MIME specification includes the following elements.

1. Five new message header fields are defined, which may be included in an 

RFC 5322 header. These fields provide information about the body of the 

message.

2. A number of content formats are defined, thus standardizing representations 

that support multimedia electronic mail.

3. Transfer encodings are defined that enable the conversion of any content 

 format into a form that is protected from alteration by the mail system.

In this subsection, we introduce the five message header fields. The next two 

subsections deal with content formats and transfer encodings.

The five header fields defined in MIME are as follows:

 ■ MIME-Version: Must have the parameter value 1.0. This field indicates that 

the message conforms to RFCs 2045 and 2046.

 ■ Content-Type: Describes the data contained in the body with sufficient detail 

that the receiving user agent can pick an appropriate agent or mechanism to 

represent the data to the user or otherwise deal with the data in an  appropriate 

manner.
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 ■ Content-Transfer-Encoding: Indicates the type of transformation that has 

been used to represent the body of the message in a way that is acceptable for 

mail transport.

 ■ Content-ID: Used to identify MIME entities uniquely in multiple contexts.

 ■ Content-Description: A text description of the object with the body; this is 

useful when the object is not readable (e.g., audio data).

Any or all of these fields may appear in a normal RFC 5322 header. A compli-

ant implementation must support the MIME-Version, Content-Type, and Content-

Transfer-Encoding fields; the Content-ID and Content-Description fields are 

 optional and may be ignored by the recipient implementation.

MIME CONTENT TYPES The bulk of the MIME specification is concerned with 

the definition of a variety of content types. This reflects the need to provide stan-

dardized ways of dealing with a wide variety of information representations in a 

multimedia environment.

Table 19.1 lists the content types specified in RFC 2046. There are seven dif-

ferent major types of content and a total of 15 subtypes. In general, a content type 

declares the general type of data, and the subtype specifies a particular format for 

that type of data.

Type Subtype Description

Text Plain Unformatted text; may be ASCII or ISO 8859.

Enriched Provides greater format flexibility.

Multipart Mixed The different parts are independent but are to be transmitted 

together. They should be presented to the receiver in the order 

that they appear in the mail message.

Parallel Differs from Mixed only in that no order is defined for delivering 

the parts to the receiver.

Alternative The different parts are alternative versions of the same 

information. They are ordered in increasing faithfulness to the 

original, and the recipient’s mail system should display the “best” 

version to the user.

Digest Similar to Mixed, but the default type/subtype of each part is 

message/rfc822.

Message rfc822 The body is itself an encapsulated message that conforms to RFC 822.

Partial Used to allow fragmentation of large mail items, in a way that is 

transparent to the recipient.

External-body Contains a pointer to an object that exists elsewhere.

Image jpeg The image is in JPEG format, JFIF encoding.

gif The image is in GIF format.

Video mpeg MPEG format.

Audio Basic Single-channel 8-bit ISDN m-law encoding at a sample rate of  

8 kHz.

Application PostScript Adobe Postscript format.

octet-stream General binary data consisting of 8-bit bytes.

Table 19.1 MIME Content Types
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For the text type of body, no special software is required to get the full  meaning 

of the text aside from support of the indicated character set. The primary subtype is 

plain text, which is simply a string of ASCII characters or ISO 8859 characters. The 

enriched subtype allows greater formatting flexibility.

The multipart type indicates that the body contains multiple, independent 

parts. The Content-Type header field includes a parameter (called boundary) that 

defines the delimiter between body parts. This boundary should not appear in 

any parts of the message. Each boundary starts on a new line and consists of two 

 hyphens followed by the boundary value. The final boundary, which indicates the 

end of the last part, also has a suffix of two hyphens. Within each part, there may be 

an optional ordinary MIME header.

Here is a simple example of a multipart message containing two parts—both 

consisting of simple text (taken from RFC 2046):

From: Nathaniel Borenstein <nsb@bellcore.com>

To: Ned Freed <ned@innosoft.com>

Subject: Sample message

MIME-Version: 1.0

Content-type: multipart/mixed; boundary=“simple boundary”

This is the preamble. It is to be ignored, though it is a 
handy place for mail composers to include an explanatory 
note to non-MIME conformant readers.

—simple boundary

This is implicitly typed plain ASCII text. It does NOT end 
with a linebreak.

—simple boundary

Content-type: text/plain; charset=us-ascii

This is explicitly typed plain ASCII text. It DOES end 
with a linebreak.

—simple boundary—

This is the epilogue. It is also to be ignored.

There are four subtypes of the multipart type, all of which have the same 

 overall syntax. The multipart/mixed subtype is used when there are multiple inde-

pendent body parts that need to be bundled in a particular order. For the multipart/
parallel subtype, the order of the parts is not significant. If the recipient’s system is 

appropriate, the multiple parts can be presented in parallel. For example, a picture 

or text part could be accompanied by a voice commentary that is played while the 

picture or text is displayed.

For the multipart/alternative subtype, the various parts are different represen-

tations of the same information. The following is an example:

From: Nathaniel Borenstein <nsb@bellcore.com>
To: Ned Freed <ned@innosoft.com>
Subject: Formatted text mail

mailto:nsb@bellcore.com
mailto:ned@innosoft.com
mailto:nsb@bellcore.com
mailto:ned@innosoft.com
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MIME-Version: 1.0

Content-Type: multipart/alternative; 

boundary=boundary42

—boundary42

Content-Type: text/plain; charset=us-ascii

. . . plain text version of message goes here. . . .

—boundary42

Content-Type: text/enriched

. . . RFC 1896 text/enriched version of same message 
goes here . . . 

—boundary42—

In this subtype, the body parts are ordered in terms of increasing preference. 

For this example, if the recipient system is capable of displaying the message in the 

text/enriched format, this is done; otherwise, the plain text format is used.

The multipart/digest subtype is used when each of the body parts is inter-

preted as an RFC 5322 message with headers. This subtype enables the construction 

of a message whose parts are individual messages. For example, the moderator of a 

group might collect email messages from participants, bundle these messages, and 

send them out in one encapsulating MIME message.

The message type provides a number of important capabilities in MIME. 

The message/rfc822 subtype indicates that the body is an entire message, including 

header and body. Despite the name of this subtype, the encapsulated message may 

be not only a simple RFC 5322 message, but also any MIME message.

The message/partial subtype enables fragmentation of a large message into a 

number of parts, which must be reassembled at the destination. For this subtype, 

three parameters are specified in the Content-Type: Message/Partial field: an id 

common to all fragments of the same message, a sequence number unique to each 

fragment, and the total number of fragments.

The message/external-body subtype indicates that the actual data to be con-

veyed in this message are not contained in the body. Instead, the body contains the 

information needed to access the data. As with the other message types, the mes-

sage/external-body subtype has an outer header and an encapsulated message with 

its own header. The only necessary field in the outer header is the Content-Type 

field, which identifies this as a message/external-body subtype. The inner header is 

the message header for the encapsulated message. The Content-Type field in the 

outer header must include an access-type parameter, which indicates the method of 

access, such as FTP (file transfer protocol).

The application type refers to other kinds of data, typically either uninter-

preted binary data or information to be processed by a mail-based application.

MIME TRANSFER ENCODINGS The other major component of the MIME specifica-

tion, in addition to content type specification, is a definition of transfer encodings 

for message bodies. The objective is to provide reliable delivery across the largest 

range of environments.
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The MIME standard defines two methods of encoding data. The Content-

Transfer-Encoding field can actually take on six values, as listed in Table 19.2. 

However, three of these values (7-bit, 8-bit, and binary) indicate that no encod-

ing has been done but provide some information about the nature of the data. For 

SMTP transfer, it is safe to use the 7-bit form. The 8-bit and binary forms may be 

 usable in other mail transport contexts. Another Content-Transfer-Encoding value 

is x-token, which indicates that some other encoding scheme is used for which 

a name is to be supplied. This could be a vendor-specific or application-specific 

scheme. The two actual encoding schemes defined are quoted-printable and base64. 

Two schemes are defined to provide a choice between a transfer technique that is 

essentially human readable and one that is safe for all types of data in a way that is 

reasonably compact.

The quoted-printable transfer encoding is useful when the data consists largely 

of octets that correspond to printable ASCII characters. In essence, it represents 

nonsafe characters by the hexadecimal representation of their code and introduces 

reversible (soft) line breaks to limit message lines to 76 characters.

The base64 transfer encoding, also known as radix-64 encoding, is a common 

one for encoding arbitrary binary data in such a way as to be invulnerable to the 

processing by mail-transport programs. It is also used in PGP and is described in 

Appendix X.

A MULTIPART EXAMPLE Figure 19.3, taken from RFC 2045, is the outline of a com-

plex multipart message. The message has five parts to be displayed serially: two 

introductory plain text parts, an embedded multipart message, a richtext part, and 

a closing encapsulated text message in a non-ASCII character set. The embedded 

multipart message has two parts to be displayed in parallel: a picture and an audio 

fragment.

CANONICAL FORM An important concept in MIME and S/MIME is that of canonical 

form. Canonical form is a format, appropriate to the content type, that is standard-

ized for use between systems. This is in contrast to native form, which is a format that 

may be peculiar to a particular system. RFC 2049 defines these two forms as follows:

 ■ Native form: The body to be transmitted is created in the system’s native for-

mat. The native character set is used and, where appropriate, local end-of-line 

conventions are used as well. The body may be any format that corresponds to 

7 bit The data are all represented by short lines of ASCII characters.

8 bit The lines are short, but there may be non-ASCII characters (octets with the 

high-order bit set).

binary Not only may non-ASCII characters be present but the lines are not necessarily 

short enough for SMTP transport.

quoted-printable Encodes the data in such a way that if the data being encoded are mostly ASCII 

text, the encoded form of the data remains largely recognizable by humans.

base64 Encodes data by mapping 6-bit blocks of input to 8-bit blocks of output, all of 

which are printable ASCII characters.

x-token A named nonstandard encoding.

Table 19.2 MIME Transfer Encodings
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MIME-Version: 1.0

From: Nathaniel Borenstein <nsb@bellcore.com>

To: Ned Freed <ned@innosoft.com>

Subject: A multipart example

Content-Type: multipart/mixed;

boundary=unique-boundary-1

This is the preamble area of a multipart message. Mail readers that 
 understand multipart format should ignore this preamble. If you are  reading 
this text, you might want to consider changing to a mail reader that 
 understands how to properly display multipart messages.

—unique-boundary-1

 . . . Some text appears here . . . 

[Note that the preceding blank line means no header fields were given and 
this is text, with charset US ASCII. It could have been done with explicit 
typing as in the next part.]

—unique-boundary-1

Content-type: text/plain; charset=US-ASCII

This could have been part of the previous part, but illustrates explicit 
versus implicit typing of body parts.

—unique-boundary-1

Content-Type: multipart/parallel; boundary=unique-boundary-2

—unique-boundary-2

Content-Type: audio/basic

Content-Transfer-Encoding: base64

 . . . base64-encoded 8000 Hz single-channel mu-law-format audio data goes 
here . . . .

—unique-boundary-2

Content-Type: image/jpeg

Content-Transfer-Encoding: base64

 . . . base64-encoded image data goes here . . . .

—unique-boundary-2—

—unique-boundary-1

Content-type: text/enriched

This is richtext. as defined in RFC 1896

Isn’t it cool?

—unique-boundary-1

Content-Type: message/rfc822

From: (mailbox in US-ASCII)

To: (address in US-ASCII)

Subject: (subject in US-ASCII)

Content-Type: Text/plain; charset=ISO-8859-1

Content-Transfer-Encoding: Quoted-printable

 . . . Additional text in ISO-8859-1 goes here . . . 

—unique-boundary-1—

Figure 19.3 Example MIME Message Structure

mailto:nsb@bellcore.com
mailto:ned@innosoft.com


19.3 / EMAIL THREATS AND COMPREHENSIVE EMAIL SECURITY 625

the local model for the representation of some form of information. Examples 

include a UNIX-style text file, or a Sun raster image, or a VMS indexed file, and 

audio data in a system-dependent format stored only in memory. In  essence, 

the data are created in the native form that corresponds to the type specified 

by the media type.

 ■ Canonical form: The entire body, including out-of-band information such as 

record lengths and possibly file attribute information, is converted to a univer-

sal canonical form. The specific media type of the body as well as its associated 

attributes dictates the nature of the canonical form that is used. Conversion to 

the proper canonical form may involve character set conversion, transforma-

tion of audio data, compression, or various other operations specific to the 

various media types.

 19.3 EMAIL THREATS AND COMPREHENSIVE EMAIL SECURITY

For both organizations and individuals, email is both pervasive and especially vul-

nerable to a wide range of security threats. In general terms, email security threats 

can be classified as follows:

 ■ Authenticity-related threats: Could result in unauthorized access to an enter-

prise’s email system.

 ■ Integrity-related threats: Could result in unauthorized modification of email 

content.

 ■ Confidentiality-related threats: Could result in unauthorized disclosure of 

 sensitive information.

 ■ Availability-related threats: Could prevent end users from being able to send 

or receive email.

A useful list of specific email threats, together with approaches to mitigation, 

is provided in NIST SP 800-177 (Trustworthy Email, September 2015) and is shown 

in Table 19.3.

SP 800-177 recommends use of a variety of standardized protocols as a means 

for countering these threats. These include:

 ■ STARTTLS: An SMTP security extension that provides authentication, integ-

rity, non-repudiation (via digital signatures) and confidentiality (via encryp-

tion) for the entire SMTP message by running SMTP over TLS.

 ■ S/MIME: Provides authentication, integrity, non-repudiation (via digital 

 signatures) and confidentiality (via encryption) of the message body carried 

in SMTP messages.

 ■ DNS Security Extensions (DNSSEC): Provides authentication and integ-

rity protection of DNS data, and is an underlying tool used by various email 

 security protocols.

 ■ DNS-based Authentication of Named Entities (DANE): Is designed to over-

come problems in the certificate authority (CA) system by providing an 

 alternative channel for authenticating public keys based on DNSSEC, with the 
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Threat
Impact on Purported 

Sender Impact on Receiver Mitigation

Email sent by 

unauthorized MTA in 

enterprise (e.g., malware 

botnet)

Loss of reputation, valid 

email from enterprise 

may be blocked as 

possible spam/phishing 

attack.

UBE and/or email 

containing malicious 

links may be delivered 

into user inboxes.

Deployment of domain-

based authentication 

techniques. Use of 

digital signatures over 

email.

Email message sent 

using spoofed or 

unregistered sending 

domain

Loss of reputation, valid 

email from enterprise 

may be blocked as 

possible spam/phishing 

attack.

UBE and/or email 

containing malicious 

links may be delivered 

into user inboxes.

Deployment of domain-

based authentication 

techniques. Use of 

digital signatures over 

email.

Email message sent 

using forged sending 

address or email address 

(i.e., phishing, spear 

phishing)

Loss of reputation, valid 

email from enterprise 

may be blocked as 

possible spam/phishing 

attack.

UBE and/or email 

containing malicious 

links may be delivered. 

Users may inadvertently 

divulge sensitive 

information or PII.

Deployment of domain-

based authentication 

techniques. Use of 

digital signatures over 

email.

Email modified in transit Leak of sensitive 

information or PII.

Leak of sensitive 

information, altered 

message may contain 

malicious information.

Use of TLS to encrypt 

email transfer between 

servers. Use of end-to-

end email encryption.

Disclosure of sensitive 

information (e.g., PII) 

via monitoring and 

capturing of email traffic

Leak of sensitive 

information or PII.

Leak of sensitive 

information, altered 

message may contain 

malicious information.

Use of TLS to encrypt 

email transfer between 

servers. Use of end-to-

end email encryption.

Unsolicited Bulk Email 

(UBE) (i.e., spam)

None, unless purported 

sender is spoofed.

UBE and/or email 

containing malicious 

links may be delivered 

into user inboxes.

Techniques to address 

UBE.

DoS/DDoS attack 

against an enterprises’ 

email servers

Inability to send email. Inability to receive 

email.

Multiple mail servers, 

use of cloud-based email 

providers.

Table 19.3 Email Threats and Mitigations

result that the same trust relationships used to certify IP addresses are used to 

certify servers operating on those addresses.

 ■ Sender Policy Framework (SPF): Uses the Domain Name System (DNS) to 

allow domain owners to create records that associate the domain name with a 

specific IP address range of authorized message senders. It is a simple matter 

for receivers to check the SPF TXT record in the DNS to confirm that the pur-

ported sender of a message is permitted to use that source address and reject 

mail that does not come from an authorized IP address.

 ■ DomainKeys Identified Mail (DKIM): Enables an MTA to sign selected 

 headers and the body of a message. This validates the source domain of the 

mail and provides message body integrity.

 ■ Domain-based Message Authentication, Reporting, and Conformance 
(DMARC): Lets senders know the proportionate effectiveness of their SPF 

and DKIM policies, and signals to receivers what action should be taken in 

various individual and bulk attack scenarios.
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Figure 19.4 shows how these components interact to provide message authen-

ticity and integrity. Not shown, for simplicity, is that S/MIME also provides message 

confidentiality by encrypting messages.

 19.4 S/MIME

Secure/Multipurpose Internet Mail Extension (S/MIME) is a security enhancement 

to the MIME Internet email format standard based on technology from RSA Data 

Security. S/MIME is a complex capability that is defined in a number of documents. 

The most important documents relevant to S/MIME include the following:

 ■ RFC 5750, S/MIME Version 3.2 Certificate Handling: Specifies conventions 

for X.509 certificate usage by (S/MIME) v3.2.

Figure 19.4  The Interrelationship of DNSSEC, SPF, DKIM, DMARC, DANE, and  
S/MIME for Assuring Message Authenticity and Integrity
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 ■ RFC 5751, S/MIME) Version 3.2 Message Specification: The principal defining 

document for S/MIME message creation and processing.

 ■ RFC 4134, Examples of S/MIME Messages: Gives examples of message  bodies 

formatted using S/MIME.

 ■ RFC 2634, Enhanced Security Services for S/MIME: Describes four optional 

security service extensions for S/MIME.

 ■ RFC 5652, Cryptographic Message Syntax (CMS): Describes the Crypto-

graphic Message Syntax (CMS). This syntax is used to digitally sign, digest, 

authenticate, or encrypt arbitrary message content.

 ■ RFC 3370, CMS Algorithms: Describes the conventions for using several 

 cryptographic algorithms with the CMS.

 ■ RFC 5752, Multiple Signatures in CMS: Describes the use of multiple, parallel 

signatures for a message.

 ■ RFC 1847, Security Multiparts for MIME—Multipart/Signed and Multipart/
Encrypted: Defines a framework within which security services may be applied 

to MIME body parts. The use of a digital signature is relevant to S/MIME, as 

explained subsequently.

Operational Description

S/MIME provides for four message-related services: authentication, confidential-

ity, compression, and email compatibility (Table 19.4). This subsection provides 

an overview. We then look in more detail at this capability by examining message 

 formats and message preparation.

AUTHENTICATION Authentication is provided by means of a digital  signature, using 

the general scheme discussed in Chapter 13 and illustrated in Figure 13.1. Most 

commonly RSA with SHA-256 is used. The sequence is as follows:

1. The sender creates a message.

2. SHA-256 is used to generate a 256-bit message digest of the message.

Function Typical Algorithm Typical Action

Digital signature RSA/SHA-256 A hash code of a message is created using SHA-256. 

This message digest is encrypted using SHA-256 

with the sender’s private key and included with 

the message.

Message encryption AES-128 with CBC A message is encrypted using AES-128 with CBC 

with a one-time session key generated by the 

sender. The session key is encrypted using RSA 

with the recipient’s public key and included with 

the message.

Compression unspecified A message may be compressed for storage or 

transmission.

Email compatibility Radix-64 conversion To provide transparency for email applications, an 

encrypted message may be converted to an ASCII 

string using radix-64 conversion.

Table 19.4 Summary of S/MIME Services
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3. The message digest is encrypted with RSA using the sender’s private key, and 

the result is appended to the message. Also appended is identifying information 

for the signer, which will enable the receiver to retrieve the  signer’s public key.

4. The receiver uses RSA with the sender’s public key to decrypt and recover the 

message digest.

5. The receiver generates a new message digest for the message and compares 

it with the decrypted hash code. If the two match, the message is accepted as 

authentic.

The combination of SHA-256 and RSA provides an effective digital signature 

scheme. Because of the strength of RSA, the recipient is assured that only the pos-

sessor of the matching private key can generate the signature. Because of the strength 

of SHA-256, the recipient is assured that no one else could generate a new message 

that matches the hash code and, hence, the signature of the original message.

Although signatures normally are found attached to the message or file that 

they sign, this is not always the case: Detached signatures are supported. A  detached 

signature may be stored and transmitted separately from the message it signs. This 

is useful in several contexts. A user may wish to maintain a separate signature log 

of all messages sent or received. A detached signature of an executable program 

can detect subsequent virus infection. Finally, detached signatures can be used 

when more than one party must sign a document, such as a legal contract. Each 

person’s signature is independent and therefore is applied only to the document. 

Otherwise, signatures would have to be nested, with the second signer signing both 

the  document and the first signature, and so on.

CONFIDENTIALITY S/MIME provides confidentiality by encrypting messages. Most 

commonly AES with a 128-bit key is used, with the cipher block chaining (CBC) 

mode. The key itself is also encrypted, typically with RSA, as explained below.

As always, one must address the problem of key distribution. In S/MIME, 

each symmetric key, referred to as a content-encryption key, is used only once. That 

is, a new key is generated as a random number for each message. Because it is to be 

used only once, the content-encryption key is bound to the message and transmit-

ted with it. To protect the key, it is encrypted with the receiver’s public key. The 

sequence can be described as follows:

1. The sender generates a message and a random 128-bit number to be used as a 

content-encryption key for this message only.

2. The message is encrypted using the content-encryption key.

3. The content-encryption key is encrypted with RSA using the recipient’s public 

key and is attached to the message.

4. The receiver uses RSA with its private key to decrypt and recover the 

 content-encryption key.

5. The content-encryption key is used to decrypt the message.

Several observations may be made. First, to reduce encryption time, the com-

bination of symmetric and public-key encryption is used in preference to simply 

using public-key encryption to encrypt the message directly: Symmetric algorithms 
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are substantially faster than asymmetric ones for a large block of content. Second, 

the use of the public-key algorithm solves the session-key distribution problem, 

because only the recipient is able to recover the session key that is bound to the 

message. Note that we do not need a session-key exchange protocol of the type 

discussed in Chapter 14,  because we are not beginning an ongoing session. Rather, 

each message is a one-time independent event with its own key. Furthermore, given 

the store-and-forward nature of electronic mail, the use of handshaking to assure 

that both sides have the same session key is not practical. Finally, the use of one-

time symmetric keys strengthens what is already a strong symmetric encryption 

 approach. Only a small amount of plaintext is encrypted with each key, and there is 

no relationship among the keys. Thus, to the extent that the public-key algorithm is 

secure, the entire scheme is secure.

CONFIDENTIALITY AND AUTHENTICATION As Figure 19.5 illustrates, both confi-

dentiality and encryption may be used for the same message. The figure shows a 

 sequence in which a signature is generated for the plaintext message and appended 

to the message. Then the plaintext message and signature are encrypted as a single 

block using symmetric encryption and the symmetric encryption key is encrypted 

using public-key encryption.

S/MIME allows the signing and message encryption operations to be per-

formed in either order. If signing is done first, the identity of the signer is hidden 

by the encryption. Plus, it is generally more convenient to store a signature with a 

plaintext version of a message. Furthermore, for purposes of third-party verifica-

tion, if the signature is performed first, a third party need not be concerned with the 

symmetric key when verifying the signature.

If encryption is done first, it is possible to verify a signature without exposing 

the message content. This can be useful in a context in which automatic signature 

verification is desired, as no private key material is required to verify a signature. 

However, in this case the recipient cannot determine any relationship between the 

signer and the unencrypted content of the message.

EMAIL COMPATIBILITY When S/MIME is used, at least part of the block to be trans-

mitted is encrypted. If only the signature service is used, then the message digest is 

encrypted (with the sender’s private key). If the confidentiality service is used, the 

message plus signature (if present) are encrypted (with a one-time symmetric key). 

Thus, part or all of the resulting block consists of a stream of arbitrary 8-bit octets. 

However, many electronic mail systems only permit the use of blocks consisting 

of ASCII text. To accommodate this restriction, S/MIME provides the service of 

converting the raw 8-bit binary stream to a stream of printable ASCII characters, 

a process referred to as 7-bit encoding.

The scheme typically used for this purpose is Base64 conversion. Each group 

of three octets of binary data is mapped into four ASCII characters. See Appendix 

X for a description.

One noteworthy aspect of the Base64 algorithm is that it blindly converts the 

input stream to Base64 format regardless of content, even if the input happens to 

be ASCII text. Thus, if a message is signed but not encrypted and the conversion 

is  applied to the entire block, the output will be unreadable to the casual observer, 

which provides a certain level of confidentiality.
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RFC 5751 also recommends that even if outer 7-bit encoding is not used, the 

original MIME content should be 7-bit encoded. The reason for this is that it allows 

the MIME entity to be handled in any environment without changing it. For exam-

ple, a trusted gateway might remove the encryption, but not the signature, of a mes-

sage, and then forward the signed message on to the end recipient so that they can 

verify the signatures directly. If the transport internal to the site is not 8-bit clean, 

such as on a wide area network with a single mail gateway, verifying the signature 

will not be possible unless the original MIME entity was only 7-bit data.

COMPRESSION S/MIME also offers the ability to compress a message. This has the 

benefit of saving space both for email transmission and for file storage. Compression 

Figure 19.5 Simplified S/MIME Functional Flow
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can be applied in any order with respect to the signing and message encryption 

 operations. RFC 5751 provides the following guidelines:

 ■ Compression of binary encoded encrypted data is discouraged, since it will not 

yield significant compression. Base64 encrypted data could very well benefit, 

however.

 ■ If a lossy compression algorithm is used with signing, you will need to  compress 

first, then sign.

S/MIME Message Content Types

S/MIME uses the following message content types, which are defined in RFC 5652, 

Cryptographic Message Syntax:

 ■ Data: Refers to the inner MIME-encoded message content, which may then 

be encapsulated in a SignedData, EnvelopedData, or CompressedData con-

tent type.

 ■ SignedData: Used to apply a digital signature to a message.

 ■ EnvelopedData: This consists of encrypted content of any type and encrypted-

content encryption keys for one or more recipients.

 ■ CompressedData: Used to apply data compression to a message.

The Data content type is also used for a procedure known as clear signing. 

For clear signing, a digital signature is calculated for a MIME-encoded message and 

the two parts, the message and signature, form a multipart MIME message. Unlike 

SignedData, which involves encapsulating the message and signature in a special 

format, clear-signed messages can be read and their signatures verified by email 

entities that do not implement S/MIME.

Approved Cryptographic Algorithms

Table 19.5 summarizes the cryptographic algorithms used in S/MIME. S/MIME 

uses the following terminology taken from RFC 2119 (Key Words for use in RFCs to 
Indicate Requirement Levels, March 1997) to specify the requirement level:

 ■ MUST: The definition is an absolute requirement of the specification. An 

 implementation must include this feature or function to be in conformance 

with the specification.

 ■ SHOULD: There may exist valid reasons in particular circumstances to ignore 

this feature or function, but it is recommended that an implementation include 

the feature or function.

The S/MIME specification includes a discussion of the procedure for deciding 

which content encryption algorithm to use. In essence, a sending agent has two deci-

sions to make. First, the sending agent must determine if the receiving agent is  capable 

of decrypting using a given encryption algorithm. Second, if the receiving agent is only 

capable of accepting weakly encrypted content, the sending agent must decide if it is 

acceptable to send using weak encryption. To support this decision process, a sending 

agent may announce its decrypting capabilities in order of preference for any message 

that it sends out. A receiving agent may store that information for future use.
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The following rules, in the following order, should be followed by a sending agent.

1. If the sending agent has a list of preferred decrypting capabilities from an 

 intended recipient, it SHOULD choose the first (highest preference) capabil-

ity on the list that it is capable of using.

2. If the sending agent has no such list of capabilities from an intended recipient 

but has received one or more messages from the recipient, then the outgoing 

message SHOULD use the same encryption algorithm as was used on the last 

signed and encrypted message received from that intended recipient.

3. If the sending agent has no knowledge about the decryption capabilities of the 

intended recipient and is willing to risk that the recipient may not be able to 

decrypt the message, then the sending agent SHOULD use triple DES.

4. If the sending agent has no knowledge about the decryption capabilities of the 

intended recipient and is not willing to risk that the recipient may not be able 

to decrypt the message, then the sending agent MUST use RC2/40.

If a message is to be sent to multiple recipients and a common encryption 

 algorithm cannot be selected for all, then the sending agent will need to send two 

messages. However, in that case, it is important to note that the security of the 

 message is made vulnerable by the transmission of one copy with lower security.

S/MIME Messages

S/MIME makes use of a number of new MIME content types. All of the new applica-

tion types use the designation PKCS. This refers to a set of public-key cryptography 

specifications issued by RSA Laboratories and made available for the S/MIME effort.

Function Requirement

Create a message digest to be used in 

forming a digital signature.

MUST support SHA-256

SHOULD support SHA-1

Receiver SHOULD support MD5 for backward compatibility

Use message digest to form a digital 

signature.

MUST support RSA with SHA-256

SHOULD support

—DSA with SHA-256

—RSASSA-PSS with SHA-256

—RSA with SHA-1

—DSA with SHA-1

—RSA with MD5

Encrypt session key for transmission with 

a message.

MUST support RSA encryption

SHOULD support

—RSAES-OAEP

—Diffie–Hellman ephemeral-static mode

Encrypt message for transmission with a 

one-time session key.

MUST support AES-128 with CBC

SHOULD support

—AES-192 CBC and AES-256 CBC

—Triple DES CBC

Table 19.5 Cryptographic Algorithms Used in S/MIME



634  CHAPTER 19 / ELECTRONIC MAIL SECURITY

We examine each of these in turn after first looking at the general procedures 

for S/MIME message preparation.

SECURING A MIME ENTITY S/MIME secures a MIME entity with a signature, 

 encryption, or both. A MIME entity may be an entire message (except for the RFC 

5322 headers), or if the MIME content type is multipart, then a MIME entity is one 

or more of the subparts of the message. The MIME entity is prepared according 

to the normal rules for MIME message preparation. Then the MIME entity plus 

some security-related data, such as algorithm identifiers and certificates, are pro-

cessed by S/MIME to produce what is known as a PKCS object. A PKCS object is 

then treated as message content and wrapped in MIME (provided with appropriate 

MIME headers). This process should become clear as we look at specific objects 

and provide examples.

In all cases, the message to be sent is converted to canonical form. In par-

ticular, for a given type and subtype, the appropriate canonical form is used for the 

message content. For a multipart message, the appropriate canonical form is used 

for each subpart.

The use of transfer encoding requires special attention. For most cases, the 

result of applying the security algorithm will be to produce an object that is partially 

or totally represented in arbitrary binary data. This will then be wrapped in an outer 

MIME message and transfer encoding can be applied at that point, typically base64. 

However, in the case of a multipart signed message (described in more detail later), 

the message content in one of the subparts is unchanged by the security process. 

Unless that content is 7 bit, it should be transfer encoded using base64 or quoted-

printable so that there is no danger of altering the content to which the signature 

was applied.

We now look at each of the S/MIME content types.

ENVELOPEDDATA An application/pkcs7-mime subtype is used for one of four cat-

egories of S/MIME processing, each with a unique smime-type parameter. In all 

cases, the resulting entity, (referred to as an object) is represented in a form known 

as Basic Encoding Rules (BER), which is defined in ITU-T Recommendation 

X.209. The BER format consists of arbitrary octet strings and is therefore binary 

data. Such an object should be transfer encoded with base64 in the outer MIME 

message. We first look at envelopedData.

The steps for preparing an envelopedData MIME entity are:

1. Generate a pseudorandom session key for a particular symmetric encryption 

algorithm (RC2/40 or triple DES).

2. For each recipient, encrypt the session key with the recipient’s public RSA key.

3. For each recipient, prepare a block known as RecipientInfo that contains 

an identifier of the recipient’s public-key certificate,1 an identifier of the 

 algorithm used to encrypt the session key, and the encrypted session key.

4. Encrypt the message content with the session key.

1This is an X.509 certificate, discussed later in this section.
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The RecipientInfo blocks followed by the encrypted content constitute the 

envelopedData. This information is then encoded into base64. A sample message 

(excluding the RFC 5322 headers) is given below.

Content-Type: application/pkcs7-mime; smime-type=enveloped-

data; name=smime.p7m

Content-Transfer-Encoding: base64

Content-Disposition: attachment; filename=smime.p7m

rfvbnj756tbBghyHhHUujhJhjH77n8HHGT9HG4VQpfyF467GhIGfHfYT6

7n8HHGghyHhHUujhJh4VQpfyF467GhIGfHfYGTrfvbnjT6jH7756tbB9H

f8HHGTrfvhJhjH776tbB9HG4VQbnj7567GhIGfHfYT6ghyHhHUujpfyF4

0GhIGfHfQbnj756YT64V

To recover the encrypted message, the recipient first strips off the base64 

 encoding. Then the recipient’s private key is used to recover the session key. Finally, 

the message content is decrypted with the session key.

SIGNEDDATA The signedData smime-type can be used with one or more signers. 

For clarity, we confine our description to the case of a single digital signature. The 

steps for preparing a signedData MIME entity are as follows.

1. Select a message digest algorithm (SHA or MD5).

2. Compute the message digest (hash function) of the content to be signed.

3. Encrypt the message digest with the signer’s private key.

4. Prepare a block known as SignerInfo that contains the signer’s public-key 

certificate, an identifier of the message digest algorithm, an identifier of the 

 algorithm used to encrypt the message digest, and the encrypted message 

digest.

The signedData entity consists of a series of blocks, including a message 

digest algorithm identifier, the message being signed, and SignerInfo. The 

signedData entity may also include a set of public-key certificates sufficient to 

constitute a chain from a recognized root or top-level certification authority to the 

signer. This information is then encoded into base64. A sample message (excluding 

the RFC 5322 headers) is the following.

Content-Type: application/pkcs7-mime; smime-type=signed-

data; name=smime.p7m

Content-Transfer-Encoding: base64

Content-Disposition: attachment; filename=smime.p7m

567GhIGfHfYT6ghyHhHUujpfyF4f8HHGTrfvhJhjH776tbB9HG4VQbnj7

77n8HHGT9HG4VQpfyF467GhIGfHfYT6rfvbnj756tbBghyHhHUujhJhjH

HUujhJh4VQpfyF467GhIGfHfYGTrfvbnjT6jH7756tbB9H7n8HHGghyHh

6YT64V0GhIGfHfQbnj75
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To recover the signed message and verify the signature, the recipient first strips 

off the base64 encoding. Then the signer’s public key is used to decrypt the message 

digest. The recipient independently computes the message digest and  compares it to 

the decrypted message digest to verify the signature.

CLEAR SIGNING Clear signing is achieved using the multipart content type with 

a signed subtype. As was mentioned, this signing process does not involve trans-

forming the message to be signed, so that the message is sent “in the clear.” Thus, 

recipients with MIME capability but not S/MIME capability are able to read the 

 incoming message.

A multipart/signed message has two parts. The first part can be any MIME 

type but must be prepared so that it will not be altered during transfer from source 

to destination. This means that if the first part is not 7 bit, then it needs to be  encoded 

using base64 or quoted-printable. Then this part is processed in the same manner 

as signedData, but in this case an object with signedData format is created that 

has an empty message content field. This object is a detached signature. It is then 

transfer encoded using base64 to become the second part of the multipart/signed 

message. This second part has a MIME content type of application and a subtype of 

pkcs7-signature. Here is a sample message:

Content-Type: multipart/signed;

protocol=”application/pkcs7-signature”;

micalg=sha1; boundary=boundary42

—boundary42

Content-Type: text/plain

This is a clear-signed message.

—boundary42

Content-Type: application/pkcs7-signature; name=smime.p7s

Content-Transfer-Encoding: base64

Content-Disposition: attachment; filename=smime.p7s

ghyHhHUujhJhjH77n8HHGTrfvbnj756tbB9HG4VQpfyF467GhIGfHfYT6

4VQpfyF467GhIGfHfYT6jH77n8HHGghyHhHUujhJh756tbB9HGTrfvbnj

n8HHGTrfvhJhjH776tbB9HG4VQbnj7567GhIGfHfYT6ghyHhHUujpfyF4

7GhIGfHfYT64VQbnj756

—boundary42—

The protocol parameter indicates that this is a two-part clear-signed entity. 

The micalg parameter indicates the type of message digest used. The receiver can 

verify the signature by taking the message digest of the first part and comparing this 

to the message digest recovered from the signature in the second part.

REGISTRATION REQUEST Typically, an application or user will apply to a certi-

fication authority for a public-key certificate. The application/pkcs10 S/MIME  
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 entity is used to transfer a certification request. The certification  request 

 includes  certificationRequestInfo block, followed by an  identifier 

of the public-key  encryption algorithm, followed by the signature of the 

 certificationRequestInfo block, made using the sender’s private key. The 

certificationRequestInfo block includes a name of the certificate subject 

(the entity whose public key is to be certified) and a bit-string representation of the 

user’s public key.

CERTIFICATES-ONLY MESSAGE A message containing only certificates or a certificate 

revocation list (CRL) can be sent in response to a registration request. The message 

is an application/pkcs7-mime type/subtype with an smime-type parameter of degen-

erate. The steps involved are the same as those for creating a signedData  message, 

except that there is no message content and the signerInfo field is empty.

S/MIME Certificate Processing

S/MIME uses public-key certificates that conform to version 3 of X.509 (see 

Chapter 14). S/MIME managers and/or users must configure each client with a list of 

trusted keys and with certificate revocation lists. That is, the responsibility is local for 

maintaining the certificates needed to verify incoming signatures and to encrypt outgo-

ing messages. On the other hand, the certificates are signed by certification authorities.

USER AGENT ROLE An S/MIME user has several key management functions to 

perform.

 ■ Key generation: The user of some related administrative utility (e.g., one 

 associated with LAN management) MUST be capable of generating separate 

Diffie–Hellman and DSS key pairs and SHOULD be capable of generating 

RSA key pairs. Each key pair MUST be generated from a good source of 

nondeterministic random input and be protected in a secure fashion. A user 

agent SHOULD generate RSA key pairs with a length in the range of 768 to 

1024 bits and MUST NOT generate a length of less than 512 bits.

 ■ Registration: A user’s public key must be registered with a certification 

 authority in order to receive an X.509 public-key certificate.

 ■ Certificate storage and retrieval: A user requires access to a local list of certifi-

cates in order to verify incoming signatures and to encrypt outgoing messages. 

Such a list could be maintained by the user or by some local administrative 

entity on behalf of a number of users.

Enhanced Security Services

RFC 2634 defines four enhanced security services for S/MIME:

 ■ Signed receipts: A signed receipt may be requested in a SignedData  object. 

Returning a signed receipt provides proof of delivery to the originator of a 

message and allows the originator to demonstrate to a third party that the 

 recipient received the message. In essence, the recipient signs the entire 

 original message plus the original (sender’s) signature and appends the new 

signature to form a new S/MIME message.
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 ■ Security labels: A security label may be included in the authenticated  attributes 

of a SignedData object. A security label is a set of security information 

 regarding the sensitivity of the content that is protected by S/MIME encapsu-

lation. The labels may be used for access control, by indicating which users are 

permitted access to an object. Other uses include priority (secret, confidential, 

restricted, and so on) or role based, describing which kind of people can see 

the information (e.g., patient’s health-care team, medical billing agents).

 ■ Secure mailing lists: When a user sends a message to multiple recipients, a 

certain amount of per-recipient processing is required, including the use of 

each recipient’s public key. The user can be relieved of this work by employ-

ing the services of an S/MIME Mail List Agent (MLA). An MLA can take a 

single incoming message, perform the recipient-specific encryption for each 

recipient, and forward the message. The originator of a message need only 

send the message to the MLA with encryption performed using the MLA’s 

public key.

 ■ Signing certificates: This service is used to securely bind a sender’s certificate 

to their signature through a signing certificate attribute.

 19.5 PRETTY GOOD PRIVACY

An alternative email security protocol is Pretty Good Privacy (PGP), which has 

 essentially the same functionality as S/MIME. PGP was created by Phil Zimmerman 

and implemented as a product first released in 1991. It was made available free of 

charge and became quite popular for personal use. The initial PGP protocol was 

proprietary and used some encryption algorithms with intellectual property restric-

tions. In 1996, version 5.x of PGP was defined in IETF RFC 1991, PGP Message 
Exchange Formats. Subsequently, OpenPGP was developed as a new standard 

protocol based on PGP version 5.x. OpenPGP is defined in RFC 4880 (OpenPGP 
Message Format, November 2007) and RFC 3156 (MIME Security with OpenPGP, 

August 2001).

There are two significant differences between S/MIME and OpenPGP:

 ■ Key Certification: S/MIME uses X.509 certificates that are issued by Certificate 

Authorities (or local agencies that have been delegated authority by a CA to 

issue certificates). In OpenPGP, users generate their own OpenPGP public 

and private keys and then solicit signatures for their public keys from individu-

als or organizations to which they are known. Whereas X.509 certificates are 

trusted if there is a valid PKIX chain to a trusted root, an OpenPGP public key 

is trusted if it is signed by another OpenPGP public key that is trusted by the 

recipient. This is called the Web-of-Trust.

 ■ Key Distribution: OpenPGP does not include the sender’s public key with 

each message, so it is necessary for recipients of OpenPGP messages to sepa-

rately obtain the sender’s public key in order to verify the message. Many 

 organizations post OpenPGP keys on TLS-protected websites: People who 

wish to verify digital signatures or send these organizations encrypted mail 
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need to manually download these keys and add them to their OpenPGP 

 clients. Keys may also be registered with the OpenPGP public key servers, 

which are servers that maintain a database of PGP public keys organized by 

email  address. Anyone may post a public key to the OpenPGP key servers, 

and that public key may contain any email address. There is no vetting of 

OpenPGP keys, so users must use the Web-of-Trust to decide whether to trust 

a given public key.

NIST 800-177 recommends the use of S/MIME rather than PGP because of 

the greater confidence in the CA system of verifying public keys.

Appendix P provides an overview of PGP.

 19.6 DNSSEC

DNS Security Extensions (DNSSEC) are used by several protocols that provide 

email security. This section provides a brief overview of the Domain Name System 

(DNS) and then looks at DNSSEC.

Domain Name System

DNS is a directory lookup service that provides a mapping between the name of a 

host on the Internet and its numeric IP address. DNS is essential to the functioning 

of the Internet. The DNS is used by MUAs and MTAs to find the address of the 

next hop server for mail delivery. Sending MTAs query DNS for the Mail Exchange 

Resource Record (MX RR) of the recipient’s domain (the right hand side of the 

“@” symbol) in order to find the receiving MTA to contact.

Four elements comprise the DNS:

 ■ Domain name space: DNS uses a tree-structured name space to identify 

 resources on the Internet.

 ■ DNS database: Conceptually, each node and leaf in the name space tree struc-

ture names a set of information (e.g., IP address, name server for this domain 

name) that is contained in resource record. The collection of all RRs is orga-

nized into a distributed database.

 ■ Name servers: These are server programs that hold information about a por-

tion of the domain name tree structure and the associated RRs.

 ■ Resolvers: These are programs that extract information from name servers in 

response to client requests. A typical client request is for an IP address corre-

sponding to a given domain name.

THE DNS DATABASE DNS is based on a hierarchical database containing resource 
records (RRs) that include the name, IP address, and other information about hosts. 

The key features of the database are as follows:

 ■ Variable-depth hierarchy for names: DNS allows essentially unlimited levels 

and uses the period (.) as the level delimiter in printed names, as described 

earlier.
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 ■ Distributed database: The database resides in DNS servers scattered through-

out the Internet.

 ■ Distribution controlled by the database: The DNS database is divided into 

thousands of separately managed zones, which are managed by  separate 

 administrators. Distribution and update of records is controlled by the  database 

software.

Using this database, DNS servers provide a name-to-address directory service 

for network applications that need to locate specific servers. For example, every 

time an email message is sent or a Web page is accessed, there must be a DNS name 

lookup to determine the IP address of the email server or Web server.

Table 19.6 lists the various types of resource records.

DNS OPERATION DNS operation typically includes the following steps (Figure 19.6):

1. A user program requests an IP address for a domain name.

2. A resolver module in the local host or local ISP queries a local name server in 

the same domain as the resolver.

3. The local name server checks to see if the name is in its local database or cache, 

and, if so, returns the IP address to the requestor. Otherwise, the name server 

queries other available name servers, if necessary going to the root server, as 

explained subsequently.

4. When a response is received at the local name server, it stores the name/ 

address mapping in its local cache and may maintain this entry for the amount 

of time specified in the time-to-live field of the retrieved RR.

5. The user program is given the IP address or an error message.

Type Description

A A host address. This RR type maps the name of a system to its IPv4 address. Some 

systems (e.g., routers) have multiple addresses, and there is a separate RR for each.

AAAA Similar to A type, but for IPv6 addresses.

CNAME Canonical name. Specifies an alias name for a host and maps this to the canonical 

(true) name.

HINFO Host information. Designates the processor and operating system used by the host.

MINFO Mailbox or mail list information. Maps a mailbox or mail list name to a host name.

MX Mail exchange. Identifies the system(s) via which mail to the queried domain name 

should be relayed.

NS Authoritative name server for this domain.

PTR Domain name pointer. Points to another part of the domain name space.

SOA Start of a zone of authority (which part of naming hierarchy is implemented). Includes 

parameters related to this zone.

SRV For a given service provides name of server or servers in domain that provide that service.

TXT Arbitrary text. Provides a way to add text comments to the database.

WKS Well-known services. May list the application services available at this host.

Table 19.6 Resource Record Types
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Figure 19.6 DNS Name Resolution
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The distributed DNS database that supports the DNS functionality must be 

updated frequently because of the rapid and continued growth of the Internet. 

Further, the DNS must cope with dynamic assignment of IP addresses, such as is 

done for home DSL users by their ISP. Accordingly, dynamic updating functions 

for DNS have been defined. In essence, DNS name servers automatically send out 

updates to other relevant name servers as conditions warrant.

DNS Security Extensions

DNSSEC provides end-to-end protection through the use of digital signatures that 

are created by responding zone administrators and verified by a recipient’s resolver 

software. In particular, DNSSEC avoids the need to trust intermediate name  servers 

and resolvers that cache or route the DNS records originating from the responding 

zone administrator before they reach the source of the query. DNSSEC consists of 

a set of new resource record types and modifications to the existing DNS protocol, 

and is defined in the following documents:

 ■ RFC 4033, DNS Security Introduction and Requirements: Introduces the 

DNS security extensions and describes their capabilities and limitations. The 

document also discusses the services that the DNS security extensions do and 

do not provide.

 ■ RFC 4034, Resource Records for the DNS Security Extensions: Defines four 

new resource records that provide security for DNS.
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 ■ RFC 4035, Protocol Modifications for the DNS Security Extensions: Defines 

the concept of a signed zone, along with the requirements for serving and 

 resolving by using DNSSEC. These techniques allow a security-aware resolver 

to authenticate both DNS resource records and authoritative DNS error 

indications.

DNSSEC OPERATION In essence, DNSSEC is designed to protect DNS clients 

from accepting forged or altered DNS resource records. It does this by using digital 

 signatures to provide:

 ■ Data origin authentication: Ensures that data has originated from the correct 

source.

 ■ Data integrity verification: Ensures that the content of a RR has not been 

modified.

The DNS zone administrator digitally signs every Resource Record set 

(RRset) in the zone, and publishes this collection of digital signatures, along with 

the zone administrator’s public key, in the DNS itself. In DNSSEC, trust in the pub-

lic key (for signature verification) of the source is established not by going to a third 

party or a chain of third parties (as in public key infrastructure [PKI] chaining), but 

by starting from a trusted zone (such as the root zone) and establishing the chain of 

trust down to the current source of response through successive verifications of sig-

nature of the public key of a child by its parent. The public key of the trusted zone 

is called the trust anchor.

RESOURCE RECORDS FOR DNSSEC RFC 4034 defines four new DNS resource 

records:

 ■ DNSKEY: Contains a public key.

 ■ RRSIG: A resource record digital signature.

 ■ NSEC: Authenticated denial of existence record.

 ■ DS: Delegation signer.

An RRSIG is associated with each RRset, where an RRset is the set of 

 resource records that have the same label, class, and type. When a client requests 

data, an RRset is returned, together with the associated digital signature in an 

RRSIG record. The client obtains the relevant DNSKEY public key and verifies 

the signature for this RRset.

DNSSEC depends on establishing the authenticity of the DNS hierarchy lead-

ing to the domain name in question, and thus its operation depends on beginning 

the use of cryptographic digital signatures in the root zone. The DS resource record 

facilitates key signing and authentication between DNS zones to create an authen-

tication chain, or trusted sequence of signed data, from the root of the DNS tree 

down to a specific domain name. To secure all DNS lookups, including those for 

non-existent domain names and record types, DNSSEC uses the NSEC resource 

record to authenticate negative responses to queries. NSEC is used to identify the 
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range of DNS names or resource record types that do not exist among the sequence 

of domain names in a zone.

 19.7 DNS-BASED AUTHENTICATION OF NAMED ENTITIES

DANE is a protocol to allow X.509 certificates, commonly used for Transport Layer 

Security (TLS), to be bound to DNS names using DNSSEC. It is proposed in RFC 

6698 as a way to authenticate TLS client and server entities without a certificate 

authority (CA).

The rationale for DANE is the vulnerability of the use of CAs in a global PKI 

system. Every browser developer and operating system supplier maintains a list of 

CA root certificates as trust anchors. These are called the software’s root certifi-

cates and are stored in its root certificate store. The PKIX procedure allows a cer-

tificate recipient to trace a certificate back to the root. So long as the root certificate 

remains trustworthy, and the authentication concludes successfully, the client can 

proceed with the connection.

However, if any of the hundreds of CAs operating on the Internet is compro-

mised, the effects can be widespread. The attacker can obtain the CA’s private key, 

get issued certificates under a false name, or introduce new bogus root certificates 

into a root certificate store. There is no limitation of scope for the global PKI and 

a compromise of a single CA damages the integrity of the entire PKI system. In 

 addition, some CAs have engaged in poor security practices. For example, some 

CAs have issued wildcard certificates that allow the holder to issue sub-certificates 

for any domain or entity, anywhere in the world.

The purpose of DANE is to replace reliance on the security of the CA system 

with reliance on the security provided by DNSSEC. Given that the DNS adminis-

trator for a domain name is authorized to give identifying information about the 

zone, it makes sense to allow that administrator to also make an authoritative bind-

ing between the domain name and a certificate that might be used by a host at that 

domain name.

TLSA Record

DANE defines a new DNS record type, TLSA, that can be used for a secure method 

of authenticating SSL/TLS certificates. The TLSA provides for:

 ■ Specifying constraints on which CA can vouch for a certificate, or which 

 specific PKIX end-entity certificate is valid.

 ■ Specifying that a service certificate or a CA can be directly authenticated in 

the DNS itself.

The TLSA RR enables certificate issue and delivery to be tied to a given 

 domain. A server domain owner creates a TLSA resource record that identifies the 

certificate and its public key. When a client receives an X.509 certificate in the TLS 

negotiation, it looks up the TLSA RR for that domain and matches the TLSA data 

against the certificate as part of the client’s certificate validation procedure.
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Figure 19.7 shows the format of a TLSA RR as it is transmitted to a request-

ing entity. It contains four fields. The Certificate Usage field defines four different 

usage models, to accommodate users who require different forms of authentication. 

The usage models are:

 ■ PKIX-TA (CA constraint): Specifies which CA should be trusted to authen-

ticate the certificate for the service. This usage model limits which CA can be 

used to issue certificates for a given service on a host. The server certificate 

chain must pass PKIX validation that terminates with a trusted root certificate 

stored in the client.

 ■ PKIX-EE (service certificate constraint): Defines which specific end entity 

service certificate should be trusted for the service. This usage model limits 

which end entity certificate can be used by a given service on a host. The server 

certificate chain must pass PKIX validation that terminates with a trusted root 

certificate stored in the client.

 ■ DANE-TA (trust anchor assertion): Specifies a domain-operated CA to be 

used as a trust anchor. This usage model allows a domain name administrator 

to specify a new trust anchor—for example, if the domain issues its own certifi-

cates under its own CA that is not expected to be in the end users’ collection 

of trust anchors. The server certificate chain is self-issued and does not need to 

verify against a trusted root stored in the client.

 ■ DANE-EE (domain-issued certificate): Specifies a domain-operated CA to 

be used as a trust anchor. This certificate usage allows a domain name admin-

istrator to issue certificates for a domain without involving a third-party CA. 

The server certificate chain is self-issued and does not need to verify against a 

trusted root stored in the client.

The first two usage models are designed to co-exist with and strengthen 

the  public CA system. The final two usage models operate without the use of 

public CAs.

The Selector field indicates whether the full certificate will be matched or just 

the value of the public key. The match is made between the certificate presented 

in TLS negotiation and the certificate in the TLSA RR. The Matching Type field 

indicates how the match of the certificate is made. The options are exact match, 

SHA-256 hash match, or SHA-512 hash match. The Certificate Association Data is 

the raw certificate data in hex format.

Figure 19.7 TLSA RR Transmission Format

Certificate usage Selector Matching type

Certificate association data

0Bit: 318 16 24
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Use of DANE for SMTP

DANE can be used in conjunction with SMTP over TLS, as provided by STARTTLS, 

to more fully secure email delivery. DANE can authenticate the certificate of the 

SMTP submission server that the user’s mail client (MUA) communicates with. It 

can also authenticate the TLS connections between SMTP servers (MTAs). The 

use of DANE with SMTP is documented in an Internet Draft (SMTP Security via 
Opportunistic DANE TLS, draft-ietf-dane-smtp-with-dane-19, May 29, 2015).

As discussed in Section 19.1, SMTP can use the STARTTLS extension to 

run SMTP over TLS, so that the entire email message plus SMTP envelope are 

encrypted. This is done opportunistically, that is, if both sides support STARTTLS. 

Even when TLS is used to provide confidentiality, it is vulnerable to attack in the 

following ways:

 ■ Attackers can strip away the TLS capability advertisement and downgrade the 

connection to not use TLS.

 ■ TLS connections are often unauthenticated (e.g., the use of self-signed certifi-

cates as well as mismatched certificates is common).

DANE can address both these vulnerabilities. A domain can use the presence 

of the TLSA RR as an indicator that encryption must be performed, thus prevent-

ing malicious downgrade. A domain can authenticate the certificate used in the TLS 

connection setup using a DNSSEC-signed TLSA RR.

Use of DNSSEC for S/MIME

DNSSEC can be used in conjunction with S/MIME to more fully secure email 

 delivery, in a manner similar to the DANE functionality. This use is documented in 

an Internet Draft (Using Secure DNS to Associate Certificates with Domain Names 
for S/MIME, draft-ietf-dane-smime-09, August 27, 2015), which proposes a new 

SMIMEA DNS RR. The purpose of the SMIMEA RR is to associate certificates 

with DNS domain names.

As discussed in Section 19.4, S/MIME messages often contain certificates 

that can assist in authenticating the message sender and can be used in encrypt-

ing messages sent in reply. This feature requires that the receiving MUA validate 

the  certificate associated with the purported sender. SMIMEA RRs can provide a 

 secure means of doing this validation.

In essence, the SMIMEA RR will have the same format and content as the 

TLSA RR, with the same functionality. The difference is that it is geared to the 

needs of MUAs in dealing with domain names as specified in email addresses in the 

message body, rather than domain names specified in the outer SMTP envelope.

 19.8 SENDER POLICY FRAMEWORK

SPF is the standardized way for a sending domain to identify and assert the mail 

senders for a given domain. The problem that SPF addresses is the following: With 

the current email infrastructure, any host can use any domain name for each of the 
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various identifiers in the mail header, not just the domain name where the host is 

located. Two major drawbacks of this freedom are:

 ■ It is a major obstacle to reducing unsolicited bulk email (UBE), also known as 

spam. It makes it difficult for mail handlers to filter out emails on the basis of 

known UBE sources.

 ■ ADMDs (see Section 19.1) are understandably concerned about the ease with 

which other entities can make use of their domain names, often with malicious 

intent.

RFC 7208 defines the SPF. It provides a protocol by which ADMDs can 

 authorize hosts to use their domain names in the “MAIL FROM” or “HELO” 

identities. Compliant ADMDs publish Sender Policy Framework (SPF) records in 

the DNS specifying which hosts are permitted to use their names, and compliant 

mail receivers use the published SPF records to test the authorization of sending 

Mail Transfer Agents (MTAs) using a given “HELO” or “MAIL FROM” identity 

 during a mail transaction.

SPF works by checking a sender’s IP address against the policy encoded in any 

SPF record found at the sending domain. The sending domain is the domain used 

in the SMTP connection, not the domain indicated in the message header as dis-

played in the MUA. This means that SPF checks can be applied before the message 

 content is received from the sender.

Figure 19.8 is an example in which SPF would come into play. Assume that the 

sender’s IP address is 192.168.0.1. The message arrives from the MTA with  domain 

mta.example.net. The sender uses the MAIL FROM tag of alice@example.org, 

 indicating that the message originates in the example.org domain. But the message 

header specifies alice.sender@example.net. The receiver uses SPF to query for the 

SPF RR that corresponds to example.com to check if the IP address 192.168.0.1 is 

S: 220 foo.com Simple Mail Transfer Service Ready

C: HELO mta.example.net

S: 250 OK

C: MAIL FROM:<alice@example.org>

S: 250 OK

C: RCPT TO:<Jones@foo.com>

S: 250 OK

C: DATA

S: 354 Start mail input; end with <crlf>.<crlf>

C: To: bob@foo.com

C: From: alice.sender@example.net

C: Date: Today

C: Subject: Meeting Today

 . . . 

Figure 19.8  Example in which SMTP Envelope Header Does 
Not Match Message Header

mailto:alice@example.org
mailto:alice.sender@example.net
mailto:alice@example.org
mailto:Jones@foo.com
mailto:bob@foo.com
mailto:alice.sender@example.net
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Tag Description

ip4 Specifies an IPv4 address or range of addresses that are authorized senders for 

a domain.

ip6 Specifies an IPv6 address or range of addresses that are authorized senders for 

a domain.

mx Asserts that the listed hosts for the Mail Exchange RRs are also valid senders for 

the domain.

include Lists another domain where the receiver should look for an SPF RR for further 

senders. This can be useful for large organizations with many domains or   

sub-domains that have a single set of shared senders. The include mechanism is 

recursive, in that the SPF check in the record found is tested in its entirety before 

proceeding. It is not simply a concatenation of the checks.

all Matches every IP address that has not otherwise been matched.

(a) SPF Mechanisms

Modifier Description

+ The given mechanism check must pass. This is the default mechanism and does not 

need to be explicitly listed.

- The given mechanism is not allowed to send email on behalf of the domain.

∼ The given mechanism is in transition and if an email is seen from the listed host/IP 

address, then it should be accepted but marked for closer inspection.

? The SPF RR explicitly states nothing about the mechanism. In this case, the default 

behavior is to accept the email. (This makes it equivalent to =+ > unless some sort of 

discrete or aggregate message review is conducted.)

(b) SPF Mechanism Modifiers

Table 19.7 Common SPF Mechanisms and Modifiers

listed as a valid sender, and then takes appropriate action based on the results of 

checking the RR.

SPF on the Sender Side

A sending domain needs to identify all the senders for a given domain and add 

that information into the DNS as a separate resource record. Next, the sending 

domain encodes the appropriate policy for each sender using the SPF syntax. The 

encoding is done in a TXT DNS resource record as a list of mechanisms and mod-

ifiers. Mechanisms are used to define an IP address or range of addresses to be 

matched, and modifiers indicate the policy for a given match. Table 19.7 lists the 

most  important mechanisms and modifiers used in SPF.

The SPF syntax is fairly complex and can express complex relationships 

 between senders. For more detail, see RFC 7208.

SPF on the Receiver Side

If SPF is implemented at a receiver, the SPF entity uses the SMTP envelope MAIL 

FROM: address domain and the IP address of the sender to query an SPF TXT RR. 

The SPF checks can be started before the body of the email message is received, 
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which may result in blocking the transmission of the email content. Alternatively, 

the entire message can be absorbed and buffered until all the checks are finished. 

In either case, checks must be completed before the mail message is sent to the end 

user’s inbox.

The checking involves the following rules:

1. If no SPF TXT RR is returned, the default behavior is to accept the message.

2. If the SPF TXT RR has formatting errors, the default behavior is to accept the 

message.

3. Otherwise the mechanisms and modifiers in the RR are used to determine 

disposition of the email message.

Figure 19.9 illustrates SPF operation.

 19.9 DOMAINKEYS IDENTIFIED MAIL

DomainKeys Identified Mail (DKIM) is a specification for cryptographically 

signing email messages, permitting a signing domain to claim responsibility for a 

message in the mail stream. Message recipients (or agents acting in their  behalf) 

can verify the signature by querying the signer’s domain directly to  retrieve the 

appropriate public key and thereby can confirm that the message was attested to 

by a party in possession of the private key for the signing domain. DKIM is an 

Internet Standard (RFC 6376: DomainKeys Identified Mail (DKIM) Signatures). 

DKIM has been widely adopted by a range of email providers, including 

 corporations, government agencies, gmail, Yahoo!, and many Internet Service 

Providers (ISPs).

Figure 19.9 Sender Policy Framework Operation
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Email Threats

RFC 4686 (Analysis of Threats Motivating DomainKeys Identified Mail) describes 

the threats being addressed by DKIM in terms of the characteristics, capabilities, 

and location of potential attackers.

CHARACTERISTICS RFC 4686 characterizes the range of attackers on a spectrum of 

three levels of threat.

1. At the low end are attackers who simply want to send email that a  recipient 

does not want to receive. The attacker can use one of a number of  commercially 

available tools that allow the sender to falsify the origin address of messages. 

This makes it difficult for the receiver to filter spam on the basis of originating 

address or domain.

2. At the next level are professional senders of bulk spam mail. These attackers 

often operate as commercial enterprises and send messages on behalf of third 

parties. They employ more comprehensive tools for attack, including Mail 

Transfer Agents (MTAs) and registered domains and networks of compro-

mised computers (zombies), to send messages and (in some cases) to harvest 

addresses to which to send.

3. The most sophisticated and financially motivated senders of messages are 

those who stand to receive substantial financial benefit, such as from an email-

based fraud scheme. These attackers can be expected to employ all of the 

above mechanisms and additionally may attack the Internet infrastructure 

 itself, including DNS cache-poisoning attacks and IP routing attacks.

CAPABILITIES RFC 4686 lists the following as capabilities that an attacker might 

have.

1. Submit messages to MTAs and Message Submission Agents (MSAs) at 

 multiple locations in the Internet.

2. Construct arbitrary Message Header fields, including those claiming to be 

mailing lists, resenders, and other mail agents.

3. Sign messages on behalf of domains under their control.

4. Generate substantial numbers of either unsigned or apparently signed 

 messages that might be used to attempt a denial-of-service attack.

5. Resend messages that may have been previously signed by the domain.

6. Transmit messages using any envelope information desired.

7. Act as an authorized submitter for messages from a compromised computer.

8. Manipulation of IP routing. This could be used to submit messages from 

 specific IP addresses or difficult-to-trace addresses, or to cause diversion of 

messages to a specific domain.

9. Limited influence over portions of DNS using mechanisms such as cache 

 poisoning. This might be used to influence message routing or to falsify adver-

tisements of DNS-based keys or signing practices.
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10. Access to significant computing resources, for example, through the conscrip-

tion of worm-infected “zombie” computers. This could allow the “bad actor” to 

perform various types of brute-force attacks.

11. Ability to eavesdrop on existing traffic, perhaps from a wireless network.

LOCATION DKIM focuses primarily on attackers located outside of the administra-

tive units of the claimed originator and the recipient. These administrative units 

frequently correspond to the protected portions of the network adjacent to the orig-

inator and recipient. It is in this area that the trust relationships required for authen-

ticated message submission do not exist and do not scale adequately to be practical. 

Conversely, within these administrative units, there are other mechanisms (such as 

authenticated message submission) that are easier to deploy and more likely to be 

used than DKIM. External bad actors are usually attempting to exploit the “any-to-

any” nature of email that motivates most recipient MTAs to accept messages from 

anywhere for delivery to their local domain. They may generate messages without 

signatures, with incorrect signatures, or with correct signatures from domains with 

little traceability. They may also pose as mailing lists, greeting cards, or other agents 

that legitimately send or resend messages on behalf of others.

DKIM Strategy

DKIM is designed to provide an email authentication technique that is transparent 

to the end user. In essence, a user’s email message is signed by a private key of the 

administrative domain from which the email originates. The signature covers all of 

the content of the message and some of the RFC 5322 message headers. At the 

 receiving end, the MDA can access the corresponding public key via a DNS and 

verify the signature, thus authenticating that the message comes from the claimed 

administrative domain. Thus, mail that originates from somewhere else but claims 

to come from a given domain will not pass the authentication test and can be 

 rejected. This approach differs from that of S/MIME and PGP, which use the origi-

nator’s private key to sign the content of the message. The motivation for DKIM is 

based on the following reasoning:2

1. S/MIME depends on both the sending and receiving users employing S/MIME. 

For almost all users, the bulk of incoming mail does not use S/MIME, and the 

bulk of the mail the user wants to send is to recipients not using S/MIME.

2. S/MIME signs only the message content. Thus, RFC 5322 header information 

concerning origin can be compromised.

3. DKIM is not implemented in client programs (MUAs) and is therefore trans-

parent to the user; the user need not take any action.

4. DKIM applies to all mail from cooperating domains.

5. DKIM allows good senders to prove that they did send a particular message 

and to prevent forgers from masquerading as good senders.

2 The reasoning is expressed in terms of the use of S/MIME. The same argument applies to PGP.
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Figure 19.10 Simple Example of DKIM Deployment
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Figure 19.10 is a simple example of the operation of DKIM. We begin with a 

message generated by a user and transmitted into the MHS to an MSA that is within 

the user’s administrative domain. An email message is generated by an email client 

program. The content of the message, plus selected RFC 5322 headers, is signed by 

the email provider using the provider’s private key. The signer is associated with a 

domain, which could be a corporate local network, an ISP, or a public email facility 

such as gmail. The signed message then passes through the Internet via a sequence 

of MTAs. At the destination, the MDA retrieves the public key for the incoming 

signature and verifies the signature before passing the message on to the destination 

email client. The default signing algorithm is RSA with SHA-256. RSA with SHA-1 

also may be used.

DKIM Functional Flow

Figure 19.11 provides a more detailed look at the elements of DKIM operation. 

Basic message processing is divided between a signing Administrative Management 

Domain (ADMD) and a verifying ADMD. At its simplest, this is between the origi-

nating ADMD and the delivering ADMD, but it can involve other ADMDs in the 

handling path.

Signing is performed by an authorized module within the signing ADMD 

and uses private information from a Key Store. Within the originating ADMD, 
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this might be performed by the MUA, MSA, or an MTA. Verifying is  performed 

by an authorized module within the verifying ADMD. Within a delivering 

ADMD, verifying might be performed by an MTA, MDA or MUA. The mod-

ule verifies the signature or determines whether a particular signature was 

 required. Verifying the signature uses public information from the Key Store. 

If the signature passes, reputation information is used to assess the signer and 

that information is passed to the message filtering system. If the signature fails 

or there is no signature using the author’s domain, information about signing 

practices related to the author can be retrieved remotely and/or locally, and that 

information is passed to the message filtering system. For example, if the sender 

(e.g., gmail) uses DKIM but no DKIM signature is present, then the message 

may be  considered fraudulent.

Figure 19.11 DKIM Functional Flow
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The signature is inserted into the RFC 5322 message as an additional header 

entry, starting with the keyword Dkim-Signature. You can view examples from your 

own incoming mail by using the View Long Headers (or similar wording) option for 

an incoming message. Here is an example:

Dkim-Signature: v=1; a=rsa-sha256; c=relaxed/relaxed;  
  d=gmail.com; s=gamma; h=domainkey- 
  signature:mime-version:received:date: 
  message-id:subject :from:to:content-type: 
  content-transfer-encoding; 
  bh=5mZvQDyCRuyLb1Y28K4zgS2MPOemFToDBgvbJ 
  7GO90s=; 
   b=PcUvPSDygb4ya5Dyj1rbZGp/VyRiScuaz7TTG 

J5qW5slM+klzv6kcfYdGDHzEVJW+Z 
  FetuPfF1ETOVhELtwH0zjSccOyPkEiblOf6gILO
  bm3DDRm3Ys1/FVrbhVOlA+/jH9Aei 
  uIIw/5iFnRbSH6qPDVv/beDQqAWQfA/wF7O5k=

Before a message is signed, a process known as canonicalization is performed 

on both the header and body of the RFC 5322 message. Canonicalization is necessary 

to deal with the possibility of minor changes in the message made en route, includ-

ing character encoding, treatment of trailing white space in message lines, and the 

“folding” and “unfolding” of header lines. The intent of canonicalization is to make a 

minimal transformation of the message (for the purpose of signing; the message itself 

is not changed, so the canonicalization must be performed again by the verifier) that 

will give it its best chance of producing the same canonical value at the receiving end. 

DKIM defines two header canonicalization algorithms (“simple” and “relaxed”) and 

two for the body (with the same names). The simple algorithm tolerates almost no 

modification, while the relaxed algorithm tolerates common modifications.

The signature includes a number of fields. Each field begins with a tag consist-

ing of a tag code followed by an equals sign and ends with a semicolon. The fields 

include the following:

 ■ v= DKIM version/

 ■ a= Algorithm used to generate the signature; must be either rsa-sha1 or 

rsa-sha256

 ■ c= Canonicalization method used on the header and the body.

 ■ d= A domain name used as an identifier to refer to the identity of a responsible 

person or organization. In DKIM, this identifier is called the Signing Domain 

IDentifier (SDID). In our example, this field indicates that the sender is using 

a gmail address.

 ■ s= In order that different keys may be used in different circumstances for the 

same signing domain (allowing expiration of old keys, separate departmen-

tal signing, or the like), DKIM defines a selector (a name associated with a 

key) that is used by the verifier to retrieve the proper key during signature 

verification.



654  CHAPTER 19 / ELECTRONIC MAIL SECURITY

 ■ h= Signed Header fields. A colon-separated list of header field names that 

identify the header fields presented to the signing algorithm. Note that in our 

example above, the signature covers the domainkey-signature field. This refers 

to an older algorithm (since replaced by DKIM) that is still in use.

 ■ bh= The hash of the canonicalized body part of the message. This provides 

 additional information for diagnosing signature verification failures.

 ■ b= The signature data in base64 format; this is the encrypted hash code.

 19.10  DOMAIN-BASED MESSAGE AUTHENTICATION, 
REPORTING, AND CONFORMANCE

Domain-Based Message Authentication, Reporting, and Conformance (DMARC) 

 allows email senders to specify policy on how their mail should be handled, the 

types of reports that receivers can send back, and the frequency those reports 

should be sent. It is defined in RFC 7489 (Domain-based Message Authentication, 
Reporting, and Conformance, March 2015).

DMARC works with SPF and DKIM. SPF and DKM enable senders to advise 

receivers, via DNS, whether mail purporting to come from the sender is valid, and 

whether it should be delivered, flagged, or discarded. However, neither SPF nor 

DKIM include a mechanism to tell receivers if SPF or DKIM are in use, nor do they 

have feedback mechanism to inform senders of the effectiveness of the anti-spam 

techniques. For example, if a message arrives at a receiver without a DKIM signa-

ture, DKIM provides no mechanism to allow the receiver to learn if the message is 

authentic but was sent from a sender that did not implement DKIM, or if the mes-

sage is a spoof. DMARC addresses these issues essentially by standardizing how 

email receivers perform email authentication using SPF and DKIM mechanisms.

Identifier Alignment

DKIM, SPF, and DMARC authenticate various aspects of an individual mes-

sage. DKIM authenticates the domain that affixed a signature to the message. SPF 

 focuses on the SMTP envelope, defined in RFC 5321. It can authenticate either the 

domain that appears in the MAIL FROM portion of the SMTP envelope or the 

HELO domain, or both. These may be different domains, and they are typically not 

visible to the end user.

DMARC authentication deals with the From domain in the message header, 

as defined in RFC 5322. This field is used as the central identity of the DMARC 

mechanism because it is a required message header field and therefore guaranteed 

to be present in compliant messages, and most MUAs represent the RFC 5322 From 

field as the originator of the message and render some or all of this header field’s 

content to end users. The email address in this field is the one used by end users to 

identify the source of the message and therefore is a prime target for abuse.

DMARC requires that From address match (be aligned with) an Authenticated 

Identifier from DKIM or SPF. In the case of DKIM, the match is made between 

the DKIM signing domain and the From domain. In the case of SPF, the match is 

 between the SPF-authenticated domain and the From domain.
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DMARC on the Sender Side

A mail sender that uses DMARC must also use SPF or DKIM, or both. The sender 

posts a DMARC policy in the DNS that advises receivers on how to treat messages 

that purport to originate from the sender’s domain. The policy is in the form of 

a DNS TXT resource record. The sender also needs to establish email addresses 

to receive aggregate and forensic reports. As these email addresses are published 

unencrypted in the DNS TXT RR, they are easily discovered, leaving the poster 

subject to unsolicited bulk email. Thus, the poster of the DNS TXT RR needs to 

employ some kind of abuse countermeasures.

Similar to SPF and DKIM, the DMARC policy in the TXT RR is encoded 

in a series of tag=value pairs separated by semicolons. Table 19.8 describes the 

common tags.

Once the DMARC RR is posted, messages from the sender are typically 

 processed as follows:

1. The domain owner constructs an SPF policy and publishes it in its DNS 

 database. The domain owner also configures its system for DKIM  signing. 

Finally, the domain owner publishes via the DNS a DMARC message- handling 

policy.

2. The author generates a message and hands the message to the domain owner’s 

designated mail submission service.

3. The submission service passes relevant details to the DKIM signing module in 

order to generate a DKIM signature to be applied to the message.

4. The submission service relays the now-signed message to its designated trans-

port service for routing to its intended recipient(s).

DMARC on the Receiver Side

A message generated on the sender side may pass through other relays but even-

tually arrives at a receiver’s transport service. The typical processing order for 

DMARC on the receiving side is the following:

1. The receiver performs standard validation tests, such as checking against IP 

blocklists and domain reputation lists, as well as enforcing rate limits from a 

particular source.

2. The receiver extracts the RFC 5322 From address from the message. This must 

contain a single, valid address or else the mail is refused as an error.

3. The receiver queries for the DMARC DNS record based on the sending do-

main. If none exists, terminate DMARC processing.

4. The receiver performs DKIM signature checks. If more than one DKIM signa-

ture exists in the message, one must verify.

5. The receiver queries for the sending domain’s SPF record and performs SPF 

validation checks.

6. The receiver conducts Identifier Alignment checks between the RFC 5321 

From and the results of the SPF and DKIM records (if present).



656  CHAPTER 19 / ELECTRONIC MAIL SECURITY

Tag (Name) Description

v= (Version) Version field that must be present as the first element. By default the value is 

always DMARC1.

p= (Policy) Mandatory policy field. May take values none or quarantine or reject. This 

allows for a gradually tightening policy where the sender domain recommends 

no specific action on mail that fails DMARC checks (p= none), through treating 

failed mail as suspicious (p= quarantine),  to rejecting all failed mail  

(p= reject),  preferably at the SMTP transaction stage.

aspf= (SPF Policy) Values are r (default) for relaxed and s for strict SPF domain enforcement. Strict 

alignment requires an exact match between the From address domain and the 

(passing) SPF check must exactly match the MailFrom address (HELO address). 

Relaxed requires that only the From and MailFrom address domains be in 

alignment. For example, the MailFrom address domain smtp.example.org and the 

From address announce@example.org are in alignment, but not a strict match.

adkim= (DKIM 

Policy)

Optional. Values are r (default) for relaxed and s for strict DKIM domain 

enforcement. Strict alignment requires an exact match between the From 

domain in the message header and the DKIM domain presented in the  

(d= DKIM), tag. Relaxed requires only that the domain part is in alignment 

(as in aspf).

fo= (Failure reporting 

options)

Optional. Ignore if a ruf argument is not also present. Value 0 indicates the 

receiver should generate a DMARC failure report if all underlying mechanisms 

fail to produce an aligned pass result. Value 1 means generate a DMARC failure 

report if any underlying mechanism produces something other than an aligned 

pass result. Other possible values are d (generate a DKIM failure report if a 

signature failed evaluation), and s (generate an SPF failure report if the message 

failed SPF evaluation). These values are not exclusive and may be combined.

ruf= Optional, but requires the fo argument to be present. Lists a series of URIs 

(currently just mailto:<emailaddress>) that list where to send forensic feedback 

reports. This is for reports on message-specific failures.

rua= Optional list of URIs (like in ruf= , using the mailto: URI) listing where to 

send aggregate feedback back to the sender. These reports are sent based on the 

interval requested using the ri= option with a default of 86400 seconds if not 

listed.

ri= (Reporting interval) Optional with the default value of 86400 seconds. The value listed is the 

reporting interval desired by the sender.

pct= (Percent) Optional with the default value of 100. Expresses the percentage of a sender’s 

mail that should be subject to the given DMARC policy. This allows senders to 

ramp up their policy enforcement gradually and prevent having to commit to a 

rigorous policy before getting feedback on their existing policy.

sp= (Receiver Policy) Optional with a default value of none. Other values include the same range 

of values as the p= argument. This is the policy to be applied to mail from all 

identified subdomains of the given DMARC RR.

Table 19.8 DMARC Tag and Value Descriptions

7. The results of these steps are passed to the DMARC module along with the 

Author’s domain. The DMARC module attempts to retrieve a policy from the 

DNS for that domain. If none is found, the DMARC module determines the 

 organizational domain and repeats the attempt to retrieve a policy from the DNS.

8. If a policy is found, it is combined with the Author’s domain and the SPF and 

DKIM results to produce a DMARC policy result (a “pass” or “fail”) and can 

optionally cause one of two kinds of reports to be generated.

mailto:announce@example.org
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Figure 19.12 DMARC Functional Flow
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9. Recipient transport service either delivers the message to the recipient inbox 

or takes other local policy action based on the DMARC result.

10. When requested, Recipient transport service collects data from the message 

delivery session to be used in providing feedback.

Figure 19.12, based on one at DMARC.org, summarizes the sending and 

 receiving functional flow.
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DMARC Reports

DMARC reporting provides the sender’s feedback on their SPF, DKIM, Identifier 

Alignment, and message disposition policies, which enable the sender to make 

these policies more effective. Two types of reports are sent: aggregate reports and 

forensic reports.

Aggregate reports are sent by receivers periodically and include aggregate 

 figures for successful and unsuccessful message authentications, including:

 ■ The sender’s DMARC policy for that interval.

 ■ The message disposition by the receiver (i.e., delivered, quarantined, rejected).

 ■ SPF result for a given SPF identifier.

 ■ DKIM result for a given DKIM identifier.

 ■ Whether identifiers are in alignment or not.

 ■ Results classified by sender subdomain.

 ■ The sending and receiving domain pair.

 ■ The policy applied, and whether this is different from the policy requested.

 ■ The number of successful authentications.

 ■ Totals for all messages received.

This information enables the sender to identify gaps in email infrastruc-

ture and policy. SP 800-177 recommends that a sending domain begin by setting 

a DMARC policy of p= none, so that the ultimate disposition of a message that 

fails some check is determined by the receiver’s local policy. As DMARC aggregate 

reports are collected, the sender will have a quantitatively better assessment of the 

extent to which the sender’s email is authenticated by outside receivers, and will 

be able to set a policy of p=reject, indicating that any message that fails the SPF, 

DKIM, and alignment checks really should be rejected. From their own traffic anal-

ysis, receivers can develop a determination of whether a sender’s p=reject policy is 

sufficiently trustworthy to act on.

A forensic report helps the sender refine the component SPF and DKIM 

mechanisms as well as alerting the sender that their domain is being used as part 

of a phishing/spam campaign. Forensic reports are similar in format to aggregation 

reports, with these changes:

 ■ Receivers include as much of the message and message header as is reason-

able to allow the domain to investigate the failure. Add an Identity-Alignment 

field, with DKIM and SPF DMARC-method fields as appropriate.

 ■ Optionally add a Delivery-Result field.

 ■ Add DKIM Domain, DKIM Identity, and DKIM selector fields, if the message 

was DKIM signed. Optionally also add DKIM Canonical header and body 

fields.

 ■ Add an additional DMARC authentication failure type, for use when some 

authentication mechanisms fail to produce aligned identifiers.
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 19.11  KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms 

administrative management 

domain (ADMD)

base64

Cryptographic Message 

Syntax (CMS)

detached signature

DNS-based Authentication of 

Named Entities (DANE)

DNS Security Extensions 

(DNSSEC)

Domain-based Message 

Authentication, Reporting, 

and Conformance 

(DMARC)

Domain Name System (DNS)

DomainKeys Identified Mail 

(DKIM)

electronic mail

Internet Mail Access Protocol 

(IMAP)

Mail Delivery Agent (MDA)

Mail Submission Agent 

(MSA)

Message Handling Service 

(MHS)

Message Store

Message Transfer Agents 

(MTA)

Message User Agent (MUA)

Multipurpose Internet Mail 

Extensions (MIME)

Post Office Protocol (POP3)

Pretty Good Privacy (PGP)

Sender Policy Framework 

(SPF)

session key

Simple Mail Transfer Protocol 

(SMTP)

STARTTLS

SUBMISSION

S/MIME

trust

Review Questions 
 19.1 What types of interoperability issues are involved in internet mail architecture and 

how are they handled?

 19.2 What are the SMTP and MIME standards?

 19.3 What is the difference between a MIME content type and a MIME transfer encoding?

 19.4 Briefly explain base64 encoding.

 19.5 Why is base64 conversion useful for an email application?

 19.6 What is S/MIME?

 19.7 What are the four principal services provided by S/MIME?

 19.8 What is the utility of a detached signature?

 19.9 What is DKIM?

Problems 
 19.1 The character sequence “<CR><LF>.<CR><LF>” indicates the end of mail data to a 

SMTP-server. What happens if the mail data itself contains that character sequence?

 19.2 What are POP3 and IMAP?

 19.3 If a lossless compression algorithm, such as ZIP, is used with S/MIME, why is it pref-
erable to generate a signature before applying compression?

 19.4 Before the deployment of the Domain Name System, a simple text file (HOSTS.
TXT) centrally maintained at the SRI Network Information Center was used to 
 enable mapping between host names and addresses. Each host connected to the 
Internet had to have an updated local copy of it to be able to use host names instead 
of having to cope directly with their IP addresses. Discuss the main advantages of the 
DNS over the old centralized HOSTS.TXT system.

 19.5 For this problem and the next few, consult Appendix P. In Figure P.2, each entry in 
the public-key ring contains an Owner Trust field that indicates the degree of trust 
 associated with this public-key owner. Why is that not enough? That is, if this owner 
is trusted and this is supposed to be the owner’s public key, why is that trust not 
enough to permit PGP to use this public key?
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 19.6 What is the basic difference between X.509 and PGP in terms of key hierarchies and 
key trust?

 19.7 In PGP, what is the expected number of session keys generated before a previously 
created key is produced?

 19.8 A PGP user may have multiple public keys. So that a recipient knows which public 
key is being used by a sender, a key ID, consisting of the least significant 64 bits of the 
public key, is sent with the message. What is the probability that a user with N public 
keys will have at least one duplicate key ID?

 19.9 The first 16 bits of the message digest in a PGP signature are translated in the clear. 
This enables the recipient to determine if the correct public key was used to decrypt 
the message digest by comparing this plaintext copy of the first two octets with the 
first two octets of the decrypted digest.
a. To what extent does this compromise the security of the hash algorithm?
b. To what extent does it in fact perform its intended function, namely, to help deter-

mine if the correct RSA key was used to decrypt the digest?

 19.10 Consider base64 conversion as a form of encryption. In this case, there is no key. But 
suppose that an opponent knew only that some form of substitution algorithm was 
being used to encrypt English text and did not guess that it was base64. How effective 
would this algorithm be against cryptanalysis?

 19.11 Encode the text “ciphertext” using the following techniques. Assume characters are 
stored in 8-bit ASCII with zero parity.
a. base64
b. Quoted-printable

 19.12 Use a 2 * 2 matrix to categorize the properties of the four certificate usage models in 
DANE.
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There are application-specific security mechanisms for a number of application 

areas, including electronic mail (S/MIME, PGP), client/server (Kerberos), Web ac-

cess (Secure Sockets Layer), and others. However, users have security concerns that 

cut across protocol layers. For example, an enterprise can run a secure, private IP 

network by disallowing links to untrusted sites, encrypting packets that leave the 

premises, and authenticating packets that enter the premises. By implementing se-

curity at the IP level, an organization can ensure secure networking not only for 

applications that have security mechanisms but also for the many security-ignorant 

applications.

IP-level security encompasses three functional areas: authentication, confiden-

tiality, and key management. The authentication mechanism assures that a received 

packet was, in fact, transmitted by the party identified as the source in the packet 

header. In addition, this mechanism assures that the packet has not been altered in 

transit. The confidentiality facility enables communicating nodes to encrypt messages 

to prevent eavesdropping by third parties. The key management facility is concerned 

with the secure exchange of keys.

We begin this chapter with an overview of IP security (IPsec) and an introduc-

tion to the IPsec architecture. We then look at each of the three functional areas in 

detail. Appendix L reviews Internet protocols.

 20.1 IP SECURITY OVERVIEW

In 1994, the Internet Architecture Board (IAB) issued a report titled “Security in 

the Internet Architecture” (RFC 1636). The report identified key areas for security 

mechanisms. Among these were the need to secure the network infrastructure from 

LEARNING OBJECTIVES

After studying this chapter, you should be able to:

 ◆ Present an overview of IP security (IPsec).

 ◆ Explain the difference between transport mode and tunnel mode.

 ◆ Understand the concept of security association.

 ◆ Explain the difference between the security association database and the 

security policy database.

 ◆ Summarize the traffic processing functions performed by IPsec for out-

bound packets and for inbound packets.

 ◆ Present an overview of Encapsulating Security Payload.

 ◆ Discuss the alternatives for combining security associations.

 ◆ Present an overview of Internet Key Exchange.

 ◆ Summarize the alternative cryptographic suites approved for use with IPsec.
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unauthorized monitoring and control of network traffic and the need to secure end-

user-to-end-user traffic using authentication and encryption mechanisms.

To provide security, the IAB included authentication and encryption as nec-

essary security features in the next-generation IP, which has been issued as IPv6. 

Fortunately, these security capabilities were designed to be usable both with the 

current IPv4 and the future IPv6. This means that vendors can begin offering these 

features now, and many vendors now do have some IPsec capability in their prod-

ucts. The IPsec specification now exists as a set of Internet standards.

Applications of IPsec

IPsec provides the capability to secure communications across a LAN, across pri-

vate and public WANs, and across the Internet. Examples of its use include:

 ■ Secure branch office connectivity over the Internet: A company can build a 

secure virtual private network over the Internet or over a public WAN. This 

enables a business to rely heavily on the Internet and reduce its need for pri-

vate networks, saving costs and network management overhead.

 ■ Secure remote access over the Internet: An end user whose system is equipped 

with IP security protocols can make a local call to an Internet Service Provider 

(ISP) and gain secure access to a company network. This reduces the cost of 

toll charges for traveling employees and telecommuters.

 ■ Establishing extranet and intranet connectivity with partners: IPsec can be 

used to secure communication with other organizations, ensuring authentica-

tion and confidentiality and providing a key exchange mechanism.

 ■ Enhancing electronic commerce security: Even though some Web and elec-

tronic commerce applications have built-in security protocols, the use of IPsec 

enhances that security. IPsec guarantees that all traffic designated by the net-

work administrator is both encrypted and authenticated, adding an additional 

layer of security to whatever is provided at the application layer.

The principal feature of IPsec that enables it to support these varied applica-

tions is that it can encrypt and/or authenticate all traffic at the IP level. Thus, all dis-

tributed applications (including remote logon, client/server, email, file transfer, Web 

access, and so on) can be secured. Figure 20.1a shows a simplified packet format for 

an IPsec option known as tunnel mode, described subsequently. Tunnel mode makes 

use of an IPsec function, a combined authentication/encryption  function called 

Encapsulating Security Payload (ESP), and a key exchange function. For VPNs, 

both authentication and encryption are generally desired, because it is important 

both to (1) assure that unauthorized users do not penetrate the VPN, and (2) assure 

that eavesdroppers on the Internet cannot read messages sent over the VPN.

Figure 20.1b is a typical scenario of IPsec usage. An organization maintains 

LANs at dispersed locations. Nonsecure IP traffic is conducted on each LAN. For 

traffic offsite, through some sort of private or public WAN, IPsec protocols are used. 

These protocols operate in networking devices, such as a router or firewall, that 

connect each LAN to the outside world. The IPsec networking device will  typically 

encrypt all traffic going into the WAN and decrypt traffic coming from the WAN; 

these operations are transparent to workstations and servers on the LAN. Secure 
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transmission is also possible with individual users who dial into the WAN. Such user 

workstations must implement the IPsec protocols to provide security.

Benefits of IPsec

Some of the benefits of IPsec:

 ■ When IPsec is implemented in a firewall or router, it provides strong security 

that can be applied to all traffic crossing the perimeter. Traffic within a com-

pany or workgroup does not incur the overhead of security-related processing.

Figure 20.1 An IPSec VPN Scenario
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 ■ IPsec in a firewall is resistant to bypass if all traffic from the outside must use 

IP and the firewall is the only means of entrance from the Internet into the 

organization.

 ■ IPsec is below the transport layer (TCP, UDP) and so is transparent to appli-

cations. There is no need to change software on a user or server system when 

IPsec is implemented in the firewall or router. Even if IPsec is implemented in 

end systems, upper-layer software, including applications, is not affected.

 ■ IPsec can be transparent to end users. There is no need to train users on secu-

rity mechanisms, issue keying material on a per-user basis, or revoke keying 

material when users leave the organization.

 ■ IPsec can provide security for individual users if needed. This is useful for off-

site workers and for setting up a secure virtual subnetwork within an organiza-

tion for sensitive applications.

Routing Applications

In addition to supporting end users and protecting premises systems and networks, 

IPsec can play a vital role in the routing architecture required for internetworking. 

[HUIT98] lists the following examples of the use of IPsec. IPsec can assure that

 ■ A router advertisement (a new router advertises its presence) comes from an 

authorized router.

 ■ A neighbor advertisement (a router seeks to establish or maintain a neighbor 

relationship with a router in another routing domain) comes from an autho-

rized router.

 ■ A redirect message comes from the router to which the initial IP packet was sent.

 ■ A routing update is not forged.

Without such security measures, an opponent can disrupt communications 

or divert some traffic. Routing protocols such as Open Shortest Path First (OSPF) 

should be run on top of security associations between routers that are defined by 

IPsec.

IPsec Documents

IPsec encompasses three functional areas: authentication, confidentiality, and key 

management. The totality of the IPsec specification is scattered across dozens of 

RFCs and draft IETF documents, making this the most complex and difficult to 

grasp of all IETF specifications. The best way to grasp the scope of IPsec is to 

consult the latest version of the IPsec document roadmap, which as of this writ-

ing is RFC 6071 [IP Security (IPsec) and Internet Key Exchange (IKE) Document 
Roadmap, February 2011]. The documents can be categorized into the following 

groups.

 ■ Architecture: Covers the general concepts, security requirements, definitions, 

and mechanisms defining IPsec technology. The current specification is RFC 

4301, Security Architecture for the Internet Protocol.
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 ■ Authentication Header (AH): AH is an extension header to provide mes-

sage authentication. The current specification is RFC 4302, IP Authentication 
Header. Because message authentication is provided by ESP, the use of 

AH is deprecated. It is included in IPsecv3 for backward compatibility 

but should not be used in new applications. We do not discuss AH in this 

chapter.

 ■ Encapsulating Security Payload (ESP): ESP consists of an encapsulat-

ing header and trailer used to provide encryption or combined encryption/ 

authentication. The current specification is RFC 4303, IP Encapsulating 
Security Payload (ESP).

 ■ Internet Key Exchange (IKE): This is a collection of documents describing 

the key management schemes for use with IPsec. The main specification is 

RFC 7296, Internet Key Exchange (IKEv2) Protocol, but there are a number 

of  related RFCs.

 ■ Cryptographic algorithms: This category encompasses a large set of docu-

ments that define and describe cryptographic algorithms for encryption, mes-

sage authentication, pseudorandom functions (PRFs), and cryptographic key 

exchange.

 ■ Other: There are a variety of other IPsec-related RFCs, including those deal-

ing with security policy and management information base (MIB) content.

IPsec Services

IPsec provides security services at the IP layer by enabling a system to select 

 required security protocols, determine the algorithm(s) to use for the service(s), 

and put in place any cryptographic keys required to provide the requested  services. 

Two protocols are used to provide security: an authentication protocol designated 

by the header of the protocol, Authentication Header (AH); and a combined 

 encryption/authentication protocol designated by the format of the packet for 

that protocol, Encapsulating Security Payload (ESP). RFC 4301 lists the following 

services:

 ■ Access control

 ■ Connectionless integrity

 ■ Data origin authentication

 ■ Rejection of replayed packets (a form of partial sequence integrity)

 ■ Confidentiality (encryption)

 ■ Limited traffic flow confidentiality

Transport and Tunnel Modes

Both AH and ESP support two modes of use: transport and tunnel mode. The oper-

ation of these two modes is best understood in the context of a description of ESP, 

which is covered in Section 20.3. Here we provide a brief overview.
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TRANSPORT MODE Transport mode provides protection primarily for upper-layer 

protocols. That is, transport mode protection extends to the payload of an IP 

packet.1 Examples include a TCP or UDP segment or an ICMP packet, all of which 

operate directly above IP in a host protocol stack. Typically, transport mode is used 

for end-to-end communication between two hosts (e.g., a client and a server, or two 

workstations). When a host runs AH or ESP over IPv4, the payload is the data that 

normally follow the IP header. For IPv6, the payload is the data that normally fol-

low both the IP header and any IPv6 extensions headers that are present, with the 

possible exception of the destination options header, which may be included in the 

protection.

ESP in transport mode encrypts and optionally authenticates the IP payload 

but not the IP header. AH in transport mode authenticates the IP payload and 

 selected portions of the IP header.

TUNNEL MODE Tunnel mode provides protection to the entire IP packet. To achieve 

this, after the AH or ESP fields are added to the IP packet, the entire packet plus 

security fields is treated as the payload of new outer IP packet with a new outer 

IP header. The entire original, inner, packet travels through a tunnel from one 

point of an IP network to another; no routers along the way are able to examine 

the inner IP header. Because the original packet is encapsulated, the new, larger 

packet may have totally different source and destination addresses, adding to the 

security. Tunnel mode is used when one or both ends of a security association (SA) 

are a security gateway, such as a firewall or router that implements IPsec. With tun-

nel mode, a number of hosts on networks behind firewalls may engage in secure 

communications without implementing IPsec. The unprotected packets generated 

by such hosts are tunneled through external networks by tunnel mode SAs set up 

by the IPsec software in the firewall or secure router at the boundary of the local 

network.

Here is an example of how tunnel mode IPsec operates. Host A on a network 

generates an IP packet with the destination address of host B on another network. 

This packet is routed from the originating host to a firewall or secure router at the 

boundary of A’s network. The firewall filters all outgoing packets to determine the 

need for IPsec processing. If this packet from A to B requires IPsec, the firewall 

performs IPsec processing and encapsulates the packet with an outer IP header. 

The source IP address of this outer IP packet is this firewall, and the destination 

address may be a firewall that forms the boundary to B’s local network. This packet 

is now routed to B’s firewall, with intermediate routers examining only the outer IP 

header. At B’s firewall, the outer IP header is stripped off, and the inner packet is 

delivered to B.

ESP in tunnel mode encrypts and optionally authenticates the entire inner IP 

packet, including the inner IP header. AH in tunnel mode authenticates the entire 

inner IP packet and selected portions of the outer IP header.

Table 20.1 summarizes transport and tunnel mode functionality.

1In this chapter, the term IP packet refers to either an IPv4 datagram or an IPv6 packet.
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 20.2 IP SECURITY POLICY

Fundamental to the operation of IPsec is the concept of a security policy  applied 

to each IP packet that transits from a source to a destination. IPsec policy is 

 determined primarily by the interaction of two databases, the security association 
 database (SAD) and the security policy database (SPD). This section provides an 

overview of these two databases and then summarizes their use during IPsec opera-

tion. Figure 20.2 illustrates the relevant relationships.

Security Associations

A key concept that appears in both the authentication and confidentiality mecha-

nisms for IP is the security association (SA). An association is a one-way logical 

connection between a sender and a receiver that affords security services to the traf-

fic carried on it. If a peer relationship is needed for two-way secure exchange, then 

two security associations are required.

A security association is uniquely identified by three parameters.

 ■ Security Parameters Index (SPI): A 32-bit unsigned integer assigned to this 

SA and having local significance only. The SPI is carried in AH and ESP head-

ers to enable the receiving system to select the SA under which a received 

packet will be processed.

 ■ IP Destination Address: This is the address of the destination endpoint of the 

SA, which may be an end-user system or a network system such as a firewall 

or router.

 ■ Security Protocol Identifier: This field from the outer IP header indicates 

whether the association is an AH or ESP security association.

Hence, in any IP packet, the security association is uniquely identified by the 

Destination Address in the IPv4 or IPv6 header and the SPI in the enclosed exten-

sion header (AH or ESP).

Transport Mode SA Tunnel Mode SA

AH Authenticates IP payload and selected 

portions of IP header and IPv6 

extension headers.

Authenticates entire inner IP packet (inner 

header plus IP payload) plus selected portions 

of outer IP header and outer IPv6 extension 

headers.

ESP Encrypts IP payload and any IPv6 

extension headers following the ESP 

header.

Encrypts entire inner IP packet.

ESP with 

Authentication

Encrypts IP payload and any IPv6 

extension headers following the ESP 

header. Authenticates IP payload but 

not IP header.

Encrypts entire inner IP packet. Authenticates 

inner IP packet.

Table 20.1 Tunnel Mode and Transport Mode Functionality
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Security Association Database

In each IPsec implementation, there is a nominal2 Security Association Database 

that defines the parameters associated with each SA. A security association is nor-

mally defined by the following parameters in an SAD entry.

 ■ Security Parameter Index: A 32-bit value selected by the receiving end of an 

SA to uniquely identify the SA. In an SAD entry for an outbound SA, the SPI 

is used to construct the packet’s AH or ESP header. In an SAD entry for an 

inbound SA, the SPI is used to map traffic to the appropriate SA.

 ■ Sequence Number Counter: A 32-bit value used to generate the Sequence 

Number field in AH or ESP headers, described in Section 20.3 (required for all 

implementations).

 ■ Sequence Counter Overflow: A flag indicating whether overflow of the 

Sequence Number Counter should generate an auditable event and prevent 

further transmission of packets on this SA (required for all implementations).

 ■ Anti-Replay Window: Used to determine whether an inbound AH or ESP 

packet is a replay, described in Section 20.3 (required for all implementations).

 ■ AH Information: Authentication algorithm, keys, key lifetimes, and related 

parameters being used with AH (required for AH implementations).

 ■ ESP Information: Encryption and authentication algorithm, keys, initialization 

values, key lifetimes, and related parameters being used with ESP  (required 

for ESP implementations).

 ■ Lifetime of this Security Association: A time interval or byte count after 

which an SA must be replaced with a new SA (and new SPI) or terminated, 

plus an indication of which of these actions should occur (required for all 

implementations).

2Nominal in the sense that the functionality provided by a Security Association Database must be present 
in any IPsec implementation, but the way in which that functionality is provided is up to the implementer.

Figure 20.2 IPsec Architecture
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 ■ IPsec Protocol Mode: Tunnel, transport, or wildcard.

 ■ Path MTU: Any observed path maximum transmission unit (maximum size of 

a packet that can be transmitted without fragmentation) and aging variables 

(required for all implementations).

The key management mechanism that is used to distribute keys is coupled to 

the authentication and privacy mechanisms only by way of the Security Parameters 

Index (SPI). Hence, authentication and privacy have been specified independent of 

any specific key management mechanism.

IPsec provides the user with considerable flexibility in the way in which IPsec 

services are applied to IP traffic. As we will see later, SAs can be combined in a 

number of ways to yield the desired user configuration. Furthermore, IPsec pro-

vides a high degree of granularity in discriminating between traffic that is afforded 

IPsec protection and traffic that is allowed to bypass IPsec, as in the former case 

relating IP traffic to specific SAs.

Security Policy Database

The means by which IP traffic is related to specific SAs (or no SA in the case of traffic 

allowed to bypass IPsec) is the nominal Security Policy Database (SPD). In its simplest 

form, an SPD contains entries, each of which defines a subset of IP traffic and points 

to an SA for that traffic. In more complex environments, there may be multiple entries 

that potentially relate to a single SA or multiple SAs associated with a single SPD 

entry. The reader is referred to the relevant IPsec documents for a full discussion.

Each SPD entry is defined by a set of IP and upper-layer protocol field values, 

called selectors. In effect, these selectors are used to filter outgoing traffic in order 

to map it into a particular SA. Outbound processing obeys the following general 

sequence for each IP packet.

1. Compare the values of the appropriate fields in the packet (the selector fields) 

against the SPD to find a matching SPD entry, which will point to zero or more SAs.

2. Determine the SA if any for this packet and its associated SPI.

3. Do the required IPsec processing (i.e., AH or ESP processing).

The following selectors determine an SPD entry:

 ■ Remote IP Address: This may be a single IP address, an enumerated list or 

range of addresses, or a wildcard (mask) address. The latter two are required to 

support more than one destination system sharing the same SA (e.g., behind 

a firewall).

 ■ Local IP Address: This may be a single IP address, an enumerated list or range 

of addresses, or a wildcard (mask) address. The latter two are required to sup-

port more than one source system sharing the same SA (e.g., behind a firewall).

 ■ Next Layer Protocol: The IP protocol header (IPv4, IPv6, or IPv6 Extension) 

includes a field (Protocol for IPv4, Next Header for IPv6 or IPv6 Extension) 

that designates the protocol operating over IP. This is an individual protocol 

number, ANY, or for IPv6 only, OPAQUE. If AH or ESP is used, then this IP 

protocol header immediately precedes the AH or ESP header in the packet.
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 ■ Name: A user identifier from the operating system. This is not a field in the IP 

or upper-layer headers but is available if IPsec is running on the same operat-

ing system as the user.

 ■ Local and Remote Ports: These may be individual TCP or UDP port values, an 

enumerated list of ports, or a wildcard port.

Table 20.2 provides an example of an SPD on a host system (as opposed to 

a network system such as a firewall or router). This table reflects the following 

configuration: A local network configuration consists of two networks. The basic 

corporate network configuration has the IP network number 1.2.3.0/24. The local 

configuration also includes a secure LAN, often known as a DMZ, that is identified 

as 1.2.4.0/24. The DMZ is protected from both the outside world and the rest of the 

corporate LAN by firewalls. The host in this example has the IP address 1.2.3.10, 

and it is authorized to connect to the server 1.2.4.10 in the DMZ.

The entries in the SPD should be self-explanatory. For example, UDP port 

500 is the designated port for IKE. Any traffic from the local host to a remote host 

for purposes of an IKE exchange bypasses the IPsec processing.

IP Traffic Processing

IPsec is executed on a packet-by-packet basis. When IPsec is implemented, each 

outbound IP packet is processed by the IPsec logic before transmission, and each 

inbound packet is processed by the IPsec logic after reception and before passing 

the packet contents on to the next higher layer (e.g., TCP or UDP). We look at the 

logic of these two situations in turn.

OUTBOUND PACKETS Figure 20.3 highlights the main elements of IPsec processing 

for outbound traffic. A block of data from a higher layer, such as TCP, is passed 

down to the IP layer and an IP packet is formed, consisting of an IP header and an 

IP body. Then the  following steps occur:

1. IPsec searches the SPD for a match to this packet.

2. If no match is found, then the packet is discarded and an error message is generated.

Protocol Local IP Port Remote IP Port Action Comment

UDP 1.2.3.101 500 * 500 BYPASS IKE

ICMP 1.2.3.101 * * * BYPASS Error messages

* 1.2.3.101 * 1.2.3.0/24 * PROTECT: ESP 

intransport-mode

Encrypt intranet traffic

TCP 1.2.3.101 * 1.2.4.10 80 PROTECT: ESP 

intransport-mode

Encrypt to server

TCP 1.2.3.101 * 1.2.4.10 443 BYPASS TLS: avoid double encryption

* 1.2.3.101 * 1.2.4.0/24 * DISCARD Others in DMZ

* 1.2.3.101 * * * BYPASS Internet

Table 20.2 Host SPD Example
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3. If a match is found, further processing is determined by the first matching 

entry in the SPD. If the policy for this packet is DISCARD, then the packet is 

discarded. If the policy is BYPASS, then there is no further IPsec processing; 

the packet is forwarded to the network for transmission.

4. If the policy is PROTECT, then a search is made of the SAD for a matching 

entry. If no entry is found, then IKE is invoked to create an SA with the ap-

propriate keys and an entry is made in the SA.

5. The matching entry in the SAD determines the processing for this packet. 

Either encryption, authentication, or both can be performed, and either trans-

port or tunnel mode can be used. The packet is then forwarded to the network 

for transmission.

INBOUND PACKETS Figure 20.4 highlights the main elements of IPsec processing for 

inbound traffic. An incoming IP packet triggers the IPsec processing. The following 

steps occur:

1. IPsec determines whether this is an unsecured IP packet or one that has ESP 

or AH headers/trailers, by examining the IP Protocol field (IPv4) or Next 

Header field (IPv6).

Figure 20.3 Processing Model for Outbound Packets
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2. If the packet is unsecured, IPsec searches the SPD for a match to this packet. 

If the first matching entry has a policy of BYPASS, the IP header is processed 

and stripped off and the packet body is delivered to the next higher layer, such 

as TCP. If the first matching entry has a policy of PROTECT or DISCARD, or 

if there is no matching entry, the packet is discarded.

3. For a secured packet, IPsec searches the SAD. If no match is found, the packet 

is discarded. Otherwise, IPsec applies the appropriate ESP or AH processing. 

Then, the IP header is processed and stripped off and the packet body is deliv-

ered to the next higher layer, such as TCP.

 20.3 ENCAPSULATING SECURITY PAYLOAD

ESP can be used to provide confidentiality, data origin authentication, connection-

less integrity, an anti-replay service (a form of partial sequence integrity), and (lim-

ited) traffic flow confidentiality. The set of services provided depends on options 

selected at the time of Security Association (SA) establishment and on the location 

of the implementation in a network topology.

ESP can work with a variety of encryption and authentication algorithms, in-

cluding authenticated encryption algorithms such as GCM.

Figure 20.4 Processing Model for Inbound Packets
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ESP Format

Figure 20.5a shows the top-level format of an ESP packet. It contains the following fields.

 ■ Security Parameters Index (32 bits): Identifies a security association.

 ■ Sequence Number (32 bits): A monotonically increasing counter value; this 

provides an anti-replay function, as discussed for AH.

 ■ Payload Data (variable): This is a transport-level segment (transport mode) or 

IP packet (tunnel mode) that is protected by encryption.

 ■ Padding (0–255 bytes): The purpose of this field is discussed later.

 ■ Pad Length (8 bits): Indicates the number of pad bytes immediately preceding 

this field.

 ■ Next Header (8 bits): Identifies the type of data contained in the payload data 

field by identifying the first header in that payload (e.g., an extension header 

in IPv6, or an upper-layer protocol such as TCP).

 ■ Integrity Check Value (variable): A variable-length field (must be an integral 

number of 32-bit words) that contains the Integrity Check Value computed 

over the ESP packet minus the Authentication Data field.

Figure 20.5 ESP Packet Format
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When any combined mode algorithm is employed, the algorithm itself is ex-

pected to return both decrypted plaintext and a pass/fail indication for the integrity 

check. For combined mode algorithms, the ICV that would normally appear at the 

end of the ESP packet (when integrity is selected) may be omitted. When the ICV 

is omitted and integrity is selected, it is the responsibility of the combined mode 

algorithm to encode within the Payload Data an ICV-equivalent means of verifying 

the integrity of the packet.

Two additional fields may be present in the payload (Figure 20.5b). 

An  initialization value (IV), or nonce, is present if this is required by the encryption 

or authenticated encryption algorithm used for ESP. If tunnel mode is being used, 

then the IPsec implementation may add traffic flow confidentiality (TFC) padding 

after the Payload Data and before the Padding field, as explained subsequently.

Encryption and Authentication Algorithms

The Payload Data, Padding, Pad Length, and Next Header fields are encrypted by 

the ESP service. If the algorithm used to encrypt the payload requires cryptographic 

synchronization data, such as an initialization vector (IV), then these data may be 

carried explicitly at the beginning of the Payload Data field. If included, an IV is 

usually not encrypted, although it is often referred to as being part of the ciphertext.

The ICV field is optional. It is present only if the integrity service is selected 

and is provided by either a separate integrity algorithm or a combined mode algo-

rithm that uses an ICV. The ICV is computed after the encryption is performed. 

This order of processing facilitates rapid detection and rejection of replayed or 

bogus packets by the receiver prior to decrypting the packet, hence potentially re-

ducing the impact of denial of service (DoS) attacks. It also allows for the possibility 

of parallel processing of packets at the receiver that is decryption can take place in 

parallel with integrity checking. Note that because the ICV is not protected by en-

cryption, a keyed integrity algorithm must be employed to compute the ICV.

Padding

The Padding field serves several purposes:

 ■ If an encryption algorithm requires the plaintext to be a multiple of some 

number of bytes (e.g., the multiple of a single block for a block cipher), the 

Padding field is used to expand the plaintext (consisting of the Payload Data, 

Padding, Pad Length, and Next Header fields) to the required length.

 ■ The ESP format requires that the Pad Length and Next Header fields be right 

aligned within a 32-bit word. Equivalently, the ciphertext must be an integer 

multiple of 32 bits. The Padding field is used to assure this alignment.

 ■ Additional padding may be added to provide partial traffic-flow confidential-

ity by concealing the actual length of the payload.

Anti-Replay Service

A replay attack is one in which an attacker obtains a copy of an authenticated 

packet and later transmits it to the intended destination. The receipt of duplicate, 

authenticated IP packets may disrupt service in some way or may have some other 
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undesired consequence. The Sequence Number field is designed to thwart such at-

tacks. First, we discuss sequence number generation by the sender, and then we 

look at how it is processed by the recipient.

When a new SA is established, the sender initializes a sequence number 

 counter to 0. Each time that a packet is sent on this SA, the sender increments the 

counter and places the value in the Sequence Number field. Thus, the first value to 

be used is 1. If anti-replay is enabled (the default), the sender must not allow the 

sequence number to cycle past 232 - 1 back to zero. Otherwise, there would be mul-

tiple valid packets with the same sequence number. If the limit of 232 - 1 is reached, 

the sender should terminate this SA and negotiate a new SA with a new key.

Because IP is a connectionless, unreliable service, the protocol does not guar-

antee that packets will be delivered in order and does not guarantee that all packets 

will be delivered. Therefore, the IPsec authentication document dictates that the 

receiver should implement a window of size W, with a default of W = 64. The right 

edge of the window represents the highest sequence number, N, so far received for a 

valid packet. For any packet with a sequence number in the range from N - W + 1 

to N that has been correctly received (i.e., properly authenticated), the correspond-

ing slot in the window is marked (Figure 20.6). Inbound processing proceeds as fol-

lows when a packet is received:

1. If the received packet falls within the window and is new, the MAC is checked. 

If the packet is authenticated, the corresponding slot in the window is marked.

2. If the received packet is to the right of the window and is new, the MAC is 

checked. If the packet is authenticated, the window is advanced so that this 

sequence number is the right edge of the window, and the corresponding slot 

in the window is marked.

3. If the received packet is to the left of the window or if authentication fails, the 

packet is discarded; this is an auditable event.

Transport and Tunnel Modes

Figure 20.7 shows two ways in which the IPsec ESP service can be used. In the upper 

part of the figure, encryption (and optionally authentication) is provided directly be-

tween two hosts. Figure 20.7b shows how tunnel mode operation can be used to set up 

Figure 20.6 Anti-replay Mechanism
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a virtual private network. In this example, an organization has four private networks 

interconnected across the Internet. Hosts on the internal networks use the Internet 

for transport of data but do not interact with other Internet-based hosts. By terminat-

ing the tunnels at the security gateway to each internal network, the configuration al-

lows the hosts to avoid implementing the security capability. The former technique is 

supported by a transport mode SA, while the latter technique uses a tunnel mode SA.

In this section, we look at the scope of ESP for the two modes. The consid-

erations are somewhat different for IPv4 and IPv6. We use the packet formats of 

Figure 20.8a as a starting point.

TRANSPORT MODE ESP Transport mode ESP is used to encrypt and optionally au-

thenticate the data carried by IP (e.g., a TCP segment), as shown in Figure 20.8b. 

For this mode using IPv4, the ESP header is inserted into the IP packet immedi-

ately prior to the transport-layer header (e.g., TCP, UDP, ICMP), and an ESP 

trailer (Padding, Pad Length, and Next Header fields) is placed after the IP packet. 

If authentication is selected, the ESP Authentication Data field is added after the 

ESP trailer. The entire transport-level segment plus the ESP trailer are encrypted. 

Authentication covers all of the ciphertext plus the ESP header.

In the context of IPv6, ESP is viewed as an end-to-end payload; that is, it is 

not examined or processed by intermediate routers. Therefore, the ESP header ap-

pears after the IPv6 base header and the hop-by-hop, routing, and fragment exten-

sion headers. The destination options extension header could appear before or after 

the ESP header, depending on the semantics desired. For IPv6, encryption covers 

Figure 20.7 Transport-Mode versus Tunnel-Mode Encryptionx
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the entire transport-level segment plus the ESP trailer plus the destination options 

extension header if it occurs after the ESP header. Again, authentication covers the 

ciphertext plus the ESP header.

Transport mode operation may be summarized as follows.

1. At the source, the block of data consisting of the ESP trailer plus the entire 

transport-layer segment is encrypted and the plaintext of this block is replaced 

Figure 20.8 Scope of ESP Encryption and Authentication

Orig IP
hdr

Hop-by-hop, dest,
routing, fragmentIPv6

Orig IP
hdrIPv4

New IP
hdrIPv4

(b) Transport Mode

New IP
hdr

Ext
headersIPv6

authenticated
encrypted

authenticated
encrypted

authenticated
encrypted

authenticated
encrypted

(c) Tunnel Mode

Orig IP
hdr

Ext
headers TCP Data

ESP
trlr

ESP
auth

ESP
hdr

ESP
auth

Orig IP
hdr TCP Data

ESP
trlr

ESP
auth

ESP
hdr

Dest TCP Data

TCP Data

ESP
trlr

ESP
auth

ESP
trlr

ESP
hdr

ESP
hdr

Orig IP
hdr

Extension headers
(if present) TCP DataIPv6

Orig IP
hdr TCP DataIPv4

(a) Before Applying ESP



20.3 / ENCAPSULATING SECURITY PAYLOAD 679

with its ciphertext to form the IP packet for transmission. Authentication is 

added if this option is selected.

2. The packet is then routed to the destination. Each intermediate router needs 

to examine and process the IP header plus any plaintext IP extension headers 

but does not need to examine the ciphertext.

3. The destination node examines and processes the IP header plus any plaintext 

IP extension headers. Then, on the basis of the SPI in the ESP header, the 

destination node decrypts the remainder of the packet to recover the plaintext 

transport-layer segment.

Transport mode operation provides confidentiality for any application that 

uses it, thus avoiding the need to implement confidentiality in every individual ap-

plication. One drawback to this mode is that it is possible to do traffic analysis on 

the transmitted packets.

TUNNEL MODE ESP Tunnel mode ESP is used to encrypt an entire IP packet (Figure 

20.8c). For this mode, the ESP header is prefixed to the packet and then the packet 

plus the ESP trailer is encrypted. This method can be used to counter traffic analysis.

Because the IP header contains the destination address and possibly source 

routing directives and hop-by-hop option information, it is not possible simply to 

transmit the encrypted IP packet prefixed by the ESP header. Intermediate routers 

would be unable to process such a packet. Therefore, it is necessary to encapsulate 

the entire block (ESP header plus ciphertext plus Authentication Data, if present) 

with a new IP header that will contain sufficient information for routing but not for 

traffic analysis.

Whereas the transport mode is suitable for protecting connections between 

hosts that support the ESP feature, the tunnel mode is useful in a configuration that 

includes a firewall or other sort of security gateway that protects a trusted network 

from external networks. In this latter case, encryption occurs only between an exter-

nal host and the security gateway or between two security gateways. This relieves 

hosts on the internal network of the processing burden of encryption and simplifies 

the key distribution task by reducing the number of needed keys. Further, it thwarts 

traffic analysis based on ultimate destination.

Consider a case in which an external host wishes to communicate with a host 

on an internal network protected by a firewall, and in which ESP is implemented 

in the external host and the firewalls. The following steps occur for transfer of a 

transport-layer segment from the external host to the internal host.

1. The source prepares an inner IP packet with a destination address of the target 

internal host. This packet is prefixed by an ESP header; then the packet and 

ESP trailer are encrypted and Authentication Data may be added. The result-

ing block is encapsulated with a new IP header (base header plus optional ex-

tensions such as routing and hop-by-hop options for IPv6) whose destination 

address is the firewall; this forms the outer IP packet.

2. The outer packet is routed to the destination firewall. Each intermediate 

router needs to examine and process the outer IP header plus any outer IP 

extension headers but does not need to examine the ciphertext.
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3. The destination firewall examines and processes the outer IP header plus any 

outer IP extension headers. Then, on the basis of the SPI in the ESP header, the 

destination node decrypts the remainder of the packet to recover the plaintext 

inner IP packet. This packet is then transmitted in the internal network.

4. The inner packet is routed through zero or more routers in the internal net-

work to the destination host.

Figure 20.9 shows the protocol architecture for the two modes.

Figure 20.9 Protocol Operation for ESP
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 20.4 COMBINING SECURITY ASSOCIATIONS

An individual SA can implement either the AH or ESP protocol but not both. 

Sometimes a particular traffic flow will call for the services provided by both AH 

and ESP. Further, a particular traffic flow may require IPsec services between hosts 

and, for that same flow, separate services between security gateways, such as fire-

walls. In all of these cases, multiple SAs must be employed for the same traffic flow 

to achieve the desired IPsec services. The term security association bundle refers to 

a sequence of SAs through which traffic must be processed to provide a desired set 

of IPsec services. The SAs in a bundle may terminate at different endpoints or at 

the same endpoints.

Security associations may be combined into bundles in two ways:

 ■ Transport adjacency: Refers to applying more than one security protocol to 

the same IP packet without invoking tunneling. This approach to combining 

AH and ESP allows for only one level of combination; further nesting yields 

no added benefit since the processing is performed at one IPsec instance: the 

(ultimate) destination.

 ■ Iterated tunneling: Refers to the application of multiple layers of security pro-

tocols effected through IP tunneling. This approach allows for multiple levels 

of nesting, since each tunnel can originate or terminate at a different IPsec site 

along the path.

The two approaches can be combined, for example, by having a transport SA be-

tween hosts travel part of the way through a tunnel SA between security gateways.

One interesting issue that arises when considering SA bundles is the order in 

which authentication and encryption may be applied between a given pair of end-

points and the ways of doing so. We examine that issue next. Then we look at com-

binations of SAs that involve at least one tunnel.

Authentication Plus Confidentiality

Encryption and authentication can be combined in order to transmit an IP packet 

that has both confidentiality and authentication between hosts. We look at several 

approaches.

ESP WITH AUTHENTICATION OPTION This approach is illustrated in Figure 20.8. 

In this approach, the user first applies ESP to the data to be protected and then 

 appends the authentication data field. There are actually two subcases:

 ■ Transport mode ESP: Authentication and encryption apply to the IP payload 

delivered to the host, but the IP header is not protected.

 ■ Tunnel mode ESP: Authentication applies to the entire IP packet delivered 

to the outer IP destination address (e.g., a firewall), and authentication is per-

formed at that destination. The entire inner IP packet is protected by the pri-

vacy mechanism for delivery to the inner IP destination.

For both cases, authentication applies to the ciphertext rather than the plaintext.
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TRANSPORT ADJACENCY Another way to apply authentication after encryption is to 

use two bundled transport SAs, with the inner being an ESP SA and the outer being 

an AH SA. In this case, ESP is used without its authentication option. Because the 

inner SA is a transport SA, encryption is applied to the IP payload. The resulting 

packet consists of an IP header (and possibly IPv6 header extensions) followed by 

an ESP. AH is then applied in transport mode, so that authentication covers the 

ESP plus the original IP header (and extensions) except for mutable fields. The 

advantage of this approach over simply using a single ESP SA with the ESP authen-

tication option is that the authentication covers more fields, including the source 

and destination IP addresses. The disadvantage is the overhead of two SAs versus 

one SA.

TRANSPORT-TUNNEL BUNDLE The use of authentication prior to encryption might 

be preferable for several reasons. First, because the authentication data are pro-

tected by encryption, it is impossible for anyone to intercept the message and alter 

the authentication data without detection. Second, it may be desirable to store the 

authentication information with the message at the destination for later reference. 

It is more convenient to do this if the authentication information applies to the un-

encrypted message; otherwise the message would have to be reencrypted to verify 

the authentication information.

One approach to applying authentication before encryption between two hosts 

is to use a bundle consisting of an inner AH transport SA and an outer ESP tunnel 

SA. In this case, authentication is applied to the IP payload plus the IP header (and 

extensions) except for mutable fields. The resulting IP packet is then processed in 

tunnel mode by ESP; the result is that the entire, authenticated inner packet is en-

crypted and a new outer IP header (and extensions) is added.

Basic Combinations of Security Associations

The IPsec Architecture document lists four examples of combinations of SAs that 

must be supported by compliant IPsec hosts (e.g., workstation, server) or security 

gateways (e.g., firewall, router). These are illustrated in Figure 20.10. The lower 

part of each case in the figure represents the physical connectivity of the elements; 

the upper part represents logical connectivity via one or more nested SAs. Each SA 

can be either AH or ESP. For host-to-host SAs, the mode may be either transport 

or tunnel; otherwise it must be tunnel mode.

Case 1. All security is provided between end systems that implement IPsec. 

For any two end systems to communicate via an SA, they must share the appropri-

ate secret keys. Among the possible combinations are

a. AH in transport mode

b. ESP in transport mode

c. ESP followed by AH in transport mode (an ESP SA inside an AH SA)

d. Any one of a, b, or c inside an AH or ESP in tunnel mode

We have already discussed how these various combinations can be used to 

support authentication, encryption, authentication before encryption, and authenti-

cation after encryption.
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Case 2. Security is provided only between gateways (routers, firewalls, etc.) 

and no hosts implement IPsec. This case illustrates simple virtual private network 

support. The security architecture document specifies that only a single tunnel SA is 

needed for this case. The tunnel could support AH, ESP, or ESP with the authenti-

cation option. Nested tunnels are not required, because the IPsec services apply to 

the entire inner packet.

Case 3. This builds on case 2 by adding end-to-end security. The same combi-

nations discussed for cases 1 and 2 are allowed here. The gateway-to-gateway tun-

nel provides either authentication, confidentiality, or both for all traffic between 

end systems. When the gateway-to-gateway tunnel is ESP, it also provides a limited 

form of traffic confidentiality. Individual hosts can implement any additional IPsec 

services required for given applications or given users by means of end-to-end SAs.

Case 4. This provides support for a remote host that uses the Internet to reach 

an organization’s firewall and then to gain access to some server or workstation 

behind the firewall. Only tunnel mode is required between the remote host and the 

firewall. As in case 1, one or two SAs may be used between the remote host and the 

local host.

 20.5 INTERNET KEY EXCHANGE

The key management portion of IPsec involves the determination and distribution 

of secret keys. A typical requirement is four keys for communication between two 

applications: transmit and receive pairs for both integrity and confidentiality. The 

IPsec Architecture document mandates support for two types of key management:

 ■ Manual: A system administrator manually configures each system with its own 

keys and with the keys of other communicating systems. This is practical for 

small, relatively static environments.

 ■ Automated: An automated system enables the on-demand creation of keys for 

SAs and facilitates the use of keys in a large distributed system with an evolv-

ing configuration.

The default automated key management protocol for IPsec is referred to as 

ISAKMP/Oakley and consists of the following elements:

 ■ Oakley Key Determination Protocol: Oakley is a key exchange protocol based 

on the Diffie–Hellman algorithm but providing added security. Oakley is ge-

neric in that it does not dictate specific formats.

 ■ Internet Security Association and Key Management Protocol (ISAKMP): 
ISAKMP provides a framework for Internet key management and provides 

the specific protocol support, including formats, for negotiation of security 

attributes.

ISAKMP by itself does not dictate a specific key exchange algorithm; rather, 

ISAKMP consists of a set of message types that enable the use of a variety of key 

exchange algorithms. Oakley is the specific key exchange algorithm mandated for 

use with the initial version of ISAKMP.
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In IKEv2, the terms Oakley and ISAKMP are no longer used, and there 

are significant differences from the use of Oakley and ISAKMP in IKEv1. 

Nevertheless, the basic functionality is the same. In this section, we describe the 

IKEv2 specification.

Key Determination Protocol

IKE key determination is a refinement of the Diffie–Hellman key exchange algo-

rithm. Recall that Diffie–Hellman involves the following interaction between users 

A and B. There is prior agreement on two global parameters: q, a large prime num-

ber; and a, a primitive root of q. A selects a random integer XA as its private key and 

transmits to B its public key ΥA = aXA mod q. Similarly, B selects a random integer 

XB as its private key and transmits to A its public key ΥB = aXB mod q. Each side 

can now compute the secret session key:

 K = (ΥB)XA mod q = (ΥA)XB mod q = aXAXB mod q 

The Diffie–Hellman algorithm has two attractive features:

 ■ Secret keys are created only when needed. There is no need to store secret 

keys for a long period of time, exposing them to increased vulnerability.

 ■ The exchange requires no pre-existing infrastructure other than an agreement 

on the global parameters.

However, there are a number of weaknesses to Diffie–Hellman, as pointed out in 

[HUIT98].

 ■ It does not provide any information about the identities of the parties.

 ■ It is subject to a man-in-the-middle attack, in which a third party C imperson-

ates B while communicating with A and impersonates A while communicating 

with B. Both A and B end up negotiating a key with C, which can then listen to 

and pass on traffic. The man-in-the-middle attack proceeds as

1. B sends his public key YB in a message addressed to A (see Figure 10.2).

2. The enemy (E) intercepts this message. E saves B’s public key and sends a 

message to A that has B’s User ID but E’s public key YE. This message is 

sent in such a way that it appears as though it was sent from B’s host system. 

A receives E’s message and stores E’s public key with B’s User ID. Similarly, 

E sends a message to B with E’s public key, purporting to come from A.

3. B computes a secret key K1 based on B’s private key and YE. A computes 

a secret key K2 based on A’s private key and YE. E computes K1 using E’s 

secret key XE and YB and computers K2 using XE and YA.

4. From now on, E is able to relay messages from A to B and from B to A, 

appropriately changing their encipherment en route in such a way that nei-

ther A nor B will know that they share their communication with E.

 ■ It is computationally intensive. As a result, it is vulnerable to a clogging attack, 

in which an opponent requests a high number of keys. The victim spends con-

siderable computing resources doing useless modular exponentiation rather 

than real work.
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IKE key determination is designed to retain the advantages of Diffie–Hellman, 

while countering its weaknesses.

FEATURES OF IKE KEY DETERMINATION The IKE key determination algorithm is 

characterized by five important features:

1. It employs a mechanism known as cookies to thwart clogging attacks.

2. It enables the two parties to negotiate a group; this, in essence, specifies the 

global parameters of the Diffie–Hellman key exchange.

3. It uses nonces to ensure against replay attacks.

4. It enables the exchange of Diffie–Hellman public key values.

5. It authenticates the Diffie–Hellman exchange to thwart man-in-the-middle 

attacks.

We have already discussed Diffie–Hellman. Let us look at the remainder of 

these elements in turn. First, consider the problem of clogging attacks. In this at-

tack, an opponent forges the source address of a legitimate user and sends a public 

Diffie–Hellman key to the victim. The victim then performs a modular exponentia-

tion to compute the secret key. Repeated messages of this type can clog the vic-

tim’s system with useless work. The cookie exchange requires that each side send 

a pseudorandom number, the cookie, in the initial message, which the other side 

acknowledges. This acknowledgment must be repeated in the first message of the 

Diffie–Hellman key exchange. If the source address was forged, the opponent gets 

no answer. Thus, an opponent can only force a user to generate acknowledgments 

and not to perform the Diffie–Hellman calculation.

IKE mandates that cookie generation satisfy three basic requirements:

1. The cookie must depend on the specific parties. This prevents an attacker from 

obtaining a cookie using a real IP address and UDP port and then using it to 

swamp the victim with requests from randomly chosen IP addresses or ports.

2. It must not be possible for anyone other than the issuing entity to generate 

cookies that will be accepted by that entity. This implies that the issuing entity 

will use local secret information in the generation and subsequent verification 

of a cookie. It must not be possible to deduce this secret information from any 

particular cookie. The point of this requirement is that the issuing entity need 

not save copies of its cookies, which are then more vulnerable to discovery, but 

can verify an incoming cookie acknowledgment when it needs to.

3. The cookie generation and verification methods must be fast to thwart attacks 

intended to sabotage processor resources.

The recommended method for creating the cookie is to perform a fast hash 

(e.g., MD5) over the IP Source and Destination addresses, the UDP Source and 

Destination ports, and a locally generated secret value.

IKE key determination supports the use of different groups for the Diffie–

Hellman key exchange. Each group includes the definition of the two global pa-

rameters and the identity of the algorithm. The current specification includes the 

following groups.
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 ■ Modular exponentiation with a 768-bit modulus

q = 2768 - 2704 - 1 + 264 * (:2638 * p; + 149686)

a = 2

 ■ Modular exponentiation with a 1024-bit modulus

q = 21024 - 2960 - 1 + 264 * (:2894 * p; + 129093)

a = 2

 ■ Modular exponentiation with a 1536-bit modulus

 ■ Parameters to be determined

 ■ Elliptic curve group over 2155

 ■ Generator (hexadecimal): X = 7B, Y = 1C8

 ■ Elliptic curve parameters (hexadecimal): A = 0, Y = 7338F

 ■ Elliptic curve group over 2185

 ■ Generator (hexadecimal): X = 18, Y = D

 ■ Elliptic curve parameters (hexadecimal): A = 0, Y = 1EE9

The first three groups are the classic Diffie–Hellman algorithm using modular 

exponentiation. The last two groups use the elliptic curve analog to Diffie–Hellman, 

which was described in Chapter 10.

IKE key determination employs nonces to ensure against replay attacks. Each 

nonce is a locally generated pseudorandom number. Nonces appear in responses 

and are encrypted during certain portions of the exchange to secure their use.

Three different authentication methods can be used with IKE key determination:

 ■ Digital signatures: The exchange is authenticated by signing a mutually ob-

tainable hash; each party encrypts the hash with its private key. The hash is 

generated over important parameters, such as user IDs and nonces.

 ■ Public-key encryption: The exchange is authenticated by encrypting param-

eters such as IDs and nonces with the sender’s private key.

 ■ Symmetric-key encryption: A key derived by some out-of-band mechanism 

can be used to authenticate the exchange by symmetric encryption of ex-

change parameters.

IKEV2 EXCHANGES The IKEv2 protocol involves the exchange of messages 

in pairs. The first two pairs of exchanges are referred to as the initial exchanges 

(Figure  20.11a). In the first exchange, the two peers exchange information concern-

ing cryptographic algorithms and other security parameters they are willing to use 

along with nonces and Diffie–Hellman (DH) values. The result of this exchange is to 

set up a special SA called the IKE SA (see Figure 20.2). This SA defines parameters 

for a secure channel between the peers over which subsequent message exchanges 

take place. Thus, all subsequent IKE message exchanges are protected by encryp-

tion and message authentication. In the second exchange, the two parties authenti-

cate one another and set up a first IPsec SA to be placed in the SADB and used for 
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Figure 20.11 IKEv2 Exchanges

HDR, SAi1, KEi, Ni

ResponderInitiator

(a) Initial exchanges

HDR, SAr1, KEr, Nr, [CERTREQ]

HDR, SK {IDi, [CERT,] [CERTREQ,] [IDr,] AUTH, SAi2, TSi, TSr}

HDR, SK {IDr, [CERT,] AUTH, SAr2, TSi, TSr}

HDR, SK {[N], SA, Ni, [KEi], [TSi, TSr]}

(b) CREATE_CHILD_SA exchange

HDR, SK {SA, Nr, [KEr], [TSi, TSr]}

HDR, SK {[N,] [D,] [CP,] ...}

(c) Informational exchange

HDR, SK {[N,] [D,] [CP], ...}

HDR = IKE header
SAx1 = offered and chosen algorithms, DH group
KEx = Diffie–Hellman public key
Nx= nonces
CERTREQ = Certificate request
IDx = identity
CERT = certificate

SK {...} = MAC and encrypt
AUTH = Authentication
SAx2 = algorithms, parameters for IPsec SA
TSx = traffic selectors for IPsec SA
N = Notify
D = Delete
CP = Configuration

protecting ordinary (i.e. non-IKE) communications between the peers. Thus, four 

messages are needed to establish the first SA for general use.

The CREATE_CHILD_SA exchange can be used to establish further SAs 

for protecting traffic. The informational exchange is used to exchange management 

information, IKEv2 error messages, and other notifications.

Header and Payload Formats

IKE defines procedures and packet formats to establish, negotiate, modify, and de-

lete security associations. As part of SA establishment, IKE defines payloads for 

exchanging key generation and authentication data. These payload formats provide 

a consistent framework independent of the specific key exchange protocol, encryp-

tion algorithm, and authentication mechanism.

IKE HEADER FORMAT An IKE message consists of an IKE header followed by one 

or more payloads. All of this is carried in a transport protocol. The specification dic-

tates that implementations must support the use of UDP for the transport protocol.
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Figure 20.12a shows the header format for an IKE message. It consists of the 

following fields.

 ■ Initiator SPI (64 bits): A value chosen by the initiator to identify a unique IKE 

security association (SA).

 ■ Responder SPI (64 bits): A value chosen by the responder to identify a unique 

IKE SA.

 ■ Next Payload (8 bits): Indicates the type of the first payload in the message; 

payloads are discussed in the next subsection.

 ■ Major Version (4 bits): Indicates major version of IKE in use.

 ■ Minor Version (4 bits): Indicates minor version in use.

 ■ Exchange Type (8 bits): Indicates the type of exchange; these are discussed 

later in this section.

 ■ Flags (8 bits): Indicates specific options set for this IKE exchange. Three bits 

are defined so far. The initiator bit indicates whether this packet is sent by 

the SA initiator. The version bit indicates whether the transmitter is capable 

of using a higher major version number than the one currently indicated. The 

response bit indicates whether this is a response to a message containing the 

same message ID.

 ■ Message ID (32 bits): Used to control retransmission of lost packets and 

matching of requests and responses.

 ■ Length (32 bits): Length of total message (header plus all payloads) in octets.

IKE PAYLOAD TYPES All IKE payloads begin with the same generic payload header 

shown in Figure 20.12b. The Next Payload field has a value of 0 if this is the last 

Figure 20.12 IKE Formats

MjVer MnVer Exchange Type FlagsNext Payload

Message ID

Length

(a) IKE header

(b) Generic Payload header

Initiator’s Security Parameter Index (SPI)

Responder’s Security Parameter Index (SPI)

0Bit: 8 16 24 31

RESERVED Payload LengthNext Payload C

0Bit: 8 16 31
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Type Parameters

Security Association Proposals

Key Exchange DH Group #, Key Exchange Data

Identification ID Type, ID Data

Certificate Cert Encoding, Certificate Data

Certificate Request Cert Encoding, Certification Authority

Authentication Auth Method, Authentication Data

Nonce Nonce Data

Notify Protocol-ID, SPI Size, Notify Message Type, SPI, Notification Data

Delete Protocol-ID, SPI Size, # of SPIs, SPI (one or more)

Vendor ID Vendor ID

Traffic Selector Number of TSs, Traffic Selectors

Encrypted IV, Encrypted IKE payloads, Padding, Pad Length, ICV

Configuration CFG Type, Configuration Attributes

Extensible Authentication 

Protocol

EAP Message

Table 20.3 IKE Payload Types

payload in the message; otherwise its value is the type of the next payload. The 

Payload Length field indicates the length in octets of this payload, including the 

generic payload header.

The critical bit is 0 if the sender wants the recipient to skip this payload if it 

does not understand the payload type code in the Next Payload field of the previous 

payload. It is set to 1 if the sender wants the recipient to reject this entire message if 

it does not understand the payload type.

Table 20.3 summarizes the payload types defined for IKE and lists the fields, 

or parameters, that are part of each payload. The SA payload is used to begin the 

establishment of an SA. The payload has a complex, hierarchical structure. The 

payload may contain multiple proposals. Each proposal may contain multiple pro-

tocols. Each protocol may contain multiple transforms. And each transform may 

contain multiple attributes. These elements are formatted as substructures within 

the payload as follows.

 ■ Proposal: This substructure includes a proposal number, a protocol ID (AH, 

ESP, or IKE), an indicator of the number of transforms, and then a transform 

substructure. If more than one protocol is to be included in a proposal, then 

there is a subsequent proposal substructure with the same proposal number.

 ■ Transform: Different protocols support different transform types. The trans-

forms are used primarily to define cryptographic algorithms to be used with a 

particular protocol.

 ■ Attribute: Each transform may include attributes that modify or complete the 

specification of the transform. An example is key length.
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The Key Exchange payload can be used for a variety of key exchange tech-

niques, including Oakley, Diffie–Hellman, and the RSA-based key exchange used 

by PGP. The Key Exchange data field contains the data required to generate a ses-

sion key and is dependent on the key exchange algorithm used.

The Identification payload is used to determine the identity of communicating 

peers and may be used for determining authenticity of information. Typically the 

ID Data field will contain an IPv4 or IPv6 address.

The Certificate payload transfers a public-key certificate. The Certificate 

Encoding field indicates the type of certificate or certificate-related information, 

which may include the following:

 ■ PKCS #7 wrapped X.509 certificate

 ■ PGP certificate

 ■ DNS signed key

 ■ X.509 certificate—signature

 ■ X.509 certificate—key exchange

 ■ Kerberos tokens

 ■ Certificate Revocation List (CRL)

 ■ Authority Revocation List (ARL)

 ■ SPKI certificate

At any point in an IKE exchange, the sender may include a Certificate Request 
payload to request the certificate of the other communicating entity. The payload 

may list more than one certificate type that is acceptable and more than one certifi-

cate authority that is acceptable.

The Authentication payload contains data used for message authentication 

purposes. The authentication method types so far defined are RSA digital signa-

ture, shared-key message integrity code, and DSS digital signature.

The Nonce payload contains random data used to guarantee liveness during 

an exchange and to protect against replay attacks.

The Notify payload contains either error or status information associated with 

this SA or this SA negotiation. The following table lists the IKE notify messages.

Error Messages Status Messages

Unsupported Critical Initial Contact

Payload Set Window Size

Invalid IKE SPI Additional TS Possible

Invalid Major Version IPCOMP Supported

Invalid Syntax NAT Detection Source IP

Invalid Payload Type NAT Detection Destination IP

Invalid Message ID Cookie

Invalid SPI Use Transport Mode
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Error Messages Status Messages

No Proposal Chosen HTTP Cert Lookup Supported

Invalid KE Payload Rekey SA

Authentication Failed ESP TFC Padding Not Supported

Single Pair Required Non First Fragments Also

No Additional SAS

Internal Address Failure

Failed CP Required

TS Unacceptable

Invalid Selectors

The Delete payload indicates one or more SAs that the sender has deleted 

from its database and that therefore are no longer valid.

The Vendor ID payload contains a vendor-defined constant. The constant is 

used by vendors to identify and recognize remote instances of their implementa-

tions. This mechanism allows a vendor to experiment with new features while main-

taining backward compatibility.

The Traffic Selector payload allows peers to identify packet flows for process-

ing by IPsec services.

The Encrypted payload contains other payloads in encrypted form. The en-

crypted payload format is similar to that of ESP. It may include an IV if the encryp-

tion algorithm requires it and an ICV if authentication is selected.

The Configuration payload is used to exchange configuration information be-

tween IKE peers.

The Extensible Authentication Protocol (EAP) payload allows IKE SAs to 

be authenticated using EAP, which was discussed in Chapter 16.

 20.6 CRYPTOGRAPHIC SUITES

The IPsecv3 and IKEv3 protocols rely on a variety of types of cryptographic algo-

rithms. As we have seen in this book, there are many cryptographic algorithms of 

each type, each with a variety of parameters, such as key size. To promote interop-

erability, two RFCs define recommended suites of cryptographic algorithms and 

parameters for various applications.

RFC 4308 defines two cryptographic suites for establishing virtual private net-

works. Suite VPN-A matches the commonly used corporate VPN security used in 

older IKEv1 implementations at the time of the issuance of IKEv2 in 2005. Suite 

VPN-B provides stronger security and is recommended for new VPNs that imple-

ment IPsecv3 and IKEv2.

Table 20.4a lists the algorithms and parameters for the two suites. There are 

several points to note about these two suites. Note that for symmetric cryptography, 
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VPN-A relies on 3DES and HMAC, while VPN-B relies exclusively on AES. Three 

types of secret-key algorithms are used:

 ■ Encryption: For encryption, the cipher block chaining (CBC) mode is used.

 ■ Message authentication: For message authentication, VPN-A relies on HMAC 

with SHA-1 with the output truncated to 96 bits. VPN-B relies on a variant of 

CMAC with the output truncated to 96 bits.

 ■ Pseudorandom function: IKEv2 generates pseudorandom bits by repeated use 

of the MAC used for message authentication.

RFC 6379 defines four optional cryptographic suites that are compatible with 

the United States National Security Agency’s Suite B specifications. In 2005, the 

NSA issued Suite B, which defined the algorithms and strengths needed to pro-

tect both sensitive but unclassified (SBU) and classified information for use in 

its Cryptographic Modernization program [LATT09]. The four suites defined in 

RFC 6379 provide choices for ESP and IKE. The four suites are differentiated by 

the choice of cryptographic algorithm strengths and a choice of whether ESP is to 

provide both confidentiality and integrity or integrity only. All of the suites offer 

greater protection than the two VPN suites defined in RFC 4308.

VPN-A VPN-B

ESP encryption 3DES-CBC AES-CBC (128-bit key)

ESP integrity HMAC-SHA1-96 AES-XCBC-MAC-96

IKE encryption 3DES-CBC AES-CBC (128-bit key)

IKE PRF HMAC-SHA1 AES-XCBC-PRF-128

IKE Integrity HMAC-SHA1-96 AES-XCBC-MAC-96

IKE DH group 1024-bit MODP 2048-bit MODP

(a) Virtual private networks (RFC 4308)

GCM-128 GCM-256 GMAC-128 GMAC-256

ESP encryption/ 

Integrity

AES-GCM  

(128-bit key)

AES-GCM  

(256-bit key)

Null Null

ESP integrity Null Null AES-GMAC 

(128-bit key)

AES-GMAC  

(256-bit key)

IKE encryption AES-CBC  

(128-bit key)

AES-CBC  

(256-bit key)

AES-CBC  

(128-bit key)

AES-CBC  

(256-bit key)

IKE PRF HMAC-SHA-256 HMAC-SHA-384 HMAC-SHA-256 HMAC-SHA-384

IKE Integrity HMAC-SHA- 

256-128

HMAC-SHA-  

384-192

HMAC-SHA- 

256-128

HMAC-SHA-  

384-192

IKE DH group 256-bit random 

ECP

384-bit random ECP 256-bit random 

ECP

384-bit random 

ECP

(b) NSA Suite B (RFC 6379)

Table 20.4 Cryptographic Suites for IPsec
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Key Terms 

Table 20.4b lists the algorithms and parameters for the two suites. As with 

RFC 4308, three categories of secret key algorithms are listed:

 ■ Encryption: For ESP, authenticated encryption is provided using the GCM 

mode with either 128-bit or 256-bit AES keys. For IKE encryption, CBC is 

used, as it was for the VPN suites.

 ■ Message authentication: For ESP, if only authentication is required, then 

GMAC is used. As discussed in Chapter 12, GMAC is simply the authenti-

cation portion of GMC. For IKE, message authentication is provided using 

HMAC with one of the SHA-3 hash functions.

 ■ Pseudorandom function: As with the VPN suites, IKEv2 in these suites gen-

erates pseudorandom bits by repeated use of the MAC used for message 

authentication.

For the Diffie–Hellman algorithm, the use of elliptic curve groups modulo 

a prime is specified. For authentication, elliptic curve digital signatures are listed. 

The original IKEv2 documents used RSA-based digital signatures. Equivalent or 

greater strength can be achieved using ECC with fewer key bits.

 20.7 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

anti-replay service

Authentication Header (AH)

Encapsulating Security 

Payload (ESP)

Internet Key Exchange  

(IKE)

Internet Security Association 

and Key Management 

Protocol (ISAKMP)

IP Security (IPsec)

IPv4

IPv6

Oakley key determination 

protocol

replay attack

security association (SA)

transport mode

tunnel mode

Review Questions 

 20.1 List and briefly describe some benefits of IPsec.

 20.2 List and briefly define different categories of IPsec documents.

 20.3 What parameters identify an SA and what parameters characterize the nature of a 
particular SA?

 20.4 What is the difference between transport mode and tunnel mode?

 20.5 What are the types of secret key algorithm used in IPsec?

 20.6 Why does ESP include a padding field?

 20.7 What are the basic approaches to bundling SAs?

 20.8 What are the roles of the Oakley key determination protocol and ISAKMP in IPsec?
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Problems 

 20.1 Describe and explain each of the entries in Table 20.2.

 20.2 Draw a figure similar to Figure 20.8 for AH.

 20.3 List the major security services provided by AH and ESP, respectively.

 20.4 In discussing AH processing, it was mentioned that not all of the fields in an IP header 
are included in MAC calculation.
a. For each of the fields in the IPv4 header, indicate whether the field is immutable, 

mutable but predictable, or mutable (zeroed prior to ICV calculation).
b. Do the same for the IPv6 header.
c. Do the same for the IPv6 extension headers.

In each case, justify your decision for each field.

 20.5 Suppose that the current replay window spans from 120 to 530.
a. If the next incoming authenticated packet has sequence number 340, what will the 

receiver do with the packet, and what will be the parameters of the window after 
that?

b. If instead the next incoming authenticated packet has sequence number 598, what 
will the receiver do with the packet, and what will be the parameters of the win-
dow after that?

c. If instead the next incoming authenticated packet has sequence number 110, what 
will the receiver do with the packet, and what will be the parameters of the win-
dow after that?

 20.6 When tunnel mode is used, a new outer IP header is constructed. For both IPv4 
and IPv6, indicate the relationship of each outer IP header field and each extension 
header in the outer packet to the corresponding field or extension header of the inner 
IP packet. That is, indicate which outer values are derived from inner values and 
which are constructed independently of the inner values.

 20.7 End-to-end authentication and encryption are desired between two hosts. Draw 
 figures similar to Figure 20.8 that show each of the following.
a. Transport adjacency with encryption applied before authentication.
b. A transport SA bundled inside a tunnel SA with encryption applied before 

 authentication.
c. A transport SA bundled inside a tunnel SA with authentication applied before 

encryption.

 20.8 The IPsec architecture document states that when two transport mode SAs are 
bundled to allow both AH and ESP protocols on the same end-to-end flow, only 
one ordering of security protocols seems appropriate: performing the ESP protocol 
 before performing the AH protocol. Why is this approach recommended rather than 
authentication before encryption?

 20.9 For the IKE key exchange, indicate which parameters in each message go in which 
ISAKMP payload types.

 20.10 Where does IPsec reside in a protocol stack?
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APPENDIX A

PROJECTS FOR TEACHING CRYPTOGRAPHY 

A.1 Sage Computer Algebra Projects

A.2 Hacking Project

A.3 Block Cipher Projects

A.4 Laboratory Exercises

A.5 Research Projects

A.6 Programming Projects

A.7 Practical Security Assessments

A.8 Firewall Projects

A.9 Case Studies

A.10 Writing Assignments

A.11 Reading/Report Assignments

A.12 Discussion Topics
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Analysis and observation, theory and experience must never disdain or exclude 
each other; on the contrary, they support each other.

—On War, Carl Von Clausewitz

Many instructors believe that research or implementation projects are crucial to the 

clear understanding of cryptography and network security. Without projects, it may 

be difficult for students to grasp some of the basic concepts and interactions among 

components. Projects reinforce the concepts introduced in the book, give the stu-

dent a greater appreciation of how a cryptographic algorithm or protocol works, 

and can motivate students and give them confidence that they are capable of not 

only understanding but implementing the details of a security capability.

In this text, I have tried to present the concepts of cryptography and network 

security as clearly as possible and have provided numerous homework problems to 

reinforce those concepts. However, many instructors will wish to supplement this 

material with projects. This appendix provides some guidance in that regard and 

describes support material available in the Instructor’s Resource Center (IRC) for 

this book, accessible to instructors from Pearson Education. The support material 

covers 12 types of projects and other student exercises:

 ■ Sage computer algebra projects

 ■ Hacking project

 ■ Block cipher projects

 ■ Laboratory exercises

 ■ Research projects

 ■ Programming projects

 ■ Practical security assessments

 ■ Firewall projects

 ■ Case studies

 ■ Writing assignments

 ■ Reading/report assignments

 ■ Discussion topics

 A.1 SAGE COMPUTER ALGEBRA PROJECTS

One of the most important new features for this edition is the use of Sage for cryp-

tographic examples and homework assignments. Sage is an open-source, multiplat-

form, freeware package that implements a very powerful, flexible, and easily learned 

mathematics and computer algebra system. A computer algebra system (CAS) is 

software that can perform symbolic as well as numerical calculations. CASs have 

been used for teaching since their inception some decades ago, and there is now 

a considerable literature on their use. A CAS is a natural tool for extending the 

 learning experience in a cryptography course.



698  APPENDIX A / PROJECTS FOR TEACHING CRYPTOGRAPHY 

Unlike competing systems such as Mathematica, Maple, and MATLAB, there 

are no licensing agreements or fees involved with Sage. Thus, Sage can be made 

available on computers and networks at school, and students can individually down-

load the software to their own personal computers for use at home. Another advan-

tage of using Sage is that students learn a powerful, flexible tool that can be used for 

virtually any mathematical application, not just cryptography. The Sage Web site 

(http://www.sagemath.org) provides considerable documentation on how to install, 

set up, and use Sage on a variety of computers and how to use it online via the Web.

The use of Sage can make a significant difference to the teaching of the 

mathematics of cryptographic algorithms. Appendix B provides a large number of 

 examples of the use of Sage covering many cryptographic concepts. Appendix C lists 

exercises in each of these topic areas to enable the student to gain hands-on experi-

ence with cryptographic algorithms. Copies of both appendices are available online 

so that students do not have to key in lines of code that are printed in the appendices.

The IRC contains solutions to all of the exercises in Appendix C.

Dan Shumow of Microsoft and the University of Washington developed all of 

the examples and assignments in Appendices B and C.

 A.2 HACKING PROJECT

The aim of this project is to hack into a corporation’s network through a series of 

steps. The corporation is named Extreme In Security Corporation. As the name 

indicates, the corporation has some security holes in it, and a clever hacker is able 

to access critical information by hacking into its network. The IRC includes what is 

needed to set up the Web site. The student’s goal is to capture the secret informa-

tion about the price on the quote the corporation is placing next week to obtain 

a contract for a governmental project.

The student should start at the Web site and find his or her way into the 

 network. At each step, if the student succeeds, there are indications as to how to 

proceed on to the next step as well as the grade until that point.

The project can be attempted in three ways:

1. Without seeking any sort of help

2. Using some provided hints

3. Using exact directions

The IRC includes the files needed for this project:

1. Web Security project

2. Web Hacking exercises (XSS and Script-attacks) covering client-side and 

server-side vulnerability exploitations, respectively

3. Documentation for installation and use for the above

4. A PowerPoint file describing Web hacking. This file is crucial to understand-

ing how to use the exercises since it clearly explains the operation using 

screen shots.

http://www.sagemath.org


A.5 / RESEARCH PROJECTS 699

This project was designed and implemented by Professor Sreekanth Malladi 

of Dakota State University.

 A.3 BLOCK CIPHER PROJECTS

This is a lab that explores the operation of the AES encryption algorithm by tracing 

its execution, computing one round by hand, and then exploring the various block 

cipher modes of use. The lab also covers DES. In both cases, an online Java applet 

is used (or can be downloaded) to execute AES or DES.

For both AES and DES, the lab is divided into three separate parts:

 ■ Block cipher internals: This part involves encrypting plaintext and analyzing 

the intermediate results after each round. There is an online calculator for both 

AES and DES that provides the intermediate results and the final ciphertext.

 ■ Block cipher round: This part involves calculating one round by hand and 

comparing the results to those produced by the calculator.

 ■ Block cipher modes of use: Enables the student to compare the operation of 

CBC and CFB modes.

The IRC contains the .html and .jar files needed to set up these labs on your 

own Web site. Alternatively, the material is available from the Student Resources 

section of this book’s Web site. Click on the rotating globe.

Lawrie Brown of the Australian Defence Force Academy developed these 

projects.

 A.4 LABORATORY EXERCISES

Professor Sanjay Rao and Ruben Torres of Purdue University have prepared a set 

of laboratory exercises that are included in the IRC. These are  implementation 

projects designed to be programmed on Linux but could be adapted for any 

Unix  environment. These laboratory exercises provide realistic experience in 

 implementing security functions and applications.

 A.5 RESEARCH PROJECTS

An effective way of reinforcing basic concepts from the course and for teaching 

students research skills is to assign a research project. Such a project could involve 

a literature search as well as an Internet search of vendor products, research lab 

activities, and standardization efforts. Projects could be assigned to teams or, for 

smaller projects, to individuals. In any case, it is best to require some sort of project 

proposal early in the term, giving the instructor time to evaluate the proposal for 

appropriate topic and appropriate level of effort. Student handouts for research 

projects should include
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 ■ A format for the proposal

 ■ A format for the final report

 ■ A schedule with intermediate and final deadlines

 ■ A list of possible project topics

The students can select one of the topics listed in the IRC or devise their own 

comparable project. The IRC includes a suggested format for the proposal and final 

report as well as a list of 15 possible research topics.

 A.6 PROGRAMMING PROJECTS

The programming project is a useful pedagogical tool. There are several  attractive 

features of stand-alone programming projects that are not part of an existing 

 security facility:

1. The instructor can choose from a wide variety of cryptography and network 

security concepts to assign projects.

2. The projects are platform and language independent. Students can program 

the projects on any available computer and in any appropriate language.

3. The instructor need not download, install, and configure any particular infra-

structure for stand-alone projects.

There is also flexibility in the size of projects. Larger projects give students 

more a sense of achievement, but students with less ability or fewer organizational 

skills can be left behind. Larger projects usually elicit more overall effort from 

the best students. Smaller projects can have a higher concepts-to-code ratio and, 

 because more of them can be assigned, the opportunity exists to address a variety 

of different areas.

Again, as with research projects, the students should first submit a proposal. 

The student handout should include the same elements listed in the preceding 

 section. The IRC includes a set of 12 possible programming projects.

The following individuals have supplied the research and programming proj-

ects suggested in the IRC: Henning Schulzrinne of Columbia University; Cetin Kaya 

Koc of Oregon State University; and David M. Balenson of Trusted Information 

Systems and George Washington University.

 A.7 PRACTICAL SECURITY ASSESSMENTS

Examining the current infrastructure and practices of an existing organization is 

one of the best ways of developing skills in assessing its security posture. The IRC 

contains a list of such activities. Students, working either individually or in small 

groups, select a suitable small- to medium-sized organization. They then interview 

some key personnel in that organization in order to conduct a suitable selection 

of security risk assessment and review tasks as it relates to the organization’s IT 
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 infrastructure and practices. As a result, they can then recommend suitable changes, 

which can improve the organization’s IT security. These activities help students 

 develop an appreciation of current security practices and the skills needed to review 

these and recommend changes.

Lawrie Brown of the Australian Defence Force Academy developed these 

projects.

 A.8 FIREWALL PROJECTS

The implementation of network firewalls can be a difficult concept for students 

to grasp initially. The IRC includes a Network Firewall Visualization tool to con-

vey and teach network security and firewall configuration. This tool is intended to 

teach and reinforce key concepts including the use and purpose of a perimeter fire-

wall, the use of separated subnets, the purposes behind packet filtering, and the 

 shortcomings of a simple packet filter firewall.

The IRC includes a .jar file that is fully portable, and a series of exercises. 

The tool and exercises were developed at U.S. Air Force Academy.

 A.9 CASE STUDIES

Teaching with case studies engages students in active learning. The IRC includes 

case studies in the following areas:

 ■ Disaster recovery

 ■ Firewalls

 ■ Incidence response

 ■ Physical security

 ■ Risk

 ■ Security policy

 ■ Virtualization

Each case study includes learning objectives, case description, and a series 

of case discussion questions. Each case study is based on real-world situations and 

 includes papers or reports describing the case.

The case studies were developed at North Carolina A&T State University.

 A.10 WRITING ASSIGNMENTS

Writing assignments can have a powerful multiplier effect in the learning process 

in a technical discipline such as cryptography and network security. Adherents of 

the Writing Across the Curriculum (WAC) movement (http://wac.colostate.edu/) 

report substantial benefits of writing assignments in facilitating learning. Writing 

 assignments lead to more detailed and complete thinking about a particular topic. In 

http://wac.colostate.edu/
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addition, writing assignments help to overcome the tendency of students to pursue 

a subject with a minimum of personal engagement, just learning facts and problem-

solving techniques without obtaining a deep understanding of the subject matter.

The IRC contains a number of suggested writing assignments, organized 

by chapter. Instructors may ultimately find that this is an important part of their 

 approach to teaching the material. I would greatly appreciate any feedback on this 

area and any suggestions for additional writing assignments.

 A.11 READING/REPORT ASSIGNMENTS

Another excellent way to reinforce concepts from the course and to give students 

research experience is to assign papers from the literature to be read and analyzed. 

The student is then asked to write a brief report on the assigned paper. The IRC 

includes a suggested list of papers, one or two per chapter, to be assigned. The 

IRC provides a PDF copy of each of the papers. The IRC also includes a suggested 

 assignment wording.

 A.12 DISCUSSION TOPICS

One way to provide a collaborative experience is discussion topics, a number of 

which are included in the IRC. Each topic relates to material in the book. The 

 instructor can set it up so that students can discuss a topic either in a class setting, 

an online chat room, or a message board. Again, I would greatly appreciate any 

 feedback on this area and any suggestions for additional discussion topics.
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B.10 Chapter 11: Cryptographic Hash Functions

B.11 Chapter 13: Digital Signatures
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This appendix contains a number of examples that illustrate cryptographic concepts, 

organized by the chapter in which those concepts were discussed. All the examples 

are in Sage.1 See Appendix C for how to get started using Sage and for a brief intro-

duction to Sage syntax and operations. We begin with a brief introduction to some 

basic Sage matrix and linear algebra operations.

You should be able to follow the examples in this section as written. However, 

if you have difficulty interpreting the Sage code, please refer to Section C.2 

in Appendix C.

 B.1 LINEAR ALGEBRA AND MATRIX FUNCTIONALITY

Sage includes linear algebra and matrix functionality. The following shows some of 

the basic functionality applicable to cryptography.

In Sage you specify a matrix as a list of lists of numbers, passed to the matrix 

function. For example, passing a list of lists of integers as follows:

sage: M = matrix([[1, 3],[7,9]]); M

[1 3]

[7 9]

Alternately, passing a list of lists of rationals as follows:

sage: M = matrix([[1/2, 2/3, 3/4],[5, 7, 8]]); M

[1/2 2/3 3/4]

[ 5 7 8]

You can specify that the input should be reduced by a modulus, using the 

IntegerModRing (functionality to be described later)

Sage: R = IntegerModRing(100)

sage: M = matrix(R, [[1],[102],[1003]]); M

[1]

[2]

[3]

Or that the input should be considered in a finite field (also to be described 

later).

sage: F = GF(2);

sage: M = matrix(F, [[1, 2, 0, 3]]); M

[1 0 0 1]

1All of the Sage code in this appendix is available at this book’s Companion Web site in .sage files, so that 
you can load and execute the programs if you wish. See Preface for access information.
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Sage also supports multiplication, addition, and inversion of matrices as 

follows:

sage: M1 = matrix([[1, 2],[3,4]]);

sage: M2 = matrix([[1,−1],[1, 1]]);

sage: M1*M2

[3 1]

[7 1]

sage: M1 + M2

[2 1]

[4 5]

sage: M2^−1

[ 1/2 1/2]

[−1/2 1/2]

 B.2 CHAPTER 2: NUMBER THEORY

Example 1: Chinese Remainder Theorem.

def chinese_remainder_theorem(moduli, residues):
r"""
Function that implements the chinese remainder 

theorem.

INPUT:

moduli − list or positive integers.

 residues − list of remainders such that remainder 

at position j results when divided by the corresponding 
modulus at position j in moduli.

OUTPUT:

 x − integer such that division by moduli[j] gives 

remainder residue[j].

"""

if (len(moduli) != len(residues)):

raise ValueError, "expected len(moduli) == 
len(residues)"

M = prod(moduli);

x = 0;
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for j in xrange(len(moduli)):
Mj = moduli[j]
Mpr = M/Mj

(Mj_Mpr_gcd, Mpr_inv, Mj_inv) = xgcd(Mpr, Mj)

Mpr_inv = Mpr_inv

if (Mj_Mpr_gcd != 1):

raise ValueError, "Expected all moduli are 

coprime."

x += residues[j]*Mpr*Mpr_inv;

return x;

Example 2: Miller–Rabin Primality Test.

r"""
EXAMPLES:

sage: MILLER_RABIN_TEST(101)
False

sage: MILLER_RABIN_TEST(592701729979)
True

"""

def MILLER_RABIN_TEST(n):
r"""

This function implements the Miller-Rabin Test. 

It either returns "inconclusive" or "composite."

INPUT:

n − positive integer to probabilistically 
determine the primality of.

OUTPUT:

If the function returns False, then the test was 

inconclusive.

 If the function returns True, then the test was 

conclusive and n is composite.

"""

R = IntegerModRing(n); # object for integers mod n
# (1) Find integers k, q w/ k > 0 and q odd so that
(n−1) == 2^k * q
q = n−1
k = 0
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while (1 == (q % 2)):
k += 1
q = q.quo_rem(2)[0] # q/2 but with result of type 

Integer

# (2) select random a in 1 < a < n−1

a = randint(1,n−1)

a = R(a) # makes it so modular exponentiation is done 

fast

# if a^q mod n == 1 then return inconclusive
if (1 == a^q):

return False

# (3) for j = 0 to k−1 do: if a^(2^j * q) mod n = n−1 

return inconclusive

e = q

for j in xrange(k):
if (n−1) == (a^e):

return False
e = 2*e

# (4) if you've made it here return composite.
return True

Example 3: Modular Exponentiation (Square and Multiply).

def ModExp(x,e,N):
r"""
Calculates x^e mod N using square and multiply.

INPUT:

x − an integer.
e − a nonnegative integer.
N − a positive integer modulus.

OUTPUT:

y − x^e mod N

"""

e_bits = e.bits()
e_bitlen = len(e_bits)

y = 1

for j in xrange(e_bitlen):

y = y^2 % N
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if (1 == e_bits[e_bitlen−1−j]):
y = x*y % N

return y

Example 4: Using built-in Sage functionality for CRT.

Sage has built in functions to perform the Chinese Remainder Theorem. 

There are several functions that produce a wide array of CRT functionality. 

The simplest function performs the CRT with two modulii. Specifically CRT 

(or the lowercase crt) when called as:

crt(a,b,m,n)

will return a number that is simultaneously congruent to a mod m and b mod n. 

All parameters are assumed to be integers and the parameters m, n must be 

relatively prime. Some examples of this function are:

sage: CRT(8, 16, 17, 49)
−3120

sage: CRT(1,2,5,7)
16

sage: CRT(50,64,101,127)
−62166

If you want to perform the CRT with a list of residues and moduli, Sage 

includes the function CRT_list.

CRT_list(v, modulii)

requires that v and modulii be lists of integers of the same length. Furthermore, 

the elements of modulii must be relatively prime. Then the output is an integer 

that reduces to v[i] mod modulii[i] (for i in range(len(v))). For example, the last 

call to CRT would have been

sage: CRT_list([50,64],[101,127])
1969

Note that this answer is different. However, you can check that both answers 

satisfy the requirements of the CRT. Here are examples with longer lists:

sage: CRT_list([8, 20, 13], [49, 101, 127])
608343

sage: CRT_list([10,11,12,13,14],[29,31,37,41,43])
36657170

The function CRT_basis can be used to precompute the values associated to 

the given set of modulii. If modulii is a list of relatively prime modulii, then 

CRT_basis(modulii) returns a list a. This list a is such that if x is a list of residues 

of the modulii, then the output of the CRT can be found by summing:

a[0]*x[0] + a[1]*x[1] + ... + a[len(a)−1]*x[len(a)−1]



B.2 / NUMBER THEORY 709

In the case of the modulii used in the last call to CRT_list this function returns 

as follows:

sage: CRT_basis([29,31,37,41,43])
[32354576, 20808689, 23774055, 17163708, 23184311]

The last CRT function that Sage provides is CRT_vectors. This function 

performs CRT_list on several different lists (with the same set of modulii) and 

returns a list of the simultaneous answers. It is efficient in that it uses CRT_

basis and does not recompute those values for each list. For example:

sage:
CRT_vectors([[1,10],[2,11],[3,12],[4,13],[5,14]],
[29,31,37,41,43])
[36657161, 36657170]

Example 5: Using built-in Sage functionality for Modular Exponentiation.

Sage can perform modular exponentiation using fast algorithms (like 

square and multiply) and without allowing the intermediate computations 

to become huge. This is done through IntegerModRing objects. Specifically, 

creating an IntegerModRing object indicates that arithmetic should be done 

with a modulus. Then you cast your integers in this ring to indicate that all 

arithmetic should be done with the modulus. Then for elements of this ring, 

exponentiation is done efficiently. For example:

sage: R = IntegerModRing(101)
sage: x = R(10)
sage: x^99
91

sage: R = IntegerModRing(1024)
sage: x = R(111)
sage: x^345
751

sage: x = R(100)
sage: x^200
0

sage: N = 127*101
sage: R = IntegerModRing(N)
sage: x = R(54)
sage: x^95
9177

Creating an IntegerModRing is similar to creating a FiniteField with GF(...) 

except that the modulus can be a general composite.

Example 6: Using built-in Sage functionality for Euler’s totient.

Sage has the Euler totient functionality built in. The function is called 

euler_phi because of the convention of using the Greek letter phi to represent 
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this function. The operation of this function is simple. Just call euler_phi on an 

integer and it computes the totient function. This function factors the input, 

and hence requires exponential time.

sage: euler_phi(101)
100

sage: euler_phi(1024)
512

sage: euler_phi(333)
216

sage: euler_phi(125)
100

sage: euler_phi(423)
276

 B.3 CHAPTER 3: CLASSICAL ENCRYPTION

The following functions are useful for classical cipher examples and exercises:

en_alphabet = "abcdefghijklmnopqrstuvwxyz"

#
# This function returns true if and only if the character  
c is an
# alphabetic character
#
def is_alphabetic_char(c):

return (c.lower() in en_alphabet)

#
# This function converts a single character into its  
numeric value
#
def char_to_num(c):

return en_alphabet.index(c.lower())

#
# This function returns the character corresponding to x  
mod 26
# in the English alphabet
#
def num_to_char(x):

return en_alphabet[x % 26]

Example 1: Implement Sage encryption/decryption functions that take a key 

(as an integer in 0, 1, 2, . . . , 25), and a string. The function should only operate 
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on the characters ‘a’, ‘b’,  .  .  .  ‘z’ (both upper and lower case), and it should 

leave any other characters unchanged.

Solution:

def CaesarEncrypt(k, plaintext):

ciphertext = ""

for j in xrange(len(plaintext)):

p = plaintext[j]

if is_alphabetic_char(p):

x = (k + char_to_num(p)) % 26
c = num_to_char(x)

else:

c = p

ciphertext += c

return ciphertext

def CaesarDecrypt(k, ciphertext):

plaintext = ""

for j in xrange(len(ciphertext)):

c = ciphertext[j]

if is_alphabetic_char(c):

x = (char_to_num(c) − k) % 26
p = num_to_char(x)

else:

p = c

plaintext += p

return plaintext

Example 2: Implement a function that performs a brute force attack on 

a ciphertext, it should print a list of the keys and associated decryptions. It 

should also take an optional parameter that takes a substring and only prints 

out potential plaintexts that contain that decryption.

Solution:

def BruteForceAttack(ciphertext, keyword=None):

for k in xrange(26):

plaintext = CaesarDecrypt(k, ciphertext)

if (None==keyword) or (keyword in plaintext): 
print "key", k, "decryption", plaintext

return



712  APPENDIX B / SAGE EXAMPLES

Example 3: Show the output of your encrypt function (Example 1) on the 

following (key, plaintext) pairs:

 ■ k = 16 plaintext =  “Get me a vanilla ice cream, make it a double.”

 ■ k = 15 plaintext =  “I don’t much care for Leonard Cohen.”

 ■ k = 16 plaintext =  “I like root beer floats.”

Solution:
sage: k = 6; plaintext = 'Get me a vanilla ice 
cream, make it a double.'
sage: CaesarEncrypt(k, plaintext)
'mkz sk g bgtorrg oik ixkgs, sgqk oz g juahrk.'

sage: k = 15; plaintext = "I don't much care for 
Leonard Cohen."
sage: CaesarEncrypt(k, plaintext)
"x sdc'i bjrw rpgt udg atdcpgs rdwtc."

sage: k = 16; plaintext = "I like root beer floats."
sage: CaesarEncrypt(k, plaintext)
'y byau heej ruuh vbeqji.'

Example 4: Show the output of your decrypt function (Example 1) on the 

following (key, ciphertext) pairs:

 ■ k = 12 ciphertext =  ‘nduzs ftq buzq oazqe.’

 ■ k = 3 ciphertext =  “fdhvdu qhhgv wr orvh zhljkw.”

 ■ k = 20 ciphertext =  “ufgihxm uly numnys.”

Solution:
sage: k = 12; ciphertext = "nduzs ftq buzq oazqe."
sage: CaesarDecrypt(k, ciphertext)
'bring the pine cones.'

sage: k = 3; ciphertext = "fdhvdu qhhgv wr orvh 
zhljkw."
sage: CaesarDecrypt(k, ciphertext)
'caesar needs to lose weight.'

sage: k = 20; ciphertext = "ufgihxm uly numnys."
sage: CaesarDecrypt(k, ciphertext)
'almonds are tastey.'

Example 5: Show the output of your attack function (Example 4) on the 

following ciphertexts, if an optional keyword is specified, pass that to your 

attack function:

 ■ ciphertext =  ‘gryy guru gob tab gb nzoebfr puncry.’ keyword =  ‘chapel’

 ■ ciphertext =  ‘wziv kyv jyfk nyve kyv tpdsrcj tirjy.’ keyword =  ‘cymbal’

 ■ ciphertext =  ‘baeeq klwosjl osk s esf ozg cfwo lgg emuz.’ no keyword
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Solution:

sage: ciphertext = 'gryy gurz gb tb gb nzoebfr puncry.'
sage: BruteForceAttack(ciphertext, 'chapel')
key 13 decryption tell them to go to ambrose chapel.

sage: ciphertext = 'wziv kyv jyfk nyve kyv tpdsrcj tirjy.'
sage: BruteForceAttack(ciphertext, 'cymbal')
key 17 decryption fire the shot when the cymbals crash.

sage: ciphertext = 'baeeq klwosjl osk s esf ozg cfwo lgg emuz.'
sage: BruteForceAttack(ciphertext)
key 0 decryption baeeq klwosjl osk s esf ozg cfwo lgg emuz.
key 1 decryption azddp jkvnrik nrj r dre nyf bevn kff dlty.
key 2 decryption zycco ijumqhj mqi q cqd mxe adum jee cksx.
key 3 decryption yxbbn hitlpgi lph p bpc lwd zctl idd bjrw.
key 4 decryption xwaam ghskofh kog o aob kvc ybsk hcc aiqv.
key 5 decryption wvzzl fgrjneg jnf n zna jub xarj gbb zhpu.
key 6 decryption vuyyk efqimdf ime m ymz ita wzqi faa ygot.
key 7 decryption utxxj dephlce hld l xly hsz vyph ezz xfns.
key 8 decryption tswwi cdogkbd gkc k wkx gry uxog dyy wemr.
key 9 decryption srvvh bcnfjac fjb j vjw fqx twnf cxx vdlq.
key 10 decryption rquug abmeizb eia i uiv epw svme bww uckp.
key 11 decryption qpttf zaldhya dhz h thu dov ruld avv tbjo.
key 12 decryption posse yzkcgxz cgy g sgt cnu qtkc zuu sain.
key 13 decryption onrrd xyjbfwy bfx f rfs bmt psjb ytt rzhm.
key 14 decryption nmqqc wxiaevx aew e qer als oria xss qygl.
key 15 decryption mlppb vwhzduw zdv d pdq zkr nqhz wrr pxfk.
key 16 decryption lkooa uvgyctv ycu c ocp yjq mpgy vqq owej.
key 17 decryption kjnnz tufxbsu xbt b nbo xip lofx upp nvdi.
key 18 decryption jimmy stewart was a man who knew too much.
key 19 decryption ihllx rsdvzqs vzr z lzm vgn jmdv snn ltbg.
key 20 decryption hgkkw qrcuypr uyq y kyl ufm ilcu rmm ksaf.
key 21 decryption gfjjv pqbtxoq txp x jxk tel hkbt qll jrze.
key 22 decryption feiiu opaswnp swo w iwj sdk gjas pkk iqyd.
key 23 decryption edhht nozrvmo rvn v hvi rcj fizr ojj hpxc.
key 24 decryption dcggs mnyquln qum u guh qbi ehyq nii gowb.
key 25 decryption cbffr lmxptkm ptl t ftg pah dgxp mhh fnva.

 B.4 CHAPTER 4: BLOCK CIPHERS AND THE DATA 
ENCRYPTION STANDARD

Example 1: This example implements simplified DES, which is described in 

Appendix G.

#
# The Expansions/Permutations are stored as lists of 
bit positions
#
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P10_data = [3, 5, 2, 7, 4, 10, 1, 9, 8, 6];

P8_data = [6, 3, 7, 4, 8, 5, 10, 9];

LS1_data = [2, 3, 4, 5, 1];

LS2_data = [3, 4, 5, 1, 2];

IP_data = [2, 6, 3, 1, 4, 8, 5, 7];

IPinv_data = [4, 1, 3, 5, 7, 2, 8, 6];

EP_data = [4, 1, 2, 3, 2, 3, 4, 1];

P4_data = [2, 4, 3, 1];

SW_data = [5, 6, 7, 8, 1, 2, 3, 4];

#
# SDES lookup tables
#

S0_data = [[1, 0, 3, 2],

[3, 2, 1, 0],

[0, 2, 1, 3],

[3, 1, 3, 2]];

S1_data = [[0, 1, 2, 3],

[2, 0, 1, 3],

[3, 0, 1, 0],

[2, 1, 0, 3]];

def ApplyPermutation(X, permutation):
r"""
This function takes a permutation list (list of 
bit positions.)
And outputs a bit list with the bits taken from X.
"""

# permute the list X
l = len(permutation);
return [X[permutation[j]−1] for j in xrange(l)];

def ApplySBox(X, SBox):

r"""
This function Applies the SDES SBox (by table  
look up
"""

r = 2*X[0] + X[3];
c = 2*X[1] + X[2];
o = SBox[r][c];
return [o & 2, o & 1];
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#
# Each of these functions uses ApplyPermutation
# and a permutation list to perform an SDES
# Expansion/Permutation
#

def P10(X):
return ApplyPermutation(X, P10_data);

def P8(X):
return ApplyPermutation(X, P8_data);

def IP(X):
return ApplyPermutation(X, IP_data);

def IPinv(X):
return ApplyPermutation(X, IPinv_data);

def EP(X):
return ApplyPermutation(X, EP_data);

def P4(X):
return ApplyPermutation(X, P4_data);

def SW(X):
return ApplyPermutation(X, SW_data);

def LS1(X):
return ApplyPermutation(X, LS1_data);

def LS2(X):
return ApplyPermutation(X, LS2_data);

#
# These two functions perform the SBox substitutions
#

def S0(X):
return ApplySBox(X, S0_data);

def S1(X):
return ApplySBox(X, S1_data);

def concatenate(left, right):
r"""
Joins to bit lists together.
"""
ret = [left[j] for j in xrange(len(left))];
ret.extend(right);
return ret;

def LeftHalfBits(block):
r"""
Returns the left half bits from block.
"""
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l = len(block);
return [block[j] for j in xrange(l/2)];

def RightHalfBits(block):
r"""
Returns the right half bits from block.
"""
l = len(block);
return [block[j] for j in xrange(l/2, l)];

def XorBlock(block1, block2):
r"""
Xors two blocks together.
"""
l = len(block1);
if (l != len(block2)):

raise ValueError, "XorBlock arguments must 
be same length"

return [(block1[j]+block2[j]) % 2 for j in 
xrange(l)];

def SDESKeySchedule(K):
r"""
Expands an SDES Key (bit list) into the two 
round keys.
"""
temp_K = P10(K);

left_temp_K = LeftHalfBits(temp_K);
right_temp_K = RightHalfBits(temp_K);

K1left = LS1(left_temp_K);
K1right = LS1(right_temp_K);

K1temp = concatenate(K1left, K1right);
K1 = P8(K1temp);

K2left = LS2(K1left);
K2right = LS2(K1right);

K2temp = concatenate(K2left, K2right);

K2 = P8(K2temp);

return (K1, K2);

def f_K(block, K):
r"""
Performs the f_K function supplied block and K.
"""
left_block = LeftHalfBits(block);
right_block = RightHalfBits(block);
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temp_block1 = EP(right_block);

temp_block2 = XorBlock(temp_block1, K);

left_temp_block2 = LeftHalfBits(temp_block2);
right_temp_block2 = RightHalfBits(temp_block2);

S0_out = S0(left_temp_block2);
S1_out = S1(right_temp_block2);

temp_block3 = concatenate(S0_out, S1_out);

temp_block4 = P4(temp_block3)

temp_block5 = XorBlock(temp_block4, left_block);

output_block = concatenate(temp_block5, right_
block)

return output_block;

def SDESEncrypt(plaintext_block, K):
r"""
Performs a single SDES plaintext block encryption.
(Given plaintext and key as bit lists.)
"""

(K1, K2) = SDESKeySchedule(K);

temp_block1 = IP(plaintext_block);

temp_block2 = f_K(temp_block1, K1);

temp_block3 = SW(temp_block2);

temp_block4 = f_K(temp_block3, K2);

output_block = IPinv(temp_block4);

return output_block;

 B.5 CHAPTER 5: BASIC CONCEPTS IN NUMBER THEORY 
AND FINITE FIELDS

Example 1: The Euclidean algorithm for the greatest common divisor.

def EUCLID(a,b):
r"""
The Euclidean algorithm for finding the gcd of a and b.
This algorithm assumes that a > b => 0

INPUT:
a − positive integer
b − nonnegative integer less than a
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OUTPUT:
g − greatest common divisor of a and b
"""
if (b < 0) or ( a <= b):

raise ValueError, "Expected 0 < a < b"

(A, B) = (a,b);

while (True):

if (0 == B):
return A;

R = A % B;
A = B;
B = R;

Example 2: The extended Euclidean algorithm for the greatest common  

divisor.

def EXTENDED_EUCLID(m,b):
r"""
The extended Euclidean algorithm to find gcd(m,b).
The input is expected to be such that 0 <= b < m.

INPUT:

m − positive integer

b − nonnegative integer less than m

OUTPUT:

(g, b_inv) − g is the gcd of m and b, b_inv is  

the multiplicative inverse of b mod m.

"""

if (m < b) or (b < 0):

raise ValueError, "Expected input (0 < b < m)"

(A1,A2,A3) = (1,0,m);
(B1,B2,B3) = (0,1,b);

while (True):

if (0 == B3):
return (A3, None)

if (1 == B3):
return (B3, B2)

Q = floor(A3/B3)

(T1,T2,T3) = (A1−Q*B1, A2−Q*B2, A3−Q*B3)
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(A1, A2, A3) = (B1, B2, B3)
(B1, B2, B3) = (T1, T2, T3)

Example 3: Euclidean algorithm to find gcd of polynomials (with coefficients 

in a field).

def POLYNOMIAL_EUCLID(A, B):
r"""
Euclidian algorithm for polynomial GCD:
Given two polynomials over the same base field,
Assuming degree(A) => degree(B) => 0.

INPUT:

A − polynomial over a field.

B − polynomial over the same field as A, and 0 <= 
degree(B) <= degree(A).

OUTPUT:

G − greatest common divisor of A and B.

"""
degA = A.degree();
degB = B.degree();

if ((degB < 0) or (degA < degB)):
raise ValueError, "Expected 0 <= degree(B) <= 
degree(A)"

while(True):

if (0 == B):
return A;

R = A % B;

A = B;
B = R;

Example 4: Extended Euclidean algorithm for the gcd of two polynomials 

(with coefficients in the same field).

def POLYNOMIAL_EXTENDED_EUCLID(m, b):
r"""
Extended Euclidian algorithm for polynomial GCD:
Given two polynomials over the same base field,
Assuming degree(m) => degree(b) => 0

INPUT:

m − polynomial over a field.
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b − polynomial over the same field as A, and 0 <= 
degree(B) <= degree(M).

OUTPUT:

(g,b_inv) − the pair where:

g − greatest common divisor of m and b.

m_inv −  is None if G is not of degree 0, and 
otherwise it is the polynomial such that 
b(X)*b_inv(X) = 1 mod m(X)

"""
degm = m.degree();
degb = b.degree();

if(degb < 0) or (degm < degb):
raise ValueError, "expected 0 <= degree(b) <= 
degree(m)"

(A1, A2, A3) = (1, 0, m);
(B1, B2, B3) = (0, 1, b);

while (True):

if (0 == B3):
return (A3, None);

if (0 == B3.degree()):
return (B3/B3, B2/B3);

Q = A3.quo_rem(B3)[0];

(T1, T2, T3) = (A1 − Q*B1, A2 − Q*B2, A3 − Q*B3);
(A1, A2, A3) = (B1, B2, B3);
(B1, B2, B3) = (T1, T2, T3);

Example 5: Sage has built in functionality for the gcd function. The regular 

greatest common divisor function can simply be called as:

sage: gcd(15,100)
5

sage: gcd(90,65311)
1

You can also call it as a method on Integer objects:

sage: x = 10456890
sage: x.gcd(100)
10

The extended Euclidean algorithm for the greatest common divisor is 

also built into Sage. Calling xgcd(a,b) returns a tuple, the first element 
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is the gcd, the second and third elements are coefficients u, v such that 

gcd(a,b) = u* a + v* b. This can be called as:

sage: xgcd(17,31)
(1, 11, −6)
sage: xgcd(10, 115)
(5, −11, 1)

This can also be called as a method on Integer objects

sage: x = 300
sage: x.xgcd(36)
(12, 1, −8)

Example 6: Sage includes robust support for working with finite fields and 

performing finite field arithmetic. To initialize a finite field with prime order, 

use the GF command passing the order as the parameter.

sage: F = GF(2)
sage: F
Finite Field of size 2

sage: F = GF(37)
sage: F
Finite Field of size 37

sage: p = 95131
sage: K = GF(p)
sage: K
Finite Field of size 95131

To initialize a field with a prime power order use the GF command with 

the following syntax (to keep track of the primitive element of the extension 

field).

sage: F.<a> = GF(128)
sage: F
Finite Field in a of size 2^7

To do arithmetic in finite fields use the following syntax:

sage: K = GF(37)
sage: a = K(3)
sage: b = K(18)
sage: a − b
22
sage: a + b
21
sage: a * b
17
sage: a/b
31
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sage: a^−1
25
sage: 1/a
25

To do arithmetic in a finite field with a prime power order, specify 

elements using the primitive element:

sage: F.<a> = GF(128)
sage: b = a^2 + 1
sage: c = a^5 + a^3 + 1
sage: b − c
a^5 + a^3 + a^2
sage: b + c
a^5 + a^3 + a^2
sage: b*c
a^3 + a^2 + a
sage: b/c
a^5 + a^3 + a^2 + a
sage: b^−1
a^5 + a^3 + a
sage: 1/b
a^5 + a^3 + a

Example 7: With Sage you can create rings of polynomials over finite fields and do 

arithmetic with them. To create polynomial rings over finite fields do the following:

sage: R.<x> = GF(2)[]
sage: R

Univariate Polynomial Ring in x over Finite Field of 
size 2 (using NTL)
sage: R.<x> = GF(101)[]

sage: R
sage: R.<x> = F[]
sage: R
Univariate Polynomial Ring in x over Finite Field in 
a of size 2^7

After initializing a polynomial ring, you can then just perform arithmetic 

as you would expect:

sage: R.<x> = GF(2)[]
sage: f = x^3 + x + 1
sage: g = x^5 + x
sage: f + g
x^5 + x^3 + 1
sage: f*g
x^8 + x^6 + x^5 + x^4 + x^2 + x
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Division is accomplished by the quo_rem function:

sage: g.quo_rem(f)
(x^2 + 1, x^2 + 1)

You can also compute the greatest common divisor:

sage: f.gcd(g)
1

sage: g.gcd(g^2)
x^5 + x

sage: R.<x> = GF(17)[]
sage: f = 3*x^3 + 2*x^2 + x
sage: g = x^2 + 5
sage: f − g
3*x^3 + x^2 + x + 12
sage: f * g
3*x^5 + 2*x^4 + 16*x^3 + 10*x^2 + 5*x
sage: f.quo_rem(g)
(3*x + 2, 3*x + 7)

And computing gcds in this polynomial ring we see:

sage: f.gcd(g)
1

sage: f.gcd(x^2 + x)
x

When creating a Sage finite field with a prime power order, Sage finds an 

irreducible polynomial for you. For example:

sage: F.<a> = GF(32)
a^5 + a^2 + 1

However, there are many irreducible polynomials over GF(2) of degree 5, such 

as x^5 + x^3 + 1. Suppose that you want to create your own extension of the 

binary field with degree 5, and an irreducible polynomial of your choice. Then 

you can do so as follows:

sage: R.<x> = GF(2)[]
sage: F = GF(2).extension(x^5 + x^3 + 1, 'a')
sage: a = F.gen()

You need to do this last step to inject the primitive element into the 

 interpreter’s name space. This is done automatically when using the GF 

function to create an extension field, but not when you use the member 

function extension on a field object.
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 B.6 CHAPTER 6: ADVANCED ENCRYPTION STANDARD

Example 1: Simplified AES.

#
# These structures are the underlying
# Galois Field and corresponding Vector Space
# of the field used in the SAES algorithm
# These structures allow us to easily compute with these fields.

#
F = GF(2);
L.<a> = GF(2^4);
V = L.vector_space();
VF8 = VectorSpace(F, 8);

#
# The MixColumns and its Inverse matrices are stored
# as 2x2 matrices with elements in GF(2^4) (as are state 
matrices.)
# The MixColumns operation (and its inverse) are performed by
# matrix multiplication.
#

MixColumns_matrix = Matrix(L, [[1,a^2],[a^2,1]]);

InverseMixColumns_matrix = MixColumns_matrix.inverse();

SBox_matrix = Matrix(L,
[
[       1 + a^3, a^2, a + a^3, 1 + a + a^3],
[ 1 + a^2 + a^3, 1, a^3, 1 + a^2],
[       a + a^2, 0, a, 1 + a],
[      a^2 + a^3, a + a^2 + a^3, 1 + a + a^2 + a^3, 1 + a + a^2]
]);

InverseSBox_matrix = Matrix(L,
[
[   a + a^3,     1 + a^2,       1 + a^3,       1 + a + a^3],
[         1, 1 + a + a^2,           a^3, 1 + a + a^2 + a^3],
[   a + a^2,           0,             a,             1 + a],
[ a^2 + a^3,         a^2, 1 + a^2 + a^3,     a + a^2 + a^3]
]);

RCON = [
VF8([F(0), F(0), F(0), F(0), F(0), F(0), F(0), F(1)]),
VF8([F(0), F(0), F(0), F(0), F(1), F(1), F(0), F(0)])
];
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def SAES_ToStateMatrix(block):
r"""
Converts a bit list into an SAES state matrix.
"""

B = block;

# form the plaintext block into a matrix of GF(2^n) 
elements
S00 = L(V([B[0], B[1], B[2], B[3]]));
S01 = L(V([B[4], B[5], B[6], B[7]]));
S10 = L(V([B[8], B[9], B[10], B[11]]));
S11 = L(V([B[12], B[13], B[14], B[15]]));

state_matrix = Matrix(L, [[S00,S01],[S10,S11]]);

return state_matrix;

def SAES_FromStateMatrix(State Matrix):
r"""
Converts an SAES State Matrix to a bit list.
"""

output = [];

# convert State Matrix back into bit list
for r in xrange(2):

for c in xrange(2):
v = V(State Matrix[r,c]);
for j in xrange(4):

output.append(Integer(v[j]));

return output;

def SAES_AddRoundKey(state_matrix, K):
r"""
Adds a round key to an SAES state matrix.
"""

K_matrix = SAES_ToStateMatrix(K);

next_state_matrix = K_matrix + state_matrix;

return next_state_matrix;

def SAES_MixColumns(state_matrix):
r"""
Performs the Mix Columns operation.
"""

next_state_matrix = MixColumns_matrix*state_matrix;

return next_state_matrix;
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def SAES_InverseMixColumns(state_matrix):
r"""
Performs the Inverse Mix Columns operation.
"""

next_state_matrix = InverseMixColumns_matrix*  
state_matrix;
return next_state_matrix;

def SAES_ShiftRow(state_matrix):
r"""
Performs the Shift Row operation.
"""

M = state_matrix;
next_state_matrix = Matrix(L,  [ 

[M[0,0], M[0,1]], 

[M[1,1], M[1,0]] 

]);
return next_state_matrix;

def SAES_SBox(nibble):
r"""
Performs the SAES SBox look up in the SBox matrix
(lookup table.)
"""

v = nibble._vector_();
c = Integer(v[0]) + 2*Integer(v[1]);
r = Integer(v[2]) + 2*Integer(v[3]);
return SBox_matrix[r,c];

def SAES_NibbleSubstitution(state_matrix):
r"""
Performs the SAES SBox on each element of an SAES 
state matrix.
"""

M = state_matrix;
next_state_matrix = Matrix(L,

[ [ SAES_SBox(M[0,0]), SAES_SBox(M[0,1])],
[ SAES_SBox(M[1,0]), SAES_SBox(M[1,1])] ]);

return next_state_matrix;

def SAES_InvSBox(nibble):
r"""
Performs the SAES Inverse SBox look up in the SBox 
matrix (lookup table.)
"""

v = nibble._vector_();
c = Integer(v[0]) + 2*Integer(v[1]);
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r = Integer(v[2]) + 2*Integer(v[3]);
return InverseSBox_matrix[r,c];

def SAES_InvNibbleSub(state_matrix):
r"""
Performs the SAES Inverse SBox on each element of an
SAES state matrix.
"""

M = state_matrix;
next_state_matrix = Matrix(L,
[ [ SAES_InvSBox(M[0,0]), SAES_InvSBox(M[0,1])],
[ SAES_InvSBox(M[1,0]), SAES_InvSBox(M[1,1])] ]);

return next_state_matrix;

def RotNib(w):
r"""
Splits an 8 bit list into two elements of GF(2^4)
"""
N_0 = L(V([w[j] for j in xrange(4)]));
N_1 = L(V([w[j] for j in xrange(4,8)]));
return (N_1, N_0);

def SAES_g(w, i):
r"""
Performs the SAES g function on the 8 bit list w.
"""
(N0, N1) = RotNib(w);
N0 = V(SAES_SBox(N0));
N1 = V(SAES_SBox(N1));
temp1 = VF8( [ N0[0], N0[1], N0[2], N0[3],
    N1[0], N1[1], N1[2], N1[3] ] );
output = temp1 + RCON[i];
return output;

def SAES_KeyExpansion(K):
r"""
Expands an SAES key into two round keys.
"""
w0 = VF8([K[j] for j in xrange(8)]);
w1 = VF8([K[j] for j in xrange(8,16)]);

w2 = w0 + SAES_g(w1, 0);
w3 = w1 + w2;

w4 = w2 + SAES_g(w3, 1);
w5 = w3 + w4;

K0 = [w0[j] for j in xrange(8)];
K0.extend([w1[j] for j in xrange(8)]);

K1 = [w2[j] for j in xrange(8)];
K1.extend([w3[j] for j in xrange(8)]);
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K2 = [w4[j] for j in xrange(8)];
K2.extend([w4[j] for j in xrange(8)]);

return (K0, K1, K2);

#
# Encrypts one plaintext block with key K
#

def SAES_Encrypt(plaintext, K):
r"""
Performs a SAES encryption on a single plaintext 

block.
(Both block and key passed as bit lists.)
"""

# get the key schedule
(K0, K1, K2) = SAES_KeyExpansion(K);

state_matrix0 = SAES_ToStateMatrix(plaintext);

state_matrix1 = SAES_AddRoundKey(state_matrix0, K0);

state_matrix2 = SAES_NibbleSubstitution 

(state_matrix1);

state_matrix3 = SAES_ShiftRow(state_matrix2);

state_matrix4 = SAES_MixColumns(state_matrix3);

state_matrix5 = SAES_AddRoundKey(state_matrix4, K1);

state_matrix6 = SAES_NibbleSubstitution 

(state_matrix5);

state_matrix7 = SAES_ShiftRow(state_matrix6);

state_matrix8 = SAES_AddRoundKey(state_matrix7, K2);

output = SAES_FromStateMatrix(state_matrix8);
return output;

#
# Decrypts one ciphertext block with key K
#

def SAES_Decrypt(ciphertext, K):
r"""
Performs a single SAES decryption operation on a −
ciphertext block.
(Both block and key passed as bit lists.)
"""

# perform key expansion
(K0, K1, K2) = SAES_KeyExpansion(K);
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# form the ciphertext block into a matrix of GF(2^n) 
elements

state_matrix0 = SAES_ToStateMatrix(ciphertext);

state_matrix1 = SAES_AddRoundKey(state_matrix0, K2);

state_matrix2 = SAES_ShiftRow(state_matrix1);

state_matrix3 = SAES_InvNibbleSub(state_matrix2);

state_matrix4 = SAES_AddRoundKey(state_matrix3, K1);

state_matrix5 = SAES_InverseMixColumns 

(state_matrix4);

state_matrix6 = SAES_ShiftRow(state_matrix5);

state_matrix7 = SAES_InvNibbleSub(state_matrix6);

state_matrix8 = SAES_AddRoundKey(state_matrix7, K0);

output = SAES_FromStateMatrix(state_matrix8);

return output;

 B.7 CHAPTER 8: PSEUDORANDOM NUMBER GENERATION 
AND STREAM CIPHERS

Example 1: Blum Blum Shub RNG.

def BlumBlumShub_Initialize(bitlen, seed):
r"""
Initializes a Blum-Blum-Shub RNG State.

A BBS-RNG State is a list with two elements:
[N, X]
N is a 2*bitlen modulus (product of two primes)
X is the current state of the PRNG.

INPUT:
bitlen − the bit length of each of the prime 

factors of n

seed − a large random integer to start out the 

prng

OUTPUT:

state − a BBS-RNG internal state

"""

# note that this is not the most cryptographically 
secure
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# way to generate primes, because we do not know how the
# internal sage random_prime function works.

p = 3;
while (p < 2^(bitlen−1)) or (3 != (p % 4)):

p = random_prime(2^bitlen);

q = 3;
while (q < 2^(bitlen−1)) or (3 != (q % 4)):

q = random_prime(2^bitlen);

N = p*q;

X = (seed^2 % N)

state = [N, X]

return state;

def BlumBlumShub_Generate(num_bits, state):
r"""
Blum−Blum−Shum random number generation function.

INPUT:

num_bits − the number of bits (iterations) to 

generate with this RNG.

state − an internal state of the BBS−RNG (a list 

[N, X].)

OUTPUT:

random_bits − a num_bits length list of random  
bits.

"""

random_bits = [];

N = state[0]
X = state[1]

for j in xrange(num_bits):

X = X^2 % N
random_bits.append(X % 2)

# update the internal state
state[1] = X;

return random_bits;

Example 2: Linear Congruential RNG.

def LinearCongruential_Initialize(a, c, m, X0):
r"""
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This functional initializes a linear congruential 

RNG state.

This state is a list of four integers: [a, c, m, X]

a,c,m are the parameters of the linear congruential 

instantiation X is the current state of the PRNG.

INPUT:

a − The coefficient
c − The offset
m − The modulus
X0 − The initial state

OUTPUT:

state − The initial internal state of the RNG

"""

return [a,c,m,X0]

def LinearCongruential_Generate(state):
r"""

Generates a single linear congruential RNG output 
and updates the state.

INPUT:

state − an internal RNG state.

OUTPUT:

X − a single output of the linear congruential RNG.

"""
a = state[0]
c = state[1]
m = state[2]
X = state[3]
X_next = (a*X + c) % m
state[3] = X_next
return X_next

 B.8 CHAPTER 9: PUBLIC-KEY CRYPTOGRAPHY AND RSA

Example 1: Using Sage we can simulate an RSA encryption and decryption.

sage: # randomly select some prime numbers
sage: p = random_prime(1000); p
191
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sage: q = random_prime(1000); q
601
sage: # compute the modulus
sage: N = p*q
sage: R = IntegerModRing(N)
sage: phi_N = (p−1)*(q−1)
sage: # we can choose the encrypt key to be anything
sage: # relatively prime to phi_N
sage: e = 17
sage: gcd(d, phi_N)
1
sage: # the decrypt key is the multiplicative 
inverse
sage: # of d mod phi_N
sage: d = xgcd(d, phi_N)[1] % phi_N
sage: d
60353
sage: # Now we will encrypt/decrypt some random 7 
digit numbers

sage: P = randint(1,127); P
97
sage: # encrypt
sage: C = R(P)^e; C
46685
sage: # decrypt
sage: R(C)^d
97

sage: P = randint(1,127); P
46
sage: # encrypt
sage: C = R(P)^e; C
75843
sage: # decrypt
sage: R(C)^d
46

sage: P = randint(1,127); P
3
sage: # encrypt
sage: C = R(P)^e; C
288
sage: # decrypt
sage: R(C)^d
3

Also, Sage can just as easily do much larger numbers:

sage: p = random_prime(1000000000); p
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114750751
sage: q = random_prime(1000000000); q
8916569
sage: N = p*q
sage: R = IntegerModRing(N)
sage: phi_N = (p−1)*(q−1)
sage: e = 2^16 + 1
sage: d = xgcd(e, phi_N)[1] % phi_N
sage: d
237150735093473

sage: P = randint(1,1000000); P
955802
sage: C = R(P)^e
sage: R(C)^d
955802

Example 2: In Sage, we can also see an example of RSA signing/verifying.

sage: p = random_prime(10000); p
1601
sage: q = random_prime(10000); q
4073
sage: N = p*q
sage: R = IntegerModRing(N)
sage: phi_N = (p−1)*(q−1)
sage: e = 47
sage: gcd(e, phi_N)
1
sage: d = xgcd(e,phi_N)[1] % phi_N
sage: # Now by exponentiating with the private key
sage: # we are effectively signing the data
sage: # a few examples of this

sage: to_sign = randint(2,2^10); to_sign
650
sage: # the signature is checked by exponentiating
sage: # and checking vs the to_sign value
sage: signed = R(to_sign)^d; signed
2910116
sage: to_sign == signed^e
True
sage: to_sign = randint(2,2^10); to_sign
362
sage: signed = R(to_sign)^d; signed
546132
sage: to_sign == signed^e
True
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sage: # we can also see what happens if we try to 
verify a bad signature

sage: to_sign = randint(2,2^10); to_sign
605
sage: signed = R(to_sign)^d; signed
1967793
sage: bad_signature = signed − randint(2,100)
sage: to_sign == bad_signature^e
False

 B.9 CHAPTER 10: OTHER PUBLIC-KEY CRYPTOSYSTEMS

Example 1: Here is an example of Alice and Bob performing a Diffie–Hellman 

Key Exchange done in Sage:

sage: # Alice and Bob agree on the domain 
parameters:
sage: p = 619
sage: F = GF(p)
sage: g = F(2)
sage: # Alice picks a random value x in 1 . . . 618
sage: x = randint(1,618); x
571
sage: # Alice computes X = g^x and sends this to Bob
sage: X = g^571; X
591
sage: # Bob picks a random value y in 1 . . . 618
sage: y = randint(1,618);y
356
sage: # Bob computes Y = g^y and sends this to Alice
sage: Y = g^y; Y
199
sage: # Alice computes Y^x
sage: Y^x
563
sage: # Bob computes X^y
sage: X^y
563
sage: # Alice and Bob now share a secret value

Example 2: In reality to prevent what is known as small subgroup attacks, the 

prime p is chosen so that p - 2q + 1 where p is a prime as well.

sage: q = 761
sage: p = 2*q + 1
sage: is_prime(q)
True
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sage: is_prime(p)
True
sage: F = GF(p)
sage: g = F(3)
sage: g^q
1
sage: # note that g^q = 1 implies g is of order q
sage: # Alice picks a random value x in 2 . . . q−1
sage: x = randint(2,q−1); x
312
sage: # Alice computes X = g^x and sends it to Bob
sage: X = g^x; X
26
sage: # Bob computes a random value y in 2 . . . q−1
sage: y = randint(2,q−1); y
24
sage: # Bob computes Y = g^y and sends it to Alice
sage: Y = g^y; Y
1304
sage: # Alice computes Y^x
sage: Y^x
541
sage: # Bob computes X^y
sage: X^y
541
sage: # Alice and Bob now share the secret value 541

Example 3: Sage has a significant amount of support for elliptic curves. This 

functionality can be very useful when learning, because it allows you to easily 

calculate things and get the big picture. Doing the examples by hand may 

cause you to get mired in the details. First you instantiate an elliptic curve, 

by specifying the field that it is over, and the coefficients of the defining 

Weierstrass equation. For this purpose, we write the Weierstrass equation as

 y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6 

Then the Sage function EllipticCurve(R, [a1, a2, a3, a4, a6]) creates the elliptic 

curve over the ring R.

sage: E = EllipticCurve(GF(17), [1,2,3,4,5])
sage: E
Elliptic Curve defined by y^2 + x*y + 3*y = x^3 + 
2*x^2 + 4*x + 5 over Finite Field of size 17

sage: E = EllipticCurve(GF(29), [0,0,0,1,1])
sage: E
Elliptic Curve defined by y^2 = x^3 + x + 1 over 
Finite Field of size 29
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sage: E = EllipticCurve(GF(127), [0,0,0,2,17])
sage: E
Elliptic Curve defined by y^2 = x^3 + 2*x + 17 over 
Finite Field of size 127

sage: F.<theta> = GF(2^10)
sage: E = EllipticCurve(F, [1,0,0,1,0])
sage: E
Elliptic Curve defined by y^2 + x*y = x^3 + x over 
Finite Field in theta of size 2^10

Example 4: Koblitz curves. A Koblitz curve is an elliptic curve over a binary 

field defined by an equation of the form

 y2 + xy = x3 + ax2 + 1 

where a = 0 or 1. FIPS 186-3 recommends a number of Koblitz curves for use 

with the Digital Signature Standard (DSS). Here we give an example of a curve 

of similar form to the Koblitz curves:

sage: F.<theta> = GF(2^17)
sage: E = EllipticCurve(F,[1,0,0,theta,1])
sage: E
Elliptic Curve defined by y^2 + y = x^3 + theta*
x^2 = 1 over Finite Field in theta of size 2^17

Example 5: Sage can even easily instantiate curves of cryptographic sizes, like 

K163, which is one of the FIPS 186-3 curves.

sage: F.<theta> = GF(2^163)
sage: E = EllipticCurve(F, [1,0,0,1,1])
sage: E
Elliptic Curve defined by y^2 + x*y = x^3 + x^2 + 1 
over Finite Field in theta of size 2^163

However, you should be careful that when instantiating a curve of cryptographic 

sizes, some of the functions on the curve object will not work because they 

require exponential time to run. While you can compute some things with 

these objects, it is best to leave your experimentation to the smaller sized 

curves.

You can calculate some values of the curve, such as the number of points:

sage: E = EllipticCurve(GF(107), [0,0,0,1,0])
sage: E.order()
108

You can also determine the generators of a curve:

sage: E = EllipticCurve(GF(101), [0,0,0,1,0])
sage: E.gens()
((7 : 42 : 1), (36 : 38 : 1))
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Note that this output is printed (x : y : z). This is a minor technical consideration 

because Sage stores points in what is known as “projective coordinates.” The 

precise meaning is not important, because for non-infinite points the value z will 

always be 1 and the first two values in a coordinate will be the x and y coordinates, 

exactly as you would expect. This representation is useful because it allows the 

point at infinity to be specified as a point with the z coordinate equal to 0:

sage: E(0)
(0 : 1 : 0)

This shows how you can recognize a point at infinity as well as specify it. If you 

want to get the x and y coordinates out of a point on the curve, you can do so 

as follows:

sage: P = E.random_point(); P
(62 : 38 : 1)
sage: (x,y) = P.xy(); (x,y)
(62, 38)

You can specify a point on the curve by casting an ordered pair to the curve as:

sage: P = E((62,−38)); P
(62 : 63 : 1)

Now that you can find the generators on a curve and specify points you can 

experiment with these points and do arithmetic as well. Continuing to use E 

as the curve instantiated in the previous example, we can set G1 and G2 to the 

generators:

sage: (G1, G2) = E.gens()
sage: P = E.random_point(); P
(49 : 29 : 1)

You can compute the sum of two points as in the following examples:

sage: G1 + G2 + P
(69 : 96 : 1)
sage: G1 + P
(40 : 62 : 1)
sage: P + P + G2
(84 : 25 : 1)

You can compute the inverse of a point using the unary minus (-) operator:

sage: −P
(49 : 72 : 1)
sage: −G1
(7 : 59 : 1)

You can also compute repeated point addition (adding a point to itself many 

times) with the * operator:

sage: 13*G1
(72 : 23 : 1)
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sage: 2*G2
(9 : 58 : 1)
sage: 88*P
(87 : 75 : 1)

And for curves over small finite fields you can also compute the order (discrete 

log of the point at infinity with respect to that point).

sage: G1.order()
10

sage: G2.order()
10

sage: P.order()
10

Example 6: Using the Sage elliptic curve functionality to perform a simulated 

elliptic curve Diffie–Hellman (ECDH) key exchange.

sage: # calculate domain parameters
sage: F = GF(127)
sage: E = EllipticCurve(F, [0, 0, 0, 3, 4])
sage: G = E.gen(0); G
(94 : 6 : 1)
sage: q = E.order(); q
122

sage: # Alice computes a secret value x in 
2 . . . q−1
sage: x = randint(2,q−1); x
33

sage: # Alice computes a public value X = x*G
sage: X = x*G; X
(55 : 89 : 1)

sage: # Bob computes a secret value y in 2 . . . q−1
sage: y = randint(2,q−1); y
55

sage: # Bob computes a public value Y = y*G
sage: Y = y*G; Y
(84 : 39 : 1)

sage: # Alice computes the shared value
sage: x*Y
(91 : 105 : 1)

sage: # Bob computes the shared value
sage: y*X
(91 : 105 : 1)
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However, in practice most curves that are used have a prime order:

sage: # Calculate the domain parameters
sage: F = GF(101)
sage: E = EllipticCurve(F, [0, 0, 0, 25, 7])
sage: G = E((97,34))
sage: q = E.order()
sage: # Alice computes a secret values x in 2 . . . q−1
sage: x = randint(2,q−1)
sage: # Alice computes a public value X = x*G
sage: X = x*G
sage: # Bob computes a secret value y in 2 . . . q−1
sage: y = randint(2,q−1)
sage: # Bob computes a public value Y = y*G
sage: Y = y*G
sage: # Alice computes the shared secret value
sage: x*Y
(23 : 15 : 1)
sage: # Bob computes the shared secret value
sage: y*X
(23 : 15 : 1)

 B.10 CHAPTER 11: CRYPTOGRAPHIC HASH FUNCTIONS

Example 1: The following is an example of the MASH hash function in Sage. 

MASH is a function based on the use of modular arithmetic. It involves use 

of an RSA-like modulus M, whose bit length affects the security. M should be 

difficult to factor, and for M of unknown factorization, the security is based in 

part on the difficulty of extracting modular roots. M also determines the block 

size for processing messages. In essence, MASH is defined as:

 Hi = ((xi⊕Hi- 1)
2 OR Hi- 1)(mod M) 

where

A = 0xFF00c 00

Hi- 1 = the largest prime less than M

xi = the ith digit of the base M expansion of input n. That is, we express n 

as a number of base M. Thus:

 n = x0 + x1M + x2M
2 + c  

The following is an example of the MASH hash function in Sage.

#
# This function generates a mash modulus
# takes a bit length, and returns a Mash
# modulus l or l−1 bits long (if n is odd)
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# returns p, q, and the product N
#
def generate_mash_modulus(l):

m = l.quo_rem(2)[0]

p = 1
while (p < 2^(m−1)):
p = random_prime(2^m)

q = 1
while (q < 2^(m−1)):
q = random_prime(2^m)

N = p*q
return (N, p, q)

#
# Mash Hash
# the value n is the data to be hashed.
# the value N is the modulus
# Returns the hash value.
#
def MASH(n, N):

H = previous_prime(N)

q = n

while (0 != q):
(q, a) = q.quo_rem(N)
H = ((H+a)^2 + H) % N

return H

The output of these functions running;

sage: data = ZZ(randint(1,2^1000))
sage: (N, p, q) = generate_mash_modulus(20)
sage: MASH(data, N)
220874
sage: (N, p, q) = generate_mash_modulus(50)
sage: MASH(data, N)
455794413217080
sage: (N, p, q) = generate_mash_modulus(100)
sage: MASH(data, N)
268864504538508517754648285037
sage: data = ZZ(randint(1,2^1000))
sage: MASH(data, N)
236862581074736881919296071248
sage: data = ZZ(randint(1,2^1000))
sage: MASH(data, N)
395463068716770866931052945515
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Example 1: Using Sage, we can perform a DSA sign and verify:

sage: # First we generate the domain parameters
sage: # Generate a 16 bit prime q
sage: q = 1;
sage: while (q < 2^15): q = random_prime(2^16)
. . . .:
sage: q
42697
sage: # Generate a 64 bit p, such that q divides 
(p−1)
sage: p = 1
sage: while (not is_prime(p)):
. . . .: p = (2^48 + randint(1,2^46)*2)*q + 1
. . . .:
sage: p
12797003281321319017
sage: # Generate h and g
sage: h = randint(2,p−2)
sage: h
5751574539220326847
sage: F = GF(p)
sage: g = F(h)^((p−1)/q)
sage: g
9670562682258945855

sage: # Generate a user public / private key
sage: # private key
sage: x = randint(2,q−1)
sage: x
20499
sage: # public key
sage: y = F(g)^x
sage: y
7955052828197610751
sage: # Sign and verify a random value
sage: H = randint(2,p−1)
sage: # Signing
sage: # random blinding value
sage: k = randint(2,q−1)
sage: r = F(g)^k % q
sage: r = F(g)^k
sage: r = r.lift() % q
sage: r
6805
sage: kinv = xgcd(k,q)[1] % q
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sage: s = kinv*(H + x*r) % q
sage: s
26026

sage: # Verifying
sage: w = xgcd(s,q)[1]; w
12250
sage: u1 = H*w % q; u1
6694
sage: u2 = r*w % q; u2
16706
sage: v = F(g)^u1 * F(y)^u2
sage: v = v.lift() % q
sage: v
6805
sage: v == r
True

sage: # Sign and verify another random value
sage: H = randint(2,p−1)
sage: k = randint(2,q−1)
sage: r = F(g)^k
sage: r = r.lift() % q
sage: r
3284
sage: kinv = xgcd(k,q)[1] % q
sage: s = kinv*(H + x*r) % q
sage: s
2330

sage: # Verifying
sage: w = xgcd(s,q)[1]; w
4343
sage: u1 = H*w % q; u1
32191
sage: u2 = r*w % q; u2
1614
sage: v = F(g)^u1 * F(y)^u2
sage: v = v.lift() % q
sage: v
3284
sage: v == r
True

Example 2: The following functions implement DSA domain parameter 

generation, key generation, and DSA Signing:

#
# Generates a 16 bit q and 64 bit p, both prime
# such that q divides p−1
#
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def DSA_generate_domain_parameters():

g = 1

while (1 == g):

# first find a q
q = 1
while (q < 2^15): q = random_prime(2^16)
# next find a p
p = 1
while (not is_prime(p)):

p = (2^47 + randint(1,2^45)*2)*q + 1

F = GF(p)

h = randint(2,p−1)

g = (F(h)^((p−1)/q)).lift()

return (p, q, g)

#
# Generates a users private and public key
# given domain parameters p, q, and g
#
def DSA_generate_keypair(p, q, g):

x = randint(2,q−1)

F = GF(p)

y = F(g)^x
y = y.lift()

return (x,y)

#
# Given domain parameters p, q and g
# as well as a secret key x
# and a hash value H
# this performs the DSA signing algorithm
#
def DSA_sign(p, q, g, x, H):

k = randint(2,q−1)

F = GF(p)

r = F(g)^k

r = r.lift() % q

kinv = xgcd(k,q)[1] % q

s = kinv*(H + x*r) % q

return (r, s)
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