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Preface

Th e study of data structures is a basic component of Computer Science and Engineering. People who work 
in any phase of a soft ware system require a bare minimum knowledge of data structures. So, all Computer 
Science, Engineering and other allied disciplines off er courses on this subject. Th e hand-in-hand relationship 
between data structures and their algorithms and their complexity analysis is also a point of discussion.

Data Structures and Algorithms Using C++ helps one to master data structures, their algorithms and analy-
sis of complexities of these algorithms.

Th is book meets the requirements of the course curricula of almost all the universities. Every chapter of the 
book includes the Abstract Data Type (ADT) and applications along with a detailed explanation of the topics. 
We present an implementation vehicle for these data structure concepts using C++ programming language 
known for its power, reusability and portability.

Th e fi rst two chapters of the book are dedicated to reviewing C++ programming concepts and object-ori-
ented concepts. Th ose who are familiar with programming in C can cope with C++ by going through Chapters 
1 and 2.

Chapter 1 discusses about the class, defi ning class members and object declaration. It covers I/O streams, 
access control, class scope and static class members. It also includes functions, this pointer, dynamic 
memory allocations and exception handling.

Chapter 2 explains object-oriented goals and principles, constructors, destructors, overloading of con-
structors and operators. It also covers inheritance, polymorphism, abstract classes, generic programming with 
function, class templates and recursion.

Chapter 3 provides an extensive study of algorithms. Starting with basic notations, types of algorithms 
and performance analysis of algorithms are covered. A very detailed explanation of space complexity—the in-
struction space, data space and stack space—is discussed in depth. It also includes apriori analysis, asymptotic 
notations (Big oh, omega, theta and little oh) and time complexity.

Basic and linear data structures are covered in Chapters 4—7. Chapter 4 defi nes and classifi es the data 
structures into linear and non-linear data structures. It provides a detailed study of a linear data structure—ar-
ray, its types and representation. Array initialization, accessing values of an array, array operations, arrays 
passed as parameters and character sequences are also explained.

Chapter 5 discusses and exemplifi es the linked list. Th e static and dynamic representations of a linked list 
are explained. It covers singly linked lists, circular linked lists and doubly linked lists along with representa-
tions and operations. 

Stacks and queues are exclusively dealt with in Chapters 6 and 7. Th e representation and implementation of 
these data structures are explained along with examples. Various operations of stacks are discussed in Chapter 
6. Circular queues and doubly ended queues are explained in Chapter 7. 

Chapter 8 covers dictionaries and linear lists, skip lists and hash table representations of dictionaries. It 
includes collision occurrences, techniques to overcome the collisions and comparisons of chaining and open 
addressing.  

Th e study of non-linear data structures is considered from Chapter 9 onwards. Chapter 9 defi nes the tree, 
its related terminology and representations. It covers binary tree—its representation, operations, traversals and 
threaded binary trees. It also includes the conversion of a general tree into a binary tree. 



Chapter 10 discusses graphs, the basic terminology of graphs, its representations and operations. Breadth 
and depth fi rst traversals of a graph are also exemplifi ed. It also includes Prim’s Algorithm in fi nding the mini-
mal cost spanning tree of a graph. 

Chapter 11 defi nes priority queues, implementations of priority queues and operations on min and max 
heaps. It includes external sorting using multiway merge and polyphase merge. Chapter 12 deals with the defi -
nitions of binary search trees and AVL trees along with their operations. It lists the drawbacks of binary search 
trees and states the need of AVL trees as a remedy. Chapter 13 is dedicated to the discussion of multiway trees 
and B trees. It includes the node structure of an m-way tree, its operations, drawbacks and the need for B trees. 
It also covers B tree operations and other variations of B trees. 

Chapter 14 introduces red–black trees and splay trees. It also discusses the popular operations on red–
black trees. Splay trees, splay rotations and amortized analysis with respect to splay trees are also explained. 
Pattern matching and tries are introduced along with terminology in Chapter 15. It includes the Brute Force 
Algorithm, the Boyer–Moore Algorithm and the Knuth–Morris–Pratt Algorithm in detail. Categories of tries 
namely standard tries, compressed tries and suffi  x tries and their operations are also explained in detail.

Th e last chapter, Chapter 16, is about sorting and searching. It covers bubble sort, insertion sort, selection 
sort, quick sort, merge sort, shell sort, radix sort and heap sort. It also includes popular and frequently used 
searching techniques like linear search, binary search and Fibonacci search.

Every chapter discusses the topics clearly in depth illustrated with examples, appropriate diagrams and 
tables. From Chapter 4 onwards, each chapter is provided with Abstract Data Type (ADT) of the correspond-
ing data structures and several real-world applications explained clearly.

Th e concepts and techniques regarding each data structure, their representation, implementation and ap-
plications are clearly exemplifi ed. Each chapter includes clear and detailed codes of programs with sample 
data and outputs, which help a student with minimum knowledge of programming in understanding and 
extending them to other operations also. Th e technical content of the chapter is summarized at the end of each 
chapter. Th e exercise part of the chapter helps the students in self-testing their skills theoretically and practi-
cally (laboratory sessions).

An overall emphasis of concepts, programs, applications and exercises makes a student know, understand, 
implement and feel comfortable to work with data structures. Th is book can help a student to start with the 
introduction of data structures and to end by mastering even the advanced concepts of data structures.

Th is book can be used as a text book for undergraduate, graduate and research programmes that off er data 
structures as a course. Th e book aims to serve as a course material for use in the classroom. It can also be used 
in laboratory sessions as a companion guide.

 Th is book is one among very few books that include widely used data structures, pattern matching and 
tries explained simply and clearly along with examples and programs.

Utmost care has been taken in writing this book to make it free from errors. However, should you come 
across any error, please do not hesitate to contact us. Your suggestions and feedback may be sent to akepogu@
gmail.com.

Ananda Rao Akepogu
Radhika Raju Palagiri 
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Introduction to C++

Chapter 1

The study of structures and algorithms using programs for solving day-to-day 
problems requires a very effective method of representing both data and algo-
rithm. Before moving towards the data structures and algorithms, it is essential 
to have efficient C++ programming skills.

Chapter 1 provides a review of required skills that are well known to the 
readers. This chapter describes about some of the features of C++ language. 
It gives an introduction to C++, class overview that covers how a class and the 
class member are defined, and its objects declared. Also I/O streams, access con-
trol, class scope, and static class members are covered. This provides a detailed 
discussion about functions, this pointer, and dynamic memory allocations—the 
new and delete operators along with exception handling.

1.1 INTRODUCTION

C++ was fi rst invented by Bjarne Stroustrup in 1979 at Bell Laboratories, Murray Hill, New Jersey (USA). 
Features of SIMULA 67 and C are incorporated into C++, which could support the features of object-oriented 
programming. Initially the new language was called C with classes, later  in 1983, this was named C++ by Dick 
Mascitti. Th e name C++ originated from  the increment operator ++ of C, so that C++ was called an extension 
of C. Th e name of C++ can be read as “one more than C,”  “next C,” or “successor to C”. It is pronounced as 
“see plus plus.”

Th e standardization of C++ began in 1990 under the American National Standards Institute (ANSI) and 
the International Standard Organization (ISO) and underwent various revisions.  Finally in 1998, C++ was 
standardized and was referred to as “Standard C++.”

1.2 CLASS OVERVIEW

Class overview deals in detail with class, members of a class, i.e. both member variables and member functions. 
It also discusses the objects of a class.
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1.2.1 CLASS

Class is one of the most important features of C++. A class is a collection of variables of diff erent data types and 
functions. Th e variables in a class are called member variables, and the functions in a class are called member 
functions or methods. A class is created with the keyword  class. Class is similar to structure the only diff er-
ence being that all the members of a class are by default private, whereas all the members of structure are public 
by default. Syntactically, class is similar to structure.

Th e general form of  class is as follows:

class Class-name
{
 private:
  members
   acess-specifier1
  members
   acess-specifier2
  members
 - - - - - - -
 - - - - - -
};

Th e body of the class may contain members that are either data or a function declaration. Th e class - name 
is the name of the class, the access - specifi er can be one of the three keywords public, private or pro-
tected, which will be discussed later. By convention the class name should begin with an uppercase letter.

class Shape
{
   int l,b;
 public:
 void area()
 { cout<<“area of rectangle is:”<<l*b;
 }
};

In the above program Shape is class. Th e variables l, b are private and the function area() is public. 
Every class must terminate with a semicolon.

1.2.2 OBJECTS

Class defi nes a new data type that combines both the code and the data, and this new type can be used to create 
an object of that class. So, an  object is an instance of a class. A class has a logical appearance, whereas an object 
has physical existence.

Th e declaration of an object is similar to the declaration of variables. 

float x,y;         //declaration of variables
Shape s1,s2          //declaration of objects with type Shape.

For the above class, Shape s1, s2 are the objects. s1 will hold the variables l,b values and function 
area(). Similarly, s2 will also have the copy of members of the Shape class.
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An object holds data as well as the methods that operate on data.

1.2.3 CLASS MEMBERS

Class members include member variables or data variables and member functions or methods. Class is a com-
bination of member variables and member functions. [Th e diff erence between method and function is that the 
function defi ned inside a class is called a method.] Class can control access to members from outside the class 
using access specifi ers. 

Th e members of a class can be accessed by using the object of that class and dot (.) operator. 

class Shape
{
   public:
   int a,b;
    void set()
 {    
  - - - - - - 
 }
};

Suppose s  is an object of class Shape then the class members are accessed through the object based on 
access control such as

 s.a=10, s.b=5
 s.set();          //calling the member-function using object s

Program 1.1

#include<iostream.h>
#include<conio.h>
class Shape
{
 int a,b;  //by default private
 public:
 void area()
 {
  cout<<“Enter a&b values:”;
  cin>>a>>b;
  cout<<“a=”<<a<<“b=”<<b;
 }
};
void main()
{
 Shape s1;
 s1.area();
}

Output

Enter a&b values:  5  6
a=5    b=6
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In Program 1.1, class Shape is defi ned with the variables a, b and a method area() operates on variables. 
Th e object s1 is created and it has a copy of variables a and b.

1.3 I/O STREAMS

Stream is a logical entity of an Input/Output (I/O) device. A stream can produce or consume information, and 
it is directly linked with the I/O subsystem. A stream is directly connected to the physical device. Whenever 
read or write operations are performed on the streams, they are refl ected on the physical I/O device. C++ 
provides a rich set of I/O library.

Two diff erent template classes are available in C++. One is for 8-bit streams and the other is for 16-bit 
streams (wide characters). Th e class ios is the base class for I/O streams. When a C++ program is loaded into 
the memory the standard input stream (cin), the standard output stream (cout), the standard error output 
stream (cerr) and the buff ered version of standard error output streams will be automatically opened. When 
anything is typed through the keyboard, the input stream can be gathered by using the cin stream. When 
anything is written on to the standard output stream using cout, the character stream will be displayed on the 
standard output (screen). If any error is identifi ed at the time of execution or at the compile time, then those 
messages will be passed on to the screen using cerr.

Formatting Input/Output: C++ provides two ways to defi ne the input or output:
1. By formatting the ios class members (fl ags)
2.   By making the use of I/O manipulators

Th e ios class consists of diff erent status fl ags for the formatted I/O.  Th e ios fl ags can be set or unset. 
When the fl ag is set, the following operations will be performed during the I/O transaction.

Diff erent fl ags in the ios class:

adjustfi eld: left , right and internal fi elds are collectively called adjustfi eld.
basefi eld: oct, hex and dec fi elds  are collectively called basefi eld.
boolalpha: boolean values will be accepted by the keywords true or false.
dec: I/O numeric system will be set to decimal.
fi xed: Floating point numbers will be displayed in the normal notation.
fl oatfi eld: Scientifi c and fi xed fi elds are collectively called fl oatfi eld.
hex: I/O numeric system will be set to hexadecimal.
internal: Th e numeric values will be padded by inserting spaces between any sign and the base character.
left : Ouput is left  justifi ed.
oct: I/O numeric system will be set to octal.
right: Output is right justifi ed.
scientifi c: Floating point numbers will be displayed in the scientifi c notation.
showbase: Numeric base system will be displayed while showing the output. 
showpoint: Th e decimal point will be displayed for the fl oating point values.
showpos: Displays the positive or negative sign before the value.
skipws: is used to skip the white spaces while performing the input operations on a stream.
unitbuf: I/O buff er is fl ushed aft er the insertion operation.
uppercase: Characters will be displayed in the uppercase.
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Setting the ios format fl ags:

Th e ios class member function setf() is used to set the fl ag. Th e general usage of setf is as follows :

fmtflags setf(fmtflags flags);

Program 1.2

#include<iostream.h>
void main()
{
 int a=10;
 cout.setf(ios::showpos);
 cout <<“\n a=”<<a;
}

Output

a=+10

In Program 1.2 for the cout stream, showpos fl ag is set. So the sign of the variable a is displayed.

Program 1.3

#include<iostream.h>
void main()
{
 float a=10.2;
 cout.setf(ios::showpos|ios::showpoint);
 cout <<“\n A=”<<a;
}

Output

 A=+10.200000 

If the showpoint fl ag is not set, then the value +10.2 will be displayed. Because showpoint and showpos 
fl ags are set, the value 10.2 is shown as +10.200000. Program 1.3 demonstrates that two or more fl ags can be 
set by making use of the pipe symbol (|).

Unset the ios fl ags: As setf() is used to set the fl ags of ios, the unsetf() member function of ios class is used 
to unset the set fl ags. Th e general form is as follows:

void unsetf(fmtflags flags);

Program 1.4 unsets the fl ags that are set in Program 1.3.

Program 1.4

#include<iostream.h>
#include<conio.h>
void main()
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{
 float a=10.2;
 clrscr();
  cout.setf(ios::showpos|ios::showpoint);
  cout<<“\nAfter Setting the flags the ‘a’=”<<a;
  cout.unsetf(ios::showpos|ios::showpoint);
  cout<<“\nAfter Clearing the flags the ‘a’=”<<a;
}

 Output

After Setting the flags the ‘a’=+10.200000
After Clearing the flags the ‘a’=10.2

Additional ios class methods: Th e class ios provides the additional member functions width(), precision() 
and fill(). Th e width function can be used to set the minimum fi eld size. Th e method precision can be used 
to set the fl oating point precisions. In addition, the fi ll method allows the developer to modify the default fi ll 
value with the user-specifi ed character. Th e general forms of width, precision and fi ll methods are as follows:

streamsize width(streamsize w);
streamsize precision(streamsize p);
char fill(char ch);

Program 1.5

#include<iostream.h>
#include<conio.h>
void main()
{
 float a=10.123456;
 clrscr();
 cout.precision(2);
 cout.width(10);
 cout.fill(‘#’);
 cout<<a;
}

Output

#####10.12

It can be observed from Program 1.5 that because the width is set to 10 characters, the output is displayed 
as 10 characters wide. Because the precision is set to 2 characters, 10.12 is displayed instead of 10.123456. Be-
cause the default justifi cation is right, fi ve empty characters will be fi lled by the # character.

Input and output manipulators:  Th e Input/Output manipulators are the members of ios. Th e input and the output 
streams can be manipulated using the manipulator member functions. Th ese member functions do not take 
an input argument. Th e setiosflags manipulator is similar to the setf member function of the ios class. 
Both the functions do the same.
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Program 1.6

#include<iostream.h>
#include<iomanip.h>
#include<conio.h>
void main()
{
 float a=10.2;
 clrscr();
 cout<<endl<<“\nAfterSetting the flags the ‘a’=”<<setiosflags(ios::showpos| 
ios::showpoint)<<a;
}

Output

After Setting the flags the ‘a’=+10.200000

In Program 1.6 the endl and the setiosflags manipulators are used. Th e endl manipulator is used to print 
in a new line.

Program 1.7

#include<iostream.h>
#include<iomanip.h>
#include<conio.h>
void main()
{
 clrscr();
  cout<<setiosflags(ios::showbase);
  cout<<hex<<10<<endl;
  cout<<oct<<10<<endl;
}

Output

0xa
012

Here hex and setiosflags manipulators are used to manipulate the cout output stream (Program 1.7). 
When the showbase fl ag is set, numerical values are prefi xed with a base format such as hexadecimal values 
are prefi xed with ‘0x’, octal values with ‘0’ and no prefi x for decimal values. Th e fi rst output is the hexadecimal 
value of 10 prefi xed with ‘0x’ and the second output is the octal value of 10 prefi xed with ‘0’.

1.4 ACCESS CONTROL

Th e access specifi er provides access rights for the class members from outside the class. An access specifi er is 
one of the following keywords:
  public,    private, and  protected.

 • By default, all the members of a class are private and they cannot be accessible outside the class. Th e 
private members of a class can be accessible through the public members of the same class.
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 • Th e member variables and functions that are declared as public can be accessed by the members 
outside the class.

 • Th e access specifi er protected works similar to the keyword private. It is frequently used in inheri-
tance, which is discussed  in the Chapter 2.

Syntax of access specifi ers: Th e keyword private, public and protected  are followed by a colon (:).
Class   Class-name
{
 private or public or protected:
 members;
}

Program 1.8

/*Program for private and public access specifier*/
#include<iostream.h>
#include<conio.h>
class Shape
{
 private:
 int a,b;      // private section 
 void display()
 {
  cout<<“a=”<<a<<“b=”<<b;
 }
 public:        // public section
 void sum()
 {
  a=10, b=20;    //using  private numbers.
  cout<<“sum=”<<a+b;
 }
};
 void main()
 {
   clrscr();
  Shape  s;
     //s.a=10;           //private variables not accessible.
     //s.b=20;     //private variables not accessible.
     //s.display();     //private member function not accessible.
  s.sum();             //calling public member function.
 }

Output

Sum : 30

In Program 1.8, the variables a, b and the method display() are defi ned in the private section and the 
method sum() is defi ned in the public section. Th e object s is created for the class shape. Th e object s, cannot 
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be used to initialize private variables directly.  When it is used, the compiler gives an error message as shape::
a is not accessible, i.e. the private members are not accessible outside the class, and the private member func-
tion display() also cannot be accessed directly by the object. Using the public member function sum(), the 
private data members are accessed and the addition  operation is performed on them.

Th e private member function can be accessed by the public member functions. Th e member function can 
also be defi ned outside the class, and then their prototype must be declared inside the class.

Program 1.9

#include<iostream.h>
class Shape
{
 int a,b;
 void set_val()    //private function.
 {
  a=10,b=20;
 }
 void display()
 {
    cout<<“a=”<<a<<“\nb=”<<b;
 }
 public:
 void sum()  //public section
 {
  set_val();
  display();  //call to private Functions..
  cout<<“\nSum=”<<a+b;
 }
 void sub(void);
};
void Shape::sub()
{
 a=30;
 b=10;
 cout<<“\nSubtraction=”<<a-b;
}
void main()
{
 Shape s;
 //s.set_val();       //not accessible
 s.sum();
 s.sub();
}

Output

a=10
b=20
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Sum=30
Subtraction=20

In Program 1.9, the method set _ val() declared in the private section, and methods sum() and sub() 
are declared in the public section. Th e method sub() is defi ned outside the class that performs subtraction on 
a and b. Th e  private method set _ val() is accessed by making a call to it in the public member function  
sum().

1.5 CLASS SCOPE

Identifi ers such as the variable name, function name, typedef in C++ can be used only in certain areas of 
a program. Th is area is called the “scope” of the identifi er.  Scope determines the lifetime and visibility of an 
identifi er. It also determines whether the identifi er clashes with another identifi er in any other parts of the 
program. Th ere are fi ve kinds of scope.

a. Local scope: Variables declared within a function or blocks have local scope, i.e. they are  accessed only with-
in that block. If the same variable is used in more than one function then each function, defi nes a new scope for 
it. Blocks can also be nested. A name declared in a block is local to that and to all the blocks contained in it. Th e 
formal arguments to a function will have local scope and are treated as if they belong to the outermost block.

{
 int i; 
}

Here i has local scope, because it is declared inside a block enclosed by braces and it is never accessible since 
no code accesses it before closing the braces.

b. Function scope: Labels are those that have function scope and they can be accessed only within the function 
but not outside of that function.

c. File scope: When an identifi er is not part of a function or class defi nition, then it is said to have fi le scope. 
File scope is the outermost scope in the program and it encloses both local and class scope. Variables defi ned 
at the fi le scope are called global variables.

d. Class scope: Every C++ class defi nes a unique scope for its members called the class scope, i.e. data members 
and member functions have class scope.

class A
{
     int a;
     public:
     viod b();
}

Here the variable a and function b() must be accessed, so that the compiler determines its class. Accessing a 
class member is done in three ways:

i. Using .(dot) operator:
obj.a,
obj.b()
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ii.  Using -> operator:
ptr->a
ptr->b()

iii. Using :: (scope access) operator:
A::a
a::b()

e. Prototype scope: Variables declared in a function prototype are visible only to the end of the prototype.
void val(int a, float b, char c)

Th e above prototype declares three names and they go out of scope at the end of the prototype.

1.6 STATIC CLASS MEMBERS 

Every variable in C++ program is associated with a unit of storage in memory. C++ has two kinds of storage 
classes: automatic and static. Static members will be accessed using . (dot) or -> operators. Unlike normal 
class members, static members may be directly accessed  by applying :: scope access operator to the class name. 
It is not necessary to create objects for accessing the static members.

1.6.1 STATIC MEMBER VARIABLES

When objects are created for a class, each object will have its own copy of members of class. Th e member 
functions are created ones, and all the objects will share them. Th ere is no separate copy of every function of 
each object. Like member functions, the member variables can also be made common by using the keyword 
static. It makes the variables persist from the point of execution in which they are created until the program 
is terminated. 

By declaring the member variables as  static, only one copy of the variables is created and it is shared by 
all the objects of that class. Every static variable must be initialized to zero, the scope of the static variables is 
within the class. A static variable may be global to a particular transaction unit or global to a class. Th e general 
form is as follows:

static variable-declaration;
static function-definition;

Program 1.10

#include<iostream.h>
#include<conio.h>
class Sum
{
 static  int a;
 int b;
 public:
 void add()
 {
  b=0;
  a=a++;
  b=b++;
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   cout<<“a=“<<a<<”\tb=”<<b;
 }
};
int sum::a=9;  //initialization of static variable
void main()
{
 Sum s1,s2;
  cout<<“\nvalues of a&b in object s1”;
 s1.add();
  cout<<“\nvalues of a&b in object s2”;
 s2.add();
}

Output

values of a&b in object  s1   a=10   b=0
values of a&b in object  s2   a=11   b=0

In Program 1.10, the class sum has two variables—one is static and the other is non-static. Th e static variables 
are accessed by the public member functions of the class. Only one copy of data variable a is created. Because 
it is declared to be static, and objects s1 and s2 share it, any change made to the static variable refl ects in other 
objects.

1.6.2 STATIC MEMBER FUNCTION

Th e member function in a class can also be defi ned as static, when the functions are declared as static, they can 
only access the static member variables and functions static member functions do not have access to nonstatic 
functions.

Static member functions are invoked by using the class name and they can also be invoked by using objects. 
Th e scope of the static method is global within the class. 

Program 1.11

#include<iostream.h>
class Sum
{
 static int a;
 public:
 static void set()
 {
   a=10;
 }
 static void display()
 {
  cout<<“\nA=”<<a;
 }
};
int Sum::a=0;
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void main()
{
 sum::set();
 sum::display();
}

Output

A=10

In Program 1.11, the class sum is declared with one static data member and two static member functions. Th e 
static data members are accessed through static member functions only. Th e static functions are called by using 
the class name and scope access operators such as sum::set() and sum::display().

Static member functions can also be declared as private and they are accessed through public static func-
tions. Static variables declared as public can be initialized in the main() function like a normal variable by 
using the class name and the scope access operator.

Program 1.12

#include<iostream.h>
#include<conio.h>
int a=20;
class Sum
{
 private:
 static void set()
 {
  b++;
 }
 public:
 static int c,b;
 static void display()
 {
  set();
  cout<<“\nb value is:=”<<b;
 }
};
int Sum::b=70;
void main()
 {
  int b=30;
  cout<<“\nClass variable”<<Sum::b;
  cout<<“\nGlobal variable”<<::a;
  cout<<“\nLocal variable”<<b;
  Sum::display();
 }
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Output

Class variable 70
Global variable 20
Local variable 30
b value is:=71

In Program 1.12, the class Sum is declared with the private static function set(), public static function dis-
play() and public static variables a, b. Th e set() function is called by the public static function display() 
which increments the b value. Th e public variable b is initialized in the main() function.

1.6.3 STATIC OBJECT

Static variables are generally initialized to zero. An object is a collection of members. Using constructors, 
objects are initialized to desired values. Constructors will be discussed in Chapter 2. Th e class members can 
also be initialized to zero using the static keyword. By declaring an object as static, all the members belong-
ing to objects get initialized to zero.

Program 1.13

#include<iostream.h>
#include<conio.h>
class Sum
{
 private:
 int a,b;
 public:
 void add()
 {
    a=a+2;
    b=b+2;
 }
 void display()
 {
  cout<<“A and B values are:\na=”<<a<<“\nb=”<<b;
 }
};
void main()
 {
  clrscr();
     static Sum s;
     s.add();
     s.diaplay();
 }

Output

A and B values are:
  a=2;
  b=2;
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In Program 1.13, the class sum has two member variables a, b and the member functions add() and dis-
play(). Th e object of the class sum s is declared as static. So, automatically all the data members of object s get 
initialized to zero. Th e variables a, b are not initialized to any value in the program. When the add() method 
is called, it adds 2 to each of the variable.

1.7 FUNCTIONS

A function is a subroutine or a subprogram. A large program can be divided in to smaller programs, and each 
small program can be written in the form of functions. Functions can be called repeatedly and the size of the 
program can be reduced. Th e general form is as follows:

return_type function-name(parameter_list)
{
 Body of the format;
}

Th e return-type specifi es the type of the data  that the function returns, which includes basic data types such 
as int,  float, double, etc. and parameter list is the list of variable names with the data types. A function 
can have the parameter list as empty. If the function does not return anything then its return type is declared 
as void. Every function including main() returns an integer value .

/* main in c++*/
int main()
{
   Statements;
   -------;
   return 0;
}

Th e main() function in C++ always returns an integer value to the operating system by default. If it returns 
zero, the program is said to be successful, otherwise it is unsuccessful. Th e function main()  can be declared 
as void without writing the return statement.

A function consists of the function declaration and the function defi nition. Th e function declaration in-
volves the function return type, name and parameter list. Th e function defi nition must match the prototype 
of the function.

Example

void main()
{
    float area(float,int)          //function prototype
    flaot x=2.5,y;
    int z=5;
    y=area(x,z);            //function call; 
}
float area(float i, int j)        //function declarator
{
  return (i*j);     //function body
}
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In the above example, x, y are the actual arguments defi ned in the function call, and i, j are formal argu-
ments declared in the called function. Th e function returns a fl oat type value, then the return type of area() 
is float.

A function can be called anywhere in the program and can be called any number of times. A function must 
be called by using its name followed by parenthesis and terminated by a semicolon.

Advantages of a function:

 • Supports modularity
 • Duplication of code can be avoided
 • Provides reusability

1.7.1 PARAMETER PASSING METHODS

Parameters can be passed to methods in three ways, which are as follows.

 • Call by value
 • Call by address
 • Call by reference

Th e arguments in the caller function are actual arguments, and the arguments in the callee function are formal 
arguments. While passing values to the methods, the data type and the number of formal arguments and actual 
arguments must be the same.

Call by value: Using the pass by value method, the value of the actual arguments is passed to the formal argu-
ments and operations are performed on the formal arguments. In this method any change made in the formal 
argument does not aff ect the actual arguments. Changes made to the formal arguments are local to the block 
of the function called.

Program 1.14

/* Program to explain call by value*/
#include<iostream.h>
#include<conio.h>
void main()
{
 int x,y;
 void input(int,int);  //prototype
  cout<<“Enter x&y values”;
 cin>>x>>y;
  cout<<“values of the actual parameters are”<<“a=”<<x<<“b=”<<y;
 input(x,y); //function call.
}
void input(int a, int b)
{
 a=a+b;
 b=b+10;
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  cout<<“\nvalues of formal parameter”;
  cout<<“a=”<<a<<“b=”<<b;
}

Output

Enter x&y values 4 5
values of the actual parameters are a=4 b=5
values of formal parameter a=9 b=15

In Program 1.14, we pass values of actual parameters to method input(). Th e formal parameters a, b will 
receive these values, and the values a and b are changed. When the control goes back to the main() function, 
this change does not eff ect the actual parameters x and y values because the values of a and b are local to the 
function input(). Finally, the changes made in the formal arguments do not aff ect the actual arguments.

Call by address: In this method, the address of the actual arguments are passed to the formal arguments instead 
of values. Th e operations will be performed on the values at their address. So, any change made in the formal 
parameters will aff ect the actual parameters.

Program 1.15

/*Program to explain the call by address*/
#include<iostream.h>
#include<conio.h>
void input (int*x, int*y)
{
 int t;
 t=*x;
 *x=*y;
 *y=t;
}
void main()
{
 int a, b;
  cout<<“\nEnter the values of a, b:”;
 cin>>a>>b;
  cout<<“\nA,B values Before swapping:\na=”<<x<<“\nb=”<<y;
 input(&a,&b);
  cout<<“\nAfter Swapping”;
  cout<<“\nA=”<<x<<“\nB=”<<y;
}

Output

Enter the values of a, b:10 20
a, b values Before swapping:
a=10
b=20
After Swapping
a=20
b=10
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In Program 1.15, we pass the address of the actual parameters x and y to the formal arguments *a and *b, 
which are pointers to the actual arguments. Th e function input() operates on the address of actual arguments 
through pointers, the address of the actual and  formal parameters will be the same so any changes made in the 
formal parameters will refl ect in the actual parameters.

Call by reference: In this method the reference of actual arguments can be passed to the formal arguments. Th e 
reference is an alias of the actual argument. Th e reference types declared with ‘&’ operator are identical to the 
pointer variables but are not the same.  Consider the following example:

float pi=3.14
float pi=&p

where &p is an reference of pi. 
p=3.14, same as pi=3.14 any operation on p results the same as the operation on pi.

Program 1.16

/* Program for call by reference*/
#include<iostream.h>
void main()
{
 int a;
 void input(int &);
  cout<<“enter a value”;
 cin>>a;
 input(a);
}
void input(int&r)
{
  r++;
  cout<<“Value in r:”<<r;
}

Output

Enter a value 7
Value in r:8

In Program 1.16, the function input(), receives the value of a by reference. Th e value of a is received by value 
of r. Since it is a reference of a, both will have the same memory location. Any change made to the variable 
r refl ects the actual variable a. Th us, the value of actual variable is also changed using the call by reference 
method.

1.7.2 INLINE FUNCTIONS

Inline functions act like macros and the function allows multiple lines of code. When a function is preceded 
by the keyword inline, then the function is called an  inline function. Whenever a normal function is called, 
the control transfers from the caller function to the callee function and aft er executing the control comes back 
to the caller function.



Chapter 1 Introduction to C++ | 1.19

Th e mechanism involved in the inline function is that whenever a function is called, the control does not 
move to the defi nition of the function, rather the defi nition of the function is copied to the point where the 
function is called.

If the function is large, making it as an inline function reduces the execution speed of the program. Th ere-
fore, it is recommended that one use an inline for small functions. Th e CPU stores the memory address of the 
instruction at each function call because the function is stored in only one place and is executed there itself, 
and the register and the other process must be saved before the function call, which is time consuming. Th e 
general form of inline functions is as follows:

inline data type function–name(arguments)
{
 Body of the function.
}
inline int area(int i)
{
 return (i*i);
}

Program 1.17

#include<iostream.h>
#include<conio.h>
inline int rectangle(int y)
{
 return 5*y;
}
void main ()
{
 int x;
 clrscr();
  cout<<“enter the input value:”;
 cin>>x;
 rectangle(x);
  cout<<“\nthe output is:”<<(x);
}

Output

enter the input value:5
the output is:25

In Program 1.17, the method rectangle() is an inline function. Th e inline specifi es and intimates the com-
piler that rectangle() is an inline function, so copy the defi nition to the point where it is called.

1.7.3 THE friend FUNCTION

In a class, the private data can be accessed only by the public member function of that class. C++ provides a 
mechanism in which a non-member can have access to the private member of a class. Th is is achieved by the 
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non-member function  friend to the class, whose private data are to be accessed. Using the keyword friend 
a non-member function can be made the friend function.

class Class-name
{
 private data;
 public:
 function name();
 friend function-name();
};

Th e function name will be preceded by the keyword friend.  A function can be made friend to any number 
of class. Th e declaration of the function proceeds with the keyword friend but not the defi nition.

Properties of a friend function:
 • A friend function takes objects as arguments.
 • Th ey cannot access members directly like normal member functions. By using the object and dot op-

erator, they can access the member of a class.
 • Th e function can be declared anywhere in the class either in the private or public section.
 • More than one function in a class can be friend or the entire class can also be declared as the friend 

class; here friendship is not exchanged, i.e. making class A friend to class B does not mean that class 
B is friend to class A.

Program 1.18

/* Program for friend function*/
#include<iostream.h>
#include<conio.h>
class Shape
{
 int age;
 char name[10];
 public:
 void set_val()
 {
   cout<<“\nEnter values\n”;
   cout<<“\nEnter the name”;
  cin>>name;
   cout<<“\nEnter age”;
  cin>>age;
 }
 friend void display (Shape);
};
void display(Shape s)
{
 cout<<“\nName=”<<s.name;
 cout<<“\nAge=”<<s.age;
}
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void main()
{
 Shape sh;
 sh.set_val();
 display(sh);
}

Output

Enter values:
Enter the name:Rahul
Enter age:24
Name=Rahul
Age=24

In Program 1.18, the class shape is declared with two variables and the function set-val(). It also has dis-
play() which is declared as friend of class shape. When an outside function is declared as friend to a class, 
it can access private data of that class. Th e function set _ val() reads values for variables and the friend 
function display() displays name and age.

A class can be made friend to another class. Th e friend class can access the members of class to which 
it is a friend.

Program 1.19

/*Program for friend class*/
#include<iostream.h>
#include<conio.h>
class Shape
class Rectangle
{
 private:
 int x;
 public:
 void set_val_x()
 {
  x=10;
 }
void display(Shape);
};
class Shape
{
 private:
 int y;
 public:
 void set_val_y()
 {
  y=20;
 }
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friend void rectangle::display(Shape s);
};
void rectangle::display(Shape sh)
{
 cout<<“x=”<<x<<“\ny=”<<sh.y;
}
void main()
{
 clrscr();
 Rectangle r;
 r.set_val_x();
 Shape s1;
 s1.set_val_y();
 r.display(s1);
}

Output

x=10
y=20

In Program 1.19, two classes Rectangle and Shape are declared. Here, rectangle is the friend of 
shape. Th e member function of class Rectangle can access the member of class Shape. Th e display() 
method displays the values of members of both classes.

1.7.4 FUNCTION OVERLOADING

C++ provides a facility called  function overloading to serve the diff erent functionalities with a common func-
tion name. Function overloading allows the developers to defi ne two or more functions with a common name 
and with diff erent arguments or with a diff erent number of arguments within a class or within a program.

Example

      int area(int,int)
      int area(int,int,int)
     double area(double)  //here the function area() has been 
          //overloaded and differentiated                

 //based upon data type and number of arguments.

Properties of overloaded functions:

 • All the overloaded functions should share the common function name.
 • Th ey should diff er with the number of arguments or data types of the arguments.

a.   area(int,int)
  area(int,int,int)

Th e above two functions can be overloaded though the data types of the arguments are the same, because 
they diff er in the number of arguments.
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b.   area(int,int)
  area(float,float)

Here, the two functions can be overloaded, the number of arguments are the same but they diff er in data 
types.
 • No two functions should have the same number of arguments and the same type of argument se-

quence.
 • An overloaded function can have default arguments.

area(int,int)
area(int l=10,int b=15,int h=20)

Here, the second version of area() has default values for variables l, b, h.
 • Th e compiler invokes the function that matches with either the data types or the number of argu-

ments.
 • Th e compiler will do the automatic type casting while passing input arguments. If any matching func-

tion exists then that function will be called at runtime. 
 • Th e overloaded functions should not diff er only in the return type.

Example

  int area(int)
  void area(int)       //these two functions cannot be overloaded 
            though they differ with data type.

Program 1.20 fi nds the area of diff erent shapes (circle, rectangle and cube) using function overloading with the 
same function name and diff erent input arguments.

Program 1.20

#include<iostream.h>

//function to calculate area of a circle
float area(float radius)
{
 return(3.141*radius*radius);
}

//function to calculate area of a rectangle
int area(int length,int breadth)
{
 return(length*breadth);
}

//function to calculate area of a cube
int area(int length,int breadth,int height)
{
 return(length*breadth*height);
}
void main()
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{
 cout<<“\nArea of a circle:”<<area(2.1);
 cout<<“\nArea of a rectangle:”<<area(2,3);
 cout<<“\nArea of a cube:”<<area(2,3,4);
}

Output

Area of a circle:13.851809
Area of a rectangle:6
Area of a cube:24

In Program 1.20, the function area(float radius) is called when a one fl oat value is passed as an input 
argument. Th e function area(int length,int breadth) is called when two integer values are passed as 
input arguments. Th e function area(int length,int breadth,int height) is called when three integer 
values are passed as input arguments.

Program 1.21 fi nds the area of diff erent shapes (circle and square) using function overloading with the 
same function name and the same number of input arguments.

Program 1.21

#include<iostream.h>

//function to calculate area of a circle
double area(double radius)
{
 return(3.141*radius*radius);
}

//function to calculate area of a square
int area(int length)
{
 return(length*length);
}
void main()
{
 cout<<“\nArea of a circle:”<<area(2.1);
 cout<<“\nArea of a square:”<<area(2);
}

Output

Area of a circle:13.85181
Area of a square:4

In Program 1.21, area() is overloaded. One version of area()  is called to calculate the area of a circle and 
another version of area()  to calculate the area of a square.
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Ambiguity in function overloading: Th e compiler performs implicit conversion when it is unable to match the func-
tion. For example,  char is converted to int and float is converted to double. Th erefore, no two functions 
are overloaded when they seem to be the same aft er typecasting is done.

Ambiguity is a situation where the compiler is unable to select the appropriate function when two or more 
functions are overloaded based on the arguments passed to the function. Th is situation occurs because of 
automatic typecasting done at the runtime when one data type is compatible with two or more data types. For 
example consider the following functions:

long area(long)
double area(double) 

and if this function is called with an integer value as area(20), then the compiler will be in confusion  to de-
cide which version of area() is to be invoked.

Ambiguity may also occur when constant values are passed to the functions directly instead of variables. 
When int area(int,int) and float area(float,float) are overloaded, calling function area() with 
constant values such as area(2,4) and area(4.5,5.4) leaves the compiler in confusion to decide which ver-
sion of area() is to be invoked. Aft er internal conversion the integer version of area() will be invoked for 
both of the above calls.

Finding the address of an overloaded function:  To know the address of overloaded functions, they can be called 
through function pointers. If the method is not overloaded, by simply assigning the method address to the 
function pointer the method can be called.
If the method is not overloaded, the method can be called with the following generic form:

Function-pointer=method-name;
Ex: p=myfunction;

If the method is overloaded, the compiler does not know which function address should be considered. To 
avoid this ambiguity p should be declared with the method arguments.

Ex: p=myfuntion(arguments)

Program 1.22

#include<iostream.h>

//function to calculate area of a square
int area(int length)
{
 return(length*length);
}

//function to calculate area of a rectangle
int area(int length,int breadth)
{
 return(length*breadth);
}
void main()
{
 int(*fp1)(int a);    //pointer to int function(int)
 fp1=area;       //points to the function area(int a)
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 int(*fp2)(int a,int b);
 fp2=area;
  cout<<“\nArea of a square:”<<fp1(2);
  cout<<“\nArea of a rectangle:”<<fp2(2,3);
}

Output

Area of a square:4
Area of a rectangle:6

In Program 1.22, the method area is overloaded, the function pointer fp1 is declared as int(*fp1)(int a) 
and fp1 is assigned with the method area. So that fp1 will point to the method that is declared with one 
integer as an argument. Th e other function pointer fp2 will be pointing to the area(int a,int b), because 
fp2 is declared as int(*fp2)(int a,int b).

1.8 THE this POINTER

When a member function is called, an implicit argument is passed to it automatically and this argument is a 
pointer to the invoking object, this pointer is called this. Th e keyword  this is a local variable that is always 
present in any of the non-static member functions, the declaration of the keyword this is not necessary. Sup-
pose if a is an object of class A and has a non-static member function fun(), using the object this fun() is 
called as a.fun().  Th e keyword this in the body of fun() stores the address of a. A static member function 
does not have a this pointer.

Program 1.23

#include<iostream.h>
#include<conio.h>
class A
{
 int a;
   public:

void set()
 {
      this->a=11;
   cout<<“\na=”<<this->a;
   cout<<“\na=”<<a;
 }
};
void main()
{
 A obj;
 obj.set();
}

Output

a=11
a=11
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In Program 1.23, the statement this->a=11 uses the this pointer to initialize the variable a with value 11, 
which is same as a=11. For a constant member function class A, the this pointer is of type a* to prevent 
modifi cation of the object by itself. In the fi rst cout statement, the value a is accessed by implicitly using the 
this pointer and in the second cout statement the this pointer is explicitly used with (->) arrow operator 
to access the variable a.

Program 1.24

#include<iostream.h>
#include<conio.h>
class Address
{
 private:
 char  c[10];
 public:
 void show()
 {  cout<<“\n the object address is”<<this;
 } };
void main()
{
 Address a1,a2,a3;
 a1.show();
 a2.show();
 a3.show();
}

Output

the object address is:0x8fc3ffec
the object address is:0x8fc3ffe2
the object address is:0x8fc3ffd8

In Program 1.24, the function is called using object a1, a2, a3 and implicitly the function will have this 
pointer variable with its value as address of object, such as this=&a1, this=&a2 and this=&a3. 

1.9 DYNAMIC MEMORY ALLOCATION AND DEALLOCATION

C++ provides  dynamic memory allocation and deallocation using two operators,  new and  delete. Th e opera-
tor new is used to allocate memory at runtime, and the delete operator is used to deallocate the memory.

1.9.1 THE new OPERATOR

Th e new operator works similar to the malloc() function, the only diff erence is that it can create objects, and 
returns the pointer of appropriate types. But malloc() just allocates the memory and returns the void pointer. 
Th e new operator allocates the required amount of memory from heap. When the object is created and the 
memory allocated, it must be deleted aft er its use, otherwise it may lead to some mismatch operations that may 
crash the system. Th e new operator can be overloaded. Using the new operator, memory for arrays and objects 
can be allocated dynamically. Th e general form of the new operator is as follows:
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p-val=new type.
pointer-variable=new array–type [size]

Here pointer-variable is that creates a pointer to memory that hold the array type.

Example
p=new int[10];

Th is statement creates an integer array of size10 dynamically.

1.9.2 THE delete OPERATOR

Th e delete operator is used to delete the objects. Th e objects created using the new operator remains in the 
memory until they are released. Th e delete operator deletes the objects and releases the memory.  Th e general 
form of the delete operator is as follows:

Delete point-val;
Delete[ ] p-val;

Th e new and delete operators can be overloaded like other operators.

Program 1.25

#include<iostream.h>
#include<conio.h>
void main()
{
 int x,*y,i ;
 y=&x;
 y=new int[10];
 for(i=0;i<=5;i++)
  y[i]=i;
 for (i=0;i<=5;i++)
  cout<<y[i];
 delete []y;
}

Output

y[1]=0       y[2]=1
y[3]=2       y[4]=3
y[5]=4       y[6]=5

In Program 1.25, integer variables x and *y are declared, and the pointer variable y is initialized with the ad-
dress of x. Using the new operator, an integer array with 10 elements is allocated. A for loop is used to display 
the contents of *y. Th e delete operator releases the memory. Objects are also created dynamically

Program 1.26

#include<iostream.h>
#include<conio.h>
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class Shape
{
 int a,b;
 public:
 void set_val()
 {
  a=10;
  b=20;
   cout<<“a=”<<a<<“\nb=”<<b;
 }
};
void main()
{
 Shape*s;
 s=new Shape();
 s->set_val();
 delete s;
}

Output

a=10   b=20

In Program 1.26, the statement s=new Shape() creates an object for the class Shape dynamically using the 
new operator.

Program 1.27

#include<iostream.h>
#include<conio.h>
#include<new.h>
#include<stdlib.h>
void main()
{
   clrscr();
   int i;
 void message();
    void*operator new(size _ t,int);
    void operator delete(void*);
     char*c=new(‘$’)char[10];
     cout<<“first time allocation of memory:p=”<<(unsigned)long(c)<<endl;
    while(i<10)
      cout<<c[i];
     delete c;
      c=new(‘*’)char[64000u];
     delete t;
}
void  message()
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{
 cout<<“\n memory insufficient”;
    exit(1);
}
void*operator new(size _ t s, int v)
{ void*c;
 c=malloc(s);
 if(c==null)
  message();
  memset(c,v,s);
 return c;
}
void operator delete(void*dd)
{ free(dd);
}

Output

first time memory allocation:p=3267
$$$$$$$$$$
Memory insufficient.

In Program 1.27, the new and delete operators are overloaded. Th e size _ t is used to defi ne the size of 
the object. Th e message() is called by the new operator when the malloc() function returns null. Th e 
new operator fails to allocate memory and calls the function message(), when the statement c=new(‘ *’) 
char[64000u] requests memory allocation. Th e delete operator releases memory when called by using 
free().

1.10 EXCEPTION HANDLING
Any mistake in writing the program results in an error, errors are of two types—syntax errors and semantic 
errors. Th e exception handling mechanism is used to reduce such errors.  Exception is an error that occurs at 
runtime and the program terminates due to the exception. Exceptions are of two types—synchronous and 
asynchronous exceptions.

Th e exception handling mechanism detects the exception, intimates that the exception occurred, receives 
the error message and takes necessary actions without disturbing the users. Th e exception handling mecha-
nism involves three keywords,  try,  catch,  throw.

Whenever an exception occurs, the control passes from the point of exception to the exception handler, 
which is linked with the try block and is called only by the throw statement. Th e general form of try, catch 
and throw is as follows.

try
{
 Statement 1:
         //try block  
   Statement 2;
}
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throw(excep);
throw excep;
throw;                //re–throwing of an exception;

here excep can be any data type or it may a constant.
try
{
 S-1;
 S-2;
}
Catch(argument)
{
 Statement 3;         //catch block
}

When an exception occurs, the throw statement inside the try block intimates the catch block that an error 
has been raised by throwing the exception. Th e errors that occurred only in the try block are used to throw 
the exception.

Th e catch block receives the exception thrown by the throw statement. It is executed when an exception 
is found. Arguments to the catch block are of exception type and they are optional. If no exception is caught 
just the catch block is ignored.

Th e types of arguments used in throw and catch statements must be same. Otherwise, the program will 
be aborted using the abort() function.

Statements;
Statements;         //start of the exception handler 
try
{
 Statement1;

Statement;        //try block
 throw(object);         //finds the exception and throws it
 catch(object)
 {
  Statement;      //catch block statements which takes action on excep-
tion.
 }
}

Program 1.28

#include<iostream.h>
#include<conio.h>
void main()
{
 int a,b,c;
  cout<<“Enter a,b values”;
 cin>>a>>b;
 c=a>b?0:1;
 try
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 {
  if(c==0)
   cout<<“subtraction of a,b”<<a-b;
  else
   throw(c);
 }
catch (int c)
 {
  cout <<“Caught exception c=”<<c;
 } 
}

Output

Enter  values of a,b:2  7
Exeption caught:1
Enter values of a,b:7  4
Subtraction of a,b:3

In Program 1.28, a, b, c are integer variables. If a>b then c gets a value 0 else it is 1. If c=0 subtraction of 
a, b is displayed. Otherwise, exception is caught.    

Multiple catch Statement: A try block can associate with more than one catch block; in such cases it may 
also have multiple throw statements.

try
{
 //try block
}
catch(argument)
 {
  catch block 1
 }
catch(arguments)
 {
  catch block 2
 }
- - -   - - -   - - -
- - -   - - -   - - -
- - -   - - -   - - -
catch(arguments)
{
 catch block n
}

When an exception is thrown, the compiler searches for the catch block that matches with the exception type 
thrown, then the catch block gets executed. If no match is found, the program terminates.

If the exception type matches with more than one catch block argument, then the fi rst occurrence of
catch that matches will be executed.
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Program 1.29

#include<iostream.h>
#include<conio.h>
void sum(int s)
{
 try
 {
  if(s==0)throw k;
   else
  if(s>0)
  throw ‘p’;
   else if(s <0)throw .3;
  catch(char c)
  {
   cout<<“caught a positive value”;
  }
  catch(int i)
  {
   cout<<“caught a null value”;
  }
  catch(float f)
  {
   cout<“caught a negative value”;
  } }
void main()
{
 cout<<“multiple catches:”;
 sum(-5)
 sum(0);
 sum(10);
}

Output

Multiple catches:
Caught a Negative value
Caught a null value
Caught a positive value

In Program 1.29, the function sum() has a try block and there are catch blocks. Th e fi rst catch block takes 
the char type object, the second catch block takes integer arguments and the third catch statement takes 
fl oat type as arguments. Th e function sum() is called with positive, negative and null values, the argument 
s takes their values. When s receives a positive value, the throw statement receives a char type exception. 
When s receives an integer, throws integer type exception similarly when s is negative throws fl oat type. Th e 
appropriate catch block is executed when the argument type in it matches with the argument of the throw 
statement.
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A single catch block can be used to catch exceptions thrown by multiple throw statements with diff erent 
types. Th e following form of the catch statement catches all exceptions:

catch(...)
{
catch block;
}

Program 1.30

#include<iostream.h>
#include<conio.h>
void sum()
{
 try
{
 if(s==0)throw k;
  else
 if(s>0)throw p;
  else if(s<0)throw 0.0;
}
catch(...)//catch all exception
 {  cout<<“caught all exception”;
 } }
void main ()
{
 sum(-5);
 sum(0);
 sum(10);
}

Output

Caught all exeptions
Caught all exeptions
Caught all exeptions

In Program 1.30, all the exceptions are caught by the single catch block. catch(...) catches all the excep-
tions and processes them.  It is also possible to throw the exception from the catch block. Th is is known as 
the re-throwing exception.

 throw: Th e throw statement does not take any arguments. When re-throwing an exception, it will not be 
caught by the same catch statement but it is passed on to the next catch statement.
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Program 1.31

#include<iostream.h>
#include<conio.h>
void sum(int i, int  j)
{
 cout<<“in function sum()”;
 try
 {
  if(i==0)
   throw i;
  else
   cout<<“subtraction of I&j:”<<i-j;
 }
 catch(int)
 {
  cout<<“caught null values”;
  throw;
 }
  cout<<“End of sum()”;
}
void main()
 {
  cout<<“in main() function”;
  try
  {
   sum(10,6);
   sum(0,5);
  }
 catch(int)
 {
  cout<<“caught null value inside main()”;
 }
 cout<<“End of main()”;
}

Output

In main() function
In function sum()
Subtraction of i&j:4
End of sum().
In function sum()
Caught null values
Caught null value inside  main()
End of main()

In Program 1.31, when the function sum() is called with null values, the catch block in it catches the excep-
tion, the throw statement associated with this catch block re-throws the exception and is caught by the same 
catch block. Th e catch block inside the main function processes the re-thrown exception.
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SUMMARY

 • A class is a collection of member variables and member functions.
 • An object is an instance of a class. It holds data as well as the methods that operate on data.
 • Stream is a logical entity of an I/O device. A stream can produce or consume information, and is di-

rectly linked with the I/O subsystem. Th e class ios is the base class for I/O streams.
 • Th e access specifi er provides access rights for the class members from outside the class. Th e private 

members of a class can be accessible through the public members of the same class. Th e member 
variables and functions that are declared as public can be accessed by the members outside the class. 
Th e access specifi er protected works similar to the keyword private and are very useful in inheri-
tance.

 • Scope determines the lifetime and visibility of an identifi er. Local scope, function scope, fi le scope, 
class scope and prototype scope are the diff erent types of scopes.

 • All the objects of the class share a single copy of the static members. Every static variable must be ini-
tialized to zero.

 • Static functions can only access static member variables and the functions, its scope is global within the 
class.

 • Inline function copies the function defi nition when it is accessed.
 • Th e friend function allows access to private members of a class.
 • Function overloading defi nes more than one function with the same name but with diff erent opera-

tions.
 • Th e this pointer refers to current invoking object.
 • Th e new operator allocates memory dynamically, and the delete operator deallocates memory at 

runtime.
 • Exceptions are runtime errors. try, catch and throw are used to handle exceptions.
 • Re-throwing exception is throwing  an exception from the catch block. 

EXERCISES

FILL IN THE BLANKS

 1. An object is  of a class.
 2. By default all the members of a class are  .
 3. Static members are invoked by using  .
 4. Th e diff erence between the new operator and malloc() functions is  .
 5. Exception is  , which occurs  .
 6. Exception handling involves  keywords.

MULTIPLE-CHOICE QUESTIONS

 1. Th e iostream fi le contains  .
  a. Declaration of standard Input/ b. Streams of include and output of 
   Output library  program eff ects
  c. Both (a) and (b). d. None of the above
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 2. Which of the following is true?
  a. cout represents  the standard output stream b. cout is not a member of iostream
  c. Th e default console for cout is keyboard d. None of the above

 3. Static members can be accessed using   operators.
  a.  . (dot) b.   (pointer)    
  c.  new  d.  Both a and b

 4. When member variables are declared as static then .
  a. Each object will have a separate copy c. Th ey can be accessed by the objects
  b. All objects will have a common copy of  d. None of the above
   member variables

 5. Th e following keyword is used to handle exceptions .
  a.  try b. throw 
  c.  catch d. rethrow

 6. In function overloading the functions diff er by .
  a. Number of arguments b. Type of the arguments
  c. Return type d. Both a and b

 7. Static functions are invoked directly  by using .
  a. Objects b. Member functions
  c. Class name d. Scope access operator (::)

SHORT-ANSWER QUESTIONS

 1. Defi ne class and objects.
 2. Give the diff erence between an object and a variable.
 3. Give the usage of access specifi er.
 4. What is a scope?  Defi ne various types of scopes.
 5. What are static members and functions?
 6. Give the properties of overloaded functions.
 7. Defi ne the friend class.
 8. Discuss inline functions and friend functions.
 9. Explain the this pointer.

ESSAY QUESTIONS

 1. Discuss I/O streams in detail.
 2. Explain the diff erent ways of passing parameters to methods.
 3. Illustrate in detail dynamic memory allocations.
 4. What is an exception? Discuss the way of handling exceptions.
 5. Explain the concept of function overloading with a suitable example.
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Object Oriented 
Concepts

Chapter 2

In Chapter 1, a review of some important features of C++ have been covered. This chap-
ter starts with Object- oriented Goals and Principles. It proceeds with the discussion 
about constructors, destructors, overloading of constructors and operators. It also con-
centrates on other important concepts of C++ such as inheritance, polymorphism, ab-
stract classes, generic programming with function and class templates. Finally it covers 
recursion.

2.1 GOALS AND PRINCIPLES

Object - Oriented design has some goals that are to be achieved in developing a modern  soft ware. Th e object- 
oriented principles  are to be followed in the design to facilitate  the goals.

2.1.1 OBJECT ORIENTED DESIGN GOALS

Th e soft ware implementation should achieve the following important design goals:

 • Robustness
 • Adaptability
 • Reusability
2.1.1.1 Robustness
Developers want to produce soft ware, which gives right output for all the inputs, and the soft ware must be 
robust, which is capable of handling unexpected inputs.

Robustness of soft ware not only handles unexpected inputs but also yields accurate solutions. For example, 
if a user tries to store more elements in a data structure than expected then the soft ware should have the capac-
ity to expand this structure to take more elements. Th is feature is available in C++. Th e vector class of C++ 
standard template library defi nes a dynamically growing array.

Soft ware should also achieve correctness for all its possible inputs including boundary cases such as when 
an integer value is 0 or 1 or the maximum or minimum possible values. However, robustness and correctness 
do not come automatically, they must be designed right  from the beginning.



2.2 | Data Structures and Algorithms Using C++ 

2.1.1.2 Adaptability
Adaptability is also called evoluability or portability. Th is is the ability that the soft ware can work with minimal 
changes on all diff erent hardware and open system platforms.

2.1.1.3 Reusability
Reusability is a process of reusing the existing code wherever it is required. As components of diff erent systems 
are used in multiple applications, the soft ware is reused. Developing quality soft ware is very expensive. By re-
using, the soft ware cost can be reduced. If proper care is not taken when reusing the soft ware, it leads to several 
soft ware errors. Reusability of soft ware saves cost and time.

2.1.2 OBJECT ORIENTED DESIGN PRINCIPLES

Th e important principles of the object-oriented approach that serves the above goals are as follows:

 •  Abstraction
 •  Encapsulation
 •  Modularity
2.1.2.1 Abstraction
Abstraction is a mechanism to present only the essential features without including their background details. 
Consider Yahoo mail; when a user submits the username and password it opens the mail, when the user clicks 
on the compose button, it opens the compose box. However, the user does not know what are the actions per-
formed internally to open the compose box. Just opening the compose box is an essential feature and internal 
actions performed to open the compose box is not an essential feature for the user. Th us, using abstraction  
what is to be  performed is known but not how.

Abstract data types (ADT) have evolved by applying abstraction in the design of data structure. An ADT 
of data structure specifi es the data that are stored, the fundamental operations preformed on them along with 
arguments and their types.

An ADT is an interface that deals with the performance of operations. However, not how they are per-
formed. An ADT is represented as a class in C++.
2.1.2.2 Encapsulation
Wrapping of data and code into one single unit is known as encapsulation. It is also known as data hiding. Th e 
data are not accessible to the outside world. Combining code and data creates an object. Data hiding allows the 
users to use the object without knowing the internal working of it.

With encapsulation, the programmers can freely implement the details of a system but the only thing is 
that an abstract interface is to be maintained. Encapsulation supports adaptability by allowing only part of the 
program to be changed without aff ecting other parts of the program.
2.1.2.3 Modularity
A large soft ware system can be divided into a number of components or modules that can be implemented 
independent of each other. Every module implements a set of related data structures and functions. Modern 
programming languages including C++ supports modularity.

Modular soft ware design makes soft ware maintenance easier and provides reusability. Modularity makes 
Object-oriented Programming (OOP) an eff ective programming method.  



Chapter 2 Object Oriented Concepts | 2.3

2.2 CONSTRUCTORS AND DESTRUCTORS

 Constructors and Destructors are the special member functions that have the same name as that of the class 
through which they diff er from other functions; the only diff erence with the destructors is they are preceded 
by ~ (tilde) operator. Whenever an object of a class is created, the constructor is invoked automatically. Th e 
destructor is used to destroy the objects when they are of no use. When constructors and destructors are not 
defi ned, the compiler executes the default constructor and destructor. 

2.2.1 CONSTRUCTORS

Constructors are used to create and initialize the objects. For example, 
class Rectangle
{
 Rectangle(){---} //constructor
   -----
}

Here the class Rectangle has the constructor Rectangle(). Whenever an object is created for this class, 
the constructor is invoked automatically and initializes the object; no need to call it explicitly.
2.2.1.1 Properties of Constructors
 1. Constructor name must be the same as the class name.
 2. It should not have a return type not even void.
 3. Constructors can be overloaded.
 4. Th ey can also be invoked explicitly.
 5. Constructors can have default arguments.
2.2.1.2 Types of Constructors
Constructors are of three types:
 •  Default constructors
 •  Parameterized constructors
 •  Copy constructors

Default constructors: Th e constructor without arguments is called a default constructor.

Parameterized constructors: Constructors that are created with arguments are called parameterized constructors. 
When an object is created for such constructors, values must be passed to the constructors. 

class Area
{
 int l,b,h;
   public:
   Area(int x,int y,int z);   //declaration of parameterized constructor
   ------
   Area(){---} //default constructor 
};
Area::Area(int i,int j,int k)   //definition of parameterized constructor
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{
    a=i;
    b=j;
    c=k;
}
void main()
{
  Area a=Area();
  Area b=Area(1,2,3);
}

Here the class Area has a default and parameterized constructor. Th e declaration of the constructor with 
arguments is done inside the class and the defi nition is outside the class. Constructors can also be defi ned in-
side the class itself. Th e statements Area a=Area() and Area b=Area(1,2,3) create object and pass  values 
to the constructor. While creating the objects, the values to the parameterized constructor must be passed, 
there is no other way.

Program 2.1

#include<iostream.h>
class  area
{
 int l,b,h;
   public:
   area()
 {
    cout<<“default constructor”;
    l=0;b=0;h=0;
 }
area(int i,int j)
 {
    cout<<“\n constructor with two arguments”;
    l=i;
    b=j;
 }
area(int x,int y,int z)
 {
    cout<<“\n constructor with three arguments”;
    l=x;
    b=y;
    h=z;
 }
void display()
 {
  cout<<“\n\t l=”<<l<<“b=”<<b<<“h=”<<h;
 }
};
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void main()
 {
    area a=area();
    a.display();
    area b=area(10,20);
    b.display();
    area c=area(10,20,30);
    c.display();
 }      

Output

Default constructor:
l=0 b=0 h=0
Constructor with two arguments
l=10 b=20
Constructor with three arguments
l=10 b=20 h=30

In Program 2.1, the fi rst version of display() displays the contents of the default constructor, the second 
version of display() displays the contents of the constructor with two arguments and the third displays con-
tents of the constructor with three arguments.

Copy constructors: When the reference of an object is passed as an argument to the constructors, such types of 
constructors are called copy constructors.

class area
{
 private:
 - - - - -
 - - - - -
 public:
  area(area);      //here the argument of constructor 
            //is same as its  class which is invalid
  area(area&);       //copy constructor; here the reference of 
            //the  area class object is passed, 
};

Using copy constructors, objects can be declared and initialized by the reference of another objects. So, 
whenever a constructor is called a copy of an object is created.  

Program 2.2

class area
{
  int a;
   public:
 area(int b)
 {
    a=b;
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 }
 area(area&a1)  //copy constructor
 { 
  a=a1.a;
 }
 void display()
   {
  cout<<a;
   }
};
void main()
{
 area a1(10);
   area a2(a1);
    cout<<“value of a in object a1”;
   a1.display();
    cout<<“value of a in object a2”;
   a2.display();
}

Output

value of a in object a1:10
value of a in object a2:10

In Program 2.2, class area is declared with one integer variable and two constructors; one is parameterized 
and other is a copy constructor. Object a1 is created and with the reference of object a1 object a2 is created. 
Th e argument in copy constructor &a1 receives the object a2.

2.2.2 CONSTRUCTOR OVERLOADING

A class having more than one constructor is called constructor overloading. Th e constructors will be distin-
guished by the number of arguments. Th e compiler invokes the constructor that matches with the number of 
arguments. Constructor overloading allows both initialized and uninitialized objects to be created. 

class Sum
{
 int a,b;
 public:
    Sum(int ,float b, float c){….}
    Sum(int a, int b){….}
    Sum(){…}
};

Suppose  S1(1,2.5,3), S2(2,5,) and S3() are the objects for this class. When object S1 is created, a 
constructor with three arguments is called, for object S2 a constructor  with two arguments is called and for 
object S3 a constructor with no arguments is called. 
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Program 2.3

A program for overloading the constructor with initialized input arguments:

#include<iostream.h>
class area
 {
      /*function to calculate area of a circle*/
 public:
  area(float radius);
  area(int length, int breadth);
  area(int length, int breadth, int height);
 };
area::area(float radius)
 {
  cout<<“\nArea of a circle:”<<(3.141*radius*radius);
 }
 /*function to calculate area of a rectangle*/
area::area(int length,int breadth)
 {
  cout<<“\nArea of a rectangle:”<<(length*breadth);
 }
/*function to calculate area of a cube*/
area::area(int length,int breadth,int height)
 {
  cout<<“\nArea of a cube:”<<(length*breadth*height);
 }
void main()
 {
  area circle(2.1);
  area rectangle(2,3);
  area cube(2,3,4);
 }

Output

Area of a circle:13.851809
Area of a rectangle:6
Area of a cube:24

In Program 2.3, constructors of the class area are overloaded and are called based on the input argu-
ments.

2.2.3 DESTRUCTORS

 Destructors are also member functions that destroy the objects created by the constructors. Whenever the 
object goes out of its scope the destructor is executed and releases the memory space occupied by the object. 
Th e destructor name is also the same as the class name but it is preceded by (~) tilde.
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Properties of destructors:
 1. Destructors cannot be overloaded.
 2. Destructors do not require any arguments, not even the return type.
 3. Destructors are the only way to destroy objects.
 4. Whenever the program is terminated by either return or exit statements, the destructor is executed.

Program 2.4

#include<iostream.h>
#include<conio.h>
class area
{
 area()
 {
     cout<<“object(“<<c<<”)created”;
 }
 ~area()
 {
     cout<<“object(“<<c<<”)released”;
 }};
void main()
 {
     Area a1,a2;
 };

Output

Object 1 created
Object 2 created
Object 2 released
Object 1 released

In Program 2.4, the class area declares two objects. Th e constructor invokes and initializes the objects. 
When the destructor is invoked, the object fi rst created will be the last one to be released and the last one is 
released fi rst.

2.3 OPERATOR OVERLOADING

 Operator overloading is a procedure to change the meaning of the predefi ned operators to perform certain 
operations on the objects. Th e plus (+) operator is a predefi ned operator and can be used to add two or more 
values or variables. However, the same + operator cannot be used to add the variables of two or more similar 
objects. C++ provides the facility to modify the meaning of the operator (allows to redefi ne the predefi ned op-
erators). Aft er overloading the operator, it can be directly applied on the objects to perform the newly defi ned 
procedure.

x=y+z;
x=y-x;    //here x,y,z are basic data types. 

Th e operators +,=,– can be used on these variables but when we use them on objects of a class, the compiler 
gives an error.
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Program 2.5

/*Program for to  add two objects and store result in another object*/
#include<iostream.h>
#include<conio.h>
class vector
 {
  int x,y,z;
  public:
  vector(){}
  vector(int a,int b,int c)
  {
   x=a;
   y=b;
   z=c;
  }
 vector operator+(vector D)
 {
  vector T;
  T.x=x+D.x;
  T.y=y+D.y;
  T.z=z+D.z;
  return T;
 }
 void show()
 {
  cout<<x<<“i+”<<y<<“j+”<<z<<“k”;
 } };
void main()
 {
  vector a(10,20,30),b(1,2,3),c;
  clrscr();
   cout<<“\nVector A:”;
  a.show();
   cout<<“\nVector B:”;
  b.show();
  c=a+b;
   cout<<“\nAddition of Vector A+Vector B:”;
   cout<<“\nVector C:”;
  c.show();
 }

Output

Vector A:10i+20j+30k
Vector B:1i+2j+3k
Addition of Vector A+Vector B:
Vector C:11i+22j+33k
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In Program 2.5, a,b,c are the objects of vector class. Each object will have the copy of variables x,y,z.  Ad-
dition of objects a and b means adding member variables of a and member variables of  b and stored in object 
c. In Program 2.5, each variable is accessed individually, that is x of a and x of b are added and stored in x of 
c, similarly for other variables. We cannot directly perform as c=a+b; this can be overcome by using operator 
overloading.

Th e general form of operator overloading is as follows:

Return-type class-name::operator<symbol of the operator>(arguments)
{
  //Redefinition of the operator
}

2.3.1 OVERLOADING THE PLUS (+) OPERATOR

Program 2.6

/*Program to overload+operator*/
#include<iostream.h>
#include<conio.h>
class vector
{
 int x,y,z;
 public:
 vector(){}
 vector(int a,int b,int c)
 {
  x=a;
  y=b;
  z=c;
 }
 void show()
 {
  cout<<x<<“i+”<<y<<“j+”<<z<<“k”;
 } 
 vector operator+(vector v)
 {
  vector temp;
  temp.x=x+v.x;
  temp.y=y+v.y;
  temp.z=z+v.z;
  return temp;
 }
};
void main()
 {
  vector a(10,20,30),b(1,2,3),c;
   clrscr();
   cout<<“\nVector A:”;
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  a.show();
   cout<<“\nVector B:”;
  b.show();
   c=a+b;
   cout<<“\nAddition of Vector A+Vector B:”;
   cout<<“\nVector C:”;
  c.show();
 }

Output:

Vector A:10i+20j+30k
Vector B:1i+2j+3k
Addition of Vector A+Vector B:
Vector C:11i+22j+33k

In Program 2.6, the vector is defi ned as a class with x,y,z as local variables. To solve the vector addi-
tion problem, the plus (+) operator cannot be applied on the objects of the vector class. By overloading the 
plus operator in the vector operator+(vector v) form, the addition problem of vector can be solved. 
Th e return type of the operator + here is a vector type.

2.3.2 OVERLOADING THE MINUS (–) OPERATOR

Program 2.7

/*Program to overload-operator*/
#include<iostream.h>
#include<conio.h>
class vector{
int x,y,z;
public:
vector(){}
vector(int a,int b,int c)
 {
  x=a;
  y=b;
  z=c;
 }
 void show()
 {
  cout<<x<<“i+”<<y<<“j+”<<z<<“k”;
 }
 vector operator-(vector v)
 {
  vector temp;
  temp.x=x-v.x;
  temp.y=y-v.y;
  temp.z=z-v.z;
  return temp;
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 }
};
 void main()
 {
  vector a(10,20,30),b(1,2,3),c;
  clrscr();
   cout<<“\nVector A:”;
  a.show();
   cout<<“\nVector B:”;
  b.show();
   c=a-b;
   cout<<“\n A-B:”;
  c.show();
 }

Output

Vector A:10i+20j+30k
Vector B:1i+2j+3k
   A-B:9i+18j+27k

In Program 2.7, the vector is defi ned as a class with x,y,z as local variables. To solve the vector subtrac-
tion problem, the minus (–) operator cannot be applied on the objects of the vector class. By overloading the 
minus operator in the vector operator-(vector v) form, the subtraction problem of vector can be solved. 
Th e return type of the operator–here is a vector type.

2.3.3 OVERLOADING UNARY OPERATORS

Th e general form of the prefi x form of the unary ++ operator
return-type operator++()

Program 2.8

/*Program to overload++operator as prefix form*/
#include<iostream.h>
#include<conio.h>
class vector{
int x,y,z;
public:
vector(){}
vector(int a,int b,int c)
 {
  x=a;
  y=b;
  z=c;
 }
void show()
 {
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  cout<<x<<“i+”<<y<<“j+”<<z<<“k”;
 }
vector operator++()
 {
  ++x;
  ++y;
  ++z;
  return*this;
 }
};
void main()
 {
  vector a(10,20,30);
   clrscr();
   cout<<“\n         Vector A:”;
  a.show();
   ++a;
   cout<<“\nAfter Increment A:”;
  a.show();
 }

Output

Vector A:10i+20j+30k
After Increment A:11i+21j+31k

In Program 2.8, the operator ++ is overloaded to perform a preincrement on vector class objects. Opera-
tor overloading on the unary operators is similar to the plus and the minus operators. But the plus and the 
minus operators require arguments, while the prefi x form the unary operators like ++ does not require the 
arguments. In the above example the ++ unary operator is called in the prefi x form as ++a.

2.3.4 POSTFIX FORM OF OVERLOADING THE UNARY OPERATOR ++

Th e general form of the post form of the unary ++ operator is as follows:
return-type operator++(int x)

Program 2.9

/*Program to overload++operator as postfix form*/
#include<iostream.h>
#include<conio.h>
class vector{
int x,y,z;
public:
vector(){}
vector(int a,int b,int c)
 { 
  x=a;
  y=b;
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  z=c;
 }
void show()
 {
  cout<<x<<“i+”<<y<<“j+”<<z<<“k”;
 }
vector operator++(int i)
 {
  i=1;
  x+=i;
  y+=i;
  z+=i;
  return*this;
 }
};
void main()
{
 vector a(10,20,30);
 clrscr();
 cout<<“\n         Vector A:”;
 a.show();
 a++;
 cout<<“\nAfter Increment A:”;
 a.show();
}

Output

Vector A:10i+20j+30k
After Increment A:11i+21j+31k

In Program 2.9, the operator ++ is overloaded to perform a post increment on the vector class objects. 
In the postfi x form ++ operator, an integer argument is required, and the method is called when ++ operator 
follows the operand.

2.3.5 PREFIX FORM OF OVERLOADING THE UNARY OPERATOR --

Th e general form of the prefi x form of a unary -- operator is as follows:
return-type operator--()

In Program 2.10, operator –– is overloaded to perform a predecrement on the vector class object. Th e 
method operator––() is called when –– operator follows the operand.

Program 2.10

/*Program to overload--operator as prefix form*/
#include<iostream.h>
#include<conio.h>
class vector
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{
 int x,y,z;
 public:
 vector(){}
 vector(int a,int b,int c)
 {
  x=a;
  y=b;
  z=c;
 }
void show()
 {
  cout<<x<<“i+”<<y<<“j+”<<z<<“k”;
 }
vector operator--()
 {
  --x;
  --y;
  --z;
  return*this;
 } };
void main()
 {
  vector a(10,20,30);
   clrscr();
  cout<<“\n         Vector A:”;
   a.show();
   --a;
  cout<<“\nAfter Decrement A:”;
   a.show();
 }

Output

Vector A:10i+20j+30k
After Increment A:9i+19j+29k

2.3.6 POSTFIX FORM OF OVERLOADING THE UNARY OPERATOR --

Th e general form of the post form of the unary -- operator is as follows:
return-type operator--(int x)

Program 2.11 

/*Program to overload--operator as postfix form*/
#include<iostream.h>
#include<conio.h>
class vector{
int x,y,z;
public:
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vector(){}
vector(int a,int b,int c)
 {
  x=a;
  y=b;
  z=c;
 }
 void show()
 {
  cout<<x<<“i+”<<y<<“j+”<<z<<“k”;
 }
 vector operator--(int i)
 {
  i=1;
  x-=i;
  y-=i;
  z-=i;
  return*this;
 }
};
 void main()
 {
  vector a(10,20,30);
   clrscr();
   cout<<“\n         Vector A:”;
   a.show();
   a--;
   cout<<“\nAfter Decrement A:”;
   a.show();
 }

Output

Vector A:10i+20j+30k
After Decrement A:9i+19j+29k

In Program 2.11, the operator -- is overloaded in the vector operator--(int i) to perform post 
decrement on the vector class object a.

Shorthand operators like +=,-=,*=,/= are also can be overloaded using the operator overloading.

Program 2.12

/*Program to overload+=operator*/
#include<iostream.h>
#include<conio.h>
class vector
{
 int x,y,z;
 public:
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 vector(){}
 vector(int a,int b,int c)
 {
  x=a;
  y=b;
  z=c;
 }
 void show()
 {
  cout<<x<<“i+”<<y<<“j+”<<z<<“k”;
 }
 vector operator+=(int i)
 {
  x+=i;
  y+=i;
  z+=i;
  return*this;
 }
};
void main()
{
 vector a(10,20,30);
 clrscr();
  cout<<“\n         Vector A:”;
 a.show();
 a+=10;
  cout<<“\nAfter Increment A:”;
 a.show();
}

Output

Vector A:10i+20j+30k
After Increment A:20i+30j+40k

In Program 2.12, the operator += is overloaded in the vector operator+=(int i) to increment the 
vector class object values by 10. Th e statement a+=10 is the short form of a=a+10.

Program 2.13

/*Program to overload-=operator*/
#include<iostream.h>
#include<conio.h>
class vector
{
 int x,y,z;
 public:
 vector(){}
 vector(int a,int b,int c)
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 {
  x=a;
  y=b;
  z=c;
 }
void show()
 {
  cout<<x<<“i+”<<y<<“j+”<<z<<“k”;
 }
vector operator-=(int i)
 {
  x-=i;
  y-=i;
  z-=i;
  return*this;
 }
};
void main()
 {
  vector a(10,20,30);
  clrscr();
  cout<<“\n         Vector A:”;
  a.show();
  a-=3;
   cout<<“\nAfter Decrement A:”;
  a.show();
 }

Output

Vector A:10i+20j+30k
After Decrement A:7i+17j+27k

In Program 2.13, the operator -= is overloaded in the vector operator-=(int i) to decrement the vector 
class object values by 3. Th e statement a–=3 is the short form of a=a–3.

2.4 INHERITANCE

 Inheritance is a process of acquiring the properties of one object to the other object. Th e class that is inherited 
is called a base class, and the inheriting class is called the derived class. Aft er inheriting the base class, members 
of the base class become members of the derived class. Inheritance allows the reuse of code. 

Th e general form of inheritance is as follows:

Class derived-class:access-specifier base-class{
// members of the derived class
};

Derived class is the new class that is inherited from the base class and can also have its own members. Ac-
cess specifi er can be public, protected or private. Th e members of the base class will be acquired by the way 
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the base class is specifi ed with the access specifi er. If no access specifi er is specifi ed, then the default specifi er 
will be private if the derived class is a Class. If the derived class is a structure, then the default specifi er will 
be public.

2.4.1 BASE CLASS ACCESS CONTROL

Th e derived class will have the members of the base class based on the declaration type such as private, public 
or protected and the access specifi er at the time of inheriting the base class.

Th e members of the base class will be protected from the derived class based on the  access specifi er. All the 
private members of the base class will not be inherited by the derived class irrespective of the access specifi er.

In case the derived class is a class, the following cases will be based on the access specifi er:

Case 1: Access specifi er is public:
 a. All the public members of the base class will become the public members of the derived class.
 b. All the protected members of the base class will become the protected members of the derived class.
 c. All the private members of the base class will not be inherited to the derived class.

Case 2: Access specifi er is protected:
 a. All the public members of the base class will become the protected members of the derived class.
 b. All the protected members of the base class will become the protected members of the derived class.
 c. All the private members of the base class will not be inherited to the derived class.

Case 3: Access-Specifi er is private
 a. All the public members of the base class will become the private members of the derived class.
 b. All the protected members of the base class will become the private members of the derived class.
 c. All the private members of the base class will not be inherited to the derived class.

2.4.2 TYPES OF INHERITANCE

Th ere are two basic classifi cations of inheritance 
•  Single inheritance
•  Multiple inheritance

Based on the above existing classifi cations, inheritance can be further divided into various types that are 
as follows:

 1.  Hierarchical inheritance
 2.  Single-level inheritance
 3.  Multi-level inheritance
 4.  Hybrid inheritance
 5.  Multipath inheritance

2.4.2.1 Single Inheritance
If a class is derived from a single base class, this type of inheritance is called single inheritance. Th e new class 
is called the derived class, and the old class is called the base class.

Example
Class B is derived from a single Class A; here Class A is the base class and Class B is the derived class.
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Th e general form of single inheritance is as follows:

Class  <Derived-Class-Name> : <Access-Specifier>  <Base-Class-Name>

                           Base class  A

  Derived class  B     

Program 2.14

#include<iostream.h>
#include<conio.h>
/*Single Inheritance*/
class A
{
 public:
 int a,b;
 void set(int x,int y)
 {
  a=x;
  b=y;
 }
};
 class B:public A{
 int c;
 public:
 B(int z)
 {
  c=z;
 }
void show()
 {
  cout<<“A =”<<a<<“\nB=”<<b<<“\nC=”<<c;
 }
};
void main()
 {
  B obj(30);
  obj.set(10,20);
  clrscr();
  obj.show();
 }

Output

A=10
B=20
C=30
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In Program 2.14, Class B is inherited from Class A. Because Class B is inherited from Class A, Class B 
will have all the public members of Class A. obj is an object created for Class B. In the defi nition of Class B, 
the show method calls the members of Class A, which are not part of the Class B defi nition. Because a single 
derived Class B is derived from a single base Class A, the inheritance type is a single-level inheritance.

2.4.2.2 Multiple Inheritance
If a class is derived from multiple base classes, then the inheritance type is called multiple inheritance.

Example

Class E is derived from three diff erent base classes B, C, D.
Class  <Derived-Class-NameE> : <Access-Specifier>  <Base-Class-NameB>,
         <Access-Specifier>  <Base-Class-NameC>,
                              <Access-Specifier>  <Base-Class-NameD>

      B     C   D

E
Program 2.15

#include<iostream.h>
#include<conio.h>
/*Multiple Inheritance*/
class A
{
 public:
 int a;
 void setA(int x)
 {
  a=x;
 }
void showA()
 {
  cout<<“\nA=”<<a;
 }
};
class B
{
 public:
 int b;
 void setB(int x)
 {
  b=x;
 }
void showB()
 { cout<<“\nB=”<<b; 
 } 



2.22 | Data Structures and Algorithms Using C++ 

};
class C: public A,public B{
public:
int c;
void setC(int x)
 {
  c=x;
 }
void showC()
 {
  cout<<“\nC=”<<c;
 }
};
void main()
 {
  A objA;
  B objB;
  C objC;
  clrscr();

//Calling Class A methods
 cout<<“\nCalling Class A methods”;
  objA.setA(10);
  objA.showA();

//Calling Class B methods
 cout<<“\nCalling Class B methods”;
  objB.setB(20);
  objB.showB();

//Calling Class C methods
 cout<<“\nCalling Class C methods”;
  objC.setA(10);
  objC.setB(20);
  objC.setC(30);
  objC.showA();
  objC.showB();
  objC.showC();
 }

Output

Calling Class A methods
 A=10
Calling Class B methods
 B=20
Calling Class C methods
 A=10
 B=20
 C=30
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A class can be derived from two or more base classes. In Program 2.15, Class C is inherited from Class A 
and Class B. Th erefore, Class C will have the members of Class A, Class B and the members of itself. 
2.4.2.3 Hierarchical Inheritance
When two or more classes are derived from the same base class, the inheritance type is called hierarchical 
inheritance.

Example

Class B, Class C and Class D are derived from base Class A.

Th e general form of hierarchical inheritance is as follows:

Class<Derived-Class-NameB>:<Access-Specifier><Base-Class-NameA>
Class<Derived-Class-NameC>:<Access-Specifier><Base-Class-NameA>
Class<Derived-Class-NameD>:<Access-Specifier><Base-Class-NameA>

A

     B     C   D

Program 2.16

#include<iostream.h>
#include<conio.h>
/*Hierarchical Inheritance*/
class A
{
public:
int a;
void setA(int x)
 {
  a=x;
 }
void showA()
 {
  cout<<“\nA=”<<a;
 }
};
class B:public A
{
public:
int b;
void setB(int x)
 {
  b=x;
 }
void showB()
 {
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  cout<<“\nB=”<<b;}
};
class C:public A
{
 public:
 int c;
 void setC(int x)
 {
  c=x;
 }
void showC()
 {
  cout<<“\nC=”<<c;
 }
};
void main()
{ A objA;
 B objB;
 C objC;
 clrscr();

//Calling Class A methods
cout<<“\nCalling Class A methods”;
 objA.setA(10);
 objA.showA();

//Calling Class B methods
cout<<“\nCalling Class B methods”;
 objB.setA(10);
 objB.setB(20);
 objB.showA();
 objB.showB();

//Calling Class C methods
cout<<“\nCalling Class C methods”;
 objC.setA(10);
 objC.setC(30);
 objC.showA();
 objC.showC();
}

Output

Calling Class A methods
 A=10
Calling Class B methods
 A=10
 B=20
Calling Class C methods
 A=10
 C=30
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Program 2.16 is an example for hierarchical inheritance. In this example, Class B and Class C are inherited 
from the same base Class A. So, Class B will have the members of Class B and the members of Class A and 
Class C will have the members of Class C and the members of Class A.  
2.4.2.4 Single-level Inheritance
Th is inheritance is the same as the single inheritance, the only diff erence is that in single-level inheritance the 
derived class cannot be a base class.
2.4.2.5 Multi-level Inheritance
If a class is derived from a derived class, then the inheritance type is called multi-level inheritance.

Example
Class B is derived from Class A and Class C is derived from class B; now Class B is  base class to C and derived 
class for Class A.

Th e general form of multi-level inheritance is as follows:

Class<Derived-Class-NameB>:<Access-Specifier><Base-Class-NameA>
Class<Derived-Class-NameC>:<Access-Specifier><Derived-Class-NameB>

Base class   A

Derived class   B

Derived class   C

Program 2.17

#include<iostream.h>
#include<conio.h>
/*Multi-Level Inheritance*/
class A{
public:
int a;
void setA(int x)
 {
  a=x;
 }
void showA()
 {
  cout<<“\nA=”<<a;
 }
};
class B: public A{
public:
int b;
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void setB(int x)
 {
  b=x;
 }
void showB()
 {
  cout<<“\nB=”<<b;
 }
};
class C:public B{
public:
int c;
void setC(int x)
 {
  c=x;
 }
void showC()
 {
  cout<<“\nC”<<c;
 }
};
void main()
 {
  A objA;
  B objB;
  C objC;
  clrscr();

//Calling Class A methods
 cout<<“\nCalling Class A methods”;
 objA.setA(10);
 objA.showA();

//Calling Class B methods
 cout<<“\nCalling Class B methods”;
 objB.setA(10);
 objB.setB(20);
 objB.showA();
 objB.showB();

//Calling Class C methods
 cout<<“\nCalling Class C methods”;
 objC.setB(20);
 objC.setC(30);
 objC.showB();
 objC.showC();
}
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Output

Calling Class A methods
 A=10
Calling Class B methods
 A=10
 B=20
Calling Class C methods
 B=20
 C=30

Th is is an example for multi-level inheritance. In Program 2.17 Class C is derived from the derived Class B 
and Class B is derived from the base Class A. When an object is created for Class B, the object will have all the 
public members of Class A, and the object of Class C will have all the public members of Class B. 
2.4.2.6 Hybrid Inheritance
If a class is inherited with the combinations of one or more basic inheritance types, then it is called hybrid 
inheritance.

Example
Class B is derived from base Class A, and Class D is derived from derived Class B and base Class C.

Th e general form of multi-level inheritance is as follows:

Class<Derived-Class-NameB>:<Access-Specifier><Base-Class-NameA>,
Class<Derived-Class-NameD>:<Access-Specifier><Derived-Class-NameB>,
               <Access-Specifier><Base-Class-NameC>,

A

B   C

D

Program 2.18

#include<iostream.h>
#include<conio.h>
/*Hybrid  Inheritance*/
class A
{
 public:
 int a;
 void setA(int x)
 {
  a=x;
 }
 void showA()
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{
 cout<<“\nA=”<<a;
}
};
class C
{
 public:
 int c;
 void setC(int x)
 {
  c=x;
 }
 void showC()
 {
  cout<<“\nC=”<<c;
 }
};
class B: public A
{
 public:
 int b;
 void setB(int x)
 {
  b=x;
 }
void showB()
 {
  cout<<“\nB=”<<b;
 }
};
class D: public B,public C
{
 public:
 int b;
 void setB(int x)
 {
  b=x;
 }
void showB()
 {
  cout<<“\nB=”<<b;
 }
};
void main()
{
 A objA;
 B objB;
 C objC;
 D objD;
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 clrscr();

//Calling Class A methods
 cout<<“\nCalling Class A methods”;
 objA.setA(10);
 objA.showA();

//Calling Class B methods
 cout<<“\nCalling Class B methods”;
 objB.setA(10);
 objB.setB(20);
 objB.showA();
 objB.showB();

//Calling Class C methods
 cout<<“\nCalling Class C methods”;
 objC.setC(30);
 objC.showC();
 cout<<“\nCalling Class D methods”;
 objD.setB(10);
 objD.setC(20);
 objD.showB();
 objD.showC();
}

Output

Calling Class A methods
 A=10
Calling Class B methods
 A=10
 B=20
Calling Class C methods
 C=30
Calling Class D methods
 B=10
 C=20

In Program 2.18, hybrid inheritance is a combination of multiple and multi-level inheritances. Class A  and 
Class C are base classes. Class B is derived from Class A, and Class D is derived from Class B and Class C.
2.4.2.7 Multipath Inheritance
If a class is derived from one or more derived classes that are derived from the same base class, such type of 
inheritance is called multipath inheritance.

Example
Class B and Class C are derived from the same base Class A, and Class D is derived from Class B and 
Class C.
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class A
{
   public:
   int a;
};
class B:public A
{
 public:int b;
};
Class C:public A
{
 public:int c;
};
Class D:public B,public C
{
    public:int d;
};

In the above program, Classes B and C are derived classes from the same base Class A. Classes B and C can 
access variable a of Class A. Class D is derived from Class B and Class C which are derived from the same base 
Class A. When Class D accesses variables of Class A, the compiler gives an error message because the compiler 
is in an ambiguous state in selecting variable a, whether to select it from Class B or Class C since both of them 
have the copy of a. Th is ambiguity can be resolved by using virtual keyword.

Access to base class: Because the base class members are inherited by the derived class, the base class members 
should have controlled access to the derived class. When the access specifi er of the base class is public, then 
all the public members of the base class are accessible by the derived class. All the private members of the base 
class cannot be accessed by the derived class.

Access specifi er of the base class is public: When the access specifi er  of the base class is public, all the public 
members of the base class are accessible to the derived class.

Program 2.19

/*Program to demonstrate when the access specifier of the base class 
 is public*/
#include<iostream.h>
#include<conio.h>

A

B C

D
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  /*Base Class Access Control in inheritance when Access Specifier is 
  PUBLIC*/

class Base
{
 int a;       //Private Member Data Variable, Not Accessible by 
         //the derived Class
 void setA(int x)   //Private Member Function, Not Accessible by 
         //the derived Class
 {
  a=x;
 }
 void showA()       //Private Member Function,Not Accessible by 
         //the derived Class
 {
  cout<<“\nA:”<<a;
 }
 public:
 int b;
 void setB(int y)
 {
  b=y;
 }
 void showB()
 {
  cout<<“\nB=”<<b;
 }
};
class Derived:public Base{
int c;
public:
void setC(int z)
 {
  c=z;
 }
void showC()
 {
  cout<<“\nC=”<<c;
 }
};
void main()
{
 Base obj1;
 Derived obj2;
 clrscr();
  //Calling Base Class  methods
   cout<<“\nCalling Base Class methods”;
  //obj1.a=1;       /*Not Accessible Because of private member of 
             Base Class*/
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  //obj1.showA();    /*Not Accessible Because of private member of 
            Base Class*/
  //obj1.setA(10);    /*Not Accessible Because of private member of 
             Base Class*/
  //obj1.showA();     /*Not Accessible Because of private member of 
             Base Class*/
  //Calling Class B methods
   cout<<“\nCalling Class B methods”;
  //obj2.setA(10);    /*Not Accessible Because of private member of 
             Base Class*/
  obj2.setB(20);
  //obj2.showA();     /*Not Accessible Because of private member of  
             Base Class*/
  obj2.showB();
  obj2.setC(30);
  obj2.showC();
 }

Output

Calling Base Class methods
Calling Class B methods
B=20
C=30

In Program 2.19, the private members of the base class are not accessible by the derived class. Th e base 
Class’s setA(), showA() are not accessible by the derived class because  they are private members. Th e public 
members of the base Class setB(), showB() are accessible by the derived class. It shows that all the public 
members of the base class become public members of the derived class. All the private members of the base 
class cannot be accessible by the derived class.

Access specifi er of the base class is private: When the access specifi er of the base class is private, then all the public 
and protected members of the base class become private members of the derived class. 

Program 2.20

#include<iostream.h>
#include<conio.h>
class Base
{
 int a;
 public:
 void setA(int x)
 {
  a=x;
 }
void showA()
 {
  cout<<“\nA=“<<a;
 }
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};

class Derived:private Base
{
 int b;
 public:
 void setB(int y)
 {
  b=y;
 }
void showB()
 {
  cout<<“\nB=”<<b;
 }
};
void main()
 {
  Derived obj;
  clrscr();
  cout<<”\nDerived Class Members”;
  //obj.setA(10);        /*Not Accessible*/
  //obj.showA();        /*Not Accessible*/
  obj.setB(20);
  obj.showB();
 }

Output

Derived Class Members
B=20

In Program 2.20, the private members of the base class are not accessible by the derived class. Th e base 
class’s setA(), showA() are not accessible by the derived class because they are public members and the ac-
cess specifi er of the base class is private. It shows that all the public members of the base class become private 
members of the derived class when the access specifi er of the base class is private. All the private members of 
the base class cannot be accessible by the derived class.

Protected members become protected members of the derived class when the access specifi er of the base class 
is public.

Program 2.21

#include<iostream.h>
#include<conio.h>
class Base
{
 protected:
 int a;
 public:
void setA(int x)
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 {
  a=x;
 }
void showA()
 {
  cout<<“\nA=”<<a;
 }
};

class Derived:public Base
 {
  int b;
  public:
  void setB(int y)
  {
   b=y;
  }
void showAB()
 {
  cout<<“\nA=”<<a<<”B=”<<b;
 }
};

void main()
 {
  Derived obj;
  clrscr();
  cout<<“\nDerived Class Members”;
  obj.setA(10); /*Accessible*/
  obj.showA(); /*Accessible*/
  obj.setB(20);
  obj.showAB();/*The method showAB can access protected variable ‘a’*/
 }

Output

Derived Class Members
A=10
A=10 B=20

In Program 2.21, the derived class showAB() method calls the protected member of the base class because 
the access specifi er of the derived class is public. It shows that the member functions of the derived class can 
access the protected members of the base class when the access specifi er of the base class is public. 

Access specifi er of the base class is protected: All the public and protected members of the base class become 
protected members of the derived class when the access specifi er of the base class is protected. All the private 
members of the base class are not accessible by the derived class.
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Program 2.22

#include<iostream.h>
#include<conio.h>
class Base
{
 protected:
 int a;
 public:
void setA(int x)
 {
  a=x;
 }
void showA()
 {
  cout<<“\nA=”<<a;
 }
};
class Derived:protected Base
{
 int b;
 public:
 void setB(int y)
 {
  setA(10);
  b=y+a;
 }
void showAB()
 {
  cout<<“\nA=”<<a<<“B=”<<b;
 }
};
void main()
 {
  Derived obj;
  clrscr();
  cout<<“\nDerived Class Members”;
  // obj.setA(10);     /*Illegal because of setA is protected member 
             of derived class*/
  obj.setB(20);
  obj.showAB();
 }

Output

Derived Class Members
A=10 B=30
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In Program 2.22, the derived class member function showAB() calls the protected member a, because the 
protected members of the base class become protected members of the derived class when the access specifi er 
is protected.
The execution order of the constructor and destructor when inheritance is applied: Inheritance allows the base and de-
rived classes to have constructors and destructors.  Th e compiler knows the order how the classes are derived; 
in the same order constructors are called. Th e destructors are called exactly opposite to that of the construc-
tor.

Program 2.23

#include<iostream.h>
class Base
{
 public:
 Base()
 {
  cout<<“\nCalling Base Class Constructor”;
 }
  ~Base()
 {
  cout<<“\nCalling Base Class Destructor”;
 }
};
class Derived:public Base
 {
  public:
  Derived()
  {
   cout<<“\nCalling Derived Class Constructor”;
  }
  ~Derived()
  {
   cout<<“\nCalling Derived Class Destructor”;
  }
 };
void main()
 {
  Derived obj;
 }

Output

Calling Base Class Constructor
Calling Derived Class Constructor
Calling Derived Class Destructor
Calling Base Class Destructor

Th e main function of Program 2.23 is creating an object to the derived class. Because the derived class 
is derived from the base class, the compiler calls the base class fi rst and then the derived class constructor is 
called. Exactly reverse to the order of the constructor the destructors are called.
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Program 2.24

#include<iostream.h>
#include<conio.h>
class Base
{
 public:
 Base()
 {
  cout<<“\nCalling Base Class Constructor”;
 }
  ~Base()
 {
  cout<<“\nCalling Base Class Destructor”;
 }
};
class DerivedB:public Base{
public:
DerivedB()
 {
  cout<<“\nCalling DerivedB Class Constructor”;
 }
~DerivedB()
 {
  cout<<“\nCalling DerivedB Class Destructor”;
 }
};
class DerivedC:public DerivedB{
public:
DerivedC()
 {
  cout<<“\nCalling DerivedC Class Constructor”;
 }
~DerivedC()
 {
  cout<<“\nCalling DerivedC Class Destructor”;
 }
};
void main()
{
 clrscr();
 DerivedC obj;
}

Output

Calling Base Class Constructor
Calling DerivedB Class Constructor
Calling DerivedC Class Constructor
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Calling DerivedC Class Destructor
Calling DerivedB Class Destructor
Calling Base Class Destructor

In case of multi-level inheritance, three or more constructors are to be called. In Program 2.24, Class C 
is derived from derived Class B. In this case, the constructors of base Class A, Class B and Class C are called, 
respectively. In the reverse order the destructors are called.

Arguments passing to the base class constructor: Inheritance allows the classes to have constructors, the construc-
tors can be with and without arguments. Th e problem here is that an object can be created to a derived class. 
If that is the case “how to pass the arguments to the base class constructor while creating an object to the derived 
class?”. To solve this problem, C++ allows the developers to pass the arguments to the base class constructor by 
using colon ( : ) operator in the declaration of the derived class, and the arguments can be passed in the order 
of derived class object arguments, base class argument list.

Suppose the derived class constructors have one integer argument and two fl oat arguments to the base class 
constructor. Th en the developer can pass the derived class argument followed with the base class arguments.

Th e general form of declaration of the derived class constructors is as follows:

 Derived-class-constructor( args) : base-class1-constructor (args) ,
    base-class2-constructor(args)
   . . . . . .
  base-classN-constructor(args)
  {
   // definition of the derived class
  }

Th e general form of passing the arguments to the derived class constructors is as follows:

Derived-class object-name(list of derived-class-args,list-of-base-class-args);

Program to demonstrate the arguments passing to the base class constructors:

Program 2.25

#include<iostream.h>
#include<conio.h>
class Base{
public:
Base(int x)
{
 cout<<“\nCalling Base Class Constructor”;
 cout<<“\nArgument Value Received by the Base Class:”<<x;
}
~Base()
 {
  cout<<“\nCalling Base Class Destructor”;
 }
};
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class Derived:public Base
{
 public:        
 /*Derived Class uses only p and the variable q will be passed to the base 
   class contructor*/
 Derived(int p,int q):Base(q)
 {
  cout<<“\nCalling Derived Class Constructor”;
  cout<<“\nArgument Value Received by the Derived Class:”<<p;
 }
 ~Derived()
 {
  cout<<“\nCalling Derived Class Destructor”;
 }
};
void main()
{
 clrscr();
 Derived obj(10,20);
}

Output

Calling Base Class Constructor
Argument Value Received by the Base Class:20
Calling Derived Class Constructor
Argument Value Received by the Derived Class:10
Calling Derived Class Destructor
Calling Base Class Destructor

In Program 2.25, the derived Class B has only one integer input argument and the constructor of the base 
class also has only one integer input argument. To allow the arguments to be passed on to the base class con-
structor, the derived class is defi ned as Derived(int p,int q):Base(q). Initially the derived class object 
accepts input values to the variables p and q. Only p is required by the derived class and q is passed on to the 
base class constructor. At the time of creating the object to the derived class the derived class input argument 
value 10 is placed and the input argument value 20 is passed on to the base class constructor.

Passing the input arguments to the base class constructor when multi-level inheritance is used:

Program 2.26

#include<iostream.h>
#include<conio.h>
class Base
{
 public:
 Base(int x)
 {
  cout<<“\nCalling Base Class Constructor”;
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  cout<<“\nArgument Value Received by the Base Class:”<<x;
 }
~Base()
 {
  cout<<“\nCalling Base Class Destructor”;
 }
};
class DerivedA : public Base{
public:     
      /*DerivedA Class uses only p and the variable q will be 
        passed to the base class contructor*/

DerivedA(int p,int q):Base(q)
 {
  cout<<“\nCalling DerivedA Class Constructor”;
  cout<<“\nArgument Value Received by the DerivedA Class:”<<p;
 }
~DerivedA()
 {
  cout<<“\nCalling DerivedA Class Destructor”;
 }
};
 class DerivedB:public DerivedA{
 public:
    /* DerivedB Class uses only p and the variables q,r will be passed 
     to the DerivedA class contructor*/

DerivedB(int p,int q,int r): DerivedA(q,r)
 {
  cout<<“\nCalling DerivedB Class Constructor”;
  cout<<“\nArgument Value Received by the DerivedB Class:”<<p;
 }
~DerivedB()
 {
  cout<<“\nCalling DerivedB Class Destructor”;
 }
};
void main()
{
 clrscr();
 DerivedB obj(10,20,30);
}

Output

Calling Base Class Constructor
Argument Value Received by the Base Class:30
Calling DerivedA Class Constructor
Argument Value Received by the DerivedA Class:20
Calling DerivedB Class Constructor
Argument Value Received by the DerivedB Class:10
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Calling DerivedB Class Destructor
Calling DerivedA Class Destructor
Calling Base Class Destructor

In Program 2.26, Class B is derived from the derived Class A, and Class A is derived from the base class. 
All the constructors of all the classes accept one integer argument. Th e base class constructor is defi ned as 
Base(int x), so that it accepts only one input argument. Class A is derived from the base class. To pass the 
arguments to the base class, the Class A constructor is defi ned as DerivedA(int p,int q):Base(q). Th e 
constructor of Class DerivedA accepts p and q as input arguments at the time of object creation and uses 
only p for its purpose and passes q to the base class constructor. Th e Class DerivedB is also inherited from 
the Class DerivedA. To pass the arguments to the constructor of ClassA, the constructor Class DerivedB 
should accept the arguments at its constructor declaration.  Arguments to all the constructors are passed as 
“DerivedB obj(10,20,30);”.  Th e value 10 is used by the constructor of Class DerivedB and the argument 
values 20, 30 are passed to the constructor of Class DerivedA. Th e constructor of Class DerivedA accepts 20, 
30 as input arguments. Th e constructor of Class DerivedA only uses the value 20, and the value 30 will be 
passed on to the base class constructor. In this way the arguments can be passed on to the  base class construc-
tors, while creating the objects for the derived class.

Making the inherited private members as its original access specifi cation in the inheritance: Th ere may be a situation 
where some of the inherited private members have to be with its original access specifi cation. In this case C++ 
allows the developers to restore its original access specifi cation in the derived class.

When the access specifi er of the base class is private, then all the public and protected members of the 
base class become private members of the derived class. Th e said mechanism allows one to restore some of 
the inherited public and protected members, which become private in the derived class and can  restore their 
original access specifi cation as public or protected.

Th e general form of access specifi cation is as follows:

Base-class::member; //by this statement the original access specification of 
the member will be restored.

Program 2.27

#include<iostream.h>
#include<conio.h>
class Base
{
 public:
 int a;
 Base()
 {
  a=10;
 }
};
class DerivedA:private Base
{
 public:
 Base::a;     //Making the private variable 
        //to again public access specification
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};
class DerivedB:private DerivedA
{
 public:
 void showa()
 {
  cout<<“\nA=”<<a;
 }
};
void main()
{
 clrscr();
 DerivedB obj;
 obj.showa();
}

Output

A=10

In Program 2.27, the Class DerivedA is inherited from the base class, and the base class access specifi er is 
private. So, all the public and protected members of the base class become private. Th e class DerivedB is in-
herited from the Class DerivedA. So, the inherited members of the DerivedA class will not be present in the 
class DerivedB. In the base class the variable a is declared as public, it became private in the class DerivedA. 
Th e statement Base::a; makes the private variable of class DerivedA to be restored as public, and the vari-
able can be further inherited to the other derived class.

         public:int a;
    Class DerivedA:private Base
         public:int a;
         become 
         private:int a;
After the statement Base::a; 
the access specifier became public:int a;
         public:int a;
         become 
         private:int a; 

2.4.3 REASONS FOR THE USAGE OF INHERITANCE

Specialization: A new class is derived from the base class and this class may just  add something more to the 
base class or it may slightly diff er from the base class.
Generalization: When two or more classes have similar properties, then this similarity can be combined to-
gether into a common base class. 
Interface: Used by the base class to defi ne interface, but doesn’t implement some or all parts of it.

Th e derived class Is –A type of the base class. Th is means that anywhere the base class works, the derived 
class can also be used. Th ere may be a confusion between IS-KIND-OF-LIKE and IS-A when derived class is 
a kind of already existing class.

Base

DerivedA

DerivedB
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2.4.4 ADVANTAGES

 • In hierarchical relationships inheritance makes the development model clones to real-life object 
model.

 • Reusability: Th e public members of base class can be reused by derived class without rewriting them.
 • Data hiding: Th e base class can control the access of some data so that they cannot be modifi ed by the 

derived class.
 • Extensibility: Extending the base class properties by the derived class to generate more dominate 

object.

2.4.5 DISADVANTAGES

 • Objects, when used for invoking member functions create more compiler overheads.
 • Memory allocated to unused data elements will not be utilized, which wants the memory.
 • Inheritance if not used correctly leads a program to be more complicated.
 • As Vtables grow the performance of the program decreases.

2.4.6 DELEGATION

In object-oriented programming, two classes can be joined either by using inheritance or delegation. Delega-
tion is a mechanism in which the object of one class is used as a member of another class. Th e kind of relation-
ship in inheritance is  IS KIND OF whereas in delegation HAS-A relationship. 

class x
 {};
class y
 {};
class z
{
  x a; //object of class x
  y b; //object of class y
}

Here class z has two data members a, b which are objects of other classes x and y; such a kind of relation-
ship is known as HAS-A relationship.

2.5 POLYMORPHISM

 Polymorphism can be defi ned  as “many forms”. Poly means “many”,   morph  means “form”  and “ism” is a 
theory or a process. In general, polymorphism means “one can have many forms”. Operator overloading and 
function overloading are the types of polymorphism. 

C++ supports two types of  binding— static and  dynamic. Choosing a function call at the compile time 
is called static binding. Choosing a function call at the run-time is called dynamic binding. Static binding is 
implemented by using function and operator overloading, and dynamic binding is implemented using virtual 
functions.
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2.5.1 VIRTUAL FUNCTIONS

Virtual keyword is used to avoid ambiguous situations in the multipath inheritance. In the multipath inheri-
tance, an object can inherit the properties of the derived objects, which are inherited from the same base class 
objects. Th is kind of situations leads to ambiguity. To avoid ambiguity while calling the inherited members, 
virtual functions are introduced. Using the keyword virtual ambiguous situation can be resolved. Ambiguity 
is a compiler error.

Program with ambiguity:
#include<iostream.h>
#include<conio.h>
class Base
 {
  public:
   int base_var;
 };
class derived1:public Base
 {
  public:
   int derived1_var;
 };
class derived2:public Base
 {
  public:
   int derived2_var;
 };
class derived3:public derived1, public derived2
 {
  public:
   int derived3_var;
 };
void main()
 {
  derived3 obj;
  obj.base_var=20;   /*derived1 and derived2 instances are inherited 
             to the obj, compiler cannot address which 
             member has to be called*/
}

In the above program when the object  obj is created, the object obj will inherit the public properties of 
derived1 and derived2 classes. Because both the derived1 and derived2 classes are inherited from 
the base class, both the instances of the derived1 and derived2 classes will have a base _ var member. Be-
cause derived3 is inherited from derived1 and derived2 classes, two copies of  the base _ var member 
will be present in the obj object. Th e compiler will be in ambiguous state to decide  which member has to be 
addressed when obj.base _ var is called.

If the access specifi er of the base class is defi ned as virtual, then compiler avoids multiple instance copies 
of the same base class and keeps only one base class instance in the multipath inheritance. Th e below example 
avoids ambiguity by using the virtual keyword:
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#include<iostream.h>
#include<conio.h>
class Base
{
 public:
 int base_var;
};
class derived1:virtual public Base
{
 public:
  int derived1_var;
};
class derived2:virtual public Base
{
 public:
  int derived2_var;
};
class derived3:public derived1, public derived2
{
 public:
  int derived3_var;
};
void main()
{
 derived3 obj;
 obj.base_var=20;    /*derived1 and derived2 instances are inherited 
            to the obj, compiler copies only one instance 
            of base class’s base_var member*/
}

 Virtual function is a function that is defi ned in the base class and can be redefi ned by the derived classes. 
Virtual function allows one to implement the concept of polymorphism. Because virtual functions are defi ned 
in one class and may be redefi ned by the derived classes, the virtual function concept facilitates one interface 
and can have more number of forms. 

Program 2.28

#include<iostream.h>
#include<string.h>
#include<conio.h>
class base
{
 public:
 virtual void date(int dd,int mm,int yy)
 {
  cout<<“\nBase Class date function:”<<dd<<“\\”<<mm<<“\\”<<yy;
 }
};
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class derived:public base
{
public:
char month[5];
void date(int dd,int mm,int yy)
{
 switch(mm)
 {
 case 1:strcpy(month,“JAN”);
  break;
 case 2:strcpy(month,“FEB”);
        break;
 case 3:strcpy(month,“MAR”);
        break;
 case 4:strcpy(month,“APR”);
        break;
 case 5:strcpy(month,“MAY”);
        break;
 case 6:strcpy(month,“JUN”);
        break;
 case 7:strcpy(month,“JULY”);
        break;
 case 8:strcpy(month,“AUG”);
        break;
 case 9:strcpy(month,“SEP”);
        break;
 case 10:strcpy(month,“OCT”);
        break;
 case 11:strcpy(month,“NOV”);
        break;
 case 12:strcpy(month,“DEC”);
        break;
 }
  cout<<“\nDerived Class date function:”<<dd<<“\\”<<month<<“\\”<<yy;
 }
};
void main()
{
 clrscr();
 base obj1;
 obj1.date(1,1,2010);
 derived obj2;
 obj2.date(1,1,2010);
}
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Output

Base Class date function:1\1\2010
Derived Class date function:1\JAN\2010

In Program 2.28, the date() method is declared as a virtual function and is defi ned in the base class to 
display the date in numeric format and date\month\year in the integer format. For derived class convenience 
the virtual function date() redefi nes the day as integer, month in three characters and year as integer.

Runtime polymorphic nature of the virtual function through base class reference: If any function is declared as virtual 
in the base class, that function can be redefi ned by the derived classes. When a base class reference pointer is 
created, then that pointer can be used for the derived classes.

/*Virtual Functions*/

Program 2.29

#include<iostream.h>
#include<string.h>
#include<conio.h>
class base
{
 public:
 virtual void date(int dd,int mm,int yy)
 {
  cout<<“\nBase Class date function:”<<dd<<“\\”<<mm<<“\\”<<yy;
 }
};
class derived: public base{
public:
char month[5];
void date(int dd,int mm,int yy)
{
 switch(mm)
 {
 case 1: strcpy(month,“JAN”);
    break;
 case 2: strcpy(month,“FEB”);
         break;
 case 3: strcpy(month,“MAR”);
         break;
 case 4: strcpy(month,“APR”);
         break;
 case 5: strcpy(month,“MAY”);
         break;
 case 6: strcpy(month,“JUN”);
         break;
 case 7: strcpy(month,“JULY”);
         break;
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 case 8: strcpy(month,“AUG”);
         break;
 case 9: strcpy(month,“SEP”);
         break;
 case 10:strcpy(month,“OCT”);
         break;
 case 11:strcpy(month,“NOV”);
         break;
 case 12:strcpy(month,“DEC”);
         break;
  };
 cout<<“\nDerived Class date function:”<<dd<<“\\”<<month<<“\\”<<yy;
 }
};
void main()
{
 clrscr();
 base*p,obj1;
 p=&obj1;
 p->date(1,1,2010);
 derived obj2;
 p=&obj2;
 p->date(1,1,2010);
}

Output

Base Class date function:1\1\2010
Derived Class date function:1\JAN\2010

In Program 2.29, the pointer  p is created as a base class pointer by the defi nition base *p. Th is is because 
the pointer p is declared as a base class reference pointer and should not be used for the other class objects. But 
the virtual function concept allows the developer to implement the runtime polymorphism. So the base class 
pointer can be used to refer to the derived class objects. 

By the statements p=&obj1; and  p->date(1,1,2010); the pointer p is used to refer the base class mem-
bers. With the statements p=&obj2; and p->date(1,1,2010); the base class pointer p is used for the derived 
class. Th e output clearly says that the statement p->date(1,1,2010); is executed when the derived class date 
function is executed. Th e result becomes  Derived Class date function:1\JAN\2010.

Base class virtual functions are called when the derived class fails to overwrite the base class’s virtual functions: When 
the virtual functions are defi ned in the base class, the virtual function may or may not be overwritten by the 
derived classes. If the virtual function is overwritten, then the derived class function will be called. If the virtual 
function is not overwritten or redefi ned by the derived class, then the base class virtual function is called.

Program 2.30

/*Virtual Functions are Hierarchical*/
#include<iostream.h>
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#include<string.h>
#include<conio.h>
class base
{
 public:
 virtual void date(int dd,int mm,int yy)
 {
  cout<<“\nBase Class date function:”<<dd<<“\\”<<mm<<“\\”<<yy;
 }
};
class derived:public base
{
 public:
 void show()
 {
  cout<<“\n I am in the derived class”;
 }
};
void main()
{
 clrscr();
 base obj1;
 obj1.date(1,1,2010);
 derived obj2;
 obj2.date(1,1,2010);
 obj2.show();
}

Output

Base Class date function:1\1\2010
Base Class date function:1\1\2010
I am in the derived class

In Program 2.30, the virtual function is not redefi ned by the derived class. When obj2.date(1,1,2010)  
is called the base class defi nition of the date function will be called because the date function is not redefi ned 
by the derived class.

2.5.2 PURE VIRTUAL FUNCTIONS

A  pure virtual function is a virtual function declared in the base class, but there is no defi nition for the virtual 
function, so that it can be overridden by the derived class. Th e pure virtual function must be defi ned by the 
derived class. When a function is declared as pure virtual function in a class, then that class cannot be used to 
declare any object because it becomes an abstract class.

A pure virtual function can be declared as

virtual return-type function-name(args)=0;
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Example

virtual void greet()=0;

Here greet is a pure virtual function and the assignment operation is not used to assign zero, but it inti-
mates the compiler that it is a pure virtual function and it does not have defi nition.

Program 2.31

/*Program to demonstrate Pure Virtual Function*/
#include<iostream.h>
#include<conio.h>

class Base
{
 public:
 virtual void greet()=0;  /*Pure virtual function, memory will not 
            be created for this method, But the derived 
            classes can work with runtime polymorphism*/
};
class Derived:public Base
{
 public:
 void greet()
 {
  cout<<“\nHi! i am Derived Class”;
 }
};
void main()
 {
  Derived obj;
  clrscr();
  obj.greet();
 }

Output

Hi! i am Derived Class

In the base class in Program 2.31, the virtual method greet() is declared as a pure virtual function, but 
there is no defi nition for the method in the base class. When the derived class defi nes the pure virtual function, 
then the version of derived class will be called.

2.6 ABSTRACT CLASSES

An abstract class is a class where there exists at least one pure virtual function defi ned in the class. Creation of 
objects for the abstract class is not possible.  Abstract classes can have pointers. Th e pure virtual functions of 
the abstract classes can be referred by the pointers. Th e implementation of runtime polymorphism is possible 
by the abstract classes. A class is made as abstract by making one or more of its functions as pure.
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Program 2.32

/*Program to Demonstrate ABSTRACT Class*/
#include<iostream.h>
#include<conio.h>
class Base
{
 public:
 virtual void greet()=0;
 virtual void showBye()=0;
};
class Derived:public Base
{
 public:
 void greet()
 {
  cout<<“\nHi! i am Derived Class”;
 }
void showBye()
 {
  cout<<“\nBye, Have a good day”;
 }
};
void main()
{
 Derived obj;
 clrscr();
 obj.greet();
 obj.showBye();
}

Output

Hi! i am Derived Class
Bye, Have a good day

In the example in Program2.32, the methods greet() and showBye() are defi ned as pure virtual func-
tions. So, the base class is said to be an abstract class. Th e derived class derived the virtual functions of the 
abstract class and is defi ned in the derived class. When the derived class object calls the methods greet() and 
showBye(), then the derived class defi nitions will be called by the methods.

2.7 GENERIC PROGRAMMING WITH TEMPLATES

Template is one of the most useful soft ware reuse feature of C++.  Template defi nes a range of related functions 
called the  function template and a range of related classes called the  class template. Th is technique is called 
generic programming. A function that works for all functions is called a generic function. Th e data type will 
be passed as an argument to the generic function. By creating a template for the function sum(), it can be used 
to perform addition on any data type.
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When there is a need to perform operations on diff erent data types, normally function overloading is used, 
which increases the program size and also requires one to create more local variables, which also increase the 
memory requirement. Template overcomes the limitations of function overloading. Th e mechanism provided 
by the template can also be implemented on classes.

 A generic function can be used for diff erent data types. A generic function or a class can be defi ned by 
using template keyword.

2.7.1 FUNCTION TEMPLATES

A function can be defi ned as a template if its operations are similar on all the data types instead of overloading 
the function.

Th e general form of a template function is as follows:
template<class Template-type>return-type function-name(args)
{
 //definition of the template function.
}

Here template is a keyword to defi ne the template function and template-type is a data type. re-
turn-type is the data type of the return value of the template function. Th e  function-name is the name of 
the template function and  args is the list of input arguments to the template function. Th e template type can 
be used as data type in the body of the generic function or a class.
Example

template<class T>void echo_value()
{
 T value;
 Cout<<“Enter a value:”;
 Cin>>value;
 Cout<<“\nYou have entered:”<<value;
}

In the example, T is the data type of the template function echo _ value(). Th is function can be applied 
on any input argument type. 

A template class or a function can have any number of template types.

Program 2.33

/*A template function with single generic data type*/
#include<iostream.h>
#include<conio.h>
template<class X> void add(X a,X b)
{
 X sum;
 sum=a+b;
 cout<<“\n”<<a<<“+”<<b<<“=”<<sum;
}
void main()
{
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 clrscr();
 add(10,20);
 add(0.1,0.2);
}

Output

10+20=30
0.1+0.2=0.3

In Program 2.33, the addition of two numbers is  considered. A function written with integer arguments 
will operate for the other data types. It is also diffi  cult to write a separate add function for all the data types. 
With the function overloading process, the add function can be defi ned for any of the data types, but the logic 
of the add function is the same for all the methods, which are defi ned for diff erent data types. Generic function 
allows the developers to write a function, which has common logic for diff erent data types. Function overload-
ing is best suited for the functions with diff erent logics. 

Th e above generic function  add is defi ned with a template class X. Here X can be any data type in the run-
time. In the main function add(10,20) is invoked  because (int,int) are passed to the generic function, the 
function works with the data type integer, i.e. X becomes an integer, and in the second statement add(0.1,0.2) 
is called, because the add function is called as add(float,float), at the time of execution X becomes fl oat 
and the add function will work with fl oat data types. Instead of writing two diff erent functions for solving ad-
dition of integers and addition of fl oat values, a single generic function can be used for any of the data types. 
Th e statement is generalized, a single generic function can be used for the diff erent data types where the logic 
is the same for all the data types.

A template function can have more than one template type. Th e template types can be used as normal data 
types in the body of the generic function or a class.

Program 2.34

/*A template function with more than one generic data type*/
#include<iostream.h>
#include<conio.h>
template<class X,class Y>void generic_fun(X a,Y b)
{
cout<<“\nArgument values Recieved by the function:”<<a<<“ ”<<b;
}
void main()
{
 clrscr();
 generic_fun(10,20.2);
 generic_fun(0.1,100);
 generic_fun(10,“Hello World”);
 generic_fun(10.2,’H’);
}

Output

Argument values Recieved by the function:10 20.2
Argument values Recieved by the function:0.1 100
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Argument values Recieved by the function:10 Hello World
Argument values Recieved by the function:10.2 H

In Program 2.34, X and Y are the two diff erent template types. Th ese template types are used to defi ne a 
and b input arguments of generic _ fun. When generic _ fun(10,20.2) is called X becomes integer data 
type,  and the Y becomes fl oat data type. When a,b are called by the generic _ fun the values of a and b will 
be echoed on to the screen.
2.7.1.1 Generic Functions can be Overloaded
Overloading a template function with a normal function: As methods are overloaded generic function can also be 
overloaded, whenever new logic is required to perform the same functionality for any of the data type. 

Program 2.35

/*Explicitly Overloading Generic Functions*/
#include<iostream.h>
#include<conio.h>
template<class X,class Y>void generic_fun(X a,Y b)
{
 cout<<“\nA=”<<a<<“B=”<< b;
}
void generic_fun(int a,int b)
{
 int sum=a+b;
 cout<<“\nSum=”<<sum;
}
void main()
{
 clrscr();
 generic_fun(10,20); /*int generic_fun will be called*/
 generic_fun(10,20.2);/*generic generic_fun will be called*/
 generic_fun(“Hello”,” World”);
}

Output

Sum=30
A=10 B=20.2
A=Hello B=World

In Program 2.35, the template generic _ fun will be called for all the data types except when generic _
fun is called with two integer arguments. Here the template function generic _ fun is overloaded with ge-
neric _ fun(int,int) function. Whenever generic _ fun(int,int) is called void generic _ fun(int 
a,int b) will be called. For all the other data types, the template function generic _ fun will be called.

Overloading a template function with another template function: As template functions are overloaded with the normal 
functions, a generic function can be overloaded with another template function. Depending upon the number 
of arguments, a generic function will be called. In Program 2.36, generic _ fun(X a) template function is 
overloaded with another template function generic _ fun(X a,Y b). When generic _ fun(10); is called, 
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the template function generic _ fun(X a) will be called. When generic _ fun(10,20.2) is called, the 
second overloaded template function generic _ fun(X a, Y b) will be called.

Program 2.36

/*Explicitly Overloading Generic Functions*/
#include<iostream.h>
#include<conio.h>
template<class X>void generic_fun(X a)
{
 cout<<“\nA=”<<a;
}
template<class X,class Y>void generic_fun(X a,Y b)
{
 cout<<“\nA=”<<a<<“B=”<<b;
}
void main()
{
 clrscr();
 generic_fun(10); /*first template generic_fun will be called*/
 generic_fun(10,20.2);/*Second template generic_fun will be called*/
 generic_fun(“Hello”,“World”);/*Second template generic_fun will be called*/
}

Output

A=10
A=10 B=20.2
A=Hello B=World

2.7.1.2 Standard Parameters can be Used with the Template Function
A template function can be defi ned with the constants and predefi ned standard parameters. In Program 2.37, 
height is a constant parameter, the template function volume _ of _ cube(X l, X b) can use the standard 
parameter. Th e program is written with height as constant value 8, and the volume of a cube whose height is 8 
can be computed with the generic function volume _ of _ cube(X l,X b). 

Program 2.37

/*Using Standard Parameters with Template Functions, For demonstrating con-
stants can be mixed with the generic data type*/

#include<iostream.h>
#include<conio.h>
const int height=8; /*Here Height of the volume is fixed*/
template<class X>void volume_of_cube(X l,X b)
{
 X volume=l*b*height;
 cout<<“\nVolume of Cube where has constant height as ‘8’ is:”<< volume;
}
void main()
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{
 clrscr();
 volume_of_cube(10,20);
}

Output

Volume of Cube where has constant height as ‘8’ is:1600

2.7.2 CLASS TEMPLATES

As generic functions are possible, defi ning the generic classes is also possible with templates. Generic classes 
are very useful for writing a program with the same logic for more number of data types.

Th e general form of a template class is as follows:

template<class template-type>class class-name
{
  //definition of the template class
}
Th e general form of a class template with more parameters is as follows:

template<class template-type1,class template-type2,…>class class-name
{
 //definition of the template class
}

Here template-type can be of any data type, and any number of class template-types can be defi ned in 
the template class defi nition. 

An object for the template class can be created using the general form below:
Class-name<data type>object;

Operations of the stack can be generalized for all the data types. So, instead of writing  diff erent classes with 
diff erent data types, a single generic class stack program can be applied for all the data types (Program 2.38).

Program 2.38

/*Generic Class*/
#include<iostream.h>
#include<conio.h>
template<class T>class A
{
 T a,b,sum;
 public:
 void setAB(T x,T y)
 {
  a=x;
  b=y;
  sum=a+b;
 }
void showAB()
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 {
  cout<<“\nA=”<<a<<“B=”<<b<<“SUM=”<<sum;
 }
};
void main()
{
 A<int>obj_int;
 A<float>obj_float;
 clrscr();
 obj_int.setAB(10,20);
 obj_int.showAB();
 obj_float.setAB(0.1,0.2);
 obj_float.showAB();
}

Output

A=10 B=20 SUM=30
A=0.1 B=0.2 SUM=0.3

/*Generic Class*/

Program 2.39

#include<iostream.h>
#include<conio.h>
template<class T1,class T2>class SUM
{
 T1 a;
 T2 b;
 public:
 SUM(T1 x,T2 y)
 {
  a=x;
  b=y;
 }
void show()
 {
  cout<<“\nSum of”<<a<<“,”<<b<<“=”<<(a+b);
 }
};
void main()
{
 clrscr();
 SUM<int>obj1(10,20);
 SUM<float>obj2(0.1,0.2);
 obj1.show();
 obj2.show();
}
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Output

Sum of 10,20=30
Sum of 0.1,0.2=0.3

In Program 2.39, SUM is a class to fi nd the addition of two numbers. Th e generic class helps the developer 
to use the same generic template class for the sum of two integers and the sum of two fl oat values. Th e same 
SUM class is used to create obj1 with integers and the obj2 with fl oats to fi nd the generic problem of the 
addition of two numbers.

A generic class can have default argument types and with the default values.

2.8 RECURSION

 Recursion is a technique of calling a function by itself. Sometimes a function calling itself may produce bugs, 
but when this technique is correctly used it is very powerful. Recursion can be easily understand with a fact()  
function whose operation is to fi nd the factorial of a number.  Th e non recursive technique of fact() appears 
as follows:

Non-recursive or iterative way of fact():
int fact(int n)
{
 int i,result;
 result=1;
 for(i=1;i<=n;i++)
 result=result*i;
 return(result);
}

In the above program, the loop in the non-recursive fact() function executes from 1 to n and multiplies 
each number.

Recursive way of fact():

Program 2.40

#include<iostream.h>
int factorial(int n )
{
 int n;
  int result ;
 cout<<“enter an integer”;
 cin>>n
 result=fact(n);
 cout<<“factorial of”<<n<“is:”<<result;
 return 0;
}
 int  fact(int n)
{
 if(n==1) return1
  else
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 return n*fact(n-1);    //call by itself.
}

Output

Enter an integer
5
Factorial of 5 is:120

In Program 2.40, the operation of the recursive fact() is somewhat complex, when fact() is called with 
an  argument  as 1  the function returns 1, otherwise it returns the value of n*fact(n-1). If n value is 5, fact 
is called for the fi rst time with 5 as an argument and second time it is called with an argument of 4 and third 
time with an argument 3 and so on until n is equal to 1. Each call of fact() stores the value of n while calling 
itself with another value of n.

When a function calls itself, a new set of local variables and arguments is allocated, and the function code 
executes with these variables. A recursive call does not create a new copy of function but a new a copy of values 
being operated are created. Every recursive function must be ended, otherwise it will call itself forever. Th e 
statement if(n==1) in the program does this, when the n value becomes 1 the program terminates.

Th e main advantage of the recursive function is that they can be used to implement several algorithms in 
the simplest way.  Th e implementation of the quick sort is diffi  cult using the iteration way. Th us, some may 
think that recursion is easier to iteration.

SUMMARY

 • Robustness, adaptability and reusability are goals of an object-oriented design.
 • Abstraction, encapsulation and modularity are principles of an object-oriented design.
 • Constructors are used for initializing objects. Destructors are used to destroy objects.
 • Default constructors, parameterized constructors and copy constructors are the types of constructors.
 • Constructor overloading is a technique of defi ning more than one constructor with the same name.
 • Operator overloading changes the meaning of the predefi ned operators.
 • Inheritance derives a new class from the already existing class. Access to base class members is con-

trolled through public, private and protected access specifi ers.
 • Th e derived class will have the members of the base class based on the declaration type such as private, 

public or protected and the access specifi er at the time of inheriting the base class.
 • Single inheritance and multiple inheritance are  the basic classifi cations of inheritance.
 • Inheritance can be further divided into various types: hierarchical inheritance, single-level inheritance,  

multi-level inheritance,  hybrid inheritance and multipath inheritance.
 • When the access specifi er  of the base class is public, all the public members of the base class are acces-

sible to the derived class.
 • When the access specifi er of the base class is private, then all the public, protected members of the base 

class become private members of the derived class. 
 • All the public and protected members of the base class become protected members of the derived class 

when the access specifi er of the base class is protected. All the private members of the base class are not 
accessible by the derived class.

 • Delegation is a mechanism in which the object of one class is used as a member of another class. 
 • Polymorphism defi nes one interface with many forms.
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 • Virtual keyword is used to avoid ambiguity in  multipath inheritance.
 • A virtual function defi ned in the base class can be redefi ned by the derived classes. 
 • A pure virtual function is declared in the base class and is defi ned by the derived class.
 • Generic programming defi nes a range of related functions called function template and a range of 

related classes called class template. 
 • Recursion is a technique of calling a function by itself.

EXERCISES

FILL IN THE BLANKS

 1. Reusability is a process of  .
 2. Abstraction refers to  .
 3.  is used for creating objects.
 4. Constructors’ and destructors’ name is same as  .
 5. A class having pure virtual functions is called  .
 6. Polymorphism is a technique of  .
 7.  is the process of combining data and data members into a single unit. 
 8. Generic programming is a process of  .
 9. A function is called  when it works for all operations.
 10. A generic function or class is defi ned by  .
 11.  are used for writing programs for all data types.
 12. Recursion is the process of  .

MULTIPLE-CHOICE QUESTIONS

 1. Modular soft ware design provides  .
  a. Adaptability b. Portability
  c. Reusability d. None of the above

 2. Constructors are invoked when  .
  a. Objects are created b. Variables are initialized
  c. Member functions are called d. Objects are deleted

 3. Destructors are used to  .
  a. Allocate memory for objects b. Destroy objects
  c. Create classes d. Create objects

 4. When constructors are overloaded, they diff er by  .
  a. Type of arguments  b. Number of arguments
  c. Return type  d. Class name
 5. Th e access specifi er protected allows  .
  a. Access of base class members directly  b. Direct access of public member is prevented
   by derived class
  c. Object to access private members d. All of the above
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 6.  A class is said to be abstract class  .
  a. When at least one pure virtual  b. When static functions exist
   function exists
  c. When virtual functions exist d. None of the above

 7. Ambiguity occurs in  type of inheritance.
  a. Single inheritance b. Multipath inheritance
  c. Multi-level inheritance d. Multiple inheritance

SHORT-ANSWER QUESTIONS

 1. Defi ne constructors and destructors.
 2. Give the properties of constructors.
 3. Discuss the need for virtual functions.
 4. Explain pure virtual functions.
 5. Give the reasons for the usage of inheritance.
 6. Write the advantages and disadvantages of inheritance.
 7. What is delegation? Diff erentiate between delegation and inheritance.

ESSAY QUESTIONS

 1. Discuss the goals and principles of object-oriented programming.
 2. What is a constructor? Explain various types of constructors.
 3. Discuss in detail about operator overloading.
 4. What is inheritance? Explain.
 5. Give an illustration on generic programming.
 6. Can generic function be overloaded. Explain with an example.
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Algorithms

Chapter 3 provides an exclusive study of algorithms. It discusses the basic notations used 
in the algorithms, various types of algorithms that exist and the performance analysis of 
algorithms. A detailed explanation regarding space complexity, apriori analysis and as-
ymptotic notations is given. This chapter also elucidates the time complexity and worst, 
average and best case time complexities.

3.1 INTRODUCTION

An  algorithm is a step-by-step process of solving a problem. It is a mathematical procedure or notation to 
represent the solution of a problem. It should be clear and unambiguous. Algorithm specifi es the behaviour of 
the program to be implemented. It includes data structures used, comments on the usage of the data structures, 
process statements and subroutines used by the algorithm if any. 

Many algorithms may be designed as a solution for a given problem. Among them, the best is selected 
based on the amount of space and execution time it requires. 

3.2 BASIC NOTATIONS 

 • An algorithm starts with the string “Algorithm” followed by the algorithm name
  ■ List of input values
  ■ List of output values
 • Assignment of values to a variable will be represented as ' ’ or ‘=’
  ■ Example: Set radius  3 (here the value ‘3’ will be assigned to the variable radius)
 • All the variables in the algorithms are scalars (any value can fi t into the variable, irrespective of their 

data types)
  ■ Example: SET radius 3
  ■ Example: SET pi 3.141
  ■ Example: SET str “Welcome to Algorithms”
  ■ Example: SET array {0,0,0}

Chapter 3
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 • Method invocation will be used with call
  ■ Example: call calculat _ area(raidus)
 • Condition will be represented with if–then–else.
 • Execution control fl ows (Example: loops) will be used with simple notations like
  ■ For  loop-variable initial value to fi nal value 
   ▶ Begin or do
   ▶ ---
   ▶ ---
   ▶ End or done

  ■ while (condition)
   ▶ begin or do
   ▶ ---
   ▶ ---
   ▶ End  or done

  ■ Loop
   ▶ Begin
   ▶ ---
   ▶ ---
   ▶ End or done

 • Array elements can be referenced as
  ■ Array[0], Array[1],…Array[n]
 • If the algorithm is for subroutine or a function or a method
  ■ Starts with algorithm string followed with the string subroutine or procedure strings
 • An un-conditional execution control fl ow jumps can be used in the algorithms
  ■ Example: Goto Step 4
 • An algorithm can return a value as an output using the string return.

3.2.1 PSEUDO CODE

Algorithm shows the detailed instructional procedure. When detailed instruction is not needed, then the algo-
rithms can be represented with partial code segments. Th ese segments of the code can be called pseudo code.

3.3 TYPES OF ALGORITHMS

All the algorithms try to solve a given problem. Based on approaches of solving the problem, the algorithms 
can be classifi ed into the following categories:

 •  Brute Force Algorithms
 • Divide and Conquer Algorithms
 • Dynamic Programming Algorithms
 •  Greedy Algorithms
 • Branch and Bound Algorithms
 • Recursive Algorithms
 • Back Tracking Algorithms
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 • Randomized Algorithms
 • Hill Climbing Algorithms

3.3.1 BRUTE FORCE ALGORITHMS

Th e brute force algorithm tries to fi nd all the possible cases until the satisfactory solution is found.
Example: Finding the best path for the travelling salesman problem.

3.3.2 DIVIDE AND CONQUER ALGORITHMS

Th e divide and conquer algorithm tries to divide the solution of a problem into smaller sub-problems of the 
same type and tries to solve the problems recursively. Finally, all the smaller sub-problem solutions will be 
combined to get the full solution. Th ese algorithms will always contain recursive calls to the sub-algorithms 
or sub-routines.
Example: Quick sort, merge sort.

3.3.3 DYNAMIC PROGRAMMING ALGORITHMS

Th e dynamic programming algorithm remembers the past results and uses them to fi nd the results. Th ese 
algorithms are used for optimization problems.  Here, programming refers to fi nding the new results in com-
bination with the old results.

3.3.4 GREEDY ALGORITHMS

Th e greedy algorithms are also used to solve the optimization problems. At each step, the greedy algorithm 
tries to get the best solution without considering the future consequences. Finally, all the best local solutions 
will be combined to get the global optimal solution.
Example: Suppose a bus ticket collector wants to take 5 rupees from his bag:

 • First he searches for the 5 rupees coins. 
 • If it is not found, he tries to take 2 two rupee coins and 1 one rupee coin to make 5 rupees.
 • If this is not found, he tries to take 1 two rupee coin and 3 one rupee coins to make 5 rupees. 
 • If this is also not found, he collects 5 one rupee coins to make 5 rupees.

3.3.5 BRANCH AND BOUND ALGORITHMS

Th e branch and bound algorithms are used to solve the optimization problems in miss-classifi ed problems 
such as decision trees. As the algorithm process proceeds, it tries to form sub-problems. At each new sub-
problem, apply upper and lower bounds. If the bound matches, that will be the feasible solution or else a new 
partition will be created. Th is process continues until the best solution is found.

3.3.6 RECURSIVE ALGORITHMS

Th e simple recursive algorithm uses recursive procedures or repetitive steps to get the solution. 
Example: Reversing an ‘n-digit’ number.
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3.3.7 BACK TRACKING ALGORITHMS

Th e back tracking algorithms are completely based on the depth-fi rst-recursive search approach. At each step, 
the algorithm tries to verify whether the solution is found or not. If the solution is found, it exits, otherwise it 
moves to the previous step (back) and tries to select the move to the possible case. If no more choices  are found 
and the solution is not found, then it returns a failure.
Example: 8-Queen Problem.

3.3.8 RANDOMIZED ALGORITHMS

Th e randomized algorithms make a random choice for at least once to make the decision.
Example: Quick sort uses a random number to select the pivot element.

3.3.9 HILL CLIMBING ALGORITHMS

Th e complete solution of the problem starts from the poor solution. By repeatedly applying optimizations, an 
optimal solution will fi nally be obtained.

3.4 PERFORMANCE ANALYSIS 

An algorithm is a step-by-step process of solving a problem. However, a problem can be solved in many ways. 
Among all the feasible solutions or algorithms, very few algorithms will give a good approach to the solution 
with minimum amount of time and hardware requirements.  Th ese feasible solutions or algorithms are best 
suited for the implementations. 

3.4.1 PROPERTIES OF THE BEST ALGORITHMS

Suppose there are a set of algorithms to a problem. Among all the algorithms, the best algorithm will have the 
following properties:

 • Takes less time for the complete execution (time complexity)
 • Takes less memory space (space complexity)
 • Correctness of the solution
 • Modularity
 • Maintainability
 • Robustness
 • Reliability
 • Scalability
 • Functionality
 • Extensibility
 • Security
 • Simplicity
 • User-friendliness
 • Programmer time

Th e algorithms will give a blueprint of soft ware. Th e algorithms will allow the analysts to fi nd the time it 
requires to develop the soft ware and it tells the execution time and memory space it requires.
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3.5 SPACE COMPLEXITY

Th e number of units of space the algorithm requires is called a  space complexity of the algorithm. Each vector 
variable is allocated with one unit of space in the space complexity of the algorithm. But in the programs, space 
complexity depends on the data types used and number of data items used.

Space complexity of a program is the total memory space required at the execution time. Each and every 
executable program will have the following sections and occupies memory:

 • Text section
 • Data section
 • Bss section
 • Rodata section
 • Stack section 
 • Heap section

3.5.1 INSTRUCTION SPACE

Th e total memory space occupied by all the instructions at the runtime is called as  instruction space. Th e 
instruction space can be calculated based on the static or dynamic libraries that the program uses. During ex-
ecution, dynamic libraries (DLLs) can be loaded into the memory based on the runtime and on the conditional 
requirements. If any dynamic libraries are not introduced in the program, then the total space occupied by all 
the instructions will be called as instruction space.

3.5.2 TEXT SECTION OF A PROGRAM

Text section of an executable program contains the processor instructions of the program. Memory size of 
each instruction depends on the word length and is platform dependant (processor and the operating system).  
Total memory space occupied by all the instructions will be called Instruction space.

3.5.3 DATA SPACE

Total memory space required by all the initialized variables, uninitialized variables, static and constant vari-
ables is called  data space of a program.
 i. Data section of the executable program
  Data section contains all the initialized global variables and static variables.
 ii. Rodata section
  Rodata is nothing but read only data. Rodata section consists of all the constants of a program. Th e user 

cannot modify the data of this section.
 iii. Bss section
  Bss section contains all the uninitialized global variables and static variables.
 iv. Heap section
  Heap section contains all the dynamically created data of the program. Th is section will occupy mem-

ory only when the program is in execution.
  Th e data space is nothing but the total memory space occupied by all the data, Bss, rodata and heap 

sections.
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3.5.4 STACK SPACE

Th e  stack space is the memory space occupied by all the uninitialized local variables, formal parameters, frame 
pointer and function return pointer. When the main function or a user-defi ned function calls another sub-
function, the function return pointer will be stored in the stack. 

Example 1
A simple C- program that prints the PI value on to the screen.

Test.c program file

#include<stdio.h>
#define PI 3.141  /*rodata-8bytes*/
int main()
{
 printf(“PI:%f”,PI); /*PI:%f will be stored in rodata*/
}

Disassembly of all the sections of the executable program using objdump utility
Sections:
Idx Name           Size       VMA   LMA       File off  Algn
  0.text          00000030   00000000   00000000   00000034   2**2
     CONTENTS, ALLOC, LOAD, RELOC, READONLY, CODE
  1.data          00000000   00000000   00000000   00000064   2**2
     CONTENTS, ALLOC, LOAD, DATA
  2.bss           00000000   00000000   00000000   00000064   2**2
     ALLOC
  3.rodata        00000010   00000000   00000000   00000068   2**3
     CONTENTS, ALLOC, LOAD, READONLY, DATA
  4.comment       0000002d   00000000   00000000   00000078   2**0
     CONTENTS, READONLY
  5.note.GNU-stack 00000000   00000000   00000000   000000a5   2**0
     CONTENTS, READONLY

Disassembly of section .text
00000000<main>:
 0: 8d 4c 24 04           lea    0x4(%esp),%ecx
   4: 83 e4 f0              and    $0xfffffff0,%esp
   7: ff 71 fc              pushl  0xfffffffc(%ecx)
   a: 55      push    %ebp
   b: 89 e5                 mov    %esp,%ebp
   d: 51            push    %ecx
   e: 83 ec 14              sub    $0x14,%esp
  11: dd 05 08 00 00 00     fldl   0x8
  17: dd 5c 24 04           fstpl  0x4(%esp)
  1b: c7 04 24 00 00 00 00  movl   $0x0,(%esp)
  22: e8 fc ff ff ff        call   23<main+0x23>
  27: 83 c4 14              add    $0x14,%esp
  2a: 59            pop     %ecx
  2b: 5d             pop     %ebp
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  2c: 8d 61 fc              lea    0xfffffffc(%ecx),%esp
  2f: c3             ret    

Disassembly of section .rodata

00000000<.rodata>:
   0: 50      push    %eax
   1: 49           dec     %ecx
   2: 3a 25 66 00 00 00     cmp    0x66,%ah
   8: 54           push    %esp
   9: e3 a5    jecxz  ffffffb0 <main+0xffffffb0>
   b: 9b          fwait
   c: c4 20                 les    (%eax),%esp
   e: 09 .byte 0x9
   f: 40 inc     %eax

Disassembly of section .comment
00000000<.comment>:
   0: 00 47 43              add    %al,0x43(%edi)
   3: 43           inc    %ebx
   4: 3a 20                 cmp    (%eax),%ah
   6: 28 47 4e              sub    %al,0x4e(%edi)
   9: 55           push    %ebp
   a: 29 20                 sub    %esp,(%eax)
   c: 34 2e                 xor    $0x2e,%al
   e: 31 2e                 xor    %ebp,(%esi)
  10: 30 20                 xor    %ah,(%eax)
  12: 32 30                 xor    (%eax),%dh
  14: 30 36                 xor    %dh,(%esi)
  16: 30 33                 xor    %dh,(%ebx)
  18: 30 34 20              xor    %dh,(%eax)
  1b: 28 52 65              sub    %dl,0x65(%edx)
  1e: 64 20 48 61           and    %cl,%fs:0x61(%eax)
  22: 74 20                 je     44 <main+0x44>
  24: 34 2e                 xor    $0x2e,%al
  26: 31 2e                 xor    %ebp,(%esi)
  28: 30          .byte  0x30
  29: 2d           .byte  0x2d
  2a: 33 29                xor    (%ecx),%ebp
 ...

3.5.5 CALCULATING THE INSTRUCTION SPACE

Th e instruction space is the total space occupied by the text section of the executable program. For the above 
program, the total text section size is (30)16.

Example 
Idx Name      Size      
0    .text      00000030     the decimal equivalence of (30)

16
 is 48 bytes.
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So, the instruction space occupied by the above program is 48 bytes.
In the disassembled program, the instructions of the main function started from 0 to 2f hexadecimal value. 

So, the total memory occupied by the above main function is (30)16 = (48)10. Hence, the  total instruction space 
is 48 bytes.

3.5.6 CALCULATING THE DATA SPACE

Th e data space is the total space occupied by the data, rodata, bss and heap sections of the executable program. 
So, let the space occupied by each of the said section is found. Because there is no dynamic memory allocation, 
the heap section will not be created at the runtime.

Table 3.1 Size occupied by the program sections

Idx Name Size    
1. .data 00000000  
2 . .bss 00000000  
3. .rodata 00000010

From the disassembled program object dump, Table 3.1 shows the size occupied by each of the program 
sections in hexadecimal.

3.5.7 SIZE OF DATA SECTION

Th is section holds all the initialized global variables. In the program, there are no initialized variables. So, the 
size will be zero. In Table 3.1, the fi rst row shows the size occupied by the data section 00000000 is nothing 
but zero. 

3.5.8 SIZE OF RODATA SECTION

Rodata section consists of constant values, because the section itself is a read-only section. In the above pro-
gram, a constant is declared with 3.141. Th e constant value has taken 00000010 of hexadecimal or 16 bytes in 
decimal.

3.5.9 SIZE OF bss SECTION

Th is section consists of uninitialized global data because there are no uninitialized variables. So, the size of the 
bss section should be zero. As shown in Table 3.1, the bss section taking 00000000 is nothing but zero.

So, the total data space is

    Data space = size (data section) + size (rodata) +size (bss section)
    Data space = 0 + 16  + 0= 16 bytes

Th e total space complexity of the program is 

    Space complexity  = Instruction space + data space + stack space
    Space complexity = 48  +  16 + 0 = 64 bytes

So, the space complexity of the given program is 64 bytes.
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Example
#include<stdio.h>
#include<stdlib.h>
#define PI 3.141 /*rodata*/
int a; /*bss section*/
int b=10; /*data section*/
static int c=20;/*data section*/ 
int main()
{
 char name[10];/*stack*/
 cout<<”%d %d”<<b<<c;/*rodata*/
}

Sections

Idx Name     Size   VMA   LMA   File off  Algn
  0 .text   0000003e   00000000   00000000   00000034   2**2

 CONTENTS, ALLOC, LOAD, RELOC, READONLY, CODE
  1  .data   00000008   00000000   00000000   00000074   2**2

 CONTENTS, ALLOC, LOAD, DATA
  2  .bss   00000004   00000000   00000000   0000007c   2**2
               ALLOC
  3  .rodata  00000006   00000000   00000000   0000007c   2**0
               CONTENTS, ALLOC, LOAD, READONLY, DATA

Data space

size (data) + size (rodata) + size (bss) = 8 + 6 + 4 = 18 bytes

Instruction space

(3e)16 = 62 bytes
Stack space

4 Bytes Frame Pointer + 4 Bytes Stack Pointer + 12 Bytes of array = 20 bytes

Here the 10 bytes of array will be placed onto the word blocks of stack. When one word = 4 bytes, 10 bytes 
will be placed into 12 bytes (i.e 3 words).
Space complexity = 18 + 62 + 20 = 100 bytes

3.6 APRIORI ANALYSIS

Th e empirical or theoretical approach may be used for computing the time complexities of algorithms.
In the empirical or posterior testing approach, algorithms are completely implemented and are executed 

for various instances of the problem on a computer. Th e time taken to do this is considered and compared. 
Among the various algorithmic solutions, the algorithm that takes less time to implement it can be considered 
as the best one.

In the theoretical or  apriori approach, the resources that are required by the algorithm are determined 
mathematically.
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When a problem is considered, the apriori approach is performed as a function of a parameter that is re-
lated to instances of the problem. Th e size of input instances is oft en used as a parameter. For diff erent classes 
of problems there are algorithms that consider the number of basic operations or element comparisons or 
multiplications as a parameter in order to fi nd out the effi  ciency. 

Apriori analysis is totally machine, language and program independent. In apriori analysis, algorithm ef-
fi ciency can be studied over any input instances of any size.

For a given program, apriori analysis computes its effi  ciency by considering the frequency count of the 
statement as a function of the total frequency count of the statements in the program. Here, the frequency 
count is the number of times the statement is getting executed in the program.

Consider the statement c=a+b that is appearing in the following three program segments. Th e frequency 
count is estimated as  

    Program Segment 1  Frequency Count 
      . . .                   . . .
     c=a+b;                 1
     . . .          . . .  

     Total Frequency Count  is 1 

    Program Segment 2              Frequency Count 
     . . .           . . .                      
    for i=1 to n do             n+1
    c=a+b;          n
    end              n
            . . .          . . .

     Total Frequency Count  is  3n+1 

    Program Segment 3              Frequency Count 
     . . .                  . . .          
    for j=1 to n do             n+1

    for i=1 to n do      j=1

n

(n+1)=(n+1)n∑

    c=a+b;           n2

    end          j=1

n

n=n2∑

     Total Frequency Count  is  3n2+3n+1 

In Program segment 1, the frequency count of the statement is 1. In Program segment 2 it is n as its for 
loop executes it for n times. In Program segment 3 it is n2 because it is embedded in a nested for loop where 
each of them are executed for n times.

In the three program segments, the total frequency counts are 1, (3n+1) and 3n2+3n+1, respectively. Th e 
order of magnitude of the total frequency counts is proportional to 1, n and n2, respectively, in the three 
program segments and they can be expressed as O(1), O(n) and O(n2). Th e notation O is explained in the 
Section 3.7.
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3.7 ASYMPTOTIC NOTATION

Some of the algorithms may be short in the number of instructions but when input varies, the total number 
of execution steps grows gradually. Th e  asymptotic notations will help to predict the program behavior at the 
runtime.  It provides a measurable value. Using the asymptotic notations, the best algorithm can be found, 
which can perform better than the other possible algorithms of a problem. Th e asymptotic notations consider 
the operation count or step count of an algorithm. 
Example

Let A and B be the two algorithms for a problem where 
 A=3n2+2n
 B=5n

Th e computational growth of two algorithms varies with the n value as shown in Figure 3.1.  In the graph, 
the x-axis represents the input variable values, i.e. n, and the y-axis represents the time complexity.

 Figure 3.1 Computational growth changes

Algorithms A and B work similarly with respect to the time complexities when n=1.

     Time complexity of A=5 and
     Time complexity of B=5
   when n=2 Time complexity of A=16 and
     Time complexity of B=10

 Th erefore, for n=2, B is the optimal algorithm. 
Similar changes can be observed for other values of n as shown in the above graph.

3.7.1 Big oh Notation (O)

Defi nition: Let f(x) and g(x) be two non-negative functions defi ned on a set of real numbers. f(x) = O(g(x)) iff  
there exists positive constants ‘c’ and n0  such that  f(n) ≤c*g(n) for all n≥n0.

Th e  big oh notation considers the upper bound of the function.
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Apriori analysis of Big oh notation: In this analysis, the maximum frequent items will be selected. In this approach, 
the maximum possible upper limit of the function constant value will be selected to represent the function as 
a Big oh notation.

For example:
 f(x)  g(x)
 10n3 +3n +2  n3 f(n) = O(11n3)
 4n+2 n f(n) = O(5n)
 5  1 f(n) = O(1)

3.7.1.1 Finding g(x), c and n0 Values
Example 1
Let f(n) = 3n+2 for an algorithm. Computation of c, n0 and g(n) can be performed as f(n) = 3n+2.
Th e function can be written in terms of g(n) as

   f(n) ≤ c*g(n)
   3n+2 ≤ c*g(n) because the function value is more than 3n, consider c=4, then 
   3n+2 ≤ 4*g(n)  defi ne g(x)=n
   3n+2 ≤4*n   fi nd n0.
Put n=1  3*1+2 ≤4*1 (condition failed)
So put n=2  3*2+2 ≤4*2 (true)
Put n=3 3*3+2 ≤4*3 (true)
Put n=4   3*4+2 ≤4*4 (true)

So, as per the mathematical induction, the function f(x) can be written in terms of g(x), and is true from 
n0=2 to all positive integers.
Th e function f(x) can be defi ned as f(x)≤4n where n≥2
Example 2

Let f(n) = 3n4 + 2n2 for an algorithm. Computation of c, n0, and g(n) can be performed as f(n) = 3n4 + 2n2

  f(n) ≤ c*g(n) (Big oh notation)
   3n4 + 2n2 ≤c*g(n)
   3n4 + 2n2 ≤4*g(n)
   3n4 + 2n2 ≤4*g(n) Let g(n) = n4

   3n4 + 2n2 ≤4*n4

for n=1              5 ≤ 4*1 (Failed)
for n=2             56≤ 64 (True)
for n=3              261 ≤ 324 (True)
So, for all n≥2 function f(x) can be written as 4*n4.

3.7.2  OMEGA NOTATION (Ω)

Defi nition: f(n) = Ω(g(n)) iff  there exists positive constants c and n0 such that f(n)≥c*g(n) or all n≥n0.  In this case, 
the maximum possible lower bound will be selected.
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For example
 f(x)  g(x)
 10n3 +3n +2  n3 f(n) = O(n3)
 4n+2 n f(n) = O(n)
 5  1 f(n) = O(1)

3.7.2.1 Finding g(x), c and n0 Values

Example 1

Let f(n) = 3n+2 for an algorithm. Computation of c, n0, and g(n) can be performed as f(n) = 3n+2. 
Th e function can be written in terms of g(n) as

   f(n) ≥ c*g(n)
   3n+2 ≥ c*g(n), let function value nearest minimum be 3n, consider c=3, then
   3n+2 ≥ 3*g(n)  defi ne g(x)=n
   3n+2 ≥3*n   fi nd n0.
put n=1  5 ≥3 (True)
put n=2  3*2+2 ≥3*2 (true)
put n=3 3*3+2 ≥3*3 (true)
put n=4   3*4+2 ≥3*4 (true)

So, as per the mathematical induction, the function f(x) can be written in terms of g(x), and is true for all 
n0 positive integers. 

Th e function f(x) can be defi ned as f(x) ≥3n where n≥1.

Example 2

Let f(n) = 3n4 + 2n2 for an algorithm. Computation of c, n0, and g(n) can be performed as  f(n) = 3n4 + 2n2.

   f(n) ≥ c*g(n) (Omega notation)
   3n4 + 2n2 ≥ c*g(n)
      3n4 + 2n2 ≥3*g(n)
      3n4 + 2n2 ≥3*g(n) Let g(n) = n4

      3n4 + 2n2 ≥3*n4

for n=1       5 ≥ 3 (True)
for n=2       56≥ 48 (True)
for n=3       261 ≥ 243 (True)
So, for all n ≥1 function f(x) can be written as 3*n4.

3.7.3 THETA NOTATION (θ)

Defi nition: f(n)=θ(g(n)) iff  there exists positive constants c1 and c2 and n0 such that c1*g(n) ≤ f(n) ≤ c2*g(n) for 
all n ≥ n0.

In this notation, the value that lies in between the upper bound and maximum possible lower bounds will 
be selected.
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Example

 f(x)  g(x)
 10n3 +3n +2  n3 f(n) = θ(n3)  since f(n)>10n3 and f(n) < 15n3 for all n ≥ 1
 4n+2 n f(n) = θ(n) since f(n)>4n and f(n) < 6n for all n ≥ 1

In the fi rst example, f(x)=10n3 + 3n + 2. Th e value of the function is always greater than g(x)= 10n3 because 
some other expression and constant is available aft er the g(x) in the f(x). Consider n=1, in this case f(x) = 15 × 
1 = 15. So, to fi nd the upper bound for this function, it needs to consider multiples of 15, then g(x) = 15n3 will 
always greater than f(x). 

In the second example, f(x) = 4n + 2. Th e value of the function is always greater than g(x)= 4n  because some 
other expression and constant is available aft er g(x) in f(x). Consider n=1, in this case f(x) = 4 × 1 + 1 = 5. So, 
to fi nd the upper bound for this function, it needs to consider multiples of 5, then g(x)=5n will always greater 
than f(x). 

3.7.4  Little oh Notation(o)

Defi nition: f(n)=o(g(n)) if f(n)=O(g(n)) and f(n)≠Ω(g(n)).

Example

 f(n)        g(n)
 10n+2  n2     f(n) = o(n2) since f(n) and f(n) ≠ Ώ(g(n)); however f(n)=O(n2)

3.8 TIME COMPLEXITY

 Time complexity of a program can be defi ned as the total time taken for compilation and execution. Th e pro-
gram has to be compiled before running it. Once the compilation process creates the executable binary fi le, to 
run the program, compilation is not required as long as there are no changes in the code. An executable binary 
fi le is required to run a program. Hence, consider only the execution time for calculating the time complexity.

Th e time complexity depends on the space complexity that the program uses, time taken to load the pro-
gram, total number of executable instructions in the binary fi le, number of control loops present, number 
of function calls made, number of arithmetic operations used, number of console input/output operations, 
number of read/write locks and fi nally the input values of the program.

Consider a program to display natural numbers from 1 to n. If n=2, then the print function will be called 
only 2 times. If the n value is very high, then the print function will be called for n  number of times.

If a program requires more memory than the available physical memory, then the processor makes use of 
virtual memory, which is placed in secondary storage devices such as a hard disk.  Otherwise, the processor 
waits till suffi  cient physical memory is available. So, the runtime of a program depends on the space complex-
ity. When the space complexity of the program is more than the available physical memory, then the runtime 
will be more. So, the time complexity of a simple program is very less than the complex huge program. 

As the time complexity depends on so many factors, there is no exact procedure to fi nd the time complex-
ity of a program. But, by considering the basic operations and the number of times the operations are called, 
the time complexity can be estimated. Th e time complexity can be calculated by estimating the total number 
of instructions executed.
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3.8.1 TIME COMPLEXITY ANALYSIS OF BUBBLE SORT

Program 3.1

//Program for Bubble Sort
#include<iostream.h>
#define MAX 256
void bubble(int a[],int n)
{
int i,j,temp;
//Start of Bubble Sort
for(i=0;i<n;i++)
 {
 for(j=0;j<(n-1);j++)
  {
  if(a[j]>a[j+1])
   {
   temp=a[j];
   a[j]=a[j+1];
   a[j+1]=temp;
   }
  }
 }
// End of Bubble Sort

cout<<“\nSorted Array:”;
for(i=0;i<n;i++)
 {
 cout<<“\n”<<a[i];
 }
}
void main()
{
int i,n,a[256];
cout<<“\nEnter size:”;
cin>>n;
for(i=0;i<n;i++)
 {
 cout<<“\nEnter Element:”;
 cin>>a[i];
 }
bubble(a,n);
}

In Program 3.1, the bubble sort program accepts an array and size of the array as input arguments.  Th e 
fi rst for loop continues to execute for n times, the inner for loop executes for n–1 times and each time, three 
statements will be executed. So, the total number of executable statements in the program is n*(n-1)*3=3n2–3n. 
Th erefore, time complexity of the program is O(n2).
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3.8.2 TIME COMPLEXITY ANALYSIS OF SELECTION SORT

Program 3.2

//Program for Selection Sort
#include<iostream.h>
//Function returns the maximum index of the array.
int maxindex(int a[],int n)
{
int i,temp,max_index=0;
for(i=1;i<n;i++)
 {
 if(a[max_index]<a[i])
  {
  max_index=i;
  }
 }
return(max_index);
}
void main()
{
int i,n,temp,a[256];
cout<<“\nEnter size:”;
cin>>n;
for(i=0;i<n;i++)
 {
 cout<<“\nEnter Element:”;
 cin>>a[i];
 }

/*Selection Sort Procedure*/
for(int s=n;s>1;s--)
 {
 int j=maxindex(a,s);
 temp=a[j];
 a[j]=a[s-1];
 a[s-1]=temp;
 }

/*Selection Sort Procedure*/
cout<<“\nSorted”;
for(i=0;i<n;i++)
 {
 cout<<“\nElement:”<<a[i];
 }
}

In Program 3.2, the maxindex function returns the index of the maximum number. In the worst case it 
runs for n times. Th e selection sort procedure has one loop, executes n times. For each n value, maxindex will 
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be called and three statements of swapping procedure will be called for n times. Th erefore, time complexity 
will be f(x)=n2+3n = O(n2).

3.9 WORST CASE, AVERAGE CASE AND BEST CASE COMPLEXITY 

Th e number of steps an algorithm takes can be known when it is executed on the given input instance. To 
check the correctness of the algorithm, execute it for all instances. An algorithm when executed on all possible 
instances of data, the best, worst and average case complexities can be estimated. Suppose for the problem of 
sorting, the possible instances are the possible arrangements of all the possible keys. Th ere is a need for dif-
ferentiating at least three cases for which the effi  ciency of algorithm has to be determined.

3.9.1 WORST CASE

Th e worst case complexity of an algorithm is when the algorithm takes maximum number of steps on any 
instance of size n. Th e Big oh notation tells the maximum upper bounds of the running time complexity. Th e 
Big oh time complexity can be called as worst case, because at any cost the maximum boundary will be O (Big 
oh) notation expression. 

3.9.2 AVERAGE CASE

Th e average case complexity of an algorithm is when the algorithm takes the average number of steps on any 
instance of size n. Th e Th eta notation tells the time complexity that lies in between the maximum lower bounds 
and minimum upper bounds of the running time complexity. Th e Th eta time complexity can be called as aver-
age case because at any cost the time complexity will not exceed Big O and Omega minimum boundary. 

3.9.3 BEST CASE

Th e best case complexity of an algorithm is when the algorithm takes the minimum number of steps on any 
instance of size n. Th e Omega notation tells the time complexity, i.e., maximum possible lower bounds of the 
given function. 

Consider the linear search performed on an unsorted array to fi nd an element. If the element is found in 
the fi rst cell then it is a best case. If the element is found in the last cell or not found in the array, then it is a 
worst case. In the worst case, all the elements will be checked. Th en what is the average case? It is assumed that 
the chance of fi nding the element is equal all through the array. In this case, the probability that the element is 
found at the fi rst cell is 1/n, the probability of fi nding the element in the second cell is 1/n and so on. Th erefore, 
averaging all these probabilities gives the average number of steps taken to fi nd the element. But, if the prob-
ability diff ers, then the average case complexity diff ers. Th e probability of fi nding an element in a particular cell 
has no eff ect on the best and worst cases.

SUMMARY

 • Algorithm is step-by-step process to solve a problem.
 • Th e algorithms are the prior written steps to the implementation of soft ware. Th e algorithm shows the 

clear path to get the required soft ware solution. 
 • Th e segments of code used to represent an algorithm can be called as a pseudo code.
 • Space complexity is the number of units of space the algorithm requires.
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 • Space complexity of a program is the total memory space required at execution time. 
 • Th e total memory space occupied by all the instructions at the runtime will be called as instruction 

space.
 • Text section of an executable program contains the processor instructions of the program. 
 • Total memory space required by all the initialized variables, uninitialized variables, static and constant 

variables is called data space.
 • Time complexity of a program can be defi ned as the total time taken for compilation  and execution 

time. 
 • Th e time complexity can be estimated by considering the basic operations and the number of times the 

operations are called.
 • Th e time complexity can be calculated by estimating the total number of instructions executed.

EXERCISES

FILL IN THE BLANKS

 1. An algorithm with partial code segments is called .
 2.  is a property of a best algorithm.
 3. Th e asymptotic notations consider the  of an algorithm.
 4. Th e Big oh notation considers the  of the function.
 5.  Th e greedy algorithms are used to solve  problems.

MULTIPLE-CHOICE QUESTIONS

 1. Space complexity depends on the  and  used.
  a.  Data types, number of data items  b. Data types, functions
  c.  Functions, number of data items  d. Number of function calls, number of data items
 2. At the runtime the total memory space occupied by all the instructions is called  .
  a. Data section    b. Instruction space 
  c. Stack space    d. None
 3.  is the property of the best algorithm.
  a. Portability    b. Modularity  
  c.  Reliability    d. Both b and c     
 4. Th e algorithm takes  number of steps  in the worst case.
  a. Maximum    b. Minimum    
  c. Average     d. None
 5. Th e  notation tells maximum possible lower bounds of the given function. 
  a. Omega     b. Th eta 
  c. Big O     d. None

SHORT-ANSWER QUESTIONS

 1. What is an algorithm?
 2. Discuss various types of algorithms.
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 3. Give the properties of best algorithms.
 4. Defi ne space complexity.
 5. Defi ne time complexity.
 6. What are the diff erent cases of measuring the effi  ciency of algorithms?
 7. Defi ne Big oh-O, Th eta-Θ, Omega-Ω notations.

ESSAY QUESTIONS

 1. Explain space complexity.
 2. Discuss in detail about apriori analysis.
 3. Write short notes on asymptotic notation.
 4. What is a time complexity? Explain it with an example.
 5. Write short notes on worst,  average and best cases complexities.  
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Arrays
From this chapter the study of data structure starts with the definition of data structure 
and classifying them as linear and non-linear data structures. Array, a linear data structure, 
is considered in this chapter. Here, a clear explanation about what an array is, array types 
and array representation is given. This chapter also discusses the initialization of arrays, 
accessing values of an array, array operations and how arrays are passed as parameters. 
The character sequences, applications and ADT of arrays are also covered in depth.

4.1 INTRODUCTION

Data structure is the logical or mathematical model of representing data. Th e data which comprise the data 
structure and its fundamental operations is known as Abstract Data Type (ADT).

Abstract data type is a conceptual specifi cation of a data type which includes description of objects and 
operations but not implementation in order to fulfi ll the following:
 • Maximize reuse
 • Promote object-oriented techniques
 • Make the code easier to maintain
Abstract Data Type:

An ADT contains:
 • Various attributes
 • May have maximum size
 • Operations

In order to create an actual instance of the ADT in a program, the real data that needs to be manipulated 
is added to it, but the ADT manipulation need not change.

Data structures are classifi ed in two ways:
 •  Linear data structures
 •  Non-linear data structures

In linear data structures, all the elements are arranged in sequence. Examples for linear data structures are 
arrays, linked lists, stacks and queues.

Chapter 4
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In contrast to the linear data structures, in non-linear data structures the elements do not have a sequence. 
Examples for such structures are trees, graphs and tables.

4.1.1 ARRAY

An  array is a fi nite set of homogenous elements stored in contiguous memory locations which are referenced, 
respectively, by adding an index as a unique identifi er. Th e number of data elements in an array can be ob-
tained by the index using the following formula:

Size of array = UB–LB+1
where UB is the upper boundary value and LB is the lower boundary value. Th e size of array is UB when LB = 1.

Th e elements of an array can be denoted by using subscripts or brackets such as A[1], A[2], A[3], … , 
A[N] or A(1), A(2), A(3), …, A(N). Let A be an array of 5 integers such that A[0]=3,  A[1]=4,  A[2]=5,  A[3]=2 
and A[4]=8.

4.2 ARRAY TYPES
Th e number of subscripts of an array decides the dimension of an array. Based on the dimensions, arrays can 
be classifi ed as single-dimensional arrays and multi-dimensional arrays.

4.2.1 SINGLE-DIMENSIONAL ARRAY

When the elements in an array are referenced by a single subscript, then the array is called a one-dimensional 
array.

4.2.2 MULTI-DIMENSIONAL ARRAY

Multi-dimensional arrays can be defi ned as “array of arrays”. Elements of multi-dimensional arrays are repre-
sented using more than one subscript. For example, a two-dimensional array can be imagined as a table with 
elements, which are of the same data type (Figure 4.1).

Figure 4.1 Two-dimensional array

B represents a two-dimensional array of 3 elements where each element is a one-dimensional array consist-
ing of 5 elements of type integer. It can be declared as

int B[3][5];

where B[1][3] refers to the element horizontally fourth and vertically second (Figure 4.2). 

0 1 2 3 4

0

1

2

B

Figure 4.2 Referencing B[1][3]

0 1 2 3 4

0

1

2

B

B[1][3]
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Let A[1:R, 1:C] be a two-dimensional array with R and C data elements where R is the number of rows 
and C is the number of columns in the array A. Each element in array is represented by a pair of integers called 
subscripts such as A[i][j], where i range from 1 to R and j range from 1 to C.

Two-dimensional arrays are also called matrix arrays. Figure 4.3 illustrates a two-dimensional array. 

A[1,1] A[1,2]     . . .  A[1,C]

A[2,1] A[2,2]     . . .  A[2,C]
.
.
.

A[R,1] A[R,2]     . . .  A[R,C]

Rows

Columns

Figure 4.3 Two-dimensional R C array A

4.2.3 N-DIMENSIONAL ARRAY

An N-dimensional m1 m2 ... mn array A is a collection of m1, m2, m3 … mn data elements, where each 
element is referred by a list of n integer such as j1, j2, …, jn called subscripts where 1<=j<m1, 1<=j2<=m2, 
1<=j3<=m3, … , 1<=jn<mn. 

4.3 ARRAY REPRESENTATION 

Accommodating arrays of various dimensions in the memory is explained as follows:

Representation of single-dimensional arrays: Representation of array in memory is very simple (Figure 4.4). Sup-
pose an array A[10] is to be stored in memory and the memory location of the fi rst element in an array can be 
obtained from the formula: 

Address of A[K]=R+(K–1).

.

.

.

.

.

.

1

2

K

10

R

Figure 4.4 Array representation
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Generalizing the formula gives Address of A[K]=R+(K-L)*W, where R is the location of the fi rst element, L is 
the lower bound and W is the number of words (size) required by each element. Th is is known as the indexing 
formula which is used for mapping the logical array to the physical array. Using this formula the Kth element 
address can be found easily if the fi rst element’s location is known, i.e. R (Figure 4.5).

Figure 4.5 General indexing formula

Like a regular variable, an array must be declared before it is used. A typical declaration for an array in 
C++ is:

data type Array-name[elements];

where data type is a valid type like int, float, etc. Array-name is a valid identifi er and the elements fi eld 
specifi es the maximum number of elements the array can hold. Th erefore, an array A of integer type can be 
declared as

int A[5];

Representation of two-dimensional arrays: A two-dimensional array can be represented in two diff erent ways in 
the memory:
 • Row major order
 • Column major order

Th e elements are stored on a row-by-row order, that is, the fi rst row elements followed by the second row 
elements and so on in the row major order. Elements are stored column by column, that is, the fi rst column 
elements followed by the second column and so on in the column major order. Consider the array A[R,C] in 
Figure 4.6.

A[K]=R+(K-L)*W

L

L+1

K

U

U+1

...

...

1

2

K

Figure 4.6 An array A[R,C]

A[1,1] A[1,2]     . . .  A[1,C]

A[2,1] A[2,2]     . . .  A[2,C]
.
.
.

A[R,1] A[R,2]     . . .  A[R,C]

Rows

Columns
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Th e representation of A[R,C] using row major order is as shown in Figure 4.7.

Figure 4.7 Array representation using row major order

Column major order representation is as shown in Figure 4.8.

Figure 4.8 Array representation using column major order

Th e indexing formula for arrays with diff erent orders is as follows: 

Row major order: Th e address of A[i,j] is 
A[i,j]= all the elements in the fi rst (i–1)th rows + number of elements from the ith to jth column 
   =(i–1) * c+j

Column major order: 
A[i,j]= all the elements in the fi rst (j–1)th column + number of element from the jth column to ith row

    = (j–1) * r + i

4.4 INITIALIZING ARRAYS

When declaring a regular array of local scope (within a function, for example), no default initialization is done 
to the elements. So they should be initialized, whereas the elements of global and static arrays are automatically 
initialized with that default value, that is zero. In both the cases of local and global, while declaring an array, 
there is a possibility of assigning initial values to each one of its elements by enclosing the values in braces { }. 
For example:

int A[5]={3,4,5,2,8};

It creates an array as shown in Figure 4.9.

A[1,1] A[1,2] A[1,3]   ...  A[1,C] A[2,1] A[2,2] ... A[2,C]  ... ... ...

Row 1 Row 2

A[1,1] A[2,1]  ...  A[R,3] ... A[1,2] A[2,2] A[R,2] ... A[1,C] ... ... ...

Column 1 Column 2 Column C

Figure 4.9 Initialization of array

Th e number of values between braces { } must not exceed the array size. In the example in Figure 4.9, 
array A is declared with 5 elements, and the list of initial values within braces { } is assigned to each of the 5 
elements.

3 4 5  2  8

0 1 2   3   4

A[1:5]
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During initialization of an array, it is not compulsory to specify the size, and the square brackets may be 
left  empty [ ] as

int A[]={3,4,5,2,8};

In this case, the compiler will assume the size of the array that matches the number of values in the braces 
{ }.

4.5 ACCESSING VALUES OF AN ARRAY

Th e elements of an array can be accessed individually like normal variables, thus being able to read and modify 
their values. Th e format is as follows:

Array-name[index]

Consider the previous example in which A had 5 elements, and each of those elements was of type int the 
name that is used to refer each element is given in Figure 4.10.

Figure 4.10 Referencing elements

To store the value 75 in the third element of A, the statement is written as A[2]=75; to pass the value of the 
third element of A to any variable then the statement is a = A[2]. Notice that the third element of A is specifi ed 
as A[2], since the array index starts from zero, i.e. the fi rst one is A[0], the second one is A[1], so the third one 
is A[2] and the last element is A[4]. Th erefore, A[5] refers to the sixth element of A and this exceeds the size of 
the array.

In C++ it is syntactically correct to exceed the valid range of indices for an array. Th is will create problems, 
since accessing out-of-range elements do not cause compilation errors but can cause run-time errors. At this 
point it is important to clearly distinguish between the two uses of subscripts [ ] related to arrays. Th ey perform 
two diff erent tasks: one is to specify the size of arrays when they are declared, and the second one is to specify 
indices for concrete array elements.

 int A[5];    //declaration of a new array
 A[2];     //access to an element of the array

Th e data type always precedes a variable or array declaration, while it never precedes an access.

4.6 ARRAY OPERATIONS

Various operations that can be performed on array are
 • Traversing
 • Insertion
 • Deletion 
 • Sorting 
 • Searching 

A[0]  A[1] A[2]  A[3]  A[4]

A[1:5]
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4.6.1 TRAVERSING

Visiting each element of an array exactly once is called traversing. Th is operation is used to display the content 
of each element of the array to count number of elements in an array easily. 

Algorithm 4.1

1  Set i=LB     //Initializing the counter variable
2. Repeat step3 and 4 while i<=UB
3. VISIT (A[i])   //process the element
4. i=i+1      //Moving to next location, increment the counter
5. End

Or using for loop

1. Repeat for i=LB to UB
2. VISIT (A[i])
3. End

In Algorithm 4.1 VISIT() is a procedure which performs operations on the array, for example, displaying 
the elements of an array, etc.

4.6.2 INSERTION

Insertion is an operation that is used to add an element into the array. Inserting an element at the end of the 
array is easy when memory is available. When insertion is to be done at the middle of the array, then most of 
the elements must be moved downwards to maintain the order of the elements.

Algorithm 4.2 illustrates the insertion of an element ITEM into the array ARR at the given index position 
POS.

Algorithm 4.2

INSERT(ARR,N,POS,ITEM)
ARR is an array of size N. POS is the index to insert the element.
1. Set i=N     //initialize the counter variable
2. Repeat steps 3 and 4 while i>=POS
3. Move ith element downwards 
 Set ARR[i+1] = ARR[i].
4. Set i=i-1    //decrement the counter variable.
5. Insert element at ‘POS’
  Set ARR[POS]=ITEM
6. Set N=N+1    //increment N value
7. End

Algorithm 4.2 creates memory space by moving each element downwards from the POSth location. Move 
the element in reverse order, that is move ARR[N] fi rst, then ARR[N-1] and ARR[POS], otherwise the data might 
be overlapped. Aft er creating space, insert the element ITEM in the POSth location.

Example: ARR is an array of size 10 containing 6 elements. All the items in the array are in increasing order 
Figure 4.11(a). Let 25 be added to the array, then the data elements 30,40,50,60 must be moved downwards 
one location each as shown in Figure 4.11(b).



4.8 | Data Structures and Algorithms Using C++ 

Figure 4.11 Insertion operation

First the ITEM ARR[6]=60 is moved to ARR[7] and A[5] is moved to ARR[6] and so on. 

4.6.3 DELETION

Deletion is an operation that is used to remove an element from the array. Th e deletion of an element at the end 
of the array can easily be done, whereas the deletion of the element in the middle of the array or at specifi ed 
locations makes the data elements to move one location upwards to fi ll the array.

Algorithm 4.3 deletes an element from array ARR with N elements at a specifi ed location POS where POS<=N 
and assigns it to the variable ITEM.

Algorithm 4.3

DELETE(ARR,N,POS,ITEM)
1. Set ITEM=ARR[POS]
2. Repeat for i=POS to N-1
3. Set ARR[i]=ARR[i+1] //move elements upward
4. Set N=N-1
5. End

Example: Consider an array ARR of size 10 and with 6 data elements. Deleting the element at A[2] makes the 
other element to move one location upward as shown in Figure 4.12.

(a)  Array with 6 elements (b)  Moving elements downwards
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Figure 4.12 Deletion operation

4.6.4 SORTING

Sorting is an operation that is used to arrange the elements of an array either in ascending or descending order. 
Algorithm 4.4 illustrates sorting of the elements in an ascending order .

Algorithm 4.4

SORT :
1. Set N=UB
2. while i>=LB do
3. Set q=LB  //comparing the first 
4. while j<i do
5. check whether A[j]&A[j+1] are in order, if so swap the elements
 SWAP(A[j], A[j+1])
6. Set j=j+1
7. Set i=i-1
8. End

4.6.5 SEARCHING

Searching is an operation that is used to fi nd the location of a particular element from the list of elements in an 
array. When the item is found, then search is said to be successful. Th ere are diff erent types of searching algo-
rithms. Usage of these algorithms depends upon the way the data elements are arranged in the data structures. 
A detailed discussion of searching techniques can be found in Chapter 16.
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Program 4.1

#include<iostream.h>
#include<conio.h>
#include<stdlib.h>
template<class t>
class array
{
 t a[50];
 int n,size;
 public:
 array(int m)
 {
  size=0;
  n=m;
 }
 void insert();
 void deletee();
 void display();
};
template<class t>
void array<t>::insert()
{
 t ele;
 if(size>=n)
 {
  cout<<“array is overflow\n”;
  return;
 }
 size++;
  cout<<“enter the element\n”;
 cin>>ele;
 a[size]=ele;
}
template<class t>
void array<t>::deletee()
 {
  t ele;
  if(size==0)
  {
   cout<<“array is underflow\n”;
   return;
  }
 ele=a[size];
 size--;
 cout<<“the deleted element is”<<ele<<“\n”;
}
template<class t>
void array<t>::display()
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 {
  int i;
  if(size==0)
  {
   cout<<“array is underflow\n”;
   return;
  }
 cout<<“the elements are\n”;
 for(i=1;i<=size;i++)
  cout<<a[i]<<“ ”;
  cout<<“\n”;
 }
void main()
{
 int ch,n;
 clrscr();
  cout<<“enter the size of the array\n”;
 cin>>n;
 array<float>a(n);
 while(1)
 {
  cout<<“menu\n”;
  cout<<“1.add\n”;
  cout<<“2.delete\n”;
  cout<<“3.display\n”;
  cout<<“4.exit\n”;
  cout<<“enter your choice\n”;
  cin>>ch;
  switch(ch)
  {
   case 1:
    a.insert();
    break;
   case 2:
    a.deletee();
    break;
   case 3:
    a.display();
    break;
   case 4:
    exit(0);
   break;
  default:
   cout<<“invalid option\n”;
  break;
  }
 }
}
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Output

enter the size of the array
10

menu
1.add
2.delete
3.display
4.exit
enter your choice

1
enter the element
2

menu
1.add
2.delete
3.display
4.exit
enter your choice
1
enter the element
3

menu
1.add
2.delete
3.display
4.exit
enter your choice

3
the elements are
2 3

menu
1.add
2.delete
3.display
4.exit
enter your choice

2
the deleted element is 3

menu
1.add
2.delete
3.display
4.exit
enter your choice
4
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4.7 ARRAYS AS PARAMETERS

Arrays can be passed as parameters to functions. In C++ it is not possible to pass a complete block of memory 
by value as a parameter to a function, but is allowed to pass its address. In practice, this has almost the same 
eff ect and it is much faster and is a more effi  cient operation.

In order to accept arrays as parameters the only thing that is to be done while declaring a function is to 
specify the type and name of the array as its parameter, an identifi er and a pair of brackets[]. For example, the 
following function:

void procedure(int arg[])

accepts a parameter which is an array of type int, called arg. In order to pass to this function, an array is 
declared as:

int myarray[40];

it would be enough to write a call like 

procedure(myarray);

Program 4.2

/*arrays as parameters*/
#include<iostream>
using namespace std;
void printarray(int arg[],int length)
 {
  for (int n=0;n<length;n++)
    cout<<arg[n]<<“  ”;
    cout<<“\n”;}
int main()
 {
   int firstarray[]={5, 10, 15};
   int secondarray[]={2, 4, 6, 8, 10};
   printarray(firstarray,3);
   printarray(secondarray,5);
   return 0;
 }

Output

5 10 15
2 4 6 8 10

In Program 4.2, the fi rst parameter (int arg[]) accepts any array whose elements are of type int of any 
length. So, a second parameter which specifi es the length of each array is passed to the function as the fi rst 
parameter. Th is allows the for loop that prints out the array to know the range for iterations in the passed array 
without going out of range.

In a function declaration it is also possible to include multi-dimensional arrays. Th e format for a tridimen-
sional array parameter is as follows:
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 base _ type[][depth][depth]

A function with a multidimensional array as the argument could be 

void procedure(int myarray[][3][4])

Notice that the fi rst brackets [] are left  blank while the other two are with values. Th is is so because the 
compiler must be able to determine the depth of each additional dimension within the function.

4.8 CHARACTER SEQUENCES 

Th e C++ Standard Library possesses a powerful string class, which is very useful to handle and manipulate 
strings. However, because strings are in fact a sequence of characters that can be represented as arrays of char 
elements. Th e array

char C[20];
can store up to 20 elements of type char. It can be represented as given in Figure 4.13.

C

Figure 4.13 Character array

Th is array can store a sequence of characters up to 20 characters long. But, it can also store shorter se-
quences. For example, char array C could store at some point in a program either the sequence Hello or the 
sequence Merry Christmas, as both are shorter than 20 characters. Since, the array of characters can store 
shorter sequences than its total length, a special character is used to signal the end of the valid sequence, i.e. 
the null character, whose literal constant can be written as ‘\0’ (backslash, zero). An array C of 20 elements of 
type char, can be represented by storing the character sequences “Hello” and “Merry Christmas” as shown 
in Figure 4.14.

Figure 4.14 Null character at the end of the string 

Notice how aft er the valid content a null character (‘\0’) has been included in order to indicate the end of 
the sequence. Th e panels in gray color represent char elements with undetermined values.

Initialization of null-terminated character sequences: Because arrays of characters are ordinary arrays, they follow 
all their same rules. For example, to initialize an array of characters with some predetermined sequence of 
characters, it can be done just like any other array:

H E L L O\0

M E R R Y C H R I S T M A S \0
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char myword[]={‘H’, ‘e’, ‘l’, ‘l’, ‘o’, ‘\0’};

In this case an array is declared with 6 elements of type char initialized with the characters that form the 
word “Hello” plus a null character ‘\0’ at the end. But arrays of char elements have an additional method to 
initialize their values using string literals.

In the expressions, entire strings of characters are specifi ed enclosing the text to become a string literal 
between double quotes (“). For example,

 “the result is:”

is a constant string literal.
Double-quoted strings (“) are literal constants whose type is in fact a null-terminated array of characters. 

So, string literals enclosed between double quotes always have a null character (‘\0’) automatically appended 
at the end.

Th erefore, the array of char elements called myword is initialized with a null-terminated sequence of 
characters by either one of these two methods.

char myword[]={‘H’, ‘e’, ‘l’, ‘l’, ‘o’, ‘\0’};

char myword[]=“Hello”;

In both cases the array of characters myword is declared with a size of 6 elements of type char the 5 char-
acters that compose the word “Hello” plus a fi nal null character (‘\0’), which specifi es the end of the sequence 
and that, in the second case, when using double quotes (“) it is appended automatically.

Assuming mystext is a char[] variable, expressions within a source code like
mystext=“Hello”;
mystext[]=“Hello”;

would not be valid. Similarly, neither would be

mystext={‘H’, ‘e’, ‘l’, ‘l’, ‘o’, ‘\0’};

Th e reason for this may become more comprehensible once a bit more is known about pointers. Th erefore, 
it will be clarifi ed that an array is in fact a constant pointer pointing to a block of memory.

Using null-terminated sequences of characters: Null-terminated sequences of characters are the natural way of 
treating strings in C++. For example, cin and cout support null-terminated sequences as valid containers 
for a sequence of characters. So, they can be used directly to extract strings of characters from cin or to insert 
them into cout. 

Program 4.3

/* null-terminated sequences of characters*/
#include<iostream>
using namespace std;
int main()
 {
  char question[]=“Please, enter your first name:”;
   char greeting[]=“Hello,”;
   char yourname[80];
   cout<<question;
   cin>>yourname;
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    cout<<greeting<<yourname<<“!”;
   return 0;
 }

Output

Please, enter your first name:John
Hello, John!

In Program 4.3, three arrays are declared of char type. Th e fi rst two were initialized with string literal 
constants, while the third one was left  uninitialized. Th e size was implicitly defi ned by the length of the literal 
constant they were initialized to. While for yourname it is explicitly specifi ed that it has a size of 80 chars. 
Finally, sequences of characters stored in char arrays can easily be converted into string objects just by using 
the assignment operator.

 String mystring;
 char myntcs[]=”some text”;
 mystring=myntcs

4.9 APPLICATIONS

Arrays have a wide range of applications. Some of them are listed here and the sparse matrix application is 
detailed.
 • Matrices
 • Sparse matrix
 • Records
 • Ordered list

Sparse matrix: A matrix is a representation of elements in rows and columns. Sparse matrix is a matrix with a 
high proportion of zero entries. Figure 4.15 illustrates matrix and sparse matrix.

   (a) Matrix   (b) Sparse matrix

 Figure 4.15 Examples of matrix and sparse matrix 

Th e most commonly used n square sparse matrices in various applications are shown in the Figure 4.16.

3 2 1 5

1 0 4 2

0 6 5 6

2 1 0 5

4 0 0 0

0 0 0 0

0 0 3 0

0 2 0 0
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  (a) Triangular matrix    (b) Tridiagonal matrix

 Figure 4.16 Sparse matrices

In Figure 4.16(a), all the entries above the main diagonal are zero or equivalent and all non-zero entries can 
occur only on or below the diagonal. Th is is known as the lower matrix or triangular matrix.

In Figure 4.16(b), all the non-zero entries occur on the diagonal or on the elements above the diagonal. 
Th is is known as the tridiagonal matrix.

A matrix requires lot of space in memory. A two-dimensional array is used to represent matrices. Th us, 
a 1000×1000 matrix requires huge storage locations in memory. If it is a sparse matrix, to store non-zero 
elements a huge amount of memory will be wasted. A two-dimensional array may not be suitable for sparse 
matrices.

Suppose to store a triangular matrix in memory, it is clear that storing all entries above the diagonal wastes 
the memory since they are all zeros. In such a case using a triple representation (i,j,value) can save the 
memory to represent non-zero elements of sparse matrix.

The ADT array: An array is a particular method of storing elements of indexed data. Elements of data are stored 
sequentially in blocks within the array. Each element is referenced by an index or subscript.

An array supports two operations. Th ey are store and retrieve:
 Store: Writing values into an array
 Retrieve: Reading from an array

SUMMARY

 • An array is a series of elements of the same type placed in contiguous memory locations that can be 
individually referenced by adding an index to a unique identifi er. 

 • An array can either be one dimensional or multi-dimensional. 
 • An ADT array performs mainly two operations—store and retrieve—and other operations include 

deletion, sort and search of elements.

EXERCISES

FILL IN THE BLANKS

 1. An array is a collection of  .
 2. Th e character array ends with  .

1

2 3

4 5 6

7 8 9 10

11 12 13 14 15

5 2 

1 3 4

 7 3 2

  4 6 5

   8 7 6

    1 3 5

     8 6
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 3. Arrays are  type of structures.
 4.  are the operations on arrays
 5.  is an application of array.

MULTIPLE-CHOICE QUESTIONS

 1.  Array is of .
  a. Scalar type  b. Aggregate type 
  c. Union type  d. Enumerated type
 2. Array name is a .
  a. Variable   b. Pointer to constant 
  c. Constant pointer  d. Constant 
 3. Th e only operator that can act on the array as a whole is .
  a. Indirection operator b. Size of operator 
  c. { }   d. [ ] 
 4. Which of the following is true about an array? 
  a. Array elements are stored in contiguous memory locations 
  b. In C, arrays are stored in row major order 
  c. An array can be declared as local as well as global 
  d. All the above

SHORT-ANSWER QUESTIONS

 1. What is the highest legal index for the following arrays?
  a. int arr1[4];    b. double means[12]; 
 2. Which of the following identifi ers are declared as arrays? 
  a. int i, j[4], k;    b. fl oat r[3],s[2],t,u[7]; 
 3. What is the highest legal index for the following arrays?
  a. int arr1[4];    b. double means[12]; 
 4. Defi ne character sequences.
 5. Explain the representation of arrays.

ESSAY QUESTIONS

 1. Write a C++ program to fi nd the transpose of an array.
 2. Write ADT operations for array implementation of polynomial addition.
 3. Map elements of a two-dimensional array beginning with the right column and within a column from 

top to bottom.
  a. List the indexes of a[4][4] in this order.
  b. Develop the mapping function for a[m][n].
 4. Defi ne an array. With an example, describe how you declare, insert an element, delete an element and 

display the array. Write a C++ program demonstrating the array.
 5. Defi ne ADT. Explain array ADT. Describe multi-dimensional arrays with an example and program in 

C++.



Linked List

Chapter 5 discusses and exemplifies the data structure called linked list. The static and 
dynamic representations of linked list are clearly explained. A rigorous discussion of sin-
gly linked lists, circular linked lists and doubly linked lists along with their representation 
and operations is given. The chapter also compares various types of linked list along with 
arrays. This chapter continues with advantages, disadvantages, applications and ADT, i.e. 
Abstract Data Type of Linked Lists. 

5.1 INTRODUCTION

Arrays are linear data structure for which memory should be allocated in advance to maintain the adjacency 
of the data elements. Once the memory is allocated, it cannot be extended as per the need. So, arrays are static 
data structures.

Th e implementation of insertion and deletion operations and storage of memory are not effi  ciently per-
formed using arrays.

Linked list overcomes the pitfalls of arrays; linked lists are also known as dynamic data structures because 
allocation of memory will be done at the runtime, which can be extended as per the need. A  linked list is also a 
linear collection of data elements called nodes, and the adjacency of elements is provided by the links or point-
ers. Th e general structure of the node is shown in Figure 5.1.

Chapter 5

Data
Item 1

Data part

Data
Item 2 . . . Data

Item n Link 1 Link 2 . . . Link n

Link part

Figure 5.1 General structure of a node

Linked list does not store the nodes in contiguous locations as do the arrays, whereas the link fi eld in the 
node maintains the address of its neighbour.
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5.2 REPRESENTATION OF LINKED LIST IN MEMORY

Linked lists can be represented in two ways:
 1. Static representation using arrays
 2. Dynamic representation using free storage list

5.2.1 STATIC REPRESENTATION

Th e linked list is maintained by two linear arrays—one is used for data and the other for links.  Let DATA and 
LINK be the two arrays, DATA contains the information part, and their corresponding  pointers to the next 
node are stored in the array LINK. A pointer variable HEAD is used to store the fi rst location of the linked 
list, and a Null pointer is used to denote the end of the list. Since array subscripts are positive integers, Null is 
represented by ‘0’. Figure 5.2 illustrates the static representation of a linked list.

S

Data Link

L

I

T

11

8

2

NULL(0)

1
2

3
4

5
6

7

8

9
10
11
12

5
Head

Figure 5.2 Static representation

In Figure 5.2, each node of the list contains a single character. Th e required string can be obtained as 
follows:
  HEAD = 5, so DATA[5] = L is the fi rst character. Th e corresponding link of DATA[5] is stored in 

LINK[5].
  LINK[5] = 8 shows that 8th element of DATA that holds the next element, I, i.e. DATA[8] = I, the sec-

ond character of the string.
  LINK[8] = 2 shows that 2nd element of DATA that holds element S, i.e. DATA[2] = S, the third character 

of the string.
  LINK[2] = 1 shows that 11th element of DATA will hold element T, i.e. DATA[11] = T, the fourth char-

acter of the string.
  LIST is the required string.
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5.2.2 DYNAMIC REPRESENTATION

In this representation, a memory bank that is a collection of free memory space and memory manager pro-
gram is used. When a new node is to be created, the memory management searches the memory bank for 
the required memory and if it is found, allocates memory to the new node and whenever a node is of no use, 
a program called garbage collector is invoked to return the unused node to the memory bank. Th is type of 
memory management is called Dynamic Memory Management. To represent linked list dynamically, a special 
list called AVAIL, a list of available memory spaces that has its own pointer, is maintained. Figures 5.3(a) and  
(b) illustrate the dynamic representation of a linked list.

(a) Allocating a new node to the list 

Avail

Head

Temp

50

10 20 40 50

⊗ ⊗

30

(b) Node returned to the memory bank

Figure 5.3  Dynamic representation

In Figure 5.3(a),  a new node is taken from the AVAIL and temporarily holds the address of the new node 
in the variable. Th e new node is then added to the existing list. Th e dotted arrow shows the insertion of the 
new node to the list and the symbol ‘ ’ is used to represent the deletion of links. Th e head node in the list does 
not contain any data. In Figure 5.3(b), deletion of the new node from the existing list is done and it is returned 
to the memory bank, i.e. AVAIL. Th e LINK fi eld of the last node in the AVAIL will be pointing to the deleted 
node.

Linked lists are classifi ed into three types regardless of the number of data fi elds: 
 • Singly linked list
 • Doubly linked list
 • Circular linked list

Avail

Head
10 30⊗ ⊗20
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5.3 SINGLY LINKED LIST

A  singly linked list is a linear data structure in which each node contains only one link fi eld. Figure 5.4 illus-
trates the singly linked list.

Head
Data Data Data Data

Figure 5.4 Singly linked list

HEAD pointer contains the address of the fi rst node. Th e representation of the singly linked list is similar 
to the representation explained in Section 5.2.

5.3.1 OPERATIONS

Th e operations performed on a singly linked list are as follows:
 • Traversing
 • Searching
 • Insertion
 • Deletion

To perform insertion and deletion, the functions GETNODE(N) and RETURN(N) are used. GETNODE(N) 
is used to allocate memory for node N and RETURN (N) is used to return the unused node to memory bank.
5.3.1.1 Traversing
Traversing the list implies visiting each and every node in the list from the fi rst node to the last node only 
once.

Algorithm 5.1: SL-TRAVERSE

 1.  Set PTR with the current pointer node.
 2.  Repeat steps 3 and 4.
 3.  VISIT the current node.
 4.  Set PTR with pointer to next node.
 5.  End.

5.3.1.2 Searching
Searching operation is used to fi nd the value of DATA fi eld in the singly linked list, while inserting an item 
into the list at a specifi ed location and deleting an item at the specifi ed location from list. Th e search operation 
is performed to locate the node with the DATA item, is to be deleted and to insert a node aft er that node and 
to display that particular node.

Element to
be searched

Head
A B C D

Figure 5.5 Searching for an element      
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In Figure 5.5, the node with  DATA as C is to be searched. Let VALUE be assigned with C and starting from 
the head node search for the VALUE by comparing each node’s DATA with it. When it is found, display it else 
display the message as  VALUE is not found.

Algorithm 5.2: SL-SEARCH

 1.  Set PTR to HEAD.              //HEAD is a pointer to head node
 2.  Repeat Steps 3 to 5 until PTR is NULL.
 3.  Check whether DATA of PTR is VALUE then 
      Write “Search is Successful”.
 4.  R eturn (PTR).
 5.  Else Write “VALUE not found”.
 7.  End.

5.3.1.3 Insertion
Insertion is an operation to add a node into the list. In a singly linked list, a node can be inserted at three dif-
ferent locations.
 • Insertion as fi rst node
 • Insertion as last node
 • Insertion at the  specifi ed position
Insertion as fi rst node:

(a) Before insertion

Head
B C D

A

New node from
the memory bank

NEW

(b) Aft er insertion

Figure 5.6 Insertion as fi rst node

In Figure 5.6(b), the node with data A is inserted as fi rst node of the list and now the HEAD pointer 
points to the node A, previously which was pointing to the node B and the LINK of node A points  to the 
node B.

Algorithm 5.3: SL-INSERT-F 

 1.  call GETNODE(N) to allocate memory for node N and return the pointer of N.
 2.  Set DATA of N to ITEM.

A B C D
Head



5.6 | Data Structures and Algorithms Using C++ 

 3.  Set LINK of N to LINK of HEAD.
 4.  Set LINK of HEAD to N.
 5.  End.

Insertion as last node:

(a) Before insertion

Head
A B C

(b) Aft er insertion

Figure: 5.7 Insertion as last node

In Figure 5.7(b), the new node with DATA as D is inserted as last node of the list. Th e previous last node’s 
LINK fi eld, which was NULL, now points to the new node.

Algorithm 5.4: SL-INSERT–E

1. call GETNODE(N) to allocate memory for N and return the points of N.
2. Set PTR to HEAD.                        //HEAD is pointer to head node.
3. Loop to move to the end of the list and insert.
4. Set PTR to LINK of PTR.
5. End loop.
6. Set LINK of PTR to N.
7. Set DATA of N to ITEM.
8. End.

Insertion at the specifi ed location: Search for the node whose DATA is VALUE; if it is found insert the node aft er 
that node. 

Head
A B C

D

New node from
the memory bank

NEW

PTR

(a) Before insertion

Head
A B C D
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(b) Aft er insertion

Figure 5.8 Inspection at specifi ed location

In Figure 5.8(b), the new node with DATA as X is inserted between the nodes B and C. Th e LINK fi eld of B 
is pointing to the new node and the link of the new node points to the node C. Let VALUE be the DATA of the 
node aft er which the node is inserted. Here B is the key node aft er which the new node has to the inserted.

Algorithm 5.5: SL-INSERT-SP

 1.  Call GETNODE(N) to allocate memory for node N and return the pointer of N.
 2.  Start from the HEAD node i.e., PTR=HEAD. //HEAD is the pointer to the head 

node
 3.  Loop to find the node with DATA field as VALUE or move to end of list if VALUE 

is not found.
 4.  Set PTR to LINK of PTR. 
 5.  End Loop.
 6.  Check whether LINK of PTR is NULL then write “VALUE is not found”. 
 7.  Else
  Set LINK of N to LINK of PTR.
  Set DATA of N to ITEM.
  Set LINK of PTR to N.
 8.  End.

5.3.1.4 DELETION

Th e deletion operation is used to delete a node from the list, and it can be performed at three diff erent loca-
tions.
 • Deletion of the fi rst node
 • Deletion of the last node
 • Deletion at the specifi ed position

When a NODE is deleted then its memory must be returned to the memory bank. Th e function RETURN(N) 
returns the deleted node to the free pool storage space.

Deletion of the fi rst node:

Head
A B C D

X

⊗

Head
A B C

(a) Before deletion 
Figure 5.9 Deletion of the fi rst node
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(b) Aft er deletion

Figure 5.9 Continued

In Figure 5.9(b), the fi rst node of the list is deleted and the head node’s LINK fi eld pointing to the deleted 
node now points to the next node. Th e LINK fi eld of the node to be deleted is set to NULL.

Algorithm 5.6:  SL-DELETION–F

 1.  Set PTR to LLINK of HEAD
 2.  Check whether list is empty else
 3.  Set NPTR to LINK of PTR   //NPTR is next node pointer
 4.  Set LINK of HEAD to PTR   //making next node first node now
 5.  RETURN (PTR)
 6.  End. 

Deletion of the last node:

Head
A B C
PTR

Return node to
the memory bank

NPTR

⊗ ⊗

(a) Before deletion

Head
A B C D

(b) Aft er deletion

Figure 5.10 Deletion of the last node 

In Figure 5.10(b), the node that is at end of the list is deleted and the previous node’s LINK, which was 
pointing to the last node is set to NULL, that is, deleting the link to the next node and return the unused node 
to the memory bank.

Algorithm 5.7: SL-DELETION-E

 1.  PTR=HEAD                    //HEAD is pointer to the head node 
 2.  Check whether list is empty else

Head
A B C D

PPTR PTR

⊗
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 3.  Loop to move to the end of list
      Set PPTR to PTR           //PPTR is the previous node pointer, and 
       //PTR is last node pointer
 4.  End loop
 5.  Set LINK of PPTR to NULL   //making previous node pointer NULL
 6.  RETURN(PTR)
 7.  End.

Deletion at the specifi ed position: Let VALUE be the DATA of the node, which is to be deleted. In Figure 5.11(b), 
the VALUE=B is searched in the list, if it matches with any one of the DATA of the nodes in the list then it will 
be deleted. Here, the node with DATA as B is deleted and LINK of B pointing to the next node is deleted and 
node A, which was earlier pointing to B now points to node C. 

(a) Before deletion

Head
A B C D

(b) Aft er deletion

Figure 5.11 Deletion at the specifi ed location

Algorithm 5.8: SL-DELETION-SP

 1. Start from head node that is PPTR=Head
 2. Set PTR with link of Head that is pointing to the first node.
 3.  Loop till PTR is NULL
 4. Check whether DATA of PTR is equal to VALUE then
 5. Set LINK of PPTR with LINK of PTR
 6. Else Set PPTR with PTR 
  Set LINK of PTR with PTR 
 7. Return(PTR)
 8. End loop 
 9. Check whether PTR is NULL then Write “VALUE not found and deletion not pos-

sible”
 10. End.

PPTR PTR

Head
A B C D

⊗⊗

Return node to
the memory bank
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Program 5.1

#include<iostream.h>
#include<conio.h>
#include<stdlib.h>
#include<alloc.h>

template<class t>
class llist
{
 struct node
 {
  t data;
  node*link;
 }*next,*head,*temp,*temp1;
public:
llist();
void insertf();
void inserte();
void inserta();
void deletef();
void deletee();
void deletea();
void display();
};

template<class t>
llist<t>::llist()
{
 head->link=NULL;
}
template<class t>
void llist<t>::insertf()
{
 t ele;
 cout<<“enter the element\n”;
 cin>>ele;
 temp=(struct node*)malloc(sizeof(struct node));
 if(temp==NULL)
 {
  cout<<“memory allocation error\n”;
  return;
 }
 if(head->link==NULL)
 {
  temp->data=ele;
  head->link=temp;
  temp->link=NULL;
 }
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 else
 {
  temp->link=head->link;
  head->link=temp;
  temp->data=ele;
 }
}
template<class t>
void llist<t>::inserte()
{
 t ele;
 cout<<“enter the element\n”;
 cin>>ele;
 temp=(struct node*)malloc(sizeof(struct node));
 if(temp==NULL)
 {
  cout<<“memory allocation error\n”;
  return;
 }
 if(head->link==NULL)
 {
  temp->data=ele;
  head->link=temp;
  temp->link=NULL;
 }
 else
 {
  for(temp1=head->link;temp1->link!=NULL;temp1=temp1->link)
  {
  }
 temp1->link=temp;
 temp->data=ele;
 temp->link=NULL;
 }
}
template<class t>
void llist<t>::inserta()
{
 t ele;
 int pos,i;
 cout<<“enter the element\n”;
 cin>>ele;
 cout<<“enter the position\n”;
 cin>>pos;
 temp=(struct node*)malloc(sizeof(struct node));
 if(temp==NULL)
 {
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  cout<<“memory allocation error\n”;
  return;
 }
 if(head->link==NULL)
 {
  temp->data=ele;
  head->link=temp;
  temp->link=NULL;
 }
 else
 {
  for(temp1=head,i=1;i<pos;i++)
  {
   temp1=temp1->link;
  }
 temp->link=temp1->link;
 temp1->link=temp;
 temp->data=ele;
 }
}
template<class t>
void llist<t>::deletef()
{
 t ele;
 if(head->link==NULL)
 {
  cout<<“linked list is empty\n”;
  return;
 }
 temp=head->link;
 temp1=temp->link;
 head->link=temp1;
 ele=temp->data;
 free(temp);
 cout<<“the deleted element is”<<ele<<endl;
}
template<class t>
void llist<t>::deletee()
{
 t ele;
 if(head->link==NULL)
 {
  cout<<“linked list is empty\n”;
  return;
 }
 for(temp1=head;temp1->link!=NULL;temp1=temp1->link)
 {
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  temp=temp1;
 }
 temp->link=NULL;
 ele=temp1->data;
 free(temp1);
 cout<<“the deleted element is“<<ele<<endl;
}
template<class t>
void llist<t>::deletea()
{
 t ele;
 int pos,i;
 if(head->link==NULL)
 {
  cout<<“linked list is empty\n”;
  return;
 }
 cout<<“enter the position\n”;
 cin>>pos;
 for(temp1=head,i=0;i<pos;i++,temp1=temp1->link)
 {
  temp=temp1;
 }
 temp->link=temp1->link;
 ele=temp1->data;
 cout<<“the deleted element is”<<ele<<endl;
 free(temp1);
}
template<class t>
void llist<t>::display()
 {
  if(head->link==NULL)
  {
   cout<<“linked list is empty\n”;
   return;
  }
 for(temp=head->link;temp!=NULL;temp=temp->link)
 {
  cout<<temp->data<<“ ”;
 }
}
void main()
{
 int ch;
 llist <int> l;
 clrscr();
 while(1)
 {
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  cout<<“\nmenu\n”;
  cout<<“1.insertion at front\n”;
  cout<<“2.insertion at end\n”;
  cout<<“3.insertion at any position\n”;
  cout<<“4.deletion at front\n”;
  cout<<“5.deletion at end\n”;
  cout<<“6.deletion at any position\n”;
  cout<<“7.display\n”;
  cout<<“8.exit\n”;
  cout<<“enter your choice\n”;
  cin>>ch;
  switch(ch)
  {
   case 1:
    l.insertf();
    break;
   case 2:
    l.inserte();
    break;
   case 3:
    l.inserta();
    break;
   case 4:
    l.deletef();
    break;
   case 5:
    l.deletee();
    break;
   case 6:
    l.deletea();
    break;
   case 7:
    l.display();
    break;
   case 8:
    exit(0);
    break;
  }
 }
}

Output

menu
1.insertion at front
2.insertion at end
3.insertion at any position
4.deletion at front
5.deletion at end



Chapter 5 Linked List | 5.15

6.deletion at any position
7.display
8.exit
enter your choice
1
enter the element
10
menu
1. insertion at front
2. insertion at end
3. insertion at any position
4. deletion at front
5.deletion at end
6.deletion at any position
7.display
8.exit
enter your choice
1
enter the element
20
menu
1.insertion at front
2.insertion at end
3.insertion at any position
4.deletion at front
5.deletion at end
6.deletion at any position
7.display
8.exit
enter your choice
7
20 10
menu
1.insertion at front
2.insertion at end
3.insertion at any position
4.deletion at front
5.deletion at end
6.deletion at any position
7.display
8.exit
enter your choice
2
enter the element
30
menu
1.insertion at front
2.insertion at end
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3.insertion at any position
4.deletion at front
5.deletion at end
6.deletion at any position
7.display
8.exit
enter your choice
2
enter the element
40
menu
1.insertion at front
2.insertion at end
3.insertion at any position
4.deletion at front
5.deletion at end
6.deletion at any position
7.display
8.exit
enter your choice
7
20 10 30 40
menu
1.insertion at front
2.insertion at end
3.insertion at any position
4.deletion at front
5.deletion at end
6.deletion at any position
7.display
8.exit
enter your choice
3
enter the element
50
enter the position
3
menu
1.insertion at front
2.insertion at end
3.insertion at any position
4.deletion at front
5.deletion at end
6.deletion at any position
7.display
8.exit
enter your choice
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7
20 10 50 30 40
menu
1.insertion at front
2.insertion at end
3.insertion at any position
4.deletion at front
5.deletion at end
6.deletion at any position
7.display
8.exit
enter your choice
4
the deleted element is 20
menu
1.insertion at front
2.insertion at end
3.insertion at any position
4.deletion at front
5.deletion at end
6.deletion at any position
7.display
8.exit
enter your choice
7
10 50 30 40
menu
1.insertion at front
2.insertion at end
3.insertion at any position
4.deletion at front
5.deletion at end
6.deletion at any position
7.display
8.exit
enter your choice
5
the deleted element is 40
menu
1.insertion at front
2.insertion at end
3.insertion at any position
4.deletion at front
5.deletion at end
6.deletion at any position
7.display
8.exit
enter your choice
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7
10 50 30
menu
1.insertion at front
2.insertion at end
3.insertion at any position
4.deletion at front
5.deletion at end
6.deletion at any position
7.display
8.exit
enter your choice
6
enter the  position
2
the deleted element is 50
menu
1.insertion at front
2.insertion at end
3.insertion at any position
4.deletion at front
5.deletion at end
6.deletion at any position
7.display
8.exit
enter your choice
7
10 30
menu
1.insertion at front
2.insertion at end
3.insertion at any position
4.deletion at front
5.deletion at end
6.deletion at any position
7.display
8.exit
enter your choice 8

5.4 CIRCULAR LINKED LIST

A singly linked list in which the link fi eld of the last node is assigned with the address of the fi rst node is known 
as a  circular linked list or a circular list. Figure 5.12 illustrates the representation of a circular linked list. 

Figure 5.12 Circular linked list
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Here, the LINK fi eld of the last node is pointing to the fi rst node. Using the circular linked list any node 
from any position can be accessed without the need of starting from the fi rst node. List based implementations 
such as concatenation of lists, splitting of lists and so on can be effi  ciently performed with circular lists.

One disadvantage with circular lists is that while processing, the list makes sure that it does not form an in-
fi nite loop since the direction of pointers in the list is circular. Th is can be solved with the HEAD node, which 
is the Header node in the list. It helps us to point out the end of the list and terminate the loop.

Th e operations insertion into and deletion from the circular linked lists are the same as in a singly linked 
list except that the last node points to the fi rst node. So, when inserting the fi rst node, update the head node 
pointer and LINK fi eld of it to point to the fi rst node. When deleting the last node, update the previous node 
of the last node to point to the head node.

(a) Before insertion

Head
A B D

(b) Aft er insertion

Figure 5.13 Insertion in a circular linked list

In Figure 5.13(b), the node A is inserted between the head node and node B. First obtain the value of the 
head node LINK fi eld and make the new node pointer point to the node B. Now assign the head node pointer 
with the address of the new node, i.e. head node pointing to the new node.

Head
B C D

A

⊗

(a) Before deletion

A B C D
Head

(b) Aft er deletion

Figure 5.14 Deletion of the node in a circular linked list

A B C D
Head

⊗

⊗
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In Figure 5.14(b), the last node D is deleted fi rst getting the address of the node containing D and its pre-
decessor node C. Now, LINK of node C points to node D which is deleted and makes it to point to the head 
node since it is a last node now, which is shown by a dashed line in Figure 5.14. Return the unused node to the 
memory bank.

5.4.1 MERGING OF TWO CIRCULAR LISTS

Let C1 and C2 be the two circular linked lists to be merged and HEAD1 and HEAD2 be the header nodes of 
C1 and C2, respectively. Th e LINK fi eld of HEAD1 node pointing to the fi rst node of C1 is deleted and it is 
pointed to the fi rst node of list C2, and the last node of list C2  pointing to HEAD2 is deleted and it is pointed 
to the fi rst node of C1; this is illustrated in Figure 5.15.

Head 1 List C1

Head 2 List C2

Head 1 PTR1

Head 2 List C2

⊗

⊗⊗

(b) Aft er merging C1 and C2

Figure 5.15 Merging two circular linked lists

Algorithm 5.9: CL-CONC
 1. Set PTR1 to LINK of HEAD1
 2. Set  PTR2 to LINK of HEAD2
 3. Set LINK of HEAD1 to PTR2
 4. Loop till LINK of PTR2 is equal to HEAD2
 5. Set PTR2 to LINK of PTR2
 6. End loop

(a) Before merging two lists, C1 and C2
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 7. Set LINK of PTR2 to PTR1
 8. Return (HEAD2)                  //return HEAD2 to the memory bank.
 9. End.

5.5 DOUBLY LINKED LISTS

In a singly linked list, moving from one node to another node is done in only one direction and it is known as 
a one-way list.

A  doubly linked list is the one in which each node of it contains two links pointing to either side of the 
nodes. Th e movement in the doubly linked list is either of the direction i.e. either from left  to right or right to 
left . Figure 5.16 shows the structure of a node in a doubly linked list.

Figure 5.16 Structure of the node 

5.5.1 REPRESENTATION OF DOUBLY LINKED LIST

A doubly linked list is a linear data structure in which each node has two links called the left  link (LLINK) and 
the right link (RLINK).

Th e LLINK fi eld of a node points to the node to its left , and the RLINK points to the node to its right. A 
doubly linked list can also be a circular list and it is known as a circular doubly linked list.

LLINK DATA RLINK

(a) Doubly linked list

LLINKHEAD RLINK
A B C

(b) Circular doubly linked list
Figure 5.17 Types of a doubly linked list

In Figure 5.17(a), each node has two links, except the fi rst and the last node. Th e RLINK of the last node is 
NULL and LLINK of the head node is NULL.

Figure 5.17(b) shows a circular doubly linked list. Here, the RLINK of the last node points to the head node 
and LLINK of the head node points to the last node.

5.5.2 OPERATIONS

All the operations performed on a singly linked list can be implemented effi  ciently using a doubly linked list.

LLINKHEAD RLINK
A B C
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5.5.2.1 Insertion
Th is operation can be performed in three ways:
 1.  Insertion as fi rst node
 2.  Insertion as last node
 3.  Insertion at a specifi ed position
Insertion as fi rst node:

(a) Before insertion

RLINKLLINKHead
B C D

(b) Aft er insertion
Figure 5.18 Insertion operation in a doubly linked list

Algorithm 5.10: DL_INSERTION_F

 1.  Set  PTR to point to first node
 2.  Call GETNODE(N) to allocate memory for new node N.
 3.  Set LLINK of N to point to HEAD
 4.  Set RLINK of HEAD to point to N
 5.  Set RLINK of N with PTR
 6.  Set LLINK of PTR with N
 7.  Assign ITEM to DATA of N
 8.  End

Algorithm 5.10 inserts the node as the fi rst node of the list. Th e RLINK of the head node points to the new 
node and LLINK of the new node points to the head node, the RLINK of the new node points to the next node 
and LLINK of the next node points to the new node (Figure 5.18).

Insertion at the last node: To insert the node as the last node of the list, the last node in the list is traced and Set the 
RLINK of the last node to point to the new node, and LLINK of the new node to point to the last node. RLINK 
of the new node is set to NULL. So, the new node will be the last node (Figure 5.19; Algorithm 5.11).

LLINK
B C D

A

RLINKHead

A B C
Head

(a) Before insertion
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(b) Aft er insertion

Figure 5.19 Insertion as the last node

Algorithm 5.11: DL_INSERT_E

 1.  Set PTR to Head node pointer
 2.  Loop to move to last node
 3.  Set PTR to RLINK of PTR
 4.  End LOOP
 5.  Call GETNODE (N)                //get new node
 6.  Set LLINK of N to PTR
 7.  Set RLINK of PTR to N
 7.  Set RLINK of N to NULL           //make new node (N) last node
 9.  Assign ITEM to DATA of N
 10. End

Insertion at a specifi ed position:  To insert the given node at a specifi ed position, let a node with DATA fi eld as 
ITEM be inserted aft er the node with DATA fi eld as VALUE. So, search for the node whose DATA fi eld is 
VALUE; if it is found, then insert the new node aft er that node (Figure 5.20; Algorithm 5.12).

A B C

D

Head

(a) Before insertion

A B C
Head

(b) Aft er insertion

Figure 5.20 Insertion at a specifi ed position

Algorithm 5.12: DL_INSERTION_SP

 1. Set PTR to HEAD
 2. Loop to find the node with VALUE

A B C

Z

⊗

⊗

Head
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 2. Set PTR to RLINK of PTR
 3. End Loop
 4. Call GETNODE(N)          //get the new node
 5. Set N PTR to RLINK of PTR     //N PTR is the pointer to next node after 
       //node with VALUE
 6. Set LLINK of N to PTR
 7. Set RLINK of N to NPTR
 8. Set RLINK of  PTR to N
 9. Set LLINK of NPTR to N
 10. Set PTR to N
 11. Assign ITEM to DATA of N
 12. End

5.5.2.2 Deletion
Like insertion, the deletion operation can also be performed in three ways:
 1. Deletion of the fi rst node
 2. Deletion of the last node
 3. Deletion at a specifi ed position

Deletion of the fi rst node: Deleting the fi rst node in the list updates RLINK of HEAD to point to the node aft er 
the fi rst node, that is, deleting the link between the HEAD node and the fi rst node and LLINK of the node 
aft er the deleted node is updated to point to the HEAD node and then it becomes the fi rst node (Figure 5.21; 
Algorithm 5.13).

(a) Before deletion

A
HEAD PTR NPTR

B C

(b) Aft er deletion

Figure 5.21 Deletion of the fi rst node 

Algorithm 5.13: DL_DELETION_F

 1. Set PTR to point to the first node
 2. Check whether list is empty then write “deletion cannot be done”
 3. Set NPTR to RLINK of PTR       //NPTR is point to next node
 4. Set RLINK of HEAD to NPTR
 5. Set LLINK of NPTR to HEAD
 6. Return(PTR)
 7. End

A
HEAD PTR

Node returned to 
the memory bank

B C
⊗

⊗

⊗

⊗
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Deletion of the last node:  To delete the last node in the list, let PTR point to the last node, and PPTR is the pointer 
to the previous node of the last node. Deleting the last node is deleting links between nodes pointed by the 
pointers PPTR and PTR and then making the RLINK of PPTR node to NULL. Now PPTR becomes the last 
node in the list. Figure 5.22 illustrates the deletion of the last node (Algorithm 5.14).

(a) Before deletion

A
HEAD

B C

(b) Aft er deletion

Figure 5.22 Deletion of the last node

Algorithm 5.14: DL_DELETION_E

 1. Set PTR to point head node
 2. Loop to move to the last node
 3. Set PTR to RLINK of PTR
 4. End loop
 5. Check whether list is empty then write” Deletion not possible” 
 6. Set PPTR to LLINK of PTR
 7. Set RLINK of PPTR to NULL
 8. Return(PTR)
 9. End

Deletion at a specifi ed position: To delete the node at any specifi ed location, suppose VALUE is the DATA of the 
node to be deleted. Search for the VALUE in the list. Let PTR point to the node to be deleted and NPTR point 
to the next node to PTR, and PPTR points to the previous node of PTR. To delete PTR, update the LLINK of 
NPTR to point to the PPTR and RLINK of PPTR to point to NPTR. Figure 5.23 illustrates the deletion of the 
node at a specifi ed position (Figure 5.23, Algorithm 5.15).

A
HEAD PTRPPTR

B C
⊗

⊗

A
HEAD

VALUE

B C

(a) Before deletion

Figure 5.23 Deletion at a specifi ed position
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(b) Aft er deletion

Figure 5.23 Continued

Algorithm 5.15: DL_DELETION_SP

 1.  Set PTR to point to first node
 2.  Check whether list is empty then write” Deletion not possible” 
 3.  Loop to move to the required node 
 4.  Checking for the VALUE                 
 5. Set PTR to RLINK  of PTR
 6.  End loop
 7.  When DATA of PTR is equal to VALUE 
 8.  Set PPTR to LLINK of PTR
 9.  Set NPTR to RLINK of PTR
 10. Set RLINK of PPTR to NPTR
 11. Check whether deleted node is the last node then 
 12. Set LLINK of NPTR to NULL
 13. Return(PTR)
 14. End.

Program 5.2

#include<iostream.h>
#include<conio.h>
#include<stdlib.h>
#include<alloc.h>
template<class t>
class llist
{
 struct node
 {
  t data;
  node*flink,*blink;
  }*next,*head,*temp,*temp1;
 public:
 llist();
 void insertf();
 void inserte();
 void inserta();
 void deletef();

PPTR PTR NPTR
A

HEAD

VALUE

B C
⊗

⊗
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 void deletee();
 void deletea();
 void fdisplay();
 void bdisplay();
 };
 template<class t>
 llist<t>::llist()
 {
  head->flink=NULL;
  head->blink=NULL;
 }
 template<class t>
 void llist<t>::insertf()
 {
  t ele;
  cout<<“enter the element\n”;
  cin>>ele;
  temp=(struct node*)malloc(sizeof(struct node));
  if(temp==NULL)
  {
   cout<<“memory allocation error\n”;
   return;
  }
 if(head->flink==NULL)
 {
  temp->data=ele;
  head->flink=temp;
  temp->flink=NULL;
  temp->blink=head;
 }
 else
 {
  temp->flink=head->flink;
  temp->blink=head;
  head->flink=temp;
  temp->data=ele;
  temp1=temp->flink;
  temp1->blink=temp;
 }
}
template<class t>
void llist<t>::inserte()
{
 t ele;
 cout<<“enter the element\n”;
 cin>>ele;
 temp=(struct node*)malloc(sizeof(struct node));
 if(temp==NULL)
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 {
  cout<<“memory allocation error\n”;
  return;
 }
 if(head->flink==NULL)
 {
  temp->data=ele;
  temp->blink=head;
  head->flink=temp;
  temp->flink=NULL;
 }
else
 {
  for(temp1=head->flink;temp1->flink!=NULL;temp1=temp1->flink)
 {
 temp1->flink=temp;
 temp->data=ele;
 temp->flink=NULL;
 temp->blink=temp1;
 }
}
template<class t>
void llist<t>::inserta()
{
 t ele;
 int pos,i;
 cout<<“enter the element\n”;
 cin>>ele;
 cout<<“enter the position\n”;
 cin>>pos;
 temp=(struct node*)malloc(sizeof(struct node));
 if(temp==NULL)
 {
  cout<<“memory allocation error\n”;
  return;
 }
 if(head->flink==NULL)
 {
  temp->data=ele;
  head->flink=temp;
  temp->blink=head;
  temp->flink=NULL;
 }
 else
 {
  for(temp1=head,i=1;i<pos;i++)
  {
   temp1=temp1->flink;
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  }
  temp->flink=temp1->flink;
  temp1->flink=temp;
  temp->data=ele;
  temp->blink=temp1;
  temp=temp->flink;
  temp->blink=temp;
 }
}
template<class t>
void llist<t>::deletef()
{
 t ele;
 if(head->flink==NULL)
 {
  cout<<“flinked list is empty\n”;
  return;
 }
 temp=head->flink;
 temp1=temp->flink;
 head->flink=temp1;
 temp1->blink=head;
 ele=temp->data;
 free(temp);
 cout<<“the deleted element is”<<ele<<endl;
}
template<class t>
void llist<t>::deletee()
{
 t ele;
 if(head->flink==NULL)
 {
  cout<<“flinked list is empty\n”;
  return;
 }
 for(temp1=head;temp1->flink!=NULL;temp1=temp1->flink)
 {
  temp=temp1;
 }
 temp->flink=NULL;
 ele=temp1->data;
 free(temp1);
 cout<<“the deleted element is”<<ele<<endl;
}
template<class t>
void llist<t>::deletea()
{
 t ele;
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 int pos,i;
 if(head->flink==NULL)
 {
  cout<<“flinked list is empty\n”;
  return;
 }
 cout<<“enter the position\n”;
 cin>>pos;
 for(temp1=head,i=0;i<pos;i++,temp1=temp1->flink)
 {
  temp=temp1;
 }
 temp->flink=temp1->flink;
 temp=temp1->flink;
 temp->blink=temp1->blink;
 ele=temp1->data;
 cout<<“the deleted element is”<<ele<<endl;
 free(temp1);
}
template<class t>
void llist<t>::fdisplay()
{
 if(head->flink==NULL)
 {
  cout<<“flinked list is empty\n”;
  return;
 }
 for(temp=head->flink;temp!=NULL;temp=temp->flink)
 {
  cout<<temp->data<< “ ”;
 }
}
 template<class t>
 void llist<t>::bdisplay()
 {
  if(head->flink==NULL)
  {
   cout<<“flinked list is empty\n”;
   return;
}
for(temp=head;temp->flink!=NULL;temp=temp->flink)
{
 //cout<<temp->data<< “”;
}
for(temp1=temp;temp1->blink!=NULL;temp1=temp1->blink)
 {
  cout<<temp1->data<<“ ”;
 }
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}
void main()
{
 int ch;
 llist<char> l;
 clrscr();
 while(1)
 {
  cout<<“\nmenu\n”;
  cout<<“1.insertion at front\n”;
  cout<<“2.insertion at end\n”;
  cout<<“3.insertion at any position\n”;
  cout<<“4.deletion at front\n”;
  cout<<“5.deletion at end\n”;
  cout<<“6.deletion at any position\n”;
  cout<<“7.fdisplay\n”;
  cout<<“8.bdisplay\n”;
  cout<<“9.exit\n”;
  cout<<“enter your choice\n”;
  cin>>ch;
  switch(ch)
 {
  case 1:
   l.insertf();
   break;
  case 2:
   l.inserte();
   break;
  case 3:
   l.inserta();
   break;
  case 4:
   l.deletef();
   break;
  case 5:
   l.deletee();
   break;
  case 6:
   l.deletea();
   break;
  case 7:
   l.fdisplay();
   break;
  case 8:
   l.bdisplay();
   break;
  case 9:
  exit(0);
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  break;
  }
 }
}

Output

menu
1.insertion at front
2.insertion at end
3.insertion at any position
4.deletion at front
5.deletion at end
6.deletion at any position
7.fdisplay
8.bdisplay
9.exit
enter your choice
1
enter the element
2
menu
1.insertion at front
2.insertion at end
3.insertion at any position
4.deletion at front
5.deletion at end
6.deletion at any position
7.fdisplay
8.bdisplay
9.exit
enter your choice
1
enter the element
3
menu
1.insertion at front
2.insertion at end
3.insertion at any position
4.deletion at front
5.deletion at end
6.deletion at any position
7.fdisplay
8.bdisplay
9.exit
enter your choice
7
3 2
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menu
1.insertion at front
2.insertion at end
3.insertion at any position
4.deletion at front
5.deletion at end
6.deletion at any position
7.fdisplay
8.bdisplay
9.exit
enter your choice
2
enter the element
5
menu
1.insertion at front
2.insertion at end
3.insertion at any position
4.deletion at front
5.deletion at end
6.deletion at any position
7.fdisplay
8.bdisplay
9.exit
enter your choice
2
enter the element
6
menu
1.insertion at front
2.insertion at end
3.insertion at any position
4.deletion at front
5.deletion at end
6.deletion at any position
7.fdisplay
8.bdisplay
9.exit
enter your choice
8
6 5 2 3
menu
1.insertion at front
2.insertion at end
3.insertion at any position
4.deletion at front
5.deletion at end
6.deletion at any position
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7.fdisplay
8.bdisplay
9.exit
enter your choice
3
enter the element
8
enter the position
2
menu
1.insertion at front
2.insertion at end
3.insertion at any position
4.deletion at front
5.deletion at end
6.deletion at any position
7.fdisplay
8.bdisplay
9.exit
enter your choice
7
3 8 2 5 6
menu
1.insertion at front
2.insertion at end
3.insertion at any position
4.deletion at front
5.deletion at end
6.deletion at any position
7.fdisplay
8.bdisplay
9.exit
enter your choice
4
the deleted element is 3
menu
1.insertion at front
2.insertion at end
3.insertion at any position
4.deletion at front
5.deletion at end
6.deletion at any position
7.fdisplay
8.bdisplay
9.exit
enter your choice
7
8 2 5 6
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menu
1.insertion at front
2.insertion at end
3.insertion at any position
4.deletion at front
5.deletion at end
6.deletion at any position
7.fdisplay
8.bdisplay
9.exit
enter your choice
5
the deleted element is 6
menu
1.insertion at front
2.insertion at end
3.insertion at any position
4.deletion at front
5.deletion at end
6.deletion at any position
7.fdisplay
8.bdisplay
9.exit
enter your choice
7
8 2 5
menu
1.insertion at front
2.insertion at end
3.insertion at any position
4.deletion at front
5.deletion at end
6.deletion at any position
7.fdisplay
8.bdisplay
9.exit
enter your choice
6
enter the position
2
the deleted element is 2
menu
1.insertion at front
2.insertion at end
3.insertion at any position
4.deletion at front
5.deletion at end
6.deletion at any position
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7.fdisplay
8.bdisplay
9.exit
enter your choice
9

5.6 COMPARISON OF VARIOUS LINKED LISTS

Th is section deals with a comparison of various types of  linked lists. 

5.6.1 LINKED LISTS VERSUS ARRAYS

Linked lists have several advantages over arrays. Th e insertion of an element at a specifi c point of a list is a 
constant time operation, whereas the insertion in an array requires half of the elements or more to be moved 
downwards. While deletion of an element from an array requires constant time by somehow marking its slot as 
“vacant”, an algorithm that iterates over the elements may have to skip a large number of vacant slots.

Moreover, arbitrarily many elements may be inserted into a linked list, limited only by the total memory 
available; while an array will eventually fi ll up, and then have to be resized—an expensive operation that may 
not even be possible if the memory is fragmented. Similarly, an array from which many elements are removed 
may have to be resized in order to avoid wasting too much space.

On the other hand, arrays allow random access, while linked lists allow only sequential access to elements. 
Singly linked lists, in fact, can only be traversed in one direction. Th is makes linked lists unsuitable for ap-
plications where it is useful to look up an element by its index quickly, such as heap sort. Sequential access on 
arrays is also faster than linked lists because they have greater locality of reference and thus profi t more from 
processor caching.

Another disadvantage of linked lists is the additional storage needed for references, especially for lists of 
small data items such as characters or Boolean values. It can also be slow, and with a naïve allocator, wasteful, 
to allocate memory separately for each new element, a problem generally solved using memory pools.

Some hybrid solutions try to combine the advantages of the two representations. Unrolled linked lists 
store several elements in each list node, increasing cache performance while decreasing memory overhead for 
references. 

A good example that highlights the pros and cons of using arrays versus linked lists is by implementing 
a program that resolves the Josephus problem. Th e Josephus problem is an election method that works by 
having a group of people stand in a circle. Starting at a predetermined person, you count around the circle n 
times. Once the nth person is reached, take them out of the circle and have the members close the circle. Th en 
count around the circle the same n times and repeat the process, until only one person is left . Th at person 
wins the election. Th is shows the strengths and weaknesses of a linked list over an array, because people are 
in a circular linked list; it shows how easily the linked list is able to delete nodes as it only has to rearrange the 
links to the diff erent nodes. However, the linked list will be poor at fi nding the next person to remove and will 
need to recur through the list until it fi nds that person. An array, on the other hand, will be poor at deleting 
nodes (or elements) as it cannot remove one node without individually shift ing all the elements up the list by 
one. However, it is exceptionally easy to fi nd the nth person in the circle by directly referencing them by their 
position in the array.

Th e list ranking problem concerns the effi  cient conversion of a linked list representation into an array. 
Although trivial for a conventional computer, solving this problem by a parallel algorithm is complicated.
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5.6.1.1 Singly Linked Lists Versus Other Lists
While doubly linked and/or circular lists have advantages over singly linked linear lists, the linear lists off er 
some advantages that make them preferable in some situations.

Many operations on singly linked linear lists (such as merging two lists or enumerating the elements in 
reverse order) oft en have very simple recursive algorithms, much simpler than any solution using iterative 
commands. While one can adapt those recursive solutions for doubly linked and circularly linked lists, the 
procedures generally need extra arguments and more complicated base cases.

Linear singly linked lists also allow tail-sharing, the use of a common fi nal portion of sub-list as the termi-
nal portion of two diff erent lists. In particular, if a new node is added at the beginning of a list, the former list 
remains available as the tail of the new one—a simple example of a persistent data structure. Again, this is not 
true with the other variants: a node may never belong to two diff erent linked lists.

In particular, end-sentinel nodes can be shared among singly linked non-circular lists. One may even use 
the same end-sentinel node for every such list. Indeed, the advantages of the fancy variants are oft en limited to 
the complexity of the algorithms, not in their effi  ciency. A circular list, in particular, can usually be emulated 
by a linear list together with two variables that point to the fi rst and last nodes at no extra cost.
5.6.1.2 Doubly Linked Versus Singly Linked Lists
Doubly linked lists require more space per node (unless one uses xor-linking), and their elementary operations 
are more expensive; but they are oft en easier to manipulate because they allow sequential access to the list in 
both directions. In particular, one can insert or delete a node in a constant number of operations given only 
that node`s address. To do the same in a singly linked list, one must have the previous node`s address. On the 
other hand, they do not allow tail-sharing, and cannot be used as persistent data structures.
5.6.1.3 Circular-linked Versus Linear l-linked Lists
A circularly linked list may be a natural option to represent arrays that are naturally circular, e.g. for the corners 
of a polygon, for a pool of buff ers that are used and released in FIFO (FIRST-IN-FIRST-OUT) order, or for a 
set of processes that should be time-shared in round-robin order. In these applications, a pointer to any node 
serves as a handle to the whole list.

With a circular list, a pointer to the last node gives easy access also to the fi rst node by following one link. 
Th us, in applications that require access to both ends of the list (e.g. in the implementation of a queue), a cir-
cular structure allows one to handle the structure by a single pointer instead of two.

A circular list can be split into two circular lists, in constant time, by giving the addresses of the last node of 
each piece. Th e operation consists in swapping the contents of the link fi elds of those two nodes. Applying the 
same operation to any two nodes, nodes in two distinct lists, joins the two lists into one. Th is property greatly 
simplifi es some algorithms and data structures, such as the quad-edge and face-edge.

5.7 APPLICATIONS 
 1.  Sparse matrix representation 
 2.  Polynomial manipulation 
 3.  Dynamic memory storage 
 4.  In symbol table 

5.7.1 POLYNOMIAL MANIPULATION

A polynomial can be represented in an array or in a linked list by simply storing the coeffi  cient and exponent 
of each term. However, for any polynomial operation, such as addition or multiplication of polynomials, the 
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linked list representation is easier to deal with. Th e structure of a node to represent a polynomial is shown in 
Figure 5.24.

COEFF EXP LINK

Figure 5.24 Node structure of polynomial

In a polynomial all the terms may not be present, especially if it is going to be a very high-order polyno-
mial. Consider 5x12 + 2 x9 + 4x7 + 6x5 + x2 + 12x, now this 12th order polynomial does not have all the 13 terms 
(including the constant term). It would be very easy to represent the polynomial using a linked list structure, 
where each node can hold information pertaining to a single term of the polynomial. Each node will need to 
store the variable x, the exponent and the coeffi  cient for each term. It oft en does not matter whether the poly-
nomial is in x or y. Th is information may not be very crucial for the intended operations on the polynomial. 
Th us, there is a need to defi ne a node structure to hold two integers, viz. exponent and coeffi  cient. Compare 
this representation with storing the same polynomial using an array structure.

In the array a slot for each exponent of x should be maintained; thus, if a polynomial of order 50  is to be 
arranged but containing just 6 terms, then a large number of entries will be 0 in the array. It is also easy to 
manipulate a pair of polynomials if they are represented using linked lists.
5.7.1.1 Addition of Two Polynomials
Consider the addition of the following polynomials:

5x12 + 2x9 + 4x7 + 6x6 + x3

7x8 + 2x7 + 8x6 + 6x4 + 2x2 + 3x + 40
Th e resulting polynomial is going to be:

5x12 + 2x9 + 7x8 + 6x7 + 14x6 + 6x4 + x3 + 2x2 + 3x + 40
Now notice how the addition is carried out. Let the result of addition be stored in a third list. Start with 

the highest power in any polynomial. If there is no item having the same exponent, simply append the term 
to the new list and continue with the process. Wherever matching of the exponents is found, then simply add 
the coeffi  cients and then store the term in the new list. If one list gets exhausted earlier and the other list still 
contains some lower-order terms, then simply append the remaining terms to the new list. Algorithm 5.16 
show how to add two polynomials.

Algorithm 5.16: ADD-POLY

Let phead1, phead2 and phead3 represent the pointers of the three lists and each node contains two integer’s 
exponent and coeffi  cient. Assume that the two linked lists already contain relevant data about the two polyno-
mials. Also assume that a function append() to insert a new node at the end of the given list.

1. Set p1=phead1;
2. Set p2=phead2;
3. Call malloc to create a new node p3 to build the third list
4. Set p3=phead3;
5. Traverse the lists till one list gets exhausted 
6. Loop if the exponent of p1 is higher than that of p2 then the next term 
 in final list is going to be the node of p1
7. Set p3->exp=p1->exp;
8. Set p3->coff=p1->coff;
9. Append(p3, phead3);
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11.Set p1=p1->next;   /*now move to the next term in list 1*/
12.End loop
13.Loop if p2 exponent turns out to be higher then make p3 same as p2 and 
 append to final list
14.Set p3->exp=p2->exp;
15.Set p3->coff=p2->coff;
16.Append(p3, phead3);
17.Set p2=p2->next;
18.End loop
19.Loop if  both exponents are same and  then add the coefficients to get 
  the term for the final 
20.Setp3->exp=p1->exp;
21.Set p3->coff=p1->coff+p2->coff;
22.Append(p3, phead3);
23.Set p1=p1->next;
24.Set p2=p2->next;
25.End loop
26.End loop
27.Check whether p1 is exhausted then 
28.Append(p1, phead3);
29.Append(p2, phead3);
30.End

5.7.1.2 The List ADT
A linked list is fundamental data type, which can be considered almost as basic as the array. 
A list is a fi nite sequence of storage cells, for which the following operations are defi ned: 
 create(l) creates an empty list l; 
 insert(item, i, list) changes the list from the form (a1,..., ai - 1, ai,...an) by inserting an item between
 ai-1 and ai; it is an error to call this unless the list has at least i – 1 items before the call. 
 delete(i, list) deletes the item at position i from the list, returning list containing one fewer item; and 
 read(i, list) returns the item at position i in the list, without changing the list. 

Other operations on the list are search(), traverse(), merge(), search() is used to search a node in a list; tra-
verse() is used to visit each node of the list and merge() is to combine two lists. It is oft en convenient to speak 
of the fi rst item as the head of the list.

SUMMARY

 • Linked list is a data structure, which is a collection of zero or more nodes, where each node contains 
two fi elds. Th e fi rst fi eld contains data, and the second fi eld is a pointer fi eld containing the address of 
the next node.

 • Linked list basically supports insert and delete operations.
 • Types of linked lists are singly linked list, doubly linked list, circular singly linked list and circular 

doubly linked list.
 • A singly linked list is a linear data structure in which each node contains only one link fi eld.
 • A singly linked list in which the link fi eld of the last node is assigned with the address of the fi rst node 

is known as a circular linked list or circular list
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 • Doubly linked list is the one in which each node of it contains two links pointing to either side of the 
nodes.

 • Applications of linked list are sparse matrix representation, polynomial manipulation, dynamic mem-
ory storage, in symbol table, etc.

EXERCISES

FILL IN THE BLANKS

 1.  Linked lists are .
 2.  A node in a linked list consists of  and .
 3.   is a pointer to a list of available memory spaces.
 4.   are the types of linked list.
 5.  A node in a doubly linked list contains  and  pointers.
 6.   are the applications of linked list.
 7.  Circular linked lists are used to overcome  disadvantage of a singly linked list.

MULTIPLE-CHOICE QUESTIONS

 1.  Linked lists are  structures.
       a. Static data   b. Dynamic data
       c. Non-linear data       d. None

 2.  Which of the following statements is true?
       a. Insertion in a linked list can be done only at front
       b. Traversing the list in only one direction
       c. Operations on a linked list can be performed anywhere in the list
       d. Both a  and b

 3.  Th e situation when in a linked list START=NULL is
       a. Underfl ow       b. Overfl ow
       c. Houseful        d. Saturated

 4.  Which of the following is a two-way list?
       a. Grounded header list        b. Circular header list
       c. Linked list with header and trailer nodes      d. None
 5.   is an application of a linked list.
      a. Towers of Hanoi        b. Recursion
      c. Sparse matrices        d. CPU scheduling

SHORT-ANSWER QUESTIONS

 1. Defi ne a linked list.
 2. Defi ne a singly linked list.
 3. Defi ne a doubly linked list.
 4. Give one disadvantage and one advantage of a singly linked list.
 5. Give one disadvantage and one advantage of a doubly linked list.
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 6. List out four applications of linked lists.
 7. Diff erentiate between a singly linked list and a doubly linked list.
 8. Defi ne a circular singly linked list with an example.
 9. Briefl y explain with diagrams how a node can be added to the linked list.
 10. Diff erentiate between a doubly linked list and a circular singly linked list.

ESSAY QUESTIONS

 1.  With an example discuss how the data structure linked list is represented in memory. 
 2.  Explain the following operations in a doubly linked list:
       (i) Create   (ii) Insert  (iii) Delete 
  (iv) Display  (v) Insert at a given position
 3.  Implement concatenation of two circular singly linked lists List1 and List2.  Use header nodes to imple-

ment the list.
 4.  Write an algorithm to implement the following on a singly linked list.
       (i) To fi nd the average of a set of values
      (ii)   To replace all the occurrences at a given value by another value from the list.
      (iii) To insert a given value in to its proper position.
 5.  Write an algorithm to implement insertion and deletion on a singly linked list.
 6.  Write the algorithms for implementing various operations on a circular doubly linked list.
 7.  Write a program to perform polynomial multiplication using a linked list.
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Stacks

Stack data structure is exclusively discussed in this chapter. Representation and imple-
mentation of stacks are explained along with examples. Four of the common applications 
are stated and illustrated in detail.

6.1 DEFINITION 

A  stack is a linear data structure in which insertion and deletion of elements are done at only one end, which 
is termed as  Top of stack. Th e last element that is inserted will be the fi rst element to be deleted. Th erefore, this 
is referred to as a Last In First Out (LIFO) structure.
Examples
 1.  Th e stack of trays in a cafeteria 
 2.  A stack of plates in a cupboard

Let ST be a stack with elements 10,20,30. Th e element 30 is pointed by the top. When the new element 
40 is to be added, it is inserted at the top. Now Top is  pointing to the element 40 as in Figure 6.1(a). When 
deletion of an element is to be performed, the element pointed by the top is removed fi rst, i.e. 40 is removed 
fi rst as shown in Figure 6.1(b).

Chapter 6

30

20

10

Top
40

30

20

10

Top

ST with three elements             40 added at top
(a) Insertion

Figure 6.1 Stack and its working
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(b) Deletion

Figure 6.1 Continued

6.2 REPRESENTATION OF A STACK

Th e representation of a stack in the memory can be done in two ways. Th ey are as follows:

 • Static representation using arrays
 • Dynamic representation using linked lists

6.2.1 ARRAY REPRESENTATION OF A STACK

Stack can be represented using a one-dimensional array. Allocate a block of memory required to accommodate the full 
capacity of the stack, and the items of a stack are stored in a sequential manner from the fi rst location of the memory 
block.

30

20

10

Top

20

10

Top

40 removed from ST            30 removed from ST

D

C

B

A

4

3

2

1

A   B   C D

[1] [2] [3] [4]

Top

(a)  Stack

(b)  Array representation of a stack

Index
Top

Figure 6.2 Stack and its array representation

In Figure 6.2(a), stack is a one-dimensional array. Top is a pointer that points to the top element in the stack.
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6.2.2 LINKED REPRESENTATION OF A STACK

Representing a stack using arrays is easy and convenient. However, it is useful for fi xed sized stacks. Sometimes 
in a program, the size of a stack may be required to increase during execution, i.e. dynamic creation of a stack. 
Using a linked list, a stack can be dynamically created. A singly linked list is used to represent a stack. Figure 6.3 
shows the linked representation of the stack. Here, the node consists of data and link fi elds. Data fi eld is to store 
the items or data and link fi eld is to point to the next fi eld.

Item1

Top

Head

Item2 Item3 Item ...

Item n

Figure 6.3 Linked representation of a stack

Th e item in the fi rst node is the top of the stack and the item in the last node is the bottom of the stack.

6.3 OPERATIONS ON STACK 

Th e basic operations on stacks are:
 (i)  PUSH —insertion of the elements into a stack
 (ii)  POP—deletion of the elements from the stack

Push operation: Inserting an element into the stack is called push operation. Check for Stack Overfl ow condition 
i.e. whether the stack is full of elements or not before performing Push operation. Every time an element is 
pushed into the stack, the top must be incremented. In Figure 6.4, the stack has 2 elements 10, 5.

3

2

1

3

2

1

0

3

2

1
0

3

2

1

0

3

2

1

0

10 05

10

05

10 10

Empty 
stack

Push 10 After
pushing 10

Push 05 After 
pushing 05

Top Top

Top

Figure 6.4 Push operation

Pop operation: Deleting an element from the stack is called Pop operation. Check for the Stack Underfl ow condi-
tion before performing Pop operation, i.e. whether the stack is empty or not. Every time an element from the 
stack is deleted, the top must be decremented by one. Now, the top points to the current top element of the 
stack. In Figure 6.5, the stack is empty aft er popping all the elements.
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Figure 6.5 Pop operation

Push and Pop are the two important operations that are performed on the stack. In addition, Show and Size 
operations can also be performed on a stack. Show operation displays all the elements of the stack if it already 
has some elements. If not (i.e., if the stack is empty) it displays a message that the stack is empty. Size operation 
returns the number of elements in the stack.

6.3.1 ARRAY IMPLEMENTATION OF A STACK

Suppose STACK [1: N] is a linear array that represents a stack. Top is a pointer variable that holds the location 
of the top element of the stack and N is the number of elements that can be stored in a stack. Top = 0 or NULL 
represents that the stack is empty, and Top = N represents that the stack is full. Th e following are the algorithms 
for Push and Pop operations using arrays.

Algorithm 6.1: PUSH (STACK, N, TOP, ITEM)

Th is algorithm pushes an ITEM into a STACK; N is the maximum size of a stack.
1. [Check for stack overflow]
 If Top=N then write:“stack overflow” and return
2. Set Top=Top+1                  //increment Top by 1
3. Set STACK[Top]=ITEM          //insert item in new Top position
4. End

Algorithm 6.2: POP (STACK, TOP, ITEM)

Th is algorithm deletes the top element of the STACK and assigns it to the variable ITEM.
1. [check for stack underflow]
 If Top=0 then write:stack underflow and return
2. Set ITEM=STACK[Top]        //initializing Item with Top element
3. Set Top=Top-1               //Decrement top by 1
4. End

Consider a stack with fi ve elements called NUMBERS [1:5] of numerical values. Th e insertion of values 10,20, 
30,40,50 and deletion are shown in Figure 6.6.
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 • Initially stack NUMBER[1:5] is 

[1] [2] [3] [4] [5]

Top=0

 • Push 10 into NUMBER[1:5]

10

Top

[1] [2] [3] [4] [5]

Top=1

 • Push 20 into NUMBER[1:5]

10  20

Top

[1] [2] [3] [4] [5]

Top=2

 • Push 30 into NUMBER[1:5]

10  20  30

Top

[1] [2] [3] [4] [5]

Top=3

 • Push 40 into NUMBER[1:5]

10  20  30  40

Top

[1] [2] [3] [4] [5]

Top=4

 • Push 50 into NUMBER[1:5]

10  20  30  40  50

Top

[1] [2] [3] [4] [5]

Top=5

 •   PUSH 60 into NUMBER[1:5]

Here TOP=N and cannot insert 60 into the stack since stack overfl ow condition  is invoked.
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Th e following steps illustrate the pop operation over the same stack:
 • Pop an element from NUMBER[1:5]

10  20  30  40  50

Top

[1] [2] [3] [4] [5]

Top=4

 • POP  an element from NUMBER[1:5]

10  20  30  40  50

Top

[1] [2] [3] [4] [5]

Top=3

Figure 6.6 Array implementation of a stack

Here in the Pop operation the Top value is decremented, but the deletion of the element is not done. Pro-
gram 6.1 is the program for array implementation of stack.

Program 6.1
#include<iostream.h>
#include<conio.h>
#include<stdlib.h>
template<class t>
class stack
{
 int top,n;
 t a[50];
 public:
 stack(int m)
 {
  top=-1;
  n=m;
 }
 void push();
 void pop();
 void display();
};
template<class t>
void stack<t>::push()
 {
  t ele;
  if(top>=n-1)
  {
   cout<<“stack is over flow\n”;
   return;
  }
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 top++;
 cout<<“enter the element \n”;
 cin>>ele;
 a[top]=ele;
 }
template<class t>
void stack<t>::pop()
 {
  t ele;
  if(top==-1)
  {
   cout<<“stack is underflow\n”;
   return;
  }
  ele=a[top];
  top--;
  cout<<“the deleted element is”<<ele;
 }
template<class t>
void stack<t>::display()
 {
  int i;
  if(top==-1)
  {
   cout<<“stack is underflow\n”;
   return;
  }
  cout<<“the elements are\n”;
  for(i=0;i<=top;i++)
  cout<<a[i]<<“ ”;
 }
void main()
 {
  int n,ch;
  clrscr();
  cout<<“enter the size of the stack\n”;
  cin>>n;
  stack<char>s(n);
  while(1)
  {
   cout<<“\nmenu\n”;
   cout<<“1.push\n”;
   cout<<“2.pop\n”;
   cout<<“3.display\n”;
   cout<<“4.exit\n”;
   cout<<“enter your choice\n”;
   cin>>ch;
   switch(ch)
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   {
    case 1:
     s.push();
     break;
    case 2:
     s.pop();
     break;
    case 3:
     s.display();
     break;
    case 4:
     exit(0);
     break;
   default:
     cout<<“invalid option\n”;
     break;
  }
 }
}

Output

enter the size of the queue
10
menu
1.push
2.pop
3.display
4.exit
enter your choice
1
enter the element
2
menu
1.push
2.pop
3.display
4.exit
enter your choice
1
enter the element
3
menu
1.push
2.pop
3.display
4.exit



Chapter 6 Stacks | 6.9

enter your choice
3
2 3
menu
1.push
2.pop
3.display
4.exit
enter your choice
2
the deleted element is 2
menu
1.push
2.pop
3.display
4.exit
enter your choice
4

6.3.2 LINKED IMPLEMENTATION OF A STACK

To insert an item into the linked stack, insert the new node with that item as the fi rst node in the singly linked 
list. Th e Top pointer that was previously pointing to the fi rst element in the list now points to the new node. To 
delete an item from the linked stack, the node pointing by the top is deleted and Top points to the next node. 
Figure 6.7 illustrates the operations on the linked stack.

Initially stack is

Head
30 20 10

Insert 40 into the list

40 30 20 10

Head

(a) Push operation

Delete 40 from the linked stack

30 20 10

Head

(b) Pop operation
       Figure 6.7 Linked implementation of a stack
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Th e following are the algorithms for Push and Pop operations using linked list.

Algorithms 6.3: PUSH –LSTACK(TOP, ITEM)

Insert item ITEM into the linked stack LSTACK with  pointer TOP
1. Insert ITEM into LSTACK
  NODE=call GETNODE (N)
2. Set DATA of NODE to ITEM       //node for item 
3. Set LINK of NODE to Top       //insert node NODE into stack
4. Top=NODE                      //update top pointer 
5. END.

Algorithm 6.4: POP–LSTACK (TOP, ITEM)

Delete the top element from LSTACK and assign to the ITEM.
1. Check stack is empty
  if(Top=0) then write “stack is empty“
2. Exit 
3. Else 
4. Temp=Top 
5. Set ITEM to Top of DATA 
6. Set Top to Top of LINK
7. End

Program 6.2 is the program for linked representation of stack.

Program 6.2

#include<iostream.h>
#include<conio.h>
#include<stdlib.h>
#include<alloc.h>
template<class t>
class llist
{
 struct node
 {
  t data;
  node*link;
 } 
 *top,*head,*temp,*temp1;
 public:
 llist();
 void push();
 void pop();
 void display();
};
template<class t>
llist<t>::llist()
 {
  top=NULL;
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  head->link=NULL;
 }
template<class t>
void llist<t>::push()
 {
  t ele;
  cout<<“enter the element\n”;
  cin>>ele;
  temp=(struct node*)malloc(sizeof(struct node));
  if(temp==NULL)
  {
   cout<<“memory allocation error\n”;
   return;
  }
 temp->data=ele;
 if(top==NULL)
 {
  head->link=temp;
  temp->link=NULL;
 }
else
 {
  top->link=temp;
  temp->link=NULL;
 }
 top=temp;
}
template<class t>
void llist<t>::pop()
 {
  t ele;
  if(top==NULL)
  {
   cout<<“linked list is empty\n”;
   return;
  }
 for(temp1=head;temp1!=top;temp1=temp1->link)
 {
  temp=temp1;
 }
 temp->link=NULL;
 ele=temp1->data;
 free(temp1);
 top=temp;
 cout<<“the deleted element is”<<ele<<endl;
}
template<class t>
void llist<t>::display()
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 {
  if(top==NULL)
  {
   cout<<“linked list is empty\n”;
   return;
  }
 for(temp=head->link;temp!=top->link;temp=temp->link)
 {
  cout<<temp->data<<“ ”;
 }
}
void main()
{
int ch;
llist<int> l;
clrscr();
while(1)
 {
  cout<<“\nmenu\n”;
  cout<<“1.insertion\n”;
  cout<<“2.deletion\n”;
  cout<<“3.display\n”;
  cout<<“4.exit\n”;
  cout<<“enter your choice\n”;
  cin>>ch;
  switch(ch)
  {
   case 1:
    l.push();
    break;
   case 2:
    l.pop();
    break;
   case 3:
    l.display();
    break;
   case 4:
    exit(0);
    break;
  }
 }
}

Output

menu
1. insertion
2. deletion
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3. display
4. exit
enter your choice
1
enter the element
10
menu
1.insertion
2.deletion
3.display
4.exit
enter your choice
1
enter the element
20
menu
1.insertion
2.deletion
3.display
4.exit
enter your choice
3
10 20
menu
1.insertion
2.deletion
3.display
4.exit
enter your choice
2
the deleted element is 20
menu
1.insertion
2.deletion
3.display
4.exit
enter your choice
3
10
menu
1.insertion
2.deletion
3.display
4.exit
enter your choice
4
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Th e implementation of stack using arrays and linked list are discussed. In the following section a detailed 
explanation is given on the areas where stack is applied. 

6.4 APPLICATIONS OF STACKS

Stacks have a wide range of applications. Th e following are some of the applications of stack:
 • Expression evaluation
 •  Recursion
 • Balancing of the matching parenthesis

6.4.1 EXPRESSION EVALUATION

An arithmetic expression can be represented in three ways:
 (1)  Infi x: An operator between two operands is an infi x expression.
   <operand><operator><operand>
    Ex: a+b

 (2)  Postfi x: An operator that follows two operands is a postfi x expression. 
   <operand><operand><operator>
   Ex: a b+  

 (3)  Prefi x: An operator that is followed by two operands is a prefi x expression.
   <operator><operand><operand>
   Ex: +ab
Stacks can be used to evaluate expressions and also to convert expressions from one form to another.

Infi x to postfi x conversion: In algebra the infi x notation is like a+b.c. Th e corresponding postfi x notation is abc.+. 
Algorithm 6.5 shows the conversion. 

Algorithm 6.5:

 1. Scan the Infi x string from left  to right. 
 2. Create an empty stack. 
 3. If the scanned character is an operand, add it to the Postfi x string. If the scanned character is an opera-

tor and if the stack is empty,  Push the character to stack. 
 4. If the scanned character is an operator and the stack is not empty, compare the precedence of the char-

acter with the element on top of the stack (here aft er top of the stack is referred as topStack). If topStack 
has higher precedence over the scanned character then pop the stack, else push the scanned character 
into the stack. Repeat this step as long as the stack is not empty and topStack has precedence over the 
scanned character. Continue this step till all the characters are scanned. 

 5. Return the postfi x string. 

Consider the infi x string: a+b*c–d. Initially, the stack is empty and the postfi x string has no characters. 
Now, the fi rst character scanned is ‘a’.  Th e character ‘a’ is added to the postfi x string. Th e next character 
scanned is ‘+’, being an operator it is pushed into the stack. 
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+ a

Stack Postfix string

Next, the character scanned is ‘b’ which will be placed in the postfi x string, since it is an operand. Th e next 
character is ‘*’, which is an operator. Now, the top element of the stack is ‘+’, which has a lower precedence than 
‘*’, so ‘*’ will be pushed on to the stack. 

ab

*
+

Postfix stringStack

Th e next character is ‘c’, which is placed in the postfi x string. Th e next character scanned is ‘–’. Th e topmost 
character in the stack is ‘*’, which has a higher precedence than ‘–’. Th us ‘*’, will be popped out from the stack 
and added to the postfi x string. Even now the stack is not empty. Now, the topmost element of the stack is ‘+’, 
which has equal priority to ‘–’. So, pop the ‘+’ from the stack and add it to the postfi x string. Th e ‘–’ will be 
pushed to the stack. 

_ abc*+

Stack Postfix string

Th e next character is ‘d’, which is added to the postfi x string. Now, all characters have been scanned so pop 
the remaining elements from the stack and add it to the postfi x string. At this stage,  only ‘–’ is in the stack. 
It is popped out and added to the postfi x string. So, aft er all characters are scanned, the stack and the postfi x 
string will be as follows:

abc*+d-

Postfix stringStack

Th e end result for a given infi x string : a+b*c–d  is postfi x string : abc*+d–



6.16 | Data Structures and Algorithms Using C++ 

Program 6.3

/*infix to postfix conversion*/
#include<iostream.h>
#include<string.h>
#include<stdlib.h>
#include<ctype.h>
class expression
{
 private:
   char infix[100];
   char stack[200];
   int top;
   int r;
   char postfix[100];
 public:
   void convert();
   int input_p(char);
   int stack_p(char);
   int rank(char);
};
int expression::input_p(char c)
{
 if(c==’+’||c==’-’)
  return 1;
 else if(c==’*’||c==’/’)
  return 3;
 else if(c==’^’)
  return 6;
 else if(isalpha(c)!=0)
  return 7;
 else if(c==’(‘)
  return 9;
 else if(c==’)’)
  return 0;
 else
 {
   cout<<“Invalid expression::input error\n”;
   exit(0);
 }
}
int expression::stack_p(char c)
{
 if(c==’+’||c==’-’)
  return 2;
 else if(c==’*’||c==’/’)
  return 4;
 else if(c==’^’)
  return 5;
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 else if(isalpha(c)!=0)
  return 8;
 else if(c==‘(’)
  return 0;
 else
  {
    cout<<”Invalid expression::stack error\n”;
    exit(0);
  }
}
int expression::rank(char c)
{
 if(c==‘+’||c==‘-’)
  return -1;
  else if(c==’*’||c==‘/’)
  return -1;
  else if(c==‘^’)
  return -1;
  else if(isalpha(c)!=0)
  return 1;
  else
 {
  cout<<“Invalid expression::in rank\n”;
  exit(0);
 }
}
void expression::convert()
{
 cout<<“infix expression to postfix form”
 cout<<“Enter an infix expression::\n”;
 cin>>infix;
 int l=strlen(infix);
 infix[l]=‘)’;
 infix[l+1]=”;

 //Convertion starts
 top=1;
 stack[top]=‘(’;
 r=0;
 int x=-1;
 int i=0;
 char next=infix[i];
 while(next!=”)
 {
  //Pop all the elements to outputin stack which have higher precedence
  while(input_p(next)<stack_p(stack[top]))
  {
   if(top<1)
   {
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    cout<<“invalid expression::stack error\n”;
    exit(0);
   }
   postfix[++x]=stack[top];
   top–;
   r=r+rank(postfix[x]);

   if(r<1)
   {
    cout<<“Invalid expression::r<1\n”;
    exit(0);
   }
  }
  if(input_p( next )!=stack_p(stack[top]))
   stack[++top]=next;
  else
   top–;
  i++;
  next=infix[i];
 }
 postfix[++x]=”;
 if(r!=1 || top!=0)
 {
  cout<<“Invalid expression::error in rank or stack\n”;
  exit(0);
 }
 cout<<“\n\nThe corresponding postfix expression is::\n”;
 cout<<postfix<<endl;
}
int main()
{
 expression obj;
 obj.convert();
 return 0;
}

Output

infix expression to postfix form
Enter an infix expression::
(a+b^c^d)*(c+d)
The corresponding postfix expression is::
abcd^^+cd+*
Press any key to continue

Similarly, other conversions can be implemented using stacks.
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6.4.2 POSTFIX EVALUATION

Th e postfi x expression can be easily evaluated using a stack. Scan the expression from left  to right and if any 
operand is found, push them into the stack. If any operator is found, pop the required number of operands 
from the stack and then perform the operation. Push the result again into the stack. Finally, the evaluated 
expression is placed into the stack. 

In postfi x notation the order of the operations is determined by the  precedence hierarchy and associativity 
of the operators and operands in the expressions. Algorithm 6.6 explains the postfi x evaluation.

Algorithm 6.6: POST-EVAL (EXP)

1. Scan EXP from left to right and repeat step 2 and step 3 for each element 
of EXP.
2. If operand is found, push it on to the stack.
 1. If operator is found then 
  1. Pop the required number of operands from the stack
  2. Evaluate the operator
  3. PUSH the result back into the stack.
     End if
3. end if
4. End of step1 loop
5. Pop out the result from stack
6. End
Consider the following expression in postfi x form and evaluate the expression:

Postfix    2, 3, 4,+,*,21,7,/,-.

 Scan Operation Stack
 2  PUSH(2) 2
 3  PUSH(3) 2,3
 4  PUSH(4) 2,3,4
 +  POP(4),POP(3),PUSH(7) 2,7
 *  POP(7),POP(2),PUSH(14) 14
 21  PUSH(21) 14,21
 7  PUSH(7) 14,21,7
 /  POP(7),POP(14),PUSH(2) 14,3
 –  POP(2),POP(14),PUSH(12) 11

Finally the value of the expression is 11.

6.4.3 RECURSION

A function calling itself or a call to another function, which in turn calls the fi rst function is called a recursive 
function. Th ese recursive functions are executed using stacks. Return address and all local variables and formal 
parameters of the called method will be stored into the stack. Whenever any method is called all the elements 
stored in the stack will be restored aft er a return is executed.

Recursion is implemented using the data structure stack. Each recursive call to a method requires that the 
following information to be pushed onto the system stack:



6.20 | Data Structures and Algorithms Using C++ 

 • Formal parameters
 • Local variables
 • Return address

Th is information, collectively, is referred to as a stack frame. Th e stack frame for each method call will 
be diff erent. For example, the stack frame for a parameterless or no local variable method will contain just a 
return address. Th e compiler will take care of the entire above required stack maintenance when a call to a 
recursive method is made.

Th e following strategy can be used to remove the recursion from a recursive routine, although not elegant-
ly. Th ere might be a far more pleasing method for a particular routine, but this technique is very instructional. 
It allows one to simulate the stack by declaring user’s own stack structure and manage the recursion. Th is is 
accomplished as follows:

 i. Each time a recursive call is made in the algorithm, push the necessary information onto the stack.
 ii.  When the process is completed at this deeper level, pop the simulated stack frame and continue pro-

cessing in the higher level at the point indictated by the return address popped from the stack.
 iii.  Use an iterative control structure that loops until there are no return addresses left  to pop from the 

stack.

Algorithm 6.7: FACT (n)

 1. If(n==0) then set fact=1 and return 
 2. else p=n-1
 3. q=fact(p)
 4. fact=n*q;
 5. End

Th e use of the stack in performing recursion is explained through a simple recursive program. Consider 
the recursive program for a factorial as shown in Figure 6.8.

Examine the recursive call in Step 3. To avoid an endless series of calls to fact(), a base case n==0 is used 
in Step 1. Th e function fact()a calling itself  is based on the value of n. Th e function fact() has normal ter-
mination only when the base case is executed or recursive calls have successfully ended.

While executing, to maintain the record of values of parameters and to keep track of calls made by itself, 
the stack is used.

n

5

p q n

5 4 fact(4)

p q

     (a) Call to fact(5)      (b) Calling fact(4) during execution of fact(5)

n

4
5

1
2
3
4
5

0
1
2
3
4

fact(0)
fact(1)
fact(2)
fact(3)
fact(4)

3
4

fact(3)
fact(4)

p q n p q

    (c) Calling fact(3) during execution  (d) Contents of stack aft er making subsequent 
    of fact(4)       calls and during call to fact(0)
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n

1
2
3
4
5

0
1
2
3
4
5

0
1
2
3
4

0
1
2
3
4

0
1
2
3

  fact(4)

1
1
2
3

  fact(4)

p q n p q

    (e) Call to fact(0)   (f) fact(0) has normal termination since 0!=1 
          and returns to the called position

n

5

2
3
4
5 4

1
2
3
4

1
fact(2)
fact(3)
fact(4) 24

p q n p q

   (g) fact(1) terminates returning the (h) Stack contents for calls to fact() except
       value 1!=1 to the variable q     for fact(5)

Figure 6.8 Recursive calls to function fact()

When the function fact(5) is called and executed, the variable p gets the value 4 and calls the function 
fact(4) as shown in Figure 6.8(b), still the call to fact(5) is not yet fi nished. Every new function call pushes 
the current values of the parameter into the stack. Figure 6.8(d) illustrates the stack contents during call to 
fact(4) and subsequent calls. Call to fact(0) in Figure 6.8(f) satisfi es the condition in step 1 and gets termi-
nated yielding the value for 0! as 1 and returns it to the variable q. In Step 4 of the algorithm the calculating 
fact=n*q =1*1=1 . Th en,  the function fact (1) terminates yielding the value 1 to Step 3  for the previous 
call  to fact(2) and computes fact=n*q =2*1=2  and terminates by returning  the result to q and so on.

Stack structure increases in size due to push operation during the function calls and decreases itself in size 
by pop operation until the fi rst call to fact() is reached, i.e. fact(5). During the execution of fact(5), the fi rst 
and the oldest call in Step 3 computes the q value as 24 and proceeds to get the fact=n*q =5*24=120 , 
which is the required value. 

Generally in the implementation of recursive calls using stack, all the local variables are pushed on to 
the stack when the call is made and poped out from the stack when the recursive call is terminated and their 
original values are restored.

6.4.4 BALANCING OF THE MATCHING PARENTHESIS

Given an expression of ‘(‘ and ‘)’ which are left  and right parenthesis. A ‘(‘ must match with a ‘)’, or else it is 
invalid. For example, ( )( ), ( ( ( ) ) ), ( ( ( ) ) ( ) ) are valid sets of parenthesis, while ( ( ) (,  ) ( ) (  are all illegal. 
Obviously, counting the numbers of ‘(‘ and ‘)’ in the expression is not enough. By convention, the expression is 
reading from left  to right. A ‘)’ is matched with the closest, unmatched ‘(‘ on its left . For example, ( ( ( ) ) ( ) ).

Suppose to fi nd which is closest and unmatched for ‘)’, read the expression from left  to right; the most re-
cently unmatched ‘(’ is cancelled with ‘)’. To keep track, the most recently read ‘(’ assuming that there are many 
pending unmatched ‘(’,  stack is useful.
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 • When a ‘(‘ is processed,  push it into a stack.
 • When a ‘)’ is processed,  pop it from the stack.  Th is ‘(‘ matches with current ‘)’.
 • If  reading the expression is  fi nished, but the stack is not empty, it means there are more ‘(‘ than ‘)’ in 

the expression, then the input is invalid.
6.4.4.1 The ADT Stack 
A stack is a collection of elements or items, for which the following operations are defi ned: 
 •  create(S) creates an empty stack S.
 •  isEmpty(S) is a predicate that returns “true’’ if S exists and is empty, and “false’’ otherwise.
 •  push(S,item) adds the given item to the stack S.
 •  pop(S) removes the most recently added item from the stack S and returns it as the value of the func-

tion.

Th e primitive isempty is needed to avoid calling pop on an empty stack, which may cause an error. An 
additional operation called top(S) is sometimes defi ned, which simply returns the last item to be added to the 
stack, without removing it.  

SUMMARY

 • Stack is a non-primitive linear data structure into which elements are inserted and deleted from the 
same end called Top. 

 • Stack supports two basic operations, Push and Pop. 
 • Th ere are many applications of stacks like recursion elimination, evaluation of expressions, etc.
 • Stack can be implemented using arrays or linked lists.

EXCERCISES

FILL IN THE BLANKS

 1. Th e insertion and  deletion are done at  of the stack.
 2.  and  are the operations of stack.
 3.  is an application of stack.
 4. When rear= =size of stack then  stack is .
 5. Th e postfi x evaluation is done based on .

MULTIPLE-CHOICE QUESTIONS

 1. Th e stack is a  data structure.
  a. FIFO   b. LIFO 
  c. Both a and b  d. FILO
 2. Th e  pointer Top increases when an .
  a. Element is inserted  b. Element is deleted 
  c. Element is displayed  d. None

 3. Which of the following is not stack application?
  a. Recursion   b. Templates 
  c. String reversion   d. Process scheduling 
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 4. Stacks are dynamically represented using .
  a. Pointers   b. Structures 
  c. Linked lists   d. None

 5. When is a stack  said to be empty?
  a. top==n   b. top==0 
  c. front==0   d. front=rear=0

SHORT-ANSWER QUESTIONS

 1. Defi ne a stack.
 2. Defi ne a postfi x expression.
 3. Give examples for infi x, postfi x and prefi x expressions.
 4. Convert the following postfi x expression to infi x expression ABCDG/*++.
 5. Defi ne prefi x expression.
 6. List out any four applications of stack.
 7. Write a C function to insert an element on the top of the stack.
 8. Evaluate the following postfi x expression: 123+*321-+*.
 9.  Describe the operations performed over the stack.

ESSAY QUESTIONS

 1. Write an algorithm for converting postfi x expression; further trace the algorithm clearly indicating the 
contents of the stack for the following expression: 

  ((A-(B+C)) * D)$(E+F)
 2. Discuss the various exceptional conditions that should be handled while using stacks and convert the 

following expression to infi x and prefi x expressions: ABCDE/*-F/G++
 3. How do you defi ne a data structure? Give a C++ program to construct a stack of integers and to per-

form all necessary operations on it.
 4. Write a C++ program to implement multiple stacks using a single array.
 5. Give a complete specifi cation of DS for stack and explain how a stack of N-integers is represented in 

C++.
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Queues

Chapter 7 discusses about queues and its variants such as circular queues and doubly 
ended queues. The static, dynamic representation and operations of all the types of 
queues are explained and exemplified. Various applications of the queues are listed, and 
one of the applications called Simulation of Time-Sharing System is explained in detail.

7.1 INTRODUCTION

 Queue is a linear data structure in which insertions are made at one end called  rear, and deletions are made 
at the other end called  front. A queue is also known as a structure that models the fi rst-come fi rst-serve order 
or equivalently the fi rst-in fi rst-out ( FIFO) order. Th at is, the element that is inserted fi rst into the queue will 
be the element to be deleted fi rst, and the element that is inserted last is deleted last. Th e insertion operation 
in the queue is also known as  enqueue, and deletion is also referred as  deque. Th e main diff erence between a 
queue and a stack is that elements in a queue are put at the bottom and taken off  from the top whereas in a 
stack, elements put at the top and taken off  from the top.

Examples
 • An electronic mailbox
 • A waiting line in a store, at a service counter, on a one-lane road, at a bank,  at a bus stop, playlist for 

jukebox, etc.
 • Equal-priority processes waiting to run on a processor in a computer system
 • Printer jobs
 • CPU processes

Queues are more diffi  cult to implement than stacks, because operations are performed at both the ends. 
Th e simplest implementation uses an array, adds elements at one end and moves all the elements when one of 
the elements is taken out of the queue. 

Chapter 7
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7.2 REPRESENTATION OF A QUEUE

Queues can be represented in two ways:
 • Static representation using arrays
 • Dynamic representation using linked list

7.2.1 ARRAY REPRESENTATION

A one-dimensional array is used to represent a queue. Consider a queue QUE[1:N]; two pointers FRONT and 
REAR represent two ends of the QUE. To insert an element, the REAR pointer is used and to delete an element, 
the FRONT pointer is used (Figure 7.1).

N

FRONT
FRONT=1 and REAR=4

REAR

10 20 30 40

[1] [2] [3] [4] [5] [N]

Figure 7.1 Array representation of queue QUE[1:N]

A queue QUE[1:N] cannot hold more than N elements, and every insertion of an element must check the 
condition whether the QUE is full, and deletion of an element must ensure that QUE is not empty.

7.2.2 LINKED REPRESENTATION

Using linked list, queue is created dynamically by which the size of the queue can be increased as per the neces-
sity in the application or program, whereas using arrays the size of the queue is fi xed.

Figure 7.2 shows the single linked list representation of a queue. Th e pointer FRONT points to the fi rst 
node, and REAR points to the last node in the list.

Figure 7.2 Linked representation of a queue

When FRONT=REAR the queue is said to be empty.

7.3 OPERATIONS ON A QUEUE

Th e two basic operations on queues are:
 1.  Insertion (Enqueue)—adds an element into the queue
 2.  Deletion (Deque)—removes an element from the queue

Data1 Data2 Data3 Data N

Head

REARFRONT
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 Enqueue: Inserting an element into a queue will be done at the rear end. When the queue is empty both rear and 
front will be initialized to 0. Before inserting any element, check for  queue overfl ow condition, i.e. whether the 
queue is full or not. If it is full display the appropriate message otherwise insert an element. While inserting, 
check whether front is 0 or not. If it is so, this is the fi rst element to be inserted, so both front and rear must be 
incremented. If not, only the rear end is incremented. Figure 7.3 illustrates the insertion operation.

[1] [2] [3] [4] [5] [6]

FRONT=0 and REAR=0

(a) Initially queue is empty

10

[1] [2] [3] [4] [5] [6]

FRONT REAR

(b) Aft er inserting 10

[1] [2] [3] [4] [5] [6]

10 20

FRONT REAR

(c) Aft er inserting 20
Figure 7.3 Insertion operation

In Figure 7.3(a), initially the queue is empty and FRONT and REAR pointers are initialized to zero. When 
element 10 is inserted, the FRONT and REAR pointers are incremented by 1 and now both point to the fi rst 
position; this is shown in Figure 7.3(b). When element 20 is inserted, the REAR pointer is incremented by 1 
and now points to the second position as in Figure 7.3(c).
 Deque: Deleting an element from the queue is done at the front end. Th e element that is inserted fi rst will be the 
fi rst element to be deleted. Initially, check for  queue underfl ow condition, i.e. if both front and rear are pointing 
to 0, that means (there are no elements in queue) the queue is empty. While deleting an element, front will be 
incremented by 1.

10 20 30 40 50 45

[1] [2] [3] [4] [5] [6]

FRONT                 REAR

(a) Initial queue

Figure 7.4 Deletion operation
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20 30 40 50 45

[1] [2] [3] [4] [5] [6]

FRONT REAR

(b) Aft er deleting 10

30 40 50 45

[1] [2] [3] [4] [5] [6]

FRONT REAR

(c) Aft er deleting 20

Figure 7.4 Continued

In Figure 7.4(a), the queue is with 6 elements. FRONT points to the fi rst element and REAR points to the 
sixth element. Aft er deleting element 10 the FRONT pointer is incremented by 1, as shown in Figure 7.4(b). 
Similarly when element 20 is deleted, FRONT is updated.

Aft er deleting the entire elements, front will be greater than rear. So, aft er every deletion, check for front 
greater than rear condition. In Figure 7.4(c), suppose all the elements 30, 40, 50, 45 are deleted then the 
FRONT value will be 7 (because aft er deleting element 45 FRONT is incremented by 1) and the REAR value will 
be 6. So, if FRONT is greater than REAR again initialize both FRONT and REAR to 0, which indicates that the 
queue is empty.

Th us, inserting an element and deleting an element are the two important operations of a queue. In addi-
tion, two other operations are also there. Th ey are size and display.
 • Size gives us the number of elements in the queue
 • Display prints all the elements in the queue

7.3.1 ENQUEUE AND DEQUE USING ARRAYS

Th e following algorithms describe the insertion and deletion operations using arrays. Let QUE[1:N]be an array 
representation of a queue. Suppose FRONT and REAR are the two pointers pointing to the front and rear posi-
tions of the queue, respectively. Initially FRONT and REAR pointers  are initialized with 0.

Algorithm 7.1: INSERT (QUE, N, ITEM, REAR)

 1. Check for “Queue is full”
if(REAR==N)then Write “Queue is full”

 2. Else
 3. Increment FRONT by 1
 3. Increment REAR by 1                           
 4. SET QUE[REAR] to ITEM
 5. Endif
 6. End

In Algorithm 7.1, insertion of a new element is done by incrementing the REAR variable. Before insertion, 
check whether the condition QUE is full to ensure that there is no overfl ow in the queue.
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Algorithms 7.2: DELETE (QUE, FRONT, REAR, ITEM)

 1. Check for “Queue is empty”
If(FRONT==REAR) then Write “Queue is empty”

 2. Else
 3. Set ITEM to FRONT of QUE        
 4. Increment FRONT by 1                        
 5. Endif
 6. End

In Algorithm 7.2, deletion of element is done by just incrementing the FRONT variable so that it points to 
the next element.

In the array implementation of queues while inserting an element, the REAR moves away from FRONT, 
and while deleting an element the FRONT moves towards the REAR in the array. When the queue is empty 
FRONT=REAR and when the queue is full REAR=N, where N is the size of the queue.

Example
Let QUE[1:4] is a linear queue. Th e operations insertion and deletion on QUE are as shown below:

 • Initially QUE[1:4] is
[1] [2] [3] [4]

FRONT=0 and REAR=0

 • Insert 10 by calling INSERT(QUE,4,10,0), then QUE is as follows:

[1]

10

[2] [3] [4]

FRONT=1 and REAR=1

 • Insert 20 by calling INSERT(QUE,4,20,1), then QUE becomes:

[1]

10 20

[2] [3] [4]

FRONT=1 and REAR=2

 • Insert 30 by calling  INSERT(QUE,4,30,2),  then QUE becomes:

[1]

10 20 30

[2] [3] [4]

FRONT=1 and REAR=3

 • Insert 40 by calling INSERT(QUE,4,40,3), then QUE becomes:
[1]

10 20 30 40

[2] [3] [4]

FRONT=1 and REAR=4
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 • Deleting element 10 from QUE by calling DELETE(QUE,1,4,10):
[1]

20 30 40

[2] [3] [4]

FRONT=1, REAR=4 
and ITEM=10

 • Deleting element 20 from QUE  by  calling DELETE(QUE,2,4,20): 
[1]

30 40

[2] [3] [4]

FRONT=2, REAR=4 
and ITEM=20

 • Deleting element 30 from QUE  by calling DELETE(QUE,3,4,30):
[1]

40

[2] [3] [4]

FRONT=3, REAR=4 
and ITEM=30

 • Insert element 50 by making call as INSERT(QUE,4,50,4). Th e condition Queue Overfl ow is invoked 
and insertion fails because REAR=N that is REAR=4. So, QUE is full.

 • Delete element 40 from QUE, then it becomes:
[1] [2] [3] [4]

FRONT=4, REAR=4 
and ITEM=40

 • Again performing deletion by calling DELETE(QUE,4,4,ITEM) invokes the condition Queue Under-
fl ow which  reports an error because FRONT=REAR that shows that QUE is empty.

Program 7.1 shows the implementation of a queue using arrays. 

Program 7.1

// Array implementation of queue.
#include<iostream.h>
#include<conio.h>
#include<stdlib.h>
template<class t>
class queue
{
 int rear,front,n;
 t a[50];
 public:
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 queue(int m)
 {
  rear=front=-1;
  n=m;
 }
 void push();
 void pop();
 void display();
};
template<class t>
void queue<t>::push()
{
 t ele;
 if(rear>=n-1)
 {
  cout<<“queue is overflow\n”;
  return;
 }
 cout<<“enter the element \n”;
 cin>>ele;
 if(front==-1)
  rear=front=0;
 else
  rear++;
 a[rear]=ele;
}
template<class t>
void queue<t>::pop()
{
 t ele;
 if(rear==-1)
 {
  cout<<“queue is underflow\n”;
  return;
 }
 ele=a[front];
 if(rear==front)
  rear=front=-1;
 else
  front++;
 cout<<“the deleted element is”<<ele;
}
template<class t>
void queue<t>::display()
{
 int i;
 if(rear==-1)
 {
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  cout<<“queue is underflow\n”;
  return;
 }
 for(i=front;i<=rear;i++)
 cout<<a[i]<<“ ”;
 cout<<“\n”;
}
void main()
{
 int ch,n;
 clrscr();
 cout<<“enter the size of the queue\n”;
 cin>>n;
  queue<int>q(n);
 while(1)
 {
  cout<<“\nmenu\n”;
  cout<<“1.push\n”;
  cout<<“2.pop\n”;
  cout<<“3.display\n”;
  cout<<“4.exit\n”;
  cout<<“enter your choice\n”;
  cin>>ch;
  switch(ch)
  {
   case 1:
    q.push();
    break;
   case 2:
    q.pop();
    break;
   case 3:
    q.display();
    break;
   case 4:
    exit(0);
    break;
  default:
   cout<<“invalid option\n”;
   break;
  }
 }
}

Output

enter the size of the queue
10
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menu
1.push
2.pop
3.display
4.exit
enter your choice
1
enter the element
2
menu
1.push
2.pop
3.display
4.exit
enter your choice
1
enter the element
3
menu
1.push
2.pop
3.display
4.exit
enter your choice
3
2 3
menu
1.push
2.pop
3.display
4.exit
enter your choice
2
the deleted element is 2
menu
1.push
2.pop
3.display
4.exit
enter your choice
4

7.3.2 ENQUEUE AND DEQUE USING LINKED LIST

Th e following algorithm describes the insertion and deletion operations using the linked list.

Algorithm 7.3: INSERT-LINK(FRONT, REAR, ITEM)

Insert ITEM into a QUE with FRONT and REAR as the front and rear pointers to the Queue
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 1. Call GETNODE(N)
  //Create new node
 2. Set ITEM to new node DATA
 3. Set new node LINK to NULL
 4. If(FRONT=0) then
 5. Set FRONT, REAR to N //If QUE is empty ITEM is the first element in Que
 6. Else
 7. Set  LINK of REAR  to N                    
 8. Set N to REAR                         
 9. End

Algorithm7.4: DELETE-LINK(FRONT,ITEM)

 // Check for the condition Queue empty  
 1. If(FRONT=0)then write “Queue is empty”
 2. Else
 3. Set FRONT to PTR  
 4. Set ITEM with DATA of PTR 
 5. Set FRONT with LINK of  PTR 
 6. Return PTR  
 7. End

Example
Consider the queue QUE, three insertions and two deletions are shown below. For the sake of an explanation, 
the HEAD node is not considered.  
 • Initially QUE is empty.  Insert 10 into the list.

FRONT REAR

10

  Element 10 is the fi rst node and both FRONT and REAR point to the node.
 • Insert 20 into QUE:

FRONT REAR

10 20

  Now REAR points to the new node.
 • Insert 30 into the QUE and update REAR:

FRONT REAR

20 30

 • Now delete the node pointed by FRONT, that is 10 and update FRONT:
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FRONT REAR

20 30

  Now  FRONT points to the node with element 20.
 • Insert 40 to the QUE and update REAR. 

FRONT REAR

20 30 40

  FRONT points to node 20 and REAR points to node 40.
 • Delete the node pointed by FRONT and update FRONT.

FRONT REAR

30 40

 Th e deleted ITEM is 20. Previously front points to node 20, now it is updated to point to node 30.

Program 7.2 shows the linked implementation of a queue.

Program 7.2

#include<iostream.h>
#include<conio.h>
#include<stdlib.h>
#include<alloc.h>
template<class t>
class cqueue
{
 struct node
 {
  t data;
  node*link;
  }*head,*temp,*front,*rear;
 public:
 cqueue();
 void push();
 void pop();
 void display();
};
template<class t>
cqueue<t>::cqueue()
{
 head->link=NULL;
 rear=NULL;
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 front=NULL;
}
template<class t>
void cqueue<t>::push()
{
 t ele;
 cout<<“enter the element\n”;
 cin>>ele;
 temp=(struct node*)malloc(sizeof(struct node));
 if(temp==NULL)
 {
  cout<<“memory allocation error\n”;
  return;
 }
if(front==NULL)
{
 temp->data=ele;
 head->link=temp;
 temp->link=NULL;
 front=rear=temp;
}
else
 {
 temp->data=ele;
 rear->link=temp;
 temp->link=NULL;
 rear=temp;
 }
}
template<class t>
void cqueue<t>::pop()
{
 t ele;
 if(front==NULL)
 {
  cout<<“linked list is empty\n”;
  return;
 }
if(front==rear)
{
 ele=front->data;
 front=rear=NULL;
}
else
 {
 ele=front->data;
 temp=front;
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 front=front->link;
 free(temp);
 }
 cout<<“the deleted element is”<<ele<<endl;
}
template<class t>
void cqueue<t>::display()
{
 if(rear==NULL)
{
 cout<<“linked list is empty\n”;
 return;
}
for(temp=front;temp!=rear->link;temp=temp->link)
{
 cout<<temp->data<<“ ”;
 }
}
void main()
{
 int ch;
 cqueue<int>q;
 clrscr();
 while(1)
 {
  cout<<“\nmenu\n”;
  cout<<“1.push\n”;
  cout<<“2.pop\n”;
  cout<<“3.display\n”;
  cout<<“4.exit\n”;
  cout<<“enter your choice\n”;
  cin>>ch;
  switch(ch)
  {
   case 1:
    q.push();
     break;
   case 2:
    q.pop();
    break;
   case 3:
    q.display();
    break;
   case 4:
    exit(0);
    break;
   default:
  cout<<“invalid option\n”;
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  break;
  }
 }
}

Output

menu
1.insertion at front
2.insertion at end
3.insertion at any position
4.deletion at front
5.deletion at end
6.deletion at any position
7.display
8.exit
enter your choice
1
enter the element
10
menu
1.insertion at front
2.insertion at end
3.insertion at any position
4.deletion at front
5.deletion at end
6.deletion at any position
7.display
8.exit
enter your choice
1
enter the element
20
menu
1.insertion at front
2.insertion at end
3.insertion at any position
4.deletion at front
5.deletion at end
6.deletion at any position
7.display
8.exit
enter your choice
7
20 10
menu
1.insertion at front
2.insertion at end



Chapter 7 Queues | 7.15

3.insertion at any position
4.deletion at front
5.deletion at end
6.deletion at any position
7.display
8.exit
enter your choice
2
enter the element
30
menu
1.insertion at front
2.insertion at end
3.insertion at any position
4.deletion at front
5.deletion at end
6.deletion at any position
7.display
8.exit
enter your choice
2
enter the element
40
menu
1.insertion at front
2.insertion at end
3.insertion at any position
4.deletion at front
5.deletion at end
6.deletion at any position
7.display
8.exit
enter your choice
7
20 10 30 40
menu
1.insertion at front
2.insertion at end
3.insertion at any position
4.deletion at front
5.deletion at end
6.deletion at any position
7.display
8.exit
enter your choice
3
enter the element
50
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enter the position
3
menu
1.insertion at front
2.insertion at end
3.insertion at any position
4.deletion at front
5.deletion at end
6.deletion at any position
7.display
8.exit
enter your choice
7
20 10 50 30 40
menu
1.insertion at front
2.insertion at end
3.insertion at any position
4.deletion at front
5.deletion at end
6.deletion at any position
7.display
8.exit
enter your choice
4
the deleted element is 20
menu
1.insertion at front
2.insertion at end
3.insertion at any position
4.deletion at front
5.deletion at end
6.deletion at any position
7.display
8.exit
enter your choice
7
10 50 30 40
menu
1.insertion at front
2.insertion at end
3.insertion at any position
4.deletion at front
5.deletion at end
6.deletion at any position
7.display
8.exit
enter your choice
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5
the deleted element is 40
menu
1.insertion at front
2.insertion at end
3.insertion at any position
4.deletion at front
5.deletion at end
6.deletion at any position
7.display
8.exit
enter your choice
7
10 50 30
menu
1.insertion at front
2.insertion at end
3.insertion at any position
4.deletion at front
5.deletion at end
6.deletion at any position
7.display
8.exit
enter your choice
6
enter the  position
2
the deleted element is 50
menu
1.insertion at front
2.insertion at end
3.insertion at any position
4.deletion at front
5.deletion at end
6.deletion at any position
7.display
8.exit
enter your choice
7
10 30
menu
1.insertion at front
2.insertion at end
3.insertion at any position
4.deletion at front
5.deletion at end
6.deletion at any position
7.display
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8.exit
enter your choice
8

7.3.2.1 Disadvantages of a  Linear Queue
Consider the example discussed in Section 7.3.1, enqueue and deque using arrays. Th e insertion of element 50 
fails because the REAR value is equal to the maximum size of the queue, i.e. REAR=4, but positions [1], [2] 
and [3] are still empty. Th is leads to the limitation of linear queue. When REAR=N the queue overfl ow condi-
tion is true but this doesn’t mean that the queue is full, i.e. locations [1],[2] and [3] are empty. Th erefore, 
some space is available to insert a new element in the place of deleted elements. Th is limitation can be prevailed 
over by a circular queue.

7.4 CIRCULAR QUEUES 

In a circular queue the insertion of an element can be done even when rear is equal to the maximum size of 
a queue when the space is available at front in the queue, which is not possible in a linear queue. Both FRONT 
and REAR pointers move in a clockwise direction over the queue. Th e array representation of a   circular queue 
is the same as a normal queue physically. But, logically in a circular queue the front element comes aft er the 
last element. Figure 7.5 shows the physical and logical view of a circular queue.

0

1

2

3
. .

 .

. . .

N N-1

(a) Logical view of a circular queue

1   2    3   ...  N

FRONT REAR

(b) Physical view of a circular queue

Figure 7.5 Circular queue

Th e representation of a circular queue is the same as a normal queue with the only diff erence being that the 
REAR pointer is not the end of the queue and will again be pointing towards  the starting position.
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7.4.1 OPERATIONS ON CIRCULAR QUEUE

All the operations performed on the queue can also be performed on a circular queue. Algorithms INSER-
TION-CQ and DELETION-CQ describe the insertion and deletion operations in the circular queue. Th e array 
implementation of a circular queue is declared as CIR-QUE[0, N-1] to provide circular movement of FRONT 
and REAR pointers.

Algorithm7.5: INSERT-CQ(CIR-QUE ,FRONT,REAR,N,ITEM)

 //ITEM is the ITEM to be inserted. CIR-QUE is array representation of 
 //circular queue. FRONT and //REAR are pointers and N is the size of array.
 1. If (FRONT=0) then
 2. Set FRONT to 1             
 3. Set REAR to 1            
 4. Set ITEM to FRONT of CIR-QUE
 5. Else
 6. Set REAR=(REAR+1)mod n
 7. If(FRONT=REAR) then    //circular queue is  physically empty

Write “circular queue is logically full but physically empty”
 8. Set ITEM to REAR of CIR-QUE
 9. End

Algorithm 7.6: DELETE-CQ(CIR-QUE,FRONT,REAR,N,ITEM)

 1. If(FRONT=0)then
    Write “Queue is empty”
 2. Else
 3. Set FRONT=(FRONT+1)mod n          //UPDATE FRONT
 4. Set ITEM the FRONT ELEMENT
 5. End.

Th e following example explains the working of a circular queue
 • Initially the circular queue is empty:

1 2 3 4 5
FRONT=0
 REAR=0

 • Insert 10, 20, 30 elements:
1 2 3 4 5

10 20 30FRONT=1
 REAR=3

 • Delete element 10:
1 2 3 4 5

 20 30FRONT=2
 REAR=3

Figure 7.6 Operations on circular queue
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 • Insert 40, 50 elements:

1 2 3 4 5

 20 30 40 50FRONT=2
 REAR=5

 • Delete 20, 30 elements:

1 2 3 4 5

   40 50FRONT=4
 REAR=5

 • Insert  element 60:

1 2 3 4 5

60   40 50FRONT=4
 REAR=1

 • Delete element 40:

1 2 3 4 5

60    50FRONT=5
 REAR=1

 • Insert 70, 80, 90 elements:

1 2 3 4 5

60 70 80 90 50FRONT=5
 REAR=5

  Inserting any element at this stage fails because the circular queue is full.
 • Delete element 50: 

60 70 80 90 

1 2 3 4 5
FRONT=1
 REAR=4

 • Delete element 60:

 70 80 90 

1 2 3 4 5
FRONT=2
 REAR=4

 • Delete 70, 80 elements:

   90 

1 2 3 4 5
FRONT=4
 REAR=4

 • Delete element 90:
1 2 3 4 5

FRONT=0
REAR=0

  Circular queue is empty                                                   
Figure 7.6 Continued
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Programs 7.3 and 7.4 give the implementations of a circular queue using arrays and linked list.

Program 7.3

// Array implementation of Circular Queue 
#include<iostream.h>
#include<conio.h>
#include<stdlib.h>
template<class t>
class queue
{
 int rear,front,n;
 t a[50];
 public:
 queue(int m)
 {
  rear=front=-1;
  n=m;
 }
 void push();
 void pop();
 void display();
};
template<class t>
void queue<t>::push()
{
 t ele;
 if(front==(rear+1)%n)
 {
  cout<<“queue is overflow\n”;
  return;
 }
 cout<<“enter the element \n”;
 cin>>ele;
 if(front==-1)
  rear=front=0;
 else
  rear=(rear+1)%n;
 a[rear]=ele;
}
template<class t>
void queue<t>::pop()
{
 t ele;
 if(rear==-1)
 {
  cout<<“queue is underflow\n”;
  return;



7.22 | Data Structures and Algorithms Using C++ 

 }
 ele=a[front];
 if(rear==front)
  rear=front=-1;
 else
  front=(front+1)%n;
 cout<<“the deleted element is”<<ele;
}
template<class t>
void queue<t>::display()
{
 int i;
 if(rear==-1)
 {
  cout<<“queue is underflow\n”;
  return;
 }
if(front<=rear)
{
 for(i=front;i<=rear;i++)
 cout<<a[i]<<“ ”;
}
else
{
 for(i=front;i<n;i++)
 cout<<a[i]<<“ ”;
 for(i=0;i<=rear;i++)
 cout<<a[i]<<“ ”;
 }
 cout<<“\n”;
}
void main()
{
 int ch,n;
 clrscr();
 cout<<“enter the size of the queue\n”;
 cin>>n;
 queue<char>q(n);
 while(1)
 {
  cout<<“\nmenu\n”;
  cout<<“1.push\n”;
  cout<<“2.pop\n”;
  cout<<“3.display\n”;
  cout<<“4.exit\n”;
  cout<<“enter your choice\n”;
  cin>>ch;
  switch(ch)
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  {
   case 1:
    q.push();
    break;
   case 2:
    q.pop();
    break;
   case 3:
    q.display();
    break;
   case 4:
    exit(0);
    break;
   default:
    cout<<“invalid option\n”;
    break;
  }
 }
}

Output

enter the size of the queue
10
menu
1.push
2.pop
3.display
4.exit
enter your choice
1
enter the element
2
menu
1.push
2.pop
3.display
4.exit
enter your choice
1
enter the element
3
menu
1.push
2.pop
3.display
4.exit
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enter your choice
3
2 3
menu
1.push
2.pop
3.display
4.exit
enter your choice
2
the deleted element is 2
menu
1.push
2.pop
3.display
4.exit
enter your choice
4

Program 7.4

// Linked list implementation of Circular queue
#include<iostream.h>
#include<conio.h>
#include<stdlib.h>
#include<alloc.h>
template<class t>
class cqueue
{
 struct node
 {
  t data;
  node*link;
 }*head,*temp,*front,*rear;
 public:
 cqueue();
 void push();
 void pop();
 void display();
};
template<class t>
cqueue<t>::cqueue()
{
 head->link=NULL;
 rear=NULL;
 front=NULL;
}
template<class t>



Chapter 7 Queues | 7.25

void cqueue<t>::push()
 {
  t ele;
  cout<<“enter the element\n”;
  cin>>ele;
  temp=(struct node*)malloc(sizeof(struct node));
  if(temp==NULL)
  {
   cout<<“memory allocation error\n”;
   return;
  }
 if(front==NULL)
 {
  temp->data=ele;
  head->link=temp;
  temp->link=NULL;
  front=rear=temp;
 }
else
 {
  temp->data=ele;
  rear->link=temp;
  temp->link=front;
  rear=temp;
 }
}
template<class t>
void cqueue<t>::pop()
{
 t ele;
 if(front==NULL)
 {
  cout<<“linked list is empty\n”;
  return;
 }
 if(front==rear)
 {
  ele=front->data;
  front=rear=NULL;
 }
 else
 {
  ele=front->data;
  rear->link=front->link;
  temp=front;
  front=front->link;
  free( temp);
 }
 cout<<“the deleted element is”<<ele<<endl;
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}
template<class t>
void cqueue<t>::display()
{
 if(rear==NULL)
 {
  cout<<“linked list is empty\n”;
  return;
 }
 for(temp=front;temp!=rear;temp=temp->link)
 {
  cout<<temp->data<<“ ”;
 }
 cout<<temp->data<<“ ”;
}
void main()
{
 int ch;
 cqueue<int>q;
 clrscr();
 while(1)
 {
  cout<<“\nmenu\n”;
  cout<<“1.push\n”;
  cout<<“2.pop\n”;
  cout<<“3.display\n”;
  cout<<“4.exit\n”;
  cout<<“enter your choice\n”;
  cin>>ch;
  switch(ch)
  {
   case 1:
    q.push();
    break;
   case 2:
    q.pop();
    break;
   case 3:
    q.display();
    break;
   case 4:
    exit(0);
    break;
  }
 }
}
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Output

menu
1.push
2.pop
3.display
4.exit
enter your choice
1
enter the element
2
menu
1.push
2.pop
3.display
4.exit
enter your choice
1
enter the element
3
menu
1.push
2.pop
3.display
4.exit
enter your choice
3
2 3
menu
1.push
2.pop
3.display
4.exit
enter your choice
2
the deleted element is 2
menu
1.push
2.pop
3.display
4.exit
enter your choice4

7.5 DEQUE 

Another type of queue is  deque, which is pronounced as “deck” or “deque”. In deque, insertion and deletion 
operations can be performed on both sides of the queue. Th e term deque has emerged from double-ended 
queue. Figure 7.7 resembles the deque.
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Figure 7.7 Deque

Figure 7.8 illustrates that a deque is the general form of both stack and queue representation, i.e. the deque 
can be used as a stack or a queue. 

2010

TOP      
InsertionDeletion

20 3010

      (a) Stack     (b) Queue

FRONT REAR

Insertion

InsertionDeletion

Deletion

(c) Deque

Figure 7.8 Comparison of stack, queue, deque

Deque’s are of two types  input restricted deque and  output restricted deque. When insertion of elements 
into the deque is restricted to only one end and deletion can be done in both directions, such a deque is called 
input restricted deque. In an output restricted deque, insertion of elements can be done in both directions, but 
deletions can be done at only one end. Commonly deques are implemented using circular arrays. Figure 7.9 
shows the diff erent types of deques. 

FRONT REAR

InsertionDeletion

Deletion

(a) Input restricted deque

FRONT REAR

Insertion

Insertion

Deletion

(b) Output restricted deque

Figure 7.9 Types of deques

FRONT REAR

Insertion
InsertionDeletion

Deletion
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7.5.1 OPERATIONS ON A DEQUE

Four operations can be performed on deque. Th ey are 
• PUSH-DEQ(ITEM)  inserts ITEM at front end of Deque. 
• POP-DEQ()  deletes item at front of Deque.
• INSERT-DEQ(ITEM) inserts ITEM at REAR end of Deque.
• DELETE-DEQ()  deletes ITEM from REAR end of Deque.

Th e algorithm for POP-DEQ() and INSERT-DEQ(ITEM) operations are same as DELETE-CQ() and INSERT-
CQ(), respectively.

Consider DEQ[1:N] as a deque represented as circular array of size N. Th e following are the algorithms for 
insertion at the front end and deletion at the rear end.

Algorithm 7.7: PUSH-DEQ(DEQ,FRONT,REAR,ITEM)

       //Check whether FRONT is at left extreme
 1. If(FRONT==1) then
 2.  Set Temp=N
 3.  ELSE   //check whether FRONT is at extreme right or deque empty 
 4.  If(FRONT=N) OR (FRONT=0) then
 5.  Set Temp=1
 6.  Else
 7.  Set Temp=FRONT-1   //FRONT at middle position
 8.  If(Temp=REAR) then 
 9.  Write  “deque is full”
 10. Else
 11. FRONT=Temp
 12. DEQ[FRONT]=ITEM
 13. END.

Algorithm 7.8: DELETE-DEQ(DEQ,FRONT,REAR,ITEM)

Th e element is deleted from the rear end and is assigned to ITEM
 1.  If(FRONT=0) then
 2.  Write “deque is empty”
 3.  Else
 4.  If(FRONT=REAR) then         //DEQ contains right element
 5.  Set ITEM=DEQ(REAR)
 6.  Set FRONT=REAR=0           //Deque becomes empty
 7.  Else
 8.  If(REAR=1)then              //check whether REAR is at extreme left
 9.  Set ITEM=DEQ[REAR]
  10. Set REAR=N
  11. Else
  12. If(REAR=N)then       //check for REAR at extreme right
     Set ITEM=DEQ[REAR]
     Set REAR=1
  13. Else           //REAR at middle position
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         Set ITEM=DEQ[REAR]
         REAR=REAR-1
     14. END

Figure 7.10 explains the working of a deque. Suppose DEQ[1,6] is Deque. Th e operations on the deque are 
as follows.
 • Initially deque is with three elements:

[1] [2] [3] [4] [5]  [6]

  10 20 30FRONT=3
 REAR=5

 • Insert 40 at front and 50 at rear:

[1] [2] [3] [4] [5]  [6]

 40 10 20 30 50FRONT=2
 REAR=6

 • Delete 30, 50 from the rear end:

[1] [2] [3] [4] [5]  [6]

 40 10 20 FRONT=2
 REAR=4

 • Insert 60, 70, 80 at the front end:

[1] [2] [3] [4] [5]  [6]

60 40 10 20 80 70FRONT=5
 REAR=4

 • Insert 90 at the rear end, insertion fails because the deque is full:
  FRONT=REAR+1

 • Delete two elements from the front end:

[1] [2] [3] [4] [5]  [6]

60 40 10 20FRONT=1
 REAR=4

Figure 7.10 Operations on  deque

In the example in Figure 7.10, observe that insertion at the front end decrements FRONT by 1(mod)N 
and insertion at the rear end increments REAR by 1(mod)N.  Deletion at the front end increments FRONT by 
1(mod)N and deletion at the rear end decrements REAR by 1(mod)N, where N is the size of the deque.

7.6 APPLICATIONS OF QUEUES 

In general, queues are oft en used as “waiting lines.”  A few examples where queues would be used are as fol-
lows:
 (1) In operating systems for controlling access to shared system resources such as printers, fi les, commu-

nication lines, disks and tapes. 
 (2) Operating systems oft en maintain a queue of processes that are ready to execute or that are waiting for 

a particular event to occur. 
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 (3) Computer systems must oft en provide a “holding area” for messages between two processes, two pro-
grams or even two systems. Th is holding area is usually called a “buff er” and is oft en implemented as a 
queue. 

 (4) In the situation where there are multiple users or in a networked computer system, a printer is shared 
among all users. When a fi le is requested to be printed, the request is added to the print queue. When 
the request reaches the front of the print queue, the fi le is printed. Th is ensures that only one person at 
a time has access to the printer and it is given on a fi rst-come-fi rst-served basis. 

 (5) A fi le server in a computer network handles fi le access request from many clients throughout the net-
work. Servers have a limited capacity to service requests from clients. When that capacity is exceeded, 
client requests wait in queues.

 (6) Most computers have only one processor, so only one user at a time can be served. Entries for the 
other users are placed in a queue. Each entry gradually advances to the front of the queues as the users 
receive service. Th e entry at the front of the queue is the next to receive service.

  For example:
  i.  Modeling computer network
  ii. Each device is connected to the network by a ‘controller’.
  iii. Before a controller sends a message it checks whether the network is busy or not. If busy, it waits 

otherwise it sends a message. 
  iv. When two controllers attempt to send a message at the same time the messages collide and the 

receiving controllers ignore it. Similarly, the sending controllers recognize the problem and resend 
their messages.

 (7) For simulation of real-world situations. For instance, a new bank may want to know how many tellers 
to install. Th e goal is to service each customer within a reasonable wait time, but not have too many 
tellers for the number of customers. To fi nd out a good number of tellers, they can run a computer 
simulation of typical customer transactions using queues to represent the waiting customers. 

 (8) When placed on hold for telephone operators. For example, when a toll-free number for a bank is 
dialed, a recording that says, Th ank you for calling A-1 Bank. Your call will be answered by the next 
available operator. Please wait, may be heard. Th is is a queuing system.

7.6.1 SIMULATION OF TIME-SHARING SYSTEM

In time-sharing system, various users will share a single computer simultaneously. Since, there is only one 
CPU it is shared among n users. Th e processor is shared by allowing one user program to execute for a shorter 
period of time and then another user program is allowed to execute and followed by another, etc. until it is 
returned to the point of execution in the initial user program. Th is cycle is continued repeatedly on all active 
user programs. Th is technique of sharing the processor among various users is known as time sharing. Th e 
following example illustrates the working of a  time-sharing system.

Suppose three user programs U1, U2, U3 start their online session at their terminals, which are connected to 
single system. Th e table below shows the time periods of the three user programs:

Session start Program ID Requested CPU time period
0 U1 3, 7, 2
1 U2 1, 2, 1, 1
2 U3 3, 5, 1
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Aft er  logging on the system at time 0, initially user program U1 is allotted 3 sec of CPU time before it 
receives a message at its terminal. While receiving the message, the user thinks for some time and then gives 
a new input for the program. Further 7 secs of CPU time is required before another message is printed on the 
user U1 terminal. Again user thinks for some time and gives a new input for the program. Let the time period 
for thinking and giving input be the delay time. Finally, user program U1 uses 2 secs of CPU time and then logs 
off  the session.

In the above discussions, ignore the fact that the other two user programs U2, and U3 logged on at time 1 
and 2, respectively, and they need the processor immediately. Since there is only one CPU, the user programs 
U2 and U3 will be waiting until U1 fi nishes its fi rst requested CPU time period of 2 secs. To indicate that the 
user programs U2 and U3 are waiting for the processor, place the program ID of U2 and U3 in a queue aft er U1.  
Hence the queue at time 2 will look as in Figure 7.11.

FRONT REAR

U1 U2 U3

Figure 7.11 Queue at time 2

When U1 completes its fi rst requested CPU time period, a scheduling strategy must be used to allocate U2 
to CPU while U1 is thinking during delay time. When U2 fi nishes its CPU time period U3 should be allocated 
to execute. Th is type of scheduling technique is oft en called as fi rst-come-fi rst-serve (FCFS) scheduling.
Th e rules for FCFS scheduling for this applications are as follows:

 1. When a program requests the CPU time period, it is placed into the queue.
 2. Th e program pointed by the front pointer is the one that is currently executing. It remains at the front 

of the queue for its entire CPU time period.
 3. When a program completes its requested CPU time, it is removed from the queue and is not placed 

again into the queue until further request is made.
Following the above rules three user programs can be scheduled. Th e problem here is to simulate the activ-

ity of such a time-sharing system. Th e simulation must place users in the queue according to rule 1 and remove 
them as in rule 3.

Th e purpose of such a simulation is to obtain the information about the effi  ciency of the time-sharing 
system. Th e data related to this is as below:

CPU utilization for each user( ) *= 100Total session time
Total CPU time

Total user waiting time (for each user) = total time – total CPU time – total delay time
Total delay time (for each user) = time delay period*(number of CPU request – 1)

7.6.2 QUEUE ADT

A queue is a collection of elements, or items, for which the following operations are defi ned:
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 1. Create(Q) creates an empty queue Q. 
 2. IsEmpty(Q) returns whether the queue is empty or not.
 3. IsFull(Q) returns whether the queue is full or not.
 4. Enqueue(Element X,Q)  inserts an element X on the rear side of the queue.
 5. Dequeue(Q)  removes the element pointed to by the front end of the queue.

SUMMARY

 • A queue is a non-primitive linear data structure in which elements are inserted from one end and de-
leted from another end. It is also called as fi rst in fi rst out, i.e. the element is inserted fi rst will be deleted 
fi rst. Th e end into which elements are inserted is called the rear end and the end from which elements 
are deleted is called the front end.  

 • A queue basically supports two operations, insert and delete.                            
 • A queue has many applications, like it is used in operating systems for job scheduling, in networks, to 

check whether a given string is a palindrome or not, etc.
 • Types of queues are circular queue and doubly ended queue.
 • Insertion of elements can also be done at the rear when its value is the maximum size in circular 

queue.
 • In deque insertion and deletion operations can perform on both sides of the queue, so it is called as 

double-ended queue.
 • Input-restricted deque and output-restricted deque are the two types of deque.

EXERCISES

FILL IN THE BLANKS

 1. Queues are also knows as  structures.
 2.  are dynamic queues.
 3.  are the types of queues.
 4. Queue is said to be full when  .
 5.  is the drawback of linear queues.
 6.  are knows as deques.
 7. Th e advantage of circular queue  .

MULTIPLE-CHOICE QUESTIONS

 1. Th e data structure that  allows deleting data elements from front and inserting at rear is .
  a. Stacks     b. Queues 
  c. Deques     d. Binary search tree

 2. Identify the data structure that allows deletions at both ends of the list but insertion at only one end.
  a. Input-restricted deque  b. Output-restricted deque
  c. Priority queues   d. None of the above 

 3. A diff erence between a queue and a stack is 
  a. Queues require dynamic memory, but stacks do not. 
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  b. Stacks require dynamic memory, but queues do not. 
  c. Queues use two ends of the structure, stacks use only one.
  d. Stacks use two ends of the structure, queues use only one. 

 4. If the characters ‘D’, ‘C’, ‘B’, ‘A’ are placed in a queue (in the same order), and then removed one at a time, 
in what order will they be removed?

  a. ABCD     b. ABDC 
  c. DCAB     d. DCBA 

 5. Which of the following is an application of queue?
  a. Recursion   b. CPU scheduling
  c. Sorting    d. Matrices

SHORT-ANSWER QUESTIONS

 1. Defi ne queue with an example.
 2. Defi ne circular queue with an example.
 3. What do you mean by a priority in a queue.
 4. Give two disadvantages of queues.
 5. Give two advantages of queues.
 6. List any four applications of linear queue.
 7. List any four applications of circular queue.
 8. Mention two diff erences between queues and stacks.
 9. Give the specifi cation of data structure queue.
 10.  A circular queue has a size of 5 has 3 elements 20, 40, 60 where FRONT=0 and REAR=2. Show the 

necessary diagrams. What is the value of FRONT and REAR aft er each of these operations? 
            (i) Insert an item 10    (ii) Delete an item

ESSAY QUESTIONS

 1. Defi ne an input-restricted queue. Show with a suitable C++ program the implementation of a queue 
using the operations of a input-restricted queue.

 2. Explain the working of ordinary queue with primitive operations and show the underfl ow and over-
fl ow conditions using an example.

 3. What is the disadvantage of an ordinary queue and how it is overcome? Explain with an example.
 4. What is a circular queue? Explain the implementation of a circular queue using linked list. Write an 

algorithm for the same.
 5. How are a queue of stacks, a stack of queues and a queue of queues implemented? Write routines to 

implement the appropriate operations for each of these data structures.
  (i) insertion  (ii) deletion   (iii) display
 6. Write a program for implementing deque.



Dictionaries

  This chapter discusses dictionaries and their representations in various methods such as 
linear list representation, skip list representation and hash table representation. In this 
chapter the reasons and situations of collision occurrences and techniques to overcome 
the collisions are explained. Comparisons of chaining and open addressing, applications 
and ADT of dictionary are also explained in detail. 

8.1  DICTIONARIES

Dictionary contains data elements as pairs of the form (k,v), where k is the key and v is the value. Th e fi eld 
key must be  unique and is used  to identify the data elements uniquely. No two pairs are allowed to have the 
same key.

A dictionary with duplicates is a dictionary which allows two or more (key, value) pairs with the same 
key. To solve the ambiguity while performing operations on elements with duplicate keys, dictionaries should 
frame some rules.

A dictionary can either be ordered or unordered. In  ordered dictionaries, all the data elements are placed 
either in ascending or in descending order of the keys. Here sequential access of (key, value) pairs is allowed.

In an  unordered dictionary, no particular order of data elements is maintained. Here, data elements or 
(key, value) pairs are accessed randomly.
Examples
 •  A dictionary that stores student records
 •  A general dictionary of words 
 • A computer dictionary similar to dictionary of words
 • Symbol table is a dictionary with duplicates which is used by a compiler

8.2  LINEAR LIST REPRESENTATION

An ordered dictionary can be represented as an ordered linear list. In this every element or node is a (key, 
value) dictionary pair stored generally in ascending order of the keys. Sorted array list and sorted chain are 
used for this representation.

Chapter 8
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Th is representation uses binary search method and hence the time complexity of search operation is 
O(log n). Insertion and deletion operations perform search operation internally before either inserting an ele-
ment or deleting an element. Insertion requires additional O(n) time to shift  O(n) pairs to make room for the 
new (key, value) pair. Similarly, the deletion also requires additional O(n) time to shift  O(n) pairs forward to 
fi ll the gap left  by the deleted pair. Sequential access allows O(1) time to access every (key, value) pair, which 
are stored in ascending order. 

8.3  SKIP LISTS REPRESENTATION

William Pugh developed skip lists in 1990. Skip lists are probabilistic alternatives to balanced trees like AVL 
trees or splay trees. Skip lists are balanced by considering a random number generator.

Th e balanced trees perform very effi  ciently, O(log n) for the operations such as search, insert and delete 
over random input data. But, for the ordered input data they are less effi  cient, O(n). To balance the tree and 
to assure good performance, the trees are rearranged by the balanced tree algorithms. Random input data is 
impractical in many cases where queries are to be answered on-line.

When a sorted list is considered, the performance of search, insert and delete operations is poor, O(n). 
Because, to fi nd a relevant node the list must be scanned node-by-node starting from the head. Th e basic idea 
behind the skip lists is to allow the list to be scanned in bigger steps. Skip lists are sorted linked lists but diff er 
in two points. Th ey are
 • In a  skip list, nodes have many ‘next’ references known as forward references, whereas in an ordinary 

list, nodes have only one ‘next’ reference.
 • For a given node the number of forward references is probabilistically determined.

In a linked list shown in Figure 8.1 to fi nd an element every node might be examined. In a sorted ordered 
list, every second node of the list also points to a node two positions ahead to it in the list as shown in Figure 8.2. 
A maximum of n/2+1 nodes are to be searched where n is the length of the list. When every fourth node also 
points to a node four position ahead to it as shown in Figure 8.3. Th en it requires a maximum of n/4+2 nodes 
to be searched. Similarly, if every (2i)th node also points to 2i nodes ahead to it as shown in Figure 8.4. Th en 
the number of nodes to be searched can be reduced to log2 n. Skip lists are very effi  cient for search operations, 
but for insertion and deletion this would be ineffi  cient. Maximum level (M level) will be log1/pn  where p is the 
probability and p=1/2.

5 7 8 9 11

1215202224

NIL

Figure 8.1 Linked list
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Th e level of the node is known by the number of forward pointers it has. A node with k  forward pointers is 
called a level k node. Th e levels of nodes can be distributed when every (2i)th node points to 2i nodes ahead in 
the list, as 50% of the nodes are at level 1, 25% of the nodes are at level 2, 12.5% of the nodes are at level 3 and so on 
(Figure 8.4). Levels of the nodes may be chosen randomly but with same proportions as shown in Figure  8.5. Th at 
is, the number of nodes at diff erent levels must be considered irrespective of their positions. Th e ith forward 
pointer of a node points to the next node of level i or higher instead of pointing to 2 i–1 nodes ahead.

Now insertion or deletion does not require restructuring but requires only the local modifi cations. So, the 
level of the node chosen during its insertion need not be changed.

8.3.1 OPERATIONS

A dictionary or a  symbol table can be effi  ciently represented as a skip list. Basic operations performed on them 
are searching, insertion and deletion. Other additional operations like fi nding the minimum key, fi nding the 
next key, etc. can also be easily supported by the skip list.

A node at level i has i forward pointers, indexed from 1 to i. Level of the list is the maximum level exist-
ing in the list. When the list is empty the maximum level is 1. Th e header of the list holds forward pointers at 
levels 1 through the maximum level.

Initially, an element NIL is allocated with a value, i.e. greater than any legal value. All the levels of all the 
skip lists terminate at NIL. A new list is initialized with level as 1, and all the forward pointers of the corre-
sponding list header node point to NIL.

5 7 8
9

11 12 15 20 22
24 NIL

Figure 8.2 Skip list with level 2

Figure 8.3 Skip list with level 3

Figure 8.4 Skip list with level 2i

Figure 8.5 Skip list with level 2i

5 7 8
9

11 12 15
20

22
24

NIL

5 7 8
9

11 12 15

20

22
24

NIL

5 8 9 11 12 15
22

24

NIL

20

7
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8.3.2 SEARCHING

Searching for an element begins by following the highest level pointer. If the element is found then the search is 
successful. If the end of the list is found or when an element that is greater than the element being searched is 
found then no more progress can be made at the present level. Now, the search moves down to the next lower 
level and continues till the element is found or level 1 pointers are followed to fi nd the end of the list or to fi nd 
an element greater than the searching element.  
Algorithm 8.1 explains the search procedure

ALGORITHM 8.1: SEARCH(list, key)

1. Set p=list[header]
2. Loop for i=list[level] to 1 do
 1. Loop while p[forward[i] of key]<key do
   2. Set p=p[forward[i]]
3. Set p=p[forward[1]]
4. Check whether p[key]=key then 
      Return p[value]
5. Else 
      Return failure
6. End

A vector i.p is used to hold the pointer to the rightmost node of level i or higher, i.e. to the left  of the loca-
tion where insertion or deletion takes place. Th is can also be referred to as the insertion point.

8.3.3 INSERTION

Dictionaries work with key–value pairs. During insertion the key is searched; if it is found then the value is 
updated with the new value, otherwise a node is created with random level and the value is inserted. Algorithm 
8.2 explains the insertion process. Figures 8.6 and 8.7 show the insertion procedure.

Figure 8.6 Original skip list before insertion

ip[i]-forward[i]

5 8 9 11 15
22

24

NIL

20

7

Figure 8.7 Skip list aft er insertion

5 8 9 11 12 15
22

24

NIL

20

7
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Algorithm 8.2: SINSERT(list, key, Item)

 1. Set p=list[head]
 2. Loop for i=list[level] to 1 do
  1. Loop while p=key[forward[i]]<key do
  2. Set p=p[forward[i]]
  3. Set ip[i]=p
 3. Set p=p[forward[1] 
 4. Check whether p[key]=key then
      Set p[value]=Item
 5. Else
     1. Set |v|=rdLevel()
  2. Check whether |v|>list[level] then
       1. Loop for i=list[level+] to |v| do
          Set ip[i]=list[head]
   2. Set list[level]=|v|
   3. Set p=MakeNode(|v|, key, value)
   4. Loop for i=1 to level do
        Set p[forward[i]]=ip[i] of forward[i]
        Set ip[i] of forward[i]=p
 6. End

8.3.4 DELETION

Deletion process also requires to search for the key to delete the corresponding key–value pair. Aft er identify-
ing it the vector i.p points to the node that is before (left  of) the deleting node. Th e link of the following node 
which was with the deleted node should be assigned to the node that was left  to the deleted node. Algorithm 8.3 
explains the deletion process.

Algorithm 8.3: DELETE (list, key)

1. Set p=list[header]
2. Loop for i=list[level] to 1 do
 Loop while p[forward[i]] of key<key do
   Set p=p[forward[i]]
   Set ip[i]=p
3. Set p=p[forward[i]]
4. Check whether p[key]=key then
   Loop for i=1 to list[level] do
    i. Check whether ip[i] of forward[i]≠p then
     ii. Break
       free(p)
3. Loop while list[level]>1 and list[header] of forward[list[level]]=NIL do
4. Set list[level]=list[level-1]
5. End

Algorithm 8.4 explains the random level generation. 

Algorithm 8.4: rdLevel()

1. Set |v|=1
2. Loop while random( )<r and |v|<MLevel do
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3. Set |v|=|v|+1
4. return |v|
Many applications are naturally represented with skip lists than trees. Skip lists have better speed by a 

constant factor when compared with balanced trees and self-adjusting trees. With every node no balance or 
priority information is to be stored. Skip lists can be confi gured easily so that for every element it requires on 
an average only 11/3 pointers or even less. Hence, skip lists are also effi  cient in terms of space.

8.4 HASH TABLE 

 Hash table is an effi  cient method of implementing dictionaries. A hash function is used to map dictionary 
pairs into the positions of a hash table. A bucket array is used for a hash table. It is an array of size n. Each and 
every cell in the array is treated as a bucket and it is used to hold the key–value pairs. When an item is looked 
up, its key is hashed to fi nd the appropriate bucket. Th en, the bucket is searched for the right key–value pair. 
If a bucket can store only one element and when two keys are mapped to the same bucket then collision oc-
curs. Effi  ciency of a hash function lies in avoiding collisions. Using the hash function all the operations on the 
hash table such as searching for a key–value pair, inserting a key–value pair or deleting a key–value pair are 
performed. 

8.4.1 HASH FUNCTIONS

When a table with n elements and m positions, where n≤m is considered then to assign positions to the elements 
n number of  hash functions can be used.
Some of the methods that are used for creating a hash function are as follows:
 1. Th e division method
 2. Th e multiplication method
 3. Truncation
 4. Folding
 5. Extraction

1. The division method: Map a key k into one of m slots by taking the remainder of k divided by m. Th at is, the 
hash function is
       h(k)= k mod m.
Example:  If table size m = 12, key k = 100 then 
      h(100) = 100 mod 12
                = 4

Values of m such as m = 2p should be avoided.   Good values for m are primes, and are not too close to exact 
powers of 2.  

2. Truncation: Ignore some digits of the key and use the rest as the array index. When the keys are alphabets, 
then their numerical equivalents can be considered. Th e problem with this approach is that there may not 
always be an even distribution throughout the table.
Example:  If student ID’s are the key 928324312 then from the 9-digit number select just the 4th and 8th position 
digits as the index, i.e. 31 as the index.

3. Folding: Partition the key into several pieces, i.e. two or three or more parts. Each of the individual parts 
is combined using any of the basic arithmetic operations such as addition or multiplication. Th e resultant 
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number could be conveniently manipulated, for example, truncated, to get the index of the key that is to be 
stored. Folding gives better spread of keys across the hash table. Th is process is fast and simple specially when 
bit patterns are used in place of numerical values. In the bit-oriented versions exclusive–or operations are ap-
plied. 
Example: Consider a number 123456. Partition the number into three parts, 12 | 34 | 56. Add the three parts 
12 + 34 + 56 = 112. Truncating the result gives 12, which is the index for the hash table to store the number 
123456.

4. Extraction: In this method computing the address uses only a part of the key. From a student id 928324312 
the method may use fi rst four digits, 9283, or the last four digits, 4312, or the combination of the fi rst two and 
last two digits, 9212, or any other combination. Every time only some part of the key is used. It is suffi  cient for 
hashing if this part is carefully choosen, only when the omitted part distinguishes the keys in an insignifi cant 
manner. For example, the starting digits of the ISBN code are the same for all the books of the same publisher. 
So, they must be excluded when computing the address if the data table has only the books from a single 
publisher.

8.5 COLLISIONS 

When a hash function maps two diff erent keys to same location then  collision occurs. Th us the corresponding 
records cannot be stored in the same location. An array with four records, each with two fi elds, one for the key 
and one to hold data is considered.  Let the hashing function be a simple modulus operation, i.e. array index is 
computed by fi nding the remainder of dividing the key by 4:
  Array Index: = key MOD 4

Th en key values 9, 13, 17 will all hash to the same index. When two (or more) keys hash to the same value, 
a collision is said to occur (Figure 8.8).

Hash
Function

Hashed
Value

hash_table(I,J)

Key
K=9
K=13
k=17

0

1

2

3
1

9

Figure 8.8 Collision 

Collision resolution techniques: Th e two most popular techniques for collision resolution are:  
 1.  Separate chaining—An array of linked list implementation
 2.  Open addressing (or closed hashing)—Uses an array based implementation

8.5.1  SEPARATE CHAINING

Th e hash table is implemented as an array of linked lists. To insert an item into the table, it is appended to the 
corresponding linked lists. Th e linked list to which it is to be appended is determined by hashing the insert-
ing item. Th is technique is known as  chaining or  separate chaining or  open hashing because each hash table 
element is a separate chain (linked list). Its data fi eld contains either keys or references to keys. Th is technique 
allows one to perform all operations easily without any collision. Separate chaining is depicted in Figure 8.9:
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 • Inserting an item e that hashes at index i is simply inserted into the linked list at position i. Synonyms 
are chained in the same linked list. 

 • Retrieval of an item e with hash address i is simply retrieving it from position i of the linked list.
 • Deletion of an item e with hash address i is simply retrieving it from position i of the linked list and 

deleting or disconnecting it from the linked list (Figure 8.9).
Insert: A5, A2, A7, B5, A9, B2, B9, C2
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Figure 8.10 Example of separate chaining 

Figure 8.9 Separate chaining    

Example: Load the keys 23, 13, 21, 14, 7, 8 and 15, in the same order, in a hash table of size 7 using separate 
chaining (Figure 8.10) with the hash function h(key)=key%7.
  h(23)=23%7=2     
  h(13)=13%7=6
  h(21)=21%7=0
  h(14)=14%7=0  (collision)
  h(7)=7%7=0 (collision)
  h(8)=8%7=1 (collision)
  h(15)=15%7=1 (collision)
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Operations on separate chained hash table: Th e very frequently used search, insert and delete operations on sepa-
rate chained hash table are discussed here. 

Searching: Hash function of the element that is to be searched should be computed. Access the bucket with 
corresponding hash value and proceed to search the chain of nodes sequentially. If the element is found, then 
search is successful, else it is an unsuccessful search.

Algorithm 8.5:  Separatechain-hash-search(ht, b, e)

/* Search an element e in separate chained hash table*/
/* ht is the hash table, an array of pointer to buckets, b is the bucket 
 number and e is the element to be searched*/
hf=h(e)   /*h(e) is the hash function on e*/
t=ht(hf)  /*t is the pointer to the first node in the chain*/
While (DATA(t)≠e and t≠NULL) do 
   t=LINK(t);
end while
If(DATA(t)==e) then
 print(“Search is Successful”);
If(t==NULL) then
print(“Search is Unsuccessful”);
End

Insertion: Inserting an element e into the hash table also requires computing hash function on the element to 
determine the bucket. Aft er fi nding the corresponding bucket it is similar to inserting an element into a singly 
linked list.

If the elements in each chain are maintained in either ascending or descending order, then it will be less 
expensive to perform all the operations.

Deletion: Deleting an element e from the hash table also requires computing hash function on the element to 
determine the bucket. Aft er fi nding the corresponding bucket it is similar to deleting an element from a singly 
linked list.

Performance analysis: Th e length of the chain of nodes corresponding to a bucket decides the complexity of 
separate chained hash tables.

Its best case complexity of search operation is O(1). Th e worst case complexity is O(n). Th is occurs when 
all the n elements are mapped to the same bucket and the searched element is the last element in the chain of 
n nodes.

8.5.2 OPEN ADDRESSING

In open addressing all the record entries are stored in the bucket array. Th e locations of the hash table are 
termed as buckets. Each bucket is portioned into slots as shown in Figure 8.11. Th e buckets are examined 
whenever a new entry has to be inserted, starting with hashed-to slot using some probe sequence until an 
empty slot is found.

To search for an entry all the buckets are scanned in the same sequence until the entry is found or an empty 
slot is found which indicates that there is no such entry in the table.

Th e location or address of an item is not determined by the hash value with open addressing. Each location 
in an array will be in the EMPTY, DELETED or OCCUPIED state. If the state of a location is OCCUPIED then 
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it contains key and data otherwise it does not have any value. Initially all the locations in the array are in the 
EMPTY state. When an item at a particular location is deleted then its state will be DELETED, not EMPTY 
(the item may be deleted but it is not removed until some other element is inserted in that place). Th e need of 
these three states is explained by Algorithm 8.6, which inserts an item into a table.

Figure 8.11 Hash table

Advantages of separate chaining: Separate chaining has several advantages over open addressing:
 • Collision resolution is simple and effi  cient.
 • Th e hash table can hold more elements without the large performance deterioration of open address-

ing (the load factor can be 1 or greater).
 • Th e performance of chaining declines much more slowly than open addressing.
 • Deletion is easy —no special fl ag values are necessary.
 • Table size need not be a prime number.
 • Th e keys of the objects to be hashed need not be unique.

Disadvantages of separate chaining:
 • It requires the implementation of a separate data structure for chains, and a code to manage it.
 • Th e main cost of chaining is the extra space required for the linked lists.
 • For some languages, creating new nodes (for linked lists) is expensive and slows down the system. 

ALGORITHM 8.6:

1. Find the location at which item is to be stored, L=H(key(Item))
2. If location L is not OCCUPIED then insert Item.
3. If location L is OCCUPIED find another location using some probe sequence.  
 Set location L to  ITEM  and repeat steps 2 and 3
4. End

Th e following are the well-known probe sequences:
Linear probing: in which the interval between probes will be fi xed usually to 1.
Quadratic probing: in which interval between probes is increased by adding the successive outputs of a qua-
dratic polynomial to the starting value given by the hash function.
Double hashing: in which the interval between probes is obtained by using another hash function.
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Linear probing: Linear probing is a technique for resolving hash collisions of values of hash functions by search-
ing the hash table sequentially for a free location. Th is is done by making use of two values where one is the 
starting value and another is the interval between successive values. Th e second value which is the same for all 
keys repeatedly adds to the starting value until free location is found or entire table is traversed. 

For a given ordinary hash function h(x), the linear probing function will be
h(x)=(h(x)+i)%mod n

where h(x) is the starting value, i is the value added repeatedly  to the starting value  and n is the size of the 
hash table. When the i value is 1, the linear probing gives good memory catching through good locality of 
reference but also results in clustering. Consider the following example.
 Let the table size be 10, keys are 2-digit integers and h(x)=x mod 10.
 • Initially all the locations are empty

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9]

 • While inserting 16, 18 and 9, there will be no collisions
  h(x)= x mod10
  h(16)=16 mod 10=6, so insert 16 at the 6th location.
  h(18)= 18 mod 10=8, so insert 18 at the 8th location.
  h(9)= 9 mod 10=9, so insert 9 at the 9th location.

[0] [1] [2] [3] [4] [5] [6]

16 18 9

[7] [8] [9]

 • Now insert 36, h(36)=36 mod 10= 6, collision occurs because the state of location 6 is OCCUPIED. 
Using linear probing, the next free location will be 6+1 mod 10=7 where the value 36 is to be stored. 
Th e state of location 7 is EMPTY, so 36 can be inserted into 7th location.

[0] [1] [2] [3] [4] [5] [6]

16 36 18 9

[7] [8] [9]

 • Now insert 76. h(76)=76 mod 10=6, collision occurs because the state of location 6 is OCCUPIED. 
Th en fi nd another location, i.e. (6+1 mod 10) =7 which is in an OCCUPIED state. Th en try   next loca-
tion as (7+1 mod 10) = 8, OCCUPIED state. Finally try the location 0 as (9+1 mod 10)=0 which is in 
EMPTY state, so insert 75 at the 0th location.

[0] [1] [2] [3] [4] [5] [6]

1676 36 18 9

[7] [8] [9]

Th e disadvantage of linear probing is  primary clustering. Observe the above example when further inser-
tion of 86, 96 and 56 is made, it causes more number of collisions, i.e. each one would probe exactly the same 
partitions as its predecessors. Th is is known as primary clustering.  Clustering leads to very ineffi  cient opera-
tions because it causes more number of collisions. To eliminate clustering each diff erent key should probe the 
table in a diff erent order. Algorithm 8.7 denotes insertion.
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Algorithm 8.7: LINSERT( key, p ) 

1. Set i=h(key)
2. Set last=(i+m-1)%m;
3. Repeat  while(i!=last&&!empty(p[i])&&!deleted(p[i])&&p[i].k!=key) 
4. Set i=(i+1)%m;
5. Check whether empty p[i] or deleted p[i] then
6. Set p[i].k=key                        //insert here 
7. Set n=n+1      
8. Else write “table overflow or key already in table“

Search: To search an item in the hash table that uses linear probing, start at h(k) and probe consecutive loca-
tions until one of the following occurs:
 1. Item is found
 2. An empty cell is found or
 3. Entire table has been scanned

 Algorithm 8.8 searches an item in the hash table using linear probing.

Algorithm 8.8: LP-SEARCH(k)

1. Set i=h(k), p=0
2. Repeat until P=N 
3. Set c=A[i]
4. Check whether c=NULL then write “key not found”
5. Else check whether c.key()=k then write “key found”
6. Else
7. Set i=(i+1)mod N
8. Set p=p+1
9. End step 2 loop

Example: Perform the operations given below, in the given order, on an initially empty hash table of size 10 
using linear probing with i=1 and the hash function: h(x) = x mod10:
  insert(18), insert(26), insert(35), insert(8), fi nd(15), fi nd(48), delete(35), delete(40), fi nd(8), insert(64), 

insert(47), fi nd(35).
 Th e required probe sequences are given by    h(key) = (h(key) + i) mod10 where i=1.

Th e following table shows the result of the above operations:

Operation Probe  sequence   Result
Insert(18) h(18)=18 mod 10=8 SUCCESS
Insert(26) h(26)=26 mod 10=6 SUCCESS
Insert(35) h(35)=35 mod 10=5 SUCCESS
Insert(8) h(8)=8 mod 10=8

h(8)=(8+1) mod 10
COLLISION
SUCCESS

Find(15) h(15)=15 mod 10=5
h(15)=15+1 mod 10=6
h(16)=16+1 mod 10=7

COLLISION
COLLISION
FAIL because location 7 does not contain 15, 
i.e.  EMPTY status
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Operation Probe  sequence   Result
Find(48) h(48)=48 mod 10=8

h(48)=48+1 mod 10=9
h(48)=49+1mod 10=0

COLLISION
COLLISION
FAIL because location 0 does not contain 48

Delete(35) h(35)=35 mod 10=5 SUCCESS because location 5 contains 35 
and the status is OCCUPIED. Th e status is 
changed to deleted but key 35 is not removed

Delete(40) h(40)=40 mod 10=4 FAIL no such key exists in location 4 and 
status is EMPTY

Find(18) h(18)=18 mod 10=8  Th e search success location 8 contains key 18
Insert(64) h(64)=64 mod 10=4 SUCCESS
Insert(47) h(47)=47 mod 10=7 SUCCESS
Find(35) h(35)=35 mod 10=5 Fail because location 5 contains 35 but its sta-

tus is DELETED

Th e following table shows index values and their status:

Index Status Value
0 E

1 E

2 E

3 E

4 O 64

5 D 35

6 E 26

7 O 47

8 O 18

9 E 8

10 E

11 E

12 E

Quadratic probing: Quadratic probing is another method for resolving collisions in hash tables. It operates by 
taking the original hash value and adding successive values of a quadratic polynomial to the starting value. 
Quadratic probing avoids the clustering problem that occurs with linear probing and may also result in prob-
ing the same set of alternate cells.

In this method when a collision occurs at location l, probes bucket  l+1, l+4, …, l+9 whereas in linear prob-
ing probes bucket at locations l+1, l+2, l+3, etc. In general this method probes buckets at locations (l+i2) mod 
n, i=1, 2, …. where l is the location of home buckets and n is the number of buckets.
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Quadratic probing may also result in probing the same set of alternative cells and this is known as second-
ary clustering, which occurs when hash table size is not prime. If n is a prime number then quadratic probing 
probes exactly half of the number of locations in the hash table. Algorithms 8.9 and 8.10 denote insertion and 
search operations on a table using quadratic probing.

Algorithm  8.9: QINSERTION (key, r)

1. Set i=h(key)
2. Set c=0
3. Loop  while(c<m) and (not empty(r[i])) and (not deleted(r[i])) and 
 (r[i].k<>key) do 
4. Set i=(i+c+1) mod m
5. Set c=c+2
6. End loop
7. check  whether empty(r[i]) or deleted(r[i]) then 
8. Set r[i].k=key
9. Set n=n+1 
10.else write “table full, or key already in table”
11.End

Algorithm  8.10: QSEARCH (key, r) 

1. Set i=h (key) 
2. c=increment(key)
3. Set last=(i+(n-1)*c) mod m
4. Loop while (i<last) and (not empty(r[i])) and (r[i].k<key) do 
5. Set i=(i+c) mod m
6. Check whether r[i].k=key then 
7. Value=i                    //found(r[i])  
8. else 
9. Value=-1                  //notfound(key) 
10.End

Double hashing or rehashing: Double hashing is a technique used in hash table to resolve hash collisions. It uses 
one hash value as a starting value and continual evolution of an interval until the desired value is found, or  an 
empty location is found or the entire table is searched.

Th e interval is decided using another independent hash function. So it is named as double hashing. Here 
the interval depends on the data so that even values mapping the same location will have diff erent sequences 
that minimize the repeated collisions and the eff ect of clustering. For a given independent hash functions h1 
and h2, the ith location in the bucket sequence for value x in a hash table of size n is given as

h(x,i)=h
1
(x)+i*h

2
(x) mod n

Consider the same example as in linear probing. Suppose let hash function h2 be defi ned as h2(x)= 1+(x 
mod 6). Adding 1 to h2 ensures that the increment is not equal to 0. Th e values 16, 18, 9 are inserted.

[0] [1] [2] [3] [4] [5] [6]

16 18 9

[7] [8] [9]

 •  Now insert 36, h1(36)=36 mod 10= 6, collision occurs because the state of location 6 is OCCUPIED.  
So fi nd the next free location using double hashing. Th e next location is determined by h2(x) function, 
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i.e. h2(36) =1+(36 mod 6)=1. Adding this to the current location leads to probe location 7, which is in 
an EMPTY state, so 36 can be inserted into 7th location.

[0] [1] [2] [3] [4] [5] [6]

16 36 18 9

[7] [8] [9]

 • Now insert 26 with 26. With linear probing 26 follows the same probing sequence as 16 and 36, but 
using double hashing it will not. 26 is initially hashed to location 6 which is OCCUPIED. Th e next free 
location is determined by h2 function. So h2(26)=1+(26 mod 6)=2. Th erefore, the next location is at 
(6+ 2) mod 6, i.e. location 2. Th e state of location 2 is EMPTY so insertion of 26 at 2nd location can be 
done.

Observe that each key probes the array locations in a diff erent order. Hence, there is no clustering. If two 
keys probe the same location the next location they probe is diff erent.
Algorithms 8.11 and 8.12 denote the insertion of a value into a table using double hashing.

Algorithm 8.11: DINSERT (key, r) 

1. Set i=h( key ) 
2. Set c=increment(key)
3. last=(i+(m-1)*c) % m
4. Loop while(i!=last&&!empty(r[i])&&!deleted(r[i])&&r[i].k!=key)
5. Set i=(i+c)%m
6. check whether(empty(r[i])||deleted(r[i])) then
 1. Set r[i].k=key
 2. Set n=n+1
7. Else write “table full, or key already in table”
8. End

Algorithm 8.12: SEARCH ( key, r ) 

1. Set i=h(key)
2. Set c=increment(key)
3. Set last=(i+(n-1)*c)%m
4. Loop while(i!=last&&!empty(r[i])&&r[i].k!=key)
5. Set i=(i+c)%m;
6. check whether r[i].k==key then 
     return(i) 
7. Else return(-1)
8. End

Another example of double hashing: Consider a hash table storing integer keys that handle collision with double 
hashing where  N = 13, h1(x) = x mod 13 and h2(x) = 7 − x mod 7. Insert keys 18, 41, 22, 44, 59, 32, 31, 73, in 
this order.

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12]
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Th e following table shows the number probes of each key:

x h1(x) h2(x) Probes
18 5 3 5
41 2 1 2
22 9 6 9
44 5 5 5     10
59 7 4 7
32 6 3 6
31 5 4 5       9       0
73 8 4 8

Th en the array aft er insertions is as shown below:

[0] [1]

31 41 18 32 59 73 22 44

[2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12]

 

Extendible hashing: Extendible hashing makes hashing dynamic. With this technique, access to data from the 
buckets is done indirectly through an index which is adjusted dynamically in order to refl ect the changes in a 
table. Th e main feature of extendible is to organize the index which is an expandable table.

Whenever a hash function is applied for a key, the value returned by it gives the position in the index—not 
the table of keys and these values are known as pseudo keys. Using extendible hashing there is no need to 
reorganize the table when insertion and deletion take place. 

A single hash function h is used but depending on the size of the index a portion of address of h(k) is used. 
Th e address of  h(k) is represented as a string of bits and only the i left -most bits are used. Here i is called the 
depth of the directory.

Consider an example where the hash function h returns patterns of fi ve bits. Suppose a pattern is a  string 
01101 and the depth is two, then the left -most bits 01 are used to represent the location in the directory which 
contains the pointer to a bucket where the required key can be S found or the one where the required key can 
be inserted.

In Figure 8.12 the values of hash functions h are shown in buckets and these values represent the keys that 
are actually stored in the buckets.

Each bucket will have its own depth called local depth which indicates the number of left most bits of h(k). 
Each bucket holds all the keys whose local depth is same. In Figure 8.12, the local depth of a bucket is shown 
on top of it. Th e bucket b00 contains the keys for which h(k) starts with 00 bits. Th e use of local depth is to 
determine whether the bucket can be accessed from only one location or at least two.

When local depth of a bucket is smaller than the depth of directory then overfl ow occurs. Now split the 
bucket by changing half of the pointers pointing to the bucket to point to newly created bucket. In Figure 
8.12(a) a key with h value as 11010 is to be inserted then it is fi rst moved to 4th location of the directory 
through which is sent to bucket b1 which holds the keys whose left -most bit is 1. Here overfl ow occurs because 
there is no slot in bucket b1 so split the b1 into b10 (new name for b1) and b11 (newly created one). Th e keys of 
bucket b1 are shared between b10 and b11 as in Figure 8.12(b).
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When the local depth is equal to the depth of directory and if overfl ow occurs then change the size of 
the directory aft er splitting the buckets. In Figure 8.12(b) a key with h value as 00001 is to be inserted into 
the directory. Since its left -most bits are 00 it is hashed to the fi rst location of the directory through which it is 
moved to b00. Here overfl ow occurs because no slot is empty in b00. Th e directory size is doubled since the local 
depth is equal to the depth of the directory. Now the depth directory is changed from 2 to 3, i.e. b00 becomes 
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b000 and the newly created bucket is b001. All the keys of whose left -most bits are 000, becomes elements of  b000, 
and the keys whose h value  starts with 001 become elements of b001, as in Figure 8.12(c).
Algorithm 8.13 denotes the insertion of a a value into a table using extendible hashing.

Algorithm 8.13: EXH- INSERT (k)

1. Set pattern=h(k)
2. Set p=directory(depth(directory) local depth of  pattern)
3. Check whether slots available in bucket b

d
 pointed by p then

  insert k into the bucket
4. Else
 1. Split bucket b

d
 into b

d0
 and b

d1

 2. Set local depth[b
d0
] and b

d1
=depth[b

d
]+1

 3. Share keys of b
d
 between b

d0
 and b

d1

 4. check whether local depth[b
d
]<depth of directory then 

       Update half of the pointer of b
d
 to point to b

d1

5. Else
6. Double the size of directory and increment its local depth   
7. Set proper pointers to directory entries
5. End

8.6 COMPARISON OF CHAINING AND OPEN ADDRESSING
 • Chained hash tables are simple to implement and require only basic data structures. 
 • Chained hash tables are insensitive to clustering while writing suitable hash functions.
 • Open addressing depends upon better hash functions to avoid clustering. 
 • Chains grow longer as the table fi lls, and a chained hash table cannot fi ll up and does not exhibit the 

sudden increases in lookup times that occur in a near-full table with open addressing. 
 • When hash tables are used to store large records, chaining uses less memory than open addressing. 
 • For small record sizes, open addressing is more space-effi  cient than chaining since they do not need to 

store any pointers or allocate any additional space outside the hash table. 
 • Open addressing avoids the extra indirection required for changing external storage because it uses 

internal storage. It also has better locality of reference, particularly with linear probing. Th ey can be 
easier to serialize because they don’t use pointers. 

 • If the open addressing table only stores references to elements (external storage), it uses space compa-
rable to chaining even for large records but loses its speed advantage. On the other hand, normal open 
addressing is a poor choice for large elements, since these elements fi ll entire cache lines, and a large 
amount of space is wasted on large empty table slots.

 • Generally open addressing is better used for hash tables with small records that can be stored within 
the table and fi t in a cache line. Th ey are particularly suitable for elements of one word or less. In cases 
where the tables have high load factors, the records are large, or the data are variable-sized, chained 
hash tables oft en perform better as well.

8.7 APPLICATIONS

Hash tables have their applications in various fi elds. Some of them are listed below:
 • Finding duplicate records
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 • Geometric hashing
 • Finding similar substrings
 • Finding similar records
 • Evaluation of join operation on relational databases
 • Direct fi le organization
 • Implementing associative arrays and dynamic sets

8.8 DICTIONARY ADT

A dictionary D supports the following operations:
 size(): It gives the number of elements in D
 isEmpty(): Returns true if D is empty 
 elements(): Returns the elements of D
 keys(): Returns the keys of D
 search(k): Returns the position of the item to be searched if found. If not return null position
 searchAll(k): Returns the  position of all items whose key matches with k
       insert(k,v): Inserts an item v with the key k into D
       delete(k): Deletes an item whose key matches with k from D
       deleteAll(k): Deletes all items whose key matches with k from D

SUMMARY

 • Dictionary contains data elements as pairs of the form (k, v), where k is the key and v is the value. 
 • A dictionary with duplicates is a dictionary which allows two or more (key, value) pairs with the same 

key. 
 • An ordered dictionary can be represented as an ordered linear list.
 • Skip lists are sorted linked lists. In a skip list, nodes have many ‘next’ references known as forward 

references, whereas in an ordinary list nodes have only one ‘next’ reference.
 • Linear probing is a technique for resolving hash collisions of values of hash functions by searching the 

hash table sequentially for a free location. Th e disadvantage of linear probing is primary clustering. 
 • Quadratic probing is another method for resolving collisions in hash tables. It operates by taking the 

original hash value and adding successive values of a quadratic polynomial to the starting value. Qua-
dratic probing avoids the clustering problem that occurs with linear probing.

 • Double hashing is a technique used in hash table to resolve hash collisions. It uses one hash value as a 
starting value and continual evolution of an interval until the desired value is found, an empty location 
is found or the entire table is searched.

EXERCISES

FILL IN THE BLANKS

 1. Sequential access takes  time to access every (key, value) pair.
 2.  are the collision resolution techniques.
 3. Th e process of mapping the keys to their respective positions in the hash table is called  .
 4. In  collision technique the interval is decided using another independent hash function.
 5.  hashing performs hashing dynamic.
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MULTIPLE-CHOICE QUESTIONS

 1. Th e locations in the hash table are called as  .
  a. Slots    b. Sets  
  c. Buckets    d. Entries
 2. Hash tables are ideal data structures for  .
  a. Dictionaries   b. Graphs 
  c. Trees    d. None
 3. Keeping subsequent items within the table and computing possible locations  is known as  .
  a. Separate chaining   b. Open addressing 
  c. Direct chaining   d. None
 4. For a given ordinary hash function h(x), the linear probing function will be
  a.  h(x)=h(x)+i) % mod n  b. h(x)=(h(x)+i) % mod n
  c. h(x)=h(x)% mod n  d. None
 5. Local depth of a bucket gives  .
  a. Number of left -most bits  b. Number of most signifi cant bits 
  c.  Number of bits   d. None
 6. Th e double hashing function is defi ned as  .
  a. h(x,i)=h1(x)+h2(x) mod n  b. h(x,i)=h1(x)+i*h2(x) mod n
  c. h(x,i)= i*h1(x)+ h2(x) mod n d. h(x,i)=h1(x)–i*h2(x) mod n

SHORT-ANSWER QUESTIONS

 1. Explain dictionary as an ADT.
 2. What are skip lists? Explain with an example.
 3. Defi ne hash table.
 4. Explain methods of defi ning hashing function.
 5. What are collisions?
 6. Give the advantages and disadvantages of separate chaining.

ESSAY QUESTIONS

 1. Give the applications of dictionary or dictionary with duplicates in which sequential access is desired.
 2. Explain the operations that can be performed on linear list and skip lists.
 3. How are insertions and deletions handled in a chained hash table? Explain.
 4. Illustrate the linear probing method in hashing. Explain its performance analysis.
 5. What is rehashing?  How does it overcome the drawbacks of linear probing?
 6. How are collisions handled in linear probing?
 7. Diff erentiate between separate chaining and open addressing.



Trees and Binary Trees

  In the previous chapters, linear data structures such as arrays, stacks and queues have been 
studied. Trees and graphs are two dimensional in structure and are referred to as non-linear 
data structures. The study of non-linear data structures is considered in this and forth-coming 
chapters. This chapter particularly deals with defining the tree data structure, the terminology 
related to them and their representation in different ways. A basic type of tree, i.e. binary tree is 
discussed in detail with its representation, operations and traversals. This chapter also includes 
threaded binary trees, ADT of binary trees, changing a general tree into a binary tree along with 
a detailed explanation about expression trees as an application.

9.1 INTRODUCTION

A  tree is a fi nite set of one or more nodes. In this set of nodes a node is referred to as a  root. Th e other nodes 
could be partitioned into T

1
,T

2
,T

3
, …, T

t
 disjoint sets of trees where  t ≥ 0 , and are referred to as  subtrees of 

the tree.
Every node in a tree represents a unit of information. Th e links/arcs between the nodes are known as 

branches and specify the association between the units of information. A tree is depicted in Figure 9.1.
All the nodes are reachable from the root through a unique sequence of branches called a path, and no 

node is left  isolated in the tree. Th e number of arcs in a path is called the length of the path.
By defi nition (1) connected less and (2) acyclicness or no closed loops are ensured in a tree. Th e tree struc-

ture does not allow any set of nodes to link together to from a closed loop or to be acyclic.

9.2 TERMINOLOGIES

Th e number of branches associated with a node is called the  degree of a node. A branch that comes to the node 
is the  indegree branch and the branch that emerges from the node is the  outdegree branch. Degree of a node is 
the sum of indegree and outdegree branches. A node whose indegree is zero is called the root. Nodes whose 
outdegree is zero is the  leaf nodes or  terminal nodes. Th e degree of a tree is the maximum degree of the node 
in the tree. All the nodes other than root and leaf nodes are the  internal nodes or  non-terminal nodes. All the 

Chapter 9
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nodes except the root must have a single indegree. Th e nodes that emerge from the branches of a node are the 
children, and the node from which the branches emerge is the parent node. Two or more nodes of the same par-
ent are referred to as  siblings. Th e nodes that appear in the path from the root to a given node are the ancestors 
of the given node, and the nodes that appear in all the paths from a given node to a leaf are the descendents of 
the node.  Level of a node  is defi ned starting with the root given as Level 1 and the other nodes are given with 
higher level numbers based on their association. If a parent is at Level i then its children must be at Level i+1. 
Th e  height of a tree is the maximum level of a node in the tree. A set of zero or more disjoint trees is a  forest. 
If a root node is deleted from a tree then the set of all disjoint trees i.e. subtrees leads to a forest. Hierarchical 
structures such as family, university, etc. can be very eff ectively depicted using trees. In a tree a node can have 
any number of children and every child node is again considered a tree, which may have either zero or more 
children.

In Figure 9.1, A is the root and D, G, H, I, K, L, M, N, O, P, Q are the leaf nodes and the remaining 
are the internal nodes or non-terminal or non-leaf nodes. Nodes G, H are the children of B and B is a parent 
node. Nodes B, C, D, E, F are siblings. Nodes J, K, L  are also siblings. Nodes A, E, J are ancestors to 
Q. Nodes J, K, L, Q  are descendents of E. Th e root A is at level 1, its children B, C, D, E, F are at level 
2 and so on. Th e height of a tree is the maximum level, i.e. 4 . When A is removed from the tree, it results in a 
forest with fi ve disjoint trees such as {B,G,H}, {C,I}, {D}, {E,J,K,L,Q}, {F,M,N,O,P}.

A tree does not limit the number of children for a given node. A University with two constituent colleges 
and each having many departments and each department having professors, undergraduate (UG) students and 
post-graduate (PG) students can be clearly represented using a tree (Figure 9.2).

9.3 REPRESENTATION OF A TREE

A tree can be very eff ectively represented using linked lists. In this the root node appears fi rst and it is followed 
by the list of subtrees of the node. Th e same is repeated for every subtree in the tree. Th e general node structure 
of a linked list is shown in Figure 9.3(a). Th e list form of the tree depicted in Figure 9.1 is as (A,(B,(G,H),C
(I),D,E(J,(Q),K,L),F(M,N,O,P))). Figure 9.3(b) shows the linked representation of the tree depicted in 
Figure 9.1. 

Figure 9.1 A tree 
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(a) General node structure

Figure 9.2 A tree representing a hierarchical structure of a university

UNIVERSITY

Constituent PConstituent A

Dept1

PG 
Students

UG 
Students

Dept2 DeptN Dept1...

........

...Dept2 DeptN

........ ........ ........

Professor

DATA LINK 1 LINK 2 LINK N

(b) Linked list representation of trees shown in Figure 9.1

Figure 9.3 Representation of a tree

Information part of the tree node is stored in the DATA fi eld of the node. Pointers to the child nodes are 
stored in the LINK fi eld of the node.
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9.4 BINARY TREES

A binary tree T is a fi nite set of elements. An empty tree is a binary tree. If non-empty, a tree in which all nodes 
can have at most two children and are treated as two binary trees, are referred to as left  and right subtrees of 
T (Figure 9.4).

Figure 9.4 A binary tree

Th e major diff erences between a tree and a binary tree are:
 • A tree can never be empty whereas a binary tree can be empty with no nodes.
 • Th ere may be any number of subtrees for a node in a tree. Th ere must be either zero or one or two 

subtrees for a node in a binary tree. 
 • Th ere is no ordering of subtrees in a tree, but the ordering of left  and right subtrees of all nodes is 

clearly maintained in a binary tree.
A binary tree is very similar to a tree in its structure and terminology. Th e additional features with respect 

to binary tree are:
 (1) A binary tree with n elements will have n–1 number of edges, where n>0.
 (2) At level i a binary tree can have at most 2i–1 number of nodes, where i≥1.
 (3) A binary tree of height h can have minimum h and maximum 2h–1 number of nodes, here h≥0.
 (4)  For a binary tree with n elements, height is minimum  log

2
(n+1) and maximum n.

 (5) In a binary tree the number of non-terminal nodes will be one less than that of the number of terminal 
nodes. 

A binary tree of height h that consists of maximum permissible number of children to all nodes, i.e. 2h–1 
nodes is known as a  full binary tree. Figure 9.5 illustrates a full binary tree of height 4.Th e nodes of a full bi-
nary tree are numbered 1 through 2h–1 starting from root at level 1 to nodes at level h and from left  to right.

A binary tree that has maximum permissible number of nodes at all the levels except at the last level and if 
all the nodes at the last level are as far left  as possible is known as a  complete binary tree.

Th e nodes of a complete binary tree are also numbered in the same way as a full binary tree. Using this 
numbering, it is easy to fi nd the parent, the left  and the right children of a node.

A complete binary tree with n nodes is considered and if it is numbered such that 1≤i≤n, where i is the 
number of the nodes then it satisfi es the following properties:
 1. If  i=1 then it is the root of the binary tree.
 2. If i>1 then,  

U VTS

RQ

P Level 1

Level 2

Level 3
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 (i) the parent of the node is a node with the number i/2 .
.      (ii)  the left  child of the node is a node with the number 2i where 2i≤n. If 2i>n then i has no left  child.
      (iii) the right child of the node is a node with the number 2i+1 where 2i+1≤n. If 2i+1>n  then i has no right 

child.
Th e height of a complete binary tree with n nodes is h= log2(n+1) . A full binary tree is a special case of 

a complete binary tree. Figure 9.6. illustrates a complete binary tree. 
Th e symbol ‘ ’ refers to fl oor function. Th e fl oor function takes a fl oating point number and returns the 

fi rst integer, which is less than or equal to that number.  Th e symbol ‘ ’ refers to the ceiling function. Th e 
ceiling function takes a fl oating point number and returns the fi rst integer, which is greater than and equal to 
that number.

A

B

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

C

D E F G

H I J K L M N O

Figure 9.5  Full binary tree of height 4

Figure 9.6 Complete binary trees
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Figure 9.6 Continued

A binary tree that has only left  or right children is known as a  skewed binary tree in general and specifi -
cally left -skewed binary tree or right-skewed binary tree, respectively. Figure 9.7 illustrates the skewed binary 
trees.

(c)
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3

(b)

4
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1
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Q

P

R

U

V

T

S S

Figure 9.7 Skewed binary tree

9.5 REPRESENTATION OF BINARY TREES

Binary trees can be represented using both sequential (arrays) and linked data structure.

9.5.1 ARRAY REPRESENTATION OF A BINARY TREE

Numbering of nodes and the properties that are discussed in the earlier section are used in representing the 
binary trees as arrays. Th e elements in the nodes that are numbered are placed into the corresponding posi-
tions of the arrays. Th e array positions of missing nodes in the binary tree are left  empty in the array. Hence, it 
leads to wastage of a space. Figure 9.8  illustrates the array representation of a binary tree.

For any element in array position i, the left  child will be in position 2i, the right child will be in position 
(2i+1), and the parent is in position i/2 .  Th e array representation of a binary tree depicted in Figure 9.8(a) 
is shown in Figure 9.8(b). Here, the root element P is placed in the fi rst position of the array, i.e. i=1 position. 
Its left  child  Q is placed in 2i=2*1=2nd position of the array. Its right child R is placed in 2i+1=2*1+1=2+1=3, 
3rd position of the array. Now consider the element Q, as it is in the 2nd position of array, i=2, since it does not 
have a left  child, the 4th position of the array is left  empty. Its right child S is placed in 2i+1=2*2+1=5th position 
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of the array. Similarly, when S is considered, i=5, its left  child is placed in 10th position and its right child is 
placed in 11th position. For the elements that are missing in the binary tree, their corresponding positions in 
the array are left  empty.

9.5.2 LINKED REPRESENTATION OF BINARY TREES

Th e linked representation is an effi  cient and advantageous method to represent a binary tree over arrays. Th e 
node structure contains three fi elds, a DATA fi eld and two pointers, LCHILD and RCHILD to point to the left  and 
right children of nodes, respectively. By using a pointer to the root node the tree can be accessed. Figure 9.9 
illustrates the linked representation of a binary tree.

Figure 9.8 Array representation of a binary tree
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(a) Structure of a node

(b) Linked representation of a binary tree of Figure 9.8(a)

Figure 9.9 Linked representation of a binary tree

(a) Binary tree    (b) Array representation of binary tree
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For a given node in a binary tree the left  and the right children can be determined using LCHILD and 
RCHILD pointers. But its parent node cannot be determined. In any application, if the parent node reference 
is needed then one more pointer fi eld may be included in all the nodes. 

Th e linked representation of a binary tree with n nodes uses 2*n   number of pointers out of which n+1 
will be the null pointers.

9.6 BINARY TREE OPERATIONS

Various operations can be performed on binary trees. A few commonly performed  operations are listed be-
low.
 • Search: Search is an operation that is performed on a binary tree to fi nd a given key in the tree. If it is 

found then the search is successful and if it is not found it is an unsuccessful search.
 • Insert: Insertion is an operation that is performed on a binary tree to include an element in an existing 

binary tree. A new element can be inserted at any position in a binary tree. To insert an element along 
with the element the node or element to which the new element is inserted a child must be specifi ed. 
Th e new element either to be inserted as a left  child or as a right child can also be mentioned.

 • Delete: Deletion is an operation that is performed on a binary tree to remove an element from a non-
empty binary tree.

 • Merge: Merge is an operation that is performed on a binary tree to merge or combine two binary trees 
into one.

 • Display: Display is an operation that is performed on a binary tree to output or show the elements of a 
binary tree.

Th e implementation of most frequently used operations search, insert, delete and display is given in 
Program 9.1.

Program 9.1 Binary tree operations

#include<stdio.h>
#include<iostream.h>
#include<conio.h>
#include<stdlib.h>
int item,k;
struct BTREE
{
  int data;
  struct BTREE*lchild,*rchild;
 }*root=NULL,*n,*ptr,*ptr1,*ptr2,*p;
 struct BTREE*search(struct BTREE*ptr,int key)
 {
   if(ptr!=NULL){
  if((ptr->lchild->data==key)||(ptr->rchild->data==key))
    p=ptr;
   if(ptr->data==key)
     ptr1=ptr;
   else {
    search(ptr->lchild,key);
    search(ptr->rchild,key);
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 }  }
 return ptr1;
}
void create()
{
 if(root==NULL)
 {
  cout<<“\nEnter Element To Be Insert”;
  cin>>item;
  n=(struct BTREE*)malloc(sizeof(struct BTREE));
  n->data=item;n->lchild=NULL;n->rchild=NULL;
  cout<<“\nItem”<<item<<“Is Successfully Inserted\n”;
  root=n;
 }
 else
  cout<<“\nBinary Tree Is Already Created\n”;}
void insert()
{
 int key;
 char c;
 cout<<“\nEnter Element To Be Insert”;
 cin>>item;
 cout<<“\nEnter Key Element”;
 cin>>key;
 ptr=search(root,key);
 if(ptr==NULL)
 {
  cout<<“\nKey element Is Not Found..Insertion Is Not Possible”;
  return;
 }
 n=(struct BTREE*)malloc(sizeof(struct BTREE));
 if(ptr->lchild==NULL||ptr->rchild==NULL)
 {
  cout<<“\nWhere Do You Want To Insert Press Left(L) Right(R)”;
  c=getch();
  if(c==’l’||c==’L’)
  {
   if(ptr->lchild==NULL){
    n->data=item;n->lchild=n->rchild=NULL;
    ptr->lchild=n;}
   else {
    cout<<“\nInsertion Is Not Posible As A Left Child”;
    return;
 }
  }
  else {if(ptr->rchild==NULL){
    n->data=item;n->lchild=n->rchild=NULL;
    ptr->rchild=n;
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         }
   else{
    cout<<“\nInsertion Is Not Possible As A Right Child”;
    return;
  }
 }
 }
 else
 {
  cout<<“\nThe Key Node Already Has Child”;
  return;
 }
 cout<<“\nItem”<<item<<“Is Successfully Inserted”;
}
void delet()
{
 struct BTREE*ptr3;
 if(root==NULL)
 {
  cout<<“\nTree Is Empty”;
  return;
 }
 cout<<“\nWhich Element You Want To Delete”;
 cin>>item;
 ptr=search(root,item);
 if(ptr==NULL)
 {
  cout<<“\nKey Element Is Not Found”;
  return;
 }
 if(ptr->lchild!=NULL&&ptr->rchild!=NULL)
 {
  cout<<“\nKey Element Node Has Two Childs...,Deletion Is Not Possible”;
  return;
 }
 if(ptr==root)
 {
  if(root->lchild!=NULL)
   root=ptr->lchild;
  else
   root=ptr->rchild;
 }
 else
 {
  if(p->lchild==ptr)
  {
   if(ptr->lchild==NULL&&ptr->rchild==NULL)
    {p->lchild=NULL;ptr=NULL;}
   else if(ptr->lchild!=NULL)
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    {p->lchild=ptr->lchild;ptr=NULL;}
   else{p->lchild=ptr->rchild;ptr=NULL;}
  }
  else
  {
   if(ptr->lchild==NULL&&ptr->rchild==NULL)
    {p->rchild=NULL;ptr=NULL;}
   else if(ptr->lchild!=NULL)
    {p->rchild=ptr->lchild;ptr=NULL;}
   else{p->rchild=ptr->rchild;ptr=NULL;}
  }
 }
 cout<<“\nItem”<<item<<“Is Successfully Deleted”;
}
void traverse(struct BTREE *ptr)
{
 if(ptr!=NULL)
 {
  cout<<ptr->data<<“ ”;
  traverse(ptr->lchild);
  traverse(ptr->rchild);
 }
}
int searchele(struct BTREE*p,int key)
{
 if(p!=NULL)
  {
  if(p->data==key)
   k=1;
  else
  {
   searchele(p->lchild,key);
   searchele(p->rchild,key);
  }
 }
 return k;
}
void main()
{
 int ch,s;
 clrscr();
 while(1)
 {
  cout<<“\nBINARY TREE OPERATIONS\n1.CREATION\n2.INSERTION\n3.DELETION\n”;
  cout<<“4.TRAVERSE\n5.SEARCHING\n6.EXIT”;
  cout<<“\nEnter Your Choice”;
  cin>>ch;
  switch(ch)
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  {
   case 1:create();break;
   case 2:insert();break;
   case 3:delet();break;
   case 4:if(root==NULL){cout<<“Treee Is Empty”;break;}
       cout<<“\nTree Elements Are”;traverse(root);break;
   case 5:if(root==NULL){cout<<“Treee Is Empty”;break;}
   s=k=0;cout<<“Enter Search Element”;
   cin>>item;
   s=searchele(root,item);
   if(s==1)
    cout<<“Item”<<item<<“Is Found”;
   else
    cout<<“Item”<<item<<“Is Not Found”;
   break;
   case 6:exit(0);
   default:cout<<“\nInvalid Choice”;
  }
 }
}

Output

BINARY TREE OPERATIONS
1.CREATION
2.INSERTION
3.DELETION
4.TRAVERSE
5.SEARCHING
6.EXIT
Enter Your Choice1

Enter Element To Be Insert10

Item 10 Is Successfully Inserted

BINARY TREE OPERATIONS
1.CREATION
2.INSERTION
3.DELETION
4.TRAVERSE
5.SEARCHING
6.EXIT
Enter Your Choice2

Enter Element To Be Insert20
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Enter Key Element10

Where Do You Want To Insert Press Left(L) Right(R)
Item 20 Is Successfully Inserted
BINARY TREE OPERATIONS
1.CREATION
2.INSERTION
3.DELETION
4.TRAVERSE
5.SEARCHING
6.EXIT
Enter Your Choice2

Enter Element To Be Insert30

Enter Key Element20

Where Do You Want To Insert Press Left(L) Right(R)
Item 30 Is Successfully Inserted

BINARY TREE OPERATIONS
1.CREATION
2.INSERTION
3.DELETION
4.TRAVERSE
5.SEARCHING
6.EXIT
Enter Your Choice4

Tree Elements Are10 20 30
BINARY TREE OPERATIONS
1.CREATION
2.INSERTION
3.DELETION
4.TRAVERSE
5.SEARCHING
6.EXIT
Enter Your Choice5
Enter Search Element20
Item 20 Is Found
BINARY TREE OPERATIONS
1.CREATION
2.INSERTION
3.DELETION
4.TRAVERSE
5.SEARCHING
6.EXIT
Enter Your Choice3
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Which Element You Want To Delete10
Item 10 Is Successfully Deleted
BINARY TREE OPERATIONS
1.CREATION
2.INSERTION
3.DELETION
4.TRAVERSE
5.SEARCHING
6.EXIT
Enter Your Choice 6

9.7 BINARY TREE TRAVERSALS

To perform an operation on the element of a node it needs to be visited only once, and visiting a node of a 
binary tree is known as  traversal.

During traversal the three tasks that are performed are visiting a node (V), traversing the left  subtree (L) 
and traversing the right subtree (R). Various combinations of these three tasks lead to six diff erent traversals. 
Th ey are VLR, VRL, LVR, RVL, LRV and RLV. Among these the traversals that move from left  to right are 
very signifi cant. Th e following are familiar ways of traversals:

 1.  Inorder traversal
 2.  Preorder traversal 
 3.  Postorder traversal
 4.  Level-order traversal

9.7.1 INORDER TRAVERSAL (LVR)

Th e inorder traversal starts with the root node and traverses the left  subtree. In the left  subtree if a node has a 
left  child then it is traversed if it does not have any left  child then it is visited and traverses its right child in the 
same way. If it does not have any right child then it traces back by one node and proceeds the traversal in the 
same manner till all the nodes of the binary tree are visited.

Algorithm  9.1. explains the recursive procedure to perform the inorder traversal of a binary tree. 

Algorithm 9.1  

inorder_traversal (NODE)
 if NODE!=NILL then
{
  inorder_traversal(LCHILD(NODE));  //traverse the left subtree(L)
 visit(DATA (NODE));          //visit the node
  inorder_traversal(RCHILD(NODE)); //traversal the (Right subtree(R))
} 
end if
End inorder_traversal. 

Th e inorder traversal of the binary tree starts with the root node traversing the left  subtree, visiting the 
node and traversing the right subtree. 
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(a) Structure of a node
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(b) Linked representation of a binary tree of Figure 9.10(a)

Figure 9.10 Binary tree to demonstrate traversal

Th e  inorder traversal of a binary tree in Figure 9.10 starts with the root node A and traverses the left  sub-
tree, i.e. B, as node B has the left  child move to D and  D has its left  subtree so move to G. Now node G does not 
have any left  subtree, i.e. LCHILD(G)=NIL so visit G. Now as  node G also does not have any right subtree, trace 
back by one node, i.e. to D, visit D. Node D also does not have any right subtree to traverse so again trace back 
by one node to B, visit B. Node B has the right subtree so traverse right subtree E. As it does not have any left  
child visit E and it also does not have any right child so trace back to B, and B is already visited again, so trace 
back to A. All the nodes in the left  subtree of A are visited, i.e. left  subtree is traversed. So visit A.  Node A also 
has the right subtree. So traverse right subtree. Node C, the right child of A, does not have any left  child so visit 
C  and move to its right child F as it has the left  child move to H and H does not have any left  child so visit H. 
Node H also does not have any right child so trace back by one node, i.e. to F, visit F. Node F also does not have 
any right child so trace back by one node to C. Now the traversal of the right subtree is also completed. Finally, 
the output of inorder traversal is GDBEACHF.
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9.7.2 PREORDER TRAVERSAL (VLR)

Th e  preorder traversal visits a node fi rst aft er which it traverses its left  subtree and then traverses its right 
subtree.

Th e preorder traversal starts with the root node visiting it. If the root node has a left  subtree then it is  pre-
orderly traversed and then proceeds to traverse the right subtree in the same manner.

Th e recursive procedure to  perform the preorder traversal is explained by Algorithm 9.2.
Algorithm 9.2

preorder_traversal(NODE)
If NODE!=NIL then 
{
 Visit(DATA (NODE));       //visit the node
 preorder_traversal(LCHILD(NODE));  //preorder traverse of the left 
                subtree(L)
 preorder_traversal(RCHILD(NODE));  //preorder traverse of the right 
                sub tree(R)
}
End preorder_traversal

Th e preorder traversal of the binary tree depicted in Figure 9.10 starts with the root node, A is visited. It 
has both the left  and right subtrees.  According to the preorder traversal, the left  subtree should be traversed, 
so visit the left  child of A, i.e. B. Now visit D, the left  subtree of B and visit G, the left  subtree of D. Node G does 
not have a left  subtree, i.e. LCHILD(G)=NIL and G also does not have a right subtree, i.e. RCHILD(G)=NIL. So 
trace back by one node, i.e. to D. Node D is already visited, its left  child is also visited now it is time to traverse 
its right child but it does not have right child. So trace back by one node, i.e. to B. Here B is visited, its left  child 
is already visited; now traverse E, the right child of B. Node E does not have both the children, so trace back by 
one node, i.e. B and as its traversal is completed, trace back to A and proceed to the right subtree of A. Visit C 
the right child of A. It do not have any left  child so traverse its right subtree F. Visit F it has a left  child so move 
to H and visit H. All the nodes are visited; hence, the traversal is completed. Th e fi nal output of the preorder 
traversal of the binary tree is ABDGECFH.

9.7.3 POSTORDER TRAVERSAL (LRV)

Th e  postorder traversal of a binary tree traverses the left  subtree of a node fi rst, and traverses its right subtree 
and fi nally visits the node. 

Th e postorder traversal starts with the root node and checks whether it has a left  subtree or not.  If it has 
the left  subtree then the postorder traversal of the left  subtree takes place. Again it checks for the right subtree 
of the root node. If it has the right subtree, then the postorder traversal of the right subtree takes place. Aft er 
completing the traversal of the left  and right subtrees the root node is visited.

Th e recursive procedure to perform the postorder traversal is explained by Algorithm 9.3.

Algorithm 9.3

postorder_traversal(NODE)
if NODE!=NIL then
{
 postorder_traversal(LCHILD(NODE)); // postorder traverse of the left    



Chapter 9 Trees and Binary Trees | 9.17

             subtree(L)                        
 postorder_traversal(RCHILD(NODE));  //postorder traverse of the right 
                sub tree(R)
 Visit(DATA(NODE));        //visit the node
  } 
End of postorder_traversal.

Th e  postorder traversal of the binary tree depicted in Figure 9.10 starts with the  root A, A has the left  sub-
tree, LCHILD(A)=B, move to B, B also has a left  subtree D, move to D and D also has the left  subtree G, move 
to G. G does not have the left  child, LCHILD(G)=NIL and it also does not have the right child, RCHILD(G)=NIL 
so visit G. Trace back by one node to D; the left  subtree of D is visited and it does not have any right child, i.e. 
RCHILD(D)=NIL, so visit D, trace back by one node to B. Th e nodes in the left  subtree of B are visited, now 
move to its right subtree E. E does not have both the subtrees so visit E, trace back by one node to B. Now, the 
left  and right subtrees are traversed, so visit B; trace back by one node to A. Traversal of the left  subtree of A is 
completed; as A has the right subtree it must be traversed. Move to C, the right subtree of A. Node C does not 
have any left  subtree but it has the right subtree so move to F. Node F has the left  subtree so move to H. Node 
H does not have both left  and right subtrees so visit H. Trace back by one node to F. Node F does not have any 
right subtree, so visit F, trace back by one node to C. As its right subtree is traversed, now visit C and trace back 
by one node to A, the root node. Now, traversal of left  and right subtrees is completed so visit A. Finally, the 
output of the postorder traversal of the binary tree is GDEBHFCA.

9.7.4 LEVEL-ORDER TRAVERSAL

Th e  level-order traversal of a binary tree traverses the nodes in a level-by-level manner from top to bottom, and 
among the nodes of the same level they are traversed from left  to right. A data structure  called queue is used 
to keep track of the elements yet to be traversed. 

Th e recursive procedure to perform the level-order traversal is explained by Algorithm 9.4.

Algorithm 9.4 

levelorder–traversal(NODE)
While(NODE!=NULL)
{
 VISIT(DATA(NODE))     //visit the node 
   If(LCHILD(NODE)!=NULL)
    Insert(LCHILD(NODE))     //insert the left child of NODE into queue 
   If(RCHILD(NODE)!=NULL)
    Insert(RCHILD(NODE))    //insert the right child of NODE into queue 
      levelorder_traversal(front element of queue)

Delete( ); //delete the front element of queue
}
End levelorder–traversal.

Th e level-order traversal of the binary tree depicted in Figure 9.10 begins with the root node A which is at 
the fi rst level, i.e. level 1. In a binary tree only one element will be there at the fi rst level, so the elements at level 
2 must be traversed now. If more than one element  is found in the same level, they should be traversed from 
left  to right. Now, in level 2 traverse the left most child B and move towards the right to traverse C. Similarly, in 
level 3 traverse the left most child D and move towards the right to traverse E and F. In the  same way, traverse 
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the nodes G followed by H that are in level 4. All the nodes in the binary tree are traversed. Hence, the output 
of the level-order traversal is ABCDEFGH. 

Th e  space and  time complexity of all the four traversals is O(n). Program 9.2 shows the implementation of 
preorder, inorder and postorder traversals of a binary tree.

Program 9.2    

// 1. preorder 2.inorder 3.post order traversals
#include<stdio.h>
#include<conio.h>
#include<stdlib.h>
int item,k;
struct TRAVERSAL
{
 int data;
  struct TRAVERSAL*lchild,*rchild;
}*root=NULL,*n,*ptr,*ptr1;
struct TRAVERSAL*search(struct TRAVERSAL*ptr,int key)
{
 if(ptr!=NULL){
  if(ptr->data==key)
   ptr1=ptr;
  else{
   search(ptr->lchild,key);
   search(ptr->rchild,key);
       }      }
 return ptr1;
}
void insert()
{
 int key;
 char c;
 printf(“\nEnter Element To Be Insert”);
 scanf(“%d”,&item);
 if(root==NULL)
 {
  n=(struct TRAVERSAL*)malloc(sizeof(struct TRAVERSAL));
  n->data=item;n->lchild=NULL;n->rchild=NULL;
  printf(“\nItem %d Is Successfully Inserted”,item);
  root=n;return;
 }
 printf(“\nEnter Key Element”);
 scanf(“%d”,&key);
 ptr=search(root,key);
 if(ptr==NULL)
 {
  printf(“\nKey element Is Not Found..Insertion Is Not Possible”);
  return;
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 }
 n=(struct TRAVERSAL*)malloc(sizeof(struct TRAVERSAL));
 if(ptr->lchild==NULL||ptr->rchild==NULL)
 {
  printf(“\nWhere Do You Want To Insert Press Left(L) Right(R)”);
  c=getch();
  if(c==’l’||c==’L’)
  {
   if(ptr->lchild==NULL){
    n->data=item;n->lchild=n->rchild=NULL;
    ptr->lchild=n;}
   else{
    printf(“\nInsertion Is Not Posible As A Left Child”);
    return;
 }
  }
  else {if(ptr->rchild==NULL){
    n->data=item;n->lchild=n->rchild=NULL;
    ptr->rchild=n;
         }
   else{
    printf(“\nInsertion Is Not Possible As A Right Child”);
    return;
  }
 }
 }
 else
 {
  printf(“\nThe Key Node Already Has Child”);
  return;
 }
 printf(“\nItem %d Is Successfully Inserted”,item);
}
void preorder(struct TRAVERSAL*ptr)
{
 if(ptr!=NULL)
 {
  printf(“%3d”,ptr->data);
  preorder(ptr->lchild);
  preorder(ptr->rchild);
 }
}
void inorder(struct TRAVERSAL*ptr)
{
 if(ptr!=NULL)
 {
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  inorder(ptr->lchild);
  printf(“%3d”,ptr->data);
  inorder(ptr->rchild);
 } }
void postorder(struct TRAVERSAL*ptr)
{
 if(ptr!=NULL)
 {
  postorder(ptr->lchild);
  postorder(ptr->rchild);
  printf(“%3d”,ptr->data);
 }
}
main()
{
 int ch,s;
 clrscr();
 while(1)
 {
  printf(“\nTREE TRAVERSALS\n1.INSERTION\n2.INORDER\n”);
  printf(“3.PREORDER\n4.POSTORDER\n5.EXIT”);
  printf(“\nEnter Your Choice”);
  scanf(“%d”,&ch);
  switch(ch)
  {
   case 1:insert();break;
   case 2:if(root==NULL){printf(“Treee Is Empty”);break;}
   printf(“\nTree Elements Are”);inorder(root);break;
   case 3:if(root==NULL){printf(“Treee Is Empty”);break;}
   printf(“\nTree Elements Are”);preorder(root);break;
   case 4:if(root==NULL){printf(“Treee Is Empty”);break;}
   printf(“\nTree Elements Are”);postorder(root);break;
   case 5:exit(0);
   default:printf(“\nInvalid Choice”);
  }
 }
}

Output

TREE TRAVERSALS
1.INSERTION
2.INORDER
3.PREORDER
4.POSTORDER
5.EXIT
Enter Your Choice1
Enter Element To Be Insert92
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Item 92 Is Successfully Inserted
TREE TRAVERSALS
1.INSERTION
2.INORDER
3.PREORDER
4.POSTORDER
5.EXIT
Enter Your Choice1
Enter Element To Be Insert45
Enter Key Element92
Where Do You Want To Insert Press Left(L) Right(R)
Item 45 Is Successfully Inserted
TREE TRAVERSALS
1.INSERTION
2.INORDER
3.PREORDER
4.POSTORDER
5.EXIT
Enter Your Choice1
Enter Element To Be Insert67
Enter Key Element92
Where Do You Want To Insert Press Left(L) Right(R)
Item 67 Is Successfully Inserted
TREE TRAVERSALS
1.INSERTION
2.INORDER
3.PREORDER
4.POSTORDER
5.EXIT
Enter Your Choice1
Enter Element To Be Insert38
Enter Key Element45
Where Do You Want To Insert Press Left(L) Right(R)
Item 38 Is Successfully Inserted
TREE TRAVERSALS
1.INSERTION
2.INORDER
3.PREORDER
4.POSTORDER
5.EXIT
Enter Your Choice1
Enter Element To Be Insert59
Enter Key Element45
Where Do You Want To Insert Press Left(L) Right(R)
Item 59 Is Successfully Inserted
TREE TRAVERSALS
1.INSERTION
2.INORDER
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3.PREORDER
4.POSTORDER
5.EXIT
Enter Your Choice2
Tree Elements Are 38 45 59 92 67
TREE TRAVERSALS
1.INSERTION
2.INORDER
3.PREORDER
4.POSTORDER
5.EXIT
Enter Your Choice3
Tree Elements Are 92 45 38 59 67
TREE TRAVERSALS
1.INSERTION
2.INORDER
3.PREORDER
4.POSTORDER
5.EXIT
Enter Your Choice4
Tree Elements Are 38 59 45 67 92
TREE TRAVERSALS
1.INSERTION
2.INORDER
3.PREORDER
4.POSTORDER
5.EXIT
Enter Your Choice5

9.8 CONVERSION OF A TREE INTO A BINARY TREE

Representation of a binary tree in programs is easier to that of a tree. Th erefore, a general tree should be con-
verted into a  binary tree. Th is can be done using the following procedure:
 1. Identify the branch from the parent to its fi rst child and these branches become left  branch or subtree 

in the binary tree.
 2. From the left most child use a branch to connect the node with a node to its right of the same parent if 

any, which are at the same level. Th ese become the right branch or subtree in the binary tree.
 3. Remove all branches that are not required from the parent to its children.

Consider a tree shown in Figure.9.11(a). According to the fi rst step of the procedure, node 1 is the root 
node, its fi rst child is node 2. Similarly, node 6 is the fi rst child of 2, node 9 is the fi rst child of node 3 and node 
10 is the fi rst child of node 5. So, 2, 6, 9 and 10 become the left  branches to their parents. Th ese are shown by 
the pointed links in Figure 9.11(b).

According to the second step of the procedure from the left most child, node 2 connects nodes 3,  4, 5 that 
are right to it, children of the same parent and at the same level. Similarly, from node 6 connect nodes 7, 8 and 
from node 10 connect nodes 11 and 12. Th ese are shown by the pointed horizontal links in Figure 9.11(c). 
Th ese become the right branches of the binary tree. 
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Figure 9.11 Conversion of tree into a binary tree
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(e)

Figure 9.11   Continued
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Remove the branches that are not required from parent to its children, such as 1 to 3, 1 to 4, 1 to 5, 2 to 7, 2 
to 8, 5 to 11 and 5 to 12. Th erefore, the resulting binary tree of a general tree shown in Figure 9.11(a) is shown 
in Figure 9.11(d). Th is is not in a regular binary tree format. So, redrawing the same gives a perfect shape of a 
binary tree as depicted in Figure 9.11(e).

9.9 THREADED BINARY TREES

Th e linked representation of a binary tree of Section 9.5 says that a binary tree with n nodes uses 2n pointers 
of which (n+1) are null pointers. Th ese (n+1)  null pointers can be used to point some valuable information 
of the binary tree. To do this A. J. Perlis and  C. Th ornton introduced the concept of  threads. Th reads are also 
pointers or links. For a node NODE if RCHILD(NODE) is NIL, then the null pointer is replaced by a thread that 
is replaced by a thread that points to a node that occurs oft en, NODE, when the binary tree is traversed in in-
order. If LCHILD(NODE) is NIL then this null pointer is replaced by a thread that points to a node that preceds 
NODE when the binary tree is traversed in inorder.

Th us, threads are pointers to the predecessor and successor of the node corresponding to an inorder tra-
versal, and trees whose nodes use threads are called  threaded trees. Th readed trees can be used for all the 
traversals of a binary tree. A threaded binary tree is illustrated in Figure 9.12. Th e threads are indicated by 
dotted lines.

Figure 9.12 Th readed binary tree

As nodes G and C have no predecessor and successor, respectively, the left  child of G and the right child of 
C have threads that are left  dangling. Th reading can be represented in two ways. Th ey are  one-way threading 
and  two-way threading.
One-way threading: It is a representation in which a thread appears only on the RCHID fi eld of the node, when 
it is null, pointing to the inorder successor of a node.
Two-way threading: It is a representation in which  threads appear on both LCHILD and  RCHILD fi elds of 
the node, when they are null, pointing to the inorder  predecessor and successor of the node. Th e  fi rst and 
last nodes of the inorder traversal hold dangling threads. All the traversals of a binary tree, either recursive or 
non-recursive, use a stack to keep track of the nodes whose processing is yet to be completed. Th is requires 
additional time and space. It is still worse in the case of skewed binary trees where the stack needs to hold the 
information regarding almost  all the nodes of a tree, a severe concern for very large trees. It would  be very 
effi  cient if a stack can be incorporated as a part of a tree; this can be done by using threads.

A

B 3C

D
E

F

G H I J
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To know that whether LCHILD and RCHILD fi elds are referring to the children of the node or to its prede-
cessor and successor, there should be a node structure that clarifi es this ambiguity.

9.9.1 LINKED  REPRESENTATION OF A THREADED BINARY TREE

A linked representation of a  threaded binary tree has a node structure as depicted in Figure 9.13.

Figure 9.13 Node structure of a linked representation of a threaded binary tree

Th is node structure representation includes two additional fi elds to the linked representation of a binary 
tree. Th ese two fi elds act as fl ags that indicate whether the LCHILD and RCHILD fi elds represent a thread or 
a link. If the LEFT THREAD TAG or RIGHT THREAD TAG fi elds are true then the corresponding LCHILD 
or RCHILD fi elds represent threads, else they represent links to the childs. Th e problem dangling threads 
can also be handled in this representation, because it has a head node to which  dangling threads point to. By 
convention, the head node has its LCHILD pointing to the root node of the threaded binary tree. So the LEFT 
THREAD TAG is set to false but the RCHILD link points to the head node itself. Figure 9.14(a) shows the linked 
representation of an empty threaded binary tree and Figure 9.14(b) shows a non-empty threaded binary tree.

LEFT
THREAD
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THREAD
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LCHILD DATA RCHILD

(b) Non-empty threaded binary tree
Figure 9.14 Linked representation of a threaded binary tree
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9.10 APPLICATIONS OF BINARY TREES

Binary trees have a number of applications. Representing arithmetic, logical or relational expressions without 
any ambiguity is one among important applications. In an  expression tree operands appear as leaf or external 
or terminal nodes and the operators appear as internal or non-terminal nodes. Th e operand may be either an 
identifi er or a number.

A Polish logician’s, Jan Lukasiewicz, invention in early 1920s regarding a special notation for propositional 
logic allows the removal of all parentheses from formulas. Th is is known as the Polish notation. Th is leads to 
less readability of formulas, but is very useful in computers, specially in writing compilers and interpreters. In 
order to provide both readability and unambiguity in the formulas, additional symbols like parentheses must 
be used. But, if avoiding ambiguity is the only goal then these symbols can be eliminated and this results in 
change in the order of symbols in the formulas. A complier does the same, i.e. it rejects the things that are not 
important in getting the proper meaning of formulas.

9.10.1 TRAVERSAL OF AN EXPRESSION TREE

Traversing an expression tree being a binary tree is the same as the traversal of a binary tree. Inorder traversal 
of an expression tree gives   infi x notation, preorder traversal gives   prefi x notation and postorder traversal gives 
  postfi x notation of an expression. 

Th e expressions are represented in three ways, they are infi x, prefi x and postfi x. A commonly used repre-
sentation of an expression is infi x, it appears as 

    <operand1><operator><operand2>
for instance    A+R, P*Q
Th e prefi x expression appears as <operator><operand1>operand2> 
for instance      +AR, *PQ
Th e postfi x expression appears as <operand1><operasnd2><operator>
for instance  AR+, PQ+
Generally, infi x notation is used but some programming languages use Polish notation. For instance, LISP 

and to a large extent LOGO use prefi x notation. Forth and Postscript use postfi x notation.

9.10.2 OPERATIONS ON EXPRESSION TREES

Binary trees can be created either in top–down or bottom–up manner. Top–down approach is used for imple-
menting insertions. Bottom–up approach is used in creating expression trees and scanning infi x expressions 
from left  to right.

While constructing an expression tree, it is a must to retain the precedence of operators and their associa-
tivity as they are in the expression for which an expression tree is constructed.

Let an algebraic expression 8+2*3–7 be considered. Its result is based on the order of evaluating the opera-
tions. If multiplication is done fi rst followed by addition and subtraction, the result will be 7. If addition is done 
fi rst followed by subtraction and multiplication as (8+2)*(3–7) the result will be –40. If addition is done aft er 
multiplication and subtraction as 8+ (2*3–7) the result will be 7.

Th e complier generates an assembly code where only one operation is preformed at once and its result is 
retained for further operations. So, all the expressions must be broken down unambiguously into individual 
operations and kept in their proper order. Here Polish notation is useful. Th is allows one to create an expres-
sion tree which imposes an order in executing the operations. For example, the expression 8+2*3–7, which 
is the same as 8+ (2*3)–7 is represented by the tree in Figure 9.15(a). Th e second and third expressions are 
represented by the trees shown in Figures 9.15(b) and (c), respectively.
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Figure 9.15 Examples of three expression trees and results of their transversals

Th ere is no ambiguity in this tree representation. To compute the fi nal result, the intermediate results are 
to be calculated fi rst. Even with no parentheses no ambiguity is found. Expression trees are very convenient for 
performing symbolic operations such as diff erentiation.

9.11 ADT OF BINARY TREE

A binary tree of nodes; each node contains data fi elds DATA and two link fi elds LCHILD and RCHILD. ROOT is 
pointed to the root node.
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Operations
 • isEmpty(ROOT)
  Checks whether binary tree is empty.
 • TRAVERSE _ LCHILD(N) 
  Traversing  the left  subtree of node N by moving down its LCHILD pointer.
 • TRAVERSE _ RCHILD(N)
  Traversing the right subtree of node N by moving down the RCHILD pointer.
 • INSERT(ROOT,ITEM)
  Insert a node with ITEM as DATA as the root node.
 • LEFT _ INSERT(N,ITEM)
  Insert a node with ITEM as DATA as left  child of a node N.
 • RIGHT _ INSERT(N,ITEM)
  Insert a node with ITEM as DATA as right child of a node N.
 • DELETE(ROOT)
  Delete root node of a binary tree.
 • DELETE _ LCHILD(N)
  Delete the left  child of a node N.
 • DELETE _ RCHILD(N)
  Delete the right child of a node N.
 • ADD _ DATA(LOC,ITEM)
  Add ITEM into a node whose address is in LOC.
 • RETRIEVE _ DATA(LOC,ITEM)
  Retrieve data of a node whose address is LOC. 
 •  INORDER(T)
  Perform inorder  traversal on binary tree T.
 • PREORDER(T)
        Perform preorder  traversal on binary tree T.
 • POSTORDER(T)
  Perform postorder  traversal on binary tree T.

SUMMARY

 • A tree is a fi nite set of one or more nodes. Every node in a tree represents a unit of information. Th e 
links/arcs between the nodes are known as branches.

 • A binary tree T is a fi nite set of elements. An empty tree is a binary tree. 
 • A binary tree of height h that consists of maximum permissible number of children to all nodes, i.e. 

2h-1 nodes is known as a full binary tree.
 • A binary tree that has maximum permissible number of nodes at all the levels except at the last level is 

known as a complete binary tree. A binary tree that has only left  or right children is known as a skewed 
binary tree.

 • Binary trees can be represented using both sequential and linked data structures.
 • Various operations can be performed on binary trees  such as searching, insertion, deletion, copy and 

display.
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 • Visiting a node of a binary tree is known as traversal. Various traversal techniques are inoreder, preor-
der, postorder and level order.

 • Th e inorder traversal starts with root node and traverses the left  subtree and then the right subtree.
 • Th e preorder traversal visits a node fi rst then traverses its left  subtree and then traverses its right sub-

tree.
 • Th e postorder traversal of a binary tree traverses the left  subtree of a node fi rst and traverses its right 

subtree and fi nally visits the node. 
 • Th e level-order traversal of a binary tree traverses the nodes in a level-by-level manner from top to 

bottom and among the nodes of the same level they are traversed from left  to right.
 • Th reads are  pointers or links. Th readed trees  are the trees whose nodes use threads.

EXERCISES

FILL IN THE BLANKS

 1.  Th e number of branches associated with a node is called the  of a node.
 2.  A binary tree with n elements will have  number of edges.
 3.   cannot be a tree.
 4.  Th e height of a tree is  in the tree.
 4.  Visiting each node in a tree exactly once is known as  .
 5.  Trees whose nodes use threads are called  .

MULTIPLE-CHOICE QUESTIONS

 1.  A binary tree that has only left  or right children is known as  .
      a. Complete binary tree     b. Full binary tree    
  c. Skewed binary        d. None.
 2.  A binary tree with n elements will have  number of edges.
      a. n-1  b. 2n  c.  n+1  d. 2n-1
 3.  At level i a binary tree can have at most  number of nodes.
      a. 2i     b. 2i+1            c.  2i-1    d. 2i–1
 4.  Th e height of a complete binary tree with n nodes in h is  .
       a. log

2
(n+1)    b. log

2
n      c. log

2
(n–1)     d. log2n+1                         

 5.  In an expression tree, operands appear as  .
     a. Leaf node b. Child node          c. Parent node        d. None 

SHORT-ANSWER QUESTIONS

 1. Defi ne trees.
 2. Give the basic terminology of trees.
 3. Discuss the representation of trees.
 4. For the below binary tree, fi nd
  i.  ROOT    ii. Children of C
  iii. Leaf nodes   iv. Siblings
  v.  Height of the tree
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 5. Convert the following into a binary tree:

G

ED

B

F

A

C

a

b c d e

f g h i k l mj

o pn

ESSAY QUESTIONS

 1. Explain the binary trees and their representation with an example.
 2. Discuss various operations on binary trees.
 3. Illustrate various traversal techniques on binary trees.
 4. Write a program to implement level-order traversal algorithm.
 5. Write a program to convert a tree into a binary tree. 
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Graphs

  This chapter provides a brief introduction to the concept of graphs and discusses the basic ter-
minology of graphs. Various popular and widely used representations of graphs are explained 
along with examples. Different operations that are frequently applied on graphs are explained 
with algorithms, examples and their implementations. Breadth and Depth first traversals of 
a graph are also exemplified. The chapter also includes the detailed discussion of the Prim’s 
algorithm regarding the minimal cost spanning tree of a graph among the listed applications, 
followed by the Abstract Data Type of graph. 

10.1 INTRODUCTION

Graph theory is applied in diverse areas such as social sciences, physical sciences, communication engineering 
and others. Graph theory also plays an important role in several areas of computer science such as Artifi cial 
Intelligence, Formal Languages, Computer Graphics, Operating Systems and Compiler Design. Graphs are 
widely used in the representation of data structures.

10.2 BASIC TERMINOLOGY

Graphs have various terms that one has to know before discussing other related aspects.  

Graph: A  graph G=(V,E) consists of two sets. A set V called the set of all vertices or nodes and a set E called the 
set of all edges or links or arcs. Th e set E is the set of pair of elements from V.   

Chapter 10

Figure 10.1 Graph G
1
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V3

V4
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In Figure 10.1,  V={v
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A  pair of vertices which are connected by an edge in a graph are called adjacent vertices. 

Labeled graph:  If the vertices and/or edges of a graph G are given with some data, then it is known as a labeled 
graph. It is easier to refer edges with labels. Th is is depicted in Figure 10.2.
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Figure 10.2 Graph G
2

In Figure 10.2, v
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Directed graph: A graph in which every edge is directed is called a  directed graph or simply a digraph. Edges are 
ordered pairs of vertices. An edge e
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Undirected graph: A graph in which every edge has no direction (undirected) is called an  undirected graph. 
Edges are unordered pairs of vertices. An edge e
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are distinct vertices.
In Figure 10.3(a), e
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1
,v

2
>. Here v

1
 is said to be ad-

jacent to v
2
, and v

2
 is said to be adjacent from v

1
.  In Figure 10.3(b) e

1
 is an undirected edge between v

1
 and 

v
2
, i.e. e

1
=(v

1
,v

2
) and is the same as (v

2
,v

1
). Here v

1
,v

2
 are said to be adjacent. Th e lists of vertices and edges of 

graphs G
3
 and G

4
 are

 Vertices (G
3
) = {v

1
,v

2
,v

3
}

 Vertices (G
4
) = {v

1
,v

2
,v

3
}

 Edges (G
3
) = {<v

1
,v

2
>,<v

2
,v

1
>,<v

1
,v

3
>,<v

3
,v

2
>,<v

2
,v

3
>} or {e

1
,e

2
,e

3
,e

4
}

 Edges (G
4
) = {(v

1
,v

2
),(v

1
,v

3
),(v

2
,v

3
)} or {e

1
,e

2
,e

3
}

Mixed graph: In a graph if some edges are directed and some edges are undirected then it is said to be a mixed 
graph. Th is is shown in Figure 10.4.
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Figure 10.4 Graphs G
5

Loop: An edge of a graph which joins a vertex to itself is called a loop.  In Figure 10.5, e
2
 is a loop.

e1
V2V1

e2

Figure 10.5 Graphs G
6

Parallel edges: In a graph, if a pair of vertices are joined by more than one edge, such edges are called parallel 
edges. Th is is shown in Figure 10.6.

V1

V2V3

e4

e1e3

e2

e5

Figure 10.6 Graphs G
7

Here in Figure 10.6, edges e
4
, e

3
 and e

1
, e

5
 are parallel edges.

Simple graph: Any graph without parallel edges and loops is known as a simple graph as depicted in Figure 10.7. 

V1 V2

V3

Figure 10.7 Graphs G
8

V1

V2V3
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Multigraph: Any graph which contains some parallel edges and loops is called a multigraph.

Trivial graph:  A fi nite graph with one vertex and no edges, i.e. single vertex, is called a trivial graph.

Isolated vertex: In any graph, a vertex which is not adjacent to any other vertex is called an isolated vertex.

Null graph: A graph with no vertices or with only isolated vertices is called a  null graph. Th e set of edges in a 
null graph is empty.

Weighted graph: A graph in which weights are assigned to every edge is called a  weighted graph.

Finite graph and infi nite graph: If the number of vertices and edges in a graph are fi nite, then it is called a fi nite 
graph otherwise it is called an infi nite graph.

Order and size of a graph: Let G be a graph, then V(G) or V denotes the set of vertices, and E(G) or E denotes the 
set of edges in graph G. 

|V(G)| or |V| denotes the number of vertices in G and is called order of G. Similarly, |E(G)| or |E| denotes 
the number of edges in G and is called size of G.

 Incidence: If a vertex v
i
 is an end vertex of an edge e

j
, then v

i
 and e

j
 are said to be incident with one another.

V1

V2 V3

V4 V5

e1

e3e2

e4

e5 e6

e7

e8

Figure 10.8 Graphs G
9

In Figure 10.8, edges e
3
, e

4
 and e

6
 are incident on vertex v

3
. Edges e

6
, e

7
 and e

8
 are incident on vertex v

5
 

and so on.

Degree of a vertex: Th e number of edges incident on vertex v
i
, where self-loop is counted twice, is called the 

 degree of a vertex v
i
.  It is denoted by deg(v

i
). In Figure 10.8, deg(v

1
)=4; deg(v

2
)=3.

Indegree of a directed graph: Th e number of edges incident to a vertex v
i
 is called the indegree of the vertex v

i
.

Outdegree of a directed graph: Th e number of edges incident from a vertex v
i
 is called the outdegree of the vertex 

v
i
. If the degree of a vertex is one then the vertex is called a pendant vertex.

  minimum degree  δ(G)=0
  maximum degree Δ(G) =4
Subgraph: A graph G1=(V1,E1) is a  subgraph of a graph G=(V,E) when V1 V and E1 E. Figure 10.9 illustrates 
a subgraph.
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    Graph G
10

                                                Graph G
11

V1

V2

V3

V4

e1

e2
e3

e4

e5 e6

V1

V2

V3

V4

e1

e2

e3

e4

Subgraphs of G
10

V2

V3 V4

e6

e4

V2

V3

V1

e1

e2

e3

Subgraphs of G
11

V2

V3

V1

e1

e2 e3

V2

V3

V4

e3

e4

Figure 10.9 Subgraphs

Cut set: Removal of a set of edges from a connected graph G makes G disconnected, then this set of edges is 
called a cut set. No proper subset of these edges should disconnect the graph G. Cut sets are also referred to as 
a proper  cut set or minimal cut set or cocycle.
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    (a) Graph G
12

    (b) Cut set of the graph G
12

Figure 10.10 Cut set of a graph
Th e cut set {e

1
,e

3
} disconnects the graph G

23
 as shown in Figure 10.10. Similarly, {e

4
},{e

2
,e

3
} are other cut 

sets of the graph.

 Connected graph: In a graph G, two vertices v
i
 and v

j
 are said to be connected if there is a path in G from v

i
 to v

j
. 

A graph is said to be connected if there is path between every pair of distinct vertices v
i
, v

j
 in G. 

If a graph is not connected, the maximal connected subgraph is known as a connected component or 
simply a  component. Th is is shown in Figure 10.11.

A B

C

DE

Figure 10.11 Connected graph G
13

A directed graph that holds the connectedness property is known as a strongly connected graph. A di-
graph G is said to be strongly connected if for every pair of distinct vertices v

i
, v

j
 in G, there is a directed path 

from v
i
 to v

j
 and also from v

j
 to v

i
. If a digraph is not strongly connected, then the graph is said to be weakly 

connected. Figure 10.12 shows types of connected graphs.
V1

V2

V3

V4

V1

V3V2

   G
14

: Weakly connected graph    G
15

: Strongly connected graph

Figure 10.12 Connected digraphs

V2

V3

V1

e1

e2 e3
V4

e4

V2

V3

V1

e2
V4

e4
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Path: In an undirected graph G, a sequence P of zero or more edges of the form {v
0
,v

1
}, {v

1
,v

2
}, …, {v

n–1
,v

n
} 

or v
0
–v

1
– … v

n
 is called a  path from v

0
 to v

n
, where v

0
 is the initial vertex and v

n
 is the terminal vertex of the 

path P. 
 In the defi nition of path, vertices and edges may be repeated.
 If v

0
=v

n
, then P is called a  closed path.

 If v
0
!= v

n
, then P is called an  open path.

Circuit: A path of length ≥1 with no other repeated vertices or edges except its starting and ending vertices is 
called a  circuit. 
Length of the path: Th e number of edges appearing in the sequence of the path P is called the length of the path.

If the length of the path P is zero, i.e. path P has no edges at all, it contains only a single vertex and is called 
a trivial path.

V4

V2

V1 V3 V5 V6 V7 V8

V10 V9

V7

Figure 10.13 Graph G
16

From the graph  G
16

 shown in Figure 10.13, the following observations can be made. 
Consider the path v

2
–v

3
–v

5
–v

6
–v

7
–v

10
–v

6
–v

2
. Here, the length of the path is 7 as it has 7 edges involved in 

the path. Th ough the length of the path is more then 1, as v6 is repeated it is not a circuit. As the end vertices 
are the same it is a closed path.      

Isomorphism: Two graphs G and G1 are said to be  isomorphic, there is a one-to-one correspondence between 
their vertices and between their edges such that the incident relationship is preserved.

In other words, if v
1
 and v

2
 are the vertices in graph G, v

1
 and v

2
 are the corresponding vertices in graph G’, 

then for an edge having v
1
 and v

2
 as the end vertices in G, there is a corresponding edge in G1 with v

1
’
’
 and v

2
’
’
 

as the end vertices. Th en G and G1 are said to be isomorphic.

Conditions for isomorphism:
 1. Both graphs should have the same number of vertices.
 2. Both graphs should have the same number of edges.
 3. Both graphs should have an equal number of vertices with the same degree.
 4. Both graphs should have the same cycle vector (c

1
,c

2
, …,c

n
), where c

i
= number of cycles of length i.
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     (a) Graph G
17

       (b) Graph G
18

Figure 10.14 Graphs G
17 

and G
18

 demonstrate isomorphism

Consider the graphs G
17

 and G
18

 shown in Figure 10.14. Both the graphs have 6 vertices and 6 edges. Also 
there exists one to one correspondences among them, which can be expressed as 
 Vertices a–3, b–1, c–2, d–4, e–5, f–6
 Edges e

1
–f

1
, e

2
–f

2
, e

3
–f

3
, e

4
–f

4
, e

5
–f

5
, e

6
–f

6

 Degree of all the vertices in G
17

 a, b, c, d, e, f is 2 and
 Degree of all the vertices in G

18
 1, 2, 3, 4, 5, 6 is also 2

Th erefore, the above graphs G
17

 and G
18

 are isomorphic. Consider the graphs G
19

 and G
20

 shown in Figure 10.15.

e

f

g

h

a

c

d b

o

p

q

r

k

m

n l

    (a) Graph G
19     

(b) Graph G
20

Figure 10.15 Graphs G
19 

and G
20

: non-isomorphic graphs

e1

e3

e2

e4

e5

e6

a

f

cb

ed

f1

f3

f2

f4

f5

f6

3

4

51

62
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Th e following observations can be made:
 1. |V

19
|=|V

20
|=8

 2. |E
19
|=|E

20
|=10

 3. Degrees are the same
 4. In G

19
 the length of the cycle is 8 and in G

20
 the length of the cycle is 6, cycle vector is not the same.

Th erefore, the two graphs G
19

 and G
20

 are not isomorphic.

Complement of a graph: Th e complement of a graph G is denoted by G1 on the same vertices if any only if two 
vertices that are adjacent in G are not adjacent in G1. 

Figure 10.16 shows the two graphs G
21

 and G
22

; the above said characteristic of complement graph is satis-
fi ed. Th erefore, graph G

22
 is a complement of the graph G

21
.

    (a) Graph G
21     

(b) Graph G
22

Figure 10.16 Graph G
21

  and  its complement G
22

  

Note: If two graphs are isomorphic then their complements will also be isomorphic.

Eulerian  circuit: If every edge of the graph G appears exactly once in the path which starts and ends at the same 
vertex, it is called an  Eulerian circuit. 
            A graph which has an Eulerian circuit is called an  Euler graph.

V1

V5 V2

V4 V3

V2

V1 V3

V5 V4

Figure 10.17 Graph G
23

: Euler graph
In graph G

23
 shown in Figure 10.17.

V2

V1

V5

V3

V4
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Euler circuit:  v
1
–v

2
–v

4
–v

5
–v

1
–v

3
–v

5
–v

2
–v

3
–v

4
–v

1

As the graph G
23

 has an Euler circuit it is an Euler graph.

Hamiltonian path:  Hamiltonian path in a connected graph is defi ned as a path that traverses each vertex of the 
graph exactly once, i.e. the terminal vertices of the Hamiltonian path are distinct.

Hamiltonian circuit:  Hamiltonian circuit is a circuit that passes through all the vertices in a graph exactly once ex-
cept the starting vertex because the same will also be the terminating vertex. A graph which has a Hamiltonian 
circuit is called a  Hamiltonian graph. Figure 10.18 illustrates Hamiltonian cycle and Hamiltonian circuit.

Hamiltonian circuit is: a–b–c–d–f–g–h–e–a

Figure 10.18 Graph G
23

: Hamiltonian graph

10.3 REPRESENTATION OF GRAPHS 

Graphs can be represented in two ways:
 1. Sequential representation
 2. Linked representation 

All the methods of sequential representation use matrices. So, arrays are used for implementing them. In 
the linked representation, a singly linked list is used as a basic data structure.

10.3.1 SEQUENTIAL REPRESENTATION OF GRAPHS

Some of the popular sequential representation methods are:
 • Adjacency matrix representation
 • Incidence matrix representation 
Adjacency matrix representation: For a graph G=(V,E) of n vertices the  adjacency matrix is an n n symmetric 
binary matrix, and every entry of this matrix is defi ned as 

a
ij

=1, if there is an edge between v
i
 and v

j

a
ij

 = 0, if there is no edge between v
i
 and v

j
.

i.e. it only shows the direct paths between the vertices.

a

e f

h g

d

b c
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Figure 10.19 Graph G
25

Th e adjacency matrix representation of graph G
25

 in Figure 10.19 is 

   v
1
 v

2
 v

3
 v

4
 v

5
 v

6

  v
1
 0 1 1 0 0 0

  v
2
     1 0 1 1 0 0

  v
3
     1 1 0 1 0 0

  v
4
     0 1 1 0 1 0

  v
5
     0 0 0 1 0 1

  v
6
    0 0 0 0 1 0

Th is representation is the best and widely used representation. Its time complexity is  O(n2) because mini-
mum n2-n entries, excluding  diagonal elements, must be examined.

Incidence matrix representation: For a graph G=(V,E) of n vertices and e edges the  incidence matrix, is an n e 
matrix, and every entry of this matrix is defi ned as 

 a
ij

=1, if an edge e
j
 is incident on vertex v

i

       a
ij

=0, otherwise

   e
1
 e

2
 e

3
 e

4
 e

5
 e

6
e
7

  v
1
 1 1 0 0 0 0 0

   v
2
     1           0  1 1 0           0    0

  v
3
     0          1            1          0           1          0       0

  v
4
     0          0           0           1           1          1       0 

  v
5
     0          0          0           0          0         1        1

  v
6
     0          0          0          0          0         0        1 

Incidence matrix of graph G
25

V2

V3

V1

e1

e2 e3 V4

e4

e7

e6

e5
V5

V6
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10.3.2 LINKED REPRESENTATION OF GRAPHS

Th e linked representation of a graph G=(V,E) with  n vertices and e edges creates n head nodes with respect to 
n vertices. Each of these head nodes refers to a singly linked list that holds the adjacent vertices of the vertex 
corresponding to the head node.

Th is representation is also known as an  adjacent list representation. Th is is also referred to as a star repre-
sentation when implemented as a table.

Th e linked representation is considered to be effi  cient over its counterpart of sequential representation 
with a time complexity of O(n+e) for directed and O(n+2e) for undirected graphs. Figure 10.20 shows the 
adjacency list representation of graph G

25
.

Figure 10.20 Th e adjacency list representation of graph G
25

10.4 OPERATIONS ON GRAPHS

Several operations can be performed on graphs. Th e primitive operations that are required to maintain a graph 
are:
 1. Create a graph
 2. Insertion of a vertex
 3. Deletion of a vertex
 4. Insertion of an edge
 5. Deletion of an edge
 6. Search for a vertex
 7. Traversal of a graph
 8. Deletion of or destroy a graph

Other operations such as vertex count, vertex’s indegree, vertex’s outdegree, etc. are application dependent.

Data structure of a graph: Adjacency list representation can be used to store the graph. A head structure can be 
added to hold the metadata regarding the list. Here only count of vertex in a graph is stored along with the 
pointer to the fi rst vertex. Vertex node holds the data about the vertex. Th e node structure of the vertex is cho-
sen to contain six fi elds. In addition to the data, pointers to next vertex and fi rst edge, it also contains indegree, 

V1 V2

V1

V1

V2

V4

V3

V3

V2

V3

V4

V4

V5

V6

V5

V2

V3

V4

V5

V6
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outdegree and visit fi elds. Th e indegree fi eld is very helpful regarding deletion. Deletion of a vertex is allowed 
only when its indegree is zero, i.e. no edge should point to it. Otherwise deletion is not allowed and leads to 
failure of program. Th e visit fi eld is a fl ag and is useful during traversal to know whether it is already visited or 
not. If it is true then the vertex is traversed else it is not traversed. Th e edge details are stored in its structure 
that holds two fi elds, destination and next edge. Th e graph data structure is shown in Figure 10.21.

count first

 (a) Graph head

next vertex data indegree outdegree visit first edge

(b) Graph vertex

destination next

(c) Graph edge

Figure 10.21 Graph data structure

Create a graph: Initially a graph should be created; this can be done by initializing the metadata elements of a 
graph head structure. Algorithm 10.1 gives the procedure of creating a graph.

Algorithm 10.1

creategraph
 1. Set count to 0.
 2. Set first to NULL
 3. Return graph head.
End creategraph.

Insertion of a vertex:  Insert vertex operation is used to add a vertex to a graph. Aft er insertion, the new vertex 
will be an isolated or a disjoint vertex which is not connected with any other vertices. Th is is the fi rst step of 
the insertion process. To connect this vertex with another vertex, an edge associated with this must be inserted 
separately. Th e insertion of a vertex into a graph is shown in Figure 10.22.
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Figure 10.22 Insertion of a vertex

Algorithm 10.2 explains the procedure of inserting a vertex into a graph.

Algorithm 10.2

insertvertex(graph, data)
1. GETNODE(AVAIL)              //memory allocation for new vertex.
2. Set data to new vertex
3. Initialize metadata elements in new node
4. Increment graph count //finding the insertion point or where to 
            //insert the new vertex
5. If graph is empty
  Set graphfirst to new node.
6. Else
   (i) Search for position of insertion
   (ii) If  insertion as a first vertex set  graphfirst to new vertex
   (iii) Else
   Insert new vertex (sequentially) as last vertex
 (iv) End if
7. End if 
End insertvertex.

Deletion of a vertex:  Delete vertex operation is used to remove a vertex from a graph. To delete a vertex it should 
be searched. If found,  it should be ensured that no edges are coming to or going out of the vertex, then delete 
the vertex else deletion is not allowed. Figure 10.23  shows the deletion of a vertex.

A B

C

D

A B

C D

Before insertion After insertion

Insert 
vertex

Figure 10.23 Deletion of a vertex

A B

C

D

A B

C D

Before deletion After deletion

Delete
vertex
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Algorithm 10.3 explains the procedure of deleting a vertex from a graph.

Algorithm 10.3

deletevertex(graph, element)
1. If graph is empty
      Print “element not found”.
2. End If 
3. Search for the vertex to be deleted
4. If not found
        Print “element not found” 
5. Else 
  1. If indegree(vertex)>0 or outdegree(vertex)>0

  Print “deletion is not allowed”
  2.  Else

  deletevertex
  3. Decrement graph count

4. Print “vertex deleted successfully”
6. End deletevertex.

Insertion of an edge:  Insert edge operation is used to add an edge that connects a vertex to a destination vertex. To 
insert an edge, two vertices must be specifi ed. In case of digraph one vertex must be specifi ed as the source and 
the other as a destination. If a vertex requires multiple edges, this operation must be invoked once to connect 
with each of its adjacent vertices. Figure 10.24  shows the insertion of an edge {B, D} in a graph.

A B

C D

Before insertion After insertion

Insert
edge

A B

C D

Figure 10.24 Insertion of an edge

Algorithm 10.4 details how an edge is inserted into a graph.

Algorithm 10.4

insertedge(graph, fromvertex, tovertex)
1. GETNODE(AVAIL)  // memory allocation for new edge
2. Find and set fromvertex //identify the source vertex.
3. If fromvertex not found
             Print “fromvertex not found”
4. End if 
5. Find and set tovertex  //identify destination vertex.
6. If tovertex not found.
           Print “tovertex not found”.
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7. End if
8. Increment outdegree of fromvertex.
9. Increment indegree of tovertex.
10. Set edge destination to tovertex.
11. If edge list of fromvertex is empty.
              1. Set first edge of fromvertex to new edge.
              2. set next edge of new edge to null
              3. Print “insertion is successful”
12. End if
13. Search for insertion point in adjacency list
14. If insertion as a first edge
               Set first edge of fromvertex to new edge
15. Else
         Insert in edge list.
16. End if
17. Print “insertion successful” 
18. End insertedge.

Deletion of an edge: Delete edge operation is used to remove an edge from a graph. To delete an edge the two 
vertices source and destination must be identifi ed. So, search the vertex list to fi nd the source vertex. Identify 
the destination vertex from the adjacency list of the source vertex. Now, the edge is located and removed from 
the adjacency list. Adjust the degree of from and to vertices and recycle the memory. Deletion of an edge {B, 
D} is shown in Figure 10.25. 

A B

C D

Before deletion After deletion

Delete
edge

A B

C D

Figure 10.25 Deletion of an edge 

Algorithm 10.5 gives the process of deleting an edge from a graph.

Algorithm 10.5

delete edge(graph, fromvertex, tovertex)
1. If graph is empty
            Print “source vertex not found”.
2. End if 
3. Find and set fromvertex  //identify source vertex.
4. If fromvertex not found.
           Print “from vertex not found”.
5. End if
//identify the destination vertex in adjacency list.
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6. If edge list of fromvertex is null.
              Print “tovertex not found”.
7. End if 
8. Find the tovertex and set the edge.
9. If tovertex not found
           Print “tovertex not found”.
10. End if
    //fromvertex, tovertex and edge are located. Now delete edge.
11. Set tovertex to edge destination.
12. Delete edge.
13. Decrement the outdegree of fromvertex.
14. Decrement the indegree of tovertex.
15. Print “edge successfully deleted”
16. End deleteedge.

Search for a vertex:  Search vertex operation is used to return the data that is stored in a vertex. Th is is very similar 
to the search operation of a linked list. Algorithm 10.6 explains the procedure of searching for a vertex in a 
graph.

Algorithm 10.6

searchvertex(graph, key, item)
1. If graph is empty
        Print “search is not successful as the graph is empty”.
2. End if
3. Search for vertex.
4. If vertex is found
                 1. Set data(vertex) to item.
                 2. Print “search is successful”.
5. Else
        Print “search is not successful”
6. End if 
7.End searchvertex.

Destroy a graph: When a  delete vertex operation is performed it should be isolated fi rst by deleting its edges. 
Destroy graph operation initially deletes all the edges of a vertex before it deletes a vertex. Deleting all vertices 
including the corresponding edges is destroying a graph. Algorithm 10.7 discusses the method of destroying 
a graph.

Algorithm 10.7

destroygraph(graph)
1. If graph is empty
        Return
2. If graph head count>0  loop
      1. If outdegree of vertex>0loop
                1. Delete first edge of vertex
                2. Decrement the outdegree of vertex by 1
      2. End loop
3. End loop
4. End destroygraph.
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Implementation of operations: Th e implementation of above-discussed operations are explained in Program 10.1.

Program 10.1 

// To PERFORM GRAPH OPERATIONS USING LINKED LIST REPRESENTATION 
#include<iostream.h>
#include<alloc.h>
#include<conio.h>
#include<stdlib.h>
typedef struct graph
{
 int vertex,weight;
 struct graph*next;
}GRAPH;
GRAPH*adj[100],*ptr;
int n,count=0,a,b,i;
void insertvt()//To Insert Vertex
{
 cout<<“Enter Vertex To Be Insert”;
 cin>>a;
 cout<<“Enter Reference Vertex”;
 cin>>b;
 if(a>n||a<1||b>n||b<1)
 {
  cout<<“Wrong Input”;
  return;
 }
 if(count!=0)
 {
  ptr=adj[b];
  while(ptr->vertex==b)
   ptr=ptr->next;
  if(ptr==NULL)
  {
   cout<<“Vertex Not Found”;
   return;
  }
 }
 ptr=(graph*)malloc(sizeof(graph));
 ptr->vertex=b;
 ptr->weight=1;
 ptr->next=adj[a];
 adj[a]=ptr;
 if(count==0)
  count+=2;
 else
  count++;
 cout<<“Vertex”<<a<<“Is Inserted And Edge Is Established B/w”<<a<<“To”<<b;
}
void insertedg()//To Insert Edge
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{
 int wt;
 cout<<“Enter First Vertex”;
 cin>>a;
 cout<<“Enter Second Vertex”;
 cin>>b;
 if(a>n||a<1||b>n||b<1)
 {
  cout<<“Wrong Input”;
  return;
 }
 ptr=adj[a];
 while(ptr!=NULL)
 {
  if(ptr->vertex==b)
  {
   cout<<“Vertex Already Exists”;
   return;
  }
  ptr=ptr->next;
 }
 ptr=(graph*)malloc(sizeof(graph));
 ptr->vertex=b;
 ptr->weight=1;
 ptr->next=adj[a];
 adj[a]=ptr;
 cout<<“Edge Is Inserted”;
}
void deletevt()//To Delete Vertex
{
 if(count==0)
 {
  cout<<“Graph Is Empty”;
  return;
 }
 cout<<“Enter Vertex To Be Delete”;
 cin>>a;
 if(a>n||a<1)
 {
  cout<<“Vertex Not Found”;
  return;
 }
 for(i=1;i<=n;i++)
 {
  ptr=adj[i];
  while(ptr!=NULL)
  {
   if(ptr==adj[a])
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   adj[i]=NULL;
   ptr=ptr->next;
  }
 }
 count--;
 cout<<“Vertex”<<a<<“Is Deleted”;
}
void deletedg()//To Delete Edge
{
 GRAPH*prev;
 if(count==0)
 {
  cout<<“Graph Is Empty”;
  return;
 }
 cout<<“Enter First Vertex”;
 cin>>a;
 cout<<“Enter Second Vertex”;
 cin>>b;
 if(a>n||a<1||b>n||b<1)
 {
  cout<<“Wrong Input”;
  return;
 }
 ptr=adj[a];
 while(ptr!=NULL&&ptr->vertex!=b)
  ptr=ptr->next;
 if(ptr==NULL)
 {
  cout<<“Wrong Input”;
  return;
 }
 if(ptr==adj[a])
 {
  adj[a]=ptr->next;
  free(ptr);
  return;
 }
 prev=adj[a];
 while(prev->next!=ptr)
  prev=prev->next;
 prev->next=ptr->next;
 free(ptr);
 cout<<“Edge Is Deleted”;
}
void display()//To Display Edges
{
 GRAPH *ptr;
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 int i;
 cout<<“Edges In The Given Graph\n”;
 for(i=1;i<=n;i++)
 {
  ptr=adj[i];
  while(ptr!=NULL)
  {
   cout<<i<<“->”<<ptr->vertex<<“ ”<<endl;
   ptr=ptr->next;
  }
 }
}
void main()
{
 int op,x,i;
 clrscr();
 cout<<“Enter Maximum No Of Nodes”;
 cin>>n;
 for(i=1;i<=n;i++)
 adj[i]=NULL;
 while(1)
 {
  cout<<“\nGraph Operations\n1.Insert Vertex\n2.Insert Edge”;
  cout<<“\n3.Delete Vertex\n4.Delete Edge\n5.Display\n”;
  cout<<“6.Exit\nEnter Your Option”;
  cin>>op;
  switch(op)
  {
   case 1:insertvt();break;
   case 2:insertedg();break;
   case 3:deletevt();break;
   case 4:deletedg();break;
   case 5:display();break;
   case 6:exit(0);
   default:cout<<“Invalid Choice”;
  }
 }
}

Output

//OUTPUT FOR GRAPH OPERATIONS USING LINKED LIST REPRESENTATION 
Enter Maximum No Of Nodes5
Graph Operations
1.Insert Vertex
2.Insert Edge
3.Delete Vertex
4.Delete Edge
5.Display
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6.Exit
Enter Your Option1
Enter Vertex To Be Insert1
Enter Reference Vertex2
Vertex 1 Is Inserted And Edge Is Established B/w 1 To 2
Graph Operations
1.Insert Vertex
2.Insert Edge
3.Delete Vertex
4.Delete Edge
5.Display
6.Exit
Enter Your Option1
Enter Vertex To Be Insert3
Enter Reference Vertex1
Vertex 3 Is Inserted And Edge Is Established B/w 3 To 1
Graph Operations
1.Insert Vertex
2.Insert Edge
3.Delete Vertex
4.Delete Edge
5.Display
6.Exit
Enter Your Option2
Enter First Vertex2
Enter Second Vertex3
Edge Is Inserted
Graph Operations
1.Insert Vertex
2.Insert Edge
3.Delete Vertex
4.Delete Edge
5.Display
6.Exit
Enter Your Option5
Edges In The Given Graph
1->2
2->3
3->1
Graph Operations
1.Insert Vertex
2.Insert Edge
3.Delete Vertex
4.Delete Edge
5.Display
6.Exit
Enter Your Option1
Enter Vertex To Be Insert5
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Enter Reference Vertex1
Vertex 5 Is Inserted And Edge Is Established B/w 5 To 1
Graph Operations
1.Insert Vertex
2.Insert Edge
3.Delete Vertex
4.Delete Edge
5.Display
6.Exit
Enter Your Option1
Enter Vertex To Be Insert4
Enter Reference Vertex3
Vertex 4 Is Inserted And Edge Is Established B/w 4 To 3
Graph Operations
1.Insert Vertex
2.Insert Edge
3.Delete Vertex
4.Delete Edge
5.Display
6.Exit
Enter Your Option5
Edges In The Given Graph
1->2
2->3
3->1
4->3
5->1
Graph Operations
1.Insert Vertex
2.Insert Edge
3.Delete Vertex
4.Delete Edge
5.Display
6.Exit
Enter Your Option4
Enter First Vertex5
Enter Second Vertex1
Graph Operations
1.Insert Vertex
2.Insert Edge
3.Delete Vertex
4.Delete Edge
5.Display
6.Exit
Enter Your Option5
Edges In The Given Graph
1->2
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2->3
3->1
4->3
Graph Operations
1.Insert Vertex
2.Insert Edge
3.Delete Vertex
4.Delete Edge
5.Display
6.Exit
Enter Your Option3
Enter Vertex To Be Delete4
Vertex 4 Is Deleted
Graph Operations
1.Insert Vertex
2.Insert Edge
3.Delete Vertex
4.Delete Edge
5.Display
6.Exit
Enter Your Option5
Edges In The Given Graph
1->2
2->3
3->1
Graph Operations
1.Insert Vertex
2.Insert Edge
3.Delete Vertex
4.Delete Edge
5.Display
6.Exit
Enter Your Option6

10.5 GRAPH TRAVERSALS

Similar to the case of trees, traversal visits elements of the nodes in a particular manner. Graphs can be tra-
versed in two ways. Th ey are:
 •  Breadth fi rst traversal
 •  Depth fi rst traversal

10.5.1 BREADTH FIRST TRAVERSAL

An arbitrary vertex V is selected to begin the traversal, visit the vertex. All the adjacent vertices of V, a
i
 are 

visited. Now, the unvisited adjacent vertices of each a
i
, b

ij
 are visited. Th is process continues till all the vertices 

of the graph are visited. Th e vertices whose adjacent vertices are to be visited are kept in queue.
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Algorithm 10.8 

breadthfirsttraversal(G)
This algorithm performs breadth first traversal starting from the vertex V of 
graph G
/*QUE is a queue, keeping track of vertices whose adjacency nodes are to be 
visited.
 Vertices which are visited are set to 1
 Initially all the vertices in a graph are set to 0*/
1. Initialize queue QUE
2. Set Visit(V) to 1
3. Insert the vertex V into QUE
4. Loop till QUE is empty then perform deletion from QUE
5. Display the visited vertex 
6. Loop for all adjacent vertices A of V
7. Check whether visit(A) is zero then insert vertices into QUE
8. Set VISIT(A) to 1
9. End loop 

10. End loop
11. End

 Let the graph G
26

 in Figure 10.26 be used to discuss the traversal.

a

b

e f g h

c d

i j

Figure 10.26 Graph G
26

 BST 

Figure 10.27 Queue notation of BST 

a

b c d

c d e
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Figure 10.27 Continued

a

b

e f g h

c d

i j

Figure 10.28 Result of BST

Th e vertex ‘a’ is chosen to begin the traversal and ‘a’ is visited, enque ‘a’. Deque ‘a’ to visit. Th e vertices ‘b’, ‘c,’ 
‘d’ that are adjacent to ‘a’, enque ‘b’, ‘c’, ‘d’. Th e traversal output at this stage is a. Deque ‘b’ to visit its only adjacent 
vertex ’e’, enque ‘e’. Th e traversal output at this stage is ab. Deque ‘c’ to visit its two adjacent vertices ‘f ’, ‘g’ and 
then enque the traversal output at this stage is abc. Now, deque ‘d’ to visit its adjacent vertex ‘h’ and enque it. 
Th e traversal output at this stage is abcd. Deque ‘e’ to visit its adjacent vertex i, enque ‘i’. Th e traversal output 
at this stage is abcde. Deque ‘f ’, its only adjacent vertex ‘i’ is already visited. Th e traversal output at this stage 
is abcdef. So, proceed to deque ‘g’ to visit its adjacent vertex ‘j’, enque it.  Now the traversal output  is abcdefg. 
Deque ‘h’, its  only adjacent node ‘j’ is also already visited. So, no enque is required. Th e traversal at this stage is 
abcdefgh. Deque ‘i’, it does not have any unvisited vertices, so no enque is required. Th e traversal at this stage 
is abcdefghi. Deque ‘j’ the queue is empty as all its adjacent vertices are already visited, no further enquening 
is required. Th e fi nal traversal output is abcdefghij. 

Th e queue notation of the breadth fi rst traversal of the graph G
26

 is shown in Figure 10.27 and the result of 
this is depicted in Figure 10.28.

e f g h

f g h i

h i j

ed f g
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Program 10.2 
//PROGRAM FOR BREADTH FIRST TRAVERSAL OF A GRAPH
#include<iostream.h>
#include<conio.h>
char queue[20],g[20],x,delet();
int a[20][20],m,n,i,j,state[20],front=0,rear=-1;
void insert(char),bfs();
void main()
{
 clrscr();
 cout<<“Enter No Of Nodes Of Graph:”;
 cin>>n;
 cout<<“Enter The Nodes Of Graph (In Alphabets):”;
 for(i=1;i<=n;i++)
 cin>>g[i];
 cout<<“Instructions\nPress 1 If Edge Exists Otherwise Press 0\n”;
 for(i=1;i<=n;i++)
 for(j=1;j<=n;j++)
 {
  cout<<g[i]<<“To”<<g[j]<<“:”;
  cin>>a[i][j];
 }
 cout<<“The Order Of Visiting The Nodes:”;
 // Make State Of Each Node To Ready
 for(i=1;i<=n;i++)
 state[i]=1;
 state[1]=2;
 insert(g[1]);
 bfs();
 getch();
}
void bfs()
{
 x=delete();
 for(i=1;i<=n;i++)
 if(g[i]==x)
 break;
 state[i]=3;
 cout<<g[i];
 // Make State Of Each Traversed Node As Visisted
 for(j=1;j<=n;j++)
 {
  if(a[i][j]==1&&state[j]==1)
  {
   state[j]=2;
   insert(g[j]);
  }
 }
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 if(front<=rear)
 bfs();
}
void insert(char x)
{
 rear++;
 queue[rear]=x;
}
char delete()
{
 char x;
 x=queue[front];
 front++;
 return(x);
}

Output
/*BFS OUTPUT*/
Enter No Of Nodes Of Graph:8
Enter The Nodes Of Graph (In Alphabets):A
B
C
D
E
F
G
H
Instructions
Press 1 If Edge Exists Otherwise Press 0
A To B : 1   A To C : 1   A To D : 1
A To E : 0   A To F : 0   A To G : 0
A To H : 0   B To A : 1   B To C : 0
B To D : 0   B To E : 1   B To F : 0
B To G : 0   B To H : 0   C To A : 1
C To B : 0   C To D : 0   C To E : 0
C To F : 0   C To G : 1   C To H : 1
D To A : 1   D To B : 0   D To C : 0
D To E : 0   D To F : 0   D To G : 1
D To H : 0   E To A : 0   E To B : 1
E To C : 0   E To D : 0   E To F : 1
E To G : 0   E To H : 0   F To A : 0
F To B : 0   F To C : 0   F To D : 0
F To E : 1   F To G : 0   F To H : 1
G To A : 0   G To B : 0   G To C : 1
G To D : 1   G To E : 0   G To F : 0
G To H : 1   H To A : 0   H To B : 0
H To C : 1   H To D : 0   H To E : 0
H To F : 1   H To G : 1 
The Order Of Visiting The Nodes: ABCDEGHF
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10.5.2 DEPTH FIRST TRAVERSAL

Th e  depth fi rst traversal  arbitrarly chooses vertex V to begin the traversal and visits the vertex. All the adjacent 
vertices of V, a

i
  are considered but only the fi rst adjacent vertex a

1
 is visited leaving the other vertices. Th e 

diff erence between the breadth fi rst and depth fi rst traversal can be majorly observed from this point onwards. 
Unlike breadth fi rst traversal only one of the adjacent vertices is picked, traversed and continues to traverse 
from its adjacent vertex till all the vertices are visited. Now among the adjacent vertices of a

1
, b

1j
 only the fi rst 

adjacent vertex b
11

 is visited and proceeds in the same manner till no more vertices remain unvisited. Stack is 
used to keep track the vertices whose adjacent vertices are to be visited.

Algorithm 10.9

depthfirsttraversal(G)
This algorithm performs depth first traversal. V is the starting vertex  of 
graph G.
1. Set VISIT(V) to 1
2. Display the visited vertex V
3. Loop for each adjacent vertex A of V
4. Check whether VISIT(A) is zero then call DFT(A)
5. End Loop
6. End

Th e graph G
26

 in Figure 10.29 is used to discuss the traversal. 

Figure 10.29 Result of DST 

Th e vertex ‘a’ is chosen arbitrarily to begin the traversal and it is visited. Its three adjacent vertices ‘b’, ‘c’ and 
‘d’ are considered, but only ‘b’, the fi rst adjacent vertex,  is selected and visited. Th e output of the traversal is ab. 
Th e adjacent vertex of b, ‘e’ is visited and the output of the traversal is abe. Vertex ‘i’ adjacent to ‘e’ is visited and 
the output is abei. Th e adjacent vertex of ‘i’, ‘f ’ is visited and the output of the traversal is abeif. Aft er visiting ‘c’, 
the adjacent vertex of ‘f ’, the output of the traversal is abeifc. Now, visit ‘g’, the adjacent vertex of ‘c’ to obtain the 
output of the traversal as abeifcg. Th e adjacent vertex ‘j’ of ‘g’ is visited and the output of the traversal is abeifcgj. 
Th e vertex ‘h’ adjacent to ‘j’ is visited and the output is abeifcgjh. Th e vertex ‘d’ adjacent to ‘h’ is visited; at this 
stage all the vertices are visited. So, the fi nal output of the traversal is abeifcgjhd.

Th e time complexity of depth fi rst traversal() in case of adjacency matrix implementation is O(n2) and in 
case of adjacency list implementation is O(e). Th e result of the depth fi rst traversal is shown in Figure 10.29.

a

b

e f g h

c d

i j
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Th e two traversals  breadth fi rst and  depth fi rst produce the traversal of all the connected vertices of a 
graph. If any vertex is left  unvisited in either of the traversal then that would be an unconnected vertex and 
the graph also will be an unconnected graph. So, both these traversals help in fi nding whether a graph is con-
nected or not. If the fi nal output includes all the vertices then the graph is said to be connected else it is an 
unconnected graph.

Program 10.3

//PROGRAM FOR DEPTH FIRST TRAVERSAL OF A GRAPH 
#include<iostream.h>
#include<conio.h>
#include<string.h>
#include<stdlib.h>
char stack[20],x,pop(),g[20];
int top=-1,n,a[20][20],i,j,state[20],count=0;
void push(char),dfs();
void main()
{
 clrscr();
 cout<<“Enter No Of Nodes Of Graph:”;
 cin>>n;
 cout<<“Enter The Nodes Of Graph(In Alphabets):”;
 for(i=1;i<=n;i++)
 cin>>g[i];
 cout<<“Instructions\nPress 1 If Edge Exists Otherwise Press 0\n”;
 for(i=1;i<=n;i++)
 for(j=1;j<=n;j++)
 {
  cout<<g[i]<<“To”<<g[j]<<“:”;
  cin>>a[i][j];
 }
 cout<<“The Order Of Visiting The Nodes:”;
 // Make State Of Each Node To Ready
 for(i=1;i<=n;i++)
 state[i]=1;
 state[1]=2;
 dfs();
 getch();
}
void dfs()
{
 if(count==0)
 push(g[1]);
 x=pop();
 for(i=1;i<=n;i++)
 if(g[i]==x)
 break;
 state[i]=3;
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 cout<<g[i];
 count++;
 if(count==n)
 {
  getch();
  exit(0);
 }
 //Make State Of Each Traversed Node As Visisted
 for(j=n;j>=1;j--)
 {
  if(a[i][j]==1&&state[j]!=3)
   push(g[j]);
 }
 if(top!=-1)
 dfs();
}
void push(char x)
{
 top++;
 stack[top]=x;
}
char pop()
{
 char x;
 x=stack[top];
 top--;
 return(x);
}

Output

Enter No Of Nodes Of Graph:10
Enter The Nodes Of Graph (In Alphabets):A
B
C
D
E
F
G
H
I
J
Instructions
Press 1 If Edge Exists Otherwise Press 0
A To A : 0  A To B : 1  A To C : 1
A To D : 1  A To E : 0  A To F : 0
A To G : 0  A To H : 0  A To I : 0
A To J : 0  B To A : 1  B To B : 0
B To C : 0  B To D : 0  B To E : 1
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B To F : 0  B To G : 0  B To H : 0
B To I : 0  B To J : 0  C To A : 1
C To B : 0  C To C : 0  C To D : 0
C To E : 0  C To F : 1  C To G : 1
C To H : 0  C To I : 0  C To J : 0
D To A : 1  D To B : 0  D To C : 0
D To D : 0  D To E : 0  D To F : 0
D To G : 0  D To H : 1  D To I : 0
D To J : 0  E To A : 0  E To B : 1
E To C : 0  E To D : 0  E To E : 0
E To F : 0  E To G : 0  E To H : 0
E To I : 1  E To J : 0  F To A : 0
F To B : 0  F To C : 1  F To D : 0
F To E : 0  F To F : 0  F To G : 0
F To H : 0  F To I : 1  F To J : 0
G To A : 0  G To B : 0  G To C : 1
G To D : 0  G To E : 0  G To F : 0
G To G : 0  G To H : 0  G To I : 0
G To J : 1  H To A : 0  H To B : 0
H To C : 0  H To D : 1  H To E : 0
H To F : 0  H To G : 0  H To H : 0
H To I : 0  H To J : 1  I To A : 0
I To B : 0  I To C : 0  I To D : 0
I To E : 1  I To F : 1 I To G : 0
I To H : 0  I To I : 0  I To J : 0
J To A : 0  J To B : 0  J To C : 0
J To D : 0  J To E : 0  J To F : 0
J To G : 1  J To H : 1  J To I : 0
J To J : 0 
The Order Of Visiting the Nodes: ABEIFCGJHD

10.6 APPLICATIONS

Th e following are the some of the applications of graphs:
 • Minimum cost spanning tree
 • Single-source shortest path
 • Union-fi nd problem
 • Connectivity of components 

Minimum cost spanning tree can be found using either Prim’s or Krushkal’s algorithms. Th e following is 
the illustration of Prim’s algorithm to fi nd the minimum cost spanning tree.

A graph G of n vertices is considered,  its spanning tree with minimum cost is to be found. Using  Prim’s 
algorithm an arbitrary vertex  is considered as a root node. Among various incident edges, a minimum cost 
edge is selected to connect the root node with other nodes b, similarly this node is connected with another 
node. Th is process is continued till all the nodes are connected. Finally a minimum cost spanning tree of a 
given graph is obtained.
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Algorithm 10.10

prim(G)
//G(V,E) is a weighted connected undirected graph and E1 is the set of edges 
//of the obtained minimum cost spanning tree 
1. Set E1 to NULL
2. Select minimum cost edge(U,V) from E 
3. Assign u to V1

4. Loop till V1 is not equal to V 
 1. Suppose (U,V) is the lowest cost edge such that V1={u} and V is in
    V- V1

 2. Add (U,V) edge to E1

 3. Add V to V1

 4. End loop
5. End

Graph G
27

 depicted in Figure 10.30 is used to illustrate this. 

Figure 10.30 Graph G
27
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Figure 10.31 Spanning tree T of Graph G
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Consider node 1 as the root node, it has two incident edges with 4 and 6 as their costs. Th e edge with 
minimum cost 4 is selected and used to connect 1 with 2. Node 2 has only one edge with cost 8; this is used to 
connect nodes 2 and 3. Node 3 also has only one edge with cost 3 and is used to connect nodes 3 and 4. Node 
4 has two incident edges with 4 and 2 as their cost. Edge with cost 2 is selected to connect node 7 with 4. Node 
7 has two incident edges with costs 1 and 16, the edge with cost 1 is used to connect node 5 with 7. Node 5 
has only one edge with cost 3 to proceed to an unvisited node 6. So, it is used to connect 6 with 5. Now, all 
the nodes are connected using minimum possible cost edges resulting in a minimum cost spanning tree T of 
graph G

27
 such that T  G  is a subgraph where G=(V,E) and T=(V1,E1) (Figure 10.31). Th e time complexity of 

Prim’s algorithm is O(n2).

10.7 GRAPH ADT

A graph G consisting of vertices and edges:
 • is empty (G)
          Check whether graph G is empty
 • INSERT (G,V)
           Insert vertex V into graph G
 • INSERT(G,U,V)
           Insert an edge connecting vertices U and V
 • DELETE(G,V)
          Delete vertex V from graph G and all the edges belonging to V
 • DELETE(G,U,V)
     Delete an edge from the graph G connecting vertices u and V
 • ADD-DATA(G,V,ITEM)
     Add ITEM into vertex V of graph G
 • RETRIVE (G,V,ITEM)
              Retrieve data of a vertex V in the graph G and store it in ITEM
 • BREADTH-FIRST(G)
          Implements breadth fi rst traversal of a graph G
 • DEPTH-FIRST(G).
         Implement depth fi rst traversal of a graph G

SUMMARY

 • A graph G=(V,E) consists of a set of vertices G and a set  of edges E.
 • A graph in which every edge is directed is called a directed graph or simply a digraph.
 • A graph in which every edge has no direction (undirected) is called an undirected graph.
 • Two graphs G and G

1
 are said to be isomorphic, if there is a one-to-one correspondence between their 

vertices and between their edges.
 • A circuit is called an Eulerian circuit; if every edge of Graph G appears exactly once, it is called an Eu-

lerian circuit.
 • Hamiltonian path in a connected graph is defi ned as a path that traverses each vertex of the graph 

exactly once.
 • Hamiltonian circuit is a circuit that passes through all the vertices in a graph exactly once except the 

starting vertex.
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 • Graphs can be represented using adjacency matrix representation and incidence matrix representa-
tion.

 • Th e primitive operations of a graph are Create a Graph, Insertion of a Vertex, Deletion of a Vertex, 
Insertion of an Edge, Deletion of an Edge, Search for a Vertex, Traversal of a Graph and Deletion of or 
destroy a graph.

 • Insert vertex operation is used to add a vertex to a graph
 • Delete vertex operation is used to remove a vertex from a graph. 
 • Insert edge operation is used to add an edge that connects a vertex to a destination vertex.
 • Delete edge operation is used to remove an edge from a graph. To delete an edge the two vertices source 

and destination must be identifi ed.
 • Graphs can be traversed in two ways. Th ey are Breadth fi rst traversal and Depth fi rst traversal. 
 • Th e applications of graphs  are minimum cost spanning tree, single-source shortest path, union-fi nd 

problem and connectivity of components.

EXERCISES

FILL IN THE BLANKS

 1. A graph in which every edge is directed is called  .
 2.  is a path that traverses each vertex of the graph exactly once.
 3. Graphs can be represented sequentially using  and  .
 4. Linked representation is also called .
 5.  and  are the traversal of graphs. 

MULTIPLE-CHOICE QUESTIONS

 1.  passes through all the vertices in a graph exactly once except the starting vertex.
  a. Eulerian circuit   b. Hamiltonian circuit  
  c. Cutset     d. None
 2. A graph with only isolated vertices is called  .
  a. Null graph   b. Weighted graph 
  c. Finite graph   d. Infi nite graph
 3. A graph is said to be  if there is a path between every pair of distinct vertices v

i
, v

j
 in G. 

  a. Directed   b. Undirected  
  c. Connected   d. None
 4.  A path of length ≥1 with no repeated edges and whose end vertices are the same is called  . 
   a. Cycle    b. Length of path 
   c. Circuit   d. Degree
 5. If every edge of graph G appears exactly once in the path, it is called  .
  a. Hamiltonian path   b. Eulerian path 
  c. Planarity   d. Cutset 
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SHORT-ANSWER QUESTIONS

 1. Defi ne a graph.
 2. Give the basic terminologies of a graph.
 3. Discuss diff erent types of graphs.
 4. Explain the linked representation of graphs.
 5. Write short notes on isomorphism.

ESSAY QUESTIONS

 1. Defi ne graphs and explain their representation.       
 2. Find whether the following graphs G

1
 and G

2
 are isomorphic?

a

b c

de

f

k

p

l

m

o

n

        G
1         G2

 3. Discuss in detail about the operations of graphs.          
 4. Explain the traversal of graphs.   
 5. Write a program to implement the Prim algorithm.



Priority Queues

  The chapter defines priority queues and its abstract data type. It discusses about various 
implementations of priority queues in detail regarding heaps, insertions and deletions 
of min and max heaps. This chapter details external sorting using multiway merge and 
polyphase merge.

11.1 INTRODUCTION

Queues are FIFO structures in which the elements are deleted in the order in which they arrive in the queue. 
Th e order of insertion and deletion from a  priority queue is determined by the element priority. Th e elements 
are removed in the decreasing or increasing order of priority of elements. A priority queue which is a data 
structure allows at least two operations: insert and delete. Th e operation insert inserts an element into 
the priority queue and the operation delete deletes an element from the priority queue based on priority. It 
is possible to add other operations to this data structure. 

Basically, priority queues are of two types. Th ey are  
 1.  Ascending priority queue ( Min Priority Queue)
  •  Removal of minimum-priority element
 2.  Descending priority queue ( Max Priority Queue)
  •  Removal of maximum-priority element

Th e specifi cation view of priority queue is given in Figure 11.1(a). Th is view elides the implementation 
strategy of a priority queue. 

Chapter 11

Priority queue

(a) Specification view

Insert one item
Get one item with
highest/lowest priority

Figure 11.1 Abstract model of a priority queue
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Figure 11.1 Continued

Th e implementation view of a priority queue is given in Figure 11.1(b). In this view the implementation 
strategy of a priority queue is given.

Assume Pqueue is a priority queue with elements A, B, C, D whose priorities are given as 3, 2, 1, 1, respec-
tively. Here the element A has the highest priority, i.e. 3. When the new element with the highest priority as 4 
is to be inserted, it is added at the front of the queue. When elements with the same priority are to be inserted 
then the priority queue acts like a normal queue with FIFO principle.

Let task be the queue of tasks (t). Assume that 0, 1, 2… n are the priorities given to t tasks. Let t
1
(n) be 

the ith task with priority n. Th e implementation of priority queue to process these tasks is discussed for a set of 
tasks, insertion and task completion which is as follows:
 • Initially task is with t

1
, t

2
, t

3
 tasks with priorities 1,1,0, respectively.

t1 t2 t3

Front Rear

              Highest priority task t
1
(1) is at the front, and the lowest priority t

3
(0)  is at the rear.

 • Th e task t
4
(2) with priority 2 comes, it  is  inserted at front

t1t4 t2 t3

Front Rear

       • When task t
5
(2) is to be inserted, t

4
 and t

5
 both have the same priority based on the FIFO property t

5
 

that is inserted.
t1t5t4 t2 t3

Front Rear

 Th e elements are removed in the decreasing or increasing order of priority of elements. 

 

t1t5t4 t2 t3

Front Rear

 When the decreasing order of elements is considered, task t
4
 with highest priority is deleted fi rst.

t1t5 t2 t3

Front Rear

 Task t
5
 is deleted and then t

1
, t

2
, t

3
 are deleted, respectively, based on the priority.

t1 t2 t3

Front Rear

List or binary search
tree or binary heap

(b) Implementation view

Insert one item
Get one item with
highest/lowest priority
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Priority queue can be implemented using: 
 1. Unsorted list:  Store all elements in an unordered list. Th e element is added at the end of the list. An 

element with min/max priority is removed by searching the list. Th e problem with this approach is that 
it is expensive to search. Th e time required for inserting an element is O(1), whereas the time required 
to delete an element with minimum/maximum priority is O(N) where N is the number of elements.

 2.  Sorted list:  Keep the list always sorted. Th e cost for inserting an element is O(N) and for deleting an 
element with min/max priority is O(1).

 3. Binary search tree: A third alternative is the binary search tree. Th is gives an O(log N) average running 
time for insertion and deletion operations. Th e problem is that the tree could be unbalanced on non-
random input.

 4.  Heap: A heap is a complete binary tree, where the element at each node is greater than or less than or 
equal to the element in its children. To add an element to a heap, place the new element at the next 
available spot and perform a reheapifi cation. To remove the element, move the last node onto the root 
and perform a reheapifi cation. Th e time for insertion could be as much as O(log N)  and for deletion 
an average running time is O(log N), where N is the number of elements (nodes) in the tree.

11.2 PRIORITY QUEUE ADT

Th e abstract data type for a min priority queue is given in Figure 11.2. 

  empty()  :  return true iff the queue is empty
  full()  :  return true iff the queue is full
  minEleRet():  returns element with minimum priority, but element is not
       deleted
 insertEle() : insert an element into the queue
   deleteMinEle(): remove/delete the element with min priority from the queue

Figure 11.2 Abstract data type specifi cation of a min priority queue with basic operations

Th e abstract data type for a max priority queue is given in Figure 11.3. 

  empty()   :  return true iff the queue is empty
  full()   :  return true iff the queue is full
  maxEleRet() :  returns element with maximum priority,but element is 
        not deleted
  insertEle() : insert an element into the queue
  deleteMaxEle(): remove/delete the element with max priority from 
        the queue

Figure 11.3 Abstract data type specifi cation of a max priority queue with basic operations

11.3 PRIORITY QUEUE IMPLEMENTATION USING HEAPS

A priority queue is eff ectively implemented using heap data structure, which is a complete binary tree that is 
most effi  ciently stored by using the array representation.  A heap is a binary tree that is completely fi lled with 
the possible exception of the bottom level, which is fi lled from left  to right. Such a tree is known as a complete 
binary tree. A complete binary tree of height h has between 2h and 2h+1 – 1 nodes. Th is implies that the height 
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of a complete binary tree is O(log N), where N is the number of elements. A complete binary tree is shown in 
Figure 11.4, whereas the tree in Figure 11.5 is not a complete binary tree.

Figure 11.4 A complete binary tree

A

D E F

B C

Figure 11.5 A binary tree which is not complete

Th e tree in Figure 11.5 doesn’t have a right sub-tree and the internal node in the left  sub-tree is also not 
completely fi lled. Hence, it is not a complete binary tree.

 Max heap: A max heap is a complete binary tree in which the value in each node is greater than or equal to those 
in its children (if any). Th e tree in Figure 11.6 is a max heap. 

11

5

8

Figure 11.6 A max heap

15

11 9 7

13 8
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 Min heap: A min heap is a complete binary tree in which the value in each node is less than or equal to those in 
its children (if any). Th e tree in Figure 11.7 is a min heap.

15

26 33 21

23 18

70

4

12 11 8

9 6

Figure 11.7 A min heap

Since a heap is a complete binary tree, a heap can be effi  ciently represented using a one-dimensional array. 
Th e array in Figure 11.9 corresponds to the min heap in Figure 11.8.  

Figure 11.8 A min heap

Figure 11.9 Array implementation of a complete binary tree given in Figure 11.8

For any element in array position i, the left  child is in position 2i, the right child is in the cell aft er the left  
child (2i+1), and the parent is in position i/2 . Th us, using array links are not required and operations re-
quired to traverse the tree are extremely simple and are likely to be fast. 

11.3.1 PRIORITY QUEUE INTERFACE

It is assumed that when two elements of type T are compared using relational operators such as < and <= the 
element priorities are compared. Unlike ADT specifi cation for priority queue, the interface specifi cation in 
Figure 11.10(a) is programming language dependent (C++).

15

0 1 2 3 4 5 6 7 8 9

23 18 26 33 21 70
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Template<class T>
class MinHeap
{
 public:
  explicit MinHeap(int capacity=150);
  explicit MinHeap(const vector<T>&items);

  bool empty() const;
  bool full() const;
  void insertEle(const T&x);
  void deleteMinEle(T&minEle);

  private:
    int cSize;     //Number of elements in heap
     vector<T>array;    //The heap array

  void buildMinHeap();
     void moveDownHeap(int newnode);
};

(a) Class interface for min priority queue 

Template<class T>
class MaxHeap
{
 public:
  explicit MaxHeap(int capacity=150);
  explicit MaxHeap(const vector<T>&items);

  bool empty() const;
  bool full() const;
  void insertEle(const T&x);
  void deleteMaxEle(T&maxEle);
  private:
    int cSize;     //Number of elements in heap
     vector<T>array;    //The heap array

  void buildMaxHeap();
  void moveDownHeap(int newnode);
};

(b) Class interface for max priority queue 

Figure 11.10 Class interface

11.3.2 MIN HEAP–INSERTION

To insert an element x into the min heap, a new node is created in the next available location to keep the 
tree complete (preserving the property of the complete binary tree). Bubble up the new node to maintain 
the min heap property. To insert the element 16, a new node is created in the next available heap location 
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(Figure 11.11(a)). Inserting 16 in the new node would violate the min heap property. Since 33 parents of the 
new node is greater than 16 (the element to be inserted), slide 33 into the new node (that means the new node 
moved up: Figure 11.11(b)). 

(a) Finding the location to insert 16, new node is created

15

26 33 21

23 18

70

67 28 34 New node

(b) Finding the location to insert 16, new node is moved one level up

15

26

33

21

23 18

70

67 28 34 New node

15

26

33

2123

18

70

67 28 34

New node

(c) Finding the location to insert 16, new node is moved one more level up, it is the location for 16
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At this stage, placing 16 in the new node does not achieve min heap property. Hence, a new node needs to 
be moved up further. Since 23 parents of the new node is greater than 16 (the element to be inserted), slide 23 
into the new node and the new node is moved up which is shown by the dashed line, (Figure 11.11(b)). 

Now placing element 16 in the new node, shown by the dashed circle (Figure 11.11(b)), preserves the min 
heap property. A min heap is a complete binary tree in which the value in each node is less than or equal to 
those in its children (if any). Since the parent of 16 is less than or equal to 16; hence, it has reached its proper 
location. Element 16 in this location preserves the min heap property. Hence, element 16 is inserted in this 
location (Figure 11.11(d)).  Th e C++ code for method insertEle is given in Figure 11.12(a).

Insert element x into min priority queue maintaining heap order.

Template<class T>
void MinHeap<T>::insertEle(const T&x)
{
 //      if(full())
 //   throw Overflow();
 if(cSize==array.size()–1)
 array.resize(array.size()*2);  //if the array is full,it is resized

 // Move up
 int newnode=++cSize;
 for(;newnode>1&&x<array[newnode/2];newnode/=2)
  array[newnode]=array[newnode/2];
 array[newnode]=x;       //element x inserted
}

(a) Method to insert an element into min heap

15

16

26

33

2123

18

70

67 28 34

New node

(d) Element 16 inserted in the new node

Figure 11.11 Insertion of an element
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Template<class T>
void MinHeap<T>::insertEle(const T&x)
{
  if(full())
  throw Overflow();

  //Move up
 int newnode=++cSize;
 int temp;
 array[newnode]=x;
 for(;newnode>1&&array[newnode]<array[newnode/2];newnode/=2)
    {
   temp=array[newnode];
   array[newnode]=array[newnode/2];
   array[newnode/2]=temp;
  }
  //Ultimately element x is reached to array index of array[newnode].
}

(b)  Method to insert an element into min heap using swapping

Figure 11.12 Method to insert an element

Inserting the element could have been implemented using swap operation. Initially the element should 
be inserted in the new node, and swapping should be done between the element and its parent until the min 
property is achieved, but a swap requires  three assignment statements.  If an element is moved up m levels, the 
number of assignments performed by the swaps would be 3m. Th e above method (without swaps) uses m +1 
assignments. Th e modifi ed method which uses swapping is given in Figure 11.12(b). 

The modifi ed function which uses swapping: Insert element x into the priority queue, maintaining heap order.

Insertion into min heap using swapping: Moving the element to be inserted into its appropriate position uses swap-
ping. Initially, the element to be inserted is placed by creating a new node in the tree such that the tree is a 
complete binary tree. Aft er insertion if the tree is min heap then the element is not moved up. Otherwise, it is 
moved up by swapping with its parent until the min heap property is achieved.

15

26

16

2133

18

70

67 28 34 New node

23

(a) Finding the location to insert 16, temporarily insert 16 into the new node
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15

26

33

2116

18

70

67 28 34
New node

23

15

26

33

2123

18

70

67 28 34

New node
16

(b) Element 16 is moved one level up by swapping 33 with 16

(c) Element 16 is moved one level up by swapping 23 with 16

Figure 11.13 Insertion using swapping

To insert element 16, a new node is created in the next available heap location (Figure 11.13(a)). Insert 16 
in the new node. Element 16 in this location would violate min heap property. Hence, move 16 up by swapping 
with its parent. Since 33 parents of the new node is greater than 16, swap 33 and 16; 16 is moved up and is 
indicated by a dashed line: Figure 11.13(b).

At this stage (Figure 11.13(b)), heap does not have min heap property. Hence, 16 needs to be moved up 
further. Since 23 which is a parent of 16 is greater, swap 23 with 16 (Figure 11.13(c)) which is shown by a 
dashed line.

In Figure 11.13(c), further swapping is not required since min heap property is achieved. Th e time for 
inserting an element into priority queue could be as much as O(log N) if the element is moved all the way to 
the root. 
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15

26

33

2123

18

70

67 28 34

16

11.3.3 MIN HEAP–DELETION

When the min element is removed an empty node is created at the root. Since the heap tree is now with one 
node less than the earlier number of nodes, the last element in the heap must move somewhere in the heap. 

26

33

2123

18

70

67 28 34

16

Empty node

Element to be placed
in the proper location

22

33

2123

18

70

67 28 34

16

Empty node
moved down

(a) Delete minimum element 15

(b) Deletetion of minimum element 15 created an empty node

(c) Empty node moved one level down

Figure 11.14 Deletion of element
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22

33

2123

18

70

67 28 34

16

(d) Empty node moved one more level down

(e) Location found to insert the last element 33

(f) Last element 33 is placed in its location
Figure 11.14 Continued
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Deletion of minimum element created an empty node as shown in Figure 11.14(b). Th e last element in the 
tree which is 33 should be moved somewhere into the tree. Moving  33 into a proper location in the tree means 
ensuring min heap property aft er placing element 33 in its proper place. 

Assume that the last element 33 is placed in an empty node. Now compare 33 with its children 16 and 18 
(Figure 11.14(b)). If  both the children are greater than or equal to its parent, then moving down stops. Other-
wise, move down the empty node towards the smaller child. In this case, it is moved towards the left . Hence 16 
is moved up by one level (Figure 11.14(c)). 

Assume that element 33 is placed in the empty node (Figure 11.14(c)). In this position it does not main-
tain the min heap property. Now compare 33 with its children 22 and 23 (Figure 11.14(c)). Th e empty node is 
moved towards the left  which is represented by a dashed line (Figure 11.14(d)).

Assume that element 33 is placed in an empty node (Figure 11.14(d)). In this position it does not maintain 
the min heap property. Now compare 33 with its children 67 and 28 (Figure 11.14(d)). Th e empty node is 
moved towards the right as shown with the dashed line (Figure 11.14(e)).

Assume that the element 33 is placed in an empty node (Figure 11.14(e)). In this position it does maintain 
the min heap property. Hence, place the element in this empty node (Figure 11.14(f)).

C++ implementation of the method to delete an element with minimum priority from the heap is given 
in Figure 11.15.

Remove the smallest element from the priority queue and reheap.

Template<class T>
Void MinHeap<T>::deleteMinEle(T&minEle)
{
 if(empty())
  throw Underflow();
 minEle=array[1];
 array[1]=array[cSize--];
 moveDownHeap(1);
}

// Method to move down the heap
// emptynode is the index at which moving down begins

Template<class T>
void MinHeap<T>::moveDownHeap(int emptynode)
{
 int child;
 T temp=array[emptynode];
for(;emptynode*2<= Size;emptynode=child )
 {
 child=emptynode*2;
 if(child!=cSize&&array[child+1]<array[child])
  child++;
 if(array[child]<temp)
  array[emptynode]=array[child];
 else

Figure 11.15  Method to delete an element with minimum priority and reheaping
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  break;
 }
aray[emptynode]=temp;
}

Figure 11.15  Continued

Given N items by successive insertions, a min heap can be built. A method buildMinHeap() is defi ned 
which builds a heap of N elements; this method is given in Figure 11.16.

explicit MinHeap(const vector<T>&items)
    :array(items.size()+11), cSize(items.size())
    {
        for(int i=0;i<items.size();i++)
            array[i+1]=items[i];
        buildMinHeap();
    }
Template<class T>
void MinHeap<T>::buildMinHeap()
 {
  for(int i=cSize/2;i>0;i--)
   moveDownHeap(i);
}

Figure 11.16 Method to build min heap from N elements

Program 11.1

#include<iostream.h>
#include<process.h>
#include<conio.h>
int n,front=0,rear=0,i=0;
class minheap
{
 int a[50],b[50],item,p;
 public:
 void minheapinsert();
 void minheapdeletel();
 void minheapdisplay();
};
void minheap::minheapinsert()
{
 if(front==((rear%n)+1))
 {
  cout<<“queue is overflow”;
  return;
 }
 cout<<“enter element&prioriry”;
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  cin>>item>>p;
 if(front==0)
  front=rear=1;
 else
  rear=(rear%n)+1;
 a[rear]=item;
 b[++i]=p;
 for(int j=i-1;j>=1;j--)
 {
  for(int k=1;k<=j;k++)
  {
   if(b[k]>b[k+1])
   {
    b[k]=(b[k]+b[k+1])-(b[k+1]=b[k]);
    a[k]=(a[k]+a[k+1])-(a[k+1]=a[k]);
   }
  }
 }
 cout<<“\n:element is  inserted successfully:”;
}
void minheap::minheapdeletel()
{
 if(front==0)
 {
  cout<<“queue is empty”;
  return;
 }
else
 {
  cout<<endl<<a[front]<<“successfully deleted”;
  if(front==rear)
   front=rear=0;
  else
   front=(front%n)+1;
 }
}
void minheap::minheapdisplay()
{
 int j;
 if(front==0)
 {
  cout<<endl<<“queue is underflow”;
  return;
 }
cout<<endl<<“elements”;
if(front<=rear)
{
 for(j=front;j<=rear;j++)
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 cout<<a[j]<<“ ”;
}
else
{
 for(j=front;j<=n;j++)
  cout<<a[j]<<“ ”;
 for(j=1;j<=rear;j++)
  cout<<a[j]<<“ ”;
 }
}
void main()
{
 int op;
 clrscr();
 minheap ob;
   cout<<“enter queue size”;
   cin>>n;
  while(1)
  {
   cout<<“\nmenu\n1.insert\n2.delete\n3.display\n4.exit\n”;
    cout<<“enter option”;
    cin>>op;
   switch(op)
  {
    case 1:
     ob.minheapinsert();
     break;
    case 2:
     ob.minheapdeletel();
     break;
    case 3:
     ob.minheapdisplay();break;
    case 4:
     exit(0);break;
    default:
    cout<<“you are entered invalid choice”;
    }
  }
 }

Output

enter queue size5
menu
1.insert
2.delete
3.display
4.exit
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enter option1
enter element & prioriry12
5
:element is  inserted succesfully:
menu
1.insert
2.delete
3.display
4.exit
enter option1
enter element & prioriry11
8
:element is  inserted succesfully:
menu
1.insert
2.delete
3.display
4.exit
enter option1
enter element & prioriry30
2
:element is  inserted succesfully:
menu
1.insert
2.delete
3.display
4.exit
enter option3
elements30 12 10
menu
1.insert
2.delete
3.display
4.exit
enter option2
30 successfully deleted
menu
1.insert
2.delete
3.display
4.exit
enter option3
elements12 10
menu
1.insert
2.delete
3.display
4.exit
enter option4
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In Program 11.1 the function minheapinsert() is to insert an element based on the priority into the min 
heap, and minheapdelete() is to delete an element with highest priority from the min heap, and minheap-
display() is used to display the heap tree.

11.3.4 MAX HEAP–INSERTION

To insert an element x into the max heap, a new node is created in the next available location to keep the tree 
complete (preserving the property of complete binary tree). Bubble up the new node to maintain the max heap 
property.

To insert element 90, a new node is created in the next available heap location (Figure 11.17(a)). Inserting 
90 in the new node would violate the max heap property. Since 15 parent of the new node is smaller than 90 
(the element to be inserted), slide 15 into the new node (that means the new node moved up, indicated by a 
dashed line: Figure 11.17(b)). 

(a) Finding the location to insert 90, showing the created new node

(b) New node moved one level up
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(c) New node moved one more level

(d) Location found to insert element 90
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(e) Element 90 inserted

Figure 11.17 Insertion of an element into max heap
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At this stage, placing the element 90 in the new node does not satisfy max heap property. Hence, the new 
node needs to be moved up further. Here, 22 parents of the new node is smaller than 90 (the element to 
be inserted), slide 22 into the new node and the new node is moved up, which are shown by dashed lines 
(Figure 11.17(c)). 

Now placing element 90 in the new node (Figure 11.17(c)) does not preserve the max heap property. Here, 
85 parents of the new node are smaller than 90 (the element to be inserted), slide 85 into the new node and the 
new node is moved up as shown by the dashed line (Figure 11.17(d)). 

Now placing element 90 in the new node (Figure 11.17(d)), preserves the max heap property. Since there 
are no nodes to be tested, element 90 in this location preserves the max heap property and it is the root node 
(Figure 11.17(e)). 

C++ implementation of the method to insert an element into max heap is given in Figure 11.18.

Template<class T>
void MaxHeap<T>::insertEle(const T&x)
 {
    if(full())
  throw Overflow();

  //Move up
  int newnode=++cSize;
  for(;newnode>1&&x>array[newnode/2];newnode/=2)
   array[newnode]=array[newnode/2];
  array[newnode]=x;        //element x inserted
 }

Figure 11.18  Method to insert an element into max heap

11.3.5 MAX HEAP–DELETION

When the max element is deleted, an empty node is created at the root. Since the heap tree is now with one 
node less than the earlier number of nodes, the last element in the heap must move somewhere in the heap. 

Deletion of max element 85 created an empty node as shown in Figure 11.19(b). Th e last element in the 
tree which is 6 should be moved somewhere into the tree. Moving  6 into proper location in the tree means 
ensuring max heap property aft er placing element 6 in its proper place. 

Assume that the last element 6 is placed in an empty node. Now compare 6 with its children 22 and 40 
(Figure 11.19(c)). If  the parent is greater than or equal to both the children, then stop moving downwards. 
Otherwise, move down the empty node towards the larger child. In this case, it is moved towards the right. 
Hence, 40 is moved up by one level (Figure 11.19(c)). 

Assume that element 6 is placed in an empty node (Figure 11.19(c)). In this position it does not maintain 
the max heap property. Now compare 6 with its children 26 and 35 (Figure 11.19(c)). Move down the empty 
node towards the larger child. Th e empty node is moved down towards the right (Figure 11.19(d)). Th is is the 
place for element 6 to be inserted. Aft er inserting element 6 at this location, it maintains max heap property.
Max heap aft er inserting element 6 is shown in Figure 11.19(e).
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(a) Delete max element 85

(b) Empty node created aft er deleting max element 85
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(c) Empty node moved one level down

Figure 11.19 Deletion of the max element
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(d) Location found to insert last element 6
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(e) Element 6 inserted
Figure 11.19 Continued

C++ implementation of method to delete an element from max heap is given in Figure 11.20.
Remove the largest element from the priority queue and reheap.

Template<class T>
void MaxHeap<T>::deleteMaxEle(T&maxEle)
{
 if(empty())
  throw Underflow();

 maxEle=array{1];
 array[1]=array[cSize--];
 moveDownHeap(1);
}

//Method to move down the heap
//empty node is the index at which moving down begins
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Template<class T>
void MaxHeap<T>::moveDownHeap(int emptynode)
{
 int child;
 T temp=array[emptynode];
for(;emptynode*2<=cSize;emptynode=child)
{
 child=emptynode*2;
 if(child!=cSize&&array[child+1]>array[child])
  child++;
 if(array[child]>temp)
  array[emptynode]=array[child];
 else
  break;
 }
 array[emptynode]=temp;
}

Figure  11.20 Method to delete an element with maximum priority and reheaping

Program 11.2

#include<iostream.h>
#include<process.h>
#include<conio.h>
int n,front=0,rear=0,i=0;
class maxheap
{
 int a[50],b[50],item,p;
  public:
 void maxheapinsert();
 void maxheapdeletel();
 void maxheaptraverse();
};
 void maxheap::maxheapinsert()
{
 if(front==((rear%n)+1))
 {
  cout<<“queue is overflow”;
  return;
 }
 cout<<“enter element&prioriry”;
 cin>>item>>p;
 if(front==0)
 front=rear=1;
 else
 rear=(rear%n)+1;
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 a[rear]=item;
 b[++i]=p;
 for(int j=i-1;j>=1;j--)
 {
  for(int k=1;k<=j;k++)
  {
   if(b[k]<b[k+1])
   {
    b[k]=(b[k]+b[k+1])-(b[k+1]=b[k]);
    a[k]=(a[k]+a[k+1])-(a[k+1]=a[k]);
   }
 }
}
 cout<<“\n:element is inserted succesfully:”;
}
void maxheap::maxheapdeletel()
 {
  if(front==0)
  {
   cout<<“queue is empty”;
   return;
  }
 else
 {
  cout<<endl<<a[front]<<“successfully deleted”;
  if(front==rear)
   front=rear=0;
  else
   front=(front%n)+1;
 }
}
void maxheap::maxheaptraverse()
 {
  int j;
  if(front==0)
  {
   cout<<endl<<“queue is underflow”;
   return;
  }
 cout<<endl<<“elements”;
 if(front<=rear)
 {
  for(j=front;j<=rear;j++)
  cout<<a[j]<<“ ”;
 }
 else
 {
  for(j=front;j<=n;j++)
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   cout<<a[j]<<“ ” ;
  for(j=1;j<=rear;j++)
   cout<<a[j]<<“ ”;
 }
}
void main()
{
 int op;
 clrscr();
 maxheap ob;
 cout<<“enter queue size”;
 cin>>n;
 while(1)
 {
   cout<<“\nmenu\n1.insert\n2.delete\n3.traverse\n4.exit\n”;
    cout<<“enter option”;
    cin>>op;
    switch(op)
    {
     case 1:
      ob.maxheapinsert();
      break;
     case 2:
      ob.maxheapdeletel();
      break;
     case 3:
      ob.maxheaptraverse();break;
     case 4:
     exit(0);break;
     default:
     cout<<“you entered invalid choice”;
    }
  }
 }

Output

enter queue size5
menu
1.insert
2.delete
3.traverse
4.exit
enter option1
enter element & prioriry11
3
:element is  inserted succesfully:
menu
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1.insert
2.delete
3.traverse
4.exit
enter option1
enter element & prioriry21
1
menu
1.insert
2.delete
3.traverse
4.exit
enter option1
enter element & prioriry20
5
:element is  inserted succesfully:
menu
1.insert
2.delete
3.traverse
4.exit
enter option3
elements20  11  21
menu
1.insert
2.delete
3.traverse
4.exit
enter option2
20 successfully deleted
menu
1.insert
2.delete
3.traverse
4.exit
enter option3
elements11  21
menu
1.insert
2.delete
3.traverse
4.exit
enter option4

In Program 11.2, the function maxheapinsert() is to insert an element based on the priority into the 
max heap, and maxheapdelete is to delete the element with highest priority from the max heap, and max-
heaptraverse() is used to traverse the heap tree.
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In summary, a max/min heap is a complete binary tree, where the element at each node is greater/smaller 
than or equal to the element in its children. To add an element to a heap, place the new element at the next 
available spot and perform a reheapifi cation upward. To remove the element, delete the root element and fi nd 
the proper place for the last element using reheapifi cation downward starting from the root index. Th e worst 
case running time for the insertion (which includes reheapifi cation) is O(log N). Th e worst case and average 
running time for deletion (which includes reheapifi cation) is O(log N). 

11.4 APPLICATIONS 

Th e main applications of priority queue are: 
 • Job scheduling
 • Allocating CPU resources to the most urgent task
 • Communications
 • Send the most urgent message fi rst
 • Event-driven simulation
 • Printer queue
 • Sorting—heap sort
 • Shortest path graph algorithms (Greedy algorithms)

11.4.1 JOB SCHEDULING

Suppose there are n jobs and m machines. Processing these n jobs on m machines and processing the time of 
each job is represented by t

i
. Th e jobs are processed on machines in such a way that

 • Each machine can process only one job at any time
 • Each job must be processed by only one machine at any time
Each machine is available at time 1 and the total elapsed time is the total time taken to process all the jobs.

 Machines: In Figure 11.21, there are three machines m
1
, m

2
, m

3
 and six jobs j

1
, j

2
, j

3
, j

4
, j

5
 and j

6
  with processing 

times as (1,8,3,9,5,2). Job j
4
 is processed on machine m

1
 from 1 to 9 time units, job j

2
is processed on machine 

m
2
 from 1 to 8 and then do job j6 from 8 to 10 time units. Machine m

3
 processes job j

5
 from 1 to 5 and then job 

j
3
 from 5 to 9 and job j

1
 from 9 to 10 time units. Th e total time required to process all the jobs is 10 units. In 

Figure 11.21, the jobs are assigned based on the minimum fi nish time of the jobs. Th e  task is to assign the jobs 
based on the minimum fi nish time of m machines for a set of n jobs. Th is is  done by considering the Highest 
Processing Time strategy. Using this strategy, jobs are assigned to machines in the descending order of their 
processing times t

i
. When a job is assigned to a machine, it is given to the machine that becomes idle fi rst.

Figure 11.21 Scheduling jobs over machines

1

j5

j2

j3

j4

j1

j6

2 3 4 5
Time interval

Jobs
m1

m2

m3
6 7 8 9 10
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For the above, scheduling jobs are sorted in descending order of processing times, i.e. (9, 8, 5, 3, 2, 1). First 
job j

4
 is to be processed. Since all the machines are available initially j

4
 can be given to any of the three ma-

chines. Assume that j
4
 is assigned to machine m

1
 so m

1
 is not available to other jobs until 9 units of time. Job j

2
 

can be assigned to any of the two machines that is either m
2
 or m

3
 as both are still available at time 1. Suppose 

job j
2
 is assigned to machine m

2
 then m

2
 is not available up to 8 units of time. Job j

5
 is processed on machine 

m
3
 from time 1 to 6 units.  Now job 3 is to be assigned, the fi rst machine that becomes idle is m

3
 at time 6 units 

and j
3
 is assigned to it from 6 to 9 units and the next machine that becomes idle is machine m

2
 at time 8 units. 

In this way jobs are assigned to the machines that become idle fi rst.

11.5  EXTERNAL SORTING

External sorting is required if the data to be sorted are large enough, which cannot be loaded at once in mem-
ory, and common sorting algorithms are not applicable. Larger fi les may be too large to fi t in memory simul-
taneously and require external sorting. External sorting uses secondary devices (magnetic tapes or magnetic 
disks).  Th e criteria for evaluating external sorting algorithms are diff erent from internal sorts. Internal sort 
comparison criteria are: number of comparisons required, number of swaps made and memory requirement, 
whereas external sort comparison criteria are dominated by I/O time (transfers between secondary storage 
and main memory). External sorting which uses magnetic tapes is known as tape sorting.

 Runlists: External sorting is the process of sorting small groups of records from a fi le in memory. Th ese groups 
are called runlists. Th e size of these runlists depends upon the internal memory used  for internal sorting. 
Th ese runlists are stored in a target fi le from which they are retrieved and merged together to form large run-
lists. Th is process is continued until a single runlist is generated, which is the required sorted fi le.

Assume that there is a buff er enough to hold p records and a fi le with q records; always p is less than q.  
Sorting a fi le involves generation of runlists which are used to read q records into an internal buff er, sort them 
using internal sorting and write them onto a target fi le of size q. If the value of q is smaller than 15 then selec-
tion sort can be used and for larger values of q heap sort can be used. Th is process of generating runlists is 
continued until all q records are performed.

11.5.1  POLYPHASE MERGE

Magnetic tape is a sequential storage medium used for data collection and back up. Th e main disadvantage of 
tape sorting is that huge amounts of tape rewinding takes place. Polyphase sort is one of the best method for 
performing  external sorting on tapes.

A process of distributing ordered runlists of predetermined size on to the tapes and continuously merg-
ing these runlists in multiple phases is the polyphase merge. Each phase has a fi xed  number of merges before 
a new tape is selected. Th e initial distribution of runlists on the working of tapes aff ects the performance of 
sorting. However, it is found that the Fibonacci distribution of initial runlists produces better performance. 
Polyphase merge is also known Polyphase sort.

Consider sorting of 9 records using 4 tapes. Originally all the records are on tape 4 as shown in Figure 11.22(a). 
Record is represented by its key. Th e nth order Fibonacci series is used to determine the number of runs on each 
tape where n=T–1, where T is the number of tapes. Th is series is defi ned as follows:

 Fn
s
=Fn

s-1
+Fn

s-2
+...+Fn

s-n

 Fn
s
=0 for 0 ≤ s ≤ n-2
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 Fn
n-1

=1

for the s-level perfect distribution where s is the size of the runlist. In general, the kth tape should be allotted
Fn

s–1
+Fn

s–2
+...+ Fn

s-k
initial runs in the s-level perfect distribution. 

Th erefore, in the example with 9 records, when n=3, tape 1 receives 2 runs, tape 2 receives 3 runs and tape 3 
receives 4 runs. Based on the recurrence formulae, the initial runs are distributed on the tapes (Figure 11.22(b)).

Algorithm 11.1

Step 1: A loop designed to distribute the runs on the tapes. The distribution is a 
Fibonacci distribution.

Step 2: Rewound tapes to allow them to be read.
Step 3: Merge and sort: During merging runs from the source tapes are compared and 

sorted and written on object (output tape). When the source tape becomes 
empty it takes the role of an object tape. The earlier object tape becomes 
the source tape. 

To keep the example simple all initial runs are assumed to be of length 1 (one record in each run). In 
practice these runs should be made as large as possible. Nine initial runs are available on tape 4. Th e initial run 
distribution on tapes 1, 2 and 3 is a Fibonacci distribution (Figure 11.22(b)). 

        (a) Initial runs on tape 4             (b) Fibonacci distribution of runs on tapes

Figure 11.22 Initial run distribution
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20
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9
11
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13
15

(c) Aft er merge 1, the merged run is placed on tape 4       (d) Records on tapes aft er merge 2
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(e) Records on tapes aft er merge 3                          (f) Sorted records on tape 2

Figure 11.22 Continued

T1 T2 T3 T4

20 8
13
15

1
5
9
11
18

T1 T2 T3 T4
1
5
8
9
11
13
15
18
20

Tapes 1,  2 and 3 are source tapes, whereas tape 4 is an object tape (output tape). 
On the fi rst merge pass the initial runs on each of the source tapes 1, 2 and 3 are merged (i.e. records 5, 11, 

9), and the run <5, 9, 11> is placed on the initially empty tape 4 (Figure 11.22(c)). 
Th e second merge places the run <8,13,15> on the tape 4 (Figure 11.21(d)).  Th is now leaves tape 1 with no 

more runs left  to be read. It is therefore rewound in preparation for its new role as the object tape (output tape) 
in the next merge phases. Tape 4 is also rewound so that it can play as the source tape (input tape). 

Th e next phase begins by merging runs from tapes 2, 3 and 4 which results in run <1,5,9,11,18> and placed 
on tape 1. 

At this stage, tape 2 is empty. Now this acts as the object tape, whereas tapes 1, 3 and 4 act as source tapes. 
Aft er merging runs from tapes 1, 3 and 4 result in run <1,5,8,9,11,13,15,18,20> and placed on tape 2.

At this stage, all the other three tapes 1, 3 and 4 are empty. Hence, the run on tape 2 is in sorted form 
(Figure 11.22(f)).

Th e number of records to sort may not always agree exactly with a perfect Fibonacci distribution. In this 
situation null or dummy records need to be assumed on the tapes. Enough dummy records should be included 
to bring the total number of runs up to the next perfect Fibonacci distribution. It is worth noting that a major 
portion of time in the sort is used in the rewinding of tapes so that they can be read. In fact, at the comple-
tion of every pass two of the tapes must be rewound. Th is time can be reduced if tapes are readable backwards 
also.

11.5.2  MULTIWAY MERGE

Th e capability to access a particular record directly on a magnetic disk is very important when considering 
the sorting of records in external memory. With direct record access the problems of setting up initial runs 
according to certain merge patterns and having to rewind working tapes can be  ignored. Specifi cally, it is 
simple to use a k-way merge strategy that allows ignoring these two problems and thereby reducing the sort 
time signifi cantly. When data do not fi t in memory (RAM), external (or secondary) memory is used. Magnetic 
disks are the most commonly used type of external memory. Because of access to disk drive is much slower 
than access to RAM, analysis of external memory algorithms usually focuses on the number of disk accesses 
(I/O operations).
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11.5.2.1  2-Way Merge Sort 

Algorithm 1.2

Pass 0:
 Read each of the N pages page-by-page 
 Sort the records on each page individually
 Write the sorted pages to disk (the sorted page is referred to as a run)

  (Pass 0 writes N=2s sorted runs to disk, only one page of buffer space is 
used)

Pass 1:
 Select and read two runs written in Pass 0,
 Merge their records 
 Write the new two-page run to disk (page-by-page)

  (Pass 1 writes 2s/2=2s–1 runs to disk, three pages of buffer space are used)

Pass n:
 Select and read two runs written in Pass n–1,
 Merge their records
 Write the new 2n-page run to disk (page-by-page)
 Pass n writes 2s–2 runs to disk, three pages of buffer space is used)

Pass s:
 Pass s writes a single sorted run (i.e. the complete sorted file) of size 

      2s=N to disk.

Th e storage requirements to perform 2-way merge sort are two input buff ers and one output buff er (Figure 
11.23). More generally, for a k-way merge k + 1 buff ers are required.

Input
Output

Input 2
Main memory buffers

Disk Disk

Figure 11.23 Required buff ers for 2-way merge sort

During pass 0 only one buff er is used. In pass 0 the pages are sorted using some sorting algorithm. In 
subsequent passes merging is done and during these passes two buff ers for input and one buff er for output are 
used. A typical tree view that emerges for sorting 8 pages using the 2-way merge sort is shown in Figure 11.24.

A fi le with 8 pages using 2-way merge sort is given in Figure 11.25. It took 4 passes to sort the fi le. In pass 
0 the initial single pages are sorted. Th e sorted pages are the output of pass 0. Th ey are known as single page 
runs. In pass 1 two single page runs are merged. Th e output of this pass 1 is a 2-page run. Similarly, the output 
of pass 2 is a 4-page run and the output of pass 3 is an 8-page run. It took total four passes by 2-way merge sort 
using 3 buff ers.
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Input file 
(8 pages)

1 page run

2 page run

4 page run

8 page run

Figure 11.24 A typical 2-way merge sort tree
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Input file
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1-page run

PASS 1

2-page run

PASS 2

4-page run

8-page run

PASS 3

Figure 11.25 Showing runs during merging passes in 2-way merge sort
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Assuming r initial runs (pages), it can be shown that the number of passes required to sort a fi le using a 
k-way merge is O( log

k
r+1 ). Th e number of passes required for a 2-way merge for sorting 8 initial runs is 

( log28 +1) = 4. 
Th e total cost (cost in terms of I/O) of 2-way merge sort is : 2N( log2N +1), where N is the number of pages 

in the fi le.
If more main memory buff ers are available, by using k-way merge sort, the total I/O cost is reduced when 

compared to a 2-way merge sort (where k>2).

Program 11.3 

#include<iostream.h>
#include<conio.h>
void merge(int[],int,int);
void mergesort(int[],int,int,int);
void main()
{
 int n,a[50],low,up,i;
 clrscr();
 cout<<“==================”;
 cout<<“\n2-Way Merge Sort”;
 cout<<“\n==================”;
 cout<<“\nHow Many Elements You Want To Sort:”;
 cin>>n;
 cout<<“Enter numbers:\n”;
 for(i=0;i<n;i++)
  cin>>a[i];
  cout<<“\nBefore Sorting Record Elements Are\n”;
 for(i=0;i<n;i++)
  cout<<a[i]<<“ ”;
  merge(a,0,n-1);
  cout<<“\nAfter Sorting Record Elements Are:\n”;
 for(i=0;i<n;i++)
  cout<<a[i]<<“ ”;
  getch();
}
void merge(int a[],int low,int high)
{
 int mid;
 if(low<high)
 {
  mid=(low+high)/2;
  merge(a,low,mid);
  merge(a,mid+1,high);
  mergesort(a,low,mid,high);
 }
}
void mergesort(int a[],int l,int mid,int h)
{
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 int i,j,k=0,b[50];
 i=l;
 j=mid+1;
 while(i<=mid&&j<=h)
 {
  if(a[i]<a[j])
   b[k++]=a[i++];
  else
   b[k++]=a[j++];
 }
 while(i<=mid)
  b[k++]=a[i++];
 while(j<=h)
  b[k++]=a[j++];
 for(k=0;k<=h-l;k++)
  a[k+l]=b[k];
}

Output

==================
2-Way Merge Sort
==================
How Many Elements You Want To Sort:6
Enter numbers:
7
3
0
1
4
9
Before Sorting Record Elements Are
7 3 0 1 4 9
After Sorting Record Elements Are:
0 1 3 4 7 9

Program 11.3 sorts the given list in ascending order using the 2-way merge sort technique. Th e method 
merge() divides the list and calls mergesort() method which sorts the given list and also makes a call to 
itself.
11.5.2.2  k-Way merge sort

Algorithm 11.3

To sort a file with N pages using B buffer pages (k+1):
 Pass 0:  Produce sorted 1-page run
 Pass 1,2, ..., etc.: merge k runs. 

During merging, tournament tree concept is used to fi nd the fi rst winner and second winner and so on… 
(Uses k main memory buff ers for input and one buff er for output).
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Figure 11.26 Buff ers required for k-way merge sort

k-Way merge sort requires k+1 buff ers (Figure 11.26). A 2-way merge algorithm involves comparison strat-
egy for two values which is easy to perform. One of the main problems in a general k-way merge is to establish 
an effi  cient comparison strategy that involves more than two values. 

Consider the records in the k runs that are participating in the merge as players in the tournament. A 
competition tree can then be formed in which the winner of a particular competition is the record with the 
smallest key (Figure 11.27). 

One typical tournament tree view during the merging of k runs in a k-way merge is shown in Figure 11.27(a). 
Th e smallest key (fi rst winner) for the above example is 2 and is placed in the output buff er. Similarly, the next 
smallest key (second winner) is to be found. In this case, it is 4. It should be noted that the record 2 is not con-
sidered for comparison (Figure 11.27(b)).  

Th e third winner would be 5. In this case the buff er size is assumed to be of size 3 records. Once the buff er 
is full it is written to the disk. Once again the buff er is ready to receive the next 3 records. Since the contents 
of buff er are written to the disk once it is full, it requires only one buff er for the output where as, k buff ers are 
required for input.  

A fi le consisting of 8 pages is sorted using 8-way merge sort (Figure 11.28). It took two passes to complete 
the sorting. During pass 1, tournament tree is used for merging. Th e 8-page run sorted output is shown in 
Figure 11.28. Th is output is on the disk. 

Th e total cost for k-way merge sort is: 
   2N *(# of passes)

       = 2N* log k N + 1.

where N, is the number of pages in a fi le. If a fi le contains 8 pages, the total cost for a 2-way merge is = 2*8*4 = 
64. If an 8-way merge is used the total cost is = 2*8*2 = 32. But the main memory buff er required by a 2-way 
merge is 3, whereas for 8-way merge is 9. 

Program 11.4

#include<iostream.h>
#include<conio.h>
void merge(int[],int,int);
void mergesort(int[],int,int);
int n,a[50],low,up,i,k;
void main()
{
 clrscr();
 cout<<“==================”;
 cout<<“\nk-Way Merge Sort”;
 cout<<“\n==================”;

Input
Output

Input 2

Input B-1

. . .

B Main memory buffers

Disk Disk

.

.

.
.
.
.
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 cout<<“\nEnter K Value”;
 cin>>k;
 cout<<“How Many Numbers You Want To Enter”;
 cin>>n;
 cout<<“\nEnter“<<n<<”Elements”;
 for(i=0;i<n;i++)
 cin>>a[i];
 cout<<s“\nBefore Sorting Record Elements Are\n”;
 for(i=0;i<n;i++)
 cin>>a[i];
 merge(a,0,k-1);
 cout<<“\nAfter Sorting Record Elements Are:\n”;
 for(i=0;i<n;i++)
 cin>>a[i];
 getch();
}
void merge(int a[],int l,int h)
{
  int count=1;
  while(count<=n)
  {
    mergesort(a,l,h);
  count=count+k;
    l=l+k;
    h=h+k;
  }
}
void mergesort(int a[],int l,int h)
{
 int i,j=0,b[50],k,temp;
  if(l==0)
  {
    for(i=l;i<=h;i++)
  b[j++]=a[i];k=j;
  }
 else
  {
  for(i=l-1;i>=0;i--)
   b[j++]=a[i];
  for(i=l;j<=h;i++)
     b[j++]=a[i];k=j;
  }
 for(i=j-1;i>0;i--)
  {
    for(j=0;j<i;j++)
     if(b[j]>b[j+1])
     b[j]=(b[j+1]+b[j])-(b[j+1]=b[j]);
  }
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  j=0;
   for(i=0;i<k;i++)
    a[j++]=b[i];
   for(i=h+1;i<=n;i++)
    a[j++]=a[i];
}

Output

==================
k-Way Merge Sort
==================
Enter K Value4
How Many Numbers You Want To Enter13
Enter Elements8
1
0
2
5
3
7
10
33
70
90
11
55
Before Sorting Record Elements Are
8 1 0 2 5 3 7 10 33 70 90 11 55
After Sorting Record Elements Are:
0 1 2 3 5 7 8 10 11 33 55 70 90

Program 11.4 sorts the given list of elements in ascending order using the k-way merge sort technique. 
Th e method merge() performs merging based on k-value and calls the mergesort() method which sorts 
the given list.
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(b) Strategy depicting a k-way merge for k=8, second winner is 4
Figure 11.27 k-Way merge sort

(a) Strategy depicting a k-way merge for k=8, fi rst winner is 2
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SUMMARY

 • A priority queue is a queue in which insertion and deletion of items are performed based on priority.
 • Priority queue can be implemented using unsorted list, sorted list, binary search tree and heap.
 • A min heap is a complete binary tree in which the value in each node is less than or equal to those in 

its children.
 • A max heap is a complete binary tree in which the value in each node is greater than or equal to those 

in its children.
 • External sorting is used for sorting fi les or lists that are large enough to store into the internal memory. 

So, external storage devices like tapes and disks are used for storing the fi les.
 •  Groups of records from fi les in memory are called runlists.
 • A process of distributing ordered runlists of predetermined size on to the tapes and continuously 

merging these runlists in multiple phases is called the polyphase merge.

EXERCISES

FILL IN THE BLANKS

 1.  Elements in the priority queue are associated with  value.
 2.  Th e average running time for deletion of an item from heap is .
 3.  Magnetic tape is a sequential storage medium used for  and .

5,3 6,1 8,3 6,4 5,9 3,1 7,2 7,4

3,5 1,6 3,8 4,6 5,9 1,3 2,7 4,7

1,1

2,3

3,3

4,4

5,5

6,6

7,7

8,9

Input file

PASS 0

1-page run

PASS 1

8-page run

Figure 11.28 Example for k-way merge for k=8
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 4.  Th e technique involved in external sorting is .
 5.  Polyphase sort is used for sorting .

MULTIPLE-CHOICE QUESTIONS

 1.   Th e diff erence between priority queue and queue is
      a.  Only insertion is done based on priority of the element
      b.  Only deletion is done based on priority of the element
      c.  Both insertion and deletion are done based on priority of the element
      d. None of the above

 2.  Priority trees can be implemented using
     a. AVL trees      b. Stacks
     c. Heap trees   d. Btrees

 3.  Which of the following statements is true?
      a.  Heaps are binary search trees b. Heaps are complete binary trees
      c.  Heaps are full binary trees  d. Heaps contain only integer data

 4.  Sorting of disks can be implemented using the following algorithm.
      a. Heapsort       b. Selection sort
      c. 2-way or k-way merge sort      d. Insertion sort

 5. Th e total cost of k-way merge sort is .
      a. 2N*(log2 N)+1   b. 2N*(log2 N)–1
      c. 2 log2 N+2N       d. N*log2 N

SHORT-ANSWER QUESTIONS

 1.  Consider the array of elements = [ 10, 20, 15, 12, 17, 25, 19, 11, 5, 3, 22, 24].
  a. Build min heap
  b.  Build max heap
  c.  Insert an element 2 into min heap
  d.  Insert an element 55 into max heap
  e.  Delete min element from min heap and reheap
  f.  Delete max element from max heap and reheap
 2.  Give two diff erent reasons to explain why the following binary tree is not a heap:
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 3.  Write a method to read the min/max element from min/max  heap without deleting the element.
 4.  Write a method to check whether a min/max priority queue is empty or not.
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 5.  Write a method to check whether a min/max priority queue is full or not.
 6.  Write a short notes on polyphase sorting with an example.

ESSAY QUESTIONS

 1.  Explain priority queues with the help of a suitable example.
 2.  Discuss in detail about implementation of priority queues using heaps.
 3.  Consider the keys for the records in a fi le = [ 2, 5, 3, 60, 34, 22, 45, 56, 43, 54, 23, 32, 5, 8,  6, 9, 44].
  a.  Sort the records using polyphase merge using 4 tapes.
  b.  Sort the records using polyphase merge using 5 tapes.
  c.  Sort the records using 2-way merge sort.
  d.  Sort the records using k-way merge sort (assume k value).
  e.  Find the total cost in terms of I/O for the above three cases a, b, c, d.
 4.  Write a C++ program implementing polyphase sort algorithm.
 5.  Write a C++ program implementing k-way merge sort algorithm.



p



Binary Search Trees 
and AVL Trees

  Chapter 9 discussed about trees and binary trees. Binary search trees and AVL trees which 
belong to the category of binary trees provide retrievals in an efficient manner. This chapter 
elaborates operations on binary search trees along with the definition. Listing the drawbacks of 
binary search trees, AVL trees which provide the remedy, are defined. Operations on AVL trees 
are explained. This chapter also includes applications and implementation of both the trees. 

12.1 BINARY SEARCH TREES

A binary search tree (BST) is a binary tree. An empty binary tree is a  binary search tree. A non-empty binary 
search tree should satisfy the following properties.
 1. All the elements must have a key and it must be distinct.
 2. All the keys (if any) in the left  subtree of the tree must be less than the root element.
 3. All the keys (if any) in the right subtree of the tree must be greater than the root element.
 4. Th e left  and right subtrees of the tree must also be the binary search trees.

Chapter 12
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(a) A non-empty binary search tree
      for {46,60,75,30,70,22}

(b) A non-empty binary search tree
       for {M,P,E,T,N,Z}

Figure 12.1 Binary search trees



12.2 | Data Structures and Algorithms Using C++ 

Th e inorder traversal of a binary search tree produces the sorted list of the given elements in ascending 
order. Th e inorder traversal of the binary search trees shown in Figure 12.1(a) produces the sorted list as 
{22,30,46,60,70,75}, the ascending order of the given list {46,60,75,30,70,22}, and Figure 12.1(b) produces 
the sorted list as {E,M,N,P,T,Z}, the ascending order of the given list {M,P,E,T,N,Z}.

12.2 REPRESENTATION OF A BINARY SEARCH TREE

Similar to the representation of a binary tree, a binary search tree is also represented in a linked representation 
manner. To illustrate the representation, consider the binary search tree depicted in Figure 12.1(a); its node 
structure and linked representation are given in Figure 12.2.

LCHILD DATA RCHILD

(a)  Node structure of a binary search tree

(b)    Linked representation of a binary search tree of Figure 12.1(a)
Figure 12.2 Linked representation of a binary search tree

Th e null pointers of the nodes are not represented physically but are only fi ctitious and are known as ex-
ternal nodes. Th e  external nodes are depicted with solid circles and are specifi ed as e

i
. Th e path from the root 

to an external node is known as an  external path. Th us, the linked representation of a binary search tree is a 
collection of  internal nodes that represent the keys and external nodes that represent null pointers. Th is kind 
of binary tree is known as an  extended binary tree.

12.3 OPERATIONS ON BINARY SEARCH TREES 

Various operations can be performed on binary search trees but the most frequently used are search, insert 
and delete operations.

12.3.1 SEARCHING

In a binary search tree T searching for a key u is initiated at the root. If the key u is less than the key at the root 
then consider only the left  subtree of T to search the key u. If the key u is greater than the key at the root then 
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consider only the right subtree of T to search the key u. If the key u is equal to the key at the root then the 
search is successful. If the root is null then it is an unsuccessful search. In the same way the search is continued 
in the subtrees also till the key u is either found or not. If the key u is found then it is a successful search, else 
it is an unsuccessful search.

All successful searches end at corresponding internal nodes, whereas all unsuccessful searches end at cor-
responding external nodes of a binary search tree. External nodes can also be termed as failure nodes. As 
specifi ed in Section 11.1 the inorder traversal of a binary search tree produces the elements in ascending order 
such as x

1
<x

2
<x

3
<...<x

n
. Same is the case with external nodes e

0
, e

1
, e

2
,...,e

n
. Here e

0
 catches all the unsuc-

cessful searches of the keys that are less than x
1
, e

1
 catches all unsuccessful searches of keys between x

1
 and x

2
 

and so on, i.e. e
i
 catches all the unsuccessful searches of keys that are greater than x

i
 and less than x

i+1
.

While searching for a key, in binary search tree by comparing the key with the root element, search opera-
tion proceeds in only one of its subtrees. Hence, binary search tree is advantageous over sequential list and 
effi  cient in performing searching in a faster manner.

In case of successful search if the key is found at the root itself then it is considered to be the best case and 
its time complexity is O(1). If the key is found as one of the leaf nodes at a level equal to the height h of the bi-
nary search tree then the time complexity is O(n). In still worst cases the height h may be equal to the number 
of elements n, then the time complexity is O(n). In an average case where frequent insertions and/or deletions 
are assumed, the height h of the binary search tree is O(log n) and the time complexity is O(log n). 

Algorithm 12.1 BST-SEARCH

Th is algorithm is used to search an ITEM in a binary search tree. Let PTR be the pointer to the node contain-
ing ITEM.

1. Check whether tree is empty.
2. Set PTR to root node pointer.
3. Loop until PTR is not equal to NULL.
4. CASE 1: check whether ITEM is less than the root node value, then proceed 
    to left subtree.
 CASE 2: check whether ITEM is equal to root node value, then write “ITEM 
    found, at”, PTR.
 CASE 3: check whether ITEM is greater than the root node value,then proceed 
    to right subtree.
5. End case
6. End loop
7. Write “ITEM not found”, when PTR=NULL.

Figure 12.3  A binary search tree
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In the BST shown in Figure 12.3, to search for the key 13, it is initially compared with the root 15 as 13 is 
less than 15 consider only the left  subtree of node 15. Now, the root of the left  subtree 10 is compared with the 
key 13 and as 13 is greater than 10, consider its right subtree. Proceed to the root of the right subtree 13 and it 
is compared with the key 13, as they are equal the search is successful.

Similarly to search for a key 28, it is compared with the root 15 as 28 is greater than 15 consider the right 
subtree to continue the search. Now, the root of the right subtree 25 is compared with 28 and as 28 is greater 
than 25 consider the right subtree of 25. Now, the root of the right subtree 30 is compared with the key 28 and 
as 28 is less than 30 its left  subtree is considered to proceed the search but the node in the left  subtree is an 
external node e

6
, i.e. a failure node or NULL. So, the search is unsuccessful and the key 28 is not found in the 

BST.

12.3.2 INSERTION

To perform an insertion operation, initially the search operation is to be performed. Th e place where a null 
pointer or failure node is found, a new node with key is inserted. So, insertion is an extension of search opera-
tion. Its time complexity is O(log n).

Algorithm 12.2 BST-INSERT

Th is algorithm inserts ITEM into the binary search tree if it doesn’t exist before.  Let PTR and NPTR be the 
two pointer variables.

1. Start from the root node 
 Set PTR to root node pointer
2. Loop until PTR is not equal to NULL.
3. CASE 1:Check whether ITEM is less than DATA of PTR, then proceed to left 
    subtree.
           Set NPTR to PTR.
 CASE 2:Check whether ITEM is equal to DATA of PTR, then write“ITEM already  
    exists”.   
 CASE 3:Check whether ITEM is greater than DATA of PTR, then
    Set NPTR to PTR
           Proceed to right subtree.
4. End case
5. End loop
6. When PTR is equal to NULL then
7. Call GETNODE(N)           /*to create a new node*/
8. SET  DATA of N to ITEM
9. SET LCHILD of N to NULL.
10. SET RCHILD of N to NULL.
11. Check for DATA of NPTR to NULL, then
12. Set RCHILD of NPTR to N                /*insert as  right child*/
13. Else.
    Set LCHILD of NPTR                     /*insert as left child*/
14. END

To insert a key 20 into the binary search tree shown in the Figure 12.4, it is compared with the root 15. As 
20 is greater than 15 its right subtree is chosen to fi nd the correct place to insert 20. In the right subtree the 
key 20 is compared with its root 25 and as 20 is less than 25 its left  subtree is considered to proceed with the 
insertion. Th e left  subtree is NULL and is represented by the external or failure node e

5
 and this is the exact 

position to insert the new node with the key 20.
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Figure 12.4 Insertion of an element 20 in the BST shown in Figure 12.3

12.3.3 DELETION

Th e three diff erent cases in which a node is deleted from a BST are when it
 i. is a leaf node
 ii. has only one subtree (either left  subtree or right subtree)
 iii. has both left  and right subtrees
Case i: When the node to be deleted is a leaf node then the deletion is simple because only the link fi eld of its 
parent node should be set to NIL. Th is is illustrated in Figure 12.5(a).
Case ii: When the node to be deleted has either a left  or right subtree then the link fi eld of its parent node 
should be set to point the corresponding subtree. Th is is illustrated in Figure 12.5(b).
Case iii: When the node to be deleted has both left  and right subtrees then it is replaced either with the larg-
est element in the left  subtree or with the smallest element in the right subtree. Aft er the replacement, the 
replacing element is deleted from its original position in the tree by using the appropriate deletion methods 
discussed in Case i or Case ii. It is assured that the replacing element has either empty subtrees or any one non-
empty subtree. Th e right subtree holds the elements that are greater than u. 

In the case where the link of the parent node of node (u) that is to be deleted is set to point the right subtree 
of u. Th en to accommodate the left  subtree of u move (to the farthest position left ) as far left  as possible in the 
right subtree of u till an empty left  subtree is found, place or link the left  subtree of u at this pointer. Th is is 
illustrated in the Figure 12.5(c).
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(a) Deletion of a leaf node u
Figure 12.5 Deletion of a node from a BST
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(b)  Deletion of a node with one subtree
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Before deletion

Right subtree of u

Delete u

After deletion

(c) Deletion of a node with both left  and right subtrees

Figure 12.5 Continued

From the BST shown in Figure 12.3, Case i of deletion is illustrated by deleting a node 2, the leaf node. Th e 
LCHILD link of its parent node 10 is set to NULL, Figure 12.6(a) depicts this deletion. Deleting a node with 
one subtree. Case ii of deletion can be illustrated by deleting 25 that has only a single right subtree, i.e. 30. Now, 
the RCHILD link of its parent node 15 is set to point the node 30, Figure 12.6(b) depicts the deletion. Deletion 
of a node with both left  and right subtrees. Case iii of deletion can be illustrated by deleting the root node 15. 
Now, node 25 the right subtree of 15 is the root and the left  subtree with node 10 as the root is connected as the 
left  subtree of the node 25. Th is deletion is depicted in Figure 12.6(c).
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Figure 12.6 Deletion of keys 2, 25 and 15 from the BST shown in Figure 12.3

Algorithm 12.3 BST-DELETION

Th is algorithm is used to delete the node with ITEM as data. Let NODE be the node to be deleted.
1. Start from the root node
2. Search for the node with data as ITEM.
3. CASE 1: When node is a leaf node
           LCHILD of NODE==RCHILD of NODE=NULL
1. Set RCHILD of parent of NODE to NULL or LCHILD of parent of NODE to NULL 
 based on whether NODE is left child or right child of its parent.
2. Call RETURN (NODE).
   CASE 2: When NODE contains both left and right subtrees
           LCHILD of NODE≠NULL and RCHILD of NODE≠NULL
1. Set RCHILD of parent of NODE to NULL or LCHILD of parent of NODE to RCHILD 
 of NODE based on whether NODE is right child or left child of its parent 
 respectively.
2. Set TEMP to RCHILD of NODE
3. Loop until LCHILD of TEMP not equal to NULL
 Set TEMP to LCHILD of TEMP
   End loop
4. Set LCHILD of temp to LCHILD of NODE 

(b) Delete 25

Delete 25
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(b) Delete 15
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5. Call RETURN(NODE).
  CASE 3: When NODE has only left subtree
           LCHILD of NODE≠NULL and
           RCHILD of NODE=NULL
1. Set TEMP to LCHILD of NODE
2. Set RCHILD of parent of NODE or LCHILD of parent of NODE to TEMP based 
 on whether NODE is right child or left child of its parent respectively.
3. Call RETURN (NODE).
 CASE 4: When NODE has only right subtree
           LCHILD of NODE=NULL and  RCHILD of NODE≠ NULL
1. Set TEMP to RCHILD of NODE 
2. Set RCHILD of parent of NODE or LCHILD of parent of NODE to TEMP based 
 on whether NODE is right child or left child of its parent respectively.
3. Call RETURN (NODE).
4. End case
5. End

12.3.4 DISADVANTAGES OF BINARY SEARCH TREE

A BST is highly effi  cient in performing all the operations with a time complexity of O(logn) over a sequen-
tial list. But, in the worst case where height h of the binary search tree is equal to the number of nodes n, its 
performance deteriorates. Th is happens because of its sequence of insertion and/or deletion operations which 
results in  skewed BSTs with the time complexity of O(n). Th e binary search trees in Figure 12.7 show the 
skewed BSTs.
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(a) Sequential insertion of elements
      {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

(b) Deletion of node d, root leads 
       to a skewed binary search tree

Figure 12.7 Skewed binary search tree
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Th is kind of skewed BST deteriorates its performances. Th is also destroys the basic purpose of the BST 
that in a binary search tree only one half is considered for searching. At the root node itself which reduces half 
the searching time, it can be decided that which half of the binary search tree is considered and which half is 
deducted.

Hence, to retain the purpose of the BST its height should be checked and kept balanced. Even in worst case 
the trees whose height is O(log n) are termed as balanced trees.

Program 12.1

/*BINARY SEARCH TREE OPERATIONS 
1. INSERTION 2.DELETION 3.TRAVERSING 4.SEARCHING*/

#include<stdio.h>
#include<stdlib.h>
#include<iostream.h>
#include<conio.h>
struct BST
{
  int data;
   struct BST*lchild,*rchild;
}*root=NULL,*ptr,*ptr1,*n;
 int item,k=0,s;
 void insert()
{
   cout<<“Enter Element To Be Insert”;
   cin>>item;
   ptr=root;
   if(ptr==NULL)
 {
   n=(struct BST*)malloc(sizeof(struct BST));
   n->data=item;n->lchild=n->rchild=NULL;
   cout<<“Element Is Successfully Inserted”;
   root=n;return;
 }
   while(ptr!=NULL)
 {
  if(item<ptr->data)
   {
    ptr1=ptr;
      ptr=ptr->lchild;
   }
   else if(item>ptr->data)
 {   
    ptr1=ptr;
      ptr=ptr->rchild;
   }
   else
   {
  if(item==ptr->data)
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      {
       cout<<“Item Already Exists”;
        return;
      }
    }
 }
     if(ptr==NULL)
 {
     n=(struct BST*)malloc(sizeof(struct BST));
     n->data=item;n->lchild=n->rchild=NULL;
     if(ptr1->data<item)
     ptr1->rchild=n;
     else
     ptr1->lchild=n;
 }
}
void case1()
{
   if(ptr1->lchild==ptr)
   ptr1->lchild=NULL;
   else
   ptr1->rchild=NULL;
   cout<<“Element Is Successfully Deleted”;
   ptr=NULL;
}
void case2()
{
   struct BST*ptr2,*y;
   int x=0;
   ptr2=ptr->rchild;
   if(ptr2->lchild==NULL&&ptr2->rchild==NULL)
 {
   ptr1->lchild=ptr2;
   ptr1->lchild->lchild=ptr->lchild;
 }
  else if(ptr2->lchild==NULL&&ptr2->rchild!=NULL)
 {
   ptr1->rchild=ptr2;
   ptr1->rchild->lchild=ptr->lchild;
   ptr=NULL;
   free(ptr);
 }
 else
 {
   while(ptr2->lchild!=NULL)
    ptr2=ptr2->lchild;
   if(ptr2->rchild!=NULL)
   {x=1;y=ptr2->rchild;}
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   ptr1->lchild=ptr2;
   ptr2->lchild=ptr->lchild;
   ptr2->rchild=ptr->rchild;
   if(x==1)
   ptr2->rchild->lchild=y;
  else
    ptr2->rchild->lchild=NULL;
    ptr=NULL;
  free(ptr);
 }
}
void case3()
{
 if(ptr1->lchild==ptr)
 {
  if(ptr->lchild==NULL)
   ptr1->lchild=ptr->rchild;
  else
   ptr1->lchild=ptr->lchild;
 }
 else
 {
  if(ptr1->rchild==ptr)
  {
   if(ptr->lchild==NULL)
    ptr1->rchild=ptr->rchild;
   else
    ptr1->rchild=ptr->lchild;
  }
 }
 cout<<“Element Is Successfully Deleted”;
 ptr=NULL;
}
void delet(int item)
{
 int c=0;
 struct BST*pt;
 ptr=root;
 if(ptr==NULL)
 {
  cout<<“Tree Is Empty”;
  return;
 }
 if(ptr->data==item)
 {
  cout<<item<<“Is A Root Node Deletion Is Not Possible”;
  return;
 }
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 if(ptr->data==item&&ptr->lchild==NULL&&ptr->rchild==NULL)
 {
  root=NULL;
  cout<<“Item”<<item<<“Is Successfully Deleted”;
  return;
 }
 while((ptr!=NULL)&&(c==0))
 {
  if(item<ptr->data)
  {
   ptr1=ptr;
   ptr=ptr->lchild;
  }
  else if(item>ptr->data)
  {
   ptr1=ptr;
   ptr=ptr->rchild;
  }
  else
   c=1;
 }
 if(c==0)
 {
  cout<<“Item Does Not Exist..,Deletion Is Not Possible”;
  return;
 }
 if(ptr->lchild==NULL&&ptr->rchild==NULL)
 case1();
  else if(ptr->lchild!=NULL&&ptr->rchild!=NULL)
 case2();
  else
 case3();
}
void traverse(struct BST*ptr)
{
 if(ptr!=NULL)
 {
  traverse(ptr->lchild);
  cout<<ptr->data<<“ ”;
  traverse(ptr->rchild);
 }
}
int searching(struct BST*p,int key)
{
 if(p!=NULL)
 {
  if(p->data==key)
   k=1;



Chapter 12 Binary Search Trees and AVL Trees | 12.13

   else
   {
    searching(p->lchild,key);
    searching(p->rchild,key);
   }
 }
 return k;
}
main()
{
 int ch;
 clrscr();
 while(1)
 {
  cout<<“\nBINARY SEARCH TREE OPERATIONS\n1.INSERTION\n2.DELETION\n”;
  cout<<“3.TRAVRSE\n4.SEARCHING\n5.EXIT”;cout<<“\nEnter Your Choice”;
  cin>>ch;
  switch(ch)
  {
   case 1:insert();break;
   case 2:cout<<“Which Item You Want To Delete”;cin>>item;
   delet(item);break;
   case 3:if(root==NULL){cout<<“Treee Is Empty”;break;}
       cout<<“Tree Elements Are”;traverse(root);break;
   case 4:if(root==NULL){cout<<“Tree Is Empty”;break;}
   s=k=0;cout<<“Which Item You Want To Search”;
   cin>>item;
   s=searching(root,item);
   if(s==1)
    cout<<“Item”<<item<<“Is Found”;
   else
    cout<<“Item”<<item<<“Is Not Found”;
   break;
   case 5:exit(0);
   default:cout<<“Invalid Choice”;
  }
 }
}

Output

BINARY SEARCH TREE OPERATIONS
1.INSERTION
2.DELETION
3.TRAVRSE
4.SEARCHING
5.EXIT
Enter Your Choice1
Enter Element To Be Insert35
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BINARY SEARCH TREE OPERATIONS
1.INSERTION
2.DELETION
3.TRAVRSE
4.SEARCHING
5.EXIT
Enter Your Choice1
Enter Element To Be Insert20
BINARY SEARCH TREE OPERATIONS
1.INSERTION
2.DELETION
3.TRAVRSE
4.SEARCHING
5.EXIT
Enter Your Choice1
Enter Element To Be Insert40
BINARY SEARCH TREE OPERATIONS
1.INSERTION
2.DELETION
3.TRAVRSE
4.SEARCHING
5.EXIT
Enter Your Choice1
Enter Element To Be Insert10
BINARY SEARCH TREE OPERATIONS
1.INSERTION
2.DELETION
3.TRAVRSE
4.SEARCHING
5.EXIT
Enter Your Choice1
Enter Element To Be Insert24
BINARY SEARCH TREE OPERATIONS
1.INSERTION
2.DELETION
3.TRAVRSE
4.SEARCHING
5.EXIT
Enter Your Choice1
Enter Element To Be Insert22
BINARY SEARCH TREE OPERATIONS
1.INSERTION
2.DELETION
3.TRAVRSE
4.SEARCHING
5.EXIT
Enter Your Choice1
Enter Element To Be Insert21
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BINARY SEARCH TREE OPERATIONS
1.INSERTION
2.DELETION
3.TRAVRSE
4.SEARCHING
5.EXIT
Enter Your Choice1
Enter Element To Be Insert23
BINARY SEARCH TREE OPERATIONS
1.INSERTION
2.DELETION
3.TRAVRSE
4.SEARCHING
5.EXIT
Enter Your Choice1
Enter Element To Be Insert25
BINARY SEARCH TREE OPERATIONS
1.INSERTION
2.DELETION
3.TRAVRSE
4.SEARCHING
5.EXIT
Enter Your Choice1
Enter Element To Be Insert30
Enter Your Choice3
Tree Elements Are10 20 21 22 23 24 25 30 35 40
BINARY SEARCH TREE OPERATIONS
1.INSERTION
2.DELETION
3.TRAVRSE
4.SEARCHING
5.EXIT
Enter Your Choice2
Which Item You Want To Delete24
BINARY SEARCH TREE OPERATIONS
1.INSERTION
2.DELETION
3.TRAVRSE
4.SEARCHING
5.EXIT
Enter Your Choice3
BINARY SEARCH TREE OPERATIONS
1.INSERTION
2.DELETION
3.TRAVRSE
4.SEARCHING
5.EXIT
Enter Your Choice3
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Tree Elements Are 10 20 21 22 23 25 30 35 40
BINARY SEARCH TREE OPERATIONS
1.INSERTION
2.DELETION
3.TRAVRSE
4.SEARCHING
5.EXIT
Enter Your Choice2
Which Item You Want To Delete20

BINARY SEARCH TREE OPERATIONS
1.INSERTION
2.DELETION
3.TRAVRSE
4.SEARCHING
5.EXIT
Enter Your Choice3
Tree Elements Are 10 21 22 23 25 30 35 40
BINARY SEARCH TREE OPERATIONS
1.INSERTION
2.DELETION
3.TRAVRSE
4.SEARCHING
5.EXIT
Enter Your Choice5

12.4 AVL TREES

In 1962, Adelson-Velskii and Landis proposed balanced or height balanced trees known as AVL trees. An AVL 
tree is one among the balanced trees and the height of the tree will be O(log n) in the worst case. AVL trees are 
height balanced versions of binary search trees. 
Defi nition: An empty binary tree is an AVL tree.  A non-empty binary tree T is an  AVL tree if and only if
 (i) the left  subtree T

L
 and right subtree T

R
 of T are also AVL trees 

 (ii) |h(T
L
)–h(T

R
)| ≤ 1 where h(T

L
) and h(T

R
) are the heights of left  and right subtrees of T, respectively.

Th e balancing factor of a node u, denoted as bf(u), can be defi ned  as bf(u)=h(u
L
)–h(u

R
) where h(u

L
) is 

the height of the left  subtree of u and  h(u
R
) is the height of the right subtree of u.

Every node  u of an AVL tree is allowed to have a balancing factor bf(u) of –1 or 0 or +1.
A binary search tree which is (also possesses the quality of) an AVL tree is known as an AVL search tree.
Figure 12.8 gives a clear view of the above-discussed terms. Th e balance factors of the corresponding nodes 

are shown within parentheses adjacent to the nodes. Observe how the balance factors are either –1 or 0 or 1.
Representation of AVL trees and AVL search trees are very similar to that of binary trees and BTSs using 

a linked representation. In order to facilitate insertion and deletion operation effi  ciently an additional fi eld 
called balance factor bf can be added with the node structure to hold the balance factor of a particular node.
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Figure 12.8 Instances of AVL and non-AVL trees

12.5 OPERATION OF AVL SEARCH TREES

Th e following are the common operations that are performed on AVL search trees.

12.5.1 SEARCHING

Searching for an element in an AVL search tree is quite similar to the search operation on a BST. Algorithm 12.1 
and its implementation in Program 12.1 can also be used to search an element from an AVL search tree also. Th e 
height of an AVL search tree of n elements is O(log n) and, hence, the time complexity of a search operation 
on it is also O(log n).  

12.5.2 INSERTION

Inserting an element into an AVL search tree follows the same procedure as the insertion of an element into a 
binary search tree. But, the insertion may lead to a situation where the balance factors of any of the nodes may 
be other than –1, 0 and +1 and the tree is unbalanced.

In order to rebalance the tree, i.e. to acquire all balance factors as –1 or 0 or 1, some of the subtree of the un-
balanced trees are to be shift ed which can also be referred to as rotations. Th is can be shown in Figure 12.9.

Th e following observations can be made regarding an unbalanced tree due to insertion:
 1. Th e balance factor of an unbalanced tree can only be among –2, –1, 0, 1 and +2.
 2. Aft er insertion, for the nodes whose balance factor is either +2 or –2 their corresponding balance fac-

tors before insertion would have been +1 or –1, respectively.
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 3.  Insertion may aff ect the balance factors of only those nodes that appear on the path from the root to 
the new node that is inserted.

 4.  Th e nearest ancestor A of the newly inserted node whose balance factor is either +2 or –2 initiates the 
rotation.

In an AVL search tree, prior to the insertion, if the balance factor of all the nodes on the path from the 
root node to the currently inserted node was 0, then the tree will not become unbalanced even aft er insertion. 
Because, the insertion will make the balance factor to change by –1, 0 or 1.

If the insertion makes an AVL search tree unbalanced, the height of the subtree must be adjusted by rotat-
ing them approximately with respect to the closest ancestor so that it is balanced.

Based on the place where the new node is inserted, that causes the imbalance rotations are classifi ed into 
four types such as  
 1.   LL rotation—new node inserted as the left  subtree (L) of the left  subtree (L) of A.
 2.   LR rotation—new node inserted as the right subtree (R) of the left  subtree (L) of A.
 3.   RR rotation—new node inserted as the right subtree (R) of the right subtree (R) of A.
 4.   RL rotation—new node inserted as the left  subtree (L) of the right subtree (R) of A.

LL rotation: General representation of  LL rotation is illustrated in Figure 12.10. Th is fi gure shows how insertion 
leads to LL type imbalance and how the rotation is made to balance the tree again. Figure 12.10(a) shows the 
balanced AVL search tree before insertion in which B,C are with balance factors 0, +1, respectively. B

L
, B

R
  and 

C
R
  are the subtrees of B and C.
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Figure 12.9 Insertion into an AVL search tree
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Figure 12.10   General representation of LL rotation

In this a new node called X is inserted as a left  subtree (L) of left  subtree (L) of C, the ancestor node. Now 
the balance factors of B change from 0 to +1 and C changes from +1 to +2  and the tree is unbalanced; this is 
shown in Figure 12.10(b). To rebalance the tree LL rotation must be invoked. Th is rotation pushes B up into 
place of C and C is moved into the place of its right subtree earlier. Th e new node remains as the left  subtree of 
B and BR earlier right subtree of B is now the left  subtree of C along with its right subtree, C

R
 remained as it was. 

Th is is shown in Figure12.10(c) where the height of the subtree is balanced and the balance factor of all nodes 
is 0. Hence, the AVL search tree is balanced aft er LL rotation.

(a) Balanced AVL search
tree before insertion

(b) Unbalanced AVL search tree
after insertion of X into BL

(c) Balanced AVL search tree
after LL rotation
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Figure 12.11   Example for LL rotation 

Consider Figure 12.11 which is an instance of LL rotation.  Figure 12.11(a) shows an AVL search tree prior 
to the insertion. Insertion of an element B as a left  subtree of left  subtree of ancestor node P, whose balance fac-
tor with insertion has changed from +1 to +2 disturbed the balance of the tree. Th is is shown in Figure 12.11(b). 
 LL rotation shift s G up into the place of P and P is moved down along with its right subtree R. Node M, earlier 
right subtree of G, now becomes the left  subtree of P. It can be observed from Figure 12.11(c) that the height of 
the tree is balanced and all the balance factors are either –1 or 0 or +1. General representation of LR rotation 
is depicted in Figure 12.12. It illustrates how an insertion leads to LR type imbalance and rebalancing the tree 
using corresponding rotation. Figure 12.12(a) shows a balanced AVL search tree prior to insertion. In this tree 

(a) Balanced AVL search
tree before insertion

(b) Unbalanced AVL search tree
after insertion of B

(c) Balanced AVL search tree
after LL rotation
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C and A are nodes with balance factors as  +1 and 0, respectively. A
L
 and A

R
 are subtrees of A and C

R
 is the right 

subtree of C.
Inserting some node X as a right subtree of A, i.e. in A

R
, changes the balance factor of A from 0 to –1 and 

C from +1 to +2.  A new node is inserted as a right subtree (R) of left  subtree (L) of the closest ancestor node 
C and this leads to an imbalance of tree. Th is is shown in Figure 12.12(b). In order to rebalance the tree  LR 
rotation is invoked. Th is rotation pushes the new node X up to the place of C, the ancestor node where the 
imbalance is observed. C is shift ed into the position of its right subtree C

R
. Figure 12.12(c) shows the balanced 

AVL search tree aft er LR rotation in which X is the root and A is the left  subtree with A
L
 as its left  subtree and 

X
L
 the earlier left  subtree of X as its right subtree. C is the right subtree with X

R
 the earlier right subtree of X as 

its left  subtree and C
R
 as its right subtree. 

Here, balance factors of nodes A and C aft er LR rotation are based on the balance factor of the new node 
aft er insertion and before rotation. 
  if bf(X)=0 then bf(A) and bf(C) will also be 0 aft er rotation
  if bf(X)=1 then bf(A)=0 and bf(C)=–1 aft er rotation
  if bf(X)=–1 then bf(A)=1 and bf(C)=0 aft er rotation.

(a) Balanced AVL search
tree before insertion

(b) Unbalanced AVL search tree
tree after insertion into AR

(c) Balanced AVL search tree
after LR rotation
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Figure 12.13 Example of LR rotation

Figure 12.12 General representation of LR rotation
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Consider Figure 12.13, an instance of LR rotation. Figure 12.13(a) shows the balanced AVL search tree 
prior to insertion. Aft er inserting F as a right subtree of left  subtree of the closest ancestor G, the balance fac-
tor of the nodes in the path from the root to the newly inserted node is changed. Balance factor of node E has 
been changed from 0 to –1 and that of node G and node P  has been changed from +1 to +2. Th e tree becomes 
imbalanced as shown in Figure 12.13(b). Th e LR rotation shift s F, the new node into the place of G and G is 
pushed down as the right subtree of F. Now, the tree is once again a balanced AVL search tree as shown in 
Figure 12.13(c) with the balance factors of all the nodes as +1 or 0.

Figure 12.14 General representation of complex LR rotation

Figure 12.14 shows the general representation of complex LR rotation. Figure 12.14(a) shows balanced 
AVL search tree prior to insertion. Here C is with the balance factor +1, nodes A and B are with 0 balance fac-
tor. Aft er inserting some node X as the right subtree (R) of left  subtree (L) into BR then the balance factor of C 
changes to +2 from +1, nodes  A and B change to –1 from 0. Now, the tree is unbalanced as shown in Figure 
12.14(b). LR rotation is invoked to rebalance the tree. Aft er rotation the tree is balanced as shown in Figure 
12.14(c).
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Figure 12.15 Example of LR rotation

P

G

(+1)

(0) (0)

(0) (0)
E

S

H

P

G

(+2)

(–1) (0)

(0) (–1)
E

S

H

(0)
I

H

G

(+1)

(0)

(0)

(0)
E

P

(0) (0)
I S

(c) Balanced AVL search 
tree after LR rotation

(a) Balanced AVL search
tree before insertion

(b) Unbalanced AVL search 
tree after inserting I



12.22 | Data Structures and Algorithms Using C++ 

Consider Figure 12.15, an instance of LR rotation. Figure 12.15(a) shows the balanced AVL search tree 
prior to insertion. Aft er inserting I as the right subtree of the left  subtree of the closest ancestor G, the bal-
ance factor of the nodes in the path from the root to the newly inserted node is changed. Th e balance factor of 
nodes G and H has been changed from 0 to –1 and node P has been changed from +1 to +2. Th is leads to the 
imbalance of the tree as shown in Figure 12.15(b). Invoke LR rotation, this shift s H up into the place of P and P 
is pushed down as its right subtree along with S. Now the node I becomes the left  subtree of P. Th e rebalanced 
AVL search tree is shown in Figure 12.15(c).

Figure12.16 General representation of RR rotation

RR rotation: Th e general representation of  RR rotation is shown in Figure 12.16. Th e balanced AVL search tree 
prior to the insertion is shown in Figure 12.16(a). Here  C and D are with the balance factors –1 and 0, respec-
tively, DL and DR are the subtrees of D and CL is the left  subtree of C. When some element X is inserted as a 
right subtree (R)  of the right subtree (R), i.e. in DR. Th e balance factor of D changes from 0 to –1 and that of C, 
the closest ancestor changes from –1 to –2. Th is indicates that the tree got RR type imbalanced aft er insertion, 
and is shown in Figure 12.16(b).  Invoking the RR rotation shift s node D up into the place of C and C is moved 
to be the left  subtree of D. Th e new node X remained as the right subtree of D with XL and XR as its subtrees. 
Node C, along with its left  subtree CL as it was, has DL, earlier the left  subtree of D, as its right subtree. Now 
the tree is a balanced AVL search tree aft er RR rotations with the balance factor as 0 for all the nodes. Th is is 
shown in Figure 12.16(c).

Figure 12.17   Example of RR rotation
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Consider an instance of RR rotation depicted in Figure 12.17. Th e balanced AVL search tree before inser-
tion is shown in Figure 12.17(a). Aft er inserting node V as right subtree of right subtree, i.e. as the right subtree 
of T the balance factor of all the nodes in the path from root P to the newly inserted node V changes and makes 
the tree imbalanced as shown in Figure 12.17(b). Th e balance factor of T and S changed from 0 to –1 and that 
of P changed from –1 to –2. RR rotation is invoked to rebalance the tree. Th is pushes S up into the place of P 
and P now becomes the left  subtree of S. Node Q earlier the left  subtree of S now becomes the right subtree of 
P. Th e balanced AVL search tree aft er RR rotation is shown in Figure 12.17(c) with the balance factor of all the 
nodes as either 0 or –1.

RL Rotation: Th e general representation of   RL rotation is depicted in Figure 12.16.

Figure 12.18 General representation of RL rotation

Th e balanced AVL search tree prior to insertion with nodes C and E having balance factors as –1 and 0, 
respectively, is shown in Figure 12.18(a). EL and ER are subtrees of E and CL is the left   subtree of C. Insertion of 
some element X has a left  subtree (L) of a right subtree (R) leads to RL type imbalance of that tree by changing 
the balance factor of the closest ancestor node C from –1 to –2. Th e balance factor of E is also changed from 
0 to +1. Th is is shown in Figure 12.18(b). Th e RL rotation is called to rebalance the tree. Th is rotation shift s 
the new node X up into the place of the ancestor node C and C is pushed into the place of its left  subtree. Now 
X is with the left  subtree C along with its left  subtree CL and XL as its right subtree which was earlier the left  
subtree of X. Node E is now the right subtree of X with ER as its right subtree and XR as its left  subtree which 
was earlier the right subtree of X. Now the tree is a balanced AVL search tree aft er RL rotation. Th is is shown 
in Figure 12.18(c).

Consider the instance of RL rotation shown in Figure 12.19. Th e balanced AVL search tree prior to the 
insertion is shown in Figure 12.19(a). Aft er the new node Q is inserted as a left  subtree of a right subtree, the 
balance factors in the path from root P to Q are changed. Th e balance factors of S and T changed from 0 to +1 
and that of P changed from –1 to –2 which made the tree the RL type imbalance. Th is is shown in Figure 12.19(b). 
Th e RL rotation is invoked to rebalance the tree. Th is rotation shift s the  parent of the new node S  into the 
place of the ancestor node P and P is moved down into the place of its left  subtree along with node M. Th e new 
node Q becomes the right subtree of P which was earlier the left  subtree of S. Now tree is with balanced heights 
of subtrees with all the nodes having the balance factors as either 0 or +1. Hence, the tree is a balanced AVL 
search tree aft er RL rotation.
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Figure 12.19 Example of RL rotation

Th e transformations that are performed to solve the LL and RR type imbalances are known as  single rota-
tions, and that of LR and RL type imbalances are known as  double rotations. Th e transformation of LR type 
imbalance can be considered as the sequence of an RR rotation followed by an LL rotation, and that of RL type 
imbalance can be considered as an LL rotation followed by RR rotation.

Algorithm 12.4 Insertion into an AVL tree

Insert(T, element)
1. GETNODE(X)
2. DATA(X)=element
3. LCHILD(X)=RCHILD(X)=NULL and bf(x)=0
4. If the tree T is empty then
   (a) Set T to X.
   (b) Exit.
 //when AVL search tree T is non empty.
5. Starting from the root search the place to insert the new element.
6. Identify the most recently seen node with balance factor of either -1 or 
 +1 as the ancestor node A.
7. If the element already exists 
   (i)  Print “Insertion not possible as the element already exists”.
   (ii) Exit.
8. If no ancestor node A exists then update the balance factors in the path 
 from root and exit.
9. If ancestor node A is found then 
 (a) If(bfA)=+1 and the new node is inserted in the right subtree of A) 
   or (bf(A)=-1 and the node is inserted in the left subtree of A)then
   (i) bf(A)=0.
   (ii) Update the balance factors of all the nodes on the path from A 
     to the newly inserted node.
   (iii) Exit.
 (b) Else
   (i) Recognize the type of imbalance at A and execute the appropriate 
     rotation.
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   (ii) Update the balance factors of nodes in the path from new subtree 
     root to the newly inserted node as needed by the rotation.
   (iii) Reset the left and right subtrees of the corresponding nodes.
 (c) Exit
10.End.
Th e time complexity of insertion operation into an AVL search tree is O(height)=O(log n).

12.5.3 DELETION

Deletion of an element from an AVL search tree may also cause imbalance similar to insertion, rotations are 
invoked to rebalance the tree aft er deletion. Major classifi cation of rotations are as L and R which can be fur-
ther categorized as L0, L1, L-1 regarding L rotations and R0, R1, R-1 regarding R rotations.

Let p be the parent of the node that was deleted. Due to deletion the balance factors of some or all of the 
nodes on the path from the root to p might be changed. It is required to update the balance factors from node 
p to the root in the upward direction. All the deletions may not call the rotations. Th ey are referred to as rota-
tion free deletions.
Th e following observations can be made regarding deletion:
 1) If the node was deleted from the right subtree of p then bf(p) increases by 1 and if it was from the left  

subtree of p then bf(p) decreases by 1.
 2) Th e height of the tree is decreased by 1 when the new bf(p)= 0. It is required to update the balance fac-

tor of its parent and/or its ancestors.
 3) Th e height of the tree remains the same when the new bf(p)=+1 or –1 and there will be no change in 

the balance factors of its ancestor nodes.
 4) Th e tree is imbalanced at node p when the new bf(p)= +2 or –2, and hence corresponding rotations are 

to be invoked.
In this process the balance factors of some nodes may become +2 or –2. In the path from p to the root the 

fi rst node among them is A, the ancestor node.  At node A the balance has to be restored, so the imbalance 
can be classifi ed as type L when the deletion is from the left  subtree of A and it is of type R when the deletion 
is from the right subtree of A.

Regarding type L, the bf(A) would have been –1 prior to deletion when it is now –2; bf(A)=–2. Ancestor 
node A might have a right subtree with root B. With respect to the bf(B) the L type rotations are further clas-
sifi ed as L0 if bf(B) =0, L1 if bf(B) =+1  and  L–1 if bf(B)=–1.

Regarding type R, the bf(A) would have been +1 prior to the deletion when it is now +2; bf(A)=+2. An-
cestor node A might have a left  subtree with root B. With respect to the bf(B) the R type rotations are further 
classifi ed as R0 if bf(B)=0, R1 if bf(B)=+1 and R–1 if bf(B)=–1.

R category rotations: Th e following are the three types of  R category rotations. Th ey  are explained along with 
representation and example.
R0 rotation: General representation of  R0 rotation is illustrated in Figure 12.20. Some node X is to be deleted 
from right subtree of C, i.e. CR. Aft er deleting it, the balance factor of C changed from +1 to +2. Node B the left  
subtree of C has a balance factor of 0. So, R0 rotation is to be used to rebalance the tree. It pushes B into the 
place of C along with its left  subtree BL and C is shift ed down into the place of its right subtree along with the 
C1

R and BR  as its left  subtree, the earlier right subtree of B. Here C1
R is the right subtree of C aft er deletion.
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Figure 12.20 General representation of R0 rotation

(a) Balanced AVL search
tree before deletion

(b) Unbalanced AVL search 
tree after deletion

(c) Balanced AVL search
tree after deletion
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Figure 12.21 Example of R0 rotation

Consider Figure 12.21 an instance of R0 rotation. From the balanced AVL search tree shown in Figure 12.21(a) 
the node R is deleted and bf(Q) is changed from 0 to 1. Also the bf(P) the ancestor node is also changed to 
+2 from +1 which calls R0 rotation as its left  subtree, root M has the 0 balance factor. Th e unbalanced tree is 
shown in Figure 12.21(b). Th e balanced AVL search tree aft er R0 rotation and node M as the root is shown in 
Figure 12.21(c).
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R1 rotation: Th e general representation of  R1 rotation is depicted in Figure 12.22. Deleting a node from the right 
subtree CR of an ancestor node C causes its balance factor to become +2. If the root of its left  subtree has a bal-
ance factor as 1 then to rebalance the tree R1 rotation is to be invoked.

Figure 12.22 General representation of R1 rotation

(a) Balanced AVL search
tree before deletion

(b) Unbalanced AVL search 
tree after deletion

(c) Balanced AVL search
tree after R1 rotation
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Figure 12.23 Example of R1 rotation

Consider the instance of R1 rotation depicted in Figure 12.23. Aft er deleting node R, bf(Q) is updated to 
0 and p to +2. Imbalance occurred and bf(M)=+1. So invoke R1 rotation. Th is balances the tree with M as the 
root node as depicted in Figure 12.23(c). 

(a) Balanced AVL search
tree before deletion

(b) Unbalanced AVL search 
tree after deletion
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(c) Balanced AVL search tree
after R1 rotation
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R-1 rotations: General representation of  R-1 rotation is shown in Figure 12.24. Th e general representation of R-1 
rotation is depicted in Figure 12.24. Deleting a node from the right subtree CR of an ancestor node C causes its 
balance factor to become +2. If the root of its left  subtree has a balance factor of –1 then to rebalance the tree 
R-1 rotation is to be invoked.

(a) Balanced AVL search
tree before deletion

(b) Unbalanced AVL search 
tree after deletion

(c) Balanced AVL search tree
after R-1 rotation
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(a) Balanced AVL search
tree before deletion

(b) Unbalanced AVL search
tree after deletion
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(c) Balanced AVL search tree
after R-1 rotation
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O Q

(0)
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Figure 12.24 General representation of R–1 rotation

Figure 12.25 Example of R-1 rotation
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Consider Figure 12.25 instance of R-1 rotation. Here node R is marked for deletion. Aft er deleting it, bf(Q) 
the parent node is updated to 0 and that of also its ancestor node P is bf(P) = +2. Now the tree is imbalanced as 
shown in Figure 12.25(b). As K the left  subtree of P has its balance factor as –1 invoke R-1 rotation. Aft er the 
rotation the AVL search tree is balanced with N as the root node as shown in Figure 12.25(c).

L category rotations: When a node is deleted from the left  subtree of A, the fi rst ancestor node in the path to the 
root in upward direction leads bf(A) to –2. Th en to rebalance an unbalanced AVL search tree,  L category rota-
tions are used. With respect to the balance factor of the root of the right subtree of A these rotations can be 
further classifi ed as L0 when its balance factor is 0, L1 when its balance factor is +1 and L–1 when its balance 
factor is –1. General representations of  L0,  L1 and  L–1 rotations are depicted in Figure 12.26. Here B1

L is the 
left  subtree of B aft er deletion.

An AVL search tree may require more than one rotation to rebalance it aft er deletion, whereas insertion 
requires a single rotation.

(i) L0 rotation

(a) Balanced AVL search
tree before deletion

(b) Unbalanced AVL search 
tree after deletion

(c) Balanced AVL search tree
after L0 rotation
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(ii) L1 rotation

(a) Balanced AVL search
tree before deletion

(b) Unbalanced AVL search 
tree after deletion

(c) Balanced AVL search tree
after L1 rotation
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Figure 12.26 L Category rotations

Program 12.2 gives the implementation of operations on AVL search trees.   

Program 12.2

/*AVL SEARCH TREE OPERATIONS 
  1. INSERTION 2.DELETION 3.TRAVERSING 4.SEARCHING*/

#include<stdlib.h>
#include<stdlib.h>
#include<conio.h>
#include<iostream.h>
struct AVLTREE
{
 struct AVLTREE*lchild,*rchild,*auxchild;
 int height,data;
};
typedef struct AVLTREE tree;
tree*root=NULL,*ptr,*ptr1;
int s,k=0,item;
int findheight(tree*ptr)
{
 if(ptr==NULL)
  return -1;
 else
  return ptr->height;
}
int max(int item1,int item2)
{
  if(item1>item2)
    return item1;
  else
    return item2;
}
void adheight(tree*loc)
{

(iii) L-1 rotation

(a) Balanced AVL search
tree before deletion

(b) Unbalanced AVL search 
tree after deletion

(c) Balanced AVL search tree
after L1 rotation
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  while(loc!=NULL)
  {
    loc=loc->auxchild;
    loc->height=max(findheight(loc->lchild),findheight(loc->rchild))+1;
  }
}
void rcrotate(tree*ptr,tree*prev)
{
  tree*hold,*temp;
 temp=ptr->lchild;
  hold=temp->rchild;
  temp->rchild=ptr;
  ptr->lchild=hold;
  if(ptr==root)
    root=ptr;
 else if(ptr==prev->lchild)
    prev->lchild=temp;
 else
    prev->rchild=temp;
   ptr->height=max(findheight(ptr->lchild),findheight(ptr->rchild))+1;
  temp->height=max(findheight(temp->lchild),findheight(temp->rchild))+1;
 adheight(temp);
  temp->auxchild=prev;
  if(hold!=NULL)
   hold->auxchild=ptr;
  ptr->auxchild=temp;
 }
 void lcrotate(tree*ptr,tree*prev)
 {
   tree*hold,*temp;
   temp=ptr->rchild;
   hold=temp->lchild;
   temp->lchild=ptr;
   ptr->rchild=hold;
   if(ptr==root)
     root=temp;
   else if(ptr==prev->rchild)
     prev->rchild=temp;
   else
     prev->lchild=temp;
   ptr->height=max(findheight(ptr->lchild),findheight(ptr->rchild))+1;
   temp->height=max(findheight(temp->lchild),findheight(temp->rchild))+1;
   adheight(temp);
   temp->auxchild=prev;
   if(hold!=NULL)
    hold->auxchild=ptr;
   ptr->auxchild=temp;
 }
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void inorder(tree*ptr)
 {
   if(ptr!=NULL)
   {
     inorder(ptr->lchild);
     cout<<ptr->data<<“ ”;
     inorder(ptr->rchild);
   }
 }
void checkbal(tree*ptr,int item)
 {
   int hlchild,hrchild,bal;
   while(ptr->auxchild!=NULL)
   {
   ptr=ptr->auxchild;
     hlchild=findheight(ptr->lchild);
     hrchild=findheight(ptr->rchild);
     bal=hlchild-hrchild;
     if(bal>1)
     {
      if(item>ptr->lchild->data)
      {
        lcrotate(ptr->lchild,ptr);
        rcrotate(ptr,ptr->auxchild);
      }
     else
     rcrotate(ptr,ptr->auxchild);
    }
    else if(bal<-1)
    {
     if(item<ptr->rchild->data)
     {
       rcrotate(ptr->rchild,ptr);
       lcrotate(ptr,ptr->auxchild);
     }
    else
    lcrotate(ptr,ptr->auxchild);
    }
  }
}
void case1()
{
  if(ptr1->lchild==ptr)
   ptr1->lchild=NULL;
  else ptr1->rchild=NULL;
   adheight(ptr1);
   checkbal(ptr1,item);
  cout<<“Element Is Successfully deleted”;
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}
void case2()
{
 if(ptr1->lchild==ptr)
  {
    if(ptr->lchild==NULL)
     ptr1->lchild=ptr->rchild;
    else
     ptr1->lchild=ptr->lchild;
  }
 else
  {
    if(ptr1->rchild==ptr){if(ptr->lchild==NULL)ptr1->rchild=ptr->rchild;
     else ptr1->rchild=ptr->lchild;
   }
}
 adheight(ptr1);
  checkbal(ptr1,item);
  cout<<“Element Is Successfully deleted”;
}
void delet()
{
  int c=0;
  ptr=root;
  if(ptr==NULL)
  {
    cout<<“Tree Is Empty”;
    return;
  }
  cout<<“Which Item You Want To delete”;
  cin>>item;
   if(ptr->data==item)
   {
     cout<<item<<“Is A Root Node Deletion Is Not Possible”;
     return;
   }
  if(ptr->data==item&&ptr->lchild==NULL&&ptr->rchild==NULL)
  {
    root=NULL;
    cout<<item<<“Is Successfully deleted”;
    return;
  }
  while((ptr!=NULL)&&(c==0))
  {
    if(item<ptr->data)
    {
     ptr1=ptr;
     ptr=ptr->lchild;
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    }
   else if(item>ptr->data)
   {
    ptr1=ptr;
    ptr=ptr->rchild;
   }
   else
 c=1;
}
if(c==0)
 {
    cout<<“Item Does Not Exist..,Deletion Is Not Possible”;
    return;
 }
}
void delleaf()
{
  delet();
   if(ptr->lchild==NULL&&ptr->rchild==NULL)
   case1();
  else
    cout<<“Your Input Data Is Invlid”;
}
void delone()
{
 delet();
  if((ptr->lchild!=NULL&&ptr->rchild==NULL)||(ptr->lchild==NULL&&ptr
   ->rchild!=NULL))
 case2();
  else
    cout<<“Your Input Data Is Invalid”;
}
void traverse(struct AVLTREE*ptr)
{
 if(ptr!=NULL)
  {
    traverse(ptr->lchild);
    cout<<ptr->data<<“ ”;
    traverse(ptr->rchild);
  }
}
void insert()
{
  tree*loc,*prev;
  cout<<“Enter Item To Be Insert”;
  cin>>item;
  ptr=(tree*)malloc(sizeof(tree));
  ptr->data=item;
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  ptr->auxchild=ptr->lchild=ptr->rchild=NULL;
  ptr->height=0;
  if(root==NULL)
  {
    root=ptr;
    cout<<“Item”<<item<<“Is Successfully Inserted”;
    return;
  }
 loc=root;
 while(loc!=NULL)
 {
  prev=loc;
   if(item<loc->data)
    loc=loc->lchild;
  else
    loc=loc->rchild;
 }
 ptr->auxchild=prev;
 if(item<prev->data)
    prev->lchild=ptr;
  else
    prev->rchild=ptr;
 adheight(ptr);
 checkbal(ptr,item);
 cout<<“Item”<<item<<“Is Successfully Inserted”;
 }
int searching(tree *p,int key)
{
 if(p!=NULL)
  {
    if(p->data==key)
     k=1;
    else
    {
      searching(p->lchild,key);
      searching(p->rchild,key);
    }
  }
 return k;
}
void main()
{
 int n,height,op,x;
 clrscr();
 x:
  {
    while(1)
    {
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   cout<<“\nAVLTREE Operations\n1.Insert\n2.Delete\n3.Travese\n”;
   cout<<“4.Height Of Tree\n5.Searching\n6.Exit”;
     cout<<“\nEnter Your Option”;
     cin>>n;
     switch(n)
     {
       case 1:insert();break;
       case 2:
      if(root==NULL){cout<<“Treee Is Empty”;break;}
      cout<<“\n1.Delete Leaf Node\n2.Delete Single Child Node”;
      cout<<“\nEnter Your Option”;
      cin>>op;
      switch(op)
      {
        case 1:delleaf();break;
        case 2:delone();break;
        case 3:goto x;
         default:cout<<”Invalid Choice”;
      }
     break;
       case 3:cout<<“Tree Elemnts Are:”;inorder(root);break;
       case 4:height=findheight(root);
       cout<<“Height Of The Tree:”<<height;break;
       case 5:if(root==NULL){cout<<“Tree Is Empty”;break;}
       s=k=0;cout<<“Which Item You Want To Search”;
       cin>>item;
       s=searching(root,item);
    if(s==1)
     cout<<“Item”<<item<<“Is Found”;
    else
     cout<<“Item”<<item<<“Is Not Found”;
    break;
     case 6:exit(0);
     default:cout<<“Invalid Choice”;
  }
 }
}
}

Output

AVLTREE Operations
1.Insert
2.Delete
3.Travese
4.Height Of Tree
5.Searching
6.Exit
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Enter Your Option1
Enter Item To Be Insert35
AVLTREE Operations
1.Insert
2.Delete
3.Travese
4.Height Of Tree
5.Searching
6.Exit
Enter Your Option1
Enter Item To Be Insert20
AVLTREE Operations
1.Insert
2.Delete
3.Travese
4.Height Of Tree
5.Searching
6.Exit
Enter Your Option1
Enter Item To Be Insert40
AVLTREE Operations
1.Insert
2.Delete
3.Travese
4.Height Of Tree
5.Searching
6.Exit
Enter Your Option1
Enter Item To Be Insert10
AVLTREE Operations
1.Insert
2.Delete
3.Travese
4.Height Of Tree
5.Searching
6.Exit
Enter Your Option1
Enter Item To Be Insert22
AVLTREE Operations
1.Insert
2.Delete
3.Travese
4.Height Of Tree
5.Searching
6.Exit
Enter Your Option1
Enter Item To Be Insert37
AVLTREE Operations
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1.Insert
2.Delete
3.Travese
4.Height Of Tree
5.Searching
6.Exit
Enter Your Option1
Enter Item To Be Insert15
AVLTREE Operations
1.Insert
2.Delete
3.Travese
4.Height Of Tree
5.Searching
6.Exit
Enter Your Option1
Enter Item To Be Insert25
AVLTREE Operations
1.Insert
2.Delete
3.Travese
4.Height Of Tree
5.Searching
6.Exit
Enter Your Option1
Enter Item To Be Insert36
AVLTREE Operations
1.Insert
2.Delete
3.Travese
4.Height Of Tree
5.Searching
6.Exit
Enter Your Option3
Tree Elemnts Are:10 15 20 22 25 35 36 37 40
1.Delete Leaf Node
2.Delete Single Child Node
Enter Your Option1
Which Item You Want To delete15
Element Is Successfully deleted
AVLTREE Operations
1.Insert
2.Delete
3.Travese
4.Height Of Tree
5.Searching
6.Exit
Enter Your Option3
Tree Elemnts Are:10 20 22 25 35 36 37 40
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AVLTREE Operations
1.Insert
2.Delete
3.Travese
4.Height Of Tree
5.Searching
6.Exit
Enter Your Option2
1.Delete Leaf Node
2.Delete Single Child Node
Enter Your Option2
Which Item You Want To delete22
Element Is Successfully deleted
AVLTREE Operations
1.Insert
2.Delete
3.Travese
4.Height Of Tree
5.Searching
6.Exit
Enter Your Option3
Tree Elemnts Are:10 20 25 35 36 37 40
AVLTREE Operations
1.Insert
2.Delete
3.Travese
4.Height Of Tree
5.Searching
6.Exit
Enter Your Option4
Height Of The Tree:3
AVLTREE Operations
1.Insert
2.Delete
3.Travese
4.Height Of Tree
5.Searching
6.Exit
Enter Your Option5
Which Item You Want To Search37
Item 37 Is Found
AVLTREE Operations
1.Insert
2.Delete
3.Travese
4.Height Of Tree
5.Searching
6.Exit
Enter Your Option6
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12.6 APPLICATIONS

A self-balancing binary search tree has numerous applications. Its basic characteristic is to maintain the ele-
ments in order. So, it is applied in all the environment where the order of elements is required: 
 1.  Priority queues
 2.  Associative array based on the order of elements the key–value pairs are inserted
 3.  Binary tree sort
 4.  Many algorithms in computational geometry such as line segment, intersection problem and point 

location problem
 5.  Internet routers

SUMMARY

 • A non-empty binary search tree should satisfy the following properties:
  1.  All the elements must have a key and it must be distinct.
  2. All the keys (if any) in the left  subtree of the tree.
  3. All the keys (if any) in the right subtree of the tree must be greater than the root element.
  4. Th e left  and right subtrees of the tree must also be the binary search trees.
 • Th e inorder traversal of a binary search tree produces the sorted list of the given elements in ascending 

order.
 • Th e operations on binary search tree are searching, insertion and deletion.
 • BST is highly effi  cient in performing all the operations with a time complexity of O(log n) over a se-

quential list.
 • Binary search trees suff ers from the drawback of becoming skewed.
 • An empty binary tree is an AVL tree.  A non-empty binary tree T is an AVL tree if and only if
  1. the left  subtree T

L
 and the right subtree T

R
 of T are also AVL trees and 

  2. |h(T
L
) – h(T

R
)| ≤ 1 where h(T

L
) and h(T

R
) are the heights of left  and right subtrees of T, respectively.

 • Th e balancing factor of a node u, bf(u) can be defi ned  as bf(u)=h(uL)–h(uR), where, h(uL) is the height 
of the left  subtree of u and h(uR) is the height of the right subtree of u.

 • Representation of AVL tree and AVL search trees are very similar to that of binary trees and binary 
search trees using a linked representation.

 • Searching, insertion and deletion are the common operations on AVL trees.
 • Th e insertion operation on AVL trees is similar to BST but leads to imbalance. Th e rotations LL, LR, 

RL, RR are used to rebalance the tree.
 • A deletion operation on AVL trees also performs some rotations.

EXERCISES

FILL IN THE BLANKS

 1. Th e path from the root to an external node is known as an .
 2. Linked representation of a binary search tree with a collection of internal nodes that represent the keys 

and external nodes that represent null pointers is known as .
 3. Th e skewed binary search trees have the time complexity of .
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 4. Major classifi cation of rotations while performing deletion in AVL trees is  . 
 5.  are the rotations performed while inserting an element into an AVL tree.

MULTIPLE-CHOICE QUESTIONS

 1.  the time complexity in an average case where frequent insertions and/or deletions are 
assumed.

  a. O(log n)    b. O(n)  
  c. O(nlog n)    d. None  
 2. Which of the following traversal technique lists the nodes of a binary tree in ascending order?
  a. Postorder    b. Inorder 
  c. Preorder    d. None
 3. Consider this binary search tree: 

14

2 16

1

4

5

  Suppose we remove the root, replacing it with something from the left  subtree, what will be the new 
root?

  a. 1  b. 2  c. 4   d. 5   e. 16 

 4.  Th e balancing factor of a node u, bf(u) can be defi ned  as .
      a. bf(u)-h(uL)-h(uR)                    b. bf(u)-h(uL)-h(uR)  
      c. bf(u)+h(uL)-h(uR)         d. bf(u)+h(uL)+h(uR)

 5.   Which of the following statement is true?
       a. An AVL search tree may require one rotation to rebalance it aft er deletion.
       b.  An AVL search tree may require more than one rotation, insertion requires single rotation.
      c.  An AVL search tree may require more than one rotation to rebalance it aft er deletion 
      d.  None.

SHORT-ANSWER QUESTIONS

 1. Defi ne binary search trees.
 2. Defi ne AVL trees.
 3. Suppose that we want to create a binary search tree where each node contains information on some 

data type called Item (which has a default constructor and a correct value semantics), what additional 
factor is required for the Item data type? 

 4. Suppose that a binary search tree contains the number 42 at a node with two children. Write two or 
three clear sentences to describe the process required to delete 42 from the tree. 
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 5. Consider the following AVL tree: 

 Show the modifi ed tree under each of the following operations:
 Deletion of the key 4
 Insertion of the key 16. 

ESSAY QUESTIONS

 1. Explain about binary search trees and its operations in detail.
 2. Discuss in detail about AVL trees.
 3. Give the representations of various rotations involved while inserting an element into an AVL tree.
 4. Write an algorithm for performing deletion in AVL trees.
 5. Explain various rotations involved while deleting an element from an AVL tree.

3

42

1

5

7

6

14

13 15

10

9 11

12

8



Multiway Trees and B Trees

  This chapter is dedicated to the discussion of multiway trees and B trees. The structure of a 
node in m-way trees and operations on them are explained in detail. Stating the drawbacks of 
m-way search trees, the need for B trees is explained along with its definition. Regarding B trees 
operation performed on them and its height are discussed. This also includes variations of B 
trees and database as an application of B trees.

13.1 INTRODUCTION

Th e tree data structures in which a node has more than two branches are termed as  multiway trees. Data struc-
tures m-way search trees and B trees come under this category. In some applications like Database very large 
index entries may be found. Such index can be maintained as m-way search trees than AVL search trees which 
are just balanced binary search trees. A binary search tree is a two-way search tree. An m-way search tree is an 
extended binary search tree and supports more effi  cient retrievals. B trees are the height balanced versions of 
m-way search trees.

Defi nition: An  m-way search tree T may be an empty tree. If T is a non-empty m-way search tree then the fol-
lowing properties can be observed from it:
 1. Every node can have a maximum of m subtrees, where m is some integer and known as the order of the 

tree.
 2. A node with k subtrees will have k–1 elements where k<m.
 3. All the elements of a node will be in ascending order when a node with k subtrees is considered then 

k
1
, k

2
, k

3
,..., k

k-1
 are the elements of the node in the order k

1
<k

2
<k

3
<...,<k

k-1
. Th e subtrees will be 

C
0
, C

1
, C

2
..., C

K-1
.

 4. Th e subtree with root C
0
 will have the elements that are less than k

1
 and that of C

k–1
 will have elements 

that are greater than k
K–1

. Th e subtree with root C
i
 will have the elements that are greater than k

i
 and 

less than k
i+1

; 1 i k.
 5. All the subtrees are once again m-way trees.

Chapter 13
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13.2 REPRESENTATION OF A NODE STRUCTURE

An m-way search tree is an extended tree where the null pointers are represented by external nodes. In defi n-
ing an m-way search tree and while discussing its operations external nodes are very helpful. Similar to the 
case of a tree external nodes are not physically represented but are only fi ctitious.

Th e general node structure in an m-way search tree is shown in Figure 13.1.  Th e node is with m–1 ele-
ments and m child pointers pointing to the roots of m subtrees. Pointers to empty subtrees are shown by 
external nodes represented with fi lled circles as shown in Figure 13.2.

Figure 13.1 Node structure in an m-way search tree

A 4-way search tree is depicted in Figure 13.2. Nodes have a maximum of 4 child nodes out of which some 
are external nodes.

K1

C0 C1 C2

K2 K3 Ki Kk Km-2 Km-1. . . . . . . . .

. . . . . . . . .

Ci Ck Cm-2 Cm-1

Figure 13.2 A 4-way search tree

30 64 79

36 4212 27 8454

14 21 25
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Th e root node is with three elements [30,64,79] and four subtrees. Th e fi rst subtree is with the elements 
that are less than 30, the second subtree has the elements that are greater than 30 and less than 64. Th e third 
subtree that should contain the elements that are greater than 64 and less than 79 is empty. Th e fourth subtree 
is with the element 84 that is greater than 79. Th e same procedure is followed for all nodes in the subtrees.

13.3 OPERATIONS ON m-WAY SEARCH TREES

Binary search tree is an m-way search tree of order two. Operations on m-way search tree are the extensions of 
operations on binary search trees. Some of the very frequently used operations are discussed.

13.3.1 SEARCHING

Searching begins with a root node. Th e element k for which the search is carried out is compared with each 
element of the root node sequentially. If the required element matches with any of the root elements then the 
search is successful. If k>k

i
 and k<k

i+1 for some value of i then the search continues with the respective subtree 
T
i
. Similarly, the search proceeds till the required element is found and the search is successful or an external 

node or null pointer is found where the search is unsuccessful.
Th e 4-way search tree depicted in Figure 13.2 is considered. Searching for an element 15 compares it with 

the fi rst element of the root 30. As 15 is less than (<) 30 search moves to the fi rst subtree of the root [12,27]. 
As 15 is greater than (>) 12, the fi rst element of the node, it again moves down to the subtree with the elements 
[14,21,25]. As 15>14 and 15<21 search moves to the next subtree which is an external node. So, searching is 
terminated as an unsuccessful search. From the same tree if 42 is the element that is to be searched then 42 is 
compared with the root node [30,64,79]. As 42>30 and 42<64 search moves to the second subtree [36,42,54]. 
Now, 42 is compared with 36 which does not match, proceeds to 42 the next element of the node where match 
is found. So, the search is successful.

13.3.2 INSERTION

Inserting an element into the m-way search tree begins with the search operation. Th e place where the search 
operation terminates is where the insertion takes place. Th e new element may be inserted into an existing node 
if it is able to accommodate, otherwise it may be inserted as a new node in the next level.

In the 4-way search tree from Figure 13.2 if an element 29 is to be inserted then search for 29 falls off  at 
the node [12,27]. Th is node is able to accommodate one more element. So, insert 29 as the last element in the 
node then the node is [12,27,29]. Th e corresponding pointer fi eld can also be observed.

If another element 50 is to be inserted then the search falls off  at the third external node of the  node 
[36,42,54]. As the node is full of its capacity it cannot accommodate 50 in it. So, the new node with the ele-
ment 50 and its pointer fi eld appears as the third child of [36,42,54]. Th is is illustrated in Figure 13.3.

13.3.3 DELETION

Deleting an element from an m-way search tree also follows the search operation. When an element k with 
its left  subtree pointer C

l
 and its right subtree pointer C

r
 is to be deleted it can be done in any of the following 

four cases.
Case 1: C

l
 = C

r
 = Nil, i.e. if the left  and right subtrees of k are Nil then k is deleted and the number of pointer 

fi elds of the node is adjusted. 
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Figure 13.3 Insertion of elements 29 and 50 into 4-way search tree in Figure 11.2

Case 2: C
l
 ≠ Nil and C

r
 = Nil, i.e. if the left  subtree is not empty and the right subtree is empty then select the 

largest element from the left  subtree and k is replaced with it. Th is will recursively invoke the deletion of the 
largest element by following one or more of the four cases.
Case 3: C

l
 = Nil and C

l
 ≠ Nil, i.e. if the left  subtree of k is empty and the right subtree is not empty. Select the 

smallest element from the right subtree and replace k with it. Th is will recursively invoke the deletion of the 
smallest element by following one or more of the four cases.
Case 4: C

l
 ≠ Nil and C

r
 ≠ Nil, i.e. if both left  and right subtrees of k are not empty. Select either the largest ele-

ment from the left  subtree or the smallest element from the right subtree and replace k with it. Th is follows the 
appropriate steps to delete the replaced element from the tree.

Consider the 4-way search tree shown in Figure 13.2. To delete element 14 which does not have both left  
and right subtrees, Case 1 can be applied.  So, simply 14 and its corresponding pointer are deleted from the 
node. Deletion of 27 which has the left  subtree but no right subtree follows Case 2. From the left  subtree the 
largest element 25 is replaced with 27. Case 1 is applied again in deleting 25. To delete 30 which has both left  
and right subtrees, Case 4 is applied. Either the  largest element 27 from the left  subtree or  the smallest element 
36 from the right subtree may be selected to replace 30. Here 36 is replaced with 30. Case 1 is applied again to 
delete 36 from the tree. Th ese instances may be shown in Figure 13.4.

30 64 79

8436 42 5412 27 29

14 21 25 50

Insert 29

New child 
pointer field

New child 
pointer fields

Insert 50
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30 64 79

8436 42 5412 27

14 21 25

(a) Delete 14

30 64 79

8436 42 5412 25

27

14 21 25

(b) Delete 27

Figure 13.4 Deletion of 14, 27 and 30 individually from 4-way search tree shown in Figure 13.2
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Figure 13.4 Continued

13.3.4 DRAWBACKS OF m-WAY SEARCH TREES

Th e search, insert and delete operations on an m-way search tree of height h(without external nodes) have the 
complexity as O(h). An m-way search tree of height h will have a minimum of h and a maximum of mh-1 num-
ber of elements. Minimum of h is as one element per node at every level and maximum as at every level; each 
node has m child nodes and  m–1 elements. Th is says that the maximum number of nodes at level i is given by 
mi–1. As in an m-way search tree of height h, the total number of nodes is 

m
m

m
i

h

i

h
1

1

1

1

( )
( )

and each of these nodes will have m–1 elements, the maximum number of elements is 

( )
( )

( ) ( )
m

m
m m

h
h1

1
1 1

Because the number of elements in an m-way search tree with a height h will be from h to mh–1, when a 
tree with n elements is considered its height will be a minimum of log

m
(n+1) and a maximum of n. In the worst 

case the height of an m-way search tree with n elements may be O(n) which yields a poor performance. So, it is 
required to maintain the balanced heights in m-way search trees. 

30

30

64 79

8436 42 5412 27

14 21 25

(c) Delete 30



Chapter 13 Multiway Trees and B Trees | 13.7

13.4 B TREES

A data structure which is a height balanced version of m-way search tree is known as a B tree of order m. When 
the growth of an m-way search tree is left  uncontrolled then in the worst case it yields a complexity of O(n). 
Th is shows deterioration in performance. So, there is a need to have balanced m-way search trees which guar-
antees a complexity of O(log n) for search, insert and delete operations.

Defi nition: A B tree of order m is an m-way search tree and it may be empty. If not empty then the following 
properties are to be satisfi ed by the extended trees:
 (i) Th e root node should have a minimum of two children and a maximum of m children.
 (ii) All the internal nodes except the root node should have a minimum of m/2  non-empty children and 

a maximum of m non-empty children.
 (iii) All the external nodes are at the same level.      
 (iv) A leaf node must have minimum m/2–1  and maximum m–1 elements.

Th e 4-way search tree shown in Figure 13.2 is not a B tree because all the external nodes are not at the same 
level. All the internal nodes except the root must be with a minimum 4/2 =2 children.  But, the node [12,27] 
is a non-root internal node with only one child.

Figure 13.5 B tree of order 3 (2–3 trees) 

B trees with order 3 are also referred to as 2–3 trees as their internal nodes can have only two or three chil-
dren. Figure 13.5 shows a B tree of order 3. B trees of order 4 are also referred to as 2–3–4 or 2–4 trees.

A B tree of order 5 is shown in Figure 13.6. In this tree the root [40,82] has minimum two children. All 
the internal nodes except the root have minimum m/2  = 5/2  =3 children and hence two elements in cor-
responding nodes. All the external nodes are at the same level. As all the properties are satisfi ed, it is a B tree 
of order 5.

876 24 52 64

43 75
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Figure 13.6 B tree of order 5

13.5 OPERATIONS ON B TREES

B tree grows in a bottom up manner. Various operations can be performed on B trees of order m but the most 
frequently used are search, insert and delete operations.

13.5.1 SEARCHING

Th e search operation on a B tree of order m is exactly the same as that performed on m-way search trees. If h is 
the height of the B tree of order m then the search operation yields a complexity of O(h).

13.5.2 INSERTION

Inserting an element into a B tree of order m is followed by the search operation for the same element. Th e 
place where search falls off , the element is inserted by following either of the cases.
Case 1: In a B tree of order m, if node X in which the element is to be inserted can accommodate the element 
then it is inserted in the same node and the number of child pointer fi elds are adjusted accordingly.
Case 2: In a B tree of order m if a node X in which the element is to be inserted is full, then fi rst insert the ele-
ment into its list of elements. Th is list is split into two at the median. Th e elements that are less than the median 
becomes the left  node and that are greater than the median becomes the right node. Th e median element is 
shift ed up into the parent node of X. Accommodating the median element into the parent node may once again 
invoke either of the insertion cases.

Insertion of element 64 into the B tree of order 5 shown in Figure 13.6 initiates search operation for 64. Th is 
falls off  at node [58, 74]. As it is not full the node is able to accommodate 64 and the node now appears as [58, 
64, 74]. Th is is illustrated in Figure 13.7(a).

To insert element 99 into the B tree the search operation for 99 falls off  at node [86, 89, 93, 97]. Th is node 
is full and cannot accommodate 99. So, insert 99 into the list of elements, the list appears as 86, 89, 93, 97, 
99. Here the median element is 93. So, split the node at the median into two as [86, 89] and [97, 99]. Now the 
median element 93 is shift ed up into the parent, i.e. root. Again Case 1 is invoked to insert 93 into the root. 
Th is is illustrated in Figure 13.7(b).

11 25 38 58 74

40 82

86 89 93 97
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Figure 13.7 Inserting 64 and 99 individually into the B tree of order 5 shown in Figure 13.6

13.5.3 DELETION

Deleting an element from a B Tree of an order m may be performed according to one of the four cases.
Case 1:  Th is deletion is the simplest of all the cases. An element belongs to a leaf node and deleting it does 
not make the node with the number of elements less than its minimum number of elements. In this case the 
element is deleted from the leaf node and the child pointers are adjusted accordingly.
Case 2: When an element k from a non-leaf node is to be deleted, replace k with the largest element from its 
left  subtree or the smallest element from its right subtree. Th e replaced element must be deleted from the node 
and as it happens to be from a leaf node, Case 1 is followed to delete it.

11 25 38

40 82

86 89 93 9758 64 74

(a) Insert 64

11 25 38 58 74

(b) Insert 99

40 82 93

86 89 97 99



13.10 | Data Structures and Algorithms Using C++ 

Th e B tree of order 5 shown in Figure 13.6 is considered. To delete 89 from the tree as it is a leaf node 
element, Case 1 can be followed. Delete 89 and adjust its child pointer fi elds. To delete 40, a non-leaf node 
element, Case 2 can be followed. Replace 40 with 38 the largest element from its left  subtree. Deleting 38 again 
follows Case 1. Th is is illustrated in Figure 13.8

Figure 13.8 Deletion of 89 and 40 individually from B tree of order 5 shown in Figure 13.6

If the deletion of an element leaves less than the minimum number of elements in the corresponding 
nodes, then deletion becomes complicated. Cases 3 and 4 deal with such cases.
Case 3: If deleting an element k from a node leaves it with less than its minimum number of elements, then 
elements can be borrowed from either of its sibling nodes. When the left  subtree node is capable to spare the 

11 25 38 58 74

(a) After deleting 89

Delete 89

40 82

86 93

89

97

11 25

38 82

86 9789 9358 74

(b) Delete 40

40
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element then its largest element is shift ed into the parent node. If the right subtree node is capable to do so, its 
smallest element is shift ed into the parent node. From the parent node the intervening element is shift ed down 
to fi ll the vacancy created by the deleted element. 
Case  4: In a situation where the deletion of an element is making the elements of the node to be less than its 
minimum number and if either or both of its sibling nodes have no chance of sparing an element, then this 
node is merged with either of the sibling nodes including the intervening element from the parent node. Th is 
once again invokes one of the cases to delete the intervening element from the parent node.

Consider the B tree of order 5 shown in Figure 13.6. Deleting 58 leaves the node with one element, i.e. less 
than the minimum number of elements. From its left  sibling node 38 can be borrowed. So, 38 replaces the in-
tervening parent node 40 and is pushed down to fi ll the vacancy created by deleting 58. Figure 13.9(a) depicts 
this situation. Th is in turn calls Case 1 to delete 38 from the leaf node. Th is is an illustration of Case 3.  

To illustrate Case 4 consider the B tree of order 5 shown in Figure 13.9(a), the resulting tree aft er deleting 
58. Deletion of 25 makes the nodes with elements less than the minimum number of elements. Its sibling right 
subtree is unable to spare the element. Now, merge 11 with [40, 74] along with the intervening element from 
the parent node, i.e. 38. So, the new node is [11, 38, 40, 74]. Th is is depicted in Figure 13.9(b).

11 25

38 82

86 89 93 9740 74

(a) After deleting 58

82

86 89 93 9711 38 40 74

(b) After deleting 25
Figure 13.9 Delete 58 and 25 from B tree of order 5 shown in Figure 13.6
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Program 13.1

//Implementation of  BTREE Operations
#include<iostream.h>
#include<conio.h>
#include<stdlib.h>
#define MAX 50
struct BTREE
{
  int n;
  int keys[MAX-1];
  struct BTREE*p[MAX];
}*root=NULL;
typedef struct BTREE node1;
int count=0,ele;
enum KeyStatus{Duplicate,SearchNodeFailure,Success,InsertIt,LessKeys};
enum KeyStatus ins(node1*r,int x,int*y,node1**u);
enum KeyStatus del(node1*r,int x);
void InsertNode()
{
  node1*newnode;
  int upKey;
  enum KeyStatus value;
  cout<<“Enter Element To Insert”;
  cin>>ele;
  value=ins(root,ele,&upKey,&newnode);
  if(value==Duplicate)
  {
    cout<<“Element Already Exists\n”;
    return;
 }
  if(value==InsertIt)
  {
    node1*uproot=root;
    root=(node1*)malloc(sizeof(node1));
    root->n=1;
    root->keys[0]=upKey;
    root->p[0]=uproot;
    root->p[1]=newnode;
   }
 count++;
 cout<<“Element Is Successfully Inserted”;
}
int SearchNodePos(int key,int*key_arr,int n)
{
  int pos=0;
  while(pos<n&&key>key_arr[pos])
  pos++;
  return pos;
}
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enum KeyStatus ins(node1*ptr,int key,int*upKey,node1**newnode)
{
  node1*newPtr,*lastPtr;
  int pos,i,n,splitPos;
  int newKey,lastKey;
  enum KeyStatus value;
  if(ptr==NULL)
  {
    *newnode=NULL;
    *upKey=key;
    return InsertIt;
  }
 n=ptr->n;
 pos=SearchNodePos(key,ptr->keys,n);
 if(pos<n&&key==ptr->keys[pos])
 return Duplicate;
 value=ins(ptr->p[pos],key,&newKey,&newPtr);
 if(value!=InsertIt)
 return value;
 if(n<MAX-1)
 {
    pos=SearchNodePos(newKey,ptr->keys,n);
    for(i=n;i>pos;i--)
    {
     ptr->keys[i]=ptr->keys[i-1];
     ptr->p[i+1]=ptr->p[i];
    }
   ptr->keys[pos]=newKey;
   ptr->p[pos+1]=newPtr;
   ++ptr->n;
   return Success;
  }
  if(pos==MAX-1)
  {
    lastKey=newKey;
    lastPtr=newPtr;
  }
  else
  {
    lastKey=ptr->keys[MAX-2];
    lastPtr=ptr->p[MAX-1];
    for(i=MAX-2;i>pos;i--)
    {
   ptr->keys[i]=ptr->keys[i-1];
     ptr->p[i+1]=ptr->p[i];
    }
    ptr->keys[pos]=newKey;
    ptr->p[pos+1]=newPtr;
 }
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 splitPos=(MAX-1)/2;
 (*upKey)=ptr->keys[splitPos];
 (*newnode)=(node1*)malloc(sizeof(node1));
 ptr->n=splitPos;
 (*newnode)->n=MAX-1-splitPos;
 for(i=0;i<(*newnode)->n;i++)
 {
   (*newnode)->p[i]=ptr->p[i+splitPos+1];
   if(i<(*newnode)->n-1)
    (*newnode)->keys[i]=ptr->keys[i+splitPos+1];
   else
    (*newnode)->keys[i]=lastKey;
  }
 (*newnode)->p[(*newnode)->n]=lastPtr;
 return InsertIt;
}
void Display(node1 *ptr,int blanks)
{
  if(count==0)
  {
    cout<<“BTREE Is Empty”;
    return;
  }
 if(ptr)
  {
    int i;
    for(i=0;i<ptr->n;i++)
    cout<<ptr->keys[i]<<“ ”;
    cout<<endl;
    for(i=0;i<=ptr->n;i++)
    Display(ptr->p[i],blanks+10);
  }
}
void search()
{
 int pos,i,n;
  node1*ptr=root;
  if(count==0)
  {
    cout<<“BTREE Is Empty”;
    return;
  }
 cout<<“Enter Element To Search Node”;
 cin>>ele;
 while(ptr)
 {
  n=ptr->n;
  pos=SearchNodePos(ele,ptr->keys,n);
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  if(pos<n&&ele==ptr->keys[pos])
  {
   cout<<“Element”<<ele<<“Is Found”;
   return;
  }
  ptr=ptr->p[pos];
 }
 cout<<“Element”<<ele<<“Is Not Found”;
}
void DeleteNode()
{
 int flag=1;
 node1*uproot;
 enum KeyStatus value;
 if(count==0)
 {
  cout<<“BTREE Is Empty”;
  return;
 }
 cout<<“Enter Element To Delete”;
 cin>>ele;
 value=del(root,ele);
 switch(value)
 {
 case SearchNodeFailure:cout<<“Element”<<ele<<“Is Not Available”; 
  flag=0; break;
 case LessKeys:uproot=root;root=root->p[0];free(uproot);break;
 }
 if(flag==1)
 {
  cout<<“Element”<<ele<<“Is Deleted”;
  count--;
 }
}
enum KeyStatus del(node1*ptr,int key)
{
 int pos,i,pivot,n,MAXin;
 int*key_arr;
 enum KeyStatus value;
 node1**p,*lchild,*rchild;
 if(ptr==NULL)
 return SearchNodeFailure;
 n=ptr->n;
 key_arr=ptr->keys;
 p=ptr->p;
 MAXin=(MAX-1)/2;
 pos=SearchNodePos(key,key_arr,n);
 if(p[0]==NULL)
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 {
  if(pos==n||key<key_arr[pos])
  return SearchNodeFailure;
  for(i=pos+1;i<n;i++)
  {
   key_arr[i-1]=key_arr[i];
   p[i]=p[i+1];
  }
  return --ptr->n>=(ptr==root?1:MAXin)?Success:LessKeys;
 }
 if(pos<n&&key==key_arr[pos])
 {
  node1*qp=p[pos],*qp1;
  int nkey;
  while(1)
  {
   nkey=qp->n;
   qp1=qp->p[nkey];
   if(qp1==NULL) break;
   qp=qp1;
  }
  key_arr[pos]=qp->keys[nkey-1];
  qp->keys[nkey-1]=key;
 }
 value=del(p[pos],key);
 if(value!=LessKeys)
 return value;
 if(pos>0&&p[pos-1]->n>MAXin)
 {
  pivot=pos-1;
  lchild=p[pivot];
  rchild=p[pos];
  rchild->p[rchild->n+1]=rchild->p[rchild->n];
  for(i=rchild->n;i>0;i--)
  {
   rchild->keys[i]=rchild->keys[i-1];
   rchild->p[i]=rchild->p[i-1];
  }
  rchild->n++;
  rchild->keys[0]=key_arr[pivot];
  rchild->p[0]=lchild->p[lchild->n];
  key_arr[pivot]=lchild->keys[--lchild->n];
  return Success;
 }
 if(pos>MAXin)
 {
  pivot=pos;
  lchild=p[pivot];
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  rchild=p[pivot+1];
  lchild->keys[lchild->n]=key_arr[pivot];
  lchild->p[lchild->n+1]=rchild->p[0];
  key_arr[pivot]=rchild->keys[0];
  lchild->n++;
  rchild->n--;
  for(i=0;i<rchild->n;i++)
  {
   rchild->keys[i]=rchild->keys[i+1];
   rchild->p[i]=rchild->p[i+1];
  }
  rchild->p[rchild->n]=rchild->p[rchild->n+1];
  return Success;
 }
 if(pos==n)
  pivot=pos-1;
 else
  pivot=pos;
 lchild=p[pivot];
 rchild=p[pivot+1];
 lchild->keys[lchild->n]=key_arr[pivot];
 lchild->p[lchild->n+1]=rchild->p[0];
 for(i=0;i<rchild->n;i++)
 {
  lchild->keys[lchild->n+1+i]=rchild->keys[i];
  lchild->p[lchild->n+2+i]=rchild->p[i+1];
 }
 lchild->n=lchild->n+rchild->n+1;
 free(rchild);
 for(i=pos+1;i<n;i++)
 {
  key_arr[i-1]=key_arr[i];
  p[i]=p[i+1];
 }
 return--ptr->n>=(ptr==root?1:MAXin)?Success:LessKeys;
}
int main()
{
 int op;
 clrscr();
 while(1)
 {
  cout<<“\nBTREE Opeartions\n1.Insertion\n2.Deletion\n3.Searching\n”;
  cout<<“4.Traversing\n5.Exit\n”;
  cout<<“Enter Your Option:”;
  cin>>op;
  switch(op)
  {
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   case 1:
   InsertNode();
   break;
   case 2:
   DeleteNode();
   break;
   case 3:
   search();
   break;
   case 4:
   cout<<“BTREE Elements Are:\n”;
   Display(root,0);
   break;
   case 5:
   exit(0);
   default:
    cout<<“Invalid Choice\n”;
  }
 }
}

Output

BTREE Opeartions
1.Insertion
2.Deletion
3.Searching
4.Traversing
5.Exit
Enter Your Option:1
Enter Element To Insert14
Element Is Successfully Inserted
BTREE Opeartions
1.Insertion
2.Deletion
3.Searching
4.Traversing
5.Exit
Enter Your Option:1
Enter Element To Insert20
Element Is Successfully Inserted
BTREE Opeartions
1.Insertion
2.Deletion
3.Searching
4.Traversing
5.Exit
Enter Your Option:1
Enter Element To Insert6
Element Is Successfully Inserted
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BTREE Opeartions
1.Insertion
2.Deletion
3.Searching
4.Traversing
5.Exit
Enter Your Option:1
Enter Element To Insert25
Element Is Successfully Inserted
BTREE Opeartions
1.Insertion
2.Deletion
3.Searching
4.Traversing
5.Exit
Enter Your Option:1
Enter Element To Insert3
Element Is Successfully Inserted
BTREE Opeartions
1.Insertion
2.Deletion
3.Searching
4.Traversing
5.Exit
Enter Your Option:1
Enter Element To Insert30
Element Is Successfully Inserted
BTREE Opeartions
1.Insertion
2.Deletion
3.Searching
4.Traversing
5.Exit
Enter Your Option:4
BTREE Elements Are:
3 6 14 20 25 30
BTREE Opeartions
1.Insertion
2.Deletion
3.Searching
4.Traversing
5.Exit
Enter Your Option:2
Enter Element To Delete20
Element 20 Is Deleted
BTREE Opeartions
1.Insertion
2.Deletion
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3.Searching
4.Traversing
5.Exit
Enter Your Option:4
BTREE Elements Are:
3 6 14 25 30
BTREE Opeartions
1.Insertion
2.Deletion
3.Searching
4.Traversing
5.Exit
Enter Your Option:1
Enter Element To Insert10
Element Is Successfully Inserted
BTREE Opeartions
1.Insertion
2.Deletion
3.Searching
4.Traversing
5.Exit
Enter Your Option:4
BTREE Elements Are:
3 6 10 14 25 30
BTREE Opeartions
1.Insertion
2.Deletion
3.Searching
4.Traversing
5.Exit
Enter Your Option:3
Enter Element To Search Node25
Element 25 Is Found
BTREE Opeartions
1.Insertion
2.Deletion
3.Searching
4.Traversing
5.Exit
Enter Your Option:3
Enter Element To Search Node15
Element 15 Is Not Found
BTREE Opeartions
1.Insertion
2.Deletion
3.Searching
4.Traversing
5.Exit
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Enter Your Option:1
Enter Element To Insert10
Element Already Exists
BTREE Opeartions
1.Insertion
2.Deletion
3.Searching
4.Traversing
5.Exit
Enter Your Option:1
Enter Element To Insert20
Element Is Successfully Inserted
BTREE Opeartions
1.Insertion
2.Deletion
3.Searching
4.Traversing
5.Exit
Enter Your Option:4
BTREE Elements Are:
3 6 10 14 20 25 30
BTREE Opeartions
1.Insertion
2.Deletion
3.Searching
4.Traversing
5.Exit
Enter Your Option:2
Enter Element To Delete10
Element 10 Is Deleted
BTREE Opeartions
1.Insertion
2.Deletion
3.Searching
4.Traversing
5.Exit
Enter Your Option:4
BTREE Elements Are:
3 6 14 20 25 30
BTREE Opeartions
1.Insertion
2.Deletion
3.Searching
4.Traversing
5.Exit
Enter Your Option:5
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13.6  HEIGHT OF B TREES

Let T be a B tree of order m and height h with n elements. Since a B tree with order m is an m-way tree, then m 
satisfi es n ≤ mh –1. Now the upper bound of n is known, then what is its lower bound? Th at is what is the mini-
mum number of elements that a B tree of order m and height h can hold. First fi nd the minimum number of 
nodes in levels 1, 2, 3. . . (h+1), where h+1 is the level at which external nodes exist, let t= [m/2]. Th e minimum 
number of nodes on the levels 1, 2, 3 . . ., (h+1) is given by 1, 2, 2t, 2t2, . . ., 2t (h-1), so the lower bound of n is 
given by n ≥ 2t(h-1). 

Since the number of external nodes is 1 more than the number of inernal nodes, the lower bound of n is 
n≥ 2t(h–1)–1. Hence, the lower and upper bound of n is 2t (h–1)–1 ≤ n ≤ mh–1. From this it can be represented 
in logarithms very easily as logm(n+1) ≤ h ≤ log t((n+1)/2) +1 which determines the best and worst case com-
plexities of operations on B trees, which is given by O(h), the height of the B tree.

13.7 VARIATIONS OF B TREE

B* tree and B+ tree are the two popular variations of the B trees.

13.7.1  B* TREE

In a B tree with huge number of elements, space requirements may become excessive. Th is is because nearly 
half of the elements will be empty. Th e fi rst variation, B* tree, discusses the space usage of large trees. Instead 
of each node containing a minimum of half of the maximum entries, the minimum is reduced to two-thirds.

In case of node overfl ows, instead of immediately splitting, the data are redistributed among the siblings 
of the node. Th is delays the creation of a new node. Splitting occurs only in the case when all of its siblings are 
full. When the nodes are split, data from the two full siblings are distributed among the two full nodes and the 
new node resulting in two-thirds full in all the three nodes. Figure 13.10 shows the redistribution when 99 
is inserted into the B tree of order 5 shown in Figure 13.6. Its counterpart B tree with splitting is shown in 
Figure 13.7(b).

40

89 93 97 99

86

58 74 8211 25 38

Insert 99

Figure 13.10 Redistribution in B* tree
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13.7.2  B+ TREE

In large fi le systems, both random and sequential processing of data are required. For such systems most of 
the popular fi le organization methods prefer and use the B tree to process the data randomly. But, when the 
data are to be processed sequentially the B tree takes much processing time in moving up and down the tree 
structure. Th is ineffi  ciency leads to the second variant of the B tree, B+ tree.

B+ tree diff ers from B tree in two points. Th ey are:
 1. Th ough elements are found in the internal nodes their corresponding data entry must be represented 

at the leaf level. As the internal nodes are used only for searching, they do not hold data.
 2.    Every leaf node is with an additional pointer and is used to proceed to the next leaf node in sequence. 

A B+ tree is illustrated in Figure 13.11.

Data82 Data86 Data93 Data97Data50 Data58 Data74Data11 Data25 Data38

40 82

Figure 13.11 B+ tree

To fi nd the required data, search is performed only at the leaf level when the data are processed randomly. 
Th us, the search time is slightly increased. To process the data sequentially the far left  entry is identifi ed  and 
then proceed to process the data similar to the way of processing a linked list in which every node is an array.

13.8 APPLICATIONS

Various data structures along with search trees like binary search trees and AVL search trees support search 
and retrievals on small amounts of data that can be stored in the internal memory of the computer. Th e large 
amount of data that are to be stored in external storage devices must also have effi  cient techniques for storage 
and retrievals. Effi  cient retrievals are based on indexes. Th ough indexes are just lookup tables, they are re-
quired to be represented using effi  cient data structures to provide the essential services in an effi  cient manner. 
B trees provide solutions for this.

13.8.1 DATABASES

A database is a collection of data organized in an order and allows updating, retrieving and managing the data. 
Data are not restricted to a particular type. Database may contain voluminous data with millions of records 
that require many gigabytes of storage. A database to be useful and usable should allow one to perform some 
desired operations such as storage and retrieval at a faster rate. Th ese databases cannot be stored entirely in 
internal memory. To index the data  and for faster access B trees are useful. Th e worst case runtime to search an 
unsorted and unindexed database with n elements is O(n). It will be O(log n) when the same data are indexed 
using a B tree. Indexing huge amounts of data signifi cantly increases search performance. B trees ideally suit to 
store indexes, its internal node stores <key, address> pair. During retrieval fewer accesses are called because of 
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its balanced heights. A B tree along with indexing also optimizes costly disk accesses which are to be consid-
ered when dealing with large data sets.

SUMMARY

 • A tree whose nodes have more than two branches are termed as multiway trees.
 • Binary search tree is a two-way search tree. An m-way search tree is an extended binary search tree.
 • B trees are the height balanced versions of m-way search trees.
 • Operations on an m-way search tree are the extensions of operations on binary search trees.
 • Th e search, insert and deletion operations on an m-way search tree of height h  have the complexity as 

O(h). An m-way search tree of height h will have a minimum of h and a maximum of mh–1.
 • B* tree and B+ tree are the two popular variations of the B trees.
 • B* tree discusses the space usage of large trees. Instead of each node containing a minimum of half of 

the maximum entries, the minimum is reduced to two-thirds.
 • In B+ tree   though  elements are found in the internal nodes their corresponding data entry is found 

at the leaf level. As the internal nodes are used only for searching, they do not hold data.
 • In B+ tree every leaf node is with an additional pointer and is used to proceed to the next leaf node in 

sequence. 

EXERCISES

FILL IN THE BLANKS

 1. Nodes with k subtrees will have  elements.
 2. Th e search, insert and delete operations on an m-way search tree of height h  have the complexity as 

.
 3. A leaf node in B tree must have minimum  and maximum  elements.
 4. Th e lower and upper bound of n in B tree of order n  is  . 
 5.  and  are the two popular variations of the B trees.

MULTIPLE-CHOICE QUESTIONS

 1. A B tree with order m is an m-way tree, then n satisfi es .
  a. n ≤ mh -1             b.   n ≤ mh              
  c. n ≤ mh+1     d. n ≤ mh–1

 2. Th e worst case runtime to search an unsorted and unindexed database with n elements is .
  a. O(n log n)   b. O(log n)  
  c. O(n).      d. None
 3. An m-way search tree of height h will have a minimum of  and a maximum of  

elements.
  a. h, mh+1    b. h+1, mh–1
  c. h, mh–1    d. h–1, mh–1
 4. Th e maximum number of nodes in m-way trees at a level i is given by .
  a. mi+1     b. mi–1   
  c. mi+1    d. mi–1
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 5. Th e height of an m-way search tree with n elements may be .
  a. O(n–1)    b. O(n)  
  c. O(n+1)    d. None

SHORT-ANSWER QUESTIONS

 1. Defi ne m-way trees.
 2. Explain the representation of node in an m-way tree.
 3. Explain various operations on m-way trees.
 4. Defi ne B trees and explain the operations on it.
 5. Defi ne diff erent types of B trees.

ESSAY QUESTIONS

 1. Discuss in detail about m-way trees and give the algorithms for their operations.
 2. Write an algorithm for insertion and deletion operations on B trees.
 3. Write notes on the height of B trees.
 4. Explain various forms of B trees.
 5. Discuss the applications of B trees.
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Red–Black Trees
and Splay Trees

  This chapter introduces the data structures, red–black trees and splay trees. It describes 
how red–black trees exist with the reason behind them along with its definition and rep-
resentation. Most popular operations on red–black trees are exemplified. Splay trees, 
splay rotations and amortized analysis with respect to splay trees are also explained in the 
chapter. This chapter also includes the applications of red–black trees and splay trees. 

14.1 INTRODUCTION

B trees of order m discussed in the earlier chapter have a number of applications as they minimize disk ac-
cesses. To implement its node, sequential data structures like arrays may be invoked. So, in a B-tree of order m 
every node requires two arrays of maximum size m–1 and m for elements and child pointers, respectively. Th is 
leads to the wastage of space in the worst case. Th e elements of each of the nodes in the B tree can be main-
tained as a binary search tree and this would be an eff ective solution when the order of the B tree is small. But, 
branches that link the nodes of binary search tree must be diff erent from the branches that link the nodes of a 
B tree. Th is yields a special type of binary search tree called red–black tree. A 2–4 tree shown in Figure 14.1(a) 
is considered. Each node is represented as a binary search tree as shown in Figure 14.1(b). Here, the thin lines 
represent branches that link the nodes of binary search tree, whereas the thick lines show the same in between 
the nodes of the original B-tree. Th e resulting red–black tree shown in Figure 14.1(c) is formed when a light 
shade (red) is given to the thin lines and nodes hanging from them and grey shade (black) is given to the thick 
lines and nodes hanging from them. Th e root node is always shaded black.

Defi nition: A  red–black tree is an extended binary search tree in which all the nodes and edges are coloured 
either red or black. It should satisfy the following properties:
 1.  Th e root node and all the external nodes are always coloured black.
 2.  In every root node to an external node path no two consecutive red nodes should appear.
 3.  Th e number of black nodes in all root node to the external node path must be same.

From a parent, a black child is connected with the black edge and a red child is connected with the red 
edge. Based on the colours of the pointers or edges the above defi nition can have the following additional 
properties:

Chapter 14
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(a) A 2–4 tree
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(b) Binary search tree representation of the nodes of the 2–4 tree

(c) Red–black tree
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17 8355
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Red nodes

Black nodes

Figure 14.1 Red–black tree from a 2–4 tree
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 1. Th e edges that connect an internal node and an external node must be black.
 2. In every root node to an external node path no two consecutive red edges or pointers (or red nodes) 

should appear.
 3. Th e number of black edges or pointers (or black nodes) in all root node to the external node path must 

be same.
On the path from a node to an external node, the number of black edges gives the rank of a node. Th ere-

fore, the rank of all external nodes is 0.
All through the chapter, red nodes are represented by normal circles, red edges are represented by thin 

lines, black nodes are represented by shaded circles and black edges are represented by thick lines.

Figure 14.2 A red–black tree

Th e red–black tree shown in Figure 14.2 has the root node and all the external nodes are with black colour. 
In any root node to the external node path no two consecutive red nodes exist. It has three black nodes and 
two black pointers in every root node to external node path.

14.2 REPRESENTATION OF A RED–BLACK TREE

Th e node representation of a red–black tree is the same as that of a binary search tree because it is an extended 
binary search tree. As colour plays a vital role it is necessary to record the colour of either the node or two 
pointers that emerge from the node. Based on the method that is followed either one fi eld or two fi elds for 
colour are added to the node structure.

Th e insert or delete operations may lead to the imbalance of the red–black tree. In rebalancing the tree, 
nodes may move up and down. In order to facilitate this movement, a fi eld that holds a pointer to its parent 
node should be incorporated in the node structure of a red–black tree.

14.3 OPERATIONS

Among the numerous operations, the most frequently used search, insert and delete operations are explained.

40

58 82 94

34

20

9063

78
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14.3.1 SEARCHING

Th e process of searching for an element in a red–black tree is exactly the same as an element that is searched in 
a binary search tree. So, Algorithm 12.1 serves the purpose of search operation in a red–black tree.

14.3.2 INSERTION

Insertion of an element into a red–black tree is the same as that of into a binary search tree. To the new node 
either black or red colour must be set.  Prior to the insertion if the tree was empty then black colour may be 
set to the new node as it becomes the root. If the tree is non-empty and the new node is set to black then it 
violates the third property of the defi nition as an additional black node appears in the path from a root node to 
an external node. If the new node is set to red colour it may violate the second property of the defi nition. Th is 
leads to the imbalance of the tree and needs to be rebalanced. So, it is obvious to set the new node with red 
colour because this may or may not violate the defi nition. But, if the new node is set to black then it defi nitely 
violates the defi nition.

When it is a case of imbalance, along with the new node x its parent node px must be red in colour, the two 
consecutive red nodes. Node px cannot be the root so, the grandparent of x, gx must exist and must be black in 
colour. Th e imbalance may be classifi ed based on the position of the new node x with respect to its parent (px) 
and grandparent (gx), and colour of the other child of the grandparent (gx).

If the new node x is inserted as a left  child of its parent px, which is again a left  child of the grandparent of 
x, gx and colour of other child of the grandparent gx is black then it is an LLb type imbalance. If x is left  child 
of px, px is a left  child of gx and the other child of gx is red then it is an LLr type imbalance. If x is a right child 
of px, px is a left  child of gx and the other child of gx is red then it is an LRr type imbalance. If x is a right child 
of px, px is a left  child of gx and another child of gx is black then it is an LRb type imbalance. Similarly other 
imbalances are RLb, RLr, RRb and RRr.

Th e tree with imbalances, which have red as the colour of other children of the grandparent  gx, LLr, RLr, 
LRr and RRr are rebalanced by changing colours of nodes. Th e other type imbalances, which have black as the 
colour of other children of the grandparent gx,  LLb, RLb, LRb and RRb of the tree are rebalanced by rotation 
mechanism.

LLr, LRr, RRr and RLr imbalances: Th e general representation of  LLr, LRr, RRr and RLr imbalances, the changes in 
node colour to rebalance the tree are illustrated in Figure 14.3. Th e classifi cation of imbalance is depicted by L, 
R and r notations on the edges of the red–black trees.
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x
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pxR

After LLr colour change



Chapter 14 Red–Black Trees and Splay Trees | 14.5

gx

gxRpx

x

xL

pxL

xR

After LRr colour change
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xL

pxR
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Figure 14.3 General representations of LLr, LRr, RRr and RLr imbalances and colour changes

Consider the red–black tree shown in Figure 14.4(a). Aft er inserting 310,  LLr imbalance is observed as 
shown in Figure 14.4(b). LLr colour change is applied on this imbalanced tree.  Now, change in colour of 
the node 350 from black to red and nodes 330 and 400 from red to black can be observed in the rebalanced 
red–black tree shown in Figure 14.4(c). 
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Figure 14.4 Example of LLr imbalance and colour change 
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Figure 14.5 Example of LRr imbalance and colour change
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Figure 14.6 Example of RRr imbalance and colour change
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Figure 14.7 Example of RLr imbalance and colour change 

Th e  LRr type imbalance aft er inserting 340 and its corresponding colour changes are shown in Figure 14.5. 
Similarly, Figures 14.6 and 14.7 show the  RRr type imbalance aft er inserting 450 and  RLr type imbalance aft er 
inserting 375 and their corresponding colour changes, respectively.

In all the above examples satisfying the number of black nodes and no two consecutive red nodes, proper-
ties in the defi nition of red–black trees can be observed both before insertion and aft er rebalancing the tree.

Change in colour is possible only when gx is a non-root node. If it is a root node then no colour change is 
possible. Th e number of black nodes on all the paths from root node (gx) to the external nodes is increased by 
1. In case, change in colour of gx from black to red leads to further imbalance up the tree, then it is identifi ed 
as one of the imbalance type and corresponding rebalancing method is applied.
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LLb, LRb, RRb, and RLb imbalances: Th e general representation of  LLb, LRb, RRb and RLb imbalances and their 
corresponding rotations in rebalancing the red–black tree are shown in Figure 14.8. Th e classifi cation of imbal-
ance is depicted by L, R and b notations on the edges of the red–black trees.
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Figure 14.8 General representations of LLb, LRb, RRb and RLb imbalances and rotations

300

200 350

330

300

200 350

330

320

L b

L

(a) Before insertion (b) LLb imbalance after inserting 320

300

200

350

330

320

(c) LLb rotation to rebalance the tree
Figure 14.9 Example of LLb imbalance and rotation
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Figure 14.10 Example of  LRb imbalance and rotation
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Figure 14.11 Example of RRb imbalance and rotation
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Figure 14.12 Example of RLb imbalance and rotation
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Consider Figure 14.9(a) a red–black tree before insertion. Insertion of 320 causes LLb imbalance it is 
shown in Figure 14.9(b). To rebalance the tree  LLb rotation is invoked, this is shown in Figure 14.9(c). Here 
330 is the new root of the subtree and 320, 350 are its left  and right children, respectively. Node 330 changed its 
colour from red to black and 350 from black to red, and accordingly there is change in its pointers colour. Aft er 
rotation the number of black nodes on all the paths from root node to external nodes is the same as before 
insertion. No two consecutive red nodes are also found. Hence, the resultant is a rebalanced red–black tree.

Similarly, Figure 14.10 illustrates  LRb imbalance due to insertion of 345 and its corresponding rotation. 
Figures 14.11 and 14.12 depict the cases of RRb imbalance and RLb imbalances aft er inserting 400 and 360 and 
their corresponding rotations, respectively.

In all the above examples the rebalanced red–black trees aft er rotations satisfy the properties of the red–
black trees. Except colour change  LLb, LRb, RRb and RLb rotations are the same as LL, LR, RR and RL rota-
tions of AVL search trees.

14.3.3 DELETION

Deletion of an element from a red–black tree follows the same procedure as that of a binary search tree. Th e 
three cases of deleting an element from a binary search tree, the element as a leaf node, element with one sub-
tree (either left  subtree or right subtree only) and elements with two subtrees.

Th e deletion may lead to the imbalance of the red–black tree that may propagate toward the root node and 
it may be solved either by colour change or by appropriate rotations.

If the deleted node is red it will not violate the properties of a red–black tree. So, no imbalance occurs and 
the tree is still a red–black tree. If the deleted node is black then it violates the third property of the red–black 
trees as the number of black nodes in the path from the root node to the external node passing through the 
deleted node is decreased by 1. So, the tree is imbalanced.

Th e type of imbalance left  (L) or right (R) is determined by the location of the deleted node with respect to 
its parent (py). Here, y refers to the node that replaces the deleted node. If the sibling of the deleted node s is a 
black node then the imbalance type is further categorized as LB or RB. If  s is a red node then the imbalances 
are Lr or Rr.

If s is black then Lb or Rb is further classifi ed as Lb0, Lb1 and Lb2 and Rb0, Rb1 and Rb2, respectively, 
based on whether s has 0 or 1 or 2 red children. If s is red then Lr or Rr is further classifi ed as Lr0, Lr1 and Lr2 
and Rr0, Rr1 and Rr2 based on 0 or 1 or 2 grandchildren of s.

Th ese imbalances are handled by corresponding rotations. During rotations swap only the elements but 
not the colours. Th e imbalances are explained based on their category along with the general representations 
and examples. In the representation the hatched node indicates either red or black colour of the node.

Rb0, Rb1 and Rb2 imbalances: Th e general representation of  Rb0, Rb1 and Rb2 imbalances and their correspond-
ing rotations are depicted in Figure 14.13. Th e notations R, b and 0 or 1 or 2 specifi ed on the edges of the 
red–black tree indicate the classifi cation of the imbalance.

Th e two possible cases of Rb0 are shown in Figure 14.13. Th e rebalancing merely calls for colour change of 
nodes. Th is may send the imbalance up to the root of the subtree where appropriate rebalancing steps must be 
taken. Rb1 imbalance is again of two types and specifi ed as Rb1 (type 1) and Rb1 (type 2). In these two cases, 
s has a single red child either in sL or w, respectively. Th e Rb2 imbalance occurs when s has two red children 
in sL and w.
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Figure 14.13 General representation of Rb0, Rb1 and Rb2 imbalances and corresponding rebalancing 
mechanism for red–black trees
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Figure 14.13 Continued

Rr0, Rr1 and Rr2 imbalances: General representations of Rr0, Rr1 and Rr2 imbalances and their corresponding 
rotations are shown in Figure 14.14. Th e notations R, r and 0 or 1 or 2 specifi ed on the edges of the red–black 
tree indicate the classifi cation of the imbalance. Rebalancing requires rotations in all the three cases of  imbal-
ances. Rr1 is again of two types and specifi ed as Rr1(type1) and Rr1(type 2).
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Figure 14.14 General representation of Rr0, Rr1 and Rr2 imbalances and corresponding rotation for red–black trees

Lb0, Lb1 and Lb2 imbalances: Th e general representation of  Lb0, Lb1 and Lb2 imbalances and their corresponding 
rotations are depicted in Figure 14.15. Th e notations L, b and 0 or 1 or 2 specifi ed on the edges of the red–black 
tree indicate the classifi cation of the imbalance.

Th e rebalancing Lb0 imbalance merely calls for colour change of nodes. Lb1 imbalance is again of two 
types and specifi ed as Lb1 (type 1) and Lb1 (type 2).
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Figure 14.15 General representation of Lb0, Lb1 and Lb2 imbalances and corresponding rebalancing 
mechanism for red–black trees

Lr0, Lr1 and Lr2 imbalances: Th e general representation of  Lr0, Lr1 and Lr2 imbalances and their corresponding 
rotations are shown in Figure 14.16. Th e notations L, r and 0 or 1 or 2 specifi ed on the edges of the red–black 
tree indicate the classifi cation of the imbalance. Rebalancing requires rotations in all the three cases of imbal-
ances. Lr1 is again of two types and specifi ed as Lr1(type 1) and Lr1(type 2).
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Figure 14.16 General representation of Lr0, Lr1, and Lr2 imbalances and 
corresponding rotations for red–black trees
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Figure 14.17 Example Rb0, Rb1 and Rb2 imbalances
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An example for the imbalances regarding  Rb0, Rb1 and Rb2 and their rebalancing mechanisms like colour 
change and corresponding rotations are shown in Figure 14.17. Th e snapshots are self-explanatory.

(b) Red–black tree
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30 86

20 42 61 94

78

Delete 42

(a) After Rb0 colour change

55

30 86

20 61 94

78

55

30 78

20 61 86

(c) After Rb1(type 2) rotations

Delete 94

Figure 14.18 Example of deletion operations on a red–black tree
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(e) After Rb0 colour change (d) No imbalance

30
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(f) After Rb1(type 1) rotation

Delete 61

Figure 14.18 Continued

Consider a red–black tree shown in Figure 14.18(a) Deleting the elements 42, 94, 86, 78 and 61 from the 
tree calls corresponding rotations and colour changes. Th eir snapshots are shown in Figures 14.18(b)–14.18 
(f). Th ey are all self-explanatory.

Program 14.1

/*To Implement the following RED BLACK TREE Operations
  1.Insertion 2.Deletion 3.Searching 4.Traversing */
#include<stdlib.h>
#include<conio.h>
#include<iostream.h>
struct RBT
{
 int data,color;
 struct RBT*lchild,*rchild,*parent;
}*root;
typedef struct RBT node;
int s,k;
node*minimum(node*ptr)
{
 while(ptr->lchild!=NULL)
 ptr=ptr->lchild;
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 return ptr;
}
node*maximum(node*ptr)
{
 while(ptr->rchild!=NULL)
 ptr=ptr->rchild;
 return ptr;
}
void setparent(node*r,node*r1)
{
 if(r!=NULL) r->parent=r1;
}
void rrrotate(node*x)
{
 node*y;
 y=x->lchild;
 x->lchild=y->rchild;
 setparent(y->rchild,x);
 setparent(y,x->parent);
 if(x->parent==NULL)
 root=y;
 else if(x==x->parent->rchild)
 x->parent->rchild=y;
 else
 x->parent->lchild=y;
 y->rchild=x;
 setparent(x,y);
}
void llrotate(node*x)
{
 node*y;
 y=x->rchild;
 x->rchild=y->lchild;
 setparent(y->lchild,x);
 setparent(y,x->parent);
 if(x->parent==NULL)
 root=y;
 else if(x==x->parent->lchild)
 x->parent->lchild=y;
 else
 x->parent->rchild=y;
 y->lchild=x;
 setparent(x,y);
}
node*successor(node*ptr)
{
 node*y;
 if(ptr->rchild!=NULL)
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 return(minimum(ptr->rchild));
 y=ptr->parent;
 while(y!=NULL&&ptr==y->rchild)
 {
  ptr=y;
  y=y->parent;
 }
 if(y==NULL)
  return ptr;
 else
  return y;
}
node*predecessor(node*ptr)
{
 if(ptr->parent!=NULL)
 if(ptr->parent->rchild==ptr)
  return ptr->parent;
 if(ptr->lchild!=NULL)
  return maximum(ptr->lchild);
 return ptr;
}
node*binarysearch(int i,node*r)
{
 if(r==NULL||r->value==i) return r;
 if(r->value>i)
  r=r->lchild;
 else
  r=r->rchild;
 return binarysearch(i,r);
}
void RBDeleteFixup(node*x)
{
 node*w;
 while(x!=NULL&&x->color==1)
 {
  if(x==x->parent->lchild)
  {
   w=x->parent->rchild;
   if(w!=NULL)
   {
    if(w->color==0) 
    {
     w->color=1;
     x->parent->color=0;
     llrotate(x->parent);
     w=x->parent->rchild;
    }
    if(w->lchild->color==1&&w->rchild->color==1)
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    {
     w->color=0;
     x=x->parent;
    }
    else if(w->rchild->color==1)
    {
     w->lchild->color=1;
     w->color=0;
     rrrotate(w);
     w=x->parent->rchild;
    }
    w->color=x->parent->color;
    x->parent->color=1;
    w->rchild->color=1;
   }
   llrotate(x->parent);
   x=root;
  }
  else  {
   w=x->parent->lchild;
   if(w!=NULL)
   {
    if(w->color==0)
    {
     w->color=1;
     x->parent->color=0;
     llrotate((x->parent));
     w=x->parent->lchild;
    }
    if(w->rchild->color==1&&w->lchild->color==1)
    {
     w->color=0;
     x=x->parent;
    }
    else if(w->lchild->color==1)
    {
     w->rchild->color=1;
     w->color=0;
     rrrotate(w);
     w=x->parent->lchild;
    }
    w->color=x->parent->color;
    x->parent->color=1;
    w->lchild->color=1;
   }
   llrotate(x->parent);
   x=root;
  }
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  x->color=1;
 }
}
void delet(node*z)
{
 node*y,*x;
 y=z;
 if(z==NULL)
 cout<<”No Node to Delete”;
 else
 {
  if(z->lchild==NULL||z->rchild==NULL)
   y=z;
  else
   y=successor(z);
  if(y->lchild==NULL)
   x=y->lchild;
  else
   x=y->rchild;
  setparent(x,y->parent);
  if(y->parent==NULL)
   root=x;
  else if(y==y->parent->lchild)
   y->parent->lchild=x;
  else
   y->parent->rchild=x;
  if(y!=z)
   z->data=y->data;
  if(y->color==1)
   RBDeleteFixup(x);
 }
}
void RBInsertFixup(node*x)
{
 node*y;
 while(x->parent!=NULL&&x->parent->color==0)
 {
  if(x->parent==x->parent->parent->lchild)
  {
   y=x->parent->parent->rchild;
   if(y!=NULL)
   {
    if(y->color==0)
    {
     x->parent->color=1;
     y->color=1;
     x->parent->parent->color=0;
     x=x->parent->parent;
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    }
   }
   else
   {
    if(x==x->parent->rchild)
    {
     x=x->parent;
     llrotate(x);
    }
    else
    {
     x->parent->color=1;
     x->parent->parent->color=0;
     rrrotate(x->parent->parent);
    }
   }
  }
  else
  {
   y=x->parent->parent->lchild;
   if(y!=NULL)
   {
    if(y->color==0)
    {
     x->parent->color=1;
     y->color=1;
     x->parent->parent->color=0;
     x=x->parent->parent;
    }
   }
   else
   {
    if(x==x->parent->lchild)
    {
     x=x->parent;
     llrotate(x);
    }
    else
    {
     x->parent->color=1;
     x->parent->parent->color=0;
     rrrotate(x->parent->parent);
    }
   }
  }
 }
 root->color=1;
}
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void insert(node*z)
{
 node*x,*y;
 y=NULL;
 x=root;
 while(x!=NULL)
 {
  y=x;
  if(z->data<x->data)
   x=x->lchild;
  else
   x=x->rchild;
 }
 z->parent=y;
 if(y==NULL)
 root=z;
 else
 {
  z->parent=y;
  if(z->data<y->data)
  y->lchild=z;
  else
  y->rchild=z;
 }
 RBInsertFixup(z);
}
int height(node*ptr)
{
 if(ptr!=NULL)
 return((height(ptr->rchild)>height(ptr->lchild)?height(ptr->rchild)+1:
height(ptr->lchild)+1));
 else return -1;
}
void inorder(node*ptr)
{
 node*z;
 if(ptr->lchild!=NULL)
 inorder(ptr->lchild);
 cout<<endl<<ptr->data<<“ ”;
 cout<<“Height:”<<height(ptr)<<“ ”;
 z=successor(ptr);
 cout<<“Successor:”<<z->data<<“ ”;
 z=predecessor(ptr);
 cout<<“Predecessor:”<<z->data<<“ ”<<“Color:”;
 if(ptr->color==0)cout<<“Red”;else cout<<“Black”;
 if(ptr->parent!=NULL) cout<<“Parent:”<<ptr->parent->data;
 if(ptr->rchild!=NULL)
 inorder(ptr->rchild);



Chapter 14 Red–Black Trees and Splay Trees | 14.31

}
int search(int key,node*ptr)
{
 if(ptr!=NULL)
 {
  if(ptr->data==key)
   k=1;
   else
   {
    search(key,ptr->lchild);
    search(key,ptr->rchild);
   }
 }
 return k;
}
void main()
{
 node*z;
 int op,item;
 clrscr();
 root=NULL;
 while(1)
 {
   cout<<“\nRed Black Tree Operations”;
 cout<<“\n1.Insertion\n2.Deletion\n3.Searching\n4.Traversing\n5.Exit”;          
 cout<<“\nEnter your option:”;
  cin>>op;
  switch(op)
  {
   case 1:z=(node*)malloc(sizeof(node));
          cout<<”Enter Item To Be Insert”;
          cin>>item;
   z->data=item;
   z->color=0;
   z->rchild=NULL;
   z->lchild=NULL;
   z->parent=NULL;
   insert(z);
     break;
   case 2:if(root==NULL)
     cout<<“Tree Is Empty”;
   else
   {
    cout<<“Enter Item To Be Delete”;
    cin>>item;
    delet(binarysearch(item,root));
   }
   break;
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   case 3:s=k=0;
   cout<<“Enter Element To Search:”;
   cin>>item;
   s=search(item,root);
   if(s==1)
   cout<<“Search Is Found”;
   else
   cout<<“Search Is Not Found”;
   break;
   case 4:cout<<“Inorder Traversal:\n”;
   inorder(root);
   break;
   case 5:exit(0);
  }
 }
}

Output

Red Black Tree Operations
1.Insertion
2.Deletion
3.Searching
4.Traversing
5.Exit
Enter your option:1
Enter Item To Be Insert11
Red Black Tree Operations
1.Insertion
2.Deletion
3.Searching
4.Traversing
5.Exit
Enter your option:1
Enter Item To Be Insert2
Red Black Tree Operations
1.Insertion
2.Deletion
3.Searching
4.Traversing
5.Exit
Enter your option:1
Enter Item To Be Insert14
Red Black Tree Operations
1.Insertion
2.Deletion
3.Searching
4.Traversing
5.Exit
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Enter your option:1
Enter Item To Be Insert1
Red Black Tree Operations
1.Insertion
2.Deletion
3.Searching
4.Traversing
5.Exit
Enter your option:1
Enter Item To Be Insert7
Red Black Tree Operations
1.Insertion
2.Deletion
3.Searching
4.Traversing
5.Exit
Enter your option:1
Enter Item To Be Insert15
Red Black Tree Operations
1.Insertion
2.Deletion
3.Searching
4.Traversing
5.Exit
Enter your option:1
Enter Item To Be Insert5
Red Black Tree Operations
1.Insertion
2.Deletion
3.Searching
4.Traversing
5.Exit
Enter your option:1
Enter Item To Be Insert8
Red Black Tree Operations
1.Insertion
2.Deletion
3.Searching
4.Traversing
5.Exit
Enter your option:4
Enter your option:4
Inorder Traversal:
1    Height:0   Successor:2    Predecessor:1    Color:Black   Parent:2
2    Height:2   Successor:5    Predecessor:1    Color:Red     Parent:11
5    Height:0   Successor:7    Predecessor:5    Color:Red     Parent:7
7    Height:1   Successor:8    Predecessor:2    Color:Black   Parent:2
8    Height:0   Successor:11   Predecessor:7    Color:Red     Parent:7
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11   Height:3   Successor:14   Predecessor:8    Color:Black
14   Height:1   Successor:15   Predecessor:11   Color:Black   Parent:11
15   Height:0   Successor:11   Predecessor:14   Color:Red     Parent:14
Red Black Tree Operations
1.Insertion
2.Deletion
3.Searching
4.Traversing
5.Exit
Enter your option:2
Enter Item To Be Delete7
Red Black Tree Operations
1.Insertion
2.Deletion
3.Searching
4.Traversing
5.Exit
Enter your option:4
Traversal:
1    Height:0   Successor:2    Predecessor:1    Color:Black   Parent:2
2    Height:2   Successor:5    Predecessor:1    Color:Red     Parent:11
5    Height:0   Successor:8    Predecessor:5    Color:Red     Parent:8
8    Height:1   Successor:11   Predecessor:2    Color:Black   Parent:2
11   Height:3   Successor:14   Predecessor:8    Color:Black
14   Height:1   Successor:15   Predecessor:11   Color:Black   Parent:11
15   Height:0   Successor:11   Predecessor:14   Color:Red     Parent:14
Red Black Tree Operations
1.Insertion
2.Deletion
3.Searching
4.Traversing
5.Exit
Enter your option:3
Enter Element To Search:8
Search Is Found
Red Black Tree Operations
1.Insertion
2.Deletion
3.Searching
4.Traversing
5.Exit
Enter your option:3
Enter Element To Search:10
Search Is Not Found
Red Black Tree Operations
1.Insertion
2.Deletion
3.Searching
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4.Traversing
5.Exit
Enter your option:2
Enter Item To Be Delete2
Red Black Tree Operations
1.Insertion
2.Deletion
3.Searching
4.Traversing
5.Exit
Enter your option:4
Inorder Traversal:
1    Height:0   Successor:5    Predecessor:1    Color:Black   Parent:5
5    Height:1   Successor:8    Predecessor:1    Color:Red     Parent:11
8    Height:0   Successor:11   Predecessor:5    Color:Black   Parent:5
11   Height:2   Successor:14   Predecessor:8    Color:Black
14   Height:1   Successor:15   Predecessor:11   Color:Black   Parent:11
15   Height:0   Successor:11   Predecessor:14   Color:Red     Parent:14
Red Black Tree Operations
1.Insertion
2.Deletion
3.Searching
4.Traversing
5.Exit
Enter your option:2
Enter Item To Be Delete11
Red Black Tree Operations
1.Insertion
2.Deletion
3.Searching
4.Traversing
5.Exit
Enter your option:4
Inorder Traversal:
1    Height:0   Successor:5    Predecessor:1   Color:Black   Parent:5
5    Height:1   Successor:8    Predecessor:1   Color:Red     Parent:14
8    Height:0   Successor:14   Predecessor:5   Color:Black   Parent:5
14   Height:2   Successor:14   Predecessor:8   Color:Black
Red Black Tree Operations
1.Insertion
2.Deletion
3.Searching
4.Traversing
5.Exit
Enter your option:1
Enter Item To Be Insert13
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Red Black Tree Operations
1.Insertion
2.Deletion
3.Searching
4.Traversing
5.Exit
Enter your option:4
Inorder Traversal:
1    Height:0   Successor:5    Predecessor:1    Color:Black   Parent:5
5    Height:2   Successor:8    Predecessor:1    Color:Red     Parent:14
8    Height:1   Successor:13   Predecessor:5    Color:Black   Parent:5
13   Height:0   Successor:14   Predecessor:8    Color:Red     Parent:8
14   Height:3   Successor:14   Predecessor:13   Color:Black
Red Black Tree Operations
1.Insertion
2.Deletion
3.Searching
4.Traversing
5.Exit
Enter your option:5

Time complexity of operations: Th e search operation on a red–black tree is exactly the same as is on a binary search 
tree with the time complexity of O(log n). Insertion and/or deletion operations may invoke colour change 
which may spread in the upward direction till the root node and may also invoke the rotations to rebalance 
the tree. Th e rotations and colour change require only a constant time O(1). In the worst case the insertion 
or deletion operation will have the time complexity of O(log n). Th e maximum height of the red–black tree 
is 2log2(n+1). So, the operations search, insert and delete that require O(h) will have a time complexity of 
O(log n).

14.4 SPLAY TREES

Th e worst case time complexity of either binary search trees or AVL trees or red–black tree is O(n). A binary 
search tree is used to store a set of records or elements. If one of them is retrieved for m number of times then 
the worst case time complexity of this operation sequence will be O(m·n).  In many day-to-day applications 
such as dictionary, once an element is accessed, the likeliness to access the same element frequently is more 
than to an unaccessed element. 

If the accessed element is in a leaf node then its time complexity is O(n). As the same element may be 
accessed for many times in the near future, if it is available in the root node for further accesses its time com-
plexity will be O(1). Th ough adjusting the tree in this manner is expensive, it makes further accesses faster and 
cheaper. In this process of adjustment other elements which are deep down in the tree may come up and allows 
their accesses to be relatively cheaper.

Daniel Dominic Sleator and Robert Endre Tarjan invented a data structure called a splay tree, which 
provides the above-discussed mechanism. Splay trees are binary search trees and they are with a wonderful 
property that can be adapted optimally to a sequence of tree operations. When any operation (such as search, 
insert and delete) performed on a node, it is moved towards the root node. In due course, the inactive elements 
are moved far away from the root node.
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Splay trees do not require balance or height information and hence are easier to implement. Splay trees are 
cheaper to AVL trees over long sequences of retrievals. Th is is shown using the techniques of amortized analy-
sis. It is an analysis over a sequence of operations, among them the expensive operations are averaged over less 
expensive operations. If O(n) is the time complexity of one access then for the sequence of m operations the 
amortized analysis of access in a splay tree is O(m·log n).

14.4.1 SPLAY ROTATIONS

All the operations performed on a  splay tree are the same as that of on a binary search tree. But aft er perform-
ing the operation the tree is splayed with respect to the referred node. Th at is the node is moved up towards 
the root node using the mechanism called splay rotations. Th ey are similar to AVL tree rotations and follow 
the bottom up method from the node to the root node.

Splaying tree is aimed to make the referred or accessed node as the root node. In this regard the accessed 
node x and its parent node px and its grandparent node gx are aff ected. To perform spalying x should be moved 
two levels up in every step. When the parent node px became the root node then splaying remains with the last 
step, i.e. x is one step down the root and single rotation is required for x to become the root. To do so the path 
from the root to the referred node x is to be tracked. When the path turns left  it is termed as  zig and when it 
turns right it is termed as  zag.

So, in the case when x is a single step down the tree the path would be either a zig or zag. When two steps 
are to be considered, the path would be four rotations, one among  zig-zig,  zig-zag,  zag-zig or  zag-zag. In the 
case of even length of the path from root node to the referred node x, corresponding two step series of rota-
tions are used. In case of odd length, the fi nal rotation will be one of the corresponding single step series. Th e 
single step and the two step series are as shown in Figure 14.19. 
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Figure 14.19 Splay rotations
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Figure 14.19 Continued
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Figure 14.19 Continued

On performing a deletion operation, as the deleted node does not appear in the resulting tree, splaying is 
applied on the parent of the deleted node.

Consider a binary search tree shown in Figure 14.20(a). To splay the tree at node D, the path from the root 
to node D involves E–C–D. In the bottom-up procedure a zig-zag rotation is performed and the resultant tree 
aft er splay is shown in Figure 14.20(b).

Consider the tree shown in Figure 14.20(b); to splay at G the path involves D–E–M–G from the root to 
node G. In the bottom-up procedure the fi rst step involves zag-zig rotation. It is shown in Figure 14.20(c) 
where G is one step down the root, so now apply zag rotation to get G in the root node. Th is is shown in Figure 
14.20(d).

(a) Binary search tree
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Figure 14.20 Splaying a binary search tree
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(b) Splaying at D: Zig-zag
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(c) Splay at G; Step 1: Zag-zig
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Figure 14.20 Continued
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(d) Splay at G; Step 2: Zag
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Figure 14.21 Steps of insertion operations in a splay tree

Figure 14.20 Continued

Constructing a splay tree with 42, 60, 17, 75. Elements in the sequence can be depicted in Figure 14.21.

(a) Insert 42
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(b) Insert 60
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Th e steps of the splay tree while inserting 42 as the root of the splay tree are shown in Figure 14.20(a). 
Inserting 60 leads to zag rotation and is shown in Figure 14.20(b). Insertion of 17 leads to zig-zig rotation and 
is shown in Figure 14.20(c). Insertion of 75 calls two splay rotations; their corresponding steps are shown in 
Figure 14.20(d).

14.4.2  AMORTIZED ANALYSIS

Based on the input instances given to the algorithm the best, average and worst case time complexities are 
computed and this is known as algorithm analysis.

An amortized analysis analyzes a sequence of operations to show that though a single operation within the 
sequence may be expensive the average cost per operation is less. Even when averages are taken no probability 
is involved. Th e average performance of each operation in the worst case is guaranteed by an amortized analy-
sis. However, an amortized analysis is not an average case analysis. Over a set of independent input instances 
the work done by the algorithm is handled by the average case analysis.  But, the amortized analysis does the 
same over related or associated instances.

Splay trees give an amortized time complexity as O(log n). Th e individual operation may not have O(log n) 
but the amortized complexity of m operations in a splay tree will be O(m·log n).

An amortized analysis is used to establish effi  ciency in retrieving a node in a binary search tree which uses 
the splaying technique. For a binary search tree t, let nodes(x) be the number of nodes in the subtree with x as 
its root node:
  rank(x) = log(nodes(x))
  rank(root(t)) = log(n) where n is the number of nodes in the tree.
  potential(t) = ∑x is a node of t  rank(x).
Always nodes(x) + 1≤ nodes (parent(x)) and rank (x) < rank (parent(x))
To access a node x the amortized cost can be defi ned as the function
  amCost(x) = cost(x) + potentials(t) – potentialo(t)
where  potentials(t) and potentialo(t) refer to the potentials of the tree before and aft er accessing. It should be 
noted that a rotation aff ects only the ranks of node x, which is accessed, its parent px and grandparent gx.

Program 14.2

/*To implement the following SPLAY TREE Operations
   1. Insertion  2.Deletion  3.Searching  4.Traversing*/
#define N 50
#include<iostream.h>
#include<conio.h>
#include<stdlib.h>
struct SPLAY
{
 int data;
 struct SPLAY*lchild,*rchild;
}*root=NULL,*r=NULL,*ptr,*ptr1,*ne,*ptr2;
int item,k=0,s,a[N],i=0,count=0,ele;
void splay1(struct SPLAY*ptr)
{
 if(ptr!=NULL)
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 {
  splay1(ptr->lchild);
  a[i++]=ptr->data;
  splay1(ptr->rchild);
 }
}
void splay2()
{
 int j;
 if(count>1)
 {
  splay1(r);
  for(j=0;j<i;j++)
  {
   ptr=root;
   if(ptr->data!=a[j]&&a[j]!=ele){
   item=a[j];
   while(ptr!=NULL)
   {
    if(item<ptr->data)
    {
     ptr1=ptr;
     ptr=ptr->lchild;
    }
    else if(item>ptr->data)
    {
     ptr1=ptr;
     ptr=ptr->rchild;
    }
   }
   if(ptr==NULL)
   {
    ne=(struct SPLAY*)malloc(sizeof(struct SPLAY));
    ne->data=item;ne->lchild=ne->rchild=NULL;
    if(ptr1->data<item)
    ptr1->rchild=ne;
    else
    ptr1->lchild=ne;
   }
  } }
 }
 r=root;
 if(count>1)
 i=0;
}
void insert()
{
 int j;
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 ne=(struct SPLAY*)malloc(sizeof(struct SPLAY));
 ne->data=item;ne->lchild=ne->rchild=NULL;
 root=ne;
 count++;
 splay2();
}
void splay3()
{
 int c=0;
 ptr=r;
 while((ptr!=NULL)&&(c==0))
 {
  if(item<ptr->data)
   ptr=ptr->lchild;
  else if(item>ptr->data)
   ptr=ptr->rchild;
  else
   c=1;
 }
 ne=(struct SPLAY*)malloc(sizeof(struct SPLAY));
 ne->data=ptr->data;ne->lchild=ne->rchild=NULL;
 root=ne;
 splay2();
}
void delet(int item)
{
 int c=0;
 struct SPLAY*pt;
 ptr=root;
 if(ptr==NULL)
 {
  cout<<“Tree Is Empty”;
  return;
 }
 if((ptr->data==item)&&(ptr->lchild==NULL&&ptr->rchild==NULL))
 {
  free(root);
  root=NULL;
  return;
 }
 else if(ptr->data==item)
 {
  cout<<“Deletion Is Not Possible(It Is Root Node)”;
  return;
 }
 else
 {
  while((ptr!=NULL)&&(c==0))
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  {
   if(item<ptr->data)
   {
    ptr1=ptr;
    ptr=ptr->lchild;
   }
   else if(item>ptr->data)
   {
    ptr1=ptr;
    ptr=ptr->rchild;
   }
   else
    c=1;
  }
  if(c==0)
  {
   cout<<“Item Does Not Exist..,Deletion Is Not Possible”;
   return;
  }
  ne=(struct SPLAY*)malloc(sizeof(struct SPLAY));
  ne->data=ptr1->data;ne->lchild=ne->rchild=NULL;
  root=ne;
  splay2();
  count--;
 }
}
void traverse(struct SPLAY*ptr)
{
 if(ptr!=NULL)
 {
  cout<<ptr->data<<“ ”;
  traverse(ptr->lchild);
  traverse(ptr->rchild);
 }
}
int searching(struct SPLAY*p,int key)
{
 if(p!=NULL)
 {
  if(p->data==key)
   k=1;
   else
   {
    searching(p->lchild,key);
    searching(p->rchild,key);
   }
 }
 return k;
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}
main()
{
 int ch,a;
 clrscr();
 while(1)
 {
  cout<<“\nSPLAY TREE OPERATIONS\n1.INSERTION\n2.DELETION\n”;
  cout<<“3.SEARCHING\n4.TRAVERSING\n5.EXIT”;
  cout<<“\nEnter Your Choice:”;
  cin>>ch;
  switch(ch)
  {
   case 1:k=0;cout<<“Enter Element To Be Insert:”;
   cin>>item;
   s=searching(root,item);
   if(s!=1)insert();
   else cout<<“Item Already Exists”;
   break;
   case 2:cout<<“Which Item You Want To Delete:”;cin>>item;
   ele=item;delet(item);break;
   case 3:if(root==NULL){cout<<“Tree Is Empty”;break;}
   s=k=0;cout<<“Which Item You Want To Search:”;
   cin>>item;ele=item;
   s=searching(root,item);
   if(s==1)
   {
     cout<<“Item”<<item<<“Is Found”;
     if(root->lchild!=NULL||root->rchild!=NULL)
     splay3();
   }
   else
   cout<<“Item”<<item<<“Is Not Found”;
   break;
   case 4:if(root==NULL){cout<<“Treee Is Empty”;break;}
   cout<<“Tree Elements Are:”;traverse(root);break;
   case 5:exit(0);
   default:cout<<“Invalid Choice”;
  }
 }
}

Output

SPLAY TREE OPERATIONS
1.INSERTION
2.DELETION
3.SEARCHING
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4.TRAVERSING
5.EXIT
Enter Your Choice:1
Enter Element To Be Insert:10
SPLAY TREE OPERATIONS
1.INSERTION
2.DELETION
3.SEARCHING
4.TRAVERSING
5.EXIT
Enter Your Choice:1
Enter Element To Be Insert:5
SPLAY TREE OPERATIONS
1.INSERTION
2.DELETION
3.SEARCHING
4.TRAVERSING
5.EXIT
Enter Your Choice:1
Enter Element To Be Insert:24
SPLAY TREE OPERATIONS
1.INSERTION
2.DELETION
3.SEARCHING
4.TRAVERSING
5.EXIT
Enter Your Choice:1
Enter Element To Be Insert:36
SPLAY TREE OPERATIONS
1.INSERTION
2.DELETION
3.SEARCHING
4.TRAVERSING
5.EXIT
Enter Your Choice:1
Enter Element To Be Insert:40
SPLAY TREE OPERATIONS
1.INSERTION
2.DELETION
3.SEARCHING
4.TRAVERSING
5.EXIT
Enter Your Choice:1
Enter Element To Be Insert:15
SPLAY TREE OPERATIONS
1.INSERTION
2.DELETION
3.SEARCHING
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4.TRAVERSING
5.EXIT
Enter Your Choice:4
Tree Elements Are:15 5 10 24 36 40
SPLAY TREE OPERATIONS
1.INSERTION
2.DELETION
3.SEARCHING
4.TRAVERSING
5.EXIT
Enter Your Choice:3
Which Item You Want To Search:10
Item 10 Is Found
SPLAY TREE OPERATIONS
1.INSERTION
2.DELETION
3.SEARCHING
4.TRAVERSING
5.EXIT
Enter Your Choice:4
Tree Elements Are:10 5 15 24 36 40
SPLAY TREE OPERATIONS
1.INSERTION
2.DELETION
3.SEARCHING
4.TRAVERSING
5.EXIT
Enter Your Choice:2
Which Item You Want To Delete:24
SPLAY TREE OPERATIONS
1.INSERTION
2.DELETION
3.SEARCHING
4.TRAVERSING
5.EXIT
Enter Your Choice:4
Tree Elements Are:15 5 10 36 40
SPLAY TREE OPERATIONS
1.INSERTION
2.DELETION
3.SEARCHING
4.TRAVERSING
5.EXIT
Enter Your Choice:2
Which Item You Want To Delete:10
SPLAY TREE OPERATIONS
1.INSERTION
2.DELETION
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3.SEARCHING
4.TRAVERSING
5.EXIT
Enter Your Choice:4
Tree Elements Are:5 15 36 40
SPLAY TREE OPERATIONS
1.INSERTION
2.DELETION
3.SEARCHING
4.TRAVERSING
5.EXIT
Enter Your Choice:1
Enter Element To Be Insert:20
SPLAY TREE OPERATIONS
1.INSERTION
2.DELETION
3.SEARCHING
4.TRAVERSING
5.EXIT
Enter Your Choice:4
Tree Elements Are:20 5 15 36 40
SPLAY TREE OPERATIONS
1.INSERTION
2.DELETION
3.SEARCHING
4.TRAVERSING
5.EXIT
Enter Your Choice:3
Which Item You Want To Search:50
Item 50 Is Not Found
SPLAY TREE OPERATIONS
1.INSERTION
2.DELETION
3.SEARCHING
4.TRAVERSING
5.EXIT
Enter Your Choice:4
Tree Elements Are:20 5 15 36 40
SPLAY TREE OPERATIONS
1.INSERTION
2.DELETION
3.SEARCHING
4.TRAVERSING
5.EXIT
Enter Your Choice:3
Which Item You Want To Search:36
Item 36 Is Found
SPLAY TREE OPERATIONS
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1.INSERTION
2.DELETION
3.SEARCHING
4.TRAVERSING
5.EXIT
Enter Your Choice:4
Tree Elements Are:36 5 15 20 40
SPLAY TREE OPERATIONS
1.INSERTION
2.DELETION
3.SEARCHING
4.TRAVERSING
5.EXIT
Enter Your Choice:3
Which Item You Want To Search:20
Item 20 Is Found
SPLAY TREE OPERATIONS
1.INSERTION
2.DELETION
3.SEARCHING
4.TRAVERSING
5.EXIT
Enter Your Choice:4
Tree Elements Are:20 5 15 36 40
SPLAY TREE OPERATIONS
1.INSERTION
2.DELETION
3.SEARCHING
4.TRAVERSING
5.EXIT
Enter Your Choice:2
Which Item You Want To Delete:15
SPLAY TREE OPERATIONS
1.INSERTION
2.DELETION
3.SEARCHING
4.TRAVERSING
5.EXIT
Enter Your Choice:4
Tree Elements Are:5 20 36 40
SPLAY TREE OPERATIONS
1.INSERTION
2.DELETION
3.SEARCHING
4.TRAVERSING
5.EXIT
Enter Your Choice:5
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14.5 APPLICATIONS

In all the applications in which binary search trees are used, red–black trees can also be used because they are 
derived from B trees of order 4, a variant of binary search trees. In Java and C++, the library map structures 
are implemented with a red–black tree. 

Splay trees are the self-adjusting binary search trees. Due to caching eff ect of the splay trees the recently 
accessed elements have better access times than that of the less frequently accessed elements. Th ey are best 
suitable for the applications in which the recently accessed information is very likely to be accessed in the near 
future. Th e slay trees are typically used in caches and memory allocators. Other applications include a hospital 
management system, university information system, dynamic Hoff man coding and data compression.

SUMMARY

 • A red–black tree is an extended binary search tree in which all the nodes and edges are coloured either 
red or black.

 • A red–black tree should satisfy the following properties:
  Th e root node and all the external nodes are always coloured black.
  In every root node to an external node path no two consecutive red nodes should appear.
  Th e number of black nodes in all root node to the external node path must be the same.
 • Insertion of an element into a red–black tree is the same as that of into a binary search tree. Only dif-

ference is that to the new node either black or red colour must be set.  
 • If the tree was empty then black colour may be set to the new node as it becomes the root.
 • Deletion of an element from a red–black tree follows the same procedure as that of from a binary 

search tree. If the deleted node is red it will not violate the properties of red–black tree. So, no imbal-
ance occurs and the tree is still a red–black tree.

 •  If the deleted node is black then it violates the third property of the red–black trees. So, the tree is 
unbalanced.

 • Th e height of the red–black tree is maximum 2log2 (n+1). So, the operations search, insert and deletion 
will have a time complexity of O(log  n).

 • Splay trees are binary search trees with a wonderful property that can be adapted optimally to a se-
quence of tree operations. 

 • When any operation is performed on a node, it is moved towards the root node. In the due course the 
inactive elements are moved far away from the root node.

 • Splay trees do not require balance or height information and hence are easier to implement and are 
cheaper than AVL trees over long sequences of retrievals. 

 • All the operations performed on splay trees are the same as that of on a binary search tree. But aft er 
performing the operation the tree is splayed with respect to the referred node.

 • Splaying tree is aimed to make the referred or accessed node as the root node
 • An amortized analysis analyzes a sequence of operations to show that though a single operation within 

the sequence may be expensive the average cost per operation is small. 
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EXERCISES

FILL IN THE BLANKS

 1. A red–black tree is an  tree.
 2. If x is a right child of px, px is a left  child of gx and the other child of gx is black, then it is an 

type imbalance.
 3. Th e root node and all the external nodes in a red–black tree are always coloured .
 4.  and  invented data structures called a splay a tree.
 5. Splay tree gives an amortized time complexity as .

MULTIPLE-CHOICE QUESTIONS

 1. Th e height of the red–black tree is maximum .
  a. 2 log2(n–1)   b. 2 log2 (n+1)  c. log2(n+1)   d. 2 log2 (n).
 2. If x is a right child of px, px is a left  child of gx and other child of gx is red then it is an  type 

imbalance.
  a. LLr  b. LRr  c. LRb  d. None 
 3. Th e operations search, insert and delete on red–black trees have a time complexity of .
  a. O(log n)        b. O(n)  c. O(n log n) d. None
 4. For sequence of m operations the amortized analysis of access in a splay tree is  when the 

time complexity of one access is O(n).
  a. O(m·log n)  b. O(log m)  c. O(log n) d. O(m·n)
 5. Th e mechanism used to move a node up towards the root node is called  rotations.
  a.  RLr  b. RRb  c. RRr   d. Splay

SHORT-ANSWER QUESTIONS

 1. Defi ne red–black trees.
 2. Defi ne splay trees.
 3. Explain various rotations involved while inserting a node into the red–black tree.
 4. What is an amortized analysis? Explain.
 5. Explain about various splay rotations.

ESSAY QUESTIONS

 1. Explain in detail about red–black trees.
 2. Give the algorithms for various operations on red–black trees.
 3. Discuss about splay trees.
 4. Give the algorithms  for insertion and deletion operations on splay trees.
 5. Discuss an application where red–black trees are useful.



Pattern Matching
and Tries

  Pattern matching and Tries are introduced along with terminology. The chapter discusses about 
Brute Force Algorithm, Boyer–Moore Algorithm and Knuth–Morris–Pratt Algorithm in detail 
along with examples and their applications. Categories of Tries namely standard tries, com-
pressed tries and suffix tries and operations on them are explained clearly with applications.

15.1 INTRODUCTION 

In the day-to-day life of a computer user string matching has greater importance. During text editing, the user 
processes the text, organizes the text into sections and paragraphs and reorganizes the text very frequently. Th e 
text is searched to fi nd a subtext or pattern and replace it with some other text. Effi  ciency of the search algo-
rithm is very important when searching for larger text unlike in the case of a dictionary, the algorithm does not 
depend only on the alphabetical order of words. For instance, in molecular biology the importance of string 
search algorithms is increasing day-by-day. Its usage is in locating some pattern in the string, comparing the 
sequences with usual subsequences and extracting information from DNA. With the assumption that a perfect 
match cannot be expected, is sort of processing should be done very oft en. Stringology handles this type of 
problems and its major area of interest is pattern matching.

A tree-based data structure that supports keys with varying sizes is known as a Trie. In search operation 
tries use some parts of the key. Trie belongs to the category of multi-way trees.

15.2 TERMINOLOGY             

A pattern is a set of elements or recurring events. Elements can be a template or model which can be used to 
generate things or parts of a thing. A pattern is a uniquely identifi able event.

A word in the given text document is a pattern, and the pattern (word) is framed by means of putting 
alphabets in an order. 

A sentence can be called as a pattern, and the pattern (sentence) is framed by means of putting words in 
an order. 

An image of a human face from a photo can be called as a pattern, and the pattern (face of a human) is 
framed by means of putting pixels in an order. 

So, the  pattern is an ordered set of events like alphabets, words, pixels, etc. in the natural word.

Chapter 15
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Pattern matching:  Pattern matching is a problem of checking for the presence of the given pattern in the given 
set of patterns.  Suppose, to search for a pattern (word ‘the’) in the given document by looking at all the words 
in the document, it can be concluded that the pattern ‘the’ is present in the document or not. To state that the 
pattern ‘the’ is found or not, the words which starts with an alphabet‘t’ followed with ‘h’ and followed with ‘e’ 
must be observed. If such a structure is found in the document, then it can be said that the pattern ‘the’ exists 
in the document.

Pattern recognition: Pattern recognition is the detected pattern over the set of patterns.  If the pattern which is 
being searched for is found in the given document, then the pattern is recognized or else pattern is not recog-
nized. If a human photo is given and asked to locate ‘head’ of the human from the photo, as the pattern ‘head’ is 
known and how the head will be, it is possible to locate that shape from the photo. If head is found in the photo, 
then the pattern head is recognized from the photo else the pattern is not recognized from the photo.

15.3 PATTERN MATCHING ALGORITHMS

Pattern matching algorithms are the procedures for matching or fi nding the given pattern on a set of patterns. 
Pattern matching algorithms are of two types:
 • Fixed pattern matching algorithms
 • Regular expression pattern matching algorithms

15.3.1 FIXED PATTERN MATCHING ALGORITHMS

If the given pattern for searching is constant until the search is complete, then the given search pattern is called 
a  fi xed pattern, and the algorithms used for pattern matching are called fi xed pattern matching algorithms.
Example: Search for the number “21” over the set of patterns {12, 21, 23, 45, 56, 546, 58}. Th e pattern that is to 
be searched is 21 and is fi xed.

15.3.2 REGULAR EXPRESSION PATTERN MATCHING

Consider a problem of searching for the number which starts with the digit “1 or 2” over the set of patterns {12, 
21, 23, 45, 56, 546, 58}. In this problem the search pattern varies, the recognized patterns in the set are 12, 21 
and 23. In this problem the fi rst character of the substring can be 1 or 2, which means that the fi rst pattern is 
varying. In the fi xed pattern search, the pattern characters will not vary in the entire search.

Th e  regular expressions can be written with some special symbols. Every symbol in the regular expression 
will have a special meaning. A few important regular expression symbols are as follows:

Symbol Description
\d Matches with a single digit
\w Matches with a single character
\W Matches with a single non-word character
\s Matches with a single space character
\S Matches with a single non-space character
r* Regular expression occurrence for zero or more number of times
r+ Regular expression occurrence for one or more number of times
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For example, to search for the pattern ‘a word followed with a space and followed with a number’, then the 
regular expression becomes “\w+\s\d+”.

Here, the regular expression \w matches a word character, because the regular expression is with + symbol. 
So, \w+ matches with one or more number characters. Th en \s matches with a space character, and the \d+ 
matches with one or more number of digits.

15.4 FIXED PATTERN MATCHING ALGORITHMS 

Various algorithms that are used to match a given pattern with the available patterns are discussed. Here, the 
pattern that is to be matched is stable all through the search process.

15.4.1 BRUTE FORCE PATTERN MATCHING ALGORITHM

 Brute force pattern matching algorithm is a good and simple algorithm for pattern matching.  Th is algorithm 
fi nds all the possible substrings over the given large string, and checks for the given pattern on all the possible 
substrings.

If the pattern is with length 5, then the fi rst substring from the text will be from the fi rst character to the 
5th character. Th e fi rst substring will be cross checked with the pattern. If the substring and the pattern match, 
then the brute force algorithm returns with TRUE. If the substring and the pattern do not match, then the 
second substring will be from second character of the text to the 6th character of the text. Th e second substring 
will be cross checked with the pattern, if matches return TRUE or else the same process will be continued until 
the start index of the substring reaches n-length(P).

Algorithm 15.1: BruteForceMatch(Text, Pattern)

//n = length of Text and m = length of Pattern 
Step 1: for i=0 to n-m do /*For each character of text, loop continues*/
Step 2: for j=0 to m do         
   /*For each character of pattern, loop continues, used to frame text sub  
  string with the length of the pattern*/
 /*If any character of text substring is not equal to the character 
  sequence of pattern, Second for loop exits and first for loop continues 
  with the next possible text substring*/
Step 3: if(Pattern[j]!=Text[i+j]) break;
 done 
Step 4: if(j==m) then return TRUE 
 /*If any text substring pattern characters fully matches with the pattern, 
  function returns true as matched*/
 done
Step 5: Return FALSE 
 /*If all the text substring pattern characters fully match with the 
  pattern, function returns false as not-matched*/

Here, n is length of the text string (T) and m is the length of the pattern string (P). In the fi rst step, the algo-
rithm estimates the possible number substrings with the length of pattern string over the text string, i.e. (n–m). 
Th e second step or loop identifi es all the possible strings. If all the characters of the pattern string match with 
the substring characters, then the algorithm returns TRUE and exits else continues to check the next substring 
and is cross checked against the pattern string. Th is process continues for all the substrings. If the given pattern 
matches with any of the substrings the algorithm exits by returning TRUE, i.e. pattern match message.



15.4 | Data Structures and Algorithms Using C++ 

Consider a text T = “abcdefgh”, to search for the pattern P = “cde” the Brute Force Algorithm works as 
follows:

T =“abcdefgh”
P =“cde”

 1. Finds all the possible substrings over the text (T).
  a. “abc”
  b. “bcd”
  c. “cde”
  d. “def ”
  e. “efg”
  f. “fgh”
 2. Checks for the pattern P = “cde” on all the possible patterns 
  a. “abc” compares with “cde”, and the pattern is not matched
  b. “bcd” compares with “cde”, and the pattern is not matched
  c. “cde” compares with “cde”, and the pattern is matched, exits from this point saying that the pattern 

is matched.
  d. “def ”
  e. “efg”
  f. “fgh”
 Th is algorithm searches character by character. It will not search the entire string at a time. 

Program 15.1

#include<iostream.h>
#include<string.h>
#include<iomanip.h>
void main()
{
char Text[256],Pattern[50];
int m,n;
cout <<“\nEnter Text, At end enter‘.’\n”;
for(int i=0;i<256;i++)
{
char ch;
cin.get(ch);
if(ch!=‘.’)
 {
 Text[i]=ch;
 }
else break;
}
n=strlen(Text);
cout<<“\nEnter Pattern For Search:”;
cin>>Pattern;
m=strlen(Pattern);
for(i=0;i<=(n-m);i++)
 {
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 for(int j=0;j<m;j++)
  {
  if(Pattern[j]!=Text[i+j])break;
  }
 If (j==m)
  {
  cout<<“\nThe Pattern\’”<<Pattern<<“\’Found at”<<i<<“on the given Text\”” 
<<Text<<“\””;
  }
 }
}

Output

Enter Text, At end enter ‘.’
DOGS DO NOT SPOT HOT POTS OR CATS.

Enter Pattern For Search: SPOT
The Pattern ‘SPOT’ Found at 12 on the given Text “DOGS DO NOT SPOT HOT POTS OR 
CATS”

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
D O G S   D O   N O T     S  P  O  T     H  O  T    P  O  T  S    O  R    C  A  T  S
S P O T

S P O T
S P O T

S P O T
S P O T

S P O T
S P O T

S P O T
S P  O  T

S P  O  T
S P  O  T

S P  O  T
S P  O  T

Figure 15.1 Execution trace of Brute Force Algorithm

In Figure 15.1, the bold characters are cross checked for matching. In the fi rst iteration the character of the 
Text “D” and the fi rst character of the pattern “S” are cross checked, because the match is failed, the algorithm 
went for the second iteration. In the second iteration the characters “O” and “S” are cross checked. In this 
iteration also match failed so that the algorithm went for the third, fourth and so on iterations. In the fourth 
iteration the  match of the fi rst character “S” and the fi rst character of the pattern “S” are matched, and “P” and 
“ ” (space) do not match. In the 12th iteration all the characters are matched. So, the Brute Force Algorithm 
returns the off set 12 as the return value.

Performance analysis of Brute Force Algorithm: Brute Force Algorithm performs well except for the worst case. In 
the worst case, the algorithm searches for O(mn) times because the algorithm performs ‘m’ character compari-
sons to confi rm that the pattern does not match.
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15.4.2 THE BOYER–MOORE ALGORITHM

Th e Brute Force Algorithm fi nds all the possible substrings that can be matched with the search pattern, and 
searches all the characters of the given text. Th e Boyer–Moore (B–M) Algorithm is a faster algorithm when 
the search string is large.  It is one of the best suitable algorithms for searching the words in the text document. 
Unlike the Brute Force algorithm, the  Boyer–Moore Algorithm skips the unnecessary checks.

Th e B–M Algorithm works with a ‘backward’ approach, the target string is aligned with the start of the 
check string, and the last character of the target string is checked against the corresponding character in the 
check string. In the case of a match, then the second-to-last character of the target string is compared to the 
corresponding check string character. In the case of a mismatch, the algorithm computes a new alignment for 
the target string based on the mismatch.  In the case of mismatch the algorithms skip checking some of the 
characters.

Boyer–Moore Algorithm steps: Character comparison is done from right of the pattern to the left :
 I. Constructing the SHIFT Table
 II. GOOD SUFFIX SHIFT or BAD CHARACTER SHIFT
Constructing the SHIFT table: An ASCII table with all the ASCII 256 characters is constructed and an ASCII 
character associated with the number of shift s. Initially the table is fi lled with the length of the pattern to be 
matched. Later the number of shift s of the characters of the pattern will be modifi ed with the descending count 
from the original length of the pattern in each character that occurs.

For example, the search pattern is “ALGORITHM”; in the initial step the snapshot of the ASCII table will 
be as below:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

Th e characters of the search pattern will be fi lled with the descending count from the length of the pattern.

A L G O R I T H M
8 7 6 5 4 3 2 1

So, the SHIFT table becomes as below:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
8 9 9 9 9 9 6 1 3 9 9 7 9 9 5 9 9 4 9 2 9 9 9 9 9 9

Shift ing of the pattern is done when the mismatch occurs with the character being compared.

Good suffi x shift: Th e character of the pattern to be searched and the character that is being compared is not equal 
and the character being compared is there in the characters’ set of the pattern; the pattern is moved forward by 
the number of shift s present in the SHIFT table.
Bad character shift: Th e character of the pattern to be searched and the character is being compared is not equal 
and the character being compared is not there in the characters’ set of the pattern; the pattern is moved forward 
by the number of shift s present in the SHIFT table (i.e. length of the pattern). Th is shift  avoids unnecessary 
character comparisons.

Boyer–Moore Algorithm 

/*  T is a Text string
  P is a pattern string
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  ∑ is the set of pattern symbols or characters.  
*/

Algorithm 15.2: BM (T, P, Σ)
last←lastFunction(P,Σ) /*last function prepares the shift table*/
i←m−1
j←m−1
repeat
if T[i]=P[j]
if j=0
return i /*pattern match found at i*/
else
i←i−1
j←j−1
else  /*character-jump*/
l←last[T[i]]
i←i+m–min(j,1+l)
j←m−1
until i>n−1
return−1 /*pattern not found*/

Boyer–Moore Algorithm with an example:
Text   : “THIS IS A TEST OF BOYER MOORE ALGORITHM”
Pattern : “ALGORITHM”

In the fi rst step SHIFT table is fi lled with all the ASCII characters associated with the length of the pattern 
“ALGORITHM” (i.e. 9). In the second step, the SHIFT table is modifi ed with the descending count from the 
length of the pattern.  

Th e SHIFT table consists of the ASCII characters associated with the number of shift s. Th e matching of the 
characters starts from the rightmost character of the pattern.
Pass 1: In this pass, the text character ‘A’ and the pattern character ‘M’ are compared. In this case the com-
parison fails. But the character ‘A’ is present in the set of characters of the pattern. Th is case is referred to as 
the Good Suffi  x Shift . In the shift  table, the number of shift s for the character ‘A’ is 8. So, the pattern ‘ALGO-
RITHM’ is moved 8 characters forward.

A L G O R I T H M
8 7 6 5 4 3 2 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
T H I S   I S   A   T  E  S  T    O  F   B  O  Y  E  R   M  O  O  R  E    A  L  G  O  R  I  T  H  M
A L G O R I T H M

A L G  O  R  I  T  H  M

A  L  G  O  R  I  T  H  M

A  L  G  O  R  I  T  H  M

A  L  G  O  R  I  T  H  M

PASS 1

PASS 2

PASS 3

PASS 4

PASS 5

Figure 15.2 Execution trace of Boyer–Moore Algorithm
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Pass 2:  In this pass, the text character ‘F’ and the pattern character ‘M’ are compared. In this case the compari-
son fails. Th e character ‘F’ is not present in the set of characters of the pattern. Th is case is referred to as the Bad 
Character Shift . In the shift  table, the number of shift s for the character ‘F’ is 9. So, the pattern ‘ALGORITHM’ 
is moved 9 characters forward.

Pass 3: In this pass, the text character ‘O’ and the pattern character ‘M’ are compared. In this case the com-
parison fails. But the character ‘O’ is present in the set of characters of the pattern. In the shift  table, the number 
of shift s for the character ‘O’ is 5. So, the pattern ‘ALGORITHM’ is moved 5 characters forward.

Pass 4: In this pass, the text character ‘A’ and the pattern character ‘M’ are compared. In this case the com-
parison fails. But the character ‘A’ is present in the set of characters of the pattern. Th is case is referred to as 
the Good Suffi  x Shift . In the shift  table, the number of shift s for the character ‘A’ is 8. So, the pattern ‘ALGO-
RITHM’ is moved 8 characters forward.

Pass 5: In this pass, the text character ‘M’ and the pattern character ‘M’ are compared. In this case the com-
parison succeeded. So, the algorithm compares the character of the Text ‘H’ and the character of the pattern 
‘H’ is compared. So, again the immediate previous characters of the pattern and the text are compared until 
all the characters are compared. Because all the characters are matched, the index of the last character match 
will be returned.

Program 15.2

//Boyer-Moore
#include<conio.h>
#include<string.h>
#include<iostream.h>
#include<stdio.h>
int*build_table(char*p)
{
int last[128];
int i;
for(i=0;i<128;i++)last[i]=-1;
for(i=0;i<strlen(p);i++)
 {
  last[p[i]]=i;
 }
return(last);
}

int min(int a,int b)
{
if(a>b)return(b);
else return(a);
}
int search(char*t,char*p)
{
int*last=build_table(p);
int n=strlen(t);
int m=strlen(p);
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int i=m-1;
if(i>n-1)return(-1);
int j=m-1;

      do{
 if(p[j]==t[i])
  if(j==0)return i;
  else   {
   i--;
   j--;
   }
 else {
  i+=m-min(j,1+last[t[i]]);
  j=m-1;
  }
 }while(i<=n-1);
 return(-1);
}

void main()
{
char T[128],P[128];
int index;
clrscr();
cout << “\nEnter Text:”;
gets(T);
cout <<“\nEnter Pattern:”;cin>>P;
index=search(T,P);
if(index!=-1)
 {
 cout<<“\nMatch Found At:”<<index;
 }
else {
 cout<<“\nMatch Not Found”;
 }
}

Output

Enter Text: Sample Text
Enter Pattern: ple
Match Found At: 3

15.4.3  KNUTH–MORRIS–PRATT ALGORITHM (KMP)

Th is algorithm is best suitable when the pattern is in the redundant characters. Th is algorithm reduces the 
duplicate comparisons in the inner loops of the process. If the B–M Algorithm discovers a pattern character 
that does not match in the text, then the algorithm throws the matched information or knowledge away. KMP 
Algorithm uses those matched or knowledge about the pattern to avoid unnecessary checks.
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Th is algorithm works with a  failure function. Th is failure function is used to fi nd the exact shift  of P. So, the 
algorithm can reuse the previous performed comparisons. 

Failure function:  Th e failure function f(j) can be defi ned as the length of the longest prefi x of P that occurs as a 
suffi  x of P[1..j].  Th e failure function starts by assigning f(0)=0. Th e failure function calculates the exact shift  
location of P.

KMP ALGORITHM

/*
T is a Text string
P is a pattern string.
*/

ALGORITHM 15.3: KMP(T[1 .. n], P[1 ..m])

j 1
for i 1 to n
while j>0 and T[i]≠P[j] do
j fail[j]
if j=m   //Pattern Found
return (i-m+1)
else 
j j+1
return ‘There is no substring of T matching P.’ 

FAILURE_FUNCTION(P[1 ..m])

j 0
f(0) 0
for i 1 to m
if P[i]=P[j]
fail[i] fail[j]
else
fail[i] j
while j>0 and P[i]≠P[j]
j fail[j]
j j+1 

In the KMP matching algorithm, at the same time the ‘i’ and ‘j’ are incremented, or ‘j’ is decremented and 
the value of ‘i’ is kept unchanged.

Program 15.3 

// Knuth–Morris–Pratt
#include<iostream.h>
#include<string.h>
#include<conio.h>
int n,m,fail[256];
char T[512],P[256];
void FailureFunction()
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{
int i,j;
fail[0]=0;
m=strlen(P); //Length of Pattern String
j=0;
i=1;
while(i<m)
 {
 if(P[j]==P[i])
  {
  fail[i]=j+1;
  i++;
  j++;
  }
 else   if(j>0)j=fail[j-1];
        else {
      fail[i]=0;
      i++;
    }
 }
}
void main()
{
char ch;
int i,j,flag=0;
clrscr();

//Reading of Text
cout<<“\nEnter Text (At End press dot(.)):”;
i=0;
while((ch=getche())!=’.’)
 {
 T[i]=ch;
 i++;
 }
T[i]=’\0’;
cout<<“\nText:\n” << T;

//Reading of Pattern
cout<<“\nEnter Pattern (At End press dot(.):”;
i=0;
while((ch=getche())!=’.’)
 {
 P[i]=ch;
 i++;
 }
P[i]=’\0’;
cout<<“\nPattern:\n” << P;
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n=strlen(T);
m=strlen(P);
FailureFunction();
i=j=0;
while(i<n)
 {
 if(P[j]==T[i])
  {
  if(j==(m-1))
   {
   cout<<“\nPattern Found AT: ”<<(i-m+1);
   flag=1;
   }
  i++;
  j++;
  }
 else if(j>0) j=fail[j-1];
  else i++;
 }
if(flag==0)
 {
 cout<<“\nPattern Not Found”;
 }
}

Output

Enter Text (At End press dot(.)):ababacab.
Text:
ababacab
Enter Pattern (At End press dot(.):abacab.
Pattern:
abacab
Patten Found AT:2

Th e above-discussed algorithms are best suitable for comparing the single time pattern search over a short 
length of text string.

15.5 APPLICATIONS OF PATTERN MATCHING ALGORITHMS

Various applications of pattern matching algorithms are discussed below.

Search engines: Most effi  cient pattern matching algorithms are needed for the information retrieval from the 
internet. A search engine examines all the domains, extracts the Web pages from the Web sites and prepares 
possible patterns (indexes) that the users of the search engine expect. 

For example, if the pattern “pattern matching algorithms” is to be searched, the search engines have to give 
the reply within seconds. But, the whole Web data will be in millions of tera bytes.  Searching for the given 
pattern on bulk data within the short span of time is really a challenging thing. Th e search engine service pro-
viders do the offl  ine processing for fi nding the possible sequence of patterns and keep the index terms for the 
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possible Web pages. For searching the index words or patterns from the bulk data, the search engine service 
providers need highly sophisticated pattern matching algorithms. Th e pattern matching algorithms are also 
needed for providing the relevant answers to the search queries.

Database management systems: Th e database management systems contain data and the interface for the data 
such as query language interfaces. If any query has to be processed on the data, the DBMS should have an 
effi  cient pattern matching algorithm. Because database systems organize bulk of data, the query processing 
system of the database management system should have an effi  cient pattern matching algorithm.

Signature-based intrusion detection systems: Intrusion Detection Systems (IDS) are the systems that provide secu-
rity for the corporate network. Most of the IDS work with signature logic. Here signatures are nothing but the 
attack patterns. Th e IDS maintain a large number of signatures to detect various kinds of attacks. If any packet 
arrives to the IDS, the system has to cross check with available signatures. If any signature matches against 
the arrived packet, then the IDS alerts the administrator. For cross checking the signatures (attack patterns) 
against the arrived packet, pattern matching algorithms are required. 

Text editors: Th e text editors like notepad provide facilities like adding text, modifying text, deleting the text and 
an interface for searching patterns on the text fi le to the users. For searching text (pattern) on the text fi le, the 
pattern matching algorithms are required. 

15.6 TRIES

A  trie pronounced as ‘try’ is a tree-based data structure, stores the large text string as a tree for fast pattern 
matching. Th e word “trie” came from the word “retrieval”. When multiple patterns are to be searched over a 
large text string, the tries are best suitable.

Unlike binary trees, the tries can have any number of children. Th e pattern matching starts by matching 
the prefi x of the text string to be compared. Trie is a tree-like structure, the shape of the trie depends on the 
data nodes that the trie holds.

Diff erent types of tries:
 •  Standard Tries
 •  Compressed Tries
 •  Suffi  x Tries

15.6.1 STANDARD TRIES

In the standard tries, each character is represented as a node in the tree.  Standard trie starts with a node called 
root node. If a set of strings (say ‘S’) is to be processed for the pattern matching with multiple patterns, then the 
standard trie preprocesses (stores the strings) as a tree. If all the sets of strings of ‘S’ do not have the diff erent 
prefi x characters, then the tree becomes an ordered tree.

Th is approach avoids the multitime character matching.  Th e procedure returns the index occurrences of 
the pattern by a single time match. It uses less storage space and a fast pattern search. Standard tries are suitable 
for the application like search for a word in a document.

Let a set of strings S = {ant, animal, blew, blue} is to be searched for the specifi ed pattern, in the preprocess-
ing step the set ‘S’ is arranged as a tree as shown in Figure 15.3.
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Figure 15.3 Example of standard tries

If the pattern “BLUE” is to be searched the search starts from the  root node, passes through the node “B”, 
“L”, “U”, and fi nally “E”. Because of the pattern found in the tree the standard trie returns the off set of the “B”.

Th e standard tries can also be called digital search trees. Th ese tries operate at the character level or bit-
level.

If any node is to be inserted then fi nd whether the root node is empty or not. If the root node is empty, then 
create a node and treat that node as the root node. Th is is done by creating a node, storing the node value in 
the node and inserting the node at the fi rst level. If the node that is to be inserted is already present in the tree 
then insert the next node.

Disadvantages of standard tries:
 • Uses more number of nodes than other tries (space complexity is more than that of other tries)
 • Not suitable for matching non-word patterns, such as string with white space
 • Can compare a single character at a time

Node structure of a standard trie: Th e structure of the node of the standard trie will have 256 symbol elements ar-
ray and 256 links or branches. Each node will be capable of handling any character, printable or non-printable 
characters. 

If the trie is limited to only upper case alphabets, the number of symbol elements will be 26 and branches 
or links will be 26.

root

A

N

I

M

B

A

R

E U

L

T

L

W E
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A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25Link

Node structure:

struct trie{
 struct trie *link[26];
 };

In the initial stage, the node will have null values at all the link locations. If any subtrie needs to be added 
to the trie node, then an appropriate link location will be fi lled with the address of the subtrie. 

In the trie trees, each node of the trie will act as the node of a state machine. On input symbol, the path 
or the link will be selected. On any input symbol, branch index or the link location can be easily identifi ed by 
referring:
Node. Link [Decimal Equivalence of ASCII Index of Input Symbol].

Algorithm 15.4: Insert (Trie T, String S)

1. Index s[0];
2. Check the string ‘S’ is empty or not.
 a. If the string is empty then no more characters are to be inserted.
 b. Else
  1. If T.link[index]==NULL then “The Character is new character, and 
   it is to be inserted”.
   a. Create and empty node ‘temp’
   b. T.link[index]  Address of the node ‘temp’
   c. T.symbol[index] s[0]
   d. S++ /*Move the address pointer of string ‘S’to the next location.*/
   e. T  T.link[index] /*Move to Sub Trie location*/
   f. Call to insert(T,S) /*Insert remaining characters of the string 
    at Sub Tries T.*/
  2. Else  /* Similar Node Exists */
   a. S++  /*Move the address pointer of string‘S’to the next location.*/
   b. T  T.link[index]  /* Move to Sub Trie location*/
   c. Call to insert(T,S)  /* Insert remaining characters of the string 
    at Sub Tries T.*/

Insertion with an example: To insert the strings “CAR” and “CAB” into the trie,
 1. String S=“CAR”.
 2. Initially the root node is empty the node will be created with null values.

Ø  Ø  Ø  Ø  Ø  Ø  Ø Ø
0  1  2  3  4  5  6 255ROOT

 3.  Start by inserting the fi rst character “C”. 
  a. Index=ASCII Code of Character ‘C’, i.e index=67.
  b. Because root->link[67]== NULL, the character ‘C’ is not there at the root level.
  c. Create a new empty trie node, fi ll the link at the root node as the address of the newly created empty 

trie node. So, the insertion of “C” is completed.
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Ø  Ø  Ø  Ø  Ø  Ø  Ø Ø
0  1  2  3  4  5  6 25567ROOT

Ø  Ø  Ø  Ø  Ø  Ø  Ø Ø
0  1  2  3  4  5  6 255C

 d. Consider the second character, “A”. Because the “C” node does not have any branches, create a new 
node and again fi ll the new node with the symbol “A” and fi ll the C branch or link [65] as node address 
“A”.

Ø  Ø  Ø  Ø  Ø  Ø  Ø Ø
0  1  2  3  4  5  6 25567ROOT

Ø  Ø  Ø  Ø  Ø  Ø  Ø Ø
0  1  2  3  4  5  6 255A

Ø  Ø  Ø  Ø  Ø  Ø  Ø Ø
0  1  2  3  4  5  6 25565C

 e.  Consider the third character, “R”. Because the “A” node does not have any branches, create a new node 
and again fi ll the new node with the “A” branch or link [82] as node address “R”.

Ø  Ø  Ø  Ø  Ø  Ø  Ø Ø
0  1  2  3  4  5  6 25567ROOT

Ø  Ø  Ø  Ø  Ø  Ø  Ø Ø
0  1  2  3  4  5  6 255A

Ø  Ø  Ø  Ø  Ø  Ø  Ø Ø
0  1  2  3  4  5  6 25565C

82

Ø  Ø  Ø  Ø  Ø  Ø  Ø Ø
0  1  2  3  4  5  6 255R
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 4. While inserting the string “CAB”, at fi rst “C” will be searched at the root node.
  a. Because “C” is available, move to the node “C”.
  b. At node “C”, check for the node “A”, because link to the node at “A” is not null, move in that path.
  c. Check for the node “B”, because the node, “B” is not available, the node “B” will be treated as a new 

node, and inserted under “A” as a branch node.

Ø  Ø  Ø  Ø  Ø  Ø  Ø Ø
0  1  2  3  4  5  6 25567ROOT

Ø  Ø  Ø  Ø  Ø  Ø  Ø Ø
0  1  2  3  4  5  6 25565C

Ø  Ø  Ø  Ø  Ø  Ø  Ø Ø
0  1  2  3  4  5  6 25586A 86

Ø  Ø  Ø  Ø  Ø  Ø  Ø Ø
0  1  2  3  4  5  6 255B

Ø  Ø  Ø  Ø  Ø  Ø  Ø Ø
0  1  2  3  4  5  6 255D

Figure 15.4 Insertions of CAB and CAR

Algorithm 15.5: Search (Trie T, String S)

1. Find the index of the node.
 a. Index ASCII Code S[0]
2. If length(S) and S[0]==’\0’
 a. Return “STRING FOUND”
3. Else
 a. If T->link[index]==NULL 
  i. Return “String Not Found”.
 b. Else  /*Path Found, Follow the link*/
  i.  S++
  ii. T=T->link[index]
  iii. Search(T,S);

Search algorithm with an example: Th e search procedure takes the address of a trie (T) and a search string (S) as 
input arguments. Let a search string S=“CAB” and trie (T) as the root node of Figure 15.4 be considered, then 
the search procedure will be as below:

Pass 1: Checking for the node ‘C’
  S = “CAB” and 
  Trie T=  

Ø  Ø  Ø  Ø  Ø  Ø  Ø Ø
0  1  2  3  4  5  6 25567ROOT

 1. Find the index of the node.
              Index = ASCII[S[0]]

                = ASCII[‘C’]
                = 67
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 2. Th e length of (S) and S[0] are not null goto Step 3
 3. Check whether the T->link[67] is ‘NULL’
  a. Because it is not null goto ‘Step b’
  b. Set S = ‘AB’
  c. Trie(T) = ‘C’ Sub Trie
Pass 2:  Checking for the node ‘A’
  String S = “AB” and 
  Trie (T) =  

Ø  Ø  Ø  Ø  Ø  Ø  Ø Ø
0  1  2  3  4  5  6 25565C

 1. Find the index of the node.
                Index  = ASCII[S[0]]
                = ASCII[‘A’]
                = 65
 2. Th e length of (S) and S[0] are not null goto Step 3
 3. Check whether the T->link[65] is ‘NULL’
  a. Because it is not null goto ‘Step b’
  b. Set S =‘B’
  c. Trie(T) = ‘A’ Sub Trie
Pass 3:  Checking for the node ‘B’
 String S = “B”
 Trie (T) =  

Ø  Ø  Ø  Ø  Ø  Ø  Ø Ø
0  1  2  3  4  5  6 25566A 82

 1. Find the index of the node.
                  Index = ASCII[S[0]]
                = ASCII[‘B’]
                = 66
 2. Th e length of (S) and S[0] are not null goto Step 3
 3. Check whether the T->link[66] is ‘NULL’
  a. Because it is not null goto ‘Step b’
  b. Set S = ‘\0’   ( Null)
  c. Trie(T) = ‘B’ Sub Trie

Pass 4: Final pass
 String S = “\0”  [ i.e. null string]
 Trie T    =  

Ø  Ø  Ø  Ø  Ø  Ø  Ø Ø
0  1  2  3  4  5  6 255B

 1. Find the index of the node.
            Index = ASCII[S[0]]
                = ASCII[‘\0’]
                = 0
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 2. Th e length of (S) and S[0] is null. So, all the nodes found in the trie, print the “String found” message 
and exit. 

Algorithm 15.6: Deletion (Trie T, String S)

 1. Check for the existence of the string ‘S’ over the Trie ‘T’
 2. ch S[0];
 3. Push(Find_the_node_address(ch)); /*insert the trie node address into the stack*/
 4. For each element of the stack
  a. Check for the number of branches
   i. If no_branches > 1
    1. Delete the branch[node index];
    2. Return;
   ii. Else if(no_branches ==1)
    1. Delete the element.
       Else
    Delete (element);

Deletion algorithm with an example: Th e deletion algorithm takes the Trie (T) and the String (S) as input argu-
ments. Let us delete “CAR” from the Trie as shown in Figure 15.4.

Step 1: Check for the String S=“CAR” present in the trie=ROOT by calling prepare_stack procedure. If 
not found, deletion is not possible else goto Step 2. The prepare_stack procedure also creates a stack as 
in Figure 15.5.

Ø  Ø  Ø  Ø  Ø  Ø  Ø Ø
0  1  2  3  4  5  6 255R

Ø  Ø  Ø  Ø  Ø  Ø  Ø Ø
0  1  2  3  4  5  6 25556A 82

Ø  Ø  Ø  Ø  Ø  Ø  Ø Ø
0  1  2  3  4  5  6 25565C

Ø  Ø  Ø  Ø  Ø  Ø  Ø Ø
0  1  2  3  4  5  6 25567ROOT

Figure 15.5 Stack of nodes to be deleted

Step 2: For each node or element of the stack, check for the number of branches:
 1. Th e top of the stack is “R” and has all the null branches. So, delete the branch.
 2. Th e top of the stack is now “A” and has two branches. So, fi ll the “R” link information in the node “A” 

with null. Complete deletion of this node is not possible, because other than the deleted branch an-
other branch exists in the node “A”. 
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Th en trie becomes as shown in Figure 15.6.

Figure 15.6 Trie aft er deletion of CAR

Program 15.4

/ / Standard Trie Operations
#include<stdio.h>
#include<iostream.h>
#include<conio.h>
#include<stdlib.h>
#include<string.h>
#include<alloc.h>
#define ASCII 256
struct trie{
struct trie*link[ASCII];
};
struct stack{
struct trie*element;
struct stack*next;
};

class stries{
public:
struct trie*create_node();
int search(struct trie*,char*);
int prepare_stack(struct trie*,char*);
int push(struct trie*);
int insert(struct trie*,char*);
int deletion(struct trie*,char*);

Ø  Ø  Ø  Ø  Ø  Ø  Ø Ø
0  1  2  3  4  5  6 25567ROOT

Ø  Ø  Ø  Ø  Ø  Ø  Ø Ø
0  1  2  3  4  5  6 255A

Ø  Ø  Ø  Ø  Ø  Ø  Ø Ø
0  1  2  3  4  5  6 25565C

66

Ø  Ø  Ø  Ø  Ø  Ø  Ø Ø
0  1  2  3  4  5  6 255B
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void display();
struct trie*root;
struct stack*front;

 stries()  //Constructor to initialise root
 {
 root=create_node();
 front=NULL;
 }
};

struct trie*stries::create_node()
{
int i;
struct trie*t=(struct trie*)malloc(sizeof(struct trie));
for(i=0;i<ASCII;i++)
 {
 t->link[i]=NULL;
 }

return(t);
}

int  stries::insert(struct trie*T,char*s)
{
int index=s[0];

if(s[0]==‘\0’)
{
cout<<“\nInsertion Completed.\n\n”;
return(1);
}
cout<<“\nTrying to Insert”<<s[0];
if(T->link[index]==NULL)
 {
 cout<<“Node Not Found, Creating Branch”;
 T->link[index]=create_node();
 s++;
 T=T->link[index];
 insert(T,s);
 }
else {
 cout<<“Node Found,Moving in the path”;
 s++;
 T=T->link[index];
 insert(T,s);
 }
return(1);
}
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void stries::display()
{
cout<<“\n1.Insert”;
cout<<“\n2.Delete”;
cout<<“\n3.Search”;
cout<<“\n4.Exit”;
cout<<“\nEnter Your Choice:”;
}

int stries::search(struct trie*T,char*s)
{
int index;
 if(s[0]==‘\0’) //Check for the empty search string.
  {
  cout<<“\nString Found”;
  return(1);
  }
 index=s[0];

 if(T->link[index]==NULL)
  {
  cout<<“\nString Not Found”;
  return(0);
  }
 else {
  cout<<“\n”<<s[0]<<“=Node Found,Moving in the path”;
  s++;
  T=T->link[index];
  search(T,s);
  }
return(1);
}

int stries::deletion(struct trie*T,char*s)
{
struct stack*i,*t;
int k,flag,index;
char ch;
if(prepare_stack(T,s)==1)
 {
 cout<<“\n”<<s<<“String Found in the Trie”;
 }
else {
 cout<<“\nDeletion not possible, because string does not exists”;
 return(0);
 }
cout<<“\nInverted Trie\n”;
index=strlen(s)-1;
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for(i=front;i!=NULL;i=i->next)
 {
 flag=0;
 for(k=0;k<ASCII;k++)
  {
  if(i->element->link[k]!=NULL)
   {
   cout <<(char)k<<“-”;
   flag++;
   }
  }
 cout<<endl;
 if(flag>1)
  {
  cout<<“\nFound Other nodes in the trie, Deleting the element”<<endl;
  free(i->element->link[(int)s[index]]);
  i->element->link[(int)s[index]]=NULL;
  return(1);
  }
 else if(flag==1)
  {
  cout<<“\nFound Exact Node”;
  free(i->element->link[(int)s[index]]);
  i->element->link[(int)s[index]]=NULL;
  index--;
  }
  else{
   free(i->element);
   }
 }
front=NULL;
return(1);
}

int stries::prepare_stack(struct trie*T,char*s)
{
int index;
 if(s[0]==’\0’)
 {
 cout<<“\nString Found”;
 push(T);
 return(1);
 }
index=s[0];
if(T->link[index]==NULL)
 {
 cout<<“\nString Not Found”;
 return(0);
 }
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else {
 cout<<“\n”<<s[0]<<“=Node Found,Moving in the path”;
 push(T);
 s++;
 T=T->link[index];
 prepare_stack(T,s);
 }
return(1);
}

int stries::push(struct trie*T)
{
struct stack*t;
if(front==NULL)
 {
 front=(struct stack*)malloc(sizeof(struct stack));
 front->element=T;
 front->next=NULL;
 }
else{
 t=(struct stack*)malloc(sizeof(struct stack));
 t->element=T;
 t->next=front;
 front=t;
 }
return(1);
}

void main()
{
clrscr();
char s[ASCII];
stries obj;
int ch;
while(1)
{
obj.display();
cin >>ch;
switch(ch)
 {
case 1:cout<<“\nEnter Word to Insert:”;
 cin >>s;
 obj.insert(obj.root,s);
 break;
case 2:cout<<“\nEnter Word to Delete:”;
 cin >>s;
 obj.deletion(obj.root,s);
 break;
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case 3:cout<<“\nEnter Word to Search:”;
 cin>>s;
 obj.search(obj.root,s);
 break;
case 4:return;
default:return;
 };
 }
}

Output

1. Insert
2. Delete
3. Search
4. Exit
Enter Your Choice: 1
Enter Word to Insert: CAR
Trying to Insert C Node Not Found, Creating Branch
Trying to Insert A Node Not Found, Creating Branch
Trying to Insert R Node Not Found, Creating Branch
Insertion Completed.
1. Insert
2. Delete
3. Search
4. Exit
Enter Your Choice: 1
Enter Word to Insert: CAT
Trying to Insert C Node Found, Moving in the path
Trying to Insert A Node Found, Moving in the path
Trying to Insert T Node Not Found, Creating Branch
Insertion Completed.
1. Insert
2. Delete
3. Search
4. Exit
Enter Your Choice: 3
Enter Word to Search: CAR
C = Node Found, Moving in the path
A = Node Found, Moving in the path
R = Node Found, Moving in the path
String Found
1. Insert
2. Delete
3. Search
4. Exit
Enter Your Choice: 2
Enter Word to Delete: CAR
C = Node Found, Moving in the path
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A = Node Found, Moving in the path
R = Node Found, Moving in the path
String Found
CAR String Found in the Trie
Inverted Trie
R-T-
Found other nodes in the trie, deleting the element
1. Insert
2. Delete
3. Search
4. Exit
Enter Your Choice: 3
Enter Word to Search: CAR

C = Node Found, Moving in the path
A = Node Found, Moving in the path
String Not Found

15.6.2 COMPRESSED TRIES

 Compressed tries or  Patricia tries are similar to the standard tries and are like the tree structure, but the shape 
of the node depends on the data it holds. But a node in the standard trie will have only one character, but a 
compressed trie can have multiple characters. Compressed tries will have at least two children at each of its 
internal nodes. 

Let a standard trie ‘T’ have an internal node ‘v’ and ‘v’ is not a root node, and ‘v’ has not only one branch.
Th en all the child nodes of the node ‘v’ are transformed or compressed as a  single node.

Let ‘v’ have a single branch with ‘k’ number of child nodes and each child node does not have more than 
one child, then all the child nodes will be compressed as a single node.

If V = (v0,v1) (v1,v2)(v2,v3)(v3,v4)….(vk-1, vk ), where v1 has a child v2, v2 has a child v3, v3 has a child 
v4 ... vk–1 has a child vk  then vi is redundant for i=1,2,3,4 ... k–1,  v0 and vk are not redundant. Th e node 
vkk is compressed with the concatenation of labels of v1…vk (Figure 15.7).

Properties of compressed tries: Let S be a set of strings with an alphabet set of size d, which will have the following 
properties:
 • All the internal nodes in the compressed trie should have at least two children and at most d children.
 • If all the strings of the set ‘S’ do not have the same start suffi  x character then the compressed trie should 

have ‘s’ number of external nodes where ‘s’ is the number of strings in the ‘S’.
 • Th e number of nodes of ‘T’ is O(s).
Disadvantages of compressed tries:

 • Ineffi  cient when too many duplicates are present in the patterns.
 • Each node occupies at least one byte 
 • Updating the node is diffi  cult



Chapter 15 Pattern Matching and Tries | 15.27

Figure 15.7 Example of a compressed trie

15.6.3 SUFFIX TRIES

 Suffi  x trie is a tree which has the suffi  x symbols of each string from a branch. Suffi  x trie can be called a position 
tree or a suffi  x tree. Th is procedure is better suited for fi nding the largest repetitive substring from the given 
large pattern string. Th is procedure completely avoids the unnecessary comparisons.

Example 1: Construction of suffi x trie with an example
Let the Pattern P = “banana”

Step 1: Find the all possible substrings
T1 = banana
T2 = anana
T3 = nana
T4 = ana
T5 = na
T6 = a

Step 2: Sort all the substrings alphabetically.
T6  = a
T4  = ana
T2  = anana
T1  = banana
T5  = na
T3  = nana 
Step 3: Find the prefi xes shared by the substrings.
Here the prefi x of T2 is shared by T6 and T4. T1 is the only node that starts with the prefi x, and fi nally the 
prefi x of T3 is shared by T5.

So, the found major possible strings are T2, T1 and T3. So, the tree will be as shown in Figure 15.8.

Step 4: Construct the tree

root

A

N

B

B,E,W

I,M,A,L

L,U,E

T
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ROOT

ANANABANANA NANA

Figure 15.8 Example of a suffi  x trie

Example 2:
Let the Pattern P = “abracadabra”
Step 1: Find all the possible substrings
T1  = abracadabra
T2  = bracadabra
T3  = racadabra
T4  = acadabra
T5  = cadabra
T6  = adabra
T7  = dabra
T8  = abra
T9  = bra
T10 = ra
T11 = a

Step 2: Sort all the substrings alphabetically
T11 =  a
 T8 = abra
 T1 = abracadabra
 T4 = acadabra
 T6 = adabra
 T9 = bra
 T2 = bracadabra
 T5 = cadabra
 T7 = dabra
T10 = ra
T3 = racadabra

Step 3: Find the prefi xes shared by the substrings
ROOT

BRACADABRA BRACADABRADABRA A NANA

Figure 15.9 Example of a suffi  x trie
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15.7 APPLICATIONS OF TRIES

Tries fi nd numerous applications. Some of them are explained as follows:
1. Tries in the Web search engines: Tries can be used to store and maintain the index words and the relevant 
Web site address. In the Web search process the users query the index words, the search engine has to fetch 
the appropriate links as results. In this process the search engines maintain the table of index words to the 
Web link or Web site address. To maintain a sequence of words as the index, the search engines follow the tries 
procedure for quick retrieval of appropriate information.
2. Symbol table maintenance: A symbol table is a data structure used in the language translators such as 
compilers or interpreters. A symbol table consists of the address location, syntax and semantic information 
of the identifi er, type and scope of the identifi er. To maintain all the identifi ers’ information, the compilers or 
interpreters use tries procedure in the form of hash tables.
3. Domain Name Servers:  Th e Domain Name Servers (DNS) provide a facility to map the IP address to 
the domain name.  Th e users of the DNS query the DNS with IP address or domain name, the DNS servers 
respond with its corresponding domain name or IP address, respectively. Th e DNS servers maintain a trie with 
each bit of the IP address as a node.
4. Indexing a book: Th e index of a book contains the index words associated with page numbers. To prepare 
the index word associated with its page, numbers can be achieved by using the tries. 
5. Document similarity check:  If two or more documents are given, to fi nd the similarity between the docu-
ments tries can be used. 
6. Tries in the Internet routers: In the Internet, the routers will have many incoming lines and many outgo-
ing lines. If the router receives any packet, the router has to send the packet through the appropriate outgoing 
link. Th e router should work with good speed to fi nd the appropriate link for the destination IP address, the 
router maintains the IP domain with its corresponding link as a trie.

SUMMARY

 • Pattern matching algorithms are of two types, one is fi xed pattern matching where the pattern is fi xed 
and the second is regular expression pattern matching where the pattern is framed with a regular ex-
pression. 

 • Th e fi xed pattern matching algorithms are Brute Force Algorithm, Boyer–Moore Algorithm, Knuth–
Morris–Pratt Algorithm and Tries. 

 • Th e Brute Force Algorithm searches for the pattern in the linear fashion. It fi nds the possible patterns 
over the given large string and checks for the existence of the pattern. 

 • Th e Boyer–Moore Algorithm and the Knuth–Morris–Pratt Algorithm avoid the unnecessary pattern 
searches. 

 • Th e Boyer–Moore Algorithm works with two stages, it prepares the shift  table. Using the shift  table 
the search string will be moved forward to avoid the unnecessary checks. But the algorithm does not 
guarantee the pattern match. Th is is the drawback of this algorithm. 

 • Th e Knuth–Morris–Pratt Algorithm works with the failure function, this algorithm is somewhat better 
than that of the Boyer–Moore Algorithm.

 • Tries are the most common techniques where quick information retrieval is needed. 
 • Simple tries or standard tries will have more number of nodes than other tries, such as compressed 

tries and suffi  x tries.
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EXERCISES

FILL IN THE BLANKS

 1.  is the time complexity of Brute Force Algorithm.
 2.  algorithm is suitable for searching a word in the text editors.
 3.  is the worst case time complexity of Knuth–Morris–Pratt Algorithm.
 4.  are the best suitable techniques for information retrieval on the Web. 
 5.  tries take less space complexity.

MULTIPLE-CHOICE QUESTIONS

 1.  algorithm checks all the possible substrings of the given text for fi nding the pattern.
  a. KMP    b. BM 
  c. Brute Force   d. Standard tries 
 2. When m=n/2 the time complexity of Brute Force algorithm is 
  a. O(mn)      b. O(m2) 
  c. O(n2)    d. O(n+m) 
 3. Th e Worst case time complexity of BM algorithm is  A.
  a. O(mn)      b. O(m2) 
  c. O(n2)    d. O(n+m) 
 4.  Algorithm is the best algorithm if more number of patterns are to be searched on the same 

text string.
  a. BM      b. KMP 
  c. Brute Force   d. Both a and b 
 5.  trie can be used for fi nding the repetitive patterns of a search string.
  a. Standard    b. Compressed  
  c. Suffi  x    d. Both a and b

SHORT-ANSWER QUESTIONS

 1. Write an algorithm for Brute Force Algorithm and discuss the performance analysis.
 2. Write an algorithm for Boyer–Moore Algorithm and discuss the performance analysis.
 3. Write an algorithm for Knuth–Morris–Pratt Algorithm and discuss the performance analysis.
 4. You are given 4 MB of text fi le; you are supposed to search for 10 bytes of pattern. Which algorithm will 

you prefer? Give reasons.

ESSAY QUESTIONS

 1. Explain an algorithm with an example for Brute–Force pattern matching, and write a C++ program.
 2. Write an algorithm for Boyer–Moore pattern matching, and write a C++ program.
 3. Write an algorithm for Knuth–Morris–Pratt algorithm and write a C++ program.
 4.  Explain standard tries with an example.
 5. Explain compressed tries with an example.
 6. Explain suffi  x tries with an example.
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 7. Write short notes on space and time complexities of Brute Force, BM and KMP pattern matching algo-
rithms.

 8. Write short notes on space and time complexities of standard, compressed and suffi  x tries.
 9. Explain failure functionality of KMP when P= “abacab” and P=”abacaabaccabacabaabb”.
 10. Explain detailed procedure of Boyer–Moore algorithm when P= “abacab” and P=”abacaabaccabacabaabb”.
 11. Write and describe algorithms for insert, search and delete procedures, C++ code for standard tries.
 12.  Write and describe algorithms for insert, search and delete procedures, and C++ code for com-

pressed tries.
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Sorting and
Searching

  This chapter provides an exclusive discussion regarding sorting and searching. In this chapter, 
a number of sorting techniques namely bubble sort, insertion sort, selection sort, quick sort, 
merge sort, shell sort, radix sort and heap sort are detailed. The chapter also gives a clear expla-
nation about the very popular and frequently used searching techniques namely linear search, 
binary search and Fibonacci search.

16.1 SORTING 

 Sorting is a technique to arrange a set of items in some order. One reason that it is so useful is that it is much 
easier to search for something in a sorted list than an unsorted one.  Among the sorting algorithms, bubble 
sort, insertion sort and selection sort are good enough for most of the small tasks. To process a large amount 
of data, choose one  among the sorting algorithms such as quick sort, merge sort, shell sort, radix sort, heap 
sort, etc.

16.1.1 BUBBLE SORT

Th e simplest sorting algorithm is  bubble sort. Th e bubble sort works by iterating down an array to be sorted 
from the fi rst element to the last, comparing each pair of elements and swapping their positions if necessary. 
Th is process is repeated as many times as necessary until the array is sorted. Let L be an unordered list with ele-
ments A1,A2,A3,…,An. Bubble sort  ordered these elements in their increasing order, that is L={A1,A2,A3,…, 
An}, where A1≤A2≤A3≤...An. 

Th e following are the steps involved in Bubble sort.
Step 1: A1 and A2 are compared and if they are out of order, then interchange so that A1≤A2. Th en compare A2 
and A3 and interchange so that A2 ≤ A3. Th is process is repeated for all n elements. When this step is completed 
observe that the largest element is “bubbled up” to the nth position, i.e. An contains the largest element. Here 
n-1 comparisons take place.
Step 2: Repeating Step 1 with one fewer comparison, i.e. up to n–2 elements. Aft er this step the second largest 
element is stored in the n–1th location.
 .........
  .........

Chapter 16
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Step n–1:  Finally at the n–1th comparison, compare A1 and A2 and interchange so that A1<A2. Aft er the n–1 
comparisons the list will be in the sorted order.
Algorithm 16.1 is the algorithm for bubble sort.

Algorithm 16.1: BUBBLE SORT (DATA,N)

//Here DATA is an array with N elements
1. Repeat 2 and 3 steps for K=1 to N-1
2. Set PTR=1 // initializing pass pointer PTR
3. Loop until PTR≤N-K
1. Check whether DATA[PTR]>DATA[PTR+1] then
2. Swap(DATA[PTR],DATA[PTR+1])
3. Set PTR=PTR+1
4. End loop
5. End

Example 16.1
Let A be an array with the elements 23 15 72 58 66 32 31 70 to be sorted. Figure 16.1 shows various steps 
in bubble sort.

Pass 1: Compare A1 andA2:
  23 > 15, so interchange as follows:         
  15 23 72 58 66 32 31 70

  Compare A2 and A3:
             23 < 72, the elements are in order. 
             15 23 72 58 66 32 31 70

             Compare A3 and A4:
             72 > 58, so interchange as follows:
             15 23 58 72 66 32 31 70

            Compare A4 and A5:
            72 > 66, so interchange as follows:
            15 23 58 66 72 32 31 70 

            Compare A5 and A6::
             72 >32, so interchange as follows:
            15 23 58 66 32 72 31 70  

           Compare A6 and A7:
            72 > 31, so interchange as follows:
            15 23 58 66 32 31 72 70

           Compare A7 and A8:
             72 > 70, so interchange as follows:
             15 23 58 66 32 31 70 72 

At the fi rst pass, the largest elements in the list is placed in the nth position and it takes (n–1) comparisons.
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Pass 2:            15 23 58 66 32 31 70 72 [No interchange]             

                        15 23 58 66 32 31 70 72 [No interchange]

                        15 23 58 66 32 31 70 72 [No interchange]                                     

   15 23 58 66 32 31 70 72 [Interchange] 

      32      66

   15 23 58 32 66 31 70 72 [Interchange]

                         15  23 58 32 31 66 70 72 [No interchange]

                         15    23   58   32   31   66   70  72

At this pass the second largest element is placed in the n–1th location and takes n–2 comparisons.
Pass 3:   15   23   58   32   31   66   70   72     [No interchange]

             15   23   58   32   31   66   70   72     [No interchange]

                         15   23   32   58   31   66   70  72      [Interchange]

                        15  23   32   31   58   66   70   72      [Interchange]

                        15   23   32   31   58   66   70   72      [No interchange]

At this pass the third largest element is placed in the n–2nd location and takes n–3 comparisons.

Pass 4:            15   23   32  31   58   66   70   72      [No interchange]

                        15   23   32   31   58   66   70   72      [No interchange]

                        15   23   31   32   58   66   70   72      [Interchange]

                        15   23   31  32   58   66   70   72

At this pass the fourth largest element is placed in the n–3rd location and takes n–4 comparisons.

Pass 5:          15   23   31   32   58   66   70   72     [No interchange]

                       15   23   31   32   58   66   70   72      [No interchange]

                       15   23   31   32   58   66   70   72      [No interchange]
At this pass the fi ft h largest element is placed in the n–4th location and takes n–5 comparisons.
Pass 6:   15   23   31   32   58   66   70   72    [No interchange]

             15   23   31   32  58    66  70   72
At this pass the sixth largest element is placed in the n–5th location and takes n–6 comparisons.

Pass 7:  A1 is compared with A2, since 15 < 23 no interchange takes place.
  Finally the sorted array is {15 23 31 32 58 66 70 72}

Figure 16.1 Trace of bubble sort
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Complexity: Th e number of comparisons in bubble sort can be easily calculated. In the fi rst pass, n–1 com-
parisons are there and in the second pass n–2 comparisons and so on. Th e number of comparisons can be 
calculated as follows:
    f(n) = f(n–1) + f(n–2) + . . . + 2 + 1      

      
= n(n-1)

2
 = O(n2)

Th e time complexity of the bubble sort algorithm is O(n2).

Program 16.1

#include<iostream.h>
#include<conio.h>
void bubblesort(int a[],int n)
{
 int i,j;
 for(i=n-1;i>0;i--)
 for(j=0;j<i;j++)
 if(a[j]>a[j+1])
 a[j]=(a[j]+a[j+1])–(a[j+1]=a[j]);//Single Line Swapping
}
void main()
{
 int i,a[30],n;
 clrscr();
 cout<<“Enter Size Of Array:”;
 cin>>n;
 cout<<“Enter”<<n<<“Elements:”;
 for(i=0;i<n;i++)
 cin>>a[i];
 cout<<“Before Sorting List Is:\n”;
 for(i=0;i<n;i++)
 cout<<a[i]<<“ ”;
 bubblesort(a,n);
 cout<<“\nAfter Sorting List Is:\n”;
 for(i=0;i<n;i++)
 cout<<a[i]<<“ ”;
 getch();
}

Output

Enter Size Of Array:8
Enter 8 Elements:14
21
10
30
45
87
55
46
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Before Sorting List Is:
14 21 10 30 45 87 55 46
After Sorting List Is:
10 14 21 30 45 46 55 87

16.1.2 INSERTION SORT

Th is sorting algorithm sorts the array by inserting each element in their appropriate positions. Let L be the 
unordered list with elements A1,A2,…,An. Th e  insertion sort algorithm scans A1 to An, inserting each element 
Ak into its proper position in the sorted sublist of predecessors {A1,A2,…,Ak-1} where k is the key element 
position that is to be inserted. Th e following are the steps involved in insertion sort:

Step 1: A2 is compared with its sorted sublist of its predecessors, i.e. {A1} and A2 is inserted either aft er or 
before A1 so that {A1,A2} will be in the sorted order.
Step 2: A3 is compared with its sorted sublist of its predecessors, i.e. {A1,A2}, and A3 is inserted at its proper 
position so that {A1,A2,A3} is in sorted order.
 ……
 ……
 ……

Step n: An is compared with its sorted sublist of predecessor, i.e. {A1,A2,...,An-1}, and An is inserted at its 
proper position so that {A1,A2,...,An} is in sorted order.

Th is algorithm takes n comparisons and is useful only when n is small. Algorithm 16.2 is the algorithm for 
insertion sort.

Algorithm 16.2: INSERTION SORT (DATA,N)

 //DATA[1:N] is an array of N elements to be sorted.
1.  Loop for k=2 to n
    1. Set temp=DATA[k]
    2. Set PTR=k
    3. Repeat while (PTR>1) and (DATA[PTR-1])>k  then 
   i.  Set DATA[PTR]=DATA[PTR-1]
   ii.  Set PTR=PTR-1
   iii.  Set DATA[PTR]=temp
     4. End loop
2. End loop

Example 16.2
Let DATA be an array with elements {88,44,55,22,99,33,77,66}. Figure 16.2 shows the procedure of insertion 
sort algorithm.

Pass 1:  insert 44  88 44 55 22 99 33 77 66
K=2   88>44 
Pass 2:  Insert 55  44 88 55 22 99 33 77 66
K=3   44<55   
    88>55

Figure 16.2 Trace of insertion sort
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Pass 3:  Insert 22   44 55 88 22 99 33 77 66
K=4   88>22   
    55>22
    44>22

Pass 4:  Insert 99   22 44 55 88 99 33 77 66
K=5   Since all the elements before 99 are smaller than it, no insertion takes 
place.  

Pass 5:  Insert 33   22 44 55 88 99 33 77 66
K=6   99>33, 88>33,
    55>33, 44>33 
           and 22<33

Pass 6:  Insert 77   22 33 44 55 88 99 77 66
K=7        99>77
         88>77 and 55<77

Pass 7:  Insert 66   22 33 44 55 77 88 99 66
K=8   99>66, 88>66
    77>66 and 55<66         
Finally the sorted array is  22 33 44 55 66 77 88 99 

Figure 16.2 Continued

In Figure 16.2 each element is compared with its previous element and inserted in its appropriate position. 
Sorting starts with the second element because there is no element previous to the fi rst element to compare it. 
Arrows show the position of the element to be inserted. 

Complexity: Th e time complexity of insertion sort is O(n2).

Program 16.2

/*To Sort the Given List Using INSERTION SORT*/
#include<iostream.h
#include<conio.h>
void main()
{
 int i,a[30],n,j,temp,item;
 clrscr();
 cout<<“Enter Size Of Array:”;
 cin>>n;
 cout<<“Enter”<<n<<“Elements:”;
 for(i=0;i<n;i++)
 cin>>a[i];
 cout<<“Before Sorting List Is:\n”;
 for(i=0;i<n;i++)
 cout<<a[i]<<“ ”;
 for(i=0;i<n;i++)
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 {
  item=a[i];
  j=i-1;
  while(j>=0&&item<a[j])
  {
   a[j+1]=a[j];
   j--;
  }
  a[j+1]=item;
 }
 cout<<“\nAfter Sorting List Is:\n”;
 for(i=0;i<n;i++)
 cout<<a[i]<<“ ”;
 getch();
}

Output

Enter Size Of Array:9
Enter 9 Elements:4
6
0
1
5
7
12
10
2
Before Sorting List Is:
4 6 0 1 5 7 12 10 2
After Sorting List Is:
0 1 2 4 5 6 7 10 12

16.1.3 SELECTION SORT

 Selection sort is the most conceptually simple of all the sorting algorithms. It works by selecting the smallest 
(or largest, if it is to sort in descending order) element of the array and placing it at the head of the array. Th en 
the process is repeated for the remainder of the array; the next largest element is selected and put into the next 
slot, and so on down the array. Selection sort technique selects an element and places it into appropriate posi-
tion. Because a selection sort looks at gradually smaller parts of the array each time, a selection sort is slightly 
faster than the bubble sort. Th e following are the steps involved in the sorting process. Let L be an unordered 
list of elements A1, A2, …, An.
Step 1: In the fi rst pass fi nd the position POS of the smallest element in the list of n elements. Th en swap POS 
with the fi rst element of the list so that the fi rst smallest element acquires its right position, i.e. fi rst position 
in the list.
Step 2: In the second pass fi nd the position POS of the second smallest element in the list of n–1 elements. 
Swap POS with second element of the list.
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 .........
 …….
Step n: In the (n–1)th pass excluding the fi rst two elements in the list repeat the sorting process by fi nding the 
next smallest element and swap it with an appropriate element until the entire list is sorted. Th e entire sorting 
takes (n–1) passes.

To fi nd the smallest element among all the elements in the list, fi rst the variable SMALL is set to the fi rst 
element of the list and the variable POS is set to the position of the fi rst element and then traversing the list 
comparing SMALL with every other element of DATA[i] as follows:
 1. If SMALL < DATA[i], then move to the next element
 2. If SMALL>DATA[i], then update SMALL and POS as SMALL=DATA[i] and POS=i

Aft er comparing all the elements SMALL contains the smallest among all the elements and POS contains 
its location.

Selection sort can also sort the elements in descending order by selecting the largest element instead of 
the smallest element and swapping it with the element at the last position in the list. Algorithm 16.3 is the al-
gorithm for selection sort. Th e algorithm FINDMIN fi nds the smallest element in the list and returns it to the 
algorithm SELECTION-SORT, which places the smallest element in its appropriate position.

Algorithm 16.3: SELECTION-SORT (DATA, N)

1. Repeat for k=1 to N-1
2. Call FINDMIN(DATA, K, N, POS)
3. Set temp=DATA[K]
4. DATA[K]=DATA[POS]
5. DATA[POS]=temp
6. End loop
7. End 

Algorithm 16.3.1: FINDMIN(DATA, K, N, POS)

/*This algorithm is used to find the smallest element among DATA[K], DATA[K+1],…, 
DATA[N]*/
1. Set SMALL=DATA[K] and POS=K
2. Loop for i=K+1 to N
(i) Check whether SMALL is greater than DATA[i] then
(ii) Set SMALL=DATA[i] and POS=i
3. End loop
4. End 

Example 16.3

Let DATA be an array with elements  88 44 55 22 99 33 77 66.
Figure16.3 shows the selection sort procedure on array DATA.
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Pass    [1] [2] [3] [4] [5] [6] [7]  [8]

K=1, POS=4  88 44 55 22 99 33 77 66

K=2, POS=6  22 44 55 88 99 33 77 66

K=3, POS=6  22 33 55 88 99 44 77 66

K=4, POS=6  22 33 44 88 99 55 77 66

K=5, POS=8  22 33 44 55 99 88 77 66 

K=6, POS=7  22 33 44 55 66 88 77 99 

K=7, POS=7  22 33 44 55 66 77 88 99 

Sorted array is 22 33 44 55 66 77 88 99

Figure 16.3 Trace of selection sort 

Observe that in Figure 16.3 POS gives the smallest among DATA[K], DATA[K+1], ..., DATA[N] during 
pass K. Th e circled elements indicate the elements which are to be swapped. In a similar way all the elements 
will be sorted.
Complexity: Th e time complexity of selection sort is O(n2).

In pass 1 it takes n–1 comparison, in pass 2 it takes n–2 comparison and in pass n it takes i comparison. So, 
the recurrence relation is given as
   F(n) = (n–1) + (n–2) + … + 2 + 1 = n(n–1)/2 = O(n2)

16.1.4 QUICK SORT

 Quick sort belongs to the family of sorting by exchange where the elements which are out of order are ex-
changed themselves in order to obtain a sorted list.

Quick sort performs sorting based on the principle of partitioning the list into two sublists taking  any 
one of the elements in the list as the key element which is called the pivot element. Two sublists occur left  and 
right of the pivot element, i.e. the pivot element will be placed in its appropriate position. Again the sublists are 
further partitioned against their respective pivot elements until there is no possibility to partition. At this stage 
all the elements in the list will be in sorted order. Th e following is the procedure for quick sort:

Let L be an unordered list with elements {A1, A2, …, An}
Step 1: Suppose A1 is chosen as the pivot element; now compare A1  with all the elements in the list moving A1 
left  to right until the fi rst occurrence of a greatest number Ai that is greater than or equal to A1, i.e. Ai>=A1.
Step 2: Again A1 is compared with the elements moving right to left  until the fi rst occurrence of smallest 
number Aj, Aj<=A1 is found.
Step 3: If i<j then Ai and Aj are exchanged.

If i>j, then A1 is exchanged with Aj, i.e. A1 will be smaller than Aj  and greater than Ai. At this stage parti-
tion takes place. Th e list will be divided into two sublists based on the pivot element. Algorithm 16.4 is the 
algorithm for quick sort.
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Algorithm 16.4: QUICK SORT (DATA, LOW, HIGH)
1. Check whether LOW is less than HIGH then 
 PQUICK(DATA, LOW, HIGH, POS)
 QUICKSORT(DATA, LOW, POS-1)
 QUICKSORT(DATA, POS+1, HIGH)
2. End

Algorithm16.4.1: PQUICK (DATA, LOW, HIGH, POS)
/*This algorithm is used to partition the list into sublists. POS is the posi-
tion of the pivot element at the end of the partition. LEFT and RIGHT variables 
hold the first and last positions of the array DATA. The variable PIVOT holds 
the pivot element.*/
1. Set  LEFT=LOW, RIGHT=HIGH and PIVOT=DATA[LOW]
2. Loop while LEFT<RIGHT 
 1. Repeat until DATA[LEFT]>=PIVOT
      Set LEFT=LEFT+1  //pivot elements moves form left to right
 2. Repeat until DATA[RIGHT]<=PIVOT
      Set RIGHT=RIGHT+1 //pivot elements moves form right to left
 3. Check whether LEFT is less than RIGHT then
 4. Swap(DATA[LEFT], DATA[RIGHT])
3. End loop
4. Set POS=RIGHT
5. Swap(DATA[LEFT],DATA[RIGHT])
6. End

Example 16.4
Let DATA be an array of elements 6 2 25 10 75 33 10
Figure 16.4 shows various stages of quick sort 

Phase 1:
 • Choose the fi rst element as the pivot element:
   6 2 25 10 75 33 10

 • Scan from left  to right and compare the pivot element with the rest of the elements until the fi rst oc-
currence of the greatest number:

   6 2 25 10 75 33 10

      LEFT
 • Scan from right to left  until the fi rst occurrence of the lowest number:
   6 2 25 10 75 33 10

        RIGHT LEFT
  Since LEFT>RIGHT swap pivot element with RIGHT:
   2 6 25 10 75 33 10

  Sublist 1    Sublist 2
 • Now the pivot element is placed in its position and the list is partitioned into two sublists. Sort the 

two sublists with the same procedure as above.
Figure 16.4 Trace of quick sort
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Phase 2:
 • Th ere is no need to sort sublist 1 since only one element exists.
 • Perform quick sort on sublist 2 {25,10,75,33,10}.
 • Choose the pivot element as  25
   • Scan from left  to right  25 10 75 33 10

         25<75

       Scan from right to left   25 10 75 33 10

          LEFT   RIGHT

           Since LEFT<RIGHT, swap LEFT and RIGHT:

       10 25 10 33 75

    • Scan from left  to right  10 25 10 33 75 

 Scan from right to left   10 25 10 33 75

          RIGHT   LEFT

            Since LEFT > RIGHT, exchange pivot element and RIGHT:

       10 10 25 33 75

 •  At this stage the list aft er partition is:

     2 6 10 10 25 33 75

      Sublist 1                   Sublist 2
Phase 3:

 • Quick sort the sublist {10,10}:
   pivot  10  10

        LEFT=RIGHT

  Exchange the pivot element with RIGHT.

      At this stage the list aft er partition  2 6 10 10 25 33 75

Phase 4:
 • Th ere is no need to sort sublist {10} since only one element exists.

 • Quick sort of sublist {33,75}

 • Choose the pivot element as 33

 • Scan from left  to right  33 75

 Scan from right to left   33 75

       RIGHT   LEFT   
  No need to exchange.

Figure 16.4 Continued
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 At this stage sorted array is 2 6 10 10 25 33 75

 Finally the sorted array is          2 6 10 10 25 33 75

Figure 16.4 Continued

Program 16.4

/*To Sort The Given List Using QUICK SORT*/
#include<iostream.h>
#include<conio.h>
void quicksort(int a[],int lb,int ub)
{
 int key=lb,i=lb,j=ub,temp;
 while(i<j)
 {
  while(a[i]<=a[key])
   i++;
  while(a[j]>a[key])
   j--;
  if(i<j)
  a[i]=(a[i]+a[j])-(a[j]=a[i]); //Single Line Swapping
  a[key]=(a[key]+a[j])–(a[j]=a[key]);
  quicksort(a,lb,j-1);
  quicksort(a,j+1,ub);
 }
}
void main()
{
 int i,a[30],n;
 clrscr();
 cout<<“Enter Size Of Array:”;
 cin>>n;
 cout<<“Enter”<<n<<“Elements:”;
 for(i=0;i<n;i++)
 cin>>a[i];
 cout<<“Before Sorting List Is:\n”;
 for(i=0;i<n;i++)
 cout<<a[i]<<“ ”;
 quicksort(a,0,n-1);
 cout<<“\nAfter Sorting List Is:\n”;
 for(i=0;i<n;i++)
 cout<<a[i]<<“ ”;
 getch();
}

Output

Enter Size Of Array:8
Enter 8 Elements:7
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0
4
9
54
26
35
11
Before Sorting List Is:
7 0 4 9 54 26 35 11
After Sorting List Is:
0 4 7 9 11 26 35 54

16.1.5 MERGE SORT

Before describing about merge sort, let us discuss about merging. Merging is the process of combining two 
ordered lists of elements and merged into a single ordered list.  Merge sort can be formatted in two ways. Th e 
fi rst approach is recursive merge sort which is more complex.

Let the two ordered lists to be merged be list [l: m] and list [m+1; n] and the resultant list is mergelist 
[1: n]. Algorithm 16.5 is the algorithm for merging two ordered lists.

Algorithm 16.5: MERGE (list, merge list, l, m, x)

1. Set i=l, j=l, k= m+1         //i,j,k are list partitions
2. Loop for i ≤m, k≤n:j++
 1. Check whether  list[i]≤list[k] then 
 2.  Set mergelist[j]=list[i]
 3.  Set i=i+1
 4.  Else
 5.  Set mergelist[j]=list[k] 
 6.  Set k=k+1
 7.  Copy(list+i,list+k,mergelist+j)      /*copy the remaining elements, 
                  if any,of first list*/
 8.  Copy(list+k,list+n+1,mergelist+j)    /*copy the reaming elements, 
                  if any of second list*/
3. End loop
4. End

j will be incremented by 1  at each iteration of  the loop. Th e total increment in j is at most n-l+1. Hence the 
total number of iterations in the loop is at n–l+1 times. Th e statement copy copies at most n-l+1 elements. So, 
the total time complexity is given by O (n–l+1).

Non-recursive merge sort: Th e non-recursive version of merge sort begins by treating the given input list of n ele-
ments as n independent ordered sublist of size 1. Th e fi rst pass merges all these sublists in order to obtain n/2 
sublists each with two sublists again. If n is odd then one sublist will be of size 1. In the second pass, all these 
n/2 sublists are then merged to obtain n/4 sublists. Each pass reduces the number of sublists to half. Continue 
the process of merge until only one sublist exists.

Example 16.5
Th e given list is {32, 4, 55, 1, 16, 11, 95, 51, 84, 19} which is to be sorted. Th e tree of  Figure 16.5 illustrates the 
merging of sublists  at each pass. 
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Figure 16.5 Merge tree

Algorithm 16.5.2 contains several passes over the elements to be sorted. Now sorting can be done by re-
peatedly invoking the algorithm called MERGEPASS. In the fi rst pass, lists with size 1 are merged and in the 
second pass lists with size 2 are merged and so on. On the ith pass, the size of the lists to be merged will be 2i–1. 
Th erefore a total of log2 n  passes are required to merge the sublists. Since two lists are merged with linear 
time and the complexity of merge sort is O(n),  the total time complexity is O(n log n)

Algorithm 16.5.1: MERGEPASS (list, FinalList, n,s) 

/*s is the size of  sublists. n is the number of elements in the list. Sublists 
of size s are merged from list to  FinalList.*/
1. Set i=1   //i is the first position in the first sub list being merged
2. loop for i<=n-2*s+1 do
 1. Set i=i+2*s
 2. MERGE(list,FinalList,i,i+s-1,i+2*s-1);
 3. MERGE (list,FinalList,i,i+s-1,n)   // Merging the remaining list
 4. Check whether(i+s-1<n)then
 5. Else
 6. Copy (list+i,list+n+1,FinalList+i)
3. End

Algorithm 16.5.2: MERGESORT(A, n)

/* sorting Array A[1:n] into ascending order. Let temp be an array which holds 
the sorted elements. l is the length of the sublist that is to the merged.*/
1. Set l=1
2. loop for (l<n; l*=2)
 1. MergePass(A,temp,n,l)
 2. Set l=l*2

32 4 55 1 16 11 95 51

4 32 1 55 11 16 51 95 19 84

19 84

19 84

84 19

Pass 1

Pass 2

Pass 4

Pass 3

1  4  32  55 11  16  51  95

1   4     11     16     32     51     55     95

1  4  11  16  19  32  51  55  84  95
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 3. MergePass (temp,A,n,l);   //interchanging the arrays A and temp
 4. End loop
3. End

Recursive merge sort: Th e recursive version of merge sort uses the principle of divide and conquer. Here the 
given list to be sorted is divided into two sublists of approximately equal in size. Th ese sublists are sorted 
recursively and all the sorted sublists are merged into a single list which is the required sorted list. Algorithm 
16.5.3 is the algorithm for recursive merge sort.

Algorithm 16.5.3: MERGE SORT (A, BEG, END) 

// A [BEG: END] is an array to the sorted
1. Check whether BEG<END then   //if more than one element lists
 1. Set MID=[(BEG+END)/2]   //find where to divide the list
 2. Mergesort(BEG, MID)
 3. Mergesort(MID+1,END)      //sort the sublist
 4. RMerge(BEG,MID,END)       //combine the sublists 
2. end

Algorithm 16.5.4: RMERGE (BEG, MID, END)

// A[beg: end]is an array which contain two sorted sub arrays in A[beg:mid] 
// and [mid+ 1:end]
// This algorithm merges these two sub arrays into a single list.
// temp[] is an temporary array.
1. Set b=BEG, i=BEG, j=MID+1;
2. Loop for b≤MID and j≤END do
 1. Check whether A[b]<=A[i] then
  1. Set temp[i]=A[b];
  2. Set b=b+1
  2. else
    1. Set temp[j]=A[j]
    2. Set j=j+1
  3. Set i=i+1
 3. End loop
 4. Check whether b is greater than mid then
  1. Loop for k=j to END do
      i. Set temp[i]=A[k]
   ii. Set i=i+1
  2. End loop
 5. Else
  1. Loop for k=b to mid do
    i. Set temp[i]=A[k]
   ii. Set i=i+1
      2. End loop
 6. Loop for k=beg to end do              //copy array temp to array A
    Set A[k]=temp[k]
 7. End
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Example 16.6

Let A be an array of elements {21,65,1,43,98,87,34,10} to be sorted. Using merge sort algorithm, the array A 
is divided into two sublists to be sorted before they are merged to get sorted array A.

Figure 16.6 shows a tree of recursive calls illustrating the working of merge sort on array A. Each node 
in the tree shows a call to merge sort and shows the output sublist at the end of the execution of the call to 
mergesort.

Figure 16.6 Recursive merge sort

Program 16.5

/*To Sort The Given List Using MERGE SORT*/
#include<iostream.h>
#include<conio.h>
void mergesort(int a[],int lb,int mid,int ub)
{
 int i=lb,j=mid+1,k=0,b[50];
 while(i<=mid&&j<=ub)
 {
  if(a[i]<a[j])
   b[k++]=a[i++];
  else
   b[k++]=a[j++];
 }
 while(i<=mid)
  b[k++]=a[i++];
 while(j<=ub)
  b[k++]=a[j++];
 for(k=0;k<=ub-lb;k++)
 a[k+lb]=b[k];
}

4

(A,1,1)

(A,1,2)

(A,1,4) (A,5,8)

(A,1,8)

(A,3,4) (A,5,6) (A,7,8)

(A,2,2) (A,3,3) (A,4,4) (A,5,5) (A,6,6) (A,7,7) (A,8,8)

5 6 6 97 87 34 10

21 65 1 60 87 98 10 34

Pass 1

Pass 2

Pass 3

1  21  43  65 10  34  87

1  10  21  34  43  65  87  98
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void merge(int a[],int low,int high)
{
 int mid;
 if(low<high)
 {
  mid=(low+high)/2;
  merge(a,low,mid);
  merge(a,mid+1,high);
  mergesort(a,low,mid,high);
 }
}
void main()
{
 int i,a[30],n;
 clrscr();
 cout<<“Enter Size Of Array:”;
 cin>>n;
 cout<<“Enter”<<n<<“Elements:”;
 for(i=0;i<n;i++)
 cin>>a[i];
 cout<<“Before Sorting List Is:\n”;
 for(i=0;i<n;i++)
 cout<<a[i]<<“ ”;
 merge(a,0,n-1);
 cout<<“\nAfter Sorting List Is:\n”;
 for(i=0;i<n;i++)
 cout<<a[i]<<“ ”;
 getch();
}

Output

Enter Size Of Array:10
Enter 10 Elements:9
0
4
6
7
20
15
25
5
2
Before Sorting List Is:
9 0 4 6 7 20 15 25 5 2
After Sorting List Is:
0 2 4 5 6 7 9 15 20 25
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16.1.6 SHELL SORT

 Shell sort is a sorting algorithm that is a generalization of insertion sort with two observations:
 • Insertion sort is effi  cient if the input is “almost sorted”.
 • Insertion sort is typically ineffi  cient because it moves values just one position at a time.

Th e shell sort is named aft er its inventor D.L. Shell in 1959. It is fast, easy to understand and easy to 
implement. However, its complexity analysis is more complicated. Th e idea of shell sort is to arrange the data 
sequence in a two-dimensional array and sort the columns of the array. Th e eff ect is that the data sequence is 
partially sorted. Th e process above is repeated, but each time with a narrower array, i.e. with a smaller number 
of columns. In the last step, the array consists of only one column. In each step, the sortedness of the sequence 
is increased until the last step is completely sorted. However, the number of sorting operations necessary in 
each step is limited due to the presortedness of the sequence obtained in the preceding steps. 

Consider a small value that is initially stored in the incorrect position of the array which makes the array 
out of order. Using an O(n2) sort such as bubble sort or insertion sort, it will take roughly n comparisons and 
exchanges to move this value all the way to the other end of the array. Shell sort fi rst moves values using huge 
step sizes, so a small value will move a long way towards its fi nal position with just a few comparisons and 
exchanges

Actually, the data sequence is not arranged in a two-dimensional array, but held in a one-dimensional array 
that is indexed appropriately. For instance, data elements at positions 0, 5, 10, 15, etc. would form the fi rst col-
umn of an array with fi ve columns. Th e “columns” obtained by indexing in this way are sorted with insertion 
sort since this method has a good performance with presorted sequences. 
Algorithm 16.6 is the algorithm for shell sort.

Algorithm 16.6: SHELL –SORT
// An array DATA of length n with array elements numbered 0 to n−1
1. Set  inc=round(n/2)
2. Repeat while inc>0 do
 1. Repeat for i=inc to n−1 do
 2. temp=DATA[i]
 3. j=i
 4. Repeat while j≥inc and DATA[j−inc]>temp do
 5. DATA[j]=DATA[j−inc]
 6. j=j–inc
 7. DATA[j]=temp
 8. End step 4 loop
 9. inc=round(inc/2.2)
 10. End step2 loop
3. End loop
4. End

Example 16.7
Let  3 7 9 0 5 1 6 8 4 2 0 6 1 5 7 3 4 9 8 2  be the data sequence to be sorted. First, it is arranged 
in an array with seven columns (left ) and then the columns are sorted (right) (Figure 16.7)

  3 7 9 0 5 1 6  3 3 2 0 5 1 5
  8 4 2 0 6 1 5  7 4 4 0 6 1 6
  7 3 4 9 8 2   8 7 9 9 8 2
  (a) Array as 7 columns              (b) Sorted columns

Figure 16.7 Sorted array with seven columns 



Chapter 16 Sorting and Searching | 16.19

   3 3 2   0 0 1
   0 5 1   1 2 2
   5 7 4   3 3 4
   4 0 6   4 5 6
   1 6 8   5 6 8
   7 9 9   7 7 9
   8 2    8 9

Figure 16.8 Sorting elements by representing them as three columns

Data elements 8 and 9 have now already come to the end of the sequence, but a small element (2) is still 
there as shown in Figure 16.7(b). In the next step, the sequence is arranged in three columns, which are again 
sorted.

Now the sequence is almost completely sorted as shown in Figure 16.8. When arranging it in one column 
in the last step, it is only the elements 6, 8 and 9 that have to move a little bit to their correct positions.

Program 16.6

/*To Sort The Given List Using SHELL SORT*/
#include<iostream.h>
#include<conio.h>
#include<math.h>
int i,a[30],num,b[30],n;
void build(int i)
{
 if(b[i]<n)
 {
  b[i+1]=2*b[i];
  build(i+1);
 }
 else
 num=i-1;
}
void shellsort()
{
 int temp,i,j,s;
 for(;num>=1;num--)
 {
  s=b[num];
  for(i=s+1;i<=n;i++)
  {
   temp=a[i];
   j=i-s;
   while((j>=1)&&(a[j]>temp))
   {
    a[j+s]=a[j];
    j-=s;
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   }
   a[j+s]=temp;
  }
 }
}
void main()
{
 clrscr();
 cout<<“Enter Size Of Array:”;
 cin>>n;
 cout<< Enter”<<n<<“Elements:”;
 for(i=1;i<=n;i++)
 cin>>a[i];
 cout<<“Before Sorting List Is:\n”;
 for(i=1;i<=n;i++)
 cout<<a[i]<<“ ”;
 b[1]=1,build(1);
 shellsort();
 cout<<“\nAfter Sorting List Is:\n”;
 for(i=1;i<=n;i++)
 cout<<a[i]<<“ ”;
 getch();
}

Output

Enter Size Of Array:10
Enter 10 Elements:87
64
2
8
44
66
87
12
14
10
Before Sorting List Is:
87 64 2 8 44 66 87 12 14 10
After Sorting List Is:
2 8 10 12 14 44 64 66 87 87

16.1.7 RADIX SORT

 Radix sort was originally used to sort punched cards in several passes. A computer algorithm was invented for 
radix sort in 1954 by Harold H. Seward. Th is sort is performed on a mechanical card sorter. Each card contains 
80 columns, and each column may contain a character of alphabet. When sorting is performed on this type of 
card sorter, only one column is examined at a time.
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A metal pointer is used to select only one of the 80 columns. For sorting numerical data, there are 10  
packets corresponding to 10 decimal digits, and the sort places all the cards for a given data in an appropriate 
pocket.

Th e operator of the sorter combines all the decks of cards in the order from the 10 pockets, i.e. the resulting 
deck contains pocket 0 on the bottom and pocket 9 on the top. Generally numbers with more than one digit 
are sorted; in such a case the numbers are sorted on the least-signifi cant digit fi rst, followed by the second-least 
signifi cant digit and so on till the most signifi cant digit. Each column in the card is sorted by starting from the 
lowest-order column and moves towards the other column from right to left .

Each pass through the array takes O(n) time. If the maximum magnitude of a number in the array is ‘p’, 
and if entries are treated as base ‘q’ numbers, then 1+fl oor(logq(p)) passes are needed. If ‘p’ is a constant, radix 
sort takes linear time, O(n). However, if all the numbers in the array are diff erent then m is at least O(n), so 
O(log(n)) passes are needed, O(n.log(n)) is the total time complexity.

Algorithm 16.7: FIND (DATA)

//This algorithm finds the single digit places in the array of elements
1. Set max=0
2. Loop for i=1 to n
3. Check whether DATA[i]>max then
 i. Set max=DATA[i]
 ii.Set  max1=0
4. Loop while max!=0 do
 i.  max=max/10
 ii. max1++
5. End loop
6. RADIX SORT(DATA,max1,n)

Algorithm 16.8: RADIX SORT (DATA, m,n)

//Places the elements in appropriate pockets and recollects them in order.
1. Set y=0
2. Loop for i=1 to m
3. Set q=1
4. Set p= pow(10,y)
5. Set y=y+1
6. Loop for j=0 to 9
7. Loop for k=1 to n
8. Set digit=(DATA[k]/p)%10
9. Check whether digit is equal to j  then
10.Set b[q++]=DATA[k]
11.End step6 loop
12.End step5 loop
13.Loop for temp=1 to n
14.Set DATA[temp]=b[temp]
15.End step13 loop
16.End step2 loop
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Example 16.8 explains the radix sort.

Example 16.8

Let DATA be an array of elements such as {82, 43, 64, 11, 56, 75, 49, 63, 99, 78, 70, 18, 61}.
First pass:
Pocket:     0       1        2        3      4       5       6        7        8         9   

                70     11      82     43     64     75     56      78      49       99

                                  61               63
First unit digits in the sequence are sorted. Now the array at this stage will be

   70     11     61   82    43      63      64      75      56      78    18     49       99
Second pass: Now comparing the 10-digit values of numbers in the sequence.
Pocket:  0      1      2      3       4       5       6        7        8       9  

                       11                     43     56     61      70      82     99

                       18                     49              63      75

                                                                  64      78
Combining all the 10 pockets gives the resultant sequence:
   11       18      43       49       56     61       63      64    70      75      78       82         99

Program 16.7

/*To Sort The Given List Using RADIX SORT*/
#include<iostream.h>
#include<conio.h>
#include<math.h>
void radixsort(int a[],int m,int n)
{
 int temp,i,j,k,y,digit,b[50],p,q;
 y=-1;
 for(i=1;i<=m;i++)
 {
  q=1,y++,p=pow(10,y);
  for(j=0;j<=9;j++)
  {
   for(k=1;k<=n;k++)
   {
    digit=(a[k]/p)%10;
    if(digit==j)
    b[q++]=a[k];
   }
  }
  for(temp=1;temp<=n;temp++)
  a[temp]=b[temp];
 }
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}
void main()
{
 int i,a[30],n,max,max1;
 clrscr();
 cout<<“Enter Size Of Array:”;
 cin>>n;
 cout<<“Enter”<<n<<“Elements:”;
 for(i=1;i<=n;i++)
 cin>>a[i];
 cout<<“Before Sorting List Is:\n”;
 for(i=1;i<=n;i++)
 cout<<a[i]<<“ ”;
 max=0;
 for(i=1;i<=n;i++)
 if(a[i]>max)
 max=a[i];
 max1=0;
 while(max!=0)
 {
  max=max/10;
  max1++;
 }
 radixsort(a,max1,n);
 cout<<“\nAfter Sorting List Is:\n”;
 for(i=1;i<=n;i++)
 cout<<a[i]<<“ ”;
 getch();
}

Output

Enter Size Of Array:10
Enter 10 Elements:87
64
23
54
10
2
9
452
100
234
Before Sorting List Is:
87 64 23 54 10 2 9 452 100 234
After Sorting List Is:
2 9 10 23 54 64 87 100 234 452
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16.1.8 HEAP SORT

Th e heap sort combines the best of both merge sort and insertion sort. Like merge sort, the worst case time of 
heap sort is O(n log n) and like insertion sort, heap sort sorts by inserting the element in its appropriate posi-
tion [in-place]. Th e heap sort algorithm starts by using procedure BUILD-HEAP to build a heap on the input 
array A[1:n]. Since the maximum element of the array stored at the root is A[1], it can be put into its correct 
fi nal position by exchanging it with A[n] (the last element in A). Now discard node n from the heap then the 
remaining elements can be made into a heap. Note that the new element at the root may violate the heap prop-
erty. All that is needed to restore the heap property.  

Algorithm 16.8: HEAPSORT (A)

1. BUILD-HEAP (A) 
2. Loop for i=length (A) down to 2 do 
 exchange A[1] and A[i] 
 Set heap-size[A] to heap-size[A]-1 
 HEAP(A,1) 
3. End

Th e HEAPSORT procedure takes time O(n log n) since the call to BUILD-HEAP takes time O(n) and each 
of the n–1 calls to Heap takes time O(log n). 

Building a heap: Using the algorithm HEAP in bottom-up order the array A[1:n]  is converted into  a heap. 
Since the elements in the subarray A[ n/2 +1: n] are all leaves, the algorithm BUILD-HEAP goes through the 
remaining nodes of the tree and runs the algorithm HEAP on each one. Th e bottom-up order of processing 
node guarantees that the subtree rooted at the children are heap before HEAP is run at their parent.  

Algorithm 16.8.1: BUILD-HEAP (A)

1. Set heap-size(A)=length[A] 
2. Loop for i=floor(length[A]/2) to 1 do         
3. HEAP(A,i) 
4. End

Heap: Th e algorithm HEAP picks the largest child node and compares it to the parent node. If the parent node 
is larger than the child node then the heap process terminates, otherwise it swaps the parent node with the 
largest child node so that the parent now becomes larger than its children. It is important to note that swap may 
destroy the heap property of the subtree rooted at the largest child node. If this is the case, HEAP calls itself 
again using the largest child node as the new root.  

Algorithm 16.8.2: HEAP (A, i)

1. Set l=left[i] 
2. Set r=right[i] 
3. Check whether (l≤heap-size[A] and A[l]>A[i]) then 
4. Set largest=l     
5. else 
6. Set largest=i 
7. Check whether (r≤heap-size [A] and A[i]>A[largest]) then 
8. Set largest=r 
9. Check whether (largest≠i)  then
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10. Swap(A[i],A[largest])
11. HEAP(A,largest) 

Example 16.9

Suppose a heap is built from the following list of elements 55, 40, 60, 33, 70, 66, 88, 66. Figure 16.9 shows the 
stages of building a heap. Consider that a Max heap is to be created. First node 55 is created and when node 
40 is to be added as a child to node 55, check whether the parent node is greater than the child node. If so no 
exchange takes place otherwise interchange parent and child nodes, here in this case 55 > 40 so no exchange 
takes place. In Figure 16.9(c) when adding  a node 66 as the right child to node 55 exchange takes place, 
since 66 > 55, i.e. child node is greater than the parent node. Th e dotted line indicates the exchange of nodes. 
Continuing in this process, one can create a Maxheap.

(a) ITEM = 55 (b) ITEM = 40 (c) ITEM = 60

55

55

40

55

40 60

60

40 55

(d) ITEM = 33 (e) ITEM = 70

Exchange
takes place

55

60

40

33

55

70

60

40

33

55

40

70

60

33

Exchange
takes place

(f) ITEM = 66

55

40 66

70

60

33

66

40 55

70

60

33



16.26 | Data Structures and Algorithms Using C++ 

Figure 16.9 Building a heap

Example 16.10

Let L be the given array of {62, 6, 88, 1, 16, 22, 95, 51, 84, 19} on which heap sort is to be performed. Figure 16.10, 
shows the tree representation of the given list and Figure 16.10(b) shows the initial heap.
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Figure 16.10 Heap representation
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1

16 19

51

22 6

62

84

(c) Size = 8
Sorted list {95, 88}

16 19

51

1 6

22

62

(d) Size = 7
Sorted list {95, 88, 84}

16 6

19

1

22

51

(e) Size = 6
Sorted list {95, 88, 84, 62}

16 6

19 1

22

(f) Size = 5
Sorted list {95, 88, 84, 62, 51}

6

16 1

19

(g) Size = 4
Sorted list {95, 88, 84, 62, 51, 22}
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Figure 16.11 Trace of heap sort

Figure 16.11 shows various stages in heap sort. Th e root element is deleted and again reheap is performed. 
In Figure 16.11(b), 95 is deleted and reheap is performed to make the next highest element as root, i.e. 88. In 
Figure 16.11(c) 88 is deleted and reheap is performed and the remaining element to make the next highest ele-
ment is root, i.e. 84. Th is is continued in this way until only one element exists in the tree.

Program 16.8

#include <iostream.h>
#include<conio.h>
int i,j,k,flag;
void swap(int*x,int*y)
{
 int temp;
 temp=*x;
 *x=*y;
 *y=temp;
}
void adjust(int a[],int i,int n)
{
 k=a[i];
 flag=1;
 j=2*i;
 while(j<=n&&flag)
 {
  if(j<n&&a[j]<a[j+1])
   j++;
  if(k>=a[j])
   flag=0;
  else

6 1

16

(h) Size = 3
Sorted list {95, 88, 84, 62, 51, 22, 19}

1

6

(i) Size = 2
Sorted list {95, 88, 84, 62, 51, 22, 19, 16}

1

(j) Size = 1
Sorted list {95, 88, 84, 62, 51, 22, 19, 16, 6, 1}
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  {
   a[j/2]=a[j];
   j=j*2;
  }
 }
 a[j/2]=k;
}
void buildheap(int a[],int n)
{
 for(i=(n/2);i>=0;i--)
 adjust(a,i,n-1);
}
void heapsort(int a[],int n)
{
 buildheap(a,n);
 for(i=(n-2); i>=0;i--)
 {
  swap(&a[0],&a[i+1]);
  adjust(a,0,i);
 }
}
void main()
{
 int a[50],n;
 clrscr();
 cout<<“Enter Size Of Array:”;
 cin>>n;
 cout<<“Enter”<<n<<“Elements:”;
 for(i=0;i<n;i++)
 cin>>a[i];
 cout<<“The List Before Sorting is:\n”;
 for(i=0;i<n;i++)
 cout<<a[i]<<“ ”;
 heapsort(a,n);
 cout<<“\nThe List After Sorting is:\n”;
 for(i=0;i<n;i++)
 cout<<a[i]<<“ ”;
 getch();
}

Output

Enter Size Of Array:10
Enter 10 Elements:46
23
84
74
96
56
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25
88
62
90
Before Sorting List Is:
46 23 84 74 96 56 25 88 62 90
After Sorting List Is:
 23 25 46 56 62 74 84 88 90 96

16.2 SEARCHING   

 Searching is the process of fi nding the location of a given element in a set of elements. Th e search is said to be 
successful if the given element is found, i.e. the element does exist in the collection (such as an array); other-
wise it is unsuccessful. In this section various classical algorithms for searching are discussed in detail.

16.2.1 LINEAR SEARCH OR SEQUENTIAL SEARCH

 Linear search is the technique of searching a given item in the list by comparing each and every element in 
the list sequentially. If the item is found then the search is said to be successful, if not, it is considered to be 
unsuccessful.

Suppose DATA is an array with N elements, let ITEM be the element to be searched in DATA. Traverse 
the array DATA sequentially and search for the ITEM by comparing each element of it with ITEM, i.e. fi rst 
compare DATA[1] with ITEM and then DATA[2] with ITEM  and so on until ITEM is found. If item is not, 
found the search is said to be unsuccessful.
Algorithm 16.9 is the algorithm for Linear Search.

Algorithm 16.9: LINEAR_SEARCH (DATA, N, ITEM, LOC)

1. Set LOC=1                     //initialize the counter variable
2. Repeat while(LOC<N) and DATA[LOC]≠TEM 
3. Set LOC=LOC+1
4. End loop
5. Check whether DATA[LOC]=ITEM hen
 Print “unsuccessful search”
6. Else
   Print “successful search at location LOC”
7. End

Example 16.11

Let DATA be an array of elements {35, 20, 33, 45, 60, 55, 60}. Suppose ITEM=60 is to be searched. Search pro-
ceeds down the array comparing each element with ITEM until it fi nds the last element in the array. Initially 
assign DATA[N+1]=60.

First it checks with DATA[1],  i.e. 35=60 which is false, then it checks with DATA[2], i.e. 65=60 again 
false, then it checks with DATA[3],  i.e. 20=60 is also  false. Continuing in this way at LOC=6, the element 60 
matches with the ITEM. So, the search is said to be successful. If the ITEM is not found, then the search is said 
to be unsuccessful.

Th e time complexity of linear search in best case is O(1), worst case is O(n) and in average case is also 
O(n).
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Program 16.9

/*To search an element in the given list using Linear search*/
#include<iostream.h>
#include<conio.h>
void main()
{
 int a[50],search,n,i;
 clrscr();
 cout<<“Enter Size Of Array:”;
 cin>>n;
 cout<<“Enter”<<n<<“Elements:”;
 for(i=0;i<n;i++)
 cin>>a[i];
 cout<<“Enter Search Element:”;
 cin>>search;
 for(i=0;i<n;i++)
 if(a[i]==search)
 {
  cout<<“Search Element”<<search<<“Is Found At”<<i+1<<“Location”;
  getch();
  return;
 }
 cout<<“Search Element”<<search<<“Is Not Found”;
 getch();
}

Output

Enter Size Of Array:6
Enter 6 Elements:4
8
9
1
2
3
Enter Search Element:2
Search Element 2 Is Found At 5 Location

16.2.2 BINARY SEARCH

Linear search so far discussed is simple and it is effi  cient if the list is small. Suppose to fi nd a word in a diction-
ary performing linear search takes more time, whereas  binary search instead of searching the dictionary from 
fi rst to last, it opens the middle of the dictionary and searches that half of the dictionary which contains the 
word.  Th en again opening that half in the middle to fi nd which quarter of it contains the word. Continuing 
like this, one can fi nd the location of the word in the dictionary quickly since the number of possible locations 
to fi nd it in the dictionary is reduced. Th is policy of searching is known as binary search and is better than 
linear search.
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Binary search is a technique of searching an item in the ordered list by dividing the list into two halves for 
each comparison until the item is found or not.

Suppose DATA is an array of ordered elements. Let ITEM be the element to be searched in the DATA. 
First the ITEM is compared with the middle element of DATA, i.e. DATA[MID] where MID value is obtained 
by MID=(LB+UB)/2 where LB is the lower bound and UB is the upper bound. If ITEM matches with the 
DATA[MID] then search is said to be successful and the variable LOC contains the location of the MID. Oth-
erwise a new segment of DATA  is designed as follows.
 1. If  ITEM<DATA[MID], then ITEM may appear in the left  sublist of DATA[MID] that is DATA[LB], 

DATA[LB+1], …, DATA[MID–1]. Update UB to MID–1 value and then start searching again.
 2.  If  ITEM > DATA[MID] then ITEM may appear on the right sublist of DATA[MID] that is 

DATA[MID+1], DATA[MID+2], …, DATA[UB]. Th en update LB value to MID+1 and then start 
searching again.

Algorithm 16.10 is the algorithm for binary search.

Algorithm 16.10:  BINARY_SEARCH (DATA, LB, UB, ITEM, LOC)

/*DATA is the ordered list of elements, LB and UB are lower and upper bounds, 
ITEM is the element to be searched. This algorithm finds the location LOC of 
the ITEM in DATA. Initially assign LB, UB values to the variables B, E respec-
tively, i.e. B=LB and E=UB*/
1. Find MID value
   Set MID=(B+E)/2
2. Repeat step 3 and 4 for checking whether (B ≤ E and DATA[MID]≠ITEM).
3. Check whether (ITEM<DATA[MID]) then 
 1. Set E=MID-1
 2. Else 
 3. Set B=MID+1
4. update MID as MID=(B+E)/2
5. End step2 loop
6. check whether DATA[MID] is equal to ITEM then 
7. Set LOC=MID and  print “search is successful”
8. End       

Example 16.12
Let DATA be an array of ordered elements as 22, 33, 40, 50, 55, 65, 70, 88, 99. Suppose ITEM=40 is the element 
to be searched. Th e search process is as shown below:
 1. Initially B=1 and E=9, then
        MID=(B+E)/2=(1+9)/2=5
        So DATA [MID]=55.
       First ITEM is checked with DATA [MID]
       22 33 40 50 55 65 70 88 99  

Here the list is divided into two halves and since the ITEM<DATA[MID] ignore the second half of the list 
without searching.
 2. Since 40<55 update the value of E as E=MID–1, i.e.  E=4 then MID=(B+E)/4=(1+4)/2=3 so DATA 

[MID]= 40. Here again the sublist is divided into two halves.
  22  30    40    50  55
 3.  Since 40=40, i.e.  ITEM=DATA[MID] the search is said to be successful and the location of ITEM=3.



16.34 | Data Structures and Algorithms Using C++ 

Program 16.10

/*To search an element in the given list using Binary search*/
#include<iostream.h>
#include<conio.h>
void sort(int a[],int n)
{
 int i,j;
 for(i=n-1;i>0;i--)
  for(j=0;j<i;j++)
 if(a[j]>a[j+1])
 a[j]=(a[j]+a[j+1])–(a[j+1]=a[j]);
}
void main()
{
 int i,a[30],n,low,up,search,mid;
 clrscr();
 cout<<“Enter Size Of Array:”;
 cin>>n;
 cout<<“Enter”<<n<<“Elements:”;
 for(i=0;i<n;i++)
 cin>>a[i];
 cout<<“Enter Search Element:”;
 cin>>search;
 sort(a,n);
 low=0,up=n-1;
 while(low<=up)
 {
  mid=(low+up)/2;
  if(a[mid]==search)
  {
   cout<<“Search Element”<<search<<“Is Found At”<<mid+1<<“Location”;
   getch();
   return;
  }
  else if(a[mid]>search)
   up=mid-1;
  else
   low=mid+1;
 }
 cout<<“Search Element”<<search<<“Is Not Found”;
 getch();
}

Output

Enter Size Of Array:7
Enter 7 Elements:8
4



Chapter 16 Sorting and Searching | 16.35

0
6
9
2
1
Enter Search Element:6
Search Element 6 Is Found At 5 Location

16.2.3 FIBONACCI SEARCH

Th e  Fibonacci search is a technique of searching a sorted array using the divide and conquer principle that nar-
rows down possible locations with the use of Fibonacci numbers. Compared to binary search, Fibonacci search 
fi nds the locations whose addresses have lower distribution. Th e advantage of Fibonacci search over binary 
search is that it slightly reduces the average time needed to access a storage location. 

Fibonacci search has a complexity of O(log(n)). Instead of splitting the array in the middle, this implemen-
tation splits the array corresponding to the Fibonacci numbers, which are defi ned by the following recurrence 
relations:
         F

0
 = 0

              F
1
 = 1

             F
n
 = F

n-1
+F

n-2
 for n>=2

Fibonacci sequence when used as a search technique is termed as Fibonacci search. As the binary search 
determines the median in the new list as the next element for comparison, the Fibonacci search also deter-
mines the next element for comparison, which is indictated by the sequence of Fibonacci number. Fibonacci 
search performs search technique only on the ordered list. For the convenience of explanation, consider that 
the number of lists is one less than the Fibonacci number, i.e. n=F

K-1
.

Consider an ancestor, parent and its child nodes to perform Fibonacci search on a decision tree that satis-
fi es the following properties. If the diff erence in index between parent and ancestor is F

k
, then

 i.  If the parent is a left  child node, then the diff erence between parent and its child in an index is F
k-1

.
 ii.  If the parent is a right child node, then the diff erence between parent and its child in the index is F

k–2.
Suppose consider an order list L = {E

1
,E

2
,E

3
,...,E

n
}, where n is F

k–1. Th e Fibonacci search decision tree is 
shown in Figure 16.12. For n=20 where 20=F

s–1, the root of the decision tree which is the fi rst element to be 
compared with the element ITEM is E

i
, whose index i is the closest Fibonacci number to n. Here for n=20, 13 

is the closest Fibonacci sequence number. So, E
13

 is the root.
If ITEM<E

13
 then the next element to be compared is E

8
. If ITEM<E

8
, then the next element to be compared 

is E
5
 and so on. By the above properties, the other decision nodes can be easily determined. Th e right child of 

E
13

 should be E18 and for E8 the right child should be E11 and so on.
Consider the nodes E8 and E11, since E11 is the right child of E8, the diff erence between them is 3, i.e. F4 

(because F4=F3+F2=3). Th e diff erence between E11 and its two children is F2 which is 1. Hence the two child 
nodes of E11 are E10 and E12. Similarly consider the nodes E18 and E16. E16 is the left  child of E18 and the diff erence 
between them is given by F3, the two child nodes of E16 are given by E15 and E17, their diff erence is F2.

Algorithm 16.11 is the algorithm for Fibonacci search. Here DATA is an ordered list and n is the number 
of elements such that F

K+1>(n+1) and F
K+m

=(n+1). Item is the one to be searched in the list.
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Figure 16.12 Fibonacci search decision tree

Algorithm 16.11: FIBONACCI SEARCH (DATA, n, ITEM)

1. Set p=F
K-1
, q=F

K-2
, r=F

K-3
 and

   M=(n+1)-(p+q); //Obtain the largest Fibonacci number FK close to n+1. 
2. Check whether ITEM is greater than DATA[p]
 then
   Set p=p+m;
   Set flag=false;
3. loop while(p≠0 and flag=true)
   1. Check whether ITEM=DATA[p] then 
    Print “successful search”
   2. Check whether ITEM<DATA[p] then 
    If(r==0) then set p to 0
       Else 
  Set p=p-r, t=q, q=r and r=t-r;
 3. Check whether ITEM>DATA[p] then 
    If(q==1) then Set p=0
       Else
  Set p=p+r, q=q-r and r=r-q
 4. End
4. End loop
5. Check whether flag=true then
    Print(“search is unsuccessful”);
6. End.
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Example 16.13

Th e Fibonacci search algorithm can be easily understood by tracing the algorithm. Th e trace of Fibonacci search 
is shown in Figure 16.13. Here, the array DATA contains 20 elements such that F9>(n+1) and F8+m=(n+1) 
where m=0 and n=20. Let search for the element K=100 in the list {10,15,20,25,30,35,40,45,50,55,60,65, 
70,75,80,85,90,95,100,105}.

Th e algorithm for Fibonacci search fi rst gets the largest number closer to n+1, i.e. in this case it is F8. Com-
pare K=100 with the data element with index F7 that is DATA[13]=70. Since K>DATA[13], the list is reduced to 
DATA[14:20]={75,80,85,90,95,100,105}. Now compare K with DATA[18]=95, since K>DATA[18], the list is 
further reduced to DATA[19,20]={100,105}. Again compare K with DATA[20], since K<DATA[20] reduce the 
list to DATA[20,20]={100} which when searched again  contains the search element. Th e element is searched 
successfully.

Searching element  Check K,DATA[P] p,q,r,t values

K=100                         p=13,q=8,r=5      n=0, m=0 since F
8
+0=n+1

                           K>DATA[13]=70      p=13,q=8,r=5  p=p+m since K>DATA[p]

                      p=18,q=3,r=2

                    K>DATA[18]=95       p=20,q=1,r=1,t=1                        

     K<DATA[20]=105      p=19,q=1,r=0   

                   K=DATA[19]=100      Element found

Figure 16.13 Trace of Fibonacci search

Complexity: Th e time complexity is measured in terms of the number of comparisons taken to locate ITEM in 
DATA which contains n elements. Since each comparison reduces the array size in half, f(n) comparisons are 
required to locate ITEM where 
     2f(n)>n or f(n)=log n+1

Limitations:

 1. List must be already sorted.
 2. Direct access to the middle element in any sublist is done that requires a sorted array to hold the data, 

which will be very expensive when there are many insertions and deletions.

Program 16.11

#include<iostream.h>
#include<conio.h>
void sort(int a[],int n)
{
 int i,j;
 for(i=n-1;i>0;i--)
  for(j=0;j<i;j++)
 if(a[j]>a[j+1])
 a[j]=(a[j]+a[j+1])-(a[j+1]=a[j]);
}
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int fib(int c)
{
 int f1=-1,f2=1,f3;
 while(f2<=c)
 {
  f3=f1+f2,f1=f2,f2=f3;
  if(f3==c)
   return f3;
  if(f3>c)
   return f1;
 }
 return 0;
}
void fsearch(int a[],int x,int y,int s)
{
 while(x<y)
 {
  int count=0,c1=1,flag=0,i,mid;
  for(i=x;i<y;i++)
  count++;
  mid=fib(count);
  for(i=x;i<y&&(c1==1);i++)
  {
   flag++;
   if(flag==mid)
    mid=x,c1=0;
  }
  if(a[mid]==s)
  {
   cout<<“Search Element”<<s<<“Is Found”;
   getch();
   return;
  }
  if(a[mid]>s)
   y=mid-1;
  else
   x=mid+1;
 }
 cout<<“Search Element”<<s<<“Is Not Found”;
}
void main()
{
 int i,a[30],n,search;
 clrscr();
 cout<<“Enter Size Of Array:”;
 cin>>n;
 cout<<“Enter”<<n<<“Elements:”;
 for(i=0;i<n;i++)
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 cin>>a[i];
 cout<<“Enter Search Element:”;
 cin>>search;
 sort(a,n);
 fsearch(a,0,n,search);
}

Output

Enter Size Of Array:10
Enter 10 Elements:4 2 6 3 1 5 7 8 10 21
Enter Search Element:8
Search Element 8 Is Found

Enter Size Of Array:5
Enter 5 Elements:6
2
4
3
7
Enter Search Element:10
Search Element 10 Is Not Found

SUMMARY

 • Th e bubble sort works by iterating down an array to be sorted from the fi rst element to the last, com-
paring each pair of elements and switching their positions if necessary.

 • Insertion sort inserts each element of the array into its proper position leaving progressively larger 
stretches of the array sorted.

 • Quicksort is a relatively simple sorting technique using the divide-and-conquer recursive procedure.
 • Merge sort is a fast, stable sorting routine with guaranteed O(n log n) effi  ciency.
 • Th e idea of Shell sort is to arrange the data sequence in a two-dimensional array and sort the columns 

of the array.
 • Radix sort keeps the elements in order by comparing the digits of the numbers.
 • Heap sort is a relatively simple technique built upon the heap data structure.
 • Searching is the process of fi nding the location of a given element in a set of elements. 
 • Linear is the technique of searching a given item in the list by comparing each and every element in the 

list sequentially. 
 • Binary search is a technique of searching an item in the ordered list by dividing the list into two halves 

with each comparison until the item is found or not.
 • Th e Fibonacci search is a technique of searching a sorted array using the divide and conquer principle.
 • Fibonacci search determines the next element for comparison based on the sequence of the Fibonacci 

number and it performs a search technique only on the ordered list.
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EXERCISES

FILL IN THE BLANKS

 1.  algorithms have the same complexity as O(n2)
 2. Merge sort and quick sort follow  principle.
 3. Th e time complexity of merge sort is .
 4. Shell sort performs sorting on an array by .
 5. Radix sort uses  to sort the elements.

MULTIPLE-CHOICE QUESTIONS

 1. Which of the following sorting algorithm is of divide-and-conquer type?
  a. Bubble sort   b. Insertion sort
  c. Quick sort   d. All of the above
 2. Th e complexity of Bubble sort algorithm is 
  a. O(n)    b. O(log n)
  c. O(n2)    d. O(nlog n)
 3. Th e complexity of the merge sort algorithm is .
  a. O(n)    b. O(log n)  
  c. O(n2)    d. O(nlog n)
 4. In a heap tree
  a. Values in a node are greater than every value in the left  subtree and smaller than the right subtree
  b. Values in a node are greater than every value of its child
  c. Both a and b
  d. None 
 5. Finding the location of the element with a given value is .
  a. Traversal   b. Search
  c. Sort    d. None 
 6. Th e worst case occurs in a linear search algorithm when .
  a. Item is somewhere in the middle of the array
  b. Item is not in the array at all
  c. Item is the last element in the array
  d. Item is the last element in the array or is not there at all
 7. Th e complexity of linear search algorithm is
  a. O(n)    b. O(log n)
  c. O(n2)    d. O(n log n)
 8.  Th e complexity of binary search algorithm is 
  a.  O(n)    b. O(log n)
  c. O(n2)    d. O(n log n)
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 9.  Which of the following is not the required condition for a binary search algorithm?
  a. List must be sorted
  b. Need of direct access to the middle element in any sublist
  c. Need to insert  and/or delete elements in list
  d. None 

SHORT-ANSWER QUESTIONS

 1. Defi ne various sorting algorithms.
 2. Prove that any comparison-based algorithm to sort 4 elements requires at least 5 comparisons.
 3. In how many ways can two sorted arrays of combined size N be merged?
 4. What are the properties of a heap?
 5. What is the running time of heap sort on an array A of length n that is already sorted in increasing 

order? What about the same in decreasing order?
 6. Defi ne linear search and give its complexity.
 7. Explain the time complexity of binary search and Fibonacci search. 

ESSAY QUESTIONS

 1. Give illustrations on:
  a. Bubble sort   
  b. Insertion sort     
  c. Selection sort  
 2. Explain in detail about 
  a. Quick sort   
  b. Merge sort 
 3. Write short notes on
  a. Shell sort  
  b. Radix sort 
 4. Trace out the heap sort algorithm for the following list:
        {25, 44, 55, 99, 30, 37, 15, 10, 2, 4}.
 5. Modify the BUILD-HEAP algorithm to create a Min Heap and explain it with an example.
 6. Compare various sorting algorithms in their complexities.
 7. Discuss about (i) linear search and (ii) binary search.
 8. Give an illustration on Fibonacci search.
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