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Preface

Intended Audience

This book is intended for a second undergraduate course in computer science. I assume that the
reader is familiar with the basic control structures of Java or C and with elementary concepts
such as variables and decomposing a problem into functions (methods). Only a pre-calculus
level of mathematics is expected.

Why Choose This Book?
This book has everything you would ever want in a data structures textbook: plentiful exercises,
crystal-clear prose, code available on-line, and just the right amount of depth. Of course, every
author claims as much. What makes this book different?

This book is distinguished by the following features:

• Use of new Java 1.5 features

• An unusually large number of diagrams, drawn in the Unified Modeling Language 
(UML)

• “Inverted pyramid” style, with the most important material up front
• Gradual introduction of abstract concepts

• Extensive use of games as examples
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Version 1.5 of Java adds several long-awaited features to the language. These new features are
explained and used in many examples throughout this book. Specifically:

• The new enhanced for loop allows a programmer to concisely say, “For each element of
this array or Collection....” This is discussed in Appendix A and, for Collections, in
Chapter 5.

• Primitives are now automatically boxed and unboxed, freeing programmers from the
awkward

((Integer)(numbers.get(i))).intValue()

construction. This is covered in Chapter 2 in the discussion of reference types.

• The new java.util.Scanner class (Appendix A) finally makes it possible to read input
from the keyboard without a ridiculous amount of code.

• The biggest change is probably the introduction of generic types (Chapter 4), which
allow a programmer to specify the element type of a collection, improving both pro-
gram clarity and type safety.

In explaining concepts, I use many diagrams. Long stretches of text, code, and equations make
for dry reading. A good diagram can explain a new concept clearly, provide an instant review,
and serve as a landmark when reviewing the text. Since the Unified Modeling Language has
become the de facto standard for software diagrams, the diagrams in this book are drawn in a
subset of the UML. I have deliberately left out even intermediate UML features, such as access
level tags and aggregation diamonds, as I feel they would cause more confusion than clarity.
This notation is introduced gradually (mostly in the first part of the book) and reviewed in
Appendix B.

A related graphic feature is the use of fonts for emphasis in code. Many texts either provide no
font highlighting or use fonts to highlight keywords. This syntax highlighting is useful when
typing code (helping to prevent typographical errors), but it neither makes code easier to read
nor emphasizes important passages. I use bold italic text to highlight parts of the code which are
of particular interest in the current discussion. If nothing in particular is being emphasized, I
highlight method and field names to delineate the major sections of a class.

This book is written in the “inverted pyramid” style taught to journalists: the most important
material is at the front, with finer details and more advanced topics introduced with each chapter.
A course could reasonably be stopped after any chapter. This gives instructors the freedom to
speed up or slow down as necessary, without fear of not getting to an important topic before the
end of the course.

Many texts overwhelm the reader with too much abstraction up front. This is an easy mistake to
make for fully trained computer scientists, who prefer to read about the big picture before delv-
ing into details. On the other hand, students who must absorb inheritance, polymorphism, recur-
sion, and analysis of algorithms before they’ve written a single “real” program are likely to lose
interest, if not consciousness. I constantly hear students asking for more concrete examples, and
I’ve never heard one complain about too many examples.
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With this tension in mind, I have tried to provide examples early in each chapter. Let the students
have complete, working programs to mess with as soon as possible. Abstract concepts are much
easier to absorb in the context of a concrete problem.

Difficult concepts are also introduced as gradually as possible. For example, the call stack is dis-
cussed before it appears in the context of recursion.

Most of my examples are games, often involving dice, cards, and boards. Games capture the stu-
dents’ imagination, giving them some reason to care about the data structure or algorithm being
discussed. While simple enough to program without pages and pages of code, games offer a
more realistic challenge than antiseptic tasks such as finding a greatest common divisor. Near
the midpoint of the text, games involving a dictionary of tens of thousands of words provide
compelling motivation for efficient data structures and algorithms.

Especially near the beginning of the book, I work through the development of each project, often
providing multiple versions of the code and considering alternate designs. Students thus experi-
ence the process of crafting programs, rather than just the results. While no vital parts of the pro-
gram are left out, some enhancements (such as checking for valid input) are left as problems.

Complete, working code for every program is printed in the book and available on-line. I recall,
as a student, being annoyed when the hard part of an algorithm or data structure was left as an
exercise. It’s all here, even code for B-trees; I know of no other undergraduate text that presents
this material at this level of completeness.

No classes have to be downloaded in advance to use the code in this book. Later classes make
use of earlier classes. If desired, these later classes can be easily adapted to use built-in classes
from the Java collections framework; the method names for the classes developed in the book
are congruent.

My hope is that, by the end of the text, the reader will have gained considerable skill in rapidly
developing correct, efficient, general-purpose programs.

Organization
This book is divided into five parts: object-oriented programming, linear structures, algorithms,
trees and collections, and advanced topics.

Part I introduces object-oriented programming, with one chapter on each of the three major prin-
ciples: encapsulation, polymorphism, and inheritance. Use of this part of the book may vary
greatly from one institution to another. Where objects are taught in CS1, this part may be cov-
ered very quickly or skipped altogether (although there are few students who wouldn’t benefit
from a review of this material). At other institutions, where CS1 is taught in C or some other lan-
guage, more time may be spent on this material. Alternately, this part of the book (along with
Appendix A) is good for a short course introducing object-oriented programming.

Part II covers stacks, queues, and lists, in both array-based and linked implementations. The
reader is shown how these structures are used and how to build them, then where to find them in
the Java collections framework.

In Part III, the reader begins the journey from mere programming to computer science. Analy-
sis of algorithms is introduced, including asymptotic notation and a step-by-step procedure for
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analyzing simple algorithms. After this difficult material, the reader gets a break with a rela-
tively short chapter on the simplest searching and sorting algorithms. By the time recursion is
introduced, the reader has been prepared with an understanding of the call stack, an under-
standing of the sorting problem, and the ability to appreciate the better performance provided
by recursive algorithms such as merge sort and Quicksort.

Part IV focuses on data structures, covering trees and set implementations (ordered lists, binary
search trees, and hash tables).

Advanced topics are addressed in Part V, from which instructors may freely choose their favor-
ites. Among the choices are advanced linear structures, strings, advanced trees, graphs, memory
management, and issues involved with disk storage.

Exercises, Problems, and Projects
Exercises are provided at the end of most sections. These should not take more than a couple of
minutes to solve. Exercises are good questions to pose during class or on exams.

Problems are provided at the end of each chapter. These are slightly more involved, taking per-
haps 5 or 10 minutes to solve. These are good for exams and homework.

Finally, one or more projects are given at the end of each chapter. These will usually take an
hour or more, and make good stand-alone homework or lab assignments.

Acknowledgments
I wish to thank: my wife Heather, for proofreading above and beyond the call of duty and for
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3

1
Encapsulation

This chapter introduces the object-oriented approach to software development. Section 1.1 dis-
cusses the software development process and the idea of encapsulation: dividing a program into
distinct components which have limited interaction. In Sections 1.2 and 1.3, we develop a pro-
gram to play the game of Beetle. Section 1.2 introduces terminology and concepts related to
objects as we write a class to model the die used in the game. Section 1.3 expands on this, devel-
oping two more classes to complete the program.

Some readers may wish to read Appendix A before beginning this chapter.

1.1  Software Development

Good Programs
What are the features of a good computer program? It is essential that the program be correct,
doing what it is supposed to do and containing no bugs. The program should be efficient, using
no more time or memory than is necessary. The program should be general-purpose, so that we
don’t have to start from scratch the next time we build a similar program. Finally, all other things
being equal, the program should be rapidly developed. While there are some changes which will
further one of these goals at no cost, it is often necessary to make tradeoffs, as suggested by
Figure 1–1.
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We would like all of our programs to be perfectly correct. In some applications, such as medical
equipment, aircraft navigation, and nuclear power plant control, lives may literally depend on
the correctness of software. In others, such as games and web browsers, the occasional crash
may be merely an annoyance. The best way to ensure correctness is to precisely specify how the
program is supposed to behave and then thoroughly test the program to verify that it does so.
Unfortunately, this can take a prohibitive amount of time. Practical concerns often lead to the
release of buggy software.

Much of this book concerns choosing data structures and algorithms to make programs more
efficient. A data structure is a way of organizing information (numbers, text, pictures, and so
on) in a computer. An algorithm is a step-by-step process for doing something, written either in
plain English or in a programming language. (We study algorithms rather than programs
because, while programming languages change every few years, good algorithms stay around
for decades or even millennia.)

Data structures and algorithms are intimately intertwined. A data structure may support efficient
algorithms for some operations (such as checking whether some item is present) but not for oth-
ers (such as removing an item). Conversely, a fast algorithm may require that data be stored in a
particular way. To make the best choices, we would like to know as much as possible about how
our program will be used. What kinds of data are we likely to encounter? Which operations will
be most common? Some of the most efficient data structures and algorithms are limited to spe-
cific tasks, so choosing them makes our programs less general-purpose.

If a program is to be used very heavily, it may be worth spending some time to optimize it, that
is, fine-tune it to maximize efficiency given the expected data, the hardware on which it will run,
and so on. This trades development time and generality for efficiency.

Once we have a certain amount of programming experience, we realize that we are writing
roughly the same programs over and over again. We can save development time by cutting and
pasting code from previous programs. Sometimes the new program requires changes to the code.
To minimize the time we spend changing our old code, we try to write general-purpose compo-
nents. For example, rather than writing a method to sort an array of five numbers, we write a
method which can sort an array of any length, containing any values of any comparable type
(numbers, letters, strings, and so on). This general-purpose code tends to be less efficient than

Figure 1–1: There are often tradeoffs between the features of a good computer
program.

correctness

efficiency generality

rapid
development
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code written for a specific use. It can also take a little more time to make sure it is correct. On the
other hand, once it is written and thoroughly documented we never need to think about its inner
workings again—it is a trusty power tool that we can bring out whenever we need it. Established
programming languages like Java have huge, general-purpose libraries for graphics, file han-
dling, networking, and so on.

Development time is a precious resource to employers (who must pay their programmers) and
students (who are notorious for procrastination). As you have probably learned by now from bit-
ter experience, most development time is spent debugging. The way to reduce debugging time is
to invest time in design and testing. The urge to sit down and start writing code is powerful, even
for experienced programmers, but a hastily thrown together program will invariably turn on its
creator.

While development time may seem irrelevant to the final program—who cares how long the
Mona Lisa took to paint?—many of the techniques for reducing development time also reduce
the time needed for program maintenance by making our programs more correct and general-
purpose.

Encapsulation
It is difficult to write correct, efficient, general-purpose programs in a reasonable amount of
time because computer programs are among the most complex things people have ever con-
structed. Computer scientists have put a great deal of thought into dealing with this complexity.
The approach used by the Java programming language is object-oriented programming.
Object-oriented programming is characterized by three principles:

• Encapsulation is the division of a program into distinct components which have lim-
ited interaction. A method is an example of an encapsulated component: other methods
interact with it only through the arguments they pass to it and the value it returns. Each
component can be tested separately, improving correctness, and components can be
recombined into new programs, improving generality and development speed. This
chapter focuses on encapsulation.

• Polymorphism is the ability of the same word or symbol to mean different things in dif-
ferent contexts. For example, in Java, the symbol + means one thing (addition) when
dealing with numbers, but means something else (concatenation) when dealing with
Strings. Polymorphism greatly improves generality, which in turn improves correctness
and development speed. Polymorphism is discussed in Chapter 2.

• Inheritance is the ability to specify that a program is similar to another program, delin-
eating only the differences. To draw an example from nature, a platypus is pretty much
like any other mammal, except that it lays eggs. Inheritance makes code reuse easier,
improving correctness, generality, and development speed. Inheritance is the subject of
Chapter 3.

None of these features directly improves efficiency. Indeed, there may be some loss of efficiency.
The consensus among object-oriented programmers is that this price is well worth paying. The
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trouble with software today is not that it runs too slowly, but that it is buggy and takes too long
to develop.

The first principle of object-oriented programming, encapsulation, is analogous to division of
labor in an organization. A grocery store, for example, might have one person in charge of stock-
ing the shelves and another in charge of purchasing. When the stocker notices that the store’s
supply of rutabagas is running low, she only needs to notify the purchaser, who then orders
more. The stocker doesn’t have to know how much rutabagas cost or where they come from. The
purchaser doesn’t have to know which aisle they are displayed on. Both jobs are made easier
through encapsulation.

Encapsulation makes it easier to rapidly develop correct programs because a programmer only
has to consider a few things when writing any one component of the program. This is particu-
larly important in projects involving several programmers: once the programmers have agreed
on how the components will interact, each is free to do whatever he wants within his component.

Generality is improved, both because components can be reused in their entirety and because
understanding one component does not require one to understand the entire program. In fact,
very large programs would be effectively impossible to write, debug, and maintain without
encapsulation.

The relation between encapsulation and efficiency is less clear. Encapsulation prevents certain
efficiency improvements which depend on understanding several parts of a program. Suppose
the purchaser in the grocery store always has new merchandise delivered to the back of the store.
It might be more efficient to park the rutabaga truck in front if rutabagas are displayed near the
entrance, but the purchaser isn’t aware of this detail. On the other hand, by simplifying individ-
ual program components, encapsulation can give a programmer freedom to make improvements
within a component. If the stocker had to think about purchasing, running the cash register, and
so on, then she might not have time to learn to balance five crates of rutabagas on a handtruck.

We have already seen encapsulation in at least one sense. By dividing a class into methods, we
can concentrate on one method at a time. Any variables declared inside a method are visible only
inside that method. When we invoke another method, we only need to know the information in
the method signature (what arguments it expects and what it returns) and associated documenta-
tion. We don’t have to know what happens inside the method.

We don’t merely have the option to ignore the innards of a method. We actually cannot access
variables declared inside a method from outside that method. This is in keeping with the princi-
ple of information hiding: the workings of a component should not be visible from the outside.
Information hiding enforces encapsulation. Continuing the grocery store analogy, we don’t give
the stocker access to the bank account and we don’t give the purchaser the keys to the forklift.

Information hiding may seem counterintuitive. Isn’t it better for everyone to have as much infor-
mation as possible? Experience has shown that the answer is “no.” If someone can see the inner
workings of a component, they may be tempted to take shortcuts in the name of efficiency. With
access to the bank account, the stocker may reason, “The purchaser is on vacation this week. I’ll
just order more rutabagas myself.” If she does not follow proper accounting procedures, or does
not realize that the purchaser has already ordered more rutabagas as part of the regular monthly
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vegetable order, she could cause problems. We shudder to think what might happen if the pur-
chaser got behind the wheel of the forklift.

The Software Development Cycle
Software engineering is the study of how to develop correct, efficient, general-purpose pro-
grams in a reasonable amount of time. There is a vast body of literature, techniques, jargon, and
competing philosophies about software engineering. Much of it is devoted to the largest, most
challenging programs, which are written by teams of dozens of programmers working for years.
These elaborate techniques are not appropriate for the relatively small programs we will write in
this book. On the other hand, our programs are now sufficiently sophisticated that some exami-
nation of the software development process is in order. If we just sit down and start writing code,
we will likely get into trouble.

We can think of the process of writing a program in terms of the software development cycle
(Figure 1–2). We divide the process into three major phases: design, implementation, and test-
ing. (Many software engineers divide the process into more phases.)

In the design phase, we decide what the program is going to look like. This includes problem
specification, the task of stating precisely what a program is supposed to do. In a programming
class, the problem specification is often given as the assignment. In real life, problem specifica-
tion involves working with the end user (for example, the customer, employer, or scientific com-
munity) to decide what the program should do.

The design phase also includes breaking the program down into components. What are the
major components of the program? What is each component supposed to do? How do the com-
ponents interact? It is a good idea to write a comment for each component at this point, so that
we have a very clear understanding of what the component does. Commenting first also avoids
the danger that we’ll put off commenting until our program has become hopelessly complicated.

The implementation phase is the writing of code. This is where we move from a description of a
program to a (hopefully) working program. Many students erroneously believe that this is the
only phase in which actual programming is occurring, so the other two phases are unimportant.
In fact, the more time spent on the other two phases, the less is needed in implementation. If we
rush to the keyboard to start coding, we may end up having to throw away some of our work
because it doesn’t fit in with the rest of the program or doesn’t meet the problem specification.

Figure 1–2: The software development cycle.

Design

Implementation Testing
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In the testing phase, we run our program and verify that it does what it is supposed to do. After a
long session of programming, it is tempting to believe that our program is correct if it compiles
and runs on one test case. We must be careful to test our program thoroughly. For example, when
testing a method to search for some item in an array, we should consider cases where the target
is the first element of the array, where it is somewhere in the middle, where it is the last element,
and where it is not present at all.

The French poet Paul Valéry wrote, “A poem is never finished, only abandoned.” The same can
be said of computer programs. There is some point when the software is released, but there is
often maintenance to be performed: changes to make, new features to add, bugs to fix. This
maintenance is just more iterations of the software development cycle. This is why the cycle has
no point labeled “end” or “finished.” In a programming course, assignments are often com-
pletely abandoned after they are handed in, but general-purpose components may need some
maintenance if they are to be reused in future assignments.

Some software engineers argue that there should be, in effect, only one iteration of the cycle: the
entire program should be designed in exquisite detail, then implemented, then tested. Proponents
of this top-down approach argue that, by making all design decisions up front, we avoid wasting
time implementing components that won’t fit into the final program.

Other software engineers advocate many iterations: design some simple component, implement
it, test it, expand the design very slightly, and so on. Proponents of this bottom-up approach
argue that this allows us to start testing before we have accumulated a huge body of code. Fur-
thermore, because we put off our design decisions, we avoid wasting time redesigning the pro-
gram if we discover that, for example, we misunderstood the problem specification.

In practice, most software development falls between these two extremes. In this chapter, we
will lean toward the bottom-up end of the spectrum. When we are first learning to program, we
don’t yet have the experience to envision the structure of an entire program. We are also likely to
make a lot of coding errors, so we should test early and often.

Encapsulation allows us to break up the software development cycle (Figure 1–3). 

Once we divide the program into encapsulated components, we can work on each one sepa-
rately. In a project with several programmers, multiple components can be developed at the same
time. Even if we are working alone, the ability to concentrate on a single component makes it
much easier to rapidly develop correct, efficient, general-purpose code. Once the components
are “complete,” we integrate them in a high-level implementation phase and then test the entire
system.

Exercises

1.1 What have you done in the past to make one of your programs more correct? More effi-
cient? More general-purpose? More rapidly developed?

1.2 Discuss the extent to which your college education has consisted of encapsulated
courses.
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1.3 Discuss whether a top-down or a bottom-up approach to software development is more
likely to produce a correct program. Which is likely to produce a more efficient pro-
gram? More general-purpose? More rapidly developed? Which approach do you prefer?

1.4 Discuss whether assertions (Appendix A) should be considered part of design, part of
implementation, or part of testing.

1.5 Where do comments fit into the development cycle? How do they affect correctness,
efficiency, generality, and development speed?

1.2 Classes and Objects

This section illustrates the software development cycle and introduces some concepts from
object-oriented programming. As an extended example, we develop a program to play the game
of Beetle (Figure 1–4).

Classes

In Appendix A, we use the word “class” as a rough synonym for “program.” While each pro-
gram needs to have a main() method in some class, many classes are not programs. In object-
oriented programming, a class is predominantly a description of a set of similar objects, such as
the class of birds, the class of insurance claims, or the class of dice. A class is an encapsulated
component of the program.

Figure 1–3: The construction of each encapsulated component (shaded) involves
one or more iterations of the software development cycle. The initial design phase
involves breaking the program into components, each of which can be developed
separately. These components are combined in the implementation phase.

Design

Implementation Testing

D

I T

D

I T
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We can create multiple instances of a class. Each instance is a different object, but they have
things in common with the other members of their class. In the Beetle game, we’ll eventually
have to create two instances of the class of beetles—one for each player. We will also create one
instance of the class of dice.

Breaking our program down into classes is the first step in design. For the Beetle game, we will
need three classes: the class of beetles, the class of dice, and the class of Beetle games. (We cre-
ate one instance of the last class each time we play the game.) This organization is illustrated in
Figure 1–5. This type of diagram is called a UML class diagram. The UML (Unified Modeling
Language) is a widely used set of notations for diagramming many aspects of software develop-
ment, from user interactions to relationships between methods. Most of the UML is beyond the
scope of this book, but we will use these class diagrams as well as (later in this section) instance
diagrams. UML notation is introduced gradually over the course of the book and summarized in
Appendix B.

Beetle
Players: 2 or more

Object: To be the first player with a complete beetle. A complete beetle has a body, a head,
six legs, two eyes, two feelers, and a tail.

Setup: Each player starts with no parts on her beetle.

Play: On your turn, roll a die, and act on the result:

1. If your beetle already has a body, pass the die to the next player. Otherwise, add a 
body and roll again.

2. If your beetle already has a head or has no body, pass the die to the next player. 
Otherwise, add a head and roll again.

3. If your beetle already has six legs or has no body, pass the die to the next player. 
Otherwise, add two legs and roll again.

4. If your beetle already has two eyes or has no head, pass the die to the next player. 
Otherwise, add an eye and roll again.

5. If your beetle already has two feelers or has no head, pass the die to the next 
player. Otherwise, add a feeler and roll again.

6. If your beetle already has a tail or has no body, pass the die to the next player. 
Otherwise, add a tail and roll again.

Figure 1–4: Beetle, also known as Bug or Cootie, is a children’s game of pure luck.
Our implementation handles only two players.
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In Java, the name of a class traditionally begins with an upper-case letter. The three classes we
need to build are therefore called Die, Beetle, and BeetleGame. Each class is defined in a sepa-
rate file, which must have the same name as the class and a .java extension. The first drafts of
these files are shown in Figures 1–6 through 1–8.

Objects, Fields, and Methods

We now focus on the simplest class of objects, the Die class.

What exactly is an object? An object has two kinds of components:

• The fields of the object represent its current state. In a Die, there will be one field indi-
cating which face of the Die is on top. Field values vary from one instance to another.
One Die might have the 2 showing, another the 6.

Figure 1–5: UML class diagram for the Beetle game program. This diagram says that
one instance of BeetleGame is associated with two instances of Beetle and one
instance of Die.

1 /** Beetle with parts for the Beetle game. */
2 public class Beetle {
3 }

Figure 1–6: The file Beetle.java.

1 /** The game of Beetle for two players. */
2 public class BeetleGame {
3 }

Figure 1–7: The file BeetleGame.java.

1 /** A six-sided die for use in games. */
2 public class Die {
3 }

Figure 1–8: The file Die.java.

BeetleGame Beetle

Die

1

2
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• The methods of the object are actions it can perform. In object-oriented programming,
we don’t do things to objects. Instead, we ask objects to do things to themselves. We
don’t roll a die, we ask it to roll itself. All instances of a given class have the same
methods.

In order to make our development cycle for the Die class as short as possible, we start by think-
ing, “It will have to keep track of which face is on top.” We’ll design other features, such as the
method for rolling, later. In a top-down approach to software development, on the other hand, we
would specify all of the methods before thinking about implementation details such as fields.

A first shot at implementing the Die class is shown in Figure 1–9.

This class compiles, but it doesn’t run. The problem is that there is no main() method. Before
we fix this, notice a couple of things about the field topFace.

First, the field is not declared static. This means that it can have a different value for each
instance of Die. A field like this is called an instance field or instance variable. Since this is the
most common kind of field, it is often simply called a field.

Second, the field is declared private. Instance fields are normally declared private. This means
that they cannot be accessed by methods in other classes. When other classes do things with Die
instances, code in those classes can’t access private fields directly. This is an example of infor-
mation hiding.

Let’s put in an empty main() method (Figure 1–10).

1 /** A six-sided die for use in games. */
2 public class Die {
3
4 /** The face of this Die that is showing. */
5   private int topFace;
6
7 }

Figure 1–9: A first shot at implementing the Die class. It compiles, but it doesn’t run.

1 /** A six-sided die for use in games. */
2 public class Die {
3
4   /** The face of the die that is showing. */
5   private int topFace;
6
7   /** Doesn't do anything yet. */
8   public static void main(String[] args) {
9   }

10
11 }

Figure 1–10: The class can now be run, although it still doesn’t do anything.
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Was there any point in doing this? Yes: we now have a program that we can run. After each
change we make from now on, we can check if the program still runs. If not, the bug is most
likely in the new code. By making such small, incremental changes to the code, we can avoid
spending a lot of time hunting for bugs.

We have now completed one iteration of the software development cycle—design, implementa-
tion, and testing—for the Die class.

Constructors
Returning to design, the next thing our class needs is a constructor. A constructor is a method
that initializes all of the fields of an object. It always has the same name as the class. We decide
that, whenever a new instance of the Die is created, it will have the 1 as the top face.

Our design so far can be summed up in a more detailed UML class diagram (Figure 1–11). Since
the Die class is an encapsulated component, we don’t include the boxes for the other two classes
in the program in the diagram.

The implementation of the class, including the constructor, is shown in Figure 1–12. The con-
structor, on lines 7–10, is easily recognized because (a) it has the same name as the class and (b)
it has no return type. Its job is to initialize the topFace field of every new instance of Die to 1.

Figure 1–11: UML class diagram for the Die class. This diagram says that there is one
field, topFace, which is of type int. There are two methods: the constructor Die() and
the method main(). The constructor takes no arguments and, like all constructors, has
no return type. The main() method takes an array of Strings as an argument and has a
return type of void. This method is underlined because it is static—more on this later.

1 /** A six-sided die for use in games. */
2 public class Die {
3
4   /** The face of this Die that is showing. */
5   private int topFace;
6
7   /** Initialize the top face to 1. */
8   public Die() {
9     this.topFace = 1;

10 }
11

Figure 1–12: The constructor initializes the field topFace to 1. (Part 1 of 2)

Die

topFace:int

Die()
main(String[ ]):void
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To create a new instance of the Die class, we use the expression:

new Die();

On line 17, the main() method creates such an instance. This line may seem a bit cryptic, but it
is no stranger than a line like:

int x = 3;

Line 17 declares and initializes a variable of type Die. New types are defined in Java by creating
classes. The name of the variable is d. The initial value of d is the result of the expression new
Die().

Once we have an instance, we can access its topFace field. In the main() method, the instance
is called d, so the field is accessed as d.topFace. Within a nonstatic method such as our con-
structor, we can refer to the current object as this.

Information hiding prevents us from referring to d.topFace within the constructor, because d
is a variable inside the main() method. The constructor can still do things to the object (such as
setting its topFace field), because this and d are references to the same instance.

This situation is illustrated in Figure 1–13, which is called a UML instance diagram. In an instance
diagram, we show the values of the fields within an instance. While there is only one instance in

12 /**
13 * Create a Die, print the top face, set the top face to 6, and
14 * print it again.
15 */
16   public static void main(String[] args) {
17 Die d = new Die();
18     System.out.println(d.topFace);
19     d.topFace = 6;
20     System.out.println(d.topFace);
21   }
22
23 }

Figure 1–13: In a UML instance diagram, the (nonstatic) fields of each instance are
shown, but the methods are not. In this diagram, this and d are both references to the
same instance of Die.

Figure 1–12: The constructor initializes the field topFace to 1. (Part 2 of 2)

Die

topFace � 1

this d
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this particular diagram, we will later see instance diagrams containing multiple instances of the
same class. In a class diagram, on the other hand, each class appears only once. We do not show the
methods in an instance diagram, because all instances of the same class have the same methods.

If we fail to initialize a field in an object, Java gives it a default value. For number types such as
int and double, the default value is 0. For booleans, the default value is false. For chars, the
default value is the unprintable character with the ASCII and Unicode value 0. For arrays and all
object types, the default value is the special value null. A null reference does not point to any-
thing in particular. We’ll discuss null in more detail in Chapter 2.

This automatic initialization of fields is an unusual feature of Java. If we rely on it, we should
include a comment to this effect, in case someone some day wants to translate our code into
another language, such as C, which does not have this feature.

We now compile and run our program. It produces the output:

1
6

This is exactly what we expected. On to the next iteration of the development cycle!

Accessors, Mutators, and this

Referring to the topFace field as d.topFace is fine while we’re working within the Die class,
but eventually other classes (like BeetleGame) will have to know which face is showing on a
Die. It would violate encapsulation for a method in another class to directly access this field. In
fact, since we declared topFace to be private, Java won’t let us do this. This is information hid-
ing enforcing encapsulation.

Other classes should be able to get at the fields of an object only through methods. Two particu-
larly common types of methods are accessors and mutators. An accessor, also known as a getter,
returns the value of some field. A mutator, also known as a setter, changes (mutates) the value of
some field within the object.

We add an accessor getTopFace() and a mutator setTopFace() to the design of the Die
class in Figure 1–14.

Figure 1–14: Adding an accessor and a mutator to the UML class diagram for the
Die class.

Die

topFace:int

Die()
getTopFace():int
setTopFace(int):void
main(String[ ]):void
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The code for these two methods, as well as the revised main() method, is shown in Figure 1–15.

Notice the statement

this.topFace = topFace;

on line 8. The use of this distinguishes between the field topFace (on the left) and the argu-
ment topFace (on the right).

Static vs. Nonstatic

Whenever we refer to a nonstatic field or invoke a nonstatic method, we must indicate a particu-
lar instance. For example, we can’t just say getTopFace(); we have to say something like
d.getTopFace() or this.getTopFace(). (We’ll see a way to implicitly indicate this in
Section 1.3.) We can use this only within nonstatic methods, because only nonstatic methods
are invoked on a particular instance of the class. For example, we cannot say

System.out.println(this.getTopFace());

in main() because main() is a static method. A static method is about the entire class, rather
than about an individual instance. Static methods are sometimes called class methods. Nonstatic
methods are sometimes called instance methods. In UML class diagrams, static methods are
underlined.

1 /** Return the top face of this Die. */
2 public int getTopFace() {
3   return this.topFace;
4 }
5
6 /** Set the top face to the specified value. */
7 public void setTopFace(int topFace) {
8   this.topFace = topFace;
9 }

10
11 /**
12  * Create a Die, print the top face, set the top face to 6, and
13  * print it again.
14  */
15 public static void main(String[] args) {
16   Die d = new Die();
17   System.out.println(d.getTopFace());
18   d.setTopFace(6);
19   System.out.println(d.getTopFace());
20 }

Figure 1–15: Accessor, mutator, and revised main() method for the Die class. Since
the rest of the class is unchanged, it is not shown in this Figure.
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The main() method of any class must be static. This is because it can be the first method run. It
can’t be invoked on a particular instance because there might not yet be any instances of the class.

Static methods are invoked on a class (such as the Math class, which we’ll use momentarily)
rather than on a specific instance. While it is legal to invoke a static method on an instance,
doing so can lead to some surprising results, so it is a bad idea.

Completing the Die Class
We will need one more method to roll the Die. The expanded class diagram is shown in Figure 1–16.

The implementation involves the static random() method from the built-in Math class. This
method returns a random double which is at least 0 and less than 1. If we multiply the result by
6, throw away any fractional part by casting it to an int, and add 1, we get a random int between
1 and 6 inclusive.

The roll() method, along with a main() method to test it, is shown in Figure 1–17. We should
run this one a few times, because it does not always produce the same output.

Figure 1–16: The roll() method takes no arguments and has a return type of void.

1 /**
2  * Set the top face to a random integer between 1 and 6, inclusive.
3  */
4 public void roll() {
5   this.topFace = ((int)(Math.random() * 6)) + 1;
6 }
7
8 /** Create a Die, print it, roll it, and print it again. */
9 public static void main(String[] args) {

10   Die d = new Die();
11   System.out.println("Before rolling: " + d.getTopFace());
12   d.roll();
13   System.out.println("After rolling: " + d.getTopFace());
14 }

Figure 1–17: The roll() method and a main() method to test it.

Die

topFace:int

Die()
getTopFace():int
roll():void
setTopFace(int):void
main(String[ ]):void
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We are done with the Die class for now. We can generate automatic documentation with the
command:

javadoc -public Die.java

Notice that in the resulting file Die.html, the private field is not shown. This is encapsulation at
work again. If someone comes along later to write another game involving the Die class, she
doesn’t have to look at our code. The documentation tells her everything she needs to use Die
objects.

Exercises

1.6 Remove the statement

this.topFace = 1;

from the Die constructor (line 9 in Figure 1–12). Does the class still compile and run
correctly? Explain.

1.7 Explain why accessors and mutators are not needed for constants. (Constants are explai-
ned in Appendix A.)

1.8 Consider the statement:

System.out.println("Practice what you preach.");

What sort of thing is System? (Is it a class, a static method, an instance method, or
something else?) What is System.out? What is System.out.println()? 

1.9 Add an assertion to the setTopFace() method to prevent anyone from setting a Die’s
topFace field to a value less than 1 or greater than 6.

1.3 Using Objects

We now complete our program by building the Beetle and BeetleGame classes.

The Beetle Class
For variety, we develop the Beetle class in a more top-down fashion. We begin by thinking about
what a Beetle can do.

We will need methods to add various body parts. This might not always succeed. For example,
the rules of the game don’t allow a player to add an eye if his beetle doesn’t have a head yet.
Since the success of an addition earns the player another turn, the BeetleGame class will need to
know whether the addition succeeded. These methods should therefore return a boolean value.

We need a method to indicate whether the Beetle is complete. The BeetleGame class will need
this information to determine when the game is over.
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We also need a constructor (a newly constructed Beetle has no parts) and a main() method to
test the class.

What about fields? We’ll need one for each of the different body part types. Some of them are
booleans (either a Beetle has a head or it doesn’t) while others are ints (a Beetle may have from
0 to 6 legs).

This design is summed up in Figure 1–18. We don’t need a main() method because we aren’t
going to run this class. We’re just going to use it when we run the BeetleGame class. (It would
still be a good idea to include a main() method for testing; this is left as Exercise 1.12.)

We could try to implement all of this at once, but it is a better idea to implement one field and
the corresponding method and then test the program. This way, if we make a mistake, we’ll
only have to fix it once instead of once for each kind of body part. A first draft is shown in
Figure 1–19.

Figure 1–18: UML class diagram for the Beetle class.

1 /** Beetle with parts for the Beetle game. */
2 public class Beetle {
3
4   /** True if this Beetle has a body. */
5   private boolean body;
6
7   /** A new Beetle has no parts. */
8   public Beetle() {
9     body = false;

10   }
11

Figure 1–19: Beginning to implement the Beetle class.  (Part 1 of 2)

Beetle

body:boolean
eyes:int
feelers:int
head:boolean
legs:int
tail:boolean
Beetle()
addBody():boolean
addEye():boolean
addFeeler():boolean
addHead():boolean
addLeg():boolean
addTail():boolean
isComplete():boolean
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Notice that, on lines 9, 14, and 17, we refer to body instead of this.body. Since we refer to fields
so often, Java does not require us to explicitly name this. We occasionally need to use this to
distinguish a field from a variable or argument with the same name, as on line 8 of Figure 1–15.

To test what we’ve got so far, we’ll need a main() method. As we start to implement this, we
realize that we have a hurdle to overcome. We will often need to print out the state of a Beetle
instance, both for testing purposes and to let the players know how they are doing. This is going
to take more than a few lines of code.

The toString() Method
Whenever we are going to need some nontrivial piece of code more than once, we should think
seriously about moving it off into a separate encapsulated component. In this case, we add a
method toString() to the Beetle class. This method returns a String representation of the cur-
rent state of the Beetle, which can then be printed.

What should the toString() method return? We could just print out the value of each field, so
a complete Beetle would be displayed like this:

body: true
eyes: 2
feelers: 2
head: true
legs: 6
tail: true

It would be much more entertaining to give a visual representation:

\ /
oOo
-#-
-#-
-#-
v

12 /** Try to add a body and return whether this succeeded. */
13 public boolean addBody() {
14     if (body) {
15       return false;
16     } else {
17       body = true;
18       return true;
19     }
20   }
21
22 }

Figure 1–19: Beginning to implement the Beetle class.  (Part 2 of 2)
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Encapsulation gives us the freedom to put off this decision. We could implement the first version
(which is easier) and later, time permitting, come back and write the second version. Since the
description of the method’s behavior (“print a text representation of this Beetle”) hasn’t
changed, changing the code for this method won’t break anything in the rest of the program.

If we have a variable bug referring to an instance of Beetle, we can print it with the statement:

System.out.println(bug.toString());

Since writing toString() methods is so common, the println() method allows us to sim-
plify this to:

System.out.println(bug);

Java’s built-in string concatenation operator + has the same property, so we can say something
like:

System.out.println("The beetle looks like this:\n" + bug);

The fancy implementation of the toString() method for the Beetle class is shown in Figure 1–20.
Since the description of the toString() method in any class is always, “Return a String represen-
tation of this object,” we take the liberty of omitting the comment.

1 public String toString() {
2   if (body) {
3     String result = "";
4     if (feelers > 0) {
5       result += "\\";
6       if (feelers == 2) {
7         result += " /";
8       }
9       result += "\n";

10     }
11     if (head) {
12       if (eyes > 0) {
13         result += "o";
14       } else {
15         result += " ";
16       }
17       result += "O";
18       if (eyes == 2) { result += "o"; }
19       result += "\n";
20     }

Figure 1–20: The toString() method for the Beetle class returns a String
representation of the instance. (Part 1 of 2)
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We can also add a toString() method to the Die class (Figure 1–21). This method takes
advantage of the fact that, when we use + to combine a String (in this case an empty String) with
an int, Java converts the int to a String.

21  if (legs > 0) {
22       result += "-";
23     } else {
24 result += " ";
25     }
26     result += "#";
27     if (legs > 1) {
28       result += "-";
29     }
30     result += "\n";
31     if (legs > 2) {
32       result += "-";
33     } else {
34       result += " ";
35     }
36     result += "#";
37     if (legs > 3) {
38       result += "-";
39     }
40     result += "\n";
41     if (legs > 4) {
42       result += "-";
43     } else {
44       result += " ";
45 }
46     result += "#";
47     if (legs > 5) {
48       result += "-";
49     }
50 if (tail) {
51       result += "\n v";
52     }
53     return result;
54   } else {
55     return "(no parts yet)";
56   }
57 }

Figure 1–20: The toString() method for the Beetle class returns a String
representation of the instance. (Part 2 of 2)
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The rest of the Beetle class is shown in Figure 1–22.

1 public String toString() {
2   return "" + topFace;
3 }

Figure 1–21: The toString() method for the Die class.

1 /** Beetle with parts for the Beetle game. */
2 public class Beetle {
3
4   /** True if this Beetle has a body. */
5   private boolean body;
6
7   /** Number of eyes this Beetle has, from 0-2. */
8   private int eyes;
9

10   /** Number of feelers this Beetle has, from 0-2. */
11   private int feelers;
12
13   /** True if this Beetle has a head. */
14   private boolean head;
15
16   /** Number of legs this Beetle has, from 0-6. */
17   private int legs;
18
19   /** True if this Beetle has a tail. */
20   private boolean tail;
21
22   /** A new Beetle has no parts. */
23   public Beetle() {
24     body = false;
25     eyes = 0;
26     feelers = 0;
27     head = false;
28     legs = 0;
29     tail = false;
30   }
31  
32   /** Try to add a body and return whether this succeeded. */
33   public boolean addBody() {
34     if (body) {
35       return false;
36 } else {
37       body = true;
38       return true;
39     }
40   }

Figure 1–22: The Beetle class. (Part 1 of 3)
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41
42 /** Try to add an eye and return whether this succeeded. */
43   public boolean addEye() {
44     if (head && (eyes < 2)) {
45       eyes++;
46       return true;
47 } else {
48       return false;
49     }
50 }
51
52 /** Try to add a head and return whether this succeeded. */
53   public boolean addHead() {
54     if (body && !head) {
55       head = true;
56       return true;
57     } else {
58       return false;
59     }
60   }
61       
62   /** Try to add a feeler and return whether this succeeded. */
63   public boolean addFeeler() {
64     if (head && (feelers < 2)) {
65       feelers++;
66       return true;
67     } else {
68       return false;
69     }
70   }
71
72   /** Try to add a leg and return whether this succeeded. */
73   public boolean addLeg() {
74     if (body && (legs < 6)) {
75       legs++;
76       return true;
77     } else {
78       return false;
79     }
80   } 
81

Figure 1–22: The Beetle class. (Part 2 of 3)
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The BeetleGame Class
We tie everything together with the BeetleGame class. We’re certainly going to need a main()
method, a constructor, and a few fields (Figure 1–23). Since we’re going to take input from the
user (a command to roll the die), we also need a java.util.Scanner (see Appendix A).

A first draft of the implementation is shown in Figure 1–24.

82  /** Try to add a tail and return whether this succeeded. */
83   public boolean addTail() {
84     if (body && !tail) {
85       tail = true;
86       return true;
87     } else {
88       return false;
89     }
90   }
91
92   /** Return true if this Beetle has all of its parts. */
93   public boolean isComplete() {
94     return body && (eyes == 2) && (feelers == 2)
95       && head && (legs == 6) && tail;
96 }
97
98   // See Figure 1–20 for the toString() method.
99

100 }

Figure 1–23: Class diagram for BeetleGame. The field INPUT is underlined because
it is static.

Figure 1–22: The Beetle class. (Part 3 of 3)

BeetleGame

INPUT:java.util.Scanner
bug1:Beetle
bug2:Beetle
die:Die
BeetleGame()
main(String[ ]):void
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What is the state of the program after line 27 in the main() method? There is one instance of
BeetleGame, called game. This contains references to an instance of Die, called die, and two
instances of Beetle, called bug1 and bug2. This is best illustrated by a UML instance diagram
(Figure 1–25).

Running the main() method in Figure 1–24 is a (weak) test of the constructor. Satisfied that the
program doesn’t crash, we do another design phase. What else should an instance of Beetle-
Game be able to do? Play itself, of course! We add a play() method and invoke it from main()
(Figure 1–26).

1 /** The game of Beetle for two players. */
2 public class BeetleGame {
3
4   /** For reading from the console. */
5   public static final java.util.Scanner INPUT
6     = new java.util.Scanner(System.in);
7
8   /** Player 1's Beetle. */
9   private Beetle bug1;

10
11   /** Player 2's Beetle. */
12   private Beetle bug2;
13
14   /** A die. */
15   private Die die;
16
17   /** Create the Die and Beetles. */
18   public BeetleGame() {
19     bug1 = new Beetle();
20     bug2 = new Beetle();
21     die = new Die();
22   }
23
24   /** Create the game. */
25   public static void main(String[] args) {
26     System.out.println("Welcome to Beetle.");
27     BeetleGame game = new BeetleGame();
28   }
29   
30 }

Figure 1–24: First draft of the BeetleGame class.
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Figure 1–25: Instance diagram of the situation after line 27 in Figure 1–24.

1 /** Play until someone wins. */
2 public void play() {
3   int player = 1;
4   Beetle bug = bug1;
5   while (!(bug.isComplete())) {
6     if (!(takeTurn(player, bug))) {
7       if (player == 1) {
8         player = 2;
9         bug = bug2;

10       } else {
11         player = 1;
12         bug = bug1;
13       }
14     }
15   }
16   System.out.println("\nPlayer " + player + " wins!");
17   System.out.println(bug);
18 }
19
20 /** Create and play the game. */
21 public static void main(String[] args) {
22   System.out.println("Welcome to Beetle.");
23   BeetleGame game = new BeetleGame();
24   game.play();
25 }

Figure 1–26: The main() method invokes the play() method.

BeetleGame

Die

topFace � 1

Beetle

body � false 
eyes � 0
feelers � 0
head � false
legs � 0
tail � false

body � false
eyes � 0
feelers � 0
head � false
legs � 0
tail � false

Beetle

die

bug1

bug2

game
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We could have put all of this code directly in the main() method, but breaking it into two pieces
makes each method shorter and easier to understand. Similarly, the process of taking a single
turn is moved off into yet another method, takeTurn(), which is invoked on line 6. We’ll write
that method in a moment.

The main loop of the program, on lines 5–15, runs until the current player’s beetle is complete.
Within the loop, takeTurn() is invoked. If this returns false (because the player did not earn a
bonus turn by adding a part to their beetle), the other player becomes the main player. It is neces-
sary to keep track of both the number of the current player (for printing) and the current player’s
Beetle instance (so that methods can be invoked on it).

A snapshot of the state of the program after one pass through the loop is shown in Figure 1–27.

The takeTurn() method (Figure 1–28) asks die to roll itself and then acts on the result, using
a long switch statement. Imagine how long and complicated this method would be if we had not
written all of those methods for adding parts in the Beetle class!

Figure 1–27: Instance diagram of the situation after the first pass through the loop in
play(). The first player rolled a 1, so the corresponding Beetle now has a body. The
BeetleGame instance to which this refers is also known as game, but that name is
visible only inside the main() method.

1 /**
2  * Take a turn for the current player.  Return true if the player 
3  * earned a bonus turn.
4  */
5 public boolean takeTurn(int player, Beetle bug) {
6   System.out.println("\nPlayer " + player + ", your beetle:");
7   System.out.println(bug);
8   System.out.print("Hit return to roll: ");
9   INPUT.nextLine();

Figure 1–28: The takeTurn() method. (Part 1 of 2)

player � 1

BeetleGame

Die

topFace � 1

Beetle

body �      true
eyes � 0
feelers � 0
head � false
legs � 0
tail � false

body � false 
eyes � 0
feelers � 0
head � false
legs � 0
tail � false

Beetle

die

bug1

bug2

this

bug
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We are now in a position to test the entire program by compiling and running the BeetleGame
class. The first few turns of one game are shown in Figure 1–29. A game usually runs for many
turns; we should play it out (probably holding down the return key) to make sure that the pro-
gram handles the end of the game properly.

The complete structure of our program can be summarized by a UML class diagram (Figure 1–30).

We can generate javadoc documentation for all of our classes with the command:

javadoc -public *.java

This generates a number of files, including index.html, which contains links to the documen-
tation for each class.

Similar documentation is available, at http://java.sun.com, for all of Java’s hundreds of
built-in classes. This is called the application programming interface or API. Any time you
can’t remember the exact name of some method in a built-in class, the API is a good place to
start.

10  die.roll();
11   System.out.print("You rolled a " + die.getTopFace());
12   switch (die.getTopFace()) {
13     case 1:
14       System.out.println(" (body)");
15       return bug.addBody();
16     case 2:
17  System.out.println(" (head)");
18       return bug.addHead();
19     case 3:
20       System.out.println(" (leg)");
21       return bug.addLeg();
22     case 4:
23       System.out.println(" (eye)");
24       return bug.addEye();
25     case 5:
26       System.out.println(" (feeler)");
27       return bug.addFeeler();
28     default:
29       System.out.println(" (tail)");
30       return bug.addTail();
31   }
32 }

Figure 1–28: The takeTurn() method. (Part 2 of 2)

http://java.sun.com
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1 Welcome to Beetle.
2
3 Player 1, your beetle:
4 (no parts yet)
5 Hit return to roll 
6 You rolled a 5 (feeler)
7
8 Player 2, your beetle:
9 (no parts yet)

10 Hit return to roll 
11 You rolled a 1 (body)
12
13 Player 2, your beetle:
14  #
15  #
16 #
17 Hit return to roll 
18 You rolled a 3 (leg)
19
20 Player 2, your beetle:
21 -#
22  #
23  #

Figure 1–29: First few turns of the Beetle game.

Figure 1–30: UML class diagram for the entire Beetle program.

Beetle

body:boolean
eyes:int
feelers:int
head:boolean
legs:int
tail:boolean
Beetle()
addBody():boolean
addEye():boolean
addFeeler():boolean
addHead():boolean
addLeg():boolean
addTail():boolean
isComplete():boolean
toString():String

Die

topFace:int

Die()
getTopFace():int
roll():void
setTopFace(int):void
toString():String
main(String[ ]):void

BeetleGame

INPUT:java.util.Scanner
bug1:Beetle
bug2:Beetle
die:Die
BeetleGame()
play():void
takeTurn(int, Beetle):boolean
main(String[ ]):void

2

1



Section 1.3 Using Objects 31

Exercises

1.10 Add an accessor for each field in the Beetle class.

1.11 Add a mutator for each field in the Beetle class. Use assertions (see Appendix A) to
ensure that these mutators cannot be used to put the Beetle into an inconsistent state,
such as having legs but no body.

1.12 Write a main() method to test the Beetle class.

1.13 Change the type of the topFace field in the Die class from int to double. What other
modifications do you have to make to the Die class to get it to compile? The Beetle-
Game class should run without any modifications when you are finished.

1.14 Remove the main() method from the Die class. Does the Die class still compile and
run correctly? Does the BeetleGame class still compile and run correctly? Explain.

1.15 At which places in the Die class can we avoid mentioning this explicitly?

1.16 Suppose we declare the field head in the Beetle class to be public instead of private.
We could then replace the line

return bug.addHead();

in the takeTurn() method of BeetleGame (line 18 of Figure 1–28) with:

bug.head = true;
return true;

What problem is caused by this violation of encapsulation? (Hint: What happens if the
first die roll of the game is a 2?)

1.17 Modify the constructor for the BeetleGame class as shown in Figure 1–31. Draw a
UML instance diagram, similar to Figure 1–25, showing the situation after line 23 of
the main() method in Figure 1–26. Does the program still compile and run correctly?
Explain.

1.18 Look up the Point class in the Java API. What are the methods and fields of this class?
In what way is encapsulation violated?

1 /** Create the Die and Beetles. */
2 public BeetleGame() {
3   bug1 = new Beetle();
4   bug2 = bug1;
5   die = new Die();
6 }

Figure 1–31: Modified constructor for the BeetleGame class, used in Exercise 1.17.
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Summary

Good programs are correct, efficient, general-purpose, and rapidly developed. It is often nec-
essary to make tradeoffs between these desired features. For example, a general-purpose pro-
gram is usually not as efficient at a particular task as a program that has been optimized for
that task. Much of this book, especially after Part I, concerns choosing efficient data structures
and algorithms.

Object-oriented programming is a powerful technique for rapidly developing correct, efficient,
general-purpose software. It is characterized by three principles: encapsulation, polymorphism,
and inheritance. Encapsulation, discussed in this chapter, is the division of a program into dis-
tinct components (such as methods and classes) which have limited interaction.

The software development cycle has three phases: design, implementation, and testing. The top-
down approach to software development advocates thoroughly designing the entire program before
implementing anything, effectively performing only one iteration of the cycle. The bottom-up
approach advocates many short iterations of the cycle. Encapsulation allows us to develop each
component separately.

One important encapsulated component is a class of objects. An object consists of fields, which
hold the current state of the object, and methods, which are actions the object can perform. All
objects in a class have the same methods, but their field values may differ. Static methods and
fields pertain to the class as a whole rather than to individual instances.

Encapsulation is enforced by information hiding, which prevents external access to the internal
details of a component. Specifically, private fields of an object can be accessed only within the
object’s class. A properly encapsulated object can be accessed only through its methods, which
may include accessors and mutators for its fields.

Vocabulary

accessor. Method that returns the value of a field.

algorithm. Step-by-step process for doing something. An algorithm can be expressed as a
program.

application programming interface (API). Specification of the behavior of a code library. In
this book, “the API” refers to the javadoc documentation for the standard Java libraries.

bottom-up. Software engineering approach where there are many short passes through the
development cycle.

class. Description of a set of similar objects.

constructor. Method for initializing a new instance of a class.

correctness. Desired feature of software: that it performs as specified and contains no bugs.
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data structure. Way of organizing information in a computer.

default value. Value given to a field which is not initialized. 0 for numeric types, false for bool-
eans, and null for array and object types.

design. Phase of the software development cycle in which the software is designed.

efficiency. Desired feature of software: that it uses no more time or memory than necessary.

encapsulation. Division of a program into distinct components which have limited interaction.

field. Part of an object holding a value, much like a variable. An object’s fields represent its cur-
rent state.

generality. Desired feature of software: that it can be used for a variety of purposes.

getter. Accessor.

implementation. Phase of the software development cycle in which code is actually written.

information hiding. Preventing external access to the details of a software component. Informa-
tion hiding enforces encapsulation.

inheritance. Ability to specify that a class is similar to another class, delineating only the differ-
ences. See Chapter 3.

instance. Individual object in a class. Of a field or method, pertaining to an individual instance,
that is, nonstatic.

instance variable. Instance field.

maintenance. Debugging, improvement, and alteration of software after the software is released.

method. Part of an object expressing an algorithm. An object’s methods specify what the object
can do.

mutator. Method that changes the value of a field.

null. Reference to nothing. Default value for array and object types.

object. Instance of some class.

object-oriented programming. Approach to programming characterized by encapsulation, poly-
morphism, and inheritance.

optimize. “Fine-tune” software to maximize efficiency under expected conditions.

polymorphism. Ability of the same word or symbol to mean different things in different con-
texts. See Chapter 2.

private. Accessible only within the current class. See Chapter 3.

problem specification. Precise statement of what a piece of software is supposed to do. Part of
the design phase of the software development cycle.
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rapid development. Desired feature of software: that it is produced as quickly as possible.

reference. Pointer to a particular object or array. See Chapter 2.

setter. Mutator.

software development cycle. Process of developing software involving three phases: design,
implementation, and testing.

software engineering. Study of how to develop correct, efficient, general-purpose programs in a
reasonable amount of time.

static. Of a field or method, pertaining to a class as a whole rather than to each instance.

testing. Phase of the software development cycle in which the software is checked for correct-
ness by running it on various inputs.

top-down. Software engineering approach in which there is only one pass through the develop-
ment cycle.

Unified Modeling Language (UML). Set of notations for diagramming software. See Appen-
dix B.

UML class diagram. Diagram showing the fields and methods of classes, the relationships
between classes, or both.

UML instance diagram. Diagram showing the field values of objects (class instances) and any
references between them. Variables and arrays may also be shown.

Problems

1.19 In plain English, write an algorithm for making a peanut butter and jelly sandwich.
Hand these instructions to a partner, who must then follow them to the letter while mis-
interpreting their intent as much as possible.

1.20 Write a class to represent a complex number of the form a + bi, where i is the imaginary
square root of 1. The constructor should accept two doubles as arguments: the real part a
and the imaginary part b. Use an assertion in the constructor to ensure that both of these
numbers are positive. The methods you must provide are summarized in Figure 1–32.
You may want to include others, such as a main() method for testing. One good test is
to create the number 3 + 4i and print its magnitude:

ComplexNumber x = new ComplexNumber(3, 4);
System.out.println(x.getMagnitude());

This should print 5.0.

Hint: The built-in Math class contains static methods sqrt() (to find a square root)
and atan() (to find an arctangent).
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1.21 Repeat Problem 1.20, but with fields angle and magnitude instead of imaginary-
Part and realPart. Your new class should behave exactly the same as the previous one.

1.22 Rewrite the takeTurn() method from BeetleGame (Figure 1–28) using if statements
instead of a switch statement. Discuss which version is easier to understand.

1.23 Modify the BeetleGame program so that it handles three players.

Projects

1.24 Implement the game of Craps (Figure 1–33). You do not need to modify the Die class
to do this.

1.25 Implement the game of Pennywise (Figure 1–34). Your implementation has to handle
only two players. (Hint: Create a CoinSet class, which keeps track of the number of
pennies, nickels, dimes, and quarters a player has. Another instance of this class can be
used to keep track of what’s in the pot.)

Figure 1–32: UML class diagram for the ComplexNumber class in Exercise 1.20.

Craps
Players: 1

Play: Declare how much money you wish to bet, then roll two dice. If the sum is 7 or 11,
you win the amount you bet. If the sum is 2, 3, or 12, you lose this amount. Otherwise, the
sum is your point. Roll until either you roll your point again (in which case you win) or you
roll a 7 (in which case you lose).

For simplicity, the various side bets involved in the casino version of craps are omitted here.

Figure 1–33: Craps is a traditional dice game of pure luck.

ComplexNumber

imaginaryPart:double
realPart:double
ComplexNumber(double,double)
add(ComplexNumber):ComplexNumber
getAngle():double
getImaginaryPart():double
getMagnitude():double
getRealPart():double
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Pennywise
Players: 2–6

Object: To be the last player with any coins.

Setup: Each player starts with four pennies, three nickels, two dimes, and a quarter. The
pot is empty at the beginning of the game.

Play: On your turn, put one of your coins into the pot. You may then take change from the
pot, up to one cent less than the value of the coin you played. For example, if you put in a
dime, you may take out up to nine cents worth of coins.

Figure 1–34: Pennywise is a game of pure skill designed by James Ernest. Used
with permission of the designer.
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2
Polymorphism

This chapter discusses polymorphism, the second principle of object-oriented programming.
Polymorphism is the ability for a word or symbol to mean different things in different contexts.

In Section 2.1, we explore references. References allow for polymorphic types—that is, types of
variables which can hold more than one kind of value. In the context of checking for equality of
such variables, we introduce the Object type, which can hold almost anything. Some details
about primitive types and Strings are also pointed out.

Arrays are particularly interesting reference types. Section 2.2 deals with arrays, including mul-
tidimensional arrays. The game of Domineering is presented as an example.

Interfaces, which specify the behavior of a class without getting into the details of its implemen-
tation, are covered in Section 2.3. An interface is also a polymorphic type.

Section 2.4 discusses overloading, the ability of a method name to mean different things depend-
ing on the types of its arguments.

2.1 Reference Types

Java has eight primitive types. Only four of these are commonly used: boolean, char, double, and
int. The other four are byte, float, long, and short. A variable (or field or argument) of a primitive
type holds its value directly. In other words, if we declare
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int x;

then Java sets aside a certain amount of memory to hold the bits of this number. When we ask for
the value of x, Java simply looks in this location.

All other types, including array types and object types, are reference types. A variable of a refer-
ence type holds a reference to an array or object. If we declare

int[] numbers;

then Java can’t set aside enough memory to hold the array, because we haven’t specified how big
the array is. Instead, Java sets aside enough memory to hold the reference, which is the address
of another location in memory. Later, when we actually create the array, this reference is altered
to point to the array’s location. This ability of the variable numbers to refer sometimes to an
array of 10 ints and sometimes to an array of 100 ints is an example of polymorphism.

Similarly, if we declare

Beetle bug;

then Java sets aside enough memory for a reference. When we initialize the variable with

bug = new Beetle();

the reference is set to point to this new instance.

The assiduous reader may think, “Okay, I see the need for references when using arrays, but why
is it necessary with objects? Don’t all Beetles take up exactly the same amount of memory?”

Surprisingly, the answer is, “not necessarily”—more on that later. In the meantime, consider
what happens when we pass an object as an argument to a method. We did this in the
takeTurn() method of the BeetleGame class (Figure 1–28). If we didn’t use a reference, we
would have to copy all of the fields of the Beetle in question into the area of memory set aside
for the argument bug. Not only would this waste time, but any methods invoked on bug would
affect the copy instead of the original!

Most of the time, the distinction between “the variable v contains something” and “the variable
v contains a reference to something” is unimportant. There are, however, a few things to watch
out for.

Null
As mentioned in Chapter 1, the default value of a field with a reference type is null. Null is a
reference to nothing in particular. We must be careful never to follow a null reference. For exam-
ple, we cannot invoke a method on null. If we try to do so, our program will crash with an error
message like this:

Exception in thread "main" java.lang.NullPointerException

(Pointer is just another word for reference, as is link.) This message is often a sign that we have
forgotten to initialize one of our fields.
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References and Equality
Suppose we have rolled two dice and want to determine if we rolled doubles. In other words, we
want to know if the dice are equal. What does it mean for two Die instances to be equal? The
answer is not as simple as it appears.

Suppose we evaluate the code in Figure 2–1. The resulting situation is shown in Figure 2–2.

The variables die1 and die2 are equal in a strong sense: they are references to the same object.
The variables die2 and die3 are equal in a weaker sense: they are references to two different
objects which happen to be identical.

The == operator checks for equality in the strong sense. Thus,

die1 == die2

is true, but

die2 == die3

is false.

If we want to check whether two objects are identical, we have to check the fields. In this
example,

die2.getTopFace() == die3.getTopFace()

is true.

This is all well and good for the Die class, but what about a more complicated class like Beetle?
We would have to compare six different fields every time we wanted to see if two Beetles were
identical. This sort of work should be done in a method of the Beetle class.

1 Die die1 = new Die();
2 Die die2 = die1;
3 Die die3 = new Die();

Figure 2–1: Code producing the situation in Figure 2–2.

Figure 2–2: UML instance diagram of the situation after executing the code in
Figure 2–1.

Die

topFace � 1

Die

topFace � 1

die3

die2

die1
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The method to do this checking is always called equals(). In our example,

die2.equals(die3)

is true. We will write the equals() method for the Die class in a moment.

The Polymorphic Type Object
The equals() method takes one argument. For reasons that will be explained in Chapter 3, the
type of this argument must always be Object. A variable of type Object can hold a reference to
an instance of any class or even to an array. For example, it is perfectly legal to say:

Object it;
it = new Beetle();
it = new double[10];
it = new Die();

Because a variable of type Object can hold a reference to any of a wide variety of things, Object
is called a polymorphic type. A polymorphic type must be a reference type, because it is not
clear when the variable is declared how much memory will be needed to hold the value to which
it will refer.

It is important to distinguish between the type of a variable and the actual class of the instance to
which it refers. These might be the same, but with a polymorphic type they might not. Java can’t
tell, at compile time, what methods are available for it. If we want to invoke a method on it,
we generally have to cast the value to a specific class:

((Die)it).roll();

There are a few things we can do with an Object without casting. These are explained in Chapter 3.

Returning to equals(), a first shot at writing the method for the Die class is shown in Figure 2–3.

This seems reasonable enough, but there are some problems.

• If this == that, we should return true immediately. If there are a lot of fields, this
can save considerable time.

• If that is null, we should return false immediately rather than trying to follow the
null reference.

• The argument that might not be an instance of the same class as this. In this case, we
should return false immediately.

1 /** Return true if that Die has the same top face as this one. */
2 public boolean equals(Object that) {
3   return topFace == ((Die)that).topFace;
4 }

Figure 2–3: This version of equals() is not good enough.
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A more robust version of the method is given in Figure 2–4. This makes use of the method get-
Class(), which can be invoked on any Object. It returns a representation of Object’s class. Two
instances of the same class return the same representation, so

a.getClass() == b.getClass()

exactly when a and b are instances of the same class.

For other classes, the equals() method looks almost identical. Figure 2–5 shows the method
for the Beetle class.

Primitives and Wrappers
A variable of type Object can hold any object or array, but it can’t hold a value of a primitive
type. This appears to present a problem: what if we’ve created a general-purpose data structure
to hold Objects, and we want to put integers in it?

To deal with this situation, Java provides a wrapper class for each of the primitive types. The
wrapper classes are Boolean, Byte, Character, Double, Float, Integer, Long, and Short. The
upper-case letter at the beginning of each class name helps distinguish it from the corresponding
primitive type.

If we want to store a primitive value in a variable of type Object, we can first wrap it in a new
instance of the appropriate class:

Object number = new Integer(23);

Each wrapper class has a method to extract the original primitive value. For example, the
method in the Integer class is intValue(). Of course, for a variable of type Object, we must
first cast the reference to an Integer before we can use this method.

1 /** Return true if that Die has the same top face as this one. */
2 public boolean equals(Object that) {
3   if (this == that) {
4     return true;
5   }
6   if (that == null) {
7     return false;
8   }
9   if (getClass() != that.getClass()) {

10     return false;
11   }
12   Die thatDie = (Die)that;
13   return topFace == thatDie.topFace;
14 }

Figure 2–4: A much better version of equals(). Only the parts in bold (and the
comment) need to change from one class to another.
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int n = ((Integer)number).intValue();

Before Java 1.5, code was often cluttered with wrapping and unwrapping, also called boxing and
unboxing. Java is now smart enough to do this automatically, so we can do things like:

Object number = 5;
int n = (Integer)number;

If the type of number were Integer, we wouldn’t even need the cast:

Integer number = 5;
int n = number;

This makes our code much clearer, but we should still be aware that boxing and unboxing takes
time. A wrapped Integer also uses considerably more memory than a primitive int. The tradeoff
here is between generality (writing code once to handle all sorts of Objects) and efficiency
(using the primitive types to save time and memory).

In Chapter 4, we will discuss Java’s new generic type feature, which provides an even more
powerful way to write general-purpose code without casting all over the place.

Strings

We usually want to use equals() instead of == to compare objects. This is especially true for
Strings, because Java sometimes reuses Strings.

1 /** Return true if that Beetle has the same parts as this one. */
2 public boolean equals(Object that) {
3   if (this == that) {
4     return true;
5   }
6   if (that == null) {
7     return false;
8   }
9   if (getClass() != that.getClass()) {

10     return false;
11   }
12   Beetle thatBeetle = (Beetle)that;
13   return body == thatBeetle.body
14     && eyes == thatBeetle.eyes
15     && feelers == thatBeetle.feelers
16     && head == thatBeetle.head
17     && legs == thatBeetle.legs
18     && tail == thatBeetle.tail;
19 }

Figure 2–5: The equals() method for the Beetle class.
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Suppose we execute this code:

String s1 = "weinerdog";
String s2 = "weinerdog";

Java creates a single instance of the String class, with s1 and s2 containing references to the
same instance, so s1 == s2. This saves some space. There is no danger that invoking a method
on s1 will alter s2, because Java Strings are immutable—their fields cannot change. (There is
another class, called StringBuilder, for mutable Strings. We’ll discuss that in Chapter 13.)

Unfortunately, Java cannot always tell if two Strings are identical. Specifically, if we execute the
code

String s3 = "weiner";
s3 += "dog";

then s3 refers to an instance which happens to be identical to s1 and s2. Thus, while
s1.equals(s3), it is not true that s1 == s3.

Because the behavior of == is difficult to predict when Strings are involved, we should always
use equals() to compare Strings.

Exercises

2.1 Is int a polymorphic type? Explain.

2.2 How could we convert the String "25" into the primitive int 25? (Hint: Look up the
Integer class in the API.)

2.3 Is it ever necessary to assert that this != null? Explain.

2.4 Suppose we have two Die variables d1 and d2. Can the method invocation d1.roll()
affect the state of d2 if d1 == d2? What if d1 != d2?

2.5 If two objects are equal in the sense of ==, are they automatically equal in the sense of
equals()? What about vice versa?

2.6 Suppose we have two references, foo and bar. After evaluating the statement

foo = bar;

is it definitely true, possibly true, or definitely false that foo == bar? What about
foo.equals(bar)?

2.7 Through experimentation, determine whether equals() can be used to compare
arrays.

2.8 The robust equals() method in Figure 2–5 will produce the same output if lines 3–5
are omitted. What is the point of these lines?

2.9 Write an equals() method for the complex number class you wrote in Problem 1.20.
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2.2 Arrays

Declaration, Allocation, and Initialization
Before it can be used, a variable must be both declared (to specify its type) and initialized (to
give it an initial value). For a variable of an array type, there are three steps we must perform:
declaration, allocation, and initialization. First, we must declare the variable. For example:

int[] nums;

The second step is to allocate space for the array. We have to tell Java how many elements the
array will have so that it can set aside the appropriate amount of memory. The syntax for alloca-
tion uses the keyword new:

nums = new int[4];

The array now exists, but the elements themselves have not yet been initialized. They have
default values—in this case, they are all 0. We often use a for loop to initialize the elements:

for (int i = 0; i < nums.length; i++) {
  nums[i] = i * 2;
}

The effects of these steps are summarized in Figure 2–6.

We can perform all three of these steps in a single statement by explicitly supplying the values of
the array elements. This is reasonable only for relatively short arrays:

int[] nums = new int[] {0, 2, 4, 6};

The ability of a variable of an array type to hold an array of any size is another example of poly-
morphism.

Multidimensional Arrays
We can declare an array of anything. An array of Die objects would be declared like this:

Die[] dice;

An array of ints would be declared like this:

int[] nums;

We can even declare an array of arrays of ints, like this:

int[][] rows;
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An array of arrays is called a multidimensional array. Specifically, rows is a two-dimensional
array, analogous to a Chess board. If we allocate rows with the statement

rows = new int[3][4];

then we get the data structure shown in Figure 2–7.

The array rows is said to have dimensionality 2, because we have to specify two indices to get
at a particular element. The dimensions of the array are 3 (the number of rows) and 4 (the num-
ber of columns).

While it would be difficult to draw, we could declare and allocate an array of dimensionality 4:

int[][][][] tesseract = new int[2][5][4][3];

Code UML instance diagram

// Declaration
int[] nums;

// Allocation
nums = new int[4];

// Initialization of elements
for (int i = 0; i < nums.length; i++) {
nums[i] = i * 2;

}

Figure 2–6: Declaration, allocation, and initialization of an array variable. In the first
diagram, the line ending in a dot indicates a null reference.

Figure 2–7: Instance diagram showing a two-dimensional array. The shaded ele-
ment is rows[2][3].

nums

nums 0 0 0 0

nums 0 2 4 6

0

1

2

row

0 0 0 0

0 0 0 0

0 0 0 0

rows

0 1 2 3column



46 Chapter 2  •  Polymorphism

This array has dimensions 2, 5, 4, and 3. It is rare to see dimensionalities greater than 3, because
such arrays quickly become impractically large. Even tesseract has 120 elements!

This array-of-arrays representation allows for several interesting tricks. If we supply only one
index for rows, we get a reference to a single row of the array. For example, if we say

int[] middleRow = rows[1];

we get the situation in Figure 2–8.

We can also allocate an array one part at a time. For example,

int[][] rows = new int[3][];

allocates the spine of the array, but not any of the rows. Since the elements of this array are ref-
erences, they get the default value null. This is shown in Figure 2–9.

Now we can allocate the first row with

rows[0] = new int[4];

giving the situation shown in Figure 2–10.

Figure 2–8: A reference to a single row of a two-dimensional array.

Figure 2–9: A two-dimensional array with only the spine allocated.

Figure 2–10: A two-dimensional array with the first row allocated.

0 0 0 0

0 0 0 0

0 0 0 0

rows
middleRow

rows

rows
0 0 0 0
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There is no reason the other rows have to have the same length. If we now allocate

rows[1] = new int[2];
rows[2] = new int[3];

we get a ragged array, as shown in Figure 2–11.

Example: Domineering
To illustrate the use of arrays, we now write a program to let two people play the game of Dom-
ineering (Figure 2–12).
.

What classes will we need? An initial sketch (Figure 2–13) suggests that we’ll need a Domineer-
ing object, one Board object, and a number of Domino objects.

Further thought reveals that this is overkill. While Domineering involves dominoes, they don’t
have any interesting state. We don’t even care what numbers are on them. All they do is take up
space on the board. As long as we keep track of which board squares are occupied, we don’t
really need a Domino class for this game.

Figure 2–11: In a ragged array, different rows have different lengths.

Domineering
Players: 2, one playing horizontally and one vertically.

Object: To be the last player with a legal move.

Board: The board is an 8 × 8 square grid, as in Chess or Checkers. It is initially empty.

Play: On a turn, a player places a domino on the board to occupy two adjacent squares.
One player places his dominoes horizontally (east-west), the other vertically (north-south).
The dots on the dominoes are ignored, but a domino cannot overlap any previously played
dominoes.

Figure 2–12: The game of Domineering, also known as Crosscram, was invented by
Göran Andersson.

rows

0 0 0 0

0 0

0 0 0
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In fact, the board is such a simple thing that we can represent it with a two-dimensional array of
booleans. An individual element is true if that square is occupied. We can implement Domineer-
ing with a single class (Figure 2–14).

The field squares, the constructor, and the main() method are shown in Figure 2–15.

After allocating squares, we could have initialized the elements with the code

for (int row = 0; row < 8; row++) {
  for (int column = 0; column < 8; column++) {
    squares[row][column] = false;
  }
}

but, since false is the default value for booleans, we don’t have to do this.

Figure 2–13: This UML class diagram says that a Domineering object is associated
with one Board object and 0 to many Domino objects. The asterisk denotes “many.”
Our actual program will not have this structure.

Figure 2–14: The Domineering game can be implemented with a single class. As
always, static fields and methods are underlined. It is not yet obvious what all of the
fields and methods are for, but we show them here for completeness.

Domineering

Board

Domino
0..*

1

Domineering

INPUT:java.util.Scanner
HORIZONTAL:boolean = false
VERTICAL:boolean = true
squares:boolean[][ ] 
Domineering()
getSquare(int,int):boolean
hasLegalMoveFor(boolean):boolean
play():void
playAt(int,int,boolean):void
setSquare(int,int,boolean):void
toString():String
main(String[ ]):void
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The toString() method (Figure 2–16) uses nested for loops.

Figure 2–17 shows a String the method might return for a board where one horizontal and one
vertical domino have been placed.

As in BeetleGame, the play() method contains a loop which repeats until the game is over.
This method must keep track of who the current player is. Rather than numbering the players
and trying to remember which one plays horizontally and which one vertically, we define two

1 /** The game of Domineering. */
2 public class Domineering {
3
4   /** Array of board squares, true if occupied. */
5   private boolean[][] squares;
6
7   /** The board is initially empty. */
8   public Domineering() {
9     squares = new boolean[8][8];

10     // Java initializes all array elements to false
11   }
12   
13   /** Create and play the game. */
14   public static void main(String[] args) {
15     System.out.println("Welcome to Domineering.");
16     Domineering game = new Domineering();
17     game.play();
18   }
19
20 }

Figure 2–15: A field, constructor, and main() method for Domineering.

1 public String toString() {
2   String result = "  0 1 2 3 4 5 6 7";
3   for (int row = 0; row < 8; row++) {
4     result += "\n" + row;
5     for (int column = 0; column < 8; column++) {
6       if (squares[row][column]) {
7         result += " #";
8       } else {
9         result += " .";

10       }
11     }
12   }
13   return result;
14 }

Figure 2–16: The toString() method uses nested for loops.
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constants HORIZONTAL and VERTICAL. This makes the code easier to read. Since there are only
two choices, we can use the boolean values false and true for these constants.

An added advantage of this representation is that we can switch players with the simple statement:

player = !player;

The play() method and these constants are shown in Figure 2–18.

1   0 1 2 3 4 5 6 7
2 0 . # . . . . . .
3 1 . # . . . . . .
4 2 . . . . . . . .
5 3 . . . . . . . .
6 4 . . . . . . . .
7 5 . . . . . # # .
8 6 . . . . . . . .
9 7 . . . . . . . .

Figure 2–17: Typical output of the toString() method.

1 /** For reading from the console. */
2 public static final java.util.Scanner INPUT
3   = new java.util.Scanner(System.in);
4
5 /** The player who plays their dominoes horizontally. */
6 public static final boolean HORIZONTAL = false;
7
8 /** The player who plays their dominoes vertically. */
9 public static final boolean VERTICAL = true;

10
11 /** Play until someone wins. */
12 public void play() {
13   boolean player = HORIZONTAL;
14   while (true) {
15     System.out.println("\n" + this);
16     if (player == HORIZONTAL) {
17       System.out.println("Horizontal to play");
18     } else {
19       System.out.println("Vertical to play");
20     }
21     if (!(hasLegalMoveFor(player))) {
22       System.out.println("No legal moves -- you lose!");
23       return;
24     }

Figure 2–18: The play() method and associated constants. On line 15, we want to
print a blank line above the diagram of the board. We do this by adding the newline
String "\n" to this (which is implicitly this.toString()) and passing the result to
System.out.println(). (Part 1 of 2)
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The play() method invokes two other methods, hasLegalMoveFor() and playAt(). The
first determines if there is any legal move left for the current player—if not, the game is over.
The second actually updates the array squares.

We present playAt() first, as it is simpler. This method (Figure 2–19) sets two elements of
squares to true.

The hasLegalMoveFor() method is more complicated, because it has to act slightly differ-
ently depending on the current player. If it is looking for horizontal moves, it has to check rows
0 through 7 and columns 0 through 6, making sure that both

squares[row][column]

and

squares[row][column + 1]

are unoccupied. On the other hand, when looking for vertical moves, it has to check rows 0
through 6 and columns 0 through 7, making sure that both

25  System.out.print("Row: ");
26     int row = INPUT.nextInt();
27     System.out.print("Column: ");
28     int column = INPUT.nextInt();
29     playAt(row, column, player);
30     player = !player;
31   }
32 }

1 /**
2  * Play a domino with its upper left corner at row, column.
3  */
4 public void playAt(int row, int column, boolean player) {
5   squares[row][column] = true;
6   if (player == HORIZONTAL) {
7     squares[row][column + 1] = true;
8   } else {
9     squares[row + 1][column] = true;

10   }
11 }

Figure 2–19: The playAt() method actually modifies the elements of squares. Two
elements are modified: one in line 5 and one in either line 7 or line 9.

Figure 2–18: The play() method and associated constants. On line 15, we want to
print a blank line above the diagram of the board. We do this by adding the newline
String "\n" to this (which is implicitly this.toString()) and passing the result to
System.out.println(). (Part 2 of 2)
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squares[row][column]

and

squares[row + 1][column]

are unoccupied. Rather than write loops for each of these very similar cases, we write the loops
once, using variables rowOffset and columnOffset to control which version we use. Thus,
the second square we check is:

squares[row + rowOffset][column + columnOffset]

If player is HORIZONTAL, rowOffset is 0 and columnOffset is 1. If player is VERTICAL,
rowOffset is 1 and columnOffset is 0.

These variables are also used in the termination tests in the for loops. The hasLegalMove-
For() method is shown in Figure 2–20.

We conclude the example with testing. The first few turns of a game of Domineering are shown
in Figure 2–21.

1 /**
2  * Return true if there is a legal move for the specified player.
3  */
4 public boolean hasLegalMoveFor(boolean player) {
5   int rowOffset = 0;
6   int columnOffset = 0;
7   if (player == HORIZONTAL) {
8     columnOffset = 1;
9   } else {

10     rowOffset = 1;
11   }
12   for (int row = 0; row < (8 - rowOffset); row++) {
13     for (int column = 0; column < (8 - columnOffset); column++) {
14       if (!(squares[row][column]
15             || squares[row + rowOffset][column + columnOffset])) {
16         return true;
17       }
18     }
19   }
20   return false;
21 }

Figure 2–20: The exact behavior of the nested for loop in lines 12–19 of
hasLegalMoveFor() is controlled by the variables rowOffset and columnOffset.
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Exercises
2.10 Draw a UML instance diagram of the situation after evaluating the code below.

int[] arr = new int[6];
int[] avast = new int[6];
int[] shiverMeTimbers = arr;
int[] yoHoHo;
arr[2] = 5;
avast[3] = 8;

1 Welcome to Domineering.
2
3 0 1 2 3 4 5 6 7
4 0 . . . . . . . .
5 1 . . . . . . . .
6 2 . . . . . . . .
7 3 . . . . . . . .
8 4 . . . . . . . .
9 5 . . . . . . . .

10 6 . . . . . . . .
11 7 . . . . . . . .
12 Horizontal to play
13 Row: 1
14 Column: 0
15
16   0 1 2 3 4 5 6 7
17 0 . . . . . . . .
18 1 # # . . . . . .
19 2 . . . . . . . .
20 3 . . . . . . . .
21 4 . . . . . . . .
22 5 . . . . . . . .
23 6 . . . . . . . .
24 7 . . . . . . . .
25 Vertical to play
26 Row: 5
27 Column: 6
28
29   0 1 2 3 4 5 6 7
30 0 . . . . . . . .
31 1 # # . . . . . .
32 2 . . . . . . . .
33 3 . . . . . . . .
34 4 . . . . . . . .
35 5 . . . . . . # .
36 6 . . . . . . # .
37 7 . . . . . . . .
38 Horizontal to play

Figure 2–21: Beginning a game of Domineering. Text typed by the user is in grey.
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2.11 Draw a UML instance diagram of the data structure produced by the code below.

int[][] triangle = new int[][] {{1, 2, 3}, {4, 5}, {6}};

2.12 Suppose we need to store a table of distances between cities, as found in a road atlas.
One obvious approach would be to use a square array distances, where dis-
tances[i][j] is the distance between city i and city j. Explain how to use a ragged
array to cut the amount of memory needed for this data structure roughly in half.

2.13 If the array arr has dimensions 3 and 7, what is arr.length?

2.14 Is the statement below legal? Explain.

Object[] ref = new int[10][10];

2.15 Arrays are not objects, so we can’t invoke methods on them. This can make it awkward
to, for example, test two arrays for equality. The built-in java.util.Arrays class provides
several static methods that work on arrays. Look this class up in the API. Explain the
difference between the equals() and deepEquals() methods and between the
toString() and deepToString() methods. (If you use it in code, you must refer to
the Arrays class as java.util.Arrays, for reasons explained in Chapter 3.)

2.16 Draw a UML instance diagram of the data structures that exist just before exiting the
main() method in Figure 2–22.

2.17 Suppose we provided an accessor getSquares() for the Domineering class. A
method in another class, given an instance game, might do this:

game.getSquares()[2][5] = true;

Discuss whether this violates encapsulation.

2.18 As written, the Domineering program does not verify that a player has chosen a valid
location. A player may place a domino so that it overlaps an existing one. Also, if the
player places a domino so that part of it is off the board, the program will crash. Modify
the program to fix both these problems. (If the player enters invalid coordinates, give
her a chance to enter valid ones.)

1 public static void main(String[] args) {
2   int[][] numbers = new int[5][];
3   int[] row = new int[] {0, 1, 2, 3};
4   for (int i = 0; i < numbers.length; i++) {
5     numbers[i] = row;
6   }
7 }

Figure 2–22: Code for Exercise 2.16.
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2.19 Domineering is normally played on an 8 × 8 board, but there is no reason it couldn’t be
played on a 4 × 4 or 10 × 10 board. Modify the program to allow the user to specify the
board size. You will need to eliminate all mention of the magic number 8 from the pro-
gram. (Hint: Instead of storing the board size in a separate field, you can simply use
squares.length.)

2.3 Interfaces

An interface is a very similar to a class, except that (a) it contains no fields, and (b) its methods
have no bodies. In other words, it specifies how a class behaves (what methods it provides) with-
out commenting on how the class is implemented. An example of an interface, to represent a
domino, is given in Figure 2–23. (We didn’t need to represent dominoes in this much detail in
Domineering, but this might be useful in other games.)

A class which provides methods with these signatures can be said to implement the interface.
The FieldDomino class (Figure 2–24) implements the Domino interface. Beware of the potential
confusion between this Java-specific meaning of the word “implement” and its more general
meaning of “provide code for,” as in, “Implement this algorithm.”

It is okay to leave off comments for the methods specified in the interface—javadoc is smart
enough to copy them from the interface. Indeed, putting the comment in only one place (the
interface) reduces the chance that inconsistent comments will appear.

It is possible for more than one class to implement the same interface. The ArrayDomino class
(Figure 2–25) represents a domino in a different way. It is also possible for a class to implement

1 /** A domino. */
2 public interface Domino {
3
4   /** Swap the left and right numbers on the Domino. */
5   public void flip();
6
7   /** Return the number on the left side of the Domino. */
8   public int getLeft();
9

10   /** Return the number on the right side of the Domino. */
11   public int getRight();
12
13 }

Figure 2–23: In an interface, there are no fields or method bodies.
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more than one interface, as long as it provides all of the methods specified by each of those
interfaces.

Domino is a polymorphic type, which can hold a reference to an instance of any class which
implements the Domino interface. Thus, if we declare a variable

Domino bone;

we can say either

bone = new FieldDomino(2, 3);

1 /** A domino. */
2 public class FieldDomino implements Domino {
3
4  /** The number on the left end of the Domino. */
5 private int left;
6
7  /** The number on the right end of the Domino. */
8 private int right;
9

10   /** Initialize the left and right numbers on the Domino. */
11   public FieldDomino(int left, int right) {
12     this.left = left;
13     this.right = right;
14   }
15
16   public void flip() {
17     int swap = left;
18     left = right;
19     right = swap;
20   }
21   
22   public int getLeft() {
23     return left;
24   }
25
26   public int getRight() {
27     return right;
28   }
29
30   public String toString() {
31     return left + "-" + right;
32   }
33
34 }

Figure 2–24: The FieldDomino class uses two fields to hold the left and right
numbers on the domino.
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or:

bone = new ArrayDomino(2, 3);

The relationship between the Domino interface and the FieldDomino and ArrayDomino classes
is shown in Figure 2–26. It is not necessary to list the interface methods in the boxes for the
classes.

An interface used to specify all of the important methods of any implementing class is some-
times called an abstract data type or ADT. If you are going to write a class involving variables of

1 /** A domino. */
2 public class ArrayDomino implements Domino {
3
4  /** The numbers on the Domino. */
5   int[] numbers;
6
7 /** Index of the left number.  The other is the right number. */
8   int leftIndex;
9

10   /** Initialize the left and right numbers on the Domino. */
11   public ArrayDomino(int left, int right) {
12     numbers = new int[] {left, right};
13     leftIndex = 0;
14   }
15
16   public void flip() {
17     leftIndex = 1 - leftIndex;
18   }
19
20   public int getLeft() {
21     return numbers[leftIndex];
22   }
23
24   public int getRight() {
25     return numbers[1 - leftIndex];
26   }
27
28   public String toString() {
29     return numbers[leftIndex] + "-" + numbers[1 - leftIndex];
30   }
31
32 }

Figure 2–25: The ArrayDomino class uses an array of two ints instead of two int fields.
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type Domino and I am going to write an implementation of the Domino interface, we can start
by writing the ADT. As long as I provide the required methods and you do not expect any others,
our classes will work together perfectly when they are done.

Many software engineers argue that a class implementing an abstract data type should provide
only the methods required by the interface. (There are a few exceptions: constructors, nonpublic
methods, common methods like toString(), and main() methods for testing.) If an imple-
mentation provides some other public method (say, isDoublet() to determine if both numbers
on a Domino are the same), any code which takes advantage of this method will break if we
switch to a different implementation which does not provide it.

There are other uses for interfaces besides specifying abstract data types. For example, the Com-
parable interface (Chapter 8) is used to specify that an object can be compared to other instances
of its class. Since Comparable is a polymorphic type, it is possible to write one sorting method
which works on any array of Comparables. The interface requires only one method,
compareTo(), but nobody would expect a class to have only this method. Classes such as Inte-
ger and String are designed for other purposes and also implement Comparable.

Exercises

2.20 Draw UML instance diagrams of the objects created by the expressions

new FieldDomino(0, 6)

Figure 2–26: UML class diagram showing the relationship between the Domino
interface and the FieldDomino and ArrayDomino classes. The dashed, hollow-headed
arrows say that both classes implement the interface. The methods in the Domino
interface are in italic to emphasize that they are only required, not provided, by the
interface.

<<interface>>
Domino

flip():void
getLeft():int
getRight():int

FieldDomino

left:int
right:int
FieldDomino(int,int)
toString():String

ArrayDomino

numbers:int[ ]
leftIndex:int
ArrayDomino(int,int)
toString():String



Section 2.4 Overloading 59

and

new ArrayDomino(0, 6)

2.21 Through experimentation, determine whether we have to say implements Domino at
the top of FieldDomino in order to make (a reference to) an instance of FieldDomino a
legitimate value for a variable of type Domino. Is it enough to supply methods with the
correct signatures?

2.22 Discuss whether it makes sense for an interface to implement another interface. How
about a class implementing another class?

2.23 Through experimentation, determine whether, when a class provides a method required
by an interface, the argument names in the class have to match those in the interface.

2.24 Discuss whether it makes sense for an interface to include a constructor.

2.4 Overloading

Interfaces, the Object type, and array types are polymorphic types. A different kind of polymor-
phism is overloading: the ability of a method to do different things depending on the types of its
arguments.

In Java, the + operator is overloaded. When given numeric arguments, it performs addition.
When given Strings, it performs concatenation.

It is acceptable to have two different methods in the same class with the same name as long as
their signatures specify different argument types. For example, in the Domineering class, we
could have called the playAt() method play(), giving it the signature:

public void play(int row, int column, boolean player)

This is acceptable because the sequence of argument types is different from that in the existing
method with the signature

public void play()

which happens to take no arguments whatsoever. When we invoke an overloaded method, Java
figures out which version we mean, based on the number and types of arguments we provide.

We should not overload a method so that the same arguments would be acceptable to two differ-
ent versions. For example, we should not declare one method with the signature

public void zorch(Object it)

and another with the signature

public void zorch(Beetle it)
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because either one would be legitimate if we passed in an argument of type Beetle. The compiler
will not complain if we overload a method like this, but it can lead to unexpected behavior (see
Problem 2.29).

The value of overloading is that it reduces the number of method names we have to keep track
of. For example, if we have a class to represent a matrix, we might want methods to multiply by
another matrix, by a vector, and by a scalar. Without overloading, these would have to have the
signatures:

public Matrix timesMatrix(Matrix m)
public Vector timesVector(Vector v)
public Matrix timesScalar(double s)

With overloading, we can just use one, shorter name:

public Matrix times(Matrix m)
public Vector times(Vector v)
public Matrix times(double s)

Exercises

2.25 Is it okay for a class to have two methods with the same name as long as their signa-
tures differ in any way? Explain.

2.26 Write a class with two overloaded static methods, one of which takes an int as an argu-
ment and one of which takes an Object. Which version is used if the argument is 3?
What if it is (Integer)3?

2.27 What is printed by the program in Figure 2–27?

1 public class OverloadExample {
2
3   public static double zorch(double x) {
4     return x / 2;
5   }
6
7   public static double zorch(int x) {
8     return x * 2;
9   }

10
11   public static void main(String[] args) {
12     System.out.println(zorch(3));
13     System.out.println(zorch(3.0));
14     System.out.println(zorch(3 + 3.0));
15   }
16
17 }

Figure 2–27: A program with an overloaded method, for Exercise 2.27.



Vocabulary 61

Summary

Except for the eight primitive types, all types in Java are reference types. Reference types
include array types, class types, the Object type, and interface types. The default value for any
reference type is the special value null.

Since the == operator determines only whether two references are to the exact same object or
array, it should not be used to compare reference types. Instead, classes should provide an
equals() method. This is especially true of Strings, because Java’s reuse of Strings makes the
behavior of the == operator difficult to predict.

A variable of the polymorphic type Object can contain any reference. It is usually necessary to
cast the value of such a variable before invoking a method on it. Such a variable cannot hold a
primitive value such as an int, but wrapper classes are provided for this purpose. In Java 1.5, this
boxing and unboxing is done automatically.

A variable of an array type must be declared, allocated, and initialized before it can be used.
Multidimensional arrays are represented as arrays of arrays.

An interface specifies the behavior of a class without commenting on how the class is imple-
mented. An interface can define an abstract data type, so that implementations of the interface
can be used interchangeably. Alternately, an interface may just specify a small number of meth-
ods, which implementing classes must provide.

An overloaded method is one with several different versions which differ in the number and
types of arguments they take. Java uses the arguments passed to the method to determine which
version to use.

Vocabulary

abstract data type (ADT). Description of the behavior of a class, but not its inner workings. In
Java, interfaces can be abstract data types.

allocate. Set aside memory for. After declaring a variable of an array type, we must allocate
space for it before we can initialize its contents.

box. Enclose a primitive value in an instance of the corresponding wrapper class.

dimensionality. Number of dimensions an array has. For example, a flat grid is two-dimensional.

dimensions. Sizes of the rows, columns, etc. of an array.

immutable. Unchangeable. In Java, Strings are immutable.

implement. In Java specifically, provide methods required by an interface. In general, write
code for a described algorithm or data structure.

interface. Classlike code file that provides signatures of require methods, but no fields or method
bodies.
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link. Reference.

multidimensional array. Array of arrays. A common example is a two-dimensional table.

overload. Provide multiple methods in the same class which have the same name, but accept dif-
ferent arguments. Java uses the argument types to determine which version to use.

pointer. Reference.

polymorphic type. Type that can hold more than one kind of value.

ragged array. Multidimensional array where the subarrays (for example, rows) are not all the
same size.

reference type. Any type that is not a primitive type. All array and object types are reference
types.

spine. In a multidimensional array, the array that contains the subarrays (for example, rows).

unbox. Extract a primitive value from an instance of the corresponding wrapper class.

wrapper class. Class corresponding to one of the eight primitive types. For example, Integer is
the wrapper class for ints.

Problems

2.28 Write a class to represent a hotel. Its one field should be a String[] holding the name of
the person in each hotel room. (All of the rooms are singles.) Provide a method
checkIn() which accepts a String and an int and puts the named person in the speci-
fied room. Use an assertion to verify that the room is not already occupied. Provide a
method checkOut() to clear a room. Finally, provide a method isFull() which
returns true if all of the rooms are occupied.

2.29 Write a program which provides two overloaded versions of a method. One takes an
argument of type Object, the other an argument of type String. In the main() method,
declare a variable:

Object thing = "this is a String";

Through experimentation, determine which version of the overloaded method is used
when thing is passed as an argument to the overloaded method. In other words, does
Java use the type of the variable or the class of the instance to decide which version of
the overloaded method to use? What happens if you pass in (String)thing?

Projects

2.30 Write Vector and Matrix classes consistent with Figure 2–28.

2.31 Implement the game of Reversi (Figure 2–29).
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Figure 2–28: UML class diagram of the classes for Exercise 2.30. Since a particular
Vector is not associated with a particular Matrix, nor vice versa, there is no arrow
connecting the classes.

Reversi
Players: 2, black and white.

Object: To have the most pieces of your color on the board at the end of the game.

Board: The board is an 8 × 8 square grid. The initial setup is shown below.

Play: On a turn, a player places one of her pieces on an empty board square. Every line
(horizontal, vertical, or diagonal) of the opponent’s pieces which is bounded on one end
by the just-played piece and on the other end by another friendly piece is captured; all of
the captured pieces change color. For example, in the diagram below, a white piece
played on the square marked “a” would cause the two black stones marked “b” to become
white.

Figure 2–29: The game of Reversi is sold commercially as Othello. (Part 1 of 2)

Vector

numbers:double[ ]

Vector(int)
dotProduct(Vector):double
get(int):double
plus(Vector):Vector
set(int,double):void
times(double):Vector

Matrix

numbers:double[ ][ ]

Matrix(int,int)
get(int,int):double
plus(Matrix):Matrix
set(int,int,double):void
times(double):Matrix
times(Matrix):Matrix
times(Vector):Vector
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2.32 Implement the game of Go-Moku (Figure 2–30).

2.33 Implement the game of Mancala (Figure 2–31). (Hint: Use a one-dimensional array of
ints to represent the board. Number the pits counterclockwise. When sowing pebbles, if
you are currently at pit i, the next pit is at position (i + 1) % 14, although your pro-
gram must remember to skip this pit if it is the opponent’s mancala.)

A player must capture if possible. If no capturing move is available, the player must pass,
giving the opponent another turn.

Game End: The game is over when neither player has a legal move, usually because the
board is full.

Go-Moku
Players: 2, black and white.

Object: To be the first to get five pieces in a row horizontally, vertically, or diagonally.

Board: The board is a square grid of 19 × 19 lines, initially empty. Pieces are played at the
intersections of the lines, rather than in the squares.

Play: On a turn, a player places one of her pieces at any empty intersection.

Figure 2–30: The ancient Asian game of Go-Moku.

Figure 2–29: The game of Reversi is sold commercially as Othello. (Part 2 of 2)
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Mancala
Players: 2

Object: To have the most pebbles in your mancala (goal) at the end of the game.

Board: The Mancala board consists of 14 pits, each holding a number of pebbles. The
starting position is shown below.

Play: On your turn, pick up all of the pebbles in any nonempty pit on your side of the
board. Proceeding counterclockwise, sow one pebble in each pit until you run out. When
sowing pebbles, include your own mancala, but skip your opponent’s. An example of a first
move is shown below.

Figure 2–31: The traditional African game of Mancala. (Part 1 of 2)

Player 1's
mancala

Player 2's
mancala

Player 1's side

Player 2's side

Player 1's
mancala

Player 2's
mancala

Player 1's side

Player 2's side
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2.34 The Mancala rules in Figure 2–31 are the Egyptian rules. The Ethiopian rules make two
changes: players may choose to sow pebbles either clockwise or counterclockwise
around the board, and a move may not start from a pit containing only one pebble.The
game ends when one player has no legal move. Modify the program from Project 2.33
to use the Ethiopian rules. (Hint: Remember that the % operator does not behave as
modulo when the first operand is negative. This will be a problem if you evaluate
(pit - 1) % 14 when pit is 0. You can get around this by first adding 14 to ensure
that the first operand to % is positive.)

Free  Move: If the last pebble you sow lands in your own Mancala, you get to move again.

Capture: If the last pebble you sow lands in a previously empty pit on your side of the
board, you move that pebble, as well as any pebbles in the pit directly across the board, into
your mancala.

Game End: The game ends when, after either player’s move, one player has no pebbles
left in any of the six pits on her side of the board.  The other player moves all of the pebbles
left on his side of the board to his mancala.

Figure 2–31: The traditional African game of Mancala. (Part 2 of 2)
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3
Inheritance

This third and final chapter on object-oriented programming covers inheritance, the ability to
specify that a class is “just like that other one, except ....” Section 3.1 explains how and when to
create a subclass that inherits code from the class it extends. The Object class, from which all
other classes are ultimately derived, is described in Section 3.2. Section 3.3 discusses packages
(collections of classes) and access levels, which give us finer control over who can see which
parts of our classes.

3.1 Extending a Class

Suppose we want to implement the game of Cram, which is identical to Domineering except that
a player can play each domino either horizontally or vertically. We could write a new program
that looks very similar to the old one. A better solution is to use inheritance. We write a new
class Cram which extends Domineering (Figure 3–1). This new class specifies only the things
that are different.

Cram is called a subclass of Domineering. Conversely, Domineering is a superclass of Cram.
The relationship between the two classes is shown in Figure 3–2.
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1 /** The game of Cram. */
2 public class Cram extends Domineering {
3
4   /** No special initialization is required. */
5   public Cram() {
6     super();
7   }
8
9   /** Play until someone wins. */

10   public void play() {
11     int player = 1;
12     while (true) {
13       System.out.println("\n" + this);
14       System.out.println("Player " + player + " to play");
15       if (!(hasLegalMoveFor(HORIZONTAL)
16             || hasLegalMoveFor(VERTICAL))) {
17         System.out.println("No legal moves -- you lose!");
18         return;
19       }
20       System.out.print("Row: ");
21       int row = INPUT.nextInt();
22       System.out.print("Column: ");
23       int column = INPUT.nextInt();
24       INPUT.nextLine();         // To clear out input
25       System.out.print("Play horizontally (y/n)? ");
26       boolean direction;
27       if (INPUT.nextLine().charAt(0) == 'y') {
28         direction = HORIZONTAL;
29       } else {
30         direction = VERTICAL;
31       }
32       playAt(row, column, direction);
33       player = 3 - player;
34     }
35   }
36
37   /** Create and play the game. */
38   public static void main(String[] args) {
39     System.out.println("Welcome to Cram.");
40     Cram game = new Cram();
41     game.play();
42   }
43
44 }

Figure 3–1: With inheritance, the Cram class is surprisingly short. Line 24 is necessary
to clear out the input line after reading the column number. The method charAt(),
invoked on the String INPUT.nextLine(), returns the character at a particular index.
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The fields and methods not listed in the code for the Cram class are inherited from the Domi-
neering class. If we invoke a method like playAt() or hasLegalMoveFor() on an instance of
Cram, the method from the Domineering class is used. Inherited fields and methods make a
Cram instance similar to a Domineering instance.

We can provide additional fields and methods, although the Cram class does not do so. The
Cram class does override two methods, play() and main(). When we invoke the play()
method on an instance of Cram, the new version is used. Additional fields and methods, along
with overridden methods, make a Cram instance different from a Domineering instance.

The difference between overloading and overriding is a subtle one. When we overload a method
name, Java decides which version to use based on the arguments which are passed to the
method. When we override a method, Java decides which version to use based on the object on
which the method is invoked. If two methods with the same name are in the same class but have
different signatures, the method name is overloaded. If two methods with the same name and
signature are in different classes (one a subclass of the other), the method in the subclass over-
rides the one in the superclass.

The invocation

super();

on line 6 in the constructor says, “Do whatever you would do to set up an instance of Domineer-
ing.” A constructor in a subclass must always begin by invoking a constructor from the class it
extends, although, as we will see later in this chapter, this invocation can often be implicit. In
this case, the constructor from Domineering initializes the field that holds the board. Notice that
it doesn’t matter if we’ve forgotten how that field was initialized or even what it was called.
Inheritance allows us to extend an encapsulated class without thinking about its inner workings.
This allows us to develop correct software much more rapidly.

Extending a class is similar to implementing an interface. The key difference is that a superclass
provides functionality, while an interface merely makes promises. A class can implement many
interfaces, but it can only have one superclass. If a subclass had two superclasses, there would be
problems if both of them provided some method which the subclass did not—it would not be
clear which version should be inherited.

Figure 3–2: UML class diagram showing that Cram is a subclass of Domineering.
The arrow for class extension uses the same hollow head as the one for interface
implementation, but has a solid instead of a dashed line.

Domineering

Cram
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Polymorphism and Inheritance

As a second example of inheritance, consider the class Light (Figure 3–3). This very simple
class has only one field: a boolean indicating whether it is on or off. The toString() method
returns the String "O" if the Light is on and "." if it is off.

The Light class is extended by the ColoredLight class (Figure 3–4), which also has a char indi-
cating its color. The color is determined randomly in the constructor. A ColoredLight looks the
same as a Light when it is off, but toString() returns "R", "G", or "B", respectively, for red,
green, or blue ColoredLights.

1 /** A light bulb. */
2 public class Light {
3
4   /** Whether the Light is on. */
5   private boolean on;
6
7   /** A Light is off by default. */
8   public Light() {
9     on = false;

10   }
11
12   /** Return true if the Light is on. */
13   public boolean isOn() {
14     return on;
15   }
16
17   /** Set whether the Light is on. */
18   public void setOn(boolean on) {
19     this.on = on;
20   }
21
22   public String toString() {
23     if (on) {
24       return "O";
25     } else {
26       return ".";
27     }
28   }
29
30 }

Figure 3–3: The class Light models a light bulb.
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-

ColoredLight inherits the field on and adds a new field color. It inherits the methods isOn()
and setOn(). It overrides the toString() method and adds a new method, getColor(). This
is illustrated in Figure 3–5.

Although ColoredLight inherits the field on, it does not have direct access to the field. On
line 29, the toString() method must work through the inherited method isOn() because
the field on is private in Light. The private status of this field means that no other class, not
even a subclass of Light, has direct access to on. This is information hiding enforcing
encapsulation.

1 /** A colored light bulb. */
2 public class ColoredLight extends Light {
3
4   /** Color of the ColoredLight. */
5 private char color;
6
7 /** Set the color randomly to one of 'R', 'G', or 'B'. */
8   public ColoredLight() {
9     super();

10     int x = (int)(Math.random() * 3);
11     switch (x) {
12       case 0:
13         color = 'R';
14         break;
15       case 1:
16         color = 'G';
17         break;
18       default:
19         color = 'B';
20     }
21   }
22   
23   /** Return the color of this ColoredLight. */
24   public char getColor() {
25     return color;
26   }
27   
28   public String toString() {
29     if (isOn()) {
30       return "" + color;
31     } else {
32       return ".";
33     }
34   }
35
36 }

Figure 3–4: ColoredLight is a subclass of Light.
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A variable of type Light can hold an instance of Light or of any subclass of Light. It is therefore
a polymorphic type. Thus, it is perfectly legal to say:

Light bulb = new ColoredLight();

Why not simply cut to the chase and declare bulb to be of type Object? By declaring it to be of
type Light, we guarantee that all of the methods defined in the Light class are available. Every
method in Light has to be either inherited or overridden, so it is safe to call such a method on
bulb. We can turn bulb off without knowing its exact class:

bulb.setOn(false);

If bulb were of type Object, we would have to cast it in order to do this.

If we invoke toString() on bulb, Java uses the class of the instance (ColoredLight) instead of
the type of the variable (Light) to determine which version of the method to use. This process is
called dynamic dispatch, because the decision is made dynamically at run time rather than once
and for all at compile time.

Chains of Inheritance

Can we make a subclass of a subclass? Sure! The class FlashingColoredLight (Figure 3–6)
extends ColoredLight. It turns itself on or off every time toString() is invoked. (This is
slightly bad style, because we normally don’t expect toString() to change an object’s state.)

Figure 3–5: UML class diagram showing that ColoredLight extends Light. Only new
fields and methods are shown in the subclass. Inherited or overridden fields can be
read from the superclass.

Light

on:boolean

Light()
isOn():boolean
setOn(boolean):void
toString():String

ColoredLight

color:char

ColoredLight()
getColor():char
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Inheritance is transitive, so FlashingColoredLight inherits every field and method from Light
except for those methods overridden by ColoredLight.

The relationship between the three classes is shown in Figure 3–7. We can say that ColoredLight
and FlashingColoredLight are proper descendants of Light. Strictly speaking, the descendants
of Light are itself plus its proper descendants. This is consistent with the concepts of subset and
proper subset from set theory. Conversely, Light and ColoredLight are proper ancestors of
FlashingColoredLight. All three classes are ancestors of FlashingColoredLight.

Alternately, we can say that ColoredLight and FlashingColoredLight are both subclasses of
Light, but only ColoredLight is a direct subclass. Conversely, both Light and ColoredLight are
superclasses of FlashingColoredLight, but ColoredLight is the direct superclass.

We will omit the words “proper” and “direct” when there is no danger of confusion.

Is-a vs Has-a
It takes some experience to know when to extend a class. For example, suppose we want to
model a string of Christmas lights. Should we extend the Light class?

To resolve this question, we should think about the relation between the new class and the one
we’re considering extending. If an instance of the new class is just like an instance of the old
class, with a few modifications, we should extend. If an instance of the new class merely has an
instance of the old class as a component, we should not. For example, a ColoredLight is a
Light, but with the added feature of color, so extension is appropriate. On the other hand, an

1 /** A flashing, colored light bulb. */
2 public class FlashingColoredLight extends ColoredLight {
3
4   /** No special initialization is required. */
5   public FlashingColoredLight() {
6     super();
7   }
8
9   /** Toggle the light's on status after returning a String. */

10   public String toString() {
11     String result;
12     if (isOn()) {
13       result = "" + getColor();
14     } else {
15       result = ".";
16     }
17     setOn(!isOn());
18     return result;
19   }
20
21 }

Figure 3–6: FlashingColoredLight extends ColoredLight.
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instance of BeetleGame merely has two beetles, so it is not appropriate for it to extend Beetle.
Object-oriented programmers refer to these as is-a and has-a relationships.

A string of Christmas lights has several lights, so it should not extend Light. Instead, it should
contain an array of Lights in a field. The LightString class is shown in Figure 3–8.

Figure 3–7: A chain of inheritance.

1 /** A string of Lights, as used in Christmas decorating. */
2 public class LightString {
3
4   /** The Lights in this LightString. */
5   private Light[] bulbs;
6
7   /** Every other Light is a ColoredLight. */
8   public LightString(int size) {
9     bulbs = new Light[size];

10     for (int i = 0; i < size; i++) {
11       if (i % 2 == 0) {
12 bulbs[i] = new Light();
13       } else {
14         bulbs[i] = new ColoredLight();
15 }
16  }
17   }
18

Figure 3–8: A LightString contains some Lights, but it is not a special kind of Light,
so extension is not appropriate. The enhanced for loop used in lines 21–23 and 28–30
is explained in Appendix A. (Part 1 of 2)

Light

on:boolean

Light()
isOn():boolean
setOn(boolean):void
toString():String

ColoredLight

color:char

ColoredLight()
getColor()

FlashingColoredLight

FlashingColoredLight()
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Even though the LightString class has a method isOn(), it does not make sense to say this
method overrides the one in Light, because LightString is not a subclass of Light.

The LightString class uses polymorphism to store both Lights and ColoredLights in the same
array. The constructor uses the % operator to put Lights in even-numbered positions and Col-
oredLights in odd-numbered ones. (The first index is 0, which is even.) The keyword new is used
both to allocate the array bulb and to create each individual object within that array.

When we run the LightString class, the output looks like this (colors will vary on each run):

....................
OROBOGOGOGOGOBOGOROR

The relationship between all four of the Light-related classes is shown in Figure 3–9.

Beginning object-oriented programmers often overuse inheritance. Inheritance should be used
only when an instance of the subclass can stand in for an instance of the superclass. For example,

19   /** Turn all of the Lights in the LightString on or off. */
20   public void setOn(boolean on) {
21     for (Light b : bulbs) {
22       b.setOn(on);
23     }
24   }
25
26   public String toString() {
27     String result = "";
28     for (Light b : bulbs) {
29       result += b;
30     }
31     return result;
32   }
33
34 /**
35 * Create a LightString, print it, turn it on, and print it
36 * again.
37 */
38   public static void main(String[] args) {
39     LightString lights = new LightString(20);
40     System.out.println(lights);
41     lights.setOn(true);
42     System.out.println(lights);
43   }
44
45 }

Figure 3–8: A LightString contains some Lights, but it is not a special kind of Light,
so extension is not appropriate. The enhanced for loop used in lines 21–23 and 28–30
is explained in Appendix A. (Part 2 of 2)
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suppose we have a class Bicycle with a method pedal(). We should not define Motorcycle to
extend Bicycle, because the pedal() method wouldn’t make sense for a Motorcycle. Since
Bicycle is a polymorphic type, any method that accepts a Bicycle might receive an instance of a
subclass of Bicycle instead. To prevent such code from breaking, an instance of any subclass
should work in place of a regular Bicycle. We might reasonably extend Bicycle with ElectricBi-
cycle (the kind that can be pedaled or powered with an electric motor), but not with Motorcycle.

Exercises

3.1 Draw a detailed UML class diagram showing the relationship between the Domineer-
ing and Cram classes, showing fields and methods.

3.2 Recall your answer to Problem 2.29. Does Java use dynamic dispatch when deciding
which version of an overloaded method to use?

3.3 Discuss what it would mean for an interface to extend another interface.

3.4 Discuss whether each pair below has an is-a or a has-a relationship.

bicycle, vehicle

bicycle, tire

triangle, polygon

rutabaga, vegetable

person, bank account

general, soldier

3.5 Is it possible for an is-a relationship to be symmetric, so that every A is a B and vice
versa? What about a has-a relationship? Explain.

Figure 3–9: A LightString contains 0 or more Lights, some of which may actually be
ColoredLights or FlashingColoredLights.

Light

ColoredLight

FlashingColoredLight

LightString
0..*
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3.2 The Object Class

As we saw in Chapter 2, there is a polymorphic type Object which can hold a reference to any
object. As you may have surmised from the fact that Object starts with an upper-case letter, there
is in fact an Object class. The Object class is an ancestor of every other class. A very small part
of the Object family tree is shown in Figure 3–10.

Since we extend Object so often, Java allows us to omit extends Object from the top of a class.
If a class doesn’t say that it extends some other class, it extends Object.

Methods of the Object Class

While we usually have to cast in order to invoke a method on a variable of type Object, the
Object class does have a few methods of its own. These are usually overridden, but they are
guaranteed to be present, so they can be invoked without casting.

The Object class has a constructor which takes no arguments. It is legal, though not terribly use-
ful, to create an instance of the Object class:

Object it = new Object();

The equals() method for the Object class behaves exactly like ==. If we define a subclass of
Object and fail to override equals(), then for two instances a and b of this subclass,
a.equals(b) exactly when a == b. It is especially important to provide a valid equals()
method for classes which implement the Comparable interface (Chapter 8).

In order to override the equals() method, we must provide a method with the same signature:

public boolean equals(Object that)

Figure 3–10: The Object class and a few of its descendants.

Object

Die Integer Light

ColoredLight

Domineering

Cram
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If we use a different argument type, we are not overriding the method, but merely overloading
the name with a method accepting a different argument type. The version from Object is still
inherited. Since an instance of any class other than Object might work as an argument for either
version, this can cause unexpected behavior.

As we mentioned earlier, the method getClass() returns a representation of an object’s class.
This happens automatically—there is no need to override getClass().

The toString() method for the Object class returns a String like:

java.lang.Object@9c26f5

The part to the left of the @ is the class of the instance. The part to the right has to do with the
location in memory where the instance is stored and varies from one instance to another. If we
fail to override toString() in a subclass, this method is smart enough to use the name of the
subclass. For example, if we omitted the toString() method from Light, printing an instance
of Light would produce a String like:

Light@4d3343

The last important method of the Object class, hashCode(), is discussed in Chapter 11. For
now, we note that equals() and hashCode() interact. If a class overrides one of these meth-
ods, it should override both of them.

Implicit Constructors

If the Light class implicitly extends Object, then shouldn’t its constructor begin by invoking a
constructor from Object? Yes, and while it is not explicit, the constructor does this. Since it is so
common for constructors to begin with

super();

Java allows us to omit this line. For example, we could have omitted line 9 in Figure 3–4.

We can go even farther than this. Every class that does not provide an explicit constructor gets an
implicit zero-argument constructor which does nothing but invoke the zero-argument super con-
structor. This means that we could have left out the constructors in the Cram class (Figure 3–1)
and the FlashingColoredLight class (Figure 3–6).

Exercise

3.6 Through experimentation, determine what happens if we print an array of ints. What
about an array of Lights? What about a multidimensional array?

3.7 Make the superclass and constructor for the Thingamabob class (Figure 3–11) explicit.
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3.8 Consider the classes Doohickey (Figure 3–12) and Whatsis (Figure 3–13). Explain why
Whatsis does not compile.

3.3 Packages and Access Levels

A method encapsulates an algorithm. A class encapsulates state (fields) and behavior (methods).
A package, which contains a number of classes, provides encapsulation on an even larger scale.
When many programmers are writing many classes, dividing them into packages helps keep the
classes organized. Furthermore, it gives programmers more freedom in choosing names. If one
programmer writes a Date class modeling a fruit, while another writes a Date class modeling a
romantic evening, this does not cause a problem as long as the two Date classes are in different
packages.

Over 100 packages are included with Sun’s Java software development kit. Figure 3–14 shows
some of the most commonly used packages.

1 public class Thingamabob {
2
3   private int x;
4
5   public void setX(int x) {
6     this.x = x;
7   }
8
9 }

Figure 3–11: The Thingamabob class for Exercise 3.7.

1 public class Doohickey extends Thingamabob {
2
3   public Doohickey(int x) {
4     super();
5     setX(x);
6   }
7
8 }

Figure 3–12: The Doohickey class for Exercise 3.8.

1 public class Whatsis extends Doohickey {
2 }

Figure 3–13: The Whatsis class for Exercise 3.8.
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The full name of a class includes both its package name and its class name. For example, the full
name of the Object class is java.lang.Object. Within a package, the package name can be dropped.

Continuing our example, we might have two packages called fruit and social.relationships. The
two Date classes would then be fruit.Date and social.relationships.Date. Within the fruit pack-
age, the first one can be referred to simply as Date.

Outside of a package, the full name must be used, with a few exceptions. The first exception is
that Java doesn’t requires us to explicitly name the java.lang package because the classes in this
package are used so often. The second exception is that there is no package name for the default
package, the package containing all classes which are not part of any other package. All of the
classes we have written so far are in the default package.

The third exception is that a class can be imported into another package. For example, we often
use the Scanner class from the java.util package. We can import this class by including the line

import java.util.Scanner;

at the top of one of our programs, above the beginning of the class. Now, any reference to the
Scanner class inside our class will be treated as a reference to java.util.Scanner.

If we want to use several classes from the java.util package, it is easier to import the entire package:

import java.util.*;

C programmers should note that this is not the same thing as a #include statement. That C
statement copies the entire text of the included file into the current one before compiling. The
Java import statement merely tells the compiler where to look for classes.

To put a class in a particular package, we must do two things. First, we must add a line at the top
of the file where the class is defined, even before any import statements. If we want to put a Date
class in the fruit package, for example, we say

package fruit;

at the beginning of Date.java.

Package Purpose

java.awt Graphic user interfaces

java.awt.event Handling events such as mouse clicks

java.io Input and output, as with files

java.lang Basic classes such as Object, Integer, String, and Math

java.util Data structures

Figure 3–14: Some of the most commonly used Java packages.
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Second, Sun’s Java compiler insists that the package structure be reflected in the directory struc-
ture where the files are stored. In our example, our file must be in the fruit subdirectory of the
directory where the compile command is given. The command, therefore, has to be:

javac fruit/Date.java

Package names with dots in them correspond to nested directories. Classes in the social.relation-
ships package must be in the relationships subdirectory of the social subdirectory.

As another example, the classes in the java.awt.event package are in the event subdirectory of
the directory containing the java.awt classes. This is the only relationship between these pack-
ages. Importing java.awt.* does not automatically import java.awt.event.*.

Access Levels
Every field or method has an access level, indicating which classes can access it. Access levels
provide information hiding. We have seen two access levels so far: private and public.

A private field or method is visible only within the class where it is declared. We have declared
all of our nonconstant fields private.

A public field or method is visible everywhere. We have so far declared all of our methods and
constants public.

There are two other access levels between these two. If we declare a field or method to be pro-
tected, it is visible to any class which either is in the same package or is a descendant. If a method
is not important to most users of a class, it is reasonable to declare it protected. For example, the
playAt() method in the Domineering class might reasonably be declared protected.

Because we don’t know when a class will be extended, it is a good idea to include protected
accessors and mutators for each field, so that subclasses can get at private fields. These methods
can ensure that the object stays in a consistent state, so this is a better approach than declaring
the field itself protected.

Finally, if we don’t specify an access level, a field or method gets the default package level,
which makes it visible to all classes in the same package.

The four access levels are summarized in Figure 3–15.

Level Visible To

private same class only

(package) same package only

protected same package and descendants

public all classes

Figure 3–15: Protection levels. The package level is specified by not providing one
of the other keywords.
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The levels can be better understood by looking at Figure 3–16. Suppose there is a method get-
Seed() within Strawberry. If it is private, it can be accessed only within the Strawberry class. If
no protection level is specified, it gets the default package level of protection, so it can be
accessed only from Date and Strawberry. If it is protected, it can be accessed from Date, Straw-
berry, and ChocolateCoveredStrawberry. Finally, if it is public, all four classes can access the
method.

It may seem strange to have a class that extends a class in another package. This is perfectly rea-
sonable if we use packages written by someone else. When we write our own package, we might
want to extend one of their classes. In fact, we do this all the time when we write classes that
extend Object, which is in the java.lang package.

Exercises

3.9 Through experimentation, determine whether it is acceptable for a method to have a
more restrictive access level than the one it overrides. What about less restrictive? Why
do you think the rules are set up this way?

3.10 Write a class with a private field and at least one method with each of the other three
access levels. Through experimentation, determine how the documentation generated
by javadoc changes if we replace the command-line option -public with -private.
How about -protected? What if we omit this option altogether?

Summary

Every class (except for the Object class itself) extends one other class. If a class does not explic-
itly extend some other class, it extends Object. Every class is a polymorphic type; a variable of a
class type can hold a reference to an instance of a subclass. Java distinguishes between the type
of a variable and the class of the instance to which it refers.

Figure 3–16: The fruit package contains the classes Date and Strawberry. The
dessert package contains the classes ChocolateCoveredStrawberry (a subclass of
Strawberry) and IceCream.

fruit dessert

Date Strawberry IceCream

ChocolateCoveredStrawberry
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A subclass inherits the methods and fields of its superclass, but it can also override methods in
the superclass and add new fields and methods. We should extend only when it makes sense to
say that an instance of the subclass is a (special kind of) instance of the superclass.

Classes can be grouped into packages. Access levels for fields and methods range from private
(visible only in the same class) to public (visible in all classes in all packages). Choosing inter-
mediate access levels gives us finer control over encapsulation.

Vocabulary

access level. One of four levels of information hiding: private, package, protected, and public.

ancestor. Any of a class, its direct superclass, the direct superclass of that class, and so on. All
of these except for the class itself are proper ancestors.

default package. Nameless package containing all classes not explicitly placed in any other
package. All of the programs in this book are in the default package.

descendant. Any of a class, its direct subclasses, their direct subclasses, and so on. All of these
except for the class itself are proper descendants.

direct. Of a subclass or superclass, extending in a single step rather than through a chain of
intervening classes.

dynamic dispatch. Process by which Java decides which version of a method to use, based on
the class of the object on which the method is invoked.

extend. Define a subclass of. Every class except Object directly extends exactly one other class.

has-a. Relationship between a class and the class of one of its fields.

import. Specify that a class in another package may be referred to in this class without using the
package name.

inherit. Possess by virtue of extending another class. Fields and methods may be inherited.

is-a. Relationship between a subclass and a superclass.

override. Redefine to prevent inheritance. Methods may be overridden.

package. Collection of classes. Also the default access level, granting access to all classes in the
same package.

protected. Access level granting access to subclasses and to other classes in the same package.

subclass. A class that extends another class.

superclass. The class that is extended by another class.
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Problems

3.11 Write a class LoadedDie which extends Die. A LoadedDie is just like a Die, but always
comes up 6 whenever it is rolled.

3.12 Write a class PolyhedralDie which extends Die. A PolyhedralDie may have a number
of sides other than 6. The number of sides should be an argument to the constructor.

Projects

3.13 Implement the game of Bogart (Figure 3–17). Your implementation has to handle only
two players. (Hint: Create a class FourSidedDie which extends Die. Alternately, if you
have done Exercise 3.12, you can use the PolyhedralDie class.)

Bogart
Players: 2–6

Object: To be the first to either accumulate 30 chips or roll all five dice at once without
rolling a 1.

Setup: The pot is initially empty and all players start with no chips. New chips will be
added to the pot from an inexhaustible bank.

Play: When your turn begins, add one chip from the bank to the pot. Roll a four-sided die.
If you get a 1, you have aced out and your turn ends. Otherwise, you may either take the pot
or keep going. If you keep going, add two chips to the pot and roll two dice. If you roll a 1
on either die, you have aced out. Otherwise, you may keep going, this time adding three
chips and rolling three dice. Continue until you either ace out, decide to take the pot, or suc-
cessfully roll all five dice without acing out.

Figure 3–17: Like Pennywise, the game of Bogart is an invention of James Ernest.
Used with permission of the designer.
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4
Stacks and 
Queues

This chapter introduces two important interfaces, Stack and Queue. Each corresponds to a data
structure holding a collection of objects, ordered by when they were inserted into the structure.
A stack gives us access to only the newest (most recently inserted) object, whereas a queue gives
us access to only the oldest object.

Section 4.1 introduces the Stack interface. We discuss how a stack behaves, putting off the
implementation until later chapters. Generic classes, new to Java 1.5, are introduced in this sec-
tion. We use stacks in the solitaire card game Idiot’s Delight. Section 4.2 explores another
important stack application: the call stack, which Java uses to keep track of all of the methods
running at a given time. Knowing about the call stack helps us to understand many other princi-
ples and Java features, such as exceptions. Exceptions, introduced in Section 4.3, provide a way
to recover gracefully from errors. Section 4.4 discusses the Queue interface and uses it in the
game of War.

4.1 The Stack Interface

A stack is a data structure holding several items. As seen in Figure 4–1, we can think of the
items in a stack as being arranged vertically. When a new item is added, it is added to the top of
the stack. This is called pushing an item onto the stack. We can pop the stack to extract the top-
most item. We can also peek at the top item or check if the stack is empty.
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Since the most recently pushed item is always on top of the stack (and hence available for pop-
ping), a stack is said to follow a last-in, first-out or LIFO policy. One consequence is that if we
push a sequence of ten items onto a stack and then pop the stack ten times, the items are returned
in reverse order. The standard analogy for a stack is a spring-loaded stack of plates found in a
cafeteria: we can push a new plate on top or we can pop off the top plate, but we can’t (directly)
get at the plates underneath.

We can formalize the stack abstract data type in the Stack interface (Figure 4–2). We will
explain lines 9 and 15 later in this chapter. There is more than one way to implement this inter-
face. We will see one way in Chapter 5 and a very different one in Chapter 6.

Figure 4–1: A stack changes as various operations are performed on it. Peeking at
the final (rightmost) stack would return B, but not alter the stack. A real stack would
start out empty, but we included a few items here to make the example more
interesting.

1 /** A last-in, first-out stack of Objects. */
2 public interface Stack {
3
4   /** Return true if this Stack is empty. */
5   public boolean isEmpty();
6
7   /**
8    * Return the top Object on this Stack. Do not modify the Stack.
9    * @throws EmptyStructureException if this Stack is empty.

10    */
11   public Object peek();
12

Figure 4–2: First draft of the Stack interface. (Part 1 of 2)
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Before moving on to an example of using a Stack, we introduce a new feature of Java 1.5 that
allows us to avoid some casting.

Generics

The Stack interface in Figure 4–2 describes a stack of Objects. We can push any kind of Object
onto a Stack. For example, if s is a Stack:

s.push(new Die(3));

When we pop a Stack, on the other hand, we get back an Object. Even if we remember that the
item on the Stack is an instance of some more specific class, we have to remind Java of this fact
by casting:

((Die)(s.pop())).roll();

This is not only inconvenient, it is slightly unsafe. If we misremember what we put on the Stack,
we might try to cast something that is not really a Die to be a Die. This would crash our program.

Java 1.5 introduces a new solution: generic classes and interfaces. A generic class or interface
has one or more type parameters, indicating what sorts of things it holds. Every time we use a
generic type, we have to specify a type for each type parameter. In the case of Stacks, there is
only type parameter: the type of the elements stored on the Stack. To make a Stack of Die
instances, we say:

Stack<Die> s = new Stack<Die>();

Now we can safely do:

s.push(new Die());
s.pop().roll();

Java won’t let us push anything of the wrong type onto this Stack. Furthermore, the pop()
method’s return type is specified by the type parameter. In our example, the return type is Die.

13 /**
14 * Remove and return the top Object on this Stack.
15 * @throws EmptyStructureException if this Stack is empty.
16    */
17 public Object pop();
18
19   /** Add target to the top of the Stack. */
20   public void push(Object target);
21
22 }

Figure 4–2: First draft of the Stack interface. (Part 2 of 2)
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The revised Stack interface is shown in Figure 4–3.

In UML diagrams, type parameters are shown in dashed boxes at the upper right of a class, inter-
face, or instance (Figure 4–4).

1 /** A last-in, first-out stack. */
2 public interface Stack<E> {
3
4   /** Return true if this Stack is empty. */
5   public boolean isEmpty();
6
7   /**
8    * Return the top item on this Stack, but do not modify the Stack.
9    * @throws EmptyStructureException if this Stack is empty.

10    */
11   public E peek();
12
13   /**
14    * Remove and return the top item on this Stack.
15    * @throws EmptyStructureException if this Stack is empty.
16    */
17   public E pop();
18
19   /** Add target to the top of the Stack. */
20   public void push(E target);
21
22 }

Figure 4–3: Generic version of the Stack interface. The type parameter is E, which
stands for ‘element’.

Figure 4–4: UML class diagram of the generic Stack interface.

<<interface>>
Stack

isEmpty():boolean
peek():E
pop():E
push(E):void

E
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Example: Idiot’s Delight

One advantage of specifying an abstract data type is that we can write programs which use the
ADT before we’ve implemented it. We now use the Stack interface to implement some parts of
the game of Idiot’s Delight (Figure 4–5).

A game of Idiot’s Delight involves a Deck, which in turn includes up to 52 Cards. (There are
fewer than 52, once some have been dealt from the Deck.) The game also needs four Stacks,
each of which contains 0 or more Cards. This is illustrated in Figure 4–6.

The fields and main() method of the IdiotsDelight class are shown in Figure 4–7. Note that the
field stacks contains an array of Stacks of Cards. Also, importing the Scanner class allows us
to declare and initialize the constant INPUT more concisely.

The constructor, shown in Figure 4–8, is the most complicated constructor we’ve written yet.
Line 3 invokes the constructor for the Deck class, which we’ll write later. Line 4 invokes the
shuffle() method from that class. Shuffling is something a Deck should know how to do, not
part of this game in particular, so it is encapsulated inside the Deck class.

Idiot’s Delight
Players: 1

Object: To clear all the cards off the table.

Setup: Shuffle a deck of cards and deal four cards face up in a row, forming four stacks.

Play: On your turn, you may do any one of the following:

• If there are two cards of the same rank showing, discard both of them.

• If there are two cards of the same suit showing, discard the one with lower rank.

• Deal four new cards, one on top of each stack.

Figure 4–5: Idiot’s Delight is a solitaire card game. As in all the card games in this
book, the rank of ace is below 2.

Figure 4–6: UML class diagram of the Idiot’s Delight program.
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Line 5 allocates the array stacks, but each element of that array still has the default value
null. The for loop on lines 6–8 is needed to initialize the elements. Line 7 invokes the con-
structor for the ArrayStack class. This class, which we will write in Chapter 5, uses an array to
implement the Stack interface.

In a stroke of bad luck, the ugliest feature of generics rears its head here: generics do not play
well with arrays. We can declare an array field or variable involving type parameters, like the

1 import java.util.Scanner;
2
3 /** The solitaire card game Idiot's Delight. */
4 public class IdiotsDelight {
5
6   /** For reading from the console. */
7   public static final Scanner INPUT = new Scanner(System.in);
8
9   /** The four Stacks of Cards. */

10   private Stack<Card>[] stacks;
11
12   /** The Deck of Cards. */
13   private Deck deck;
14
15   /** Create and play the game. */
16   public static void main(String[] args) {
17     System.out.println("Welcome to Idiot's Delight.");
18     IdiotsDelight game = new IdiotsDelight();
19     game.play();
20   }
21   
22 }

Figure 4–7: Fields and main() method for IdiotsDelight.

1 /** Create and shuffle the Deck.  Deal one Card to each Stack. */
2 public IdiotsDelight() {
3   deck = new Deck();
4   deck.shuffle();
5   stacks = new Stack[4]; // This causes a compiler warning
6   for (int i = 0; i < 4; i++) {
7     stacks[i] = new ArrayStack<Card>();
8   }
9   deal();

10 }

Figure 4–8: Constructor for the IdiotsDelight class.
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field stacks in Figure 4–7. For complicated reasons involving the Java compiler, however, we
cannot actually allocate an array involving a type parameter. We would like line 5 of Figure 4–8
to read

stacks = new Stack<Card>[4];

but Java will not let us do this. If we leave the line as it is in Figure 4–8, we get the following
cryptic message when we try to compile the program:

Note: IdiotsDelight.java uses unchecked or unsafe operations.
Note: Recompile with -Xlint:unchecked for details.

Following these instructions, we invoke the command

javac -Xlint:unchecked IdiotsDelight.java

and get the following:

IdiotsDelight.java:20: warning: [unchecked] unchecked conversion
found   : Stack[]
required: Stack<Card>[]

stacks = new Stack[4]; // This causes a compiler warning
^

1 warning

Significantly, this is a warning, not an error. The compiler is telling us, “I think this is a bad
idea, but I’m not going to stop you from doing it.” Surprisingly, this is the best we can do. By the
end of Chapter 5, we’ll have hidden this unpleasantness behind a layer of encapsulation.

Returning to the task at hand, line 9 of Figure 4–8 calls the deal() method from the Idiots-
Delight class. This method, shown in Figure 4–9, deals one card onto each Stack.

Line 4 does a lot of work. The expression deck.deal() invokes the deal() method of deck,
which removes and returns the top Card in deck. The value of the expression is therefore of type
Card. We pass this as an argument to the push() method from s, which is a Stack of Cards.

1 /** Deal one Card from the Deck onto each Stack. */
2 public void deal() {
3   for (Stack<Card> s : stacks) {
4     s.push(deck.deal());
5   }
6 }

Figure 4–9: The deal() method from the IdiotsDelight class.
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The play() method (Figure 4–10) is by far the longest in the class. In addition to invoking
deal(), it invokes two other methods, removeLowCard() and removePair(). Notice that
play() uses the isEmpty() Stack method.

Both removeLowCard() and removePair() (Figure 4–11) use pop(). The pop() method
returns a value, but we don’t use that value in this particular program.

Since we print the IdiotsDelight instance on line 5 of play(), we need to provide a
toString() method. This method, shown in Figure 4–12, uses peek() to look at the top card
on each Stack.

1 /** Play the game. */
2 public void play() {
3   while (true) {
4     // Print game state
5     System.out.println("\n" + this);
6     // Check for victory
7     boolean done = true;
8     for (Stack<Card> s : stacks) {
9       if (!(s.isEmpty())) {

10         done = false;
11         break;
12       }
13     }
14     if (done) {
15       System.out.println("You win!");
16       return;
17     }
18     // Get command
19     System.out.print("Your command (pair, suit, deal, or quit)? ");
20     String command = INPUT.nextLine();
21     // Handle command
22     if (command.equals("pair")) {
23       removePair();
24     } else if (command.equals("suit")) {
25       removeLowCard();
26     } else if (command.equals("deal")) {
27       deal();
28     } else {
29       return;
30     }
31   }
32 }

Figure 4–10: The play() method.
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We’ll write the Card, Deck, and ArrayStack classes in Chapter 5. We will certainly have to pro-
vide the methods we’ve invoked on instances of these classes. Our knowledge of the program so
far is shown in Figure 4–13.

1 /**
2  * Remove the lower of two Cards of the same suit, as specified by
3  * the user.
4  */
5 public void removeLowCard() throws IllegalMoveException {
6   System.out.print("Location (1-4) of low card? ");
7   int i = INPUT.nextInt();
8   System.out.print("Location (1-4) of high card? ");
9   int j = INPUT.nextInt();

10   INPUT.nextLine();         // To clear out input
11   stacks[i - 1].pop();
12 }
13
14 /**
15  * Remove two Cards of the same rank, as specified by the user.
16  */
17 public void removePair() throws IllegalMoveException {
18   System.out.print("Location (1-4) of first card? ");
19   int i = INPUT.nextInt();
20   System.out.print("Location (1-4) of second card? ");
21   int j = INPUT.nextInt();
22   INPUT.nextLine();         // To clear out input
23   stacks[i - 1].pop();
24   stacks[j - 1].pop();
25 }

Figure 4–11: The removeLowCard() and removePair() methods.

1 public String toString() {
2   String result = "";
3   for (int i = 0; i < 4; i++) {
4     if (stacks[i].isEmpty()) {
5       result += "-- ";
6     } else {
7       result += stacks[i].peek() + " ";
8     }
9   }

10   return result + "\n" + deck.size() + " cards left in the deck";
11 }

Figure 4–12: The toString() method.
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While we cannot actually run our program at this stage, Figure 4–14 shows how it will behave
when it’s done.

Figure 4–13: UML class diagram of the Idiot’s Delight program so far. The four
Stacks to which an instance of IdiotsDelight is related are actually instances of the
ArrayStack class, which implements the Stack interface.

1 Welcome to Idiot's Delight.
2
3 3c 7h Kd As 
4 48 cards left in the deck
5 Your command (pair, suit, deal, or quit)? deal
6
7 9h 9s 2d Tc 
8 44 cards left in the deck
9 Your command (pair, suit, deal, or quit)? pair

10 Location (1-4) of first card? 1
11 Location (1-4) of second card? 2
12
13 3c 7h 2d Tc 
14 44 cards left in the deck
15 Your command (pair, suit, deal, or quit)? suit
16 Location (1-4) of low card? 1
17 Location (1-4) of high card? 4
18
19 -- 7h 2d Tc 
20 44 cards left in the deck

Figure 4–14: The first few turns of a game of IdiotsDelight. Tc stands for “10 of
clubs.”

IdiotsDelight
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ArrayStack
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1

4

0..*

0..52

E

E



Section 4.2 The Call Stack 97

Exercises

4.1 The following sequence of methods are to be invoked on an initially empty stack. Draw
the state of the stack (in the style of Figure 4–1) after each step. Indicate what is
returned by any methods that return values.

push("a");
push("b");
push("c");
pop();
push("d");
push("e");
peek();
pop();
pop();

4.2 Discuss whether a PEZ candy dispenser is a good analogy for a stack.

4.3 Both the IdiotsDelight class and the Deck class have a method called deal(). Is this an
example of overloading, overriding, neither, or both?

4.4 Discuss whether line 11 in the play() method (Figure 4–10) is necessary.

4.2 The Call Stack

Figure 4–15 shows a program for computing the length of the hypotenuse of a right triangle,
given the lengths of the other two sides.

1 /** Compute the hypotenuse of a right triangle. */
2 public class Hypotenuse {
3
4   /** Return the square of the number x. */
5   public static double square(double x) {
6     return x * x;
7   }
8
9   /**

10    * Return the hypotenuse of a right triangle with side lengths x 
11 * and y.
12    */
13   public static double hypotenuse(double x, double y) {

Figure 4–15: To keep things simple, all of the methods in the Hypotenuse class are
static. (Part 1 of 2)
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The hypotenuse() method invokes the square() method twice: once on line 13 and once on
line 14. When Java finishes an invocation of square(), how does it know where to go next?
Should it invoke square() again or go on to Math.sqrt()?

The vague answer is that Java somehow “keeps track of” what it was doing before the invocation
started. How? Using a stack.

This stack, called the call stack, exists behind the scenes. It is not an object that we can access,
but we can understand it now that we know about stacks.

Every time a method is invoked, a behind-the-scenes object called a call frame is created. The
call frame keeps track of the current state of the method. Specifically, it stores any arguments or
variables for the method. It also keeps track of how far along the method has proceeded.

The history of the call stack for this program is illustrated in Figure 4–16. When Java first starts
up, the call stack is empty. When main() is invoked, a new call frame is created and pushed
onto the stack. This call frame stores the value of args (which we ignore in this example) and
result, as well as the fact that we are at the beginning of the main() method (that is, line 20).
(The author has carefully crafted the Hypotenuse program so that only one method invocation
happens on each line. In a more complicated program, Java would break each line into multiple
steps.)

On line 20, the main() method invokes hypotenuse(3, 4). Java creates a call frame for
hypotenuse() and pushes it onto the stack. In this new call frame, x is 3, y is 4, and the
method is at the beginning, on line 13. The variables x2 and y2 have not yet been initialized.

The hypotenuse() method then needs square(3), which causes yet another call frame to be
pushed onto the stack. At any point, only the top frame on the call stack is active. The others are
waiting for answers from methods they invoked. This clears up any confusion between argu-
ments and variables with the same name in different methods, or in different invocations of the
same method.

14  double x2 = square(x);
15     double y2 = square(y);
16     return Math.sqrt(x2 + y2);
17   }
18
19   /** Test the methods. */
20   public static void main(String[] args) {
21     double result = hypotenuse(3, 4);
22     System.out.println(result);
23   }
24   
25 }

Figure 4–15: To keep things simple, all of the methods in the Hypotenuse class are
static. (Part 2 of 2)
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When square() finishes, its call frame is popped off the stack. The next frame down, the invo-
cation of hypotenuse(), stores the returned value 9 in the variable x2 and moves on to ask for
square(4).

Eventually, main() finishes, the last call frame is popped off the stack, and the program is done.

This was a lot of work, and we can be thankful that Java does it for us. We normally don’t even
have to think about the call stack, although it will be useful knowledge when we discuss recur-
sion in Chapter 9.

Figure 4–16: History of the call stack for the Hypotenuse program.
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Knowledge of the call stack also helps us understand some of Java’s error messages. Suppose we
are playing Idiot’s Delight and decide to deal out all of the cards before discarding any. Unfortu-
nately, we aren’t paying attention to the number of cards left and we try to deal from any empty
deck. The program crashes with a message like the one shown in Figure 4–17.

The error message shows a stack trace (a snapshot of the call stack) indicating what was going
on when the program crashed. The actual error occurred in the deal() method of the Deck
class, so the top call frame was an invocation of this method. It was invoked in line 24 of the
deal() method from the IdiotsDelight class, which was invoked on line 58 of the play()
method, which was invoked on line 81 of the main() method. (These line numbers are from the
complete files, so they won’t match the numbers in our figures. Your numbers may differ due to
whitespace, comments, and so on.)

Examining a stack trace makes our debugging much easier, because we can immediately tell
that the deal() method from Deck either contains a bug or (as in this example) was called
inappropriately. The next section discusses how to deal with such bad input without crashing the
program.

Exercises
4.5 Can two call frames ever be waiting for each other? Explain.

4.6 Every method invocation involves pushing a frame onto the call stack, which takes up
time and memory. Discuss whether we should avoid this by writing every program in a
single, monolithic main() method.

4.3 Exceptions

Assertions (Appendix A) provide one way to verify assumptions we make during our programs.
Unfortunately, if an assertion check fails, the program crashes. This is useful for debugging, but
it is not acceptable behavior for a polished program. Exceptions enable us to recover gracefully
from errors.

An exception is an unusual event that occurs during the operation of a program, such as an
attempt to divide by zero, to follow a null reference, or to look at element –1 of an array. The

1 Exception in thread "main" 
2 java.lang.ArrayIndexOutOfBoundsException: -1
3         at Deck.deal(Deck.java:25)
4         at IdiotsDelight.deal(IdiotsDelight.java:24)
5         at IdiotsDelight.play(IdiotsDelight.java:58)
6         at IdiotsDelight.main(IdiotsDelight.java:81)

Figure 4–17: Stack trace in an error message from Java.
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operation that causes the exception is said to throw the exception. Once an exception is thrown,
it must be caught by some method or the program will crash.

In Java, exceptions are represented by objects—instances of classes which descend from the
built-in Exception class. Each class corresponds to a different kind of exception. A few of the
built-in exception classes are shown in Figure 4–18.

An exception class doesn’t have to be very complicated. All it needs is a constructor, and since
we can have an implicit zero-argument constructor, the body of the class can be empty. An
example is the IllegalMoveException class shown in Figure 4–19.

We want the deal() method from IdiotsDelight to throw an IllegalMoveException if it is
invoked when deck is empty. We must do three things:

1. Add the declaration throws IllegalMoveException to the end of the method’s 
signature. This warns any method calling deal() that such an exception might occur.

2. Mention this fact in the comment for deal(), explaining under what conditions an 
exception is thrown.

3. Add code to the body of deal() to check if deck is empty and throw an IllegalMove 
exception if it is.

The revised deal() method is shown in Figure 4–20. The special notation @throws in the
comment helps javadoc make a link in the documentation to the page describing the Illegal-
MoveException class.

Figure 4–18: A few of the built-in exception classes. There are many more, and
these three subclasses shown are not actually direct subclasses of Exception (see
Figure 4–28).

1 /** Thrown when a player attempts an illegal move in a game. */
2 public class IllegalMoveException extends Exception {
3 }

Figure 4–19: The body of the IllegalMoveException class is empty.
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When this method is invoked, if deck is empty, it immediately stops and throws an exception.
The code on lines 9–11 is not executed. This is similar to a return statement, but the method
doesn’t even return normally. It passes the exception to the next frame down in the call stack,
which must handle it one way or another.

If we try to compile the program now, Java will complain with messages like this:

IdiotsDelight.java:19: unreported exception IllegalMoveException; 
must be caught or declared to be thrown

deal();
^

IdiotsDelight.java:63: unreported exception IllegalMoveException; 
must be caught or declared to be thrown

deal();
^

The problem is that when the constructor and the play() method invoke deal(), they don’t
deal with the possible exception. There are two ways to deal with an exception. The first is to
pass the buck. If we declare that play() might throw an IllegalMoveException, then if play()
receives such an exception, it is passed on to the next call frame down—an invocation of the
method that invoked play(), namely main().

We can get the program to compile and run by adding throws IllegalMoveException to
the signatures of the constructor, play(), and main().

If we try to deal from an empty deck, the deal() method throws an IllegalMoveException. The
play() method receives it and passes it on to main(). Finally, main() passes the exception on
to the Java system (which invoked main()), causing the program to crash. The stack trace in
Figure 4–21 is printed. This is slightly better than the one in Figure 4–17, because it tells us that
an illegal move was attempted.

1 /**
2  * Deal one Card from the Deck onto each Stack.
3  * @throws IllegalMoveException if the Deck is empty.
4  */
5 public void deal() throws IllegalMoveException {
6   if (deck.isEmpty()) {
7     throw new IllegalMoveException();
8   }
9   for (Stack<Card> s : stacks) {

10     s.push(deck.deal());
11   }
12 }

Figure 4–20: The deal() method can throw an IllegalMoveException.
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Rather than passing on an exception, a method can catch it. This is done with a try/catch
block. As shown in Figure 4–22, this consists of the keyword try, a bunch of statements
between curly braces, the keyword catch, the declaration of a variable of an exception type in
parentheses, and another bunch of statements between curly braces.

1 Exception in thread "main" IllegalMoveException
2         at IdiotsDelight.deal(IdiotsDelight.java:30)
3         at IdiotsDelight.play(IdiotsDelight.java:63)
4         at IdiotsDelight.main(IdiotsDelight.java:124)

Figure 4–21: The stack trace from the new program is slightly more enlightening.

1 /** Play the game. */
2 public void play() {
3   while (true) {
4     try {
5       // Print game state
6       System.out.println("\n" + this);
7       // Check for victory
8       boolean done = true;
9       for (Stack<Card> s : stacks) {

10         if (!(s.isEmpty())) {
11           done = false;
12           break;
13         }
14       }
15       if (done) {
16         System.out.println("You win!");
17         return;
18       }
19       // Get command
20       System.out.print
21 ("Your command (pair, suit, deal, or quit)? ");
22 String command = INPUT.nextLine();
23       // Handle command
24       if (command.equals("pair")) {
25         removePair();
26       } else if (command.equals("suit")) {
27         removeLowCard();

Figure 4–22: Revised version of play() including a try/catch block. (Part 1 of 2)
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When this method is run, it tries to do everything in the try block (lines 4–32). If no exception
occurs, the catch block (lines 32–34) is ignored. If an exception does occur, the method immedi-
ately jumps down to the catch block, executes the code there, and then picks up after the end of
the catch block. In this example, the next thing after the catch block is the right curly brace on
line 35, so after handling the exception the method begins another pass through the while loop.

There is sometimes no reasonable way to handle an exception. For example, in the constructor
for IdiotsDelight, if the invocation of deal() throws an IllegalMoveException, something is
seriously wrong with the program—the deck shouldn’t be empty at this point! We could declare
that the constructor and any methods which invoke it (such as main()) are capable of throwing
IllegalMoveExceptions, but this would be a lot of clutter in our code for a situation which we
never expect to occur. A better alternative is to simply catch the exception, print a stack trace (so
we’ll know that the exception occurred if there is a bug in our program), and bring the program
to a screeching halt with System.exit(1). The stack trace can be printed by invoking the
printStackTrace() method on the instance e (Figure 4–23).

28  } else if (command.equals("deal")) {
29         deal();
30 } else {
31         return;
32       }
33     } catch (IllegalMoveException e) {
34       System.out.println("I'm sorry, that's not a legal move.");
35     }
36   }
37 }

1 /** Create and shuffle the Deck.  Deal one Card to each Stack. */
2 public IdiotsDelight() {
3   deck = new Deck();
4   deck.shuffle();
5   stacks = new Stack[4]; // This causes a compiler warning
6   for (int i = 0; i < 4; i++) {
7     stacks[i] = new ArrayStack<Card>();
8   }
9   try {

10     deal();
11   } catch (IllegalMoveException e) {
12     e.printStackTrace();
13     System.exit(1);
14   }
15 }

Figure 4–23: We never expect deal() to throw an exception when invoked from the
constructor. If it does, a stack trace is printed and the program crashes.

Figure 4–22: Revised version of play() including a try/catch block. (Part 2 of 2)
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The removePair() method might also throw an IllegalMoveException. A revised version of
this method is shown in Figure 4–24. On line 14, we assume Card has an equals() method
which returns true for two cards of the same rank, ignoring suit. This is reasonable, because
while many card games compare the ranks of cards, only a few unusual games involving multi-
ple decks check to see if two cards have the same rank and suit.

We don’t have to modify play(), because a single try/catch block can deal with an exception
occurring anywhere in the block.

The removeLowCard() method (Figure 4–25) can also throw an IllegalMoveException. This
invokes the getSuit() and getRank() methods from the Card class.

The behavior of the improved Idiot’s Delight program is illustrated in Figure 4–26.

There are some classes of exceptions that can be thrown in so many places that catching them or
passing them on would be an enormous nuisance. For example, any method which performs
arithmetic might conceivably throw an ArithmeticException. Java does not require that excep-
tions of these classes, which descend from the RuntimeException subclass of Exception, be
declared in method signatures. The built-in classes ArithmeticException, NullPointerException,
and ArrayIndexOutOfBoundsException all descend from RuntimeException.

1 /**
2  * Remove two Cards of the same rank, as specified by the user.
3  * @throws IllegalMoveException if the cards are not of the same
4  * rank.
5  */
6 public void removePair() throws IllegalMoveException {
7   System.out.print("Location (1-4) of first card? ");
8   int i = INPUT.nextInt();
9   System.out.print("Location (1-4) of second card? ");

10   int j = INPUT.nextInt();
11   INPUT.nextLine();         // To clear out input
12   Card card1 = stacks[i - 1].peek();
13   Card card2 = stacks[j - 1].peek();
14   if (!(card1.equals(card2))) {
15     throw new IllegalMoveException();
16   }
17   stacks[i - 1].pop();
18   stacks[j - 1].pop();
19 }

Figure 4–24: The revised removePair() method verifies that the cards chosen by
the user have the same rank. If not, an exception is thrown.
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RuntimeExceptions are preventable, so they should never occur in a program which checks for
valid input. For example, by checking whether deck is empty before invoking its deal()
method on line 8 of Figure 4–20, we prevent deck.deal() from throwing an ArrayIndex-
OutOfBoundsException. If a RuntimeException does occur, it is normally passed all the way
back to the system, causing a program crash.

1 /**
2  * Remove the lower of two cards of the same suit, as specified by
3  * the user.
4  * @throws IllegalMoveException if the low card is not of the same
5  * suit as, and of lower rank than, the high card.
6  */
7 public void removeLowCard() throws IllegalMoveException {
8   System.out.print("Location (1-4) of low card? ");
9   int i = INPUT.nextInt();

10  System.out.print("Location (1-4) of high card? ");
11   int j = INPUT.nextInt();
12   INPUT.nextLine();         // To clear out input
13   Card lowCard = stacks[i - 1].peek();
14   Card highCard = stacks[j - 1].peek();
15   if ((lowCard.getSuit() != highCard.getSuit())
16       || ( lowCard.getRank() > highCard.getRank())) {
17     throw new IllegalMoveException();
18   }
19   stacks[i - 1].pop();
20 }

Figure 4–25: The revised removeLowCard() method can also throw an
IllegalMoveException.

1 Welcome to Idiot's Delight.
2
3 7h Tc Th 4h 
4 48 cards left in the deck
5 Your command (pair, suit, deal, or quit)? suit
6 Location (1-4) of low card? 1
7 Location (1-4) of high card? 2
8 I'm sorry, that's not a legal move.
9

10 7h Tc Th 4h 
11 48 cards left in the deck
12 Your command (pair, suit, deal, or quit)?

Figure 4–26: Now, when we make an illegal move, the program neither crashes nor
lets us get away with it.
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Returning to the Stack interface (Figure 4–2), we see that the comments for peek() and pop()
mention that they might throw EmptyStructureExceptions, but the method signatures do not
declare such a possibility. This is because the EmptyStructureException class extends Runtime-
Exception. An EmptyStructureException is preventable, because we can use isEmpty() to
check whether a Stack is empty before peeking at it or popping it. The EmptyStructureException
class is shown in Figure 4–27.

Figure 4–28 shows the inheritance hierarchy of all of the exception classes we have seen.

Exercises

4.7 Discuss whether it makes sense for a method to be capable of throwing more than one
kind of exception.

4.8 On line 12 of Figure 4–23, the constructor invokes the printStackTrace() method
on e, which is an instance of IllegalMoveException. Speculate on how Java knows that
e has such a method.

1 /**
2  * Thrown when an attempt is made to access an element in a 
3  * structure which contains no elements.
4  */
5 public class EmptyStructureException extends RuntimeException {
6 }

Figure 4–27: The EmptyStructureException class.

Figure 4–28: Since RuntimeExceptions are preventable, the possibility of throwing
them does not have to be declared in method signatures.
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4.9 The Idiot’s Delight program can still be crashed if the user specifies an invalid stack
number such as 0 or 5. Describe how to fix the program.

4.10 The Idiot’s Delight program does not prevent the user from giving the command pair
and then entering the same stack number twice. What happens if the user does this?
Describe how to fix the program.

4.11 Can the user cheat in Idiot’s Delight by giving the command suit and then entering
the same stack number twice? If so, fix the program. If not, explain why not.

4.4 The Queue Interface

A queue (pronounced like the letter Q) is very similar to a stack, except that items are inserted in
one end (the back) and removed from the other end (the front). A queue therefore follows a first-
in, first-out or FIFO policy. The standard analogy for a queue is a line of people at a ticket
office. The behavior of a queue is illustrated in Figure 4–29.

The Queue interface is shown in Figure 4–30. We will provide one implementation (Array-
Queue) in Chapter 5 and another (LinkedQueue) in Chapter 6.

Example: War
Queues appear in many contexts, such as storing a sequence of documents to be printed. We will
use them to implement the game of War (Figure 4–31). Each player’s hand is a queue, because
cards won are added at the bottom but cards played are removed from the top. Note that “bot-
tom” and “top” are concepts from the game; as far as queues are concerned, these are actually
the back and front of each player’s queue of cards.

Figure 4–29: In a queue, objects are added to the back and removed from the front.
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Like Idiot’s Delight, this program involves a Deck and some Cards. The relationship between
the classes involved is shown in Figure 4–32.

1 /** A first-in, first-out queue of Objects. */
2 public interface Queue<E> {
3
4   /** Add target to the back of this Queue. */
5   public void add(E target);
6
7  /** Return true if this Queue is empty. */
8 public boolean isEmpty();
9

10   /**
11    * Remove and return the front item from this Queue.
12    * @throws EmptyStructureException if the Queue is empty.
13    */
14   public E remove();
15
16 }

Figure 4–30: The Queue interface, like the Stack interface, is generic.

War
Players:  2

Object: To force the other player to run out of cards.

Setup: Deal out the entire deck, 26 cards to each player. Each player’s cards are kept in a
face-down pile.

Play: In each round, each player turns up the top card on his pile. The player with the
higher-ranking card takes both cards and adds them to the bottom of his pile. A tie is
resolved by a “war”: each player plays three cards from his pile face-down and another
face-up. The high card among these last two wins all ten cards. Subsequent ties are handled
similarly, with the eventual winner of the round taking an even larger pile of cards.

Game End: If a player is unable to play a card (even during a war), he loses.

Figure 4–31: The children’s card game War can take a very long time to play.
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We begin with the fields, constructor, and main() method (Figure 4–33). It seems a little
strange to deal cards to the bottom of the players’ hands, but it achieves the goal of distributing
the shuffled cards into two equal-sized hands.

Figure 4–32: The class structure of the War program is very similar to that of the
Idiot’s Delight program.

1 import java.util.Scanner;
2
3 /** The card game War for two players. */
4 public class War {
5
6   /** For reading from the Console. */
7   public static final Scanner INPUT = new Scanner(System.in);
8
9   /** Player 1's pile of Cards. */

10   private Queue<Card> hand1;
11
12   /** Player 2's pile of Cards. */
13   private Queue<Card> hand2;
14
15   /** Deal all the Cards out to the players. */
16   public War() {
17     hand1 = new ArrayQueue<Card>();
18     hand2 = new ArrayQueue<Card>();
19     Deck deck = new Deck();
20     deck.shuffle();
21     while (!(deck.isEmpty())) {
22       hand1.add(deck.deal());
23       hand2.add(deck.deal());
24     }
25 }
26
27   /** Create and play the game. */
28   public static void main(String[] args) {
29 System.out.println("Welcome to War.");

Figure 4–33: First parts of the War class. (Part 1 of 2)
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The play() method (Figure 4–34) takes care of checking for victory, but it shoves the work of
playing the cards off onto playRound().

In playRound() (Figure 4–35), we use two Stacks to keep track of the pile of played cards in
front of each player. This is appropriate because new cards are added to these piles only at the
top. Lines 3–4 create these Stacks. Lines 5–6 have each player play one card to their Stack. The
main loop on lines 7–18 compares the top cards on the two Stacks; if one is greater, someone has
won the hand. Otherwise, we hold a war and check again. Since the war might end the game by
causing one player to run out of cards, the method settledByWar() returns a boolean value
indicating whether this happened. If so, playRound() ends.

30  War game = new War();
31     game.play();
32   }
33   
34 }

1 /** Play until one player runs out of Cards. */
2 public void play() {
3   while (!(hand1.isEmpty() || hand2.isEmpty())) {
4     System.out.print("\nHit return to play round: ");
5     INPUT.nextLine();
6     playRound();
7     if (hand1.isEmpty()) {
8       System.out.println("Player 2 wins!");
9     }

10     if (hand2.isEmpty()) {
11       System.out.println("Player 1 wins!");
12     }
13   }
14 }

Figure 4–34: The play() method.

1 /** Play one round. */
2 public void playRound() {
3   Stack<Card> stack1 = new ArrayStack<Card>();
4   Stack<Card> stack2 = new ArrayStack<Card>();
5   stack1.push(hand1.remove());
6 stack2.push(hand2.remove());

Figure 4–35: The playRound() method uses two Stacks. (Part 1 of 2)

Figure 4–33: First parts of the War class. (Part 2 of 2)
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The settledByWar() method (Figure 4–36) must take the two Stacks as arguments, so that it
can play new cards onto them. The method tries to play four more cards from each player (remov-
ing them from the player’s hand and pushing them onto the player’s stack), but it may return early
if one player runs out. If this happens, it must give the cards to the winner before returning.

7  do {
8 Card card1 = stack1.peek();
9 Card card2 = stack2.peek();

10 System.out.println(card1 + " " + card2);
11     Queue<Card> winner = null;
12     if (card1.getRank() > card2.getRank()) { 
13 winner = hand1; 
14 }
15     if (card1.getRank() < card2.getRank()) {
16 winner = hand2; 
17 }
18     if (winner != null) {
19       give(stack1, stack2, winner);
20       return;
21     }
22   } while (!settledByWar(stack1, stack2));
23 }

1 /**
2  * Play a war over stack1 and stack2.  If this ends the game because
3  * one player runs out of cards, give the cards to the winning 
4  * player and return true.  Otherwise, return false.
5  */
6 public boolean settledByWar(Stack stack1, Stack stack2) {
7   System.out.println("War!");
8   for (int i = 0; i < 4; i++) {
9     if (hand1.isEmpty()) {

10       give(stack1, stack2, hand2);
11       return true;
12     }
13     stack1.push(hand1.remove());
14     if (hand2.isEmpty()) {
15       give(stack1, stack2, hand1);
16       return true;
17     }
18     stack2.push(hand2.remove());
19   }
20   return false;
21 }

Figure 4–36: The settledByWar() method.

Figure 4–35: The playRound() method uses two Stacks. (Part 2 of 2)
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All that remains is give() (Figure 4–37), which pops all of the cards off each Stack and adds
them into the winner’s hand.

Figure 4–38 shows the first few rounds of a game.

Exercises

4.12 The following sequence of methods are to be invoked on an initially empty queue.
Draw the state of the queue after each step. Indicate what is returned by any methods
that return values.

1 /** Give all of the Cards played to the winning player. */
2 public void give(Stack<Card> stack1,
3                  Stack<Card> stack2,
4                  Queue<Card> winner) {
5   if (winner == hand1) {
6     System.out.println("Player 1 gets the cards");
7   } else {
8     System.out.println("Player 2 gets the cards");
9   }

10   while (!(stack1.isEmpty())) { 
11 winner.add(stack1.pop()); 
12 }
13   while (!(stack2.isEmpty())) { 
14 winner.add(stack2.pop()); 
15 }
16 }

Figure 4–37: The give() method transfers all of the cards played in the last round to
the winner of the round.

1 Welcome to War.
2
3 Hit return to play round: 
4 9d 2c
5 Player 1 gets the cards
6
7 Hit return to play round: 
8 6h 6s
9 War!

10 Kh 7s
11 Player 1 gets the cards
12
13 Hit return to play round: 
14 Td Kd
15 Player 2 gets the cards

Figure 4–38: The first few of many rounds in a game of War.
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add("a");
add("b");
add("c");
remove();
add("d");
add("e");
remove();
remove();

4.13 There is no method in our Queue interface which is equivalent to the peek() method
in the Stack interface. Devise one and add it to the Queue interface. Be sure to specify
whether it returns the front or the back element of the Queue.

4.14 How would the game of War differ if the piles of cards were stacks instead of queues?
Do you think this makes the game more or less entertaining? Explain.

Summary

Stacks and queues are both collections of objects. A stack follows a last-in, first-out policy:
objects are both pushed onto and popped off the top. A queue follows a first-in, first-out policy:
objects are added to the back and removed from the front. Both of these abstract data types are
formalized in interfaces, which we will implement in Chapters 5 and 6.

Java 1.5 introduces generic types and interfaces. These allow us to distinguish between, for
example, a Stack of Integers and a Stack of Strings. This addition to the language greatly
reduces the amount of casting we have to do when using general-purpose data structures. The
only unpleasant feature is that generics do not play well with arrays.

One particularly important stack is the call stack. Whenever a method is invoked, a new call
frame is pushed onto the stack. This keeps track of any variables in the method, as well as how
far the method has progressed. When a method returns, the corresponding call frame is popped
off the stack, and the next frame down becomes active.

Instead of returning, a method may throw an exception. The invoking method (corresponding to
the next call frame) must either pass on the exception or catch it. If an exception is passed all the
way back to the Java system, the program crashes and a stack trace is printed. An exception may
be caught in a try/catch block.

If a method might conceivably throw an exception, this must be declared in the method’s signa-
ture, unless the exception class is a descendant of the RuntimeException class. These exceptions
correspond to preventable events, such as dividing by zero or popping an empty stack.

Vocabulary

call frame. System-controlled object indicating the current state (variable values, line number,
etc.) of a method invocation.



Problems 115

call stack. System-controlled stack holding a call frame for each method invocation currently in
progress.

catch. Intercept an exception so that it may be dealt with.

deque. Double-ended queue allowing insertion into or deletion from either end (Problem 4.18).

exception. Unusual situation caused by, for example, division by zero.

first-in, first-out (FIFO). Policy followed by a queue, in which the least-recently-inserted item
is the first one removed.

generic. Class or interface with one or more type parameters. Generics allow us to write general-
purpose code without awkward and dangerous casting from the Object class.

infix notation. Arithmetic notation in which the operator appears in between its operands, as 2 + 2
(Project 4.20).

last-in, first-out (LIFO). Policy followed by a stack, in which the most-recently-inserted item
is the first one removed.

peek. Return the topmost item on a stack without modifying the stack.

pop. Remove and return the topmost item on a stack.

postfix notation. Arithmetic notation in which the operator appears after its operands, as 2 2 +
(Project 4.20).

push. Add an item to the top of a stack.

queue. Collection of items stored in FIFO order. Supports the operations of adding and
removing.

stack. Collection of items stored in LIFO order. Supports the operations of pushing, popping,
and peeking.

stack trace. Printout of the state of the call stack. Useful for debugging.

throw. Cause an exception.

type parameter. Type which must be specified whenever a generic type is used. For example,
the Stack type has a parameter indicating the type of the items on the Stack.

Problems

4.15 Write a program which reads numbers from the user until the user enters a 0. The pro-
gram then prints out all of the numbers that were entered, in the order in which they
were entered.

4.16 Write a program which reads numbers from the user until the user enters a 0. The pro-
gram then prints out all of the numbers that were entered, in the reverse of the order in
which they were entered.
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4.17 Choose a previously implemented game and use exceptions to prevent users from mak-
ing illegal moves. Explain why the game of Beetle is not a reasonable choice.

4.18 A deque (pronounced “deck”), or double-ended queue, is like a queue but it allows
insertion into or deletion from either end. Write a Deque interface.

4.19 Write a class DoubleStackQueue which implements the Queue interface. Its only fields
are two Stacks, front and back. Insertion is implemented by pushing onto back,
while deletion is implemented by popping front. The challenge is to deal with the sit-
uation where front is empty, back is not, and we have to pop.

Projects

4.20 Java uses infix notation for arithmetic. In infix notation, the operator (+, -, *, or /)
appears in between the operands. For example: 

2 + 2
3 / 5

An alternative is postfix notation, where the operator appears at the end. The expres-
sions above would be written as

2 2 +
3 5 /

The advantage of postfix notation is that complicated expressions do not require paren-
theses. For example, using infix notation, we need parentheses for the expression:

(5 - 2) * 4

The value of this expression is 12. If we leave out the parentheses, this becomes 

5 - 2 * 4 

which is -3. 

Using postfix notation, the first expression is 

5 2 - 4 *

but the second one is

5 2 4 * -

No parentheses, no ambiguity! 

The behavior of a postfix calculator can be understood in terms of a stack. The stack is
initially empty. Whenever a number is entered, it is pushed onto the stack. Whenever an
operator is entered, the top two numbers on the stack are popped and combined with
the appropriate operator. The result is pushed onto the stack. 
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Write a postfix calculator, in the form of a class Calc. Figure 4–39 shows the calculator
at work.

Notice that the calculator prints the top item on the stack (if any) to the left of the
prompt. Your calculator should support the operators +, *, -, and /, as well as the com-
mand quit. Use doubles, not ints. Make sure that, if the user enters 5, 3, and -, he gets 2,
not –2.

Hint: Read in a String with INPUT.nextLine().  After you are sure that the String is
not one of the commands mentioned, you can convert it into a double with the method
Double.parseDouble().

1 : 2
2 2.0: 2
3 2.0: +
4 4.0: 5
5 5.0: *
6 20.0: 7
7 7.0: 2
8 2.0: /
9 3.5: -

10 16.5: quit

Figure 4–39: The postfix calculator (Project 4.20) at work.
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5
Array-Based 
Structures

This chapter discusses general-purpose array-based structures. Each of these classes has an array
as a field. We present implementations of the Stack and Queue interfaces from Chapter 4, as
well as a new interface List and one implementation of it.

An array has a fixed length—it can’t get any longer or shorter. Section 5.1 presents techniques
for getting around this problem, in the context of developing a class to represent a deck of play-
ing cards.

Section 5.2 shows how to implement the Stack and Queue interfaces. Section 5.3 presents the
List interface and the ArrayList class which implements it. The Iterator interface, explained in
Section 5.4, is a general-purpose technique for traversing a List—that is, doing something with
or to each element of the List.

These structures are so commonly used that standard implementations are built into Java. Section 5.5
introduces the Java collections framework, which provides many useful general-purpose data
structures.

5.1 Shrinking and Stretching Arrays

The size of an array is determined when it is allocated. We can overwrite individual elements,
but we can’t make the array longer or shorter. In this section, we will see some ways around this
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problem. As a running example, we will write the Deck class, which we mentioned in Chapter 4.
A Deck holds a varying number of Cards—originally 52, fewer as Cards are dealt from the
Deck. These two classes are illustrated in Figure 5–1.

The Card Class

Before writing Deck, let’s take a moment to write Card. A Card has two fields, rank and suit.
Since, once a Card is created, these things never change, we don’t provide mutators for them,
only accessors (Figure 5–2).

Figure 5–1: UML class diagram of the Deck and Card classes.

1 /** A playing card. */
2 public class Card {
3
4   /** Number or face on this Card. */
5   private int rank;
6
7   /** Suit of this Card. */
8   private int suit;
9

10   /** Initialize the rank and suit. */
11   public Card(int rank, int suit) {
12     this.rank = rank;
13     this.suit = suit;
14   }
15

Figure 5–2: Fields, constructor, and accessors for the Card class. (Part 1 of 2)

Deck

cards:Card[]
size:int
Deck()
deal():Card
isEmpty():boolean
shuffle():void
size():int
swap(int,int):void

Card

SPADES:int � 0
HEARTS:int � 1
DIAMONDS:int � 2
CLUBS:int � 3
ACE:int � 1
JACK:int � 11
QUEEN:int � 12
KING:int � 13
rank:int
suit:int
Card(int,int)
equals(Object):boolean
getRank():int
getSuit():int
toString():String

0..52
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The rank is either a number or one of ace, jack, king, or queen. We assign the values 1, 11, 12, and
13, respectively, to these other values. Rather than have these magic numbers scattered all over our
code, we define a constant for each one. Similarly, we define a constant for each suit (Figure 5–3).

All that remain are the standard methods equals() and toString() (Figure 5–4). Note that
suit is ignored in equals(). The charAt() method from the String class is used to good effect
in the toString() method.

16 /** Return the rank of this Card. */
17 public int getRank() {
18     return rank;
19   }
20
21   /** Return the suit of this Card. */
22   public int getSuit() {
23     return suit;
24   }
25
26 }

1 /** Suit of spades. */
2 public static final int SPADES = 0;
3
4 /** Suit of hearts. */
5 public static final int HEARTS = 1;
6
7 /** Suit of diamonds. */
8 public static final int DIAMONDS = 2;
9

10 /** Suit of clubs. */
11 public static final int CLUBS = 3;
12
13 /** Rank of ace, equivalent to 1. */
14 public static final int ACE = 1;
15
16 /** Rank of jack. */
17 public static final int JACK = 11;
18
19 /** Rank of queen. */
20 public static final int QUEEN = 12;
21
22 /** Rank of king. */
23 public static final int KING = 13;

Figure 5–3: Constants from the Card class.

Figure 5–2: Fields, constructor, and accessors for the Card class. (Part 2 of 2)
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Shrinking Arrays

It is clear that the Deck class will need an array of Cards. Specifically, since a Deck can never
hold more than 52 cards, this array should have a length of 52 (Figure 5–5).

1 /**
2  * Return true if and only if that Card has the same rank as
3  * this one.  Suit is ignored.
4  */
5 public boolean equals(Object that) {
6   if (this == that) {
7     return true;
8   }
9   if (that == null) {

10     return false;
11   }
12   if (getClass() != that.getClass()) {
13     return false;
14   }
15   Card thatCard = (Card)that;
16   return rank == thatCard.rank;
17 }
18
19 public String toString() {
20   return "" + "-A23456789TJQK".charAt(rank) + "shdc".charAt(suit);
21 }

Figure 5–4: Remaining methods from the Card class. An extra character is included
at the beginning of the String of rank names because 'A' corresponds to 1, not 0.

1 /** Standard deck of 52 playing cards. */
2 public class Deck {
3
4   /** The Cards in this Deck. */
5   private Card[] cards;
6
7   /** Create all 52 Cards, in order. */
8   public Deck() {
9     cards = new Card[52];

10   }
11
12 }

Figure 5–5: A first draft of the Deck class. The constructor does not yet create the 
Cards as the comment promises.
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When we create an instance of this class, we have room for 52 cards (Figure 5–6). The prob-
lem, of course, is that we don’t always need this much room. How can we change the size of
the array?

The secret is to include an extra field in Deck: an int size telling us how many Cards are cur-
rently in the Deck. Only the first size elements in the array are considered part of the Deck. For
example, if size is 3, then only elements 0, 1, and 2 are considered part of the Deck. While ele-
ments 3 and later have values, we don’t know or care what they are. This is shown in Figure 5–7.

It is important to distinguish between the size of the Deck (how many Cards it currently con-
tains) and the capacity of the Deck (the maximum number of Cards it can contain—52).

With this idea in mind, we can rewrite the Deck class so that the constructor fills the Deck with
52 Cards (Figure 5–8). This version of the constructor also creates all of the Cards by looping
through the suits and the ranks.

The field size makes certain methods extremely easy to write (Figure 5–9).

Figure 5–6: A Deck contains an array of Cards. The array has length 52.

Figure 5–7: The field size indicates that only the first three positions in the array
cards are considered “in use.” This figure shows two instance diagrams of the same
structure. The version above makes it explicit that each of the first three elements of
cards is a reference to a Card instance. The version below simply shows each Card’s
rank and suit in the corresponding array position.

0 1 2 3 4 5 6 51

Deck
cards

0 1 2 3 4 5 6 51
...? ? ? ? ?Deck

size � 3

cards

Card

rank � KING
suit � CLUBS

Card

rank � 2
suit � SPADES

Card

rank � 7
suit � HEARTS

0 1 2 3 4 5 6 51
...7 2 K ? ? ? ? ?Deck

cards

size = 3
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The only method (besides the constructor) that modifies size is deal(), which removes and
returns the top card on the Deck (Figure 5–10).

1 /** Standard deck of 52 playing cards. */
2 public class Deck {
3
4   /** The Cards in this Deck. */
5   private Card[] cards;
6
7   /** Number of Cards currently in this Deck. */
8   private int size;
9   

10   /** Create all 52 Cards, in order. */
11   public Deck() {
12     cards = new Card[52];
13     size = 0;
14     for (int suit = Card.SPADES; suit <= Card.CLUBS; suit++) {
15       for (int rank = Card.ACE; rank <= Card.KING; rank++) {
16         cards[size] = new Card(rank, suit);
17         size += 1;
18       }
19     }
20   }
21
22 }

Figure 5–8: By the end of the constructor for the revised Deck class, size is 52.

1 /** Return true if the Deck contains no Cards. */
2 public boolean isEmpty() {
3   return size == 0;
4 }
5
6 /** Return the number of Cards currently in the Deck. */
7 public int size() {
8   return size;
9 }

Figure 5–9: Methods indicating the fullness of a Deck are trivial.

1 /** Remove one Card from the Deck and return it. */
2 public Card deal() {
3   size--;
4   return cards[size];
5 }

Figure 5–10: The deal() method modifies the field size.
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Although deal() is a very short method, its behavior is interesting. It begins by reducing the
size of the Deck on line 3. The Card we want to return is now at index size. This is in the “not
in use” part of the Deck, but the Card is still there, so we can return it in line 4. This is illustrated
in Figure 5–11.

All that remains to complete the Deck class is the shuffle() method. This could get quite
complicated if we attempted to model the “riffle shuffle” that most Americans use when shuf-
fling physical cards. Fortunately, there is a simpler algorithm. We must separate the problem
specification (rearrange the Cards in a random order) from the algorithm we happen to know.

Rearranging the Cards in a random order means that any Card is equally likely to end up in posi-
tion 51, any of the remaining Cards is equally likely to end up in position 50, and so on down. A
simple algorithm falls out of this definition. We pick one index at random and swap the Card at
that position with the one at position 51. There is a small probability (1 in 52) that we will pick
index 51, but this is not a problem: we just swap the Card at position 51 with itself, which has no
effect. There is a 1 in 52 chance that the Card that was on top of the Deck will remain there,
which is exactly what we want.

We then pick one of the 51 remaining indices (0 through 50) and swap the Card there with the
one at position 50. This continues down through position 1. We don’t have to choose a random
Card to swap into position 0, because there’s only one Card left to choose from at that point.

The shuffle() method is shown in Figure 5–12. The swapping of Cards is handled by the
method swap(). Since we don’t want users of the Deck class to be swapping Cards at arbi-
trary indices (especially indices which are greater than or equal to size), we declare swap()
protected.

Stretching Arrays
The field size allows us to change the size of a Deck at will, as long as size never exceeds the
actual length of the array. What if a structure needs to grow beyond its original capacity? While
this isn’t necessary in a Deck, it is certainly an issue for stacks and queues, which can become
arbitrarily large.

Figure 5–11: Dealing from a Deck. The Deck before dealing, with the king of clubs on
top, is shown above. When size is reduced (below), element 2 ceases to be part of
the Deck, but the value at that position does not change, so we can still return it.

0 1 2 3 4 5 6 51
...7 2 K ? ? ? ? ?Deck

cards

size � 3

0 1 2 3 4 5 6 51
...7 2 K ? ? ? ? ?Deck

cards

size � 2
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The solution to this problem is somewhat shocking: we copy the entire contents of the array into
a new, larger array (Figure 5–13). This operation can be time consuming, although we will see in
Chapter 7 that it is not quite as bad as it appears.

Exercises
5.1 Explain how to modify the Card class so that aces rank above kings, rather than below

twos.

5.2 What would be the effect of swapping lines 14 and 15 in Figure 5–8?

5.3 Modify the deal() method (Figure 5–10) so that it throws an EmptyStructureExcep-
tion (Figure 4–27) if the Deck is empty.

5.4 Is it okay to invoke shuffle() on a non-full Deck? Explain.

1 /** Randomly rearrange the Cards in the Deck. */
2 public void shuffle() {
3   for (int i = size - 1; i > 0; i--) {
4     swap(i, (int)(Math.random() * (i + 1)));
5   }
6 }
7
8 /** Swap the Cards at indices i and j. */
9 protected void swap(int i, int j) {

10   Card temp = cards[i];
11   cards[i] = cards[j];
12   cards[j] = temp;
13 }

Figure 5–12: The methods shuffle() and swap().

Figure 5–13: Stretching an array. The array data is full (top), so we can’t add more
elements. Instead, we copy the elements into a new, larger array (middle). Finally, data
becomes a reference to the new array (bottom).

A B C D

A B C D

A B C D ? ? ? ?

A B C D

A B C D ? ? ? ?

data

data

data

size � 4

size � 4
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5.5 Write a main() method to test the Deck class.

5.6 Does the stretching operation shown in Figure 5–13 alter the data structure’s size or its
capacity?

5.2 Implementing Stacks and Queues

We now have all the tools we need to implement the Stack and Queue interfaces from Chapter 4.

The ArrayStack Class
The ArrayStack class, which implements the Stack interface, is very similar to Deck. It contains
an array data and an int size. When we create a new ArrayStack, data has room for one ele-
ment and size is 0 (Figure 5–14). The Java wart involving generics and arrays comes up again
on line 12. We can’t allocate new E[1], so we have to allocate new Object[1] and cast it to
E[]. This causes a warning, but there’s no way around it.

The isEmpty() method (Figure 5–15) is identical to the one from Deck.

1 /** An array-based Stack. */
2 public class ArrayStack<E> implements Stack<E> {
3
4   /** Array of items in this Stack. */
5   private E[] data;
6
7   /** Number of items currently in this Stack. */
8   private int size;
9

10   /** The Stack is initially empty. */
11   public ArrayStack() {
12     data = (E[])(new Object[1]); // This causes a compiler warning
13     size = 0;
14   }
15
16 }

Figure 5–14: The generic ArrayStack class is similar to Deck.

1 public boolean isEmpty() {
2   return size == 0;
3 }

Figure 5–15: It’s easy to determine if an ArrayStack is empty.
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The pop() method (Figure 5–16) is similar to deal(), although we throw an exception if the
Stack is empty.

The peek() method (Figure 5–17) is even easier because it doesn’t change the Stack. We do
have to be careful to return the element at position size - 1, which is the top item on the Stack,
rather than at position size, which is the next available position in data.

All that remains is push(). If we try to push something onto a full Stack, the array is stretched,
as described in Section 5.1. The code is given in Figure 5–18.

1 public Object pop() {
2   if (isEmpty()) {
3     throw new EmptyStructureException();
4   }
5   size--;
6   return data[size];
7 }

Figure 5–16: The pop() method can throw an EmptyStructureException.

1 public Object peek() {
2   if (isEmpty()) {
3     throw new EmptyStructureException();
4   }
5   return data[size - 1];
6 }

Figure 5–17: The peek() method returns the top element on the Stack.

1 /** Return true if data is full. */
2 protected boolean isFull() {
3   return size == data.length;
4 }
5
6 public void push(Object target) {
7   if (isFull()) {
8     stretch();
9   }

10   data[size] = target;
11   size++;
12 }
13

Figure 5–18: The push() method and associated protected methods. The reason for
doubling the length of data, rather than merely increasing it by 1, is explained in
Chapter 7. (Part 1 of 2)
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Figure 5–19 shows the effects of push() and pop() operations on an ArrayStack.

The ArrayQueue Class

The ArrayQueue class, which implements the Queue interface, makes further use of the idea of
using only part of an array. There are, of course, complications.

We choose to make higher array indices correspond to elements closer to the back of the
Queue. Thus, adding something to an ArrayQueue is exactly like pushing it onto an Array-
Stack (Figure 5–20).

The problem comes when we remove an element from the queue. The first time we do this,
the front of the queue is clearly at position 0. Afterward, the front of the queue is at index 1
(Figure 5–21).

We solve this problem with another field, an int front, which specifies where the queue starts.
Whenever we remove, front is incremented, so we know where to find the first element the
next time we remove. The next available position for adding is front + size.

14 /** Double the length of data. */
15 protected void stretch() {
16   E[] newData = (E[])(new Object[data.length * 2]); // Warning
17   for (int i = 0; i < data.length; i++) {
18     newData[i] = data[i];
19   }
20   data = newData;
21 }

Figure 5–19: Instance diagram showing operations on an ArrayStack. These are the
same operations shown in Figure 4–1. The shaded portions of data are not in use.

Figure 5–18: The push() method and associated protected methods. The reason for
doubling the length of data, rather than merely increasing it by 1, is explained in
Chapter 7. (Part 2 of 2)
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There is one more issue. After a series of insertions and deletions, the “in use” portion of the
array runs up against the right end of the array. Once this happens, we can’t add anything else to
the queue, even though there are unused positions.

The solution is for the queue to wrap around, so that the next element added goes at position 0.
This is illustrated in Figure 5–22.

When we add an element, it should normally be placed at position

front + size

but it should instead be placed at position

front + size - data.length

if the first expression would produce an index beyond the end of the array. We could compute
the position with an if statement:

Figure 5–20: Adding something into an ArrayQueue is exactly like pushing it onto
an ArrayStack. For brevity, we leave out the ArrayStack object and show only the array.

Figure 5–21: Removing an element causes the front of the queue to move along the
array.

Figure 5–22: After hitting the right end of the array, the queue wraps around to the
beginning.
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int index = front + size;
if (index >= data.length) {
index -= data.length;

}

A more elegant solution uses the % operator. Recall that this operator gives the remainder of a
division. If we divide front + size by the capacity of the queue, the quotient is either 0 or 1.
If it is 0, the % operator has no effect. If it is 1, the % operator subtracts the capacity one time. The
single expression

(front + size) % data.length

therefore always produces the right index.

The code for the ArrayQueue class is given in Figure 5–23.

1 /** An array-based Queue. */
2 public class ArrayQueue<E> implements Queue<E> {
3
4   /** Array of items in this Queue. */
5   private E[] data;
6
7   /** Index of the frontmost element in this Queue. */
8   private int front;
9

10   /** Number of items currently in this Queue. */
11   private int size;
12
13   /** The Queue is initially empty. */
14   public ArrayQueue() {
15     data = (E[])(new Object[1]); // This causes a compiler warning
16     size = 0;
17     front = 0;
18   }
19
20   public void add(E target) {
21     if (isFull()) {
22       stretch();
23     }
24     data[(front + size) % data.length] = target;
25     size++;
26   }
27
28 public boolean isEmpty() {
29 return size == 0;
30 }
31

Figure 5–23: The ArrayQueue class. (Part 1 of 2)
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The operation of an ArrayQueue is illustrated in Figure 5–24.

32  /** Return true if data is full. */
33   protected boolean isFull() {
34     return size == data.length;
35   }
36
37   public E remove() {
38     if (isEmpty()) {
39       throw new EmptyStructureException();
40     }
41     E result = data[front];
42     front = (front + 1) % data.length;
43     size--;
44     return result;
45   }
46
47 /** Double the length of data. */
48   protected void stretch() {
49     E[] newData = (E[])(new Object[data.length * 2]); // Warning
50     for (int i = 0; i < data.length; i++) {
51       newData[i] = data[(front + i) % data.length];
52     }
53     data = newData;
54    front = 0;
55  }
56
57 }

Figure 5–24: Operations on an ArrayQueue. These are the same operations shown
in Figure 4–29.

Figure 5–23: The ArrayQueue class. (Part 2 of 2)
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Exercises
5.7 Suppose we modified line 12 of Figure 5–14 so that, in a new ArrayStack, data was an

array of length 0. What problem would this cause?

5.8 Show that, when playing Idiot’s Delight, there will never be more than 13 cards in any
one stack. We can avoid stretching the stacks if we allocate an array this large when
each ArrayStack is first constructed. Write a second, overloaded constructor for the
ArrayStack class which takes one argument capacity and initializes data to be an
array of length capacity. Modify the IdiotsDelight class to take advantage of this new
constructor.

5.9 Can Deck be written as a subclass of ArrayStack? If so, is it a good idea? If not, why
not?

5.10 Draw an instance diagram of an ArrayStack as it would look if, immediately after push-
ing D in Figure 5–19, we pushed E.

5.11 Write a toString() method for the ArrayStack class. Discuss whether it is preferable
for the top of the Stack to appear on the left or the right end of the returned String.

5.12 What would happen if we were to add something to a full ArrayQueue without stretch-
ing the array?

5.13 Why is the stretch() method from ArrayQueue (Figure 5–23) more complicated
than the one from ArrayStack (Figure 5–18)?

5.14 Write a toString() method for the ArrayQueue class. Discuss whether it is prefera-
ble for the front of the queue to appear on the left or the right end of the returned String.

5.3 The List Interface

The Stack and Queue interfaces, while useful, are somewhat limited. We can only get at the ends of
such data structures. We cannot, for example, easily search through a Stack for some element. In
this section, we present and implement the List interface, which describes a more general-purpose
linear sequence.

The Interface
A List is a sequence of elements. The first element is element 0, the next is element 1, and so on.
It is similar to an array, but it does not have a fixed size. Several methods are required of any List
implementation. The List interface is given in Figure 5–25.

The behavior of most of the methods is explained in the comments.

We will implement the List interface with a class ArrayList. The constructor for ArrayList pro-
duces an initially empty List. Thus, if we declare

List<String> list = new ArrayList<String>();
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and then

list.add("eggs");
list.add("bread");
list.add("tea");

then list is the ArrayList that is printed as [ eggs bread tea ].

At this point, list.contains("eggs") is true, but list.contains("rutabagas") is
false.

1 /** A list of elements. */
2 public interface List<E> extends Iterable<E> {
3
4   /** Add target to the back of this List. */
5   public void add(E target);
6
7   /** Return true if some item in this List equals() target. */
8   public boolean contains(E target);
9

10   /** Return the indexth element of this List. */
11   public E get(int index);
12
13   /** Return true if this List is empty. */
14   public boolean isEmpty();
15
16   /**
17    * Remove and return the indexth element from this List, shifting
18    * all later items one place left.
19    */
20   public E remove(int index);
21
22   /**
23    * Remove the first occurrence of target from this List, shifting
24    * all later items one place left.  Return true if this List
25    * contained the specified element.
26    */
27   public boolean remove(E target);
28
29   /** Replace the indexth element of this List with target. */
30   public void set(int index, E target);
31
32   /** Return the number of element in this List. */
33   public int size();
34
35 }

Figure 5–25: The List interface. The Iterable interface is discussed in Section 5.4.
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The expression list.get(1) returns "bread" because, as with arrays, list indices start at 0.

Not surprisingly, list.isEmpty() returns false.

The expression list.remove(0) both modifies list to be [ bread tea ] and returns
"eggs".

If we perform the invocation list.remove("llamachow") on the resulting List, no change
is made and false is returned. On the other hand, list.remove("tea") reduces list to [
bread ] and returns true.

Since there is only one element left, list.size() returns 1.

The ArrayList Class
We now implement the List interface with the ArrayList class. Like an ArrayStack, an ArrayList
has two fields, data and size (Figure 5–26).

Several of the ArrayList methods (Figure 5–27) are either trivial or identical to methods from
ArrayStack.

The first interesting method is contains() (Figure 5–28). To determine whether an ArrayList
contains some item, we work our way down data, comparing each element to the target. If we
find it, we return true. If we get to the end of the “in use” portion of data, we return false.

The toString() method uses a similar for loop (Figure 5–29).

As specified by the List interface, there are two overloaded remove() methods (Figure 5–30).
The first one removes and returns the item at a particular location. The second one removes the
first occurrence of a particular item, if any.

1 /** An array-based List. */
2 public class ArrayList<E> implements List<E> {
3
4   /** Array of elements in this List. */
5   private E[] data;
6
7   /** Number of elements currently in this List. */
8   private int size;
9

10   /** The List is initially empty. */
11   public ArrayList() {
12     data = (E[])(new Object[1]); // This causes a compiler warning
13     size = 0;
14   }
15
16 }

Figure 5–26: Fields and constructor for the ArrayList class.
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In both cases, all subsequent elements are shifted one place to the left. This shifting is illustrated
in Figure 5–31.

The remaining method, iterator(), is explained in Section 5.4.

1 public void add(E target) {
2   if (isFull()) {
3     stretch();
4   }
5   data[size] = target;
6   size++;
7 }
8
9 public boolean isEmpty() {

10   return size == 0;
11 }
12
13 /** Return true if data is full. */
14 protected boolean isFull() {
15   return size == data.length;
16 }
17
18 public E get(int index) {
19   return data[index];
20 }
21
22 public void set(int index, E target) {
23   data[index] = target;
24 }
25
26 public int size() {
27   return size;
28 }
29
30 /** Double the length of data. */
31 protected void stretch() {
32   E[] newData = (E[])(new Object[data.length * 2]); // Warning
33   for (int i = 0; i < data.length; i++) {
34     newData[i] = data[i];
35   }
36   data = newData;
37 }

Figure 5–27: These methods from ArrayList are either trivial or identical to methods
from ArrayStack.
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1 public boolean contains(E target) {
2   for (int i = 0; i < size; i++) {
3     if (data[i].equals(target)) {
4       return true;
5     }
6   }
7   return false;
8 }

Figure 5–28: In contains(), each element is compared with target.

1 public String toString() {
2   String result = "[ ";
3   for (int i = 0; i < size; i++) {
4     result += data[i] + " ";
5   }
6   return result + "]";
7 }

Figure 5–29: The toString() method.

1 public E remove(int index) {
2   E result = data[index];
3   for (int i = index + 1; i < size; i++) {
4     data[i - 1] = data[i];
5   }
6   size--;
7   return result;
8 }
9

10 public boolean remove(E target) {
11   for (int i = 0; i < size; i++) {
12     if (data[i].equals(target)) {
13       for (int j = i; j < size - 1; j++) {
14         data[j] = data[j + 1];
15       }
16       size--;
17       return true;
18     }
19   }
20   return false;
21 }

Figure 5–30: ArrayList has two overloaded remove() methods. On a successful
removal, both require that later Objects be shifted left.
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Exercises

5.15 Explain what’s wrong with the version of contains() in Figure 5–32.

5.16 The List interface specifies two overloaded remove() methods. Through experimenta-
tion, determine which one Java uses if we invoke remove(3) on a List<Integer>.
How can we force Java to use the other one?

5.17 Modify the get() and set() methods (Figure 5–27) so that they throw an
IndexOutOfBoundsException if the argument index is either too low (less than 0) or
too high (greater than or equal to size). (IndexOutOfBoundsException is the direct
superclass of ArrayIndexOutOfBoundsException.)

5.18 Explain why the loop in the first version of remove() (Figure 5–30) starts at index + 1
instead of index.

5.19 Write an equals() method for the ArrayList class. This method should compare only
elements in the “in use” region of data.

5.20 Write a method indexOf() that takes one argument, an element target, and returns
the index of the first occurrence of target in this ArrayList, or -1 if target does not
appear.

Figure 5–31: In the ArrayList above, the element C (at position 2) is to be removed.
This requires each subsequent element to be shifted left one position.

1 public boolean contains(E target) {
2   for (E e : data) {
3     if (e.equals(target)) {
4       return true;
5     }
6   }
7   return false;
8 }

Figure 5–32: Broken version of contains() for Exercise 5.15.
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5.21 Write a method removeAll() that takes one argument, an element target. It
removes all elements which are equals() to target from this ArrayList.

5.22 Write a method count() that takes one argument, an element target. It returns the
number of elements in this ArrayList which are equals() to target.

5.23 Write a main() method to test the ArrayList class.

5.4 Iterators

On many occasions we want to traverse a List—that is, visit (do something with or to) each ele-
ment. To give just a few examples, we might want to:

• Traverse a List of Integers and add each one to a running tally.

• Traverse a List of Doubles to find the maximum of the elements.

• Print each element of a List.

• Compare each element of a List with the corresponding element of another List.

• Traverse a List of URLs to verify that each one leads to a web page that still exists.

A method to accomplish any of these things has the same basic structure as the contains()
and toString() methods from ArrayList (Figure 5–28 and Figure 5–29):

for (int i = 0; i < size; i++) {
  // Do something with data[i]
}

Such a method would have to appear in the ArrayList class, because it directly accesses the
fields data and size. We could write a method for each traversal we want to perform, but the
ArrayList class is supposed to be general-purpose. Code for such specific tasks doesn’t belong in
this class.

A better approach is to produce an object called an iterator which allows us to traverse the List.
An iterator has methods for three requests:

• “Are there more elements in the List?”

• “What is the next element?”

• “You know that last element you returned? Remove it from the List.”

This abstract data type is formalized in the Iterator interface, which is in the java.util package.

The Iterator Interface
The Iterator interface in the java.util class specifies three methods: hasNext(), next(), and
remove(). As shown in Figure 5–33, none of them take any arguments.
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The hasNext() method returns true if there is a next element to be visited. The next() method
returns the next element. These two methods are usually used in a loop like this:

java.util.Iterator iter = list.iterator();
while (iter.hasNext()) {
  // Do something with iter.next()
}

We must be careful to invoke next() only once on each pass through the loop, because it both
returns an element and advances the Iterator. If we say something like

if ((iter.next() != null) || (iter.next().equals(target))) {
  ...
}

we will advance two elements at a time—almost certainly not what we want.

The remove() method removes the last item visited from the data structure associated with the
Iterator. We should invoke this only after invoking next().

The documentation for the Iterator mentions that these methods can throw certain exceptions.
(These will be left as exercises in our implementation.) The next() method throws a
java.util.NoSuchElementException if there are no more elements to visit. This can be avoided by
always checking hasNext() before invoking next().

The remove() method can throw a java.util.IllegalStateException if next() has never been
invoked, or has not been invoked since the last invocation of remove(). (Only the last element
returned by next() can be removed.) It is also legal to write an implementation of Iterator
which does not support removal. In such a class, the remove() method does nothing but throw
a java.util.UnsupportedOperationException.

The Iterable Interface
The Iterable interface requires one method, which returns an Iterator. The signature of this
method is:

public Iterator<E> iterator();

Our List interface extends Iterable, so any class implementing List (such as ArrayList) must pro-
vide this method. We will do so momentarily.

Figure 5–33: The Iterator interface is in the java.util package.
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If a class implements Iterable, we can traverse an instance of that class using an enhanced for
loop (Appendix A). For example, if numbers is an ArrayList<Integer>, then we can compute its
sum with this short code:

int sum = 0;
for (int n : numbers) {
sum += n;

}

The ArrayIterator Class

The iterator() method in ArrayList has to return an instance of some class which imple-
ments Iterator. We will return an instance of the class ArrayIterator. An ArrayIterator knows
about the ArrayList with which it is associated. In other words, an ArrayIterator is-a Iterator, but
it has-a ArrayList (Figure 5–34).

The iterator() method for ArrayList (Figure 5–35) simply creates an instance of ArrayIterator.

An ArrayIterator needs two fields: the ArrayList it is traversing and an int indicating how far
down the ArrayList it is. It turns out to be convenient to keep track of the index of the previously
visited element. We therefore call this int previous.

Figure 5–34: An ArrayIterator is-a java.util.Iterator, but it has-a ArrayList. Strangely,
the Iterable interface is in the java.lang package, not the java.util package.

1 public java.util.Iterator<E> iterator() {
2   return new ArrayIterator<E>(this);
3 }

Figure 5–35: The iterator() method from ArrayList.
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To find the next element to return, we increment previous and invoke get(previous) on the
ArrayList. To determine if there are more elements to visit, we simply compare this number with
the size of the ArrayList.

To remove the most recently returned element, we invoke remove(previous) on the Array-
List. We also have to decrement previous, so that when we increment it in the next call to
next(), it will be the index of the next unvisited element.

The code for the ArrayIterator class is given in Figure 5–36. Exceptions are left as exercises.

1 /** Iterator associated with an ArrayList. */
2 public class ArrayIterator<E> implements java.util.Iterator<E> {
3
4   /** List being traversed. */
5   private ArrayList<E> list;
6
7   /** Index of the last element returned by next(). */
8   private int previous;
9

10   /** The Iterator begins ready to visit element 0. */
11   public ArrayIterator(ArrayList<E> list) {
12     this.list = list;
13     previous = -1;
14   }
15
16   public boolean hasNext() {
17     return (previous + 1) < list.size();
18   }
19
20   public E next() {
21     previous++;
22     return list.get(previous);
23   }
24
25   public void remove() {
26     list.remove(previous);
27     previous--;
28   }
29
30 }

Figure 5–36: The ArrayIterator class.
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Example: Go Fish

To illustrate the use of Lists and Iterators, we now write a program for the game of Go Fish
(Figure 5–37).

This program is fairly elaborate, but we’ve already written most of the components. The game
itself is represented by the GoFish class. An instance of GoFish contains a Deck of Cards. It also
contains two hands of cards, one for the computer and one for the user. A hand of cards is a spe-
cial kind of List, so we’ll extend the ArrayList class with the class GoFishHand. The UML class
diagram is given in Figure 5–38.

Go Fish
Players: 2–5

Object: To collect the most sets of four cards of the same rank.

Setup: Deal a hand of seven cards to each player.

Play: On your turn, first draw a card from the deck if your hand is empty. Ask any other
player for cards of a particular rank. That player must give you all of the cards of that rank
from his hand, which are added to your hand. If he doesn’t have any cards of that rank, he
tells you, “Go Fish,” and you draw a card from the deck. If you complete a set of four cards
of the same rank, remove all four cards from your hand and score one set. If you get a card
of the rank you want (either from another player or by fishing from the deck), you get
another turn. Otherwise, play passes to the next player.

Game End: The game ends when all thirteen sets have been scored. The player with the
most sets wins.

Figure 5–37: Go Fish is a card game for children. Our implementation pits one
player against the computer.

Figure 5–38: An instance of GoFish contains two GoFishHands and one Deck, both
of which contain Cards. The GoFishHand class extends ArrayList<Card>.
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The simple parts of the GoFish class are shown in Figure 5–39. On lines 33 and 34 of the con-
structor, we call the add() method which GoFishHand inherits from ArrayList.

1 import java.util.Scanner;
2
3 /** The game of Go Fish. */
4 public class GoFish {
5
6   /** For reading from the console. */
7   public static final Scanner INPUT = new Scanner(System.in);
8
9   /** The computer's hand of Cards. */

10   private GoFishHand computerHand;
11
12   /** Number of sets of four the computer has laid down. */
13   private int computerScore;
14
15   /** The Deck. */
16   private Deck deck;
17
18   /** The player's hand of Cards. */
19   private GoFishHand playerHand;
20
21   /** Number of sets of four the player has laid down. */
22   private int playerScore;
23
24   /** Shuffle the Deck and deal seven Cards to each player. */
25   public GoFish() {
26     computerScore = 0;
27     playerScore = 0;
28     deck = new Deck();
29     deck.shuffle();
30     computerHand = new GoFishHand();
31     playerHand = new GoFishHand();
32     for (int i = 0; i < 7; i++) {
33       playerHand.add(deck.deal());
34       computerHand.add(deck.deal());
35     }
36   }
37
38   /** Create and play the game. */
39   public static void main(String[] args) {
40     System.out.println("Welcome to Go Fish.");
41     GoFish game = new GoFish();
42     game.play();
43   }
44
45 }

Figure 5–39: Beginning the GoFish class.
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In the play() method (Figure 5–40), we want to keep going until the sum of the players’ scores
is 13. The complicated details of taking a turn for either the computer or the user are moved off
into other methods. These methods return a boolean value which is true if the player in ques-
tion earned a bonus turn. This is the reason for the unusual structure of lines 4–7. Lines 4–5 are
a loop with no body which runs until either all 13 sets have been claimed or playerTurn()
returns false. The actual work is done in playerTurn(), which is invoked only if the logical
and expression’s first operand

playerScore + computerScore < 13

is false. Line 6–7 do the same thing with computerTurn().

The lengthy playerTurn() method is given in Figure 5–41. Lines 6–8 have the player draw a
card if the player’s hand is empty. Line 9 prints the state of the game—we’ll have to remember
to write a toString() method. The bulk of the method, lines 10–25, deals with reading a rank
from the user. Line 11 invokes the method toUpperCase() from the String class, making any
lower-case letters in the input String uppercase. This allows the user to type either q or Q to indi-
cate a queen.

Line 26 transfers the appropriate cards from the computer’s hand to the player’s hand. If no
cards are transferred, lines 28 to 34 go fish, which might produce a bonus turn. The rest of the
method deals with laying down sets.

The computerTurn() method (Figure 5–42) is similar, but the rank is chosen randomly. Lines
11–12 are a clever trick for converting from a numerical rank to a character (which might be A,
T, J, Q, K, or a digit). We have already written code to do this in the Card class. Rather than do all
that work again, we create a Card of the rank in question. (We arbitrarily specify HEARTS

1 /** Play until either the player or the computer wins. */
2 public void play() {
3   while (playerScore + computerScore < 13) {
4     while ((playerScore + computerScore < 13) 
5 && (playerTurn())) {
6     }
7     while ((playerScore + computerScore < 13) 
8 && (computerTurn())) {
9     }

10   }
11   System.out.println("The computer made " + computerScore 
12 + " sets");
13   System.out.println("You made " + playerScore + " sets");
14   if (playerScore > computerScore) {
15     System.out.println("You win!");
16   } else {
17     System.out.println("The computer wins");
18   }
19 }

Figure 5–40: The play() method invokes playerTurn() and computerTurn().
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1 /**
2  * Take a turn for the player.  Return true if the player has earned
3  * a bonus turn.
4  */
5 public boolean playerTurn() {
6   if (playerHand.isEmpty() && !(deck.isEmpty())) {
7     playerHand.add(deck.deal());
8   }
9   System.out.println("\n" + this);

10   System.out.print("Which card will you ask for? ");
11   char cardName = INPUT.nextLine().toUpperCase().charAt(0);
12   int rank;
13   if (cardName == 'A') {
14     rank = Card.ACE;
15   } else if (cardName == 'T') {
16     rank = 10;
17   } else if (cardName == 'J') {
18     rank = Card.JACK;
19   } else if (cardName == 'Q') {
20     rank = Card.QUEEN;
21   } else if (cardName == 'K') {
22     rank = Card.KING;
23   } else {
24     rank = cardName - '0';
25   }
26   boolean bonusTurn = computerHand.give(rank, playerHand);
27   if (!bonusTurn) {
28     System.out.println("Go fish");
29     Card card = deck.deal();
30     System.out.println("You draw: " + card);
31     playerHand.add(card);
32     if (card.getRank() == rank) {
33 bonusTurn = true;
34 }
35   }
36   int sets = playerHand.meldSets();
37   playerScore += sets;
38   if (sets > 0) {
39     System.out.println("You lay down " + sets
40                       + " sets, bringing your total to " 
41 + playerScore);
42   }
43   return bonusTurn;
44 }

Figure 5–41: The playerTurn() method invokes give() and meldSets() on
instances of GoFishHand.
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because we don’t care about the suit here.) We invoke the Card’s toString() method to get a
String representation of the Card. The character we want is character 0 in this String, which we
get with the invocation charAt(0).

All that remains in the GoFish class is toString() (Figure 5–43). This method implicitly
invokes the toString() method from GoFishHand, which was inherited from ArrayList.

We can summarize our work so far with a detailed UML class diagram (Figure 5–44).

Both of the methods in the GoFishHand class involve Iterators, so we go ahead and import
java.util.Iterator (Figure 5–45).

1 /**
2  * Take a turn for the computer.  Return true if the computer has 
3  * earned a bonus turn.
4  */
5 public boolean computerTurn() {
6   if (computerHand.isEmpty() && !(deck.isEmpty())) {
7     computerHand.add(deck.deal());
8   }
9   System.out.println("\n" + this);

10   int rank = ((int)(Math.random() * 13)) + 1;
11   char rankCharacter = new Card(rank, 
12 Card.HEARTS).toString().charAt(0);
13   System.out.println("The computer asks for " + rankCharacter);
14   boolean bonusTurn = playerHand.give(rank, computerHand);
15   if (!bonusTurn) {
16     System.out.println("Go fish");
17     Card card = deck.deal();
18     computerHand.add(card);
19     if (card.getRank() == rank) {
20 bonusTurn = true;
21 }
22   }
23   int sets = computerHand.meldSets();
24   computerScore += sets;
25   if (sets > 0) {
26     System.out.println("The computer lays down " + sets
27                       + " sets, bringing its total to " 
28 + computerScore);
29   }
30   return bonusTurn;
31 }

Figure 5–42: The computer asks for a random rank.
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The first method, give(), transfers all Cards of a given rank from one hand to another and
returns a boolean indicating if any were transferred. Thus, myHand.give(7,yourHand)
removes all of the 7s from myHand, adds them to yourHand, and returns true if there were any.

The cards to be given are found by iterating through the hand in question and examining the rank
of each card (Figure 5–46).

The meldSets() method (Figure 5–47) traverses the current hand twice. In lines 7–10, it deter-
mines how many Cards there are of each rank. Thus, if this hand has two 6s, rankCount[6] is
2 at the end of line 10. This is an enhanced for loop. The second traversal, on lines 13–19,
removes all those cards for which the rank count is 4.

Our program is now complete, as verified by a sample game (Figure 5–48).

1 public String toString() {
2   String result = "There are " + deck.size() 
3 + " cards in the deck\n";
4   result += "The computer has " + computerHand.size() + " cards\n";
5   return result + "Your hand: " + playerHand;
6 }

Figure 5–43: The toString() method for GoFish.

Figure 5–44: After writing GoFish, we know which methods we’ll need in
GoFishHand. The fields of the ArrayList class, and most of its methods, are not shown.

1 import java.util.Iterator;
2
3 /** Hand of cards for the game of Go Fish. */
4 public class GoFishHand extends ArrayList<Card> {
5 }

Figure 5–45: The GoFishHand class will make extensive use of Iterators.
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playerTurn():boolean
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GoFishHand

GoFishHand()
give(int,GoFishHand):boolean
meldSets():int
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add(Object):void
toString():String

2

Card
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1 /**
2  * Remove all Cards of the specified rank and add them to the hand
3  * taker. Return true if at least one Card was given.
4  */
5 public boolean give(int rank, GoFishHand taker) {
6   boolean foundAny = false;
7   Iterator<Card> iter = iterator();
8   while (iter.hasNext()) {
9     Card card = iter.next();

10     if (card.getRank() == rank) {
11       iter.remove();
12       taker.add(card);
13       foundAny = true;
14     }
15   }
16   return foundAny;
17 }

Figure 5–46: The give() method traverses the hand on which it is invoked.

1 /**
2  * Remove all sets of four same-rank Cards from this GoFishHand. 
3  * Return the number of sets.
4  */
5 public int meldSets() {
6   // Count number of Cards of each rank
7   int[] rankCount = new int[14]; // Initialized to zeroes
8   for (Card c : this) {
9     rankCount[c.getRank()] += 1;

10   }
11   // Remove cards in complete sets
12   int cardsRemoved = 0;
13   Iterator<Card> iter = iterator();
14   while (iter.hasNext()) {
15     if (rankCount[iter.next().getRank()] == 4) {
16       cardsRemoved += 1;
17       iter.remove();
18     }
19   }
20   // Return number of complete sets
21   return cardsRemoved / 4;
22 }

Figure 5–47: The meldSets() method traverses the hand twice.
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Notice, incidentally, that we’ve stopped running into warnings about generic arrays. All of that
ugliness is encapsulated inside the ArrayList class.

Exercises

5.24 Modify ArrayIterator so that next() throws a java.util.NoSuchElementException if
the associated ArrayList has no more elements to visit.

5.25 Modify ArrayIterator so that remove() throws a java.util.IllegalStateException when
appropriate. (Hint: Add a boolean field removeAvailable which is set to true by
next() and to false by remove(). What is the initial value of this field?)

1 Welcome to Go Fish.
2
3 There are 38 cards in the deck
4 The computer has 7 cards
5 Your hand: [ 5c 6s 6h 4d Js Qc 8d ]
6 Which card will you ask for? 5
7
8 There are 38 cards in the deck
9 The computer has 6 cards

10 Your hand: [ 5c 6s 6h 4d Js Qc 8d 5s ]
11 Which card will you ask for? 6
12 Go fish
13 You draw: 7h
14
15 There are 37 cards in the deck
16 The computer has 6 cards
17 Your hand: [ 5c 6s 6h 4d Js Qc 8d 5s 7h ]
18 The computer asks for 4
19
20 There are 37 cards in the deck
21 The computer has 7 cards
22 Your hand: [ 5c 6s 6h Js Qc 8d 5s 7h ]
23 The computer asks for Q
24
25 There are 37 cards in the deck
26 The computer has 8 cards
27 Your hand: [ 5c 6s 6h Js 8d 5s 7h ]
28 The computer asks for 4
29 Go fish
30
31 There are 36 cards in the deck
32 The computer has 9 cards
33 Your hand: [ 5c 6s 6h Js 8d 5s 7h ]

Figure 5–48: Beginning of a game of Go Fish.
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5.26 Rewrite the toString() method for ArrayList (Figure 5–29) so that it uses an Iterator
rather than directly accessing the fields.

5.27 In meldSets() (Figure 5–47), why does the array rankCount have 14 elements
instead of 13?

5.5 The Java Collections Framework: 
A First Look

The general-purpose linear structures we’ve constructed here are extremely common. Java there-
fore provides standard versions of them in the java.util package. These classes implement inter-
faces that descend from the Collection interface. Together, the classes and interfaces are known
as the Java collections framework. Figure 5–49 gives us a first look at the framework.

The List interface is similar to the one we defined in Figure 5–25. Specifically, it contains all of the
methods we mentioned, plus a few others, including those described in Exercises 5.19 through
5.21. List extends Collection, an interface about which we’ll say more in Chapter 11.

Figure 5–49: The Java collections framework consists of classes and interfaces in
the java.util package.
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The class ArrayList is similar to the one we wrote in this chapter. It is also similar to the some-
what out-of-date class Vector. As Java has evolved over time, new classes and interfaces have
been added to the built-in library. To provide backward compatibility—that is, to allow old Java
programs to run under new versions of Java—classes are rarely removed from the library. Thus,
even though new programs should always use ArrayList, the Vector class is still present.

The framework does not include a Stack interface, but it does include a Stack class, which is
similar to our ArrayStack class. The Stack class extends Vector. If an attempt is made to peek()
at or pop() an empty Stack, a java.util.EmptyStackException is thrown.

Many object-oriented programmers feel that it is a bad idea for Stack to extend Vector. The rea-
son is that Stack inherits some public methods like get(). These methods allow us to do
unstackly things with a Stack, such as looking at the bottom element. Since the ability to do this
depends on a particular implementation, it violates the encapsulation of the abstract data type.
These issues aside, the java.util.Stack class is the one that comes with Java. We must either swal-
low our pride and use it or write our own.

Curiously, there is a Queue interface, but no array-based implementation. There is a non-array-
based implementation, which we will see in Chapter 6.

Abstract Classes
List is implemented by the class AbstractList, which in turn is extended by ArrayList and Vector.
AbstractList is an abstract class, meaning that we can’t create an instance of it. An abstract class
exists only to be extended by other classes. Conceptually, an abstract class is something like
“vehicle” or “animal.” It wouldn’t make sense to have an instance of a category like this, but it
would make sense to have an instance of “bicycle” or “lion.”

An abstract class is similar to an interface. While it is a class—and therefore is extended rather
than implemented—an abstract class can contain abstract methods which must be provided by
any (nonabstract) subclass. All of the methods in an interface are implicitly abstract. (We could
explicitly declare them to be abstract, but there would be no point.)

The key difference between an abstract class and an interface is that an abstract class can specify
both responsibilities and (partial) implementation, while an interface can specify only responsi-
bilities. In more technical terms, an abstract class can contain fields, abstract methods, and non-
abstract methods, while an interface can contain only (implicitly) abstract methods.

For a more concrete example of an abstract class, we could have defined Stack as an abstract
class (Figure 5–50). Any class extending this class would have to provide isEmpty(), pop(),
and push(), but would inherit peek().

Exercises
5.28 Through experimentation, determine what happens if you try to extend an abstract class

without providing one of the abstract methods specified.

5.29 Speculate on whether a class can extend more than one abstract class.
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5.30 The method peek() in Figure 5–50 could begin with the code:

if (isEmpty()) {
  throw new EmptyStructureException();
}

Explain why this is not necessary.

Summary

The size of an array cannot be changed, but the array-based structures discussed in this chapter
are able to grow and shrink. They do this by maintaining a separate field indicating how many of
the array positions are currently in use. This field also provides the index of the next available

1 /** A last-in, first-out stack of Objects. */
2 public abstract class Stack {
3
4   /** Return true if the Stack is empty. */
5   public abstract boolean isEmpty();
6
7   /**
8    * Return the top Object on the Stack, but do not modify the 
9 Stack.

10    * @throws EmptyStructureException if the Stack is empty.
11    */
12   public Object peek() {
13     Object result = pop();
14     push(result);
15     return result;
16   }
17
18   /**
19    * Remove and return the top Object on the Stack.
20    * @throws EmptyStructureException if the Stack is empty.
21    */
22   public abstract Object pop();
23
24   /** Add an Object to the top of the Stack. */
25   public abstract void push(Object target);
26
27 }

Figure 5–50: Stack as an abstract class. Most of the methods are abstract (and
therefore must be provided by subclasses), but an implementation of peek() is
provided.
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position. If all of the positions are in use, an array-based structure can be stretched by copying
all of its elements into a new, larger array.

These techniques for stretching and shrinking are used in the ArrayStack class. The ArrayQueue
class must do a little more work because, as elements are added to the back and removed from
the front, the in-use portion of the array marches to the right. When it hits the right end of the
array, it wraps around to the beginning. This is accomplished using the % operator.

The List interface describes a much more general data structure. It is implemented by the Array-
List class. In addition to providing basic methods for accessing particular elements and so on, a
List can return an Iterator. An Iterator allows us to traverse the List, visiting each element.

Java’s collections framework, in the java.util package, includes a List interface, an ArrayList
class, a Stack class, and a Queue interface. We will see more interfaces and classes from this
framework in later chapters.

Vocabulary

abstract class. Class that cannot be instantiated but may contain abstract methods. Unlike an
interface, an abstract class can also contain fields and nonabstract methods.

abstract method. Method signature with no body, to be provided by another class. Found in
interfaces and abstract classes.

backward compatibility. Of a compiler or other system, ability to work with old software.

iterator. Object allowing us to traverse a data structure. In Java, an instance of the java.util.Iter-
ator class.

Java collections framework. Set of classes in the java.util package descending from Collection.
These are standard implementations of many common data structures.

traverse. Go through a data structure, visiting each element.

visit. Do something with or to an element of a data structure.

Problems

5.31 In the Card class, replace the constant ACE with two constants ACE_LOW=1 and
ACE_HIGH=14. Make Deck abstract and provide two subclasses AceLowDeck (which
has low aces) and AceHighDeck (which has high aces).

5.32 Rewrite the ArrayQueue class (Figure 5–23) so that, instead of a field size indicating
the number of Objects in the queue, there is a field back indicating the next available
position. How will you know when the queue is full?

5.33 Rewrite the ArrayQueue class (Figure 5–23) so that the remove() method shifts all of
the data to the left, keeping the front of the queue at position 0. This allows the field
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front to be removed. Which methods become simpler as a result of this change?
Which become more complicated?

5.34 Define a class ReverseArrayIterator, which implements java.util.Iterator but visits an
ArrayList’s elements in reverse order. Add a method reverseIterator() to the
ArrayList class. The method returns an instance of ReverseArrayIterator.

5.35 Write a Deck class whose only field is of type ArrayList<Card>. Use the static shuf-
fle() method in the API for the Collections class (which should not be confused with
the Collection interface).

Projects

5.36 Write an abstract class ArrayBasedStructure which is extended by ArrayStack, Array-
Queue, and ArrayList. How much of the implementation can be moved up into this
abstract superclass? Discuss whether this makes the overall code more or less clear.

5.37 Write an array-based implementation of the Deque interface from Problem 4.18.
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6
Linked Structures

This chapter introduces linked structures. The structures in this chapter are made from chains of
nodes, connected by references. These nodes are introduced in Section 6.1. The Stack and
Queue interfaces are implemented in Section 6.2 and the List interface in Section 6.3. Finally, in
Section 6.4, we examine the linked structures in the Java collections framework.

6.1 List Nodes

The structures in this chapter are composed of list nodes. A list node contains only one element,
but it also contains (a reference to) another list node. A list node is represented by an instance of
a class called, not surprisingly, ListNode (Figure 6–1).

Figure 6–1: A ListNode contains another ListNode unless next is null.

ListNode

item:E
next:ListNode<E>
ListNode(E)
ListNode(E,ListNode<E>)
getItem():E
getNext():ListNode<E>
setItem(E):void
setNext(ListNode<E>):void

0..1

E
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This arrangement allows us to make a chain of ListNodes, each containing a reference to the
next one (Figure 6–2). The next field of the last node is null.

There are a number of ways to create the data structure in Figure 6–2. One is to create the nodes
and then link them together:

ListNode<String> node1 = new ListNode<String>("A");
ListNode<String> node2 = new ListNode<String>("B");
ListNode<String> node3 = new ListNode<String>("C");
node1.setNext(node2);
node2.setNext(node3);

An alternate approach, taking advantage of the overloaded constructor, is to create the entire
chain with one expression:

new ListNode<String>
("A", new ListNode<String>
("B", new ListNode<String>("C")))

As we’ll see later in this chapter, these chains of nodes are usually constructed gradually, with
nodes being added or removed as elements are pushed onto a Stack, removed from a Queue, and
so on.

We can splice a node out of a chain if we can find the node’s predecessor. For example, if the
nodes in Figure 6–2 are named node1, node2, and node3, then the method invocation

node1.setNext(node2.getNext());

results in the situation shown in Figure 6–3.

Figure 6–2: A chain of three ListNodes.

Figure 6–3: Splicing a node out of a chain.
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The code for the ListNode class is simple (Figure 6–4).

It is sometimes useful to have a doubly linked node, which knows about both the previous and
the next node (Figure 6–5).

1 /** Node in a linked list. */
2 public class ListNode<E> {
3
4   /** The item stored in this node. */
5   private E item;
6
7   /** The node following this one. */
8   private ListNode<E> next;
9

10   /** Put item in a node with no next node. */
11   public ListNode(E item) {
12     this.item = item;
13     next = null;
14   }
15
16   /** Put item in a node with the specified next node. */
17   public ListNode(E item, ListNode<E> next) {
18     this.item = item;
19     this.next = next;
20   }
21
22   /** Return the item stored in this node. */
23   public E getItem() {
24     return item;
25   }
26
27   /** Return the next node. */
28   public ListNode<E> getNext() {
29     return next;
30   }
31
32   /** Replace the item stored in this node. */
33   public void setItem(E item) {
34     this.item = item;
35   }
36
37   /** Set the next node. */
38   public void setNext(ListNode<E> next) {
39     this.next = next;
40   }
41
42 }

Figure 6–4: The ListNode class.
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A chain of DoublyLinkedNodes is somewhat hairy looking, because there is one sequence of
references leading forward and another leading backward (Figure 6–6).

A chain of DoublyLinkedNodes is more difficult to maintain than a chain of singly linked nodes,
but it has its uses. We can traverse the chain in either direction. Also, if we have a particular
node, we can splice it out of the list without advance knowledge of its predecessor. This allows
us to write a method remove() in the DoublyLinkedNode class (Figure 6–7).

The rest of the code for the DoublyLinkedNode class is straightforward. It is left as Problem 6.25.

Figure 6–5: A DoublyLinkedNode knows about both its predecessor and its suc-
cessor.

Figure 6–6: A chain of DoublyLinkedNodes. For clarity, type parameters have been
omitted.

1 /** Splice this node out of its chain. */
2 public void remove() {
3   if (prev != null) {
4     prev.next = next;
5   }
6   if (next != null) {
7     next.prev = prev;
8   }
9 }

Figure 6–7: The remove() method from the DoublyLinkedList class.
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Exercises
6.1 Write code to produce the data structure shown in Figure 6–8.

6.2 Can the item field of a ListNode contain a ListNode? Can it be null?

6.3 Draw the data structure in Figure 6–6 as it would appear after invoking remove() on
the middle node.

6.2 Stacks and Queues

We now present the LinkedStack and LinkedQueue classes, which respectively implement the
Stack and Queue interfaces from Chapter 4.

The LinkedStack Class
A (nonempty) LinkedStack contains (a reference to) a ListNode, which in turn contains an ele-
ment and perhaps another ListNode. In UML class diagrams, this relationship may be illustrated
in any of several levels of detail, depending on what is being emphasized (Figure 6–9).

The activity of a LinkedStack is shown in Figure 6–10.

Like any linked structure, a LinkedStack always has just enough room for its elements. It is
never necessary to stretch a linked structure by copying the elements.

The code for the LinkedStack class is very short (Figure 6–11).

In an empty LinkedStack, including a newly created one, top is null. The isEmpty() method
only has to check for this.

The push() method splices a new node onto the beginning of the chain. As shown in
Figure 6–12, each time we push something onto the Stack, a new node is created, but the old
nodes don’t change. The next field of the new ListNode gets the old value of top—that is, a
reference to the rest of the chain. The other nodes aren’t affected.

It is important to realize that the rightmost LinkedStack in Figure 6–12 is not in any sense “full.”
The positions of the nodes on paper or in memory are completely arbitrary. We could have
drawn the top of the Stack at the bottom of the diagram. Whichever node is referred to by top is
the top one, regardless of where it is drawn. All that matters is the chain of references. In fact, as

Figure 6–8: A circular chain of nodes, for Exercise 6.1.
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Figure 6–9: Three different UML class diagrams showing the relationship between
the LinkedStack and ListNode classes and the class of the element type E. The most
precise diagram (top) indicates that a LinkedStack may contain a ListNode, which
contains an E and possibly another ListNode. The middle diagram indicates that a
LinkedStack contains 0 or more ListNodes, each of which contains an E. The fact that
some of these ListNodes are only indirectly contained in the LinkedStack is left out.
The bottom diagram omits the ListNode class altogether, merely indicating that a
LinkedStack contains 0 or more instance of E.

Figure 6–10: Activity of a LinkedStack. These are the same operations shown in
Figure 4–1. Again, type parameters have been omitted for clarity.
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we’ll see in Chapter 16, Java can sometimes move things around in memory without telling us.
This doesn’t cause a problem, because the reference chains (which node refers to which other
node) are unaffected.

The pop() method is the complement of push(). It splices a node out, as described in Section 6.1.
This method is longer for a couple of reasons. First, if the Stack is empty, we have to throw an

1 /** A linked Stack. */
2 public class LinkedStack<E> implements Stack<E> {
3
4   /** The top ListNode in the Stack. */
5   private ListNode<E> top;
6
7   /** The Stack is initially empty. */
8   public LinkedStack() {
9     top = null;

10   }
11
12   public boolean isEmpty() {
13     return top == null;
14   }
15
16   public E peek() {
17 if (isEmpty()) {
18       throw new EmptyStructureException();
19     }
20     return top.getItem();
21   }
22
23   public E pop() {
24     if (isEmpty()) {
25       throw new EmptyStructureException();
26     }
27     E result = top.getItem();
28     top = top.getNext();
29     return result;
30   }
31
32   public void push(E target) {
33     top = new ListNode<E>(target, top);
34   }
35
36 }

Figure 6–11: The LinkedStack class.
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exception. Second, we have to store the element from the node we are removing in a variable.
We have to do this before we remove the node, because the node becomes unreachable once we
change the value of top (Figure 6–13).

The reader with an eye to tidiness may wonder, “What happens to these unreachable nodes? Are
they taking up memory?” In a language like C, the answer is yes. In Java, on the other hand, any
object which can no longer be reached (because there are no references to it) magically disap-
pears. This will be explained in Chapter 16.

The peek() method is easy, although we must be careful not to confuse top (the top node) and
top.getItem() (the element contained in that node).

The LinkedQueue Class
The LinkedQueue class implements the Queue interface. Because we add elements to the back
and remove them from the front, we have to keep track of both ends of the chain of nodes. This
is illustrated in Figure 6–14.

The code for the LinkedQueue class is given in Figure 6–15.

The isEmpty() method looks just like the one from LinkedStack, with front standing in for
top.

The add() method creates a new ListNode and adds it to the back of the Queue. An empty
Queue needs special treatment, because the new node also becomes the front of the Queue. If the

Figure 6–12: Pushing a series of elements onto a LinkedStack. At each step,
modified references and newly created nodes are shown in grey. The value of next in
the new node is always the same as the previous value of top.
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Figure 6–13: Repeated popping of a LinkedStack. Once top changes, the node to
which it used to point becomes unreachable.

Figure 6–14: Activity of a LinkedQueue. These are the same operations shown in
Figure 4–29. The references from the ListNodes are all the next fields.
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1 /** A linked Queue. */
2 public class LinkedQueue<E> implements Queue<E> {
3
4   /** The front ListNode in the Queue. */
5   private ListNode<E> front;
6
7   /** The back ListNode in the Queue. */
8   private ListNode<E> back;
9

10   /** The Queue is initially empty. */
11   public LinkedQueue() {
12     front = null;
13     back = null;
14   }
15
16   public void add(E target) {
17     ListNode<E> node = new ListNode<E>(target);
18     if (isEmpty()) {
19       front = node;
20       back = node;
21     } else {
22       back.setNext(node);
23       back = node;
24     }
25   }
26
27   public boolean isEmpty() {
28     return front == null;
29   }
30
31   public E remove() {
32     if (isEmpty()) {
33       throw new EmptyStructureException();
34     }
35     E result = front.getItem();
36     front = front.getNext();
37     return result;
38   }
39
40 }

Figure 6–15: The LinkedQueue class.
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Queue is not empty, we simply splice the new node onto the back by setting the next field in the
last node (Figure 6–16).

The remove() method is like pop() from LinkedStack. If we remove the last node, front
becomes null (Figure 6–17). It does not matter that back still points to the node that was just
removed. No method does anything with back without first checking whether front is null.

Figure 6–16: In a newly created LinkedQueue (top), both front and back are null.
When the first element is added to the Queue (middle), the new node becomes both
the front and the back of the Queue. Subsequent nodes are simply spliced onto the
back of the Queue (bottom).

Figure 6–17: If there is only one element in a LinkedQueue, front and back are ref-
erences to the same ListNode (top). The remove() method changes front, but leaves
back pointing at this node (bottom).
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Exercises

6.4 Draw a UML class diagram showing the relationship between Stack, ArrayStack, and
LinkedStack.

6.5 The pop() method from the LinkedStack class (Figure 6–11) stores the element being
popped in a temporary variable result. Why doesn’t the pop() method from Array-
Stack (Figure 5–16) need to do this?

6.6 Modify the Idiot’s Delight program from Chapter 4 to use LinkedStacks instead of
ArrayStacks.

6.7 Java automatically reclaims the memory used by objects and arrays which are no longer
reachable. In Figure 6–17, the ListNode removed from the LinkedQueue is still reach-
able through the field back. Is there a danger that a great deal of memory could be
taken up by such ListNodes? Explain.

6.3 The LinkedList Class

We now present a class LinkedList which implements the List interface from Chapter 5. A
LinkedList has one field front, which is a ListNode. As in a LinkedStack, this node may in turn
contain other ListNodes. The fields and trivial methods are shown in Figure 6–18.

1 /** A linked list. */
2 public class LinkedList<E> implements List<E> {
3
4   /** The first node in the List. */
5   private ListNode<E> front;
6
7   /** A LinkedList is initially empty. */
8   public LinkedList() {
9     front = null;

10   }
11
12   public boolean isEmpty() {
13     return front == null;
14   }
15
16 }

Figure 6–18: A LinkedList contains a single chain of ListNodes.
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Many of the LinkedList methods involve walking down the chain of references. The general form
of this code is:

for (ListNode<E> node = front;
node != null;
node = node.getNext()) {

// Do something with node.getItem()
}

The variable node refers to the node currently being processed. To advance to the next node, we
set node to node.getNext().

This technique is used in the contains(), size(), and toString() methods (Figure 6–19).

1 public boolean contains(E target) {
2   for (ListNode<E> node = front;
3        node != null;
4        node = node.getNext()) {
5     if (node.getItem().equals(target)) {
6       return true;
7     }
8   }
9   return false;

10 }
11
12 public int size() {
13   int tally = 0;
14   for (ListNode<E> node = front;
15        node != null;
16        node = node.getNext()) {
17     tally++;
18   }
19   return tally;
20 }
21
22 public String toString() {
23   String result = "( ";
24   for (ListNode<E> node = front;
25        node != null;
26        node = node.getNext()) {
27     result += node.getItem() + " ";
28   }
29   return result + ")";
30 }

Figure 6–19: Many LinkedList methods walk down the list using for loops.
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Notice that these loops do not use an int to keep track of the current position in the list. We
know when we’ve reached the end of the loop when node is null. In contrast, the get() and
set() methods (Figure 6–20) do use an int, since they want to advance only a specific num-
ber of nodes.

It appears that the add() method can be written in a similar way. We advance down the List until
we get to the last node, at which point we tack on a new one (Figure 6–21).

Unfortunately, there is a catch. What if the List is empty? The method will throw a NullPointer-
Exception when we try to invoke last.getNext() on line 4.

One solution is to add code to deal with this special case (Figure 6–22). There is, however, a
more elegant way to handle the problem.

1 public E get(int index) {
2   ListNode<E> node = front;
3   for (int i = 0; i < index; i++) {
4     node = node.getNext();
5   }
6   return node.getItem();
7 }
8
9 public void set(int index, E target) {

10   ListNode<E> node = front;
11   for (int i = 0; i < index; i++) {
12     node = node.getNext();
13   }
14   node.setItem(target);
15 }

Figure 6–20: The get() and set() methods advance index nodes down the list.

1 public void add(E target) {
2   ListNode last = front;
3   while (last.getNext() != null) {
4     last = last.getNext();
5   }
6   last.setNext(new ListNode(target));
7 }

Figure 6–21: Broken first draft of the add() method.
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The Predecessor Interface

Lines 3 and 9 of Figure 6–22 do almost exactly the same thing: create a new ListNode and set
some reference to point to it. In line 3, this reference is the front field of a LinkedList. In line 9,
it is the next field of a ListNode.

We can use polymorphism to write a single line of code which does whichever of these things is
appropriate. If we have a variable which can refer to either a LinkedList or a ListNode, we can
invoke a method on it which says, “Here is a new node. Make it the next one after you.”

This variable must be of a polymorphic type. We have two choices: it can be some class which is
a superclass of both LinkedList and ListNode, or it can be an interface which both of these
classes implement. Since these classes have no fields or methods in common, a superclass
doesn’t really make sense; an interface is a better choice.

The Predecessor interface is given in Figure 6–23. It also describes a method getNext(),
which returns the next node after the Predecessor.

1 public void add(E target) {
2   if (isEmpty()) {
3     front = new ListNode(target);
4   } else {
5     ListNode last = front;
6     while (last.getNext() != null) {
7       last = last.getNext();
8     }
9     last.setNext(new ListNode(target));

10   }
11 }

Figure 6–22: Special code is needed to handle the case where the LinkedList is
empty.

1 /**
2  * Something that has a next ListNode.
3  */
4 public interface Predecessor<E> {
5
6   /** Get the next ListNode. */
7   public ListNode<E> getNext();
8
9   /** Set the next ListNode. */

10   public void setNext(ListNode<E> next);
11
12 }

Figure 6–23: The Predecessor interface.
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In order to use this interface, both ListNode and LinkedList will have to implement it. ListNode
already provides these methods, so we just have to change the first noncomment line to:

public class ListNode<E> implements Predecessor<E> {

In the LinkedList class, we have to provide both of these methods and change the first noncom-
ment line (Figure 6–24).

The LinkedList class now implements two different interfaces. This is illustrated in Figure 6–25.

Now we can write a more elegant version of the add() method for LinkedList (Figure 6–26).

1 /** A linked list. */
2 public class LinkedList implements List<E>, Predecessor<E> {
3
4   public ListNode<E> getNext() {
5     return front;
6   }
7
8   public void setNext(ListNode<E> next) {
9     front = next;

10   }
11
12 }

Figure 6–24: The LinkedList class must be modified to implement Predecessor.

Figure 6–25: The Predecessor interface is implemented by two classes. The
LinkedList class implements two interfaces.

1 public void add(E target) {
2   Predecessor<E> last = this;
3   while (last.getNext() != null) {
4     last = last.getNext();
5   }
6   last.setNext(new ListNode<E>(target));
7 }

Figure 6–26: The Predecessor interface allows us to write a shorter version of add()
than the one in Figure 6–22.
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Two-Finger Algorithms
We now consider the two remove() methods. One of these methods removes the element at a
particular position; the other removes a particular Object. Both make use of the technique of
splicing out a node. They also use the Predecessor interface to avoid special code for the case
where the node being removed is the first one.

In each method, we walk down the list looking for either the ith node or the node containing
target. Once we find the offending node, we have a problem: we’ve forgotten the previous
node!

Our solution is to keep track of two nodes: the previous one and the current one (Figure 6–27).
Since such an algorithm points at two consecutive nodes on each pass through its loop, it is
known as a two-finger algorithm.

The code for the remove() methods is given in Figure 6–28.

Figure 6–27: In a two-finger algorithm, two variables (prev and next) refer to two
consecutive ListNodes. Labels on the references between objects are omitted for brevity.

1 public E remove(int index) {
2   Predecessor<E> prev = this;
3   ListNode<E> node = front;
4   for (int i = 0; i < index; i++) {

Figure 6–28: Both of the remove() methods are two-finger algorithms. (Part 1 of 2)
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The ListIterator Class

All that remains is the iterator() method. As in ArrayList, it simply creates and returns an
Iterator (Figure 6–29).

Specifically, it returns an instance of the ListIterator class (Figure 6–30). A ListIterator keeps
track of both the node containing the Object most recently returned by next() and the prede-
cessor of that node.

5   prev = node;
6     node = node.getNext();
7   }
8   prev.setNext(node.getNext());
9 return node.getItem();

10 }
11
12 public boolean remove(E target) {
13   Predecessor<E> prev = this;
14   ListNode<E> node = front;
15   while (node != null) {
16     if (node.getItem().equals(target)) {
17       prev.setNext(node.getNext());
18       return true;
19     }
20     prev = node;
21     node = node.getNext();
22   }
23   return false;
24 }

1 public java.util.Iterator<E> iterator() {
2   return new ListIterator<E>(this);
3 }

Figure 6–29: The iterator() method returns an instance of ListIterator.

1 /** Iterator used by the LinkedList class. */
2 public class ListIterator<E> implements java.util.Iterator<E> {
3
4   /** The Predecessor of node. */
5   private Predecessor<E> prev;
6

Figure 6–30: The ListIterator class. (Part 1 of 2)

Figure 6–28: Both of the remove() methods are two-finger algorithms. (Part 2 of 2)
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The remove() method of ListIterator leaves both prev and node referring to the same Prede-
cessor. This is not a problem, because hasNext() does not look at prev, and next() begins by
setting prev = node anyway.

Exercises

6.8 Modify the get() and set() methods (Figure 6–20) so that they throw an Index-
OutOfBoundsException if the argument index is either too low (less than 0) or too
high (greater than or equal to the length of the list).

6.9 Write an equals() method for the LinkedList class.

6.10 Write a method indexOf() that takes one argument, an element target, and returns
the index of the first occurrence of target in this LinkedList, or -1 if target does
not appear.

7  /**
8 * The ListNode containing the last element returned, or the 
9    * LinkedList itself if no elements have yet been returned.

10    */
11   private Predecessor<E> node;
12
13   /** The ListIterator starts at the beginning of the List. */
14   public ListIterator(LinkedList<E> list) {
15     prev = null;
16     node = list;
17   }
18
19   public boolean hasNext() {
20     return node.getNext() != null;
21   }
22
23   public E next() {
24     prev = node;
25     node = node.getNext();
26     return ((ListNode<E>)node).getItem();
27   }
28
29   public void remove() {
30     prev.setNext(node.getNext());
31     node = prev;
32   }
33
34 }

Figure 6–30: The ListIterator class. (Part 2 of 2)
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6.11 Write a method removeAll() that takes one argument, an element target. It removes
all elements which are equals() to target from this LinkedList.

6.12 Write a method count() that takes one argument, an element target. It returns the
number of elements in this LinkedList which are equals() to target.

6.13 Rewrite both versions of remove() so that only one variable is needed. (Hint: Replace
node with prev.getNext().)

6.14 Modify ListIterator so that next() throws a java.util.NoSuchElementException if
there are no more elements to visit.

6.15 Modify ListIterator so that remove() throws a java.util.IllegalStateException when
appropriate. Is it necessary to add an additional field as in Exercise 5.25?

6.16 Can the toString() method from Exercise 5.26 be used in the LinkedList class?

6.17 Draw a UML class diagram showing the relationship between the ListIterator, LinkedList,
ListNode classes.

6.18 Draw a UML instance diagram showing the state of a ListIterator after an invocation of
remove().

6.19 If we made GoFishHand (Chapter 5) extend LinkedList instead of ArrayList, would we
have to change anything else in the GoFishHand or GoFish classes? Explain.

6.20 Can line 24 in Figure 6–30 be replaced with prev = prev.getNext()? Explain.

6.21 Explain why a cast is needed on line 26 of Figure 6–30.

6.22 Write a LinkedList method swap() that takes two ints as arguments and swaps the ele-
ments at those two positions. Your method should not traverse the list twice to find the
two elements, and it should not create or destroy any nodes.

6.4 The Java Collections Framework Revis ited

The Java collections framework contains a class LinkedList which is similar to the one we’ve
developed in this chapter. This class is actually a doubly linked list, which allows for efficient
insertion into and removal from either end of the structure. (It provides methods addFirst(),
addLast(), removeFirst(), and removeLast().) A LinkedList can function as a stack, a
queue, or even a deque (Problem 4.18).

LinkedList is a subclass of AbstractSequentialList, which is in turn a subclass of AbstractList
(Figure 6–31). This arrangement emphasizes the fact that linked structures are sequential
access, while array-based structures are random access. In a sequential access data structure, it
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is necessary to go through the preceding elements (by following a chain of references) to get at
an element in the middle. In a random access data structure, we can jump to any point instanta-
neously. VHS tapes are sequential access, for example, but DVDs are random access.

If ArrayLists and LinkedLists are built into Java, why have we bothered to write these classes
ourselves? There are a number of reasons.

First, these are relatively easy data structures to build. Without understanding these, we would
have little hope of understanding the more complex structures yet to come. These early data
structures introduce standard techniques which will come in handy later on.

Second, some day we will likely have to write a data structure that is very similar to, but not
identical to, a built-in structure. (See the projects for examples.) Also, we may end up working
in a language where a standard library has not yet been established, so we will have to write
these things ourselves.

Finally, knowing what’s going on “under the hood” allows us to use the built-in structures more
effectively. For example, if we’re often going to have to access items out of the middle of a List,
we should choose an ArrayList rather than a LinkedList. On the other hand, if we’re only adding
things to the ends and we want to make sure we never have to perform an expensive copying
operation to stretch the List, we should choose a LinkedList.

Figure 6–31: Java’s own LinkedList class extends AbstractSequentialList, which
extends AbstractList.
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Exercises

6.23 Suppose we need a List where we often have to remove the frontmost element. Using
our own implementations, is an ArrayList or a LinkedList more efficient, or are they
both about the same? What about using the versions from the Java collections frame-
work? (Hint: An operation that may have to traverse the entire structure is less efficient
than one that does not.)

6.24 Repeat Exercise 6.23 for the case where we often have to remove the rearmost element.

Summary

A ListNode contains one element and possibly a reference to another ListNode. We can build
arbitrarily long chains of ListNodes. A DoublyLinkedNode also contains a reference to the pre-
vious node, if any.

The LinkedStack class splices nodes in and out of one end of a chain. The LinkedQueue class
must keep track of both ends of the chain.

The LinkedList class is a general-purpose linked structure. The Predecessor interface allows us
to avoid writing special code for adding an element to an empty List, removing the first element,
and so on. Some algorithms, called two-finger algorithms, require that we keep track of two con-
secutive nodes so that, when we find what we’re looking for, we can splice it out.

The Java collections framework provides a class LinkedList. It is doubly linked, so we can easily
remove things from either end. Even though we usually use such built-in structures when they
are available, it is worth knowing how they work and how to build them ourselves.

Vocabulary

doubly linked. Of a list node, having references to both the next and previous nodes in the
chain. Of a linked structure, being composed of doubly linked nodes.

list node. Object containing an element and a reference to another list node. List nodes can be
strung together in chains.

random access. Allowing access at any point, like an array or a DVD.

sequential access. Allowing access only by traversing intervening points, like a linked structure
or a VHS tape.

two-finger algorithm. An algorithm that requires keeping track of two consecutive list nodes.
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Problems

6.25 Complete the code for the DoublyLinkedNode class.

6.26 Write the DoublyLinkedNode class as a subclass of ListNode. Why does this make
writing remove() awkward?

6.27 Write a LinkedList method reverse() which reverses the order of the elements in the
List. No ListNodes should be created or destroyed in the process.

6.28 Rewrite the game of War from Chapter 4 using structures from the Java collections
framework.

6.29 Many of the LinkedList methods, such as size(), would run forever if invoked on a
LinkedList like the one in Figure 6–32. Write code to produce such a list. Devise and
implement a method isCyclic() which returns true if the LinkedList on which it is
invoked has this problem. (Hint: If two cross-country runners start off down a course at
different speeds, will the faster runner eventually “lap” the slower one if the course is
cyclic?)

Projects

6.30 Rewrite the LinkedStack class from scratch so that it holds primitive ints. The ListNode
class must also be altered. (This revised LinkedStack is more efficient than the general-
purpose one, because it doesn’t have to follow references or create instances of the Inte-
ger class.)

6.31 Implement the Deque interface from Problem 4.18. Write it from scratch—don’t extend
one of the classes from the Java collections framework. (Hint: Use a doubly linked list.)

6.32 Devise and write code for an efficient List implementation where elements are always
inserted in groups of five and are never removed.

6.33 Write a DoublyLinkedList class which implements List but uses DoublyLinkedNodes.
Use two interfaces, Predecessor and Successor. (Hint: The prev field of the first node
and the next field of the last node should refer back to the DoublyLinkedList.)

Figure 6–32: A cyclic LinkedList.
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7
Analysis of 
Algorithms

One of the programming goals we mentioned in Chapter 1 was efficiency. In this chapter, we look
at techniques for measuring efficiency. Section 7.1 shows how to directly time programs and
points out some problems with this approach. Section 7.2 introduces some powerful mathemati-
cal tools to simplify our reasoning about the efficiency of algorithms. The connection between
this math and actual algorithms is made in Section 7.3. Several variations on analysis, such as
considering the average or the worst-case running time, are explored in Sections 7.4 and 7.5.

If the thought of doing math makes you nervous, you may wish to review Appendix C.

7.1 Timing

If we want to know which of two methods is faster, the most obvious approach is to time them.
The TimeTest program (Figure 7–1) compares the get() methods from the ArrayList and
LinkedList classes in the Java collections framework.

Lines 14–16 of the method test() add many elements to list. We don’t care what these ele-
ments are, so this is one of those rare occasions where it makes sense to create instances of the
Object class.

To determine the time taken by line 18, we examine the clock before and after invoking get().
To get the current time, we invoke the static currentTimeMillis() method of the System
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class. For historical reasons involving the UNIX operating system, this is given as the number of
milliseconds since midnight, January 1, 1970, Greenwich mean time. Because this is a very
large number, the return type of currentTimeMillis() is long. A long is similar to an int, but
its range is roughly ±1019.

Unfortunately, running our program doesn’t give us much information:

ArrayList: 0 milliseconds
LinkedList: 0 milliseconds

Any modern computer is so fast that, on either of these data structures, the get() method takes
less than one millisecond to run. A reasonable solution is to look at the time required to perform
each operation a million times (Figure 7–2).

1 import java.util.*;
2
3 /** Time tests to compare performance of various algorithms. */
4 public class TimeTest {
5
6   /** Number of Objects to store in each data structure. */
7   public static final int LIST_LENGTH = 100;
8
9   /**

10    * Store LIST_LENGTH Objects in list.  Time list's get() method,
11    * printing the number of milliseconds taken.
12    */
13   public static void test(List<Object> list) {
14     for (int i = 0; i < LIST_LENGTH; i++) {
15       list.add(new Object());
16     }
17     long before = System.currentTimeMillis();
18     list.get(5);
19     long after = System.currentTimeMillis();
20     System.out.println((after - before) + " milliseconds");
21   }
22
23   /** Compare ArrayList with LinkedList. */
24   public static void main(String[] args) {
25     System.out.print("ArrayList: ");
26     test(new ArrayList<Object>());
27     System.out.print("LinkedList: ");
28     test(new LinkedList<Object>());
29   }
30
31 }

Figure 7–1: The TimeTest class compares the get() methods of the ArrayList and
LinkedList classes.
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The exact result of running this program varies from one run to the next. For example, one run
might give

ArrayList: 21 milliseconds
LinkedList: 39 milliseconds

while another might give

ArrayList: 22 milliseconds
LinkedList: 40 milliseconds

This variation is due to a number of factors beyond our control, such as how Java manages its
memory (Chapter 16) and what other programs are running on our machine. We could try harder
to control these conditions and apply various statistical techniques to determine which method is
faster, but the short answer is that the method from ArrayList is roughly twice as fast as the
method from LinkedList. They are both very fast, so this is not a big difference.

The story is different if we get element 50 instead of element 5. Now the method from LinkedList
takes vastly longer:

ArrayList: 22 milliseconds
LinkedList: 226 milliseconds

In retrospect, this is not surprising. In an ArrayList, get() jumps right to the array element in
question. In a LinkedList, it is necessary to traverse all of the previous list nodes to find the one
we want. Our timing experiment provides empirical evidence that the time to get element i of a
LinkedList increases with i, while the time to get element i of an ArrayList is independent of i. If

1 /** Number of times to perform the operation being timed. */
2 public static final int TEST_RUNS = 1000000;
3
4 /**
5  * Store LIST_LENGTH Objects in list.  Time list's get() method,
6  * printing the number of milliseconds taken.
7  */
8 public static void test(List<Object> list) {
9   for (int i = 0; i < LIST_LENGTH; i++) {

10     list.add(new Object());
11   }
12   long before = System.currentTimeMillis();
13   for (int i = 0; i < TEST_RUNS; i++) {
14     list.get(5);
15   }
16   long after = System.currentTimeMillis();
17   System.out.println((after - before) + " milliseconds");
18 }

Figure 7–2: We can improve the resolution of our timing by performing the operation
in question many times.
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we need a List and get() is going to be a very common operation, an ArrayList is a good
choice.

We now have some evidence that LinkedList search time increases with i, but a couple of data
points are not really a convincing case. Rather than perform a more extensive battery of tests, we
can use some formal, mathematical tools to make statements about the efficiency of an algo-
rithm. Section 7.2 introduces these tools.

The material that follows is important for designing general-purpose algorithms and data struc-
tures. Empirical timing is still important in optimization.

Exercises

7.1 The famous Y2K bug occurred because some old programs used two decimal digits to
store years. This became a problem in the year 2000, because such programs had no
way to tell whether “00” meant 1900 or 2000.

A similar problem will occur for Java programs when the number of milliseconds since
the beginning of 1970 exceeds the capacity of a long. In what year will this occur, given
that the maximum value of a long is 9,223,372,036,854,775,807? What if getTime()
returned an int, which has a maximum value of 2,147,483,647? What about those
UNIX/C systems which use an int to store the number of seconds since the beginning
of 1970?

7.2 Asymptotic Notation

Suppose we have two methods we wish to compare. We have determined that the running time
for method A is 10n2 – 5 milliseconds to process n elements, while that for method B is 100n +
200 milliseconds. (We will discus how to arrive at these expressions in Section 7.3.) Which
method should we prefer?

The answer depends on the value of n. As seen in Figure 7–3, for n = 6 method A is faster, but
for n = 16 method B is much faster.

We would prefer to say that one method is faster in general, rather than for some particular value
of n. The time differences for small values of n are relatively insignificant. What really concerns
us is the asymptotic behavior of the running-time functions: what happens as n becomes very
large?

Figure 7–3 suggests that the running time for method A is larger than that for method B. If n is at
least 12, B is faster.

Our intuition is correct in this example, but graphs can be deceiving. If we had plotted the graph
only up to n = 6 (Figure 7–4), we might have concluded that method A is faster. To be confident
in our statement about which method is faster for large values of n, we need a proof.

Theorem: 10n2 – 5 > 100n + 200 for any value of n ≥ 12.
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Proof: For any n ≥ 12:

The first and third inequalities follow because of the assumption that n ≥ 12. This completes the
proof.

Actual running times will depend on a number of factors that don’t really concern us, including
the speed of the hardware, the quality of the compiler, and the skill of the programmer. We
would prefer to make statements about the speed of an algorithm in general, rather than a partic-
ular implementation of it. This way, we don’t have to redo our analysis if we change program-
ming languages or buy a faster computer.

To keep our running-time expressions general, we allow them to contain unspecified constants.
For example, we might find that the running time for algorithm A is an2 + b, while that for

Figure 7–3: Method A is faster than method B for small values of n, but slower for
large values.
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algorithm B is cn + d, with a, b, c, and d being unspecified constants that depend on factors
such as the speed of the hardware.

The thought of doing proofs with all these unspecified constants lying around may be unnerving.
Fortunately, there is a huge shortcut. Functions can be classified into orders. (Whenever we talk
about orders, we assume that all of the functions involved map nonnegative integers onto nonne-
gative real numbers and are monotonically nondecreasing—that is, f(n + 1) ≥ f(n). An algo-
rithm for which the running-time function did not fit into this category would be fairly strange.)

Some common orders are shown in Figure 7–5. We will give a formal definition of an order later
in this section.

For any function f, Θ(f) is pronounced “the order of f ” or simply “order f .” Each order is an infi-
nitely large set of functions. The name of the order indicates one of the functions in that order.
For example, n2 is one of the functions in Θ(n2).

Among the orders in Figure 7–5, Θ(2n) is the largest and Θ(1) the smallest. This is what makes
orders so useful: for sufficiently large n, a function is asymptotically larger than any function in
a lower order. For example, for sufficiently large n, a function in Θ(n log n) is asymptotically
larger than any function in Θ(n) and asymptotically smaller than any function in Θ(n2).

Figure 7–4: If the graph is plotted at a different scale, method A looks better.
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Two rules go a long way toward identifying the order of a function:

• Multiplying or dividing a function by a positive constant doesn’t change its order. For
example, 3n2 and 0.2n2 are both in Θ(n2).

• A function’s order is not changed by adding or subtracting a function in a lower order.
For example, 2n – n + log n is in Θ(2n).

Let’s use these rules to find the order of f(n) = 5n3 + 3n2 – 4n + 11.

By the first rule, 5n3 is in Θ(n3). Similarly, 3n2 is in Θ(n2), 4n is in Θ(n), and 11 is in Θ(1).
These are all lower orders, so we can ignore them by the second rule. Therefore, f(n) is in Θ(n3).
This was hardly any work at all, and we now know a great deal about how f(n) compares with
other functions.

Let’s look at some more examples. Given the running-time expressions in Figure 7–6, which
algorithm should we use?

The running time for the column frobbing algorithm is in Θ(n2). The running time for the row
zorching algorithm is in Θ(n). Θ(n) is a lower order, so we should choose row zorching.

Figure 7–7 presents two more running times to compare. Dynamic inversion takes time in Θ(n3),
but what about synchronized absquatulation?

Order Nickname

Θ(2n) —

Θ(n3) cubic

Θ(n2) quadratic

Θ(n log n) —

Θ(n) linear

Θ(log n) logarithmic

Θ(1) constant

Figure 7–5: Some common orders of functions. Θ is the upper-case Greek letter theta.
There are other orders (see page 191), but these are the most frequently encountered.

Algorithm Running Time

Column frobbing an2 – b log n

Row zorching cn + d

Figure 7–6: Running-time expressions for two fictitious algorithms with silly names.
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Multiplying it out, we find that

.

Now we are back in familiar territory: Synchronized absquatulation takes time in Θ(n2), so it is
faster than dynamic inversion (for sufficiently large n).

A final challenge is given in Figure 7–8.

Can we wrangle n! into some form we recognize?

Things don’t look good. Notice, however, that this is at least

or

.

Factorial decortication takes time which is at least in Θ(2n). Since cubic flensing is in the lower
order Θ(n3), we should choose cubic flensing.

Rather than proving that Θ(n!) = Θ(2n), which is not true, we proved something like
Θ(n!) ≥ Θ(2n). This trick is so useful that there is special notation for it.

If Θ( f ) is the set of functions which grow like f, then Ω(f ) is the set of functions which grow
like f or much more quickly. In set theory terms, it is the union of Θ(f ) and all higher orders. We
proved that n! is in Ω(2n). Various related notations are summarized in Figure 7–9.

Algorithm Running Time

Dynamic inversion an3 + bn2 + c

Synchronized absquatulation

Figure 7–7: More running-time expressions. The algorithm names don’t mean anything.

Algorithm Running Time

Cubic flensing an3

Factorial decortication n!

Figure 7–8: Even yet still more running-time expressions. n!, pronounced “n factorial,”
is the product of the integers 1 through n.
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Remember that functions in the same order can differ by a constant factor. Consequently, a func-
tion in Ο(g) might actually be larger than g. For example, 3n2 ∈ Ο(n2), but 3n2 is larger than n2

(by a factor of 3).

We can define these notations more formally. First, f ∈ Ο(g) if and only if, for some constant
c > 0, there is some n0 ≥ 0 such that f(n) < cg(n) for any n ≥ n0.

We’ve seen n0 before; that’s just a threshold so that only large values of n are considered. (In
Figure 7–3, n0 was 12.) The constant c is there so that multiplying either function by a constant
won’t have any effect. Put another way, the definition says that f ∈ Ο(g) if and only if at least one
function in Θ(g) is larger than f for sufficiently large n.

Similarly, f ∈ Ω(g) if and only if, for some constant c > 0, there is some n0 ≥ 0 such that
f(n) > cg(n) for any n ≥ n0.

Combining these, we get the formal definition of an order:

f ∈ Θ(g) if and only if f ∈ Ο(g) and f ∈ Ω(g).

Showing that f ∈ Ο(g) is called finding an asymptotic upper bound on f. Showing that f ∈ Ω(g)
is called finding an asymptotic lower bound. Showing that f ∈ Θ(g) is called finding an asymp-
totically tight bound.

There are other orders besides those listed in Figure 7–5. For k > 1, the orders Θ(kn) are called
exponential orders. For k > 0, the orders Θ(nk) are called polynomial orders. These fit into the
order hierarchy right where we would expect. For example, n5 ∈ Ω(n4), 2n ∈ Ο(3n), and
in ∈ Ω(n j) for any i, j > 1.

Exercises

7.2 What is the order of the expression 3n2 + 5n + n log n?

7.3 What is the order of the expression 5n log 5n?

7.4 What is the order of the expression (n + 3)(n – 2)?

Analogy Notation Set

Θ(f ) ≥ Θ(g) f ∈ Ω(g) Θ(g) and all higher orders

Θ(f ) = Θ(g) f ∈ Θ(g) Θ(g)

Θ(f ) ≤ Θ(g) f ∈ Ο(g) Θ(g) and all lower orders

Figure 7–9: Order relations between two functions f and g. The symbol ∈ is read “is
a member of (the set).” Ω is the upper-case Greek letter omega. Ο is the upper-case
Greek letter omicron, but it is normally pronounced “big oh.” Be careful not to read too
much into the analogies; a function in Ο(g) might actually be larger than g.
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7.5 What is the order of the expression ?

7.6 What is the order of the volume of an n × n × n cube? What about the surface area?
Answer the same questions for a cylinder of radius n and height n.

7.7 Use the identity

to prove that Θ(log2 n), Θ(log10 n), and Θ(loge n) are the same order.

7.8 Prove that Θ(max( f, g)) = Θ( f + g). (Hint: Since max(f, g) = max(g, f) and f + g = g + f,
you may assume without loss of generality that f(n) is larger than g(n) for sufficiently
large values of n.)

7.3 Counting Steps

Now we know what we’re aiming for when we analyze an algorithm: the order of the running
time. We accomplish this through the following process:

1. Write the algorithm down in precise English or in any programming language, such as 
Java.

2. Determine how many steps are accomplished by each line and how many times the line 
is executed. The time used by the line is the product of these two expressions. We’ll say 
more in a moment about what constitutes a step.

3. The total running time for the algorithm is the sum of the time required for each line. 
The order of this expression is the same as the order of the most time-consuming line.

For example, let’s analyze the size() method from our LinkedList class. The method is repro-
duced in Figure 7–10, with extra line breaks added to keep each line simple. The time this takes
depends on the size of the list, which we’ll call n.

Each line here performs only a single step. We define a step as a constant amount of work. In
other words, a step cannot depend on the size of the input or data structure in question. Any of
the following constitutes a single step:

• Accessing or setting a variable or field, including an element of an array.

• Addition, subtraction, multiplication, division, and other basic arithmetic operators.
(Strictly speaking, the time it takes to add two numbers depends on the sizes of the
numbers. Since numbers in Java, as in most other programming languages, have a lim-
ited range, there is no potential for abuse by adding thousand-digit numbers.)

• Finding the length of an array or String.

2n nlog+

 xalog
 xblog

ab  log
--------------=
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• Comparisons using ==, <, etc.

• Any fixed number of single steps, such as two additions and a variable assignment.

All of the operators which are built into the Java language, such as + and &&, count as single
steps. This is not necessarily true of methods in the Java library, such as those in the collections
framework. In general, if a method or operation is so trivial that you cannot imagine what sim-
pler operations might be used to construct it, it can probably be considered a single step.

It is not a problem that some steps take longer than others, since they are all in Θ(1). Suppose the
longest step takes 100 milliseconds and the shortest step takes 20 milliseconds. Assuming that
every step takes 100 milliseconds gives us an upper bound on the total running time. Assuming
that every step takes 20 milliseconds gives us a lower bound. These two running-time expres-
sions are in the same order, so they are equivalent for our purposes.

Returning to size(), we see that each line performs a single step, except for lines 7 and 9,
which don’t do anything. How many times is each line executed?

Lines 1, 2, 3, and 8 are executed only once. The for loop test on line 4 is executed once each
time we enter the loop, plus one more time when the test fails. Lines 5 and 6 are each executed
once on each pass through the loop.

Since tally starts at 0 and ends up equal to n, there must be n passes through the loop. We now
know how much total time is taken by each line, as summarized in Figure 7–11. Line 4 does the
most work, taking total time in Θ(n + 1) = Θ(n). We conclude that the running time for size()
is linear.

Alternately, let c be the time taken by a single step. The total time taken by size() is:

c + c + c + c(n + 1) + cn + cn + c = 3cn + 5c ∈ Θ(n)

Most algorithms are analyzed in terms of n, with n being the size of some data structure. Other
analyses are possible. For example, the constructor for the Deck class from Chapter 5 is shown
in Figure 7–12. This is analyzed in terms of r, the number of ranks, and s, the number of suits.
The running time is dominated by line 9, which takes time in Θ((r + 1)s) = Θ(rs).

It is not always possible to write an algorithm so that each line takes only one step each time it is
run. For example, suppose we want to analyze the contructor for the GoFish class, again in terms

1 public int size() {
2   int tally = 0;
3   for (ListNode<E> node = front;
4        node != null;
5        node = node.getNext()) {
6     tally++;
7   }
8   return tally;
9 }

Figure 7–10: The size() method from our LinkedList class. The three parts of the
for loop header have been placed on separate lines for clarity.
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of r and s. The constructor is reproduced in Figure 7–13. Line 5 invokes the Deck constructor,
which uses more than one step. Even though it is executed only once, this turns out to be the
most expensive line in the algorithm. The analysis of shuffle() is left as Exercise 7.10. It is
not precisely true that the add() method invoked in lines 12 and 13 takes constant time, but this
can be remedied by a simple modification (Exercise 7.11).

Since we can ignore all lines except the one with the highest-order running time, it is often okay
to collapse several lines together. Specifically, all three parts of a for loop header can be taken
as a single step, which is run as many times as the loop test—that is, one more than the number
of passes through the loop. An example, a method to add up the elements of a two-dimensional
array (matrix), is given in Figure 7–14.

A trickier algorithm to analyze is one which adds up only the numbers for which j ≤ i. (If we
number the rows and columns from the upper left, this is the lower left half of the matrix, includ-
ing the diagonal.) The code is almost identical, except for the test in the inner loop (Figure 7–15).

The dominant term in the running time of this algorithm is the number of times the inner loop
(lines 7–9) runs. This number is not immediately obvious, because it is different in each pass

1 public int size() {              // 1 step, once
2   int tally = 0;                 // 1 step, once
3   for (ListNode<E> node = front; // 1 step, once
4        node != null;             // 1 step, n + 1 times
5        node = node.getNext()) {  // 1 step, n times
6     tally++;                     // 1 step, n times
7   }
8   return tally;                  // 1 step, once
9 }

Figure 7–11: The size() method, with the time taken by each line.

1 /** Create all 52 Cards, in order. */
2 public Deck() {                           // 1 step, once
3   cards = new Card[52];                   // 1 step, once
4   size = 0;                               // 1 step, once
5   for (int suit = Card.SPADES;            // 1 step, once
6        suit <= Card.CLUBS;                // 1 step, s + 1 times
7        suit++) {                          // 1 step, s times
8     for (int rank = Card.ACE;             // 1 step, s times
9          rank <= Card.KING;               // 1 step, (r + 1)s times

10          rank++) {                        // 1 step, rs times
11       cards[size] = new Card(rank, suit); // 1 step, rs times
12       size += 1;                          // 1 step, rs times
13     }
14   }
15 }

Figure 7–12: The constructor for the Deck class can be analyzed in terms of s, the
number of suits, and r, the number of ranks.
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through the outer loop. When i is 0, the inner loop runs once. When i is 1, the inner loop runs
twice. This continues until i is n – 1, when the inner loop runs n times. The total number of
passes through the inner loop, then, is:

This can be rewritten as:

1 /** Shuffle the Deck and deal seven Cards to each player. */
2 public GoFish() {                  // 1 step, once
3   computerScore = 0;               // 1 step, once
4   playerScore = 0;                 // 1 step, once
5   deck = new Deck();               // (r + 1)s steps, once
6   deck.shuffle();                  // rs + 1 steps, once
7   computerHand = new GoFishHand(); // 1 step, once
8   playerHand = new GoFishHand();   // 1 step, once
9   for (int i = 0;                  // 1 step, once

10        i < 7;                      // 1 step, 8 times
11        i++) {                      // 1 step, 7 times
12     playerHand.add(deck.deal());   // 1 step, 7 times
13     computerHand.add(deck.deal()); // 1 step, 7 times
14   }
15 }

Figure 7–13: Some lines in the constructor from the GoFish class take more than
one step.

1 /** Return the sum of the elements of matrix. */
2 public static double sum(double[][] matrix) {    // once
3   double result = 0;                             // once
4   for (int i = 0; i < matrix.length; i++) {      // n + 1 times
5     for (int j = 0; j < matrix[i].length; j++) { // n(n + 1) times
6       result += matrix[i][j];                    // n * n times
7     }
8   }
9   return result;                                 // once

10 }

Figure 7–14: This method accepts an n × n array as input and runs in Θ(n2) time.
Each line counts as a single step, so only the number of times each line is executed
is shown.
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Using the theorem from Section C.3 of Appendix C, we determine that this is:

A slightly easier approach is to reason that, on each pass through the outer loop, the inner loop
runs at most n times. Using the theorem from Section C.5, we have:

Because of the ≤, this allows us to make only a O statement, not a Θ statement. A O statement is
often sufficient.

A single for loop typically takes time in Θ(n), while a doubly nested for loop typically takes
time in Θ(n2). Figure 7–16 shows a method with a quadruply nested for loop.

It is very easy to find an asymptotic upper bound on the running time of sum4d(). The first
loop, starting on line 4, runs n times. The second loop runs at most n times for each pass through
the first loop, for a total in O(n2). Similarly, the third loop takes time in O(n3). The fourth loop
(and hence the entire method) takes time in O(n4).

We must be careful not to overgeneralize the result about nested loops. It is safe to use only for
loops of the common form

for (int i = 0; i < n; i++) {
...

}

which run at most n times.

1 /**
2  * Return sum of matrix elements on or below the diagonal.
3  */
4 public static double sumLowerTriangle(double[][] matrix) {
5   double result = 0;
6   for (int i = 0; i < matrix.length; i++) {
7     for (int j = 0; j <= i; j++) {
8       result += matrix[i][j];
9     }

10   }
11   return result;
12 }

Figure 7–15: In this method, the number of times the inner loop runs depends on the
value of i.
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An enhanced for loop also runs at most n times, where n is the number of elements in the data
structure being traversed.

A loop may run less than n times if it is stopped early by a return or break statement, or if it deals
with more than one element on each pass.

Exercises

7.9 An instance of the built-in class java.lang.BigInteger represents an integer, which can
be arbitrarily large. Is it safe to assume that the add() method from this class takes
constant time? Explain.

7.10 Analyze the running time of the shuffle() method from the Deck class (Figure 5–12)
in terms of r and s.

7.11 Modify the Go Fish program so that the add() method of the GoFishHand class takes
constant time. (Hint: See Exercise 5.8.)

7.12 Show that the running time of sum4d() (Figure 7–16) is in Θ(n4).

7.4 Best,  Worst, and Average Case

Figure 7–17 shows the contains() method from our ArrayList class. It is difficult to analyze
because of the if statement on line 3. The method clearly takes time linear in size if we have to
search through all of the elements in the ArrayList, but it might take much less if the element at

1 /** Return the sum of the elements of arr. */
2 public static double sum4d(double[][][][] arr) { // once
3   double result = 0;                             // once
4   for (int i = 0; i < arr.length; i++) {         // O(n) times
5     for (int j = 0; j < i; j++) {                // O(n2) times
6       for (int k = 0; k < j; k++) {              // O(n3) times
7         for (int m = 0; m < k; m++) {            // O(n4) times
8           result += arr[i][j][k][m];             // O(n4) times
9         }

10       }
11     }
12   }
13   return result;                                 // once
14 }

Figure 7–16: This method, which sums the elements of a four-dimensional array,
contains a quadruply nested for loop.
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position 0 happens to be equals() to target. The running time depends not only on the size
of the data structure, but also on its contents.

At this point, we have to decide which kind of analysis we’re doing. The easiest, but least useful,
is best-case analysis. This tells us how fast the program runs if we get really lucky about the
data. For contains(), the best case occurs when the first item in the list is target. The best-
case running time is Θ(1).

Best-case analysis is not very reassuring. An algorithm might shine in some incredibly rare cir-
cumstance but have lousy performance in general.

More useful is worst-case analysis: at any if statement, take the more expensive branch. For
contains(), this means assuming that target is not in the ArrayList, giving a running time
of Θ(n). It is only a slight abuse of the notation to simply say that contains() takes time in
O(n)—it might be in Θ(n) or it might be in a lower order.

We can also perform average-case analysis. This is tricky, as it requires that we make some
assumption about what the “average” data set looks like.

Given a set of different events which might occur, the average running time is:

We must always be careful to choose our events so that they are exhaustive (at least one of them
will occur) and mutually exclusive (no more than one of them will occur).

To analyze the average performance of contains(), let’s assume that target is present
exactly once, but is equally likely to be at any index in the ArrayList. The appearance of target
at any particular index is an event. There are n different possible events, and we assume that they
are equally likely. Thus, the probability of each event occurring is 1/n.

1 public boolean contains(E target) {
2   for (int i = 0; i < size; i++) {
3     if (data[i].equals(target)) {
4       return true;
5     }
6   }
7   return false;
8 }

Figure 7–17: The running time for the contains() method from our ArrayList class
depends on the contents of the ArrayList.

probability of event occuring〈 〉 running time if event occurs〈 〉⋅
events
∑
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If target is at index 0, there is one pass through the loop. If target is at index 1, there are two
passes, and so on. The average running time for contains() is therefore:

Notice that this is the same order as the worst-case running time, but not as good as the best case.
It is always true that:

best case ≤ average case ≤ worst case

Consequently, if the best and worst cases are in the same order, the average case must also be in
that order.

Exercises

7.13 What is the average result of rolling a 6-sided die?

7.14 We want to know the average output (not running time) of the method in Figure 7–18.
We might try to do this by determining the average result of rolling a die and then
squaring that. What’s wrong with this reasoning?

7.5 Amortized Analysis

A fourth kind of analysis, somewhere between average and worst case, is amortized analysis.
The subtle differences between these three are in the questions they answer.

Average-case analysis answers the question, “How much time does this algorithm take on a
typical run?”

Worst-case analysis answers the question, “How much time does this algorithm take on the
worst possible run?”

1 /** Roll a die, square the result, and return it. */
2 public static int dieSquared() {
3   Die die = new Die();
4   die.roll();
5   return die.getTopFace() * die.getTopFace();
6 }

Figure 7–18: Code for Exercise 7.14. The average output of this method is not
simply the square of the average die roll.
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Amortized analysis answers the question, “If this algorithm is run several times, what is the
average time per run, given the worst possible sequence of runs?”

Unlike average-case analysis, amortized analysis does not have to make any assumptions about
what a “typical” run looks like. Often, the amortized running time is the same as the worst-case
running time, because the worst possible sequence of runs is just the worst possible individual
run, over and over again. For some algorithms, though, it is not possible for the worst run to
occur many times in a row.

As an example, consider the add() method from our ArrayList class, which is reproduced in
Figure 7–19. This method takes constant time in the best case, but linear time in the worst case.

To find the amortized time, we imagine the worst possible sequence of runs. This occurs when
we start with a new, empty ArrayList (capacity 1) and invoke add() n times. What is the total
time for all of these invocations? The time for operations other than stretching adds up to some-
thing in Θ(n). How much time do we spend stretching the ArrayList?

We can find the pattern by writing down a few examples (Figure 7–20). If we start at capacity 1
and double every time the ArrayList fills up, we need to stretch the ArrayList every time its size
exceeds a power of 2.

The total time for this sequence of runs is therefore:

1 + 2 + 4 + … + (n – 1)

1 public void add(E target) { // 1 step, once
2   if (isFull()) {           // 1 step, once
3     stretch();              // n steps, 0 or 1 times
4   }
5   data[size] = target;      // 1 step, once
6   size++;                   // 1 step once
7 }

Figure 7–19: The add() method from our ArrayList class takes constant time unless
the ArrayList is full. In that worst case, it takes time linear in the size of the ArrayList.

Invocation 1 2 3 4 5 6 7 8 9 ... n

Time 1 2 4 8 n – 1

Figure 7–20: Amount of time spent copying over a sequence of invocations of
add(). For simplicity, we assume that n is one more than a power of 2, a move we will
justify in Chapter 8.



Section 7.5 Amortized Analysis 201

It’s not immediately clear what this adds up to, or even how many terms it has. As luck would
have it, we don’t need to know how many terms there are. If we simply assume there are t terms,
numbered 0 through t – 1, we find that this sum is:

The worst possible sequence of add() invocations requires that we copy less than 2(n – 1) ele-
ments. The amortized time per operation is:

Since we need Ω(1) time per operation just to add the new element, we conclude that the amor-
tized running time of add() is in Θ(1). Since the average-case time is always at least as good as
the amortized time, it follows that add() takes constant time on average.

Now suppose we rewrite the stretch() method so that, instead of doubling the capacity of the
ArrayList, it merely increases the capacity by 1. This seems like a reasonable idea—why allo-
cate a bunch of extra memory that we might never use?

What effect does this change have on the amortized running time of add()? Again, we consider
when and how much we have to copy (Figure 7–21).

The total time spent copying is now:

Invocation 1 2 3 4 5 6 7 8 9 ... n

Time 1 2 3 4 5 6 7 8 n – 1

Figure 7–21: Amount of time spent copying over a sequence of invocations of
add(), when stretch() is modified to increase the ArrayList’s capacity by only 1.
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Dividing this by n operations, we find that the amortized time per operation is now linear, rather
than constant. Amortized analysis tells us that we should prefer the version of stretch() that
doubles the capacity of the ArrayList.

Exercise

7.15 All of the Stack and Queue operations, under both array-based and linked implementa-
tions, take amortized time in the same order. Which order is it?

Summary

Analysis of algorithms gives us mathematical tools for comparing the efficiency of different
algorithms. While empirically timing programs is important in optimization, it depends on fac-
tors such as hardware speed and compiler quality. In designing general-purpose data structures
and algorithms, we are interested in asymptotic behavior: what happens to the running time as
the size of the data becomes arbitrarily large?

The running time of a method can be expressed as a function, and functions can be classified
into orders. A function’s order is unchanged if it is multiplied by a constant factor or if a lower-
order function is added. Thus, things like faster hardware do not affect the order of an algo-
rithm’s running-time function. There are a number of special notations (O, Θ, Ω), for dealing
with orders.

To find the running time of an algorithm, we determine the running time for each line. This is the
number of simple (constant-time) steps the line accomplishes, multiplied by the number of times
the line is run. The algorithm’s running time has the same order as the running time of the most
expensive line in the algorithm. The algebra of sums comes in handy when analyzing algorithms
with nested loops.

There are four kinds of analysis we can perform. They produce running times which are ordered
as follows:

best case ≤ average case ≤ amortized ≤ worst case

Worst-case analysis is the most common. Average-case analysis is also useful, but requires some
assumption about what “average” data looks like. Amortized analysis is appropriate when the
worst case (such as stretching an array) cannot happen on every run.

Vocabulary

amortized. Analysis of the time per operation over the worst possible sequence of inputs.

asymptotic. Pertaining to the behavior of a function f(n) in the limit, as n becomes very large.
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asymptotic lower bound. Lower bound on the order of a function f, expressed as f ∈ Ω(g) for
some g.

asymptotic upper bound. Upper bound on the order of a function f, expressed as f ∈ O(g) for
some g.

asymptotically tight bound. Precise statement of the order of a function f, expressed as f ∈
Θ(g) for some g.

average case. Analysis of expected behavior, given some assumption about average input.

best case. Analysis assuming the best possible input.

exponential. Any order of the form Θ(kn), for some k > 1.

monotonically nondecreasing. Of a function f over the integers, f(n + 1) ≥ f(n).

order. Set of functions growing at the same rate, within a constant factor.

polynomial. Any order of the form Θ(nk), for some k > 0.

step. Series of operations taking time in Θ(1).

worst case. Analysis assuming the worst possible input.

Problems

7.16 Add a method addFirst() to our List interface from Section 5.3. Unlike add(),
addFirst() should put the new element at the front of the List. Provide this method in
both our ArrayList class (Section 5.3) and our LinkedList class (Section 6.3). What is
the order of the running time of each version?

7.17 Since method invocation uses time to push and pop the call stack, there may be an effi-
ciency cost in using accessors and mutators rather than accessing fields directly. Some
compilers are smart enough to skip the method invocation, preserving encapsulation
while not incurring a speed cost. Run an experiment to determine whether your com-
piler does this.

7.18 Modify the LinkedList class from Section 6.3 so that size() takes constant time.

Projects

7.19 Complete Figure 7–22.

7.20 Complete Figure 7–23. Drop any fractions and approximate very large values using sci-
entific notation as shown. You will probably have to use both a calculator/computer and
some algebra to accomplish this.
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ArrayList LinkedList

Best Avg Amort Worst Best Avg Amort Worst

add() Θ(1) Θ(n)

contains() Θ(1) Θ(n) Θ(n)

get() Θ(1) Θ(n)

isEmpty()

iterator()

remove()

size() Θ(n) Θ(n) Θ(n) Θ(n)

Figure 7–22: Comparison of algorithms from our ArrayList and LinkedList classes, for
Project 7.19. (Analyze the version of remove() which takes an index as an argument.)

Time to
process n elements
(milliseconds)

1 second 1 minute 1 hour 1 day 1 year

log2 n 1018,061

n 1,000 60,000 3.1 × 1010

n log2 n

n2 1,897

n3

2n 9

Figure 7–23: Number of elements that can be processed in a given amount of time
for various running-time functions. For Project 7.20.
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8
Searching and 
Sorting

This chapter introduces the simplest algorithms for searching and sorting arrays. We will see
more sophisticated algorithms for these tasks in Chapters 9, 12, and 14.

Searching is the task of determining whether a collection contains some particular element. The
contains() method from the List interface (Chapter 5) performs searching. In this chapter, we
will see a couple of ways to do this more efficiently if the collection is already in order from
smallest to largest. Linear search is covered in Section 8.1, binary search in Section 8.2.

Sorting is the task of putting a collection in increasing order. We will not bother to write a game
involving sorting, but it should be clear that this is a useful operation to perform in many situa-
tions. In many card games, for example, sorting one’s hand makes it easier to decide which play
to make. We might also wish to print a list of mailing addresses or book titles in sorted order.
Section 8.3 presents the insertion sort algorithm.

For simplicity, we introduce the searching and sorting algorithms as static methods operating on
arrays of ints. In Section 8.4, we introduce an interface that allows us to search and sort arrays of
other things. Section 8.5 closes out the chapter with some thoughts on sorting linked lists.
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8.1 Linear Search

Suppose we want to determine whether an array of ints contains some target number. The obvi-
ous approach is the one used in the contains() method of the ArrayList class (Section 5.3):
start at the beginning and examine each element in turn. This algorithm is called linear search.
Not surprisingly, it takes linear time in both the worst and average cases.

We can make the algorithm slightly more efficient if we know in advance that the array is sorted.
The numbers we encounter during a search increase as we move from left to right across the array.
If we ever encounter a number which is larger than the target, we can stop searching. Since all of
the remaining numbers must be even larger, the target can’t possibly appear later in the array.

The code for this improved linear search is given in Figure 8–1.

In the worst case, this is no faster than the old version. On average, although the running time is
still in Θ(n), the number of elements we have to examine in a successful search is reduced by a
factor of 2. A formal proof of this is left as Exercise 8.2.

To analyze the average number of passes through the loop on an unsuccessful search, we define
an exhaustive set of mutually exclusive events. Let event i be the event that the target, if it were
present, would belong right before element i. There is one event for each of the n numbers
(events 0 through n – 1), plus event n, where the target is larger than anything in the array.

In event n, we have to examine n elements to determine that the target is not present. In events 0
through n – 1, we have to examine i + 1 elements. If we assume that the n + 1 events are equally
likely, the average number of elements examined is:

1 /** Return true if target appears in the sorted array data. */
2 public static boolean linearSearch(int[] data, int target) {
3   for (int i = 0; (i < data.length) && (data[i] <= target); i++) {
4     if (data[i] == target) {
5       return true;
6     }
7   }
8   return false;
9 }

Figure 8–1: If the array data is already sorted, a linear search can sometimes be
stopped early.
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Thus, on average, we only have to look at between n/2 and (n/2) + 1 elements.

Exercises

8.1 There are n! permutations of a set of n elements. For example, the set {A, B, C} has
3! = 6 permutations: ABC, ACB, BAC, BCA, CAB, and CBA. There are (n + 1)! per-
mutations of the set after we add a new target. Argue that, if each of these permutations
is equally likely, each of the n + 1 places where the target might belong is equally
likely.

8.2 Analyze the average time for a successful linear search.

8.2 Binary Search

We can take further advantage of the fact that an array is sorted by starting our search in the mid-
dle of the array. If we happen to find the target, we can return true immediately. If not, compar-
ing the middle element to the target reveals whether the target belongs in the left or right half of
the array. In other words, a constant amount of work allows us to divide the data in half. We then
repeat this procedure until either we find the target or we run out of data. This algorithm, called
binary search, is illustrated in Figure 8–2.

Figure 8–2: Binary search for 76 in a sorted array. Every time a number is compared
to the target, half of the remaining array (shaded) is ruled out as a potential location.

2 9 11 15 28 33 40 47 51 64 76 77 82 85 94

2 9 11 15 28 33 40 47 51 64 76 77 82 85 94

2 9 11 15 28 33 40 47 51 64 76 77 82 85 94

2 9 11 15 28 33 40 47 51 64 76 77 82 85 94
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The code is given in Figure 8–3. The indices bottom and top specify the region of the array
still under consideration. The loop shrinks this region until either the target is found or the region
becomes empty.

Analysis of Binary Search
The running time of binary search is proportional to the number of times the loop runs. This is
the number of times we have to divide the data in half before we run out of data.

We assume that n, the length of the array, is an exact power of 2. We will justify this shortcut in
a moment. When we examine the middle element (or as close as we can get, given that n is
even), one side of the array has n/2 elements and the other side has (n/2) – 1 elements. In the
worst case, we always have to look in the larger piece.

For example, if n = 8, we have one pass where there are 8 candidate elements, one where there
are 4, one where there are 2, and one where there is 1. This is four passes. Notice that 23 = 8. If n
were 24 = 16, we would need 5 passes.

The number of passes through the loop is p + 1, where 2p = n. The number p is, by definition, the
base 2 logarithm of n. It is helpful to think of a base 2 logarithm as the number of times a num-
ber has to be divided in half before it gets down to 1 (Figure 8–4). We need p + 1 passes here
because, after we get the search region down to a single element, we have to compare that last
element to the target.

In the worst-case, then, the number of passes through the loop is 1 + log2 n ∈ Θ(log n). This is
an improvement over the linear running time of linear search.

The average-case running time for a successful binary search also turns out to be logarithmic.
The proof is left as a problem.

1 /** Return true if target appears in the sorted array data. */
2 public static boolean binarySearch(int[] data, int target) {
3   int bottom = 0;
4   int top = data.length - 1;
5   while (bottom <= top) {
6     int midpoint = (top + bottom) / 2;
7     if (target < data[midpoint]) {
8       top = midpoint - 1;
9     } else if (target == data[midpoint]) {

10       return true;
11     } else {
12       bottom = midpoint + 1;
13     }
14   }
15   return false;
16 }

Figure 8–3: In the binarySearch() method, each pass through the while loop on
lines 5–14 rules out half of the array as a potential location for target.



Section 8.2 Binary Search 209

Assuming n Is a Power of Two
We do not generally expect n to be a power of two, but for most running-time functions this
shortcut will not change the order of our result.

Theorem: Let f(n) and g(n) be two monotonically nondecreasing functions. If f(n) = g(n) for
exact powers of two, and cg(n) > g(2n) for some constant c, then f(n) ∈ Θ(g(n)) in general.

The condition that cg(n) > g(2n) indicates that this theorem does not work for very quickly
growing functions like 2n. We will rarely encounter running-time functions like this. The theo-
rem does work for any function in a polynomial or lower order.

Proof: We will show that f(n) ∈ O(g(n)) and f(n) ∈ Ω(g(n)). The theorem follows from this.

To understand the proof, consider Figure 8–5.

The functions are known to be equal at the marked points. Between these points, f(n) must stay
within the dashed boundary. If it did not, it would have to decrease at some point. Since both
functions are monotonically nondecreasing, this cannot happen.

To see that f(n) ∈ O(g(n)), consider the function cg(n). We know that cg(2) > g(4), cg(4) > g(8),
and so on. In terms of the graph, cg(n) is always above the boundary boxes, and therefore greater
than f(n). In other words, f(n) ∈ O(cg(n)) = O(g(n)).

By a similar argument, f(n) ∈ Ω(g(n)). Therefore, f(n) ∈ Θ(g(n)).

This completes the proof.

Returning to the analysis of binary search, consider the case where n is not a power of 2. For
example, suppose n is 15. We then need four passes, considering 15, 7, 3, and 1 elements,
respectively. In fact, we need four passes for any n from 8 through 15. These are the values of n
for which 3 ≤ log2 n < 4.

Figure 8–4: The base 2 logarithm of n is the number of times we have to divide n in
half to get down to 1.
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In general, the number of passes is 1 + log2 n. The notation x, read “floor x,” means “x
rounded down to the nearest integer.” Analogously, x, read “ceiling x,” means “x rounded up to
the nearest integer.” Since log2 n is an integer for exact powers of 2, assuming that n is a power
of 2 allows us to ignore floors and ceilings.

Exercises

8.3 In the analysis of binary search, we assumed that n is a power of 2. This means that n is
even (unless it is 1), so there is no middle element. Which element does binary-
Search() examine first?

8.4 The analysis of binary search given in this section is for a worst-case successful search,
where we find the target just before we run out of places to look. What is the order of
the running time for an unsuccessful search?

8.5 Instead of assuming that n is a power of 2, it is sometimes useful to assume that n is
even. Prove that this is a safe thing to do.

Figure 8–5: Intuition for proof that it’s safe to assume n is a power of 2. The functions
f(n) and g(n) coincide at exact powers of 2, and f(n) stays within the marked
boundary.

f (n) � g(n)
g(n)

5

4

3

2

1

0
0 2 4 6 8 10 12 14 16

n



Section 8.3 Insertion Sort 211

8.3 Insertion Sort

The search algorithms in the previous two sections require that the array to be searched is
already in sorted order. There are many algorithms for getting an array into this sorted state. This
section discusses one of the simplest sorting algorithms, insertion sort.

Insertion sort is the algorithm many people use when sorting a hand of cards. Begin with all of
the cards on the table. Pick up one card and place it in the left hand. Pick up a second card and
add it to the left hand, either to the left or right of the first card depending on whether it is
smaller or larger. Insert a third card into its proper place in this sequence, and so on, until all of
the cards have been inserted.

To implement insertion sort on an array of ints, we use an idea from the ArrayList class: we
divide the output array into “in use” and “not in use” regions (Figure 8–6). The numbers in the
“in use” region are already sorted. When the algorithm finishes, the entire array is in the “in use”
region, so all of the numbers are sorted. 

The observant reader will notice that the “in use” portion of the input array is always exactly the
same size as the “not in use” portion of the output array. We can use the same array for both pur-
poses. In fact, instead of producing a new output array, we can simply rearrange the elements of
the input array.

Figure 8–6: A first version of insertion sort uses two arrays: one to hold the data still
to be inserted (left) and another to hold the result (right). When a number is inserted in
the output, any larger numbers have to be shifted over one position.
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Given this improvement, the first number we actually have to insert is element 1. Element 0
would always be inserted at position 0, and it’s already there. It will be moved if any smaller
numbers are later inserted. This improved version is illustrated in Figure 8–7.

The code for insertionSort() is given in Figure 8–8. The main loop inserts each element in
turn (except element 0). The loop on lines 6–8 works through the sorted region from right to left,
moving each element one position to the right as it goes. This both finds the correct place for
target and makes sure there is room to put it there when it arrives.

The running time of insertion sort depends on the running time of this inner loop. This is effec-
tively a linear search through the i numbers which have already been sorted. In the best case,
data was already in order, so the inner loop takes a single step for each insertion. The best-case

Figure 8–7: An improved version of insertion sort uses the input array to hold both
the sorted portion (unshaded) and the numbers still to be inserted (shaded). In each
step, the next available unsorted number is inserted into the sorted region of the
array.

1 /** Arrange the numbers in data from smallest to largest. */
2 public static void insertionSort(int[] data) {
3   for (int i = 1; i < data.length; i++) {
4     int target = data[i];
5     int j;
6     for (j = i - 1; (j >= 0) && (data[j] > target); j--) {
7       data[j + 1] = data[j];
8     }
9     data[j + 1] = target;

10   }
11 }

Figure 8–8: Code for insertionSort().
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2 5 1 4 3

1 2 5 4 3

1 2 4 5 3
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running time for insertion sort is:

In the worst case, data was in reverse order, so each number must be moved all the way to the
beginning of the array as it is inserted. The total time required for this is:

In the average case, we can assume that when we insert element i it is equally likely to end up in
any of the positions 0 through i. (This is effectively the same assumption we made in analyzing
the average-case performance of linear search.) Each insertion is into a sequence of i – 1 already
sorted numbers, so it takes at least (i – 1)/2 comparisons on average. The total average case run-
ning time for insertion sort is therefore at least:

Since the average-case time can’t be worse-than the worst-case time (which is quadratic), the
average-case time must also be in O(n2), and therefore in Θ(n2).

We will see some more efficient sorting algorithms in Chapters 9, 12, and 14, but we now have a
benchmark. Any sorting algorithm that takes time in an order higher than Θ(n2) is less efficient
than insertion sort and not worth considering.

Remember that asymptotic notation roughly indicates the rate at which a function grows, but
obscures constant factors. For example, a method that takes 10n2 milliseconds to run is in a
higher order than one that takes 200n milliseconds, but is actually faster for very small values of
n. Because it is so simple, insertion sort has a low constant factor within its order. It is therefore
a good algorithm to use when the number of elements being sorted is very small.
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Exercises

8.6 On line 4 of the code for insertionSort() (Figure 8–8) we store data[i] in a sep-
arate variable target. The version in Figure 8–9 omits this “redundant” variable.
Explain why it doesn’t work.

8.7 What is the amortized running time of insertion sort? (Hint: You should be able to
answer this almost instantly, without doing any algebra.)

8.8 Assume that all n! permutations of the elements of data are equally likely (see
Exercise 8.1). Argue that, after element i is inserted, it is equally likely to appear in
any of the positions 0 through i.

8.4 The Comparable Interface

Our implementations of searching and sorting algorithms have dealt only with ints. It would be
trivial to write similar versions for doubles.

Can we use polymorphism to write methods which will work on Objects? If so, we could use the
same methods to search and sort structures containing Integers, Cards, or anything else.

This is not quite possible, because the notions of “greater than” and “less than” don’t make sense
for all classes. For example, what would it mean for one LinkedStack to be greater than another?
What about graphic windows, customers, or sound clips?

It only makes sense to sort things which are comparable. Java provides a built-in interface Com-
parable. All of the wrapper classes, as well as String, implement Comparable (Figure 8–10).

Comparable is generic because we can’t compare instances of different subclasses. The type
parameter specifies the class in question. Thus, Boolean implements Comparable<Boolean>,
Character implements Comparable<Character>, and so on.

1 /** Arrange the numbers in data from smallest to largest. */
2 public static void insertionSort(int[] data) {
3   for (int i = 1; i < data.length; i++) {
4     int j;
5     for (j = i - 1; (j >= 0) && (data[j] > data[i]); j--) {
6       data[j + 1] = data[j];
7     }
8     data[j + 1] = data[i];
9   }

10 }

Figure 8–9: Broken version of insertionSort() for Exercise 8.6.
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If we want a generic class to hold only instances of comparable classes, we must specify its type
parameter as:

<E extends Comparable<E>>

This means, “some class E that implements Comparable<E>.” In this context, Java does not dis-
tinguish between implementing an interface and extending a class; the keyword extends covers
both cases.

For example, suppose we want an ArrayList that can only hold Comparables. We can create
SortableArrayList, a subclass of ArrayList (Figure 8–11).

The Comparable interface specifies one method, compareTo(). This compares the current ele-
ment to some other element and returns an int. Given two objects a and b, a.compareTo(b)
returns a negative number if a is less than b, zero if a equals b, and a positive number if a is
greater than b.

At first glance, this seems excessively complicated. Wouldn’t it be clearer to supply three meth-
ods, isLessThan(), equals(), and isGreaterThan()?

It might be clearer, but it would be less efficient. There are many algorithms, such as binary search,
where we need to do a different thing in each of these three cases. If we simply provided boolean
methods, we would need to compare target with each array element twice (Figure 8–12). If the

Figure 8–10: Many classes implement the Comparable interface. The type parameter
T simply stands for type. This name is somewhat arbitrary, but it doesn’t make sense to
talk about the “element” of a Comparable the same way we would talk about the
elements of a List.

1 /** An array-based List of Comparables. */
2 public class SortableArrayList<E extends Comparable<E>>
3   extends ArrayList<E> {
4 }

Figure 8–11: The class SortableArrayList is like ArrayList, but it can hold only
Comparable objects.

<<interface>>
Comparable

compareTo(E):int

Boolean Character Double Integer String
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elements were large data structures (say, very long Strings corresponding to DNA sequences), this
would be a lot of redundant computation.

With the single compareTo() method, we perform the comparison once, then examine the sim-
ple result of the comparison twice (Figure 8–13).

1 public boolean contains(E target) {
2   insertionSort();
3   int bottom = 0;
4   int top = size() - 1;
5   while (bottom <= top) {
6     int midpoint = (top + bottom) / 2;
7     if (target.isLessThan(get(midpoint))) {    // Illegal!
8       top = midpoint - 1;
9     } else if (target.equals(get(midpoint))) { // Illegal!

10       return true;
11     } else {
12       bottom = midpoint + 1;
13     }
14   }
15   return false;
16 }

Figure 8–12: A contains() method for the SortableArrayList class using binary
search. If the Comparable interface specified separate methods isLessThan(),
equals(), and isGreaterThan(), we would have to perform two comparisons in each
pass through the loop. Comparable doesn’t work this way, so this code is incorrect.

1 public boolean contains(E target) {
2   insertionSort();
3   int bottom = 0;
4   int top = size() - 1;
5   while (bottom <= top) {
6     int midpoint = (top + bottom) / 2;
7     int comparison = target.compareTo(get(midpoint));
8     if (comparison < 0) {
9       top = midpoint - 1;

10     } else if (comparison == 0) {
11       return true;
12     } else {
13       bottom = midpoint + 1;
14     }
15   }
16   return false;
17 }

Figure 8–13: With the compareTo() method, we have to perform the potentially
expensive comparison only once in each pass through the loop.
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Incidentally, the compareTo() method in the String class uses lexicographical order to com-
pare Strings. This is similar to alphabetical order, but it considers all upper-case letters to be ear-
lier than all lower-case ones. It also handles nonalphabetic characters such as digits and
punctuation marks, with the order specified by Unicode (which is identical to ASCII for com-
mon characters).

The contains() method in Figure 8–13 begins by insertion sorting the SortableArrayList.
Code for this method is given in Figure 8–14.

If we want to make one of our own classes Comparable, we have to declare that it implements
Comparable and provide the compareTo() method. In some classes, this amounts to a simple
subtraction. For example, Figure 8–15 shows a compareTo() method for the Die class from
Chapter 1.

When a class implements Comparable, the compareTo() method should be consistent with the
equals() method. In other words, a.equals(b) should be true for exactly those values of a
and b for which a.compareTo(b) returns 0.

Exercises

8.9 What is the value of "Z".compareTo("a")? (Note that the “Z” is upper case.)

8.10 Modify the Card class (Section 5.1) so that it implements Comparable.

1 /** Arrange the elements in this List from smallest to largest. */
2 public void insertionSort() {
3   for (int i = 1; i < size(); i++) {
4     E target = get(i);
5     int j;
6     for (j = i - 1;
7 (j >= 0) && (get(j).compareTo(target) > 0);
8 j--) {
9       set(j + 1, get(j));

10     }
11     set(j + 1, target);
12   }
13 }

Figure 8–14: The insertionSort() method for the SortableArrayList class.

1 public int compareTo(Die that) {
2   return topFace - that.topFace;
3 }

Figure 8–15: The compareTo() method for the Die class is a simple subtraction. 
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8.5 Sorting Linked Lists

The binary search algorithm depends on random access, so it is not suitable for use with linked
structures. Most sorting algorithms also depend on random access, but some of them can be
adapted to work with linked lists. In this section, we look at insertion sort for a linked list.

In order for our insertion sort to run efficiently, we must be careful to avoid the methods get(),
set(), and size(), which all take linear time on linked lists. Instead of trying to directly con-
vert the code from SortableArrayList, we return to the original idea of the insertion sort algo-
rithm: insert each item in order into a new list.

Our plan is illustrated in Figure 8–16. We will create a new, empty list. Going through the origi-
nal list, we’ll insert each one in order into this new list. When we’re done, we change the front
reference in the old list to point to the front of the new one.

Figure 8–16: Plan for insertion sorting a list. We first create a new, empty List. We
then insert the elements of the old list into the new one in order. Finally, we change the
front reference to point to the new chain of nodes.
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The code is given in Figure 8–17.

Exercises

8.11 Define an interface SortableList that is implemented by both SortableArrayList and
SortableLinkedList. Draw a UML class diagram showing the relationship between your
interface, these two classes, List, ArrayList, and LinkedList.

Summary

Two useful searching algorithms are linear search and binary search. Linear search works through
an array from left to right, taking linear time in the worst case. Binary search starts in the middle
and rules out half of the array on each pass through the loop, taking logarithmic time. In analyz-
ing binary search, we assume that n is an exact power of 2. This is usually an acceptable shortcut.

1 /** A linked List of Comparables. */
2 public class SortableLinkedList<E extends Comparable<E>>
3   extends LinkedList<E> {
4
5   /** Add target in order, assuming this List is sorted. */
6   protected void addInOrder(E target) {
7     Predecessor<E> prev = this;
8     ListNode<E> node = getNext();
9     while ((node != null) 

10 && (node.getItem().compareTo(target) < 0)) {
11       prev = node;
12       node = node.getNext();
13     }
14     prev.setNext(new ListNode<E>(target, node));
15   }
16
17   /** Arrange the elements in this List from smallest to largest. */
18   public void insertionSort() {
19     SortableLinkedList<E> newList = new SortableLinkedList<E>();
20     for (E e : this) {
21       newList.addInOrder(e);
22     }
23     setNext(newList.getNext());
24   }
25
26 }

Figure 8–17: The SortableLinkedList class.
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The insertion sort algorithm inserts each element in turn into a sequence of already sorted ele-
ments. In the worst case, where the array was in reverse order to start with, insertion sort takes
quadratic time.

The running times of searching algorithms are summarized in Figure 8–18.

The running times of sorting algorithms are summarized in Figure 8–19.

Algorithm Best Case Average Case Worst Case Notes

linear search Θ(1) Θ(n) Θ(n)

binary search Θ(1) Θ(log n) Θ(log n)

interpolation 
search

Θ(1) Θ(log (log n)) Θ(n) Section 12.4. 
Worst case 
unlikely if data 
are uniformly 
distributed.

Figure 8–18: Running times of searching algorithms. Some terminology in this table
will be introduced in later chapters.

Algorithm Best Case Average Case Worst Case Notes

insertion sort Θ(n) Θ(n2) Θ(n2) Small constant fac-
tor. In place.

merge sort Θ(n log n) Θ(n log n) Θ(n log n) Section 9.3.

Quicksort Θ(n log n) Θ(n log n) Θ(n2) Section 9.4. Small 
constant factor. In 
place. Worst case can 
be made unlikely.

bucket sort Θ(n) Θ(n) Θ(n2) Section 12.4. Aver-
age case depends on 
uniform distribution 
of data.

heapsort Θ(n log n) Θ(n log n) Θ(n log n) Section 14.1. In 
place.

Figure 8–19: Some terminology in this table will be introduced in later chapters. By
convention, some algorithm names are written as single words, and Quicksort is
capitalized.
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The Comparable interface allows us to compare instances of classes that implement it, including
Integers, Doubles, and Strings. We can make our own classes Comparable by providing the
compareTo() method.

Most sorting algorithms depend on random access, so they do not work efficiently on linked lists.

Vocabulary

binary search. Search that starts in the middle of a structure, ruling out half of the elements on
each step.

ceiling. Mathematical operation rounding a number x up to the nearest integer. Written x.

floor. Mathematical operation rounding a number x down to the nearest integer. Written x.

insertion sort. Sort that traverses a structure, inserting each element into its proper place among
the already sorted elements.

lexicographical order. Generalization of alphabetic order on Strings, in which each character is
compared in turn until a difference is found or one String runs out of characters.

linear search. Search that traverses a structure from left to right.

search. Determine whether some element is present in a structure. Also any algorithm for
searching.

selection sort. Sort that traverses a structure, repeatedly finding the smallest element and adding
it to the sequence of already sorted elements (Project 8.14).

sort. Arrange a collection in increasing order. Also any algorithm for sorting.

Problems

8.12 Prove that a successful binary search takes logarithmic time on average. (Hint: Assume
that the target is equally likely to be at any of the n positions in the array. For how many
of these positions is the target discovered in one pass through the loop? Two? Three?)

8.13 The contains() method in Figure 8–13 sorts the list every time it is invoked. What is the
worst-case running time of this method? Modify the SortableArrayList class so that the
list keeps track of whether it is sorted and does so only when necessary. (Hint: You’ll
have to override any method that might cause the list to become unsorted, such as
add(). Rather than replicate the bulk of the method from the superclass ArrayList in
your own code, you can invoke it as super.add().)

Projects

8.14 In the insertion sort algorithm, we repeatedly find the next element and insert it into the
already sorted region of the array. The selection sort algorithm instead begins by finding
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the smallest element in the array and swapping it with the element at position 0. The sec-
ond smallest element (that is, the smallest element besides the one now at position 0) is
then found and swapped with element 1. The third smallest element is placed at position
2, and so on. Implement selection sort and analyze its best-, average-, and worst-case
running time.

8.15 Modify SortableArrayList so that it implements Comparable<SortableArrayList>. The
order should be similar to the lexicographical order for Strings. Specifically, compare
the elements at each position, starting with element 0. The first SortableArrayList to
have a smaller element at some position is the smaller one. If one of them runs out of
elements before a difference is found, the one that ran out is the smaller one, just as the
String "gar" is less than "gargoyle".

8.16 Do Project 8.15, but with SortableLinkedList instead.
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9
Recursion

The chapter discusses recursion, a powerful technique for designing algorithms. Section 9.1 uses
a puzzle to introduce the recursive way of thinking. The analysis of recursive algorithms requires
new techniques, which are explained in Section 9.2. Two recursive sorting algorithms are intro-
duced in Sections 9.3 and 9.4. While recursive algorithms are often very concise and elegant,
their efficiency can sometimes be improved by converting them into a nonrecursive form, as
explained in Section 9.5.

9.1 Thinking Recursively

We begin with a classic puzzle, the Towers of Hanoi (Figure 9–1). 

The Towers of Hanoi
Players: 1

Object: To move a stack of disks from one of three pegs to a specified destination peg.

Setup: There are three pegs. The first peg contains a number of disks, each smaller than the
one beneath it. The other two pegs are initially empty.

Play: On a turn, you can move the topmost disk from one peg to any other peg, with the
restriction that a disk can never be on top of a smaller disk.

Figure 9–1: The Towers of Hanoi puzzle.
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As an example, the sequence of moves necessary to solve the three-disk version of the puzzle is
shown in Figure 9–2.

Figure 9–2: There are seven moves in the solution to the three-disk Towers of Hanoi
puzzle.

1 2 3
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We want to write a program to solve the puzzle. Specifically, it should print out the sequence of
moves needed to get all of the disks onto the destination peg. To move three disks from peg 1 to
peg 3 (using peg 2 as a spare), our program should print:

1 => 3
1 => 2
3 => 2
1 => 3
2 => 1
2 => 3
1 => 3

Solving the one-disk puzzle is trivial:  just move the disk directly from the source peg to the des-
tination peg. We write a simple method (Figure 9–3), which we invoke as hanoi1(1, 3).

To solve the puzzle for two disks, we have to move the small disk to the spare peg to get it out of
the way. We can then move the large disk to the destination, and then finally move the small disk
back on top of it (Figure 9–4). We need to specify the spare disk as a third argument, so this
method is invoked as hanoi2(1, 3, 2).

The method for the three-disk puzzle (Figure 9–5) is somewhat longer.

The spacing in Figure 9–5 is there to suggest a key insight. The solution can be broken down
into three parts. In lines 4–6, we move two disks from the source to the spare. In line 8, we move
the largest disk from the source to the destination. In lines 10–12, we move two disks from the
spare to the destination.

1 /** Move a single disk from source to dest. */
2 public static void hanoi1(int source, int dest) {
3   System.out.println(source + " => " + dest);
4 }

Figure 9–3: A method to solve the one-disk Towers of Hanoi puzzle.

1 /** Move two disks from source to dest, using a spare peg. */
2 public static void hanoi2(int source, int dest, int spare) {
3   System.out.println(source + " => " + spare);
4   System.out.println(source + " => " + dest);
5   System.out.println(spare + " => " + dest);
6 }

Figure 9–4: The method for the two-disk puzzle requires an extra argument to
identify the spare peg.
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In lines 4–6, we are moving the two smallest disks. The location of the larger disk is irrelevant to
this task. It is as if we were simply moving the two disks by themselves, and we already know
how to do this. We can do this by invoking hanoi2(). The same is true of lines 10–12. We can
therefore write a shorter version of hanoi3() (Figure 9–6).

Similarly, we can rewrite hanoi2() using hanoi1() (Figure 9–7).

We now have a pattern that will allow us to write a method to solve the puzzle for any number of
disks, provided that we’ve written all of the previous methods. For example, once we’ve written
hanoi1() through hanoi16(), we can write hanoi17() (Figure 9–8).

1 /** Move three disks from source to dest, using a spare peg. */
2 public static void hanoi3(int source, int dest, int spare) {
3
4   System.out.println(source + " => " + dest);
5   System.out.println(source + " => " + spare);
6   System.out.println(dest + " => " + spare);
7
8   System.out.println(source + " => " + dest);
9

10  System.out.println(spare + " => " + source);
11   System.out.println(spare + " => " + dest);
12   System.out.println(source + " => " + dest);
13
14 }

Figure 9–5: The method hanoi3() is longer, but a pattern begins to emerge.

1 /** Move three disks from source to dest, using a spare peg. */
2 public static void hanoi3(int source, int dest, int spare) {
3   hanoi2(source, spare, dest);
4   System.out.println(source + " => " + dest);
5   hanoi2(spare, dest, source);
6 }

Figure 9–6: An improved version of hanoi3() invokes hanoi2(). Line 3 moves two
disks from source to spare. Line 5 moves two disks from spare to dest.

1 /** Move two disks from source to dest, using a spare peg. */
2 public static void hanoi2(int source, int dest, int spare) {
3   hanoi1(source, spare);
4   System.out.println(source + " => " + dest);
5   hanoi1(spare, dest);
6 }

Figure 9–7: The method hanoi2() can be rewritten using hanoi1().
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This is fine, but we still have to do the tedious work of writing all these methods. It would be
much better if we could write a single method which would work for any number of disks. This
method has to accept the number of disks as an argument. A first attempt is shown in Figure 9–9.
A method which invokes itself like this is called recursive.

Unfortunately, this method is slightly broken. If we ask for

hanoi(1, 1, 3, 2);

the program crashes, giving an error message like:

java.lang.StackOverflowError

We’ll explain this message in more detail in Section 9.5. For now, let’s step through the execu-
tion and see if we can figure out what happened.

The method begins by invoking

hanoi(0, 1, 2, 3);

which invokes

hanoi(-1, 1, 3, 2);

which invokes

hanoi(-2, 1, 2, 3);

and so on, until the computer runs out of memory. To prevent this, we have to provide a base
case—that is, some situation where the problem is so simple that the method does not have

1 /** Move 17 disks from source to dest, making use of a spare peg. */
2 public static void hanoi17(int source, int dest, int spare) {
3   hanoi16(source, spare, dest);
4   System.out.println(source + " => " + dest);
5   hanoi16(spare, dest, source);
6 }

Figure 9–8: The pattern can be extended to any number of disks.

1 /**
2  * Move the specified number of disks from source to dest, making
3  * use of a spare peg.
4  */
5 public static void hanoi(int disks, int source, int dest, 
6 int spare) {
7   hanoi(disks - 1, source, spare, dest);
8   System.out.println(source + " => " + dest);
9   hanoi(disks - 1, spare, dest, source);

10 }

Figure 9–9: First attempt at a method to solve the puzzle for any number of disks.
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to recursively invoke itself. For the Towers of Hanoi puzzle, the base case is the situation
where there is only one disk. Once we check for the base case (Figure 9–10), our method
works correctly.

In general, to solve a problem recursively, we must deal with two cases:

1. The base case, where we can solve the problem directly, and

2. The recursive case, where we solve the problem in terms of easier subproblems.

When we say that subproblems must be “easier,” we mean that they must be closer to the base
case. In the Towers of Hanoi, we solve the problem of moving n disks in terms of the easier
problem of moving n – 1 disks.

For a second example of recursion, consider the task of printing a LinkedList backward. An iter-
ative approach (that is, one using loops instead of recursion) would be to find the last item, then
the second-to-last item, and so on (Figure 9–11).

1 /**
2  * Move the specified number of disks from source to dest, making
3  * use of a spare peg.
4  */
5 public static void hanoi(int disks, int source, int dest, 
6 int spare) {
7   if (disks == 1) {
8     System.out.println(source + " => " + dest);
9   } else {

10     hanoi(disks - 1, source, spare, dest);
11     System.out.println(source + " => " + dest);
12     hanoi(disks - 1, spare, dest, source);
13   }
14 }

Figure 9–10: A correct recursive program must check for the base case.

1 /** Return a String representing this list in reverse order. */
2 public String toStringReversed() {
3   String result = "( ";
4   for (int i = size() - 1; i >= 0; i--) {
5     result += get(i) + " ";
6   }
7   return result + ")";
8 }

Figure 9–11: An iterative toStringReversed() method for our LinkedList class.
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This method works, but it is not very efficient. Each invocation of get() requires us to walk
down the list from the beginning to find the item at position i, which takes time linear in i. The
total time for this version of toStringReversed() is:

(We are pretending here that String concatenation takes constant time, which is not exactly true.
More on this in Chapter 13.)

A better recursive solution is to divide the problem into two cases:

1. If there are no nodes, return the empty String.

2. Otherwise, generate a String for the rest of the list (the part after the first item). Add the 
first item to the end of this String and return it.

We would like to add parentheses at the beginning and end of the list. We could deal with the
left parenthesis in the base case, but there’s no good time to add the right parenthesis. To avoid
this complication, we move the recursive part of the problem into a separate helper method
(Figure 9–12).

Notice that toStringReversedHelper() does not deal with the entire list, but merely the
chain of nodes starting at node.

1 /** Return a String representing this list in reverse order. */
2 public String toStringReversed() {
3   return "( " + toStringReversedHelper(front) + ")";
4 }
5
6 /**
7  * Return a String representing the portion of a LinkedList starting
8  * at node, in reverse order.
9  */

10 protected String toStringReversedHelper(ListNode node) {
11   if (node == null) {
12     return "";
13   } else {
14     return toStringReversedHelper(node.getNext()) + node.getItem() 
15 + " ";
16   }
17 }

Figure 9–12: An alternate version of toStringReversed() invokes a recursive
helper method.

1 2 3 … n+ + + + i

i 1=

n

∑ Θ n2( )∈=
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To show that a recursive algorithm works correctly, we must demonstrate that:

1. The base case works correctly, and

2. If the recursive method works for a problem of size n – 1, then it works for a problem of 
size n.

In this case, toStringReversedHelper() certainly works correctly for the base case, where
node is null. It returns the empty String, so toStringReversed() returns "( )".

Now suppose node is not null, but instead is a reference to the first of a chain of n nodes
(Figure 9–13).

If we assume that the recursive invocation

toStringReversedHelper(node.getNext())

correctly returns the String "D C B ", then clearly the expression

toStringReversedHelper(node.getNext()) + node.getItem() + " "

evaluates to "D C B A ", which is what we want. In general, if the method works for a chain of
n – 1 nodes, it works for a chain of n nodes.

Since we know that the method works properly for an empty chain (null), we can now con-
clude that it works for a chain of one node. From this, we can conclude that it works for a chain
of two nodes. Indeed, we can conclude that it works for any number of nodes.

Let’s write toStringReversed() for our ArrayList class as a third and final example of recur-
sion. It would be easy—and indeed, more natural—to do this one using a for loop, but it can also
be done using recursion. In fact, any recursive procedure can be written iteratively, and vice versa.

Again we need a helper method, and the design of the algorithm is similar:

1. If there are no elements being considered, return the empty String.

2. Otherwise, generate a String for all of the elements after the current one. Add the cur-
rent element to the end of this String and return it.

Figure 9–13: A chain of n nodes consists of a first node followed by n – 1 more
nodes.

n � 1 nodes after the first one

ListNode

item � D

ListNode

item � B

ListNode

item � C

ListNode

item � A

node
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The code is shown in Figure 9–14, emphasizing the parts which are different from the
LinkedList versions.

Exercises

9.1 Write a recursive method to compute n! (n factorial).

9.2 Write a recursive method to compute the sum of the first n positive integers.

9.3 Write a recursive method to determine whether a String is a palindrome—that is, reads
the same forward and backward. The Strings "amanaplanacanalpanama" and
"deified" are palindromes, as is any String of length 0 or 1. (Hint:  For the recursive
case, examine the region of the String which does not include the first or last characters.
You will find the substring() method of the String class helpful.)

9.4 Write a recursive version of binarySearch() (Figure 8–3). You will need two base
cases:  one for when the target is found and another for when there are no data left to
examine.

9.2 Analyzing Recursive Algorithms

Recursive algorithms can be difficult to analyze, because it is not clear how many times they will
be invoked. Some new techniques are needed.

1 /** Return a String representing this List in reverse order. */
2 public String toStringReversed() {
3   return "( " + toStringReversedHelper(0) + ")";
4 }
5
6 /**
7  * Return a String representing the portion of this List starting
8  * at position i, in reverse order.
9  */

10 protected String toStringReversedHelper(int i) {
11   if (i == size) {
12     return "";
13   } else {
14     return toStringReversedHelper(i + 1) + data[i] + " ";
15   }
16 }

Figure 9–14: The method toStringReversed() and the recursive method
toStringReversedHelper() for our ArrayList class.
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Let’s start with the LinkedList version of toStringReversedHelper() (Figure 9–12). The
corresponding method toStringReversed() will have a running time in the same order,
because it only does a constant amount of additional work.

Our standard method of dealing with the if statement doesn’t work. If we take the “best-case”
branch, we conclude that the algorithm takes constant time. If we take the “worst-case” branch,
we conclude that the algorithm never stops!  The problem is that our selection of branch depends
on n. We always take the first branch for n = 0 and the second for larger values of n. To analyze
a recursive algorithm, we must think recursively, in terms of a base case and a recursive case.

The method takes a constant amount of time in the base case—let’s call it one step. In the recur-
sive case, it takes one step plus the time for the recursive invocation. We formalize this in an
equation called a recurrence. Let T(n) be the time taken to process a chain of n nodes. Then we
can write the following recurrence:

Solving a recurrence means transforming it into an equation with T(n) on the left and no mention
of T on the right. In general, solving recurrences can be extremely difficult. However, if we are
able to guess the right answer, it is easy to use the recurrence to verify our answer.

In this case, it seems reasonable that toStringReversedHelper() takes time in Θ(n). Let’s
guess that T(n) = n. Substituting this into the bottom half of the recurrence, we find:

So far, so good. Unfortunately, our guess implies that T(0) = 0, while the recurrence says that
T(0) = 1. We got close, but our guess does not work for the base case. It must work exactly to
constitute a solution.

Let’s try guessing T(n) = n + 1. For the base case:

That works. How about the recursive case?

Success!  We conclude that toStringReversed() runs in linear time. The ArrayList version
has the same recurrence, so it also runs in linear time.

T n( )
1                      if n 0=

1 T n 1–( ) otherwise+



=

T n( ) 1 T n 1–( )+=

1 n 1–+=

n=

T 0( ) 1 0 1+= =

T n( ) 1 T n 1–( )+=

1 n 1–( ) 1+ +=

n 1+=
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Here is the recurrence for hanoi():

This is more difficult to solve, because there are two recursive calls. We therefore begin by
repeatedly expanding the recursive case:

We can draw this expansion out as a recursion tree (Figure 9–15). We start by writing down
T(n). We replace this with the time taken in addition to the recursive calls (for this recurrence, 1),
and add two copies of T(n – 1). We then replace each of these with a 1 and two copies of T(n – 2),
and so on.

This expansion continues until we have many copies of T(1), which can be replaced with 1. The
total running time, then, is the number of 1s in the tree. We can’t actually expand the tree all the
way without specifying a particular value of n. Instead, we take the sum of the totals on each
level of the tree (Figure 9–16). There is 1 step at the top level, 2 at the next level, 4 at the next
level, and so on. If we count the top level as level 0, there are 2i steps on level i. There are n lev-
els, corresponding to T(n) down through T(1). The bottommost level is therefore level n – 1,
consisting of 2n – 1 steps.

Figure 9–15: Expanding a recursion tree.

Figure 9–16: To find the sum of a recursion tree, determine how many steps there
are at each level. 
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The total number of steps in the entire tree is:

Let’s verify 2n – 1 as a solution to the recurrence.

For the base case, 21 – 1 = 1, which is correct.

For the recursive case:

Solved!  We conclude that hanoi() takes time in Θ(2n).

The recursion tree method can be used to analyze algorithms with only one recursive call. For
example, consider the recurrence:

The recursion tree is shown in Figure 9–17. Assuming n is even (Exercise 8.5), we get the solution:

.

Exercises
9.5 Solve the recurrence below, assuming n is odd.

Figure 9–17: When there is only one recursive call, the recursion tree has only one
branch.
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9.6 Solve the recurrence below, assuming n is a power of 2.

9.7 Solve the recurrence below.

9.8 According to the ancient legend of the Towers of Hanoi, there is a temple where priests
are laboring to solve the puzzle with 64 golden disks. When they complete their task,
the world will end. Assuming the priests make one move per second, how much time
will this take?

9.3 Merge Sort

We can use recursion to design sorting algorithms that are more efficient than insertion sort. This
section describes one such algorithm, merge sort.

The recursive idea behind merge sort is:

1. If there is only one number to sort, do nothing.

2. Otherwise, divide the numbers into two groups. Recursively sort each group, then 
merge the two sorted groups into a single sorted array.

This process is illustrated in Figure 9–18.

Figure 9–18: In merge sort, the data to be sorted (top) are divided into two groups.
Each group is recursively sorted. The results are then merged into the final result.
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Merge sort is an example of a divide-and-conquer algorithm. In such an algorithm, we divide
the data into smaller pieces, recursively conquer each piece, and then combine the results into a
final result.

A sorting algorithm that modifies an existing array, such as insertion sort, is called an in-place
sort. Merge sort is not an in-place sort. Instead, it returns a new array containing the numbers
from the original array in sorted order. In the code for the main mergeSort() method (Figure
9–19), notice that the return type is int[].

Suppose we have a variable numbers that currently refers to some array of ints. If we want it to
refer to a sorted version of that array, we have to invoke this method as:

numbers = mergeSort(numbers);

If we merely

mergeSort(numbers);

then numbers will not change;  the sorted array is returned, but it hasn’t been saved anywhere.

The method mergeSort() uses a recursive helper method (Figure 9–20). The arguments
bottom and top indicate the region of the array to be sorted.

1 /**
2  * Return an array containing the numbers from data, in order from
3  * smallest to largest.
4  */
5 public static int[] mergeSort(int[] data) {
6   return mergeSortHelper(data, 0, data.length - 1);
7 }

Figure 9–19: The mergeSort() method returns a new array, rather than modifying
data.

1 /**
2  * Return an array containing the numbers in data between indices
3  * bottom and top, inclusive, in order from smallest to largest.
4  */
5 protected static int[] mergeSortHelper(int[] data, int bottom, 
6 int top) {
7   if (bottom == top) {
8 return new int[] { data[bottom] };
9  } else {

Figure 9–20: The recursive helper method mergeSortHelper(). (Part 1 of 2)
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This code captures the algorithm with remarkable simplicity. The base case returns an array con-
taining a single number. The recursive case merges the results of two recursive calls, each deal-
ing with half of the region currently being sorted.

One more helper method, merge(), is needed. The job of this method is to combine two sorted
arrays into one longer, sorted array (Figure 9–21).

The merge() method (Figure 9–22) is not recursive, but is longer than either mergeSort() or
mergeSortHelper(). It is not as complicated as it appears. The main loop on lines 8–16 fills
up the array result by repeatedly taking the smallest element from the beginning of a or b. The
indices i and j are indices into these arrays, telling where the next available element is. (This is
the same trick we used with ArrayLists, but with the “not in use” portion at the left end of the
array.)  The complicated test on line 9 deals with the cases in which we’ve reached the end of
one of the arrays. If array b is empty, we have to take the next element from a, and vice versa.

10 int midpoint = (top + bottom) / 2;
11     return merge(mergeSortHelper(data, bottom, midpoint),
12                  mergeSortHelper(data, midpoint + 1, top));
13 }
14 }

Figure 9–21: The merging process combines two short sorted arrays into a longer
one. At each step, the smallest element of either array is added to the end of the
output array.

Figure 9–20: The recursive helper method mergeSortHelper(). (Part 2 of 2)
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Analysis of Merge Sort

Merge sort is more complicated than insertion sort. Is it worth the effort?

An invocation of merge() takes time linear in the total length of the resulting array. (The main
loop always runs exactly n times.)  The recurrence for mergeSortHelper(), assuming n is a
power of 2, is:

The solution is not obvious, so we expand a recurrence tree (Figure 9–23). It is clear that each
level of the tree adds up to n. We need 1 + log2 n levels before we can convert the n copies of
T(1) at the bottom into ones.

This gives a total running time of:

This is a strictly lower order than the quadratic running time of insertion sort, so merge sort is
faster for sorting large arrays.

1 /**
2  * Combine the two sorted arrays a and b into one sorted array.
3  */
4 protected static int[] merge(int[] a, int[] b) {
5  int[] result = new int[a.length + b.length];
6   int i = 0;
7   int j = 0;
8   for (int k = 0; k < result.length; k++) {
9     if ((j == b.length) || ((i < a.length) && (a[i] <= b[j]))) {

10       result[k] = a[i];
11       i++;
12     } else {
13       result[k] = b[j];
14       j++;
15     }
16   }
17   return result;
18 }

Figure 9–22: Once two arrays are sorted, this method merges them together.
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Exercises

9.9 Explain the three arguments passed to mergeSortHelper() in line 6 of Figure 9–19.

9.10 Write a mergeSort() method for the SortableArrayList class from Section 8.4. Your
method should invoke some kind of mergeSortHelper() to get a new, sorted list, but
it should not simply return this result. Instead, it should copy the elements in this new
list back into the original SortableArrayList. How does this affect the running time of
mergeSort()?

9.11 Is the analysis of merge sort for the best, worst, or average case?  Explain.

9.12 Write a recurrence for the total size of all the arrays created during an invocation of
mergeSortHelper(). What is the solution to this recurrence?

9.4 Quicksort

Quicksort (by convention, the name is all one word, capitalized) is another divide-and-conquer
sorting algorithm. In merge sort, the dividing was trivial. We simply took the left and right
halves of the region being sorted. All of the hard work was done in recombining the sorted
pieces by merging. In Quicksort, the hard work is in the dividing and the recombining is trivial.

Figure 9–23: As the recursion tree for merge sort is expanded, each level adds up
to n steps. The total number of levels is 1 + log2 n, so the entire tree adds up to
n(1 + log2 n).
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Here’s the plan:

1. If there are one or fewer numbers to sort, do nothing.

2. Otherwise, partition the region into “small” and “large” numbers, moving the small 
numbers to the left end and the large numbers to the right. Recursively sort each sec-
tion. The entire array is now sorted.

The process is illustrated in Figure 9–24.

As in merge sort, the primary methods are very short and elegant (Figure 9–25).

Figure 9–24: Quicksort works by dividing the array into “small” and “large”
numbers—in this case, numbers less than or equal to 4 and numbers greater than 4.
Each section is then recursively sorted.

1 /** Arrange the numbers in data from smallest to largest. */
2 public static void quicksort(int[] data) {
3   quicksortHelper(data, 0, data.length - 1);
4 }
5
6 /**
7  * Arrange the numbers in data between indices bottom and top,
8  * inclusive, from smallest to largest.
9  */

10 protected static void quicksortHelper(int[] data, int bottom, 
11 int top) {
12 if (bottom < top) {
13     int midpoint = partition(data, bottom, top);
14     quicksortHelper(data, bottom, midpoint - 1);
15     quicksortHelper(data, midpoint + 1, top);
16   }
17 }

Figure 9–25: The methods quicksort() and quicksortHelper().

3 8 6 1 7 2 5 4

3 1 2 4 7 6 5 8

1 2 3 4 5 6 7 8

partition into large and small numbers

recursively sort each section



Section 9.4 Quicksort 241

All of the hard work is done in the helper method partition(). The partitioning algorithm
begins by choosing some array element as the pivot. We arbitrarily choose the last number in the
region being partitioned as the pivot (Figure 9–26). Numbers less than or equal to the pivot are
considered small, while numbers greater than the pivot are considered large. As it runs, the algo-
rithm maintains four regions:  those numbers known to be small, those known to be large, those
which haven’t been examined yet, and the pivot itself.

Working from left to right, each unexamined number is compared to the pivot. If it is large, the
region of large numbers is simply extended. Otherwise, the newly discovered small number is
swapped with the first known large number (if there are any) to keep all of the small numbers
together. This continues until there are no unexamined numbers left. Finally, the pivot is
swapped with the first large number (if any), so that it is between the small and large numbers.

The partition() method and its helper swap() are shown in Figure 9–27.

The number of variables in partition() make it appear complicated, but they are only there to
maintain the four regions. Specifically:

• data[bottom] through data[firstAfterSmall - 1] are known to be small.

• data[firstAfterSmall] through data[i - 1] are known to be large.

• data[i] through data[top - 1] have not yet been examined.

• The pivot is at data[top].

Figure 9–26: The partitioning algorithm chooses one number as the pivot. Four
regions are maintained:  small numbers, large numbers, unexamined numbers, and
the region containing the pivot. The algorithm’s last action is to swap the pivot into
place between the small and large numbers.
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The index firstAfterSmall is the index of the first element that is not known to be small.
When we swap element firstAfterSmall with element i on line 13, we are usually swap-
ping element i with the first known large number. If there are no known large numbers yet,
firstAfterSmall equals i, so we simply swap the element with itself; as desired, this has
no effect.

Similarly, on line 17, firstAfterSmall is the index of either the first large number or (if there
are no large numbers) the pivot. In either case, swapping the pivot into this position is correct.

Analysis of Quicksort

An invocation of partition() takes time linear in the length of the array being sorted,
because there are n passes through the loop. What about quicksortHelper()?  Partitioning a
region of size n as evenly as possible, we might end up with n/2 small numbers and n/2
large numbers. We ignore the floor and ceiling by assuming that n is an exact power of 2. Since

1 /**
2  * Choose one element of data in the region between bottom and top,
3  * inclusive, as the pivot. Arrange the numbers so that those less
4  * than or equal to the pivot are to the left of it and those 
5  * greater than the pivot are to the right of it. Return the final 
6 * position of the pivot.
7 */ 
8 protected static int partition(int[] data, int bottom, int top) {
9 int pivot = data[top];

10   int firstAfterSmall = bottom;
11   for (int i = bottom; i < top; i++) {
12     if (data[i] <= pivot) {
13       swap(data, firstAfterSmall, i);
14       firstAfterSmall++;
15     }
16   }
17   swap(data, firstAfterSmall, top);
18   return firstAfterSmall;
19 }
20
21 /** Swap the elements of data at indices i and j. */
22 protected static void swap(int[] data, int i, int j) {
23   int temp = data[i];
24   data[i] = data[j];
25   data[j] = temp;
26 }

Figure 9–27: The methods partition() and swap().
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one of the small numbers (the pivot) is not considered in either of the recursive invocations, this
gives the recurrence:

Since this is strictly less than the recurrence for merge sort, it is tempting to conclude that quick-
sort takes time in O(n log n). While this is true in the best case, partition() might not divide
the region evenly in half. In the worst case, there might be no large numbers. For example, if the
array is already sorted, the number we choose as the pivot is the largest element. There are then
n – 1 numbers to the left of the pivot and none to the right. In this case, the recurrence is:

The solution to this recurrence is:

Quicksort takes quadratic time in the worst case.

While the analysis is beyond the scope of this book, it turns out that Quicksort takes time in
Θ(n log n) in the average case. Quicksort is therefore better than insertion sort, but not as good
as merge sort.

Since it has a low constant factor associated with its running time, and operates in place, Quick-
sort is sometimes used instead of merge sort when n is not expected to be very large. There are
also a number of minor changes (see the Exercises) which can be made to the algorithm to
greatly decrease the likelihood of the worst-case running time.

The class java.util.Arrays has several overloaded versions of the static method sort(). The
ones for arrays of primitive types use an optimized version of Quicksort that makes the worst-
case behavior unlikely. The version for arrays of objects uses merge sort. The difference has to
do with the fact that two objects that are equals() may not be identical. For example, two
Cards with the same rank but different suits are equals(). If a sort keeps such elements in the
same order as in the original array, the sort is said to be stable. Merge sort is stable, but Quick-
sort is not. Since equal primitives must be absolutely identical, stability is not an issue when
sorting primitives.

Exercises

9.13 What is the order of the running time of Quicksort if data is originally in reverse
sorted order?  What if all the elements are identical?

9.14 Add a quicksort() method to the SortableArrayList class from Section 8.4.
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9.15 Modify quicksortHelper() so that, before invoking partition(), it swaps a ran-
dom element in the region being sorted with the last element. With this change, no par-
ticular input can consistently produce the worst-case behavior.

9.16 Suppose the variable numbers, of type List<Integer>, contains many numbers in
no particular order. How can it be sorted in one line of code? (Hint: See the
java.util.Collections class in the API.)

9.5 Avoiding Recursion

Any iterative program can be written recursively, and vice versa. Some algorithms, such as
merge sort and Quicksort, are naturally recursive—it would be very awkward to specify them
iteratively. Others, such as the methods for printing a List in reverse order, can reasonably be
done either iteratively or recursively.

All other things being equal, it is better to avoid recursion. The reason has to do with the call
stack, which was explained in Chapter 4. Every time we invoke a method, we have to push a
frame onto the call stack. This uses both time and memory, so we would prefer to avoid it. This
section shows how to convert a recursive method into an iterative one. It should be emphasized
that these are optimizations which may improve efficiency at the expense of program clarity;
this tradeoff is not always worthwhile.

The relationship between recursion and the call stack also explains the error message we get if
we fail to include a base case in a recursive method:

java.lang.StackOverflowError

This happens because we keep pushing new frames onto the call stack until we run out of
memory—in other words, the stack overflows. In contrast, an iterative program which fails to
include a proper stopping condition will simply run forever (Figure 9–28).

1 public static void iterateForever() {
2   while (true) {
3   }
4 }
5
6 public static void recurForever() {
7   recurForever();
8 }

Figure 9–28: The method iterateForever() never stops, but recurForever()
eventually causes a stack overflow.
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Tail Recursion
The conversion from recursion to iteration is easy for algorithms which are tail recursive. A tail-
recursive algorithm is one in which the recursive invocation is the very last thing we do. For
example, consider the recursive version of get() for our LinkedList class shown in Figure 9–29.

The recursive invocation on line 13 is the last thing we do in getHelper(). It would therefore
be somewhat wasteful to maintain a call frame for the current invocation, which has no work left
to do. Some languages, such as Scheme, automatically take advantage of this fact when pre-
sented with a tail-recursive program. Java does not, so we’ll have to handle it ourselves.

To convert this into an iterative algorithm, we don’t recur with new arguments. Instead, we sim-
ply change the values of the existing arguments and go back to the beginning (Figure 9–30).

1 public Object get(int index) {
2   return getHelper(index, front);
3 }
4
5 /**
6  * Return the item stored in the indexth Node of the chain
7  * starting at node.
8  */
9 public E getHelper(int index, ListNode <E> node) {

10   if (index == 0) {
11     return node.getItem();
12   } else {
13     return getHelper(index - 1, node.getNext());
14   }
15 }

Figure 9–29: The method getHelper() is tail recursive.

1 /**
2  * Return the item stored in the indexth Node of the chain
3  * starting at node.
4  */
5 public E getHelper(int index, ListNode <E> node) {
6   while (true) {
7     if (index == 0) {
8       return node.getItem();
9     } else {

10       index--;
11       node = node.getNext();
12     }
13   }
14 }

Figure 9–30: Instead of recurring, this iterative version of getHelper() changes the
values of the arguments index and node and returns to the beginning of the method.
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This behaves exactly like the recursive version, but it does not cause the call stack to grow. Of
course, we could clean it up further, getting rid of the helper method and using the loop test to
check whether index is zero (Figure 9–31).

When first learning about recursion, many students develop the misconception that a recursive
invocation simply means, “Change the arguments and go back to the beginning of the method.”
This is true for tail-recursive algorithms, but most interesting recursive algorithms are not tail
recursive.

If a recursive algorithm is not tail recursive, the only way to convert it into iterative form may be
to manage our own version of the call stack. This is complicated and, since it does not eliminate
stack manipulation, rarely worth the effort. As we shall see momentarily, however, certain non-
tail-recursive algorithms can be made far more efficient by converting them into iterative form.

Dynamic Programming
In the thirteenth century, Leonardo Fibonacci was challenged to solve the following problem:

Begin with a pair of newborn rabbits, one male and one female. Beginning in its second month
of life, each pair produces another pair every month. Assuming the rabbits never die, how many
pairs will there be after n months?

The answer involves recursive thinking. In months 0 and 1, there is only one pair of rabbits. This
is the base case. After that, the number of pairs each month is the sum of the number of pairs
present last month (who are still alive) and the number of pairs present two months ago (who are
now old enough to produce another pair). We can express this as a recurrence:

The beginning of the Fibonacci sequence is shown in Figure 9–32. This sequence appears in
many contexts throughout science and mathematics.

1 public E get(int index) {
2   ListNode <E> node = front;
3   while (index > 0) {
4     index--;
5     node = node.getNext();
6   }
7   return node.getItem();
8 }

Figure 9–31: A cleaner iterative version of get() doesn’t need the helper method.

n 0 1 2 3 4 5 6 7 8 9 10

F (n) 1 1 2 3 5 8 13 21 34 55 89

Figure 9–32: Beginning of the Fibonacci sequence.
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A method for computing F(n) falls naturally out of the recurrence (Figure 9–33).

This method works, but it is woefully inefficient. Its running time is given by the recurrence:

Since T(n) ≥ F(n) in both the base case and the recursive case, we conclude that T(n) ∈ Ω(F(n)).
While the proof is beyond the scope of this book, it is known that F(n) grows exponentially. Spe-
cifically, F(n) ∈ Θ(φn), where φ (the lower-case Greek letter phi) is the golden ratio, roughly
1.618.

Our method is not tail recursive. After returning from the first recursive invocation, we have two
more things to do:  another recursive invocation and an addition. We cannot just change the
value of n and go back to the beginning of the method. There is, however, another approach.

Notice that fibo() does a lot of redundant work. For example, in the course of computing
fibo(5), we have to compute fibo(3) twice (Figure 9–34).

1 /** Return the nth Fibonacci number. */
2 public static int fibo(int n) {
3   if (n < 2) {
4     return 1;
5   } else {
6     return fibo(n - 1) + fibo(n - 2);
7   }
8 }

Figure 9–33: Natural recursive algorithm for computing F (n).

Figure 9–34: Invoking fibo(5) recursively invokes fibo(4) and fibo(3), and so
on. This is redundant, because fibo(3) is computed twice.
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To avoid this redundant work, we can maintain a table of previously computed values. As we
compute F(n) for each value of n, we can look up the value for any smaller n (Figure 9–35). This
technique is called dynamic programming.

This method takes time linear in n—a vast improvement!

Dynamic programming is applicable only to algorithms that do redundant work. Neither merge
sort nor Quicksort falls into this category.

Exercises

9.17 Modify the hanoi() method (Figure 9–10) so that it returns a String rather than print-
ing. Convert the resulting method into iterative form using dynamic programming.

9.18 The method quicksortHelper() (Figure 9–25) is not tail recursive, but the second
recursive invocation is the last thing we do. Modify the algorithm to eliminate this
recursion, leaving the other recursive invocation intact.

9.19 A StackOverflowError is similar to an Exception. Experiment to find out whether you
can throw a StackOverflowError. Can you catch one?

Summary

A recursive algorithm is one which invokes itself. To solve a problem recursively, we define a
simple base case and a recursive case. In the recursive case, we solve the problem in terms of
subproblems which are closer to the base case.

Recursive algorithms are analyzed using recurrences. To solve a recurrence, we generally
expand it into a recursion tree, then determine the number of steps at each level and the number
of levels. We plug our solution back into the recurrence to verify that it is correct.

1 /** Return the nth Fibonacci number. */
2 public static int fibo(int n) {
3   int[] f = new int[n + 1];
4   f[0] = 1;
5   f[1] = 1;
6   for (int i = 2; i <= n; i++) {
7     f[i] = f[i - 1] + f[i - 2];
8   }
9   return f[n];

10 }

Figure 9–35: The dynamic programming version of fibo() stores previously-
computed values in the array f to avoid redundancy.
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Two useful recursive algorithms are merge sort and Quicksort. Both of these are divide-and-con-
quer algorithms which divide the data into parts, recursively sort the parts, and then recombine
the solutions.

In merge sort, the hard work is in the recombining. Merge sort takes time in Θ(n log n). It
requires the allocation of additional arrays, so it is not an in-place sort.

In Quicksort, the hard work is in the dividing, partitioning the array into small and large num-
bers. While Quicksort takes time in Θ(n log n) on average, its worst-case running time is qua-
dratic. The worst case occurs if the array was already sorted, but simple improvements can make
the worst case unlikely. Because Quicksort is an in-place sort with a low constant factor in its
running time, some programmers nonetheless prefer it to merge sort.

Recursion allows for the design of powerful, elegant algorithms, but it uses up time and space
for the call stack. While it is not always possible, efficiency can sometimes be improved by elim-
inating recursion. A tail-recursive algorithm, in which the recursive invocation is the last step,
can easily be converted into a loop. If the algorithm is only returning a value (as opposed to
modifying an existing data structure), redundant computation can be avoided by storing the
results of previous invocations in a table. This latter technique is called dynamic programming.

Vocabulary

base case. In a recursive algorithm, the simple case that does not require a recusive call.

divide and conquer. Of an algorithm, working by dividing the data into pieces, recursively
solving the pieces, and recombining the solutions. Merge sort and Quicksort are both divide-
and-conquer algorithms.

dynamic programming. Technique for improving the efficiency of recursive algorithms that do
redundant work. Solutions to subproblems are stored so that they can be looked up rather than
recomputed.

helper method. A method, usually protected, used in a recursive algorithm. Often the recursive
helper method requires some extra arguments specifying the subproblem in question.

in place. Of a sort, moving elements around inside the original array rather than creating new
data structures.

iterative. Of an algorithm, using loops instead of recursion.

merge sort. Sort that divides the data into two halves, recursively sorts each half, and then
merges the two sorted halves.

pivot. In partitioning Quicksort, the element used to divide the data. Elements less than or equal
to the pivot are considered small. Elements greater than the pivot are considered large.

Quicksort. Sort that partitions the data into small and large elements and then recursively sorts
each half.
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recurrence. Equation defining a function in terms of itself. Used to analyze the running time of
a recursive algorithm.

recursion tree. Technique for solving recurrences by repeatedly replacing the function with the
components of its recursive definition.

recursive. Of an algorithm, invoking itself on simpler subproblems.

solve. For a recurrence, reduce to a nonrecursive form.

stable. Of a sort, leaving equals() elements in the same order they were in originally.

tail recursive. Of a recursive algorithm, having the recursive call be the very last step before
returning.

Problems

9.20 Illustrate the history of the call stack, as in Section 4.2, for the invocation:

hanoi(3, 1, 3, 2)

9.21 Modify fibo() (Figure 9–33) so that it prints out a message at the beginning and end
of each invocation. These messages show the history of the call stack. For example, if
fibo(4) is invoked, the text in Figure 9–36 should be printed. (Hint:  For the indenta-
tion, pass a String of spaces as an argument. On a recursive invocation, pass a slightly
longer String.)

1 fibo(4)
2   fibo(3)
3     fibo(2)
4       fibo(1)
5       1
6       fibo(0)
7       1
8     2
9     fibo(1)

10     1
11   3
12   fibo(2)
13     fibo(1)
14     1
15     fibo(0)
16     1
17   2
18 5

Figure 9–36: Desired output for Problem 9.21, showing the history of the call stack.
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9.22 Determine whether insertion sort (Section 8.3) is stable.

9.23 Merge sort can be modified to use less memory. Instead of allocating new arrays with
every recursive invocation, a single new array is allocated when the sorting begins. The
two halves of data are copied into regions of this new array. Since the numbers in
data are no longer needed, data can serve as the “working space” when these halves
are themselves subdivided. This continues, back and forth, until the base case is
reached (Figure 9–37).

Implement this improved version of merge sort. Compare the space used by this algo-
rithm with the result of Exercise 9.12.

9.24 Write a mergeSort() method for the SortableLinkedList class from Section 8.5. As in
Exercise 9.10, the original SortableLinkedList should be sorted when you are done.
Your method must take time in Θ(n log n). (Hint:  Look at the constructor from GoFish
(Figure 5–39) for an idea about dividing any list into two even halves. Make sure you
deal with the case where the list being divided is of odd length.)

9.25 Write a quicksort() method for the SortableLinkedList class from Section 8.5. Your
method must take time in Θ(n log n) on average and in Θ(n2) in the worst case. (Hint:
Keep track of nodes rather than indices. When you need to swap two values, use get-
Item() and setItem() to change the contents of the nodes rather than moving the
nodes. Think about how you might specify a region of a linked list.)

Projects

9.26 Simpler algorithms often have smaller constant factors associated with their running-
time than more sophisticated algorithms. For sufficiently small arrays, for example,
insertion sort may actually be faster than Quicksort. Modify the Quicksort algorithm so
that, if the region to be sorted is below a certain length, insertion sort is used instead.
Using the timing techniques from Chapter 7, find an appropriate length at which to
make this change.

Figure 9–37: In the normal merge sort algorithm, each recursive invocation
allocates new arrays (left). The version described in Problem 9.23 uses only two
arrays, each one serving as working space for the other (right).
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9.27 Modify the recursive fibo() method (Figure 9–33) to simulate the call stack manu-
ally. Begin by rearranging the method so that only one step or recursive invocation
occurs on each line. Define a class Frame which simulates a call frame. Finally, modify
the fibo() method so that it begins by pushing a single Frame onto a fresh stack. The
method then repeatedly pops the stack and handles the resulting Frame. This may result
in pushing other Frames onto the stack. This loop continues until the stack is empty—
that is, until there is no more work to do.

This project should leave you with a page or two of code—and a greater appreciation of
recursion!



IV
Trees and Sets
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10
Trees

All of the data structures we have seen so far, such as arrays and linked lists, are linear. In a lin-
ear structure, there is a first item and a last item. Every item (except the last) has a successor and
every item (except the first) has a predecessor.

This chapter introduces trees, which are more general structures for representing branching or
hierarchical data. For example, biological classification diagrams, many organizational charts in
businesses, and sports playoff brackets are trees. We have seen a few trees already in this book,
including class inheritance diagrams like Figure 3–10 and recursion trees like Figure 9–16.

We begin with a discussion of the simplest kind of trees, binary trees. Using the game of Ques-
tions as a running example, Section 10.1 introduces tree terminology and discusses the imple-
mentation of binary trees. The issue of traversing trees is addressed in Section 10.2. More
general trees are covered in Section 10.3, where we use trees to design an intelligent Tic Tac Toe
player.

10.1 Binary Trees

There is a considerable amount of terminology regarding trees. We will introduce it in the con-
text of the game of Questions (Figure 10–1).
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In our implementation, several games are played. The program loses at first, but increases its
knowledge after each game. A transcript is given in Figure 10–2.

Questions
Players: 2, the knower and the guesser.

Object: The knower thinks of something and the guesser attempts to determine what it is.

Play: The knower thinks of a person, place, or thing. The guesser asks yes-or-no questions
of the knower, who must answer truthfully. Play continues until the guesser wins or gives
up.

The variation in which the number of questions is limited (usually to 20) is left as a problem.

Figure 10–1: The game of Questions. In our implementation, the computer is the
guesser.

1 Welcome to Questions.
2
3 Is it ... a giraffe? no
4 I give up.
5 What is it? a helicopter
6 I need a question to distinguish that from a giraffe.
7 The answer for a helicopter should be yes.
8 Enter the question: Can it fly?
9 Play again (yes or no)? yes

10
11 Can it fly? no
12 Is it ... a giraffe? no
13 I give up.
14 What is it? an apple pie
15 I need a question to distinguish that from a giraffe.
16 The answer for an apple pie should be yes.
17 Enter the question: Have you eaten one?
18 Play again (yes or no)? yes
19
20 Can it fly? no
21 Have you eaten one? yes
22 Is it ... an apple pie? yes
23 I win!

Figure 10–2: Our Questions program gets smarter with every game. We assume
that the vast majority of readers have eaten an apple pie, but not a giraffe.
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After a few hundred games, the program gets pretty good at playing Questions. The program’s
knowledge is stored in a tree (Figure 10–3).

Tree Terminology
The tree in Figure 10–3 is a binary tree. Formally, a binary tree is either:

1. empty, or

2. a node with a left subtree and a right subtree. Each of these subtrees is itself a binary tree.

Each rounded rectangle in Figure 10–3 is a node. The entire tree consists of the node labeled
“Can it fly?” and two subtrees. The left subtree consists of (the node labeled) “a helicopter,” an
empty left subtree, and an empty right subtree.

The nodes directly below a node are its children. For example, the two children of “Have you
eaten one?” are “an apple pie” and “a giraffe.” The most important feature distinguishing binary
trees from more general trees (Section 10.3) is that, in a binary tree, no node can have more than
two children.

Other family relations follow in the way we would expect. For example, “Can it fly?” is the par-
ent of “a helicopter.” Every node in a binary tree has exactly one parent, except for the one at the
top, which has no parent. Nodes with the same parent are siblings.

The node at the top of a tree is called the root. While a botanical tree has its root at the bottom, a
computer science tree has its root at the top. Nodes with no children are called leaves. Nodes that
are not leaves are internal nodes.

The depth of a node is the number of lines (not nodes!) along the path back to the root. Thus, the
root is at depth 0, its children are at depth 1, and so on. A level of the tree is the set of nodes at a
particular depth. The height of a tree is the depth of the deepest node.

Let’s review these terms using the binary tree in Figure 10–4. This tree has height 4, because
node J is at depth 4. Node A is the root. The leaves are K, L, F, J, and D. The internal nodes are
A, G, H, E, B, I, and C. More information about some of the nodes is given in Figure 10–5.

Figure 10–3: The program’s binary decision tree at the end of the session in
Figure 10–2.

Can it fly?

a helicopter Have you eaten one?

an apple pie a giraffe

yes no

yes no
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A node’s descendants are itself, its children, their children, and so on. Thus, every node in a tree
is a descendant of the root. In Figure 10–4, the descendants of H are H, B, I, F, C, D, and J. A
node’s proper descendants are all of its descendants except itself.

A node’s ancestors are itself, its parent, its grandparent, and so on. In Figure 10–4, the ancestors
of L are L, E, G, and A. A node’s proper ancestors are all of its ancestors except itself.

The number of nodes in a binary tree depends on the height of the tree and on how “skinny” or
“bushy” the tree is (Figure 10–6). At one extreme is a linear tree, where every internal node has
only one child. At the other extreme is a perfect binary tree, where all of the leaves are at the
same depth and every internal node has exactly two children. (Some texts use the word ‘com-
plete’ rather than ‘perfect.’)

Figure 10–4: A binary tree with the nodes divided into levels.

Node Parent Children Sibling Depth

A — G, H — 0

B H F I 2

C I J D 3

D I — C 3

E G K, L — 2

Figure 10–5: Information about some of the nodes in Figure 10–4.
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level 3

level 4
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The number of nodes in a binary tree of height h can be anywhere between h + 1 (for a linear
tree) and

(for a perfect binary tree).

Conversely, a binary tree with n nodes has height between log2(n + 1) – 1 (for a perfect binary
tree) and n – 1 (for a linear tree).

These precise formulae are easy to derive from a few examples. The most important thing to
remember is that h ∈ Θ(log n) for perfect binary trees.

Implementing Binary Trees

The recursive definition of a binary tree on page 257 is very similar to the following definition of
a list. A list is either

1. empty, or

2. an item followed by a list.

This definition was implemented in the ListNode class in Section 6.1. Recursively defined struc-
tures often lend themselves to linked implementations. We define a class BinaryNode that is
similar to ListNode. The difference is that, instead of having a single field next referring to the
rest of the list, we have two fields left and right referring to the left and right subtrees.

Since we might have trees of different kinds of things, we again create a generic class. The
Questions game needs a tree of Strings. Figure 10–7 shows the linked representation of the deci-
sion tree in Figure 10–3.

Figure 10–6: A linear tree (left) and a perfect binary tree (right). Both of these trees
are of height 3.

2d

d=0

h
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The code for the BinaryNode class is given in Figure 10–8.

Figure 10–7: UML instance diagram showing the linked representation of the binary
tree in Figure 10–3.

1 /** Node in a binary tree. */
2 public class BinaryNode<E> {
3
4   /** The item associated with this node. */
5   private E item;
6
7   /** The node at the root of the left subtree. */
8   private BinaryNode<E> left;
9

10   /** The node at the root of the right subtree. */
11   private BinaryNode<E> right;
12
13   /** Put item in a leaf node. */
14   public BinaryNode(E item) {
15     this.item = item;
16     // left and right are set to null by default
17   }
18

Figure 10–8: The BinaryNode class. More methods will be added in Section 10.2.
(Part 1 of 2)

BinaryNode

item = "Have you eaten one?"

BinaryNode

item = "Can it fly?"

BinaryNode

item = "a helicopter"

BinaryNode

item = "an apple pie"

BinaryNode

item = "a giraffe"

String

String String

String String

left right
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19  /** Put item in a node with the specified subtrees. */
20 public BinaryNode(E item, 
21 BinaryNode<E> left,
22 BinaryNode<E> right) {
23     this.item = item;
24     this.left = left;
25     this.right = right;
26   }
27
28   /** Return the item associated with this node. */
29   public E getItem() {
30     return item;
31   }
32
33   /** Return the root of the left subtree. */
34   public BinaryNode<E> getLeft() {
35     return left;
36   }
37
38   /** Return the root of the right subtree. */
39   public BinaryNode<E> getRight() {
40     return right;
41   }
42
43   /** Return true if this is a leaf. */
44   public boolean isLeaf() {
45     return (left == null) && (right == null);
46   }
47
48   /** Replace the item associated with this node. */
49   public void setItem(E item) {
50     this.item = item;
51   }
52
53 /** Replace the left subtree with the one rooted at left. */
54   public void setLeft(BinaryNode<E> left) {
55     this.left = left;
56   }
57
58   /** Replace the right subtree with the one rooted at right. */
59   public void setRight(BinaryNode<E> right) {
60     this.right = right;
61   }
62
63 }

Figure 10–8: The BinaryNode class. More methods will be added in Section 10.2.
(Part 2 of 2)
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With this structure in hand, we can now write the Questions game. An instance of the Ques-
tions class contains a BinaryNode (the root), which may refer in turn to additional BinaryNodes
(Figure 10–9).

The easy parts of the program are shown in Figure 10–10.

Figure 10–9: An instance of Questions contains an instance of BinaryNode, which
refers to its children, and so on.

1 import java.util.Scanner;
2
3 /** The game of Questions. */
4 public class Questions {
5
6   /** For reading from the console. */
7   public static final Scanner INPUT = new Scanner(System.in);
8
9   /** Root of the decision tree. */

10   private BinaryNode<String> root;
11
12   /**
13    * Initially, the program guesses that the player is thinking of
14    * a giraffe.
15    */
16   public Questions() {
17     root = new BinaryNode<String>("a giraffe");
18   }
19
20   /** Create and repeatedly play the game. */
21   public static void main(String[] args) {
22     Questions game = new Questions();
23     System.out.println("Welcome to Questions.");
24     do {
25       System.out.println();
26       game.play();
27       System.out.print("Play again (yes or no)? ");
28     } while (INPUT.nextLine().equals("yes"));
29   }
30
31 }

Figure 10–10: Easy parts of the Questions program.

Questions BinaryNode

String1

0..2
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Initially, the program’s decision tree consists of a single node, containing the String "a
giraffe". The tree expands through learning—more on that in the moment. For now, let’s
imagine that the tree is more elaborate, as in Figure 10–3.

Every internal node in the tree contains a question and every leaf contains a guess as to what the
knower has in mind. The play() method starts at the root of the tree, asking the question (or
making the guess) stored there. For now, suppose it’s a question. If the player answers “yes,” the
program repeats the process on the left subtree. Otherwise, it goes to the right.

This continues until the program hits a leaf, when it makes a guess. If the guess is correct, the
program has won. Otherwise, the program has lost. The play() method is shown in
Figure 10–11.

When the program loses, it learns from experience. This is handled by the learn() method,
which replaces all three fields in the leaf node that was an incorrect guess. The field item is
replaced by the new question, left is replaced by a new leaf node containing the correct
answer, and right is replaced by a new leaf node containing the incorrect guess. No other
nodes in the tree are affected. This process is illustrated in Figure 10–12 and the code is in
Figure 10–13.

1 /** Play until the program wins or gives up. */
2 public void play() {
3   BinaryNode<String> node = root;
4   while (!(node.isLeaf())) {
5     System.out.print(node.getItem() + " ");
6     if (INPUT.nextLine().equals("yes")) {
7       node = node.getLeft();
8     } else {
9       node = node.getRight();

10     }
11   }
12   System.out.print("Is it ... " + node.getItem() + "? ");
13   if (INPUT.nextLine().equals("yes")) {
14     System.out.println("I win!");
15   } else {
16     System.out.println("I give up.");
17     learn(node);
18   }
19 }

Figure 10–11: The play() method.
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Figure 10–12: A node before (top) and after (bottom) learning. This corresponds to
lines 13–15 in Figure 10–13.

1 /**
2  * Node is a leaf corresponding to an incorrect guess.  Gather
3  * information from the user and add two children to node.
4  */
5 protected void learn(BinaryNode<String> node) {
6   System.out.print("What is it? ");
7   String correct = INPUT.nextLine();
8   System.out.println("I need a question to distinguish that from "
9                      + node.getItem() + ".");

10   System.out.println("The answer for " + correct 
11 + " should be yes.");
12   System.out.print("Enter the question: ");
13   String question = INPUT.nextLine();
14   node.setLeft(new BinaryNode<String>(correct));
15   node.setRight(new BinaryNode<String>(node.getItem()));
16   node.setItem(question);
17 }

Figure 10–13: The learn() method adds two children to a leaf.
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item � "a giraffe"

String
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BinaryNode
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Exercises
10.1 Is the root of a (nonempty) binary tree always, sometimes, or never a leaf? Explain.

10.2 What are the minimum and maximum number of siblings a node in a binary tree can
have? What if the node is the root?

10.3 A ternary tree is just like a binary tree, but each node has three subtrees. What are the
maximum and minimum number of nodes in a ternary tree of height h?

10.4 It would be nice to have a method isRoot() for the BinaryNode class which returns
true if the node is the root of its tree. Explain why it is not possible to write such a
method using the current representation. How might the BinaryNode class be modified
to allow such a method to be written?

10.5 Can an internal node in the Questions program’s decision tree have only one child? If
so, is it the left or right child? If not, why not?

10.2 Tree Traversal

In Section 5.4, we discussed traversing linear structures—that is, visiting each item in turn. We
have traversed linear structures using Iterators and in methods such as toString().

A linear structure is normally traversed from front to back. Occasionally it is useful to traverse
one from back to front. With trees, the order of traversal is less obvious. The root should proba-
bly be either first or last, but what about the other nodes?

It turns out that there are four meaningful orders in which to traverse a binary tree: preorder,
inorder, postorder, and level order. For reference, the four traversals of the tree in Figure 10–4
are shown in Figure 10–14.

The first three orders have very elegant algorithms based on the recursive structure of a tree.
Indeed, these algorithms are generally given as definitions of the traversal orders. For example,

Traversal Order Order in which Nodes are Visited

Preorder AGEKLHBFICJD

Inorder GKELAFBHCJID

Postorder KLEGFBJCDIHA

Level order AGHEBIKLFCDJ

Figure 10–14: Traversing the binary tree in Figure 10–4.
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the algorithm for preorder traversal is:

1. Visit the root.

2. Recursively traverse the left subtree preorder.

3. Recursively traverse the right subtree preorder.

This algorithm is easily translated into a method for the BinaryNode class (Figure 10–15). Note
that the base case is handled in an unusual way here. Rather than checking for the base case (an
empty tree) at the beginning of the method, we check before each recursive invocation. This is
necessary because the empty tree is represented by null, and we can’t invoke methods on null.

The inorder traversal algorithm is almost identical, except that we traverse the left subtree before
visiting the root (Figure 10–16).

1 /**
2  * Return a String representation of the tree rooted at this node,
3  * traversed preorder.
4  */
5 public String toStringPreorder() {
6   String result = "";
7   result += item;
8   if (left != null) {
9     result += left.toStringPreorder();

10   }
11   if (right != null) {
12     result += right.toStringPreorder();
13   }
14   return result;
15 }

Figure 10–15: This method for the BinaryNode class traverses a tree preorder.

1 /**
2  * Return a String representation of the tree rooted at this node,
3  * traversed inorder.
4  */
5 public String toStringInorder() {
6   String result = "";
7   if (left != null) {
8     result += left.toStringInorder();
9   }

Figure 10–16: The only difference between preorder traversal (Figure 10–15) and
inorder traversal is the order of lines 7–13. (Part 1 of 2)
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Visiting the root after both subtrees results in a postorder traversal (Figure 10–17).

As we mentioned in Section 9.5, any recursive algorithm can be converted into an iterative one
by explicitly simulating the call stack. While this is generally not worth the effort, it is instruc-
tive to look at an iterative version of toStringPreorder(). It turns out that, for this particular
algorithm, we don’t have to store complete call frames on the stack—just the root of each sub-
tree to be traversed (Figure 10–18).

10  result += item;
11   if (right != null) {
12     result += right.toStringInorder();
13   }
14   return result;
15 }

1 /**
2  * Return a String representation of the tree rooted at this node,
3  * traversed postorder.
4  */
5 public String toStringPostorder() {
6   String result = "";
7   if (left != null) {
8     result += left.toStringPostorder();
9   }

10   if (right != null) {
11     result += right.toStringPostorder();
12   }
13   result += item;
14   return result;
15 }

Figure 10–17: In a postorder traversal, the root is visited after both subtrees.

1 /**
2  * Return a String representation of the tree rooted at this node,
3  * traversed preorder.
4  */
5 public String toStringPreorder() {
6   String result = "";
7 Stack<BinaryNode<E>> stack = new ArrayStack<BinaryNode<E>>();
8 stack.push(this);

Figure 10–18: An iterative version of toStringPreorder() using an explicit stack. It
is necessary to push the right child before the left child because of the last-in, first-out
policy of a stack. (Part 1 of 2)

Figure 10–16: The only difference between preorder traversal (Figure 10–15) and
inorder traversal is the order of lines 7–13. (Part 2 of 2)
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The stack holds the roots of the subtrees we have yet to traverse. In the example of Figure 10–4,
while we are traversing the subtree rooted at G, G’s sibling H is at the bottom of the stack, wait-
ing its turn. As we find proper descendants of G, they are pushed onto the top of the stack, so
they are handled before H.

A curious thing happens if we replace the stack with a queue. Now G’s proper descendants are
handled after H. If we add the left child to the queue before the right child, we get the algorithm
for the level order traversal (Figure 10–19). The root is visited first, then all of the nodes at depth 1,
then depth 2, and so on.

9  while (!(stack.isEmpty())) {
10     BinaryNode<E> node = stack.pop();
11     result += node.item;
12     if (node.right != null) {
13       stack.push(node.right);
14     }
15     if (node.left != null) {
16       stack.push(node.left);
17     }
18   }
19   return result;
20 }

1 /**
2  * Return a String representation of the tree rooted at this node,
3  * traversed level order.
4  */
5 public String toStringLevelOrder() {
6   String result = "";
7   Queue<BinaryNode<E>> q = new ArrayQueue<BinaryNode<E>>();
8   q.add(this);
9   while (!(q.isEmpty())) {

10     BinaryNode<E> node = q.remove();
11     result += node.item;
12     if (node.left != null) {
13       q.add(node.left);
14     }
15     if (node.right != null) {
16       q.add(node.right);
17     }
18   }
19   return result;
20 }

Figure 10–19: Changing the stack to a queue and swapping the order of child
insertion results in the algorithm for level order traversal.

Figure 10–18: An iterative version of toStringPreorder() using an explicit stack. It
is necessary to push the right child before the left child because of the last-in, first-out
policy of a stack. (Part 2 of 2)
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Level order traversal is sometimes called breadth-first because it traverses all the way across
each level before going deeper (Figure 10–20). The other traversals are called depth-first
because they go all the way down to a leaf before “backing up” and trying a different path.

Any traversal takes time in Θ(n) because it does a constant amount of work visiting each node. If
the order isn’t important and the tree is perfect or close to perfect, depth-first traversals are more
efficient. The issue is not time but space. A depth-first traversal uses space for the call stack. The
number of call frames is proportional to the height of the tree, which is in Θ(log n) in a perfect
tree. A breadth-first traversal, on the other hand, uses space for a queue. This can be as large as
an entire level of the tree, which is in Θ(n) in a perfect tree.

Exercises

10.6 In the preorder tree traversal, the base case is an empty tree. Would a leaf be a legiti-
mate base case? Explain.

Figure 10–20: A breadth-first traversal (top) visits every node in each level before
going on to the next level. A depth-first traversal (bottom) goes all the way down to a
leaf before “backing up” and traversing a different subtree.
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10.7 Is the order in which nodes are visited in a postorder traversal the reverse of the order
produced by a preorder traversal? Explain.

10.8 Does a depth-first or a breadth-first traversal use more memory when traversing a lin-
ear tree?

10.9 Project 4.20 defined infix and postfix notation. Draw a binary tree which produces
the infix expression 3 + 2 * 4 when traversed inorder and the postfix expression 3 2 4
* + when traversed postorder. What expression is produced if this tree is traversed
preorder?

10.3 General Trees

While binary trees are quite common in computer science, many trees are not binary trees. We
define a general tree recursively as a node and zero or more subtrees, which are themselves gen-
eral trees. General trees differ from binary trees in three ways:

• A node in a general tree may have more than two children.

• A node in a general tree has a (possibly empty) sequence of children, rather than a cer-
tain number of “slots” to fill. Among binary trees, there is a difference between a tree
with a left subtree but no right subtree and a tree with a right subtree but no left subtree.
No such distinction is made for general trees (Figure 10–21).

• General trees cannot be empty. This restriction is made to avoid having to distinguish
between a node with no subtrees and a node with several empty subtrees, which would
be drawn identically.

We have seen a number of general trees already. For example, inheritance diagrams showing the
relationships between classes, such as Figure 3–10, are general trees. Another general tree is
shown in Figure 10–22.

Figure 10–21: The two binary trees at left are considered different: one has an empty
right subtree, while the other has an empty left subtree. Among general trees like the
one at right, no such distinction is drawn.
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Representing General Trees
There are a couple of ways to represent general trees. The simplest is to represent each node as
an item plus a linear structure (a simple array or some kind of List) containing references to its
children (Figure 10–23). This is called the array of children or list of children representation.

A less intuitive but more space-efficient representation has each node keeping track of its first child
and its next sibling (Figure 10–24). This is called the first-child, next-sibling representation.

The code for each of these representations is left as a problem.

Example: An Intell igent Tic Tac Toe Player
Many important data structures involve trees, as we shall see in Chapters 11, 14, and 17. Trees
are also useful when discussing a variety of computer science concepts, such as inheritance and
recursion. We now examine one particular application of trees: writing a program to play the
game of Tic Tac Toe (Figure 10–25).

Figure 10–22: A general tree.

Figure 10–23: Array of children representation of the general tree in Figure 10–22.
TreeNode is a generic type, but the type parameters have been omitted here for clarity.
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As with Questions, this program has the computer playing against the user. This is an elemen-
tary exercise in artificial intelligence. For a game as simple as Tic Tac Toe, we can write a pro-
gram which never loses (although a good opponent can always force a tie). A transcript of the
program at work is shown in Figure 10–26.

Figure 10–24: First-child, next-sibling representation of the general tree in
Figure 10–22.

Tic Tac Toe (Noughts and Crosses)
Players: 2, X and O.

Object: To be the first player to get three of her marks in a row, horizontally, vertically, or
diagonally.

Board: The board is a 3 × 3 grid of squares. Each square is either vacant or contains an X
or an O. Initially, all squares are vacant.

Play: X moves first. On a turn, a player writes her mark in any vacant square.

Game End: The game ends when one player wins by getting three marks in a row or all
nine squares are filled (a tie).

Figure 10–25: The game of Tic Tac Toe is so simple that even a computer can play
it well. In our implementation, the computer plays as X, the user as O.
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The easy parts of the program, which deal with managing the board, are shown in Figure 10–27.

1 Welcome to Tic Tac Toe.
2
3 X..
4 ...
5 ...
6
7 Enter row: 0
8 Enter column: 2
9 X.O

10 X..
11 ...
12
13 Enter row: 2
14 Enter column: 0
15 X.O
16 XX.
17 O..
18
19 Enter row: 1
20 Enter column: 2
21 X.O
22 XXO
23 O.X
24
25 Game over.

Figure 10–26: The Tic Tac Toe program cannot be defeated.

1 import java.util.Scanner;
2
3 /** The game of Tic Tac Toe. */
4 public class TicTacToe {
5
6   /** For reading from the console. */
7   public static final Scanner INPUT = new Scanner(System.in);
8
9   /** Squares on the board, each of which is '.', 'X', or 'O'. */

10   private char[][] squares;
11
12   /** The board is initially empty. */
13   public TicTacToe() {
14     squares = new char[][] {{'.', '.', '.'},
15                             {'.', '.', '.'},
16 {'.', '.', '.'}};
17   }

Figure 10–27: Easy parts of the Tic Tac Toe program. (Part 1 of 2)
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The program also needs methods for determining when the game is over and who, if anyone,
won (Figure 10–28). The method score() has to check each of the eight possible victory lines
(three vertical, three horizontal, and two diagonal); this work is moved into the protected method
scoreLine() for clarity.

18
19 public String toString() {
20     String result = "";
21     for (int row = 0; row < 3; row++) {
22       for (int column = 0; column < 3; column++) {
23         result += squares[row][column];
24       }
25       result += "\n";
26     }
27     return result;
28   }
29
30   /** Create and play the game. */
31   public static void main(String[] args) {
32     TicTacToe game = new TicTacToe();
33     System.out.println("Welcome to Tic Tac Toe.\n");
34     game.play();
35     System.out.println(game);
36     System.out.println("Game over.");
37   }
38   
39 }

1 /** Return true if the game is over. */
2 public boolean gameOver() {
3   if (score() != 0) {
4     return true;
5   }
6   for (int row = 0; row < 3; row++) {
7     for (int column = 0; column < 3; column++) {
8       if (squares[row][column] == '.') {
9         return false;

10       }
11     }
12   }

Figure 10–28: Additional methods are needed to detect the end of the game and
the winner. (Part 1 of 2)

Figure 10–27: Easy parts of the Tic Tac Toe program. (Part 2 of 2)
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With those details out of the way, we are ready to tackle the hard part. How do we decide which
is the best move to make? This decision is easiest near the end of the game. We consider each
possible move for X, taking the one with the highest score. In Figure 10–29, one of the moves
leads to a win for X, so we should choose that one.

13  return true;
14 }
15
16 /** Return 1 if X has won, -1 if O has won, and 0 otherwise. */
17 public int score() {
18   int lineScore;
19   for (int i = 0; i < 3; i++) {
20     lineScore = scoreLine(squares[i][0],
21 squares[i][1],
22  squares[i][2]);
23     if (lineScore != 0) {
24       return lineScore;
25     }
26     lineScore = scoreLine(squares[0][i],
27 squares[1][i],
28 squares[2][i]);
29     if (lineScore != 0) {
30       return lineScore;
31     }
32   }
33   lineScore = scoreLine(squares[0][0], 
34 squares[1][1],
35 squares[2][2]);
36   if (lineScore != 0) {
37     return lineScore;
38   }
39   return scoreLine(squares[0][2], squares[1][1], squares[2][0]);
40 }
41
42 /**
43  * Return 1 if all three characters are 'X', -1 if they are all 'O',
44  * and 0 otherwise.
45  */
46 protected int scoreLine(char a, char b, char c) {
47   if ((a == 'X') && (b == 'X') && (c == 'X')) { return 1; }
48   if ((a == 'O') && (b == 'O') && (c == 'O')) { return -1; }
49   return 0;
50 }

Figure 10–28: Additional methods are needed to detect the end of the game and
the winner. (Part 2 of 2)
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This is the approach used by playBestMove(), which is invoked by play() (Figure 10–30).
This method works through each square on the board and, if the square is vacant, tries playing
there (line 32). The value of the resulting board position is determined by score() (line 33).
This value is then compared with the best move so far (lines 34–38). Before trying the next
option, it is necessary to undo the move that was just considered (line 39). Finally, after all
moves have been considered, the best move is made and left in place (line 43).

Figure 10–29: Three possible moves near the end of a game of Tic Tac Toe. X
chooses the move which maximizes the score.

1 /** Play one game. */
2 public void play() {
3   char player = 'X';
4   for (int move = 0; move < 9; move++) {
5     if (gameOver()) {
6       return;
7     }
8     if (player == 'X') {
9       playBestMove();

10       player = 'O';
11     } else {
12       System.out.println(this);
13       System.out.print("Enter row: ");
14       int row = INPUT.nextInt();
15       System.out.print("Enter column: ");
16       int column = INPUT.nextInt();
17       squares[row][column] = 'O';
18       player = 'X';
19     }
20   }
21 }
22

Figure 10–30: The play() method invokes playBestMove(). Line 33 will be
modified later to make the program smarter. (Part 1 of 2)

score: 0 score: 1 score: 0
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If it is not possible to win in a single move, we must consider how the opponent might reply
(Figure 10–31). The opponent, playing O, is trying to minimize the score. The value of each leaf
is determined by invoking score(). The value of an internal node is determined by taking
either the minimum (if the node represents a board with O to play) or the maximum (X to play)
of the node’s children. This approach to game playing is therefore called the minimax algorithm.
By considering all possible moves out to the end of the game, we can determine the best move.

We could build the game tree as a data structure, but this would be a waste of space. Once we
determine the value of a child, we no longer need the subtree rooted at that child. Thus, instead
of creating the subtree and then examining the value of child, we invoke a method which deter-
mines the value of the root by determining the value of its descendants. When the child’s value is
returned, all of the frames used in computing this value have been popped off the call stack. The
game tree therefore corresponds to a tree of method invocations, with one node per invocation.

We modify line 33 of Figure 10–30 to invoke a new method minimaxForO(), which deter-
mines the value of the current board position, given that it is O’s turn. The structure of mini-
maxForO() is almost identical to that of playBestMove(). The differences are:

• It returns the value of the board on which it is invoked, rather than making the best
move.

• It looks for the move leading to the minimum score, rather than the maximum.

• It invokes minimaxForX() instead of score().

23 /** Find the best move for X and play it on the board. */
24 protected void playBestMove() {
25   int score;
26   int bestScore = -2;
27   int bestRow = -1;
28   int bestColumn = -1;
29   for (int row = 0; row < 3; row++) {
30     for (int column = 0; column < 3; column++) {
31       if (squares[row][column] == '.') {
32         squares[row][column] = 'X';
33         score = score();
34         if (score > bestScore) {
35           bestScore = score;
36           bestRow = row;
37           bestColumn = column;
38         }
39         squares[row][column] = '.';
40       }
41     }
42   }
43   squares[bestRow][bestColumn] = 'X';
44 }

Figure 10–30: The play() method invokes playBestMove(). Line 33 will be
modified later to make the program smarter. (Part 2 of 2)
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The method minimaxForX() is similar to minimaxForO(), but it looks for the maximum of
scores found by invoking minimaxForO(). The code for both methods is given in Figure 10–32.
Since these two methods invoke each other, they are said to be mutually recursive.

Figure 10–31: The minimax algorithm at work. Scores are calculated directly at
leaves. At internal nodes, the score is that of the “best” child, from the point of view of
the player about to move. For example, the leftmost node in the middle level has two
children with values –1 and 0. Since O is trying to minimize the score at this point, the
value of this node is –1.

1 /** Return the value of the current position if it is O's turn. */
2 protected int minimaxForO() {
3   int score = score();
4   if (gameOver()) {
5     return score;
6   }
7   int bestScore = 2;
8   for (int row = 0; row < 3; row++) {
9     for (int column = 0; column < 3; column++) {

10       if (squares[row][column] == '.') {
11         squares[row][column] = 'O';
12         score = minimaxForX();
13         if (score < bestScore) {
14           bestScore = score;
15         }
16         squares[row][column] = '.';
17       }
18     }
19   }
20 return bestScore;
21 }
22

Figure 10–32: The mutually recursive methods minimaxForO() and minimaxForX()
are almost identical. (Part 1 of 2)

0�1 0 �10 0

0�1 �1

0

X tries to maximize score

O tries to minimize score
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Exercises
10.10 Explain why Figure 6–25 is not a tree.

10.11 Which of the four traversal orders discussed in Section 10.2 is not well defined for gen-
eral trees? Explain.

10.12 Ignoring the fact that the game may end before the entire board is filled, exactly how
many nodes are there in the complete game tree for Tic Tac Toe? (This is a simple
game. The trees for more complicated games like Chess and Go have more nodes than
there are electrons in the universe!)

10.13 Explain lines 7 and 29 of Figure 10–32.

10.14 We can define evenness and oddness of nonnegative integers as follows:

A number n is even if it is 0 or n – 1 is odd.

A number n is odd if it is not 0 and n – 1 is even.

Express these algorithms as two mutually recursive methods isEven() and isOdd(),
each of which takes an int as an argument and returns a boolean.

23 /** Return the value of the current position if it is X's turn. */
24 protected int minimaxForX() {
25   int score = score();
26   if (gameOver()) {
27     return score;
28   }
29   int bestScore = -2;
30   for (int row = 0; row < 3; row++) {
31     for (int column = 0; column < 3; column++) {
32       if (squares[row][column] == '.') {
33         squares[row][column] = 'X';
34         score = minimaxForO();
35         if (score > bestScore) {
36           bestScore = score;
37         }
38         squares[row][column] = '.';
39       }
40     }
41   }
42   return bestScore;
43 }

Figure 10–32: The mutually recursive methods minimaxForO() and minimaxForX()
are almost identical. (Part 2 of 2)
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Summary

A tree is a branching, hierarchical structure. We have defined both binary trees and general trees.
A binary tree either is empty or consists of a node, a left subtree, and a right subtree. A general
tree (which cannot be empty) consists of a node and zero or more subtrees. There is a lot of ter-
minology surrounding trees, most of it drawn from either genealogy or botany.

The number of nodes in a binary tree depends on both the height of the tree and on how “bushy”
it is. In the widest possible binary tree, called a perfect tree, the number of nodes is exponential in
the height of the tree. Conversely, the height of such a tree is logarithmic in the number of nodes.

Binary trees can be traversed in four orders: preorder, inorder, postorder, and level order. The
first three have very elegant recursive algorithms, but level order traversal requires a queue. Most
of these orders are also defined for general trees.

A binary tree is usually represented by a linked structure similar to a linked list. For more gen-
eral trees, representations include the array of children representation and the first-child, next-
sibling representation. In some applications, such as our Tic Tac Toe player, trees are not
explicitly constructed as data structures, but are implicit in the way the program runs.

Vocabulary

ancestor. Any of a node, its parent, its grandparent, and so on. All of these except for the node
itself are proper ancestors.

array of children. General tree representation in which each node has an array of references to
child nodes.

binary tree. Tree that either is empty or consists of a node and a left and right subtree, each of
which is a binary tree.

breadth-first. Any tree traversal, such as level order, in which all of the nodes at a given depth
are visited before deeper nodes.

child. Node directly below another node in a tree.

depth. Number of lines on a path from a tree node back to the root.

depth-first. Any tree traversal, such as preorder, which goes all the way to a leaf before “back-
ing up” and trying a different branch.

descendant. Any of a node, its children, their children, and so on. All of these except for the
node itself are proper descendants.

first child, next sibling. General tree representation in which each node has references to its
first (leftmost) child and next sibling.

general tree. Tree consisting of a node and zero or more subtrees, each of which is a general tree.

height. Of a tree, the depth of the deepest node.
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inorder. Traversal in which the left subtree is traversed, the root is visited, and then the right
subtree is traversed.

internal node. Tree node that is not a leaf.

leaf. Tree node that has no children.

level. Set of nodes at the same depth within a tree.

level order. Tree traversal in which the root is visited, then the nodes on level 1, then the nodes
on level 2, and so on.

linear tree. Tree in which each internal node has one child.

list of children. General tree representation in which each node has a list of references to child
nodes.

minimax. Algorithm for playing games in which one player tries to maximize the score while
the opponent tries to minimize it. The value of a node (board configuration) is either the score (if
it is an end-of-game node), the maximum of its children’s values (if it is the maximizing player’s
turn), or the minimum of its children’s values (if it is the minimizing player’s turn). The move
leading to the highest-valued node should be chosen.

mutually recursive. Of two or more algorithms, invoking each other.

parent. Node directly above another node in a tree. Every node has exactly one parent, except
for the root, which has no parent.

perfect binary tree. Binary tree in which all of the leaves are at the same depth and every inter-
nal node has two children.

postorder. Tree traversal in which the subtrees are traversed and then the root is visited.

preorder. Tree traversal in which the root is visited and then the subtrees are traversed.

root. Node at the top of a tree.

sibling. Tree node with the same parent as another node.

Problems

10.15 Write a class for a node in a ternary tree, as defined in Exercise 10.3.

10.16 Modify the traversal methods from Section 10.2 to include parentheses. For example,
an invocation of toStringInorder() on (the root of) the tree in Figure 10–4 should
return the String "((G((K)E(L)))A(((F)B)H((C(J))I(D))))".

10.17 Modify the Questions game so that it prints out its decision tree at the end of each game.
The output should look like that shown in Figure 10–33. (Hint: Write a recursive method
to print the tree. This method takes the amount of indentation as one of its arguments.)

10.18 Modify the Questions program so that the guesser loses if it hasn’t guessed successfully
after twenty questions.
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10.19 Write the TreeNode class as depicted in Figure 10–23. Include a method toString-
Preorder(), equivalent to the one in Figure 10–15.

10.20 Write the TreeNode class as depicted in Figure 10–24. Include a method toString-
Postorder(), equivalent to the one in Figure 10–17.

10.21 Using the code from one of the previous two problems, modify the Questions game so
that it can handle multiple choice questions.

10.22 Modify the Tic Tac Toe program so that the user gets to choose whether to go first or
second.

10.23 Replace the methods minimaxForO() and minimaxForX() (Figure 10–32) with a
single recursive method minimax(), which takes the player whose turn it is as an addi-
tional argument.

Projects

10.24 Add methods preorderIterator() and levelOrderIterator() to the Binary-
Node class. Each should return an Iterator which traverses the tree in the specified
order. (Hint: Define two new classes, each implementing the Iterator interface. Each
class needs a field of type Stack or Queue.)

10.25 Modify the Tic Tac Toe program so that it looks ahead only a certain number of moves.
This number should be passed in to the constructor as an argument maxDepth. Run a
tournament between players with max depths of 1, 3, 5, 7, and 9. Explain whether
searching deeper produces a better player.

10.26 Write a minimax player for the Mancala game from Project 2.33. For the program to
take its turn in a reasonable amount of time, you will need to implement limited depth
as in Project 10.25. Notice that in Mancala a move by one player is sometimes followed
by another move by the same player.

1 Can it fly?
2   Does it lay eggs?
3     a robin
4     a helicopter
5   Have you eaten one?
6     an apple pie
7     a giraffe

Figure 10–33: Sample output for Problem 10.17.
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11
Sets

A set is a collection of elements in which the same element does not appear more than once. For
example, {A, B, C} is a set, but {A, B, C, A} is not. Unlike a list (Section 5.3), a set does not
have any particular ordering: a given element either is or is not a member of the set. Thus, {A, B,
C} and {C, B, A} are the same set.

Almost every large program makes use of sets. In this chapter, we present a Set interface (Section
11.1) and three implementations: ordered lists (Section 11.2), binary search trees (Section 11.3),
and hash tables (Section 11.4). In Section 11.5, we revisit the Java collections framework, dis-
cussing Java’s own Set interface, some built-in implementations, and the related Map interface.

11.1 The Set Interface

The game of Anagrams (Figure 11–1) involves three sets of Strings: the sets of words in front
of each player and the set of legal words. There are also two collections of letters (the bag and
the pool), but these are not sets, because the same letter may appear more than once in a given
collection.
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A transcript of the game in action is given in Figure 11–2.

Anagrams
Players: 2–6.

Object: To be the first player with five words.

Setup: The game involves a large set of letter tiles. Each tile has a letter written on it. At the
beginning of the game, all of the tiles are placed in a bag.

Play: On a turn, a player draws a tile from the bag and places it in a pool in the middle of
the table. If the player can form a word of four or more letters from those in the pool, he
takes those letters and forms the word in front of himself.

Alternately, a player may steal a word from another player. He must combine all of the let-
ters in the stolen word with at least one letter from the pool to make a new word. The letters
may be rearranged in the new word.

If a player cannot make or steal a word after drawing a tile, he must pass.

Figure 11–1: The game of Anagrams. Our implementation handles only two players.

1 Welcome to Anagrams.
2
3 To make a word from the pool, enter it.
4 To steal a word, enter the new word, a space, and the word being
5 stolen.
6 To pass, just hit return.
7
8 PLAYER 1 TO PLAY
9 Letters in pool:

10 r
11 Player 1's words: ( )
12 Player 2's words: ( )
13 Your play: 
14
15 PLAYER 2 TO PLAY
16 Letters in pool:
17 ir
18 Player 1's words: ( )
19 Player 2's words: ( )
20 Your play: 
21

Figure 11–2: Beginning of a game of Anagrams. On the last move, Player 1 steals the
word ‘ripe’ by adding a ‘z’ to make ‘prize.’ (Part 1 of 2)
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An instance of the Anagrams class contains three instances of Set<String> and two of Letter-
Collection (Figure 11–3). We will write the Set interface and the main Anagrams class in this

22 PLAYER 1 TO PLAY
23 Letters in pool:
24 eir
25 Player 1's words: ( )
26 Player 2's words: ( )
27 Your play: 
28
29 PLAYER 2 TO PLAY
30 Letters in pool:
31 eipr
32 Player 1's words: ( )
33 Player 2's words: ( )
34 Your play: ripe
35
36 PLAYER 1 TO PLAY
37 Letters in pool:
38 z
39 Player 1's words: ( )
40 Player 2's words: ( ripe )
41 Your play: prize ripe
42
43 PLAYER 2 TO PLAY
44 Letters in pool:
45 n
46 Player 1's words: ( prize )
47 Player 2's words: ( )

Figure 11–3: An instance of the Anagrams class contains three instances of imple-
mentations of the Set interface and two of LetterCollection.

Figure 11–2: Beginning of a game of Anagrams. On the last move, Player 1 steals the
word ‘ripe’ by adding a ‘z’ to make ‘prize.’ (Part 2 of 2)

Anagrams <<interface>>
Set

Letter
Collection

String3

2
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section. The LetterCollection class is discussed in Section 11.4, as it foreshadows one of the
Set implementations. Most of the rest of this chapter deals with implementing the Set interface.
An efficient Set implementation is crucial for this game, because one of the Sets (the set of
legal words) may contain hundreds of thousands of elements.

A simple Set interface is shown in Figure 11–4. The Set interface in the Java collections frame-
work specifies many additional methods, but this version will suffice for now.

We now write the Anagrams class to illustrate the use of Sets. The easy parts are shown in
Figure 11–5.

1 /** A set of Objects. */
2 public interface Set<E> {
3
4   /** Add target to this Set. */
5   public void add(E target);
6
7   /** Return true if this Set contains target. */
8   public boolean contains(E target);
9

10   /** Remove target from this Set. */
11   public void remove(E target);
12
13   /** Return the number of elements in this Set. */
14   public int size();
15
16 }

Figure 11–4: A simple Set interface. Like the List interface in Section 5.3, it involves a
generic type.

1 import java.util.*;
2
3 /** The game of Anagrams. */
4 public class Anagrams {
5
6   /** For reading from the console. */
7   public static final Scanner INPUT = new Scanner(System.in);
8
9   /** Letters in the bag. */

10   private LetterCollection bag;
11
12 /** Letters in the pool. */
13 private LetterCollection pool;
14

Figure 11–5: Easy parts of the Anagrams class. (Part 1 of 2)
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Next we write the play() and playTurn() methods (Figure 11–6).

15  /** Large set of legal words. */
16   private Set<String> words;
17
18   /** Words scored by player 1. */
19   private Set<String> words1;
20
21   /** Words scored by player 2. */
22   private Set<String> words2;
23
24   /** Create and play the game. */
25   public static void main(String[] args) {
26     Anagrams game = new Anagrams();
27     System.out.println("Welcome to Anagrams.");
28     System.out.println();
29     System.out.println("To make a word from the pool, enter it.");
30     System.out.println("To steal a word, enter the new word, a" 
31 + "space, and the word being stolen.");
32     System.out.println("To pass, just hit return.");
33     System.out.println();
34     game.play();
35   }
36   
37 }

1 /** Play until someone gets five words. */
2 public void play() {
3   while (true) {
4     System.out.println("PLAYER 1 TO PLAY");
5     playTurn(words1, words2);
6     if (words1.size() == 5) {
7       System.out.println("Player 1 wins!");
8       return;
9     }

10     System.out.println("PLAYER 2 TO PLAY");
11     playTurn(words2, words1);

Figure 11–6: The play() and playTurn() methods make extensive use of methods
from the Set interface. (Part 1 of 2)

Figure 11–5: Easy parts of the Anagrams class. (Part 2 of 2)
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The play() method is a fairly simple loop that runs until one player has five words. This is
detected by invoking the size() method from the Set interface.

The playTurn() method is more complicated. It begins by taking a letter out of the bag and
adding it to the pool (line 21). After reading a line from the user (line 26), the method invokes
the indexOf() method of the resulting String (line 27). This method returns the index of the
first appearance of the specified character (a space), or –1 if that character does not appear.

12 if (words2.size() == 5) {
13       System.out.println("Player 2 wins!");
14 return;
15     }
16   }
17 }
18
19 /** Play one turn for the specified player. */
20 public void playTurn(Set<String> player, Set<String> opponent) {
21   pool.add(bag.draw());
22   System.out.println("Letters in pool:\n" + pool);
23   System.out.println("Player 1's words: " + words1);
24   System.out.println("Player 2's words: " + words2);
25   System.out.print("Your play: ");
26   String play = INPUT.nextLine();
27   int spaceIndex = play.indexOf(' ');
28   if (spaceIndex != -1) {     // Stolen word
29     String word = play.substring(0, spaceIndex);
30     if (!(words.contains(word))) {
31       System.out.println("Sorry, " + word + " is not a word.");
32     } else {
33       String stolen = play.substring(spaceIndex + 1, play.length());
34       player.add(word);
35       opponent.remove(stolen);
36       pool.add(stolen);
37       pool.remove(word);
38     }
39   } else if (!(play.equals(""))) { // Regular play
40     if (!(words.contains(play))) {
41       System.out.println("Sorry, " + play + " is not a word.");
42     } else {
43       player.add(play);
44       pool.remove(play);
45     }
46   }
47   System.out.println();
48 }

Figure 11–6: The play() and playTurn() methods make extensive use of methods
from the Set interface. (Part 2 of 2)
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If the line contains a space, it can be recognized as a command to steal a word (line 28). The line is
separated into two words on lines 29 and 33 using the substring() method of the String class.
For example, if play is "prize ripe" then play.indexOf(' ') returns 5, play.sub-
string(0, 5) returns "prize", and play.substring(6, 10) returns "ripe".

The playTurn() method next verifies that the word is legal (line 30). If it is, the word is added
to the player’s set (line 34) and the stolen word is removed from the opponent’s set (line 35).
Finally, all the letters in the stolen word are added to the pool (line 36) and all the letters in the
new word are removed from the pool (line 37). The net effect of these last two method invoca-
tions is to remove from the pool those letters which are in the new word but not in the stolen
word.

Lines 39–46 handle the simpler case of a regular play. Here, the method only has to verify that
the word is legal, add it to the player’s set, and remove the letters from the pool.

All that remains is the constructor (Figure 11–7). Lines 9–19 deal with reading words from a
text file. (We’ll discuss file handling in much more detail in Chapter 17.) The file must be
called words.txt and must be in the directory from which the program is run. A good list of
words can be found in the file /usr/share/dict/words on most Unix systems, including
Mac OS X.

Varying which class we use for words provides a striking example of the importance of an effi-
cient Set implementation. Given a large words.txt file with tens or hundreds of thousands of

1 /**
2  * Read in the dictionary from the file "anagram-words" and create 
3  * the letters.
4  */
5 public Anagrams() {
6   bag = new LetterCollection(true);
7   pool = new LetterCollection(false);
8   words = new HashTable<String>("");
9   try {

10     Scanner input = new Scanner(new java.io.File("words.txt"));
11     while (input.hasNextLine()) {
12       words.add(input.nextLine());
13     }
14   } catch (java.io.IOException e) {
15     e.printStackTrace();
16     System.exit(1);
17   }
18   words1 = new OrderedList<String>();
19   words2 = new OrderedList<String>();
20 }

Figure 11–7: The constructor for the Anagrams class creates three Sets.
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words, the program as written takes at most a few seconds to start up. On the other hand, if we
change line 8 to

words = new OrderedList<String>();

(note that this constructor takes no argument), the program seems to hang. It would eventually
finish, but only after an unacceptable amount of time. The program is unusable because it is so
inefficient.

Changing line 8 to

words = new BinarySearchTree<String>();

is just as bad in the likely event that words.txt is in alphabetical order. (We’ll explain this
behavior in Section 11.3.)

The impatient reader may think, “Why bother with these other, inefficient data structures? Let’s
cut to the chase and learn about hash tables!” The author offers the following reasons:

1. Working through ordered lists and binary search trees provides a vivid demonstration 
of how data structures may be correct but still not sufficiently efficient.

2. While the simple versions of these data structures are not efficient, more complicated 
variations are. For example, red-black trees (Chapter 14) are based on binary search 
trees.

3. There are some jobs for which hash tables are not the data structure of choice; a pro-
grammer must have a diverse toolkit.

4. As in a good film, the final revelation is more satisfying if suspense has been built up 
beforehand.

Exercises

11.1 Line 28 of Figure 11–6 seems a bit awkward. In general, it is clearer to say

if (x == 1) {
  // do one thing
} else {
  // do another thing
}

than

if (x != 1) {
  // do another thing
} else {
  // do one thing
}
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which is equivalent. We might therefore be tempted to change the line to

if (spaceIndex == -1) {

and to swap lines 29–38 with lines 40–45. Why does this not work?

11.2 Modify the Anagrams program to enforce the constraint that words must be at least
four letters long. (This is not necessary if all shorter words are removed from the file
words.txt.)

11.3 Modify the Anagrams program to prevent a player from “stealing” a word that the oppo-
nent doesn’t actually have.

11.2 Ordered Lists

The most obvious approach to implementing the Set interface is to use one of the linear struc-
tures introduced in Part II. Since a Set changes size as items are added and removed, a linked
structure seems in order. In this section, we look at an ordered list, a data structure based on a
linked list.

Many efficient Set implementations depend on the elements being Comparable (Section 8.4).
We will therefore develop a class OrderedList for sets of such elements. An OrderedList is just
like a LinkedList, except that:

1. The elements of an OrderedList must implement the Comparable interface.

2. The elements of an OrderedList are kept in order.

3. The OrderedList class implements the Set interface. It provides the methods add(), 
contains(), remove(), and size(). No duplicate elements are allowed.

The words “just like ... except” suggest that OrderedList might extend LinkedList (Figure 11–8).
The problem with this approach is that the LinkedList class implements the List interface, which
conflicts with the Set interface. Specifically, the add() method from the List interface should
add the argument target to the end of the list, even if it is already present, while the add()
method from the Set interface may add target at any position, but not if it is already present.
Since the add() method in OrderedList would override the one in LinkedList, an OrderedList
would behave like a Set. As far as the Java compiler could tell, however, it would be a legitimate
value for a variable of type List, because it would be a descendant of LinkedList.

To see why this is a problem, suppose OrderedList extended LinkedList. If someone executed
the code

List<String> livestock = new OrderedList<String>();
livestock.add("llama");
livestock.add("llama");

then they might expect list.size() to return 2—but it would return 1. A variable may be set
to a reference to an object created very far away in the code (even in a different class), so this
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could lead to some extremely tricky bugs. We should extend a class only when an instance of the
subclass works in place of an instance of the superclass.

Although we won’t have OrderedList extend LinkedList, there’s no reason not to cut and paste
like crazy. Figure 11–9 shows the trivial parts of the OrderedList class. On line 2, the generic
type E is constrained to be a Comparable type.

We now discuss the other three methods from the Set interface: contains(), add(), and
remove(). This sequence will be followed for all three Set implementations in this chapter.
Within each implementation, all three methods have very similar structures. This happens
because, to add something to a Set, we must first find where it belongs, then (if it is not present)
put it there. To remove something, we must first find where it belongs, then (if it is present)
remove it. Since the final “put it there” and “remove it” operations take constant time, all three
methods have the same order of running time for a given implementation.

Figure 11–8: It would be a bad idea for OrderedList to extend LinkedList, because it
would then have to provide two conflicting add() methods.

1 /** A linked list of Comparable items, in increasing order. */
2 public class OrderedList<E extends Comparable<E>>
3   implements Set<E>, Predecessor<E> {
4
5   /** The first node in the list. */
6   private ListNode<E> front;
7

Figure 11–9: Trivial parts of the OrderedList class. The type specified by the type
parameter E must be a Comparable type. (Part 1 of 2)

<<interface>>
List

add(T):void

E E
<<interface>>

Set

add(T):void

LinkedList

OrderedList

E

E



Section 11.2 Ordered Lists 293

A comment on terminology: some texts say things like, “An ordered list is a linear-time imple-
mentation of the set interface.” This is a slight abuse of the terminology, because data structures
don’t have running times; algorithms do. A more precise statement would be, “In the ordered list
implementation of the Set interface, the methods contains(), add(), and remove() all run in
linear time.”

8  /** An OrderedList is initially empty. */
9   public OrderedList() {

10 front = null;
11   }
12
13   public ListNode<E> getNext() {
14     return front;
15   }
16
17   public void setNext(ListNode<E> next) {
18     front = next;
19   }
20
21   public int size() {
22     int tally = 0;
23     for (ListNode<E> node = front; 
24 node != null; 
25 node = node.getNext()) {
26       tally++;
27     }
28     return tally;
29   }
30
31   public String toString() {
32     String result = "( ";
33     for (ListNode<E> node = front;
34          node != null;
35          node = node.getNext()) {
36       result += node.getItem() + " ";
37     }
38     return result + ")";
39   }
40
41 }

Figure 11–9: Trivial parts of the OrderedList class. The type specified by the type
parameter E must be a Comparable type. (Part 2 of 2)
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Search

The contains() method for the OrderedList class (Figure 11–10) is a linear search. As in the
linear search of a sorted array (Section 8.1), we can take advantage of the fact that the list ele-
ments are in order. If we find an element which is larger than target, we’ve gone too far and
can immediately conclude that target is not in the list.

As with the linear search algorithm for arrays, this method runs in linear time in the worst case.
In an average unsuccessful search, the number of comparisons made is roughly n/2, which is
also linear.

Insertion

Insertion is slightly more complicated than search. Once we find an item which is larger than
target, we have to splice in a new node containing target (Figure 11–11).

1 public boolean contains(E target) {
2   ListNode<E> node = front;
3   while (node != null) {
4     int comparison = target.compareTo(node.getItem());
5     if (comparison < 0) {
6       return false;
7     }
8     if (comparison == 0) {
9       return true;

10     }
11     node = node.getNext();
12   }
13   return false;
14 }

Figure 11–10: The main loop of the contains() method for the OrderedList class
has three branches (lines 5–11), depending on the result of the comparison.

Figure 11–11: An OrderedList before (top) and after (bottom) inserting the element 23.
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Since splicing in a new node requires knowledge of the previous node, this is a two-finger algo-
rithm (Figure 11–12).

Deletion

Deletion has the same structure (Figure 11–13), the only difference being that we remove tar-
get if we find it and do nothing if we don’t.

1 public void add(E target) {
2   Predecessor<E> prev = this;
3   ListNode<E> node = front;
4   while (node != null) {
5     int comparison = target.compareTo(node.getItem());
6     if (comparison < 0) {
7       prev.setNext(new ListNode<E>(target, node));
8       return;
9     }

10     if (comparison == 0) {
11       return;
12     }
13     prev = node;
14     node = node.getNext();
15   }
16   prev.setNext(new ListNode<E>(target));
17 }

Figure 11–12: With the exception of the emphasized code, add() is identical to
contains().

1 public void remove(E target) {
2   Predecessor<E> prev = this;
3   ListNode<E> node = front;
4   while (node != null) {
5     int comparison = target.compareTo(node.getItem());
6     if (comparison < 0) {
7       return;
8     }
9     if (comparison == 0) {

10       prev.setNext(node.getNext());
11       return;
12     }
13     prev = node;
14     node = node.getNext();
15   }
16 }

Figure 11–13: The remove() method.
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The OrderedList data structure is easy to implement, but it requires linear time for search, inser-
tion, and deletion. We will see more efficient data structures in the next two sections.
OrderedLists should be used only for very small sets.

Exercises

11.4 In the constructor for the Anagrams class (Figure 11–7, line 14), the add() method is
invoked many times on the Set words. If words is an OrderedList, under what circum-
stances will this take the largest possible amount of time (for a given number of words
n)? Is this likely to occur?

11.5 Is it acceptable to swap lines 5–7 and 8–10 in Figure 11–10? Explain.

11.3 Binary Search Trees

We now turn to a second implementation of the Set interface, which is more efficient under some
circumstances. A binary search tree is a binary tree in which all of the items in the left subtree
are less than the root and all of the items in the right subtree are greater than the root. The sub-
trees are themselves binary search trees. An example is shown in Figure 11–14.

We use the linked representation of binary trees from Section 10.1. Like an instance of the Ques-
tions class from Chapter 10, a (non-empty) BinarySearchTree object contains (a reference to) a
BinaryNode (Figure 11–15). This may in turn contain additional BinaryNodes—the roots of its
subtrees.

The easy parts of the BinarySearchTree class are given in Figure 11–16. Like the OrderedList
class, this is suitable only for Sets of Comparable objects.

Figure 11–14: In a binary search tree, numbers less than the root are in the left sub-
tree, while numbers greater than the root are in the right subtree. The subtrees are them-
selves binary search trees.
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Search
The advantage of a binary search tree is that we may have to look at very few of the items in the
tree to determine whether some target is present (Figure 11–17). We start by comparing the tar-
get to the root. Depending on the result of this comparison, we either descend to the left child,
declare success, or descend to the right child. The search fails only if we try to descend to a non-
existent child—for example, we try to go right when there is no right child.

Figure 11–15: A BinarySearchTree instance usually contains a BinaryNode, which
can contain further BinaryNodes.

1 /** A binary search tree of Comparables. */
2 public class BinarySearchTree<E extends Comparable<E>>
3   implements Set<E> {
4
5   /** Root node. */
6   private BinaryNode<E> root;
7
8   /** A BinarySearchTree is initially empty. */
9   public BinarySearchTree() {

10     root = null;
11   }
12
13   public int size() {
14     return size(root);
15   }
16
17   /** Return the size of the subtree rooted at node. */
18   protected int size(BinaryNode<E> node) {
19     if (node == null) {
20       return 0;
21     } else {
22       return 1 + size(node.getLeft()) + size(node.getRight());
23     }
24   }
25
26 }

Figure 11–16: Easy parts of the BinarySearchTree class.  Like many tree-related meth-
ods, the size() method is recursive.

BinarySearchTree

E

BinaryNode

E0..1

0..2



298 Chapter 11  •  Sets

The code for the contains() method (Figure 11–18) is similar to the version from the
OrderedList class. As we examine each node, we decide what to do next based on the result of
comparing target with the item in the current node.

Searching a binary search tree is often much faster than searching an ordered list, because the
number of comparisons we have to make is not proportional to the number of nodes in the tree,
but merely to the height of the tree. In a perfect tree, this is Θ(log n).

Unfortunately, binary search trees are generally not perfect. In the worst case, each internal node
has only one child. This happens in the Anagrams program when the word file is in alphabetical
order: every new node is a right child. When this happens, search takes linear time.

Figure 11–17: Successful search for 16 in a binary search tree. The shaded nodes
are never examined.

1 public boolean contains(E target) {
2   BinaryNode<E> node = root;
3   while (node != null) {
4     int comparison = target.compareTo(node.getItem());
5     if (comparison < 0) {     // Go left
6       node = node.getLeft();
7     } else if (comparison == 0) { // Found it
8       return true;
9     } else {                  // Go right

10       node = node.getRight();
11     }
12   }
13   return false;
14 }

Figure 11–18: On each pass through the main loop, the contains() method checks
whether target is less than, equal to, or greater than the item in node.
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While the analysis is beyond the scope of this book, it turns out that on average (assuming items
are inserted in random order and there are no deletions), the running times of contains(),
add(), and remove() for binary search trees are all in Θ(log n).

Insertion

When we insert something into a binary search tree, we must first search for it. We have to make
a change only if the search fails. This means that we have just tried to descend into a null child.
All we have to do is add a new leaf node at that position (Figure 11–19).

There are two complications to the code:

• Once we reach a null node, we have forgotten how we got there. Since we need to mod-
ify either the left or right field in the parent of the new leaf, we’ll need this informa-
tion.

• We need to deal with the situation in which the binary search tree is empty.

These are the same problems we had when adding an element to the end of a LinkedList (Section
6.3). The solution is also the same. We define an interface Parent (Figure 11–20), which is imple-
mented by both the BinaryNode and BinarySearchTree classes. Where the Predecessor interface
had a setNext() method, the Parent interface has a setChild() method. The first argument to
setChild() is an int specifying which child to set. The comment defines the meaning of this int
in such a way that we can use the result of an invocation of compareTo() to determine which
child to set.

The implementations of these methods for the BinaryNode class are trivial (Figure 11–21).

Figure 11–19: Inserting 15 into a binary search tree. The search fails when 16 has no
left child, so we add a new leaf there.
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The versions for the BinarySearchTree class are even simpler (Figure 11–22). Since there is only
one “child” (the root of the tree), the argument direction is ignored.

With the Parent interface in place, we can write the two-finger method add() (Figure 11–23).  If
we reach line 17 and have to create a new node, comparison is the direction we last moved.

1 /**
2  * Something which has children, such as a BinarySearchTree or a
3  * BinaryNode.
4  */
5 public interface Parent<E> {
6
7   /**
8    * Return the left child if direction < 0, or the right child
9    * otherwise.

10    */
11   public BinaryNode<E> getChild(int direction);
12
13   /**
14    * Replace the specified child of this parent with the new child.
15    * If direction < 0, replace the left child.  Otherwise, replace
16    * the right child.
17    */
18   public void setChild(int direction, BinaryNode<E> child);
19   
20 }

Figure 11–20: Both the BinaryNode and BinarySearchTree classes must be modified
to implement the Parent interface.

1 public BinaryNode<E> getChild(int direction) {
2   if (direction < 0) {
3     return left;
4   } else {
5     return right;
6   }
7 }
8
9 public void setChild(int direction, BinaryNode<E> child) {

10   if (direction < 0) {
11     left = child;
12   } else {
13     right = child;
14   }
15 }

Figure 11–21: The getChild() and setChild() methods for the BinaryNode class.
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Deletion
As is usual for Set implementations, the remove() method is the most complicated. The chal-
lenge is to make sure the tree is still a binary search tree when we’re done with the deletion.

We begin with a search. If it succeeds, we need to get rid of the node containing target.

If the offending node is a leaf, this is easy—we just replace the appropriate reference in the par-
ent with null.

If the node has only one child, we just splice it out much as we would a node in a linked list
(Figure 11–24). The one child of the node being removed takes its place. Since all nodes in this
subtree are less than the parent of the removed node, the binary search tree is still valid.

The complicated case is when the node we want to delete has two children. We can’t just splice
it out, because then we would be trying to plug in two children where there is room for only one.

1 public BinaryNode<E> getChild(int direction) {
2   return root;
3 }
4
5 public void setChild(int direction, BinaryNode<E> child) {
6   root = child;
7 }

Figure 11–22: The getChild() and setChild() methods for the BinarySearchTree
class.

1 public void add(E target) {
2   Parent<E> parent = this;
3   BinaryNode<E> node = root;
4   int comparison = 0;
5   while (node != null) {
6     comparison = target.compareTo(node.getItem());
7     if (comparison < 0) {     // Go left
8       parent = node;
9       node = node.getLeft();

10     } else if (comparison == 0) { // It's already here
11       return;
12     } else {                  // Go right
13       parent = node;
14       node = node.getRight();
15     }
16   }
17   parent.setChild(comparison, new BinaryNode<E>(target));
18 }

Figure 11–23: As with the OrderedList class, the add() method for the Binary-
SearchTree class is a two-finger algorithm.
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Instead, we find some other node which does not have two children, copy the item at that node
into this one, and delete the other node (Figure 11–25).

We must be very careful about which node we choose to delete so that the tree will still be a
binary search tree. It is always safe to choose the inorder successor of the node we originally
wanted to delete. This is the node that would appear next in an inorder traversal of the tree. We
can always find a node’s inorder successor by going to the right child, then going left until we hit

Figure 11–24: Before (top) and after (bottom) deleting 2 from a binary search tree.
The deleted node’s child 8 becomes a child of the deleted node’s parent 13.

Figure 11–25: Before (top) and after (bottom) deleting 13 from a binary search tree.
The node to be deleted has two children, so we can’t just splice it out. Instead, we
replace its item with the item from another node (14) and delete that node.

13

2 19

8 14 22

16 20 26115

13

2 19

8 14 22

16 20 26115

13

2 19

8 14 22

16 20 26115

14

2 19

8 14 22

16 20 26115



Section 11.3 Binary Search Trees 303

a node with no left child. The inorder successor is not necessarily a leaf—it can have a right
child, it just can’t have a left child.

It is safe to replace the node we want to delete with its inorder successor because the inorder suc-
cessor is the leftmost element in the right subtree. It is therefore larger than anything in the left
subtree and smaller than anything else in the right subtree.

The remove() method (Figure 11–26) is another two-finger algorithm. If we find target, we
need to modify parent, rather than node. We therefore need to remember the direction we
moved when we left parent.

If target is discovered, remove() invokes spliceOut() (Figure 11–27). The first two cases
(lines 9–12) deal with nodes that do not have two children. For example, if node has no left
child (lines 9–10), node’s right child replaces node as a child of parent.

We don’t need special code for the case where node is a leaf, because in this situation

parent.setChild(direction, node.getRight());

is equivalent to:

parent.setChild(direction, null);

When node has two children (lines 13–15), spliceOut() invokes removeLeftmost()
(Figure 11–28).  This both removes the leftmost node in the right subtree (the inorder succes-
sor) and returns the item from that node, which spliceOut() then installs in the node which
was originally to be deleted.

1 public void remove(E target) {
2   Parent<E> parent = this;
3   BinaryNode<E> node = root;
4   int direction = 0;
5   while (node != null) {
6     int comparison = target.compareTo(node.getItem());
7     if (comparison < 0) {     // Go left
8       parent = node;
9       node = node.getLeft();

10     } else if (comparison == 0) { // Found it
11       spliceOut(node, parent, direction);
12       return;
13     } else {                  // Go right
14       parent = node;
15       node = node.getRight();
16     }
17     direction = comparison;
18   }
19 }

Figure 11–26: The remove() method for the BinarySearchTree class.
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BinarySearchTrees should not be used in the plain form explained here. While the average run-
ning time for search, insertion, and deletion is logarithmic, the worst-case running time is linear.
This worst case occurs if the data are already in order (or in reverse order), causing the tree to be
linear. Such data sets are not uncommon. Specifically, the file of legal words for the Anagrams
game is probably in alphabetical order, so a BinarySearchTree is no better than an OrderedList.

In Chapters 14 and 17, we will see variations on binary search trees that guarantee logarithmic
performance in the worst case.

1 /**
2  * Remove node, which is a child of parent.  Direction is positive
3  * if node is the right child of parent, negative if it is the
4  * left child.
5  */
6 protected void spliceOut(BinaryNode<E> node,
7                          Parent<E> parent,
8                          int direction) {
9   if (node.getLeft() == null) {

10     parent.setChild(direction, node.getRight());
11   } else if (node.getRight() == null) {
12     parent.setChild(direction, node.getLeft());
13   } else {
14     node.setItem(removeLeftmost(node.getRight(), node));
15   }
16 }

Figure 11–27: The method spliceOut() removes an individual node.  If the node has
two children, it invokes removeLeftmost().

1 /**
2  * Remove the leftmost descendant of node and return the
3  * item contained in the removed node.
4  */
5 protected E removeLeftmost(BinaryNode<E> node, Parent<E> parent) {
6   int direction = 1;
7   while (node.getLeft() != null) {
8     parent = node;
9     direction = -1;

10     node = node.getLeft();
11   }
12   E result = node.getItem();
13   spliceOut(node, parent, direction);
14   return result;
15 }

Figure 11–28: The method removeLeftmost() both modifies the BinarySearchTree
(removing a node) and returns a value (the item in that node).
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Exercises

11.6 Expand the definition of a binary search tree to include the possibility of duplicate
items.

11.7 Why is it necessary to declare the variable comparison outside the while loop in
add() (Figure 11–23), but not in contains() (Figure 11–18) or remove() (Figure
11–26)?

11.8 When an element is added to a binary search tree, a new node is added as a child of an
existing node. Before the addition, was this existing node always, sometimes, or never
a leaf? Explain.

11.9 In the worst case, searching a binary search tree takes linear time. Can this happen
when performing a binary search (Section 8.2) on a sorted array? Explain.

11.10 Suppose a binary search tree is balanced in the sense that the left and right subtrees
have the same height. Could deleting the root cause the tree to become imbalanced with
the left side taller than the right side? With the right side taller? How would search time
for the tree be affected if there were many deletions?

11.11 In remove(), would it be acceptable to replace a node with its inorder predecessor
instead of its inorder successor? Explain.

11.4 Hash Tables

The third and final implementation of the Set interface presented in this chapter is the hash table.
Before explaining hash tables proper, we take a brief detour to write the LetterCollection class
for the Anagrams game.

Direct Addressing
A LetterCollection is, not surprisingly, a collection of letters. Put another way, it requires that we
know how many of each letter are in the collection. Since there are only 26 different letters, this
does not require a data structure as complicated as an ordered list or a binary search tree. All we
need is an array of 26 ints, one for each letter (Figure 11–29). It is also handy to keep track of the
total number of letters in the collection.

If we want to know, for example, how many ‘d’s are in a LetterCollection, we look at the appro-
priate element of the array tiles. To find the index, we take advantage of the fact that, in Java,
we can do arithmetic on chars. If we have a char letter, the index we want is letter – 'a'.
This expression gives 0 if letter is 'a', 1 if it is 'b', and so on.

The code is given in Figure 11–30. When invoked with the argument true, the constructor cre-
ates a LetterCollection containing letters in proportion to their frequency in English text. For
example, there are 50 ‘e’s, but only 3 ‘q’s.
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Figure 11–29: UML instance diagram of a LetterCollection containing one 'a', three
'd's, and one 'y'. While there isn’t room to show it, the array has 26 elements.

1 /** Collection of letters for use in Anagrams. */
2 public class LetterCollection {
3
4   /** Total number of letters. */
5   private int count;
6
7   /**
8    * Number of each letter.  For example, tiles[0] is the number of
9    * 'a's.

10    */
11   private int[] tiles;
12
13   /**
14    * If full is true, there are 416 letters, with more copies of 
15    * more common letters like 'e'.  Otherwise, the new 
16    * LetterCollection is empty.
17    */
18   public LetterCollection(boolean full) {
19     if (full) {
20       tiles = new int[] {29, 5, 12, 16, 50, 9, 8, 20, 28,
21                          4, 5, 16, 9, 30, 28, 8, 3, 30,
22                          24, 36, 14, 8, 8, 4, 9, 3};
23       count = 416;
24     } else {
25       tiles = new int[26];      // All zeroes
26       count = 0;
27     }
28   }
29

Figure 11–30: The LetterCollection class. (Part 1 of 2)
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30  /** Add a single letter to this LetterCollection. */
31   public void add(char letter) {
32     tiles[letter - 'a']++;
33     count++;
34   }
35
36 /** Add each letter in word to this LetterCollection. */
37   public void add(String word) {
38     for (char c : word.toCharArray()) {
39       tiles[c - 'a']++;
40     }
41     count += word.length();
42   }
43
44 /** Remove and return a random letter. */
45   public char draw() {
46     int rand = (int)(Math.random() * count);
47     for (int i = 0; i < 26; i++) {
48       if (rand < tiles[i]) {
49         tiles[i]--;
50         count--;
51         return (char)('a' + i);
52       } else {
53         rand -= tiles[i];
54       }
55     }
56     return '?';                 // This should never happen
57   }
58
59   /** Remove each letter in word from this LetterCollection. */
60   public void remove(String word) {
61     for (char c : word.toCharArray()) {
62       tiles[c - 'a']--;
63     }
64     count -= word.length();
65   }
66
67   public String toString() {
68     String result = "";
69     for (int i = 0; i < 26; i++) {
70       for (int j = 0; j < tiles[i]; j++) {
71         result += (char)('a' + i);
72       }
73     }
74     return result;
75   }
76   
77 }

Figure 11–30: The LetterCollection class. (Part 2 of 2)
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On lines 38–40 and 60–62, we use enhanced for loops to traverse Strings. Strings do not sup-
port enhanced for loops (an apparent oversight in Java 1.5), but arrays of chars do, so we use
the toCharArray() method in the String class.

We could use a similar data structure to represent a set of chars. Remember that the difference
between a set and a collection is that the same item cannot appear more than once in the same
set. Instead of an array of ints, then, we would need only an array of booleans.

In either case, this approach is called direct addressing. When we want to look up some ele-
ment, we go directly to the appropriate place in the array. Direct addressing should be used
wherever it is applicable, because it is incredibly fast: looking up an element takes constant time. 

Hash Functions and Hash Codes

Unfortunately, direct addressing cannot be used for every set. The first problem is that the set of
possible elements might be vastly larger than the set of elements actually stored. For example,
suppose an employer is storing a set of employee Social Security numbers. There are a billion
possible nine-digit Social Security numbers, but no company has anywhere near this many
employees. A direct addressing table would be a huge waste of space.

This problem is solved using a hash function. This is a function which takes an int as input and
returns an array index. For example, we might use the function f(x) = x mod 10. Figure 11–31
shows several three-digit numbers stored in an array of length 10. If we want to store 526 in the
array, we put it at position 526 mod 10 = 6. We store the number there, rather than merely a
boolean value of true, because more than one number “hashes to” this position.

This design, called a hash table, appears to have all of the advantages of direct addressing, even
though it works when the number of possible elements is much larger than the number of ele-
ments actually stored. There are, of course, some complications.

First, the elements to be stored might not be integers. Most of the built-in classes of which we
are likely to store Sets (String, Integer, Double, etc.) have a method hashCode() which takes
no arguments and returns an int which can be passed to a hash function. This int is called the
hash code.

Figure 11–31: In a hash table, a hash function maps each potential element to an
array index. The shaded positions do not contain set elements; in practice, some
invalid value such as –1 or null is stored there. 
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The hashCode() method must return the same value for two objects which are equals(). The
converse is not true, though: if a.hashCode() == b.hashCode(), it does not follow that
a.equals(b). Sometimes two different, nonidentical objects have the same hash code.

If we want to store instances of one of our own classes in a hash table, we must define both
equals() and hashCode(). This is necessary because the hash table Set methods use hash-
Code() to find the right position in the table, then use equals() to verify that the item at that
position is the one we’re looking for. If these methods don’t provide consistent results, the hash
table might give an incorrect result when asked if some object is in the Set.

Different objects sometimes produce the same hash code. Furthermore, even if they didn’t, the
hash function might occasionally map two different hash codes to the same index. For example,
37 mod 10 = 87 mod 10. This is called a collision.

We try to choose a hash function which makes collisions rare. If our hash codes tend to be even
numbers, then f(x) = x mod 10 is a bad hash function, because more elements will be put at the
even positions than at the odd positions. A better choice is f(x) = x mod s, where s is some prime
number. This tends to disrupt any patterns in the data. This is where the data structure gets its
name: “to hash” means “to chop up and mix around.”

No matter how good our hash function is, collisions cannot be completely avoided. Since there
are more potential elements than positions in the table, some elements must hash to the same
location.  This is the pigeonhole principle: if there are n pigeonholes and more than n pigeons,
at least one hole will have more than one pigeon. We now discuss a number of techniques for
dealing with collisions.

Collision Resolution
The first approach, called chaining, is to keep a sequence of ListNodes (effectively an ordered
list) at each position in the table (Figure 11–32). To search, insert, or delete, we simply use the
hash function to find the right list and then perform the appropriate ordered list operation there.

Figure 11–32: In a hash table with chaining, each position in the array contains an
ordered list of elements that hash to that index.
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If we know in advance how many elements the Set contains (n), we can choose the array length
to be proportional to this—say, 2n. This limits the average number of elements per list to a con-
stant, in this case 1/2. While all of the data could end up in the same list if we were very unlucky
with our hash function, the average time for search, insertion, and deletion is Θ(1). This is an
astounding result: the time to perform a search is independent of the size of the set!

Chaining works, but all of the references involved in such a linked structure take up considerable
space. The two remaining collision resolution techniques avoid this by storing all of the ele-
ments directly in the array. This is called open addressing. While the analysis is beyond the
scope of this book, hash tables using open addressing have performance in the same order as
hash tables using chaining.

The first open addressing technique is linear probing (Figure 11–33). If there is a collision dur-
ing insertion, we simply move on to the next unoccupied position. If this would move us past the
end of the array, we wrap around to the beginning.

There are three problems with linear probing:

• The table can fill up. With chaining, if we underestimate the number of elements in
the set, the lists get longer and search is slower. With linear probing, the hash table
fails catastrophically: when there’s no more room, we simply can’t insert any more
elements.

We can solve this problem by rehashing when the table gets too full. Rehashing is
copying all of the elements into a fresh table. If we make the new table larger, as we did
with our ArrayList class, the new table is not full.

• We can’t simply remove an item to delete it. In Figure 11–33, suppose we removed 480
and then searched for 208. We would hit an unoccupied position and incorrectly con-
clude that 208 is not in the table.

Figure 11–33: Linear probing. For simplicity, only the array is shown here. The
original array is at the top. When 568 is inserted (middle), it hashes to position 8, which
is occupied, so the next position is used. When 208 is inserted (bottom), positions 8, 9,
0, and 1 must be tried before the empty position 2 is found.

0 1 2 3 4 5 6 7 8 9
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480 731 526 938 568

480 731 208 526 938 568
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We get around this problem by replacing a deleted item with a special value deleted.
This is neither null nor is it equals() to any target, so searches continue past it. This
in turn creates another problem: the table may become full of deleteds, with very few
actual data elements. This, too, can be solved by occasionally rehashing.

• Clusters of contiguous occupied positions tend to occur and grow (Figure 11–34).
Once a cluster appears, an element which hashes to a position in the cluster may result
in a linear search to the end of the cluster. Worse, an insertion into any position in a
cluster expands the cluster.

The problem of clustering is reduced by a second open addressing technique, double hashing. In
double hashing, we use two hash functions. The first function tells us where to look first, while the
second one tells us how many positions to skip each time we find an occupied one (Figure 11–35).
If we choose our two hash functions well, two elements which originally hash to the same posi-
tion are unlikely to follow the same sequence of positions through the table. This reduces the
risk of clustering. Note that linear probing is a special case of double hashing, where the second
hash function always returns 1.

It is crucial that the size of the table and the number returned by the second hash function be rel-
atively prime—that is, have no factors in common other than 1. To see why, suppose we have an

Figure 11–34: Linear probing can result in clusters. In this table, the shaded
positions are unoccupied. Any new element is 25% likely to end up in the large cluster
near the right end, which both slows down search and expands the cluster.

Figure 11–35: Double hashing reduces clustering. In this table, the first hash func-
tion is f(x) = x mod 10 and the second hash function is g(x) = x/100. When 256 is
inserted, we first look in position 6 and then every 2 positions thereafter. When 386 is
inserted, we again start at position 6, but then proceed 3 positions at a time.

0 1 2 3 4 5 6 7 8 9

480 731 526 938

480 731 256 526 938

480 731 526 386938
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array of length 10 and the second hash function returns 5. A search that begins at position 7 will
go to position 2, then back to 7. Only two positions are checked before the algorithm gives up
and incorrectly concludes that the table is full!

The easiest way to ensure relative primality is to make the table size a power of two, then require
that the second hash function always returns an odd number.

We now present an implementation of hash tables using double hashing. The basics are shown in
(Figure 11–36). The constructor requires some instance of the generic type E to use for deleted.
In the hash functions, we have to use the absolute value function Math.abs() because hash-
Code() is not guaranteed to return a nonnegative number and % does not work as modulo if its
first argument is negative.

1 /** A hash table of Comparables, using double hashing. */
2 public class HashTable<E> implements Set<E> {
3
4   /**
5    * Special object to indicate a slot previously occupied by a
6    * Comparable.
7    */
8   private E deleted;
9

10   /** Comparables stored in this table. */
11   private E[] data;
12
13   /** Number of occupied slots (including deleteds). */
14   private int fullness;
15
16   /**
17    * A HashTable is initially empty, but an initial capacity may
18    * be specified.
19    */
20   public HashTable(E deleted) {
21     data = (E[])(new Object[1]); // All null; compiler warning
22     fullness = 0;
23     this.deleted = deleted;
24   }
25
26   /** First hash function. */
27   protected int hash1(E target) {
28     return Math.abs(target.hashCode()) % data.length;
29   }
30

Figure 11–36: Easy parts of the HashTable class. (Part 1 of 2)
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Search
To search (Figure 11–37), we use hash1() to decide where to start. If this position is occupied
by something other than target, we use hash2() to decide how many positions to skip ahead.
This continues until we get back to the beginning, find a null slot, or find target.

Insertion
Insertion (Figure 11–38) is almost identical to search, followed if necessary by installing
target. It may also be necessary to rehash. In our implementation, if the table is at least half

31  /** Second hash function. */
32 protected int hash2(E target) {
33     int result = Math.abs(target.hashCode()) % (data.length - 1);
34     if (result % 2 == 0) { return result + 1; }
35     return result;
36   }
37
38   public int size() {
39     int tally = 0;
40     for (E item : data) {
41       if ((item != null) && (item != deleted)) {
42         tally++;
43       }
44     }
45     return tally;
46   }
47
48 }

1 public boolean contains(E target) {
2   int start = hash1(target);
3   int i = start;
4   while (data[i] != null) {
5     if (target.equals(data[i])) {
6       return true;
7     }
8     i = (i + hash2(target)) % data.length;
9     if (i == start) {

10       return false;
11     }
12   }
13   return false;
14 }

Figure 11–37: The contains() method.

Figure 11–36: Easy parts of the HashTable class. (Part 2 of 2)
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full (including deleteds), we rehash into a larger table before inserting. As in our ArrayList
class, we double the capacity of the table when we stretch it, so the amortized time for rehash-
ing is still constant.

Deletion

In remove() (Figure 11–39), we replace target with deleted if we find it.

Where applicable, hash tables are far and away the best Set implementation. The average run-
ning times for search, insertion, and deletion are constant. The worst case is linear, but this is not
nearly as likely to occur with hash tables as it is with binary search trees.

1 public void add(E target) {
2   if (fullness >= data.length / 2) {
3     rehash();
4   }
5   int start = hash1(target);
6   int i = start;
7   while (data[i] != null) {
8     if (target.equals(data[i])) {
9       return;

10     }
11     i = (i + hash2(target)) % data.length;
12     if (i == start) {
13       return;
14     }
15   }
16   data[i] = target;
17   fullness++;
18 }
19
20 /**
21  * Copy all of the elements into a new array twice as large.
22  */
23 public void rehash() {
24   HashTable<E> newTable = new HashTable<E>(deleted);
25   newTable.data = (E[])(new Object[data.length * 2]);
26   for (int i = 0; i < data.length; i++) {
27     if ((data[i] != null) && (data[i] != deleted)) {
28       newTable.add((E)(data[i]));
29     }
30   }
31   data = newTable.data;
32   fullness = newTable.fullness;
33 }

Figure 11–38: The add() and rehash() methods.
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There are only two drawbacks to hash tables. First, traversal is not efficient. Visiting all of the
elements requires a search through the entire table, which is presumably mostly empty. This
takes time proportional to the capacity of the table, not to the number of elements. Second, with
open addressing, deletion is a bit awkward; we have to leave behind a special value deleted
and occasionally rehash. A hash table may not be the best Set implementation to use in an appli-
cation where many deletions are expected.

Exercises

11.12 Analyze the worst-case running times of the methods in the LetterCollection class.
Give your results in terms of n, the size of the set, and (where appropriate) w, the length
of the word involved.

11.13 Consider two instances a and b of some class. If a.hashCode() == b.hashCode(),
does it follow that a.compareTo(b) == 0? What about vice versa? Explain.

11.14 Why can’t we simply use

public int size() {
  return fullness;
}

for the size() method in the HashTable class?

11.15 What would happen if someone invoked add(null) on a HashTable as defined in this
section? Write an assertion to prevent this.

11.16 We need to use the special values null and deleted to keep track of unoccupied posi-
tions in the table. Devise and explain another way to keep track of these things, so that

1 public void remove(E target) {
2   int start = hash1(target);
3   int i = start;
4   while (data[i] != null) {
5     if (target.equals(data[i])) {
6       data[i] = deleted;
7       return;
8     }
9     i = (i + hash2(target)) % data.length;

10     if (i == start) {
11       return;
12     }
13   }
14 }

Figure 11–39: The remove() method.
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we could store null as a member of the Set and we wouldn’t need to specify a value
for deleted when invoking the constructor.

11.17 Which approach would have better cache performance: chaining or open addressing?
Explain.

11.18 Modify the code in Figure 11–36 so that the HashTable uses linear probing instead of
double hashing. (Hint: Only one method has to be modified.)

11.19 Assuming a good hashCode() method and a good hash function, an element chosen at
random is equally like to hash to any position in the table. What is the probability that
two elements chosen at random hash to the same location?

11.20 Suppose we perform 1,000 insertions followed by 900 deletions in a HashTable as
defined in this section, then rehash. In what sense is the resulting data structure ineffi-
cient?

11.21 The HashTable class defined in this section can store only Comparable objects, because
it implements the Set interface. What would we have to change to allow a HashTable to
store objects of any class? Would this same idea work for the OrderedList and Binary-
Search classes? Explain.

11.5 The Java Collections Framework Again

We now return to the Java collections framework, which has been discussed in Section 5.5 and 6.4.
In the java.util package, the interface Collection is extended by an interface Set (Figure 11–40),
which is similar to the one we defined in Section 11.1. An implementation of either of these inter-
faces holds a number of elements. The difference between a collection and a set is that the same
element may appear more than once in a collection, but not in a set. (“The same” is defined in
terms of the equals() method.)

The Set interface is extended by SortedSet. This interface is intended for sets where the elements
have some ordering. Usually this means that the elements implement Comparable. (It is possible
to store non-Comparable elements by defining a “Comparator,” but this is beyond the scope of
this book.)

Two nonabstract classes implement the Set interface: HashSet and TreeSet. A HashSet is very
much like the HashTable we defined in Section 11.4. A TreeSet is similar to the Binary-
SearchTree we defined in Section 11.3, but it uses some advanced techniques (to be discussed in
Chapter 14) to guarantee that search, insertion, and deletion take time in O(log n) even in the
worst case.

Maps
It is often necessary to associate members of one class with members of another. For example,
in a dictionary, words are associated with definitions. In the Java collections framework, the
Map interface defines this functionality. In a Map, each of a set of keys is associated with a
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value. In the dictionary example, the words are keys and their definitions are values. Each key
may appear only once in a Map, although it is possible for several keys to be associated with
the same value.

The Map interface requires the methods put() and get() for installing key-value pairs and for
looking up the value associated with a key. For example, if we execute the code

Map<String, Integer> numbers = new TreeMap<String, Integer>();
numbers.put("five", 5);
numbers.put("twelve", 12);
numbers.put("a dozen", 12);

then numbers.get("twelve") returns the Integer 12, as does numbers.get("a dozen").

The data structures for Maps are the same as those used for Sets, with a small amount of extra work
needed to keep track of the values in addition to the keys. The inheritance hierarchy for descen-
dants of the Map interface is almost identical to that for descendants of Set (Figure 11–41). It is
necessary for each class to have two generic types: one for the type of the keys and another for the
type of the values.

The API description of the Map class mentions the class Map.Entry. (The name is strange
because this is an “inner class” of Map. Inner classes are beyond the scope of this book.) A
Map.Entry holds one key and one value. We can get the Set of Map.Entry instances from a Map
by invoking the method entrySet() on the Map.

Figure 11–40: More of the Java collections framework, with emphasis on descen-
dants of the Set interface.
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Exercises

11.22 Read the API documentation for the HashMap class. Speculate on whether HashMap
uses chaining or open addressing.

11.23 Suppose we have a program that uses square roots, but often takes the square roots of
the same numbers over and over again. We can speed it up by storing a Map associating
values with their square roots. Every time the square root of some number is taken, we
first consult the Map. If the number is present, we return the stored result rather than
recomputing it. If not, we compute the square root (using Math.sqrt()), store the
association in the Map, and return the result. This technique is called memoization.
Write a method memoizedSqrt() that behaves as described. The Map must be a field
in the class containing the method, not a variable within the method.

Summary

A set is a collection of objects containing no duplicates. We have discussed three implementa-
tions of our Set interface: OrderedList, BinarySearchTree, and HashTable. The performance of
various Set implementations is summarized in Figure 11–42.

An ordered list is a linked list in which the elements are in order. It should be used only for very
small sets.

A binary search tree is a binary tree where all of the elements in the left subtree are less than
the root and all of the elements in the right subtree are greater than the root. While its average
performance is good, it performs very poorly when the data are already sorted—a common
situation.

Figure 11–41: The Map interface and its descendants.
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A hash table stores elements in an array, using a hash function to determine where in the array to
place each element. Since there are more potential elements than positions in the array, colli-
sions can occur. Three approaches to collision resolution are chaining, linear probing, and dou-
ble hashing. Hash tables have extremely good performance on average, and the worst case is not
likely to occur. Hash tables are the best Set implementation except where traversal or deletion is
a common operation.

The Java collections framework defines a Set interface, implemented by TreeSet and HashSet.
There is also a Map interface for associating keys with values, implemented by TreeMap and
HashMap.

Vocabulary

binary search tree. Binary tree in which all of the items in the left subtree are less than the root
and all of the items in the right subtree are greater than the root. The subtrees are themselves
binary search trees.

chaining. Collision resolution technique in which a linked list is kept for each position in the
hash table.

clustering. In a hash table, phenomenon where many consecutive positions are occupied.

collision. Event of two elements mapping to the same position in a hash table.

direct addressing. Technique of maintaining an array indexed by the elements in a set or collection.

double hashing. Open addressing technique in which a second hash function indicates how
many positions to skip ahead each time an occupied position is found.

Set Implementation Average Worst Case Notes

ordered list Θ(n) Θ(n)

binary search tree Θ(log n) Θ(n)

hash table Θ(1) Θ(n) Worst case unlikely.

red-black tree Ο(log n) Ο(log n) Section 14.4.

B-tree Ο(log n) disk 
accesses

Ο(log n) disk 
accesses

Section 17.4. Used 
only for extremely 
large sets.

Figure 11–42: Running times for search, insertion, and deletion using various Set
implementations.
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hash code. Integer passed to a hash function. Usually generated by an object’s hashCode()
method.

hash function. Function mapping hash codes to table indices.

hash table. Set implementation similar to a direct addressing table. To find the proper position
for an element, the element’s hash code is passed to a hash function.

inorder successor. Next node in the inorder traversal of a tree. A node’s inorder successor is the
leftmost (and hence smallest) element in its right subtree.

key. Item associated with a value in a Map. Each key may appear only once, but more than one
key may be associated with the same value.

linear probing. Open addressing technique in which, if a position is occupied, search continues
to the following position.

memoization. Technique of storing previously-computed values so that they may be looked up
later (Exercise 11.23).

open addressing. Any collision resolution technique, such as linear probing or double hashing,
in which all of the elements are stored directly in the hash table.

ordered list. Set implemented as a linked list with the elements in increasing order.

pigeonhole principle. Principle that, if more than n elements are being distributed into n sets, at
least one set must contain more than one element.

rehash. In a hash table, store all of the elements in a new table.

relatively prime. Of two integers, having no factors other than 1 in common.

set. Collection in which the same element does not appear more than once.

value. Item associated with a key in a Map.

Problems

11.24 Modify the Anagrams program so that anywhere from 2 to 6 people can play.

11.25 Implement the Set interface using an ordered version of an ArrayList.

11.26 Add a method addAll() to our Set interface (Figure 11–4). This should accept
another Set as an argument and add all of the elements of that Set to this one. (For the
mathematically minded, addAll() turns this Set into the union of the two Sets.)
Implement this method for all three Set implementations in this chapter.

11.27 Add a method retainAll() to our Set interface (Figure 11–4). This should accept
another Set as an argument and remove all elements of this Set which are not in that
one. (For the mathematically minded, this turns this Set into the intersection of the two
Sets.) Implement this method for all three Set implementations in this chapter.
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Projects

11.28 Write an UnorderedList class which implements our Set interface but does not require
that its generic type is Comparable.

11.29 Implement hash tables using chaining.

11.30 Implement the game of Geography (Figure 11–43). Your implementation should allow
any number of people to play against the computer. You should be able to find a good
list of city names by searching the web for files called cities.txt.

Geography
Players: 2 or more.

Object: To be the last player eliminated.

Play: The first player names a city. The next player then names another city which starts
with the letter at the end of the previous city name. For example, the first player might say,
‘Portland,’ the next player ‘Denver,’ the next ‘Raleigh,’ and so on.

Elimination: A player is eliminated if she can’t think of a suitable city or if she names a
city that has already been used in the current game.

Figure 11–43: The game of Geography is a good way to pass the time on long
voyages.
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12
Advanced Linear 
Structures

This chapter covers some advanced techniques for using linear structures. Section 12.1 intro-
duces bit vectors, an extension of the idea of direct addressing from Section 11.4. Bit vectors are
used in an application to help us choose a game to play. Section 12.2 discusses techniques for
representing sparse arrays, where almost all of the elements have the same value. Section 12.3
introduces the idea of representing a multidimensional array using a single one-dimensional
array. That section concludes with a new implementation of Tic Tac Toe using the ideas from
this chapter. Section 12.4 covers some advanced algorithms for searching and sorting.

12.1 Bit Vectors

It should come as no surprise that the author has a fairly large collection of games. A small sam-
pling of games, with some of their properties, is listed in Figure 12–1.

When the author gets together with friends, he often has to answer the question, “Which game
shall we play?” Sometimes people want something quick and light that can be played while
waiting for others to arrive. Other times, people are ready to settle down for an evening-long
brain-burner. If, for example, there are five people and they want to play a strategy game taking
1–2 hours, the options are Formula Dé, El Grande, and Puerto Rico. Let’s write a program to list
the appropriate games for any situation.
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We could maintain a set of Game objects, each of which has a field for each of the various
attributes. A more space-efficient option is to maintain, for each game, a single integer encoding all
of the game’s attributes (except the title). This representation is called a bit vector (Figure 12–2).

If we think of each game as having a set of features, we recognize this as a variation of direct
addressing (Section 11.4). For example, the bit vector for Bohnanza represent the set of features:

{3-player, 4-player, 5-player, 6-player, 7-player, less-than-1-hour, medium-difficulty, 
diplomacy, luck}

Bit vectors make it easy to efficiently perform certain set operations, such as intersection and
union. For example, if we want to know what Bohnanza and El Grande have in common, we
take the intersection of their feature sets (Figure 12–3).

If we want to know if a game is suitable for a particular situation, we can make up a bit vector
for the situation (Figure 12–4). The intersection of a game’s bit vector with the situation bit

Game Players Time Difficulty Type

Apples to Apples 4–8 <1 hour low diplomacy

Bamboleo 2–7 <1 hour low dexterity

Bohnanza 3–7 <1 hour medium diplomacy/luck

Carcassonne 2–5 <1 hour medium luck/strategy

Cosmic Wimpout 2–10 <1 hour low luck

Formula Dé 2–10 1–2 hours medium luck/strategy

Give Me the Brain 3–8 <1 hour low luck

El Grande 2–5 1–2 hours high strategy

Lord of the Fries 3–8 <1 hour medium luck

Pitchcar 2–8 <1 hour low dexterity

Puerto Rico 3–5 1–2 hours high strategy

Samurai Swords 2–5 >2 hours high strategy

Settlers of Catan 3–4 1–2 hours medium diplomacy/luck/strategy

Starmada 2–8 >2 hours high strategy

Twister 2–4 <1 hour low dexterity

Figure 12–1: A few games from the author’s collection.
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Figure 12–2: In a bit vector, each bit represents a single feature of the game. For
example, El Grande can take 2, 3, 4, or 5, players, plays in 1–2 hours, is of high
difficulty, and involves strategy.

Figure 12–3: The bitwise intersection of two bit vectors tells what elements two sets
have in common. In the resulting bit vector, the bits that are on in both of the others are
on. Here, Bohnanza and El Grande can both handle 3–5 players.

Figure 12–4: If a game’s intersection with the situation equals the situation, the game
is suitable. It does not matter that this situation does not specify a desired difficulty level.

10 3 2 1

players

4567891–22� 1�

time

Bohnanza

El Grande

H M L

0 0 1 0 0 0 1 0 0 0 1 1 1 1 1 0 01 1

0 1 0 0 0 1 0 0 0 0 0 0 1 1 1 1 00 0

0

1

difficulty

strategy luck diplomacy dexterity

10 3 2 1

players

456789

time

Bohnanza

El Grande

H M L

0 0 1 0 0 0 1 0 0 0 1 1 1 1 1 0 01 1

0 1 0 0 0 1 0 0 0 0 0 0 1 1 1 1 00 0

0

1

difficulty

strategy luck diplomacy dexterity

intersection 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 00 00

2� 1�1–2

10 9 3 2 145678

El Grande

situation

H M

difficulty time players

L

0 1 0 0 0 1 0 0 0 0 0 0 1 1 1 0 00 0

0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 00 0

1

1

strategy luck diplomacy dexterity

intersection 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 00 01

2� 1�1–2



328 Chapter 12  •  Advanced Linear Structures

vector tells what they have in common. If this is equal to the situation bit vector, the game has
all of the required features.

In Java, we can represent a bit vector with up to 32 features using an int. The bit vector

00000000000000000000000000000100

represents the number 4 in binary. In our example, this bit vector also represents a 3-player
game, with the extra bits at the left being ignored.

In binary, the number 2i is represented by a bit vector with only the ith bit from the right turned
on. Put another way, it is a 1 with i zeroes after it.

Java has an operator << for shifting a pattern of bits to the left a given number of spaces. If we
want a bit vector with only the fifth bit turned on, we use the Java expression:

1 << 5

If we want several bits turned on, we simply take the union of the bit vectors for the individual
bits. The bitwise or operator | allows us to find the union of two bit vectors. For example, to pro-
duce the bit vector

00000000000000000000001000100001

we use the Java expression:

(1 << 0) | (1 << 5) | (1 << 9)

Manipulating individual bits like this manually would be incredibly tedious and error prone.
Instead, we define constants (Figure 12–5). The static method playerRange() is provided
because many games can accept a range of player numbers.

1 /** A game with this feature takes less than an hour to play. */
2 public static final int LESS_THAN_ONE_HOUR = 1 << 10;
3
4 /** A game with this feature takes an hour or two to play. */
5 public static final int ONE_TO_TWO_HOURS = 1 << 11;
6
7 /** A game with this feature takes over two hours to play. */
8 public static final int OVER_TWO_HOURS = 1 << 12;
9

10 /** A game with this feature is easy to pick up. */
11 public static final int LOW_DIFFICULTY = 1 << 13;
12

Figure 12–5: Constants and the playerRange() function make specifying bit
vectors for games much easier. (Part 1 of 2)
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Now we can specify the bit vector for Lord of the Fries simply as:

playerRange(3, 8) | LESS_THAN_AN_HOUR | MEDIUM_DIFFICULTY | LUCK

Java’s bitwise operators are listed in Figure 12–6. Almost all modern processors have built-in
instructions for these operations, so they are extremely fast.

Figure 12–7 provides some examples of these operations.

A couple of things to watch out for:

• Be careful not to confuse the logical and operator && with the bitwise and operator &.
The former is used with boolean values, the latter with numerical primitive types. For
added confusion, if you use & on two boolean values, you’ll get their logical and—but
not short-circuited! A similar warning applies to || vs |.

13 /** A game with this feature is of moderate difficulty. */
14 public static final int MEDIUM_DIFFICULTY = 1 << 14;
15
16 /** A game with this feature take considerable study to play. */
17 public static final int HIGH_DIFFICULTY = 1 << 15;
18
19 /** A game with this feature involves agility or a steady hand. */
20 public static final int DEXTERITY = 1 << 16;
21
22 /** A game with this feature involves talking people into things. */
23 public static final int DIPLOMACY = 1 << 17;
24
25 /** A game with this feature involves significant randomness. */
26 public static final int LUCK = 1 << 18;
27
28 /** A game with this feature involves careful planning. */
29 public static final int STRATEGY = 1 << 19;
30
31 /**
32  * Return a bit vector with a feature for each number of players
33  * from minPlayers through maxPlayers.
34  */
35 public static int playerRange(int minPlayers, int maxPlayers) {
36   int result = 0;
37   for (int i = minPlayers; i <= maxPlayers; i++) {
38     result |= 1 << (i - 1);
39   }
40   return result;
41 }

Figure 12–5: Constants and the playerRange() function make specifying bit
vectors for games much easier. (Part 2 of 2)
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Operator Description Notes

& bitwise and result is on where both operands are on
for taking intersections

| bitwise or result is on where at least one operand is on
for taking unions

^ bitwise exclusive or (xor) result is on where exactly one operand is on

~ bitwise not unary
result is on where operand is off

<< shift left shifts in zero from right

>> shift right copies leftmost bit
use with numbers

>>> shift right shifts in zero from left
use with bit vectors

Figure 12–6: Bitwise operators. Assignment operators such as & = and << = are
also available.

Expression Bit Vector

a 10000000101010101010101000000000

b 00000000110011001100110000000000

a & b 00000000100010001000100000000000

a | b 10000000111011101110111000000000

a ^ b 10000000011001100110011000000000

~a 01111111010101010101010111111111

a << 3 00000101010101010101000000000000

a >> 3 11110000000101010101010101000000

a >>> 3 00010000000101010101010101000000

Figure 12–7: Examples of bitwise operations. The values of a and b are arbitrary.



Section 12.1 Bit Vectors 331

• There are two different shift right operators, which differ in the way they handle the
leftmost bit. Suppose we have the bit vector:

10000000010000000000001000000000

Shifting it two places to the right with >>> does what we would expect:

00100000000100000000000010000000

In contrast, shifting it two places to the right with >> copies the leftmost bit:

11100000000100000000000010000000

This option is included because bitwise operators are also sometimes used to multiply
and divide ints by powers of two. In decimal notation, we can multiply a number by 103 =
1,000 by shifting it three places left. Similarly, in binary, we can multiply a number
by 23 = 8 by shifting it three places left. To divide by a power of two, we shift to the
right.

Computers represent negative integers using a special binary notation which is beyond
the scope of this book. The important detail here is that the leftmost bit is a 1 in a nega-
tive number, so shifting a negative number to the right with >>> would incorrectly pro-
duce a positive result. The >> works correctly for division.

We should use >> for numerical division by powers of two, but >>> for shifting bit vec-
tors to the right.

We now know more than enough to write the GameCollection class (Figure 12–8). The only
nonconstant field is games, which maps Strings (game titles) to Integers (bit vectors).

1 import java.util.Map;
2 import java.util.TreeMap;
3
4 /** A bunch of games and their associated attributes. */
5 public class GameCollection {
6
7   // See Figure 12–5 for constants
8
9 /** Map associating game titles with attribute bit vectors. */

10 private Map<String, Integer> games;
11
12   /** A GameCollection is initially empty. */
13   public GameCollection() {
14     games = new TreeMap<String, Integer>();
15   }
16

Figure 12–8: The GameCollection class. (Part 1 of 2)
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The loop on lines 27–31 iterates through the entries in this map. Each value of game is of type
Map.Entry, so we can extract the key (title) or value (attribute bit vector) of the entry as needed.

A main() method which adds all of the games in Figure 12–1 and then invokes findGames()
is shown in Figure 12–9.

17  /** Add a new game to this collection. */
18   public void addGame(String title, int attributes) {
19     games.put(title, attributes);
20   }
21
22   /**
23    * Print the names of games which have all of the features in the
24    * constraints bit vector.
25    */
26   public void findGames(int constraints) {
27     for (Map.Entry<String, Integer> game : games.entrySet()) {
28       if ((constraints & game.getValue()) == constraints) {
29         System.out.println(game.getKey());
30       }
31     }
32   }
33
34   // See Figure 12–5 for the playerRange() method
35
36 }

1 /** Create a GameCollection, fill it, and find some for today. */
2 public static void main(String[] args) {
3   GameCollection collection = new GameCollection();
4   collection.addGame("Apples to Apples",
5                      playerRange(4, 8) | LESS_THAN_ONE_HOUR
6                      | LOW_DIFFICULTY | DIPLOMACY);
7   collection.addGame("Bamboleo",
8                      playerRange(2, 7) | LESS_THAN_ONE_HOUR
9                      | LOW_DIFFICULTY | DEXTERITY);

10   collection.addGame("Bohnanza",
11                      playerRange(3, 7) | LESS_THAN_ONE_HOUR
12                      | MEDIUM_DIFFICULTY | DIPLOMACY | LUCK);
13   collection.addGame("Carcassonne",
14                      playerRange(2, 5) | LESS_THAN_ONE_HOUR
15                      | MEDIUM_DIFFICULTY | LUCK | STRATEGY);

Figure 12–9: After adding a bunch of games to the database, we can ask for one
fitting certain constraints. (Part 1 of 2)

Figure 12–8: The GameCollection class. (Part 2 of 2)
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BitSets

If we want to keep track of a set with more than 32 potential elements, we can use the BitSet
class in the java.util package (Figure 12–10). A BitSet represents a long bit vector as a series of
binary numbers. It performs arithmetic (similar to that we’ll do in Section 12.3) to find the right
bit in the right number. Like an ArrayList, a BitSet can also grow as necessary. Of course, since

16  collection.addGame("Cosmic Wimpout",
17 playerRange(2, 10) | LESS_THAN_ONE_HOUR
18 | LOW_DIFFICULTY | LUCK);
19   collection.addGame("Formula De",
20                      playerRange(2, 10) | ONE_TO_TWO_HOURS
21                      | MEDIUM_DIFFICULTY | LUCK | STRATEGY);
22   collection.addGame("Give Me the Brain",
23                      playerRange(3, 8) | LESS_THAN_ONE_HOUR
24                      | LOW_DIFFICULTY | LUCK);
25   collection.addGame("El Grande",
26                      playerRange(2, 5) | ONE_TO_TWO_HOURS
27                      | HIGH_DIFFICULTY | STRATEGY);
28   collection.addGame("Lord of the Fries",
29                      playerRange(3, 8) | LESS_THAN_ONE_HOUR
30                      | MEDIUM_DIFFICULTY | LUCK);
31   collection.addGame("Pitchcar",
32                      playerRange(2, 8) | LESS_THAN_ONE_HOUR
33                      | LOW_DIFFICULTY | DEXTERITY);
34   collection.addGame("Puerto Rico",
35                      playerRange(3, 5) | ONE_TO_TWO_HOURS
36                      | HIGH_DIFFICULTY | STRATEGY);
37   collection.addGame("Samurai Swords",
38                      playerRange(2, 5) | OVER_TWO_HOURS
39                      | HIGH_DIFFICULTY | STRATEGY);
40   collection.addGame("Settlers of Catan",
41                      playerRange(3, 4) | ONE_TO_TWO_HOURS
42                      | MEDIUM_DIFFICULTY | DIPLOMACY | LUCK
43 | STRATEGY);
44   collection.addGame("Starmada",
45                      playerRange(2, 8) | OVER_TWO_HOURS
46                      | HIGH_DIFFICULTY | STRATEGY);
47   collection.addGame("Twister",
48                      playerRange(2, 4) | LESS_THAN_ONE_HOUR
49                      | LOW_DIFFICULTY | DEXTERITY);
50   collection.findGames(playerRange(5, 5) | ONE_TO_TWO_HOURS
51 | STRATEGY);
52

Figure 12–9: After adding a bunch of games to the database, we can ask for one
fitting certain constraints. (Part 2 of 2)
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BitSet is an encapsulated class, we don’t have to think about the details;  we can simply treat it
as an arbitrarily long bit vector.

The and(), or(), and xor() methods have return types of void. Rather than returning a new
BitSet, each of these modifies the existing BitSet. For example, if a is the BitSet 101100 and b is
the BitSet 1010, then invoking a.or(b) changes a to 101110.

The cardinality() method returns the number of bits in a BitSet which are on. In contrast,
length() returns the number of bits which are “in use,” ignoring any leading zeroes. Continu-
ing the example above, b.cardinality() returns 2, but b.length() returns 4.

The other methods are self-explanatory, given that int arguments specify indices in the BitSet.
See the API for additional details and a few other methods.

Exercises
12.1 What is the value of 23 & 17?

12.2 What is the value of 23 | 17?

12.3 What is the value of 23 ^ 17?

12.4 What is the value of 23 << 5?

12.5 What is the value of 23 >> 2?

12.6 Give an expression that returns true if and only if the int n represents an empty bit
vector.

12.7 Give an expression that returns true if and only if bit i of int n is on.

Figure 12–10: UML class diagram showing some of the methods in the
java.util.BitSet class.

java.util

BitSet

BitSet()
and(BitSet):void
cardinality():int
clear():void
flip(int):void
get(int):boolean
intersects(BitSet):boolean
isEmpty():boolean
length():int
or(BitSet):void
set(int,boolean):void
xor(BitSet):void
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12.8 Given an int representation of a game, write an expression that returns true if and only
if the game does not involve luck.

12.9 Speculate on why the player numbers in Figure 12–2 increase from right to left rather
than left to right.

12.10 The GameCollection class uses a TreeMap. A HashMap would also work. Why would
a HashMap be less efficient?

12.11 There are &= and |= operators, but there is no ~= operator. Why?  (Hint: Try using ~=
in a meaningful expression.)

12.12 Discuss whether the bitwise operators, such as &, are short-circuited.

12.13 Given two values a and b, a xor b is true when exactly one of a or b is true. The bitwise
xor operator is ^. How would you find the logical xor of two boolean values?

12.2 Sparse Arrays

Suppose a city express bus runs down Main Street every ten minutes. To stay on schedule, it is
supposed to stop at certain cross streets at certain times (Figure 12–11).

We could represent this information using direct addressing:  create an array of length 24, with
the time for each stop at the appropriate index (Figure 12–12). All of the other elements of the
array would be set to some other value, such as –1.

Cross Street Time

2nd :00

9th :03

14th :05

17th :06

23rd :09

Figure 12–11: Schedule for the city express bus running down Main Street.

Figure 12–12: The bus schedule represented as a simple array. The shaded
elements, where there are no stops, hold the value –1.

0 3 5 6 9
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This works, but it wastes a lot of space. The problem is that the array is sparse—almost all of the
elements have the same value. A better representation for a sparse array is to keep track of the
exceptions to this default value using a Map (Figure 12–13). In our example this uses space lin-
ear in the number of stops, rather than in the number of cross streets.

This improved representation of sparse arrays can also increase speed. If we want to iterate
through the stops, we don’t have to waste time on the intervening streets. This idea of saving
time by skipping over irrelevant data is worth remembering. We will see it again in Chapter 16.

Now suppose we have buses running up and down various streets and avenues of the city. We
need to keep track of the locations of the stops within a two-dimensional grid. We could use the
same idea as before, mapping two-dimensional coordinates to times. (More realistically, the value
at each stop would be a Map itself, associating times with bus numbers.)  This saves space over a
simple array representation, but it does not allow us to easily traverse a single row or column.

The solution to this problem is sketched in Figure 12–14. If we want to, for example, traverse
column 2, we go to position 2 in the column header array across the top, then follow the chain of
references down to the column footer array at the bottom. This visits only the exceptional ele-
ments in this column.

The individual exceptional elements are represented by quadruply linked list nodes (Figure
12–15). Each one knows its location as well as its neighbors above, below, to the left, and to the
right. As in a doubly linked list, once we find such a node, we can remove it without having to
know its predecessor. This is especially important here, because if we find a node by going
down through a column, we don’t want to have to search through the row to find its neighbor to
the left.

Another advantage of this representation is that we can traverse a row or column in either
direction.

Figure 12–13: UML class diagram of a proposed SparseArray class. The two
arguments to the constructor are the size of the array and the default value.

SparseArray

defaultValue:E
exceptions:Map<Integer,E>
SparseArray(int,E)
get(int):E
getExceptions():Map<Integer,E>
iterator():Iterator<E>
set(int,E):void

E

<<interface>>
Iterable

E
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Exercises

12.14 If the field exceptions in Figure 12–13 is a TreeMap, what is the order of the running
time of the get() and set() methods?

12.3 Contiguous Representation 
of Multidimensional Arrays

Recall from Figure 2–7 that a multidimensional array in Java is normally represented as an
array of arrays. It is also possible to represent such an array as a single one-dimensional array

Figure 12–14: Conceptual drawing of a sparse, two-dimensional array. The arrays
around the edges are headers and footers for the rows and columns. Only the shaded
elements are examined in a top-down traversal of column 2.

Figure 12–15: A node in a sparse two-dimensional array is quadruply linked. It
contains references to its neighbors in four directions. The neighbors themselves are
not shown here.
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(Figure 12–16). The rows are placed one right after another in memory, so this is called a con-
tiguous representation.

The only challenge here is determining which elements correspond in the two arrays. This is
resolved with a simple formula. The element at position <r, c> in the array of arrays is at posi-
tion r⋅w + c in the contiguous array, where w is the width of the array (number of columns). The
term r⋅w gets us to the beginning of the right row. Adding c then gets us to the right position
within that row.

This formula can be generalized to higher dimensions. Suppose we have an n-dimensional array
with dimensions d0, d1, ..., dn–1. The element at position <i0, i1, ..., in–1> is found at index:

The second large symbol above is an upper-case Greek letter pi. It indicates the product of many
factors in the same way that an upper-case sigma indicates the sum of many terms. Pi stands for
“product,” sigma for “sum.”

For example, in a 8 × 10 × 6 array, the element at position <2, 4, 1> is at index:

This conversion seems like a lot of work. Is it worth the effort?  Yes and no.

There are some advantages to this representation. It saves some space and time by eliminating
references. By ensuring that all of the data are in one contiguous block of memory, it also
ensures good cache performance. Finally, traversing every element of the array becomes slightly
simpler—it’s a single for loop, rather than one nested loop for each dimension.

On the other hand, none of these advantages is huge. The number of references followed to
reach a particular element in an array of arrays representation is the same as the number of
dimensions. High-dimensional arrays are rare. If we allocate an array of arrays all at once (as we
usually do), it is likely to all be placed in the same area of memory, so cache performance is not
an issue. Finally, a few nested for loops may be less complicated than the conversion between
coordinate systems.

Figure 12–16: A multidimensional array can be represented as an array of arrays
(left) or as a single one-dimensional array (right).
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It is usually just as well to use the array-of-arrays representation and let the compiler handle the
coordinates. Still, the idea of contiguous representation can be useful, as we’ll see in the next
example and again in Section 14.1.

Example: Tic Tac Toe Revisited
Recall the game of Tic Tac Toe from Figure 10–25. Our implementation in Section 10.3 used an
array of arrays of characters to represent the board. We will now write a different version, using
the ideas of bit vectors and contiguous representation from this chapter.

We interpret the board as a set of nine squares, numbered 0 through 8. It can therefore be repre-
sented contiguously by an array of length 9. We could use a contiguous array of chars, but we go
one step farther:  we use bit vectors of length 9.

There is one bit vector for the squares occupied by X and another for the squares occupied by O.
If we want to know which squares are occupied by either player (to determine whether a move is
legal), we take the union (bitwise or) of these two bit vectors.

The code for the new program is given in Figure 12–17

1 import java.util.Scanner;
2
3 /** The game of Tic Tac Toe. */
4 public class TicTacToe {
5
6   /** For reading from the console. */
7   public static final Scanner INPUT = new Scanner(System.in);
8
9   /** Bit vector of squares occupied by X. */

10   private int xSquares;
11
12   /** Bit vector of squares occupied by O. */
13   private int oSquares;
14
15   /** Bit vector of all nine squares. */
16   private int allSquares;
17
18   /** Bit vectors of winning triples of squares. */
19   private int[] winningLines;
20
21 /** The board is initially empty. */
22 public TicTacToe() {
23     xSquares = 0;
24     oSquares = 0;
25     allSquares = (1 << 9) - 1;
26 winningLines = new int[8];

Figure 12–17: The Tic Tac Toe program using bit vectors. (Part 1 of 4)
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27  winningLines[0] = 1 | (1 << 1) | (1 << 2); // Top row
28 winningLines[1] = winningLines[0] << 3; // Middle row
29     winningLines[2] = winningLines[1] << 3; // Bottom row
30     winningLines[3] = 1 | (1 << 3) | (1 << 6); // Left column
31     winningLines[4] = winningLines[3] << 1; // Middle column
32     winningLines[5] = winningLines[4] << 1; // Right column
33     winningLines[6] = 1 | (1 << 4) | (1 << 8); // Diagonal
34     winningLines[7] = (1 << 2) | (1 << 4) | (1 << 6); // Diagonal
35   }
36
37   /** Return true if the game is over. */
38   public boolean gameOver() {
39     if (score() != 0) {
40       return true;
41     }
42     return (xSquares | oSquares) == allSquares;
43   }
44
45 /** Return the value of the current position if it is O's turn. */
46   protected int minimaxForO() {
47     int score = score();
48     if (gameOver()) {
49       return score;
50     }
51     int bestScore = 2;
52     int occupied = xSquares | oSquares;
53     for (int move = 1; move < allSquares; move <<= 1) {
54       if ((occupied & move) == 0) {
55         oSquares |= move;       // Play the move
56         score = minimaxForX();
57         if (score < bestScore) {
58           bestScore = score;
59         }
60 oSquares ^= move;       // Unplay the move
61       }
62     }
63     return bestScore;
64   }
65
66   /** Return the value of the current position if it is X's turn. */
67 protected int minimaxForX() {
68     int score = score();
69     if (gameOver()) {
70 return score;
71     }

Figure 12–17: The Tic Tac Toe program using bit vectors. (Part 2 of 4)
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72 int bestScore = -2;
73 int occupied = xSquares | oSquares;
74     for (int move = 1; move < allSquares; move <<= 1) {
75       if ((occupied & move) == 0) {
76         xSquares |= move;       // Play the move
77         score = minimaxForO();
78         if (score > bestScore) {
79           bestScore = score;
80         }
81         xSquares ^= move;       // Unplay the move
82       }
83     }
84     return bestScore;
85   }
86
87 /** Play one game. */
88   public void play() {
89     char player = 'X';
90     for (int move = 0; move < 9; move++) {
91       if (gameOver()) {
92         return;
93       }
94       if (player == 'X') {
95         playBestMove();
96         player = 'O';
97       } else {
98         System.out.println(this);
99         System.out.print("Enter move (0-8): ");

100         int index = INPUT.nextInt();
101         oSquares |= 1 << index;
102         player = 'X';
103       }
104     }
105   }
106
107 /** Find the best move for X and play it on the board. */
108   protected void playBestMove() {
109     int score;
110     int bestScore = -2;
111     int bestMove = -1;
112     int occupied = xSquares | oSquares;
113     for (int move = 1; move < allSquares; move <<= 1) {
114       if ((occupied & move) == 0) {
115         xSquares |= move;       // Play the move
116         score = minimaxForO();

Figure 12–17: The Tic Tac Toe program using bit vectors. (Part 3 of 4)
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117 if (score > bestScore) {
118           bestScore = score;
119 bestMove = move;
120 }
121 xSquares ^= move;       // Unplay the move
122 }
123     }
124     xSquares |= bestMove;       // Play the move
125   }
126
127   /** Return 1 if X has won, -1 if O has won, and 0 otherwise. */
128   public int score() {
129     for (int line : winningLines) {
130       if ((xSquares & line) == line) {
131         return 1;
132       }
133       if ((oSquares & line) == line) {
134         return -1;
135       }
136     }
137     return 0;
138   }
139
140   public String toString() {
141     String result = "";
142     int column = 0;
143     for (int square = 1; square < allSquares; square <<= 1) {
144       if ((xSquares & square) != 0) {
145         result += 'X';
146       } else if ((oSquares & square) != 0) {
147         result += 'O';
148       } else {
149         result += '.';
150       }
151       column++;
152       if (column % 3 == 0) { result += "\n"; }
153     }
154     return result;
155   }
156
157  // See Figure 10–27 for the main() method
158 }

Figure 12–17: The Tic Tac Toe program using bit vectors. (Part 4 of 4)
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When we need to iterate through the squares on the board, we use a for loop of the form:

for (int move = 1; move < allSquares; move <<= 1) { ... }

Within the body of such a loop, move is the bit vector ending in 000000001 on the first pass,
000000010 on the second pass, and so on.

Exercises
12.15 A contiguous array of length r⋅c is used to represent a two-dimensional array with r

rows and c columns. Give formulae for finding the row and column of element i in the
contiguous array.

12.16 In a triangular array of width w, the first row has w columns, the second row w – 1 columns,
and so on down to the last row, which has one column. This can be represented as one con-
tiguous array. Devise a formula for finding the index of the element in row r, column c.

12.17 Would a contiguous representation work well in general for ragged arrays?  Explain.

12.18 Explain lines 25 and 120 of the Tic Tac Toe program in Figure 12–17.

12.4 Advanced Searching and Sorting

This section presents additional algorithms for the searching and sorting problems introduced in
Chapter 8. These algorithms rely on making an additional assumption about the data. Specifi-
cally, they assume that the data are uniformly distributed across a known range. For example, the
data might all be real numbers which are greater than or equal to zero and less than one, with any
number within this range equally likely to occur.

Interpolation Search
Suppose we want to look up a name in a phone book. We would not open the book to the first
page and start reading names (linear search). We would do something more akin to binary
search:  open the book in the middle, then move left or right.

We would probably be even more sophisticated than this. If the name we are looking for starts
with ‘T,’ we would open the book about three quarters of the way through. In other words, we
would use the position of the letter in the alphabet to make an educated guess about the location
of the name in the book.

In doing this, we are implicitly assuming that all first letters are equally likely—that names are
uniformly distributed within the alphabet. This is not precisely true (there are more names start-
ing with ‘S’ than with ‘I’), but it’s close enough to make this trick useful.

This improvement on the binary search algorithm is called interpolation search. It differs from
binary search in that, instead of choosing the position in the middle of the range being searched,
we estimate where the target is likely to fall within that range.

The code is given in Figure 12–18. The key computation is on lines 14–15. On line 13, we
determine the fraction of the array region in question which is likely to be less than or equal to
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target. For example, if lo is 0, hi is 50, and target is 35, we expect to find target about
35/50 of the way along the region, so fraction is 0.7. Line 14 translates this back into an index.

In the worst case, interpolation search takes linear time. This worst case occurs only if the
assumption of uniform distribution is deeply wrong. On average, interpolation search takes time
in O(log (log n)), which is extremely small. The proof is beyond the scope of this book.

A Lower Bound on Comparison Sorting

A sorting algorithm in which we examine the data only by comparing them to each other is
called a comparison sort. All of the sorting algorithms we have seen so far (insertion sort,
merge sort, and Quicksort) are comparison sorts. Merge sort has a worst-case running time in
Θ(n log n). Can a comparison sort do better than this?  Surprisingly, we can prove that the
answer is “No.”

Suppose we have three numbers to sort:  a, b, and c. There are six possibilities for the correct
order: abc, acb, bac, bca, cab, or cba. (For simplicity, we assume there are no duplicate num-
bers.)  For example, if a < b, b > c, and a > c, the correct order is cab.

1 public static boolean interpolationSearch(double[] data, 
2 double target) {
3   int bottom = 0;
4   int top = data.length - 1;
5   while (bottom <= top) {
6     double lo = data[bottom];
7     double hi = data[top];
8     if (lo == hi) {
9       return target == lo;

10     }
11     if ((target < lo) || (target > hi)) {
12       return false;
13     }
14     double fraction = (target - lo) / (hi - lo);
15     int midpoint = bottom + (int)((top - bottom) * fraction);
16     if (target < data[midpoint]) {
17       top = midpoint - 1;
18     } else if (target == data[midpoint]) {
19       return true;
20     } else {
21       bottom = midpoint + 1;
22     }
23   }
24   return false;
25 }

Figure 12–18: Interpolation search.
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In general, if there are n items to be sorted, there are n! possibilities for the correct order. Every
time we make a comparison, we rule out some of the possible orders. In the example above, once
we see that a < b, we know that the only remaining possible orders are abc, acb, and cab.

In the worst case, we rule out at most half of the remaining orders with each comparison. (If we
rule out, say, two-thirds of them, this isn’t the worst-case—the worst case is when the compari-
son turns out the other way and we rule out only one-third.)  The number of comparisons we
have to make, and therefore the running time of the algorithm, is at least the number of times we
have to halve n! before it gets down to 1. In other words, it is in Ω(log2 (n!)).

At this point it is necessary to invoke a ridiculously obscure mathematical fact that the reader
could not possibly be expected to know. Stirling’s approximation tells us that:

log(n!) ∈ Θ(n log n).

It follows that the worst-case running time of any comparison sort is in Ω(n log n). We can’t
hope to do better than merge sort.

While the proof is beyond the scope of this book, it can also be shown that the average-case run-
ning time of any comparison sort is also in Ω(n log n).

Bucket Sort
We can beat the Ω(n log n) lower bound on average sorting time with a sorting algorithm which
is not a comparison sort. We do this by making an additional assumption about the data. The
assumption we make is the same one we made for interpolation search:  the data are numbers
uniformly distributed across some range.

The algorithm, bucket sort, accepts an array of n numbers (Figure 12–19). For simplicity,
assume that they are doubles, each greater than or equal to zero and less than one. We first create

Figure 12–19: Bucket sort. The numbers in the data array (top) are copied into
various buckets (middle), approximately one per bucket. The contents of the buckets
are then sorted and copied back into the original array (bottom). Dashes and dots are
merely to make the arrows easier to distinguish.
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a list of n buckets. Traversing the data, we place each number into a bucket, with lower numbers
near one end, higher numbers near the other end. Some buckets may contain more than one
number, while others may be empty. Finally, we go through the buckets. Each bucket is sorted
and its contents copied in order back into the original array.

The assumption comes into play in placing the numbers into the buckets. A number x is placed
in bucket xn. We expect the number 0.75, for example, to end up about three-quarters of the
way down the array, so we place it in a bucket at that position. Because we are performing arith-
metic (multiplication) on the data, rather than merely comparing them to each other, bucket sort
is not a comparison sort.

Like positions in a hash table, the buckets are not expected to contain many elements each. Spe-
cifically, placing n numbers in n buckets, we expect to get about one number per bucket. It there-
fore does not matter much which algorithm we use to sort the buckets. Insertion sort is a good
choice, because it works quickly on very short lists.

Code for the algorithm is given in Figure 12–20.

We represent the buckets as an ArrayList of SortableLinkedLists. Lines 7–11 create the buckets.
Lines 12–14 copy the numbers into the buckets. Each bucket is sorted on line 17. The elements
of the sorted bucket are then copied back into data.

1 /**
2  * Arrange the numbers in data from smallest to largest.
3  * Assume each is 0.0 <= x < 1.0.
4  */
5 public static void bucketSort(double[] data) {
6   int n = data.length;
7   List<SortableLinkedList<Double>> buckets
8     = new ArrayList<SortableLinkedList<Double>>();
9   for (int i = 0; i < n; i++) {

10     buckets.add(new SortableLinkedList<Double>());
11   }
12   for (int i = 0; i < n; i++) {
13     buckets.get((int)(data[i] * n)).add(data[i]);
14   }
15   int i = 0;
16   for (SortableLinkedList<Double> bucket : buckets) {
17     bucket.insertionSort();
18     for (Double d : bucket) {
19       data[i] = d;
20       i++;
21     }
22   }
23 }

Figure 12–20: Code for the bucket sort algorithm.
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What is the running time of bucket sort?  Creating the buckets and placing the numbers in the
buckets take time in Θ(n). Copying the numbers back into the array also takes linear time. The
only tricky part is sorting the buckets. In the worst case, all of the numbers end up in the same
bucket, which takes time in Θ(n2) to sort using insertion sort. This is unlikely if our assumption
of uniform distribution is correct. Using some statistics beyond the scope of this book, it is pos-
sible to prove that the average total time to sort all of the buckets is in Θ(n), so the average run-
ning time for bucket sort is linear.

Exercises

12.19 Why are lines 7–9 necessary in Figure 12–18?

12.20 Describe an input (an array of length 3 and a target) for which interpolation search must
examine every element of the array.

12.21 Find a number n such that log2 (log2 n) is 1. Do the same for 2 through 5.

12.22 Can interpolation search be modified to search any array of Comparables?  Explain.

12.23 Does the proof about the worst-case time of comparison sorts hold if the data may con-
tain duplicate elements?  Explain.

12.24 Explain why a LinkedList is a better choice than an ArrayList for representing each
bucket in bucket sort.

12.25 What is the order of the worst-case running time for bucket sort if the buckets are sorted
using merge sort instead of insertion sort?

12.26 Can bucket sort be used to sort an array of any Comparable type?  Explain.

Summary

A bit vector is a good data structure for representing a set of boolean features. Set operations
such as union and intersection can be performed easily and efficiently. Like many other lan-
guages, Java provides a variety of bitwise operators for manipulating bits within an int. The
java.util.BitSet class is useful for bit vectors too long to fit in a single int.

If an array is sparse, representing every element explicitly wastes space. A better option is to
store the default value along with a list of exceptions. For two-dimensional sparse arrays, a rep-
resentation involving quadruply linked nodes allows easy traversal along any row or column.

A multidimensional array can be represented as a single contiguous array. While this is usually
not worth the extra code complexity for simple rectangular arrays, the idea can come in handy.
We will see this again in Section 14.1.

Interpolation search is a refinement of binary search. Making the assumption that the data are
evenly distributed across some range, it makes an educated guess as to where the target is
located in the array. Interpolation search starts with this guess; in contrast, binary search starts in
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the middle of the array. Like binary search, interpolation search takes linear time in the unlikely
worst case, but its average-case performance is in O(log (log n)).

A comparison sort is a sorting algorithm which examines the data only by comparing them to
each other. All sorting algorithms in previous chapters are comparison sorts. The average-case
and worst-case running time of any comparison sort must be in Ω(n log n).

Bucket sort is not a comparison sort. It works by distributing the data into a number of buckets,
sorting the buckets, and then copying the bucket contents back into the array. On average, there
is only one item per bucket, so sorting them does not take much time. The average-case running
time of bucket sort is in Θ(n). In the worst case, all of the data may end up in the same bucket,
giving a running time of Θ(n2), but this is unlikely if the assumption of uniform distribution is
anywhere close to correct.

Vocabulary

bit vector. Condensed direct addressing table in which a single bit is allocated for each element.

bucket sort. Sorting algorithm that distributes elements into buckets, sorts the buckets, and then
copies them back into the original array.

comparison sort. Any sorting algorithm in which the elements are examined only by comparing
them to each other (as opposed to doing arithmetic on them). Insertion sort, merge sort, and
Quicksort are comparison sorts, but bucket sort is not.

contiguous representation. Representation of a complicated data structure in a single array.
Arithmetic is used, rather than references, to locate elements.

interpolation search. Search algorithm similar to binary search, in which arithmetic is used to
estimate the position of the target within the region being searched.

sparse. Of an array, having the same value at almost all positions.

Stirling’s approximation. log(n!) ∈ Θ(n log n)

uniformly distributed. Having any member of a set (or a range of numbers) equally likely to
occur. For example, rolling a fair die many times should produce a uniform distribution over the
set {1, 2, 3, 4, 5, 6}. In contrast, in many sums of two die rolls, 7 would occur much more fre-
quently than 11.

Problems

12.27 Modify the GameCollection program so that it uses BitSets instead of ints for the bit
vectors. The clone() method of the BitSet class returns an identical copy of the BitSet;
the return type of this method is Object, so you’ll have to cast the result to a BitSet.
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12.28 Implement the SparseArray class illustrated in Figure 12–13. Take care that, after
set() is used to set some element to the default value, there is no longer an entry in
exceptions for that element.

12.29 Write a comparison sort that works on arrays of exactly four elements without using
any kind of loop or recursion.

12.30 Write a version of bucketSort() using classes from java.util, rather than our own
classes. Do this in a separate directory so that, when you refer to a class like ArrayList,
Java uses the version from java.util rather than our version. It will help to import
java.util.*. Since you know the length of buckets in advance, you can prevent any
stretching by using the ArrayList constructor that allows you to specify the capacity.
The API for the Collections class may be useful.

Projects

12.31 Implement the two-dimensional sparse array representation outlined in Section 12.2.
Include a UML class diagram of your classes.

12.32 Modify the bucketSort() method (Figure 12–20) so that the data can be distributed
across any range. Take the minimum and maximum values in the array as the bound-
aries of the range. Your method should handle the possibility that some or all of the
data are negative. How does this affect the running time of the algorithm?
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13
Strings

This chapter covers special topics related to the widely used String class. Section 13.1 discusses
this class and the related StringBuilder class. Section 13.2 presents three algorithms for string
matching, which is the problem of determining where (if anywhere) a given pattern string appears
in a longer text string.

13.1  Strings and StringBuilders

As described in Appendix A, there is some special syntax for using the String class. The double-
quote syntax allows us to create an instance of the String class without using the keyword new.
The + operator allows us to easily concatenate Strings. Thus, we can say

String sport = "foot" + "ball";

instead of the much more cumbersome:

String sport = new String(new char[] {'f', 'o', 'o', 't'});
sport = sport.concat(new String(new char[] {'b', 'a', 'l', 'l'});

We saw in Section 2.1 that Strings are immutable. Once a String is created, it cannot be modi-
fied. This makes it dangerous to use == to compare Strings, but allows Java to sometimes save
space by not storing redundant copies of identical Strings.
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The immutability of Strings sometimes has a cost in efficiency. Consider the toString()
method from our ArrayList class in Section 5.3, reproduced in Figure 13–1.

Every time we use the + operator, a new String must be created and the contents of the old String
copied into it. It would be better if we could avoid some of this copying (Figure 13–2). The
built-in StringBuilder class allows us to do just this.

If a String is like an array of characters, a StringBuilder is like an ArrayList of characters. We can
optionally specify the capacity of a StringBuilder as an argument to the constructor, but it can
stretch when necessary. Because the capacity of a StringBuilder doubles when it runs out of room,

1 public String toString() {
2   String result = "[ ";
3   for (int i = 0; i < size; i++) {
4     result += data[i] + " ";
5   }
6   return result + "]";
7 }

Figure 13–1: The toString() method from the ArrayList class uses Strings.

Figure 13–2: The toString() method of an instance of our ArrayList class returns a
String such as "[ a b c d ]". Using Strings (top), it is necessary to create a new
String instance every time new characters are added. A StringBuilder (bottom)
stretches like an ArrayList, so it is not necessary to copy the array every time we add
new characters.
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appending a new character takes constant amortized time. Creating a new String with an extra
character, on the other hand, takes time linear in the number of characters previously in the String.

An improved version of the toString() method using a StringBuilder is given in Figure 13–3.
We should generally write our toString() methods this way.

Some of the methods from the String and StringBuilder classes are given in Figure 13–4. There
are more methods not listed here; we’ll leave the details for the API. The discussion that follows
highlights some information that should let us use these classes more effectively.

Because instances of the String class are immutable, none of the listed methods of the String
class have a return type of void. There would generally be no point in a method which neither
returns a value nor modifies the object on which it is invoked. Instead, many of these methods
return new Strings.

The contains() method returns true if its argument is a substring of this. A substring is a
consecutive sequence of 0 or more characters within a String. For example, the invocation

"bookkeeper".contains("ookkee")

returns true.

The substring() method, given two arguments start and end, returns the substring from
index start up to but not including index end. Thus,

"sesquipedalian".substring(3, 7)

returns characters 3 through 6—that is, "quip".

A substring starting at index 0 is called a prefix. The method startsWith() determines
whether its argument is a prefix. A substring running up against the other end of a String is
called a suffix. The method endsWith() determines whether its argument is a suffix.

To avoid keeping redundant copies of identical Strings, the String class maintains a pool of
instances. If a String expression involving no variables is identical to some instance in this pool,
the value of the expression is a reference to the existing instance instead of a new String. If it is
not, a new instance is added to the pool. To cause any other String instance to be treated this
way, we can invoke its intern() method. Thus, if two Strings a and b are equals(), then

a.intern() == b.intern();

1 public String toString() {
2   StringBuilder result = new StringBuilder("[ ");
3   for (int i = 0; i < size; i++) {
4     result.append(data[i] + " ");
5   }
6   result.append("]");
7   return result.toString();
8 }

Figure 13–3: The toString() method using a StringBuilder.
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The trim() method returns a new String with any spaces, tabs, or newline characters removed
from the ends. For example,

"     dramatic pause     ".trim()

is "dramatic pause".

Many of the methods in the StringBuilder class have the return type StringBuilder. These meth-
ods actually modify the instance on which they are invoked. They could have the return type void,
but for lack of anything else useful to return, they return the object on which they are invoked.

Exercises

13.1 We can’t say

String state = "stressed".reverse();

because the String class has no reverse() method. Show how to accomplish the same
thing using the StringBuilder class.

Figure 13–4: UML class diagram of the String and StringBuilder classes, the Object
class, and some associated interfaces.

<<interface>>
CharSequence

charAt(int):char
length():int

String

String()
String(char[ ])
concat(String):String
contains(CharSequence):boolean
endsWith(String):boolean
equalsIgnoreCase(String):boolean
indexOf(String):int
intern():String
lastIndexOf(String):int
startsWith(String):boolean
substring(int,int):String
toCharArray():char[ ]
toLowerCase():String
toUpperCase():String
trim():String

<<interface>>
Comparable

compareTo(String):int

String
Object

equals(Object):boolean
hashCode():int
toString():String

StringBuilder

StringBuilder()
StringBuilder(int)
StringBuilder(String)
append(String):StringBuilder
capacity():int
delete(int,int):StringBuilder
indexOf(String):int
insert(int,String):StringBuilder
lastIndexOf(String):int
replace(int,int,String):StringBuilder
reverse():StringBuilder
substring(int,int):String
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13.2 Create an immutable version of the Die class from Chapter 1. The roll() method,
instead of modifying the current instance, should return a new one. What methods need
to be removed?

13.3 Look up the getChars() method of the String class in the API. This method has a
return type of void. What is the point of this, when Strings are immutable?

13.2 String Matching

The string matching problem is to find where, if anywhere, a certain pattern appears within a
certain text. For example, the pattern

and

appears in the text

Amanda_and_Ferdinand

at positions 2, 7, and 17.

A common example is the “find and replace” feature of any word processor or text editor. String
matching is also used by the UNIX utility grep, and in research involving DNA. (DNA strands
are, for computational purposes, Strings made of the letters ‘A,’ ‘T,’ ‘C,’ and ‘G.’)

This section deals with several algorithms for string matching. For simplicity, our algorithms
find only the first match within the text. We define a class for each algorithm (Figure 13–5).

Figure 13–5: The classes discussed in this section. The match() method in
AbstractStringMatcher is abstract, so each of the other three classes must provide it.

AbstractStringMatcher
pattern:String

AbstractStringMatcher(String)
getPattern():String
matchAt(String,int):boolean
match(String):int

Naive
StringMatcher

NaiveStringMatcher
  (String)

RabinKarp
StringMatcher

RADIX:int
MODULUS:int
patternPrint:int
highPlace:int
RabinKarpStringMatcher
  (String)
initialFingerprint
  (String,int):int

KnuthMorrisPratt
StringMatcher

prefixArray:int[ ]

KnuthMorrisPratt
  StringMatcher(String)
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To use one of these classes, we create an instance with the pattern as an argument to the construc-
tor. We then invoke the instance’s match() method, with the text as an argument. For example:

AbstractStringMatcher matcher = new NaiveStringMatcher("and");
int result = matcher.match("Amanda_and_Ferdinand");

The code for the AbstractStringMatcher class is given in Figure 13–6. The only nontrivial
method is matchAt(), which determines whether the pattern matches the text at one specified
position. Two of the subclasses make use of this method, so it makes sense to put it here.

1 /** Searches for a pattern String in various text Strings. */
2 public abstract class AbstractStringMatcher {
3
4   /** The pattern being sought. */
5   private String pattern;
6
7   /** Pattern is the pattern being sought. */
8   public AbstractStringMatcher(String pattern) {
9     this.pattern = pattern;

10   }
11
12   /** Return the pattern this StringMatcher seeks. */
13   protected String getPattern() {
14     return pattern;
15   }
16
17   /** Return true if the pattern appears in text at position. */
18   protected boolean matchAt(String text, int position) {
19     for (int i = 0; i < pattern.length(); i++) {
20       if (pattern.charAt(i) != text.charAt(i + position)) {
21 return false;
22       }
23     }
24     return true;
25   }
26
27   /**
28    * Return the index of the first appearance of the pattern in 
29  * text, or -1 if it does not appear.
30    */
31   public abstract int match(String text);
32
33 }

Figure 13–6: The AbstractStringMatcher class. The match() method, being
abstract, has no body here.
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Naive String Matching
The most obvious approach to string matching is to simply check each position for a match
(Figure 13–7). This is called the naive string matching algorithm.

The code for the NaiveStringMatcher class is given in Figure 13–8.

Figure 13–7: Naive string matching simply compares the pattern against each
position in the text until a match is found or the end of the text is reached.

1 /** Simply checks each position in the text for the pattern. */
2 public class NaiveStringMatcher extends AbstractStringMatcher {
3
4   /** Pattern is the pattern being sought. */
5   public NaiveStringMatcher(String pattern) {
6     super(pattern);
7   }
8
9   public int match(String text) {

10     for (int position = 0;
11          position + getPattern().length() < text.length();
12          position++) {
13       if (matchAt(text, position)) {
14         return position;
15       }
16     }
17     return -1;
18   }
19
20 }

Figure 13–8: The NaiveStringMatcher simply checks each position in the pattern.
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In the worst case, the naive algorithm checks every character in the pattern at each position. This
would happen if, for example, the pattern were "eeeeeek" and the text consisted entirely of es.

Checking for a match takes time in Θ(p), where p is the length of the pattern. If t is the length of
the text, and we assume t > p, the number of possible positions is:

t – p + 1 ∈ O(t)

The total running time for the algorithm is therefore in O(p ⋅ t). The next two algorithms employ
clever shortcuts to improve performance.

The Rabin–Karp Fingerprinting Algorithm
Our next algorithm uses an idea from hash tables (Section 11.4) to reduce the number of charac-
ter comparisons we have to do. Imagine, for the moment, that our pattern and text consist
entirely of decimal digits (Figure 13–9).

This appears very similar to the naive algorithm: we compare the pattern against each successive
region of the text. There are two advantages in this situation. First, it appears that we can treat
each region of text as an int; comparing two ints is much faster than comparing the Strings repre-
senting those ints. Second, we can easily advance to the next region.

In each step of the naive algorithm, we had to compare each character in the pattern with a
character in the text. Here, we can get the next int by subtracting off the leftmost digit, multi-
plying by 10, and adding on the new digit. We don’t have to look at the intervening digits, so
this saves time.

In general, if the section of the text currently being examined starts at position i, the next
section is:

((〈old section〉 - (〈character i〉 ⋅ 10p – 1)) ⋅ 10) + 〈character (i + p)〉

Figure 13–9: Idea for the Rabin–Karp fingerprinting algorithm when the pattern and
text contain only decimal digits. The arithmetic operations are explained later in the
text.
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((9351 � 9000) * 10) � 4

9 3 5 1
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5 1 4 1

1 4 1 0

4 1 0 3

((3514 � 3000) * 10) � 1

((5141 � 5000) * 10) � 0

((1410 � 1000) * 10) � 3, a match
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It’s beginning to look as if we can check each position (except the first) in constant time, for a
total running time in Θ(p + t). Unfortunately, there is a catch. The statement that comparing two
integers takes constant time is true only if there is a limit to the size of an integer. If the pattern is
a hundred digits long, we can’t fit it into an int.

The solution is to do all of this arithmetic modulo some number m. The section of text we are
currently examining, modulo m, is called a fingerprint. We compare the fingerprint of the pat-
tern with the fingerprint of each successive section of the text. Since they are both ints, this
really does take constant time. To avoid overflow, we must choose m such that 10m is no more
than 231 – 1, the largest value that an int can hold.

We now have the same problem that we had with hash tables: two different stretches of text
might have the same fingerprint. Therefore, if we find a fingerprint match, we have to verify that
the pattern really appears by using the matchAt() method from StringMatcher.

On the other hand, if the fingerprint of some section of the text does not match the fingerprint
from the pattern, we know there’s no match at this point. With a good choice of m (a prime num-
ber is good), our “hash function” should produce each possible positive int value with roughly
equal frequency. In this case, we rarely have to check for actual matches.

This algorithm, the Rabin–Karp fingerprinting algorithm, does not actually require that the
pattern and text be made of decimal digits. A decimal number is said to have radix 10. The radix
is the “base” of the number system. In radix 10, there are ten different characters that might
appear at each position. In radix 2 (binary), there are only 2. 16-bit Unicode characters, which
Java uses, can be treated as radix 65536 digits. We therefore need to choose m such that 65536m
≤ 231 – 1. A suitable prime choice is 65521.

Figure 13–10 shows the algorithm at work on normal text.

The code for the RabinKarpStringMatcher is given in Figure 13–11.

Figure 13–10: The Rabin–Karp fingerprinting algorithm. All arithmetic is done
modulo 65521. The radix r is 65536.
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1 /** String matcher using the Rabin-Karp fingerprinting algorithm. */
2 public class RabinKarpStringMatcher extends AbstractStringMatcher {
3
4   /** Arithmetic is done modulo this number to avoid overflow. */
5   public static final int MODULUS = 65521;
6
7   /** Strings are treated as numbers in this base. */
8   public static final int RADIX
9 = (Character.MAX_VALUE + 1) % MODULUS;

10
11   /** Fingerprint of the pattern. */
12   private int patternPrint;
13
14   /** Value of a 1 in the highest place in the pattern. */
15   private int highPlace;
16
17   /** Pattern is the pattern being sought. */
18   public RabinKarpStringMatcher(String pattern) {
19     super(pattern);
20     patternPrint = initialFingerprint(pattern, pattern.length());
21     highPlace = 1;
22     for (int i = 1; i < pattern.length(); i++) {
23       highPlace = (highPlace * RADIX) % MODULUS;
24     }
25   }
26
27   /** Return fingerprint for the first length characters of str. */
28   protected int initialFingerprint(String str, int length) {
29     int result = 0;
30     for (int i = 0; i < length; i++) {
31 result = (result * RADIX) % MODULUS;
32 result = (result + str.charAt(i)) % MODULUS;
33 }
34 return result;
35   }
36 public int match(String text) {
37     int textPrint = initialFingerprint(text, getPattern().length());
38     for (int position = 0;
39 position + getPattern().length() < text.length();
40          position++) {
41 if ((textPrint == patternPrint)
42 && (matchAt(text, position))) {
43 return position;
44 }
45  // Remove left character
46       textPrint -= (highPlace * text.charAt(position)) % MODULUS;

Figure 13–11: The Rabin–Karp fingerprinting algorithm. (Part 1 of 2)
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Throughout the class, we have to be very careful about modular arithmetic. Whenever we add or
multiply numbers, we must take them % MODULUS after the operation to avoid any danger of
overflow. This operation should be performed in advance on any number, such as RADIX on line
8, that might be greater than MODULUS. If we subtract, as on line 44, we may have to add a mul-
tiple of MODULUS back in so that we don’t end up with a negative number.

In line 8, we use the constant Character.MAX_VALUE to get the largest legal value for a char-
acter. One more than this is the radix. The field highPlace is the multiplier for the leftmost
character. In Figure 13–9, for example, this would be 1000.

In the worst case, the Rabin–Karp fingerprinting algorithm has to check for an exact match at every
position, so it does no better than the naive algorithm. Since most positions are checked in constant
time, the average running time is in Θ(p + t). A formal proof is beyond the scope of this book.

The Knuth–Morris–Pratt Skipping Algorithm
A third string matching algorithm is the Knuth–Morris–Pratt skipping algorithm. This improves
on the naive algorithm by avoiding redundant comparisons. The idea is illustrated in Figure 13–12.

In the Knuth–Morris–Pratt skipping algorithm, we begin by searching for matches at various
positions. If a mismatch is found at the first character, we move on to the next position, just as
in the naive algorithm. The difference arises when several characters are matched and then a
mismatch is found. In the naive algorithm, we would simply shift over one position and try
again. In the Knuth–Morris–Pratt skipping algorithm, we shift over several places, avoiding
redundant comparisons.

How many places can we shift over? We want to shift over as far as possible without any risk of
missing a match. When we have already seen "retre" in Figure 13–12, there might be a match
if we shift the pattern over so that the pattern prefix "re" lines up under the same characters.

(The observant reader will note that we could shift over even farther, because we already know that
the 'n' and the 't' won’t match. While the algorithm can be modified to take this information

47       if (textPrint < 0) {
48         textPrint += MODULUS * (1 + (-textPrint / MODULUS));
49       }
50       // Shift over
51       textPrint = (textPrint * RADIX) % MODULUS;
52       // Add right character
53       textPrint += text.charAt(position + getPattern().length());
54       textPrint %= MODULUS;
55     }
56     return -1;
57   }
58
59 }

Figure 13–11: The Rabin–Karp fingerprinting algorithm. (Part 2 of 2)
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into account, it significantly increases complexity without improving the order of the running time.
We therefore pay attention only to text characters to the left of the mismatch.)

If we can skip ahead like this often, we can save considerable time. The Knuth–Morris–Pratt
algorithm uses information about the pattern to do exactly this.

The algorithm begins by computing a prefix array for the pattern. Element i of the prefix array is
the answer to the question:

How long is the longest prefix of the pattern that can be shifted to the right to match the part of
the pattern ending at position i?

The prefix array for "retreat" is shown in Figure 13–13.

There are several things to notice about the prefix array:

• Most of the elements are zero. This is usually true unless the pattern contains many
repetitions.

Figure 13–12: The Knuth–Morris–Pratt skipping algorithm. If a mismatch (shaded) is
found on the first character of an attempt, the matcher advances to the next position. If a
mismatch is found after matching one or more characters, the matcher tries again on a
prefix of the pattern. The already-matched characters don’t have to be compared again.
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• The first element is always zero, because no prefix can ever be shifted right to match
the part of the pattern ending here.

• No element exceeds the previous number by more than one. This happens because, for
example, if the prefix "re" matches the subtring ending at position i, then the slightly
shorter prefix "r" must match the substring ending at position i – 1.

The numbers in the prefix array tell us how much of the pattern has to be kept to the left of the
mismatch. Smaller numbers in the prefix array therefore correspond to larger skips. 

There are two parts to the code for the Knuth–Morris–Pratt skipping algorithm. The first part,
the constructor, produces the prefix array. The second part, the match() method, uses the prefix
array to search for the pattern within the text.

First consider the constructor, shown in Figure 13–14. Java initializes prefixArray to all
zeroes. The loop on lines 16–26 works through prefixArray from left to right, starting at
index 1. Throughout the loop, matches is the length of the longest prefix we’ve matched so far.

Figure 13–13: Prefix array for the pattern "retreat". Element 3 is 1 because the
one-character prefix "r" matches the part of the pattern ending at position 3. Element
4 is 2 because the two-character prefix "re" matches the part of the pattern ending at
position 4.

1 /** 
2 * String matcher using the Knuth-Morris-Pratt skipping algorithm.
3 */
4 public class KnuthMorrisPrattStringMatcher
5   extends AbstractStringMatcher {
6
7   /**
8    * Length of longest pattern prefix ending at each position in 
9 * pattern.

10    */
11   private int[] prefixArray;
12
13   /** Pattern is the pattern being sought. */
14   public KnuthMorrisPrattStringMatcher(String pattern) {
15     super(pattern);
16     prefixArray = new int[getPattern().length()]; // All zeroes
17 int i = 1;
18     int matches = 0;

Figure 13–14: Field and constructor for the KnuthMorrisPrattStringMatcher class.
(Part 1 of 2)

1 2 0 0prefix array

pattern

0 1 2 3 4 5 6

r e t r e a t

0 00



364 Chapter 13  •  Strings

On each pass through the loop, one of three things can happen:

• We find another match (lines 18–20). In this case, we increment matches, store that
number in prefixArray[i], and move on to the next character.

• We don’t find another match, but matches is not zero (lines 22). This happens right after
the end of a sequence of increasing prefixArray entries. More on this in a moment.

• We don’t find a match and matches is zero (line 24). In this case, we leave prefix-
Array[i] at 0 and move on to the next character.

Let’s take a closer look at that second case (Figure 13–15). When we discover that the prefix we
were currently working on can’t be extended, we have to try some shorter prefix.

How do we know what value to set matches to—that is, how big a prefix to try extending next?
In Figure 13–15, we’ve matched 7 characters in a row and then we find a mismatch. Our next try
should be the longest prefix that also matches the end of the 7-character prefix.

Handily, we have already computed this value. This is the value stored at the seventh (zero-
based) position in prefixArray—that is, prefixArray[6]. Line 22 simply looks up this
number. This reuse of already-computed values is another example of dynamic programming,
like the fibo() algorithm in Figure 9–35.

The match() method is very similar to the constructor (Figure 13–16).

The similarity between the constructor and the match() method is not surprising, because they
do similar things. While the prefix array is initialized in the constructor to answer the question:

How long is the longest prefix of the pattern that can be shifted to the right to match the
part of the pattern ending here?

the match() method answers the question:

Is the longest prefix of the pattern that can be shifted to the right to match the part of the
text ending here as long as the pattern?

19 while (i < getPattern().length()) {
20       if (getPattern().charAt(i) == getPattern().charAt(matches)) {
21         matches++;
22 prefixArray[i] = matches;
23 i++;
24       } else if (matches > 0) {
25         matches = prefixArray[matches - 1];
26       } else {
27         i++;
28       }
29     }
30   }
31
32 }

Figure 13–14: Field and constructor for the KnuthMorrisPrattStringMatcher class.
(Part 2 of 2)
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Figure 13–15: The constructor for KnuthMorrisPrattStringMatcher in action. A prefix
of length 7 was matched in position 11, and position 12 is now being examined (top).
There is a mismatch, so the next entry is not 8. Instead, we consider a shorter prefix
matching at position 6 (middle). This prefix can be extended (bottom).

1 public int match(String text) {
2   int i = 0;
3   int matches = 0;
4   while (i < text.length()) {
5     if (text.charAt(i) == getPattern().charAt(matches)) {
6       matches++;
7       if (matches == getPattern().length()) {
8         return i + 1 - getPattern().length();
9       } else {

10         i++;
11       }
12     } else if (matches > 0) {
13       matches = prefixArray[matches - 1];
14     } else {
15       i++;
16     }
17   }
18   return -1;
19 }

Figure 13–16: The match() method for the KnuthMorrisPrattStringMatcher class is
very similar to the constructor.
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We now analyze the worst-case running time of the Knuth–Morris–Pratt skipping algorithm.

First consider the constructor. On each pass through the loop, either i is incremented or
matches decreases. Since matches can only be incremented along with i, each increment of i
is responsible for at most two passes through the loop. Since the algorithm stops when i is p (the
length of the pattern), there are no more than 2p passes through the loop, each of which takes
constant time. The constructor therefore takes time in O(p).

By a similar argument (assuming t > p), the match() method takes time in O(t). The total run-
ning time for the algorithm is therefore in O(p + t). Since merely reading the pattern and the text
takes this long, the time is in fact in Θ(p + t), and we can’t hope for an algorithm with better
worst-case performance.

Exercises

13.4 Which method from the String class performs String matching?

13.5 What is the prefix array for the String "abracadabra"?

13.6 For which string would the prefix array entries likely be lower: a randomly generated
string of 100 lower-case letters or a randomly generated string of 100 ones and zeroes?
Explain.

Summary

Because Strings are so widely used, Java provides special syntax for this class: double quotes for
instance creation and + for concatenation. Java takes advantage of the immutability of Strings by
sometimes creating multiple references to the same instance. This can save space, but it costs
time when a String is being built in pieces. The StringBuilder class, which is something like an
ArrayList of chars, is a better choice in such situations.

String matching is the problem of determining where, if anywhere, a given pattern String
appears within a longer text String. Three algorithms were discussed in this chapter: the naive
algorithm, the Rabin–Karp fingerprinting algorithm, and the Knuth–Morris–Pratt skipping
algorithm.

The naive algorithm, which simply tries each position, takes time in O(p ⋅ t).
The Rabin–Karp fingerprinting algorithm keeps track of a “fingerprint” (something like a hash
code) for each section of the text. It is necessary to check for an exact match only when the fin-
gerprint matches. This is no faster than the naive algorithm in the worst case, but since spurious
fingerprint matches are extremely rare, the average running time is in Θ(p + t).

The Knuth–Morris–Pratt skipping algorithm first computes a prefix array for the pattern. It then
acts like the naive algorithm, but uses the prefix array to sometimes skip ahead several positions
at once. Using dynamic programming to efficiently compute the prefix array, it achieves a worst-
case running time of Θ(p + t), which can’t be beat.
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Both the Rabin–Karp and Knuth–Morris–Pratt algorithms perform well in practice. More sophisti-
cated versions of these algorithms appear in string matching libraries. They can be adapted to
related tasks, such as searching for a pattern of pixels in a two-dimensional image.

Vocabulary

fingerprint. Number associated with a region of text in the Rabin–Karp fingerprinting algorithm.

Knuth–Morris–Pratt skipping algorithm. String matching algorithm that uses a prefix array
to avoid redundant character comparisons.

naive string matching algorithm. Obvious string matching algorithm that compares the pattern
against the text at each position.

pattern. String being sought in string matching.

prefix. Substring beginning at position 0. For example, "car" is a prefix of "carnauba".

prefix array. In the Knuth–Morris–Pratt skipping algorithm, array based on the pattern. The
number at position i is the length of the longest pattern prefix that matches the stretch of pattern
ending at position i.

radix. Base of a number system, such as 2 for binary or 10 for decimal. Unicode characters can
be treated as radix 65536 digits.

Rabin–Karp fingerprinting algorithm. String matching algorithm that generates a fingerprint
for the initial pattern-length stretch of text, then incrementally updates it. Where the fingerprints
don’t match, there is no need to compare the text with the pattern.

string matching. Task of finding where, if anywhere, a pattern string appears within a text
string.

substring. Consecutive sequence of 0 or more characters within a string.

suffix. Substring ending at the end of a string. For example, "ILLZ" is a suffix of "L33T SKILLZ".

text. String being searched through in string matching.

wild card. Special character in a pattern that is considered equivalent to any character in the text
(Project 13.11).

Problems

13.7 Modify AbstractStringMatcher to include an abstract method allMatches() which
accepts a String text and returns an ArrayList of all positions where the pattern appears
within that String. Provide this method for all three subclasses.

13.8 Suppose we have

String[] strands;
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containing n Strings, each of which represents a strand of DNA. Each strand is m char-
acters long. Write code which determines if any two strands are identical by comparing
each strand to each of the others using equals(). What is the running time of this
operation? Now read about the intern() method of the String class in the API. Write
an improved version of your method using intern() and give its running time. State
any assumptions you make about how intern() works. Hint: Comparing two Strings
with == takes constant time, but comparing them with equals() takes time in Θ(m).

13.9 The constructor for the KnuthMorrisPrattStringMatcher is difficult to understand. A
more direct approach would be to check, for each position i, whether each prefix of
length i – 1 down to 1 matches the part of the pattern ending at position i. Implement
this algorithm and analyze its worst-case running time.

Projects

13.10 Write a program which takes two command-line arguments: a pattern and a file to
search. The program should print out each line in the file in which the pattern occurs.
Hint: Look at the code from the Anagrams constructor (Figure 11–7) to see how to read
from a file.

13.11 The string matching problem is more difficult if the pattern may contain wild cards. A
wild card is a character that can match any character in the text. For example, the pat-
tern "de?er", with '?' as a wild card, matches both "defer" and "deter".

Modify the comments for AbstractStringMatcher to allow the use of the character '?'
as a wild card. Modify two of the subclasses to provide this functionality. Explain why
this would be difficult for the other subclass.
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14
Advanced Trees

This chapter discusses four advanced data structures based on trees. Heaps (Section 14.1) pro-
vide an efficient implementation of a new kind of queue, as well as an interesting sorting algo-
rithm. Section 14.2 uses trees to model a cluster of disjoint sets. Digital search trees (Section
14.3) provide a new way to store sets of Strings. Red-black trees (Section 14.4), a variation on
binary search trees, are guaranteed to remain balanced, avoiding the linear worst-case time of
binary search tree operations.

14.1 Heaps

Note: The term “heap” is used in a completely different way in Chapter 16.

A heap is a binary tree of Comparables with the following special properties:

• The value at each node is less than or equal to the values at the children of that node.

• The tree is perfect or close to perfect. It might be missing some nodes on the right end
of the bottom level.

An example is shown in Figure 14–1.
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We could implement a heap using BinaryNodes (Section 10.1), but there is a more efficient rep-
resentation. The requirement that a heap is “perfect or close to perfect” lets us use a contiguous
representation somewhat analogous to the representation of multidimensional arrays from Sec-
tion 12.3. We use an ArrayList, with the root at position 0, its children in the next two positions,
their children in the next four, and so on (Figure 14–2). The constraint on the shape of the tree
ensures that there will be no gaps in this representation.

Figure 14–1: In a heap, each node is less than or equal to its children. It follows that
the smallest element is at the root. On the other hand, a node may be lower in the tree
than a smaller cousin (compare 6 and 8).

Figure 14–2: A heap can be represented using an ArrayList. The levels of the tree
(highlighted by shading) are represented, one after another, in the array.
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This representation is more space-efficient than a linked one, but how do we find the relatives of
a node? We only have to do a little arithmetic.

The left child of the node at index i is at index 2i + 1. Take a moment to verify this in
Figure 14–2. The right child is at index 2i + 2. The parent is at index:

The basic outline of the Heap class, including methods to find relatives, is given in Figure 14–3.

1 /**
2  * A nearly perfect tree where nodes are <= their children.
3  * Can be used as a priority queue or for heapsort.
4  */
5 public class Heap<E extends Comparable<E>> {
6
7   /** Contiguous representation of the tree. */
8   private ArrayList<E> data;
9

10   /** The tree is initially empty. */
11   public Heap() {
12     data = new ArrayList<E>();
13   }
14
15   /** Return true if this Heap is empty. */
16   public boolean isEmpty() {
17     return data.isEmpty();
18   }
19
20   /** Return the index of the left child of the node at index. */
21   protected static int leftChildIndex(int index) {
22     return (2 * index) + 1;
23   }
24
25   /** Return the index of the parent of the node at index. */
26   protected static int parentIndex(int index) {
27     return (index - 1) / 2;
28   }
29
30   /** Return the index of the right child of the node at index. */
31   protected static int rightChildIndex(int index) {
32     return (2 * index) + 2;
33   }
34
35 }

Figure 14–3: Easy parts of the Heap class.

i 1–
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----------
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Priority Queues
A heap is a good data structure for implementing a priority queue. Recall that when we remove
something from a regular queue (Section 4.4), we get the oldest element. In a priority queue, on
the other hand, we get the smallest element. It’s easy to find the smallest element in a heap: it’s
always at index 0.

If we want to add something to a priority queue, we start by tacking it onto the end of the Array-
List. We can’t stop there, because the tree represented by this list might not be a valid heap any
more. Specifically, the new element might be smaller than its parent. We fix this problem by fil-
tering the offending element up toward the root until it is in a valid position (Figure 14–4).

Figure 14–4: Filtering up in a heap. When a new node is added (top), it is compared
with its parent. If it is smaller than its parent, they are swapped (middle). This continues
until the new element moves up to its proper place (bottom).
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Even in the worst case, this takes time proportional to the height of the tree. Since the tree is per-
fect or close to perfect, this is in O(log n). The code is given in Figure 14–5.

Removing an element from a priority queue is only slightly more complicated (Figure 14–6).
We remember the element at index 0 so we can return it later. The element in the last position is
then copied over the root and filtered down until it is in a legitimate position. If both children are
smaller than their parent, we swap the parent with the smaller of the two.

This operation also takes time in O(log n). The code (Figure 14–7) is somewhat long because of
the three-way comparison between a node and its children.

Heapsort

Heaps are also useful for a sorting algorithm called heapsort. The algorithm begins by copy-
ing the data to be sorted into a heap. The filterDown() method is then invoked several
times to make the heap valid. Finally, we remove elements from the heap one at a time. Since

1 /** Add a new element, maintaining the heap properties. */
2 public void add(E target) {
3   data.add(target);
4   filterUp(data.size() - 1);
5 }
6
7 /** Move the element at index up to restore the heap properties. */
8 protected void filterUp(int index) {
9   int parent = parentIndex(index);

10   while (parent >= 0) {
11     if (data.get(index).compareTo(data.get(parent)) < 0) {
12       swap(index, parent);
13       index = parent;
14       parent = parentIndex(index);
15     } else {
16       return;
17     }
18   }
19 }
20
21 /** Swap the elements at indices i and j. */
22 protected void swap(int i, int j) {
23   E temp = data.get(i);
24   data.set(i, data.get(j));
25   data.set(j, temp);
26 }

Figure 14–5: Adding a new element to a priority queue involves filtering it up to its
proper place in the heap.
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each removal from the heap returns the smallest remaining element, they are removed in
increasing order.

Since we’ve already laid most of the groundwork, the code for the heapsort() method is
remarkably short (Figure 14–8). Lines 7–9 copy unsortedData, taking time in Θ(n). Line
11, which takes time in O(log n), is run no more than n times, for a total in O(n log n). The
same is true of line 20. The total worst-case time for heapsort is therefore in O(n log n). Heap-
sort is a comparison sort (Section 12.4), so we can conclude that the worst-case time is pre-
cisely in Θ(n log n).

Figure 14–6: When the root is removed from a heap (top), it is replaced by the last
element (second from top). This element is then filtered down to a legitimate position.
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1 /** Move the element at index down to restore heap properties. */
2 protected void filterDown(int index) {
3   while (index < data.size()) {
4     int left = leftChildIndex(index);
5     int right = rightChildIndex(index);
6  int smallest = index;
7     if ((left < data.size())
8         && (data.get(left).compareTo(data.get(smallest)) < 0)) {
9       smallest = left;

10     }
11     if ((right < data.size())
12         && (data.get(right).compareTo(data.get(smallest)) < 0)) {
13       smallest = right;
14     }
15     if (index == smallest) {
16       return;
17     }
18     swap(index, smallest);
19     index = smallest;
20   }
21 }
22
23 /** Remove and return the smallest element in the Heap. */
24 public E remove() {
25   E result = data.get(0);
26   E lastElement = data.remove(data.size() - 1);
27   if (data.size() > 0) {
28     data.set(0, lastElement);
29   }
30   filterDown(0);
31   return result;
32 }

Figure 14–7: Code for removing an element from a priority queue.

1 /**
2  * Copy the elements of unsortedData into the tree, then
3  * rearrange them to make it a heap.
4  */
5 protected Heap(ArrayList<E> unsortedData) {
6   data = new ArrayList<E>();
7   for (E e : unsortedData) {
8     data.add(e);
9   }

10  for (int i = (data.size() / 2) - 1; i >= 0; i--) {

Figure 14–8: Heapsort. The constructor on lines 1–13 is a second, overloaded
constructor for the Heap class; the other was in Figure 14–3. (Part 1 of 2)
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The type parameter specified between static and void on line 16 is necessary because heap-
sort() is a static method; it is not associated with a particular instance of Heap, although it cre-
ates one on line 18. Since the type parameter E at the beginning of the Heap class might stand for
different things in different instances of Heap, a static method like heapsort() has to specify a
new type parameter.

Java’s PriorityQueue Class

The java.util package contains a PriorityQueue class. The comments for Java’s Queue interface
are carefully worded to encompass both FIFO queues (Section 4.4) and priority queues. The
LinkedList and PriorityQueue classes therefore both extend this interface (Figure 14–9).

11     filterDown(i);
12   }
13 }
14
15 /** Sort data. */
16 public static <E extends Comparable<E>> void
17   heapsort(ArrayList<E> data) {
18   Heap<E> heap = new Heap<E>(data);
19   for (int i = 0; i < data.size(); i++) {
20     data.set(i, heap.remove());
21   }
22 }

Figure 14–9: The java.util.Queue interface is implemented by both LinkedList and
PriorityQueue. The add() and remove() methods inherited from Collection each return
a boolean value indicating whether the operation succeeded.

Figure 14–8: Heapsort. The constructor on lines 1–13 is a second, overloaded
constructor for the Heap class; the other was in Figure 14–3. (Part 2 of 2)

java.util

<<interface>>
Collection

LinkedList PriorityQueue
E E

E

<<interface>>
Queue

E

add(E):boolean
isEmpty():boolean
remove(Object):boolean
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Exercises

14.1 Can a tree ever be both a heap and a binary search tree? If so, give an example. If not,
explain why not.

14.2 Write methods leftSiblingIndex() and rightSiblingIndex() for the Heap
class.

14.3 On lines 10–12 of Figure 14–8, filterDown() is invoked only on the first n/2 ele-
ments of data. How can we be sure that the heap is valid at the end of this? Why does
i decrease to 0 instead of increasing from 0?

14.4 Java’s built-in TreeSet class uses time in O(log n) for insertion and deletion. It seems
that we could build a Θ(n log n) sorting algorithm by simply inserting all of the data
into a TreeSet, then traversing the TreeSet inorder (Figure 14–10). The running-time
analysis is correct, but this algorithm fails to sort some ArrayLists. Why? (Hint: Think
about the definition of a Set.)

14.2 Disjoint Set Clusters

This section introduces a data structure for representing a cluster of disjoint sets. Sets are dis-
joint if they have no elements in common. Clusters of disjoint sets include the sets of players on
different baseball teams, the sets of cities in different countries, and the sets of newspapers
owned by different media companies. They also play a crucial role in an algorithm we will see in
Section 15.6.

We could use several instances of implementations of the Set interface. The alternate data struc-
ture described here allows us to more efficiently perform the following operations:

• Determine whether two elements belong to the same set.

• Merge two sets.

1 /** Sort data. */
2 public static <E extends Comparable<E>> void
3   sort(java.util.ArrayList<E> data) {
4   java.util.TreeSet<E> tree = new java.util.TreeSet<E>(data);
5   data.clear();
6   for (E item : tree) {
7     data.add(item);
8   }
9 }

Figure 14–10: Code for Exercise 14.4.
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A cluster of sets is represented as a forest of trees (Figure 14–11). If two elements are in the
same tree, they are in the same set. Unlike trees we’ve seen in the past, nodes in these trees keep
track of their parents, rather than their children. They are therefore sometimes called up-trees.

To determine if two elements are in the same set, we follow the arrows up from each element up
to a root. If they lead to the same root, the elements are in the same tree.

To merge two sets, we make the root of one tree point to the root of the other tree (Figure 14–12).

We could represent the up-trees with linked structures, but if we assume that the elements are ints
in the range 0 through n – 1, we can use a more efficient contiguous structure (Figure 14–13). At
each position, we store the parent of the corresponding element. For example, since 8 is the parent
of 0, we store 8 at index 0. The special value –1 is used for roots, which have no parent.

Figure 14–11: A forest of up-trees representing the disjoint sets {1, 3, 4, 5}, {6, 9}, and
{0, 2, 7, 8}.

Figure 14–12: After merging, there are only two sets: {1, 3, 4, 5, 6, 9} and {0, 2, 7, 8}.

Figure 14–13: Contiguous representation of the up-trees in Figure 14–12. Each
position holds the parent of the corresponding element, or –1 if there is no parent.
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The code for this implementation is given in Figure 14–14. All of the methods take constant
time except for findRoot(). In the worst case (a single, linear tree), this takes time in Θ(n).
The techniques described next ensure that the trees are shallow and wide, making the paths
shorter.

1 /** A cluster of disjoint sets of ints. */
2 public class DisjointSetCluster {
3
4   /** parents[i] is the parent of element i. */
5   private int[] parents;
6
7   /** Initially, each element is in its own set. */
8   public DisjointSetCluster(int capacity) {
9     parents = new int[capacity];

10     for (int i = 0; i < capacity; i++) {
11       parents[i] = -1;
12     }
13   }
14
15   /** Return the index of the root of the tree containing i. */
16   protected int findRoot(int i) {
17     while (!isRoot(i)) {
18       i = parents[i];
19     }
20     return i;
21   }
22
23   /** Return true if i and j are in the same set. */
24   public boolean inSameSet(int i, int j) {
25     return findRoot(i) == findRoot(j);
26   }
27
28   /** Return true if i is the root of its tree. */
29   protected boolean isRoot(int i) {
30     return parents[i] < 0;
31   }
32
33   /** Merge the sets containing i and j. */
34   public void mergeSets(int i, int j) {
35     parents[findRoot(i)] = findRoot(j);
36   }
37
38 }

Figure 14–14: First draft of the DisjointSetCluster class.
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Merging by Height
When we merge two up-trees, we have to choose which root becomes a child of the other root
(Figure 14–15). Instead of doing this arbitrarily, we can keep the trees shorter by making the root
of the shorter tree a child of the root of the taller tree. This is called merging by height.

To do this, we need to keep track of the height of each tree. There is a clever way to do this with-
out using any more memory. We need to keep track of heights only for the roots. These are
exactly the nodes which don’t have parents. We can therefore store the height of each root in the
array parents.

To avoid confusion between a root with height 3 and a node whose parent is 3, we store the
heights as negative numbers (Figure 14–16). We have to subtract one from all of these negative

Figure 14–15: The two up-trees at left are to be merged. We could merge the taller
one into the shorter one (middle) or vice versa (right). The result on the right is better
because it is a shorter tree.

Figure 14–16: For height merging, we must keep track of the height of each tree.
The entry in parents for the root of a tree of height h is –h – 1.
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numbers, because a tree might have height 0 and there is no such int as –0. Thus, the entry for
the root of a tree of height h is –h – 1.

The improved version of mergeSets() is shown in Figure 14–17.

Path Compression
A second improvement to up-trees involves the findRoot() method. Suppose we determine
that the root of the tree containing 4 is 7. We can make this operation faster next time by making
7 the parent of 4 (Figure 14–18). In fact, we might as well make 7 the parent of every node we
visit on the way to the root. This technique is called path compression.

1 /** Merge the sets containing i and j. */
2 public void mergeSets(int i, int j) {
3   if (parents[i] > parents[j]) {
4     parents[findRoot(i)] = findRoot(j);
5   } else {
6     if (parents[i] == parents[j]) {
7       parents[i]--;
8     }
9     parents[findRoot(j)] = findRoot(i);

10   }
11 }

Figure 14–17: The mergeSets() method using height merging.

Figure 14–18: The root of the tree containing 4 is 7 (top). Using path compression, we
reset the parent of every node visited in determining this to 7, making the tree shorter.
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In writing the code for path compression, we realize that we can’t alter these parents until after
we’ve found the root. Since this involves remembering work we still have to do, this algorithm is
most clearly expressed recursively (Figure 14–19).

Path compression may render the height counts inaccurate, but they are still legitimate upper
bounds on the heights of the trees.

The analysis of up-trees with these improvements is beyond the scope of this book, but the result
is impressive. The amortized running times of findRoot() and mergeSets() are in
O(log* n), where log* n is the number of times we have to take the logarithm to get down to 1.
In other words, log* n is to log n what log2 n is to n/2. This is an incredibly slowly-growing
function (Figure 14–20). For all practical purposes, the amortized running time of up-tree opera-
tions is constant.

Exercises

14.5 Which order is higher: Θ(log (log n)) or Θ(log* n)?

14.6 How could we store a cluster of disjoint sets of Strings? (Hint: Don’t modify the Dis-
jointSetCluster class; use an additional data structure.)

1 /** Return the index of the root of the tree containing i. */
2 protected int findRoot(int i) {
3   if (isRoot(i)) {
4     return i;
5   }
6   parents[i] = findRoot(parents[i]);
7   return parents[i];
8 }

Figure 14–19: The findRoot() method with path compression.
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Figure 14–20: The log* function (assuming base 2 logarithms).
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14.7 Can we have an empty set in a DisjointSetCluster? If so, how? If not, why not?

14.8 Can we traverse the elements of a DisjointSetCluster? If so, how? If not, why not?

14.3 Digital Search Trees

It’s been a while since we’ve had a game. The rules of Ghost are given in Figure 14–21.

A sample game is shown in Figure 14–22.

Ghost
Players: 2 or more

Object: To avoid completing a word.

Play: Each player in turn names a letter. There must exist a word which starts with the
sequence of letters named so far. If a player completes a word (at least three letters long), he
loses.

For simplicity, we play only a single game and omit the scoring system.

Figure 14–21: Ghost is a great game for long road trips. Our implementation pits one
player against the computer.

1 Welcome to Ghost.
2
3 The word so far:
4 Your letter? a
5 I choose d.
6 The word so far: ad
7 Your letter? v
8 I choose a.
9 The word so far: adva

10 Your letter? n
11 I choose t.
12 The word so far: advant
13 Your letter? a
14 I choose g.
15 The word so far: advantag
16 Your letter? e
17 That completes the word 'advantage'.  You lose.

Figure 14–22: A sample game of Ghost.
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The key problem for the program is to find a word that starts with a given prefix. This could be
done by searching a general-purpose Set, but there is a better way. The entire word set can be
represented as a digital search tree (Figure 14–23). Words are represented as paths through the
tree. Each child of a node is associated with a letter. If a path corresponds to a word, the node at
the end is marked.

As we play Ghost, we keep track of the current node. Whenever the user enters a letter, we
descend to the appropriate child. If there is no such child, the user loses. When we need to pick a
letter, we randomly choose a child and the corresponding letter. (Better strategy is explored in
Project 14.24.)

The digital search tree is implemented in a straightforward linked way (Figure 14–24). A Map is
used to associate letters (Characters) with child nodes.

Figure 14–23: A digital search tree containing the words “gar,” “garden,” “ghost,”
“ghoul,” and “grab.” Shaded nodes indicate the ends of words.
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The code for the DigitalNode class is given in Figure 14–25. General-purpose interfaces like
Map and Set pay off handsomely here. On line 37, we give the full name of java.util.Set to dis-
tinguish it from our own Set interface, which is likely to be in the same directory. The Digital-
Node class is generic, because we will use it in a different way in Section 17.2.

Figure 14–24: UML class diagram of our Ghost program. An instance of the Ghost
class contains a DigitalNode, which contains a Map associating Characters with child
DigitalNodes.

1 import java.util.*;
2
3 /** Node in a digital search tree. */
4 public class DigitalNode<E> {
5
6   /** Map associating Characters with child nodes. */
7   private Map<Character,DigitalNode<E>> children;
8
9   /** True if this node is the end of a word. */

10   private E item;
11
12   /** A new node has no children. */
13   public DigitalNode(E item) {
14     children = new HashMap<Character,DigitalNode<E>>(1);
15     this.item = item;
16   }
17
18   /** Return the child associated with c. */
19   public DigitalNode<E> getChild(char c) {
20     return children.get(c);
21   }
22

Figure 14–25: The DigitalNode class. (Part 1 of 2)

Ghost

INPUT:Scanner
root:DigitalNode<Boolean>
Ghost()
addWord(String):void
play():void
main(String[ ]):void

DigitalNode

children:Map<Character,
                       DigitalNode<E>>
item:E
DigitalNode(E)
getChild(char):DigitalNode<E>
getItem():E
isLeaf():boolean
randomLetter():char
setChild(char,DigitalNode<E>):void
setItem(E):void

0..1

0..*

E



386 Chapter 14  •  Advanced Trees

The easy parts of the Ghost class are listed in Figure 14–26.

23  /** Return the item stored at this node. */
24   public E getItem() {
25     return item;
26   }
27
28   /** Return true if this node is a leaf. */
29   public boolean isLeaf() {
30     return children.isEmpty();
31   }
32
33   /**
34    * Choose the letter of a random child.
35    */
36   public char randomLetter() {
37     java.util.Set<Character> letters = children.keySet();
38     int i = (int)(Math.random() * letters.size());
39     for (char letter : letters) {
40       if (i == 0) {
41         return letter;
42       }
43       i--;
44     }
45     return '?';                 // This should never happen
46   }
47
48   /** Associate c with child. */
49   public void setChild(char c, DigitalNode<E> child) {
50     children.put(c, child);
51   }
52
53 /** Set the item associated with this node. */
54   public void setItem(E item) {
55     this.item = item;
56   }
57
58 }

1 import java.util.*;
2
3 /** The game of Ghost. */
4 public class Ghost {
5

Figure 14–26: Easy parts of the Ghost class. (Part 1 of 2)

Figure 14–25: The DigitalNode class. (Part 2 of 2)
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Of greater interest is the addWord() method (Figure 14–27). As we go through word character
by character (lines 4–11), we descend to the appropriate child for each letter. When there is no
such child, we create one (lines 6–9). Finally, at the end of the word, we mark the node (line 12).

6  /** For reading from the console. */
7  public static final Scanner INPUT = new Scanner(System.in);
8
9   /** Root of the digital search tree holding the word list. */

10   private DigitalNode<Boolean> root;
11
12   /** Read in the words from the file "words.txt". */
13   public Ghost() {
14     root = new DigitalNode<Boolean>(false);
15     try {
16       Scanner input = new Scanner(new java.io.File("words.txt"));
17       while (input.hasNextLine()) {
18         addWord(input.nextLine());
19       }
20     } catch (java.io.IOException e) {
21       e.printStackTrace();
22       System.exit(1);
23     }
24   }
25
26   /** Create and play the game. */
27   public static void main(String[] args) {
28     Ghost game = new Ghost();
29     System.out.println("Welcome to Ghost.\n");
30     game.play();
31   }
32
33 }

1 /** Add word to the digital search tree. */
2 public void addWord(String word) {
3   DigitalNode<Boolean> node = root;
4   for (char c : word.toCharArray()) {
5     DigitalNode<Boolean> child = node.getChild(c);
6     if (child == null) {
7       child = new DigitalNode<Boolean>(false);
8       node.setChild(c, child);
9     }

10     node = child;
11   }
12   node.setItem(true);
13 }

Figure 14–27: Adding a word to a digital search tree.

Figure 14–26: Easy parts of the Ghost class. (Part 2 of 2)
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The last method is play() (Figure 14–28).

Since it is nothing more than a hash table lookup, getChild() takes constant average time.
This makes a digital search tree an excellent choice when searching for Strings containing a pre-
fix that grows one character at a time.

1 /** Play one game. */
2 public void play() {
3   String word = "";
4   DigitalNode<Boolean> node = root;
5   boolean userTurn = true;
6   char letter;
7   while ((word.length() < 3) || !(node.getItem())) {
8     if (userTurn) {
9       System.out.println("The word so far: " + word);

10       System.out.print("Your letter? ");
11       letter = INPUT.nextLine().charAt(0);
12       word += letter;
13       if (node.getChild(letter) == null) {
14         System.out.println("Sorry, there is no word that starts” 
15                            + "with" + word + ".");
16         System.out.println("You lose.");
17         return;
18       }
19     } else {
20       if (node.isLeaf()) {
21         System.out.println("I can't think of anything"
22 + "-- you win!");
23         return;
24       }
25       letter = node.randomLetter();
26       System.out.println("I choose " + letter + ".");
27       word += letter;
28     }
29     node = node.getChild(letter);
30     userTurn = !userTurn;
31   }
32   System.out.print("That completes the word '" + word + "'.  ");
33   if (userTurn) {             // userTurn has been flipped
34     System.out.println("You win!");
35   } else {
36     System.out.println("You lose.");
37   }
38 }

Figure 14–28: The play() method. Use of DigitalNodes is emphasized.
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Exercises

14.9 What is the maximum number of children a DigitalNode can have in the context of the
Ghost game? Speculate on whether nodes with many children are more common near
the root or near the leaves.

14.10 Does a digital search tree have more nodes if the words it contains share many prefixes
or if they do not? Explain.

14.11 What would it mean if, in a digital search tree, the root were marked as the end of a word?

14.12 Why, on line 14 of Figure 14–25, do we specify that the new HashMap has a capacity of 1?

14.13 Why would direct addressing be a poor choice for associating characters with children
in a digital search tree?

14.14 On line 7 of Figure 14–28, the program checks to make sure that any completed word is
at least three letters long. Modify addWord() (Figure 14–27) to make this check
unnecessary.

14.15 Add a method containsWord() to the Ghost class that returns true if a specified
String is present in the digital search tree. What is the average running time of this
method? Does it depend on the length of the word, the number of words in the tree, nei-
ther, or both?

14.16 In the game of Ghost, once we hit the end of a word, the game ends. Consequently,
words that contain other words as prefixes are irrelevant. Modify the Ghost program to
save memory by taking advantage of this fact.

14.4 Red-Black Trees

A plain binary search tree (Section 11.3) performs poorly if the tree is not balanced. In the worst
case, which occurs if the elements are inserted in order, the tree is linear, so search, insertion,
and deletion take linear time. The variation described in this section, the red-black tree, ensures
that the tree cannot become significantly imbalanced, so these operations run in logarithmic time
in the worst case. In the Java collections framework, the classes TreeSet and TreeMap use red-
black trees.

Properties of Red-Black Trees

A red-black tree (Figure 14–29) is a binary search tree in which each node has a color, either red
or black. The tree has the following properties:

• The root is black.
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• No red node has a red child.

• Consider each path from the root, through several descendants, down to a null child.
These are the paths followed in unsuccessful searches. All such paths must contain the
same number of black nodes.

These properties ensure that the tree cannot be significantly imbalanced. Specifically, suppose
the shortest path to a null child contains d nodes. The longest path can contain at most 2d
nodes. This happens when the short path is all black, while the long path alternates between
black and red. It is not possible for one side of the tree (or any subtree) to become very tall
while the other side remains short.

It can be proven (although we will not bother to do so) that the height of a red-black tree contain-
ing n nodes is in O(log n). The running times of search, insertion, and deletion are proportional
to the height of the tree, so these operations run in logarithmic time. The challenge is to maintain
the properties of the red-black tree while performing these operations.

Search
Search in red-black trees is identical to search in binary search trees.

Insertion
Insertion in a red-black tree starts out like insertion in a binary search tree. We start at the root
and descend until we either find the target or try to descend from a leaf. In the latter case, the tar-
get is not present in the tree, so we attach a new, red leaf.

Unfortunately, this may invalidate the red-black tree. Specifically, the new node may be a child
of another red node, which is illegal. We fix this by working our way back up the tree, changing

Figure 14–29: In a red-black tree, every path from the root to a null child contains
the same number of black nodes (for this tree, three). Lightly shaded nodes are red.
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colors and rearranging nodes. This repair operation, while complicated, takes time proportional
to the height of the tree, so the total running time for insertion is still in O(log n).

A key step in tree repair is rotation (Figure 14–30). When we rotate, we replace a node with one
of its children. This is a strictly local operation, affecting only a few nodes. The ordering of the
nodes remains valid. In the Figure, the subtree rooted at 5 contains only values between 3 and 7,
so it is in the correct position both before and after the rotation.

Color changes and rotations can be used to repair a red-black tree after inserting a new red node.
The plan is to work back up the tree in several steps, performing color changes and rotations.
Each step either fixes the tree or moves the problem closer to the root. If we get to the root and
still have a red node, we can simply color it black. Since each step takes a constant amount of
time, the whole repair process takes time proportional to the height of the tree.

Let node be the newly added node. Suppose node is red and has a red parent. How do we fix
this? There are three cases to consider, depending on the color of node’s parent’s sibling (that is,
node’s aunt) and on whether node is a left or right child. We describe the cases below in order
of increasing complexity.

First, if node has a red aunt, we simply change the colors of node’s parent, aunt, and grandpar-
ent (Figure 14–31). This makes the grandparent red (see Exercise 14.19). Since the great-
grandparent may also be red, we may have to do some repair there, too, but we’re getting closer
to the root.

Second, suppose node has a black aunt. If node and its parent are both left children (or both
right children), we call node an outer child. In this case, we change the colors of the parent and
grandparent, then rotate the grandparent in the other direction (Figure 14–32). No further work
is necessary at this point.

The third case occurs when node has a black aunt and is an inner child—for example, if node is
a right child but its parent is a left child (Figure 14–33). A rotation makes the parent an outer
child of node. This new outer child is red and has a red parent, so we repair it as before.

Figure 14–30: Rotation within the subtree rooted at 3. (3’s parent, if any, and the
proper descendants of 1, 5, and 9 are not shown.) Node 3 moves down to the left,
while node 7 moves up. Only the three relationships shown by thick lines are changed;
other nodes, such as node 5’s proper descendants, are unaffected. Rotation is inde-
pendent of color.
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Figure 14–31: Repairing the tree for a node with a red parent and a red aunt. The
colors of the parent, aunt, and grandparent are changed. It may be necessary to
perform more repairs on the grandparent, which is now red.

Figure 14–32: Repairing the tree for an outer child with a red parent and a black
uncle. This involves two color changes and a rotation.

Figure 14–33: Repairing the tree for an inner child with a red parent and a black
uncle. A rotation transforms this into the outer child case, which is resolved as in
Figure 14–32.
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Deletion

We now move on to deletion from a red-black tree. This is even more complicated than insertion,
but the idea is the same: perform the operation as usual, then repair the tree if necessary.

Splicing out a red node can never cause any problems. If we splice out a black node, on the other
hand, search paths that used to lead through this node now have one fewer black node than other
search paths. Let node be the child of the node that was spliced out. If node is red, we can sim-
ply color it black to cancel out the problem. Otherwise, we work up the tree looking for a red
node. There are four cases to consider this time.

In the first case, if node’s sibling is black and has two black children, we color the sibling red
(Figure 14–34). Now both the subtree rooted at node and the subtree rooted at its sibling are
short a black node. In other words, the subtree rooted at node’s parent is short a black node. We
may have to make repairs there. That’s closer to the root, so we’re making progress.

In the second case, node’s sibling is black and the sibling’s outer child is red (Figure 14–35).
Some color changes and a rotation here completely eliminate the problem.

Figure 14–34: Repairing after deletion when node’s sibling is black and has two
black children. The parent, which may be of either color, becomes the new node.

Figure 14–35: Repairing after deletion when node’s sibling is black and has a red
outer child. The sibling gets the parent’s color, the parent and outer child become black,
and there is a rotation.
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In the third case, node’s sibling is black, has a black outer child, and has a red inner child
(Figure 14–36). Color changes and a rotation transform this into the red outer child situation just
covered.

The fourth case occurs when node’s sibling is red (Figure 14–37). Color changes and a rotation
transform this into one of the other cases.

Implementation
The code for red-black trees is fairly complicated. In order to simplify things, we employ a cou-
ple of special tricks.

First, in place of null, we use references to a special black node called a sentinel
(Figure 14–38). The sentinel indicates that we can’t go any farther, but it is an actual node, so we

Figure 14–36: Repairing after deletion when node’s sibling is black, has a black
outer child, and has a red inner child (left). Color changes and a rotation transform this
into the red outer child case (middle), which is handled as before (right).

Figure 14–37: Repairing after deletion when node’s sibling is red. Color changes and
a rotation transform this into one of the other cases, which can be handled
appropriately.
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can invoke methods on it. Thus, for example, we can ask for the color of a node’s left child and
get an answer even if the node doesn’t really have a left child. Thus, we can say

if (node.getLeft().isBlack()) {

instead of:

if ((node.getLeft() == null) || (node.getLeft().isBlack())) {

To save space, we use a single sentinel instance to represent all nonexistent children.

Second, we keep track of the parent of each node. This is similar to the idea of a doubly linked
list (Section 6.1). The root’s parent is the sentinel.

Figure 14–38: A red-black tree (upper left) and its implementation. Each node has
references to its children and its parent. Where there is no child or parent, references
are to a sentinel node (shaded).
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The code for the RedBlackNode class is given in Figure 14–39. Some methods, such as isRed()
and getColor(), are somewhat redundant, but they make the code in RedBlackTree easier to
understand.

1 /** Node in a RedBlackTree. */
2 public class RedBlackNode<E extends Comparable<E>> {
3
4   /** Black node color. */
5   public static final boolean BLACK = false;
6
7   /** Red node color. */
8   public static final boolean RED = true;
9

10   /** Color of this node, BLACK or RED. */
11   private boolean color;
12
13   /** Item associated with this node. */
14   private E item;
15
16   /** Left child of this node. */
17   private RedBlackNode<E> left;
18
19   /** Parent of this node. */
20   private RedBlackNode<E> parent;
21
22   /** Right child of this node. */
23   private RedBlackNode<E> right;
24
25   /** Used for constructing a sentinel. */
26   protected RedBlackNode() {
27     color = BLACK;
28     // All other fields are irrelevant
29   }
30
31 /**
32    * The new node is red and both of its children are sentinel.
33    * The node's parent is NOT set by this constructor.
34    */
35   public RedBlackNode(E item, RedBlackNode<E> sentinel) {
36     color = RED;
37     this.item = item;
38     left = sentinel;
39     right = sentinel;
40   }
41

Figure 14–39: The RedBlackNode class. (Part 1 of 3)
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42  /**
43    * Return this node's left (if direction is negative) or right
44    * (otherwise) child.
45    */
46 public RedBlackNode<E> getChild(int direction) {
47     if (direction < 0) {
48       return left;
49     }
50     return right;
51   }
52
53 /** Return the color of this node. */
54   public boolean getColor() {
55     return color;
56   }
57
58   /** Return the item associated with this node. */
59   public E getItem() {
60     return item;
61   }
62
63   /** Return this node's left child. */
64   public RedBlackNode<E> getLeft() {
65     return left;
66   }
67
68   /** Return this node's parent. */
69   public RedBlackNode<E> getParent() {
70     return parent;
71   }
72
73   /** Return this node's right child. */
74   public RedBlackNode<E> getRight() {
75     return right;
76   }
77
78   /** Return true if this node has two black children. */
79   public boolean hasTwoBlackChildren() {
80     return left.isBlack() && right.isBlack();
81   }
82
83   /** Return true if this node is black. */
84   public boolean isBlack() {
85     return color == BLACK;
86   }
87

Figure 14–39: The RedBlackNode class. (Part 2 of 3)
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The trivial parts of the RedBlackTree class are given in Figure 14–40. When the tree is empty,
the root is the sentinel.

88  /** Return true if this node is red. */
89   public boolean isRed() { 
90 return color == RED;
91   }
92
93  /**
94    * Set this node's left (if direction is negative) or right
95    * (otherwise) child.
96    */
97   public void setChild(int direction, RedBlackNode<E> child) {
98     if (direction < 0) {
99       left = child;

100     } else {
101       right = child;
102     }
103   }
104
105 /** Make this node black. */
106   public void setBlack() {
107     color = BLACK;
108   }
109
110   /** Set the color of this node. */
111   public void setColor(boolean color) {
112     this.color = color;
113   }
114
115   /** Set the item associated with this node. */
116   public void setItem(E item) {
117     this.item = item;
118   }
119
120   /** Set the parent of this node. */
121   public void setParent(RedBlackNode<E> parent) {
122     this.parent = parent;
123   }
124
125   /** Make this node red. */
126   public void setRed() {
127     color = RED;
128   }
129
130 }

Figure 14–39: The RedBlackNode class. (Part 3 of 3)



Section 14.4 Red-Black Trees 399

The code for the RedBlackTree version of contains() (Figure 14–41) is somewhat shorter
than the binary search tree version, because the RedBlackNode class provides a method get-
Child() which accepts a direction as an argument.

1 /** A red-black tree of Comparables. */
2 public class RedBlackTree<E extends Comparable<E>> 
3 implements Set<E> {
4
5   /** The root node of this tree. */
6   private RedBlackNode<E> root;
7
8   /** All "null" node references actually point to this node. */
9   private RedBlackNode<E> sentinel;

10
11   /** The tree is initially empty. */
12   public RedBlackTree() {
13     sentinel = new RedBlackNode<E>();
14     root = sentinel;
15   }
16
17    public int size() {
18      return size(root);
19    }
20
21   /** Return the size of the subtree rooted at node. */
22   protected int size(RedBlackNode<E> node) {
23     if (node == sentinel) {
24       return 0;
25     } else {
26       return 1 + size(node.getLeft()) + size(node.getRight());
27     }
28   }
29
30 }

Figure 14–40: Easy parts of the RedBlackTree class.

1 public boolean contains(E target) {
2   RedBlackNode<E> node = root;
3   while (node != sentinel) {
4     int comparison = target.compareTo(node.getItem()); 

Figure 14–41: The contains() method from the RedBlackTree class. (Part 1 of 2)
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Insertion in a red-black tree starts out like insertion in a binary search tree (Figure 14–42). We
start at the root and descend until we either find the target or reach the sentinel. We then attach a
new, red node at this point.

5 if (comparison == 0) {
6       return true;
7  } else {
8 node = node.getChild(comparison);
9 }

10   }
11   return false;
12 }

1 public void add(E target) {
2   RedBlackNode<E> targetNode 
3 = new RedBlackNode<E>(target, sentinel);
4   RedBlackNode<E> parent = sentinel;
5   RedBlackNode<E> node = root;
6   int comparison = 0;
7   while (node != sentinel) {
8     parent = node;
9     comparison = compare(targetNode, node);

10     if (comparison == 0) {
11       return;
12     }
13     node = node.getChild(comparison);
14   }
15   linkParentAndChild(parent, targetNode, comparison);
16   if (parent == sentinel) {
17     root = targetNode;
18   }
19   repairAfterInsertion(targetNode);
20 }
21
22 /**
23  * Return a negative number if child is to the left of parent,
24  * positive otherwise.
25  */
26 protected int compare(RedBlackNode<E> child, 
27 RedBlackNode<E> parent) {
28   if (child == parent.getLeft()) {
29     return -1;
30 }
31   if (child == parent.getRight()) {
32     return 1;
33   }
34   return child.getItem().compareTo(parent.getItem());
35 }

Figure 14–42: The add() and compare() methods from the RedBlackTree class.
The compare() method makes the code slightly clearer. Lines 26–31 are there so that
compare() works even if child is the sentinel, which has a null item.

Figure 14–41: The contains() method from the RedBlackTree class. (Part 2 of 2)
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The linkParentAndChild() method is given in Figure 14–43. The argument dir allows us
to specify whether child should become a left or right child of parent.

The code for repairAfterInsertion() and rotate() is given in Figure 14–44. The loop
runs until node has a black parent. If node is the root (whose parent is the black sentinel), we
have to color node black, since the root of a red-black tree must be black.

1 /**
2  * Set child to be the left (if dir is negative) or right
3  * (otherwise) child of parent.
4  */
5 protected void linkParentAndChild(RedBlackNode<E> parent,
6                                   RedBlackNode<E> child,
7                                   int dir) {
8   parent.setChild(dir, child);
9   child.setParent(parent);

10 }

Figure 14–43: The linkParentAndChild() method from RedBlackTree.

1 /** Restore the tree to validity after inserting a node. */
2 protected void repairAfterInsertion(RedBlackNode<E> node) {
3   while (node.getParent().isRed()) {
4     RedBlackNode<E> parent = node.getParent();
5     RedBlackNode<E> grandparent = parent.getParent();
6     RedBlackNode<E> aunt
7       = grandparent.getChild(-compare(parent, grandparent));
8     if (aunt.isRed()) {       // Red aunt
9       parent.setBlack();

10       aunt.setBlack();
11       grandparent.setRed();
12       node = grandparent;
13     } else {
14       int nodeComparison = compare(node, parent);
15       int parentComparison = compare(parent, grandparent);
16       if (nodeComparison != parentComparison) { // Inner child
17         rotate(nodeComparison, parent);
18         node = parent;
19       }
20       node.getParent().setBlack(); // Outer child
21       node.getParent().getParent().setRed();
22       rotate(parentComparison, node.getParent().getParent());
23     }
24   }
25   root.setBlack();
26 }
27

Figure 14–44: The repairAfterInsertion() method is aided by rotate(). (Part 1
of 2)
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We now move on to deletion from a red-black tree. This is even more complicated than insertion,
but the idea is the same: perform the operation as usual, then repair the tree if necessary. The
easy parts are shown in Figure 14–45.

28 /**
29  * Move node's left (if dir is negative) or right (otherwise)
30  * child up into its place.  Move node down on the other side.
31  */
32 protected void rotate(int dir, RedBlackNode<E> node) {
33   RedBlackNode<E> child = node.getChild(dir);
34   RedBlackNode<E> parent = node.getParent();
35   if (node.getParent() == sentinel) {
36     root = child;
37   }
38   linkParentAndChild(node, child.getChild(-dir), dir);
39   linkParentAndChild(parent, child, compare(node, parent));
40   linkParentAndChild(child, node, -dir);
41 }

1 /** Return the inorder successor of node. */
2 protected RedBlackNode<E> inorderSuccessor(RedBlackNode<E> node) {
3   RedBlackNode<E> descendant = node.getRight();
4   while (descendant.getLeft() != sentinel) {
5     descendant = descendant.getLeft();
6   }
7   return descendant;
8 }
9

10 public void remove(E target) {
11   RedBlackNode<E> node = root;
12   while (node != sentinel) {
13     int comparison = target.compareTo(node.getItem());
14     if (comparison == 0) {
15       if ((node.getLeft() == sentinel)
16           || (node.getRight() == sentinel)) {
17         spliceOut(node);
18       } else {
19         RedBlackNode<E> successor = inorderSuccessor(node);
20         node.setItem(successor.getItem());
21         spliceOut(successor);
22       }
23  return;

Figure 14–45: The remove() method invokes spliceOut(), which may invoke
repairAfterDeletion(). (Part 1 of 2)

Figure 14–44: The repairAfterInsertion() method is aided by rotate(). (Part 2
of 2)
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The code for repairAfterDeletion() is given in Figure 14–46.

24  } else {
25 node = node.getChild(comparison);
26 }
27   }
28 }
29
30 /** Splice node out of the tree. */
31 protected void spliceOut(RedBlackNode<E> node) {
32   RedBlackNode<E> child;
33   if (node.getLeft() != sentinel) {
34     child = node.getLeft();
35   } else {
36     child = node.getRight();
37   }
38   linkParentAndChild(node.getParent(),
39                      child,
40                      compare(node, node.getParent()));
41   if (node == root) {
42     root = child;
43   }
44   if (node.isBlack()) {
45     repairAfterDeletion(child);
46   }
47 }

1 /** Restore the tree to validity after a deletion. */
2 protected void repairAfterDeletion(RedBlackNode<E> node) {
3   while ((node != root) && (node.isBlack())) {
4     RedBlackNode<E> parent = node.getParent();
5     int comparison = compare(node, parent);
6     RedBlackNode<E> sibling = parent.getChild(-comparison);
7     if (sibling.isRed()) {    // Red sibling
8       sibling.setBlack();
9       parent.setRed();

10       rotate(-comparison, parent);
11       sibling = node.getParent().getChild(-comparison);

Figure 14–46: The repairAfterDeletion() method. (Part 1 of 2)

Figure 14–45: The remove() method invokes spliceOut(), which may invoke
repairAfterDeletion(). (Part 2 of 2)
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Exercises

14.17 Prove that a red node must have either zero or two children.

14.18 What is the tallest possible linear red-black tree?

14.19 If a newly inserted node’s parent is red (before repairing the tree), its grandparent must
be black. Why?

14.20 The deletion repair case shown in Figure 14–37 makes node lower in the tree. Why is
there no danger that this could lead to an infinite loop, where no progress is made
toward the root? (Hint: What is the color of node 4’s right child?)

Summary

A heap is a binary tree data structure used either to represent a priority queue (in which only the
smallest element can be removed) or in the heapsort algorithm. A heap is a perfect binary tree or
close to it. The value at each node is less than or equal to the values at the node’s children. It fol-
lows that the smallest element is at the root, but a node may be lower in the tree than a smaller
cousin. When changes are made to a heap, it is repaired by filtering the offending element up or
down until it is in the right place. This take logarithmic time.

12     }
13  if (sibling.hasTwoBlackChildren()) { // Two black children
14       sibling.setRed();
15       node = node.getParent();
16     } else {
17       if (sibling.getChild(-comparison).isBlack()) { 
18 // Red inner child
19         sibling.getChild(comparison).setBlack();
20         sibling.setRed();
21         rotate(comparison, sibling);
22         sibling = parent.getChild(-comparison);
23       }
24       sibling.setColor(parent.getColor()); // Red outer child
25       parent.setBlack();
26       sibling.getChild(-comparison).setBlack();
27       rotate(-comparison, parent);
28       node = root;
29     }
30   }
31   node.setBlack();
32 }

Figure 14–46: The repairAfterDeletion() method. (Part 2 of 2)
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A cluster of disjoint sets may be represented as a forest of up-trees. Two elements in the same set
are in the same tree, which can be detected by following parents up to the root. The up-trees are
represented using an ArrayList of Integers, in which the value at each index is the parent of the
corresponding element. This data structure supports efficient algorithms for determining
whether two elements are in the same set and merging two sets. With merging by height and path
compression, these operations take amortized time in O(log* n).

A set of strings may be represented as a digital search tree. Each string corresponds to a path
through the tree. This is a good data structure for finding all words starting with a certain prefix.

Java’s TreeSet and TreeMap classes use red-black trees, which are similar to binary search trees.
In a red-black tree, each node is either red or black. The colors in the tree must have certain
properties, which guarantee that the tree cannot be badly out of balance. This in turn gives
worst-case running time in O(log n) for search, insertion, and deletion.

To simplify the code, each node in a red-black tree keeps track of its parent as well as its chil-
dren. A special sentinel node is used in place of absent parents and children, where there would
normally be null references. This allows us to invoke methods on a node’s parent regardless of
whether it really has a parent.

Search in a red-black tree works just as it does in a binary search tree. After the basic insertion
and deletion operations, it may be necessary to repair the tree to satisfy the properties. This
repair is accomplished by working up the tree, performing color changes and rotations.

Vocabulary

digital search tree. Tree for storing strings. Each string is represented as a path from the root
down to some node in the tree.

disjoint. Of two or more sets, having no elements in common.

heap. Perfect or almost-perfect binary tree in which the value at each node is less than or equal
to the value at the node’s children.

heapsort. Sorting algorithm that places the elements into a heap, then extracts them in order.

inner child. Node in a binary tree that is a child on the opposite side as its parent, such as a left
child of a right child.

merging by height. Improvement to up-tree merging algorithm in which the root of the shorter
tree becomes a child of the root of the taller tree. Keeps trees wide and shallow.

outer child. Node in a binary tree that is a child on the same side as its parent, such as a left
child of a left child.

path compression. Improvement to up-tree merging algorithm in which all nodes visited along
the path to a root are made to “point” directly to the root.

priority queue. Queue in which only the smallest element (rather than the oldest element, as in
a FIFO queue) can be removed.
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red-black tree. Binary search tree variant that is guaranteed to have height logarithmic in the
number of nodes. Each node is either red or black. The root is black, no red node has a red child,
and the number of black nodes is the same on each path from the root to a null child.

rotation. Local rearrangement of nodes within a tree. Used to maintain the validity of a red-
black tree.

sentinel. Special node or value used to delineate the boundary of a data structure. Use of a senti-
nel can sometimes simplify code by eliminating special cases. In our red-black tree implementa-
tion, a sentinel is used as the parent of the root and in place of null children.

up-tree. Representation of a disjoint set. Each node keeps track of its parent rather than its
children.

Problems

14.21 Modify the Heap class so that each node has a value greater than or equal to its children.

Projects

14.22 Implement a priority queue using an OrderedLinkedList instead of a heap. Give the
worst-case running time of each of your methods.

14.23 After doing Problem 14.21, rewrite the Heap class to handle only heaps of doubles. Use
an array rather than an ArrayList. Your implementation of heapsort should be in place.
(Hint: Recall Figure 8–7.)

14.24 Write a DisjointSetCluster class that uses an ArrayList of Sets instead of the up-tree
data structure described in Section 14.2. Provide the methods inSameSet() and
mergeSets(). What is the running time of these operation?

14.25 Suppose Figure 14–23 is the entire digital search tree for a game of Ghost. If your
opponent starts the game with ‘g,’ why is ‘r’ not a wise response? Modify the program
to take advantage of this information.
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15
Graphs

So far we have dealt only with linear structures and trees. A linear structure can be considered a
special case of a tree, where every node (except for the single leaf) has exactly one child. Just as
trees generalize linear structures, graphs generalize trees (Figure 15–1). The key difference
between trees and graphs is that, in a graph, there may be more than one path between two
nodes.

This chapter begins with discussions of graph terminology (Section 15.1), representation
(Section 15.2), and traversal (Section 15.3). The remaining sections present several algorithms

Figure 15–1: A linear structure (left) is a special case of a tree (middle), which is in
turn a special case of a graph (right).
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related to graphs. An incredible variety of computational problems can be phrased in terms of
graphs. For example:

• Consider a set of tasks in a complicated cooking or industrial fabrication process. Some
of the tasks have others as prerequisites. In what order can the tasks be performed? This
is the topological sorting problem, addressed in Section 15.4.

• What is the shortest driving route from Los Angeles to Chicago? Section 15.5 covers
algorithms for finding shortest paths.

• Given a set of computers in various locations in a building, how can they be connected
with the least amount of cable? This is the problem of finding a minimum spanning
tree, discussed in Section 15.6.

15.1  Terminology

Understanding graphs allows us to create much more elaborate games than we could before.
Almost any game board can be treated as a graph. For a concrete example, we present the game
of Galaxy (Figure 15–2).

A partial transcript using our implementation is given in Figure 15–3.

This user interface clearly leaves something to be desired; improving it is left as Problem 15.28.

Before writing the code for Galaxy, we introduce some graph terminology.

A graph consists of vertices (nodes) and edges. In a drawing, the vertices are shown as circles
and the edges are shown as lines or arrows.

In an directed graph, an edge is an arrow going from one vertex to another (Figure 15–4). In
some situations, it is meaningful to have a self-loop, an edge connecting a vertex to itself. In an
undirected graph, an edge is simply a line connecting two vertices. Undirected graphs usually
do not have self-loops. For every undirected graph there is a corresponding directed graph where
each undirected edge is replaced by two directed edges, one in each direction.

The neighbors of a vertex are those vertices that can be reached by moving along one edge. In
Figure 15–4, the neighbors of N are J, K, and Q. The neighbors of H are E and B, but not I—it is
illegal to move backward along a directed edge.

A path from one vertex to another is a sequence of vertices, each a neighbor of the previous one.
In Figure 15–4, the sequence I→H→B→A is a path from I to A. The length of the path is the
number of edges along the path, one less than the number of vertices. The aforementioned path
has length 3. The distance between two vertices is the length of the shortest path between them.

A cycle is a path (of length one or more) from a vertex back to itself. In Figure 15–4,
F→G→D→C→F is a cycle.  In an undirected graph, a cycle may not follow the same edge more
than once. Thus, J→K→N→J is a cyle, but not Q→N→Q.
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Galaxy
Players: 2

Object: To score the most points.

Board: There are twenty stars in the galaxy, connected by lines as shown below. Each
player initially controls one star chosen at random
.

Play: On a turn, choose any unoccupied star and occupy it. Score a point for each adjacent
enemy star.

Game End: The game ends when all 20 stars are occupied.

Figure 15–2: The game of Galaxy, by James Ernest. Used with permission of the
designer.

1 Star    Owner   Neighbors
2 0       0       [ 16 17 19 ]
3 1       0       [ 2 8 ]
4 2       0       [ 1 4 5 8 ]
5 3       0       [ 8 9 16 ]
6 4       0       [ 2 5 8 ]
7 5       1       [ 2 4 6 7 ]

Figure 15–3: Sample move in a game of Galaxy. Player 2 scores 2 points
occupying star 4, which is adjacent to two stars occupied by player 1: star 5 and
star 8. (Part 1 of 2)
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8 6       0       [ 5 7 ]
9 7       2       [ 5 6 8 10 11 12 18 ]

10 8       1       [ 1 2 3 4 7 10 14 ]
11 9       0       [ 3 10 13 ]
12 10      1       [ 7 8 9 12 13 ]
13 11      0       [ 7 14 19 ]
14 12      2       [ 7 10 14 16 19 ]
15 13      0       [ 9 10 15 16 ]
16 14      0       [ 8 11 12 ]
17 15      0       [ 13 16 18 ]
18 16      0       [ 0 3 12 13 15 17 ]
19 17      0       [ 0 16 ]
20 18      0       [ 7 15 19 ]
21 19      0       [ 0 11 12 18 ]
22 Player 1: 2
23 Player 2: 2
24
25 Player 2, pick a star: 4
26 Star    Owner   Neighbors
27 0       0       [ 16 17 19 ]
28 1       0       [ 2 8 ]
29 2       0       [ 1 4 5 8 ]
30 3       0       [ 8 9 16 ]
31 4       2       [ 2 5 8 ]
32 5       1       [ 2 4 6 7 ]
33 6       0       [ 5 7 ]
34 7       2       [ 5 6 8 10 11 12 18 ]
35 8       1       [ 1 2 3 4 7 10 14 ]
36 9       0       [ 3 10 13 ]
37 10      1       [ 7 8 9 12 13 ]
38 11      0       [ 7 14 19 ]
39 12      2       [ 7 10 14 16 19 ]
40 13      0       [ 9 10 15 16 ]
41 14      0       [ 8 11 12 ]
42 15      0       [ 13 16 18 ]
43 16      0       [ 0 3 12 13 15 17 ]
44 17      0       [ 0 16 ]
45 18      0       [ 7 15 19 ]
46 19      0       [ 0 11 12 18 ]
47 Player 1: 2
48 Player 2: 4

Figure 15–3: Sample move in a game of Galaxy. Player 2 scores 2 points
occupying star 4, which is adjacent to two stars occupied by player 1: star 5 and
star 8. (Part 2 of 2)
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A graph with no cycles is called acyclic. A directed acyclic graph is sometimes called a dag
(Figure 15–5).

A graph in which every pair of vertices is connected by a path (not necessarily an edge) is said to
be connected (Figure 15–6). Not all graphs are connected.

Figure 15–4: Directed (left) and undirected (right) graphs. Vertex G in the directed
graph has a self-loop.

Figure 15–5: A directed acyclic graph or dag.

Figure 15–6: The undirected graph at left is not connected. The directed graph at
right appears to be connected, but it is not: there is, for example, no path from F to E.
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Data are usually associated only with the vertices of a graph. Occasionally, there are also data
(usually numbers) associated with the edges (Figure 15–7). Such a number might represent the
length of a road between two cities or the price of a cable between two computers. Such graphs
are called weighted graphs.

When analyzing graph algorithms, we often give results in terms of v (the number of vertices)
and e (the number of edges). In a directed graph, each of the v vertices might have an edge lead-
ing to itself and every other vertex, so e ≤ v2. In an undirected graph, the first vertex might be
connected to each of the others. The second vertex might also be connected to each of the others,
but the edge connecting it to the first vertex shouldn’t be counted again. This gives a total of:

In either case e ∈ O(v2). This is an upper limit; many graphs have far fewer edges. For example,
consider the network of computers in your building. Every computer or router can be thought of
as a node, every ethernet cable as an undirected edge. There is probably not an edge connecting
each vertex to each other vertex! A graph with close to the maximum number of edges is called
dense. A graph with far fewer edges is called sparse.

Exercises

15.1 Is the graph for the Galaxy game (Figure 15–2) directed or undirected? Weighted or
unweighted? Connected or unconnected?

15.2 Which vertex in the graph for the Galaxy game has the most neighbors?

15.3 Find a cycle of length 6 in the graph for the Galaxy game (Figure 15–2).

15.4 Is a dag always, sometimes, or never connected?

15.5 What is the maximum number of edges in a directed graph with no self-loops?

15.6 What is the minimum length of a cycle in an undirected graph?

Figure 15–7: In a weighted graph, there are data associated with the edges.
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15.7 What is the minimum number of edges in a connected, undirected graph?

15.8 What is the minimum number of edges in a connected, directed graph?

15.2 Representation

In representing graphs, we assume that the vertices are numbered 0 through v – 1. If it is neces-
sary to associate other data such as city names with the vertices, this can be done with a Map or
a direct address table.

In an unweighted graph, we need to keep track only of which vertices are the neighbors of each
vertex. The first approach to doing this is the neighbor list representation (Figure 15–8), also
known as the adjacency list representation. There is an array containing a chain of ListNodes for
each vertex. Each list contains the indices of the neighboring vertices. The amount of memory
used is in Θ(v + e). The time to check for a particular edge is in O(e).

If a graph is dense, it is better to use a neighbor matrix (Figure 15–9), also known as an adja-
cency matrix. This is essentially a two-dimensional array of booleans. Element <i, j> of this array
is true when there is an edge from vertex i to vertex j. The memory used by this representation is

Figure 15–8: A graph (left) and its neighbor list representation (right).

Figure 15–9: A graph (left) and its neighbor matrix representation (right).
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in Θ(n2), which is more than the neighbor list representation if the graph is sparse. On the other
hand, the time to check for a particular edge is constant.

An added advantage of the neighbor matrix representation is that it is easily adapted to handle
weighted graphs (Figure 15–10). Instead of storing a boolean at each position, we store the
weight of the corresponding edge, or 0 if there is no edge.

Code for the neighbor matrix representation is given in Figure 15–11. It can be used to represent
an unweighted graph (with the methods addEdge() and hasEdge()) or a weighted graph (with

Figure 15–10: A weighted graph (left) and its neighbor matrix representation (right).

1 /** A potentially weighted graph. */
2 public class Graph {
3
4   /**
5    * edges[i][j] is the weight of the edge from i to j, or 0 if 
6    * there is no such edge.
7    */
8   private double[][] edges;
9

10   /** The argument is the number of vertices in this Graph. */
11   public Graph(int vertices) {
12     edges = new double[vertices][vertices]; // All zero by default
13   }
14
15   /** Add an edge of weight 1 from i to j. */
16 public void addEdge(int i, int j) {
17     edges[i][j] = 1;
18   }
19

Figure 15–11: Beginning the Graph class. (Part 1 of 2)
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the methods setEdge() and getEdge()). The methods addUndirectedEdge() and setUn-
directedEdge() allow us to represent undirected edges as well.

It will often prove useful to obtain a List of the neighbors of a vertex, so we provide a method for
this (Figure 15–12).

We will add quite a few additional methods to this class, but we have enough now to write the
Galaxy program. A UML class diagram is given in Figure 15–13.

The fields and main() method for the Galaxy class are given in Figure 15–14.

The constructor (Figure 15–15) is rather lengthy because it has to specify all of the edges on
the board. Line 3 creates a Graph with 20 vertices but no edges. Lines 4–24 add the edges. Spe-
cifically, a two-dimensional array of ints is created and the rows are traversed using an enhanced

20 /** Add edges of weight 1 from i to j and from j to i. */
21 public void addUndirectedEdge(int i, int j) {
22 edges[i][j] = 1;
23 edges[j][i] = 1;
24   }
25
26   /** Return the weight of the edge from i to j. */
27   public double getEdge(int i, int j) {
28     return edges[i][j];
29   }
30
31   /** Return true if there is an edge from i to j. */
32   public boolean hasEdge(int i, int j) {
33     return edges[i][j] != 0.0;
34   }
35
36   /** Set the weight of the edge from i to j. */
37   public void setEdge(int i, int j, double weight) {
38     edges[i][j] = weight;
39   }
40
41   /** Set the weight of the edge from i to j and from j to i. */
42   public void setUndirectedEdge(int i, int j, double weight) {
43     edges[i][j] = weight;
44     edges[j][i] = weight;
45   }
46
47 /** Return the number of vertices in this Graph. */
48   public int size() {
49     return edges.length;
50   }
51
52 }

Figure 15–11: Beginning the Graph class. (Part 2 of 2)
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for loop. Each row contains two numbers, which are passed to addUndirectedEdge() on line
23. On line 25, scores has length 3 so that we can refer to scores[1] and scores[2];
scores[0] is not used. Line 26 allocates the array stars. Line 27 gives a random star to player 1.
The loop on lines 28–34 gives a random star to player 2; it usually runs only once, but it is set up
to try again if player 2 happens to get the same star as player 1.

1 /** Return a List of the neighbors of vertex i. */
2 public List<Integer> neighbors(int i) {
3   List<Integer> result = new ArrayList<Integer>();
4   for (int j = 0; j < size(); j++) {
5     if (hasEdge(i, j)) {
6       result.add(j);
7     }
8   }
9   return result;

10 }

Figure 15–12: The neighbors() method.

Figure 15–13: UML class diagram showing the Galaxy and Graph classes. For
completeness, all of the Graph methods are shown, even those not used in Galaxy.

Galaxy

INPUT:Scanner
edges:Graph
scores:int[ ]
stars:int[ ]
Galaxy()
play():void
toString():String
main(String[ ]):void

Graph

edges:double[ ][ ]

Graph(int)
addEdge(int,int):void
addUndirectedEdge(int,int):void
breadFirstTraverse(int):List<Integer>
cheapest(double[ ],boolean[ ]):int
depthFirstTraverse(int):List<Integer>
depthFirstTraverse(int,List<Integer>,
  boolean[ ]):void
distances():double[ ][ ]
distancesFrom(int):double[ ]
getCost(int,int):double
getEdge(int,int):double
hasEdge(int,int):boolean
minimumSpanningTree():Graph
neighbors(int):List<Integer>
setEdge(int,int,double):void
setUndirectedEdge(int,int,double):void
size():int
topologicalSort():List<Integer>
topologicalTraverse(int,
  LinkedList<Integer>,boolean[ ]):void

1
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1 import java.util.Scanner;
2
3 /** The game of Galaxy. */
4 public class Galaxy {
5
6   /** For reading from the console. */
7 public static final Scanner INPUT = new Scanner(System.in);
8
9  /** Edges linking the stars together. */

10   private Graph edges;
11
12   /** Points earned so far by each player. */
13   private int[] scores;
14
15   /** Number of player controlling each star, or zero if none. */
16   private int[] stars;
17
18   /** Create and play the game. */
19   public static void main(String[] args) {
20     Galaxy game = new Galaxy();
21     System.out.println("Welcome to Galaxy.\n");
22     game.play();
23   }
24
25 }

Figure 15–14: Fields and main() method for the Galaxy class.

1 /** Build the galaxy and give one star to each player. */
2 public Galaxy() {
3   edges = new Graph(20);
4   for (int[] pair : new int[][]
5     {{0, 16}, {0, 17}, {0, 19},
6      {1, 2}, {1, 8},
7      {2, 4}, {2, 5}, {2, 8},
8      {3, 8}, {3, 9}, {3, 16},
9      {4, 5}, {4, 8},

10      {5, 6}, {5, 7},
11      {6, 7},
12      {7, 8}, {7, 10}, {7, 11}, {7, 12}, {7, 18},
13      {8, 10}, {8, 14},
14      {9, 10}, {9, 13},
15      {10, 12}, {10, 13},
16      {11, 14},
17      {11, 19},
18  {12, 14}, {12, 16}, {12, 19},

Figure 15–15: Constructor for the Galaxy class. (Part 1 of 2)
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In writing the toString() method (Figure 15–16), we opt for a simple table.

The play() method (Figure 15–17) is one of the simpler ones we’ve written. In the loop, lines
6-8 read a star number from the user. Line 9 gives the user control of that star. Lines 10–14 add
any points scored. Line 15 toggles whose turn it is.

Exercises

15.9 How can the neighbor list representation (Figure 15–8) be modified to handle weighted
graphs?

19      {13, 15}, {13, 16},
20      {15, 16}, {15, 18},
21      {16, 17},
22      {18, 19}}) {
23     edges.addUndirectedEdge(pair[0], pair[1]);
24   }
25   scores = new int[3];         // Initially all zeroes
26   stars = new int[20];         // Initially all zeroes
27   stars[(int)(Math.random() * 20)] = 1;
28   do {
29     int star = (int)(Math.random() * 20);
30     if (stars[star] == 0) {
31       stars[star] = 2;
32       return;
33     }
34   } while (true);
35 }

1 public String toString() {
2   StringBuilder result = new StringBuilder();
3  result.append("Star\tOwner\tNeighbors\n");
4  for (int i = 0; i < 20; i++) {
5   result.append(i + "\t" + stars[i] + "\t"
6             + edges.neighbors(i) + "\n");
7  }
8  for (int p = 1; p <= 2; p++) {
9   result.append("Player " + p + ": " + scores[p] + "\n");

10  }
11  return result.toString();
12 }

Figure 15–16: The toString() method from the Galaxy class.

Figure 15–15: Constructor for the Galaxy class. (Part 2 of 2)
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15.10 What is the order of the running time of the neighbors() method (Figure 15–12)?

15.11 A graph could be represented as a List of edges, with each edge containing the indices
of the two vertices connected by the edge. How much memory is used by this represen-
tation? How long does it take to check for the existence of a particular edge? How can
this representation be modified to handle weighted graphs?

15.3 Graph Traversal

Like a tree, a graph can be traversed in more than one way. We must choose an arbitrary vertex
to start from. This is called the source vertex. A depth-first traversal (Figure 15–18) follows
edges until it reaches a dead end, then backtracks to the last branching point to try a different
branch. The order in which the different branches are tried is arbitrary.

A breadth-first traversal (Figure 15–19) visits one vertex, then its neighbors, then vertices two
edges away, and so on.

In either case, vertices that cannot be reached from the source (such as the one at the upper right
in Figures 15–18 and 15–19) are never visited. Because there may be more than one path to a
given vertex, it is necessary to keep track of which vertices have already been visited. This is
done with an array of booleans.

The algorithm for depth-first traversal can be stated using a stack or, more concisely, using
recursion (Figure 15–20).

1 /** Play the game. */
2 public void play() {
3   int player = 1;
4   for (int turn = 0; turn < 18; turn++) {
5     System.out.println(this);
6     System.out.print("Player " + player + ", pick a star: ");
7     int star = INPUT.nextInt();
8     INPUT.nextLine();         // To clear out input
9     stars[star] = player;

10     for (int s : edges.neighbors(star)) {
11       if (stars[s] == 3 - player) {
12         scores[player]++;
13       }
14     }
15     player = 3 - player;
16   }
17   System.out.println(this);
18 }

Figure 15–17: The play() method from the Galaxy class.
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Figure 15–18: Depth-first traversal of a graph. The traversal begins by following
edges until a dead end is reached (left). It then backtracks to the last decision point,
following a different branch (middle). This continues until all reachable vertices have
been visited (right).

Figure 15–19: In a breadth-first traversal of a graph, vertices closer to the source
vertex are visited earlier than more distant vertices. The dashed lines merely separate
the four copies of the graph.

1 /** 
2  * Return a list of the vertices reachable from source, in depth- 
3  * first order. 
4  */
5 public List<Integer> depthFirstTraverse(int source) {
6   List<Integer> result = new ArrayList<Integer>(size());
7   boolean[] visited = new boolean[size()];
8 depthFirstTraverse(source, result, visited);
9 return result;

10 }
11

Figure 15–20: Depth-first traversal of a graph. The second, protected method
depthFirstTraverse() is recursive. (Part 1 of 2)
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The algorithm for breadth-first traversal (Figure 15–21) uses a queue, much like the level order
traversal of a tree (Section 10.2).

12 /**  
13  * Visit the vertices reachable from vertex, in depth-first order. 
14  * Add vertices to result as they are visited. 
15  */
16 protected void depthFirstTraverse(int vertex,
17                                   List<Integer> result,
18                                   boolean[] visited) {
19   visited[vertex] = true;
20   result.add(vertex);
21   for (Integer i : neighbors(vertex)) {
22     if (!visited[i]) {
23       depthFirstTraverse(i, result, visited);
24     }
25   }
26 }

1 /**
2  * Return a list of the vertices reachable from source, in
3  * breadth-first order.
4  */
5 public List<Integer> breadthFirstTraverse(int source) {
6   List<Integer> result = new ArrayList<Integer>(size());
7   boolean[] visited = new boolean[size()];
8   Queue<Integer> q = new LinkedList<Integer>();
9   visited[source] = true;

10   q.offer(source);
11   while (!(q.isEmpty())) {
12     int vertex = q.poll();
13     result.add(vertex);
14     for (Integer i : neighbors(vertex)) {
15       if (!visited[i]) {
16         visited[i] = true;
17         q.offer(i);
18 }
19     }
20   }
21   return result;
22 }

Figure 15–21: Breadth-first traversal of a graph.

Figure 15–20: Depth-first traversal of a graph. The second, protected method
depthFirstTraverse() is recursive. (Part 2 of 2)
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Exercises

15.12 Figure 15–22 shows an undirected graph. In what order might the vertices be visited
during a depth-first traversal starting at vertex G? What about a breadth-first traversal?
(There is more than one correct answer for each question.)

15.13 What bad thing could happen if we removed the test on line 22 of Figure 15–20?

15.4 Topological Sorting

A directed acyclic graph can be used to represent a set of tasks, some of which are prerequisites
of others (Figure 15–23). An edge indicates that one task must be performed before another.

Figure 15–22: Undirected graph for Exercise 15.12

Figure 15–23: Dinner involves a number of different tasks, shown in this directed
graph. An edge indicates that one task must be performed before another. For
example, the oven must be preheated before the bread can be baked. It should be
noted that only a programmer would consider this a complete meal.
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A topological sort of such a graph is an ordering in which the tasks can be performed without
violating any of the prerequisites. There may be more than one topological sort of a given graph.
If the graph is redrawn with all of the vertices in topologically sorted order, all of the arrows lead
from earlier to later tasks (Figure 15–24).

For a second example, consider the game of Pick Up Sticks (Figure 15–25).

Figure 15–24: When the vertices are arranged in topologically sorted order, all of the
edges lead from earlier to later tasks.

Pick Up Sticks
Players: 2 or more

Object: To pick up as many sticks as possible.

Setup: Drop a number of long, thin sticks in a disorganized pile on the ground.

Play: In turn, each player picks up a stick. If she successfully extracts a stick without mov-
ing any of the others, she wins that stick and gets another turn.

Figure 15–25: Pick Up Sticks requires some dexterity, but the sticks must be picked
up in a topologically sorted order.

preheat oven

bake bread

serve bread

set table

boil water

add pasta to water

serve pasta

heat sauce

pour sauce over pasta

pour beverage

eat



424 Chapter 15  •  Graphs

In practice, this is a game of dexterity. Ignoring this detail, we can phrase it as a topological sort-
ing problem: in what order should the sticks be picked up? Before any stick can be picked up, all
of the sticks overlapping it must be picked up. A topological sort is a valid order for picking up
the sticks (Figure 15–26).

We would like to write a program that, given the information on which sticks overlap which
other sticks, determines an order in which they may be picked up. A transcript is given in
Figure 15–27.

The heart of this program is the topological sorting algorithm. This algorithm is similar to a series
of depth-first traversals, one starting from each vertex, but all sharing the same visited array.

Figure 15–26: A game of Pick Up Sticks and the corresponding directed acyclic
graph. An edge indicates that one stick overlaps another. A topological sort of this
graph would give a valid order for picking up the sticks.
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Suppose we do a depth-first traversal starting from some vertex, such as vertex F in
Figure 15–26. When we complete this traversal, we have visited everything that can be reached
from this vertex. In other words, we have stick F and everything below it. If we add each vertex
to the end of the solution list as we visit it, all of the edges will lead backward. If we add these
vertices to the beginning instead, all of the edges will lead forward, giving us a topological sort.

The code is given in (Figure 15–28).

1 Welcome to Pick Up Sticks.
2
3 How many sticks are there? 4
4 Which sticks overlap stick 0 (separate with spaces)? 
5 Which sticks overlap stick 1 (separate with spaces)? 0
6 Which sticks overlap stick 2 (separate with spaces)? 1 3
7 Which sticks overlap stick 3 (separate with spaces)? 0
8
9 The sticks can be picked up in this order:

10 ( 0 3 1 2 )

Figure 15–27: Transcript of the PickUpSticks program.

1 /** Return a topological sort of this directed acyclic Graph. */
2 public List<Integer> topologicalSort() {
3   LinkedList<Integer> result = new LinkedList<Integer>();
4   boolean[] visited = new boolean[size()];
5   for (int i = 0; i < size(); i++) {
6     if (!visited[i]) {
7       topologicalTraverse(i, result, visited);
8     }
9   }

10   return result;
11 }
12
13 /**
14  * Visit the vertices reachable from vertex in depth-first
15  * postorder, adding them to result. The array visited
16  * prevents any vertex from being visited more than once.
17  */
18 protected void topologicalTraverse(int vertex,
19                                    LinkedList<Integer> result,
20                                    boolean[] visited) {
21 visited[vertex] = true;

Figure 15–28: The topological sort algorithm performs a series of depth-first,
postorder traversals. These methods are in the Graph class. (Part 1 of 2)
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Each vertex is visited exactly once. It takes time in Θ(v) to traverse the neighbors of each vertex,
so the total running time for topologicalSort() is in Θ(v2).

The PickUpSticks program is now just a bit of input and output (Figure 15–29).

22  for (Integer i : neighbors(vertex)) {
23 if (!visited[i]) {
24       topologicalTraverse(i, result, visited);
25     }
26   }
27   result.setNext(new ListNode<Integer>(vertex, result.getNext()));
28 }

1 import java.util.Scanner;
2
3 /** The game of Pick Up Sticks. */
4 public class PickUpSticks {
5
6   /** For reading from the console. */
7   public static final Scanner INPUT = new Scanner(System.in);
8
9   /**

10    * Directed acyclic graph indicating which sticks overlap which 
11 * others.
12    */
13   private Graph overlaps;
14
15   /** The number of sticks is set here, but not any overlaps. */
16   public PickUpSticks(int n) {
17     overlaps = new Graph(n);
18   }
19
20   /** Ask the user which sticks overlap which others. */
21   protected void determineOverlaps() {
22     for (int i = 0; i < overlaps.size(); i++) {
23       System.out.print("Which sticks overlap stick " + i
24                        + " (separate with spaces)? ");
25       Scanner line = new Scanner(INPUT.nextLine());
26       while (line.hasNextInt()) {
27         overlaps.addEdge(line.nextInt(), i);
28       }
29     }
30   }
31

Figure 15–29: The PickUpSticks program. (Part 1 of 2)

Figure 15–28: The topological sort algorithm performs a series of depth-first,
postorder traversals. These methods are in the Graph class. (Part 2 of 2)
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We do something unusual on lines 24–26 to read several numbers on one line. We read in a line
of text, store it in the String line, and then create a new Scanner that reads from that line
instead of from the keyboard. We can read ints from this Scanner until there are none left. It
wouldn’t work to read these directly from the keyboard, because the Scanner would have no way
of knowing when the user was done entering numbers.

Exercises
15.14 Give a topological sort of the graph at the bottom of Figure 15–26.

15.15 Draw the graph described in Figure 15–27.

15.16 In the topological sort algorithm, why is it important that the graph be acyclic? What
would our topologicalSort() method do if given a cyclic graph?

15.17 Why is it more efficient for topologicalSort() to use a LinkedList rather than an
ArrayList?

15.18 What is the running time of topologicalSort(), assuming a neighbor list represen-
tation?

15.5 Shortest Paths

A very common graph problem is finding the shortest path between two vertices. Applications
range from finding a way through a maze to finding a route through a computer network.

32  /** Print an order in which the sticks can be picked up. */
33   protected void solve() {
34     System.out.println("\nThe sticks can be picked up in 
35 + “this order:");
36     System.out.println(overlaps.topologicalSort());
37   }
38
39   /** Create and solve the game. */
40   public static void main(String[] args) {
41     System.out.println("Welcome to Pick Up Sticks.\n");
42     System.out.print("How many sticks are there? ");
43     PickUpSticks game = new PickUpSticks(INPUT.nextInt());
44     INPUT.nextLine();           // To clear out input                           
45     game.determineOverlaps();
46     game.solve();
47   }

Figure 15–29: The PickUpSticks program. (Part 2 of 2)
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We address the problem for weighted graphs, since the unweighted version is just a special case
of this. For example, suppose we want to drive from one city to another. We want a path with the
fewest total miles of driving, not the fewest intermediate cities visited. In graph terms, we want
to minimize the sum of the weights of the edges on the path, not the number of vertices along the
path. This is the shortest-path problem.

It is convenient to talk about the cost to get directly from one vertex to another. This is zero if the
vertices are the same one. If the vertices are connected by an edge, the weight of that edge is the
cost. If the vertices are not connected by an edge (there is no way to go directly between them),
the cost is infinite.

Costs are computed by the method getCost() in Figure 15–30. It makes use of the special dou-
ble value Double.POSITIVE_INFINITY. This behaves as we would expect infinity to behave—
it is greater than any other double, and:

Double.POSITIVE_INFINITY + 1 == Double.POSITIVE_INFINITY

We now present two algorithms for finding shortest paths in a weighted graph. For simplicity,
we will find the distances rather than the paths themselves. Both algorithms use dynamic pro-
gramming (Section 9.5). Dijkstra’s single-source algorithm determines the distances from one
vertex to all others. (We would have to do just as much work to find the distance to a single des-
tination.) The Floyd–Warshall all-pairs algorithm, which might be used to create a table of dis-
tances in a road atlas, determines the distance from each vertex to each other vertex.

Dijkstra’s Single-Source Algorithm

Dijkstra’s single-source algorithm finds the shortest path from one source vertex to each other
vertex. It does this by maintaining an array result containing the distance to each vertex. Ini-
tially, the distance to the source vertex is 0 and all other distances are infinite (Figure 15–31).

1 /** Return the cost to go directly from i to j. */
2 public double getCost(int i, int j) {
3   if (i == j) {
4     return 0.0;
5   }
6   if (edges[i][j] == 0.0) {
7     return Double.POSITIVE_INFINITY;
8   }
9   return edges[i][j];

10 }

Figure 15–30: The getCost() method returns 0 if i and j are identical, infinity if
there is no edge between them, or the weight of the edge if there is one.
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As the algorithm runs, it reduces the other distances. By the time each vertex is visited, its dis-
tance is correct.

The vertices are visited in order of increasing distance from the source. This guarantees that, by
the time we visit a vertex, we have visited all of the vertices along the shortest path to that vertex.
This is similar to a breadth-first traversal, but the weights are taken into account. As each vertex i
is visited, the distances to its neighbors are updated. Specifically, we compare the current distance
of neighbor j (that is, result[j]) with the length of the path going from the source to i, then
following one edge from i to j:

result[i] + getCost(i, j)

If this sum is smaller, we have found a shorter path to j, so we update result[j].

The code for this algorithm is given in Figure 15–32. The main loop on lines 22-29 runs v times.
On each pass, it invokes cheapest() and runs the inner loop on lines 25–28, each of which
take time in Θ(v). The total running time is therefore in Θ(v2).

Figure 15–31: Dijkstra’s algorithm at work. Black nodes have not yet been visited.
Gray nodes have just been visited. The number within each vertex is its estimated
distance. Initially (left) all distances are infinity, except for the distance to the source
vertex, which is 0. As each vertex is visited, the distances to its neighbors are updated.

1 /**
2  * Return the index of the smallest element of distances,
3  * ignoring those in visited.
4  */
5 protected int cheapest(double[] distances, boolean[] visited) {
6   int best = -1;
7   for (int i = 0; i < size(); i++) {
8     if (!visited[i]
9         && ((best < 0) || (distances[i] < distances[best]))) {

10       best = i;
11     }
12   }
13 return best;
14 }
15

Figure 15–32: Code for Dijkstra’s algorithm. (Part 1 of 2)
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The Floyd–Warshall All-Pairs Algorithm
To find the shortest path between each pair of vertices, we could just run Dijkstra’s algorithm
once from each vertex, using time in Θ(v3). The Floyd–Warshall all-pairs algorithm takes time
in this order, but it is somewhat simpler, so there is a smaller constant factor associated with the
asymptotic notation. It is also somewhat easier to write.

Like Dijkstra’s algorithm, the Floyd–Warshall all-pairs algorithm uses dynamic programming.
Specifically, it maintains a two-dimensional result array, where result[i][j] is the short-
est known distance from vertex i to vertex j.

Initially, all of the elements are initialized to the costs, as computed by getCost(). The
Floyd–Warshall algorithm updates the result by asking the following series of questions:

• What is the shortest distance between each pair of vertices using vertex 0 as an interme-
diate point?

• What is the shortest distance between each pair of vertices using vertices 0 and 1 as
intermediate points?

• What is the shortest distance between each pair of vertices using vertices 0 through 2 as
intermediate points?

This continues until all possible intermediate points have been considered, at which point the
distances are correct.

16 /**
17 /* Return an array of the distances from source to each other
18 * vertex.
19 */
20 public double[] distancesFrom(int source) {
21   double[] result = new double[size()];
22   java.util.Arrays.fill(result, Double.POSITIVE_INFINITY);
23   result[source] = 0;
24   boolean[] visited = new boolean[size()];
25   for (int i = 0; i < size(); i++) {
26     int vertex = cheapest(result, visited);
27     visited[vertex] = true;
28     for (int j = 0; j < size(); j++) {
29       result[j] = Math.min(result[j],
30                            result[vertex] + getCost(vertex, j));
31     }
32   }
33   return result;
34 }

Figure 15–32: Code for Dijkstra’s algorithm. (Part 2 of 2)
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To see how the updating works, suppose we have considered vertices 0 through 4 as intermediate
points, and we’re ready to consider 0 through 5 (Figure 15–33). There are two possibilities for
each pair of vertices i and j:

• The shortest path using vertices 0 through 5 as intermediate points does not involve ver-
tex 5. It was already correct.

• The shortest path using vertices 0 through 5 as intermediate points does involve vertex 5.
It must be result[i][5] + result[5][j]. Neither of these two subpaths can have
vertex 5 as an intermediate point, because it is an endpoint.

Updating result consists of taking the minimum of these two possibilities for each pair of
vertices.

The code (Figure 15–34) is short, sweet, and to the point. Lines 11–19 are a simple triply nested
loop, giving a running time in Θ(v3).

Figure 15–33: Finding the shortest path from vertex i to vertex j, using only vertices 0
through 5 as intermediate points. The shortest distance must be either result[i][j]
(lower path) or result[i][5] + result[5][j] (upper path). This diagram is schematic;
many other edges, not shown, are presumed to exist.

1 /**
2  * Return a two-dimensional array of the distances from each vertex 
3  * to each other vertex.
4  */
5 public double[][] distances() {
6   double[][] result = new double[size()][size()];

Figure 15–34: The Floyd–Warshall all-pairs algorithm. (Part 1 of 2)
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Exercises

15.19 What is the value of 1 / 0? What about 1.0 / 0?

15.20 Write a Graph method which takes two vertex numbers and returns the distance
between them.

15.21 What is the order of the running time of the getCost() method (Figure 15–30)? What
would it be if Graph used the neighbor list representation instead of the neighbor matrix
representation?

15.22 Would the algorithms in this section work on unweighted graphs? Explain.

15.6 Minimum Spanning Trees

Our last graph algorithm deals with the situation in which we want to connect a set of vertices
while minimizing expenses. For example, we might want to connect a set of computers in a
building using as little cable as possible.

We begin by defining a spanning tree. Given a connected, undirected graph G, a spanning tree is
another graph which has all of G’s vertices and a subset of G’s edges (Figure 15–35). The span-
ning tree is also connected, but has only v – 1 edges. This is the minimum number of edges
required to connect all of the vertices. A spanning tree never contains a cycle. There may be
more than one spanning tree for a given graph.

In a weighted graph, a minimum spanning tree is a spanning tree in which the sum of the edge
weights is as small as possible. In the computer network example, if the edges are the lengths of 

7  for (int i = 0; i < size(); i++) {
8 for (int j = 0; j < size(); j++) {
9       result[i][j] = getCost(i, j);

10     }
11   }
12   for (int midpoint = 0; midpoint < size(); midpoint++) {
13     for (int i = 0; i < size(); i++) {
14       for (int j = 0; j < size(); j++) {
15         result[i][j] = Math.min(result[i][j],
16  result[i][midpoint]
17  + result[midpoint][j]);
18       }
19     }
20   }
21   return result;
22 }

Figure 15–34: The Floyd–Warshall all-pairs algorithm. (Part 2 of 2)
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potential cables, we want to use no more cable than necessary. There may be more than one min-
imum spanning tree for a given graph.

There are several algorithms for finding minimum spanning trees. We present Kruskal’s mini-
mum spanning tree algorithm. The idea behind this algorithm is quite simple: begin with an
edgeless graph (Figure 15–36), then add edges until we have a minimum spanning tree.

In each pass through the main loop, we consider adding the cheapest edge that we haven’t tried
before. If there was not already a path between the vertices at the ends of this edge, we add the
edge (Figure 15–37).

This process continues until we have a connected graph, which is a minimum spanning tree
(Figure 15–38).

The skeptical reader may wonder, “Is it always best to choose the cheapest edge at each step?
Might there be some cheaper path to connect these vertices that involves more edges?” There is
nothing to worry about, because any such path would have to be made of even cheaper edges
that have already been considered. If it existed, we would have found it by now.

Figure 15–35: A connected, undirected graph (left) and one of several spanning
trees for that graph (right).

Figure 15–36: Given a weighted graph (left), Kruskal’s minimum spanning tree
algorithm starts with a new graph having no edges (right).
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An algorithm like this, which always does whatever seems best in the short term, is called a
greedy algorithm. Ignoring what’s over the horizon is not always a good idea, as is known by
Chess players, guidance counselors, and global climate change researchers. Sometimes we can
prove that there’s no danger of missing out on something better, as we have done for this problem.

The minimumSpanningTree() method (Figure 15–39) takes advantage of a couple of data
structures from Chapter 14. In order to find the next-cheapest edge, we use a priority queue

Figure 15–37: Three steps in building a minimum spanning tree. At each step, we
add the cheapest edge from the original graph, unless it connects two already-
connected vertices. Here, the edge of cost 3 was skipped for this reason.

Figure 15–38: When the graph is connected, it is a minimum spanning tree.

1 /** Return a minimum spanning tree for this Graph. */
2 public Graph minimumSpanningTree() {
3   DisjointSetCluster partition = new DisjointSetCluster(size());
4   Graph result = new Graph(size());
5   Heap<Edge> edges = new Heap<Edge>();

Figure 15–39: Kruskal’s algorithm for finding a minimum spanning tree uses some
data structures from Chapter 14. (Part 1 of 2)
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(Section 14.1). On line 12, we extract the cheapest edge from the priority queue of edges. To
keep track of which vertices are connected, we use a disjoint set cluster (Section 14.2). On line
15, we check if vertices i and j are in the same set.

As a final detail, the priority queue edges has elements of type Edge. The Edge class is given in
Figure 15–40.

6 for (int i = 0; i < size(); i++) {
7 for (Integer j : neighbors(i)) {
8 edges.add(new Edge(i, j, getEdge(i, j)));
9 }

10   }
11 while (!(edges.isEmpty())) {
12     Edge e = edges.remove();
13     int i = e.getSource();
14     int j = e.getDest();
15     if (!(partition.inSameSet(i, j))) {
16       partition.mergeSets(i, j);
17       result.setUndirectedEdge(i, j, e.getWeight());
18     }
19   }
20   return result;
21 }

1 /** An edge connecting two vertices in a graph. */
2 public class Edge implements Comparable<Edge> {
3
4   /** Index of the destination vertex. */
5   private int dest;
6
7   /** Index of the source vertex. */
8   private int source;
9

10   /** Weight associated with this Edge. */
11   private double weight;
12
13   /** Store the given values. */
14   public Edge(int source, int dest, double weight) {
15     this.source = source;
16     this.dest = dest;
17     this.weight = weight;
18   }
19

Figure 15–40: The Edge class. (Part 1 of 2)

Figure 15–39: Kruskal’s algorithm for finding a minimum spanning tree uses some
data structures from Chapter 14. (Part 2 of 2)
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Analyzing Kruskal’s algrithm, we see that line 7 takes time in Θ(v) and runs v times, for a total
in Θ(v2). Line 8, on the other hand, only runs e times. Each priority queue insertion takes time in
O(log e), so the total time for line 8 is O(e log e). The main loop on lines 11–19 is executed at
most e times. Each pass involves removing an edge from the priority queue (O(log e) in the
worst case) and a couple of disjoint set cluster operations (O(log* e) amortized). The total amor-
tized running time for the algorithm is therefore in:

Exercises

15.23 Under what conditions will the main loop on lines 11–19 of Figure 15–39 run e times?

15.24 Kruskal’s algorithm could be made to run faster by keeping track of the number of con-
nected components. What is the initial value of this variable? At what value can the
algorithm stop, even if all edges haven’t yet been examined? When can this variable be
decremented? Does this change the order of the running time of the algorithm?

20 public int compareTo(Edge that) {
21 if (weight > that.weight) {
22       return 1;
23     }
24     if (weight == that.weight) {
25       return 0;
26     }
27     return -1;
28   }
29
30   /** Return the destination vertex of this Edge. */
31   public int getDest() {
32     return dest;
33   }
34
35   /** Return the source vertex of this Edge. */
36   public int getSource() {
37     return source;
38   }
39
40   /** Return the weight of this Edge. */
41   public double getWeight() {
42     return weight;
43   }
44
45 }

Figure 15–40: The Edge class. (Part 2 of 2)

O v2 e log e e  log e+ +( ) O v2 log e( )=
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15.25 What is the amortized running time of Kruskal’s algorithm, assuming a neighbor list
representation?

15.26 In our representation, each undirected edge is represented by two directed edges. Why
do these excess edges not cause a problem for Kruskal’s algorithm?

15.27 In what sense is Dijsktra’s single-source algorithm (Section 15.5) a greedy algorithm?

Summary

A graph is a collection of vertices connected by edges. Graphs may be directed or undirected,
weighted or unweighted, and connected or unconnected. A graph with no cycles (roughly, paths
leading from a vertex back to itself) is called acyclic. If v is the number of vertices in a graph and
e is the number of edges, e ∈ O(v2). If e is close to this limit, the graph is dense. Otherwise, it is
sparse. An enormous variety of computational problems can be phrased in terms of graphs.

Graphs are normally represented using neighbor lists or neighbor matrices. Neighbor lists use
less space for sparse graphs. Neighbor matrices take less time in either case.

A graph may be traversed depth-first or breadth-first, starting from a specified source vertex.

A topological sort of a directed acyclic graph is an ordering of the vertices such that no edges
point from a later vertex to an earlier vertex. We have an algorithm for topological sorting that
takes time in Θ(v2).

We give two algorithms for finding shortest paths in a weighted graph: Dijkstra’s single-source
algorithm, which takes time in Θ(v2), and the Floyd–Warshall all-pairs algorithm, which takes
time in Θ(v3).

A minimum spanning tree of a connected, undirected, weighted graph eliminates some edges so
as to stay connected while minimizing the total edge weight. Kruskal’s minimum spanning tree
algorithm is a greedy algorithm which takes amortized time in O(v2 log e).

Vocabulary

acyclic. Of a graph, having no cycles.

adjacency list. Neighbor list.

adjacency matrix. Neighbor matrix.

breadth-first. Graph traversal in which vertices nearer to the source are visited first. 

connected. Of a graph, having a path from each vertex to each other vertex.

cost. Number indicating difficulty of travelling directly from one vertex to another. Zero if the
vertices are the same, infinity if there is no edge, or the weight of the edge if there is one.
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cycle. Path of length one or more from a vertex back to itself. In an undirected graph, a cycle
may not follow the same edge more than once.

dense. Of a graph, having close to the maximum possible number of edges.

depth-first. Graph traversal that follows edges all the way to a dead end before backing up and
trying another branch.

Dijkstra’s single-source algorithm. Dynamic programming algorithm for finding the shortest
path from one vertex to all others in a graph.

directed. Of an edge, leading from one vertex to another, but not vice versa. Of a graph, having
only directed edges.

directed acyclic graph (dag). Directed graph with no cycles.

distance. Length of the shortest path from one vertex to another.

edge. Connection between a pair of vertices in a graph.

Floyd–Warshall all-pairs algorithm. Dynamic programming algorithm for finding the shortest
path from each vertex to each other vertex in a graph.

graph. Set of vertices and associated set of edges.

greedy algorithm. Any algorithm that does whatever seems best in the short term, such as
Kruskal’s minimum spanning tree algorithm.

Kruskal’s minimum spanning tree algorithm. Algorithm for finding a minimum spanning
tree by repeatedly adding the lowest-weight edge from the original graph that does not create a
cycle.

length. Number of edges along a path.

minimum spanning tree. Of a weighted, connected, undirected graph, a spanning tree having
minimal sum of edge weights.

neighbor. Vertex that can be reached by following an edge from another vertex.

neighbor list. Graph representation consisting of an array of linked lists, each containing the
indices of the neighbors of one vertex.

neighbor matrix. Graph representation consisting of a two-dimensional array. Each element
specifies the presence (and, if appropriate, weight) of an edge.

path. Sequence of vertices, each a neighbor of the previous one.

self-loop. Directed edge leading from a vertex back to itself.

shortest path. Path between two vertices having, among all such paths, the minimum sum of
weights.

source. Vertex at the beginning of an edge or traversal.

spanning tree. Of a connected, undirected graph, another such graph having all the same verti-
ces but only v – 1 edges.
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sparse. Of a graph, having far fewer than the maximum possible number of edges.

topological sort. Ordering of the vertices in a dag so that all edges point from earlier to later
vertices.

undirected. Of an edge, connecting two vertices in both directions. Of a graph, having only
undirected edges.

vertex. Node in a graph.

weighted. Of a graph, having data (usually numbers) associated with edges.

Problems

15.28 Write a better toString() method for the Galaxy class.

15.29 Add a method isCyclic() to the Graph class that returns true if and only if the
(directed) graph is cyclic. What is the order of the worst-case running time of your
algorithm?

15.30 Implement the neighbor list representation of a graph by modifying the Graph class
from this chapter. The more complicated methods, such as distances() and topo-
logicalSort(), should not have to be altered.

15.31 Modify the method breadthFirstTraverse() (Figure 15–21) so that it returns an
Iterator instead of a List. Your version should not simply create a List and then ask it
for an Iterator. Instead, create a BreadthFirstGraphIterator class which maintains the
queue and the set of visited vertices.

15.32 Modify Dijkstra’s single-source algorithm to find the actual paths instead of the dis-
tances. Do this by keeping track, for each vertex, of the previous vertex along the short-
est known path from the source.

Projects

15.33 Implement the game of Nine Men’s Morris (Figure 15–41).

15.34 Implement the game of Aggression (Figure 15–42). Generate the board randomly, so
that a city has a 50% chance of being connected to each of the cities next to it horizon-
tally, vertically, or diagonally. 
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Nine Men’s Morris
Players: 2

Object: To either reduce the opponent to two pieces or to leave the opponent with no legal
move.

Board: See below. The pieces (merels) are placed on the dots (points) and moved along the
lines to adjacent points. Each player gets nine merels in her color. The board is initially
empty.

Play: Players take turns. On a turn, a player places a merel on an unoccupied point. If a
player has no merels left to place, she instead moves one of her merels to an adjacent point.

Capture: If a player’s move causes three of her merels to be in a horizontal or vertical line
through adjacent points, she has formed a mill. She gets to remove any one of the oppo-
nent’s merels from the board. If possible, she must choose a merel which is not currently
part of a mill. The removed merel is discarded; the opponent does not get it back.

Game End: The game ends when one player either has only two merels or has no legal
move. This player loses.

Figure 15–41: Nine Men’s Morris is one of the oldest games in existence.
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Aggression
Players: 2, black and white.

Object: To control the most cities at the end of the game.

Board: There are 20 cities and some roads on the board. Two cities are adjacent if they are
connected by a single road segment. The board may be different in each game. A typical
board is shown below.

Setup: The board is initially empty. Each player starts with 100 troops. In turns, each
player places one or more troops in any unoccupied city to claim it. This continues until all
cities have been claimed or both players have deployed all of their troops. An example is
shown below.

Figure 15–42: Aggression is a simple, abstract wargame. (Part 1 of 2)
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10 10 6 20 1

12 1 15 6 1
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Play: Taking turns, each player chooses a city to attack. The attack is successful if the num-
ber of troops in the city is less than the number of opposing troops in adjacent cities. After
a successful attack, the defending troops are removed and the city becomes neutral. The
attacking troops are unaffected. An unsuccessful attack has no effect.

As an example, in the game above, black could successfully attack the upper white 20 (with
45 adjacent troops), but not the lower white 20 (with only 15 adjacent troops).

Game End: The game ends when either one player has no troops left or there are no suc-
cessful attacks left to make. The player controlling the most cities wins.

Figure 15–42: Aggression is a simple, abstract wargame. (Part 2 of 2)
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16
Memory 
Management

We rely heavily on Java’s automatic memory management. When we allocate memory for an
object or array using the keyword new, we don’t think about where the memory comes from.
When an object or array becomes unreachable, it magically disappears.

Some languages, notably C and C++, do not have automatic memory management. Section 16.1
discusses the alternative: explicit memory management. This is worth knowing, because we may
be called upon to work in one of these languages some day, and because we can sometimes opti-
mize a Java program by using explicit memory management.

Section 16.2 discusses the algorithms behind automatic memory management systems like
Java’s.

16.1 Explic it Memory Management

A computer’s memory is divided into two sections: the call stack and the heap. The call stack,
discussed in Section 4.2, is where variables (and arguments) are stored. The rest of memory is
the heap. (This has nothing to do with the use of the word “heap” in Section 14.1.)

For each variable, a certain number of bytes are allocated in the call frame where the variable
lives. If the variable is of a primitive type, the required number of bytes is known in advance, so
the variable’s value can be stored directly in the call frame. For reference types, which are often
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polymorphic, it is not clear how many bytes must be allocated. For example, a variable of type
Object might hold a simple object like a Die or or something much more elaborate like a Hash-
Table. Such objects live in the heap, which is effectively a gigantic array. Within the call frame,
a reference to the heap object is stored. A reference is actually a number, called the address of
the object, indicating where in the heap the object lives.

An object may take up several positions, or cells, in the heap. For example, an instance of class
Card has two fields, so it takes up two cells in the heap. (This is an oversimplification, but it will
do for our purposes.) When we initialize a variable

Card card = new Card(7, Card.HEARTS);

we get the situation shown in Figure 16–1.

An object can, of course, have fields of reference types. In other words, the heap can contain
pointers. A linked list might be represented as in Figure 16–2. Notice that the list can be scat-
tered around memory. Indeed, as we shall see in Section 16.2, the Java system might even move
things around in memory without our knowledge! As long as following the pointers gets us to
the correct objects, this is not a problem.

A null pointer is represented by a pointer to some invalid address. In Figure 16–2, this is the
number –1. This is why we use ==, rather than equals(), to check if an object is null. The ==
operator directly compares the contents of two locations in memory. In contrast, equals() fol-
lows the pointers in those two locations and compares the objects to which they refer.

In languages with explicit memory management, like C and C++, it is possible to determine the
address of an object. In Java, we can’t see the addresses. This is what people mean when they
say that “Java doesn’t have pointers.” We do have references in Java, so we can build linked
structures, but we don’t have direct access to the addresses themselves.

Figure 16–1: The variable card, on the call stack, is a reference to an object in the
heap. The address of this object is 4. The arrow is redundant; the actual pointer is the
number 4 on the call stack. Shaded cells are not in use.
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Aficionados of various languages will argue at great length about whether or not addresses
should be visible. We won’t attempt to settle this argument here, but we will illustrate some of
the consequences of each approach.

We can’t access real addresses in Java, but we can build a simulated memory in which the
addresses are visible (Figure 16–3).

Figure 16–2: A linked list. In the heap (top), the first node is at address 2, the second
at address 8, and the last at address 4. Within each node, the second cell is a
reference to (that is, gives the address of) the next one. The order in which the
elements appear in the list (bottom) is not necessarily the order in which they appear in
memory.

1 /**
2  * A simulated memory for illustrating memory management.  Each
3  * object takes up two cells.
4  */
5 public class Memory {
6
7   /** Number of cells in memory. */
8   public static final int MEMORY_SIZE = 1000;
9

10   /** The null reference. */
11 public static final int NULL = -1;
12
13   /** Data are stored in these locations. */
14   private int[] heap;
15

Figure 16–3: A simulated memory. (Part 1 of 2)
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Figure 16–4 shows Java statements and the corresponding statements for the simulated memory.

The reader with an eye for detail will wonder why the address 4 was chosen. This choice is arbi-
trary, but it raises a very serious concern: how do we make sure we don’t choose a section of the
heap that overlaps with one being used for some other object? Memory management is the job
of keeping track of which addresses are in use.

The Free List

Let us assume, for simplicity, that each object takes up exactly two cells in the heap. We can
string all of the unused cell pairs together in a sort of linked list (Figure 16–5). This list of avail-
able memory is called the free list.

16  /** Create the heap. */
17   public Memory() {
18     heap = new int[MEMORY_SIZE];
19   }
20
21   /** Return the contents of address. */
22   public int get(int address) {
23     return heap[address];
24   }
25
26   /** Set the contents of address to value. */
27   public void set(int address, int value) {
28     heap[address] = value;
29   }
30
31 }

Java Simulated Memory

Card card = new Card(7, 1); int card = 4;
set(card + 0, 7);
set(card + 1, 1);

int r = card.rank; int r = get(card + 1);

card.suit = 2; set(card + 0, 2);

Figure 16–4: Some Java statements and the corresponding statements for the
simulated memory. In the simulated memory, there are no real references; we must
handle addresses directly.

Figure 16–3: A simulated memory. (Part 2 of 2)
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When we first create our memory, we have to string all of the cell pairs together to create the free
list (Figure 16–6).

When we need a new object, we just take the first one off the front of the free list (Figure 16–7).

Thus, instead of

int card = 4;

Figure 16–5: The free list contains the objects beginning at addresses 2, 6, 0, and 8.
As shown here, the free list does not necessarily start at address 0.

1 /** Address of the beginning of the free list. */
2 private int free;
3
4 /** Create the heap. */
5 public Memory() {
6   heap = new int[MEMORY_SIZE];
7   for (int i = 0; i < heap.length; i += 2) {
8     set(i + 1, i + 2);
9   }

10   set(heap.length - 1, NULL);
11   free = 0;
12 }

Figure 16–6: When the memory is first created, all memory must be put on the free list.

1 /**
2  * Return the address of an available object, which is removed from
3  * the free list.
4  */
5 public int allocate() {
6   int result = free;
7   free = get(free + 1);
8   return result;
9 }

Figure 16–7: The allocate() method returns the address of an available object.

0 1 2 3 4 5 6 7 8 9

8 7 16 0 �1

free � 2
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we would say:

int card = allocate();

This allocation is similar to what happens in Java when we use new. A more significant differ-
ence comes when we’re done with an object. In Java, if there are no references to an object, it is
automatically returned to the free list. In a language with explicit memory management, we have
to tell the system that we’re no longer using the memory allocated for that object. In our simu-
lated memory, this is accomplished with the method free() (Figure 16–8).

If we are done with a linked structure (Figure 16–9), we must be sure to free each of the objects
in that structure.

Freeing a list is fairly easy, but we must take care to store the address of the next object before
we free the current one (Figure 16–10). Once we free some memory, any other part of our pro-
gram (or even another program) may claim it and change its contents.

Freeing a tree is more difficult. We have to have some way of distinguishing cells that contain
pointers from those that don’t. In practice, the compiler builds this information into the instruc-
tion part of the program. In our simulated memory, we assume that any value less than NULL is
not a pointer.

1 /** Put the object at address back on the free list. */
2 public void free(int address) {
3   set(address + 1, free);
4   free = address;
5 }

Figure 16–8: In explicit memory management, when we’re done with an object, we
have to manually put it back on the free list, using this method.

Figure 16–9: Freeing linked structures requires some care. Objects can be linked in
lists (left), trees (middle), and directed graphs (right). Each square here represents an
object, which may occupy many cells in the heap and therefore contain several
pointers.
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To free a tree, we just traverse it, freeing objects as we go (Figure 16–11). Once we free the
memory for an object, we can no longer look inside it to find its descendants. It therefore is
important to do this traversal postorder.

Notice that freeTree() would also work to free a linked list. If we know that we have a
linked list, though, freeList() is more efficient, because it does not involve recursive
method invocations.

We will not give a method for freeing a graph just yet, but note that such a method would also
work for a tree or a linked list. Again, there would be a price in efficiency for handling a more
general case. The automatic memory management techniques described in Section 16.2 address
this most general case, so the programmer needn’t think about the details of freeing linked
structures.

Advocates of explicit memory management emphasize the efficiency cost of always using general-
purpose techniques when sometimes a simpler method like freeList() would do. Advocates of
automatic memory management point out that insidious bugs that can arise from failure to properly
free memory when we’re done with it.

Suppose a method allocates memory for a temporary object, but fails to return it to the free list
afterward. Every time the method is run, a little bit less memory is available. This kind of bug is
called a memory leak. A memory leak is difficult to find, because it does not cause a problem
immediately. The program runs perfectly for a while, until the computer runs out of memory and
the program crashes.

1 /** Free the linked list starting at address. */
2 public void freeList(int address) {
3   while (address != NULL) {
4     int next = get(address + 1);
5     free(address);
6     address = next;
7   }
8 }

Figure 16–10: Freeing a linked list.

1 /** Free the tree rooted at address. */
2 public void freeTree(int address) {
3   if (address > NULL) {
4     freeTree(get(address));
5     freeTree(get(address + 1));
6     free(address);
7   }
8 }

Figure 16–11: A tree can be freed with a postorder traversal.
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A complementary bug is freeing some memory that we’re not really done using. A pointer into
memory that we don’t really control is called a dangling pointer. A dangling pointer can be
caused either by freeing memory and then trying to access it, or by failing to initialize a pointer
in the first place. Debugging a program with a dangling pointer is particularly nasty, because the
program may behave differently on each run. When we free memory, its contents will probably
stay the same for a while, but once someone else grabs that memory, its contents will change in
unpredictable ways. Even more bizarre behavior can result from writing to the memory on the
other end of a dangling pointer, which could alter the data—or even the instructions—of another
program.

Barring bugs in the Java compiler, both memory leaks and dangling pointers are impossible in
Java. Memory is returned to the free list exactly when we’re done with it. We can’t even get a
dangling pointer by failing to initialize a field of a reference type, because Java automatically ini-
tializes such fields to null. If we try to follow such a reference, we get a NullPointerException.

Returning to the other side of the debate, advocates of explicit memory management point out
that certain things can be done only with direct access to addresses. For example, consider the
method swap() (Figure 16–12).

We can do this in the simulated memory, but in plain Java, there is no way to write a method
swap() so that after

int x = 1;
int y = 2;
swap(x, y);

x will be 2 and y will be 1.

The debate between explicit and automatic memory management is analogous to the debate
between manual and automatic transmissions. A manual transmission offers more efficiency and
precise control, but requires more attention and responsibility from the driver. An automatic
transmission sacrifices a bit of efficiency to let the driver concentrate on other tasks, such as
steering. In programming, the tradeoff is between efficiency on the one hand and correctness and
rapid development on the other hand.

1 /** Swap the data at addresses x and y. */
2 public void swap(int x, int y) {
3   int temp = get(x);
4   set(x, y);
5   set(y, temp);
6 }

Figure 16–12: This method works in the simulated memory, in which we have access
to addresses, but can’t be written for normal Java variables.
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Using a Node Pool

We can gain some of the efficiency of explicit memory management without switching to
another language such as C or C++. In a program which spends a lot of time allocating and free-
ing memory, we can allocate a bunch of objects—say, list nodes—in advance. These objects
comprise a node pool. We manage the node pool much like the free list described above
(Figure 16–13).

The node pool improves the efficiency of our program for two reasons. First, we don’t have to
use Java’s general-purpose automatic memory manager to keep track of our nodes. Second,
since all of the nodes are allocated at the same time, they probably live near each other in the
heap, which improves cache performance.

1 /** A pool of ListNodes. */
2 public class NodePool<E> {
3
4   /** Number of nodes in the pool. */
5   public static final int POOL_SIZE = 1000;
6
7   /** First in the linked list of free nodes. */
8   private ListNode<E> front;
9

10   /** Create the pool. */
11   public NodePool() {
12     for (int i = 0; i < POOL_SIZE; i++) {
13       front = new ListNode<E>(null, front);
14     }
15   }
16
17   /** Get a node from the pool, set its fields, and return it. */
18   public ListNode<E> allocate(E item, ListNode<E> next) {
19     ListNode<E> result = front;
20     front = front.getNext();
21     result.setItem(item);
22     result.setNext(next);
23     return result;
24   }
25
26   /** Return a node to the pool. */
27   public void free(ListNode<E> node) {
28     node.setNext(front);
29     front = node;
30   }
31
32 }

Figure 16–13: A node pool.  All of the nodes are created in the constructor.
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How much speed do we gain from using a node pool? The answer can vary considerably,
depending on the particular Java system being used. We can perform an empirical test by doing
some memory-intensive operations both with and without the node pool. The methods in
Figure 16–14 grow and shrink a linked stack of 1,000 nodes, repeating the experiment 10,000
times.

1 /** Number of times to run the experiment. */
2 public static final int RUNS = 10000;
3
4 /** Compare memory-intensive operations with and without pool. */
5 protected void test() {
6   long before;
7   long after;
8   ListNode<E> list;
9   System.out.print("With node pool: ");

10   list = null;
11   before = System.currentTimeMillis();
12   for (int run = 0; run < RUNS; run++) {
13     for (int i = 0; i < POOL_SIZE; i++) {
14       list = allocate(null, list);
15     }
16     for (int i = 0; i < POOL_SIZE; i++) {
17       ListNode<E> node = list;
18       list = list.getNext();
19       free(node);
20     }
21   }
22 after = System.currentTimeMillis();
23   System.out.println((after - before) + " milliseconds");
24   System.out.print("Without node pool: ");
25   list = null;
26   before = System.currentTimeMillis();
27   for (int run = 0; run < RUNS; run++) {
28     for (int i = 0; i < POOL_SIZE; i++) {
29       list = new ListNode<E>(null, list);
30     }
31     for (int i = 0; i < POOL_SIZE; i++) {
32       list = list.getNext();
33     }
34   }
35 after = System.currentTimeMillis();
36   System.out.println((after - before) + " milliseconds");
37 }
38
39 /** Create a pool and test it. */

Figure 16–14: Testing the value of a node pool. (Part 1 of 2)
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Results will vary from one machine to another. On the author’s system, a typical run produces
this result:

With node pool: 200 milliseconds
Without node pool: 960 milliseconds

The use of the node pool appears to speed up this program by a factor of between 4 and 5. This
result should be taken with a grain of salt, because this particular program does almost nothing
but allocate and free memory.

Like any other optimization, a node pool should be used sparingly. A program should first be
made to run correctly. Once this is done, if there is reason to suspect that a lot of time is being
spent on memory management, a node pool can offer considerable speedup.

Exercises

16.1 Do arrays live on the call stack or in the heap? Explain.

16.2 What programs have you used that were too slow, and therefore might have benefited
from explicit memory management? What programs were either buggy or took too long
to develop, and therefore might have benefited from automatic memory management?

16.3 What’s wrong with the version of freeList() in Figure 16–15?

16.4 In line 3 of Figure 16–11, what would happen if the > were replaced with >=?

16.5 Does the use of a node pool make it possible to produce a memory leak or a dangling
pointer? Explain.

40 public static void main(String[] args) {
41   NodePool pool = new NodePool<Object>();
42   pool.test();
43 }

1 /** Free the linked list starting at address. */
2 public void freeList(int address) {
3   while (address != NULL) {
4     free(address);
5     address = get(address + 1);
6   }
7 }

Figure 16–15: Broken version of freeList() for Exercise 16.3.

Figure 16–14: Testing the value of a node pool. (Part 2 of 2)



454 Chapter 16  •  Memory Management

16.6 What happens if we invoke allocate() on a NodePool in which all of the nodes are
in use?

16.7 Many programs take some time to initialize data structures before they can accept com-
mands from the user. Does the use of a node pool speed this up or slow it down? Explain.

16.2 Automatic Memory Management

In Java, memory is managed automatically. Memory that cannot be reached from a root (a vari-
able or argument on the call stack) is called garbage. Under explicit memory management,
memory leaks occur when garbage is not cleaned up. This section describes several algorithms
used to automatically return garbage to the pool of available memory.

Reference Counting
A first approach is to store, along with each object, a number indicating how many pointers
point to that object (Figure 16–16). When this reference count drops to zero, the object is gar-
bage, so it can be returned to the free list.

Reference counting is simple and fast, but it does not work for cyclic graphs (Figure 16–17).
Even after all of the incoming pointers are removed, the reference counts within a cyclic island
of garbage never drop to zero.

Only pure reference counting systems have this problem. Many modern systems use a combina-
tion of reference counting and one of the approaches to be described next.

The next two approaches are called garbage collection. They wait until the system is running
low on memory, then pause to clear out the garbage. This pause was quite noticeable with early
garbage collectors but is much shorter in modern systems. Reference counting, in contrast,
reclaims the memory from each object as soon as it becomes inaccessible.

Figure 16–16: With reference counting, each object keeps track of the number of
pointers pointing to it. Each square here represents an object, with its reference count
shown inside. In the situation at left, a variable points to the top object. When that
variable changes, the object’s reference count drops to zero, so it can be returned to
the free list. This in turn reduces the reference count of other objects, eventually
freeing the entire structure.
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Mark-and-Sweep Garbage Collection

A mark-and-sweep garbage collector operates in two phases:

1. Perform a depth-first traversal of the objects in memory, starting from each root. As 
each object is visited, mark it. (In such a system, each object has a bit set aside for 
marking.) At the end of this phase, only the reachable objects are marked.

2. Sweep through the heap, reclaiming any space that isn’t in a marked object. When a 
marked object is encountered, unmark it to prepare for the next garbage collection.

This technique works, even when the heap contains cyclic graphs. It is somewhat wasteful
because it has to traverse the entire heap. In practice, most objects are discarded shortly after
they are created. For example, an object created during a method invocation becomes garbage
when the method ends (unless a reference to the object is returned). The consequence is that the
heap consists almost entirely of garbage. The next technique performs garbage collection with-
out touching the garbage.

Copying Garbage Collection

A second type of garbage collector combines several advantages with one horrendous-sounding
disadvantage: the computer can only use half its memory at any given time! A copying garbage
collector divides the heap into two halves (Figure 16–18). When the garbage collector is not
running, only one half can be used. When this half fills up, the garbage collector copies all of the
in-use nodes from that half into the other half, leaving the garbage behind. Now, only the other
half can be used until the next garbage collection.

The half of the heap in which all of the reachable objects start is called from-space. When the
algorithm finishes, the objects will have been moved into the other half, to-space.

The algorithm starts with the objects to which roots point directly. These objects are copied into
to-space (Figure 16–19). Whenever an object is copied, a forwarding address is left behind.
This is the object’s new address. It is easy to distinguish forwarding addresses from other point-
ers, because they point into to-space.

Figure 16–17: Pure reference counting cannot reclaim cyclic structures.
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The algorithm now begins examining the data that have been copied into to-space, cell by cell
(Figure 16–20). During this process, additional objects may be copied into to-space. To-space is
divided into three regions: data that have been examined, forwarded data that have not yet been
examined, and available space.

There are three possibilities for the contents of each cell being examined:

• It’s not a pointer. Nothing more has to be done.

• It’s a pointer to an object which has not yet been forwarded into to-space. Forward the
object and set the current cell to point to the new location.

Figure 16–18: A copying garbage collector divides the heap in half. Before garbage
collection (top), the right half is unavailable. After garbage collection (bottom), all of
the in-use memory has been copied into the right half and the left half is unavailable.

Figure 16–19: Copying garbage collection begins by forwarding the objects to
which roots point. Here, assume there is a root pointing to address 0. A forwarding
address (dashed arrow) is left in the object’s old location.
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• It’s a pointer to an object which has already been forwarded. Set the current cell to
point to the new location.

This third case, which is the reason for leaving the forwarding addresses, is illustrated in
Figure 16–21.

The process continues until all data copied into to-space has been examined. Now all of the
reachable objects have been moved. Garbage collection ends. To-space becomes the usable half
of memory.

Something rather remarkable has happened during copying garbage collection. Every single
reachable object has been moved to a new location in memory, but the programmer (the one
invoking allocate()) doesn’t have to care! As long as following the same pointers leads to the
same objects, it doesn’t matter where in memory they are located.

Figure 16–20: The copying garbage collector continues by examining the data that
have been copied into to-space. To-space (right half) is divided into three sections:
data that have been examined (white), forwarded data that have not yet been
examined (medium grey), and available space (light gray). If a cell does not contain a
pointer (like cell 8), no change is necessary. If a cell contains a pointer to an object
that has not been forwarded (like cell 9), the object is forwarded and the pointer is
changed to point to the new location.
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The copying garbage collector can be illustrated with another simulated memory. The code for
this memory assumes that any negative value (including NULL) is not a pointer to be followed. In
any experiments with this memory, be sure to use negative numbers for the nonpointer data.

The preliminaries are shown in Figure 16–22. The field free indicates the beginning of the
region of available memory. The field end indicates the end of the half of the heap currently
being used (from-space when the garbage collector is running). In isForwarded(), end is used
to determine whether get(address) is a pointer into from-space or to-space.

Figure 16–21: When the pointer in cell 13 is examined, it is discovered that the
object to which it points (at address 4) has already been forwarded (to address 10).
The pointer in cell 13 is updated to point to this new address. At this point in the
example, there are no more cells to examine, so the garbage collection is complete.

1 /** A simulated memory for illustrating memory management. */
2 public class MemoryWithGarbageCollection {
3
4   // NULL and heap are as in Figure 16–3
5
6   /** Number of cells in each half of memory. */
7   public static final int MEMORY_SIZE = 8;
8
9   /** Address of the beginning of the free region. */

10   private int free;
11

Figure 16–22: Preliminaries for a memory with copying garbage collection. The
constant MEMORY_SIZE is set to an unreasonably small value so that we can print an
example later. (Part 1 of 2)
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The copying garbage collector itself is shown in Figure 16–23. Lines 6–13 set up variables to
keep track of the different regions of to-space. Lines 14–15 forward the first object. Lines 16–26
are the main loop that examines each of the cells from head through (but not including) tail.
Lines 27–28 set fields to make to-space usable. Line 29 returns the new address of the object that
was at root.

12 /** One more than the address of the last free cell. */
13   private int end;
14
15   /** Create the heap. */
16   public MemoryWithGarbageCollection() {
17     heap = new int[MEMORY_SIZE * 2];
18 free = 0;
19     end = MEMORY_SIZE;
20   }
21
22 /**
23    * Return the address of an available object, which is
24    * removed from the free list.
25    */
26   public int allocate() {
27     int result = free;
28     free += 2;
29     return result;
30   }
31
32   // get() and set() are as in Figure 16–3
33
34   /** Forward the two cells at address to destination. */
35   protected void forward(int address, int destination) {
36     set(destination, get(address));
37     set(destination + 1, get(address + 1));
38     set(address, destination);
39   }
40
41   /** Return true if address contains a forwarding address. */
42   protected boolean isForwarded(int address) {
43     return (get(address) > NULL)
44       && ((get(address) > MEMORY_SIZE) == (end == MEMORY_SIZE));
45   }
46
47   // get() and set() are as in Figure 16–3
48
49 }

Figure 16–22: Preliminaries for a memory with copying garbage collection. The
constant MEMORY_SIZE is set to an unreasonably small value so that we can print an
example later. (Part 2 of 2)
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We can test our garbage collector with the main() method in Figure 16–24.

1 /**
2  * Perform a copying garbage collection, keeping only the objects
3  * reachable from root.  Return the new address of the root object.
4  */
5 public int garbageCollect(int root) {
6   int head; // Beginning of unexamined region of to-space
7   if (end == MEMORY_SIZE) {
8     head = MEMORY_SIZE;
9   } else {

10     head = 0;
11   }
12   int tail = head; // Beginning of unused region of to-space
13   int result = head;
14   forward(root, tail);
15   tail += 2;
16   while (head < tail) {
17     int referent = get(head);
18     if (referent > NULL) {
19       if (!isForwarded(referent)) {
20         forward(referent, tail);
21         tail += 2;
22       }
23       set(head, get(referent));
24     }
25     head++;
26   }
27   free = tail;
28   end = (MEMORY_SIZE * 3) - end;
29   return result;
30 }

Figure 16–23: A copying garbage collector.

1 public String toString() {
2   StringBuilder result = new StringBuilder();
3   for (int i = 0; i < heap.length; i++) {
4     if ((i >= MEMORY_SIZE) == (end == MEMORY_SIZE)) {
5       result.append("X ");
6     } else {
7       result.append(heap[i] + " ");
8     }
9   }

10 return result.toString();
11 }
12

Figure 16–24: Methods toString() and main() to test the garbage collector on the
example in Figures 16–19 through 16–21. (Part 1 of 2)
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When we run the program, it prints:

-2 4 -3 -4 -5 6 -5 4 X X X X X X X X
Moving 0 to 8
X X X X X X X X -2 10 -5 12 -5 10 0 0

We had to use negative numbers instead of letters to represent nonpointer values because heap
is of type int[].

The price of copying garbage collection is that only half of memory is available. This price can
be reduced by more sophisticated versions of the algorithm which divide the memory into sev-
eral pieces, all but one of which are usable at any given time. In any case, several advantages
make the price worth paying:

• Unlike a mark-and-sweep garbage collector, a copying garbage collector never touches
the garbage. Since the heap consists mostly of garbage, this greatly increases the speed
of garbage collection.

• After the garbage collector is run, the heap is compacted. All of the in-use cells are
grouped together at the lower end of the available half of the heap. Consequently, the
there is no need for a free list; the available memory can be viewed as an array stack.
Whenever memory is needed for a new object, it can be sliced off the front of the sin-
gle, large chunk of available memory.

13 /** Test the garbage collector. */
14 public static void main(String[] args) {
15   MemoryWithGarbageCollection mem 
16 = new MemoryWithGarbageCollection();
17   int a = mem.allocate();
18   mem.set(a, -2);
19   int d = mem.allocate();
20   mem.set(d, -3);
21   mem.set(d + 1, -4);
22   int b = mem.allocate();
23   mem.set(a + 1, b);
24   mem.set(b, -5);
25   int c = mem.allocate();
26   mem.set(b + 1, c);
27   mem.set(c, -5);
28   mem.set(c + 1, b);
29   System.out.println(mem);
30   System.out.println("Moving " + a + " to " 
31 + mem.garbageCollect(a));
32   System.out.println(mem);
33 }

Figure 16–24: Methods toString() and main() to test the garbage collector on the
example in Figures 16–19 through 16–21. (Part 2 of 2)
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• Since objects are near each other in compacted memory, cache performance is
improved.

• Using a mark-and-sweep garbage collector with objects of different sizes, we might
reach the state shown in Figure 16–25. Memory (or disk storage) which is broken up
like this is said to be fragmented. In fragmented memory, it may be impossible to allo-
cate a large block of memory, even when the total amount of memory available exceeds
the amount needed. When memory is compacted, there is no fragmentation; all avail-
able memory is in one long block.

Because of these advantages, many garbage collectors today use some variation of the copying
scheme.

Exercises
16.8 Would pure reference counting work on a doubly linked list? Explain.

16.9 In the UNIX operating system (including variants such as Linux and Mac OS X), the
ln command creates a hard link to a file. If there is a file source, then after executing
the command

ln source target

the file can be referred to by either name. At this point,

rm source

does not delete the file from the disk, because it still has another name. Because it is not
legal to make a hard link to a directory, the directory structure is a directed acyclic
graph. Does reference counting work to determine when a file can be removed from the
disk? Explain.

16.10 Suppose the heap has capacity c. When a reference is changed, a reference counter
may have to reclaim several objects. What is the worst-case time required for this?
What is the amortized time per operation over a sequence of n allocations followed by
n deallocations?

16.11 Suppose you have a Java program that controls the landing of an aircraft. It would be
very bad for the program to pause for garbage collection just as the plane lands. Find a

Figure 16–25: Fragmented memory. There are 10 cells available, but there is no
place to allocate even half this much memory for a single object.

in use available
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way to force the garbage collector to run just before this critical moment, so that there
will be plenty of memory available. (Hint: Look at the API for the System class.)

16.12 Suppose there are n cells in use and m cells in the entire heap. How much time is
required for mark-and-sweep garbage collection?

16.13 Suppose there are n cells in use and m cells in the entire heap. How much time is
required for copying garbage collection?

16.14 Draw a UML instance diagram of the objects in the heap in Figure 16–19. Assume that
each two-cell pair is a ListNode.

16.15 The copying garbage collector traverses all objects reachable from the roots. Is this tra-
versal breadth-first or depth-first?

16.16 Why doesn’t the MemoryWithGarbageCollection class have a free() method?

16.17 What does the method isForwarded() (Figure 16–22) return if address is 5 or 11
and if end is 8 or 16? (Deal with all four combinations.)

16.18 Which automatic memory management technique would be a bad choice for a palmtop
computer with very little memory? Explain.

Summary

Memory is divided into the call stack and the heap. Primitive values may live on the call stack,
but objects must live in the heap. A reference to such an object is really just a number, giving the
address in the heap where the object lives. Memory management is the task of keeping track of
which memory in the heap is in use and which is available for creating new objects.

Memory can be managed explicitly (as in C and C++) or automatically (as in Java). Explicit
memory management can be more efficient, but it allows for some exceedingly nasty bugs,
including memory leaks and dangling pointers.

While we cannot manage all of our memory explicitly in Java, we can gain some speed using a
node pool. In a node pool, we allocate a bunch of objects (such as ListNodes) in advance, then
borrow them from this pool as they are needed.

Approaches to automatic memory management include reference counting, mark-and-sweep
garbage collection, and copying garbage collection.

Reference counting keeps track of the number of references to each object. When this number
drops to zero, the memory used for the object is made available again. In its pure form, reference
counting cannot handle cyclic islands of garbage.

Mark-and-sweep garbage collection traverses the reachable objects, then frees everything else.

Copying garbage collection divides the heap into two or more parts, one of which is off limits.
The garbage collector copies all reachable objects into the forbidden area, makes this area ready
for use, and makes some other area forbidden. Such a system cannot use all of its memory at
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once. On the other hand, it does not have to touch the garbage (which is most of the heap) and it
compacts the heap. Many modern automatic memory management systems are variations on
copying garbage collection.

Vocabulary

address. Location of an object (index in the heap).

cell. Position in the heap. An object may occupy multiple cells.

compacted. Of memory or disk storage, having one contiguous in-use region.

copying garbage collector. Garbage collector that copies reachable objects into another part of
memory.

dangling pointer. Pointer to memory a program does not control. Can result from failing to ini-
tialize a pointer or from freeing memory and then trying to access it.

fragmented. Of memory or disk storage, having the in-use regions scattered about, leaving
many small available regions.

free list. Linked list of available areas of the heap.

forwarding address. In a copying garbage collector, a pointer from from-space into to-space
indicating the address to which an object has been copied.

from-space. In a copying garbage collector, the area of memory from which objects are being
copied.

garbage. Memory that cannot be reached by following one or more pointers from a root.

garbage collection. Any memory management technique that occasionally pauses the program
to reclaim garbage.

heap. Area of memory where objects (and arrays live), as opposed to the call stack.

mark-and-sweep garbage collector. Garbage collector that traverses the heap from the roots to
see what is reachable, then sweeps through the heap to reclaim anything not visited on the first
pass.

memory leak. Bug in which a program fails to free memory it is no longer using.

memory management. Keeping track of which cells are in use.

node pool. Set of frequently used objects (such as list nodes) maintained to avoid creating new
instances.

reference counting. Memory management technique in which each object keeps track of the
number of references to that object. When this count reaches zero, the object is unreachable.

root. Reference on the call stack pointing into the heap.

to-space. In a copying garbage collector, the area in memory to which objects are being copied.
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Problems

16.19 Modify garbageCollect() (Figure 16–23) so that it accepts an array of roots, rather
than just a single root.

16.20 Define an exception class SegmentationFaultException. In the MemoryWithGarbage-
Collection class, modify get() and set() so that they throw such an exception if the
specified address is not in the usable portion of memory.

16.21 Modify the MemoryWithGarbageCollection class to handle objects of different sizes.
(Hint: For an objects of size s, use s + 1 cells. The first cell indicates the size of the
object.)

16.22 Add a field root, giving the address of the current root, to the MemoryWithGarbage-
Collection class. Modify the allocate() method so that, if there is no available mem-
ory, the garbage collector runs. Assuming that there was some garbage, memory can
now be allocated.

Projects

16.23 Write a simulated memory that uses mark-and-sweep garbage collection.
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17
Out to the Disk

This chapter deals with data stored on disk rather than in memory. There are two main reasons
for using disk storage. First, information on disk persists even when the electricity goes out or
the computer is rebooted. Second, some applications involve so much data that it does not fit in
memory. For example, a search engine that examines 10 billion web sites, averaging 10 kilo-
bytes each, would have to handle 100 terabytes of data!

Section 17.1 deals with the basics of interacting with files in Java. The remaining sections address
special data structures and algorithms used with data stored on disk. Two algorithms for com-
pressing data, so that it takes up less space on disk, are described in Section 17.2. In Section 17.3,
we look at an algorithm for sorting data which does not fit in memory. Finally, in Section 17.4, we
discuss B-trees, a binary search tree variant especially suited for data stored on disk.

17.1 Interacting with Files

The built-in java.io package contains dozens of classes for reading and writing data in memory,
on disk, and over networks. These relatively simple components can be strung together in a huge
variety of ways. The intent of this design is to give experienced programmers a good deal of
control over input and output. Unfortunately, the vast collection of classes is confusing and
intimidating to the new programmer. In this section, we will concentrate on a few particularly
useful classes, demonstrating how to read and write text and data.
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Text Files

We begin with the simple task of writing text to a file. We can do this using the java.io.Print-
Writer class (Figure 17–1).

The PrintWriter class has a constructor which accepts a file name as a String. Invoking this con-
structor might throw an IOException (specifically, a FileNotFoundException) if the file in ques-
tion does not exist and cannot be created. There’s nothing our program can do if such an
exception occurs, so we pass it on by declaring that main() might throw an IOException.

Once we have a PrintWriter, we can invoke the methods print() and println(), which work
just like the ones provided by System.out.

When we run this program, it almost works. It creates a file called ozymandias.txt in the cur-
rent directory (the directory from which we ran the program). If we examine the file, however,
we discover that it is empty! What happened?

The problem is that the PrintWriter is buffered. In other words, it doesn’t write to the file every
time we invoke println(). Instead, it saves up its output until it has a large amount, then
writes all of it to the disk. This is a reasonable thing to do, because accessing the disk is an
extremely time-consuming operation. Because a disk involves physical moving parts, a disk
access can take roughly a million times as long as a memory access. On the other hand, once the
disk’s read/write head is in the right place, reading or writing more data at the same place is
practically free. Thus, it is more efficient to make a few large disk accesses than many small
ones.

In order to get our program to work properly, we must flush the buffer—that is, tell the Print-
Writer, “You can really send that stuff to the disk now.” We could do this by invoking the

1 import java.io.*;
2
3 /** Class to demonstrate text file output. */
4 public class Ozymandias {
5
6   /** Print a string to a file. */
7   public static void main(String[] args) throws IOException {
8     PrintWriter out = new PrintWriter("ozymandias.txt");
9     out.println("Look on my works, ye mighty, and despair!");

10   }
11
12 }

Figure 17–1: This program almost works.
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flush() method, but since we’re done with the file, we might as well close the file completely
(Figure 17–2).

A more elaborate way to write this program would be to explicitly create an instance of the File
class, then attach a PrintWriter to that file (Figure 17–3). The File object handles interaction
with the disk, while the PrintWriter object provides the print() and println() methods.

There is no particular reason to use this more complicated version here, because PrintWriter has
a constructor that lets us specify the file name directly. This example does demonstrate the phi-
losophy of the java.io package: provide many simple components which can be combined to
produce the desired behavior. Later, we’ll attach a different “filter” to a File to write something
other than text.

Before moving on, let’s look at some of the classes involved in what we’ve done so far
(Figure 17–4).

A PrintWriter both is a Writer and contains one. Specifically, when we hook one up to a File, it
contains a FileWriter (Figure 17–5). Fortunately, we don’t have to keep track of all of these
intermediate objects; the constructors in PrintWriter do the work for us.

The object System.out, incidentally, is an instance of the class PrintStream.

We would also like to read text in from files. Oddly enough, there is no such thing as a Print-
Reader. Instead, we can use the java.util.Scanner class. As we have seen, this class has several
constructors. One constructor takes an InputStream, such as System.in. Another, used in the Pick
Up Sticks program in Figure 15–29, takes a String. Yet another takes a File.

1 /** Print a string to a file. */
2 public static void main(String[] args) throws IOException {
3   PrintWriter out = new PrintWriter("ozymandias.txt");
4   out.println("Look on my works, ye mighty, and despair!");
5   out.close();
6 }

Figure 17–2: Closing the PrintWriter flushes the buffer.

1 /** Print a string to a file. */
2 public static void main(String[] args) throws IOException {
3  File file = new File("ozymandias.txt");
4  PrintWriter out = new PrintWriter(file);
5  out.println("Look on my works, ye mighty, and despair!");
6   out.close();
7 }

Figure 17–3: Explicitly creating a File object.
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As an example, let’s write a program that reads a Java program and prints the lines containing
the substring "public" (Figure 17–6).

Figure 17–4: Classes involved in writing text to a file. The shaded classes have not
been discussed previously.

Figure 17–5: A PrintWriter can contain a FileWriter, which in turn contains a File. Each
object in this chain offers some additional functionality.

1 import java.io.*;
2 import java.util.Scanner;
3
4 /** Print all lines containing the substring "public". */
5 public class PrintPublicMembers {
6
7   /** Run on the file specified as args[0]. */
8   public static void main(String[] args) throws IOException {
9     File file = new File(args[0]);

10     Scanner in = new Scanner(file);

Figure 17–6: This program prints all lines of a file containing the substring "public".
(Part 1 of 2)
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Running this program allows us to see all of the public methods of a class. For example, if we
run our program with the command

java PrintPublicMembers ArrayList.java

we get:

public class ArrayList<E> implements List<E> {
  public ArrayList() {
  public void add(E target) {
  public boolean contains(E target) {
  public boolean isEmpty() {
  public java.util.Iterator<E> iterator() {
  public E get(int index) {
  public E remove(int index) {
  public boolean remove(E target) {
  public void set(int index, E target) {
  public int size() {
  public String toString() {

Incidentally, this program touches on one of the deepest ideas in computer science: it is possible
to write programs that treat other programs as data. We have been dealing with one such pro-
gram throughout this book: the Java compiler. It reads a program (as Java source code) from a
file and writes another program (as compiled Java byte code) to another file.

As with text output, there’s more going on behind the scenes than is apparent in the code we’ve
written (Figure 17–7).

A Scanner is associated with an instance of some class implementing the Readable interface.
Different things happen, depending on which Scanner constructor we use:

• If the argument is a String, the Scanner contains a StringReader, which in turn contains
the String.

• If the argument is a File, the Scanner contains a FileReader, which in turn contains that
File.

• If the argument is a BufferedInputStream (such as System.in), the Scanner contains an
InputStreamReader, which in turn contains that BufferedInputStream.

11 while (in.hasNextLine()) {
12       String line = in.nextLine();
13       if (line.contains("public")) {
14 System.out.println(line);
15       }
16     }
17   }
18
19 }

Figure 17–6: This program prints all lines of a file containing the substring "public".
(Part 2 of 2)
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Once again, we are thankful that we don’t have to keep track of all of this!

Data Files
Information in files need not be stored in text. If it is not necessary for humans to read files
directly, text is somewhat inefficient. For example, suppose we want to store nine-digit Social
Security numbers. As text, each digit is a character, occupying one byte in the ASCII encoding.
(Java actually uses the more comprehensive Unicode encoding. The way Unicode characters are
represented on disk is complicated; we ignore these details.) A nine-digit number can also be
stored in a four-byte int, using less than half the space. If hundreds of thousands of such numbers
are being stored, this can be a significant savings.

To interact with data stored in this binary format, we use the classes ObjectInputStream and
ObjectOutputStream. These are subclasses of InputStream and OutputStream, respectively
(Figure 17–8).

As a simple example, the program in Figure 17–9 takes an optional command-line argument. If
an argument is provided, it is stored in a file (lines 13–16). Otherwise, the first int in the file is
read and printed to the screen (lines 18–20).

In addition to readInt() and writeInt(), there are corresponding methods for all of the
other primitive types.

Figure 17–7: Classes and interfaces involved in reading text from a file. The shaded
classes have not been discussed previously.
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There are also methods readObject() and writeObject(). When we write an object to an
ObjectOutputStream, Java automatically writes the contents of the object’s fields. If these are refer-
ences to other objects, those objects are written as well. The observant reader, recalling Chapter 16,
will see a problem here. We need to write all of the objects reachable from the original root

Figure 17–8: Classes involved in reading from and writing to a binary data file.

1 import java.io.*;
2
3 /** Example of storing data in binary format. */
4 public class DataFileExample {
5
6   /**
7    * If an int is provided on the command line, store it in 
8  * number.data. Otherwise, read an int from number.data
9 * and print it.

10    */
11   public static void main(String[] args) throws IOException {
12     File file = new File("number.data");
13     if (args.length > 0) {
14       ObjectOutputStream out
15         = new ObjectOutputStream(new FileOutputStream(file));
16       out.writeInt(Integer.parseInt(args[0]));
17       out.close();
18     } else {
19       ObjectInputStream in
20         = new ObjectInputStream(new FileInputStream(file));
21       System.out.println(in.readInt());
22     }
23   }
24
25 }

Figure 17–9: Reading and writing data in binary format.
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object. Each object must be written exactly once: we don’t want to miss any, and we don’t want to
write two copies of an object just because there are two references to it.

Handily, this is exactly the problem solved by the copying garbage collector described in
Section 16.2. Java uses this algorithm to convert a directed graph of objects into a linear file, a
process called serialization. All we have to do is make every object we are saving serializable.
We do this by implementing the java.io.Serializable interface. This interface has no methods; we
merely have to state that we are implementing it. Many built-in classes, including String and all
of the wrapper classes, are Serializable.

As an example, recall the game of Questions from Section 10.1. A major drawback of the pro-
gram was that, when we quit the program, the decision tree was lost. It would be much better to
store the tree in a file. We can accomplish this by adding Serializable to the list of interfaces
implemented by the BinaryNode and Questions classes, and by updating the main() method for
Questions, as shown in Figure 17–10.

Running this program once produces a file questions.data, but we have no way to read it.
We have to modify the main() method so that, when it starts, we read the tree from the file
(Figure 17–11).

The program now works properly, but there’s something fishy going on. The original decision
tree, containing just the leaf node "a giraffe", does not appear anywhere in the program.
That knowledge exists only in the data file. If we were ever to lose the data file, we would have
no way to start over.

We want to start over only if the file does not already exist. The next subsection discusses how to
determine this.

1 /** Create and repeatedly play the game. */
2 public static void main(String[] args) throws IOException {
3   Questions game = new Questions();
4   System.out.println("Welcome to Questions.");
5   do {
6     System.out.println();
7     game.play();
8     System.out.print("Play again (yes or no)? ");
9   } while (INPUT.nextLine().equals("yes"));

10   // Save knowledge to a file
11   ObjectOutputStream out
12     = new ObjectOutputStream(new FileOutputStream("questions.data"));
13   out.writeObject(game);
14   out.close();
15 }

Figure 17–10: Once BinaryNode and Questions implement Serializable, we can
store the decision tree in a file. Questions must also import java.io.*.
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Directories

We begin with the anticlimactic answer to the question posed in the previous paragraph. To
determine whether a file exists, we use the exists() method of the corresponding File object
(Figure 17–12).

1 /** Create and repeatedly play the game. */
2 public static void main(String[] args)
3   throws ClassNotFoundException, IOException {
4   // Read knowledge from a file
5   ObjectInputStream in
6     = new ObjectInputStream(new FileInputStream("questions.data"));
7   Questions game = (Questions)(in.readObject());
8   // Play the game
9   System.out.println("Welcome to Questions.");

10   do {
11     System.out.println();
12     game.play();
13     System.out.print("Play again (yes or no)? ");
14   } while (INPUT.nextLine().equals("yes"));
15   // Save knowledge to a file
16   ObjectOutputStream out
17     = new ObjectOutputStream(new FileOutputStream
18 ("questions.data"));
19   out.writeObject(game);
20   out.close();
21 }

Figure 17–11: Reading the Questions data from a file.

1 /** Create and repeatedly play the game. */
2 public static void main(String[] args)
3   throws ClassNotFoundException, IOException {
4   // Read knowledge from a file
5   Questions game;
6   File file = new File("questions.data");
7   if (file.exists()) {
8     ObjectInputStream in
9       = new ObjectInputStream(new FileInputStream(file));

10     game = (Questions)(in.readObject());
11   } else {
12     game = new Questions();
13   }
14 // Play the game
15 System.out.println("Welcome to Questions.");

Figure 17–12: Improved version of the main() method from the Questions class. If
there is no data file to read from, it creates a new instance of Questions. (Part 1 of 2)
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The exists() method seems strange. Doesn’t every object exist? Yes, the object file, which
is an instance of class File, does exist. It contains the name of a hypothetical file on disk. The
question answered by exists() is whether there really is a file with that name.

We don’t have to put all files in the current directory. A File object can specify the entire path of
a file. For example, if the current directory has a subdirectory lib, then we could have a file cor-
responding to lib/questions.data. If we simply replace the name of the file in line 6 in
Figure 17–12, however, we’ll have a couple of problems.

One problem is that not all operating systems use "/" to separate directories in a path. Specifi-
cally, Windows uses "\" instead. For platform independence, instead of

"lib/questions.data"

we should use:

"lib" + File.separator + "questions.data"

A second problem is that, if the lib directory doesn’t exist, opening lib/questions.data for
output won’t create it. A directory must be explicitly created using the mkdir() method. In this case:

new File("lib").mkdir();

A third problem is that lib is a subdirectory of the current working directory. It would be better
to use an absolute path, so that the location of the data file is independent of the directory from
which Questions is invoked. This is particularly important in modern graphic development envi-
ronments and operating systems. If a program is invoked by selecting it from a menu or clicking
on an icon, it may not be clear what the current working directory is.

We can find the name of the directory containing the Questions program with the following
arcane incantation, which we make no attempt to explain:

Questions.class.getProtectionDomain().getCodeSource()
  .getLocation().getFile();

16 do {
17     System.out.println();
18     game.play();
19     System.out.print("Play again (yes or no)? ");
20   } while (INPUT.nextLine().equals("yes"));
21   // Save knowledge to a file
22   ObjectOutputStream out
23     = new ObjectOutputStream(new FileOutputStream(file));
24   out.writeObject(game);
25   out.close();
26 }

Figure 17–12: Improved version of the main() method from the Questions class. If
there is no data file to read from, it creates a new instance of Questions. (Part 2 of 2)
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The final version of main() is given in Figure 17–13.

Exercises
17.1 What is printed if we run the PrintPublicMembers program on itself?

17.2 Write a program that prints its own source code.

17.3 Explain why, in Figure 17–6, we couldn’t replace lines 9–10 with:

Scanner in = new Scanner(args[0]);

17.4 Look up the API for the File class. How can we determine if a file refers to a directory?

17.2 Compression

Files can often be compressed—that is, represented using fewer bytes than the standard repre-
sentation. This technique is useful for saving disk space and for reducing network traffic. The
total time required to compress a file, send the compressed file, and uncompress it at the other
end is often less than the time required to send the uncompressed file. This explains why soft-
ware made available for download over the Internet is usually compressed.

1 /** Create and repeatedly play the game. */
2 public static void main(String[] args)
3   throws ClassNotFoundException, IOException {
4   // Read knowledge from a file
5   Questions game;
6   String home = Questions.class.getProtectionDomain().getCodeSource()
7     .getLocation().getFile() + File.separator();
8   File file = new File(home + "lib"
9                        + File.separator + "questions.data");

10   if (file.exists()) {
11     ObjectInputStream in
12       = new ObjectInputStream(new FileInputStream(file));
13     game = (Questions)(in.readObject());
14   } else {
15     game = new Questions();
16     new File(home + "lib").mkdir();
17   }
18   // See lines 14-25 of Figure 17–12
19 }

Figure 17–13: The file questions.data now lives in the lib subdirectory of the
directory containing the Questions program.
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In this section, we discuss two algorithms for compressing data. The discussion is in terms of
text, but these algorithms can be adapted to work for any kind of data.

Huffman Encoding
In an ASCII text file, each character is represented by the same number of bits. Such a fixed-
length encoding is somewhat wasteful, because some characters are more common than others.
If a character appears frequently, it should have a shorter representation. Huffman encoding
produces such an efficient representation.

Consider the String "beekeepers_&_bees". Eight different characters appear in this String, so
we could have a 3-bit code for each character (Figure 17–14). (ASCII works like this, using 7
bits to encode 128 different characters.) In a Huffman encoding, common characters such as 'e'
have shorter codes than rare characters such as '&'.

Representing the String "beekeepers_&_bees" using the fixed-length encoding requires
51 bits:

000 001 001 010 001 001 011 001 100 101 110 111 110 000 001 001 101

Using the Huffman encoding, this takes only 45 bits:

110 0 0 11110 0 0 11111 0 1011 100 1110 1010 1110 110 0 0 100

The savings can be considerably greater on a long String, such as the entire text of a novel.

We included spaces above to make it clear where one code begins and another ends. In practice,
there is only a sequence of bits. It is easy to detect the end of a code in a fixed-length encoding,
because each code uses the same number of bits. We might worry that, in a Huffman encoding,
we might incorrectly conclude that we’ve read the code 100 when we’ve really only read the first

Character Fixed-Length Code Huffman Code

b 000 110

e 001 0

k 010 11110

p 011 11111

r 100 1011

s 101 100

_ 110 1110

& 111 1010

Figure 17–14: In a Huffman encoding, more frequent characters are represented by
shorter codes.
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three characters of the code 10011. To avoid this danger, Huffman encodings are designed so
that no code is a prefix of another code. For example, the code for 'b' is 110, and no other code
starts with 110.

A Huffman encoding can be automatically generated from a table of character frequencies.
These should be drawn from a string typical of those being compressed. For example, when
compressing English text, character frequencies on the front page of the New York Times will do
nicely. To keep our example small, however, we will use the frequencies in the message being
compressed (Figure 17–15).

To generate a Huffman encoding, we first construct a binary tree. When we are done, leaves in
this tree corresponds to characters. Deeper leaves have longer codes.

One node is created for each character, holding both that character and its count (Figure 17–16).
This is a forest of trees, each containing one node. On each pass through the main loop, we
choose the two lowest-count roots and merge them. (It doesn’t matter how we handle ties.) The
count for the new parent is the sum of its children’s counts.

This continues until there is only one tree (Figure 17–17). The code for each character is deter-
mined by the path from the root to the corresponding leaf. Each right descent is represented by a 1,
each left descent by a 0. For example, the path to 'b' is right-right-left, so its code is 110.

To translate these ideas into Java, we first need a class HuffmanNode (Figure 17–18). This is
almost identical to a BinaryNode<Character>, but it has an additional field count. It also imple-
ments Comparable<HuffmanNode>, so that we can find the lowest-count root. Inheritance pays
off handsomely here.

Character Count

b 2

e 7

k 1

p 1

r 1

s 2

_ 2

& 1

Figure 17–15: Frequencies of different characters in the String "beekeepers_&_bees".
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Figure 17–16: Building a Huffman tree. Initially, each node is in a separate tree (top).
On each pass through the main loop, we combine the two roots with the lowest counts.

Figure 17–17: Final Huffman tree. The code for each character is determined by the
path from the root to the corresponding leaf.
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An instance of the Huffman class contains a tree of such nodes and a direct addressing table
mapping characters to their codes (Figure 17–19). The codes are given as Strings of ones and
zeroes for readability. In practice, the program would really read and write bits from a file; this is
left as Project 17.20.

1 /** Node in a Huffman tree. */
2 public class HuffmanNode extends BinaryNode<Character>
3   implements Comparable<HuffmanNode> {
4
5   /** Frequency of this letter or set of letters. */
6   private int count;
7
8   /** Create a node with no children. */
9   public HuffmanNode(char letter, int count) {

10     super(letter);
11     this.count = count;
12   }
13
14   /**
15    * Create a node with two children.  Its count is the sum of
16    * its children's counts.
17    */
18   public HuffmanNode(HuffmanNode left, HuffmanNode right) {
19     super('?', left, right);
20     this.count = left.count + right.count;
21   }
22
23   /** The comparison is based on the counts of the nodes. */
24   public int compareTo(HuffmanNode that) {
25     return count - that.count;
26   }
27
28 }

Figure 17–18: The HuffmanNode class extends BinaryNode<Character>.

1 /** Huffman encoder/decoder. */
2 public class Huffman {
3
4   /** The root of the Huffman tree. */
5   private HuffmanNode root;
6

Figure 17–19: The constructor for the Huffman class first generates a tree, then uses
the tree to generate a table of codes. (Part 1 of 2)
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In generating the tree, we need to keep track of a set of roots. In each pass through the main
loop, we need to grab the two roots with the smallest counts. This is a job for a priority queue
(Figure 17–20).

This tree will be useful in decoding, but to encode a String we’ll need a way to quickly get from
a character to its code. This is accomplished using a direct-addressing table, which is populated
by the elegant recursive method generateCodes() (Figure 17–21).

Once we have this table, encoding a String is just a matter of concatenating the codes for the
characters making up the String (Figure 17–22).

Now, for example, if we

encode("beekeepers_&_bees")

7  /** Direct addressing table mapping characters to Strings. */
8 private String[] table;
9

10   /** The frequency distribution is in the code for this method. */
11   public Huffman() {
12     char[] letters = "bekprs_&".toCharArray();
13     int[] counts = {2, 7, 1, 1, 1, 2, 2, 1};
14     root = generateTree(letters, counts);
15     table = new String[128];
16     generateCodes(root, "");
17   }
18
19 }

1 /** Generate the Huffman tree. */
2 protected HuffmanNode generateTree(char[] letters, int[] counts) {
3   Heap<HuffmanNode> q = new Heap<HuffmanNode>();
4   for (int i = 0; i < letters.length; i++) {
5     q.add(new HuffmanNode(letters[i], counts[i]));
6   }
7   while (true) {
8     HuffmanNode a = q.remove();
9     if (q.isEmpty()) {

10       return a;
11     }
12     HuffmanNode b = q.remove();
13     q.add(new HuffmanNode(a, b));
14   }
15 }

Figure 17–20: A priority queue is used in building a Huffman tree.

Figure 17–19: The constructor for the Huffman class first generates a tree, then uses
the tree to generate a table of codes. (Part 2 of 2)
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the result is:

"110 0 0 11110 0 0 11111 0 1011 100 1110 1010 1110 110 0 0 100"

To decode a message, we start at the root of the tree and use the incoming bits to steer left and
right (Figure 17–23). When we hit a leaf, we add a character to the result and go back to the root.

1 /** Generate the table of codes. */
2 protected void generateCodes(BinaryNode<Character> root, 
3 String code) {
4   if (root.isLeaf()) {
5 table[root.getItem()] = code;
6 } else {
7     generateCodes(root.getLeft(), code + "0");
8     generateCodes(root.getRight(), code + "1");
9   }

10 }

Figure 17–21: As generateCodes() recurs more deeply into the tree, code gets
longer.

1 /**
2  * Return the bits of the encoded version of message, as a
3  * human-readable String.
4  */
5 public String encode(String message) {
6   StringBuilder result = new StringBuilder();
7   for (char c : message.toCharArray()) {
8     result.append(table[c] + " ");
9   }

10   return result.toString();
11 }

Figure 17–22: The code for each character can be looked up in the table.

1 /** Return the original version of a String encoded by encode(). */
2 public String decode(String encodedMessage) {
3   StringBuilder result = new StringBuilder();
4   BinaryNode<Character> node = root;
5   for (char c : encodedMessage) {
6     if (c == '0') {
7       node = node.getLeft();
8     } else if (c == '1') {
9       node = node.getRight();

10 }

Figure 17–23: The Huffman tree is used in decoding a String. (Part 1 of 2)
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Now, for example,

decode(encode("beekeepers_&_bees"))

returns "beekeepers_&_bees".

Lempel–Ziv Encoding
It is possible to prove that Huffman encoding is the best possible character-by-character encod-
ing. We can do even better by creating codes for frequently occurring substrings. For example,
when compressing Java programs, it could be useful to have special codes for substrings such as
"public" and "for (int i = 0; i <". Lempel–Ziv encoding uses this idea.

The set of codes used in Lempel–Ziv encoding is not created in advance, but generated during
encoding or decoding. Each code is an int corresponding to a String of one or more characters.
Originally, there is a code for each single character.

As an example, consider encoding the String "beekeepers_&_bees" (Figure 17–24). We
begin by reading the character 'b' and outputting the code for 'b'. On each subsequent step,
we output a code and create a new code. As we work through the text, we eventually encounter
substrings for which we have already created codes.

We output the code corresponding to the longest prefix of the remaining text for which there is a
code. For example, when the remaining text is "eepers_&_bees", there is a code for "ee" but
not for "eep", so the code for "ee" is output.

When a new code is created, it represents a String constructed from the Strings represented by
the last two codes emitted. Specifically, it is the concatenation of the older string and the first
character of the newer string. For example, when the last two codes emitted represented "k" and
"ee", the new code represents "ke".

To implement this algorithm, we need two data structures to keep track of the codes. The first
structure is a direct-addressing table mapping ints to Strings. The second structure is a digital
search tree (Section 14.3) with codes stored at the nodes.

These data structures are declared in Figure 17–25. The constructor initializes them by creating
one child of root for each of the 128 ASCII characters.

Our encode() method (Figure 17–26) reads from a Scanner and writes ints to an ObjectOutput-
Stream. In the main loop on lines 8–20, we work down the digital search tree, using characters
from the input to choose a child. When we can’t go any further, we’ve found the longest prefix,
so we emit a code and create a new one (lines 11–15).

11  if (node.isLeaf()) {
12       result.append(node.getItem());
13       node = root;
14     }
15   }
16   return result.toString();
17 }

Figure 17–23: The Huffman tree is used in decoding a String. (Part 2 of 2)
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Output Code New Code

b —

e be

e ee

k ek

ee ke

p eep

e pe

r er

s rs

_ s_

& _&

_ &_

be _b

e bee

s —

Figure 17–24: Lempel–Ziv encoding generates new codes as it works. Each code
represents the concatenation of the string represented by the previous code and the
first character of the string represented by the current code.

1 import java.io.*;
2 import java.util.Scanner;
3
4 /** Lempel-Ziv compression of text. */
5 public class LempelZiv {
6
7   /** Root of the digital search tree. */
8   private DigitalNode<Integer> root;
9

Figure 17–25: Data structures and constructor for the LempelZiv class. (Part 1 of 2)
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10  /** Direct-addressing table mapping codes to Strings. */
11   private ArrayList<String> strings;
12
13   /** Initialize the codes with ASCII values. */
14   public LempelZiv() {
15     root = new DigitalNode<Integer>(null);
16     strings = new ArrayList<String>();
17     for (char i = 0; i < 128; i++) {
18       root.setChild(i, new DigitalNode<Integer>((int)i));
19       strings.add("" + i);
20     }
21   }
22
23 }

1 /** Read text from in, write ints to out. */
2 public void encode(Scanner in, ObjectOutputStream out)
3   throws IOException {
4   DigitalNode<Integer> parent = null;
5   DigitalNode<Integer> node = root;
6   while (in.hasNextLine()) {
7     String line = in.nextLine() + "\n";
8     for (int i = 0; i < line.length(); ) {
9       DigitalNode<Integer> child = node.getChild(line.charAt(i));

10       if (child == null) {
11         int code = node.getItem();
12         out.writeInt(code);
13         addNewCode(parent, code);
14         parent = node;
15         node = root;
16       } else {
17         node = child;
18         i++;
19       }
20     }
21   }
22   out.writeInt(node.getItem());
23   out.close();
24 }

Figure 17–26: Lempel–Ziv encoding.

Figure 17–25: Data structures and constructor for the LempelZiv class. (Part 2 of 2)
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The protected method addNewCode() adds a node to the tree and an entry to the direct-addressing
table (Figure 17–27).

Now, for example, to compress the file words into the file words.lz, we could do this:

Scanner in = new Scanner(new File("words"));
ObjectOutputStream out
  = new ObjectOutputStream(new FileOutputStream("words.lz"));
new LempelZiv().encode(in, out);

Surprisingly, we don’t need to keep the data structures around to decode a string. They can be
generated on the fly during the decoding process, just as during the encoding process
(Figure 17–28).

1 /**
2  * Add a new code.  It represents the concatenation of the String
3  * for the code at parent and the first character of the String for
4  * code.
5  */
6 protected void addNewCode(DigitalNode<Integer> parent, int code) {
7   if (parent != null) {
8     char firstChar = strings.get(code).charAt(0);
9     parent.setChild(firstChar,

10                     new DigitalNode<Integer>(strings.size()));
11     strings.add(strings.get(parent.getItem()) + firstChar);
12   }
13 }

Figure 17–27: Adding a new code to both data structures.

1 /** Read ints from in, write text to out. */
2 public void decode(ObjectInputStream in, PrintWriter out)
3   throws IOException {
4   DigitalNode<Integer> parent = null;
5   while (in.available() > 0) {
6     int code = in.readInt();
7     DigitalNode<Integer> node = root;
8     String s = strings.get(code);
9     for (char c : s.toCharArray()) {

10       out.print(c);
11       node = node.getChild(c);
12     }
13     addNewCode(parent, code);
14     parent = node;
15   }
16   out.close();
17 }

Figure 17–28: Lempel–Ziv decoding.
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To uncompress the previously compressed file, we could do this:

ObjectInputStream in
  = new ObjectInputStream(new FileInputStream("words.lz"));
PrintWriter out = new PrintWriter("words");
new LempelZiv().decode(in, out);

Since each int takes up four bytes, Lempel–Ziv encoding provides no compression until the
encoder starts emitting codes representing strings longer than four characters. On long files,
however, it can provide significant compression.

Java provides several classes that perform a variation on Lempel–Ziv encoding, including
java.util.zip.ZipInputStream, java.util.zip.GZIPInputStream, and java.util.jar.JarInputStream. We
won’t discuss these in detail.

Exercises

17.5 Can any compression algorithm guarantee that every String becomes shorter when
compressed? Explain. (Hint: Recall the pigeonhole principle.)

17.6 Discuss how these algorithms might be adapted to work on files containing binary data
rather than text.

17.7 Why can’t line 8 of Figure 17–23 be a simple else?

17.8 If we use our Lempel–Ziv encoding algorithm on a sufficiently large file, the code table
will become too large. It might become so large that an int is not sufficient to specify an
index, or it might simply become too large to fit in memory. In practice, a limit is set on
the table size. Discuss how the algorithm might reasonably proceed when the table is
full.

17.3 External Sorting

We occasionally need to sort collections of data so large that they do not fit in memory. The
algorithms we’ve explored previously, such as heapsort, do not work efficiently for external sort-
ing. While the ith element of an array can be accessed very quickly, accessing the ith object
stored in a file on disk is horrendously slow. As mentioned previously, any action involving the
moving physical parts of a disk drive can take a million times as long as accessing memory.
Worse, if the objects in the file are of different sizes, or if the data are stored on a sequential
access device like a magnetic tape drive, finding the ith element can take time linear in the size
of the file.

The process of sorting data too big to fit in memory is called external sorting. This section
presents an external sorting algorithm based on merge sort (Section 9.3). We begin by dividing
the data into many short runs. Each run is small enough to fit into memory, so we can sort the
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individual runs. The runs are then repeatedly merged into longer and longer runs, until there is
only one run left.

Let c be the number of data that can fit in memory. We initially make runs of length c
(Figure 17–29). (The last run, containing any “spare change,” may be shorter than this.) These
are then merged into runs of length 2c, then 4c, and so on, until all of the data are in the same
run.

The code we now present sorts the lines of a text file. There are several places in the algorithm
where we have to determine whether there is another line left in a run. A run limited to length 4c,
for example, might run out either because we’ve taken 4c lines from it or because we’ve hit the
end of the file. To simplify the main code, these details are encapsulated in the ExternalSortRun
class (Figure 17–30).
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Figure 17–29: External sorting. The original data file is split into two files, each
consisting of sorted runs. Bold, italic type is used to emphasize where one run ends
and another begins. In the initial split, runs are short enough to fit in memory; in this
example, the initial runs are of length 3 or less. These are merged into runs of length 6
or less, then 12 or less, and finally 24 or less. This final run is long enough to contain all
of the data, which are now sorted.
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1 import java.util.Scanner;
2
3 /** A run of lines used by the ExternalSort program. */
4 public class ExternalSortRun {
5
6   /** Number of lines left in this run, possibly an overestimate. */
7   private int count;
8
9   /** The next available line, if any. */

10   private String next;
11
12   /** The Scanner from which the lines are drawn. */
13   private Scanner scanner;
14
15   /** Up to maxLength lines will be drawn from scanner. */
16   public ExternalSortRun(Scanner scanner, int maxLength) {
17     count = maxLength;
18     this.scanner = scanner;
19     if (scanner.hasNext()) {
20       next = scanner.nextLine();
21     } else {
22       count = 0;
23     }
24   }
25
26   /** Return true if there is another line in this run. */
27   public boolean hasNext() {
28     return count > 0;
29   }
30
31   /** Return the next available line and advance the run. */
32   public String next() {
33     String result = next;
34     count--;
35     if (count > 0) {
36       if (scanner.hasNext()) {
37         next = scanner.nextLine();
38       } else {
39         count = 0;
40       }
41     }
42     return result;
43   }
44

Figure 17–30: The ExternalSortRun class manages the details of each run.  (Part 1
of 2)
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We describe the ExternalSort class (Figure 17–31) in a top-down fashion. The main() method
invokes sort() on Files corresponding to args[0] and args[1]. Thus, to sort the file
poetry.txt and put the output in sorted.txt, we would invoke our program as:

java ExternalSort poetry.txt sorted.txt.

45  /** Return the next available line but do not advance the run. */
46   public String peek() {
47     return next;
48   }
49
50 }

1 import java.io.*;
2 import java.util.Scanner;
3
4 /** Externally sort the lines of a text file. */
5 public class ExternalSort {
6
7   /** Maximum number of lines stored in memory at any one time. */
8   public static final int CAPACITY = 3;
9

10   /** Sort the file in and write the output to out. */
11   public static void sort(File in, File out) throws IOException {
12     File[][] files = {{new File(in.getPath() + ".a0"),
13                        new File(in.getPath() + ".a1")},
14                       {new File(in.getPath() + ".b0"),
15                        new File(in.getPath() + ".b1")}};
16     split(in, files[0]);
17     int runLength = CAPACITY;
18     int i = 0;
19     while (merge(files[i], files[1 - i], runLength)) {
20       i = 1 - i;
21       runLength *= 2;
22     }
23     files[1 - i][0].renameTo(out);
24     for (i = 0; i < 2; i++) {
25       for (int j = 0; j < 2; j++) {
26         files[i][j].delete();
27       }
28     }
29   }
30

Figure 17–31: Top-level methods in the ExternalSort class. (Part 1 of 2)

Figure 17–30: The ExternalSortRun class manages the details of each run.  (Part 2
of 2)
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Lines 12–15 create four new files. If in is the file poetry.txt, these are poetry.txt.a0,
poetry.txt.a1, poetry.txt.b0, and poetry.txt.b1. These files are used during the
repeated mergings. On line 16, in is split into the two files in files[0]—that is, those with
'a' in their final extension. The bulk of the work—the merging—happens on lines 19–22. The
invocation of merge() on line 19 both performs one round of merging and returns a boolean
telling us whether there is more work to do. The variable i toggles back and forth between 0 and 1,
so the output of the first merging goes to files[1], the next merging overwrites files[0]
(which are no longer needed), the next merging uses files[1] again, and so on. Only four tem-
porary files are needed now no matter how many rounds of merging there are. Line 23 renames
the first temporary file to contain all of the data. Lines 24–28 delete the temporary files.

The split() method (Figure 17–32) uses the same trick with the variable i. On each pass through
the loop on lines 10–19, the method reads up to CAPACITY lines from input, storing them in a
SortableArrayList. This ArrayList is internally sorted on line 15. (In a professional implementa-
tion, we would use a faster internal sorting algorithm than insertion sort.) Since the size of the
ArrayList is no more than CAPACITY, it’s okay to sort it internally. Once sorted, the lines are
printed to one of the output files.

31  /**
32    * Sort the file args[0] and write the output to args[1].
33    */
34   public static void main(String[] args) throws IOException {
35     sort(new File(args[0]), new File(args[1]));
36   }
37
38 }

1 /**
2  * Split in into runs of maximum length CAPACITY and write them
3  * to out[0] and out[1].
4  */
5 protected static void split(File in, File[] out) 
6 throws IOException {
7   Scanner input = new Scanner(new FileInputStream(in));
8   PrintWriter[] output = {new PrintWriter(out[0]),
9                           new PrintWriter(out[1])};

10   int i = 0;
11   while (input.hasNext()) {
12 SortableArrayList<String> run = new SortableArrayList<String>();
13     for (int j = 0; (input.hasNext()) && (j < CAPACITY); j++) {
14       run.add(input.nextLine());
15     }

Figure 17–32: Splitting a file into two files of sorted runs. (Part 1 of 2)

Figure 17–31: Top-level methods in the ExternalSort class. (Part 2 of 2)
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The merge() method (Figure 17–33) is similar to the one from the internal merge sort algo-
rithm (Section 9.3), but it uses the ExternalSortRun class. This class encapsulates certain details,
including the situation in which the last run in a file contains less than runLength lines.

16  run.insertionSort();
17     for (String s : run) {
18       output[i].println(s);
19     }
20     i = 1 - i;
21   }
22   output[0].close();
23   output[1].close();
24 }

1 /**
2  * Merge runs, of maximum length runLength, in the files in[0] and
3  * in[1], into runs twice this length in out[0] and out[1].
4  * Return true if both output files are needed.
5  */
6 protected static boolean merge(File[] in, File[] out, int runLength)
7   throws IOException {
8   boolean bothOutputsUsed = false;
9   Scanner[] input = {new Scanner(new FileInputStream(in[0])),

10                      new Scanner(new FileInputStream(in[1]))};
11   PrintWriter[] output = {new PrintWriter(out[0]),
12                           new PrintWriter(out[1])};
13   int i = 0;
14   while (input[0].hasNext() || input[1].hasNext()) {
15     ExternalSortRun[] runs
16       = {new ExternalSortRun(input[0], runLength),
17          new ExternalSortRun(input[1], runLength)};
18     if (i == 1) {
19       bothOutputsUsed = true;
20     }
21     while ((runs[0].hasNext()) || (runs[1].hasNext())) {
22       if ((!runs[1].hasNext())
23           || ((runs[0].hasNext())
24               && (runs[0].peek().compareTo(runs[1].peek()) < 0))) {
25         output[i].println(runs[0].next());
26       } else {
27         output[i].println(runs[1].next());
28 }

Figure 17–33: The core of the merge() method is very similar to the one from the
internal merge sort algorithm discussed in Section 9.3. (Part 1 of 2)

Figure 17–32: Splitting a file into two files of sorted runs. (Part 2 of 2)
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There is no external sorting algorithm built into Java, but the UNIX utility sort provides similar
functionality.

Exercises

17.9 If there is enough memory, will increasing the length of each run in the initial split
make the external sorting algorithm run more quickly? Explain.

17.10 Modify the ExternalSort program so that the sorted data are printed to System.out
rather than stored in a file if no second command-line argument is given.

17.4 B-Trees

It is sometimes necessary to store a set of data so large that it cannot fit in memory. This section
introduces B-trees (B for balanced), which are commonly used in database programs. A B-tree
is similar to a red-black tree (Section 14.4), but it goes to great lengths to minimize the number
of disk accesses needed to find, insert, or delete an element.

A typical B-tree is shown in Figure 17–34.

A B-tree is defined as follows:

• A node can hold more than one element. There are upper and lower limits on the num-
ber of elements, to be explained shortly.

29  }
30     i = 1 - i;
31   }
32   output[0].close();
33   output[1].close();
34   return bothOutputsUsed;
35 }

Figure 17–34: A B-tree.

Figure 17–33: The core of the merge() method is very similar to the one from the
internal merge sort algorithm discussed in Section 9.3. (Part 2 of 2)
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• The number of children that an internal node has is always one more than the number
of elements it has.

• The children are interlaced with the elements. All of the elements in the subtree rooted
at a child are greater than the element to the left of that child and less than the element
to the right.

• All of the leaves are on the same level. This ensures that the tree is balanced.

The limit on node sizes depends on a constant m. In Figure 17–34, m is 2. No internal node has
more than 2m children. No internal node (except possibly the root) has fewer than m children.
The number of elements in a node (other than the root) is between m – 1 and 2m – 1. We define
the size of a node to be one more than the number of elements it has. For an internal node, the
size is the number of children. A node of size m is called minimal. A node of size 2m is called
full.

We use m = 2 in our diagrams so that they’ll fit on the page. In practice, m is much larger, per-
haps 200. This is because it is not much more expensive to read (or write) a bunch of data than a
single element. We’d like a node to be as large as possible, but still small enough that we can
read it in one disk access.

Having large nodes also makes the tree extremely shallow. This reduces the number of nodes
examined in a search, which in turn reduces the number of disk accesses. The number of ele-
ments on each level increases exponentially with depth (Figure 17–35). If m = 200, then level 2
alone could contain nearly 64 million elements—and we can find any of them in only three disk
accesses! This fabulous performance justifies the complicated coding required for B-trees.

Each of the Set operations (search, insertion, and deletion) is accomplished in one downward
pass through the tree. In the worst case, therefore, each operation makes a number of disk
accesses proportional to the height of the tree. The height of a B-tree is proportional to logm n.
When m is large, the tree is very short.

Level Minimum # of elements Maximum # of elements

0 1 2m – 1

1 2(m – 1) 2m(2m – 1)

2 2m(m – 1) 4m2(2m – 1)

d 2md–1(m – 1) (2m)d(2m – 1)

Figure 17–35: The number of elements on each level increases exponentially with
depth.
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Search
Searching a B-tree is much like searching a binary search tree. We first examine the root to see if
the element in question is there; if not, we descend to the appropriate child. This continues until
either we find the target or we try to descend from a leaf (in which case we give up).

Insertion
As with a red-black tree, we have to do some acrobatics when inserting an element into a B-tree
to make sure we still have a B-tree when we’re done. Specifically, every node has to have an
acceptable number of elements, and all of the leaves have to be at the same level.

In the simplest case, the tree consists of a single nonfull node. We just insert the new element in
the right place (Figure 17–36).

In general, the root is not a leaf, so we have to descend to another node (Figure 17–37).

What if we now want to insert 5? It belongs in the right leaf, but there’s no room. In this case, we
first split the leaf into two nodes, moving the middle element up into the parent (Figure 17–38).
A full node has exactly enough elements to remove one and leave enough elements to make two
minimal nodes.

Figure 17–36: When a B-tree consists of a single nonfull node (left), a new element
can be inserted directly into this node.

Figure 17–37: Inserting 6 in a B-tree. The target is not present in the root, we have to
descend to a leaf.

Figure 17–38: Inserting 5 into a B-tree. The right leaf is full, so we have to split it
(middle) before we can insert the target.
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Notice that the parent node gains an element as a result of the splitting. To make sure that this
does not cause a further overflow, we always split a full node before descending into it to insert.
If the root splits, the tree becomes taller. Binary search trees, in contrast, become taller by adding
new leaves.

Deletion

Removing an element from a leaf is trivial (Figure 17–39).

What if the leaf is minimal? This isn’t a problem, because we always make sure a node is non-
minimal before descending into it to delete. The root is an exception, because it is allowed to
have fewer elements than other nodes.

Splicing an element out of an internal node is not so simple. Our first approach is similar to the
deletion algorithm for binary search trees: we remove either the inorder successor or the inorder
predecessor of the target and copy it into the target’s old location (Figure 17–40).

Sometimes it is not possible to remove a predecessor or successor, because they are both in min-
imal nodes. In this case, we have to merge the two children (Figure 17–41). Merging is like
splitting in reverse.

Figure 17–39: Deleting 2 from a leaf.

Figure 17–40: Deleting 3 from a B-tree. The target is present in an internal node, so
we replace it with (in this case) its inorder predecessor.

Figure 17–41: Deleting 2 from a B-tree.  It cannot be replaced by a predecessor or
successor, so its children are merged.
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When two siblings are merged, their parent loses an element. The elements from the two mini-
mal siblings, plus one element from their parent, just barely fit into a full node. If (as in
Figure 17–41) the root loses its last element, the tree becomes shorter.

There are still more cases to handle. If the target is not present in the current node, we have to
descend to a child. If that child is minimal, we have to make it larger before descending. If the
child has a nonminimal sibling, we can enlarge the child with a rotation (Figure 17–42), which is
similar to the rotations used in red-black trees (Section 14.4).

If the child has no nonminimal siblings, we can’t rotate in another element. In this case, we
merge the child with one of its siblings.

Implementation

We now provide a working implementation of B-trees storing ints. This code demonstrates the
key ideas and complexities of B-trees. A professional implementation would store more general
objects, such as employee records.

We begin with the BTreeNode class. Each node has elements and (unless it is a leaf) children. In
any other data structure, we would have references to child objects. We don’t want to do that
here, because we want each BTreeNode stored in a separate file. We keep an id number for each
node. The node with id 37, for example, is stored in the file b37.node. Each node knows its
own id and the ids of its children.

In our representation, each BTreeNode contains an int id and two ArrayList<Integer>s,
data and children (Figure 17–43). In a leaf, children is null.

Before we get to the code for the BTreeNode class, we have to address the question of how we
will generate these id numbers. It seems clear that we want a counter that keeps track of the next
available id. Whenever we get a new id, we increment the counter. If this counter is a variable in
a method, we’ll get the same id every time we run the method, which is no good. A nonstatic
field isn’t much better, because each instance will generate its own sequence of ids. A static field
almost does the trick, but it will start from scratch every time we start the program, causing us to
overwrite files we saved previously.

Figure 17–42: Deleting 4 from a B-tree.  The node containing the target is minimal,
so we can’t descend into it (left).  We make it larger by performing a right rotation,
moving 2 up into the parent and 3 down into the right child (middle).  Now we can
descend into the node and delete 4 (right).
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The only way we can make this work is to save the counter in a file. This way, when the program
starts, it can read the value of the counter from the file and pick up where we left off. The class
IdGenerator (Figure 17–44) uses a tiny file id to store this single int. The constant BTree.DIR
specifies the directory where all of the files will live.

Figure 17–43: A B-tree node (top) is represented by an instance of the BTreeNode
class (bottom). This node has size 3. Note the indices of the arrays.

1 import java.io.*;
2
3 /** Generates unique id numbers, even across multiple sessions. */
4 public class IdGenerator {
5
6  /** File in which the next available id is stored. */
7   public static final File FILE = new File(BTree.DIR + "id");
8
9   /** Return the next available id number. */

10   public static int nextId() {
11     try {
12       int result;
13       if (FILE.exists()) {
14         ObjectInputStream in
15           = new ObjectInputStream(new FileInputStream(FILE));
16         result = in.readInt();
17       } else {
18         result = 0;
19       }
20       ObjectOutputStream out
21         = new ObjectOutputStream(new FileOutputStream(FILE));

Figure 17–44: Every time we invoke IdGenerator.nextId(), we get a new id number,
even if we have restarted our program since the last time we invoked it. (Part 1 of 2)
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Now we can get started on the BTreeNode class (Figure 17–45).  Since we’ll be writing
BTreeNodes to disk, the class implements Serializable.  The constant HALF_MAX is the number
m mentioned previously.  There is no field for size;  the size of a node is computed by invoking
size() on data and adding one (line 32).

22  out.writeInt(result + 1);
23       out.close();
24       return result;
25     } catch (IOException e) {
26       e.printStackTrace();
27       System.exit(1);
28       return 0;
29     }
30   }
31
32 }

1 import java.io.*;
2
3 /** Node in a BTree. */
4 public class BTreeNode implements Serializable {
5
6   /** Minimum number of children.  Max is twice this. */
7   public static final int HALF_MAX = 2;
8
9   /** Items stored in this node. */

10   private java.util.ArrayList<Integer> data;
11
12   /** Ids of children of this node. */
13   private java.util.ArrayList<Integer> children;
14
15   /** Number identifying this node. */
16   private int id;
17
18   /**
19    * The new node has no data or children yet.  The argument
20    * leaf specifies whether it is a leaf.
21    */
22   public BTreeNode(boolean leaf) {
23     this.id = IdGenerator.nextId();
24     data = new java.util.ArrayList<Integer>((HALF_MAX * 2) - 1);

Figure 17–45: Beginning of the BTreeNode class.  We use the version of ArrayList
from java.util because we need its constructor accepting a capacity (lines 24 and 26)
and one of its add() methods (used later in this section). (Part 1 of 2)

Figure 17–44: Every time we invoke IdGenerator.nextId(), we get a new id number,
even if we have restarted our program since the last time we invoked it. (Part 2 of 2)
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The methods for reading and writing BTreeNodes to disk are given in Figure 17–46. Because
they involve the disk, these methods (and any others that invoke them) are extremely expensive.
If any exception occurs, we catch it and crash, because it’s almost certainly an IOException
about which we can’t do anything.

25  if (!leaf) {
26       children = new java.util.ArrayList<Integer>(HALF_MAX * 2);
27     }
28   }
29
30   /** Return one plus the number of items in this node. */
31   public int size() {
32     return data.size() + 1;
33   }
34
35 }

1 /** Delete the file containing this node from the disk. */
2 public void deleteFromDisk() {
3   try {
4     File file = new File(BTree.DIR + "b" + id + ".node");
5     file.delete();
6   } catch (Exception e) {
7     e.printStackTrace();
8     System.exit(1);
9   }

10 }
11
12 /** Read from disk and return the node with the specified id. */
13 public static BTreeNode readFromDisk(int id) {
14   try {
15     ObjectInputStream in
16       = new ObjectInputStream
17       (new FileInputStream(BTree.DIR + "b" + id + ".node"));
18     return (BTreeNode)(in.readObject());
19   } catch (Exception e) {
20     e.printStackTrace();
21     System.exit(1);
22     return null;
23   }
24 }
25

Figure 17–46: BTreeNode methods for disk access. (Part 1 of 2)

Figure 17–45: Beginning of the BTreeNode class.  We use the version of ArrayList
from java.util because we need its constructor accepting a capacity (lines 24 and 26)
and one of its add() methods (used later in this section). (Part 2 of 2)
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Some additional convenience methods are given in Figure 17–47.

26 /** Write this node to disk. */
27 public void writeToDisk() {
28   try {
29     ObjectOutputStream out
30       = new ObjectOutputStream
31       (new FileOutputStream(BTree.DIR + "b" + id + ".node"));
32     out.writeObject(this);
33     out.close();
34   } catch (Exception e) {
35     e.printStackTrace();
36     System.exit(1);
37   }
38 }

1 /**
2  * Read the ith child of this node from the disk and return it.
3  * If this node is a leaf, return null.
4  */
5 public BTreeNode getChild(int index) {
6   if (isLeaf()) {
7     return null;
8   } else {
9     return readFromDisk(children.get(index));

10   }
11 }
12
13 /** Return the id of this node. */
14 public int getId() {
15   return id;
16 }
17
18 /** Return true if this node is full. */
19 public boolean isFull() {
20   return size() == HALF_MAX * 2;
21 }
22
23 /** Return true if this node is minimal. */
24 public boolean isMinimal() {
25   return size() == HALF_MAX;
26 }
27

Figure 17–47: More methods from the BTreeNode class. (Part 1 of 2)

Figure 17–46: BTreeNode methods for disk access. (Part 2 of 2)
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We will need more methods in BTreeNode, but let’s look at the BTree class (Figure 17–48). A
BTree has only one field: the id of the root node. The BTree object is stored in the file btree.
Our implementation supports only a single B-tree at any one time, although it could be easily
modified to store each tree in a different directory.

28 /** Make this node a leaf if value is true, not a leaf otherwise. */
29 public void setLeaf(boolean value) {
30   if (value) {
31     children = null;
32   } else {
33     children = new java.util.ArrayList<Integer>(HALF_MAX * 2);
34   }
35 }

1 import java.io.*;
2
3 /** BTree storing many ints on disk. */
4 public class BTree implements Serializable {
5
6   /** Directory where files are stored. */
7   public static final String DIR
8     = BTree.class.getProtectionDomain().getCodeSource()
9     .getLocation().getFile() + File.separator;

10
11   /** Id number of the root node. */
12   private int rootId;
13
14   /** A new BTree is initially empty. */
15   public BTree() {
16     BTreeNode root = new BTreeNode(true);
17     rootId = root.getId();
18     root.writeToDisk();
19     writeToDisk();
20   }
21
22   /** Read a previously saved BTree from disk. */
23   public static BTree readFromDisk() {
24     try {
25       ObjectInputStream in
26         = new ObjectInputStream
27         (new FileInputStream(DIR + "btree"));

Figure 17–48: Easy parts of the BTree class. (Part 1 of 2)

Figure 17–47: More methods from the BTreeNode class. (Part 2 of 2)
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There are two parts to searching. We have to be able to find an element within a node, and we
have to be able to find an element within an entire tree.

To search for an element within a node, we use the indexOf() method from the BTreeNode
class (Figure 17–49). If target is present in the node, indexOf() returns its index in the
node’s data ArrayList. If not, indexOf() returns a noninteger indicating which subtree to
search next. For example, if target belongs in subtree 1, indexOf() returns 1.5.

28  return (BTree)(in.readObject());
29     } catch (Exception e) {
30       e.printStackTrace();
31       System.exit(1);
32       return null;
33     }
34   }
35
36   /** Write this BTree to disk. */
37   public void writeToDisk() {
38     try {
39       ObjectOutputStream out
40         = new ObjectOutputStream
41         (new FileOutputStream(DIR + "btree"));
42       out.writeObject(this);
43       out.close();
44     } catch (Exception e) {
45       e.printStackTrace();
46       System.exit(1);
47     }
48   }
49
50 }

1 /**
2  * Return the index of target in this node if present.  Otherwise,
3  * return the index of the child that would contain target,
4  * plus 0.5.
5  */
6 public double indexOf(int target) {
7   for (int i = 0; i < data.size(); i++) {
8     if (data.get(i) == target) {
9       return i;

10     }

Figure 17–49: The indexOf() method from the BTreeNode class returns a double.
(Part 1 of 2)

Figure 17–48: Easy parts of the BTree class. (Part 2 of 2)
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To search the entire tree, we use the contains() method in the BTree class (Figure 17–50),
which invokes indexOf(). On line 6, the result d is converted to an int i. If d is an integer, i is the
index of target in data. Otherwise, i is the index of the child to which we want to descend.

For insertion, we begin with the add() method from the BTree class (Figure 17–51).

11 if (data.get(i) > target) {
12 return i + 0.5;
13 }
14   }
15   return size() - 0.5;
16 }

1 /** Return true if this BTree contains target. */
2 public boolean contains(int target) {
3   BTreeNode node = BTreeNode.readFromDisk(rootId);
4   while (node != null) {
5     double d = node.indexOf(target);
6     int i = (int)d;
7     if (i == d) {
8       return true;
9     } else {

10       node = node.getChild(i);
11     }
12   }
13   return false;
14 }

Figure 17–50: The contains() method from the BTree class.

1 /** Add target to this BTree and write modified nodes to disk. */
2 public void add(int target) {
3   BTreeNode root = BTreeNode.readFromDisk(rootId);
4   if (root.isFull()) {
5     BTreeNode parent = new BTreeNode(root);
6     rootId = parent.getId();
7     writeToDisk();
8     parent.add(target);
9   } else {

10     root.add(target);
11   }
12 }

Figure 17–51: The add() method from the BTree class.

Figure 17–49: The indexOf() method from the BTreeNode class returns a double.
(Part 2 of 2)
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If the root is full, add() invokes a second constructor for BTreeNode, which splits the root and
returns the new parent (Figure 17–52). Recall that the statement this(false), on line 6, invokes
the constructor from Figure 17–45.

We now look at our first complicated method, add() from BTreeNode (Figure 17–53). This
method descends to the proper node and adds target locally to that node. On lines 34 and 36,
addToLocally() invokes a version of the add() method from the java.util.ArrayList class that
inserts an element at a particular location, shifting all subsequent elements to the right.

1 /**
2  * Create a new node that has two children, each containing
3  * half of the items from child.  Write the children to disk.
4  */
5 public BTreeNode(BTreeNode child) {
6   this(false);
7   children.add(child.getId());
8   splitChild(0, child);
9 }

Figure 17–52: A second constructor for the BTreeNode class.

1 /**
2  * Add target to the subtree rooted at this node.  Write nodes
3  * to disk as necessary.
4  */
5 public void add(int target) {
6   BTreeNode node = this;
7   while (!(node.isLeaf())) {
8     double d = node.indexOf(target);
9     int i = (int)d

10     if (i == d) {
11       return;
12     } else {
13       BTreeNode child = node.getChild(i);
14       if (child.isFull()) {
15         node.splitChild(i, child);
16       } else {
17         node.writeToDisk();
18         node = child;
19       }
20     }
21   }
22   node.addLocally(target);
23   node.writeToDisk();
24 }
25

Figure 17–53: The add() and addLocally() methods from BTreeNode. (Part 1 of 2)
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Splitting a child is handled by the splitChild() method (Figure 17–54). On line 7, this
method removes the middle element from child (shifting all subsequent elements to the left)
and adds it to the parent.

26 /**
27  * Add target to this node, which is assumed not to be full. 
28  * Make room for an extra child to the right of target.
29  */
30 protected void addLocally(int target) {
31   double d = indexOf(target);
32   int i = (int)d; // Because d might be negative
33   if (i != d) {
34     data.add(i, target);
35     if (!isLeaf()) {
36       children.add(i + 1, 0);
37     }
38   }
39 }

1 /**
2  * Split child, which is the full ith child of this node, into
3  * two minimal nodes, moving the middle item up into this node.
4  */
5 protected void splitChild(int i, BTreeNode child) {
6  BTreeNode sibling = child.createRightSibling();
7   addLocally(child.data.remove(HALF_MAX - 1));
8   child.writeToDisk();
9   children.set(i + 1, sibling.getId());

10 }
11
12 /**
13  * Create and return a new node which will be a right sibling
14  * of this one.  Half of the items and children in this node are
15  * copied to the new one.
16  */
17 protected BTreeNode createRightSibling() {
18   BTreeNode sibling = new BTreeNode(isLeaf());
19   for (int i = HALF_MAX; i < (HALF_MAX * 2) - 1; i++) {
20     sibling.data.add(data.remove(HALF_MAX));
21   }

Figure 17–54: The splitChild() and createRightSibling() methods from
BTreeNode.  (Part 1 of 2)

Figure 17–53: The add() and addLocally() methods from BTreeNode. (Part 2 of 2)
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The two loops on lines 19–21 and 23-25 of createRightSibling() are not as efficient as
they could be.  Since each invocation of remove() on an ArrayList takes linear time, the total
time for each of these lists is quadratic.  This is not too big a problem, because it is quadratic in
the size of a node (which is limited to 2 * HALF_MAX) rather than the number of elements in the
B-tree.  More importantly, this work is all being done in memory, so it is dwarfed by the cost of
a disk access.  A professional implementation would probably improve the efficiency of this
method at the expense of code clarity.

Finally, we turn to the really nasty part:  deletion.  The remove() method from BTree (Figure 17–55)
seems innocent enough.

This invokes the remove() method from BTreeNode (Figure 17–56). There are three possibilities
here: this is a leaf (lines 8–12), target is present but this is not a leaf (lines 13–14), or tar-
get belongs in a subtree (lines 15–16). The first case is trivial; we just have to remove target
from data. The other two cases are somewhat hairier, so they are delegated to other methods.

We have to make sure every node is nonminimal before we descend into it. This is accomplished
with rotation and merging. These operations are complicated, because there are so many special
cases. To find a sibling from which we can rotate an element, we have to examine the left and
right siblings; if they are both minimal, we have to merge. Worse yet, the leftmost child has no

22 if (!isLeaf()) {
23     for (int i = HALF_MAX; i < HALF_MAX * 2; i++) {
24 sibling.children.add(children.remove(HALF_MAX));
25     }
26   }
27   sibling.writeToDisk();
28   return sibling;
29 }

1 /** Remove target from this BTree. */
2 public void remove(int target) {
3   BTreeNode root = BTreeNode.readFromDisk(rootId);
4   root.remove(target);
5   if ((root.size() == 1) && (!(root.isLeaf()))) {
6     BTreeNode child = root.getChild(0);
7     root.deleteFromDisk();
8     rootId = child.getId();
9     writeToDisk();

10   }
11 }

Figure 17–55: The remove() method from BTree.

Figure 17–54: The splitChild() and createRightSibling() methods from
BTreeNode.  (Part 2 of 2)
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left sibling and the rightmost child has no right sibling, so we need special code to avoid Array-
IndexOutOfBoundsExceptions in these cases.

We first address removeFromInternalNode() (Figure 17–57). As in a binary search tree, our
plan is to replace target with its inorder predecessor or successor. We’d like to take something
from a subtree with a nonminimal root, which might be to the left or to the right of target. If
both of the children next to target are minimal, we have to merge them.

1 /**
2  * Remove target from the subtree rooted at this node.
3  * Write any modified nodes to disk.
4  */
5 public void remove(int target) {
6  double d = indexOf(target);
7   int i = (int)d
8 if (isLeaf()) {
9     if (i == d) {

10       data.remove(i);
11       writeToDisk();
12     }
13   } else if (i == d) {
14     removeFromInternalNode(i, target);
15   } else {
16     removeFromChild(i, target);
17   }
18 }

Figure 17–56: The remove() method from BTreeNode.

1 /**
2  * Remove the ith item (target) from this node.
3  * Write any modified nodes to disk.
4  */
5 protected void removeFromInternalNode(int i, int target) {
6   BTreeNode child = getChild(i);
7   BTreeNode sibling = getChild(i + 1);
8   if (!(child.isMinimal())) {
9     data.set(i, child.removeRightmost());

10     writeToDisk();
11   } else if (!(sibling.isMinimal())) {
12     data.set(i, sibling.removeLeftmost());
13     writeToDisk();
14   } else {
15     mergeChildren(i, child, sibling);
16     writeToDisk();

Figure 17–57: The removeFromInternalNode() and mergeChildren() methods from
BTreeNode. (Part 1 of 2)
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Removing the leftmost element in a subtree sounds easy enough, so the length of the method
(Figure 17–58) may be surprising. The problem is that we might encounter a minimal node on
the way down. If so, we make it larger by rotating in an element from its sibling (line 14) or, if
the sibling is also minimal, merging it with its sibling (line 12).

17  child.remove(target);
18   }
19 }
20
21 /**
22  * Merge this node’s ith and (i+1)th children (child and sibling,
23  * both minimal), moving the ith item down from this node.
24  * Delete sibling from disk.
25  */
26 protected void mergeChildren(int i, BTreeNode child, 
27 BTreeNode sibling) {
28   child.data.add(data.remove(i));
29   children.remove(i + 1);
30   if (!(child.isLeaf())) {
31     child.children.add(sibling.children.remove(0));
32   }
33   for (int j = 0; j < HALF_MAX - 1; j++) {
34     child.data.add(sibling.data.remove(0));
35     if (!(child.isLeaf())) {
36       child.children.add(sibling.children.remove(0));
37     }
38   }
39   sibling.deleteFromDisk();
40 }

1 /**
2  * Remove and return the leftmost element in the leftmost descendant
3  * of this node.  Write any modified nodes to disk.
4  */
5 protected int removeLeftmost() {
6   BTreeNode node = this;
7   while (!(node.isLeaf())) {
8     BTreeNode child = node.getChild(0);
9     if (child.isMinimal()) {

10  BTreeNode sibling = node.getChild(1);
11       if (sibling.isMinimal()) {

Figure 17–58: The removeLeftmost() and rotateLeft() methods from BTreeNode.
(Part 1 of 2)

Figure 17–57: The removeFromInternalNode() and mergeChildren() methods from
BTreeNode. (Part 2 of 2)
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Removing the rightmost element involves the same issues (Figure 17–59).

12         node.mergeChildren(0, child, sibling);
13       } else {
14         node.rotateLeft(0, child, sibling);
15       }
16     }
17     node.writeToDisk();
18     return child.removeLeftmost();
19   }
20   int result = node.data.remove(0);
21   node.writeToDisk();
22   return result;
23 }
24
25 /**
26  * Child is the ith child of this node, sibling the (i+1)th.
27  * Move one item from sibling up into this node, one from this
28  * node down into child.  Pass one child from sibling to node.
29  * Write sibling to disk.
30  */
31 protected void rotateLeft(int i, BTreeNode child, 
32 BTreeNode sibling) {
33   child.data.add(data.get(i));
34   if (!(child.isLeaf())) {
35     child.children.add(sibling.children.remove(0));
36   }
37   data.set(i, sibling.data.remove(0));
38   sibling.writeToDisk();
39 }

1 /**
2  * Remove and return the rightmost element in the rightmost 
3  * descendant of this node.  Write any modified nodes to disk.
4  */
5 protected int removeRightmost() {
6   BTreeNode node = this;
7   while (!(node.isLeaf())) {
8     BTreeNode child = node.getChild(size() - 1);
9 if (child.isMinimal()) {

10       BTreeNode sibling = node.getChild(size() - 2);

Figure 17–59: The removeRightmost() and rotateRight() methods from
BTreeNode. (Part 1 of 2)

Figure 17–58: The removeLeftmost() and rotateLeft() methods from BTreeNode.
(Part 2 of 2)
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Good news: now that we’ve laid all the groundwork for rotation and merging, only the remove-
FromChild() method (Figure 17–60) remains. This one is so long because we have to handle
the special cases where target belongs in the first child, the last child, or one in between. In
any case, we might be able to rotate an element in from a sibling, or we might have to merge.

It goes without saying that B-trees are difficult to implement and debug. Their ability to find any
element in a database of billions with a handful of disk accesses justifies this effort.

11       if (sibling.isMinimal()) {
12         node.mergeChildren(size() - 2, sibling, child);
13         child = sibling;
14       } else {
15         node.rotateRight(size() - 2, sibling, child);
16       }
17     }
18     node.writeToDisk();
19     return child.removeRightmost();
20   }
21   int result = node.data.remove(size() - 2);
22   node.writeToDisk();
23   return result;
24 }
25
26 /**
27  * Sibling is the ith child of this node, child the (i+1)th.
28  * Move one item from sibling up into this node, one from this
29  * node down into child.  Pass one child from sibling to node.
30  * Write sibling to disk.
31  */
32 protected void rotateRight(int i, BTreeNode sibling, 
33 BTreeNode child) {
34   child.data.add(0, data.get(i));
35   if (!(child.isLeaf())) {
36     child.children.add(0, 
37 sibling.children.remove(sibling.size() - 1));
38   }
39   data.set(i, sibling.data.remove(sibling.size() - 2));
40   sibling.writeToDisk();
41 }

Figure 17–59: The removeRightmost() and rotateRight() methods from
BTreeNode. (Part 2 of 2)
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Exercises

17.11 Are the nodes of a B-tree always, sometimes, or never full when the root is split?

17.12 Explain why 1 is not a legitimate value for HALF_MAX.

17.13 Draw a UML instance diagram of an empty BTree.

17.14 Write an isEmpty() method for the BTree class.

1 /**
2  * Remove target from the subtree rooted at child i of this node.
3  * Write any modified nodes to disk.
4  */
5 protected void removeFromChild(int i, int target) {
6 BTreeNode child = getChild(i);
7   if (child.isMinimal()) {
8     if (i == 0) {             // Target in first child
9       BTreeNode sibling = getChild(1);

10       if (sibling.isMinimal()) {
11         mergeChildren(i, child, sibling);
12       } else {
13         rotateLeft(i, child, sibling);
14       }
15     } else if (i == size() - 1) { // Target in last child
16       BTreeNode sibling = getChild(i - 1);
17       if (sibling.isMinimal()) {
18         mergeChildren(i - 1, sibling, child);
19         child = sibling;
20       } else {
21         rotateRight(i - 1, sibling, child);
22       }
23     } else {                  // Target in middle child
24       BTreeNode rightSibling = getChild(i + 1);
25       BTreeNode leftSibling = getChild(i - 1);
26       if (!(rightSibling.isMinimal())) {
27         rotateLeft(i, child, rightSibling);
28       } else if (!(leftSibling.isMinimal())) {
29         rotateRight(i - 1, leftSibling, child);
30       } else {
31         mergeChildren(i, child, rightSibling);
32       }
33     }
34   }
35   writeToDisk();
36   child.remove(target);
37 }

Figure 17–60: The removeFromChild() method from BTreeNode.
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17.15 Modify indexOf() (Figure 17–49) to use binary search rather than linear search.

17.16 Write a useful toString() method for the BTree class.

Summary

Disk storage has two advantages over memory storage: it persists between program runs, and it
has greater capacity. On the other hand, accessing data on disk can take a million times as long
as accessing data in memory. When the disk is accessed, it is not much more expensive to read
many elements than to read one.

Java provides many classes for reading from and writing to disk. These include Scanner and
PrintWriter for text and ObjectInputStream and ObjectOutputStream for binary data. Most of
these classes are in the java.io package. We can write an instance of any class to disk if the class
implements the Serializable interface.

Strings (and hence files) can be compressed by defining short codes for frequently occurring
text. Huffman encoding takes advantage of the frequencies of individual characters. Lempel–Ziv
encoding creates codes for longer substrings.

Data too big to fit in memory can be sorted externally using an algorithm based on merge sort.

The B-tree data structure is useful for maintaining a set of data too large to fit in memory. Each
node in a B-tree can contain many elements. The associated algorithms ensure that the tree stays
balanced and very shallow, minimizing the number of disk accesses needed to find, insert, or
delete an element.

Vocabulary

B-tree. Data structure used to represent a very large set.

binary format. Format of files stored as data rather than text.

buffered. Of an input or output stream, waiting until it has a large chunk of data before actually
sending it.

compressed. Of a file, stored in a format that uses fewer bits. Compressing or uncompressing a
file takes time but saves space on disk or transmission time over a network.

external sorting. Sorting performed using files, for use when the data set is too large to fit in
memory.

fixed-length encoding. Any encoding, such as ASCII, in which each character is represented by
the same number of bits.

flush. Force a buffered stream to send data.

full. Of a B-tree node, having the largest allowable number of elements (one more than twice as
many as in a minimal node).
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Huffman encoding. Encoding in which more frequent characters are represented by shorter bit
sequences.

Lempel–Ziv encoding. Encoding in which each code may represent a long string of characters.

merge. Join two minimal B-tree nodes, plus an element pulled down from the parent, into a full
node.

minimal. Of a B-tree node, having the smallest allowable number of elements.

run. Sorted sequence of elements used in external sorting.

serialization. Process of storing a directed graph of objects in memory in a linear file on disk.

size. Of a B-tree node, one more than the number of elements in the node.

split. Divide a full B-tree node into two minimal nodes and one extra element, which is moved
up into the parent.

Problems

17.17 Write a program that, given a directory, lists the contents of that directory and any sub-
directories. The output should be nicely formatted, with files deeper in the directory
structure indented farther. (Hint: Look at the API for the File class.)

17.18 Modify the ExternalSort program so that it sorts files of ints (in binary format) rather
than lines of text.

17.19 There is a subtle flaw in the IdGenerator class (Figure 17–44): if we use it many times,
the counter in the file will “wrap around” to negative numbers, and then back to 0.
Eventually it will begin handing out ids that have been generated before and that might
still be in use. Modify the class to keep a set of in-use ids in the file. The nextId()
method should never return an in-use id. Modify the deleteFromDisk() method of
the BTreeNode class to inform the IdGenerator when an id number is no longer in use.

Projects

17.20 Modify the Huffman program so that it can encode and decode actual ASCII text files.
Encoding a typical large file should actually compress it. Use the text being encoded to
find the character frequency and store the Huffman tree as the first object in the com-
pressed file.

17.21 Create a class IntList which acts like an ArrayList<Integer>, but uses raw ints instead
of Integers. Modify the BTree and BTreeNode classes to use this class. How does this
affect the amount of space used on disk for each node?
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A
Review of Java

This appendix is intended as a review of basic Java. While it is not possible to stuff an entire CS1
course into one appendix, this should get the reader up to speed on material that may have been
glossed over, omitted, or forgotten since the first course. It should be enough for anyone who has
taken a first course in C/C++ to make the transition to Java. Object-oriented programming is not
addressed here—that is the subject of the first three chapters of this book.

A.1 The First Program

When a computer scientist sets out to learn a new programming language, one of the first steps is
to write a “Hello, world” program. Among other things, this ensures that the compiler and other
development tools have been installed correctly.

Before you can run this program, you will need to install a Java system such as Sun’s J2SE (Java 2,
Standard Edition) Software Development Kit, available for free at java.sun.com. The code in this
book was tested on version 1.5.0 and should work with any later version. (Confusingly, version
1.5.0 is also known as version 5.0.)  You can check your Java version with the command:

java -version

Our first program is shown in Figure A–1.
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Type it into a file called Hello.java, save it, and compile it with the command:

javac Hello.java

Finally, run the program with the command:

java Hello

Some common bugs to watch out for:

• The program must be saved in a file called Hello.java. This is case sensitive—
hello.java is not good enough.

• The command to compile is javac, but the command to run is java.

• javac needs an extension (.java) for the filename, but java does not. (In fact, java
won’t accept a filename with an extension.)

Let’s examine the program line by line. (The line numbers are only for our convenience when
discussing programs—don’t type them.)

Line 1 is a comment, as is line 4. Comments make the program more readable to humans. They
are ignored by the Java system.

Line 2 names the program Hello. The program must be saved in an appropriately named file.
The keyword public is discussed in Section 3.3. Classes are covered in Chapter 1. The curly
brace at the end of the line opens a block of code which ends at the matching brace on line 9.
The entire program must be within this block.

This program has one method (similar to a function or procedure in another language). This is
the main() method. When we run a class, we are really running the main() method. The
method occupies lines 5 through 7.

Line 5 is the signature of the method, indicating various aspects of the way the method behaves.
The signature includes the following facts:

• The method is public, meaning that any program can see it. More on this in Section 3.3.

• The method is static. All methods in this appendix are static. We will explain what this
means, and introduce nonstatic methods, in Chapter 1.

1 /** The standard "Hello, world" program. */
2 public class Hello {
3
4   /** Print a friendly greeting. */
5   public static void main(String[] args) {
6     System.out.println("Hello, world!");
7   }
8
9 }

Figure A–1: The Hello program.
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• The method does not return a value. Put another way, the return type of the method is
void. Some methods return values. Others, like this one, only print things or have other
side effects. Still other methods both have side effects and return values.

• The name of the method is main(). When we refer to method names in the text, we
will include empty parentheses behind the name to emphasize that it is a method, rather
than a variable or something else.

• The method takes one argument, which is of type String[] and named args. We ignore
this argument here, but it is necessary because the main() method always has the same
signature. Programming language theorists distinguish between a method’s parameters
(its own names for the values it receives) and its arguments (the values themselves).
We will ignore this distinction and always refer to them as arguments.

Two other things might appear in a method signature: a list of exceptions thrown (Section 4.3)
and any generic type parameters (Section 4.1).

The body of the method is line 6. This is the part that actually does something!  It invokes
another method by passing an argument to it. The method is called System.out.println().
More precisely, the method is named println(), and System.out indicates where the method
can be found. This will be explained in more detail in Section A.7.

Not surprisingly, this method prints out its argument, followed by a newline character.

Exercises

A.1 Change the message in the Hello program, recompile it, and run it again.

A.2 What error message do you get if you leave off the closing curly brace?

A.3 What error message do you get if the method is outside of the class—that is, if you
move the final curly brace from line 9 to line 3?

A.4 What error message do you get if you save the program as Howdy.java?

A.2 Variables and Types

Our program will be more interesting if it can store some information. We do this using vari-
ables, as shown in Figure A–2.

Line 3 declares a variable called name, which is of type String. We cannot use a variable until it
has been declared.

The next thing we must do with a variable is initialize it—that is, give it a value. The variable
name is initialized on line 4.
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It is legal to declare and initialize a variable on the same line. We could combine lines 3 and 4 of
Figure A–2 into the single line:

String name = "Bob";

Now that name has a value, we can use it to stand for that value. On line 5, we build a longer
String by concatenating together three Strings:  "Hello, ", the value of name, and "!".

A few special Strings are given in Figure A–3.

The most common types for variables are listed in Figure A–4. The first four types are called
primitive types, because they cannot be broken down into smaller pieces. A String, in contrast,
can be broken down into chars. There are four other primitive types:  short, long, byte, and float.
These are rarely used.

We can convert between primitive numeric types (including chars) by casting. For example, if
we want to convert the double 3.14159 into an int, the syntax is:

(int)3.14159

This conversion throws away any fractional part. In this case, the result is 3.

If we want to assign a variable of type int a value of type double, we must do this casting:

int n = (int)3.14159;

1 /** Print a friendly greeting. */
2 public static void main(String[] args) {
3   String name;
4   name = "Bob";
5   System.out.println("Hello, " + name + "!");
6 }

Figure A–2: This improved main() method for the Hello program greets the user by
name.

String Meaning

"\n" newline

"\t" tab

"\"" quotation marks

"\\" backslash

Figure A–3: Special Strings.
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When converting from a less precise to a more precise type, we don’t have to cast explicitly. For
example:

double x = 3;

Arithmetic operations automatically convert to the most precise type involved, so the result of

3 * 2.0

is of type double.

As we will see in Chapter 1, it is possible (and quite useful) to define new types. It is not possi-
ble to define new primitive types.

We can also have an array of any type. To specify an array type, add [] to the end of another
type name. For example, the argument to the main() method is an array args, which is of type
String[]. When we run a Java program, any additional command-line arguments are placed into
this array. If we run the program as

java Hello Akiko Bob Carlos

then args[0] is "Akiko", args[1] is "Bob", and args[2] is "Carlos". The length of the
array, args.length, is 3.

The scope of a variable or argument is the part of the program in which we can refer to the vari-
able or argument. Without going into too much detail, the scope of a variable or argument is gen-
erally the code between a pair of curly braces. Specifically, an argument like args or a variable
like name is visible only within the current method.

Exercises
A.5 What happens if you declare two variables or arguments with the same name in the same

scope?  Specifically, what if you declare a variable args within the main() method?

A.6 What error message do you get if you declare a variable of type int and initialize it to
10,000,000,000?

A.7 What happens if you print args?

Type Range Example

boolean true or false true

char Unicode characters 'a'

double roughly ± 1.8 × 10308 3.14159

int roughly ± 2 billion 23

String sequences of characters "Hello"

Figure A–4: Commonly used types. Unicode is a character-encoding scheme
similar to ASCII, but it encompasses characters from many languages.
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A.3 Loops

Loops allow us to write a program which does something many times in a row with only a few
lines of code. There are three ways to write loops in Java. We can always use any one of them,
but there are circumstances in which one is clearer than another.

The first loop is the while loop (Figure A–5). This consists of the keyword while, a test (bool-
ean expression) in parentheses, and then a body in curly braces. Java first evaluates the test
expression. If it evaluates to true, the body of the loop is then executed. The test is then evaluated
again, and so on.

Very similar to the while loop is the do loop (Figure A–6). This is almost the same, except that
the body of the loop is executed once before the test is evaluated. For this program, the do loop
actually introduces a subtle bug, which we will fix in Section A.5.

Finally, there is the for loop (Figure A–7). While a bit cryptic, it allows for a very concise state-
ment of the loop. It consists of the keyword for, a loop header in parentheses, and then a body
in curly braces. The loop header has three parts, separated by semicolons:  an initialization state-
ment, a test, and an update. Java first evaluates the initialization statement and then the test. If

1 /** Print a friendly greeting. */
2 public static void main(String[] args) {
3   int index = 0;
4   while (index < args.length) {
5     System.out.println("Hello, " + args[index] + "!");
6     index = index + 1;
7   }
8 }

Figure A–5: Saying hello to each person named on the command line using a while
loop.

1 /** Print a friendly greeting. */
2 public static void main(String[] args) {
3   int index = 0;
4   do {
5     System.out.println("Hello, " + args[index] + "!");
6     index = index + 1;
7   } while (index < args.length);
8 }

Figure A–6: This do loop is not exactly equivalent to the while loop in Figure A–5. It
guarantees that the body of the loop is executed at least once.
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the test is false, the loop ends. Otherwise, the body and the update are both executed, the test is
evaluated again, and so on.

For loops like this are extremely common. Programmers typically take advantage of a few
shortcuts to make the loop even more concise:

• The loop variable can be declared as part of the initialization statement. If this is done,
the variable disappears as soon as the loop ends.

• If the loop variable is an index into an array, it is almost invariably named i.

• The loop variable can be incremented with the shorter statement i++.

The resulting method (Figure A–8) behaves exactly like the previous version.

Java 1.5 introduces an enhanced for loop which allows us to loop through the elements of an
array in an even more concise manner. In Figure A–9, line 3 can be read, “For each String name
in args....”  On the first pass through the loop, name is short for args[0]. On the next pass,
name is short for args[1], and so on.

The enhanced for loop can also be used on iterable data structures (Section 5.4).

1 /** Print a friendly greeting. */
2 public static void main(String[] args) {
3   int index;
4   for (index = 0; index < args.length; index = index + 1) {
5     System.out.println("Hello, " + args[index] + "!");
6   }
7 }

Figure A–7: This for loop is exactly equivalent to the while loop in Figure A–5.

1 /** Print a friendly greeting. */
2 public static void main(String[] args) {
3   for (int i = 0; i < args.length; i++) {
4     System.out.println("Hello, " + args[i] + "!");
5   }
6 }

Figure A–8: Cosmetic changes produce a more typical-looking for loop.

1 /** Print a friendly greeting. */
2 public static void main(String[] args) {
3   for (String name : args) {
4     System.out.println("Hello, " + name + "!");
5   }
6 }

Figure A–9: The enhanced for loop in Java 1.5 makes looping through an array
even easier.
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Exercises

A.8 What is the scope of index in Figure A–7?  What is the scope of i in Figure A–8?
(Hint:  Try printing the variable after the loop ends.)

A.9 Using each kind of loop, print the numbers 1 through 10.

A.10 Using two nested for loops, print a multiplication table for the numbers 1 through 10.

A.4 Interacting with the User

Accepting arguments from the command line is helpful, but our programs would be very limited
if we had no other way to interact with the user. We also need to be able to print text to the screen
and read input from the keyboard.

Printing text is accomplished with the System.out.println() method, as used previously.
There is a related method System.out.print(), which does not move on to the next line.

Before Java 1.5, reading from the keyboard was fantastically awkward. The introduction of the
new Scanner class makes it reasonable. Before reading from the keyboard, a program must cre-
ate a Scanner with the following incantation:

java.util.Scanner input = new java.util.Scanner(System.in);

This may seem somewhat cryptic at this point, but we have seen this kind of statement already.
This is a declaration and initialization of a variable input. The type of the variable is
java.util.Scanner, which will make more sense after we discuss packages (Section 3.3). The part
to the right of the equals sign gives input its initial value. Specifically, it is the invocation of a
constructor (Section 1.2). It doesn’t matter that we don’t understand these things just yet.

Now that we have input, we can read from the keyboard. If we store the next line typed by the
user in a variable answer, we do this:

String answer = input.nextLine();

We can also ask for input.nextInt() to get an int from the user, input.nextDouble() to
get the next double, and so on. A technical detail is that these methods only “use up” the number
in question, not the entire line of input. If we want to go on to ask the user for non-numeric
input, we should invoke nextLine() to clear out the rest of the line. In a program that only asks
for numbers, this can be ignored. We will do more elaborate things with the Scanner class over
the course of the book.

Exercises

A.11 Modify the Hello program in Figure A–2 so that it asks the user for her name and then
greets her by name.
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A.5 Branching

We often want our programs to make decisions based on the value of some variable. Java has
two statements for this:  if and switch.

The if statement allows us to execute a body only if some test evaluates to true. In Figure A–6,
we wrote a do loop which was not exactly equivalent to the while and for loop examples from
the same section. The difference is that, if args.length happens to be exactly zero (that is, no
command-line arguments are provided), the do loop executes its body once anyway. This causes
the program to crash, because line 5 tries to refer to args[0], and there is no such element. We
can fix this with an if statement (Figure A–10).

Optionally, an if statement can end with the keyword else followed by another body. This
body is executed if the test evaluates to false. We can deal with several different possibilities
with a statement of this form:

if (...) {
  ...
} else if (...) {
  ...
} else if (...) {
  ...
} else {
  ...
}

This is illustrated in the Guess program (Figure A–11). The if statement beginning on line 15
first tests whether the variable comparison is the char '<'. If so, the program adjusts the
range of numbers it will consider for its next guess. 

1 /** Print a friendly greeting. */
2 public static void main(String[] args) {
3   if (args.length > 0) {
4     int index = 0;
5     do {
6       System.out.println("Hello, " + args[index] + "!");
7       index = index + 1;
8     } while (index < args.length);
9   }

10 }

Figure A–10: With an added if, the do loop becomes exactly equivalent to the
while and for loops.
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Otherwise, the program tests whether comparison is '='. If so, the program declares victory.
Otherwise, it assumes that comparision must be '>'. 

An equivalent way to write this program is using a switch statement (Figure A–12). This
checks for various possible values of one variable. The code from the first matching case up to
the next break statement (or the end of the switch statement) is executed.

1 /** Game where the computer guesses a number. */
2 public class Guess {
3
4   /** Play the game. */
5   public static void main(String[] args) {
6     java.util.Scanner input = new java.util.Scanner(System.in);
7     System.out.println("Think of an integer between 1 and 100.");
8     int min = 1;
9     int max = 100;

10     char comparison;
11     do {
12       int guess = min;
13       System.out.print("Is it <, =, or > than " + guess + "? ");
14       comparison = input.nextLine().charAt(0);
15       if (comparison == '<') {
16         max = guess - 1;
17       } else if (comparison == '=') {
18         System.out.println("I win!");
19       } else {
20         min = guess + 1;
21       }
22     } while (comparison != '=');
23   }
24
25 }
26

Figure A–11: A first draft of the Guess program. A do loop is appropriate here,
because the program always has to make at least one guess. The statement on line 14
reads the next line from the user, extracts the first character, and stores it in the
variable comparison.

1 do {
2   int guess = min;
3   System.out.print("Is it <, =, or > than " + guess + "? ");
4   comparison = input.nextLine().charAt(0);

Figure A–12: The same loop using a switch statement. (Part 1 of 2)
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A handy feature of the switch statement is that, if we don’t put a break statement at the end
of a case, Java will keep right on going to the next one. For example, suppose that while run-
ning the program we keep accidentally typing a comma when we mean to type a less-than
sign. We can add an extra case for this which prints a message and then treats the comparison
as '<' (Figure A–13).

Exercises
A.12 Modify the program in Figure A–11 so that it behaves the same way, but does not con-

tain the keyword else. (Hint:  The first occurrence of else, on line 17, can simply be
replaced with a newline. Why doesn’t this work for the one on line 19?)

A.6 Methods and Breaking Out

Unless a program is very tiny, breaking it down into several methods can make it easier to under-
stand. For example, in the Guess program, we could shove the task of choosing a guess off onto
a separate method (Figure A–14). This method is invoked using its name followed by a left

5  switch (comparison) {
6 case '<':
7       max = guess - 1;
8 break;
9     case '=':

10 System.out.println("I win!");
11       break;
12 default:
13       min = guess + 1;
14 }
15 } while (comparison != '=');

1 switch (comparison) {
2   case ',':
3     System.out.println("I assume you meant '<'.");
4   case '<':
5     max = guess - 1;
6     break;
7   case '=':
8     System.out.println("I win!");
9     break;

10   default:
11     min = guess + 1;
12 }

Figure A–13: After executing its own code, the top case falls through to the following
one.

Figure A–12: The same loop using a switch statement. (Part 2 of 2)
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parenthesis, any arguments (separated by commas), and a right parenthesis. The value of this
expression is whatever is returned by the method.

Within the method, a return statement causes the method to end immediately and (unless the
method has a return type of void) return a value. Enough people miss this point that it is worth
repeating:  once a return statement is executed, the method invocation is over, and any subse-
quent code is skipped.

A return statement is not the same as a break statement. We saw the break statement in the
discussion of the switch statement. It can also be used in any kind of loop. It tells Java, “Okay,
I’m done with this loop, let’s go do whatever comes after the loop.”  A return statement is
stronger, because it exits the entire method, no matter how deep in loops and switch statements
it is.

In the event that we want an even stronger statement, use the exit() method from the built-in
System class. This takes one int as an argument. By convention, this is 0 if the program is exiting
normally, some other number if it is exiting due to some kind of error. When a statement such as

System.exit(0);

is executed, the entire program ends. This drastic measure is rarely used.

Dividing a program into methods has a number of advantages, as will be discussed in Chapter 1.
One is that it makes the program easier to modify. For example, if we want to make our program
smarter, we can have it guess the number in the middle of the possible range, rather than at the

1 /** Game where the computer guesses a number. */
2 public class Guess {
3
4   /** Guess a number between min and max, inclusive. */
5   public static int makeGuess(int min, int max) {
6     return min;
7   }
8
9   /** Play the game. */

10   public static void main(String[] args) {
11     System.out.println("Think of an integer between 1 and 100.");
12     int min = 1;
13     int max = 100;
14     char comparison;
15     do {
16       int guess = makeGuess(min, max);
17       // See Figure A–12, lines 3-14, for the rest of the loop body
18     } while (comparison != '=');
19   }
20
21 }

Figure A–14: The choice of a guess can be moved to a separate method.
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bottom. To make this improvement, we don’t even have to look at the main() method. We just
have to change makeGuess() (Figure A–15).

Exercises

A.13 Write a method which behaves exactly like the one in Figure A–5, but in which line 4
is:

while (true) {

A.14 Write a method which accepts an int n as an argument and returns the square of n.

A.15 Write a method which accepts an int n as an argument, prints out the numbers 1
through n, and does not return a value.

A.7 Constants

The program in Figure A–16 computes the circumference and radius of a circle. Two of the
methods make use of the mathematical constant π. This program works, but it is bad style for
an unidentified magic number like this to appear in several places in the code. If we have to
type it several times, we might make a mistake. If we later want to change the value (for
example, to specify more digits of precision), we have to find every occurrence of the num-
ber in the file. Finally, it might not be obvious to someone reading the code what this number
means.

1 /** Guess a number between min and max, inclusive. */
2 public static int makeGuess(int min, int max) {
3   return (min + max) / 2;
4 }

Figure A–15: A change to the makeGuess() method makes the program smarter.

1 /** Compute the circumference and area of a circle. */
2 public class Circle {
3
4   /** Return the area of a circle with the specified radius. */
5   public static double area(double radius) {
6     return 3.14159 * radius * radius;
7   }
8

Figure A–16: The number 3.14159 appears in several places in the code. It is best
to replace such a magic number with a constant. (Part 1 of 2)
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A better solution is to declare a constant, a variable which cannot change. In Java, this is done
with the keyword final:

final double pi = 3.14159;

Where should we put this line?  If we put it in circumference(), it will not be visible in
area(), and vice versa. If we put it in main(), neither of the other methods will be able to
see it.

The solution is to put it in the class, but not inside any particular method. Like a method, we
declare it public and static (Figure A–17). A variable like this is called a class field, static field,
or class variable. This is different from an instance field, which is not declared static and will be
discussed in Chapter 1.

Just as we can invoke a method from another class, we can refer to a class field from another
class. Two particularly useful constants appear in the built-in Math class:  Math.PI (roughly
3.14159, the ratio of the circumference to the diameter of a circle) and Math.E (roughly
2.71828, the base of the natural logarithms).

We can now understand System.out.println() slightly more precisely. System is a class.
There is a constant out within that class. The method println() is invoked on the object Sys-
tem.out. This is a nonstatic method, as will be explained in Section 1.2.

9  /** Return the circumference of a circle with the specified 
radius. */

10   public static double circumference(double radius) {
11     return 3.14159 * 2 * radius;
12   }
13
14   /**
15    * Read the radius from the user and print the circumference and
16 * area.
17 */
18 public static void main(String[] args) {
19     java.util.Scanner input = new java.util.Scanner(System.in);
20     System.out.print("Enter the radius of the circle: ");
21     double radius = input.nextDouble();
22     System.out.println("Circumference: " + circumference(radius));
23     System.out.println("Area: " + area(radius));
24   }
25
26 }

Figure A–16: The number 3.14159 appears in several places in the code. It is best
to replace such a magic number with a constant. (Part 2 of 2)
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It is often a good idea to create a single constant instance of the java.util.Scanner class:

public static final java.util.Scanner INPUT
  = new java.util.Scanner(System.in);

Exercises
A.16 Define a constant String specifying your favorite color.

A.8 Operators

Operators are built-in functions for manipulating (usually primitive) values. In Java, we can
define new methods, but we cannot define new operators.

Arithmetic Operators
Arithmetic operators are summarized in Figure A–18. 

These generally behave as one would expect, but we must remember the following:

• It is legal to do arithmetic with chars. For example 'c' - 'a' is 2. This is particularly
useful when converting between alphabetic and numeric indices. If we are given a char
letter, then letter - 'a' is 0 if letter is 'a', 1 if letter is 'b', and so on.

1 /** Compute the circumference and area of a circle. */
2 public class Circle {
3
4   /** Ratio of the circumference to the diameter of a circle. */
5   public static final double PI = 3.14159;
6
7   /** Return the area of a circle with the specified radius. */
8   public static double area(double radius) {
9     return PI * radius * radius;

10   }
11
12   /** 
13  * Return the circumference of a circle with the specified
14 * radius.
15 */
16   public static double circumference(double radius) {
17     return PI * 2 * radius;
18   }
19
20   // See Figure A–16, lines 14-21, for the main() method
21
22 }

Figure A–17: The magic number has been replaced with a constant.
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• Adding two Strings together concatenates them into one longer String.

• When working with ints, division discards any remainder.

• The % operator, sometimes called modulo, returns the remainder of a division. For
example, 27 % 10 is 7. (It is not exactly the same as the mod operator as used by math-
ematicians. For example, -2 % 10 is –2, but –2 mod 10 is 8.)

• There is an operator precedence hierarchy specifying that multiplication happens
before addition and so on. Since Java has so many operators, the complete hierarchy
has 14 levels. Rather than trying to memorize it and expecting anyone reading our code
to do the same, we use parentheses to ensure that operations happen in the correct
order.

Assignment Operators
Assignment operators are used to set or change the value of a variable. They are summarized in
Figure A–19. 

Things to watch out for:

• The = operator returns the value of its right-hand operand. One consequence is that it is
legal to assign the same value to several variables like this:

x = (y = (z = 3));

It is okay to omit the parentheses in this case:

x = y = z = 3;

A second consequence is that if we accidentally type 

if (love = true) { ... }

when we mean to type

if (love == true) { ... }

Operator Description Notes

+ addition chars can be added
with Strings, this is the concatenation operator

− subtraction can be applied to a single value (for example, -x)
chars can be subtracted

* multiplication

/ division with ints, remainder is discarded

% remainder behaves like modulo with positive numbers

Figure A–18: Arithmetic operators.
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then the test will always be passed, because love = true is an assignment statement
that returns true. We can avoid this issue by using the equivalent code:

if (love) { ... }

• Suppose x is 2 and we evaluate the statement:

y = x++;

Now x is 3, but what is y?  There is an answer, but it’s not immediately obvious
whether it’s 2 or 3. Worse, the answer is different for:

y = ++x;

Rather than ask anyone reading our programs to perform these mental gymnastics,
we’ll just avoid using the return value of a ++ or -- expression.

Comparison Operators
These operators, used to compare values, are summarized in Figure A–20.

The only thing to watch out for here is that == and != should be used only to compare primitive
values. If they are used to compare (for example) Strings, strange things can happen. This is
explained in much more detail in Chapter 2.

Logical Operators
Figure A–21 shows some operators for manipulating boolean values.

The && and || operators are short-circuited, meaning that Java stops as soon as it knows the
answer. In addition to saving computation time, this is particularly useful for expressions such as:

Operator Description Notes

= assignment returns a value

++ increment returns a value, but the value should not be used

-- decrement returns a value, but the value should not be used

+= increment by x += y is equivalent to x = x + y

-= decrement by x -= y is equivalent to x = x - y

*= multiply by x *= y is equivalent to x = x * y

/= divide by x /= y is equivalent to x = x / y

%= remainder by x %= y is equivalent to x = x % y

Figure A–19: Assignment operators.
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(bears.length > 10) && (bears[10] == "hungry")

If the left side evaluates to false, the entire expression must evaluate to false, so Java does not
bother evaluating the right side. Since the right side is not evaluated, it does not cause a problem
if there is no such element as bears[10].

Perversely, if you accidentally type & instead of && (or | instead of ||), the Java compiler won’t
complain—but you’ll get a non-short-circuited version.

Java has a few other operators, but they are fairly obscure. The only other ones we will use in
this book are the bitwise operators discussed in Section 12.1.

Exercises
A.17 What is the value of 3 / 4?  How about 3.0 / 4.0?

A.18 What is the value of 123 % 20?

A.19 Which assignment operators (Figure A–19) can be used to initialize a variable?

A.20 Change line 15 of Figure A–11 to read:

if (comparison = '<') {

Why is this an error?  Does the compiler catch it?

Operator Description Notes

== equality use only with primitive values

!= inequality use only with primitive values

< less than

<= less than or equal to

> greater than

>= greater than or equal to

Figure A–20: Comparison operators.

Operator Description Notes

&& and short-circuited

|| or short-circuited

! not

Figure A–21: Logical operators.
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A.21 Write a program which contains the erroneous expression args[-1] == args[0] but
still compiles and runs. (Hint:  Use a short-circuited logical operator.)

A.9 Debugging

Professional programmers use sophisticated development environments to debug their pro-
grams. While these are beyond the scope of this book, we will mention three useful techniques:
compiler error messages, System.out.println() statements, and assertions.

Compiler Error Messages

The Java compiler tries to catch as many errors as possible when compiling our programs. It can
be annoying to battle the compiler, but it is much better to find errors at this point than to find
them when the program is running. We don’t have room to discuss all of the different error mes-
sages that arise, but there are a few things to keep in mind:

• Sun’s widely used Java compiler indicates the file and line number on which an error
occurs. Find out how to go to a specific line in your text editor.

• The compiler may report several errors on a single compilation attempt. Always fix
the first error first. If the first error is something like a missing close bracket, the com-
piler may become deeply confused when reading the rest of the program, reporting
errors that aren’t really there. Fixing the first error may resolve many of the later
“errors.”

• A successful compilation does not mean your program is correct!  You must test your
program to make sure it does what it is supposed to do in every situation.

System.out.println() statements

A common question in debugging is, “What’s going on at this line?”  We may wish to verify that
the program reached a certain line or to examine the values of variables at that point. This is eas-
ily done by inserting a System.out.println() statement:

System.out.println("Got to point B. x = " + x);

These statements can often produce far too much output. If this becomes a problem, it may be
better to print a message only when something unusual happens:

if (x < 0) {
  System.out.println("Hey, x is negative!");
}

Be sure to remove these debugging statements before turning in your program.
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Assertions
Assertions are a debugging feature which first appeared in Java 1.4. They provide a way of for-
malizing assumptions that we make in our programs. For example, suppose we assume that
some variable x is positive. We can add this statement to our program:

assert x >= 0 : "Hey, x is negative!";

This is just like the previous bit of code, except that:

• It is considerably shorter. The syntax is the keyword assert, a boolean statement
expressing what is supposed to happen, a colon, and then a message to be printed if the
assertion fails.

• If any assertion fails, the program crashes immediately, printing the message we sup-
plied and indicating where it occurred. This saves us time in sifting through debugging
messages.

• Assertions can be turned on and off at run time. A program is easier to debug with
assertions turned on, but has less work to do (and therefore runs faster) with assertions
turned off.

To enable assertions, we must pass the -ea command-line option to Java when we run
the program.

java -ea OurProgram

It is common to enable assertions while developing a program, but to disable them once
we are fairly confident that the assertions are never violated.

Exercises
A.22 Add an assertion to the Circle program (Figure A–17) so that the program crashes if the

user enters a negative radius.

A.10 Coding Conventions

This section describes the standard coding style we will use in this book. You or your instructor
may have slightly different preferences. Since coding style exists to make programs easier for
humans to read, it is only important that we are consistent and stay fairly close to what most of
the Java community does.

Identifiers
Names of constants are in all caps, with words separated by underbars:

PI
SCREEN_WIDTH

Type parameters (Section 4.1) have one-letter upper-case names. Typical names include E for
element, K for key, and V for value.
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Names of classes, constructors (Section 1.2), and interfaces (Section 2.3) have words run
together, with the first letter of each word capitalized:

Hello
PolyhedralDie

All other identifiers are formatted the same way, but the first word is not capitalized:

args
bestSoFar

A few standard identifiers are given in Figure A–22. 

Blocks
We always use curly braces for the bodies of loops and if statements. It is technically legal to
leave these out if the body consists of a single statement, but it is a very bad idea. If we later go
back and add another line (for example, an invocation of System.out.println() to print a
debugging message), we might run into the problem shown in Figure A–23.

Identifier Use

i, j, k loop variable, index into array

m, n integer in mathematical function

tally running count of something

target element being searched for in, removed from, or added to a data structure

that object being compared with this

result value to be returned

x, y double in mathematical function

Figure A–22: Widely used identifiers.

1 for (int i = 0; i < 5; i++) {
2   System.out.println("i is " + i);
3   System.out.println("I'm in the loop!");
4 }
5
6 for (int i = 0; i < 5; i++)
7   System.out.println("i is " + i);
8   System.out.println("I'm in the loop!");

Figure A–23: These two for loops are not equivalent.
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Despite the deceptive indentation, these loops are not equivalent. In the second loop, the body of
the loop is only line 7. Line 8 is not in the loop, so it is executed only once.

Comments
We include a javadoc comment before each class, interface, field, and method, with the excep-
tion of some methods which are merely implementing a method from an interface (Section 2.3)
or overriding a method from a superclass (Section 3.1). A javadoc comment begins with /** and
ends with */.

The wonderful thing about javadoc comments is that they can be used to generate automatic doc-
umentation.

Warning:  Do not perform this next step if you have any .html files in the same directory as your
.java files. The javadoc program may overwrite them!

By this point you presumably have several .java files in your directory. To generate documenta-
tion for all of them, use the command:

javadoc -public *.java

This generates a number of .html files. Open the file index.html in your web browser. Click
on the name of a class to see its documentation. Part of the documentation for the Circle class
(Figure A–17), in the file Circle.html, is shown in Figure A–24.

A second type of comment is the C++-style comment which begins with // and goes to the end
of the line. We occasionally use this to point out the major sections of a method, explain a partic-
ularly cryptic line, or note that some code has been left out of a figure for brevity.

Access Levels
Access levels are discussed in Chapter 3. We adopt the following conventions:

All fields are private, except for constants, which are public.

Methods are either public or protected.

All classes and interfaces are public.

Arrangement of Class Members
The elements of a class appear in the following order:

1. Static fields

2. Non-static fields

3. Constructors

4. Other methods

5. The main() method
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Within each section, members appear in alphabetical order, unless some other order (particularly
for fields) would be clearer.

Exercises

A.23 Discuss the advantages and disadvantages of establishing coding conventions for a
group project.

A.24 In what way does the method name println() violate the standards?

Figure A–24: Part of the automatically-generated javadoc documentation for the
Circle class.
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B
Unified Modeling 
Language

The Unified Modeling Language (UML) is a widely used set of notations for diagramming
many aspects of software development, from user interactions to relationships between meth-
ods. Most of the UML is beyond the scope of this book, but we make extensive use of two
types of UML diagrams. A class diagram (Section B.1) summarizes the features of a class, its
relation to other classes, or both. An instance diagram (Section B.2) provides a snapshot of a
data structure.

This appendix summarizes the UML features used in this book. The same information is intro-
duced gradually in the main text.

B.1 Class Diagrams

A UML class diagram summarizes features of a class, its relation to other classes, or both.
Beginning with an example, Figure B–1 shows the Starship class.

The diagram of a class is divided into three sections. The top section shows the name of the class
in bold type. The middle section shows the fields of the class. The bottom section shows the
methods of the class.

The name and type of each field are given, separated by a colon. A static field, such as
SPEED_OF_LIGHT, is underlined.
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In the methods section, the name, argument types, and return type of each method are given. In
Figure B–1, the method accelerate() takes a double and an int as argument, but has a return
type of void. Constructors have no return type. Static methods, like main(), are underlined.

UML class diagrams can also be used to show the relationships between classes. In Figure B–2,
a Fleet contains zero or more Starships. If a Fleet always contained three to six Starships, the
notation 0..* would be replaced with 3..6.

Figure B–1: UML class diagram summarizing the Starship class.

Figure B–2: UML class diagram showing the relationships between the Fleet,
Starship, and Battlecruiser classes. The notation 0..* indicates any number that is at
least zero.

Starship

SPEED_OF_LIGHT:double
heading:int
mass:double
speed:double
Starship(double)
accelerate(double,int):void
getHeading():int
getMass():double
getSpeed():double
main(String[ ]):void

Starship

SPEED_OF_LIGHT:double
heading:int
mass:double
speed:double
Starship(double)
accelerate(double,int):void
getHeading():int
getMass():double
getSpeed():double
main(String[ ]):void

Battlecruiser

shields:int
torpedoes:int
fireTorpedo(Starship):void
getShields():int
setShields(int):void

extends

Fleet

mission:String
ships:Starship[ ]
Fleet()
add(Starship):void
remove(Starship):void
main(String[ ]):void

contains

0..*
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Figure B–2 also shows that the class Battlecruiser extends the class Starship. In other words,
Battlecruiser is a direct subclass of Starship. This is explained in much more detail in Chapter 3.
In a UML class diagram, any fields or methods present in the superclass are normally not listed
in the subclass.

The words “contains” and “extends” are not normally included in UML class diagrams. Instead,
the different arrow styles indicate the relationship in question. A line arrowhead indicates a
“contains” or “has-a” relationship. A hollow arrowhead indicates an “is-a” relationship, such as
“extends.”

When there are many classes involved, it is sometimes clearer to leave out some or all of the
fields and methods (Figure B–3).

Interfaces (Section 2.3) can also be shown in UML class diagrams (Figure B–4). An interface
name is labeled with the notation <<interface>>. A dashed arrow with a hollow head indi-
cates an “implements” relationship, which is another kind of “is-a” relationship.

The methods in an interface are in italics to indicate that they are abstract. In other words, only
the method signatures are specified in the interface; it is up to subclasses to provide concrete
implementations. An abstract class (Section 5.5) can contain both abstract and concrete meth-
ods. In a UML class diagram, the name of an abstract class is italicized (Figure B–5).

Figure B–3: Fields and methods are sometimes omitted in UML class diagrams.

Figure B–4: The interface Animal is implemented by the classes Reptile and
Mammal, which are extended by other classes.

Fleet Starship

Battlecruiser

0..*

<<interface>>
Animal

eat(Food):void
breathe():void

Reptile

reproduce(Reptile):Egg[]

Mammal

reproduce(Mammal):Baby[]

Snake Lizard Llama WhaleHuman

implements

Anteater



546 Appendix B  •  Unified Modeling Language

Java 1.5 introduces the notion of generic types (Section 4.1). A generic type has one or more
other types as parameters. For example, a generic List type allows us to distinguish between a
List of Integers and a List of Strings. In a UML class diagram, a type parameter is shown as a
small, dashed box at the upper right of a class or interface (Figure B–6). This may contain either
a type variable (such as E for element) or the name of a specific class.

Figure B–5: The class Organization is abstract, as is its method
chooseNewLeaders(). A Corporation may have other corporations as subsidiaries. A
Nation has at least one PoliticalParty, and may have other Nations as neighbors.

Figure B–6: The Sequence class (top) is generic. A Poem (bottom) contains a
Sequence of Words.

Organization
budget:int
leaders:Person[]
members:Person[]
getNumberOfMembers():int
chooseNewLeaders():void

Corporation

stockholders:Person[]
subsidiaries:
  Corporation[ ]

Nation

cities:City[ ]
neighbors:Nation[ ]
parties:PoliticalParty[ ]

PoliticalParty

fieldCandidate(Office):
  Person

1..*

0..*0..*

Sequence

Sequence()
getFirst():E
getLast():E
iterator():Iterator<E>
size():int

E

Poem

words:Sequence<Word> Sequence
Word1
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In very large programs, classes are often grouped into packages (Section 3.3). In a UML class
diagram, a package looks something like a file folder drawn behind the classes it contains
(Figure B–7).

B.2 Instance Diagrams

A UML instance diagram, also known as a UML object diagram, shows a snapshot of the state
of one or more objects. These diagrams are used extensively in Part I of this book, and are cru-
cial to understanding the linked structures introduced in Chapter 6.

More than one instance of a class may be shown in an instance diagram (Figure B–8). Static fields
and all methods are omitted, as they are the same for every instance. The name of the class of
each instance is underlined, but not bold. A specific value is given for each primitive field.

References are shown as arrows. In Figure B–9, the instance of class Outfit has four fields:
price, top, bottom, and feet. Technically speaking, fields of type String are references to
instances of the String class, but we omit this detail for clarity.

Figure B–7: The game.ai package contains an interface and two classes. Each of
the other two packages contains three classes.

Figure B–8: UML instance diagram showing two instances of the Starship class.

game.graphics

game.ai

game.physics

<<interface>>
Agent

Fluid

Chaser

Force

Texture

Mass

Light WireFrame

Lurker

Starship

heading � 45
mass � 1013.6
speed � 245.72

heading � 180
mass � 484.0
speed � 113.22

Starship
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A number of minor extensions to standard UML instance diagrams are used in this book.

First, a null reference is sometimes shown as a line ending in a large dot (Figure B–10). If
including such lines would complicate the diagram excessively, null references are simply
omitted.

Second, arrays are shown as rows of boxes (Figure B–11). Each box may contain a primitive
value or a reference to an object or array.

Figure B–9: An instance of class Outfit with references to three other objects.

Figure B–10: In this instance of class Outfit, the feet field contains a null reference.

Figure B–11: This instance of Menu contains two arrays, prices and items.

Outfit

price � 100

Pants

style � "jeans"

Shirt

style � "tee"
color � "red"

Shoes

style � "tennis"

bottomtop

feet

Outfit

price � 100

Pants

style � "jeans"

Shirt

style � "tee"
color � "red"

bottomtop

feet

Menu
4.95 5.95 2.95 1.35

Sandwich

name � "hamburger"

Sandwich
name �
  "bacon cheseburger"

SideDish

name � "nachos"

SideDish

name � "fries"

prices

items
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Third, variables, arguments, and constants are sometimes included in UML instance diagrams
(Figure B–12).

We end this appendix by noting that some special notation is used in Chapter 16, which deals
with references in great detail.

Figure B–12: The variable target has the value 17. The constant ORIGIN is a
reference to an instance of Point.

Point

x � 0
y � 0

ORIGINtarget � 17
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C
Summation 
Formulae

The algebra of sums is useful when analyzing algorithms (Chapter 7).  This appendix reviews
some basic summation formulae.  Proofs are omitted, but we provide a diagram for each formula
to aid in memory.

C.1 Sum Notation

Sums can be concisely written using the upper-case Greek letter sigma.  For example,

is read, “The sum, for i from 1 to 4, of 2i2.”  This is:

Often the upper limit of the index (written above the sigma) is some other variable involved in
the analysis, such as n.  For example, in Section C.3, we will see a formula for the sum of the

2i2

i 1=

4

∑

2 8 18 32+ + + 60=
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first n positive integers:

In order to wrangle an expression into a form for which we have a formula, it is often useful to
add or remove terms.  For example:

Substitution of variables is another useful technique.  For example, to evaluate the sum

we define n = 2m.  Then:

Sum notation is sometimes used more casually.  For example, to describe the total value of all of
the cars on a sales lot, we might write:

C.2 Sum of Constants

Our first formula is for a sum of n copies of a constant c.

This is fairly obvious, but for completeness we present Figure C–1.

i

i 1=

n

∑ n n 1+( )
2

--------------------=

i

i 1=

n 1+

∑ i

i 1=

n

∑ 
 
 

n 1+( )+=

i

i 1=

2m

∑

i

i 1=

n

∑ n n 1+( )
2

--------------------=

2m 2m 1+( )
2

-----------------------------=

price of car〈 〉
car
∑

c

i 1=

n

∑ cn=
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C.3 Sum of First n Integers

.

This is slightly more than n2/2, as illustrated in Figure C–2.

Figure C–1: If each small rectangle has width c and height 1, the total area of the
large rectangle is cn.

Here is the formula for the sum of the first n integers.

Figure C–2: The sum of the first n integers occupies just over half of an n × n square.

n

c

i

i 1=

n

∑ n n 1+( )
2

--------------------=

1

2

3

n

n

n
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C.4 Sums of Halves and Doubles

In the next formula, each term is half as large as the previous term.

Even when we don’t know the exact number of terms, we can still say:

It may be somewhat surprising that the sum is less than 1 no matter how many terms there are.
Figure C–3 shows why this is true.

It is sometimes more convenient to write a sum in which each term is twice (rather than half) the
previous term.

C.5 Upper Limit on Sum of a Function

We often deal with monotonically nondecreasing functions, such as running-time functions for
algorithms.  It is easy to state an upper limit on a sum of applications of such a function.

Figure C–4 shows why this is true.

Figure C–3: When the terms of a sum of halves are rearranged, they don’t quite fill up
a 2 × 1/2 rectangle.  The missing piece is precisely the size of the last term:  1/2n.

1
2
--- 

  i

i 1=

n

∑ 1 1
2n
-----–=

1
2
--- 

  i

i 1=

n

∑ 1<

1/4

1/2

1/2

1/2

1/4

2i

i 0=

n

∑ 2n 1+ 1–=

f i( )
i 1=

n

∑ n f n( )⋅≤



Section C.6 Constant Factors 555

C.6 Constant Factors

A constant factor can be moved to the outside of a sum.

This is illustrated in Figure C–5.

Figure C–4: Since f(n) ≥ f(i) for any i < n, the sum falls within an f(n) × n rectangle.

Figure C–5: On the left, we multiply each term by a constant (3) before adding.  On
the right, we evaluate the sum and then multiply by the constant.  The area is the
same.

f (2)

f (1)

f (n)

f (n)

n

c f i( )⋅
i 1=

n

∑ c f i( )
i 1=

n

∑⋅=

f (1)f (1) f (1) f (1)

f (2)
f (2) f (2) f (2)

f (n)

f (n) f (n) f (n)

f (1)

f (2)

f (n)

f (1)

f (2)

f (n)
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D
Further Reading

This appendix mentions a few places where the interested reader might turn next.

D.1 Data Structures and Algorithms

Cormen, Thomas H. et al., Introduction to Algorithms, 2d ed., Cambridge, MA: MIT Press, 2001.

This large but very clear book deals with algorithm analysis.  Most of the proofs that were
omitted as being “beyond the scope of this book” can be found in Cormen et al.

Lewis, Harry R., and Denenberg, Larry, Data Structures and Their Algorithms, Boston: Addison-
Wesley Longman, 1997.

A bit denser than this book, Lewis and Denenberg goes into more detail on optimizations
and covers more data structures.

D.2 Java

Horstmann, Cay S., and Cornell, Gary, Core Java 2, 7th ed., Vols. 1 and 2, Upper Saddle River,
NJ: Prentice Hall PTR, 2005.
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This is an invaluable reference for any serious Java programmer. A reader interested in, for
example, graphic user interfaces in Java should turn here next.  Be sure to get the latest
edition.

D.3 Games

Mohr, Merilyn Simonds, The Games Treasury, Snelbourne, VT: Chapters Publishing Ltd., 1993.

A solid collection of traditional games with some interesting historical information.

Pritchard, David, The Family Book of Games, London: Sceptre Books, Time-Life Books/
Brockhampton Press, 1994.

Another anthology which includes some obscure games.
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