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Purpose/Goals

This new Java edition describes data structures, methods of organizing large amounts of
data, and algorithm analysis, the estimation of the running time of algorithms. As computers
become faster and faster, the need for programs that can handle large amounts of input
becomes more acute. Paradoxically, this requires more careful attention to efficiency, since
inefficiencies in programs become most obvious when input sizes are large. By analyzing
an algorithm before it is actually coded, students can decide if a particular solution will be
feasible. For example, in this text students look at specific problems and see how careful
implementations can reduce the time constraint for large amounts of data from centuries
to less than a second. Therefore, no algorithm or data structure is presented without an
explanation of its running time. In some cases, minute details that affect the running time
of the implementation are explored.

Once a solution method is determined, a program must still be written. As computers
have become more powerful, the problems they must solve have become larger and more
complex, requiring development of more intricate programs. The goal of this text is to teach
students good programming and algorithm analysis skills simultaneously so that they can
develop such programs with the maximum amount of efficiency.

This book is suitable for either an advanced data structures (CS7) course or a first-year
graduate course in algorithm analysis. Students should have some knowledge of intermedi-
ate programming, including such topics as object-based programming and recursion, and
some background in discrete math.

Summary of the Most Significant Changes in the Third Edition
The third edition incorporates numerous bug fixes, and many parts of the book have
undergone revision to increase the clarity of presentation. In addition,
¢ Chapter 4 includes implementation of the AVL tree deletion algorithm—a topic often
requested by readers.

* Chapter 5 has been extensively revised and enlarged and now contains material on two
newer algorithms: cuckoo hashing and hopscotch hashing. Additionally, a new section
on universal hashing has been added.

* Chapter 7 now contains material on radix sort, and a new section on lower bound

proofs has been added.
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* Chapter 8 uses the new union/find analysis by Seidel and Sharir, and shows the
O( Ma(M, N) ) bound instead of the weaker O( Mlog® N ) bound in prior editions.

* Chapter 12 adds material on suffix trees and suffix arrays, including the linear-time
suffix array construction algorithm by Karkkainen and Sanders (with implementation).
The sections covering deterministic skip lists and AA-trees have been removed.

 Throughout the text, the code has been updated to use the diamond operator from
Java 7.

Approach

Although the material in this text is largely language independent, programming requires
the use of a specific language. As the title implies, we have chosen Java for this book.

Java is often examined in comparison with C++. Java offers many benefits, and pro-
grammers often view Java as a safer, more portable, and easier-to-use language than C++.
As such, it makes a fine core language for discussing and implementing fundamental data
structures. Other important parts of Java, such as threads and its GUI, although important,
are not needed in this text and thus are not discussed.

Complete versions of the data structures, in both Java and C++, are available on
the Internet. We use similar coding conventions to make the parallels between the two
languages more evident.

Overview

Chapter 1 contains review material on discrete math and recursion. I believe the only way
to be comfortable with recursion is to see good uses over and over. Therefore, recursion
is prevalent in this text, with examples in every chapter except Chapter 5. Chapter 1 also
presents material that serves as a review of inheritance in Java. Included is a discussion of
Java generics.

Chapter 2 deals with algorithm analysis. This chapter explains asymptotic analysis and
its major weaknesses. Many examples are provided, including an in-depth explanation of
logarithmic running time. Simple recursive programs are analyzed by intuitively converting
them into iterative programs. More complicated divide-and-conquer programs are intro-
duced, but some of the analysis (solving recurrence relations) is implicitly delayed until
Chapter 7, where it is performed in detail.

Chapter 3 covers lists, stacks, and queues. This chapter has been significantly revised
from prior editions. It now includes a discussion of the Collections API ArrayList
and LinkedList classes, and it provides implementations of a significant subset of the
collections API ArrayList and LinkedList classes.

Chapter 4 covers trees, with an emphasis on search trees, including external search
trees (B-trees). The UNIX file system and expression trees are used as examples. AVL trees
and splay trees are introduced. More careful treatment of search tree implementation details
is found in Chapter 12. Additional coverage of trees, such as file compression and game
trees, is deferred until Chapter 10. Data structures for an external medium are considered
as the final topic in several chapters. New to this edition is a discussion of the Collections
API TreeSet and TreeMap classes, including a significant example that illustrates the use of
three separate maps to efficiently solve a problem.
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Chapter 5 discusses hash tables, including the classic algorithms such as sepa-
rate chaining and linear and quadratic probing, as well as several newer algorithms,
namely cuckoo hashing and hopscotch hashing. Universal hashing is also discussed, and
extendible hashing is covered at the end of the chapter.

Chapter 6 is about priority queues. Binary heaps are covered, and there is additional
material on some of the theoretically interesting implementations of priority queues. The
Fibonacci heap is discussed in Chapter 11, and the pairing heap is discussed in Chapter 12.

Chapter 7 covers sorting. It is very specific with respect to coding details and analysis.
All the important general-purpose sorting algorithms are covered and compared. Four
algorithms are analyzed in detail: insertion sort, Shellsort, heapsort, and quicksort. New to
this edition is radix sort and lower bound proofs for selection-related problems. External
sorting is covered at the end of the chapter.

Chapter 8 discusses the disjoint set algorithm with proof of the running time. The anal-
ysis is new. This is a short and specific chapter that can be skipped if Kruskals algorithm
is not discussed.

Chapter 9 covers graph algorithms. Algorithms on graphs are interesting, not only
because they frequently occur in practice, but also because their running time is so heavily
dependent on the proper use of data structures. Virtually all the standard algorithms are
presented along with appropriate data structures, pseudocode, and analysis of running
time. To place these problems in a proper context, a short discussion on complexity theory
(including NP-completeness and undecidability) is provided.

Chapter 10 covers algorithm design by examining common problem-solving tech-
niques. This chapter is heavily fortified with examples. Pseudocode is used in these later
chapters so that the student’s appreciation of an example algorithm is not obscured by
implementation details.

Chapter 11 deals with amortized analysis. Three data structures from Chapters 4 and 6
and the Fibonacci heap, introduced in this chapter, are analyzed.

Chapter 12 covers search tree algorithms, the suffix tree and array, the k-d tree, and
the pairing heap. This chapter departs from the rest of the text by providing complete and
careful implementations for the search trees and pairing heap. The material is structured so
that the instructor can integrate sections into discussions from other chapters. For exam-
ple, the top-down red-black tree in Chapter 12 can be discussed along with AVL trees
(in Chapter 4).

Chapters 1-9 provide enough material for most one-semester data structures courses.
If time permits, then Chapter 10 can be covered. A graduate course on algorithm analysis
could cover Chapters 7-11. The advanced data structures analyzed in Chapter 11 can easily
be referred to in the earlier chapters. The discussion of NP-completeness in Chapter 9 is
far too brief to be used in such a course. You might find it useful to use an additional work
on NP-completeness to augment this text.

Exercises

Exercises, provided at the end of each chapter, match the order in which material is pre-
sented. The last exercises may address the chapter as a whole rather than a specific section.
Difficult exercises are marked with an asterisk, and more challenging exercises have two
asterisks.
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References

References are placed at the end of each chapter. Generally the references either are his-
torical, representing the original source of the material, or they represent extensions and
improvements to the results given in the text. Some references represent solutions to
exercises.

Supplements

The following supplements are available to all readers at
www.pearsonhighered.com/cssupport:

* Source code for example programs

In addition, the following material is available only to qualified instructors at Pearson’s
Instructor Resource Center (www.pearsonhighered.com/irc). Visit the IRC or contact your
campus Pearson representative for access.

 Solutions to selected exercises

* Figures from the book
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‘ cHAPTER 1

Introduction

In this chapter, we discuss the aims and goals of this text and briefly review programming
concepts and discrete mathematics. We will

* See that how a program performs for reasonably large input is just as important as its
performance on moderate amounts of input.

* Summarize the basic mathematical background needed for the rest of the book.
* Briefly review recursion.

+ Summarize some important features of Java that are used throughout the text.

1.1 What’s the Book About?

Suppose you have a group of N numbers and would like to determine the kth largest. This
is known as the selection problem. Most students who have had a programming course
or two would have no difficulty writing a program to solve this problem. There are quite a
few “obvious” solutions.

One way to solve this problem would be to read the N numbers into an array, sort the
array in decreasing order by some simple algorithm such as bubblesort, and then return
the element in position k.

A somewhat better algorithm might be to read the first k elements into an array and
sort them (in decreasing order). Next, each remaining element is read one by one. As a new
element arrives, it is ignored if it is smaller than the kth element in the array. Otherwise, it
is placed in its correct spot in the array, bumping one element out of the array. When the
algorithm ends, the element in the kth position is returned as the answer.

Both algorithms are simple to code, and you are encouraged to do so. The natural ques-
tions, then, are which algorithm is better and, more important, is either algorithm good
enough? A simulation using a random file of 30 million elements and k = 15,000,000
will show that neither algorithm finishes in a reasonable amount of time; each requires
several days of computer processing to terminate (albeit eventually with a correct answer).
An alternative method, discussed in Chapter 7, gives a solution in about a second. Thus,
although our proposed algorithms work, they cannot be considered good algorithms,
because they are entirely impractical for input sizes that a third algorithm can handle in a
reasonable amount of time.
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Chapter 1 Introduction

1 2 3 4
1 t h i s
2 W a t S
3 o a h g
4 f g d t

Figure 1.1 Sample word puzzle

A second problem is to solve a popular word puzzle. The input consists of a two-
dimensional array of letters and a list of words. The object is to find the words in the puzzle.
These words may be horizontal, vertical, or diagonal in any direction. As an example, the
puzzle shown in Figure 1.1 contains the words this, two, fat, and that. The word this begins
at row 1, column 1, or (1,1), and extends to (1,4); two goes from (1,1) to (3,1); fat goes
from (4,1) to (2,3); and that goes from (4,4) to (1,1).

Again, there are at least two straightforward algorithms that solve the problem. For
each word in the word list, we check each ordered triple (row, column, orientation) for
the presence of the word. This amounts to lots of nested for loops but is basically
straightforward.

Alternatively, for each ordered quadruple (row, column, orientation, number of characters)
that doesn’t run off an end of the puzzle, we can test whether the word indicated is in the
word list. Again, this amounts to lots of nested for loops. It is possible to save some time
if the maximum number of characters in any word is known.

It is relatively easy to code up either method of solution and solve many of the real-life
puzzles commonly published in magazines. These typically have 16 rows, 16 columns,
and 40 or so words. Suppose, however, we consider the variation where only the puzzle
board is given and the word list is essentially an English dictionary. Both of the solutions
proposed require considerable time to solve this problem and therefore are not acceptable.
However, it is possible, even with a large word list, to solve the problem in a matter of
seconds.

An important concept is that, in many problems, writing a working program is not
good enough. If the program is to be run on a large data set, then the running time becomes
an issue. Throughout this book we will see how to estimate the running time of a program
for large inputs and, more important, how to compare the running times of two programs
without actually coding them. We will see techniques for drastically improving the speed
of a program and for determining program bottlenecks. These techniques will enable us to
find the section of the code on which to concentrate our optimization efforts.

1.2 Mathematics Review

This section lists some of the basic formulas you need to memorize or be able to derive
and reviews basic proof techniques.
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1.2 Mathematics Review

1.2.1 Exponents

XAXB XA+B
XA
ﬁ — XA*B
(XA)B — XAB

XN 4 xN = 2xN £ x2N
ZN 4 2N — 2N+1

1.2.2 Logarithms

In computer science, all logarithms are to the base 2 unless specified otherwise.

Definition 1.1.
X4 = Bifand only if logy B = A
Several convenient equalities follow from this definition.

Theorem 1.1.

log, B = 0 ; AB,C>0,A#1

Proof.

Let X = log-B, Y = log-A, and Z = log, B. Then, by the definition of logarithms,
CX = B, C¥ = A, and A*> = B. Combining these three equalities yields C* = B =
(CY)?. Therefore, X = YZ, which implies Z = X/Y, proving the theorem.

Theorem 1.2.

logAB =logA +logB; A,B> 0

Proof.

Let X = logA, Y = logB, and Z = logAB. Then, assuming the default base of 2,
2X = A, 2Y = B, and 2% = AB. Combining the last three equalities yields 2%2¥ =
AB = 2%, Therefore, X + Y = Z, which proves the theorem.

Some other useful formulas, which can all be derived in a similar manner, follow.
logA/B =1logA — logB
log(AB) = BlogA
logX <X forallX >0

logl =0, log2 =1, log 1,024 = 10, log 1,048,576 = 20
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Chapter 1 Introduction

1.2.3 Series

The easiest formulas to remember are

Z 21 _ 2N+1

and the companion,

N AN+1 -1

, A—1
i=0

In the latter formula, if 0 < A < 1, then

and as N tends to oo, the sum approaches 1/(1 — A). These are the “geometric series”
formulas.

We can derive the last formula for Zio:oo A (0 < A < 1) in the following manner. Let
S be the sum. Then

S=14+A+A+ A + A+ A+
Then
AS=A+A? + A3+ A Y+ A7 + ...

If we subtract these two equations (which is permissible only for a convergent series),
virtually all the terms on the right side cancel, leaving

which implies that

We can use this same technique to compute Y o, i/2', a sum that occurs frequently.
We write
S—1+2+3+4+5+
2022 232t D
and multiply by 2, obtaining

25—1+2+3+4+5+6+
- 2 22 23 T 4 D5
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1.2 Mathematics Review

Subtracting these two equations yields

1 1 1 1 1
S=1+§+2—2+2—3+?+2—5+"'
Thus, S = 2.
Another type of common series in analysis is the arithmetic series. Any such series can
be evaluated from the basic formula.

N

. NIN+1) N?
;l -T2 2
Forinstance, to find the sum2 +5+8+---+ 3k — 1), rewriteitas 3(1 +2+3+---+
R — A+ 1+1+---+ 1), which is clearly 3k(k + 1)/2 — k. Another way to remember
this is to add the first and last terms (total 3k + 1), the second and next to last terms (total
3k + 1), and so on. Since there are k/2 of these pairs, the total sum is k(3k + 1)/2, which
is the same answer as before.

The next two formulas pop up now and then but are fairly uncommon.

le N(N + 1)(2N+ DN

3
N k41
N’
-k
it~ kR#£—1
LI
i=1
When k = —1, the latter formula is not valid. We then need the following formula,

which is used far more in computer science than in other mathematical disciplines. The
numbers Hy are known as the harmonic numbers, and the sum is known as a harmonic
sum. The error in the following approximation tends to y & 0.57721566, which is known
as Euler’s constant.
AR
Hy = Z n ~ log, N
i=1

These two formulas are just general algebraic manipulations.

N
> N = Nf()
i=1
no—1

Z [ = Z f@ - Z f®

i=ngp

1.2.4 Modular Arithmetic

We say that A is congruent to B modulo N, written A = B (mod N), if N divides A — B.
Intuitively, this means that the remainder is the same when either A or B is divided by
N. Thus, 81 = 61 = 1 (mod 10). As with equality, if A = B (mod N), then A + C =
B+ C (mod N) and AD = BD (mod N).
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Often, N is a prime number. In that case, there are three important theorems.

First, if N is prime, then ab = 0 (mod N) is true if and only if a = 0 (mod N)
or b = 0 (mod N). In other words, if a prime number N divides a product of two
numbers, it divides at least one of the two numbers.

Second, if N is prime, then the equation ax = 1 (mod N) has a unique solution
(mod N), for all 0 < a < N. This solution 0 < x < N, is the multiplicative inverse.
Third, if N is prime, then the equation x> = a (mod N) has either two solutions
(mod N), for all 0 < a < N, or no solutions.

There are many theorems that apply to modular arithmetic, and some of them require
extraordinary proofs in number theory. We will use modular arithmetic sparingly, and the
preceding theorems will suffice.

1.2.5 The P Word

The two most common ways of proving statements in data structure analysis are proof
by induction and proof by contradiction (and occasionally proof by intimidation, used
by professors only). The best way of proving that a theorem is false is by exhibiting a
counterexample.

Proof by Induction

A proof by induction has two standard parts. The first step is proving a base case, that is,
establishing that a theorem is true for some small (usually degenerate) value(s); this step is
almost always trivial. Next, an inductive hypothesis is assumed. Generally this means that
the theorem is assumed to be true for all cases up to some limit k. Using this assumption,
the theorem is then shown to be true for the next value, which is typically k + 1. This
proves the theorem (as long as k is finite).

As an example, we prove that the Fibonacci numbers, Fop = 1, F1 = 1, F, =2, F3 =3,
F4s=5,...,F = F_1+Fi_y,satisfy F; < (5/3)!, fori > 1. (Some definitions have Fy = 0,
which shifts the series.) To do this, we first verify that the theorem is true for the trivial
cases. It is easy to verify that F; = 1 < 5/3 and F, = 2 < 25/9; this proves the basis.
We assume that the theorem is true for i = 1,2, ..., k; this is the inductive hypothesis. To
prove the theorem, we need to show that Fp41 < (5/ 3)k+1. We have

Frp41 = Fr + Fr—1

by the definition, and we can use the inductive hypothesis on the right-hand side,
obtaining

Fip1 < (5/3) 4 (5/3)F!
< (3/5)(5/3) ! + (3/5)2(5/3)t!
< (3/35)5/3) ! +(9/25)(5/3)F+!
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which simplifies to

Frp1 < (3/5 +9/25)(5/3)F*!
< (24/25)(5/3)F!
< (5/3)k+1

proving the theorem.
As a second example, we establish the following theorem.

Theorem 1.3.
IfN > 1, then Y i = NEHLDONED

Proof.

The proof is by induction. For the basis, it is readily seen that the theorem is true when
N = 1. For the inductive hypothesis, assume that the theorem is true for 1 <k < N.
We will establish that, under this assumption, the theorem is true for N + 1. We have

N+1 N

=)+ WNAD?
i=1 i=1

Applying the inductive hypothesis, we obtain

N+1
D= N 1)6(2N+ D vy
i=1
IN+1
— (N4 1D [N(NT’L) N 1)]
2N? + 7N
_ (N+ DN+ 2)2N +3)
N 6
Thus,
Niiz N+ DN+ D+ RN+ D + 1]
N 6

i=1

proving the theorem.

Proof by Counterexample
The statement Fj, <k? is false. The easiest way to prove this is to compute F1 = 144> 112,

Proof by Contradiction

Proof by contradiction proceeds by assuming that the theorem is false and showing that this
assumption implies that some known property is false, and hence the original assumption
was erroneous. A classic example is the proof that there is an infinite number of primes. To
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prove this, we assume that the theorem is false, so that there is some largest prime Pj,. Let
P1,P,, ..., Py be all the primes in order and consider

N =PP,P3---P,+1

Clearly, N is larger than Py, so by assumption N is not prime. However, none of
P1,Py, ..., Py divides N exactly, because there will always be a remainder of 1. This is
a contradiction, because every number is either prime or a product of primes. Hence, the
original assumption, that Py, is the largest prime, is false, which implies that the theorem is
true.

1.3 A Brief Introduction to Recursion

Most mathematical functions that we are familiar with are described by a simple formula.
For instance, we can convert temperatures from Fahrenheit to Celsius by applying the
formula

C=5(F—32)/9

Given this formula, it is trivial to write a Java method; with declarations and braces
removed, the one-line formula translates to one line of Java.

Mathematical functions are sometimes defined in a less standard form. As an example,
we can define a function f, valid on nonnegative integers, that satisfies f(0) = 0 and
f(x) = 2f(x — 1) + x*. From this definition we see that f(1) = 1, f2) = 6, f3) = 21,
and f(4) = 58. A function that is defined in terms of itself is called recursive. Java allows
functions to be recursive.! It is important to remember that what Java provides is merely
an attempt to follow the recursive spirit. Not all mathematically recursive functions are
efficiently (or correctly) implemented by Java’s simulation of recursion. The idea is that the
recursive function f ought to be expressible in only a few lines, just like a nonrecursive
function. Figure 1.2 shows the recursive implementation of f.

Lines 3 and 4 handle what is known as the base case, that is, the value for which
the function is directly known without resorting to recursion. Just as declaring f(x) =
2f(x — 1) 4x? is meaningless, mathematically, without including the fact that f(0) = 0, the
recursive Java method doesn’t make sense without a base case. Line 6 makes the recursive
call.

There are several important and possibly confusing points about recursion. A common
question is: Isnt this just circular logic? The answer is that although we are defining a
method in terms of itself, we are not defining a particular instance of the method in terms
of itself. In other words, evaluating f(5) by computing f(5) would be circular. Evaluating
f(5) by computing f(4) is not circular—unless, of course, f(4) is evaluated by eventually
computing f(5). The two most important issues are probably the how and why questions.

1 Using recursion for numerical calculations is usually a bad idea. We have done so to illustrate the basic
points.
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public static int f( int x )
{
if(x == 0)
return 0;
else
return 2 * f( x - 1) + x * X3

~N Oy U AW N =

}

Figure 1.2 A recursive method

In Chapter 3, the how and why issues are formally resolved. We will give an incomplete
description here.

It turns out that recursive calls are handled no differently from any others. If f is called
with the value of 4, then line 6 requires the computation of 2 * f(3) 4+ 4 % 4. Thus, a call
is made to compute f(3). This requires the computation of 2 * f(2) + 3 * 3. Therefore,
another call is made to compute f(2). This means that 2 % f(1) + 2 * 2 must be evaluated.
To do so, f(1) is computed as 2 * f(0) + 1 * 1. Now, f(0) must be evaluated. Since
this is a base case, we know a priori that f(0) = 0. This enables the completion of the
calculation for f(1), which is now seen to be 1. Then f(2), f(3), and finally f(4) can be
determined. All the bookkeeping needed to keep track of pending calls (those started but
waiting for a recursive call to complete), along with their variables, is done by the computer
automatically. An important point, however, is that recursive calls will keep on being made
until a base case is reached. For instance, an attempt to evaluate f(—1) will result in calls
to f(=2), f(=3), and so on. Since this will never get to a base case, the program won't
be able to compute the answer (which is undefined anyway). Occasionally, a much more
subtle error is made, which is exhibited in Figure 1.3. The error in Figure 1.3 is that
bad(1) is defined, by line 6, to be bad(1). Obviously, this doesn't give any clue as to what
bad(1) actually is. The computer will thus repeatedly make calls to bad(1) in an attempt
to resolve its values. Eventually, its bookkeeping system will run out of space, and the
program will terminate abnormally. Generally, we would say that this method doesn’'t work
for one special case but is correct otherwise. This isn't true here, since bad(2) calls bad(1).
Thus, bad(2) cannot be evaluated either. Furthermore, bad(3), bad(4), and bad(5) all make
calls to bad(2). Since bad(2) is unevaluable, none of these values are either. In fact, this

1 public static int bad( int n )

2 {

3 if(n==0)

4 return 0;

5 else

6 return bad(n /3 +1) +n-1;
7 }

Figure 1.3 A nonterminating recursive method
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program doesn’t work for any nonnegative value of n, except 0. With recursive programs,
there is no such thing as a “special case.”
These considerations lead to the first two fundamental rules of recursion:

1. Base cases. You must always have some base cases, which can be solved without
recursion.

2. Making progress. For the cases that are to be solved recursively, the recursive call must
always be to a case that makes progress toward a base case.

Throughout this book, we will use recursion to solve problems. As an example of
a nonmathematical use, consider a large dictionary. Words in dictionaries are defined in
terms of other words. When we look up a word, we might not always understand the
definition, so we might have to look up words in the definition. Likewise, we might not
understand some of those, so we might have to continue this search for a while. Because
the dictionary is finite, eventually either (1) we will come to a point where we understand
all of the words in some definition (and thus understand that definition and retrace our
path through the other definitions) or (2) we will find that the definitions are circular
and we are stuck, or that some word we need to understand for a definition is not in the
dictionary.

Our recursive strategy to understand words is as follows: If we know the meaning of a
word, then we are done; otherwise, we look the word up in the dictionary. If we understand
all the words in the definition, we are done; otherwise, we figure out what the definition
means by recursively looking up the words we don't know. This procedure will terminate
if the dictionary is well defined but can loop indefinitely if a word is either not defined or
circularly defined.

Printing Out Numbers

Suppose we have a positive integer, n, that we wish to print out. Our routine will have the
heading printOut(n). Assume that the only I/O routines available will take a single-digit
number and output it to the terminal. We will call this routine printDigit; for example,
printDigit(4) will output a 4 to the terminal.

Recursion provides a very clean solution to this problem. To print out 76234, we need
to first print out 7623 and then print out 4. The second step is easily accomplished with
the statement printDigit(n%10), but the first doesn’t seem any simpler than the original
problem. Indeed it is virtually the same problem, so we can solve it recursively with the
statement printOut(n/10).

This tells us how to solve the general problem, but we still need to make sure that
the program doesn't loop indefinitely. Since we haven’t defined a base case yet, it is clear
that we still have something to do. Our base case will be printdigit(n) if 0 < n < 10.
Now printOut (n) is defined for every positive number from O to 9, and larger numbers are
defined in terms of a smaller positive number. Thus, there is no cycle. The entire method
is shown in Figure 1.4.
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public static void printOut( int n ) /* Print nonnegative n =/
{
if(n>=10)
printOut( n / 10 );
printDigit( n % 10 );

A L1 A W N~

}

Figure 1.4 Recursive routine to print an integer

We have made no effort to do this efficiently. We could have avoided using the mod
routine (which can be very expensive) because n%10 = n — [n/10] * 10.?

Recursion and Induction

Let us prove (somewhat) rigorously that the recursive number-printing program works. To
do so, we'll use a proof by induction.

Theorem 1.4.
The recursive number-printing algorithm is correct for n > 0.

Proof (by induction on the number of digits in n).

First, if n has one digit, then the program is trivially correct, since it merely makes
a call to printDigit. Assume then that printOut works for all numbers of k or fewer
digits. A number of k + 1 digits is expressed by its first k digits followed by its least
significant digit. But the number formed by the first k digits is exactly |n/10], which,
by the inductive hypothesis, is correctly printed, and the last digit is n mod 10, so
the program prints out any (k + 1)-digit number correctly. Thus, by induction, all
numbers are correctly printed.

This proof probably seems a little strange in that it is virtually identical to the algorithm
description. It illustrates that in designing a recursive program, all smaller instances of the
same problem (which are on the path to a base case) may be assumed to work correctly. The
recursive program needs only to combine solutions to smaller problems, which are “mag-
ically” obtained by recursion, into a solution for the current problem. The mathematical
justification for this is proof by induction. This gives the third rule of recursion:

3. Design rule. Assume that all the recursive calls work.

This rule is important because it means that when designing recursive programs, you gen-
erally don’t need to know the details of the bookkeeping arrangements, and you don't have
to try to trace through the myriad of recursive calls. Frequently, it is extremely difficult
to track down the actual sequence of recursive calls. Of course, in many cases this is an
indication of a good use of recursion, since the computer is being allowed to work out the
complicated details.

2 |x] is the largest integer that is less than or equal to x.
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The main problem with recursion is the hidden bookkeeping costs. Although these
costs are almost always justifiable, because recursive programs not only simplify the algo-
rithm design but also tend to give cleaner code, recursion should never be used as a
substitute for a simple for loop. We'll discuss the overhead involved in recursion in more
detail in Section 3.6.

When writing recursive routines, it is crucial to keep in mind the four basic rules of
recursion:

1. Base cases. You must always have some base cases, which can be solved without
recursion.

2. Making progress. For the cases that are to be solved recursively, the recursive call must
always be to a case that makes progress toward a base case.

3. Design rule. Assume that all the recursive calls work.

4, Compound interest rule. Never duplicate work by solving the same instance of a problem
in separate recursive calls.

The fourth rule, which will be justified (along with its nickname) in later sections, is the
reason that it is generally a bad idea to use recursion to evaluate simple mathematical func-
tions, such as the Fibonacci numbers. As long as you keep these rules in mind, recursive
programming should be straightforward.

1.4 Implementing Generic Components
Pre-Java 5

An important goal of object-oriented programming is the support of code reuse. An impor-
tant mechanism that supports this goal is the generic mechanism: If the implementation
is identical except for the basic type of the object, a generic implementation can be used
to describe the basic functionality. For instance, a method can be written to sort an array
of items; the logic is independent of the types of objects being sorted, so a generic method
could be used.

Unlike many of the newer languages (such as C++, which uses templates to implement
generic programming), before version 1.5, Java did not support generic implementations
directly. Instead, generic programming was implemented using the basic concepts of inher-
itance. This section describes how generic methods and classes can be implemented in Java
using the basic principles of inheritance.

Direct support for generic methods and classes was announced by Sun in June 2001 as
a future language addition. Finally, in late 2004, Java 5 was released and provided support
for generic methods and classes. However, using generic classes requires an understanding
of the pre-Java 5 idioms for generic programming. As a result, an understanding of how
inheritance is used to implement generic programs is essential, even in Java 5.
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1.4.1 Using Object for Genericity

The basic idea in Java is that we can implement a generic class by using an appropriate
superclass, such as Object. An example is the MemoryCel1 class shown in Figure 1.5.

There are two details that must be considered when we use this strategy. The first is
illustrated in Figure 1.6, which depicts a main that writes a "37" to a MemoryCel1 object and
then reads from the MemoryCel1 object. To access a specific method of the object, we must
downcast to the correct type. (Of course, in this example, we do not need the downcast,
since we are simply invoking the toString method at line 9, and this can be done for any
object.)

A second important detail is that primitive types cannot be used. Only reference
types are compatible with Object. A standard workaround to this problem is discussed
momentarily.

// MemoryCell class
// Object read( ) --> Returns the stored value
// void write( Object x ) --> x is stored

1
2
3
4
5 public class MemoryCell
6
7
8

{
// Public methods
public Object read( ) { return storedValue; }

9 public void write( Object x ) { storedValue = x; }
10
11 // Private internal data representation
12 private Object storedValue;
13}

Figure 1.5 A generic MemoryCell class (pre-Java 5)

1 public class TestMemoryCell

2 A

3 public static void main( String [ ] args )
4 {

5 MemoryCell m = new MemoryCell( );

6

7 m.write( "37" );

8 String val = (String) m.read( );

9 System.out.printin( "Contents are: " + val );
10 }

11 }

Figure 1.6 Using the generic MemoryCel1 class (pre-Java 5)
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1.4.2 Wrappers for Primitive Types

When we implement algorithms, often we run into a language typing problem: We have
an object of one type, but the language syntax requires an object of a different type.

This technique illustrates the basic theme of a wrapper class. One typical use is to
store a primitive type, and add operations that the primitive type either does not support
or does not support correctly.

In Java, we have already seen that although every reference type is compatible with
Object, the eight primitive types are not. As a result, Java provides a wrapper class for each
of the eight primitive types. For instance, the wrapper for the int type is Integer. Each
wrapper object is immutable (meaning its state can never change), stores one primitive
value that is set when the object is constructed, and provides a method to retrieve the
value. The wrapper classes also contain a host of static utility methods.

As an example, Figure 1.7 shows how we can use the MemoryCel1 to store integers.

1.4.3 Using Interface Types for Genericity

Using Object as a generic type works only if the operations that are being performed can
be expressed using only methods available in the Object class.

Consider, for example, the problem of finding the maximum item in an array of items.
The basic code is type-independent, but it does require the ability to compare any two
objects and decide which is larger and which is smaller. Thus we cannot simply find the
maximum of an array of Object—we need more information. The simplest idea would be to
find the maximum of an array of Comparable. To determine order, we can use the compareTo
method that we know must be available for all Comparables. The code to do this is shown
in Figure 1.8, which provides a main that finds the maximum in an array of String or Shape.

It is important to mention a few caveats. First, only objects that implement the
Comparable interface can be passed as elements of the Comparable array. Objects that have a
compareTo method but do not declare that they implement Comparable are not Comparable,
and do not have the requisite IS-A relationship. Thus, it is presumed that Shape implements

1 public class WrapperDemo

2

3 public static void main( String [ ] args )

4 {

5 MemoryCell m = new MemoryCell( );

6

7 m.write( new Integer( 37 ) );

8 Integer wrapperVal = (Integer) m.read( );
9 int val = wrapperVal.intValue( );

10 System.out.printin( "Contents are: " + val );
11 }

12 }

Figure 1.7 An illustration of the Integer wrapper class
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1 class FindMaxDemo

2 A

3 /xx%

4 * Return max item in arr.

5 * Precondition: arr.length > 0

6 */

7 public static Comparable findMax( Comparable [ ] arr )
8 {

9 int maxIndex = 0;

10

11 for( int i = 1; i < arr.length; i++ )

12 if( arr[ i ].compareTo( arr[ maxIndex ] ) >0 )
13 maxIndex = i;

14

15 return arr[ maxIndex ];

16 }

17

18 [xx

19 * Test findMax on Shape and String objects.
20 */
21 public static void main( String [ ] args )
22 {
23 Shape [ ] shl = { new Circle( 2.0 ),
24 new Square( 3.0 ),
25 new Rectangle( 3.0, 4.0 ) };
26
27 String [ ] stl = { "Joe", "Bob", "Bi11", "Zeke" };
28
29 System.out.printin( findMax( shl ) );
30 System.out.printin( findMax( stl ) );
31 }
32 }

Figure 1.8 A generic findMax routine, with demo using shapes and strings (pre-Java 5)

the Comparable interface, perhaps comparing areas of Shapes. It is also implicit in the test
program that Circle, Square, and Rectangle are subclasses of Shape.

Second, if the Comparable array were to have two objects that are incompatible (e.g., a
String and a Shape), the compareTo method would throw a ClassCastException. This is the
expected (indeed, required) behavior.

Third, as before, primitives cannot be passed as Comparables, but the wrappers work
because they implement the Comparable interface.

Fourth, it is not required that the interface be a standard library interface.

Finally, this solution does not always work, because it might be impossible to declare
that a class implements a needed interface. For instance, the class might be a library class,
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while the interface is a user-defined interface. And if the class is final, we can’t extend it
to create a new class. Section 1.6 offers another solution for this problem, which is the
function object. The function object uses interfaces also and is perhaps one of the central
themes encountered in the Java library.

1.4.4 Compatibility of Array Types

One of the difficulties in language design is how to handle inheritance for aggregate types.
Suppose that Employee IS-A Person. Does this imply that Employee[] IS-A Person[]? In other
words, if a routine is written to accept Person[] as a parameter, can we pass an Employee[]
as an argument?

At first glance, this seems like a no-brainer, and Employee[] should be type-compatible
with Person[]. However, this issue is trickier than it seems. Suppose that in addition to
Employee, Student IS-A Person. Suppose the Employee[] is type-compatible with Person[].
Then consider this sequence of assignments:

Person[] arr = new Employee[ 5 ]; // compiles: arrays are compatible
arr[ 0 ] = new Student( ... ); // compiles: Student IS-A Person

Both assignments compile, yet arr[0] is actually referencing an Employee, and Student
IS-NOT-A Employee. Thus we have type confusion. The runtime system cannot throw a
ClassCastException since there is no cast.

The easiest way to avoid this problem is to specify that the arrays are not type-
compatible. However, in Java the arrays are type-compatible. This is known as a covariant
array type. Each array keeps track of the type of object it is allowed to store. If
an incompatible type is inserted into the array, the Virtual Machine will throw an
ArrayStoreException.

The covariance of arrays was needed in earlier versions of Java because otherwise the
calls on lines 29 and 30 in Figure 1.8 would not compile.

1.5 Implementing Generic Components
Using Java 5 Generics

Java 5 supports generic classes that are very easy to use. However, writing generic classes
requires a little more work. In this section, we illustrate the basics of how generic classes
and methods are written. We do not attempt to cover all the constructs of the language,
which are quite complex and sometimes tricky. Instead, we show the syntax and idioms
that are used throughout this book.
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1.5.1 Simple Generic Classes and Interfaces

Figure 1.9 shows a generic version of the MemoryCe11 class previously depicted in Figure 1.5.
Here, we have changed the name to GenericMemoryCel1 because neither class is in a package
and thus the names cannot be the same.

When a generic class is specified, the class declaration includes one or more type
parameters enclosed in angle brackets <> after the class name. Line 1 shows that the
GenericMemoryCell takes one type parameter. In this instance, there are no explicit restric-
tions on the type parameter, so the user can create types such as GenericMemoryCel1<String>
and GenericMemoryCell<Integer> but not GenericMemoryCell<int>. Inside the GenericMemo-
ryCell class declaration, we can declare fields of the generic type and methods that use
the generic type as a parameter or return type. For example, in line 5 of Figure 1.9, the
write method for GenericMemoryCell1<String> requires a parameter of type String. Passing
anything else will generate a compiler error.

Interfaces can also be declared as generic. For example, prior to Java 5 the Comparable
interface was not generic, and its compareTo method took an Object as the parameter. As
a result, any reference variable passed to the compareTo method would compile, even if
the variable was not a sensible type, and only at runtime would the error be reported as
a ClassCastException. In Java 5, the Comparable class is generic, as shown in Figure 1.10.
The String class, for instance, now implements Comparable<String> and has a compareTo
method that takes a String as a parameter. By making the class generic, many of the errors
that were previously only reported at runtime become compile-time errors.

public class GenericMemoryCell<AnyType>

1
2 A

3 public AnyType read( )

4 { return storedValue; }

5 public void write( AnyType x )
6 { storedValue = x; }

7
8
9

private AnyType storedValue;
}

Figure 1.9 Generic implementation of the MemoryCel1 class

package java.lang;

1

2

3 public interface Comparable<AnyType>

4 A

5 public int compareTo( AnyType other );
6}

Figure 1.10 Comparable interface, Java 5 version which is generic
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1.5.2 Autoboxing/Unboxing

The code in Figure 1.7 is annoying to write because using the wrapper class requires
creation of an Integer object prior to the call to write, and then the extraction of the int
value from the Integer, using the intValue method. Prior to Java 5, this is required because
if an int is passed in a place where an Integer object is required, the compiler will generate
an error message, and if the result of an Integer object is assigned to an int, the compiler
will generate an error message. This resulting code in Figure 1.7 accurately reflects the
distinction between primitive types and reference types, yet it does not cleanly express the
programmer’s intent of storing ints in the collection.

Java 5 rectifies this situation. If an int is passed in a place where an Integer is
required, the compiler will insert a call to the Integer constructor behind the scenes. This
is known as autoboxing. And if an Integer is passed in a place where an int is required,
the compiler will insert a call to the intValue method behind the scenes. This is known
as auto-unboxing. Similar behavior occurs for the seven other primitive/wrapper pairs.
Figure 1.11a illustrates the use of autoboxing and unboxing in Java 5. Note that the enti-
ties referenced in the GenericMemoryCell are still Integer objects; int cannot be substituted
for Integer in the GenericMemoryCell instantiations.

1.5.3 The Diamond Operator

In Figure 1.11a, line 5 is annoying because since m is of type GenericMemoryCell<Integer>,
it is obvious that object being created must also be GenericMemoryCell<Integer>; any other
type parameter would generate a compiler error. Java 7 adds a new language feature, known
as the diamond operator, that allows line 5 to be rewritten as

GenericMemoryCell<Integer> m = new GenericMemoryCell<>( );

The diamond operator simplifies the code, with no cost to the developer, and we use it
throughout the text. Figure 1.11b shows the Java 7 version, incorporating the diamond
operator.

1 class BoxingDemo

2

3 public static void main( String [ ] args )

4 {

5 GenericMemoryCell<Integer> m = new GenericMemoryCell<Integer>( );
6

7 m.write( 37 );

8 int val = m.read( );

9 System.out.printin( "Contents are: " + val );

10 }

11}

Figure 1.11a Autoboxing and unboxing (Java 5)
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1 class BoxingDemo

2 A

3 public static void main( String [ ] args )

4 {

5 GenericMemoryCell<Integer> m = new GenericMemoryCell<>( );
6

7 m.write( 5 );

8 int val = m.read( );

9 System.out.printin( "Contents are: " + val );
10 }

11}

Figure 1.11b Autoboxing and unboxing (Java 7, using diamond operator)

1.5.4 Wildcards with Bounds

Figure 1.12 shows a static method that computes the total area in an array of Shapes (we
assume Shape is a class with an area method; Circle and Square extend Shape). Suppose we
want to rewrite the method so that it works with a parameter that is Collection<Shape>.
Collection is described in Chapter 3; for now, the only important thing about it is that it
stores a collection of items that can be accessed with an enhanced for loop. Because of
the enhanced for loop, the code should be identical, and the resulting code is shown in
Figure 1.13. If we pass a Collection<Shape>, the code works. However, what happens if
we pass a Collection<Square>? The answer depends on whether a Collection<Square> IS-A
Collection<Shape>. Recall from Section 1.4.4 that the technical term for this is whether we
have covariance.

In Java, as we mentioned in Section 1.4.4, arrays are covariant. So Square[] IS-A
Shape[]. On the one hand, consistency would suggest that if arrays are covariant, then
collections should be covariant too. On the other hand, as we saw in Section 1.4.4, the
covariance of arrays leads to code that compiles but then generates a runtime exception
(an ArrayStoreException). Because the entire reason to have generics is to generate compiler

public static double totalArea( Shape [ ] arr )

{
double total = 0;

for( Shape s : arr )
if('s !=null)

total += s.area( );

return total;

S O 0 N O U W N

—

}
Figure 1.12 totalArea method for Shape[]
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public static double totalArea( Collection<Shape> arr )

{
double total = 03

if(s !=null)

1

2

3

4

5 for( Shape s : arr )
6

7 total += s.area( );
8

9

return total;
10}

Figure 1.13 totalArea method that does not work if passed a Collection<Square>

1 public static double totalArea( Collection<? extends Shape> arr )
2

3 double total = 0;

4

5 for( Shape s : arr )

6 if(s !'=null)

7 total += s.area( );

8

9 return total;

10}

Figure 1.14 totalArea method revised with wildcards that works if passed a
Collection<Square>

errors rather than runtime exceptions for type mismatches, generic collections are not
covariant. As a result, we cannot pass a Collection<Square> as a parameter to the method
in Figure 1.13.

What we are left with is that generics (and the generic collections) are not covariant
(which makes sense), but arrays are. Without additional syntax, users would tend to avoid
collections because the lack of covariance makes the code less flexible.

Java 5 makes up for this with wildcards. Wildcards are used to express subclasses
(or superclasses) of parameter types. Figure 1.14 illustrates the use of wildcards with a
bound to write a totalArea method that takes as parameter a Collection<T>, where T IS-A
Shape. Thus, Collection<Shape> and Collection<Square> are both acceptable parameters.
Wildcards can also be used without a bound (in which case extends Object is presumed)
or with super instead of extends (to express superclass rather than subclass); there are also
some other syntax uses that we do not discuss here.

1.5.5 Generic Static Methods

In some sense, the totalArea method in Figure 1.14 is generic, since it works for different
types. But there is no specific type parameter list, as was done in the GenericMemoryCell
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public static <AnyType> boolean contains( AnyType [ ] arr, AnyType x )
{
for( AnyType val : arr )
if( x.equals( val ) )
return true;

return false;

o N O L1 AW N =

}

Figure 1.15 Generic static method to search an array

class declaration. Sometimes the specific type is important perhaps because one of the
following reasons apply:

1. The type is used as the return type.
2. The type is used in more than one parameter type.

3. The type is used to declare a local variable.

If so, then an explicit generic method with type parameters must be declared.

For instance, Figure 1.15 illustrates a generic static method that performs a sequential
search for value x in array arr. By using a generic method instead of a nongeneric method
that uses Object as the parameter types, we can get compile-time errors if searching for an
Apple in an array of Shapes.

The generic method looks much like the generic class in that the type parameter list
uses the same syntax. The type parameters in a generic method precede the return type.

1.5.6 Type Bounds

Suppose we want to write a findMax routine. Consider the code in Figure 1.16. This code
cannot work because the compiler cannot prove that the call to compareTo at line 6 is valid;
compareTo is guaranteed to exist only if AnyType is Comparable. We can solve this problem

public static <AnyType> AnyType findMax( AnyType [ ] arr )
{

int maxIndex = 0;

1
2
3
4
5 for( int i = 1; i < arr.length; i++ )

6 if( arr[ i ].compareTo( arr[ maxIndex ] ) >0 )
7 maxIndex = i;

8

9

0

return arr[ maxIndex ];

1 }

Figure 1.16 Generic static method to find largest element in an array that does not work
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I public static <AnyType extends Comparable<? super AnyType>>
2 AnyType findMax( AnyType [ ] arr )

3 A

4 int maxIndex = 0;

5

6 for( int i = 1; i < arr.length; i++ )

7 if( arr[ i ].compareTo( arr[ maxIndex ] ) >0 )
8 maxIndex = i;

9

10 return arr[ maxIndex ];

11}

Figure 1.17 Generic static method to find largest element in an array. Illustrates a bounds
on the type parameter

by using a type bound. The type bound is specified inside the angle brackets <>, and it
specifies properties that the parameter types must have. A naive attempt is to rewrite the
signature as

public static <AnyType extends Comparable> ...

This is naive because, as we know, the Comparable interface is now generic. Although
this code would compile, a better attempt would be

public static <AnyType extends Comparable<AnyType>> ...

However, this attempt is not satisfactory. To see the problem, suppose Shape imple-
ments Comparable<Shape>. Suppose Square extends Shape. Then all we know is that Square
implements Comparable<Shape>. Thus, a Square IS-A Comparable<Shape>, but it IS-NOT-A
Comparable<Square>!

As a result, what we need to say is that AnyType IS-A Comparable<T> where T is a super-
class of AnyType. Since we do not need to know the exact type T, we can use a wildcard.
The resulting signature is

public static <AnyType extends Comparable<? super AnyType>>

Figure 1.17 shows the implementation of findMax. The compiler will accept arrays
of types T only such that T implements the Comparable<S> interface, where T IS-A .
Certainly the bounds declaration looks like a mess. Fortunately, we won't see anything
more complicated than this idiom.

1.5.7 Type Erasure

Generic types, for the most part, are constructs in the Java language but not in the Virtual
Machine. Generic classes are converted by the compiler to nongeneric classes by a pro-
cess known as type erasure. The simplified version of what happens is that the compiler
generates a raw class with the same name as the generic class with the type parameters
removed. The type variables are replaced with their bounds, and when calls are made

www.EBooksWorld.ir



1.5 Implementing Generic Components Using Java 5 Generics 23

to generic methods that have an erased return type, casts are inserted automatically. If a
generic class is used without a type parameter, the raw class is used.

One important consequence of type erasure is that the generated code is not much
different than the code that programmers have been writing before generics and in fact is
not any faster. The significant benefit is that the programmer does not have to place casts
in the code, and the compiler will do significant type checking.

1.5.8 Restrictions on Generics

There are numerous restrictions on generic types. Every one of the restrictions listed here
is required because of type erasure.

Primitive Types
Primitive types cannot be used for a type parameter. Thus GenericMemoryCell<int> is illegal.
You must use wrapper classes.

instanceof tests

instanceof tests and typecasts work only with raw type. In the following code
GenericMemoryCell<Integer> celll = new GenericMemoryCell<>( );
celll.write( 4 );
Object cell = celll;
GenericMemoryCell<String> cel12 = (GenericMemoryCell<String>) cell;
String s = cell2.read( );

the typecast succeeds at runtime since all types are GenericMemoryCell. Eventually, a run-
time error results at the last line because the call to read tries to return a String but cannot.
As a result, the typecast will generate a warning, and a corresponding instanceof test is
illegal.

Static Contexts

In a generic class, static methods and fields cannot refer to the class’s type variables since,
after erasure, there are no type variables. Further, since there is really only one raw class,
static fields are shared among the class’s generic instantiations.

Instantiation of Generic Types
It is illegal to create an instance of a generic type. If T is a type variable, the statement
T obj = new T( ); // Right-hand side is illegal

is illegal. T is replaced by its bounds, which could be Object (or even an abstract class), so
the call to new cannot make sense.

Generic Array Objects

It is illegal to create an array of a generic type. If T is a type variable, the statement

T[] arr=new T[ 10 ]; // Right-hand side is illegal
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isillegal. T would be replaced by its bounds, which would probably be Object, and then the
cast (generated by type erasure) to T[] would fail because Object[] IS-NOT-A T[]. Because
we cannot create arrays of generic objects, generally we must create an array of the erased
type and then use a typecast. This typecast will generate a compiler warning about an
unchecked type conversion.

Arrays of Parameterized Types
Instantiation of arrays of parameterized types is illegal. Consider the following code:

GenericMemoryCel1<String> [ ] arrl = new GenericMemoryCell<>[ 10 ];
GenericMemoryCell<Double> cell = new GenericMemoryCell<>( ); cell.write( 4.5 );
Object [ ] arr2 = arrl;

arr2[ 0 ] = cell;

String s = arrl[ 0 J.read( );

S N O R

Normally, we would expect that the assignment at line 4, which has the wrong type,
would generate an ArrayStoreException. However, after type erasure, the array type is
GenericMemoryCel1[], and the object added to the array is GenericMemoryCell, so there is
no ArrayStoreException. Thus, this code has no casts, yet it will eventually generate a
ClassCastException at line 5, which is exactly the situation that generics are supposed to
avoid.

1.6 Function Objects

In Section 1.5, we showed how to write generic algorithms. As an example, the generic
method in Figure 1.16 can be used to find the maximum item in an array.

However, that generic method has an important limitation: It works only for objects
that implement the Comparable interface, using compareTo as the basis for all comparison
decisions. In many situations, this approach is not feasible. For instance, it is a stretch
to presume that a Rectangle class will implement Comparable, and even if it does, the
compareTo method that it has might not be the one we want. For instance, given a 2-by-10
rectangle and a 5-by-5 rectangle, which is the larger rectangle? The answer would depend
on whether we are using area or width to decide. Or perhaps if we are trying to fit the rect-
angle through an opening, the larger rectangle is the rectangle with the larger minimum
dimension. As a second example, if we wanted to find the maximum string (alphabeti-
cally last) in an array of strings, the default compareTo does not ignore case distinctions, so
“ZEBRA” would be considered to precede “alligator” alphabetically, which is probably not
what we want.

The solution in these situations is to rewrite findMax to accept two parameters: an array
of objects and a comparison function that explains how to decide which of two objects is
the larger and which is the smaller. In effect, the objects no longer know how to compare
themselves; instead, this information is completely decoupled from the objects in the array.

An ingenious way to pass functions as parameters is to notice that an object contains
both data and methods, so we can define a class with no data and one method and pass
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1 // Generic findMax, with a function object.

2 // Precondition: a.size( ) > 0.

3 public static <AnyType>

4 AnyType findMax( AnyType [ ] arr, Comparator<? super AnyType> cmp )
5 {

6 int maxIndex = 0;

7

8 for( int i = 1; 1 < arr.size( ); i++ )

9 if( cmp.compare( arr[ i ], arr[ maxIndex ] ) >0 )
10 maxIndex = i;

11

12 return arr[ maxIndex ];

13 }

14

15 class CaselnsensitiveCompare implements Comparator<String>

16 {

17 public int compare( String Ths, String rhs )

18 { return Ths.compareToIgnoreCase( rhs ); }

19 }
20
21  class TestProgram
22 |
23 public static void main( String [ ] args )
24 {
25 String [ ] arr = { "ZEBRA", "alligator", "crocodile" };
26 System.out.printin( findMax( arr, new CaselnsensitiveCompare( ) ) )
27 }
28 1}

Figure 1.18 Using a function object as a second parameter to findMax; output is ZEBRA

an instance of the class. In effect, a function is being passed by placing it inside an object.
This object is commonly known as a function object.

Figure 1.18 shows the simplest implementation of the function object idea. findMax
takes a second parameter, which is an object of type Comparator. The Comparator inter-
face is specified in java.util and contains a compare method. This interface is shown in
Figure 1.19.

Any class that implements the Comparator<AnyType> interface type must have a method
named compare that takes two parameters of the generic type (AnyType) and returns an int,
following the same general contract as compareTo. Thus, in Figure 1.18, the call to compare
at line 9 can be used to compare array items. The bounded wildcard at line 4 is used to
signal that if we are finding the maximum in an array of items, the comparator must know
how to compare items, or objects of the items’ supertype. To use this version of findMax, at
line 26, we can see that findMax is called by passing an array of String and an object that
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package java.util;

1

2

3 public interface Comparator<AnyType>

4

5 int compare( AnyType Ths, AnyType rhs );
6 '}

Figure 1.19 The Comparator interface

implements Comparator<String>. This object is of type CaseInsensitiveCompare, which is a
class we write.

In Chapter 4, we will give an example of a class that needs to order the items it stores.
We will write most of the code using Comparable and show the adjustments needed to use
the function objects. Elsewhere in the book, we will avoid the detail of function objects to
keep the code as simple as possible, knowing that it is not difficult to add function objects
later.

Summary

This chapter sets the stage for the rest of the book. The time taken by an algorithm con-
fronted with large amounts of input will be an important criterion for deciding if it is a
good algorithm. (Of course, correctness is most important.) Speed is relative. What is fast
for one problem on one machine might be slow for another problem or a different machine.
We will begin to address these issues in the next chapter and will use the mathematics
discussed here to establish a formal model.

Exercises

1.1  Write a program to solve the selection problem. Let k = N/2. Draw a table showing
the running time of your program for various values of N.

1.2 Write a program to solve the word puzzle problem.

1.3 Write a method to output an arbitrary double number (which might be negative)
using only printDigit for I/O.

1.4  C allows statements of the form
#include filename

which reads filename and inserts its contents in place of the include statement.
Include statements may be nested; in other words, the file filename may itself con-
tain an include statement, but, obviously, a file cant include itself in any chain.
Write a program that reads in a file and outputs the file as modified by the include
statements.
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1.5

1.6

1.7

1.8

1.9

*1.10
1.11

1.12

1.13

1.14

md YZ

Exercises

Write a recursive method that returns the number of 1's in the binary representation
of N. Use the fact that this is equal to the number of 1’s in the representation of N/2,
plus 1, if N is odd.

Write the routines with the following declarations:

public void permute( String str );
private void permute( char [ ] str, int low, int high );

The first routine is a driver that calls the second and prints all the permutations of
the characters in String str. If str is "abc", then the strings that are output are abc,
ach, bac, bca, cab, and cba. Use recursion for the second routine.

Prove the following formulas:
a. logX < Xforall X > 0
b. log(A®) = BlogA

Evaluate the following sums:
a. Z?:Oo%
b Yoy
¢ Yo -

*

7=+l

1

S

Estimate
5 !
i=|N/2] i
What is 2199 (mod 5)?

Let Fj be the Fibonacci numbers as defined in Section 1.2. Prove the following:
N-2

a. Zi:l Fi =Fy— 2

b. Fy < ¢V, with ¢ = (1 ++/5)/2

*c. Give a precise closed-form expression for Fy.

Prove the following formulas:
a YN, Qi—-1D=N?

b X0 = (D)

Design a generic class, Collection, that stores a collection of Objects (in an array),
along with the current size of the collection. Provide public methods isEmpty,
makeEmpty, insert, remove, and isPresent. isPresent(x) returns true if and only if
an Object that is equal to x (as defined by equals) is present in the collection.

Design a generic class, OrderedCollection, that stores a collection of Comparables
(in an array), along with the current size of the collection. Provide public methods
isEmpty, makeEmpty, insert, remove, findMin, and findMax. findMin and findMax return
references to the smallest and largest, respectively, Comparable in the collection (or
null if the collection is empty).
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1.15 Define a Rectangle class that provides getLength and getWidth methods. Using the
findMax routines in Figure 1.18, write a main that creates an array of Rectangle
and finds the largest Rectangle first on the basis of area, and then on the basis of
perimeter.
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. cuapTER 2
Algorithm Analysis

An algorithm is a clearly specified set of simple instructions to be followed to solve a
problem. Once an algorithm is given for a problem and decided (somehow) to be correct,
an important step is to determine how much in the way of resources, such as time or space,
the algorithm will require. An algorithm that solves a problem but requires a year is hardly
of any use. Likewise, an algorithm that requires hundreds of gigabytes of main memory is
not (currently) useful on most machines.

In this chapter, we shall discuss

* How to estimate the time required for a program.

* How to reduce the running time of a program from days or years to fractions of a
second.

e The results of careless use of recursion.

* Very efficient algorithms to raise a number to a power and to compute the greatest
common divisor of two numbers.

2.1 Mathematical Background

The analysis required to estimate the resource use of an algorithm is generally a theoretical
issue, and therefore a formal framework is required. We begin with some mathematical
definitions.

Throughout the book we will use the following four definitions:

Definition 2.1.
T(N) = O(f(N)) if there are positive constants ¢ and ng such that T(N) < ¢f(N) when
N > nop.

Definition 2.2.

T(N) = Q(g(N)) if there are positive constants ¢ and ng such that T(N) > ¢g(N) when
N > ng.

Definition 2.3.
T(N) = ©(h(N\)) if and only if T(N) = Oh(N)) and T(N) = Q(h(N\)).
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Definition 2.4.
T(N) = o(p(I\)) if for all positive constants ¢ there exists an ng such that T(N) < ¢p(N)
when N > ng. Less formally, T(N) = o(p(N)) if T(N) = O(p(N)) and T(N) # O(p(N\)).

The idea of these definitions is to establish a relative order among functions. Given two
functions, there are usually points where one function is smaller than the other function,
so it does not make sense to claim, for instance, f(N) < g(N). Thus, we compare their
relative rates of growth. When we apply this to the analysis of algorithms, we shall see
why this is the important measure.

Although 1,000N is larger than N? for small values of N, N grows at a faster rate, and
thus N? will eventually be the larger function. The turning point is N = 1,000 in this case.
The first definition says that eventually there is some point ng past which ¢ - f(N) is always
at least as large as T(N), so that if constant factors are ignored, f(N) is at least as big as
T(N). In our case, we have T(N) = 1,000N, f(N) = N2, np = 1,000, and ¢ = 1. We could
also use ng = 10 and ¢ = 100. Thus, we can say that 1,000N = O(N?) (order N-squared).
This notation is known as Big-Oh notation. Frequently, instead of saying “order...,” one
says “Big-Oh....”

If we use the traditional inequality operators to compare growth rates, then the
first definition says that the growth rate of T(N) is less than or equal to (<) that of
f(N). The second definition, T(N) = Q(g(N)) (pronounced “omega”), says that the
growth rate of T(N) is greater than or equal to (>) that of g(N). The third definition,
T(N) = ©(h(N)) (pronounced “theta”), says that the growth rate of T(N) equals (=)
the growth rate of h(N). The last definition, T(N) = o(p(N)) (pronounced “little-oh”),
says that the growth rate of T(N) is less than (<) the growth rate of p(N). This is
different from Big-Oh, because Big-Oh allows the possibility that the growth rates are
the same.

To prove that some function T(N) = O(f(N)), we usually do not apply these defini-
tions formally but instead use a repertoire of known results. In general, this means that a
proof (or determination that the assumption is incorrect) is a very simple calculation and
should not involve calculus, except in extraordinary circumstances (not likely to occur in
an algorithm analysis).

When we say that T(IN) = O(f(N)), we are guaranteeing that the function T(N) grows
at a rate no faster than f(N); thus f(N) is an upper bound on T(N). Since this implies that
f(N) = Q(T(N)), we say that T(N) is a lower bound on f(N).

As an example, N> grows faster than N2, so we can say that N> = O(N°) or N° =
Q(N?). f(N) = N? and g(N) = 2N? grow at the same rate, so both f(N) = O(g(N)) and
fN) = Q(g(N)) are true. When two functions grow at the same rate, then the decision of
whether or not to signify this with ®() can depend on the particular context. Intuitively,
if g(N) = 2N? then giN) = O(NY), giN) = O(N?), and gN) = O(N?) are all technically
correct, but the last option is the best answer. Writing g(N) = @(N?) says not only that
g(N) = O(N?), but also that the result is as good (tight) as possible.
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Function Name
c Constant
logN Logarithmic
log® N Log-squared
N Linear
NlogN
N2 Quadratic
N3 Cubic
2N Exponential
Figure 2.1 Typical growth rates

The important things to know are

Rule 1.

If T)(N) = O(f(N)) and TL(N) = O(g(N)), then
(@ T1(N) + TL(N) = O(f(N) + g(\V)) (intuitively and less formally it is

O(max(f(N), g\))) ),

() Ti(N) * To(N) = O(f(N) * g(N)).

Rule 2.

If T(N) is a polynomial of degree k, then T(N) = ONh.

Rule 3.

Mathematical Background

log® N = O(N) for any constant k. This tells us that logarithms grow very slowly.

This information is sufficient to arrange most of the common functions by growth rate
(see Figure 2.1).

Several points are in order. First, it is very bad style to include constants or low-order
terms inside a Big-Oh. Do not say T(N) = OQN?) or T(N) = O(N2+N). In both cases, the
correct form is T(N) = O(N?). This means that in any analysis that will require a Big-Oh
answer, all sorts of shortcuts are possible. Lower-order terms can generally be ignored, and
constants can be thrown away. Considerably less precision is required in these cases.

Second, we can always determine the relative growth rates of two functions f(N) and
g(N) by computing limy_ 0 f(N)/g(N), using UHopitals rule if necessary.! The limit can
have four possible values:

e The limit is O: This means that f(N) = o(g(N)).
* The limit is ¢ # 0: This means that f(N) = ®(g(N)).

1L’H(‘)pital’s rule states that if limy_, o f(N) = 00 and limy_, o g(N) = o0, then imy_, o f(N)/g(N) =
limn— o0 f'(N)/g'(N), where f'(N) and ¢'(N) are the derivatives of f(N) and g(N), respectively.
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* The limit is co: This means that g(N) = o(f(N\)).

* The limit does not exist: There is no relation (this will not happen in our context).

Using this method almost always amounts to overkill. Usually the relation between
f(N) and g(N) can be derived by simple algebra. For instance, if f(N) = NlogN and
g(N) = N'2| then to decide which of f(N) and g(N) grows faster, one really needs to
determine which of log N and N> grows faster. This is like determining which of log? N
or N grows faster. This is a simple problem, because it is already known that N grows faster
than any power of a log. Thus, g(N) grows faster than f(N).

One stylistic note: It is bad to say f(N) < O(g(N)), because the inequality is implied by
the definition. It is wrong to write f(N) > O(g(N)), which does not make sense.

As an example of the typical kinds of analysis that are performed, consider the problem
of downloading a file over the Internet. Suppose there is an initial 3-sec delay (to set up
a connection), after which the download proceeds at 1.5 M(bytes)/sec. Then it follows
that if the file is N megabytes, the time to download is described by the formula T(N) =
N/1.5 4 3. This is a linear function. Notice that the time to download a 1,500M file
(1,003 sec) is approximately (but not exactly) twice the time to download a 750M file (503
sec). This is typical of a linear function. Notice, also, that if the speed of the connection
doubles, both times decrease, but the 1,500M file still takes approximately twice the time
to download as a 750M file. This is the typical characteristic of linear-time algorithms, and
it is why we write T(N) = O(N), ignoring constant factors. (Although using Big-Theta
would be more precise, Big-Oh answers are typically given.)

Observe, too, that this behavior is not true of all algorithms. For the first selection
algorithm described in Section 1.1, the running time is controlled by the time it takes to
perform a sort. For a simple sorting algorithm, such as the suggested bubble sort, when the
amount of input doubles, the running time increases by a factor of four for large amounts
of input. This is because those algorithms are not linear. Instead, as we will see when we
discuss sorting, trivial sorting algorithms are O(N?), or quadratic.

2.2 Model

In order to analyze algorithms in a formal framework, we need a model of computation.
Our model is basically a normal computer, in which instructions are executed sequentially.
Our model has the standard repertoire of simple instructions, such as addition, multipli-
cation, comparison, and assignment, but, unlike the case with real computers, it takes
exactly one time unit to do anything (simple). To be reasonable, we will assume that, like
a modern computer, our model has fixed-size (say, 32-bit) integers and that there are no
fancy operations, such as matrix inversion or sorting, that clearly cannot be done in one
time unit. We also assume infinite memory.

This model clearly has some weaknesses. Obviously, in real life, not all operations take
exactly the same time. In particular, in our model one disk read counts the same as an
addition, even though the addition is typically several orders of magnitude faster. Also, by
assuming infinite memory, we ignore the fact that the cost of a memory access can increase
when slower memory is used due to larger memory requirements.
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2.3 What to Analyze

The most important resource to analyze is generally the running time. Several factors
affect the running time of a program. Some, such as the compiler and computer used,
are obviously beyond the scope of any theoretical model, so, although they are important,
we cannot deal with them here. The other main factors are the algorithm used and the
input to the algorithm.

Typically, the size of the input is the main consideration. We define two functions,
Tavg(N) and Tyors(N), as the average and worst-case running time, respectively, used by
an algorithm on input of size N. Clearly, Tayg(N) < Tyworst(N). If there is more than one
input, these functions may have more than one argument.

Occasionally the best-case performance of an algorithm is analyzed. However, this is
often of little interest, because it does not represent typical behavior. Average-case perfor-
mance often reflects typical behavior, while worst-case performance represents a guarantee
for performance on any possible input. Notice, also, that, although in this chapter we ana-
lyze Java code, these bounds are really bounds for the algorithms rather than programs.
Programs are an implementation of the algorithm in a particular programming language,
and almost always the details of the programming language do not affect a Big-Oh answer. If
a program is running much more slowly than the algorithm analysis suggests, there may be
an implementation inefficiency. This is more common in languages (like C++) where arrays
can be inadvertently copied in their entirety, instead of passed with references. However,
this can occur in Java, too. Thus in future chapters we will analyze the algorithms rather
than the programs.

Generally, the quantity required is the worst-case time, unless otherwise specified. One
reason for this is that it provides a bound for all input, including particularly bad input,
which an average-case analysis does not provide. The other reason is that average-case
bounds are usually much more difficult to compute. In some instances, the definition
of “average” can affect the result. (For instance, what is average input for the following
problem?)

As an example, in the next section, we shall consider the following problem:

Maximum Subsequence Sum Problem.

Given (possibly negative) integers A1, Ay, . .., Ay, find the maximum value of ZJk:i Ay.
(For convenience, the maximum subsequence sum is 0 if all the integers are negative.)
Example:

Forinput —2, 11, —4, 13, —5, —2, the answer is 20 (A; through A4).

This problem is interesting mainly because there are so many algorithms to solve it,
and the performance of these algorithms varies drastically. We will discuss four algo-
rithms to solve this problem. The running time on some computer (the exact computer
is unimportant) for these algorithms is given in Figure 2.2.

There are several important things worth noting in this table. For a small amount of
input, the algorithms all run in a blink of the eye, so if only a small amount of input is
expected, it might be silly to expend a great deal of effort to design a clever algorithm.
On the other hand, there is a large market these days for rewriting programs that were
written five years ago based on a no-longer-valid assumption of small input size. These
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Algorithm Time

Input 1 2 3 4

Size O(N?) O(N?) O(NlogN) O(N)

N =100 0.000159 0.000006 0.000005 0.000002
N = 1,000 0.095857 0.000371 0.000060 0.000022
N = 10,000 86.67 0.033322 0.000619 0.000222
N = 100,000 NA 3.33 0.006700 0.002205
N = 1,000,000 NA NA 0.074870 0.022711

Figure 2.2 Running times of several algorithms for maximum
subsequence sum (in seconds)

programs are now too slow, because they used poor algorithms. For large amounts of
input, algorithm 4 is clearly the best choice (although algorithm 3 is still usable).

Second, the times given do not include the time required to read the input. For algo-
rithm 4, the time merely to read in the input from a disk is likely to be an order of
magnitude larger than the time required to solve the problem. This is typical of many
efficient algorithms. Reading the data is generally the bottleneck; once the data are read,
the problem can be solved quickly. For inefficient algorithms this is not true, and significant
computer resources must be used. Thus it is important that, whenever possible, algorithms
be efficient enough not to be the bottleneck of a problem.

Notice that algorithm 4, which is linear, exhibits the nice behavior that as the prob-
lem size increases by a factor of ten, the running time also increases by a factor of ten.

Linear
O(NlogN) -----
Quadratic
Cubic =—=—

T
|
]
|
|
|
|
/
/

Running Time

0 | | | | | | | | |
10 20 30 40 50 60 70 80 90 100

Input Size (N)

Figure 2.3 Plot (N vs. time) of various algorithms
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Linear e
O(NlogN) ----- g

Quadratic L
Cubic =—==— .-

Running Time

O + + T T 1
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Input Size (N)

Figure 2.4 Plot (N vs. time) of various algorithms

Algorithm 2, which is quadratic, does not have this behavior; a tenfold increase in input
size yields roughly a hundredfold (10%) increase in running time. And algorithm 1, which
is cubic, yields a thousandfold (10%) increase in running time. We would expect algorithm
1 to take nearly 9,000 seconds (or two and half hours) to complete for N = 100,000.
Similarly, we would expect algorithm 2 to take roughly 333 seconds to complete for
N = 1,000,000. However, it is possible that Algorithm 2 could take somewhat longer
to complete due to the fact that N = 1,000,000 could also yield slower memory accesses
than N = 100,000 on modern computers, depending on the size of the memory cache.

Figure 2.3 shows the growth rates of the running times of the four algorithms. Even
though this graph encompasses only values of N ranging from 10 to 100, the relative
growth rates are still evident. Although the graph for the O(N log N) algorithm seems linear,
it is easy to verify that it is not by using a straight-edge (or piece of paper). Although the
graph for the O(N) algorithm seems constant, this is only because for small values of N, the
constant term is larger than the linear term. Figure 2.4 shows the performance for larger
values. It dramatically illustrates how useless inefficient algorithms are for even moderately
large amounts of input.

2.4 Running Time Calculations
There are several ways to estimate the running time of a program. The previous table was

obtained empirically. If two programs are expected to take similar times, probably the best
way to decide which is faster is to code them both up and run them!
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Generally, there are several algorithmic ideas, and we would like to eliminate the bad
ones early, so an analysis is usually required. Furthermore, the ability to do an analysis
usually provides insight into designing efficient algorithms. The analysis also generally
pinpoints the bottlenecks, which are worth coding carefully.

To simplify the analysis, we will adopt the convention that there are no particular units
of time. Thus, we throw away leading constants. We will also throw away low-order terms,
so what we are essentially doing is computing a Big-Oh running time. Since Big-Oh is an
upper bound, we must be careful never to underestimate the running time of the program.
In effect, the answer provided is a guarantee that the program will terminate within a
certain time period. The program may stop earlier than this, but never later.

2.4.1 A Simple Example

Here is a simple program fragment to calculate Zf\]zl i3

public static int sum( int n )

{

int partialSum;

partialSum = 0;

for( int i = 1; i <= nj i++ )
partialSum += i % i * i;

return partialSum;

KW N =

}

The analysis of this fragment is simple. The declarations count for no time. Lines 1 and
4 count for one unit each. Line 3 counts for four units per time executed (two multiplica-
tions, one addition, and one assignment) and is executed N times, for a total of 4N units.
Line 2 has the hidden costs of initializing i, testing i < N, and incrementing i. The total
cost of all these is 1 to initialize, N + 1 for all the tests, and N for all the increments, which
is 2N 4 2. We ignore the costs of calling the method and returning, for a total of 6N + 4.
Thus, we say that this method is O(N).

If we had to perform all this work every time we needed to analyze a program, the
task would quickly become infeasible. Fortunately, since we are giving the answer in terms
of Big-Oh, there are lots of shortcuts that can be taken without affecting the final answer.
For instance, line 3 is obviously an O(1) statement (per execution), so it is silly to count
precisely whether it is two, three, or four units; it does not matter. Line 1 is obviously
insignificant compared with the for loop, so it is silly to waste time here. This leads to
several general rules.

2.4.2 General Rules

Rule 1—for loops.
The running time of a for loop is at most the running time of the statements inside the
for loop (including tests) times the number of iterations.
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Rule 2—Nested loops.

Analyze these inside out. The total running time of a statement inside a group of nested
loops is the running time of the statement multiplied by the product of the sizes of all
the loops.

As an example, the following program fragment is O(N?):

for( 1 = 0; i <n; i++ )
for( j =05 j <ny j++ )
K+

B

Rule 3—Consecutive Statements.
These just add (which means that the maximum is the one that counts; see rule 1(a)
on page 31).

As an example, the following program fragment, which has O(N) work followed by O(N?)
work, is also O(N?):

for( i =0; 1 <n; i++)
al 1] = 0;
for( 1 =0; i <n; i++)
for( j =05 j <n; j++)
afil+=alj]l+1i+3;

Rule 4—if/else.
For the fragment

if( condition )
S1

else
S2

the running time of an if/else statement is never more than the running time of the
test plus the larger of the running times of S1 and S2.

Clearly, this can be an overestimate in some cases, but it is never an underestimate.

Other rules are obvious, but a basic strategy of analyzing from the inside (or deepest
part) out works. If there are method calls, these must be analyzed first. If there are recursive
methods, there are several options. If the recursion is really just a thinly veiled for loop,
the analysis is usually trivial. For instance, the following method is really just a simple loop
and is O(N):

public static Tong factorial( int n )
{
if(n<=1)
return 1;
else
return n * factorial( n -1 );
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This example is really a poor use of recursion. When recursion is properly used, it is
difficult to convert the recursion into a simple loop structure. In this case, the analysis will
involve a recurrence relation that needs to be solved. To see what might happen, consider
the following program, which turns out to be a horrible use of recursion:

public static Tong fib( int n )
{

1 if(n<=1)
2 return 1;
else
3 return fib( n - 1) + fib(n -2 );

At first glance, this seems like a very clever use of recursion. However, if the program
is coded up and run for values of N around 40, it becomes apparent that this program
is terribly inefficient. The analysis is fairly simple. Let T(N) be the running time for the
method call fib(n). If N = 0 or N = 1, then the running time is some constant value,
which is the time to do the test at line 1 and return. We can say that T(0) = T(1) = 1
because constants do not matter. The running time for other values of N is then measured
relative to the running time of the base case. For N > 2, the time to execute the method is
the constant work at line 1 plus the work at line 3. Line 3 consists of an addition and two
method calls. Since the method calls are not simple operations, they must be analyzed by
themselves. The first method call is fib(n - 1) and hence, by the definition of T, requires
T(N — 1) units of time. A similar argument shows that the second method call requires
T(N — 2) units of time. The total time required is then T(N — 1) + T(N — 2) 4 2, where the
2 accounts for the work at line 1 plus the addition at line 3. Thus, for N > 2, we have the
following formula for the running time of fib(n):

TN)=TIN—1+T(N—=2)+2

Since fib(N) = fib(N — 1) 4 fib(N — 2), it is easy to show by induction that T(N) > fib(N).
In Section 1.2.5, we showed that fib(N) < (5/3)N. A similar calculation shows that (for
N > 4) fib(N) > (3/2)¥, and so the running time of this program grows exponentially. This
is about as bad as possible. By keeping a simple array and using a for loop, the running
time can be reduced substantially.

This program is slow because there is a huge amount of redundant work being per-
formed, violating the fourth major rule of recursion (the compound interest rule), which
was presented in Section 1.3. Notice that the first call on line 3, fib(n - 1), actually com-
putes fib(n - 2) at some point. This information is thrown away and recomputed by the
second call on line 3. The amount of information thrown away compounds recursively and
results in the huge running time. This is perhaps the finest example of the maxim “Don’t
compute anything more than once” and should not scare you away from using recursion.
Throughout this book, we shall see outstanding uses of recursion.
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2.4.3 Solutions for the Maximum Subsequence
Sum Problem

We will now present four algorithms to solve the maximum subsequence sum prob-
lem posed earlier. The first algorithm, which merely exhaustively tries all possibilities,
is depicted in Figure 2.5. The indices in the for loop reflect the fact that in Java, arrays
begin at 0, instead of 1. Also, the algorithm does not compute the actual subsequences;
additional code is required to do this.

Convince yourself that this algorithm works (this should not take much convincing).
The running time is O(N>) and is entirely due to lines 13 and 14, which consist of an O(1)
statement buried inside three nested for loops. The loop at line 8 is of size N.

The second loop has size N — i which could be small but could also be of size N. We
must assume the worst, with the knowledge that this could make the final bound a bit
high. The third loop has size j —i+ 1, which, again, we must assume is of size N. The total
is O(1 - N-N-N) = ON?). Line 6 takes only O(1) total, and lines 16 and 17 take only
O(N?) total, since they are easy expressions inside only two loops.

It turns out that a more precise analysis, taking into account the actual size of these
loops, shows that the answer is O(N>) and that our estimate above was a factor of 6 too
high (which is all right, because constants do not matter). This is generally true in these

kinds of problems. The precise analysis is obtained from the sum Zf\; _01 ZJI\L _]-1 Jie:i 1,

1 /**

2 % Cubic maximum contiguous subsequence sum algorithm.
3 */

4 public static int maxSubSuml( int [ ] a )
5 {

6 int maxSum = 0;

7

8 for( int i = 0; i < a.length; i++ )
9 for( int j = i; j < a.length; j++ )
10 {

11 int thisSum = 0;

12

13 for( int k = i; k <= j; k++ )
14 thisSum += a[ k ];

15

16 if( thisSum > maxSum )

17 maxSum = thisSum;

18 }

19

20 return maxSum;

21 }

Figure 2.5 Algorithm 1
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which tells how many times line 14 is executed. The sum can be evaluated inside out,
using formulas from Section 1.2.3. In particular, we will use the formulas for the sum of
the first N integers and first N squares. First we have

J
dl=j-it1
k=i

Next we evaluate
N—1

S i+ = (N—i—}-zl)(N—i)

J=i

This sum is computed by observing that it is just the sum of the first N — i integers. To
complete the calculation, we evaluate

Ni(N-iH)(N—i) _XN:(N—1'+1)(N—1'+2)
i=0

2 = 2

1 N 3 N 1 N
_ - 2 - . - 2
_2;:1 <N+2);1+2(N +3N+2);1

1NN+ DQN +1 3\ NW+1)  N?+3N+2
_ INWA1IX +)—<N+—>(+)+ TINF2,

2 6 2 2 2
_ N’ 43N 42N
=

We can avoid the cubic running time by removing a for loop. This is not always pos-
sible, but in this case there are an awful lot of unnecessary computations present in the
algorithm. The inefficiency that the improved algorithm corrects can be seen by noticing
that ) )_ Ax = Aj + Z;;% Ap, so the computation at lines 13 and 14 in algorithm 1 is
unduly expensive. Figure 2.6 shows an improved algorithm. Algorithm 2 is clearly O(N?);
the analysis is even simpler than before.

There is a recursive and relatively complicated O(NlogN) solution to this problem,
which we now describe. If there didn’t happen to be an O(N) (linear) solution, this would
be an excellent example of the power of recursion. The algorithm uses a “divide-and-
conquer” strategy. The idea is to split the problem into two roughly equal subproblems,
which are then solved recursively. This is the “divide” part. The “conquer” stage consists
of patching together the two solutions of the subproblems, and possibly doing a small
amount of additional work, to arrive at a solution for the whole problem.

In our case, the maximum subsequence sum can be in one of three places. Either it
occurs entirely in the left half of the input, or entirely in the right half, or it crosses the
middle and is in both halves. The first two cases can be solved recursively. The last case
can be obtained by finding the largest sum in the first half that includes the last element
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1 /**

2 * Quadratic maximum contiguous subsequence sum algorithm.
3 x/

4 public static int maxSubSum2( int [ ] a )
5 {

6 int maxSum = 0;

7

8 for( int i = 0; 1 < a.length; i++ )
9 {

10 int thisSum = 0;

11 for( int j = i; j < a.length; j++ )
12 {

13 thisSum += a[ j ];

14

15 if( thisSum > maxSum )

16 maxSum = thisSum;

17 }

18 }

19

20 return maxSum;

21 }

Figure 2.6 Algorithm 2

in the first half, and the largest sum in the second half that includes the first element in
the second half. These two sums can then be added together. As an example, consider the
following input:

First Half Second Half

4 -3 5 =2 -1 2 6 =2

The maximum subsequence sum for the first half is 6 (elements A; through As) and for
the second half is 8 (elements Ag through A7).

The maximum sum in the first half that includes the last element in the first half is 4
(elements A; through A4), and the maximum sum in the second half that includes the first
element in the second half is 7 (elements As through A7). Thus, the maximum sum that
spans both halves and goes through the middle is 4 + 7 = 11 (elements A; through A7).

We see, then, that among the three ways to form a large maximum subsequence, for
our example, the best way is to include elements from both halves. Thus, the answer is 11.
Figure 2.7 shows an implementation of this strategy.

The code for algorithm 3 deserves some comment. The general form of the call for the
recursive method is to pass the input array along with the left and right borders, which

www.EBooksWorld.ir

a1



Chapter 2 Algorithm Analysis

1 /**
2 * Recursive maximum contiguous subsequence sum algorithm.
3 % Finds maximum sum in subarray spanning a[left..right].
4 * Does not attempt to maintain actual best sequence.
5 */
6 private static int maxSumRec( int [ ] a, int Teft, int right )
7 {
8 if( left == right ) // Base case
9 if( al left] >0)
10 return a[ left ];
11 else
12 return 0;
13
14 int center = ( left + right ) / 2;
15 int maxLeftSum = maxSumRec( a, left, center );
16 int maxRightSum = maxSumRec( a, center + 1, right );
17
18 int maxLeftBorderSum = 0, leftBorderSum = 0;
19 for( int i = center; i >= left; i-- )
20 {
21 leftBorderSum += a[ i ];
22 if( leftBorderSum > maxLeftBorderSum )
23 maxLeftBorderSum = TeftBorderSum;
24 }
25
26 int maxRightBorderSum = 0, rightBorderSum = 0;
27 for( int i = center + 1; i <= right; i++ )
28 {
29 rightBorderSum += a[ i ];
30 if( rightBorderSum > maxRightBorderSum )
31 maxRightBorderSum = rightBorderSum;
32 }
33
34 return max3( maxLeftSum, maxRightSum,
35 maxLeftBorderSum + maxRightBorderSum );
36 }
37
38 /**
39 % Driver for divide-and-conquer maximum contiguous
40 * subsequence sum algorithm.
41 x/
42 public static int maxSubSum3( int [ ] a )
43 {
44 return maxSumRec( a, 0, a.length - 1 );
45 }

Figure 2.7 Algorithm 3
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delimit the portion of the array that is operated upon. A one-line driver program sets this
up by passing the borders 0 and N — 1 along with the array.

Lines 8 to 12 handle the base case. If Teft == right, there is one element, and it is the
maximum subsequence if the element is nonnegative. The case Teft > right is not possible
unless N is negative (although minor perturbations in the code could mess this up). Lines
15 and 16 perform the two recursive calls. We can see that the recursive calls are always
on a smaller problem than the original, although minor perturbations in the code could
destroy this property. Lines 18 to 24 and 26 to 32 calculate the two maximum sums that
touch the center divider. The sum of these two values is the maximum sum that spans both
halves. The routine max3 (not shown) returns the largest of the three possibilities.

Algorithm 3 clearly requires more effort to code than either of the two previous algo-
rithms. However, shorter code does not always mean better code. As we have seen in the
earlier table showing the running times of the algorithms, this algorithm is considerably
faster than the other two for all but the smallest of input sizes.

The running time is analyzed in much the same way as for the program that computes
the Fibonacci numbers. Let T(N) be the time it takes to solve a maximum subsequence
sum problem of size N. If N = 1, then the program takes some constant amount of time
to execute lines 8 to 12, which we shall call one unit. Thus, T(1) = 1. Otherwise, the
program must perform two recursive calls, the two for loops between lines 19 and 32, and
some small amount of bookkeeping, such as lines 14 and 18. The two for loops combine
to touch every element in the subarray, and there is constant work inside the loops, so the
time expended in lines 19 to 32 is O(N). The code in lines 8 to 14, 18, 26, and 34 is all
a constant amount of work and can thus be ignored compared with O(N). The remainder
of the work is performed in lines 15 and 16. These lines solve two subsequence problems
of size N/2 (assuming N is even). Thus, these lines take T(N/2) units of time each, for a
total of 2T(N/2). The total time for the algorithm then is 2T(N/2) + O(N). This gives the
equations

(1) =1
T(N) = 2T(N/2) + O(N)

To simplify the calculations, we can replace the O(N) term in the equation above with
N; since T(N) will be expressed in Big-Oh notation anyway, this will not affect the answer.
In Chapter 7, we shall see how to solve this equation rigorously. For now, if T(N) =
2T(N/2)+N,and T(1) = 1, then T2) =4 =22, T(4) = 12 = 4% 3, T(8) = 32 = 8x4,
and T(16) = 80 = 16%5. The pattern that is evident, and can be derived, is that if N = 2k,
then T(N) = N (k+ 1) = NlogN + N = O(NlogN).

This analysis assumes N is even, since otherwise N/2 is not defined. By the recursive
nature of the analysis, it is really valid only when N is a power of 2, since otherwise we
eventually get a subproblem that is not an even size, and the equation is invalid. When
N is not a power of 2, a somewhat more complicated analysis is required, but the Big-Oh
result remains unchanged.

In future chapters, we will see several clever applications of recursion. Here, we present
a fourth algorithm to find the maximum subsequence sum. This algorithm is simpler to
implement than the recursive algorithm and also is more efficient. It is shown in Figure 2.8.
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1 /**

2 * Linear-time maximum contiguous subsequence sum algorithm.
3 x/

4 public static int maxSubSum4( int [ ] a )
5 {

6 int maxSum = 0, thisSum = 0;

7

8 for( int j = 0; j < a.length; j++ )

9 {

10 thisSum += a[ j ];
11
12 if( thisSum > maxSum )
13 maxSum = thisSum;
14 else if( thisSum < 0 )
15 thisSum = 0;
16 }
17
18 return maxSum;
19 }

Figure 2.8 Algorithm 4

It should be clear why the time bound is correct, but it takes a little thought to see
why the algorithm actually works. To sketch the logic, note that, like algorithms 1 and 2,
j is representing the end of the current sequence, while i is representing the start of the
current sequence. It happens that the use of i can be optimized out of the program if we do
not need to know where the actual best subsequence is, so in designing the algorithm, let’s
pretend that i is needed, and that we are trying to improve algorithm 2. One observation is
that if a[i] is negative, then it cannot possibly represent the start of the optimal sequence,
since any subsequence that begins by including a[i] would be improved by beginning
with a[i+1]. Similarly, any negative subsequence cannot possibly be a prefix of the optimal
subsequence (same logic). If, in the inner loop, we detect that the subsequence from a[i]
to a[j] is negative, then we can advance i. The crucial observation is that not only can we
advance i to i+1, but we can also actually advance it all the way to j+1. To see this, let p be
any index between i+1 and j. Any subsequence that starts at index p is not larger than the
corresponding subsequence that starts at index i and includes the subsequence from a[i]
to a[p-1], since the latter subsequence is not negative (j is the first index that causes the
subsequence starting at index i to become negative). Thus advancing i to j+1 is risk free:
we cannot miss an optimal solution.

This algorithm is typical of many clever algorithms: The running time is obvious, but
the correctness is not. For these algorithms, formal correctness proofs (more formal than
the sketch above) are almost always required; even then, however, many people still are not
convinced. In addition, many of these algorithms require trickier programming, leading
to longer development. But when these algorithms work, they run quickly, and we can
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test much of the code logic by comparing it with an inefficient (but easily implemented)
brute-force algorithm using small input sizes.

An extra advantage of this algorithm is that it makes only one pass through the data,
and once a[i] is read and processed, it does not need to be remembered. Thus, if the
array is on a disk or is being transmitted over the Internet, it can be read sequentially, and
there is no need to store any part of it in main memory. Furthermore, at any point in time,
the algorithm can correctly give an answer to the subsequence problem for the data it has
already read (the other algorithms do not share this property). Algorithms that can do this
are called online algorithms. An online algorithm that requires only constant space and
runs in linear time is just about as good as possible.

2.4.4 Logarithms in the Running Time

The most confusing aspect of analyzing algorithms probably centers around the logarithm.
We have already seen that some divide-and-conquer algorithms will run in O(NlogN)
time. Besides divide-and-conquer algorithms, the most frequent appearance of logarithms
centers around the following general rule: An algorithm is O(log N) if it takes constant (O(1))
time to cut the problem size by a fraction (which is usually %). On the other hand, if constant
time is required to merely reduce the problem by a constant amount (such as to make the
problem smaller by 1), then the algorithm is O(N).

It should be obvious that only special kinds of problems can be O(log N). For instance,
if the input is a list of N numbers, an algorithm must take €2(N) merely to read the input
in. Thus, when we talk about O(log N) algorithms for these kinds of problems, we usually
presume that the input is preread. We provide three examples of logarithmic behavior.

Binary Search

The first example is usually referred to as binary search.

Binary Search.
Given an integer X and integers Ap, Ay, ...,An—1, which are presorted and already in
memory, find i such that A; = X, or return i = —1 if X is not in the input.

The obvious solution consists of scanning through the list from left to right and runs
in linear time. However, this algorithm does not take advantage of the fact that the list is
sorted and is thus not likely to be best. A better strategy is to check if X is the middle
element. If so, the answer is at hand. If X is smaller than the middle element, we can apply
the same strategy to the sorted subarray to the left of the middle element; likewise, if X is
larger than the middle element, we look to the right half. (There is also the case of when to
stop.) Figure 2.9 shows the code for binary search (the answer is mid). As usual, the code
reflects Java’s convention that arrays begin with index 0.

Clearly, all the work done inside the loop takes O(1) per iteration, so the analysis
requires determining the number of times around the loop. The loop starts with high -
Tow = N — 1 and finishes with high - Tow > —1. Every time through the loop the value
high - Tow must be at least halved from its previous value; thus, the number of times
around the loop is at most [log(N — 1)] 4 2. (As an example, if high - Tow = 128, then
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1 /**

2 * Performs the standard binary search.

3 % @return index where item is found, or -1 if not found.
4 */

5 public static <AnyType extends Comparable<? super AnyType>>
6 int binarySearch( AnyType [ ] a, AnyType x )

7 {

8 int Tow = 0, high = a.length - 1;

9

10 while( Tow <= high )

11 {

12 int mid = ( low + high ) / 2;

13

14 if( a[ mid ].compareTo( x ) <0 )

15 Tow = mid + 1;

16 else if( a[ mid ].compareTo( x ) >0 )

17 high = mid - 1;

18 else

19 return mid;  // Found
20 }
21 return NOT_FOUND; // NOT_FOUND is defined as -1
22 }

Figure 2.9 Binary search

the maximum values of high - Tow after each iteration are 64, 32, 16, 8, 4,2, 1,0, —1.)
Thus, the running time is O(log N). Equivalently, we could write a recursive formula for
the running time, but this kind of brute-force approach is usually unnecessary when you
understand what is really going on and why.

Binary search can be viewed as our first data structure implementation. It supports the
contains operation in O(log N) time, but all other operations (in particular insert) require
O(N) time. In applications where the data are static (that is, insertions and deletions are
not allowed), this could be very useful. The input would then need to be sorted once,
but afterward accesses would be fast. An example is a program that needs to maintain
information about the periodic table of elements (which arises in chemistry and physics).
This table is relatively stable, as new elements are added infrequently. The element names
could be kept sorted. Since there are only about 118 elements, at most eight accesses would
be required to find an element. Performing a sequential search would require many more
accesses.

Euclid’s Algorithm

A second example is Euclids algorithm for computing the greatest common divisor. The
greatest common divisor (ged) of two integers is the largest integer that divides both. Thus,
gcd(50,15) = 5. The algorithm in Figure 2.10 computes gcd(M, N), assuming M > N. (If
N > M, the first iteration of the loop swaps them.)
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public static Tong gcd( long m, Tong n )
{
while( n !=0)
{
long rem = m % n;
m=n;
n = rem;
}

return m;

O 0 N O U1 AW N =

—
S

}
Figure 2.10 Euclid’s algorithm

The algorithm works by continually computing remainders until O is reached. The last
nonzero remainder is the answer. Thus, if M = 1,989 and N = 1,590, then the sequence
of remainders is 399, 393, 6, 3, 0. Therefore, gcd(1989, 1590) = 3. As the example shows,
this is a fast algorithm.

As before, estimating the entire running time of the algorithm depends on determining
how long the sequence of remainders is. Although log N seems like a good answer, it is not
at all obvious that the value of the remainder has to decrease by a constant factor, since we
see that the remainder went from 399 to only 393 in the example. Indeed, the remainder
does not decrease by a constant factor in one iteration. However, we can prove that after
two iterations, the remainder is at most half of its original value. This would show that the
number of iterations is at most 2logN = O(log N) and establish the running time. This
proof is easy, so we include it here. It follows directly from the following theorem.

Theorem 2.1.
IfM > N, then M mod N < M/2.

Proof.

There are two cases. If N < M/2, then since the remainder is smaller than N, the
theorem is true for this case. The other case is N > M/2. But then N goes into M once
with a remainder M — N < M/2, proving the theorem.

One might wonder if this is the best bound possible, since 2 log N is about 20 for our
example, and only seven operations were performed. It turns out that the constant can be
improved slightly, to roughly 1.44 log N, in the worst case (which is achievable if M and N
are consecutive Fibonacci numbers). The average-case performance of Euclid’s algorithm
requires pages and pages of highly sophisticated mathematical analysis, and it turns out
that the average number of iterations is about (12 In2 In N)/J'r2 +1.47.

Exponentiation

Our last example in this section deals with raising an integer to a power (which is also an
integer). Numbers that result from exponentiation are generally quite large, so an analysis
works only if we can assume that we have a machine that can store such large integers
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1 public static Tong pow( long x, int n )
2 {

3 if(n==0)

4 return 1;

5 if(n==1)

6 return x;

7 if( isEven( n ) )

8 return pow( x * x, n /2 );

9 else

10 return pow( X * x, n /2 ) * x;
11 }

Figure 2.11 Efficient exponentiation

(or a compiler that can simulate this). We will count the number of multiplications as the
measurement of running time.

The obvious algorithm to compute XN uses N—1 multiplications. A recursive algorithm
can do better. N < 1 is the base case of the recursion. Otherwise, if N is even, we have
XN = xN/2. xN/2 and if N is odd, XN = xWN-D/2. x(IN-D/2 . x

For instance, to compute X%2 the algorithm does the following calculations, which
involve only nine multiplications:

The number of multiplications required is clearly at most 2logN, because at most two
multiplications (if N is odd) are required to halve the problem. Again, a recurrence formula
can be written and solved. Simple intuition obviates the need for a brute-force approach.

Figure 2.11 implements this idea.” It is sometimes interesting to see how much the
code can be tweaked without affecting correctness. In Figure 2.11, lines 5 to 6 are actually
unnecessary, because if N is 1, then line 10 does the right thing. Line 10 can also be
rewritten as

10 return pow( x, n - 1) * x;

without affecting the correctness of the program. Indeed, the program will still run in
O(logN), because the sequence of multiplications is the same as before. However, all of
the following alternatives for line 8 are bad, even though they look correct:

8a return pow( pow( x, 2 ), n /2 );
8b return pow( pow( x, n /2 ), 2 );
8¢ return pow( x, n /2 ) % pow( x, n /2 );

2Java provides a BigInteger class that can be used to manipulate arbitrarily large integers. Translating
Figure 2.11 to use BigInteger instead of Tong is straightforward.
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Summary

Both lines 8a and 8b are incorrect because when N is 2, one of the recursive calls to pow
has 2 as the second argument. Thus no progress is made, and an infinite loop results (in
an eventual abnormal termination).

Using line 8c affects the efficiency, because there are now two recursive calls of size N/2
instead of only one. An analysis will show that the running time is no longer O(log N). We
leave it as an exercise to the reader to determine the new running time.

2.4.5 A Grain of Salt

Sometimes the analysis is shown empirically to be an overestimate. If this is the case,
then either the analysis needs to be tightened (usually by a clever observation), or it
may be that the average running time is significantly less than the worst-case running
time and no improvement in the bound is possible. For many complicated algorithms
the worst-case bound is achievable by some bad input but is usually an overestimate in
practice. Unfortunately, for most of these problems, an average-case analysis is extremely
complex (in many cases still unsolved), and a worst-case bound, even though overly
pessimistic, is the best analytical result known.

Summary

This chapter gives some hints on how to analyze the complexity of programs.
Unfortunately, it is not a complete guide. Simple programs usually have simple analyses,
but this is not always the case. As an example, later in the text we shall see a sorting algo-
rithm (Shellsort, Chapter 7) and an algorithm for maintaining disjoint sets (Chapter 8),
each of which requires about 20 lines of code. The analysis of Shellsort is still not com-
plete, and the disjoint set algorithm has an analysis that is extremely difficult and requires
pages and pages of intricate calculations. Most of the analyses that we will encounter here
will be simple and involve counting through loops.

An interesting kind of analysis, which we have not touched upon, is lower-bound
analysis. We will see an example of this in Chapter 7, where it is proved that any algorithm
that sorts by using only comparisons requires (N log N) comparisons in the worst case.
Lower-bound proofs are generally the most difficult, because they apply not to an algorithm
but to a class of algorithms that solve a problem.

We close by mentioning that some of the algorithms described here have real-life
application. The ged algorithm and the exponentiation algorithm are both used in cryptog-
raphy. Specifically, a 600-digit number is raised to a large power (usually another 600-digit
number), with only the low 600 or so digits retained after each multiplication. Since the
calculations require dealing with 600-digit numbers, efficiency is obviously important. The
straightforward algorithm for exponentiation would require about 10°%° multiplications,
whereas the algorithm presented requires only about 4,000, in the worst case.
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Exercises

2.1

2.2

2.3
2.4
2.5

2.6

2.7

Order the following functions by growth rate: N, VN, N5 N2 N logN,
NloglogN, Nlog2 N, Nlog(Nz), 2/N, 2N 2N/2 37 N? logN, N°. Indicate which
functions grow at the same rate.

Suppose T1(N) = O(f(N)) and T>(N) = O(f(N)). Which of the following are true?
a. TI(N) + TL(N) = O(f(\))
b. T1(N) — To,(N) = o(f(N))

LN _ o

C
TH(N)
d. T1(N) = O(T>(N))

Which function grows faster: Nlog N or N'T¢/v/108N ¢ 5 (2
Prove that for any constant, k, log" N = o(N).

Find two functions f(N) and g(N) such that neither f(N) = O(g(N)) nor g(N) =

O(f(N)).

In a recent court case, a judge cited a city for contempt and ordered a

fine of $2 for the first day. Each subsequent day, until the city followed the

judges order, the fine was squared (that is, the fine progressed as follows:

$2,%4,$16, $256, $65,536, .. .).

a. What would be the fine on day N?

b. How many days would it take the fine to reach D dollars? (A Big-Oh answer
will do.)

For each of the following six program fragments:

a. Give an analysis of the running time (Big-Oh will do).

b. Implement the code in Java, and give the running time for several values of N.
c. Compare your analysis with the actual running times.

(1) sum = 0;
for( 1 =0; i <n; i++)
sum++;
(2) sum = 0;

for( i =0; 1 <n; i++)
for(1J =05 J <n; j++)
sum++;

(3) sum = 0;
for( i =0; i <n; i++)
for((j =053 <nxn; j+ )
sum++;
(4) sum = 0;
for( i =0; 1 <n; i++)
for( j =05 J <i; j++)

sum++;
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(5) sum = 0;
for( i =10; 1 <n; i++)
for((j =05 3 <ixi; j+)
for( k = 0; k < j; k++ )
sum++;

(6) sum = 0;
for( i =1; 1 <nj i++)
for( j =15 j <1 *i; j++)
if(§%4==0)
for( k = 0; k < j; k++ )
sum++;

Suppose you need to generate a random permutation of the first N integers.
For example, {4, 3, 1, 5, 2} and {3, 1, 4, 2, 5} are legal permutations, but
{5, 4, 1, 2, 1} is not, because one number (1) is duplicated and another (3) is
missing. This routine is often used in simulation of algorithms. We assume the exis-
tence of a random number generator, r, with method randInt (i, j), that generates
integers between i and j with equal probability. Here are three algorithms:

1.

d.

e.

Fill the array a from a[0] to a[n-1] as follows: To fill a[i], generate random
numbers until you get one that is not already in a[0], a[1],..., a[i-1].

. Same as algorithm (1), but keep an extra array called the used array. When a

random number, ran, is first put in the array a, set used[ran] = true. This means
that when filling a[i] with a random number, you can test in one step to see
whether the random number has been used, instead of the (possibly) i steps in
the first algorithm.

. Fill the array such that a[i] = i + 1. Then

for( i =1; 1 <n; i++)
swapReferences( a[ i ], a[ randInt( 0, i ) 1 );

Prove that all three algorithms generate only legal permutations and that all
permutations are equally likely.

. Give as accurate (Big-Oh) an analysis as you can of the expected running time of

each algorithm.

Write (separate) programs to execute each algorithm 10 times, to get a good
average. Run program (1) for N = 250, 500, 1,000, 2,000; program (2) for
N = 25,000, 50,000, 100,000, 200,000, 400,000, 800,000; and program (3) for
N = 100,000, 200,000, 400,000, 800,000, 1,600,000, 3,200,000, 6,400,000.
Compare your analysis with the actual running times.

What is the worst-case running time of each algorithm?

Complete the table in Figure 2.2 with estimates for the running times that were
too long to simulate. Interpolate the running times for these algorithms and esti-
mate the time required to compute the maximum subsequence sum of 1 million
numbers. What assumptions have you made?
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2.10

2.11

2.12

2.13

2.14

2.15

2.16

Determine, for the typical algorithms that you use to perform calculations by hand,
the running time to do the following:

a. Add two N-digit integers.

b. Multiply two N-digit integers.

c. Divide two N-digit integers.

An algorithm takes 0.5 ms for input size 100. How long will it take for input size
500 if the running time is the following (assume low-order terms are negligible):
a. linear

b. O(NlogN)

c. quadratic

d. cubic

An algorithm takes 0.5 ms for input size 100. How large a problem can be solved in
1 min if the running time is the following (assume low-order terms are negligible):
a. linear

b. O(NlogN)

c. quadratic

d. cubic

How much time is required to compute f(x) = Zio ax':
a. Using a simple routine to perform exponentiation?
b. Using the routine in Section 2.4.4?

Consider the following algorithm (known as Horners rule) to evaluate f(x) =
ZIN:O aixt:

poly = 03
for( i =

n; i >= 0; i--)
poly =

x * poly + a[i];

a. Show how the steps are performed by this algorithm for x = 3, f(x) = 4x* +
8x> +x +2.

b. Explain why this algorithm works.

¢. What is the running time of this algorithm?

Give an efficient algorithm to determine if there exists an integer i such that A; = i
in an array of integers A} < A, < A3z < --- < Ayx. What is the running time of
your algorithm?

Write an alternative ged algorithm based on the following observations (arrange so
that a > b):

= gcd(a,b) = 2gcd(a/2,b/2) if a and b are both even.

= gcd(a,b) = ged(a/2,b) if ais even and b is odd.

= gcd(a,b) = ged(a,b/2) if ais odd and b is even.

= gcd(a,b) = ged((a + b)/2),(a — b)/2) if a and b are both odd.

www.EBooksWorld.ir
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2.18

2.19

2.20

*2.21

2.22
2.23
2.24

2.25

Exercises

Give efficient algorithms (along with running time analyses) to:
a. Find the minimum subsequence sum.

*b. Find the minimum positive subsequence sum.

*c. Find the maximum subsequence product.

An important problem in numerical analysis is to find a solution to the equation
f(X) = 0 for some arbitrary f. If the function is continuous and has two points
low and high such that f(low) and f(high) have opposite signs, then a root must
exist between low and high and can be found by a binary search. Write a function
that takes as parameters f, low, and high and solves for a zero. (To implement a
generic function as a parameter, pass a function object that implements the Function
interface, which you can define to contain a single method f.) What must you do
to ensure termination?

The maximum contiguous subsequence sum algorithms in the text do not give any
indication of the actual sequence. Modify them so that they return in a single object
the value of the maximum subsequence and the indices of the actual sequence.

a. Write a program to determine if a positive integer, N, is prime.

b. Interms of N, what is the worst-case running time of your program? (You should
be able to do this in O(v/N).)

c. Let B equal the number of bits in the binary representation of N. What is the
value of B?

d. In terms of B, what is the worst-case running time of your program?

e. Compare the running times to determine if a 20-bit number and a 40-bit number
are prime.

f. Is it more reasonable to give the running time in terms of N or B? Why?

The Sieve of Eratosthenes is a method used to compute all primes less than N. We
begin by making a table of integers 2 to N. We find the smallest integer, i, that is
not crossed out, print i, and cross out i, 2i, 3i,.... When i > /N, the algorithm
terminates. What is the running time of this algorithm?

Show that X% can be computed with only eight multiplications.
Write the fast exponentiation routine without recursion.

Give a precise count on the number of multiplications used by the fast exponenti-
ation routine. (Hint: Consider the binary representation of N.)

Programs A and B are analyzed and found to have worst-case running times no

greater than 150N log, N and N?| respectively. Answer the following questions, if

possible:

a. Which program has the better guarantee on the running time, for large values of
N (N > 10,000)?

b. Which program has the better guarantee on the running time, for small values
of N (N < 100)?

¢. Which program will run faster on average for N = 1,000?

d. Is it possible that program B will run faster than program A on all possible
inputs?
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2.26 A majority element in an array, A, of size N is an element that appears more than

2.27

2.28

*2.29

2.30

N/2 times (thus, there is at most one). For example, the array
3,3,4,2,4,4,2,4,4
has a majority element (4), whereas the array
3,3,4,2,4,4,2,4

does not. If there is no majority element, your program should indicate this. Here
is a sketch of an algorithm to solve the problem:

First, a candidate majority element is found (this is the harder part). This candidate is the
only element that could possibly be the majority element. The second step determines if
this candidate is actually the majority. This is just a sequential search through the array. To
find a candidate in the array, A, form a second array, B. Then compare Ay and A;. If they
are equal, add one of these to B; otherwise do nothing. Then compare A3 and A4. Again if
they are equal, add one of these to B; otherwise do nothing. Continue in this fashion until
the entire array is read. Then recursively find a candidate for B; this is the candidate for
A (why?).

a. How does the recursion terminate?

*b. How is the case where N is odd handled?
*c. What is the running time of the algorithm?
d. How can we avoid using an extra array B?

*e. Write a program to compute the majority element.

The input is an N by N matrix of numbers that is already in memory. Each individ-
ual row is increasing from left to right. Each individual column is increasing from
top to bottom. Give an O(N) worst-case algorithm that decides if a number X is in
the matrix.

Design efficient algorithms that take an array of positive numbers a, and determine:
a. the maximum value of a[j]+a[i], with j
b. the maximum value of a[j]-a[i], with j > i
¢. the maximum value of a[j]*a[i], with j > i.
d. the maximum value of a[j]/a[i], with j > i

I\/

i.

Why is it important to assume that integers in our computer model have a fixed

size?

Consider the word puzzle problem described in Chapter 1. Suppose we fix the size

of the longest word to be 10 characters.

a. In terms of R and C, which are the number of rows and columns in the puz-
zle, and W, which is the number of words, what are the running times of the
algorithms described in Chapter 1?

b. Suppose the word list is presorted. Show how to use binary search to obtain an
algorithm with significantly better running time.
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2.31 Suppose that line 15 in the binary search routine had the statement low = mid
instead of Tow = mid + 1. Would the routine still work?

2.32 Implement the binary search so that only one two-way comparison is performed in
each iteration. (The text implementation uses three-way comparisons. Assume that
only a lessThan method is available.)

2.33  Suppose that lines 15 and 16 in algorithm 3 (Fig. 2.7) are replaced by

15 int maxLeftSum = maxSubSum( a, left, center - 1 );
16 int maxRightSum = maxSubSum( a, center, right );

Would the routine still work?

*2.34  The inner loop of the cubic maximum subsequence sum algorithm performs
N(N+1)(N+2)/6 iterations of the innermost code. The quadratic version performs
N(N + 1)/2 iterations. The linear version performs N iterations. What pattern is
evident? Can you give a combinatoric explanation of this phenomenon?
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. cHAPTER 3

Lists, Stacks, and Queues

This chapter discusses three of the most simple and basic data structures. Virtually every
significant program will use at least one of these structures explicitly, and a stack is always
implicitly used in a program, whether or not you declare one. Among the highlights of this
chapter, we will

* Introduce the concept of Abstract Data Types (ADTs).
 Show how to efficiently perform operations on lists.
* Introduce the stack ApT and its use in implementing recursion.

* Introduce the queue ADT and its use in operating systems and algorithm design.

In this chapter, we provide code that implements a significant subset of two library
classes: ArrayList and LinkedList.

3.1 Abstract Data Types (ADTs)

An abstract data type (ADT) is a set of objects together with a set of operations. Abstract
data types are mathematical abstractions; nowhere in an ApTS definition is there any men-
tion of how the set of operations is implemented. Objects such as lists, sets, and graphs,
along with their operations, can be viewed as abstract data types, just as integers, reals,
and booleans are data types. Integers, reals, and booleans have operations associated with
them, and so do abstract data types. For the set ADT, we might have such operations as add,
remove, and contains. Alternatively, we might only want the two operations union and find,
which would define a different ApT on the set.

The Java class allows for the implementation of ApTs, with appropriate hiding of imple-
mentation details. Thus any other part of the program that needs to perform an operation
on the ApT can do so by calling the appropriate method. If for some reason implementa-
tion details need to be changed, it should be easy to do so by merely changing the routines
that perform the apT operations. This change, in a perfect world, would be completely
transparent to the rest of the program.

There is no rule telling us which operations must be supported for each ApT; this is a
design decision. Error handling and tie breaking (where appropriate) are also generally up
to the program designer. The three data structures that we will study in this chapter are
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primary examples of ApTs. We will see how each can be implemented in several ways, but
if they are done correctly, the programs that use them will not necessarily need to know
which implementation was used.

3.2 The List ADT

We will deal with a general list of the form Ag, A1, Az, ..., AN—1. We say that the size of
this list is N. We will call the special list of size 0 an empty list.

For any list except the empty list, we say that A; follows (or succeeds) Aj—1 (i < N)
and that Aj_; precedes A; (i > 0). The first element of the list is Ag, and the last element
is An—1. We will not define the predecessor of Ag or the successor of Ay_1. The position
of element A; in a list is i. Throughout this discussion, we will assume, to simplify matters,
that the elements in the list are integers, but in general, arbitrarily complex elements are
allowed (and easily handled by a generic Java class).

Associated with these “definitions” is a set of operations that we would like to perform
on the list ADT. Some popular operations are printList and makeEmpty, which do the obvious
things; find, which returns the position of the first occurrence of an item; insert and
remove, which generally insert and remove some element from some position in the list;
and findKth, which returns the element in some position (specified as an argument). If the
list is 34, 12, 52, 16, 12, then find(52) might return 2; insert(x,2) might make the list
into 34, 12, x, 52, 16, 12 (if we insert into the position given); and remove (52) might turn
that list into 34, 12, x, 16, 12.

Of course, the interpretation of what is appropriate for a method is entirely up to the
programmer, as is the handling of special cases (for example, what does find(1) return
above?). We could also add operations such as next and previous, which would take a
position as argument and return the position of the successor and predecessor, respectively.

3.2.1 Simple Array Implementation of Lists

All these instructions can be implemented just by using an array. Although arrays are cre-
ated with a fixed capacity, we can create a different array with double the capacity when
needed. This solves the most serious problem with using an array, namely that historically,
to use an array, an estimate of the maximum size of the list was required. This estimate is
not needed in Java, or any modern programming language. The following code fragment
illustrates how an array, arr, which initially has length 10, can be expanded as needed:

int [ ] arr = new int[ 10 ]1;

// Later on we decide arr needs to be larger.

int [ ] newArr = new int[ arr.length = 2 ];

for( int i = 0; i < arr.length; i++ )
newArr[ 1] = arr[ i ];

arr = newArr;
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An array implementation allows printList to be carried out in linear time, and the
findKth operation takes constant time, which is as good as can be expected. However,
insertion and deletion are potentially expensive, depending on where the insertions and
deletions occur. In the worst case, inserting into position 0 (in other words, at the front
of the list) requires pushing the entire array down one spot to make room, and deleting
the first element requires shifting all the elements in the list up one spot, so the worst
case for these operations is O(N). On average, half of the list needs to be moved for either
operation, so linear time is still required. On the other hand, if all the operations occur at
the high end of the list, then no elements need to be shifted, and then adding and deleting
take O(1) time.

There are many situations where the list is built up by insertions at the high end,
and then only array accesses (i.e., findkth operations) occur. In such a case, the array is
a suitable implementation. However, if insertions and deletions occur throughout the list,
and in particular, at the front of the list, then the array is not a good option. The next
subsection deals with the alternative: the linked list.

3.2.2 Simple Linked Lists

In order to avoid the linear cost of insertion and deletion, we need to ensure that the list
is not stored contiguously, since otherwise entire parts of the list will need to be moved.
Figure 3.1 shows the general idea of a linked list.

The linked list consists of a series of nodes, which are not necessarily adjacent in
memory. Each node contains the element and a link to a node containing its successor. We
call this the next link. The last cell’s next link references nu11.

To execute printList or find(x) we merely start at the first node in the list and then
traverse the list by following the next links. This operation is clearly linear-time, as in
the array implementation, although the constant is likely to be larger than if an array
implementation were used. The findKth operation is no longer quite as efficient as an
array implementation; findkth(i) takes O(i) time and works by traversing down the list in
the obvious manner. In practice, this bound is pessimistic, because frequently the calls to
findKth are in sorted order (by i). As an example, findKth(2), findKth(3), findKth(4), and
findKth(6) can all be executed in one scan down the list.

The remove method can be executed in one next reference change. Figure 3.2 shows
the result of deleting the third element in the original list.

The insert method requires obtaining a new node from the system by using a new call
and then executing two reference maneuvers. The general idea is shown in Figure 3.3. The
dashed line represents the old next reference.

Ay A A As Ay | T/

Figure 3.1 A linked list
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o

AO Al /- - = A2 — A3 A4 T L

Figure 3.2 Deletion from a linked list

AO A] " """""" A2 A3 A4 I

x |/

Figure 3.3 Insertion into a linked list

As we can see, in principle, if we know where a change is to be made, inserting or
removing an item from a linked list does not require moving lots of items and instead
involves only a constant number of changes to node links.

The special case of adding to the front or removing the first item is thus a constant-
time operation, presuming of course that a link to the front of the linked list is maintained.
The special case of adding at the end (i.e., making the new item as the last item) can be
constant-time, as long as we maintain a link to the last node. Thus, a typical linked list
keeps links to both ends of the list. Removing the last item is trickier, because we have
to find the next-to-last item, change its next link to nu11, and then update the link that
maintains the last node. In the classic linked list, where each node stores a link to its next
node, having a link to the last node provides no information about the next-to-last node.

The obvious idea of maintaining a third link to the next-to-last node doesn't work,
because it too would need to be updated during a remove. Instead, we have every node
maintain a link to its previous node in the list. This is shown in Figure 3.4 and is known
as a doubly linked list.

e ke EHE AT o

\ first last /

Figure 3.4 A doubly linked list
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3.3 Lists in the Java Collections API

The Java language includes, in its library, an implementation of common data structures.
This part of the language is popularly known as the Collections API. The List ADT is one
of the data structures implemented in the Collections API. We will see some others in
Chapters 4 and 5.

3.3.1 Collection Interface

The Collections API resides in package java.util. The notion of a collection, which stores
a collection of identically typed objects, is abstracted in the Collection interface. Figure 3.5
shows the most important parts of this interface (some methods are not shown).

Many of the methods in the Collection interface do the obvious things that their names
suggest. So size returns the number of items in the collection; isEmpty returns true if and
only if the size of the collection is zero. contains returns true if x is in the collection. Note
that the interface doesn't specify how the collection decides if x is in the collection—this is
determined by the actual classes that implement the Collection interface. add and remove
add and remove item x from the collection, returning true if the operation succeeds and
false if it fails for a plausible (nonexceptional) reason. For instance, a remove can fail if
the item is not present in the collection, and if the particular collection does not allow
duplicates, then add can fail when an attempt is made to insert a duplicate.

The Collection interface extends the Iterable interface. Classes that implement the
Iterable interface can have the enhanced for loop used on them to view all their items.
For instance, the routine in Figure 3.6 can be used to print all the items in any collection.
The implementation of this version of print is identical, character-for-character, with a
corresponding implementation that could be used if col11 had type AnyType[].

3.3.2 Iterators

Collections that implement the Iterable interface must provide a method named iterator
that returns an object of type Iterator. The Iterator is an interface defined in package
java.util and is shown in Figure 3.7.

1 public interface Collection<AnyType> extends Iterable<AnyType>
2 A

3 int size( );

4 boolean isEmpty( );

5 void clear( );

6 boolean contains( AnyType Xx );

7 boolean add( AnyType x );

8 boolean remove( AnyType x );

9 java.util.Iterator<AnyType> iterator( );

0

1 }

Figure 3.5 Subset of the Collection interface in package java.util
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public static <AnyType> void print( Collection<AnyType> coll )
{
for( AnyType item : coll )
System.out.printin( item );

S N O R

}

Figure 3.6 Using the enhanced for loop on an Iterable type

1 public interface Iterator<AnyType>
2

3 boolean hasNext( );

4 AnyType next( );

5 void remove( );

6

}

Figure 3.7 The Iterator interface in package java.util

The idea of the Iterator is that via the iterator method, each collection can create, and
return to the client, an object that implements the Iterator interface and stores internally
its notion of a current position.

Each call to next gives the next item in the collection (that has not yet been seen). Thus
the first call to next gives the first item, the second call gives the second item, and so forth.
hasNext can be used to tell you if there is a next item. When the compiler sees an enhanced
for loop being used on an object that is Iterable, it mechanically replaces the enhanced
for loop with calls to the iterator method to obtain an Iterator and then calls to next and
hasNext. Thus the previously seen print routine is rewritten by the compiler as shown in
Figure 3.8.

Because of the limited set of methods available in the Iterator interface, it is hard to
use the Iterator for anything more than a simple traversal through the Collection. The
Iterator interface also contains a method called remove. With this method you can remove
the last item returned by next (after which you cannot call remove again until after another

public static <AnyType> void print( Collection<AnyType> coll )
{
Iterator<AnyType> itr = coll.iterator( );
while( itr.hasNext( ) )
{
AnyType item = itr.next( );
System.out.printIn( item );

O o N O Ui A W N =

}

Figure 3.8 The enhanced for loop on an Iterable type rewritten by the compiler to use
an iterator
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call to next). Although the Collection interface also contains a remove method, there are
presumably advantages to using the Iterator’s remove method instead.

The main advantage of the Iterator’s remove method is that the Collection’s remove
method must first find the item to remove. Presumably it is much less expensive to remove
an item if you know exactly where it is. An example that we will see in the next section
removes every other item in the collection. This code is easy to write with an iterator, and
potentially more efficient than using the Collection’s remove method.

When using the iterator directly (rather than indirectly via an enhanced for loop) it
is important to keep in mind a fundamental rule: If you make a structural change to the
collection being iterated (i.e., an add, remove, or clear method is applied on the collection),
then the iterator is no longer valid (and a ConcurrentModificationException is thrown on
subsequent attempts to use the iterator). This is necessary to avoid ugly situations in which
the iterator is prepared to give a certain item as the next item, and then that item is either
removed, or perhaps a new item is inserted just prior to the next item. This means that you
shouldn’t obtain an iterator until immediately prior to the need to use it. However, if the
iterator invokes its remove method, then the iterator is still valid. This is a second reason to
prefer the iterator’s remove method sometimes.

3.3.3 The List Interface, ArrayList, and LinkedList

The collection that concerns us the most in this section is the list, which is specified by the
List interface in package java.util. The List interface extends Collection, so it contains
all the methods in the Collection interface, plus a few others. Figure 3.9 illustrates the
most important of these methods.

get and set allow the client to access or change an item at the specified position in the
list, given by its index, 1dx. Index 0 is the front of the list, index size()-1 represents the last
item in the list, and index size() represents the position where a newly added item can be
placed. add allows the placement of a new item in position idx (pushing subsequent items
one position higher). Thus, an add at position 0 is adding at the front, whereas an add at
position size() is adding an item as the new last item. In addition to the standard remove
that takes AnyType as a parameter, remove is overloaded to remove an item at a specified
position. Finally, the List interface specifies the 1istIterator method that produces a more

public interface List<AnyType> extends Collection<AnyType>

1
2 A

3 AnyType get( int idx );

4 AnyType set( int idx, AnyType newVal );
5 void add( int idx, AnyType x );

6 void remove( int idx );

7
8
9

ListIterator<AnyType> TistIterator( int pos );
}

Figure 3.9 Subset of the List interface in package java.util
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complicated iterator than normally expected. The ListIterator interface is discussed in
Section 3.3.5.

There are two popular implementations of the List apT. The ArrayList provides a grow-
able array implementation of the List ApT. The advantage of using the ArrayList is that
calls to get and set take constant time. The disadvantage is that insertion of new items
and removal of existing items is expensive, unless the changes are made at the end of the
ArrayList. The LinkedList provides a doubly linked list implementation of the List ApT. The
advantage of using the LinkedList is that insertion of new items and removal of existing
items is cheap, provided that the position of the changes is known. This means that adds
and removes from the front of the list are constant-time operations, so much so that the
LinkedList provides methods addFirst and removeFirst, addLast and removeLast, and get-
First and getlast to efficiently add, remove, and access the items at both ends of the list.
The disadvantage is that the LinkedList is not easily indexable, so calls to get are expensive
unless they are very close to one of the ends of the list (if the call to get is for an item near
the back of the list, the search can proceed from the back of the list). To see the differences,
we look at some methods that operate on a List. First, suppose we construct a List by
adding items at the end.

public static void makeListl( List<Integer> 1st, int N )
{
Ist.clear( );
for( int i = 0; i < N; i++ )
Ist.add( i );
}

Regardless of whether an ArrayList or LinkedList is passed as a parameter, the running
time of makeList1is O(N) because each call to add, being at the end of the list, takes constant
time (the occasional expansion of the ArrayList is safe to ignore). On the other hand, if we
construct a List by adding items at the front,

public static void makelList2( List<Integer> 1st, int N )
{
Ist.clear( );
for( dint i = 0; 1 < N; i++)
Ist.add( 0, i );
}

the running time is O(N) for a LinkedList, but O(N?) for an Arraylist, because in an
ArrayList, adding at the front is an O(N) operation.
The next routine attempts to compute the sum of the numbers in a List:

public static int sum( List<Integer> Ist )
{
int total = 0;
for( dint i = 0; 1 < N; i++)
total += Ist.get( i );
return total;
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Here, the running time is O(N) for an ArrayList, but O(N?) for a LinkedList, because in
a LinkedList, calls to get are O(N) operations. Instead, use an enhanced for loop, which
will make the running time O(N) for any List, because the iterator will efficiently advance
from one item to the next.

Both ArrayList and LinkedList are inefficient for searches, so calls to the Collection
contains and remove methods (that take an AnyType as parameter) take linear time.

In an ArrayList, there is a notion of a capacity, which represents the size of the under-
lying array. The ArrayList automatically increases the capacity as needed to ensure that it
is at least as large as the size of the list. If an early estimate of the size is available, ensureCa-
pacity can set the capacity to a sufficiently large amount to avoid a later expansion of the
array capacity. Also, trimToSize can be used after all ArrayList adds are completed to avoid
wasted space.

3.3.4 Example: Using remove on a LinkedList

As an example, we provide a routine that removes all even-valued items in a list. Thus, if
the list contains 6, 5, 1, 4, 2, then after the method is invoked it will contain 5, 1.

There are several possible ideas for an algorithm that deletes items from the list as
they are encountered. Of course, one idea is to construct a new list containing all the odd
numbers, and then clear the original list and copy the odd numbers back into it. But we are
more interested in writing a clean version that avoids making a copy and instead removes
items from the list as they are encountered.

This is almost certainly a losing strategy for an ArrayList, since removing from almost
anywhere in an ArrayList is expensive. In a LinkedList, there is some hope, as we know
that removing from a known position can be done efficiently by rearranging some links.

Figure 3.10 shows the first attempt. On an Arraylist, as expected, the remove is not
efficient, so the routine takes quadratic time. A LinkedList exposes two problems. First,
the call to get is not efficient, so the routine takes quadratic time. Additionally, the call to
remove is equally inefficient, because it is expensive to get to position 1.

Figure 3.11 shows one attempt to rectify the problem. Instead of using get, we use an
iterator to step through the list. This is efficient. But then we use the Collection’s remove

public static void removeEvensVerl( List<Integer> 1st )
{
int i = 03
while( i < 1st.size(
if( Tst.get( i)
Ist.remove( i );
else
i+t

))
%2 =

O o N O Ui A W N =
—

}

Figure 3.10 Removes the even numbers in a list; quadratic on all types of lists
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public static void removeEvensVer2( List<Integer> Tst )

{
for( Integer x : Ist )

if(x%2==0)
Ist.remove( x );

A L A W=

}

Figure 3.11 Removes the even numbers in a list, doesn’t work because of
ConcurrentModificationException

public static void removeEvensVer3( List<Integer> 1st )

{

Iterator<Integer> itr = Ist.iterator( );

while( itr.hasNext( )
if( itr.next( ) %$2==10)
itr.remove( );

0 N AW N =

}

Figure 3.12 Removes the even numbers in a list; quadratic on ArrayList, but linear time
for LinkedList

method to remove an even-valued item. This is not an efficient operation because the
remove method has to search for the item again, which takes linear time. But if we run the
code, we find out that the situation is even worse: The program generates an exception
because when an item is removed, the underlying iterator used by the enhanced for loop
is invalidated. (The code in Figure 3.10 explains why: we cannot expect the enhanced for
loop to understand that it must advance only if an item is not removed.)

Figure 3.12 shows an idea that works: After the iterator finds an even-valued item,
we can use the iterator to remove the value it has just seen. For a LinkedList, the call to
the iterator’s remove method is only constant time, because the iterator is at (or near) the
node that needs to be removed. Thus, for a LinkedList, the entire routine takes linear time,
rather than quadratic time. For an ArrayList, even though the iterator is at the point that
needs to be removed, the remove is still expensive, because array items must be shifted, so
as expected, the entire routine still takes quadratic time for an ArrayList.

If we run the code in Figure 3.12, passing a LinkedList<Integer>, it takes 0.039 seconds
for an 800,000-item Tist, and 0.073 seconds for a 1,600,000 item LinkedList, and is
clearly a linear-time routine, because the running time increases by the same factor as the
input size. When we pass an ArraylList<Integer>, the routine takes almost five minutes
for an 800,000-item ArrayList, and about twenty minutes for a 1,600,000-item ArrayList;
the fourfold increase in running time when the input increases by only a factor of two is
consistent with quadratic behavior.
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public interface ListIterator<AnyType> extends Iterator<AnyType>
{

boolean hasPrevious( );

AnyType previous( );

1
2
3
4
5
6 void add( AnyType x );

7 void set( AnyType newVal );
8

}

Figure 3.13 Subset of the ListIterator interface in package java.uti]

5 8 14 6 9 5 8 14 6 9 58 14 6 9

f f f

(a) (b) ()

Figure 3.14 (a) Normal starting point: next returns 5, previous is illegal, add places item
before 5; (b) next returns 8, previous returns 5, add places item between 5 and 8; (c) next
is illegal, previous returns 9, add places item after 9

3.3.5 ListIterators

Figure 3.13 shows that a ListIterator extends the functionality of an Iterator for Lists.
previous and hasPrevious allow traversal of the list from the back to the front. add places
a new item into the list in the current position. The notion of the current position is
abstracted by viewing the iterator as being between the item that would be given by a
call to next and the item that would be given by a call to previous, an abstraction that is
illustrated in Figure 3.14. add is a constant-time operation for a LinkedList but is expensive
for an ArrayList. set changes the last value seen by the iterator and is convenient for
LinkedLists. As an example, it can be used to subtract 1 from all the even numbers in
a List, which would be hard to do on a LinkedList without using the ListIterators set
method.

3.4 Implementation of ArrayList

In this section, we provide the implementation of a usable ArrayList generic class. To avoid
ambiguities with the library class, we will name our class MyArrayList. We do not provide
aMyCollection or MyList interface; rather, MyArrayList is standalone. Before examining the
(nearly one hundred lines of) MyArrayList code, we outline the main details.

1. The MyArrayList will maintain the underlying array, the array capacity, and the current
number of items stored in the MyArrayList.
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2. The MyArrayList will provide a mechanism to change the capacity of the underlying
array. The capacity is changed by obtaining a new array, copying the old array into the
new array, and allowing the Virtual Machine to reclaim the old array.

3. The MyArrayList will provide an implementation of get and set.

4. The MyArrayList will provide basic routines, such as size, isEmpty, and clear, which are
typically one-liners; a version of remove; and also two versions of add. The add routines
will increase capacity if the size and capacity are the same.

5. The MyArrayList will provide a class that implements the Iterator interface. This class
will store the index of the next item in the iteration sequence and provide implemen-
tations of next, hasNext, and remove. The MyArrayList’s iterator method simply returns
a newly constructed instance of the class that implements the Iterator interface.

3.4.1 The Basic Class

Figure 3.15 and Figure 3.16 show the MyArrayList class. Like its Collections API counter-
part, there is some error checking to ensure valid bounds; however, in order to concentrate
on the basics of writing the iterator class, we do not check for a structural modification that
could invalidate an iterator, nor do we check for an illegal iterator remove. These checks are
shown in the subsequent implementation of MyLinkedList in Section 3.5 and are exactly
the same for both list implementations.

As shown on lines 5-6, the MyArrayList stores the size and array as its data members.

A host of short routines, namely clear, doClear (used to avoid having the constructor
invoke an overridable method), size, trimToSize, isEmpty, get, and set, are implemented
in lines 11 to 38.

The ensureCapacity routine is shown at lines 40 to 49. Expanding capacity is done with
the same logic outlined earlier: saving a reference to the original array at line 45, allocation
of a new array at line 46, and copying of the old contents at lines 47 to 48. As shown
at lines 42 to 43, the ensureCapacity routine can also be used to shrink the underlying
array, but only if the specified new capacity is at least as large as the size. If it isn't, the
ensureCapacity request is ignored. At line 46, we see an idiom that is required because
generic array creation is illegal. Instead, we create an array of the generic type’s bound and
then use an array cast. This will generate a compiler warning but is unavoidable in the
implementation of generic collections.

Two versions of add are shown. The first adds at the end of the list and is trivially
implemented by calling the more general version that adds at the specified position. That
version is computationally expensive because it requires shifting elements that are at or
after the specified position an additional position higher. add may require increasing capac-
ity. Expanding capacity is very expensive, so if the capacity is expanded, it is made twice
as large as the size to avoid having to change the capacity again unless the size increases
dramatically (the +1 is used in case the size is 0).

The remove method is similar to add, in that elements that are at or after the specified
position must be shifted to one position lower.

The remaining routine deals with the iterator method and the implementation of the
associated iterator class. In Figure 3.16, this is shown at lines 77 to 96. The iterator
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1 public class MyArrayList<AnyType> implements Iterable<AnyType>
2|

3 private static final int DEFAULT_CAPACITY = 10;

4

5 private int theSize;

6 private AnyType [ ] theltems;

7

8 public MyArrayList( )

9 { doClear( ); }

10

11 public void clear( )

12 { doClear( ); }

13

14 private void doClear( )

15 { theSize = 0; ensureCapacity( DEFAULT CAPACITY ); }
16

17 public int size( )

18 { return theSize; }

19 public boolean isEmpty( )

20 { return size( ) == 0; }

21 public void trimToSize( )

22 { ensureCapacity( size( ) ); }

23

24 public AnyType get( int idx )

25 {

26 if( idx < 0 || idx >= size( ) )

27 throw new ArrayIndexOutOfBoundsException( );
28 return theltems[ idx ];

29 }

30

31 public AnyType set( int idx, AnyType newVal )

32 {

33 if( idx <0 || idx >= size( ) )

34 throw new ArrayIndexOutOfBoundsException( );
35 AnyType old = theltems[ idx ];

36 theltems[ idx ] = newVal;

37 return old;

38 }

39

40 public void ensureCapacity( int newCapacity )

41 {

42 if( newCapacity < theSize )

43 return;

44

45 AnyType [ ] old = theltems;

46 theltems = (AnyType []) new Object[ newCapacity ];
47 for( int i = 0; i < size( ); i++ )

48 theltems[ i ] = old[ 1 ];

49 }

Figure 3.15 MyArrayList class (Part 1 of 2)
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50 public boolean add( AnyType x )

51 {

52 add( size( ), x );

53 return true;

54 }

55

56 public void add( int idx, AnyType x )

57 {

58 if( theItems.length == size( ) )

59 ensureCapacity( size( ) =2 + 1 );
60 for( int i = theSize; i > idx; i--)

61 theltems[ i ] = theltems[ i - 1 1;
62 theltems[ idx ] = x;

63

64 theSize++;

65 }

66

67 public AnyType remove( int idx )

68 {

69 AnyType removedItem = theltems[ idx ];
70 for( int i = idx; i < size( ) - 1; i++ )
71 theltems[ i ] = theltems[ i + 1 ];
72

73 theSize--;

74 return removedItem;

75 }

76

77 public java.util.Iterator<AnyType> iterator( )
78 { return new ArrayListIterator( ); }

79

80 private class ArraylListIterator implements java.util.Iterator<AnyType>
81 {

82 private int current = 0;

83

84 public boolean hasNext( )

85 { return current < size( ); }

86

87 public AnyType next( )

88 {

89 if( !'hasNext( ) )

90 throw new java.util.NoSuchElementException( );
91 return theltems[ current++ ];

92 }

93

94 public void remove( )

95 { MyArrayList.this.remove( --current ); }
96 }

97 }

Figure 3.16 MyArrayList class (Part 2 of 2)
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method simply returns an instance of ArrayListIterator, which is a class that implements
the Iterator interface. The ArraylListIterator stores the notion of a current position, and
provides implementations of hasNext, next, and remove. The current position represents the
(array index of the) next element that is to be viewed, so initially the current position is O.

3.4.2 The Iterator and Java Nested and Inner Classes

The ArrayListIterator class uses a tricky Java construct known as the inner class. Clearly
the class is declared inside of the MyArrayList class, a feature that is supported by many
languages. However, an inner class in Java has a more subtle property.

To see how an inner class works, Figure 3.17 sketches the iterator idea (however, the
code is flawed), making ArrayListIterator a top-level class. We focus only on the data
fields of MyArrayList, the iterator method in MyArraylList, and the ArraylListIterator (but
not its remove method).

In Figure 3.17, ArrayListIterator is generic, it stores a current position, and the code
attempts to use the current position in next to index the array and then advance. Note that
if arr is an array, arr[idx++] uses idx to the array, and then advances idx. The positioning
of the ++ matters. The form we used is called the postfix ++ operator, in which the ++ is
after idx. But in the prefix ++ operator, arr[++idx] advances idx and then uses the new
idx to index the array. The problem with Figure 3.17 is that theItems[current++] is illegal,
because theltems is not part of the ArrayListIterator class; it is part of the MyArrayList.
Thus the code doesn’t make sense at all.

public class MyArrayList<AnyType> implements Iterable<AnyType>
{

private int theSize;

private AnyType [ ] theltems;

public java.util.Iterator<AnyType> iterator( )
{ return new ArraylListIterator<AnyType>( ); }
}
9 class ArraylListIterator<AnyType> implements java.util.Iterator<AnyType>
10 {

11 private int current = 0;

12

13 public boolean hasNext( )

14 { return current < size( ); }

15 public AnyType next( )

16 { return theltems[ current++ ]; }
17}

Figure 3.17 Iterator Version #1 (doesn’t work): The iterator is a top-level class and stores
the current position. It doesn’t work because theltems and size() are not part of the
ArraylListIterator class
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1 pubTic class MyArrayList<AnyType> implements Iterable<AnyType>
2 A

3 private int theSize;

4 private AnyType [ ] theltems;

5

6 public java.util.Iterator<AnyType> iterator( )

7 { return new ArrayListIterator<AnyType>( this ); }
8 '}

9 class ArraylListIterator<AnyType> implements java.util.Iterator<AnyType>
10 {

11 private int current = 0;

12 private MyArrayList<AnyType> thelist;

13

14 public ArrayListIterator( MyArrayList<AnyType> list )
15 { theList = 1ist; }

16

17 public boolean hasNext( )

18 { return current < thelList.size( ); }

19 public AnyType next( )

20 { return theList.theltems[ current++ ]; }

21}

Figure 3.18 Iterator Version #2 (almost works): The iterator is a top-level class and stores
the current position and a link to the MyArrayList. It doesn’t work because theltems is
private in the MyArrayList class

The simplest solution is shown in Figure 3.18, which is unfortunately also flawed, but
in a more minor way. In Figure 3.18, we solve the problem of not having the array in the
iterator by having the iterator store a reference to the MyArrayList that it is iterating over.
This reference is a second data field and is initialized by a new one-parameter constructor
for ArraylListIterator. Now that we have a reference to MyArraylList, we can access the
array fleld that is contained in MyArrayList (and also get the size of the MyArrayList, which
is needed in hasNext).

The flaw in Figure 3.18 is that theltems is a private field in MyArrayList, and since
ArrayListIterator is a different class, it is illegal to access theltems in the next method.
The simplest fix would be to change the visibility of theItems in MyArrayList from private
to something less restrictive (such as public, or the default which is known as package
visibility). But this violates basic principles of good object-oriented programming, which
requires data to be as hidden as possible.

Instead, Figure 3.19 shows a solution that works: Make the ArrayListIterator class
a nested class. When we make ArrayListIterator a nested class, it is placed inside of
another class (in this case MyArrayList) which is the outer class. We must use the word
static to signify that it is nested; without static we will get an inner class, which is some-
times good and sometimes bad. The nested class is the type of class that is typical of many
programming languages. Observe that the nested class can be made private, which is nice
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1 public class MyArraylList<AnyType> implements Iterable<AnyType>
2 A

3 private int theSize;

4 private AnyType [ ] theltems;

5

6 public java.util.Iterator<AnyType> iterator( )

7 { return new ArrayListIterator<AnyType>( this ); }

8

9 private static class ArraylListIterator<AnyType>

10 implements java.util.Iterator<AnyType>
11 {

12 private int current = 0;

13 private MyArrayList<AnyType> thelist;

14

15 public ArrayListIterator( MyArrayList<AnyType> list )
16 { theList = list; }

17

18 pubTic boolean hasNext( )

19 { return current < thelist.size( ); }

20 public AnyType next( )

21 { return thelList.theltems[ current++ ]; }

22 }

23}

Figure 3.19 Iterator Version #3 (works): The iterator is a nested class and stores the
current position and a link to the MyArrayList. It works because the nested class is
considered part of the MyArrayList class

because then it is inaccessible except by the outer class MyArrayList. More importantly,
because the nested class is considered to be part of the outer class, there are no visibility
issues that arise: theltems is a visible member of class MyArrayList, because next is part of
MyArrayList.

Now that we have a nested class, we can discuss the inner class. The problem with
the nested class is that in our original design, when we wrote theItems without referring
to MyArraylList that it was contained in, the code looked nice, and kind of made sense,
but was illegal because it was impossible for the compiler to deduce which MyArrayList
was being referred to. It would be nice not to have to keep track of this ourselves. This is
exactly what an inner class does for you.

When you declare an inner class, the compiler adds an implicit reference to the
outer class object that caused the inner class object’s construction. If the name of the
outer class is Outer, then the implicit reference is Outer.this. Thus if ArrayListIterator
is declared as an inner class, without the static, then MyArrayList.this and thelList would
both be referencing the same MyArrayList. Thus thelList would be redundant and could be
removed.
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items: 3, 5, 2
theSize: 3

Ist ——»

MyArrayList.this
current = 0

MyArrayList.this
current = 3

itr1l itr2

Figure 3.20 Iterator/container with inner classes

The inner class is useful in a situation in which each inner class object is associated
with exactly one instance of an outer class object. In such a case, the inner class object can
never exist without having an outer class object with which to be associated. In the case
of the MyArrayList and its iterator, Figure 3.20 shows the relationship between the iterator
class and MyArrayList class, when inner classes are used to implement the iterator.

The use of theList.theItems could be replaced with MyArraylList.this.theItems. This
is hardly an improvement, but a further simplification is possible. Just as this.data can
be written simply as data (provided there is no other variable named data that could
clash), MyArrayList.this.theItems can be written simply as theItems. Figure 3.21 shows
the simplification of the ArrayListIterator.

1 public class MyArrayList<AnyType> implements Iterable<AnyType>
2 A

3 private int theSize;

4 private AnyType [ ] theltems;

5

6 public java.util.Iterator<AnyType> iterator( )

7 { return new ArrayListIterator( ); }

8

9 private class ArraylListIterator implements java.util.Iterator<AnyType>
10 {

11 private int current = 0;

12

13 public boolean hasNext( )

14 { return current < size( ); }

15 public AnyType next( )

16 { return theltems[ current++ ]; }

17 public void remove( )

18 { MyArrayList.this.remove( --current ); }

19 }

20}

Figure 3.21 Ilterator Version #4 (works): The iterator is an inner class and stores the
current position and an implicit link to the MyArrayList
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First, the ArrayListIterator is implicitly generic, since it is now tied to MyArrayList,
which is generic; we don't have to say so.

Second, thelist is gone, and we use size() and theltems[current++] as shorthands for
MyArrayList.this.size() and MyArrayList.this.theltems[current++]. The removal of the-
List as a data member also removes the associated constructor, so the code reverts back to
the style in Version #1.

We can implement the iterators remove by calling MyArraylLists remove. Since
MyArrayLists remove would conflict with ArrayListIterators remove, we have to use
MyArraylList.this.remove. Note that after the item is removed, elements shift, so for current
to be viewing the same element, it must also shift. Hence the use of --, rather than -1.

Inner classes are a syntactical convenience for Java programmers. They are not needed
to write any Java code, but their presence in the language allows the Java programmer to
write code in the style that was natural (like Version #1), with the compiler writing the
extra code required to associate the inner class object with the outer class object.

3.5 Implementation of LinkedList

In this section, we provide the implementation of a usable LinkedList generic class. As
in the case of the ArrayList class, our list class will be named MyLinkedList to avoid
ambiguities with the library class.

Recall that the LinkedList class will be implemented as a doubly linked list, and that
we will need to maintain references to both ends of the list. Doing so allows us to maintain
constant time cost per operation, so long as the operation occurs at a known position. The
known position can be either end, or at a position specified by an iterator (however, we do
not implement a ListIterator, thus leaving some code for the reader).

In considering the design, we will need to provide three classes:

1. The MyLinkedList class itself, which contains links to both ends, the size of the list, and
a host of methods.

2. The Node class, which is likely to be a private nested class. A node contains the data
and links to the previous and next nodes, along with appropriate constructors.

3. The LinkedListIterator class, which abstracts the notion of a position and is a private
inner class, implementing the Iterator interface. It provides implementations of next,
hasNext, and remove.

Because the iterator classes store a reference to the “current node,” and the end marker
is a valid position, it makes sense to create an extra node at the end of the list to represent
the end marker. Further, we can create an extra node at the front of the list, logically
representing the beginning marker. These extra nodes are sometimes known as sentinel
nodes; specifically, the node at the front is sometimes known as a header node, and the
node at the end is sometimes known as a tail node.
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Figure 3.22 A doubly linked list with header and tail nodes
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Figure 3.23 An empty doubly linked list with header and tail nodes

The advantage of using these extra nodes is that they greatly simplify the coding by
removing a host of special cases. For instance, if we do not use a header node, then remov-
ing the first node becomes a special case, because we must reset the lists link to the first
node during the remove, and also because the remove algorithm in general needs to access
the node prior to the node being removed (and without a header node, the first node
does not have a node prior to it). Figure 3.22 shows a doubly linked list with header and
tail nodes. Figure 3.23 shows an empty list. Figure 3.24 shows the outline and partial
implementation of the MyLinkedList class.

We can see at line 3 the beginning of the declaration of the private nested Node class.
Figure 3.25 shows the Node class, consisting of the stored item, links to the previous and
next Node, and a constructor. All the data members are public. Recall that in a class, the
data members are normally private. However, members in a nested class are visible even in
the outer class. Since the Node class is private, the visibility of the data members in the Node
class is irrelevant; the MyLinkedList methods can see all Node data members, and classes
outside of MyLinkedList cannot see the Node class at all.

Back in Figure 3.24, lines 46 to 49 contain the data members for MyLinkedList, namely
the reference to the header and tail nodes. We also keep track of the size in a data mem-
ber, so that the size method can be implemented in constant time. At line 47, we have
one additional data field that is used to help the iterator detect changes in the collection.
modCount represents the number of changes to the linked list since construction. Each call
to add or remove will update modCount. The idea is that when an iterator is created, it will
store the modCount of the collection. Each call to an iterator method (next or remove) will
check the stored modCount in the iterator with the current modCount in the linked list and
will throw a ConcurrentModificationException if these two counts don’t match.

The rest of the MyLinkedList class consists of the constructor, the implementation of
the iterator, and a host of methods. Many of the methods are one-liners.
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10
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42
43
44
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47
48
49
50

public class MyLinkedList<AnyType> implements Iterable<AnyType>

{

}

private static class Node<AnyType>
{ /% Figure 3.25 */ }

public MyLinkedList( )
{ doClear( ); }

public void clear( )

{ /* Figure 3.26 */ }
public int size( )

{ return theSize; }
public boolean isEmpty( )

{ return size( ) == 0; }

public boolean add( AnyType x )
{ add( size( ), x ); return true; }
public void add( int idx, AnyType x )
{ addBefore( getNode( idx, 0, size( ) ), x ); }
public AnyType get( int idx )
{ return getNode( idx ).data; }
public AnyType set( int idx, AnyType newVal )

{
Node<AnyType> p = getNode( idx );
AnyType oldVal = p.data;
p.data = newVal;
return oldVal;
}

public AnyType remove( int idx )
{ return remove( getNode( idx ) ); }

private void addBefore(
{ /* Figure 3.28 */ }
private AnyType remove (
{ /* Figure 3.30 */ }
private Node<AnyType> getNode( int idx )
{ /* Figure 3.31 %/ }
private Node<AnyType> getNode( int idx, int lower, int upper )
{ /* Figure 3.31 %/ }

Node<AnyType> p, AnyType X )

Node<AnyType> p )

public java.util.Iterator<AnyType> iterator( )
{ return new LinkedListIterator( ); }

private class LinkedListIterator implements java.util.Iterator<AnyType>
{ /* Figure 3.32 */ }

private int theSize;

private int modCount = 0;

private Node<AnyType> beginMarker;
private Node<AnyType> endMarker;

Figure 3.24 MylinkedList class
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private static class Node<AnyType>

{

}

public Node( AnyType d, Node<AnyType> p, Node<AnyType> n )

{ data

pubTic A

= d; prev = p; next = n; }

nyType data;

pubTic Node<AnyType> prev;
pubTic Node<AnyType> next;

Figure 3.25 Nested Node class for MyLinkedList class

1
2
3
4_
5
6
7
8
9

10
11
12

public void clear( )

{ doClear( ); }

private void doClear( )

{

}

beginMar
endMarke
beginMar

theSize
modCount

ker = new Node<AnyType>( null, null, null );
r = new Node<AnyType>( null, beginMarker, null );
ker.next = endMarker;

=0;

++;

Figure 3.26 clear routine for MyLinkedList class, which invokes private doClear

The doClear method in Figure 3.26 is invoked by the constructor. It creates and

connects the header and tail nodes and then sets the size to 0.

In Figure 3.24, at line 43 we see the beginning of the declaration of the pri-

vate inner LinkedListIterator class. We'll discuss those details when we see the actual
implementations later.

Figure 3.27 illustrates how a new node containing x is spliced in between a node

referenced by p and p.prev. The assignment to the node links can be described as follows:

Node newNode = new Node( x, p.prev, p ); // Steps 1 and 2
p.prev.next = newNode; // Step 3
p.prev = newNode; // Step 4

Steps 3 and 4 can be combined, yielding only two lines:

p.prev = p.prev.next = newNode;

Node newNode = new Node( x, p.prev, p ); // Steps 1 and 2

// Steps 3 and 4

But then these two lines can also be combined, yielding:

p.prev = p.prev.next = new Node( x, p.prev, p );
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Figure 3.27 Insertion in a doubly linked list by getting new node and then changing
pointers in the order indicated

This makes the addBefore routine in Figure 3.28 short.

Figure 3.29 shows the logic of removing a node. If p references the node being
removed, only two links change before the node is disconnected and eligible to be
reclaimed by the Virtual Machine:

p.prev.next = p.next;
p.next.prev = p.prev;

1 /**

2 * Adds an item to this collection, at specified position p.

3 * Items at or after that position are slid one position higher.
4 * @Oparam p Node to add before.

5 * @param x any object.

6 % @throws IndexOutOfBoundsException if idx is not between 0 and size(),.
7 */

8 private void addBefore( Node<AnyType> p, AnyType x )

9 {

10 Node<AnyType> newNode = new Node<>( x, p.prev, p );

11 newNode.prev.next = newNode;

12 p.prev = newNode;

13 theSizet++;

14 modCount++;

15 }

Figure 3.28 add routine for MyLinkedList class

N

'TL TL TL

p

Figure 3.29 Removing node specified by p from a doubly linked list
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1 /**

2 * Removes the object contained in Node p.
3 % @param p the Node containing the object.
4 * @return the item was removed from the collection.
5 */

6 private AnyType remove( Node<AnyType> p )

7 {

8 p.next.prev = p.prev;

9 p.prev.next = p.next;
10 theSize--;
11 modCount++;
12
13 return p.data;
14 }

Figure 3.30 remove routine for MyLinkedList class

Figure 3.30 shows the basic private remove routine that contains the two lines of code
shown above.

Figure 3.31 has the previously mentioned private getNode methods. If the index repre-
sents a node in the first half of the list, then at lines 29 to 34 we step through the linked
list, in the forward direction. Otherwise, we go backward, starting at the end, as shown in
lines 37 to 39.

The LinkedListIterator, shown in Figure 3.32, has logic that is similar to the
ArrayListIterator but incorporates significant error checking. The iterator maintains a cur-
rent position, shown at line 3. current represents the node containing the item that is to
be returned by a call to next. Observe that when current is positioned at the endMarker, a
call to next is illegal.

In order to detect a situation in which the collection has been modified during the
iteration, at line 4 the iterator stores in the data field expectedModCount the modCount of the
linked list at the time the iterator is constructed. At line 5, the Boolean data field okToRemove
is true if a next has been performed, without a subsequent remove. Thus okToRemove is
initially false, set to true in next, and set to false in remove.

hasNext is fairly routine. As in java.util.LinkedList% iterator, it does not check for
modification of the linked list.

The next method advances current (line 18) after getting the value in the node (line
17) that is to be returned (line 20). okToRemove is updated at line 19.

Finally, the iterator’s remove method is shown at lines 23 to 33. It is mostly error check-
ing (which is why we avoided the error checks in the ArrayListIterator). The actual remove
at line 30 mimics the logic in the ArrayListIterator. But here, current remains unchanged,
because the node that current is viewing is unaffected by the removal of the prior node (in
the ArrayListIterator, items shifted, requiring an update of current).
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Figure 3.31

3.5 Implementation of LinkedList

Gets the Node at position idx, which must range from 0 to size( ) - 1.
@param idx index to search at.
@return internal node corresponding to idx.
@throws IndexOutOfBoundsException if idx is not
between 0 and size( ) - 1, inclusive.

vate Node<AnyType> getNode( int idx )

return getNode( idx, 0, size( ) - 1);

Gets the Node at position idx, which must range from lower to upper.
@param idx index to search at.
@param Tower Towest valid index.
@Gparam upper highest valid index.
@return internal node corresponding to idx.
@throws IndexOutOfBoundsException if idx is not
between Tower and upper, inclusive.

vate Node<AnyType> getNode( int idx, int lower, int upper )
Node<AnyType> p;

if( idx < lower || idx > upper )
throw new IndexOutOfBoundsException( );

if( idx < size( ) / 2)
{
p = beginMarker.next;
for( int 1 = 0; 1 < idx; i++ )
p = p.next;
}

else

{
p = endMarker;
for( int i = size( ); i > idx; i--)
p = p.prev;

return p;

Private getNode routine for MyLinkedList class
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private class LinkedListIterator implements java.util.Iterator<AnyType>

{

}

private Node<AnyType> current = beginMarker.next;
private int expectedModCount = modCount;
private boolean okToRemove = false;

public boolean hasNext( )
{ return current != endMarker; }

public AnyType next( )
{
if( modCount != expectedModCount )
throw new java.util.ConcurrentModificationException( );
if( 'hasNext( ) )
throw new java.util.NoSuchElementException( );

AnyType nextItem = current.data;
current = current.next;
okToRemove = true;

return nextItem;

public void remove( )
{
if( modCount != expectedModCount )
throw new java.util.ConcurrentModificationException( );
if( !okToRemove )
throw new I1legalStateException( );

MyLinkedList.false.remove( current.prev );
expectedModCount++;
okToRemove = false;

Figure 3.32 Inner Iterator class for MyList class

3.6 The Stack ADT

3.6.1

Stack Model

A stack is a list with the restriction that insertions and deletions can be performed in only
one position, namely, the end of the list, called the top. The fundamental operations on a
stack are push, which is equivalent to an insert, and pop, which deletes the most recently
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pop push

Stack
top

Figure 3.33 Stack model: input to a stack is by push, output is by pop and top

top )
4
1
3
6

Figure 3.34 Stack model: Only the top element is accessible

inserted element. The most recently inserted element can be examined prior to performing
a pop by use of the top routine. A pop or top on an empty stack is generally considered an
error in the stack apT. On the other hand, running out of space when performing a push is
an implementation limit but not an ApT error.

Stacks are sometimes known as LiFO (last in, first out) lists. The model depicted in
Figure 3.33 signifies only that pushes are input operations and pops and tops are output.
The usual operations to make empty stacks and test for emptiness are part of the repertoire,
but essentially all that you can do to a stack is push and pop.

Figure 3.34 shows an abstract stack after several operations. The general model is that
there is some element that is at the top of the stack, and it is the only element that is visible.

3.6.2 Implementation of Stacks

Since a stack is a list, any list implementation will do. Clearly ArrayList and LinkedList sup-
port stack operations; 99% of the time they are the most reasonable choice. Occasionally
it can be faster to design a special-purpose implementation (for instance, if the items being
placed on the stack are a primitive type). Because stack operations are constant-time oper-
ations, this is unlikely to yield any discernable improvement except under very unique
circumstances. For these special times, we will give two popular implementations. One
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uses a linked structure and the other uses an array, and both simplify the logic in ArrayList
and LinkedList, so we do not provide code.

Linked List Implementation of Stacks

The first implementation of a stack uses a singly linked list. We perform a push by inserting
at the front of the list. We perform a pop by deleting the element at the front of the list.
A top operation merely examines the element at the front of the list, returning its value.
Sometimes the pop and top operations are combined into one.

Array Implementation of Stacks

An alternative implementation avoids links and is probably the more popular solution.
Mimicking the ArrayList add operation, the implementation is trivial. Associated with each
stack is theArray and topOfStack, which is —1 for an empty stack (this is how an empty
stack is initialized). To push some element x onto the stack, we increment topOfStack and
then set theArray[topOfStack] = x. To pop, we set the return value to theArray[topOfStack]
and then decrement topOfStack.

Notice that these operations are performed in not only constant time, but very fast con-
stant time. On some machines, pushes and pops (of integers) can be written in one machine
instruction, operating on a register with auto-increment and auto-decrement addressing.
The fact that most modern machines have stack operations as part of the instruction
set enforces the idea that the stack is probably the most fundamental data structure in
computer science, after the array.

3.6.3 Applications

It should come as no surprise that if we restrict the operations allowed on a list, those oper-
ations can be performed very quickly. The big surprise, however, is that the small number
of operations left are so powerful and important. We give three of the many applications
of stacks. The third application gives a deep insight into how programs are organized.

Balancing Symbols

Compilers check your programs for syntax errors, but frequently a lack of one symbol
(such as a missing brace or comment starter) will cause the compiler to spill out a hundred
lines of diagnostics without identifying the real error. (Fortunately, most Java compilers are
pretty good about this. But not all languages and compilers are as responsible.)

A useful tool in this situation is a program that checks whether everything is balanced.
Thus, every right brace, bracket, and parenthesis must correspond to its left counterpart.
The sequence [()] is legal, but [(]) is wrong. Obviously, it is not worthwhile writing a
huge program for this, but it turns out that it is easy to check these things. For simplicity,
we will just check for balancing of parentheses, brackets, and braces and ignore any other
character that appears.

The simple algorithm uses a stack and is as follows:

Make an empty stack. Read characters until end of file. If the character is an opening
symbol, push it onto the stack. If it is a closing symbol, then if the stack is empty report
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an error. Otherwise, pop the stack. If the symbol popped is not the corresponding
opening symbol, then report an error. At end of file, if the stack is not empty report an
error.

You should be able to convince yourself that this algorithm works. It is clearly linear
and actually makes only one pass through the input. It is thus online and quite fast. Extra
work can be done to attempt to decide what to do when an error is reported—such as
identifying the likely cause.

Postfix Expressions

Suppose we have a pocket calculator and would like to compute the cost of a shopping
trip. To do so, we add a list of numbers and multiply the result by 1.06; this computes the
purchase price of some items with local sales tax added. If the items are 4.99, 5.99, and
6.99, then a natural way to enter this would be the sequence

4.99 +5.99 4+ 6.99 % 1.06 =

Depending on the calculator, this produces either the intended answer, 19.05, or the sci-
entific answer, 18.39. Most simple four-function calculators will give the first answer, but
many advanced calculators know that multiplication has higher precedence than addition.

On the other hand, some items are taxable and some are not, so if only the first and
last items were actually taxable, then the sequence

4.99 % 1.06 +5.99 +6.99 % 1.06 =

would give the correct answer (18.69) on a scientific calculator and the wrong answer
(19.37) on a simple calculator. A scientific calculator generally comes with parentheses, so
we can always get the right answer by parenthesizing, but with a simple calculator we need
to remember intermediate results.

A typical evaluation sequence for this example might be to multiply 4.99 and 1.06,
saving this answer as A;. We then add 5.99 and A, saving the result in A;. We multiply
6.99 and 1.006, saving the answer in A;, and finish by adding A; and A;, leaving the final
answer in Aj. We can write this sequence of operations as follows:

4.99 1.06 * 5.99 + 6.99 1.06 * +

This notation is known as postfix or reverse Polish notation and is evaluated exactly as
we have described above. The easiest way to do this is to use a stack. When a number is
seen, it is pushed onto the stack; when an operator is seen, the operator is applied to the
two numbers (symbols) that are popped from the stack, and the result is pushed onto the
stack. For instance, the postfix expression

65234+8%4+ 34 *

is evaluated as follows: The first four symbols are placed on the stack. The resulting
stack is
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topOfStack —

AN N W

Next a ‘4’ is read, so 3 and 2 are popped from the stack and their sum, 5, is pushed.

topOfStack — 5

W

Next 8 is pushed.

topOfStack —

AN L L 0

Now a ‘*’is seen, so 8 and 5 are popped and 5 * 8 = 40 is pushed.

topOfStack — 40

9]

Next a ‘4’ is seen, so 40 and 5 are popped and 5 4+ 40 = 45 is pushed.

topOfStack — 45
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Now, 3 is pushed.

topOfStack — 3
45

Next ‘+ pops 3 and 45 and pushes 45 + 3 = 48.

topOfStack — 48

Finally, a “«’ is seen and 48 and 6 are popped,; the result, 6 * 48 = 288, is pushed.

topOfStack  — 288

The time to evaluate a postfix expression is O(N), because processing each element in
the input consists of stack operations and thus takes constant time. The algorithm to do
so is very simple. Notice that when an expression is given in postfix notation, there is no
need to know any precedence rules; this is an obvious advantage.

Infix to Postfix Conversion

Not only can a stack be used to evaluate a postfix expression, but we can also use a stack
to convert an expression in standard form (otherwise known as infix) into postfix. We
will concentrate on a small version of the general problem by allowing only the operators
+ %, (,), and insisting on the usual precedence rules. We will further assume that the
expression is legal. Suppose we want to convert the infix expression

a+bxc+(dre+f) =g

into postfix. A correct answerisa b ¢ » + d e = f + g * +

When an operand is read, it is immediately placed onto the output. Operators are not
immediately output, so they must be saved somewhere. The correct thing to do is to place
operators that have been seen, but not placed on the output, onto the stack. We will also
stack left parentheses when they are encountered. We start with an initially empty stack.
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If we see a right parenthesis, then we pop the stack, writing symbols until we encounter
a (corresponding) left parenthesis, which is popped but not output.

If we see any other symbol (+, %, (), then we pop entries from the stack until we find
an entry of lower priority. One exception is that we never remove a ( from the stack except
when processing a ). For the purposes of this operation, + has lowest priority and ( highest.
When the popping is done, we push the operator onto the stack.

Finally, if we read the end of input, we pop the stack until it is empty, writing symbols
onto the output.

The idea of this algorithm is that when an operator is seen, it is placed on the stack.
The stack represents pending operators. However, some of the operators on the stack that
have high precedence are now known to be completed and should be popped, as they will
no longer be pending. Thus prior to placing the operator on the stack, operators that are
on the stack and are to be completed prior to the current operator, are popped. This is
illustrated in the following table:

Stack When Third
Expression Operator Is Processed Action
axb-c+d - - is completed; + is pushed
a/b+cxd + Nothing is completed; * is pushed
a-bxc/d - * * is completed; / is pushed
a-bxc+d - * = and - are completed; + is pushed

Parentheses simply add an additional complication. We can view a left parenthesis
as a high-precedence operator when it is an input symbol (so that pending operators
remain pending), and a low-precedence operator when it is on the stack (so that it is
not accidentally removed by an operator). Right parentheses are treated as the special case.

To see how this algorithm performs, we will convert the long infix expression above
into its postfix form. First, the symbol a is read, so it is passed through to the output. Then
+is read and pushed onto the stack. Next b is read and passed through to the output. The
state of affairs at this juncture is as follows:

+ ab
Stack Output

Next a = is read. The top entry on the operator stack has lower precedence than *, so
nothing is output and = is put on the stack. Next, ¢ is read and output. Thus far, we have

+ abc
Stack Output
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The next symbol is a +. Checking the stack, we find that we will pop a » and place it on
the output; pop the other +, which is not of lower but equal priority, on the stack; and then
push the +.

+ abc*+
Stack Output

The next symbol read is a (, which, being of highest precedence, is placed on the stack.
Then d is read and output.

(
+ abc*+d
Stack Output

We continue by reading a . Since open parentheses do not get removed except when a
closed parenthesis is being processed, there is no output. Next, e is read and output.

*

(

+ abc*+de
Stack Output

The next symbol read is a +. We pop and output * and then push +. Then we read and
output f.

+

(

+ abc*+dex*f
Stack Output

Now we read a ), so the stack is emptied back to the (. We output a +.

+ abc*+de*f+
Stack Output

We read a » next; it is pushed onto the stack. Then g is read and output.
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*
+ abc*+de*f+g
Stack Output

The input is now empty, so we pop and output symbols from the stack until it is empty.

labc*+de*xf+g*+
Stack Output

As before, this conversion requires only O(N) time and works in one pass through the
input. We can add subtraction and division to this repertoire by assigning subtraction and
addition equal priority and multiplication and division equal priority. A subtle point is that
the expression a-b-c will be converted to ab-c- and not abc--. Our algorithm does the right
thing, because these operators associate from left to right. This is not necessarily the case
in general, since exponentiation associates right to left: 22 =28 = 256, not 4> = 64. We
leave as an exercise the problem of adding exponentiation to the repertoire of operators.

Method Calls

The algorithm to check balanced symbols suggests a way to implement method calls in
compiled procedural and object-oriented languages.® The problem here is that when a call
is made to a new method, all the variables local to the calling routine need to be saved
by the system, since otherwise the new method will overwrite the memory used by the
calling routine’s variables. Furthermore, the current location in the routine must be saved
so that the new method knows where to go after it is done. The variables have generally
been assigned by the compiler to machine registers, and there are certain to be conflicts
(usually all methods get some variables assigned to register #1), especially if recursion is
involved. The reason that this problem is similar to balancing symbols is that a method call
and method return are essentially the same as an open parenthesis and closed parenthesis,
so the same ideas should work.

When there is a method call, all the important information that needs to be saved, such
as register values (corresponding to variable names) and the return address (which can be
obtained from the program counter, which is typically in a register), is saved “on a piece
of paper” in an abstract way and put at the top of a pile. Then the control is transferred
to the new method, which is free to replace the registers with its values. If it makes other
method calls, it follows the same procedure. When the method wants to return, it looks
at the “paper” at the top of the pile and restores all the registers. It then makes the return
jump.

! Since Java is interpreted, rather than compiled, some details in this section may not apply to Java, but the
general concepts still do in Java and many other languages.
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/**
* Print container from itr.
*/
public static <AnyType> void printList( Iterator<AnyType> itr )
{
if( litr.hasNext( ) )
return;

System.out.printin( itr.next( ) );
printList( itr );

— O O 0 N Y LR W N =

—_ —

}

Figure 3.35 A bad use of recursion: printing a linked list

Clearly, all of this work can be done using a stack, and that is exactly what happens in
virtually every programming language that implements recursion. The information saved
is called either an activation record or stack frame. Typically, a slight adjustment is made:
The current environment is represented at the top of the stack. Thus, a return gives the
previous environment (without copying). The stack in a real computer frequently grows
from the high end of your memory partition downward, and on many non-Java systems
there is no checking for overflow. There is always the possibility that you will run out of
stack space by having too many simultaneously active methods. Needless to say, running
out of stack space is always a fatal error.

In languages and systems that do not check for stack overflow, programs crash without
an explicit explanation. In Java, an exception is thrown.

In normal events, you should not run out of stack space; doing so is usually an indica-
tion of runaway recursion (forgetting a base case). On the other hand, some perfectly legal
and seemingly innocuous programs can cause you to run out of stack space. The routine in
Figure 3.35, which prints out a collection, is perfectly legal and actually correct. It properly
handles the base case of an empty collection, and the recursion is fine. This program can be
proven correct. Unfortunately, if the collection contains 20,000 elements to print, there will
be a stack of 20,000 activation records representing the nested calls of line 10. Activation
records are typically large because of all the information they contain, so this program is
likely to run out of stack space. (If 20,000 elements are not enough to make the program
crash, replace the number with a larger one.)

This program is an example of an extremely bad use of recursion known as tail
recursion. Tail recursion refers to a recursive call at the last line. Tail recursion can be
mechanically eliminated by enclosing the body in a while loop and replacing the recursive
call with one assignment per method argument. This simulates the recursive call because
nothing needs to be saved; after the recursive call finishes, there is really no need to know
the saved values. Because of this, we can just go to the top of the method with the val-
ues that would have been used in a recursive call. The method in Figure 3.36 shows the
mechanically improved version. Removal of tail recursion is so simple that some compilers
do it automatically. Even so, it is best not to find out that yours does not.
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1 /**

2 * Print container from itr.

3 x/

4 public static <AnyType> void printList( Iterator<AnyType> itr )
5 {

6 while( true )

7 {

8 if( !itr.hasNext( ) )

9 return;

10

11 System.out.printIn( itr.next( ) );
12 }

13 }

Figure 3.36 Printing a list without recursion; a compiler might do this

Recursion can always be completely removed (compilers do so in converting to assem-
bly language), but doing so can be quite tedious. The general strategy requires using a
stack and is worthwhile only if you can manage to put the bare minimum on the stack. We
will not dwell on this further, except to point out that although nonrecursive programs are
certainly generally faster than equivalent recursive programs, the speed advantage rarely
justifies the lack of clarity that results from removing the recursion.

3.7 The Queue ADT

Like stacks, queues are lists. With a queue, however, insertion is done at one end, whereas
deletion is performed at the other end.

3.7.1 Queue Model

The basic operations on a queue are enqueue, which inserts an element at the end of the list
(called the rear), and dequeue, which deletes (and returns) the element at the start of the
list (known as the front). Figure 3.37 shows the abstract model of a queue.

3.7.2 Array Implementation of Queues

As with stacks, any list implementation is legal for queues. Like stacks, both the linked list
and array implementations give fast O(1) running times for every operation. The linked
list implementation is straightforward and left as an exercise. We will now discuss an array
implementation of queues.

For each queue data structure, we keep an array, theArray, and the positions front and
back, which represent the ends of the queue. We also keep track of the number of elements
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dequeue enqueue

Queue

Figure 3.37 Model of a queue

that are actually in the queue, currentSize. The following figure shows a queue in some
intermediate state.

5121711
) T
front back

The operations should be clear. To enqueue an element x, we increment currentSize
and back, then set theArray[back]=x. To dequeue an element, we set the return value to
theArray[front], decrement currentSize, and then increment front. Other strategies are
possible (this is discussed later). We will comment on checking for errors presently.

There is one potential problem with this implementation. After 10 enqueues, the queue
appears to be full, since back is now at the last array index, and the next enqueue would
be in a nonexistent position. However, there might only be a few elements in the queue,
because several elements may have already been dequeued. Queues, like stacks, frequently
stay small even in the presence of a lot of operations.

The simple solution is that whenever front or back gets to the end of the array, it is
wrapped around to the beginning. The following figures show the queue during some
operations. This is known as a circular array implementation.

Initial State

2 4
T T

front back

After enqueue(1)

1 2 | 4
T T
back front

www.EBooksWorld.ir

93



Chapter 3 Lists, Stacks, and Queues

After enqueue(3)

113 2 | 4
T T
back front

After dequeue, Which Returns 2

1|3 2 | 4
T T
back front

After dequeue, Which Returns 4

113 2 | 4
T 7
front back

After dequeue, Which Returns 1

113 2 | 4

T
back
front

After dequeue, Which Returns 3
and Makes the Queue Empty

113 2 | 4
T 17
back front

The extra code required to implement the wraparound is minimal (although it probably
doubles the running time). If incrementing either back or front causes it to go past the array,
the value is reset to the first position in the array.

Some programmers use different ways of representing the front and back of a queue.
For instance, some do not use an entry to keep track of the size, because they rely on the
base case that when the queue is empty, back = front-1. The size is computed implic-
itly by comparing back and front. This is a very tricky way to go, because there are some
special cases, so be very careful if you need to modify code written this way. If the cur-
rentSize is not maintained as an explicit data field, then the queue is full when there are
theArray.length-1 elements, since only theArray.length different sizes can be differenti-
ated, and one of these is 0. Pick any style you like and make sure that all your routines
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are consistent. Since there are a few options for implementation, it is probably worth a
comment or two in the code, if you don't use the currentSize field.

In applications where you are sure that the number of enqueues is not larger than the
capacity of the queue, the wraparound is not necessary. As with stacks, dequeues are rarely
performed unless the calling routines are certain that the queue is not empty. Thus error
checks are frequently skipped for this operation, except in critical code. This is generally
not justifiable, because the time savings that you are likely to achieve are minimal.

3.7.3 Applications of Queues

There are many algorithms that use queues to give efficient running times. Several of these
are found in graph theory, and we will discuss them in Chapter 9. For now, we will give
some simple examples of queue usage.

When jobs are submitted to a printer, they are arranged in order of arrival. Thus,
essentially, jobs sent to a line printer are placed on a queue.?

Virtually every real-life line is (supposed to be) a queue. For instance, lines at ticket
counters are queues, because service is first-come first-served.

Another example concerns computer networks. There are many network setups of
personal computers in which the disk is attached to one machine, known as the file server.
Users on other machines are given access to files on a first-come first-served basis, so the
data structure is a queue.

Further examples include the following:

* Calls to large companies are generally placed on a queue when all operators are busy.

* In large universities, where resources are limited, students must sign a waiting list
if all terminals are occupied. The student who has been at a terminal the longest is
forced off first, and the student who has been waiting the longest is the next user to be
allowed on.

A whole branch of mathematics, known as queuing theory, deals with computing,
probabilistically, how long users expect to wait on a line, how long the line gets, and other
such questions. The answer depends on how frequently users arrive to the line and how
long it takes to process a user once the user is served. Both of these parameters are given as
probability distribution functions. In simple cases, an answer can be computed analytically.
An example of an easy case would be a phone line with one operator. If the operator is busy,
callers are placed on a waiting line (up to some maximum limit). This problem is important
for businesses, because studies have shown that people are quick to hang up the phone.

If there are k operators, then this problem is much more difficult to solve. Problems
that are difficult to solve analytically are often solved by a simulation. In our case, we
would need to use a queue to perform the simulation. If k is large, we also need other data
structures to do this efficiently. We shall see how to do this simulation in Chapter 6. We

2We say essentially because jobs can be killed. This amounts to a deletion from the middle of the queue,
which is a violation of the strict definition.
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could then run the simulation for several values of k and choose the minimum k that gives
a reasonable waiting time.

Additional uses for queues abound, and as with stacks, it is staggering that such a
simple data structure can be so important.

Summary

This chapter describes the concept of apts and illustrates the concept with three of the
most common abstract data types. The primary objective is to separate the implementation
of the abstract data types from their function. The program must know what the operations
do, but it is actually better off not knowing how it is done.

Lists, stacks, and queues are perhaps the three fundamental data structures in all of
computer science, and their use is documented through a host of examples. In particular,
we saw how stacks are used to keep track of method calls and how recursion is actually
implemented. This is important to understand, not just because it makes procedural lan-
guages possible, but because knowing how recursion is implemented removes a good deal
of the mystery that surrounds its use. Although recursion is very powerful, it is not an
entirely free operation; misuse and abuse of recursion can result in programs crashing.

Exercises

3.1  You are given a list, L, and another list, P, containing integers sorted in ascending
order. The operation printLots(L,P) will print the elements in L that are in positions
specified by P. For instance, if P = 1, 3,4, 6, the elements in positions 1, 3, 4, and 6
in L are printed. Write the procedure printLots(L,P). You may use only the public
Collections API container operations. What is the running time of your procedure?

3.2 Swap two adjacent elements by adjusting only the links (and not the data) using:
a. Singly linked lists.
b. Doubly linked lists.

3.3 Implement the contains routine for MyLinkedList.

3.4 Given two sorted lists, L1 and L,, write a procedure to compute L1 N L, using only
the basic list operations.

3.5 Given two sorted lists, L} and L,, write a procedure to compute L} U L, using only
the basic list operations.

3.6 The Josephus problem is the following game: N people, numbered 1 to N, are sitting
in a circle. Starting at person 1, a hot potato is passed. After M passes, the person
holding the hot potato is eliminated, the circle closes ranks, and the game continues
with the person who was sitting after the eliminated person picking up the hot
potato. The last remaining person wins. Thus, if M = 0 and N = 5, players are
eliminated in order, and player 5 wins. If M = 1 and N = 5, the order of elimination
is2,4,1,5.
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a. Write a program to solve the Josephus problem for general values of M and N.
Try to make your program as efficient as possible. Make sure you dispose of
cells.

b. What is the running time of your program?

3.7  What is the running time of the following code?

public static List<Integer> makeList( int N )
{

ArrayList<Integer> 1st = new ArraylList<>( );

for( int i = 0; i < N; i++ )
{
Tst.add( i );
Ist.trimToSize( );

}
3.8  The following routine removes the first half of the list passed as a parameter:

public static void removeFirstHalf( List<?> st )

{
int theSize = Tst.size( ) / 2;

for( int 1 = 0; i < theSize; i++ )
Ist.remove( 0 );

}

a. Why is theSize saved prior to entering the for loop?

b. What is the running time of removeFirstHalf if Tst is an ArrayList?
c. What is the running time of removeFirstHalf if 1st is a LinkedList?
d. Does using an iterator make removeHalf faster for either type of List?

3.9  Provide an implementation of an addA11 method for the MyArrayList class. Method
addA11 adds all items in the specified collection given by items to the end of the
MyArrayList. Also provide the running time of your implementation. The method
signature for you to use is slightly different than the one in the Java Collections API,
and is as follows:

public void addA11( Iterable<? extends AnyType> items )

3.10 Provide an implementation of a removeAll method for the MyLinkedList class.
Method removeAll removes all items in the specified collection given by items
from the MyLinkedList. Also provide the running time of your implementation.
The method signature for you to use is slightly different than the one in the Java
Collections API, and is as follows:

public void removeAll( Iterable<? extends AnyType> items )
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3.11

3.12
3.13

3.14

3.15

3.16

3.17

3.18

Assume that a singly linked list is implemented with a header node, but no tail
node, and that it maintains only a reference to the header node. Write a class that
includes methods to

return the size of the linked list
. print the linked list

test if a value x is contained in the linked list
. add a value x if it is not already contained in the linked list

remove a value x if it is contained in the linked list

o a0 o

Repeat Exercise 3.11, maintaining the singly linked list in sorted order.

Add support for a ListIterator to the MyArraylList class. The ListIterator inter-
face in java.util has more methods than are shown in Section 3.3.5. Notice that
you will write a TistIterator method to return a newly constructed ListIterator,
and further, that the existing iterator method can return a newly constructed
ListIterator. Thus you will change ArrayListIterator so that it implements
ListIterator instead of Iterator. Throw an UnsupportedOperationException for
methods not listed in Section 3.3.5.

Add support for a ListIterator to the MyLinkedList class, as was done in
Exercise 3.13.

Add a splice operation to the LinkedList class. The method declaration
public void splice(Iterator<T> itr, MylLinkedList<? extends T> Ist )

removes all the items from 1st (making 1st empty), placing them prior to itr in
MyLinkedList this. 1st and this must be different lists. Your routine must run in
constant time.

An alternative to providing a ListIterator is to provide a method with signature
Iterator<AnyType> reverselterator( )

that returns an Iterator, initialized to the last item, and for which next and hasNext
are implemented to be consistent with the iterator advancing toward the front of
the list, rather than the back. Then you could print a MyArrayList L in reverse by
using the code

Iterator<AnyType> ritr = L.reverselterator( );
while( ritr.hasNext( ) )
System.out.printIn( ritr.next( ) );

Implement an ArraylListReverselterator class, with this logic, and have reverselt-
erator return a newly constructed ArraylListReverselterator.

Modify the MyArrayList class to provide stringent iterator checking by using the
techniques seen in Section 3.5 for MyLinkedList.

For MyLinkedList, implement addFirst, addLast, removeFirst, removelast, getFirst,
and getlast by making calls to the private add, remove, and getNode routines,
respectively.
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3.20

3.21

3.22
3.23

3.24

3.25

*3.26
3.27

3.28

3.29

Exercises

Rewrite the MyLinkedList class without using header and tail nodes and describe
the differences between the class and the class provided in Section 3.5.

An alternative to the deletion strategy we have given is to use lazy deletion. To
delete an element, we merely mark it deleted (using an extra bit field). The number
of deleted and nondeleted elements in the list is kept as part of the data structure. If
there are as many deleted elements as nondeleted elements, we traverse the entire
list, performing the standard deletion algorithm on all marked nodes.

a. List the advantages and disadvantages of lazy deletion.

b. Write routines to implement the standard linked list operations using lazy

deletion.

Write a program to check for balancing symbols in the following languages:
a. Pascal (begin/end, (), [1, {}).
b. Java (/= =/, (), [1, {}).
*c. Explain how to print out an error message that is likely to reflect the probable
cause.

Write a program to evaluate a postfix expression.

a. Write a program to convert an infix expression that includes (, ), +, -, *, and /
to postfix.

b. Add the exponentiation operator to your repertoire.

c. Write a program to convert a postfix expression to infix.

Write routines to implement two stacks using only one array. Your stack routines
should not declare an overflow unless every slot in the array is used.

*a. Propose a data structure that supports the stack push and pop operations and a
third operation findMin, which returns the smallest element in the data structure,
all in O(1) worst-case time.

*b. Prove that if we add the fourth operation deleteMin which finds and removes the
smallest element, then at least one of the operations must take Q(log N) time.
(This requires reading Chapter 7.)

Show how to implement three stacks in one array.
If the recursive routine in Section 2.4 used to compute Fibonacci numbers is run
for N = 50, is stack space likely to run out? Why or why not?
A deque is a data structure consisting of a list of items, on which the following
operations are possible:

push(x): Insert item x on the front end of the deque.

pop(): Remove the front item from the deque and return it.

inject(x): Insert item x on the rear end of the deque.

eject(): Remove the rear item from the deque and return it.
Write routines to support the deque that take O(1) time per operation.

Write an algorithm for printing a singly linked list in reverse, using only constant
extra space. This instruction implies that you cannot use recursion, but you may
assume that your algorithm is a list member function.
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3.30

331

3.32

3.33
3.34

3.35

3.36

3.37

a. Write an array implementation of self-adjusting lists. In a self-adjusting list, all
insertions are performed at the front. A self-adjusting list adds a find operation,
and when an element is accessed by a find, it is moved to the front of the list
without changing the relative order of the other items.

b. Write a linked list implementation of self-adjusting lists.

c. Suppose each element has a fixed probability, p;, of being accessed. Show that
the elements with highest access probability are expected to be close to the front.

Efficiently implement a stack class using a singly linked list, with no header or tail
nodes.

Efficiently implement a queue class using a singly linked list, with no header or tail
nodes.

Efficiently implement a queue class using a circular array.

A linked list contains a cycle if, starting from some node p, following a sufficient

number of next links brings us back to node p. p does not have to be the first node

in the list. Assume that you are given a linked list that contains N nodes. However,

the value of N is unknown.

a. Design an O(N) algorithm to determine if the list contains a cycle. You may use
O(N) extra space.

*b. Repeat part (a), but use only O(1) extra space. (Hint: Use two iterators that are

initially at the start of the list, but advance at different speeds.)

One way to implement a queue is to use a circular linked list. In a circular linked
list, the last node’ next link links to the first node. Assume the list does not contain
a header and that we can maintain, at most, one iterator corresponding to a node in
the list. For which of the following representations can all basic queue operations
be performed in constant worst-case time? Justify your answers.

a. Maintain an iterator that corresponds to the first item in the list.

b. Maintain an iterator that corresponds to the last item in the list.

Suppose we have a reference to a node in a singly linked list that is guaranteed not
to be the last node in the list. We do not have references to any other nodes (except
by following links). Describe an O(1) algorithm that logically removes the value
stored in such a node from the linked list, maintaining the integrity of the linked
list. (Hint: Involve the next node.)

Suppose that a singly linked list is implemented with both a header and a tail node.
Describe constant-time algorithms to

a. Insert item x before position p (given by an iterator).

b. Remove the item stored at position p (given by an iterator).
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Trees

For large amounts of input, the linear access time of linked lists is prohibitive. In this
chapter we look at a simple data structure for which the running time of most opera-
tions is O(logN) on average. We also sketch a conceptually simple modification to this
data structure that guarantees the above time bound in the worst case and discuss a sec-
ond modification that essentially gives an O(log N) running time per operation for a long
sequence of instructions.

The data structure that we are referring to is known as a binary search tree. The binary
search tree is the basis for the implementation of two library collections classes, TreeSet and
TreeMap, which are used in many applications. Trees in general are very useful abstractions
in computer science, so we will discuss their use in other, more general applications. In
this chapter, we will

* See how trees are used to implement the file system of several popular operating
systems.

* See how trees can be used to evaluate arithmetic expressions.

 Show how to use trees to support searching operations in O(log N) average time, and
how to refine these ideas to obtain O(log N) worst-case bounds. We will also see how
to implement these operations when the data are stored on a disk.

 Discuss and use the TreeSet and TreeMap classes.

4.1 Preliminaries

A tree can be defined in several ways. One natural way to define a tree is recursively. A
tree is a collection of nodes. The collection can be empty; otherwise, a tree consists of a
distinguished node r, called the root, and zero or more nonempty (sub)trees T1, T, ..., Ty,
each of whose roots are connected by a directed edge from r.

The root of each subtree is said to be a child of r, and r is the parent of each subtree
root. Figure 4.1 shows a typical tree using the recursive definition.

From the recursive definition, we find that a tree is a collection of N nodes, one of
which is the root, and N — 1 edges. That there are N — 1 edges follows from the fact that
each edge connects some node to its parent, and every node except the root has one parent
(see Figure 4.2).
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Figure 4.2 A tree

In the tree of Figure 4.2, the root is A. Node F has A as a parent and K, L, and M as
children. Each node may have an arbitrary number of children, possibly zero. Nodes with
no children are known as leaves; the leaves in the tree above are B, C, H, I, P, Q, K, L, M, and
N. Nodes with the same parent are siblings; thus K, L, and M are all siblings. Grandparent
and grandchild relations can be defined in a similar manner.

A path from node n; to ny, is defined as a sequence of nodes nj,ny, ..., ny such that n;
is the parent of nj+1 for 1 < i < k. The length of this path is the number of edges on the
path, namely k — 1. There is a path of length zero from every node to itself. Notice that in
a tree there is exactly one path from the root to each node.

For any node n;, the depth of n; is the length of the unique path from the root to n;.
Thus, the root is at depth 0. The height of n; is the length of the longest path from n; to a
leaf. Thus all leaves are at height 0. The height of a tree is equal to the height of the root.
For the tree in Figure 4.2, E is at depth 1 and height 2; F is at depth 1 and height 1; the
height of the tree is 3. The depth of a tree is equal to the depth of the deepest leaf; this is
always equal to the height of the tree.

If there is a path from n; to ny, then n is an ancestor of ny and n; is a descendant of
ny. If ny # ny, then ny is a proper ancestor of n; and n; is a proper descendant of n;.

4.1.1 Implementation of Trees

One way to implement a tree would be to have in each node, besides its data, a link to each
child of the node. However, since the number of children per node can vary so greatly and
is not known in advance, it might be infeasible to make the children direct links in the data
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class TreeNode

{
Object element;
TreeNode firstChild;
TreeNode nextSibling;

}

Figure 4.3 Node declarations for trees

Q@@m%
P—Q@

Figure 4.4 First child/next sibling representation of the tree shown in Figure 4.2

structure, because there would be too much wasted space. The solution is simple: Keep
the children of each node in a linked list of tree nodes. The declaration in Figure 4.3 is
typical.

Figure 4.4 shows how a tree might be represented in this implementation. Arrows that
point downward are firstChild links. Horizontal arrows are nextSibling links. Null links
are not drawn, because there are too many.

In the tree of Figure 4.4, node E has both a link to a sibling (F) and a link to a child
(I), while some nodes have neither.

4.1.2 Tree Traversals with an Application

There are many applications for trees. One of the popular uses is the directory structure in
many common operating systems, including unix and pos. Figure 4.5 is a typical directory
in the unix file system.

The root of this directory is /usr. (The asterisk next to the name indicates that
Jusr is itself a directory.) /usr has three children, mark, alex, and bill, which are them-
selves directories. Thus, /usr contains three directories and no regular files. The filename
/usr/mark/book/ch1.r is obtained by following the leftmost child three times. Each / after the
first indicates an edge; the result is the full pathname. This hierarchical file system is very
popular, because it allows users to organize their data logically. Furthermore, two files in
different directories can share the same name, because they must have different paths from
the root and thus have different pathnames. A directory in the unix file system is just a file
with a list of all its children, so the directories are structured almost exactly in accordance
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fusr*
mark* alex* bill*
_— T ST
book* course* junk ju‘nk work* course*
chl.or  ch2r  ch3r cop3530* cop3212*
fall* spr¥ sum* fall* fall*

syl.r syl.r syl.r grades progl.r prog2.r prog2.r progl.r  grades

Figure 4.5 unix directory

private void TistA11( int depth )
{
printName( depth ); // Print the name of the object
if( isDirectory( ) )
for each file ¢ in this directory (for each child)
c.TistA11( depth + 1 );

KW N =

public void TistA11( )
{

TistA11( 0 );
1

Figure 4.6 Pseudocode to list a directory in a hierarchical file system

with the type declaration above.! Indeed, on some versions of UNIX, if the normal com-
mand to print a file is applied to a directory, then the names of the files in the directory can
be seen in the output (along with other non-ascit information).

Suppose we would like to list the names of all of the files in the directory. Our output
format will be that files that are depth d; will have their names indented by d; tabs. Our
algorithm is given in Figure 4.6 as pseudocode.?

The heart of the algorithm is the recursive method TistA11. This routine needs to be
started with a depth of 0, to signify no indenting for the root. This depth is an internal
bookkeeping variable and is hardly a parameter that a calling routine should be expected
to know about. Thus the driver routine is used to interface the recursive routine to the
outside world.

! Fach directory in the UNIX file system also has one entry that points to itself and another entry that points
to the parent of the directory. Thus, technically, the uNix file system is not a tree, but is treelike.

% The Java code to implement this is provided in the file FileSystem.java online. It uses Java features that have
not been discussed in the text.
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Jusr
mark
book
chl.r
ch2.r
ch3.r
course
cop3530
fall
syl.r
spr
syl.r
sum
syl.r
junk
alex
junk
bill
work
course
cop3212
fall
grades
progl.r
prog2.r
fall
prog2.r
progl.r
grades

Figure 4.7 The (preorder) directory listing

The logic of the algorithm is simple to follow. The name of the file object is printed out
with the appropriate number of tabs. If the entry is a directory, then we process all children
recursively, one by one. These children are one level deeper and thus need to be indented
an extra space. The output is in Figure 4.7.

This traversal strategy is known as a preorder traversal. In a preorder traversal, work
at a node is performed before (pre) its children are processed. When this program is run,
it is clear that line 1 is executed exactly once per node, since each name is output once.
Since line 1 is executed at most once per node, line 2 must also be executed once per
node. Furthermore, line 4 can be executed at most once for each child of each node. But
the number of children is exactly one less than the number of nodes. Finally, the for loop
iterates once per execution of line 4, plus once each time the loop ends. Thus, the total
amount of work is constant per node. If there are N file names to be output, then the
running time is O(N).
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Jusr*(1)
mark*(1) alex*(1) bill*(1)
book*(1) course*(1) junk (6) junk‘ (8) work*(1) course*(1)
chl.r(3) ch2.r(2) ch3.r(4) cop3530*(1) cop32‘12*(1)
fall*(1)  spr*(1) sum*(1) fall*(1) fall*(1)

syL.r(l)  sylLr(5) syl.r(2) grades(3) progl.r(4) prog2.r(1) prog2.r(2) progl.r(7) grades(9)
y y y g prog prog prog prog g

Figure 4.8 unix directory with file sizes obtained via postorder traversal

public int size( )

{

1 int totalSize = sizeOfThisFile( );
2 if( isDirectory( ) )
3 for each file ¢ in this directory (for each child)
4 totalSize += c.size( );
5 return totalSize;
1

Figure 4.9 Pseudocode to calculate the size of a directory

Another common method of traversing a tree is the postorder traversal. In a postorder
traversal, the work at a node is performed after (post) its children are evaluated. As an
example, Figure 4.8 represents the same directory structure as before, with the numbers in
parentheses representing the number of disk blocks taken up by each file.

Since the directories are themselves files, they have sizes too. Suppose we would like to
calculate the total number of blocks used by all the files in the tree. The most natural way
to do this would be to find the number of blocks contained in the subdirectories /usr/mark
(30), /usr/alex (9), and /usr/bill (32). The total number of blocks is then the total in the
subdirectories (71) plus the one block used by /usr, for a total of 72. The pseudocode
method size in Figure 4.9 implements this strategy.

If the current object is not a directory, then size merely returns the number of blocks
it uses. Otherwise, the number of blocks used by the directory is added to the number of
blocks (recursively) found in all the children. To see the difference between the postorder
traversal strategy and the preorder traversal strategy, Figure 4.10 shows how the size of
each directory or file is produced by the algorithm.
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chl.r 3

ch2.r 2

ch3.r 4

book 10
syl.r 1

fall 2

syl.r 5

spr 6

syl.r 2

sum 3

cop3530 12

course 13
Jjunk 6
mark 30
junk 8
alex 9
work 1
grades 3

progl.r 4

prog2.r 1

fall 9

prog2.r 2

progl.r 7

grades 9

fall 19

cop3212 29

course 30
bill 32
Jusr 72

Figure 4.10 Trace of the size function

4.2 Binary Trees

A binary tree is a tree in which no node can have more than two children.

Figure 4.11 shows that a binary tree consists of a root and two subtrees, T; and Tg,
both of which could possibly be empty.

A property of a binary tree that is sometimes important is that the depth of an average
binary tree is considerably smaller than N. An analysis shows that the average depth is
O(+/N), and that for a special type of binary tree, namely the binary search tree, the average
value of the depth is O(log N). Unfortunately, the depth can be as large as N — 1, as the
example in Figure 4.12 shows.
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T, Ty

Figure 4.11 Generic binary tree

Figure 4.12 Worst-case binary tree

4.2.1 Implementation

Because a binary tree node has at most two children, we can keep direct links to them. The
declaration of tree nodes is similar in structure to that for doubly linked lists in that a node
is a structure consisting of the element information plus two references (Teft and right) to
other nodes (see Figure 4.13).

We could draw the binary trees using the rectangular boxes that are customary for
linked lists, but trees are generally drawn as circles connected by lines, because they are

class BinaryNode

{

// Friendly data; accessible by other package routines

Object element; // The data in the node
BinaryNode left; // Left child
BinaryNode right; // Right child

}

Figure 4.13 Binary tree node class
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actually graphs. We also do not explicitly draw nu11 links when referring to trees, because
every binary tree with N nodes would require N 4 1 nul1 links.

Binary trees have many important uses not associated with searching. One of the
principal uses of binary trees is in the area of compiler design, which we will now explore.

4.2.2 An Example: Expression Trees

Figure 4.14 shows an example of an expression tree. The leaves of an expression tree are
operands, such as constants or variable names, and the other nodes contain operators.
This particular tree happens to be binary, because all the operators are binary, and although
this is the simplest case, it is possible for nodes to have more than two children. It is also
possible for a node to have only one child, as is the case with the unary minus operator.
We can evaluate an expression tree, T, by applying the operator at the root to the values
obtained by recursively evaluating the left and right subtrees. In our example, the left
subtree evaluates to a + (b * c) and the right subtree evaluates to ((d = e) + f) = g. The
entire tree therefore represents (a + (b = ¢)) + (((d » e) + f) = g).

We can produce an (overly parenthesized) infix expression by recursively producing a
parenthesized left expression, then printing out the operator at the root, and finally recur-
sively producing a parenthesized right expression. This general strategy (left, node, right)
is known as an inorder traversal; it is easy to remember because of the type of expression
it produces.

An alternate traversal strategy is to recursively print out the left subtree, the right sub-
tree, and then the operator. If we apply this strategy to our tree above, the outputisa b c
»+d e f+ g+ which is easily seen to be the postfix representation of Section 3.6.3.
This traversal strategy is generally known as a postorder traversal. We have seen this
traversal strategy earlier in Section 4.1.

A third traversal strategy is to print out the operator first and then recursively print out
the left and right subtrees. The resulting expression, + + a = b ¢ * + = d e f g, is the less
useful prefix notation and the traversal strategy is a preorder traversal, which we have also
seen earlier in Section 4.1. We will return to these traversal strategies later in the chapter.

Figure 4.14 Expression tree for (a + b = ¢) + ((d * e + f ) * g)
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Constructing an Expression Tree

We now give an algorithm to convert a postfix expression into an expression tree. Since we
already have an algorithm to convert infix to postfix, we can generate expression trees from
the two common types of input. The method we describe strongly resembles the postfix
evaluation algorithm of Section 3.6.3. We read our expression one symbol at a time. If the
symbol is an operand, we create a one-node tree and push it onto a stack. If the symbol
is an operator, we pop two trees T1 and T, from the stack (T is popped first) and form
a new tree whose root is the operator and whose left and right children are T, and Ty,
respectively. This new tree is then pushed onto the stack.
As an example, suppose the input is

ab+cde+t * =«

The first two symbols are operands, so we create one-node trees and push them onto
3
a stack.

® ®

Next, a + is read, so two trees are popped, a new tree is formed, and it is pushed onto the
stack.

Next, ¢, d, and e are read, and for each a one-node tree is created and the corresponding
tree is pushed onto the stack.

3 For convenience, we will have the stack grow from left to right in the diagrams.
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O

Now a + is read, so two trees are merged.

(+) +
e @ d e

Continuing, a * is read, so we pop two trees and form a new tree with a = as root.

Finally, the last symbol is read, two trees are merged, and the final tree is left on the stack.
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4.3 The Search Tree ADT—Binary Search
Trees

An important application of binary trees is their use in searching. Let us assume that each
node in the tree stores an item. In our examples, we will assume for simplicity that these
are integers, although arbitrarily complex items are easily handled in Java. We will also
assume that all the items are distinct and deal with duplicates later.

The property that makes a binary tree into a binary search tree is that for every node,
X, in the tree, the values of all the items in its left subtree are smaller than the item in X,
and the values of all the items in its right subtree are larger than the item in X. Notice that
this implies that all the elements in the tree can be ordered in some consistent manner. In
Figure 4.15, the tree on the left is a binary search tree, but the tree on the right is not. The
tree on the right has a node with item 7 in the left subtree of a node with item 6 (which
happens to be the root).

We now give brief descriptions of the operations that are usually performed on binary
search trees. Note that because of the recursive definition of trees, it is common to write
these routines recursively. Because the average depth of a binary search tree turns out to be
O(log N), we generally do not need to worry about running out of stack space.

The binary search tree requires that all the items can be ordered. To write a generic
class, we need to provide an interface type that represents this property. This interface
is Comparable, as described in Chapter 1. The interface tells us that two items in the
tree can always be compared using a compareTo method. From this, we can determine
all other possible relationships. Specifically, we do not use the equals method. Instead, two
items are equal if and only if the compareTo method returns 0. An alternative, described
in Section 4.3.1, is to allow a function object. Figure 4.16 also shows the BinaryNode class
that, like the node class in the linked list class, is a nested class.
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Figure 4.15 Two binary trees (only the left tree is a search tree)

1 private static class BinaryNode<AnyType>

2 {

3 // Constructors

4 BinaryNode( AnyType theElement )

5 { this( theElement, null, null ); }

6

7 BinaryNode( AnyType theElement, BinaryNode<AnyType> 1t, BinaryNode<AnyType> rt )
8 { element = theElement; left = 1t; right = rt; }
9

10 AnyType element; // The data in the node
11 BinaryNode<AnyType> left; // Left child

12 BinaryNode<AnyType> right; // Right child

13 }

Figure 4.16 The BinaryNode class

Figure 4.17 shows the BinarySearchTree class skeleton. The single data field is a refer-
ence to the root node; this reference is nul1 for empty trees. The public methods use the
general technique of calling private recursive methods.

We can now describe some of the private methods.

4.3.1 contains

This operation requires returning true if there is a node in tree T that has item X, or false if
there is no such node. The structure of the tree makes this simple. If T is empty, then we can
just return false. Otherwise, if the item stored at T is X, we can return true. Otherwise, we
make a recursive call on a subtree of T, either left or right, depending on the relationship
of X to the item stored in T. The code in Figure 4.18 is an implementation of this strategy.

Notice the order of the tests. It is crucial that the test for an empty tree be performed
first, since otherwise, we would generate a Nul1PointerException attempting to access a data
field through a nul1 reference. The remaining tests are arranged with the least likely case
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I pubTic class BinarySearchTree<AnyType extends Comparable<? super AnyType>>
2

3 private static class BinaryNode<AnyType>

4 { /* Figure 4.16 =/ }

5

6 private BinaryNode<AnyType> root;

7

8 public BinarySearchTree( )

9 { root = null; }

10

11 public void makeEmpty( )

12 { root = null; }

13 public boolean isEmpty( )

14 { return root == null; }

15

16 public boolean contains( AnyType x )

17 { return contains( x, root ); }

18 public AnyType findMin( )

19 { if( isEmpty( ) ) throw new UnderflowException( );
20 return findMin( root ).element;
21 }
22 public AnyType findMax( )
23 { if( isEmpty( ) ) throw new UnderflowException( );
24 return findMax( root ).element;
25 }
26 public void insert( AnyType x )
27 { root = insert( x, root ); }
28 public void remove( AnyType x )
29 { root = remove( x, root ); }
30 public void printTree( )
31 { /* Figure 4.56 =/ }
32
33 private boolean contains( AnyType x, BinaryNode<AnyType> t )
34 { /* Figure 4.18 */ }
35 private BinaryNode<AnyType> findMin( BinaryNode<AnyType> t )
36 { /* Figure 4.20 «/ }
37 private BinaryNode<AnyType> findMax( BinaryNode<AnyType> t )
38 { /* Figure 4.20 */ }
39
40 private BinaryNode<AnyType> insert( AnyType x, BinaryNode<AnyType> t )
41 { /* Figure 4.22 =/ }
42 private BinaryNode<AnyType> remove( AnyType x, BinaryNode<AnyType> t )
43 { /* Figure 4.25 */ }
44 private void printTree( BinaryNode<AnyType> t )
45 { /* Figure 4.56 */ }
46}

Figure 4.17 Binary search tree class skeleton
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1 /**
2 * Internal method to find an item in a subtree.
3 * @param x is item to search for.
4 * Oparam t the node that roots the subtree.
5 * @return true if the item is found; false otherwise.
6 */
7 private boolean contains( AnyType x, BinaryNode<AnyType> t )
8 {
9 if( t ==null)
10 return false;
11
12 int compareResult = x.compareTo( t.element );
13
14 if( compareResult < 0 )
15 return contains( x, t.left );
16 else if( compareResult > 0 )
17 return contains( x, t.right );
18 else
19 return true; // Match
20 }

Figure 4.18 contains operation for binary search trees

last. Also note that both recursive calls are actually tail recursions and can be easily removed
with a while loop. The use of tail recursion is justifiable here because the simplicity of
algorithmic expression compensates for the decrease in speed, and the amount of stack
space used is expected to be only O(log N). Figure 4.19 shows the trivial changes required
to use a function object rather than requiring that the items be Comparable. This mimics the
idioms in Section 1.6.

4.3.2 findMin and findMax

These private routines return a reference to the node containing the smallest and largest
elements in the tree, respectively. To perform a findMin, start at the root and go left as long
as there is a left child. The stopping point is the smallest element. The findMax routine is
the same, except that branching is to the right child.

This is so easy that many programmers do not bother using recursion. We will code
the routines both ways by doing findMin recursively and findMax nonrecursively (see
Figure 4.20).

Notice how we carefully handle the degenerate case of an empty tree. Although this is
always important to do, it is especially crucial in recursive programs. Also notice that it is
safe to change t in findMax, since we are only working with a copy of a reference. Always
be extremely careful, however, because a statement such as t.right = t.right.right will
make changes.
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1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

public class BinarySearchTree<AnyType>

{
private BinaryNode<AnyType> root;
private Comparator<? super AnyType> cmp;

public BinarySearchTree( )
{ this( null ); }

public BinarySearchTree( Comparator<? super AnyType> c )
{ root = null; cmp = c; }

private int myCompare( AnyType Ths, AnyType rhs )
{
if( cmp != null )
return cmp.compare( lhs, rhs );
else
return ((Comparable)lhs).compareTo( rhs );

private boolean contains( AnyType x, BinaryNode<AnyType> t )
{
if(t==null)
return false;

int compareResult = myCompare( x, t.element );

if( compareResult < 0 )

return contains( x, t.left );
else if( compareResult > 0 )

return contains( x, t.right );
else

return true; // Match

// Remainder of class is similar with calls to compareTo replaced by myCompare

}

Figure 4.19 Tllustrates use of a function object to implement binary search tree

4.3.3 insert

The insertion routine is conceptually simple. To insert X into tree T, proceed down the
tree as you would with a contains. If X is found, do nothing (or “update” something).
Otherwise, insert X at the last spot on the path traversed. Figure 4.21 shows what happens.
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1 /**
2 * Internal method to find the smallest item in a subtree.
3 * @Oparam t the node that roots the subtree.
4 * @return node containing the smallest item.
5 */
6 private BinaryNode<AnyType> findMin( BinaryNode<AnyType> t )
7 {
8 if( t ==null)
9 return null;
10 else if( t.left == null )
11 return t;
12 return findMin( t.left );
13 }
14
15 /xx%
16 %« Internal method to find the Targest item in a subtree.
17 %« @param t the node that roots the subtree.
18 * @return node containing the Targest item.
19 x/
20 private BinaryNode<AnyType> findMax( BinaryNode<AnyType> t )
21 {
22 if(t 1= null)
23 while( t.right != null )
24 t = t.right;
25
26 return t;
27 }

Figure 420 Recursive implementation of findMin and nonrecursive implementation of
findMax for binary search trees

To insert 5, we traverse the tree as though a contains were occurring. At the node with
item 4, we need to go right, but there is no subtree, so 5 is not in the tree, and this is the
correct spot.

Duplicates can be handled by keeping an extra field in the node record indicating the
frequency of occurrence. This adds some extra space to the entire tree but is better than
putting duplicates in the tree (which tends to make the tree very deep). Of course, this
strategy does not work if the key that guides the compareTo method is only part of a larger
structure. If that is the case, then we can keep all of the structures that have the same key
in an auxiliary data structure, such as a list or another search tree.

Figure 4.22 shows the code for the insertion routine. Since t references the root of the
tree, and the root changes on the first insertion, insert is written as a method that returns
a reference to the root of the new tree. Lines 15 and 17 recursively insert and attach x into
the appropriate subtree.
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Figure 4.21 Binary search trees before and after inserting 5

1 /**

2 * Internal method to insert into a subtree.

3 % @param x the item to insert.

4 * @param t the node that roots the subtree.

5 * @return the new root of the subtree.

6 x/

7 private BinaryNode<AnyType> insert( AnyType x, BinaryNode<AnyType> t )
8 {

9 if( t==null)

10 return new BinaryNode<>( x, null, null );
11

12 int compareResult = x.compareTo( t.element );
13

14 if( compareResult < 0 )

15 t.left = insert( x, t.left );

16 else if( compareResult > 0 )

17 t.right = insert( x, t.right );

18 else

19 ; // Duplicate; do nothing
20 return t;
21 }

Figure 4.22 Insertion into a binary search tree

4.3.4 remove

As is common with many data structures, the hardest operation is deletion. Once we have
found the node to be deleted, we need to consider several possibilities.

If the node is a leaf, it can be deleted immediately. If the node has one child, the node
can be deleted after its parent adjusts a link to bypass the node (we will draw the link
directions explicitly for clarity). See Figure 4.23.
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Figure 4.24 Deletion of a node (2) with two children, before and after

The complicated case deals with a node with two children. The general strategy is to
replace the data of this node with the smallest data of the right subtree (which is easily
found) and recursively delete that node (which is now empty). Because the smallest node
in the right subtree cannot have a left child, the second remove is an easy one. Figure 4.24
shows an initial tree and the result of a deletion. The node to be deleted is the left child of
the root; the key value is 2. It is replaced with the smallest data in its right subtree (3), and
then that node is deleted as before.

The code in Figure 4.25 performs deletion. It is inefficient, because it makes two passes
down the tree to find and delete the smallest node in the right subtree when this is appro-
priate. It is easy to remove this inefficiency by writing a special removeMin method, and we
have left it in only for simplicity.

If the number of deletions is expected to be small, then a popular strategy to use is
lazy deletion: When an element is to be deleted, it is left in the tree and merely marked
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1 /**

2 % Internal method to remove from a subtree.

3 % @param x the item to remove.

4 * @Oparam t the node that roots the subtree.

5 * @return the new root of the subtree.

6 */

7 private BinaryNode<AnyType> remove( AnyType x, BinaryNode<AnyType> t )
8 {

9 if( t ==null)

10 return t; // Item not found; do nothing
11

12 int compareResult = x.compareTo( t.element );
13

14 if( compareResult < 0 )

15 t.left = remove( x, t.left );

16 else if( compareResult > 0 )

17 t.right = remove( x, t.right );

18 else if( t.left != null && t.right != null ) // Two children
19 {
20 t.element = findMin( t.right ).element;
21 t.right = remove( t.element, t.right );
22 }
23 else
24 t = (t.left !=null ) ? t.left : t.right;
25 return t;
26 }

Figure 4.25 Deletion routine for binary search trees

as being deleted. This is especially popular if duplicate items are present, because then the
field that keeps count of the frequency of appearance can be decremented. If the number
of real nodes in the tree is the same as the number of “deleted” nodes, then the depth of
the tree is only expected to go up by a small constant (why?), so there is a very small time
penalty associated with lazy deletion. Also, if a deleted item is reinserted, the overhead of
allocating a new cell is avoided.

4.3.5 Average-Case Analysis

Intuitively, we expect that all of the operations of the previous section should take O(log N)
time, because in constant time we descend a level in the tree, thus operating on a tree that
is now roughly half as large. Indeed, the running time of all the operations is O(d), where
d is the depth of the node containing the accessed item (in the case of remove this may be
the replacement node in the two-child case).

We prove in this section that the average depth over all nodes in a tree is O(log N) on
the assumption that all insertion sequences are equally likely.
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The sum of the depths of all nodes in a tree is known as the internal path length.
We will now calculate the average internal path length of a binary search tree, where the
average is taken over all possible insertion sequences into binary search trees.

Let D(N) be the internal path length for some tree T of N nodes. D(1) = 0. An N-node
tree consists of an i-node left subtree and an (N — i — 1)-node right subtree, plus a root at
depth zero for 0 < i < N. D(i) is the internal path length of the left subtree with respect to
its root. In the main tree, all these nodes are one level deeper. The same holds for the right
subtree. Thus, we get the recurrence

DIN)=D@H+DN—-i—1+N-1

If all subtree sizes are equally likely, which is true for binary search trees (since the subtree
size depends only on the relative rank of the first element inserted into the tree), but not
binary trees, then the average value of both D(i) and DIN —i—1) is (1/N) Zji_ol D(j). This
yields

b N-—1
pIN) = FZOD(J) +N-1

This recurrence will be encountered and solved in Chapter 7, obtaining an average value
of DIN) = O(NlogN). Thus, the expected depth of any node is O(logN). As an example,
the randomly generated 500-node tree shown in Figure 4.26 has nodes at expected depth
9.98.

It is tempting to say immediately that this result implies that the average running time
of all the operations discussed in the previous section is O(log N), but this is not entirely

|

Figure 4.26 A randomly generated binary search tree
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Figure 4.27 Binary search tree after ®(N?) insert/remove pairs

true. The reason for this is that because of deletions, it is not clear that all binary search
trees are equally likely. In particular, the deletion algorithm described above favors making
the left subtrees deeper than the right, because we are always replacing a deleted node
with a node from the right subtree. The exact effect of this strategy is still unknown, but
it seems only to be a theoretical novelty. It has been shown that if we alternate insertions
and deletions ®(N?) times, then the trees will have an expected depth of O/N). After
a quarter-million random insert/remove pairs, the tree that was somewhat right-heavy in
Figure 4.26 looks decidedly unbalanced (average depth equals 12.51). See Figure 4.27.

We could try to eliminate the problem by randomly choosing between the smallest
element in the right subtree and the largest in the left when replacing the deleted element.
This apparently eliminates the bias and should keep the trees balanced, but nobody has
actually proved this. In any event, this phenomenon appears to be mostly a theoretical
novelty, because the effect does not show up at all for small trees, and stranger still, if
0o(N?) insert/remove pairs are used, then the tree seems to gain balance!

The main point of this discussion is that deciding what “average” means is gener-
ally extremely difficult and can require assumptions that may or may not be valid. In the
absence of deletions, or when lazy deletion is used, we can conclude that the average
running times of the operations above are O(log N). Except for strange cases like the one
discussed above, this result is very consistent with observed behavior.

If the input comes into a tree presorted, then a series of inserts will take quadratic
time and give a very expensive implementation of a linked list, since the tree will consist
only of nodes with no left children. One solution to the problem is to insist on an extra
structural condition called balance: No node is allowed to get too deep.

There are quite a few general algorithms to implement balanced trees. Most are quite
a bit more complicated than a standard binary search tree, and all take longer on average
for updates. They do, however, provide protection against the embarrassingly simple cases.
Below, we will sketch one of the oldest forms of balanced search trees, the AvVL tree.
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A second, newer method is to forgo the balance condition and allow the tree to be
arbitrarily deep, but after every operation, a restructuring rule is applied that tends to
make future operations efficient. These types of data structures are generally classified as
self-adjusting. In the case of a binary search tree, we can no longer guarantee an O(log N)
bound on any single operation but can show that any sequence of M operations takes total
time O(M log N) in the worst case. This is generally sufficient protection against a bad worst
case. The data structure we will discuss is known as a splay tree; its analysis is fairly intricate
and is discussed in Chapter 11.

4.4 AVL Trees

An avi (Adelson-Velskii and Landis) tree is a binary search tree with a balance condition.
The balance condition must be easy to maintain, and it ensures that the depth of the tree
is O(log N). The simplest idea is to require that the left and right subtrees have the same
height. As Figure 4.28 shows, this idea does not force the tree to be shallow.

Another balance condition would insist that every node must have left and right sub-
trees of the same height. If the height of an empty subtree is defined to be —1 (as is
usual), then only perfectly balanced trees of 2* — 1 nodes would satisfy this criterion.
Thus, although this guarantees trees of small depth, the balance condition is too rigid to
be useful and needs to be relaxed.

An avL tree is identical to a binary search tree, except that for every node in the tree,
the height of the left and right subtrees can differ by at most 1. (The height of an empty
tree is defined to be —1.) In Figure 4.29 the tree on the left is an avL tree, but the tree on
the right is not. Height information is kept for each node (in the node structure). It can
be shown that the height of an avL tree is at most roughly 1.44log(N + 2) — 1.328, but
in practice it is only slightly more than log N. As an example, the avL tree of height 9 with
the fewest nodes (143) is shown in Figure 4.30. This tree has as a left subtree an AvL tree
of height 7 of minimum size. The right subtree is an avL tree of height 8 of minimum size.
This tells us that the minimum number of nodes, S(h), in an avL tree of height h is given
by S(h) = S(h—1)+S(h—2)+ 1. Forh =0, S(h) = 1. For h = 1, S(h) = 2. The function

Figure 4.28 A bad binary tree. Requiring balance at the root is not enough
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Figure 4.29 Two binary search trees. Only the left tree is avi

i

S(h) is closely related to the Fibonacci numbers, from which the bound claimed above on
the height of an avL tree follows.

Thus, all the tree operations can be performed in O(log N) time, except possibly inser-
tion (we will assume lazy deletion). When we do an insertion, we need to update all the
balancing information for the nodes on the path back to the root, but the reason that inser-
tion is potentially difficult is that inserting a node could violate the AvL tree property. (For
instance, inserting 6 into the avL tree in Figure 4.29 would destroy the balance condition

Figure 4.30 Smallest avi tree of height 9
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at the node with key 8.) If this is the case, then the property has to be restored before the
insertion step is considered over. It turns out that this can always be done with a simple
modification to the tree, known as a rotation.

After an insertion, only nodes that are on the path from the insertion point to the root
might have their balance altered because only those nodes have their subtrees altered. As
we follow the path up to the root and update the balancing information, we may find a
node whose new balance violates the avL condition. We will show how to rebalance the
tree at the first (i.e., deepest) such node, and we will prove that this rebalancing guarantees
that the entire tree satisfies the avL property.

Let us call the node that must be rebalanced «. Since any node has at most two chil-
dren, and a height imbalance requires that s two subtrees’ height differ by two, it is easy
to see that a violation might occur in four cases:

1. An insertion into the left subtree of the left child of «.

2. An insertion into the right subtree of the left child of «.
3. An insertion into the left subtree of the right child of «.
4. An insertion into the right subtree of the right child of «.

Cases 1 and 4 are mirror image symmetries with respect to «, as are cases 2 and 3.
Consequently, as a matter of theory, there are two basic cases. From a programming
perspective, of course, there are still four cases.

The first case, in which the insertion occurs on the “outside” (i.e., left—left or right—
right), is fixed by a single rotation of the tree. The second case, in which the insertion
occurs on the “inside” (i.e., left—right or right-left) is handled by the slightly more complex
double rotation. These are fundamental operations on the tree that we’ll see used several
times in balanced-tree algorithms. The remainder of this section describes these rotations,
proves that they suffice to maintain balance, and gives a casual implementation of the avL
tree. Chapter 12 describes other balanced-tree methods with an eye toward a more careful
implementation.

4.4.1 Single Rotation

Figure 4.31 shows the single rotation that fixes case 1. The before picture is on the left,
and the after is on the right. Let us analyze carefully what is going on. Node k, violates
the AvL balance property because its left subtree is two levels deeper than its right subtree
(the dashed lines in the middle of the diagram mark the levels). The situation depicted
is the only possible case 1 scenario that allows ky to satisfy the avi property before an
insertion but violate it afterwards. Subtree X has grown to an extra level, causing it to be
exactly two levels deeper than Z. Y cannot be at the same level as the new X because then
ky would have been out of balance before the insertion, and Y cannot be at the same level as
Z because then k1 would be the first node on the path toward the root that was in violation
of the avL balancing condition.

To ideally rebalance the tree, we would like to move X up a level and Z down a level.
Note that this is actually more than the avi property would require. To do this, we rearrange
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Figure 4.31 Single rotation to fix case 1

nodes into an equivalent tree as shown in the second part of Figure 4.31. Here is an abstract
scenario: Visualize the tree as being flexible, grab the child node kj, close your eyes, and
shake it, letting gravity take hold. The result is that k; will be the new root. The binary
search tree property tells us that in the original tree ky > kj, so k, becomes the right
child of k; in the new tree. X and Z remain as the left child of k; and right child of kj,
respectively. Subtree Y, which holds items that are between k; and k; in the original tree,
can be placed as ky’s left child in the new tree and satisfy all the ordering requirements.

As a result of this work, which requires only a few link changes, we have another binary
search tree that is an avL tree. This happens because X moves up one level, Y stays at the
same level, and Z moves down one level. ky and ki not only satisfy the avL requirements,
but they also have subtrees that are exactly the same height. Furthermore, the new height
of the entire subtree is exactly the same as the height of the original subtree prior to the
insertion that caused X to grow. Thus no further updating of heights on the path to the
root is needed, and consequently no further rotations are needed. Figure 4.32 shows that
after the insertion of 6 into the original AvL tree on the left, node 8 becomes unbalanced.
Thus, we do a single rotation between 7 and 8, obtaining the tree on the right.

As we mentioned earlier, case 4 represents a symmetric case. Figure 4.33 shows how a
single rotation is applied. Let us work through a rather long example. Suppose we start with
an initially empty avL tree and insert the items 3, 2, 1, and then 4 through 7 in sequential

Figure 4.32 avL property destroyed by insertion of 6, then fixed by a single rotation
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/N

Figure 4.33 Single rotation fixes case 4

order. The first problem occurs when it is time to insert 1 because the avL property is
violated at the root. We perform a single rotation between the root and its left child to fix
the problem. Here are the before and after trees:

before after

A dashed line joins the two nodes that are the subject of the rotation. Next we insert 4,
which causes no problems, but the insertion of 5 creates a violation at node 3 that is fixed
by a single rotation. Besides the local change caused by the rotation, the programmer must
remember that the rest of the tree has to be informed of this change. Here this means that
2’ right child must be reset to link to 4 instead of 3. Forgetting to do so is easy and would
destroy the tree (4 would be inaccessible).

\
\
\
\
\
\

before e after

Next we insert 6. This causes a balance problem at the root, since its left subtree is of
height 0 and its right subtree would be height 2. Therefore, we perform a single rotation at
the root between 2 and 4.
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before

The rotation is performed by making 2 a child of 4 and 4’ original left subtree the new right
subtree of 2. Every item in this subtree must lie between 2 and 4, so this transformation
makes sense. The next item we insert is 7, which causes another rotation:

@ ®
| ﬁ
OO ® O B & O
before 0 after

4.4.2 Double Rotation

The algorithm described above has one problem: As Figure 4.34 shows, it does not work
for cases 2 or 3. The problem is that subtree Y is too deep, and a single rotation does not
make it any less deep. The double rotation that solves the problem is shown in Figure 4.35.

The fact that subtree Y in Figure 4.34 has had an item inserted into it guarantees that it
is nonempty. Thus, we may assume that it has a root and two subtrees. Consequently, the
tree may be viewed as four subtrees connected by three nodes. As the diagram suggests,

(k) N (k)

Figure 4.34 Single rotation fails to fix case 2
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Figure 4.36 Right-left double rotation to fix case 3

exactly one of tree B or C is two levels deeper than D (unless all are empty), but we cannot
be sure which one. It turns out not to matter; in Figure 4.35, both B and C are drawn at
1% levels below D.

To rebalance, we see that we cannot leave ks as the root, and a rotation between k3 and
k1 was shown in Figure 4.34 to not work, so the only alternative is to place k; as the new
root. This forces ki to be ky’s left child and ks to be its right child, and it also completely
determines the resulting locations of the four subtrees. It is easy to see that the resulting
tree satisfies the avL tree property, and as was the case with the single rotation, it restores
the height to what it was before the insertion, thus guaranteeing that all rebalancing and
height updating is complete. Figure 4.36 shows that the symmetric case 3 can also be fixed
by a double rotation. In both cases the effect is the same as rotating between s child and
grandchild, and then between o and its new child.

We will continue our previous example by inserting 10 through 16 in reverse order,
followed by 8 and then 9. Inserting 16 is easy, since it does not destroy the balance property,
but inserting 15 causes a height imbalance at node 7. This is case 3, which is solved by a
right-left double rotation. In our example, the right-left double rotation will involve 7, 16,
and 15. In this case, k; is the node with item 7, k3 is the node with item 16, and k; is the
node with item 15. Subtrees A, B, C, and D are empty.
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Next we insert 14, which also requires a double rotation. Here the double rotation that
will restore the tree is again a right—left double rotation that will involve 6, 15, and 7. In
this case, k is the node with item 6, k is the node with item 7, and k3 is the node with
item 15. Subtree A is the tree rooted at the node with item 5; subtree B is the empty subtree
that was originally the left child of the node with item 7, subtree C is the tree rooted at the
node with item 14, and finally, subtree D is the tree rooted at the node with item 16.

before @ after

If 13 is now inserted, there is an imbalance at the root. Since 13 is not between 4 and 7,
we know that the single rotation will work.

before @ after
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Insertion of 12 will also require a single rotation:

before @ after

To insert 11, a single rotation needs to be performed, and the same is true for the
subsequent insertion of 10. We insert 8 without a rotation creating an almost perfectly
balanced tree:

before

Finally, we will insert 9 to show the symmetric case of the double rotation. Notice
that 9 causes the node containing 10 to become unbalanced. Since 9 is between 10 and 8
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(which is 10% child on the path to 9), a double rotation needs to be performed, yielding
the following tree:

Let us summarize what happens. The programming details are fairly straightforward
except that there are several cases. To insert a new node with item X into an AvL tree T,
we recursively insert X into the appropriate subtree of T (let us call this T;g). If the height
of Trr does not change, then we are done. Otherwise, if a height imbalance appears in T,
we do the appropriate single or double rotation depending on X and the items in T and
Tir, update the heights (making the connection from the rest of the tree above), and are
done. Since one rotation always suffices, a carefully coded nonrecursive version generally
turns out to be faster than the recursive version, but on modern compilers the difference is
not as significant as in the past. However, nonrecursive versions are quite difficult to code
correctly, whereas a casual recursive implementation is easily readable.

Another efficiency issue concerns storage of the height information. Since all that is
really required is the difference in height, which is guaranteed to be small, we could get
by with two bits (to represent +1, 0, —1) if we really try. Doing so will avoid repetitive
calculation of balance factors but results in some loss of clarity. The resulting code is some-
what more complicated than if the height were stored at each node. If a recursive routine
is written, then speed is probably not the main consideration. In this case, the slight speed
advantage obtained by storing balance factors hardly seems worth the loss of clarity and
relative simplicity. Furthermore, since most machines will align this to at least an 8-bit
boundary anyway, there is not likely to be any difference in the amount of space used. An
eight-bit byte will allow us to store absolute heights of up to 127. Since the tree is balanced,
it is inconceivable that this would be insufficient (see the exercises).

With all this, we are ready to write the AVL routines. We show some of the code here;
the rest is online. First, we need the AviNode class. This is given in Figure 4.37. We also
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1 private static class AvlNode<AnyType>

2 {

3 // Constructors

4 AvIiNode( AnyType theElement )

5 { this( theElement, null, null ); }

6

7 AviNode( AnyType theElement, AvINode<AnyType> 1t, AviNode<AnyType> rt )
8 { element = theElement; left = 1t; right = rt; height = 0; }
9
10 AnyType element; // The data in the node
11 AviNode<AnyType> Tleft; // Left child
12 AviNode<AnyType> right; // Right child
13 int height; // Height
14 }

Figure 4.37 Node declaration for avL trees

/**
%« Return the height of node t, or -1, if null.
*/
private int height( AvINode<AnyType> t )
{
return t == null ? -1 : t.height;

~N O L AW =

}

Figure 4.38 Method to compute height of an avi node

need a quick method to return the height of a node. This method is necessary to handle
the annoying case of a null reference. This is shown in Figure 4.38. The basic insertion
routine is easy to write (see Figure 4.39): It adds only a single line at the end that invokes
a balancing method. The balancing method applies a single or double rotation if needed,
updates the height, and returns the resulting tree.

For the trees in Figure 4.40, rotateWithLeftChild converts the tree on the left to the
tree on the right, returning a reference to the new root. rotateWithRightChild is symmetric.
The code is shown in Figure 4.41.

Similarly, the double rotation pictured in Figure 4.42 can be implemented by the code
shown in Figure 4.43.

Since deletion in a binary search tree is somewhat more complicated than insertion,
one can assume that deletion in an avL tree is also more complicated. In a perfect world, one
would hope that the deletion routine in Figure 4.25 could easily be modified by changing
the last line to return after calling the balance method, as was done for insertion. This
would yield the code in Figure 4.44. This change works! A deletion could cause one side
of the tree to become two levels shallower than the other side. The case-by-case analysis
is similar to the imbalances that are caused by insertion, but not exactly the same. For
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1 /**

2 * Internal method to insert into a subtree.

3 * @param x the item to insert.

4 * @Oparam t the node that roots the subtree.

5 * @return the new root of the subtree.

6 */

7 private AviNode<AnyType> insert( AnyType x, AvINode<AnyType> t )
8 {

9 if(t ==null)

10 return new AviNode<>( x, null, null );

11

12 int compareResult = x.compareTo( t.element );

13

14 if( compareResult < 0 )

15 t.left = insert( x, t.left );

16 else if( compareResult > 0 )

17 t.right = insert( x, t.right );

18 else

19 ; // Duplicate; do nothing
20 return balance( t );
21 }
22
23 private static final int ALLOWED_IMBALANCE = 1;
24
25 // Assume t is either balanced or within one of being balanced
26 private AviNode<AnyType> balance( AvINode<AnyType> t )
27 {
28 if( t ==null)
29 return t;
30
31 if( height( t.left ) - height( t.right ) > ALLOWED IMBALANCE )
32 if( height( t.left.left ) >= height( t.left.right ) )
33 t = rotateWithLeftChild( t );
34 else
35 t = doubTeWithLeftChild( t );
36 else
37 if( height( t.right ) - height( t.left ) > ALLOWED IMBALANCE )
38 if( height( t.right.right ) >= height( t.right.left ) )
39 t = rotateWithRightChild( t );
40 else
41 t = doubleWithRightChild( t );
42
43 t.height = Math.max( height( t.left ), height( t.right ) ) + 1;
44 return t;
45 }

Figure 4.39 Insertion into an AvL tree
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Figure 4.40 Single rotation

1 /**

2 *« Rotate binary tree node with left child.

3 * For AVL trees, this is a single rotation for case 1.

4 *« Update heights, then return new root.

5 x/

6 private AviNode<AnyType> rotateWithLeftChild( AvINode<AnyType> k2 )
7 {

8 AviNode<AnyType> k1l = k2.left;

9 k2.left = kl.right;
10 kl.right = k2;
11 k2.height = Math.max( height( k2.left ), height( k2.right ) ) + 1;
12 kl.height = Math.max( height( kl.left ), k2.height ) + 1;
13 return kl;
14 }

Figure 4.41 Routine to perform single rotation

Figure 4.42 Double rotation

instance, case 1 in Figure 4.31, which would now reflect a deletion from tree Z (rather
than an insertion into X), must be augmented with the possiblity that tree Y could be as
deep as tree X. Even so, it is easy to see that the rotation rebalances this case and the
symmetric case 4 in Figure 4.33. Thus the code for balance in Figure 4.39 lines 32 and
38 uses >= instead of > specifically to ensure that single rotations are done in these cases,
rather than double rotations. We leave verification of the remaining cases as an exercise.
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1 /**

2 * Double rotate binary tree node: first left child

3 * with its right child; then node k3 with new left child.
4 * For AVL trees, this is a double rotation for case 2.

5 * Update heights, then return new root.

6 */

7 private AvINode<AnyType> doubleWithLeftChild( AviNode<AnyType> k3 )
8 {

9 k3.left = rotateWithRightChild( k3.left );

10 return rotateWithLeftChild( k3 );

11 }

Figure 4.43 Routine to perform double rotation

1 /**
2 * Internal method to remove from a subtree.
3 * @param x the item to remove.
4 * @param t the node that roots the subtree.
5 * @return the new root of the subtree.
6 x/
7 private AviNode<AnyType> remove( AnyType x, AvINode<AnyType> t )
8 {
9 if( t ==null)
10 return t; // Item not found; do nothing
11
12 int compareResult = x.compareTo( t.element );
13
14 if( compareResult < 0 )
15 t.left = remove( x, t.left );
16 else if( compareResult > 0 )
17 t.right = remove( x, t.right );
18 else if( t.left != null && t.right != null ) // Two children
19 {
20 t.element = findMin( t.right ).element;
21 t.right = remove( t.element, t.right );
22 }
23 else
24 t = (t.left !'=null ) ? t.left : t.right;
25 return balance( t );
26 }

Figure 4.44 Deletion in an avL tree
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4.5 Splay Trees

We now describe a relatively simple data structure, known as a splay tree, that guarantees
that any M consecutive tree operations starting from an empty tree take at most O(M log N)
time. Although this guarantee does not preclude the possibility that any single operation
might take 6(N) time, and thus the bound is not as strong as an O(log N) worst-case bound
per operation, the net effect is the same: There are no bad input sequences. Generally, when
a sequence of M operations has total worst-case running time of O(Mf(N)), we say that the
amortized running time is O(f(N)). Thus, a splay tree has an O(log N) amortized cost per
operation. Over a long sequence of operations, some may take more, some less.

Splay trees are based on the fact that the O(N) worst-case time per operation for
binary search trees is not bad, as long as it occurs relatively infrequently. Any one
access, even if it takes O(N), is still likely to be extremely fast. The problem with binary
search trees is that it is possible, and not uncommon, for a whole sequence of bad
accesses to take place. The cumulative running time then becomes noticeable. A search
tree data structure with O(N) worst-case time, but a guarantee of at most O(M logN)
for any M consecutive operations, is certainly satisfactory, because there are no bad
sequences.

If any particular operation is allowed to have an O(N) worst-case time bound, and
we still want an O(log N) amortized time bound, then it is clear that whenever a node is
accessed, it must be moved. Otherwise, once we find a deep node, we could keep perform-
ing accesses on it. If the node does not change location, and each access costs 8(N), then a
sequence of M accesses will cost (M - N).

The basic idea of the splay tree is that after a node is accessed, it is pushed to the root
by a series of AvL tree rotations. Notice that if a node is deep, there are many nodes on
the path that are also relatively deep, and by restructuring we can make future accesses
cheaper on all these nodes. Thus, if the node is unduly deep, then we want this restructur-
ing to have the side effect of balancing the tree (to some extent). Besides giving a good time
bound in theory, this method is likely to have practical utility, because in many appli-
cations, when a node is accessed, it is likely to be accessed again in the near future.
Studies have shown that this happens much more often than one would expect. Splay
trees also do not require the maintenance of height or balance information, thus saving
space and simplifying the code to some extent (especially when careful implementations
are written).

4.5.1 A Simple Idea (That Does Not Work)

One way of performing the restructuring described above is to perform single rotations,
bottom up. This means that we rotate every node on the access path with its parent. As an
example, consider what happens after an access (a find) on k; in the following tree.
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The access path is dashed. First, we would perform a single rotation between ki and its
parent, obtaining the following tree.

Then two more rotations are performed until we reach the root.
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These rotations have the effect of pushing k all the way to the root, so that future
accesses on kj are easy (for a while). Unfortunately, it has pushed another node (k3) almost
as deep as ky used to be. An access on that node will then push another node deep, and
so on. Although this strategy makes future accesses of k; cheaper, it has not significantly
improved the situation for the other nodes on the (original) access path. It turns out that
it is possible to prove that using this strategy, there is a sequence of M operations requiring
Q(M - N) time, so this idea is not quite good enough. The simplest way to show this is to
consider the tree formed by inserting keys 1,2, 3, ..., N into an initially empty tree (work
this example out). This gives a tree consisting of only left children. This is not necessarily
bad, though, since the time to build this tree is O(N) total. The bad part is that accessing
the node with key 1 takes N — 1 units of time. After the rotations are complete, an access
of the node with key 2 takes N — 2 units of time. The total for accessing all the keys in
order is ZLN=711 i — Q(N?). After they are accessed, the tree reverts to its original state, and
we can repeat the sequence.

4.5.2 Splaying

The splaying strategy is similar to the rotation idea above, except that we are a little more
selective about how rotations are performed. We will still rotate bottom up along the access
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Figure 4.46 Zig-zig

path. Let X be a (nonroot) node on the access path at which we are rotating. If the parent
of X is the root of the tree, we merely rotate X and the root. This is the last rotation along
the access path. Otherwise, X has both a parent (P) and a grandparent (G), and there are
two cases, plus symmetries, to consider. The first case is the zig-zag case (see Figure 4.45).
Here, X is a right child and P is a left child (or vice versa). If this is the case, we perform a
double rotation, exactly like an avL double rotation. Otherwise, we have a zig-zig case: X
and P are both left children (or, in the symmetric case, both right children). In that case,
we transform the tree on the left of Figure 4.46 to the tree on the right.
As an example, consider the tree from the last example, with a contains on k;:

The first splay step is at k; and is clearly a zig-zag, so we perform a standard avi double
rotation using ki, kz, and k3. The resulting tree follows.
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The next splay step at k; is a zig-zig, so we do the zig-zig rotation with kj, ks, and ks,
obtaining the final tree.

Although it is hard to see from small examples, splaying not only moves the accessed
node to the root but also has the effect of roughly halving the depth of most nodes on the
access path (some shallow nodes are pushed down at most two levels).

To see the difference that splaying makes over simple rotation, consider again the effect
of inserting items 1,2, 3,...,N into an initially empty tree. This takes a total of O(N), as
before, and yields the same tree as simple rotations. Figure 4.47 shows the result of splaying

Figure 4.47 Result of splaying at node 1
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at the node with item 1. The difference is that after an access of the node with item 1, which
takes N— 1 units, the access on the node with item 2 will only take about N/2 units instead
of N — 2 units; there are no nodes quite as deep as before.

An access on the node with item 2 will bring nodes to within N/4 of the root, and this
is repeated until the depth becomes roughly log N (an example with N = 7 is too small to
see the effect well). Figures 4.48 to 4.56 show the result of accessing items 1 through 9 in

Figure 4.49 Result of splaying the previous tree at node 2
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Figure 4.51 Result of splaying the previous tree at node 4

Figure 4.52 Result of splaying the previous tree at node 5

a 32-node tree that originally contains only left children. Thus we do not get the same bad
behavior from splay trees that is prevalent in the simple rotation strategy. (Actually, this
turns out to be a very good case. A rather complicated proof shows that for this example,
the N accesses take a total of O(N) time.)

These figures highlight the fundamental and crucial property of splay trees. When
access paths are long, thus leading to a longer-than-normal search time, the rotations tend
to be good for future operations. When accesses are cheap, the rotations are not as good and
can be bad. The extreme case is the initial tree formed by the insertions. All the insertions
were constant-time operations leading to a bad initial tree. At that point in time, we had
a very bad tree, but we were running ahead of schedule and had the compensation of less
total running time. Then a couple of really horrible accesses left a nearly balanced tree,
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Figure 4.55 Result of splaying the previous tree at node 8

but the cost was that we had to give back some of the time that had been saved. The
main theorem, which we will prove in Chapter 11, is that we never fall behind a pace of
O(log N) per operation: We are always on schedule, even though there are occasionally bad
operations.

We can perform deletion by accessing the node to be deleted. This puts the node at the
root. If it is deleted, we get two subtrees T; and Tr (left and right). If we find the largest
element in Tp (which is easy), then this element is rotated to the root of Ty, and T will
now have a root with no right child. We can finish the deletion by making Tr the right
child.
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Figure 4.56 Result of splaying the previous tree at node 9

The analysis of splay trees is difficult, because it must take into account the
ever-changing structure of the tree. On the other hand, splay trees are much simpler to
program than avL trees, since there are fewer cases to consider and no balance informa-
tion to maintain. Some empirical evidence suggests that this translates into faster code in
practice, although the case for this is far from complete. Finally, we point out that there are
several variations of splay trees that can perform even better in practice. One variation is
completely coded in Chapter 12.

4.6 Tree Traversals (Revisited)

Because of the ordering information in a binary search tree, it is simple to list all the items
in sorted order. The recursive method in Figure 4.57 does the real work.

Convince yourself that this method works. As we have seen before, this kind of routine
when applied to trees is known as an inorder traversal (which makes sense, since it lists
the items in order). The general strategy of an inorder traversal is to process the left subtree
first, then perform processing at the current node, and finally process the right subtree.
The interesting part about this algorithm, aside from its simplicity, is that the total running
time is O(N). This is because there is constant work being performed at every node in the
tree. Each node is visited once, and the work performed at each node is testing against
null, setting up two method calls, and doing a printin. Since there is constant work per
node and N nodes, the running time is O(N).

Sometimes we need to process both subtrees first before we can process a node. For
instance, to compute the height of a node, we need to know the height of the subtrees
first. The code in Figure 4.58 computes this. Since it is always a good idea to check the
special cases—and crucial when recursion is involved—notice that the routine will declare
the height of a leaf to be zero, which is correct. This general order of traversal, which we
have also seen before, is known as a postorder traversal. Again, the total running time is
O(N), because constant work is performed at each node.
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/**
* Print the tree contents in sorted order.
*/
public void printTree( )
{
if( isEmpty( ) )
System.out.printin( "Empty tree" );
else
printTree( root );

/**
* Internal method to print a subtree in sorted order.
* @Oparam t the node that roots the subtree.
*/
private void printTree( BinaryNode<AnyType> t )
{
if(t !=null)
{
printTree( t.left );
System.out.printin( t.element );
printTree( t.right );

}

Figure 4.57 Routine to print a binary search tree in order
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/**
% Internal method to compute height of a subtree.
% @param t the node that roots the subtree.
*/
private int height( BinaryNode<AnyType> t )
{
if( t ==null)
return -1;
else
return 1 + Math.max( height( t.left ), height( t.right ) );
}

Figure 4.58 Routine to compute the height of a tree using a postorder traversal

The third popular traversal scheme that we have seen is preorder traversal. Here, the

node is processed before the children. This could be useful, for example, if you wanted to
label each node with its depth.
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The common idea in all these routines is that you handle the nul1 case first, and then
the rest. Notice the lack of extraneous variables. These routines pass only the reference to
the node that roots the subtree and do not declare or pass any extra variables. The more
compact the code, the less likely that a silly bug will turn up. A fourth, less often used,
traversal (which we have not seen yet) is level-order traversal. In a level-order traversal,
all nodes at depth d are processed before any node at depth d + 1. Level-order traversal
differs from the other traversals in that it is not done recursively; a queue is used, instead
of the implied stack of recursion.

4.7 B-Trees

Thus far, we have assumed that we can store an entire data structure in the main memory
of a computer. Suppose, however, that we have more data than can fit in main memory,
meaning that we must have the data structure reside on disk. When this happens, the rules
of the game change because the Big-Oh model is no longer meaningful.

The problem is that a Big-Oh analysis assumes that all operations are equal. However,
this is not true, especially when disk /O is involved. Modern computers execute billions
of instructions per second. That is pretty fast, mainly because the speed depends largely
on electrical properties. On the other hand, a disk is mechanical. Its speed depends largely
on the time it takes to spin the disk and to move a disk head. Many disks spin at 7,200
RPM. Thus in 1 min, it makes 7,200 revolutions; hence, one revolution occurs in 1/120 of
a second, or 8.3 ms. On average, we might expect that we have to spin a disk halfway to
find what we are looking for, but this is compensated by the time to move the disk head, so
we get an access time of 8.3 ms. (This is a very charitable estimate; 9-11 ms access times
are more common.) Consequently, we can do approximately 120 disk accesses per second.
This sounds pretty good, until we compare it with the processor speed. What we have is
billions of instructions equal to 120 disk accesses. Of course, everything here is a rough
calculation, but the relative speeds are pretty clear: Disk accesses are incredibly expensive.
Furthermore, processor speeds are increasing at a much faster rate than disk speeds (it is
disk sizes that are increasing quite quickly). So we are willing to do lots of calculations just
to save a disk access. In almost all cases, it is the number of disk accesses that will dominate
the running time. Thus, if we halve the number of disk accesses, the running time will also
halve.

Here is how the typical search tree performs on disk. Suppose we want to access the
driving records for citizens in the State of Florida. We assume that we have 10 million
items, that each key is 32 bytes (representing a name), and that a record is 256 bytes. We
assume this does not fit in main memory and that we are 1 of 20 users on a system (so
we have 1/20 of the resources). Thus, in 1 sec, we can execute billions of instructions or
perform six disk accesses.

The unbalanced binary search tree is a disaster. In the worst case, it has linear depth
and thus could require 10 million disk accesses. On average, a successful search would
require 1.38log N disk accesses, and since log 10000000 ~ 24, an average search would
require 32 disk accesses, or 5 sec. In a typical randomly constructed tree, we would expect
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Figure 4.59 5-ary tree of 31 nodes has only three levels

that a few nodes are three times deeper; these would require about 100 disk accesses, or 16
sec. An avL tree is somewhat better. The worst case of 1.441log N is unlikely to occur, and
the typical case is very close to log N. Thus an avL tree would use about 25 disk accesses
on average, requiring 4 sec.

We want to reduce the number of disk accesses to a very small constant, such as
three or four; and we are willing to write complicated code to do this because machine
instructions are essentially free, as long as we are not ridiculously unreasonable. It should
probably be clear that a binary search tree will not work, since the typical avL tree is close
to optimal height. We cannot go below log N using a binary search tree. The solution is
intuitively simple: If we have more branching, we have less height. Thus, while a perfect
binary tree of 31 nodes has five levels, a 5-ary tree of 31 nodes has only three levels,
as shown in Figure 4.59. An M-ary search tree allows M-way branching. As branching
increases, the depth decreases. Whereas a complete binary tree has height that is roughly
log, N, a complete M-ary tree has height that is roughly log,, N.

We can create an M-ary search tree in much the same way as a binary search tree. In a
binary search tree, we need one key to decide which of two branches to take. In an M-ary
search tree, we need M — 1 keys to decide which branch to take. To make this scheme
efficient in the worst case, we need to ensure that the M-ary search tree is balanced in some
way. Otherwise, like a binary search tree, it could degenerate into a linked list. Actually,
we want an even more restrictive balancing condition. That is, we do not want an M-ary
search tree to degenerate to even a binary search tree, because then we would be stuck
with log N accesses.

One way to implement this is to use a B-tree. The basic B-tree” is described here. Many
variations and improvements are possible, and an implementation is somewhat complex
because there are quite a few cases. However, it is easy to see that, in principle, a B-tree
guarantees only a few disk accesses.

A B-tree of order M is an M-ary tree with the following properties:’

1. The data items are stored at leaves.

2. The nonleaf nodes store up to M — 1 keys to guide the searching; key i represents the
smallest key in subtree i + 1.

3. The root is either a leaf or has between two and M children.

*What is described is popularly known as a B¥ tree.
5 Rules 3 and 5 must be relaxed for the first L insertions.
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4. All nonleaf nodes (except the root) have between [M/27 and M children.

5. All leaves are at the same depth and have between [L/27] and L data items, for some L
(the determination of L is described shortly).

An example of a B-tree of order 5 is shown in Figure 4.60. Notice that all nonleaf nodes
have between three and five children (and thus between two and four keys); the root could
possibly have only two children. Here, we have L = 5. (It happens that L and M are the
same in this example, but this is not necessary.) Since L is 5, each leaf has between three
and five data items. Requiring nodes to be half full guarantees that the B-tree does not
degenerate into a simple binary tree. Although there are various definitions of B-trees that
change this structure, mostly in minor ways, this definition is one of the popular forms.

Each node represents a disk block, so we choose M and L on the basis of the size of the
items that are being stored. As an example, suppose one block holds 8,192 bytes. In our
Florida example, each key uses 32 bytes. In a B-tree of order M, we would have M — 1 keys,
for a total of 32M — 32 bytes, plus M branches. Since each branch is essentially a number
of another disk block, we can assume that a branch is 4 bytes. Thus the branches use 4M
bytes. The total memory requirement for a nonleaf node is thus 36M —32. The largest value
of M for which this is no more than 8,192 is 228. Thus we would choose M = 228. Since
each data record is 256 bytes, we would be able to fit 32 records in a block. Thus we would
choose L = 32. We are guaranteed that each leaf has between 16 and 32 data records and
that each internal node (except the root) branches in at least 114 ways. Since there are 10
million records, there are at most 625,000 leaves. Consequently, in the worst case, leaves
would be on level 4. In more concrete terms, the worst-case number of accesses is given
by approximately log,;,, N, give or take 1 (for example, the root and the next level could
be cached in main memory, so that, over the long run, disk accesses would be needed only
for level 3 and deeper).

The remaining issue is how to add and remove items from the B-tree; the ideas involved
are sketched next. Note that many of the themes seen before recur.

We begin by examining insertion. Suppose we want to insert 57 into the B-tree in
Figure 4.60. A search down the tree reveals that it is not already in the tree. We can then
add it to the leaf as a fifth item. Note that we may have to reorganize all the data in the leaf

| 4166187 |
| |
| ) } |
|8|18|26|35| |48|51|54 |72|78|83| |92|97|
211 8 [|18](26|35(|41[|48|[51||54 66||72(|78](83 8711921197
4 110((20](28|36]||42|(49||52||56 68|1731|79] (84 891193]198
6 |[12((22((30(|37(|44[|50|[53||58 6974|8185 90195199
14(124|131|38]|46 59 70|76
16 321139

Figure 4.60 B-tree of order 5
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| 41166187 |
| |
| ) | |
|8|18|26|35| |48|51|54| |72|78|83| |92|97|
211 8 [|18](26(35(|41[|48|[51|(|54 66||721|78](83 871192197
4 110((20](28(]|36|42|(49||52(]56 6811731179184 89119398
6 (112(122]130][37|(44(|50(|53||57 697418185 901195199
14(24(|31||38]||46 58 70176
16 321139 59

Figure 4.61 B-tree after insertion of 57 into the tree in Figure 4.60

|41 66 87|
I

| [ ] }

|8|18|26|35| |48|51|54|57 |72|7 |92|97|
8|51

8|83|
8 ||18(]26]|35((41||48[[51[[54||57]|66||72||78||83 871192|(97
4211491(52(155]158]|68||73||79||84 891193198
121122130(|37|(44]|50][53[|56]]59]|69]||74||81] |85 90{195(199
141124((31]|38|[46 70(|76
16 32|39

Figure 4.62 Insertion of 55 into the B-tree in Figure 4.61 causes a split into two leaves
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to do this. However, the cost of doing this is negligible when compared to that of the disk
access, which in this case also includes a disk write.

Of course, that was relatively painless because the leaf was not already full. Suppose
we now want to insert 55. Figure 4.61 shows a problem: The leaf where 55 wants to go is
already full. The solution is simple, however: Since we now have L+ 1 items, we split them
into two leaves, both guaranteed to have the minimum number of data records needed. We
form two leaves with three items each. Two disk accesses are required to write these leaves,
and a third disk access is required to update the parent. Note that in the parent, both
keys and branches change, but they do so in a controlled way that is easily calculated.
The resulting B-tree is shown in Figure 4.62. Although splitting nodes is time-consuming
because it requires at least two additional disk writes, it is a relatively rare occurrence. If L
is 32, for example, then when a node is split, two leaves with 16 and 17 items, respectively,
are created. For the leaf with 17 items, we can perform 15 more insertions without another
split. Put another way, for every split, there are roughly L/2 nonsplits.

The node splitting in the previous example worked because the parent did not have its
full complement of children. But what would happen if it did? Suppose, for example, that
we were to insert 40 into the B-tree in Figure 4.62. We would then have to split the leaf
containing the keys 35 through 39, and now 40, into two leaves. But doing this would give
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Figure 4.63 Insertion of 40 into the B-tree in Figure 4.62 causes a split into two leaves
and then a split of the parent node

the parent six children, and it is allowed only five. Hence, the solution is to split the parent.
The result of this is shown in Figure 4.63. When the parent is split, we must update the
values of the keys and also the parent’s parent, thus incurring an additional two disk writes
(so this insertion costs five disk writes). However, once again, the keys change in a very
controlled manner, although the code is certainly not simple because of a host of cases.

When a nonleaf node is split, as is the case here, its parent gains a child. What if the
parent already has reached its limit of children? In that case, we continue splitting nodes
up the tree until either we find a parent that does not need to be split or we reach the root.
If we split the root, then we have two roots. Obviously, this is unacceptable, but we can
create a new root that has the split roots as its two children. This is why the root is granted
the special two-child minimum exemption. It also is the only way that a B-tree gains height.
Needless to say, splitting all the way up to the root is an exceptionally rare event, because
a tree with four levels indicates that the root has been split three times throughout the
entire sequence of insertions (assuming no deletions have occurred). In fact, splitting of
any nonleaf node is also quite rare.

There are other ways to handle the overflowing of children. One technique is to put
a child up for adoption should a neighbor have room. To insert 29 into the B-tree in
Figure 4.63, for example, we could make room by moving 32 to the next leaf. This tech-
nique requires a modification of the parent because the keys are affected. However, it tends
to keep nodes fuller and thus saves space in the long run.

We can perform deletion by finding the item that needs to be removed and then remov-
ing it. The problem is that if the leaf it was in had the minimum number of data items,
then it is now below the minimum. We can rectify this situation by adopting a neighboring
item, if the neighbor is not itself at its minimum. If it is, then we can combine with the
neighbor to form a full leaf. Unfortunately, this means that the parent has lost a child. If
this loss causes the parent to fall below its minimum, then it follows the same strategy. This
process could percolate all the way up to the root. The root cannot have just one child (and
even if this were allowed, it would be silly). If a root is left with one child as a result of
the adoption process, then we remove the root and make its child the new root of the tree.
This is the only way for a B-tree to lose height. For example, suppose we want to remove
99 from the B-tree in Figure 4.63. Since the leaf has only two items, and its neighbor is
already at its minimum of three, we combine the items into a new leaf of five items. As a
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Figure 4.64 B-tree after the deletion of 99 from the B-tree in Figure 4.63

result, the parent has only two children. However, it can adopt from a neighbor because
the neighbor has four children. As a result, both have three children. The result is shown
in Figure 4.64.

4.8 Sets and Maps in the Standard Library

The List containers discussed in Chapter 3, namely ArrayList and LinkedList, are ineffi-
cient for searching. Consequently, the Collections API provides two additional containers,
Set and Map, that provide efficient implementations for basic operations such as insertion,
deletion, and searching.

4.8.1 Sets

The Set interface represents a Collection that does not allow duplicates. A special kind of
Set, given by the SortedSet interface, guarantees that the items are maintained in sorted
order. Because a Set IS-A Collection, the idioms used to access items in a List, which are
inherited from Collection, also work for a Set. The print method described in Figure 3.6
will work if passed a Set.

The unique operations required by the Set are the abilities to insert, remove, and per-
form a basic search (efficiently). For a Set, the add method returns true if the add succeeds
and false if it fails because the item being added is already present. The implementation
of Set that maintains items in sorted order is a TreeSet. Basic operations in a TreeSet take
logarithmic worst-case time.

By default, ordering assumes that the items in the TreeSet implement the Comparable
interface. An alternative ordering can be specified by instantiating the TreeSet with a
Comparator. For instance, we can create a TreeSet that stores String objects, ignoring case
distinctions by using the CaseInsensitiveCompare function object coded in Figure 1.18. In
the following code, the Set s has size 1.

Set<String> s = new TreeSet<>( new CaselnsensitiveCompare( ) );
s.add( "Hello" ); s.add( "HelLLo" );
System.out.printin( "The size is: " + s.size( ) );
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4.8.2 Maps

A Map is an interface that represents a collection of entries that consists of keys and their
values. Keys must be unique, but several keys can map to the same values. Thus values
need not be unique. In a SortedMap, the keys in the map are maintained in logically sorted
order. An implementation of SortedMap is the TreeMap. The basic operations for a Map include
methods such as isEmpty, clear, size, and most importantly, the following:

boolean containsKey( KeyType key )
ValueType get( KeyType key )
ValueType put( KeyType key, ValueType value )

get returns the value associated with key in the Map, or nu11 if key is not present. If there are
no null values in the Map, the value returned by get can be used to determine if key is in
the Map. However, if there are nul1 values, you have to use containskey. Method put places
a key/value pair into the Map, returning either nu11 or the old value associated with key.

Iterating through a Map is trickier than a Collection because the Map does not provide an
iterator. Instead, three methods are provided that return the view of a Map as a Collection.
Since the views are themselves Collections, the views can be iterated. The three methods
are:

Set<KeyType> keySet( )
Collection<ValueType> values( )
Set<Map.Entry<KeyType,ValueType>> entrySet( )

Methods keySet and values return simple collections (the keys contain no duplicates, thus
the keys are returned in a Set). The entrySet is returned as a Set of entries (there are no
duplicate entries, since the keys are unique). Each entry is represented by the nested inter-
face Map.Entry. For an object of type Map.Entry, the available methods include accessing
the key, the value, and changing the value:

KeyType getKey( )
ValueType getValue( )
ValueType setValue( ValueType newValue )

4.8.3 Implementation of TreeSet and TreeMap

Java requires that TreeSet and TreeMap support the basic add, remove, and contains oper-
ations in logarithmic worst-case time. Consequently, the underlying implementation is a
balanced binary search tree. Typically, an AL tree is not used; instead, top-down red-black
trees, which are discussed in Section 12.2, are often used.

An important issue in implementing TreeSet and TreeMap is providing support for the
iterator classes. Of course, internally, the iterator maintains a link to the “current” node
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in the iteration. The hard part is efficiently advancing to the next node. There are several
possible solutions, some of which are listed here:

1. When the iterator is constructed, have each iterator store as its data an array containing
the TreeSet items. This is lame, because we might as well use toArray and have no need
for an iterator.

2. Have the iterator maintain a stack storing nodes on the path to the current node. With
this information, one can deduce the next node in the iteration, which is either the
node in the current node’ right subtree that contains the minimum item, or the nearest
ancestor that contains the current node in its left subtree. This makes the iterator
somewhat large, and makes the iterator code clumsy.

3. Have each node in the search tree store its parent in addition to the children. The
iterator is not as large, but there is now extra memory required in each node, and the
code to iterate is still clumsy.

4. Have each node maintain extra links: one to the next smaller, and one to the next larger
node. This takes space, but the iteration is very simple to do, and it is easy to maintain
these links.

5. Maintain the extra links only for nodes that have nu11 left or right links, by using extra
Boolean variables to allow the routines to tell if a left link is being used as a standard
binary search tree left link or a link to the next smaller node, and similarly for the right
link (Exercise 4.50). This idea is called a threaded tree, and is used in many balanced
binary search tree implementations.

4.8.4 An Example That Uses Several Maps

Many words are similar to other words. For instance, by changing the first letter, the word
wine can become dine, fine, Tine, mine, nine, pine, or vine. By changing the third letter, wine
can become wide, wife, wipe, or wire, among others. By changing the fourth letter, wine can
become wind, wing, wink, or wins, among others. This gives 15 different words that can
be obtained by changing only one letter in wine. In fact, there are over 20 different words,
some more obscure. We would like to write a program to find all words that can be changed
into at least 15 other words by a single one-character substitution. We assume that we have
a dictionary consisting of approximately 89,000 different words of varying lengths. Most
words are between 6 and 11 characters. The distribution includes 8,205 six-letter words,
11,989 seven-letter words, 13,672 eight-letter words, 13,014 nine-letter words, 11,297
ten-letter words, and 8,617 eleven-letter words. (In reality, the most changeable words are
three-, four- and five-letter words, but the longer words are the time-consuming ones to
check.)

The most straightforward strategy is to use a Map in which the keys are words and the
values are lists containing the words that can be changed from the key with a one-character
substitution. The routine in Figure 4.65 shows how the Map that is eventually produced (we
have yet to write code for that part) can be used to print the required answers. The code
obtains the entry set and uses the enhanced for loop to step through the entry set and view
entries that are pairs consisting of a word and a list of words.
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1 public static void printHighChangeables( Map<String,List<String>> adjWords,
2 int minWords )

3 {

4 for( Map.Entry<String,List<String>> entry : adjWords.entrySet( ) )
5 {

6 List<String> words = entry.getValue( );

7

8 if( words.size( ) >= minWords )

9 {

10 System.out.print( entry.getkKey( ) + " (" );

11 System.out.print( words.size( ) + "):" );

12 for( String w : words )

13 System.out.print( " " + w );

14 System.out.printin( );

15 }

16 }

17 }

Figure 4.65 Given a map containing words as keys and a list of words that differ in only
one character as values, output words that have minWords or more words obtainable by a
one-character substitution

1 // Returns true if wordl and word2 are the same Tength
2 // and differ in only one character.

3 private static boolean oneCharOff( String wordl, String word2 )
4 {

5 if( wordl.length( ) !'= word2.length( ) )

6 return false;

7

8 int diffs = 03

9
10 for( int i = 0; i < wordl.length( ); i++ )
11 if( wordl.charAt( i ) != word2.charAt( i ) )
12 if( ++diffs > 1)
13 return false;
14
15 return diffs == 1;
16 }

Figure 4.66 Routine to check if two words differ in only one character

The main issue is how to construct the Map from an array that contains the 89,000
words. The routine in Figure 4.66 is a straightforward function to test if two words are
identical except for a one-character substitution. We can use the routine to provide the
simplest algorithm for the Map construction, which is a brute-force test of all pairs of words.
This algorithm is shown in Figure 4.67.
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To step through the collection of words, we could use an iterator, but because we are
stepping through it with a nested loop (i.e., several times), we dump the collection into an
array using toArray (lines 9 and 11). Among other things, this avoids repeated calls to cast
from Object to String, which occur behind the scenes if generics are used. Instead, we are
simply indexing a String[].

1 // Computes a map in which the keys are words and values are Lists of words
2 // that differ in only one character from the corresponding key.
3 // Uses a quadratic algorithm (with appropriate Map).
4 public static Map<String,List<String>>
5 computeAdjacentWords( List<String> theWords )
6 {
7 Map<String,List<String>> adjWords = new TreeMap<>( );
8
9 String [ ] words = new String[ theWords.size( ) ];
10
11 theWords.toArray( words );
12 for( int i = 0; i < words.length; i++ )
13 for( int j = i + 1; j < words.length; j++ )
14 if( oneCharOff( words[ i ], words[ j 1) )
15 {
16 update( adjWords, words[ i ], words[ j ] );
17 update( adjWords, words[ j ], words[ i ] );
18 }
19
20 return adjWords;
21 }
22
23 private static <KeyType> void update( Map<KeyType,List<String>> m,
24 KeyType key, String value )
25 {
26 List<String> 1st = m.get( key );
27 if( Tst == null )
28 {
29 Ist = new ArraylList<>( );
30 m.put( key, 1st );
31 }
32
33 1st.add( value );
34 }

Figure 4.67 Function to compute a map containing words as keys and a list of words that
differ in only one character as values. This version runs in 75 seconds on an 89,000-word
dictionary
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If we find a pair of words that differ in only one character, we can update the Map at
lines 16 and 17. In the private update method, at line 26 we see if there is already a list of
words associated with the key. If we have previously seen key, because 1st is not nu11, then
it is in the Map, and we need only add the new word to the List in the Map, and we do this
by calling add at line 33. If we have never seen key before, then lines 29 and 30 place it in
the Map, with a List of size 0, so the add updates the List to be size 1. All in all, this is a
standard idiom for maintaining a Map, in which the value is a collection.

The problem with this algorithm is that it is slow, and takes 75 seconds on our com-
puter. An obvious improvement is to avoid comparing words of different lengths. We can
do this by grouping words by their length, and then running the previous algorithm on
each of the separate groups.

To do this, we can use a second map! Here the key is an integer representing a word
length, and the value is a collection of all the words of that length. We can use a List to
store each collection, and the same idiom applies. The code is shown in Figure 4.68. Line
9 shows the declaration for the second Map, lines 12 and 13 populate the Map, and then an
extra loop is used to iterate over each group of words. Compared to the first algorithm,
the second algorithm is only marginally more difficult to code and runs in 16 seconds, or
about five times as fast.

Our third algorithm is more complex, and uses additional maps! As before, we group
the words by word length, and then work on each group separately. To see how this algo-
rithm works, suppose we are working on words of length 4. Then first we want to find
word pairs such as wine and nine that are identical except for the first letter. One way to
do this, for each word of length 4, is to remove the first character, leaving a three-character
word representative. Form a Map in which the key is the representative, and the value is a
List of all words that have that representative. For instance, in considering the first char-
acter of the four-letter word group, representative "ine" corresponds to "dine", "fine",
"wine", "nine", "mine", "vine", "pine", "Tine". Representative "oot" corresponds to "boot",
"foot", "hoot", "Toot", "soot", "zoot". Each individual List that is a value in this latest Map
forms a clique of words in which any word can be changed to any other word by a one-
character substitution, so after this latest Map is constructed, it is easy to traverse it and add
entries to the original Map that is being computed. We would then proceed to the second
character of the four-letter word group, with a new Map. And then the third character, and
finally the fourth character.

The general outline is:

for each group g, containing words of length len
for each position p (ranging from 0 to len-1)
{
Make an empty Map<String,List<String> > repsToWords
for each word w
{
Obtain w's representative by removing position p
Update repsToWords
}

Use cliques in repsToWords to update adjWords map
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Figure 4.69 contains an implementation of this algorithm. The running time improves
to one second. It is interesting to note that although the use of the additional Maps makes
the algorithm faster, and the syntax is relatively clean, the code makes no use of the fact
that the keys of the Map are maintained in sorted order.

As such, it is possible that a data structure that supports the Map operations but does
not guarantee sorted order can perform better, since it is being asked to do less. Chapter 5
explores this possibility and discusses the ideas behind the alternative Map implementation,
known as a HashMap. A HashMap reduces the running time of the implementation from one
second to roughly 0.8 seconds.

1 // Computes a map in which the keys are words and values are Lists of words
2 // that differ in only one character from the corresponding key.
3 // Uses a quadratic algorithm (with appropriate Map), but speeds things by
4 // maintaining an additional map that groups words by their length.
5 public static Map<String,List<String>>
6 computeAdjacentWords( List<String> theWords )
7 {
8 Map<String,List<String>> adjWords = new TreeMap<>( );
9 Map<Integer,List<String>> wordsBylLength = new TreeMap<>( );
10
11 // Group the words by their length
12 for( String w : theWords )
13 update( wordsByLength, w.length( ), w );
14
15 // Work on each group separately
16 for( List<String> groupsWords : wordsBylLength.values( ) )
17 {
18 String [ ] words = new String[ groupsWords.size( ) ]1;
19
20 groupsWords.toArray( words );
21 for( int i = 0; i < words.length; i++ )
22 for( int j = i + 1; j < words.length; j++ )
23 if( oneCharOff( words[ i ], words[ j ] ) )
24 {
25 update( adjWords, words[ i ], words[ j ] );
26 update( adjWords, words[ j ], words[ i ] );
27 }
28 }
29
30 return adjWords;
31 }

Figure 4.68 Function to compute a map containing words as keys and a list of words
that differ in only one character as values. Splits words into groups by word length. This
version runs in 16 seconds on an 89,000-word dictionary
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1 // Computes a map in which the keys are words and values are Lists of words
2 // that differ in only one character from the corresponding key.

3 // Uses an efficient algorithm that is O(N Tog N) with a TreeMap.

4 public static Map<String,List<String>>

5 computeAdjacentWords( List<String> words )

6 {

7 Map<String,List<String>> adjWords = new TreeMap<>( );

8 Map<Integer,List<String>> wordsByLength = new TreeMap<>( );

9

10 // Group the words by their length

11 for( String w : words )

12 update( wordsBylLength, w.length( ), w );

13

14 // Work on each group separately

15 for( Map.Entry<Integer,List<String>> entry : wordsByLength.entrySet( ) )
16 {

17 List<String> groupsWords = entry.getValue( );

18 int groupNum = entry.getKey( );

19
20 // Work on each position in each group
21 for( int i = 0; i < groupNum; i++ )
22 {
23 // Remove one character in specified position, computing
24 // representative. Words with same representative are
25 // adjacent, so first populate a map ...
26 Map<String,List<String>> repToWord = new TreeMap<>( );
27
28 for( String str : groupsWords )
29 {
30 String rep = str.substring( 0, i ) + str.substring( i + 1 );
31 update( repToWord, rep, str );
32 }
33
34 // and then Took for map values with more than one string
35 for( List<String> wordClique : repToWord.values( ) )
36 if( wordClique.size( ) >= 2 )
37 for( String sl : wordClique )
38 for( String s2 : wordClique )
39 if( sl !1=s2)
40 update( adjWords, sl, s2 );
41 }
42 }
43
44 return adjWords;
45 }

Figure 4.69 Function to compute a map containing words as keys and a list of words
that differ in only one character as values. Runs in 1 second on an 89,000-word dictionary
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Summary

We have seen uses of trees in operating systems, compiler design, and searching.
Expression trees are a small example of a more general structure known as a parse tree,
which is a central data structure in compiler design. Parse trees are not binary but are rela-
tively simple extensions of expression trees (although the algorithms to build them are not
quite so simple).

Search trees are of great importance in algorithm design. They support almost all the
useful operations, and the logarithmic average cost is very small. Nonrecursive implemen-
tations of search trees are somewhat faster, but the recursive versions are sleeker, more
elegant, and easier to understand and debug. The problem with search trees is that their
performance depends heavily on the input being random. If this is not the case, the run-
ning time increases significantly, to the point where search trees become expensive linked
lists.

We saw several ways to deal with this problem. avL trees work by insisting that all
nodes’ left and right subtrees differ in heights by at most one. This ensures that the tree
cannot get too deep. The operations that do not change the tree, as insertion does, can
all use the standard binary search tree code. Operations that change the tree must restore
the tree. This can be somewhat complicated, especially in the case of deletion. We showed
how to restore the tree after insertions in O(log N) time.

We also examined the splay tree. Nodes in splay trees can get arbitrarily deep, but after
every access the tree is adjusted in a somewhat mysterious manner. The net effect is that
any sequence of M operations takes O(Mlog N) time, which is the same as a balanced tree
would take.

B-trees are balanced M-way (as opposed to 2-way or binary) trees, which are well
suited for disks; a special case is the 2-3 tree (M = 3), which is another way to implement
balanced search trees.

In practice, the running time of all the balanced tree schemes, while slightly faster
for searching, is worse (by a constant factor) for insertions and deletions than the simple
binary search tree, but this is generally acceptable in view of the protection being given
against easily obtained worst-case input. Chapter 12 discusses some additional search tree
data structures and provides detailed implementations.

A final note: By inserting elements into a search tree and then performing an inorder
traversal, we obtain the elements in sorted order. This gives an O(NlogN) algorithm to
sort, which is a worst-case bound if any sophisticated search tree is used. We shall see
better ways in Chapter 7, but none that have a lower time bound.

Exercises

Questions 4.1 to 4.3 refer to the tree in Figure 4.70.

4.1  For the tree in Figure 4.70:
a. Which node is the root?
b. Which nodes are leaves?
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4.2

43
4.4

4.5
4.6

4.7

4.8

4.9

4.10

4.12

Exercises

For each node in the tree of Figure 4.70:
Name the parent node.

. List the children.
List the siblings.

. Compute the depth.
Compute the height.

o o0 o

What is the depth of the tree in Figure 4.70?

Show that in a binary tree of N nodes, there are N 4 1 null links representing

children.

Show that the maximum number of nodes in a binary tree of height h is 2"+ — 1.

A full node is a node with two children. Prove that the number of full nodes plus

one is equal to the number of leaves in a nonempty binary tree.

Suppose a binary tree has leaves I3, 15, ..., Iy at depths d1, da, . . ., du, respectively.

Prove that Zf\il 2% < 1 and determine when the equality is true.

Give the prefix, infix, and postfix expressions corresponding to the tree in

Figure 4.71.

a. Show the result of inserting 3, 1, 4, 6, 9, 2, 5, 7 into an initially empty binary
search tree.

b. Show the result of deleting the root.

Write a program that lists all files in a directory and their sizes. Mimic the routine

in the online code.

Write an implementation of the TreeSet class, with associated iterators using a

binary search tree. Add to each node a link to the parent node.

Write an implementation of the TreeMap class by storing a data member of type
TreeSet<Map.Entry<KeyType,ValueType>>.

Figure 4.70 Tree for Exercises 4.1 to 4.3
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Figure 4.71 Tree for Exercise 4.8

4.13

4.14

4.15

4.16

Write an implementation of the TreeSet class, with associated iterators, using a
binary search tree. Add to each node a link to the next smallest and next largest
node. To make your code simpler, add a header and tail node which are not part of
the binary search tree, but help make the linked list part of the code simpler.

Suppose you want to perform an experiment to verify the problems that can be

caused by random insert/remove pairs. Here is a strategy that is not perfectly ran-

dom, but close enough. You build a tree with N elements by inserting N elements
chosen at random from the range 1 to M = &N. You then perform N? pairs of inser-

tions followed by deletions. Assume the existence of a routine, randomInteger(a, b),

which returns a uniform random integer between a and b inclusive.

a. Explain how to generate a random integer between 1 and M that is not already
in the tree (so a random insertion can be performed). In terms of N and «, what
is the running time of this operation?

b. Explain how to generate a random integer between 1 and M that is already in
the tree (so a random deletion can be performed). What is the running time of
this operation?

c. What is a good choice of «? Why?

Write a program to evaluate empirically the following strategies for removing nodes

with two children:

a. Replace with the largest node, X, in T; and recursively remove X.

b. Alternately replace with the largest node in T; and the smallest node in Tg, and
recursively remove the appropriate node.

c. Replace with either the largest node in T or the smallest node in Tg (recursively
removing the appropriate node), making the choice randomly.

Which strategy seems to give the most balance? Which takes the least CPU time to
process the entire sequence?

Redo the binary search tree class to implement lazy deletion. Note carefully that
this affects all of the routines. Especially challenging are findMin and findMax, which
must now be done recursively.
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4.18

4.19

*4.20

4.21
4.22

423
424

4.25

4.26

4.27

4.28

4.29

Exercises

Prove that the depth of a random binary search tree (depth of the deepest node) is
O(logN), on average.

*a. Give a precise expression for the minimum number of nodes in an avL tree of
height h.
b. What is the minimum number of nodes in an avL tree of height 15?

Show the result of inserting 2, 1, 4, 5, 9, 3, 6, 7 into an initially empty AvL tree.

Keys 1,2,...,2% — 1 are inserted in order into an initially empty avL tree. Prove
that the resulting tree is perfectly balanced.

Write the remaining procedures to implement avL single and double rotations.

Design a linear-time algorithm that verifies that the height information in an avL

tree is correctly maintained and that the balance property is in order.

Write a nonrecursive method to insert into an AvL tree.

Show that the deletion algorithm in Figure 4.44 is correct, and explain what

happens if > is used instead of >= at lines 32 and 38 in Figure 4.39.

a. How many bits are required per node to store the height of a node in an N-node
AVL tree?

b. What is the smallest avL tree that overflows an 8-bit height counter?

Write the methods to perform the double rotation without the inefficiency of doing

two single rotations.

Show the result of accessing the keys 3, 9, 1, 5 in order in the splay tree in
Figure 4.72.

Show the result of deleting the element with key 6 in the resulting splay tree for the
previous exercise.

a. Show that if all nodes in a splay tree are accessed in sequential order, the
resulting tree consists of a chain of left children.

Figure 4.72 Tree for Exercise 4.27

www.EBooksWorld.ir

163



164

Chapter 4 Trees

**b. Show that if all nodes in a splay tree are accessed in sequential order, then the
total access time is O(N), regardless of the initial tree.

4.30 Write a program to perform random operations on splay trees. Count the total
number of rotations performed over the sequence. How does the running time
compare to avL trees and unbalanced binary search trees?

4.31 Write efficient methods that take only a reference to the root of a binary tree, T, and
compute:
a. The number of nodes in T.
b. The number of leaves in T.
¢. The number of full nodes in T.
What is the running time of your routines?

4.32  Design a recursive linear-time algorithm that tests whether a binary tree satisfies the
search tree order property at every node.

4.33 Write a recursive method that takes a reference to the root node of a tree T and
returns a reference to the root node of the tree that results from removing all leaves
from T.

4.34 Write a method to generate an N-node random binary search tree with distinct keys
1 through N. What is the running time of your routine?

4.35 Write a method to generate the AvL tree of height h with fewest nodes. What is the
running time of your method?

4.36  Write a method to generate a perfectly balanced binary search tree of height h with
keys 1 through 2"*! — 1. What is the running time of your method?

4.37 Write a method that takes as input a binary search tree, T, and two keys k; and k3,
which are ordered so that k1 < ky, and prints all elements X in the tree such that
k1 < Key(X) < ky. Do not assume any information about the type of keys except
that they can be ordered (consistently). Your program should run in O(K + log N)
average time, where K is the number of keys printed. Bound the running time of
your algorithm.

4.38 The larger binary trees in this chapter were generated automatically by a program.
This was done by assigning an (x, y) coordinate to each tree node, drawing a circle
around each coordinate (this is hard to see in some pictures), and connecting each
node to its parent. Assume you have a binary search tree stored in memory (perhaps
generated by one of the routines above) and that each node has two extra fields to
store the coordinates.

a. The x coordinate can be computed by assigning the inorder traversal number.
Write a routine to do this for each node in the tree.

b. The y coordinate can be computed by using the negative of the depth of the
node. Write a routine to do this for each node in the tree.

c. In terms of some imaginary unit, what will the dimensions of the picture be?
How can you adjust the units so that the tree is always roughly two-thirds as
high as it is wide?
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4.40

4.41

4.42

4.43

4.44

4.45

Exercises

d. Prove that using this system no lines cross, and that for any node, X, all elements
in X5 left subtree appear to the left of X and all elements in X’ right subtree
appear to the right of X.

Write a general-purpose tree-drawing program that will convert a tree into the
following graph-assembler instructions:

a. Circle(X,Y)

b. DrawLine(i, j)

The first instruction draws a circle at (X,Y), and the second instruction connects
the ith circle to the jth circle (circles are numbered in the order drawn). You should
either make this a program and define some sort of input language or make this
a method that can be called from any program. What is the running time of your
routine?

(This exercise assumes familiarity with the Java Swing Library.) Write a program
that reads graph-assembler instructions and generates Java code that draws into a
canvas. (Note that you have to scale the stored coordinates into pixels.)

Write a routine to list out the nodes of a binary tree in level-order: List the root, then
nodes at depth 1, followed by nodes at depth 2, and so on. You must do this in
linear time. Prove your time bound.

*a. Write a routine to perform insertion into a B-tree.

*b. Write a routine to perform deletion from a B-tree. When an item is deleted, is it
necessary to update information in the internal nodes?

*c. Modify your insertion routine so that if an attempt is made to add into a node
that already has M entries, a search is performed for a sibling with less than M
children before the node is split.

A B*-tree of order M is a B-tree in which each interior node has between 2M/3 and
M children. Describe a method to perform insertion into a B*-tree.

Show how the tree in Figure 4.73 is represented using a child/sibling link
implementation.

Write a procedure to traverse a tree stored with child/sibling links.

Figure 4.73 Tree for Exercise 4.44
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Figure

4.46

4.47

*

448 *

*

Jok

4.49

4.50

4.51

4.74 Two isomorphic trees

Two binary trees are similar if they are both empty or both nonempty and have
similar left and right subtrees. Write a method to decide whether two binary trees
are similar. What is the running time of your method?

Two trees, T1 and T, are isomorphic if T can be transformed into T, by swapping
left and right children of (some of the) nodes in T;. For instance, the two trees in
Figure 4.74 are isomorphic because they are the same if the children of A, B, and
G, but not the other nodes, are swapped.

a. Give a polynomial time algorithm to decide if two trees are isomorphic.

b. What is the running time of your program (there is a linear solution)?

a. Show that via avL single rotations, any binary search tree T; can be transformed
into another search tree T, (with the same items).

b. Give an algorithm to perform this transformation using O(N log N) rotations on
average.

¢. Show that this transformation can be done with O(N) rotations, worst case.

Suppose we want to add the operation findKth to our repertoire. The operation
findkth(k) returns the kth smallest item in the tree. Assume all items are distinct.
Explain how to modify the binary search tree to support this operation in O(log N)
average time, without sacrificing the time bounds of any other operation.

Since a binary search tree with N nodes has N + 1 null references, half the space

allocated in a binary search tree for link information is wasted. Suppose that if a

node has a nul1 left child, we make its left child link to its inorder predecessor, and

if anode has a nu11 right child, we make its right child link to its inorder successo