

 360 Databases: A Beginner’s Guide

quarters, and perhaps years), products, and organizational units (departments, divisions,
and so forth). In fact, time and organizational structure appear as dimensions in most
star schemas. As you might guess, the keys to success in star schema OLAP databases
are getting the fact table right and using only conformed dimensions. Here’s a list of the
considerations that influence the design of the fact table:

● The required time period (how often data will be added and how long history must
remain in the OLAP database)

● Storing every transaction versus statistical sampling

● Columns in the source data table(s) that are not necessary for OLAP

● Columns that can be reduced in size

● The best uses of intelligent (natural) and surrogate (dumb) keys

● Partitioning of the fact table

Over time, some variations of the star schema emerged:

● Snowflake schema A variant in which dimensions are allowed to have dimensions
of their own. The name comes from the entity-relationship diagram’s resemblance to a
snowflake. If you fully normalize the dimensions of a star schema, you end up with a
snowflake schema. For example, the time dimension at the first level could track days,
with a dimension table above it to track weeks, one above that to track months, one
above that one to track quarters, and so forth. Similar arrangements could be used to
track the hierarchy of an organization (departments, divisions, and so on).

● Starflake schema A hybrid arrangement containing a mixture of (denormalized)
star and (normalized) snowflake dimensions.

Multidimensional Databases
Multidimensional databases evolved from star schemas. They are sometimes called
multidimensional OLAP (MOLAP) databases. A number of specialized multidimensional
database systems are on the market, including Oracle Express, Microsoft SQL Server
Analysis Services, and Oracle Essbase. MOLAP databases are best visualized as cubes,
where each dimension forms a side of the cube. To accommodate additional dimensions,
the cube (or set of cubes) is simply repeated for each.

Figure 12-3 shows a four-column fact table for Acme Industries. Product Line, Sales
Department, and Quarter are dimensions, and they would be foreign keys to a dimension

 Chapter 12: Databases for Online Analytical Processing 361

table in a star schema. Quantity contains the number of units sold for each combination of
Product Line, Sales Department, and Quarter.

Figure 12-4 shows the multidimensional equivalent of the table shown in Figure 12-3.
Note that Sales Department, Product Line, and Quarter all become edges of the cube,
with the single fact Quantity stored in each grid square. The dimensions displayed may be
changed by simply rotating the cube.

When the dimensions contain data that mutates over time, such as a product being moved
from one product family to another, we call this a slowly changing dimension. These present

Product Line Sales Department Quarter Quantity
Helmets Corporate Sales 1 2250

Helmets Corporate Sales 2 2107

Helmets Corporate Sales 3 5203

Helmets Corporate Sales 4 5806

Helmets Internet Sales 1 1607

Helmets Internet Sales 2 1812

Helmets Internet Sales 3 4834

Helmets Internet Sales 4 5150

Springs Corporate Sales 1 16283

Springs Corporate Sales 2 17422

Springs Corporate Sales 3 21288

Springs Corporate Sales 4 32768

Springs Internet Sales 1 12

Springs Internet Sales 2 24

Springs Internet Sales 3 48

Springs Internet Sales 4 48

Rockets Corporate Sales 1 65

Rockets Corporate Sales 2 38

Rockets Corporate Sales 3 47

Rockets Corporate Sales 4 52

Rockets Internet Sales 1 2

Rockets Internet Sales 2 1

Rockets Internet Sales 3 6

Rockets Internet Sales 4 9

Figure 12-3 Four-column fact table for Acme Industries

 362 Databases: A Beginner’s Guide

a special challenge when designing multidimensional schemas. Several solution methods,
known as types of slowly changing dimensions, are listed in the following table:

Method Type Description
1 Old data is overwritten with new data, so no tracking of history occurs.

2
A new row is created every time any data in the dimension changes, which
provides unlimited history. A version number or effective dates are included in
each row to record the sequence of the changes.

3

Multiple columns are provided for each attribute for which changes must be
tracked, with each new value written into the next available column for the
attribute. Naturally, the amount of history is limited to the number of columns
provided.

4 Current data is kept in one table, and a history table is used to record some or
all of the previous data values.

You can find more information on slowly changing dimensions in the many articles
published on the Internet.

Sales
Department

Product
Line

Helmets

Springs

Rockets

Internet
Sales

Corporate
Sales

2250

16283

65

Q1

2107

17422

38

5203

21288

47

Q2 Q3

5806

32768

52

Q4

Quarter
(time period)

Figure 12-4 Three-dimension cube for Acme Industries

 Chapter 12: Databases for Online Analytical Processing 363

Data Marts
A data mart is a subset of a data warehouse that supports the requirements of a particular
department or business function. In part, data marts evolved in response to some highly
visible multimillion-dollar data warehouse project failures. When an organization has little
experience building OLTP systems and databases, or when requirements are very sketchy,
a scaled-down project such as a data mart is a far less risky approach. Here are a few
characteristics of data marts:

● Focus on one department or business process

● Do not normally contain any operational data

● Contain much less information than a data warehouse

Here are some reasons for creating a data mart:

● Data may be tailored to a particular department or business function.

● Overall costs are lower than that of a full data warehouse.

● Project is lower risk than a full data warehouse project.

● A limited number of end-user analysis tools (usually just one) allow data to be tailored
to the particular tool to be used.

● For departmental data marts, the database may be placed physically near the
department, reducing network delays.

Three basic strategies can be used to build data marts:

● Build the enterprise-wide data warehouse first, and use it to populate data marts. The
problem with this approach is that you will never get to build the data marts if the data
warehouse project ends up being canceled or put on indefinite hold.

● Build several data marts and build the data warehouse later, integrating the data marts
into the enterprise-wide data warehouse at that time. This is a lower risk strategy,
at least in terms of delivery, because it does not depend on completion of a major
data warehouse project. However, it may cost more because of the rework required
to integrate the data marts after the fact. Moreover, if several data marts are built
containing similar data without a common data warehouse to integrate all the data, the
same query may yield different results depending on the data mart used. Imagine, for
example, the finance department quoting one revenue number and the sales department
another, only to find they are both correctly quoting their data sources.

 364 Databases: A Beginner’s Guide

● Build the data warehouse and data marts simultaneously. This sounds great on paper,
but when you consider that the already complex and large data warehouse project
now has the data marts added to its scope, you begin to appreciate the enormity of the
project. In fact, this strategy practically guarantees that the data warehouse project
will be the never-ending project from hell.

Data Mining
Data mining is the process of extracting valid, previously unknown, comprehensible,
and actionable information from large databases and using it to make crucial business
decisions. The biggest benefit is that it can uncover correlations in the data that were
never suspected. The caveat is that it normally requires very large data volumes in order to
produce accurate results. Most commercial OLAP/business intelligence (BI) tools include
some data-mining features.

One of the commonly cited stories of an early success with data mining involves an
NCR Corporation employee who produced a study for American Stores’ Osco Drugs in
1992. The study noted a correlation between beer sales and diaper sales between 5 P.M.
and 7 P.M., meaning that the two items were found together in a single purchase more
often than pure randomness would suggest. This correlation was subsequently mentioned
in a speech, and the “beer and diapers” story quickly became a bit of an urban legend in
data warehouse circles. Countless conference speakers have related the story of young
fathers sent out for diapers who grab a six-pack at the same time, often embellished well
beyond the facts. However, the story remains an excellent example of how unexpected the
results of data mining can be.

Once you discover a correlation, the organization must decide the best action to take to
capitalize on the new information. In the “beer and diapers” example, the company could
either strategically place the diaper display near the beer chillers for that quick impulse
sale or perhaps place coupon dispensers for beer near the diaper display, strategically
locating the beer and diapers products at opposite corners of the store in hopes of more

Q: Are data marts built using summary tables or star schemas?

A: Data marts are built almost exclusively using star schemas. This is most likely because
almost all the popular end-user analysis tools expect star schemas, including pivot tables
supported by spreadsheet tools such as Microsoft Excel.

Ask the Expert

 Chapter 12: Databases for Online Analytical Processing 365

Try This 12-1

impulse buys as the shopper picks up one item and heads across the store for the other.
For the newly found information to be of benefit, the organization must be agile enough
to take some action, so data mining itself isn’t a silver bullet by any measure.

 Design Star Schema Fact and
Dimension Tables

In this Try This exercise, you will design a star schema fact for the BOOK table for the
Computer Books Company schema from Try This 6-2, along with its associated dimension
tables. For easy reference, here are the normalized OLTP tables that need consideration:

BOOK: ISBN (PK), BOOK TITLE, SUBJECT CODE, PUBLISHER ID,
 EDITION CODE, EDITION COST, SELLING PRICE,
 QUANTITY ON HAND, QUANTITY ON ORDER,
 RECOMMENDED QUANTITY, PREVIOUS EDITION ISBN

SUBJECT: SUBJECT CODE (PK), DESCRIPTION

AUTHOR: AUTHOR ID (PK), AUTHOR NAME

BOOK-AUTHOR: AUTHOR ID (PK), ISBN (PK)

PUBLISHER: PUBLISHER ID (PK), PUBLISHER NAME, STREET ADDRESS,
 CITY, STATE, ZIP CODE, AMOUNT PAYABLE

Step by Step
 1. Design the fact table:

 a. Identify the facts that will go in your fact table. For the BOOK table, the only
attributes that can be facts are EDITION COST, SELLING PRICE, QUANTITY
ON HAND, QUANTITY ON ORDER, and RECOMMENDED QUANTITY.

 b. Among the remaining attributes in the BOOK table, identify those that are foreign
keys to dimension tables. These are SUBJECT CODE and PUBLISHER ID.

 c. The remaining attributes are BOOK TITLE and PREVIOUS EDITION ISBN.
What can be done with these? One choice is simply to eliminate them for your star
schema. But another is to make a dimension out of them, called something like
BOOK TITLE. The fact table can then be joined with the dimension using ISBN
when you want to include the title or previous edition ISBN in our query results.

 d. List the contents of the fact table.
(continued)

 366 Databases: A Beginner’s Guide

 2. Design the dimension tables:

 a. From Step 1.c, design a dimension table to hold BOOK TITLE and PREVIOUS
EDITION ISBN.

 b. SUBJECT becomes a dimension just as it is.

 c. AUTHOR and BOOK_AUTHOR pose a small challenge because they form a
hierarchy. However, if you collapse them into a single table, they form a dimension
that lists every author for every book. The dimension table will include a second
normal form violation (AUTHOR NAME will depend only on the AUTHOR ID),
but you need not be concerned about such things in star schemas. In fact, were it
not for the possibility of two different authors having the same name, you could
remove AUTHOR ID from the dimension altogether.

 d. PUBLISHER looks straightforward enough, but there is a minor issue with
AMOUNT PAYABLE. It’s a fact, and facts don’t belong in dimension tables. So
you should eliminate it from this star schema. It may be useful when the fact table
is about publisher purchases or something like that, but it has no bearing on our
book inventory.

 e. List the contents of each dimension table.

Try This Summary
In this Try This exercise, you designed a fact table and several dimension tables. My
solution is in Appendix B.

 Chapter 12 Self Test
Choose the correct responses to each of the multiple-choice and fill-in-the-blank
questions. Note that there may be more than one correct response to each question.

 1. OLTP databases are designed to handle ____________ transaction volumes.

 2. OLAP queries typically access ____________ amounts of data.

 3. Compared with OLTP systems, data warehouse systems tend to have ____________
running queries.

 4. Data warehousing was pioneered by ____________.

✓

 Chapter 12: Databases for Online Analytical Processing 367

 5. The process of moving from more summarized data to more detailed data is known as
____________.

 6. The snowflake schema allows dimensions to have ____________.

 7. The starflake schema is a hybrid containing both ____________ and ____________
dimensions.

 8. A data warehouse is

 A Subject oriented

 B Integrated from multiple data sources

 C Time variant

 D Updated in real time

 E Organized around one department or business function

 9. Challenges with the data warehouse approach include

 A Updating operational data from the data warehouse

 B Underestimation of required resources

 C Diminishing user demands

 D Large, complex projects

 E High resource demands

 10. The summary table architecture

 A Was originally developed by Bill Inmon

 B Includes a fact table

 C Includes dimension tables

 D Includes lightly and highly summarized tables

 E Should include metadata

 11. The star schema

 A Was developed by Ralph Kimball

 B Includes a dimension table and one or more fact tables

 368 Databases: A Beginner’s Guide

 C Always has fully normalized dimension tables

 D Was a key feature of the Red Brick DBMS

 E Involves multiple levels of dimension tables

 12. Factors to consider in designing the fact table include

 A Adding columns to the fact table

 B Reducing column sizes between the source and fact tables

 C Partitioning the fact table

 D How often it must be updated

 E How long history must remain in it

 13. Multidimensional databases

 A Use a fully normalized fact table

 B Are best visualized as cubes

 C Have fully normalized dimension tables

 D Are sometimes called MOLAP databases

 E Accommodate dimensions beyond the third by repeating cubes for each additional
dimension

 14. A data mart

 A Is a subset of a data warehouse

 B Is a shop that sells data to individuals and businesses

 C Supports the requirements of a particular department or business function

 D Can be a good starting point for organizations with no data warehouse experience

 E Can be a good starting point when requirements are sketchy

 15. Reasons to create a data mart include

 A It is more comprehensive than a data warehouse.

 B It is a potentially lower risk project.

 C Data may be tailored to a particular department or business function.

 Chapter 12: Databases for Online Analytical Processing 369

 D It contains more data than a data warehouse.

 E The project has a lower overall cost than a data warehouse project.

 16. Building a data warehouse first, followed by data marts

 A Will delay data mart deployment if the data warehouse project drags on

 B Has lower risk than trying to build them all together

 C Has the lowest risk of the three possible strategies

 D Has the highest risk of the three possible strategies

 E May require a great deal of rework

 17. Building one or more data marts first, followed by the data warehouse

 A May delay data warehouse delivery if the data mart projects drag on

 B Has the potential to deliver some OLAP functions more quickly

 C Has the lowest risk of the three possible strategies

 D Has the highest risk of the three possible strategies

 E May require a great deal of rework

 18. Building the data warehouse and data marts simultaneously

 A Creates the largest single project of all the possible strategies

 B Has the potential to take the longest to deliver any OLAP functions

 C Has the lowest risk of the three possible strategies

 D Has the highest risk of the three possible strategies

 E May require a great deal of rework

 19. Data mining

 A Creates a scaled-down data warehouse

 B Extracts previously unknown data correlations from the data warehouse

 C Can be successful with small amounts of data

 D Is most useful when the organization is agile enough to take action based on the
information

 E Usually requires large data volumes in order to produce accurate results

 370 Databases: A Beginner’s Guide

 20. Properties of data warehouse systems include

 A Holding historic rather than current information

 B Long-running queries that process many rows of data

 C Support for day-to-day operations

 D Process orientation

 E Medium to low transaction volume

371

Chapter 13
Integrating XML
Documents and
Objects into Databases

 372 Databases: A Beginner’s Guide

Key Skills & Concepts
● Learn the Basics of XML

● Learn About SQL/XML

● Object-Oriented Applications

● Object-Relational Databases

Along with the explosive growth in the use of databases, particularly relational
databases, the need to store more complex data types has increased sharply. This

is especially true for databases that support websites that render images and formatted
documents as well as sound and video clips. Furthermore, as the use of object
programming languages such as C++ and Java has grown, so has the need to store the
objects that these languages manipulate. (Objects were briefly introduced in Chapter 1.)
In this chapter, we’ll look at a number of ways to integrate such content into databases.

Learn the Basics of XML
The Extensible Markup Language (XML) is a general-purpose markup language used to
describe data in a format that is convenient for display on web pages and for exchanging
data between different parties. In 2003, the specifications for storing XML data in SQL
(relational) databases were added to the ANSI/ISO SQL Standard as Part 14, named
SQL/XML. Part 14 was expanded further in 2006.

NOTE
SQL/XML is not at all the same as Microsoft’s SQLXML, which is a proprietary
technology used in SQL Server. As you can imagine, the unfortunately similar names
have caused much confusion. Microsoft participated in the standards proceedings for
SQL/XML but then chose not to implement it.

To understand SQL/XML, you must first understand the basics of XML. While a
complete explanation of XML is well beyond the scope of this book, I’ll provide a brief
overview. You can find a lot more information by searching on the Internet.

You may already be familiar with HTML, the markup language used to define web
pages. If so, the syntax of XML will look familiar. This is because both are based on the
Standard Generalized Markup Language (SGML), which itself is based on Generalized

 Chapter 13: Integrating XML Documents and Objects into Databases 373

Markup Language (GML), developed by IBM in the 1960s. A markup language is a set
of annotations, often called tags, that are used to describe how text is to be structured,
formatted, or laid out. The tagged text is intended to be human-readable. One of the
fundamental differences between HTML and XML is that HTML provides a predefined
set of tags, while XML allows the author to create his or her own tags.

Let’s look at a sample XML document that contains the results of an SQL query.
Figure 13-1 shows a DEPARTMENT table containing two departments and a COURSE
table containing five educational courses offered by those departments. As you learned in
Chapter 4, the two tables can be easily joined using an SQL SELECT statement like
this one:

SELECT a.DEPT_NAME, b.COURSE_TITLE, b.COURSE_ID
 FROM DEPARTMENT a JOIN COURSE b
 ON a.DEPT_ID = b.DEPT_ID
 ORDER BY a.DEPT_NAME, b.COURSE_TITLE;

Note that I used the ORDER BY clause to specify the order of the rows in the result
set. The query results should look something like this:

DEPT_NAME COURSE_TITLE COURSE_ID
---------------------- -------------------------------- ---------
Business Accounting 101 101
Business Concepts of Marketing 102
Information Technology C Programming I 401
Information Technology C Programming II 402
Information Technology Introduction to Computer Systems 400

The query results are well suited for display or printing, but they are not in a form that
would be easy to display on a web page or to pass to another computer application for

COURSE_ID

102

401

400

402

COURSE_TITLE

101

Concepts of Marketing

Introduction to Computer Systems

Accounting 101

C Programming II

C Programming I

DEPT_ID

BUS

IT

IT

IT

BUS

Information Technology

Business

DEPT_ID DEPT_NAME

BUS

IT

COURSEDEPARTMENT

Figure 13-1 The DEPARTMENT and COURSE tables

 374 Databases: A Beginner’s Guide

further processing. One way to make this easier is to convert the query results into XML,
as shown here:

<departments>
 <department name="Business">
 <courses>
 <course title="Accounting 101"><id>101</id></course>
 <course title ="Concepts of Marketing">
 <id>102</id></course>
 </courses>
 </department>
 <department name="Information Technology">
 <courses>
 <course title="C Programming I"><id>401</id></course>
 <course title="C Programming II"><id>402</id></course>
 <course title="Introduction to Computer Systems">
 <id>400</id></course>
 </courses>
 </department>
 <!-- Additional departments available soon -->
</departments>

As you can see in the code listing, tags are enclosed in angle brackets, and each start tag
has a matching end tag that is identical, except for the slash (/) used in the end tag. (HTML
uses an identical convention; however, HTML is a lot more forgiving if you do something
like omit an end tag.) For example, the tag <departments> starts the list of academic
departments, while the end tag </departments> ends it. Within the list of departments,
the information for each individual department begins with the <department> tag, which
includes a data value for the name attribute, and ends with the </department> tag. It is
customary (and considered a best practice) to name a list using the plural of the tag name
used for each item in the list. Comments can be added using a special tag that begins with
<!-- and ends with -->, as shown in the next to last line of the example.

Data items and values, such as those that would be stored in a relational table column,
can be coded as name and value pairs in one of two ways. The first way is using an XML
attribute, by naming the attribute inside another tag, followed by the equal sign and the
data value enclosed in double quotation marks, such as I did with the name and title
attributes. The second way is using an XML element, by creating a separate tag for the
data item with the data value sandwiched between the start and end tags, such as I did
with the id attribute within the course tag. The question of which form to use has been
the subject of much debate among XML developers. However, the general consensus is to
use elements whenever the data item might later be broken down into additional elements,
such as splitting a person’s name into first name and last name, or dividing a single data

 Chapter 13: Integrating XML Documents and Objects into Databases 375

element containing a comma-separated list of prerequisite course names into a list of
elements. An additional consideration is whether you want to allow the XML processor to
ignore insignificant whitespace, as it would do for attributes, but not for elements.

You likely noticed that, unlike the SQL result set, XML can show the hierarchy of
the data. In this case, the list of courses offered by each department is nested within
the information about the department. I have indented the XML statements to make the
nesting more obvious. And while indentation of nested tags is a best practice, it is not
significant, because whitespace between tags is ignored when the XML is processed.

XML coding can be quite tedious. Fortunately, tools are available to help you convert
between XML and plain text, and SQL/XML functions (covered later in this chapter) to
convert relational database data into XML. For a time, specialized databases for storing
and retrieving XML were gaining popularity, but the major relational database vendors
added features to permit native XML to be stored directly in their databases. At the same
time, the SQL standard was expanded to include provisions for XML data, as I discuss in
the next section of this chapter.

Q: Is there a standard for the XML language itself?

A: While ISO does not currently publish a standard for XML, ISO 8879 provides a standard
for SGML, and XML is based on SGML. More importantly, the World Wide Web
Consortium (W3C) publishes XML specifications that make up the standard that is
generally accepted throughout the IT industry.

Q: You mentioned that XML is a convenient way for different parties to exchange
information. Does that mean that two companies can freely exchange data without
having to create elaborate interface software so long as they both use XML?

A: Well, not exactly. XML provides only a standard way to format the data. For one company
to correctly interpret the XML data that another company has sent them, the receiving
company must know the names and definitions of the tags the sending company formatted
for them, particularly the elements and attributes that contain the data. Fortunately, a
number of industry standards can help. For example, HR/XML provides a standard
for exchanging human resources (HR) data, so that a company can, for example, send
employee data to a vendor that provides medical insurance for those employees. In some
industries, XML is beginning to replace an older standard known as EDI (Electronic Data
Interchange).

Ask the Expert

 376 Databases: A Beginner’s Guide

Learn About SQL/XML
As mentioned, XML is commonly used to represent data on web pages, and that data
often comes from relational databases. However, as you have seen, the two models in
use are quite different, in that relational data is stored in tables where neither hierarchy
nor sequence have any significance, while XML is based on hierarchical trees in which
order is considered significant. The term forest is often used to refer to a collection of
XML tree structures. XML is used for web pages because its structure so closely matches
the structure that would be used to display the same data in HTML. In fact, many web
pages are a mixture of HTML for the static portions and XML for the dynamic data.
It is perhaps this widespread implementation that has led many of the major vendors,
including Oracle, Microsoft, and IBM, to support XML extensions. However, only
Oracle and IBM’s DB2 UDB support the SQL/XML commands covered in this topic—
the Microsoft SQL Server XML extension is markedly different, and I have not included
it in this book because it is proprietary.

SQL/XML can be divided into three main parts: the XML data type, SQL/XML
functions, and SQL/XML mapping rules. I cover each of these as the major topics in the
remainder of this chapter.

The XML Data Type
The XML data type is handled in the same general way as all the other data types discussed
in Chapter 2. Storing data in XML format directly in the database is not the only way to
use SQL and XML together. However, it is a very simple way to get started, because it is a
logical extension of the earliest implementations where SQL developers simply stored the
XML text in a column defined with a general character data type such as CHARACTER
VARYING (VARCHAR). It is far better to tell the DBMS that the column contains XML,
and the particular way the XML is coded, so that the DBMS can provide additional features
tailored to the XML format.

The specification for the XML data type has this general format:

XML (<type modifier> {(<secondary type modifier>)})

The type modifier is required and must be enclosed in a pair of parentheses as shown,
while the secondary type modifier is optional, and in fact is not supported for all type
modifiers. The standard is not specific about how a particular SQL implementation should
treat the various types, but some conventions and syntax rules are specified. The valid
type modifiers are as follows:

 Chapter 13: Integrating XML Documents and Objects into Databases 377

● DOCUMENT The DOCUMENT type is intended for storage of text documents
formatted using XML. In general, the data values are expected to be composed of
human-readable characters such as letters, numbers, and symbols as they would
appear in an unstructured text document.

● CONTENT The CONTENT type is intended for more complex data that can include
binary data such as images and sound clips.

● SEQUENCE The SEQUENCE type is intended for XQuery documents, which are
often called XQuery sequences. XQuery is an advanced topic that is beyond the scope
of this book.

The secondary type modifier, used only with the DOCUMENT and CONTENT
primary type modifiers, can have one of these values:

● UNTYPED The XML data is not of a particular type.

● ANY The XML data is of any of the types supported by the SQL implementation.

● XMLSCHEMA The XMLSCHEMA type refers to a registered XML schema that
has been made known to the database server. The three most common are shown in the
following table:

Common Prefix Target Namespace URI (Uniform Resource Identifier)
Xs www.w3.org/2001/XMLSchema

Xsi www.w3.org/2001/XMLSchema-instance

Sqlxml standards.iso.org/iso/9075/2003/sqlxml

For SQL implementations that do not support the secondary type modifier, ANY is
assumed as a default.

NOTE
Because SQL/XML is a relatively new standard, vendor implementation support varies.
Oracle supports a XMLType data type instead of the XML type, but it applies at the table
level so that the entire table is stored as XML. IBM’s DB2 UDB supports an XML type,
but without the type modifiers. As mentioned, Microsoft SQL Server supports XML and
an XML data type, but in a manner a bit different from the SQL/XML standard. As of
version 5.0, MySQL provides no support for XML, but it is expected to be included in a
future release.

Suppose we want to add the course syllabus to our course table that can be displayed
on a web page. If the syllabus could come from several different sources, and thus be

 378 Databases: A Beginner’s Guide

formatted differently depending on the source, XML might be a good way to store the data
in our course table. In the following example, I have added the column to the definition of
the COURSE table that appears in Figure 13-1:

CREATE TABLE COURSE
(COURSE_ID INT,
 COURSE_TITLE VARCHAR(60),
 DEPT_ID CHAR(3),
 COURSE_SYLLABUS XML(DOCUMENT(UNTYPED)));

NOTE
Although the ISO/ANSI SQL Standard specifies an XML data type in the form shown
here, no major SQL implementations seem to support this syntax. However, the standard
is quite new, so hopefully this syntax will be supported in the near future.

SQL/XML Functions
An SQL/XML function (also called an XML value function) is simply a function that
returns a value as an XML type. For example, a query can be written that selects non-
XML data (that is, data stored in data types other than XML) and formats the query results
into XML suitable for inclusion in an XML document that can be displayed on a web page
or transmitted to some other party. In other words, SQL/XML does not always format
complete documents—sometimes additional elements must be added to wrap the XML
returned by the DBMS into a complete document. Table 13-1 shows the basic SQL/XML
functions.

More functions exist than are listed here, and all these SQL/XML functions can be
used in combinations to form extremely powerful (if not complicated) queries. Also, the
functions available vary across SQL implementations. Let’s look at a simple example to
clarify how these functions can be used. This example lists the courses for the Business
department using the DEPARTMENT and COURSE tables shown in Figure 13-1. Here is
the SQL statement, using the XMLELEMENT and XMLFOREST functions:

SELECT XMLELEMENT("DepartmentCourse",
 XMLFOREST(a.DEPT_NAME as Department, a.DEPT_ID, b.COURSE_ID,
 b.COURSE_TITLE))
 FROM DEPARTMENT a JOIN COURSE b
 ON a.DEPT_ID = b.DEPT_ID
 WHERE a.DEPT_ID = 'BUS'
 ORDER BY b.COURSE_ID;

 Chapter 13: Integrating XML Documents and Objects into Databases 379

The results returned should look something like this:

<DepartmentCourse>
 <Department>Business</Department>
 <DEPT_ID>BUS</DEPT_ID>
 <COURSE_ID>101</COURSE_ID>
 <COURSE_TITLE>Accounting 101</COURSE_TITLE>
</DepartmentCourse>
<DepartmentCourse>
 <Department>Business</Department>
 <DEPT_ID>BUS</DEPT_ID>
 <COURSE_ID>102</COURSE_ID>
 <COURSE_TITLE>Concepts of Marketing</COURSE_TITLE>
</DepartmentCourse>

Notice that the XML element names are taken from the column names, in uppercase
with underscores as is customary in SQL. However, using the column alias, as I did for
the DEPT_NAME column, you can change the column names to just about anything you
want. Keep in mind that the result set is not necessarily a complete document (an XML

Function Value Returned
XMLAGG A single XML value containing an XML forest formed by combining (aggregating)

a collection of rows that each contain a single XML value

XMLATTRIBUTES An attribute in the form name=value within an XMLELEMENT

XMLCOMMENT An XML comment

XMLCONCAT A concatenated list of XML values, creating a single value containing an XML
forest

XMLDOCUMENT An XML value containing a single document node

XMLELEMENT An XML element, which can be a child of a document node, with the name
specified in the name parameter

XMLFOREST An XML element containing a sequence of XML elements formed from table
columns, using the name of each column as the corresponding element name

XMLPARSE An XML value formed by parsing the supplied string without validating it

XMLPI An XML value containing an XML processing instruction

XMLQUERY The result of an XQuery expression (XQuery is a sublanguage used to search XML
stored in the database; it is beyond the scope of this book)

XMLTEXT An XML value containing a single XML text node, which can be a child of a
document node

XMLVALIDATE An XML sequence that is the result of validating an XML value

Table 13-1 SQL/XML Functions

 380 Databases: A Beginner’s Guide

developer would say the XML may not be “well formed”). To turn the XML in the last
example into a complete document, at the very least a root element is needed, along with
its corresponding end tag. If we were to add the element <DepartmentCourses> at the
beginning of the results and </DepartmentCourses> at the end of the results, we would
have a well-formed document.

SQL/XML Mapping Rule
Thus far I have not discussed how SQL values are translated and represented as XML
values and vice versa. The SQL standard describes in detail how SQL values can be
mapped to and from XML values. This topic contains an overview of the SQL/XML
mapping rules.

Mappings from SQL to XML
The mappings in this topic apply to translating data in SQL data types to XML.

Mapping SQL Character Sets to Unicode Unicode is an industry standard that
allows computer systems to consistently represent (encode) text characters expressed in
most of the world’s written languages. XML is often encoded as Unicode characters to
allow for text in multiple languages. SQL character data is stored in whatever character set
is specified when the table or database is created, and while most SQL implementations
support Unicode, many other character sets can also be used. The SQL standard requires
that each character in an SQL character set have a mapping to an equivalent Unicode
character.

Mapping SQL Identifiers to XML Names It is necessary to define a mapping of
SQL identifiers, such as table and column names, to XML names, because not all SQL
identifiers are acceptable XML names. Characters that are not valid in XML names are
converted to a sequence of hexadecimal digits derived from the Unicode encoding of
the character, bracketed by an introductory underscore and lowercase x and a trailing
underscore. For example, a colon (:) in an SQL identifier might be translated to _x003A_
in an XML name.

Mapping SQL Data Types to XML Schema Data Types This is perhaps the
most complicated of the mapping forms. For each SQL type or domain, the SQL
implementation is required to provide a mapping to the appropriate XML schema type.
Detailed mapping of standard SQL types to XML schema data types is provided in the
standard in exhaustive detail. I summarize them in Table 13-2.

 Chapter 13: Integrating XML Documents and Objects into Databases 381

Table 13-2 Mapping of SQL Data Types to XML Schema Types

SQL Type XML Schema Type Notes
CHARACTER,
CHARACTER VARYING,
CHARACTER LARGE OBJECT

xs:string The XML facet xs:length is used to specify
length for fixed length strings. (A facet is an
element used to define a property of another
element.)

NUMERIC
DECIMAL

xs:decimal Precision and scale are specified using XML
facets xs:precision and xs:scale.

INTEGER
SMALLINT
BIGINT

xs:integer This mapping is listed as implementation-
defined, meaning it is optional.

FLOAT
REAL
DOUBLE PRECISION

xs:float, xs:double For precisions up to 24 binary digits (bits) and
an exponent between –149 and 104 inclusive,
xs:float is used; otherwise xs:double is used.

BOOLEAN xs:Boolean

DATE xs:date The xs:pattern facet is used to exclude the use
of a time zone displacement.

TIME WITH TIME ZONE
TIME WITHOUT TIME ZONE

xs:time The xs:pattern facet is used to exclude or
specify the time zone displacement, as
appropriate.

TIMESTAMP WITH TIME
ZONE; TIMESTAMP
WITHOUT TIME ZONE

xs:dateTime The xs:pattern facet is used to exclude or
specify the time zone displacement, as
appropriate.

Interval types xdt:
yearMonthDuration,
xdt:dayTimeDuration

Row type XML schema complex
type

The XML document contains one element for
each field of the SQL row type.

Domain XML schema data
type

The domain’s data type is mapped to XML
with an annotation that identifies the name of
the domain.

SQL distinct type XML schema simple
type

SQL collection type XML schema complex
type

The complex type has a single element
named element.

XML type XML schema complex
type

 382 Databases: A Beginner’s Guide

Mapping Values of SQL Data Types to Values of XML Schema Data Types For
each SQL type or domain, with the exception of structured types and reference types, is a
mapping of values for the type to the value space of the corresponding XML schema type.
Null values are representing either using absence (skipping the element) or using the facet
xsi:nil="true" to explicitly set the null value.

Mapping an SQL Table to an XML Document and an XML Schema
Document The SQL standard defines a mapping of an SQL table to one or both of two
documents: an XML schema document that describes the structure of the mapped XML,
and either an XML document or a sequence of XML elements. This mapping applies only
to base tables and viewed tables, and only columns visible to the database user can be
mapped. The implementation may provide options for the following:

● Whether to map the table to a sequence of XML elements or as an XML document
with a single root name derived from the table name

● The target namespace of the XML schema to be mapped

● Whether to map null values as absent elements or elements marked with facet
xsi:nil="true"

● Whether to map the table into XML data, an XML schema document, or both

Mapping an SQL Schema to an XML Document and an XML Schema
Document The SQL standard defines the mapping between the tables of an SQL
schema and either an XML document that represents the data in the tables, an XML
schema document, or both. Only tables and columns visible to the database user can be
mapped. The implementation may provide options for the following:

● Whether to map each table as a sequence of XML elements or as an XML document
with a single root name derived from the table name

● The target namespace of the XML schema to be mapped

● Whether to map null values as absent elements or elements marked with facet
xsi:nil="true"

● Whether to map the schema into XML data, an XML schema document, or both

Mapping an SQL Catalog to an XML Document and an XML Schema
Document The SQL standard defines the mapping between the tables of an SQL
catalog and either an XML document that represents the data in the catalog’s tables
or an XML schema document, or both. However, this part of the standard specifies no

 Chapter 13: Integrating XML Documents and Objects into Databases 383

Try This 13-1

syntax for invoking such mapping because it is intended to be used by applications or
referenced by other standards. Only schemas visible to the SQL user can be mapped. The
implementation may provide options for the following:

● Whether to map each table as a sequence of XML elements or as an XML document
with a single root name derived from the table name

● The target namespace of the XML schema and data to be mapped

● Whether to map null values as absent elements or elements marked with facet
xsi:nil="true"

● Whether to map the catalog into XML data, an XML schema document, or both

Mappings from XML to SQL This topic contains two mappings from XML back to SQL.

Mapping Unicode to SQL Character Sets As with the mapping of SQL character
sets to Unicode, the SQL standard requires that there be an implementation-defined
mapping of Unicode characters to the characters in each SQL character set supported by
the SQL implementation.

Mapping XML Names to SQL Identifiers This is the reverse of the mapping of SQL
identifiers to XML names, where characters that were converted because they were not
valid in XML names are converted back to their original form. So, if a colon in an SQL
identifier was converted to _x003A_ when translating the SQL identifier into XML, it
would be converted back into a colon when the process was reversed. The SQL standard
further recommends that the SQL implementation use a single algorithm for translation in
both directions.

 Using SQL/XML Functions
In this Try This exercise, you will use XML functions to select XML formatted data
from the Oracle HR sample schema used in Chapter 4. Obviously, if you chose to use a
different RDBMS, your SQL implementation has to provide XML support in order for
you to complete the exercise, and, as usual, you may have to modify the code included
in this exercise to run it on your DBMS. As of this writing, Oracle and DB2 UDB are the
only other DBMSs that support SQL/XML. For SQL Server, some recoding is required to
use the Microsoft proprietary FOR XML clause instead of the SQL/XML functions. You
can download the Try_This_13.txt file from the website (details in Appendix B), which
contains not only the SQL statement used in this Try This exercise (with an alternative

(continued)

 384 Databases: A Beginner’s Guide

statement for use with SQL Server), but also the statements required to create the
EMPLOYEES table and populate it with the data required for this exercise (in case you
are not using the Oracle HR sample schema).

Step by Step
 1. Open the client application for your RDBMS.

 2. If you are not using an Oracle database that already has the HR sample schema
installed, do the following to create a schema with the EMPLOYEES table and data
needed to complete this exercise:

 a. If you are using Oracle, create a user named HR (this will create a schema with the
same name). Consult Oracle documentation if you don’t know how to do this. Note
that many of the GUI client tools such as SQL Developer have functions built in
for creating new users.

 b. If you are using SQL Server or DB2, create a database called HR. (In these
products, a database is the logical equivalent of a schema in Oracle.) Consult
vendor documentation if you need help with this step.

 c. Connect to the schema (or database) that you just created. Many of the GUI tools
provide a simple drop-down menu of available schemas for this purpose.

 d. Copy and paste the CREATE TABLE statement and the three INSERT statements
from the Try_This_13.txt file into your SQL client and run them as a script.

 3. If you have not already done so, connect to the HR schema (Oracle) or database (SQL
Server, DB2, and others).

 4. You are going to create an SQL query that uses three SQL/XML functions to
format XML that contains an element for each employee of Department 90 in the
EMPLOYEES table. Each element will include the ID of the employee, followed
by separate elements containing the first name, last name, and phone number of the
employee. Enter and execute the following statement (or copy and paste if from the
Try_This_13.txt file). For SQL Server, the Try_This_13.txt file contains an alternative
version that includes the Microsoft proprietary FOR XML clause.

SELECT XMLELEMENT("Employee",
 XMLATTRIBUTES(EMPLOYEE_ID AS ID),
 XMLFOREST(FIRST_NAME AS "FirstName",
 LAST_NAME AS "LastName",
 PHONE_NUMBER AS "Phone"))

 Chapter 13: Integrating XML Documents and Objects into Databases 385

 FROM EMPLOYEES
 WHERE DEPARTMENT_ID = 90
 ORDER BY EMPLOYEE_ID;

 5. The output produced should look something like the following. Note that the XML for
each employee is output as a single line in the result set—I added the line breaks and
indentation to make the results more understandable.

<Employee ID="100">
 <FirstName>Steven</FirstName>
 <LastName>King</LastName>
 <Phone>515.123.4567</Phone>
 </Employee>
<Employee ID="101">
 <FirstName>Neena</FirstName>
 <LastName>Kochhar</LastName>
 <Phone>515.123.4568</Phone>
 </Employee>
 <Employee ID="102">
 <FirstName>Lex</FirstName>
 <LastName>De Haan</LastName>
 <Phone>515.123.4569</Phone>
 </Employee>

 6. Close the client application.

Try This Summary
In this Try This exercise, the SQL SELECT statement used three SQL/XML functions to
format data from the EMPLOYEES table into XML. The XMLELEMENT function was
used to create an element for each Employee. The XMLATTRIBUTES function was used
to include the EMPLOYEE_ID value with the name ID as a value within the Employee
element. Finally, the XMLFOREST function was used to create elements for the FIRST_
NAME, LAST_NAME, and PHONE_NUMBER columns.

Object-Oriented Applications
This section assumes that you have read and understood the section “The Object-Oriented
Model” in Chapter 1. You may want to review it before continuing.

Object-oriented (OO) applications are written in an object-oriented programming
language. These OO languages usually come with a predefined object class structure

 386 Databases: A Beginner’s Guide

and predefined methods—but, of course, the developers can create their own classes
and methods. Some come with a complete development environment that includes not
only the language elements, but also an integrated OO database. It is important for you
to understand that OO applications can be created without an OO database, and an OO
database can exist (at least in theory) without an OO application to access it.

Object-Oriented Programming
Object-oriented programming uses messages as the vehicle for object interaction. A
message in the OO context is composed of the identifier of the object that is to receive the
message, the name of the method to be invoked by the receiving object, and, optionally,
one or more parameters. You will recall from Chapter 1 that a method is a piece of
application program logic that operates on a particular object and provides a finite
function. The notion that all access to an object’s variables is done via its methods is
essential to the OO paradigm. Therefore, OO programming involves writing methods that
encompass the behavior of the object (that is, what the object does) and crafting messages
within those methods whenever an object must interact with other objects. OO application
development includes object and class design in addition to the aforementioned
programming tasks.

The OO paradigm also supports complex objects, which are objects composed
of one or more other objects. Usually, this is implemented using an object reference,
where one object contains the identifier for one or more other objects. For example, a
Customer object might contain a list of Order objects that the customer has placed, and
each Order object might contain the identifier of the customer who placed the order. The
unique identifier for an object is called the object identifier (OID), the value of which
is automatically assigned to each object as it is created and is then invariant (that is, the
value never changes).

Object-Oriented Languages
Let’s have a look at three of the most popular OO programming languages: Smalltalk,
C++, and Java.

Smalltalk
The pioneering OO system was Smalltalk, developed in 1972 by the Software Concepts
Group at the Xerox Palo Alto Research Center (PARC), led by Alan Kay. It was Kay
who coined the term “object-oriented.” Smalltalk includes a language, a programming
environment, an “image file system” to store objects and methods (more or less a
database), and an extensive object library. Smalltalk’s innovations include a bitmap

 Chapter 13: Integrating XML Documents and Objects into Databases 387

display, a windowing system, and the use of a mouse. In an interesting twist of history,
Xerox funded and owned the first commercial OO programming environment, the original
windowing system, the mouse, and many other technical computing innovations. Yet,
Xerox never figured out how to market any of them, so the company’s innovations fell
into other hands over time and were eventually “introduced” into the market by other
companies. Although not nearly as popular as it once was, Smalltalk is still around today,
and you can find much more about it at www.smalltalk.org.

C++
As the name suggests, C++ is based on the C programming language. In fact, ++ is the
operator in C that increments a variable by 1, so C++ literally means “C plus 1.” This
superset of C was developed primarily by Bjarne Stroustrup at AT&T Bell Laboratories
in 1986. Classes are implemented as user-defined types—a struct (structure) in C syntax.
Methods are implemented as member functions of a struct. Object purists frown upon
C++, claiming it’s not an OO language because programmers can ignore the object
paradigm when they choose to and do such things as manipulating data directly using
C language commands. C++ aficionados, on the other hand, see this as a huge benefit
because it gives them a great deal of flexibility.

Java
Java is a simple, portable, general-purpose OO language that was developed by Sun
Microsystems around 1995. It took the market by storm immediately after its introduction,
largely because of its support for Internet programming in the form of platform-independent
“applets.” Another advantage of Java is that it can run on very small computers due to the
small size of its interpreter. Unlike Smalltalk and C++, Java is an interpretive language,
which means that each statement is evaluated at runtime instead of being compiled ahead of
time. A compiler is a program that converts a computer program from the source language
the programmer used to write it to the machine language of the computer on which it is to
be run. Initially, the interpreter hampered performance compared with compiled languages,
but recent innovations, such as just-in-time compilers, which compile statements just prior to
their execution, have helped enormously.

Object Persistence
Persistence is the OO property that preserves the state of an object between executions of
an application and across the shutdown and startup of the computer system itself. In most
cases, a database is used to store objects permanently, so it is the database that implements
persistence. Objects must be loaded into memory for an application to access them, and
any changes must be saved back to persistent storage when they are no longer required.

 388 Databases: A Beginner’s Guide

Object loading into memory is an indirect process, which means the application does not
specifically request that an object be loaded—the application environment works with
the database environment to load objects into memory automatically whenever they are
accessed by an application. This access is usually in the form of a message that is sent
to the object, but, as discussed in the next subsection, it may also occur when an object
contains a reference to another object.

Let’s look at two methods for implementing object persistence using a database—the
OO database and the relational database. In the next section, we explore a hybrid approach
that combines features of both object-oriented and relational databases.

Persistence Using an OO Database
Figure 13-2 shows the retrieval of an object from persistent storage in an OO database.
For the purposes of illustration, the specific components that execute each of the
illustrated steps have been omitted, thereby showing what happens without worrying
about how it happens. This is actually a very good way to think about OO databases,

A3

Object-
oriented
DBMS

(OODBMS)

A2 A1

A3
C1

B1

Active Object (in memory)

Object Reference (active in memory)

Message

Object-oriented (OO) Database

Persistent (permanently stored) Object

Object Reference (stored with object)

Application Environment

C1

B1

A2 A1
2. Object
references
“swizzled”

3. Object
made

available to
application
environment

Database Environment

1. Referenced
object

retrieved from
storage by the

OODBMS

Figure 13-2 Persistence using an OO database

 Chapter 13: Integrating XML Documents and Objects into Databases 389

because a common property of OO systems is to hide implementation details. As shown
in Figure 13-2, the database contains persistent copies of objects A1, A2, A3, B1, and C1.
Assume that the first letter denotes the object class to which the objects belong. Note that
object B1 references object C1 as illustrated, using a broken line to connect them. This is
a typical arrangement in which one object, such as an order, contains the object ID (OID)
of a related object, such as the customer who placed the order. In an equivalent relational
database, this relationship would be implemented using a foreign key in the order.

As shown in Figure 13-2, the sequence of events that takes place when an object is
first referenced by the application is as follows:

 1. A request to retrieve the object is sent to the OO database, typically because a message
in the application environment referenced the object. The OODBMS retrieves the
object from persistent storage and passes it to the application environment. If the object
contains references to other objects, the OODBMS may also automatically retrieve
those objects, depending on the architecture of the OODBMS.

 2. If an object contains references to other objects, those references must be changed into
memory addresses when the objects are loaded into memory. This process is known as
swizzling the references. (The origin of the term swizzle is unknown, but it may have
been derived from swizzle sticks that are used to stir drinks.) In persistent storage, the
OID can be used as the reference because other storage structures similar to indexes
can be used by the OODBMS to locate the related objects. For example, object B1
contains the OID of object C1, and the OODBMS has no difficulty using the OID to
locate the related object in the database’s persistent storage. However, the OID is of
little use in locating the related object once the objects are loaded into memory because
objects are loaded into any available memory location, which means there is no simple
way to know the locations they occupy. Therefore, the OID is translated (swizzled) into
the actual address that the related object occupies in memory to allow direct access of
the related object in memory. The original OID is retained within the object because it
will be needed when the object is stored back into the database.

 3. The object is made available to the application environment. That is, it is placed in a
memory location, and any messages addressed to the object are routed to it. Usually,
this also involves registering the object with the application environment so it can
easily be found in memory the next time it is referenced.

The reverse process of storing an object back into the OO database when the application
no longer needs to access it is exactly that—a reverse of the original process. The conditions
that trigger moving the object back to persistent storage vary from one OODBMS to another

 390 Databases: A Beginner’s Guide

but typically involve a least recently used (LRU) algorithm. The LRU algorithm is a process
that is invoked when space must be freed up for the loading of more objects into memory
locations. The algorithm finds the objects that were accessed the longest time ago (that
is, least recently), and it removes those objects from memory. And, of course, a request to
shut down the database requires that every object in memory be made persistent before the
database is shut down. The sequence of events to move an object from memory to persistent
storage is as follows:

 1. The object is removed from its memory location, and any registration of the object in
the application environment is deleted.

 2. Any memory addresses added to the object when references were swizzled are
removed.

 3. If the object was modified while it was in memory, it is sent back to the OODBMS,
which stores the new version.

Persistence Using a Relational Database
When the object data is stored in a relational database, some important differences are
the result. First, everything in a relational database must be stored in a table. Therefore,
objects must be translated to and from relational tables. Typically, each class is stored in a
different relational table, with the rows in the tables representing object instances for the
corresponding classes. Second, relational tables cannot store objects in their native format,
because objects are composed of methods and a class hierarchy along with the data itself.
The methods and class hierarchy are usually not stored in the relational database at all,
but rather are maintained in a file system location (directory) that is managed by the
application environment. Figure 13-3 illustrates this arrangement.

Take note of the differences between Figures 13-2 and 13-3. First, in the latter
figure, the object data is stored in the database in tables. Second, an additional step is
required when retrieving objects and making them available in memory—the data from
the relational database must be mapped to object classes and variables. This can be
accomplished in many different ways. A common approach with applications written in
Java is to issue the relational SQL directly from a Java method using a Java Database
Connectivity (JDBC) driver (introduced in Chapter 9), and within the same method, to
relate the results returned by the JDBC driver to one or more objects. This is a manual
and very labor-intensive approach for Java programmers. Fortunately, more automated
solutions are available, wherein an application server or middleware product handles
all the details of persistently storing objects in the relational database, including the
translation between relational tables and objects. Figure 13-3 has been simplified to

 Chapter 13: Integrating XML Documents and Objects into Databases 391

show the steps required to assemble an object stored in a relational database and make
it available in the application environment without any details as to which components
handle the various steps.

As illustrated in Figure 13-3, here is the sequence of events required to assemble an
object from data stored in a relational database:

 1. An SQL query is sent to the RDBMS to retrieve the table data (typically one row) from
the database. The query is executed by the RDBMS and the resultant data sent to the
application environment.

 2. The table data is mapped to the object. Typically, this involves assigning the table
data to a class and the individual columns to variables within that class, along with
retrieving the methods defined for the class from wherever they are stored in the file
system. This mapping step is the proverbial Achilles heel of this architecture—it is
expensive in terms of resources, and it requires design compromises because object
data cannot always be perfectly represented in relational database tables.

3. Object
references
“swizzled”

A3

Relational
DBMS

Active Object (in memory)

Object Reference (active in memory)

Message

Table A

Table B

Table C

Relational Database

Tables hold all data

Application Environment

C1

B1

A2 A1

2. Table data
mapped to
object(s)

4. Object
made

available to
application
environment

Database Environment

1. Table data
retrieved from

database

Figure 13-3 Persistence using a relational database

 392 Databases: A Beginner’s Guide

 3. As with Figure 13-2, any object references are swizzled.

 4. As with Figure 13-2, the object is placed in a memory location and registered with the
application environment, making it available to the application.

When an object is no longer needed in memory, it must be placed back into persistent
storage. The sequence of events is as follows:

 1. The object is removed from memory, and any registration with the application
environment deleted. If the object was not modified while it was in memory, no other
action is necessary; otherwise the sequence continues with the next step.

 2. Any memory addresses added for object references are removed.

 3. The data in the object is mapped back to the relational table row(s) from which it came.
One or more SQL statements (INSERT, UPDATE, or DELETE) are formed to change
the relational database data to match the object data. For efficiency, this often involves
comparing before and after versions of the object (if available) so that only variables
that changed in some way need to be referenced in the generated SQL statement(s).
There is no need to do anything with the class structure or methods because they do
not change when the object is used in the application environment. These components
change only when a new version of the application is installed.

 4. The SQL statement(s) is (are) passed to the relational DBMS to be processed. If the
object was not changed while it was in memory, this step is not required.

Object-Relational Databases
This section assumes you have read and understood the section “The Object-Relational
Model” in Chapter 1. You may wish to review it before continuing. The object-relational
DBMS (ORDBMS) evolved in response to the difficulties of mapping objects to relational
databases and to market pressure from OODBMS vendors. Relational database vendors,
such as Informix (subsequently acquired by IBM) and Oracle, added object extensions
in hopes of preventing any loss of market share to the OODBMS vendors. To a large
degree, this tactic appears to have worked, with pure OO databases gaining ground only
in niche markets. Moreover, the lack of ad-hoc query capability in pure OO databases has
certainly not helped it in the marketplace. The ORDBMS provides a blend of desirable
features from the object world, such as the storage of complex data types, with the relative
simplicity and ease of use of the relational model. Most industry experts believe that
object-relational technology will continue to gain market share.

 Chapter 13: Integrating XML Documents and Objects into Databases 393

The advantages of an object-relational database are as follows:

● Complex data types (that is, data types formed by combining other data types) are
directly supported while preserving ad-hoc query capability.

● The DBMS may be extended to perform common functions (methods) centrally,
which improves program logic reuse compared with a pure relational DBMS.

● Storing object functions (methods) in the database makes them available to all
applications, which improves object sharing compared with a pure relational DBMS.

● Ad-hoc query capability is fully supported, which is a feature that is not supported in
pure OO databases.

Here are the disadvantages of the object-relational approach:

● The combination is more complex than either pure relational or pure OO databases,
leading to increased development costs.

● Objects are table-centric, meaning that all persistent objects must be stored within a table.

● Relational purists argue that the essential simplicity of the relational model is clouded
by the object extensions.

● Object purists are not attracted to the extension of objects into relational databases,
arguing that the ORDBMS is little more than a relational database with user-defined
data types added.

● Current ORDBMSs lack the class structure and inheritance that are at the foundation
of OODBMSs.

● Object applications are not as data-centric as relational applications, and therefore
pure OO databases may better serve the needs of object applications.

In terms of deciding which database model is the best fit for a given application,
consider the following points:

● Simple data with no requirement for ad-hoc query capability, such as static web pages,
can be adequately stored in ordinary file system files.

● Simple data that requires ad-hoc query capability, such as customer data, fits well into
a relational database.

● Complex data that does not require ad-hoc query capability, such as images, maps, and
drawings, fits well into an object-oriented database.

● Complex data that requires ad-hoc query capability, such as purchase orders stored as
composite data types, fits well into an object-relational database.

 394 Databases: A Beginner’s Guide

 Chapter 13 Self Test
Choose the correct responses to each of the multiple-choice and fill-in-the-blank
questions. Note that there may be more than one correct response to each question.

 1. XML is ____________.

 2. How do SQL databases and XML documents vary in terms of data structure?

 3. If two organizations are both using XML, does that mean that they have a standard way
of exchanging data without having to create interface software?

 4. The valid secondary type modifiers for the SEQUENCE type modifier are __________.

 5. The ____________ XML schema type is mapped from the SQL NUMERIC data type.

 6. The ____________ XML schema type is mapped from the SQL DATE data type.

 7. The two ways that null values from the database can be represented in SQL/XML are
____________ and ____________.

 8. Which of the following are common uses of XML?

 A Display database data on a web page

 B Create static web pages

 C Transmit database data to another party

 D Enforce business rules on documents

 9. Which of the following are valid type modifiers for the XML data type?

 A DOCUMENT

 B SEQUENCE

 C SQLXML

 D CONTENT

 10. Which of the following SQL/XML functions creates an element based on a table column?

 A XMLQUERY

 B XMLELEMENT

 C XMLFOREST

✓

 Chapter 13: Integrating XML Documents and Objects into Databases 395

 D XMLDOCUMENT

 E XMLPARSE

 11. Object-oriented programming

 A Uses messages as a vehicle for object interaction

 B Allows an object to directly access the variables in a related object

 C Uses methods to define the behavior of an object

 D Requires objects to have a primary key

 E Supports the use of complex objects

 12. Object-oriented (OO) applications

 A Require the use of an OO database

 B Are written in an OO language

 C Use development environments that usually come with predefined classes

 D Use development environments that usually come with predefined methods

 E May be written in the C programming language

 13. Smalltalk

 A Was developed by Linus Torvalds

 B Was developed in 1972

 C Was developed at the Xerox PARC facility

 D Is based on the C programming language

 E Was the first OO programming language to include a windowing system and use of
a mouse

14. C++

 A Was developed by Alan Kay

 B Was developed in 1976

 C Was developed at AT&T Bell Laboratories

 D Is based on the Java programming language

 E Allows programmers to ignore the object paradigm if they wish

 396 Databases: A Beginner’s Guide

 15. Java

 A Was developed by Sun Microsystems

 B May be run only on large systems with lots of memory

 C Was developed around 1995

 D Is an interpretive language

 E Is a general-purpose OO language

 16. Object persistence

 A Preserves the state of an object between executions of an application

 B Preserves the state of an object across the shutdown and startup of the computer
system

 C Loads objects into memory to preserve them permanently

 D Occurs when the application requests that an object be saved

 E Can be accomplished only with an OO database

 17. The events necessary to retrieve an object from an OO database include

 A A message is sent to the object, so the object must be loaded into memory.

 B A request to retrieve the object is sent to the OO database.

 C Object references are swizzled into memory addresses.

 D Relational data is assigned to an object class.

 E The object is made available to the application environment.

 18. The advantages of object-relational databases include

 A Objects are stored within tables.

 B Complex data types are supported.

 C Ad-hoc query capability is fully supported.

 D Class structures and inheritance are fully supported.

 E Centrally stored functions (methods) improve reuse.

 Chapter 13: Integrating XML Documents and Objects into Databases 397

 19. The disadvantages of object-relational databases include

 A The combination is more complex than either pure object-oriented or pure
relational databases.

 B Ad-hoc query capability is limited.

 C Objects are table-centric.

 D Neither relational purists nor object purists are enamored with this combination.

 E Object applications are not as data-centric as relational ones.

 20. When considering the selection of a database model, which of the following facts
should be taken into account?

 A Ordinary file system files can handle simple data, provided there are no ad-hoc
query requirements.

 B Relational databases can handle simple data that has ad-hoc query requirements.

 C Object-oriented databases are best at handling complex data.

 D Object-relational databases can handle complex data that has ad-hoc query
requirements.

 E Object-oriented databases can handle complex data, provided there are no ad-hoc
query requirements.

This page intentionally left blank

Part IV
Appendices

This page intentionally left blank

401401

Appendix A
Answers to Self Tests

 402 Databases: A Beginner’s Guide

Chapter 1: Database Fundamentals
 1. The logical layer of the ANSI/SPARC model provides which of the following?

A. Physical data independence

B. Parent-child relationships

C. Logical data independence

D. Encapsulation

A is the correct answer.

 2. The external layer of the ANSI/SPARC model provides which of the following?

A. Physical data independence

B. Parent-child relationships

C. Logical data independence

D. Encapsulation

C is the correct answer.

 3. Which of the following is not true regarding user views?

A. Application programs reference them.

B. People querying the database reference them.

C. They can be tailored to the needs of the database user.

D. Data updates are shown in a delayed fashion.

D is the correct answer.

 4. The database schema is contained in the ____________ layer of the ANSI/SPARC model.

logical

 5. User views are contained in the ____________ layer of the ANSI/SPARC model.

external

 6. When application programs use flat file systems, where do the file definitions reside?

In the application programs

 7. Which of the following is true regarding the hierarchical database model?

A. It was first developed by Peter Chen.

B. Data and methods are stored together in the database.

 Appendix A: Answers to Self Tests 403

C. Each node may have many parents.

D. Records are connected using physical address pointers.

D is the correct answer.

 8. Which of the following is true regarding the network database model?

A. It was first developed by E.F. Codd.

B. Data and methods are stored together in the database.

C. Each node may have many parents.

D. Records are connected using common physical address pointers.

C and D are correct answers.

 9. Which of the following is true of the relational database model?

A. It was first developed by Charles Bachman.

B. Data and methods are stored together in the database.

C. Records are connected using physical address pointers.

D. Records are connected using common data items in each record.

D is the correct answer.

 10. Which of the following is true regarding the object-oriented model?

A. It was first developed by Charles Bachman.

B. Data and methods are stored together in the database.

C. Data is presented as two-dimensional tables.

D. Records are connected using common data items in each record.

B is the correct answer.

 11. Which of the following is true regarding the object-relational model?

A. It serves only a niche market and most experts believe it will stay that way.

B. Records are connected using physical address pointers.

C. It was developed by adding object-like properties to the relational model.

D. It was developed by adding relational-like properties to the object-oriented model.

C is the correct answer.

 12. According to advocates of the relational model, which of the following describe the problems
with the CODASYL model?

A. It is too mathematical.

B. It is too complicated.

 404 Databases: A Beginner’s Guide

C. Set-oriented queries are too difficult.

D. It has no formal underpinnings in mathematical theory.

B, C, and D are correct answers.

 13. According to advocates of the CODASYL model, which of the following describe the problems
with the relational model?

A. It is too mathematical.

B. Set-oriented queries are too difficult.

C. Application systems need record-at-a-time processing.

D. It is less efficient than CODASYL model databases.

A, C, and D are correct answers.

 14. The ability to add a new object to a database without disrupting existing processes is an
example of ____________.

logical data independence

 15. The property that most distinguishes a relational database table from a spreadsheet is the
ability to present multiple users with their own ____________.

views of the data

Chapter 2: Exploring Relational Database Components
 1. Examples of an entity are

A. A customer

B. A customer order

C. An employee’s paycheck

D. A customer’s name

A, B, and C are correct answers.

 2. Examples of an attribute are

A. An employee

B. An employee’s name

C. An employee’s paycheck

D. An alphabetical listing of employees

B is the correct answer.

 Appendix A: Answers to Self Tests 405

 3. Which of the following denotes the cardinality of “zero, one, or more” on a relationship line?

A. A perpendicular tick mark near the end of the line and a crow’s foot at the line end

B. A circle near the end of the line and a crow’s foot at the end of the line

C. Two perpendicular tick marks near the end of the line

D. A circle and a perpendicular tick mark near the end of the line

B is the correct answer.

 4. Valid types of relationships in a relational database are

A. One-to-many

B. None-to-many

C. Many-to-many

D. One-to-one

A, C, and D are correct answers.

 5. If a product can be manufactured in many plants, and a plant can manufacture many products,
this is an example of which type of relationship?

A. One-to-one

B. One-to-many

C. Many-to-many

D. Recursive

C is the correct answer.

 6. Which of the following are examples of recursive relationships?

A. An organizational unit made up of departments

B. An employee who manages other employees

C. An employee who manages a department

D. An employee who has many dependents

B is the correct answer.

 7. Examples of a business rule are

A. A referential constraint must refer to the primary key of the parent table.

B. An employee must be at least 18 years old.

C. A database query eliminates columns an employee should not see.

D. Employees below pay grade 6 are not permitted to modify orders.

B and D are correct answers.

 406 Databases: A Beginner’s Guide

 8. A relational table

A. Is composed of rows and columns

B. Must be assigned a data type

C. Must be assigned a unique name

D. Is the primary unit of storage in the relational model

A, C, and D are correct answers.

 9. A column in a relational table

A. Must be assigned a data type

B. Must be assigned a unique name within the table

C. Is derived from an entity in the conceptual design

D. Is the smallest named unit of storage in a relational database

A, B, and D are correct answers.

 10. A data type

A. Assists the DBMS in storing data efficiently

B. Provides a set of behaviors for a column that assists the database user

C. May be selected based on business rules for an attribute

D. Restricts characters allowed in a database column

A, B, C, and D are correct answers.

 11. A primary key constraint

A. Must reference one or more columns in a single table

B. Must be defined for every database table

C. Is usually implemented using an index

D. Guarantees that no two rows in a table have duplicate primary key values

A, C, and D are correct answers.

 12. A referential constraint

A. Must have primary key and foreign key columns that have identical names

B. Ensures that a primary key does not have duplicate values in a table

C. Defines a many-to-many relationship between two tables

D. Ensures that a foreign key value always refers to an existing primary key value in the parent table

D is the correct answer.

 Appendix A: Answers to Self Tests 407

 13. A referential constraint is defined

A. Using the Relationships panel in Microsoft Access

B. Using SQL in most relational databases

C. Using the referential data type for the foreign key column(s)

D. Using a database trigger

A and B are correct answers.

 14. Major types of integrity constraints are

A. CHECK constraints

B. One-to-one relationships

C. NOT NULL constraints

D. Constraints enforced with triggers

A, C, and D are correct answers.

 15. ____________ tables are used to resolve many-to-many relationships.

Intersection

 16. An entity in the conceptual design becomes a(n) ____________ in the logical design.

table

 17. An attribute in the conceptual design becomes a(n) ____________ in the logical design.

column

 18. Items in the external level of the ANSI/SPARC model become ____________ in the logical model.

views

 19. A relationship in the conceptual design becomes a(n) ____________ in the logical design.

referential constraint

 20. A primary key constraint is implemented using a(n) ____________ in the logical design.

index

Chapter 3: Forms-based Database Queries
 1. A forms-based query language

A. Was first developed by IBM in the 1980s

B. Describes how a query should be processed rather than what the results should be

C. Resembles SQL

 408 Databases: A Beginner’s Guide

D. Uses a GUI (graphical user interface)

E. Was shown to be clearly superior in controlled studies

D is the correct answer.

 2. The object types in Microsoft Access that relate strictly to database management (as opposed to
application development) are

A. Tables

B. Queries

C. Forms

D. Macros

E. Modules

A and B are correct answers.

 3. When a table is deleted from the Microsoft Access Relationships panel, what happens next?

A. It is immediately deleted from the database.

B. It remains unchanged in the database and is merely removed from the Relationships panel.

C. It remains in the database, but all data rows are deleted.

D. Relationships belonging to the table are also deleted.

B is the correct answer.

 4. Relationships on the Microsoft Access Relationships panel represent ____________ in the database.

referential constraints

 5. A column in the results of a Microsoft Access query can be formed from

A. A table column

B. A query column

C. A constant

D. A calculation

E. All of the above

E is the correct answer.

 6. When a query with no criteria included is executed, the result is

A. An error message

B. No rows being displayed

C. All the rows in the table being displayed

 Appendix A: Answers to Self Tests 409

D. None of the above

C is the correct answer.

 7. When sequencing (sorting) of rows is not included in a database query, the rows returned by the
query are in ____________ order.

no particular

 8. In a query, the search criteria REGION NOT = “CA” OR REGION NOT =“NV” will display

A. An error message

B. All the rows in the table

C. Only the rows in which Region is equal to “CA” or “NV”

D. All the rows in the table except those in which Region is NULL

E. All the rows in the table except those in which the Region is “CA” or “NV”

D is the correct answer.

 9. Criteria on different lines in a Microsoft Access query are connected with the ____________
logical operator.

OR

 10. The join connector between tables in a Microsoft Access query may

A. Be manually created by dragging a column from one table or view to a column of another table or view

B. Be inherited from the metadata defined on the Relationships panel

C. Be altered to define left, right, and full outer joins

D. Cause a Cartesian product if not defined between two tables or views in the query

E. All of the above

E is the correct answer.

 11. When an outer join is used, column data from tables (or views) in which no matching rows were
found will contain ____________.

null values

 12. An aggregate function

A. Combines data from multiple columns together

B. Combines data from multiple rows together

C. May be applied to table columns but not to calculated columns

D. Requires that every column in a query be either an aggregate function or named in the GROUP BY
list for the query

 410 Databases: A Beginner’s Guide

E. All of the above

B and D are correct answers.

 13. Self-joins in a query are a method of resolving a ____________.

recursive relationship

 14. The column name of a calculated column in the query results is ____________ when not
provided in the query definition.

automatically assigned by Microsoft Access

 15. Tables may be joined

A. Using only the primary key in one table and a foreign key in another

B. Using any column in either table (theoretically)

C. Only to themselves

D. Only to other tables

E. Only using the Cartesian product formula

B is the correct answer.

Chapter 4: Introduction to SQL
 1. SQL may be divided into the following subsets:

A. Data Selection Language (DSL)

B. Data Control Language (DCL)

C. Data Query Language (DQL)

D. Data Definition Language (DDL)

B and D are correct answers.

 2. SQL was first developed by ____________.

IBM

 3. A program used to connect to the database and interact with it is called a(n) ____________.

SQL client

 4. A SELECT without a WHERE clause

A. Selects all rows in the source table or view

B. Returns no rows in the result set

C. Results in an error message

 Appendix A: Answers to Self Tests 411

D. Lists only the definition of the table or view

A is the correct answer.

 5. In SQL, row order in query results

A. Is specified using the SORTED BY clause

B. Is unpredictable unless specified in the query

C. Defaults to descending when sequence is not specified

D. May be specified only for columns in the query results

B is the correct answer.

 6. The BETWEEN operator

A. Includes the end-point values

B. Selects rows added to a table during a time interval

C. Can be rewritten using the <= and NOT = operators

D. Can be rewritten using the <= and >= operators

A and D are correct answers.

 7. The LIKE operator uses ____________ as positional wildcards and ____________ as
nonpositional wildcards.

underscores (_), percent signs (%)

 8. A subselect

A. May be corrugated or noncorrugated

B. Allows for the flexible selection of rows

C. Must not be enclosed in parentheses

D. May be used to select values to be applied to WHERE clause conditions

B and D are correct answers.

 9. A join without a WHERE clause or JOIN clause

A. Results in an error message

B. Results in an outer join

C. Results in a Cartesian product

D. Returns no rows in the result set

C is the correct answer.

 10. A join that returns all rows from both tables whether or not matches are found is known as a(n)
____________.

full outer join

 412 Databases: A Beginner’s Guide

 11. A self-join

A. Involves two different tables

B. Can be either an inner or outer join

C. Resolves recursive relationships

D. May use a subselect to further limit returned rows

B, C, and D are all correct responses.

 12. An SQL statement containing an aggregate function

A. Must contain a GROUP BY clause

B. May also include ordinary columns

C. May not include both GROUP BY and ORDER BY clauses

D. May also include calculated columns

B and D are correct answers.

 13. A(n) ____________ causes changes made by a transaction to become permanent.

COMMIT

 14. An INSERT statement

A. Must contain a column list

B. Must contain a VALUES list

C. May create multiple table rows

D. May contain a subquery

C and D are correct answers.

 15. An UPDATE statement without a WHERE clause

A. Results in an error message

B. Updates no rows in a table

C. Updates every row in a table

D. Results in a Cartesian product

C is the correct answer.

 16. A DELETE statement with a column list

A. Results in an error message

B. Deletes data only in the listed columns

C. Deletes every column in the table

 Appendix A: Answers to Self Tests 413

D. Can be used to delete from a view

A is the correct answer.

 17. A CREATE statement

A. Is a form of DML

B. Creates new user privileges

C. Creates a database object

D. May be reversed later using a DROP statement

C and D are correct answers.

 18. An ALTER statement

A. May be used to add a constraint

B. May be used to drop a constraint

C. May be used to add a view

D. May be used to drop a table column

A, B, and D are correct answers.

 19. The ____________ mode causes each SQL statement to commit as soon as it completes.

autocommit

 20. Database privileges

A. May be changed with an ALTER PRIVILEGE statement

B. May be either system or object privileges

C. Are best managed when assembled into groups using GROUP BY

D. Are managed using GRANT and REVOKE

B and D are correct answers.

Chapter 5: The Database Life Cycle
 1. The phases of a systems development life cycle (SDLC) methodology include which of the following?

A. Physical design

B. Logical design

C. Prototyping

D. Requirements gathering

E. Ongoing support

A, B, D, and E are correct responses.

 414 Databases: A Beginner’s Guide

 2. During the requirements phase of an SDLC project,

A. User views are discovered.

B. The quality assurance (QA) environment is used.

C. Surveys may be conducted.

D. Interviews are often conducted.

E. Observation may be used.

A, C, D, and E are correct responses.

 3. The advantages of conducting interviews are

A. Interviews take less time than other methods.

B. Answers may be obtained for unasked questions.

C. A lot can be learned from nonverbal responses.

D. Questions are presented more objectively compared to survey techniques.

E. Entities are more easily discovered.

B and C are correct responses.

 4. The advantages of conducting surveys include

A. A lot of ground can be covered quickly.

B. Nonverbal responses are not included.

C. Most survey recipients respond.

D. Surveys are simple to develop.

E. Prototyping of requirements is unnecessary.

A is the correct response.

 5. The advantages of observation are

A. You always see people acting normally.

B. You are likely to see lots of situations in which exceptions are handled.

C. You may see the way things really are instead of the way management and/or documentation
presents them.

D. The Hawthorne effect enhances your results.

E. You may observe events that would not be described to you by anyone.

C and E are correct responses.

 Appendix A: Answers to Self Tests 415

 6. The advantages of document reviews are

A. Pictures and diagrams are valuable tools for understanding systems.

B. Document reviews can be done relatively quickly.

C. Documents will always be up to date.

D. Documents will always reflect current practices.

E. Documents often present overviews better than other techniques can.

A, B, and E are correct responses.

 7. Application program modules are specified during the SDLC ____________ phase.

conceptual design

 8. A feasibility study is often conducted during the ____________ phase of an SDLC project.

planning

 9. Normalization takes place during the ____________ phase of an SDLC project.

logical design

 10. DDL is written to define database objects during the ____________ phase of an SDLC project.

physical design

 11. Program specifications are written during the ____________ phase of an SDLC project.

logical design

 12. During implementation and rollout,

A. Users are placed on the live system.

B. Enhancements are designed.

C. The old and new applications may be run in parallel.

D. Quality assurance testing takes place.

E. User training takes place.

A, C, and E are correct responses.

 13. During ongoing support,

A. Enhancements are immediately implemented.

B. Storage for the database may require expansion.

C. The staging environment is no longer required.

D. Bug fixes may take place.

E. Patches may be applied if needed.

B, D, and E are correct responses.

 416 Databases: A Beginner’s Guide

 14. When requirements are sketchy, ____________ can work well.

prototyping

 15. Rapid Application Development develops systems rapidly by skipping ____________.

20 percent of the requirements

 16. The three objectives depicted in the application triangle are ____________, ____________, and
____________.

Quality, cost, delivery time (or good, fast, and cheap)

 17. The database is initially constructed in the ____________ environment.

development

 18. Database conversion is tested during the ____________ phase of an SDLC project.

implementation and rollout

 19. User views are analyzed during the ____________ phase of an SDLC project.

requirements gathering

 20. The relational database was invented by ____________.

E.F. (Ted) Codd

Chapter 6: Database Design Using Normalization
 1. Normalization

A. Was developed by E.F. Codd

B. Was first introduced with five normal forms

C. First appeared in 1972

D. Provides a set of rules for each normal form

E. Provides a procedure for converting relations to each normal form

A, C, D, and E are correct answers.

 2. The purpose of normalization is

A. To eliminate redundant data

B. To remove certain anomalies from the relations

C. To provide a reason to denormalize the database

D. To optimize data-retrieval performance

E. To optimize data for inserts, updates, and deletes

B and E are correct answers.

 Appendix A: Answers to Self Tests 417

 3. When implemented, a third normal form relation becomes a(n) ____________.

table

 4. The insert anomaly refers to a situation in which

A. Data must be inserted before it can be deleted.

B. Too many inserts cause the table to fill up.

C. Data must be deleted before it can be inserted.

D. A required insert cannot be done due to an artificial dependency.

E. A required insert cannot be done due to duplicate data.

D is the correct answer.

 5. The delete anomaly refers to a situation in which

A. Data must be deleted before it can be inserted.

B. Data must be inserted before it can be deleted.

C. Data deletion causes unintentional loss of another entity’s data.

D. A required delete cannot be done due to referential constraints.

E. A required delete cannot be done due to lack of privileges.

C is the correct answer.

 6. The update anomaly refers to a situation in which

A. A simple update requires updates to multiple rows of data.

B. Data cannot be updated because it does not exist in the database.

C. Data cannot be updated due to lack of privileges.

D. Data cannot be updated due to an existing unique constraint.

E. Data cannot be updated due to an existing referential constraint.

A is the correct answer.

 7. The roles of unique identifiers in normalization are

A. They are unnecessary.

B. They are required once you reach third normal form.

C. All normalized forms require designation of a primary key.

D. You cannot normalize relations without first choosing a primary key.

E. You cannot choose a primary key until relations are normalized.

C and D are correct answers.

 418 Databases: A Beginner’s Guide

 8. Writing sample user views with representative data in them is

A. The only way to normalize the user views successfully

B. A tedious and time-consuming process

C. An effective way to understand the data being normalized

D. Only as good as the examples shown in the sample data

E. A widely used normalization technique

B, C, and D are correct responses.

 9. Criteria useful in selecting a primary key from among several candidate keys are

A. Choose the simplest candidate.

B. Choose the shortest candidate.

C. Choose the candidate most likely to have its value change.

D. Choose concatenated keys over single attribute keys.

E. Invent a surrogate key if that is the best possible key.

A, B, and E are correct responses.

 10. First normal form resolves anomalies caused by ____________.

multivalued attributes

 11. Second normal form resolves anomalies caused by ____________.

partial dependencies

 12. Third normal form resolves anomalies caused by ____________.

transitive dependencies

 13. In general, violations of a normalization rule are resolved by

A. Combining relations

B. Moving attributes or groups of attributes to a new relation

C. Combining attributes

D. Creating summary tables

E. Denormalization

B is the correct answer.

 14. A foreign key in a normalized relation may be

A. The entire primary key of the relation

B. Part of the primary key of the relation

 Appendix A: Answers to Self Tests 419

C. A repeating group

D. A non-key attribute in the relation

E. A multivalued attribute

A, B, and D are correct answers.

 15. Boyce-Codd Normal Form deals with anomalies caused by ____________.

determinants that are not primary or candidate keys

 16. Fourth normal form deals with anomalies caused by ____________.

multivalued attributes

 17. Fifth normal form deals with anomalies caused by ____________.

join dependencies

 18. Domain key normal form deals with anomalies caused by ____________.

constraints that are not the result of the definitions of domains and keys

 19. Most business systems require that you normalize only as far as ____________:

third normal form

 20. Proper handling of multivalued attributes when converting relations to first normal form
usually prevents subsequent problems with ____________.

fourth normal form

Chapter 7: Data and Process Modeling
 1. Why is it important for a database designer to understand process modeling?

A. Process design is a primary responsibility of the DBA.

B. The process model must be completed before the data model.

C. The data model must be completed before the process model.

D. The database designer must work closely with the process designer.

E. The database design must support the intended process model.

D and E are correct answers.

 2. Peter Chen’s ERD format represents “many” with ____________.

the symbol M placed near the end of the relationship line

 3. The diamond in Chen’s ERD format represents a(n) ____________.

relationship

 420 Databases: A Beginner’s Guide

 4. The relational ERD format represents “many” with ____________.

a crow’s foot

 5. The IDEF1X ERD format

A. Was first released in 1983

B. Follows a standard developed by the National Institute of Standards and Technology

C. Has many variants

D. Has been adopted as a standard by many U.S. government agencies

E. Covers both data and process models

B and D are correct answers.

 6. The IDEF1X ERD format shows

A. Identifying relationships with a solid line

B. Minimal cardinality using a combination of small circles and vertical lines shown on the
relationship line

C. Maximum cardinality using a combination of small vertical lines and crow’s feet drawn on the
relationship line

D. Dependent entities with squared corners on the rectangle

E. Independent entities with rounded corners on the rectangle

A is the correct answer.

 7. A subtype

A. Is a subset of the super type

B. Has a one-to-many relationship with the super type

C. Has a conditional one-to-one relationship with the super type

D. Shows various states of the super type

E. Is a superset of the super type

A and C are correct answers.

 8. Examples of possible subtypes for an Order entity super type include

A. Order line items

B. Shipped order, unshipped order, invoiced order

C. Office supplies order, professional services order

D. Approved order, pending order, canceled order

 Appendix A: Answers to Self Tests 421

E. Auto parts order, aircraft parts order, truck parts order

C and E are correct answers.

 9. In IE notation, subtypes

A. May be shown with a type discriminator attribute name

B. May be connected to the super type via a symbol composed of a circle with a line under it

C. Have the primary key of the subtype shown as a foreign key in the super type

D. Usually have the same primary key as the super type

E. May be shown using a crow’s foot

A, B, and D are correct answers.

 10. When subtypes are being considered in a database design, a tradeoff exists between __________
and ____________.

generalization, specialization

 11. In a flowchart, process steps are shown as ________ and decision points are shown as ________.

rectangles, diamonds

 12. The strengths of flowcharts are

A. They are natural and easy to use for procedural language programmers.

B. They are useful for spotting reusable components.

C. They are specific to application programming only.

D. They are equally useful for nonprocedural and object-oriented languages.

E. They can be easily modified as requirements change.

A, B, and E are correct answers.

 13. The basic components of a function hierarchy diagram are

A. Ellipses to show attributes

B. Rectangles to show process functions

C. Lines connecting the processes in order of execution

D. A hierarchy to show which functions are subordinate to others

E. Diamonds to show decision points

B and D are correct answers.

 14. The strengths of the function hierarchy diagram are

A. Checking quality is easy and straightforward.

B. Complex interactions between functions are easily modeled.

 422 Databases: A Beginner’s Guide

C. It is quick and easy to learn and use.

D. It clearly shows the sequence of process steps.

E. It provides a good overview at high and medium levels of detail.

C and E are correct answers.

 15. The basic components of a swim lane diagram are

A. Lines with arrows to show the sequence of process steps

B. Diamonds to show decision points

C. Vertical lanes to show the organization units that carry out process steps

D. Ellipses to show process steps

E. Open-ended rectangles to show data stores

A, C, and D are correct answers.

 16. The data flow diagram (DFD)

A. Is the most data-centric of all process models

B. Was first developed in the 1980s

C. Combines diagram pages together hierarchically

D. Was first developed by E.F. Codd

E. Combines the best of the flowchart and the function diagram

A, C, and E are correct answers.

 17. In a DFD, data stores are shown as ____________ and processes are shown as ____________.

open-ended rectangles, rounded rectangles

 18. The strengths of the DFD are

A. It’s good for top-down design work.

B. It’s quick and easy to develop, even for complex systems.

C. It shows overall structure without sacrificing detail.

D. It shows complex logic easily.

E. It’s great for presentation to management.

A, C, and E are correct answers.

 19. The components of the CRUD matrix are

A. Ellipses to show attributes

B. Major processes shown on one axis

 Appendix A: Answers to Self Tests 423

C. Major entities shown on the other axis

D. Reference numbers to show the hierarchy of processes

E. Letters to show the operations that processes carry out on entities

B, C, and E are correct answers.

 20. The CRUD matrix helps find the following problems:

A. Entities that are never read

B. Processes that are never deleted

C. Processes that only read

D. Entities that are never updated

E. Processes that have no create entity

A, C, and D are correct answers.

Chapter 8: Physical Database Design
 1. Business rules are implemented in the database using ____________.

constraints

 2. Two key differences between unique constraints and primary key constraints are ____________
and ____________.

a table may have only one primary key constraint; columns referenced in primary key constraints
must be defined as NOT NULL

 3. Relationships in the logical model become ____________ in the physical model.

referential constraints

 4. Constraint names are important because ____________.

they appear in error messages

 5. When you’re designing tables,

A. Each normalized relation becomes a table.

B. Each attribute in the relation becomes a table column.

C. Relationships become check constraints.

D. Unique identifiers become triggers.

E. Primary key columns must be defined as NOT NULL.

A, B, and E are correct answers.

 424 Databases: A Beginner’s Guide

 6. Super types and subtypes

A. Must be implemented exactly as specified in the logical design

B. May be collapsed in the physical database design

C. May have the super type columns folded into each subtype in the physical design

D. Usually have the same primary key in the physical tables

E. Apply only to the logical design

B, C, and D are correct answers.

 7. Table names

A. Should be based on the attribute names in the logical design

B. Should always include the word “table”

C. Should use only uppercase letters

D. Should include organization or location names

E. May contain abbreviations when necessary

C and E are correct answers.

 8. Column names

A. Must be unique within the database

B. Should be based on the corresponding attribute names in the logical design

C. Must be prefixed with the table name

D. Must be unique within the table

E. Should use abbreviations whenever possible

B and D are correct answers.

 9. Referential constraints

A. Define relationships identified in the logical model

B. Are always defined on the parent table

C. Require that foreign keys be defined as NOT NULL

D. Should have descriptive names

E. Name the parent and child tables and the foreign key column

A and D are correct answers.

 10. Check constraints

A. May be used to force a column to match a list of values

B. May be used to force a column to match a range of values

 Appendix A: Answers to Self Tests 425

C. May be used to force a column to match another column in the same row

D. May be used to force a column to match a column in another table

E. May be used to enforce a foreign key constraint

A, B, and C are correct answers.

 11. Data types

A. Prevent incorrect data from being inserted into a table

B. Can be used to prevent alphabetic characters from being stored in numeric columns

C. Can be used to prevent numeric characters from being stored in character format columns

D. Require that precision and scale be specified also

E. Can be used to prevent invalid dates from being stored in date columns

B and E are correct answers.

 12. View restrictions include which of the following?

A. Views containing joins can never be updated.

B. Updates to calculated columns in views are prohibited.

C. Privileges are required in order to update data using views.

D. If a view omits a mandatory column, inserts to the view are not possible.

E. Any update involving a view may reference columns only from one table.

B, C, D, and E are correct answers.

 13. Some advantages of views are

A. Views may provide performance advantages.

B. Views may insulate database users from table and column name changes.

C. Views may be used to hide joins and complex calculations.

D. Views may filter columns or rows that users should not see.

E. Views may be tailored to the needs of individual departments.

A, B, C, D, and E are correct answers.

 14. Indexes

A. May be used to assist with primary key constraints

B. May be used to improve query performance

C. May be used to improve insert, update, and delete performance

D. Are usually smaller than the tables they reference

 426 Databases: A Beginner’s Guide

E. Are slower to sequentially scan than corresponding tables

A, B, and D are correct answers.

 15. General rules to follow regarding indexes include which of the following?

A. The larger the table, the more important indexes become.

B. Indexing foreign key columns often helps join performance.

C. Columns that are frequently updated should always be indexed.

D. The more a table is updated, the more indexes will help performance.

E. Indexes on very small tables tend not to be very useful.

A, B, and E are correct answers.

Chapter 9: Connecting Databases to the Outside World
 1. In the centralized deployment model,

A. A web server hosts all web pages.

B. A “dumb” terminal is used as the client workstation.

C. Administration is quite easy because everything is centralized.

D. There are no single points of failure.

E. Development costs are often very high.

B and C are correct answers.

 2. In the distributed deployment model,

A. The database and/or application is partitioned and deployed on multiple computer systems.

B. Initial deployments were highly successful.

C. Distribution can be transparent to the user.

D. Costs and complexity are reduced compared with the centralized model.

E. Fault tolerance is improved compared with the centralized model.

A, C, and E are correct answers.

 3. In the two-tier client/server model,

A. All application logic runs on an application server.

B. A web server hosts the web pages.

C. The client workstation handles all presentation logic.

D. The database is hosted on a centralized server.

 Appendix A: Answers to Self Tests 427

E. Client workstations must be high-powered systems.

C, D, and E are correct answers.

 4. In the three-tier client/server model,

A. All application logic runs on an application server.

B. A web server hosts the web pages.

C. The client workstation handles all presentation logic.

D. The database is hosted on a centralized server.

E. Client workstations must be high-powered systems.

A, C, and D are correct answers.

 5. In the N-tier client/server model,

A. All application logic runs on an application server.

B. A web server hosts the web pages.

C. The client workstation handles all presentation logic.

D. The database is hosted on a centralized server.

E. Client workstations must be high-powered systems.

A, B, C, and D are correct answers.

 6. The Internet

A. Began as the U.S. Department of Education’s ARPANET

B. Dates back to the late 1960s and early 1970s

C. Always used TCP/IP as a standard

D. Is a worldwide collection of interconnected computer networks

E. Supports multiple protocols, including HTTP, FTP, and Telnet

B, D, and E are correct answers.

 7. A URL may contain

A. A protocol

B. A host name or IP address

C. A port

D. The absolute path to a resource on the web server

E. Arguments

A, B, C, D, and E are correct answers.

 428 Databases: A Beginner’s Guide

 8. An intranet is available to ____________.

authorized internal members of an organization

 9. An extranet is available to ____________.

authorized outsiders

 10. The World Wide Web uses ____________ to navigate pages.

hyperlinks

 11. HTTP does not directly support the concept of a session because it is ____________.

stateless

 12. XML is extensible because ____________ can be defined.

custom tags

 13. Middleware solutions for Java connections made the RDBMS look like a(n) ________.

object-oriented database

 14. The web “technology stack” includes

A. A client workstation running a web browser

B. A web server

C. An application server

D. A database server

E. Network hardware (firewalls, routers, and so on)

A, B, C, D, and E are correct answers.

 15. The advantages of CGI are

A. Statelessness

B. Simplicity

C. Inherently secure

D. Widely accepted

E. Language and server independent

B, D, and E are correct answers.

 16. Server Side Includes (SSI)

A. Are commands embedded in a web document

B. Are non-CGI gateways

C. Are HTML macros

 Appendix A: Answers to Self Tests 429

D. Solve some of the CGI performance issues

E. Are inherently secure

A, C, and D are correct answers.

 17. The advantages of a non-CGI gateway are

A. Known for stability

B. Proprietary solution

C. Improved security over CGI solutions

D. Simpler than CGI

E. Runs in server address space

C and E are correct answers.

 18. ODBC is

A. A standard API for connecting to DBMSs

B. Independent of any particular language, operating system, or DBMS

C. A Microsoft standard

D. Used by Java programs

E. Flexible in handling proprietary SQL

A, B, and E are correct answers.

 19. JDBC is

A. A standard API for connecting to DBMSs

B. Independent of any particular language, operating system, or DBMS

C. A Microsoft standard

D. Used by Java programs

E. Flexible in handling proprietary SQL

A, D, and E are correct answers.

 20. JSQL is

A. A Sun Microsystems standard

B. A method of embedding SQL statements in Java

C. An extension of an ISO/ANSI standard

D. A middleware solution

E. Independent of any particular language, operating system, or DBMS

B and C are correct answers.

 430 Databases: A Beginner’s Guide

Chapter 10: Database Security
 1. A collection of privileges that can be granted to multiple users is called a ___________.

role

 2. Privileges are rescinded using the SQL ____________ command.

REVOKE

 3. For database servers connected to a network, physical security alone is ____________.

inadequate

 4. Employees connecting to the enterprise network from home or another remote work location
should have a ____________ between the computer and the cable or DSL modem.

firewall

 5. When login credentials are stored in the computer system, they must always be ______.

encrypted

 6. Network security

A. Can be handled by routers alone

B. Can be handled by firewalls alone

C. Must include provisions for remotely located employees

D. Should be mandatory for all computer systems connected to any network

C and D are correct responses.

 7. Firewall protection may include

A. Packet filtering

B. Packet selection using a routing table

C. Network address translation

D. Limiting ports that may be used for access

E. IP spoofing

A, C, and D are correct responses.

 8. Wireless networks need to be secured because

A. Inexpensive wireless access points are readily available.

B. Anyone with a wireless network adapter can connect to an unprotected network.

C. Employees may use the wireless network to communicate secretly with hackers.

D. Radio waves penetrate walls to adjoining offices.

 Appendix A: Answers to Self Tests 431

E. Radio waves may carry to public roads outside the building.

A, B, D, and E are correct responses.

 9. Components of wireless access point security include

A. Network address translation

B. The organization’s security policy

C. Encryption

D. Virtual private networks

E. MAC address lists

B, C, and E are correct responses.

 10. System-level security precautions include

A. Installing the minimal software components necessary

B. Granting only table privileges that users require

C. Applying security patches in a timely manner

D. Changing all default passwords

E. Using simple passwords that are easy to remember

A, C, and D are correct responses.

 11. Encryption

A. Should be used for all sensitive data

B. Should use keys of at least 28 bits in length

C. Should be used for sensitive data sent over a network

D. Can use symmetric or asymmetric keys

E. Should never be used for login credentials

A, C, and D are correct responses.

 12. Client security considerations include which of the following?

A. MAC address lists

B. Web browser security level

C. Granting only database table privileges that are absolutely necessary

D. Use of a virus scanner

E. Testing of application exposures

B, D, and E are correct responses.

 432 Databases: A Beginner’s Guide

 13. In Microsoft SQL Server, a login (user login)

A. Can connect to any number of databases

B. Automatically has database access privileges

C. Can use Windows authentication

D. Can be authenticated by Microsoft SQL Server

E. Owns a database schema

A, C, and D are correct responses.

 14. In Microsoft SQL Server, a database

A. Is owned by a login

B. May have one or more users assigned to it

C. May contain system data (for example, master) or user (application) data

D. May be granted privileges

E. Is a logical collection of database objects

B, C, and E are correct responses.

 15. In Oracle, a user account

A. Can connect (log in) to any number of databases

B. Automatically has database privileges

C. Can use operating system authentication

D. Can be authenticated by the Oracle DBMS

E. Owns a database schema

B, C, D, and E are correct responses.

 16. In Oracle, a database

A. Is owned by a user

B. May have one or more user accounts defined in it

C. May contain system data (for example, system schema) and user (application) data

D. Is the same as a schema

E. Is managed by an Oracle instance

B, C, and E are correct responses.

 17. System privileges

A. Are granted in a similar way in Oracle, Sybase ASE, and Microsoft SQL Server

B. Are specific to a database object

 Appendix A: Answers to Self Tests 433

C. Allow the grantee to perform certain administrative functions on the server, such as shutting it down

D. Are rescinded using the SQL REMOVE statement

E. Vary across databases from different vendors

A, C, and E are correct responses.

 18. Object privileges

A. Are granted in a similar way in Oracle, Sybase ASE, and Microsoft SQL Server

B. Are specific to a database object

C. Allow the grantee to perform certain administrative functions on the server, such as shutting it down

D. Are rescinded using the SQL REMOVE statement

E. Are granted using the SQL GRANT statement

A, B, and E are correct responses.

 19. Using WITH GRANT OPTION when granting object privileges

A. Allows the grantee to grant the privilege to others

B. Gives the grantee DBA privileges on the entire database

C. Can lead to security issues

D. Will cascade if the privilege is subsequently revoked

E. Is a highly recommended practice because it is so convenient to use

A, C, and D are correct responses.

 20. Views may assist with security policy implementation by

A. Restricting the table columns to which a user has access

B. Restricting the databases to which a user has access

C. Restricting table rows to which a user has access

D. Storing database audit results

E. Monitoring for database intruders

A and C are correct responses.

Chapter 11: Deploying Databases
 1. A cursor is ____________.

a pointer into a result set

 2. A result set is ____________.

the collection of rows returned by a database query

 434 Databases: A Beginner’s Guide

 3. The I in the ACID acronym stands for ____________.

isolation

 4. Before rows may be fetched from a cursor, the cursor must first be

A. Declared

B. Committed

C. Opened

D. Closed

E. Purged

A and C are correct responses.

 5. A transaction

A. May be partially processed and committed

B. May not be partially processed and committed

C. Changes the database from one consistent state to another

D. Is sometimes called a unit of work

E. Has properties described by the ACID acronym

B, C, D, and E are correct responses.

 6. Microsoft SQL Server supports the following transaction modes:

A. Autocommit

B. Automatic

C. Durable

D. Explicit

E. Implicit

A, D, and E are correct responses.

 7. Oracle supports the following transaction modes:

A. Autocommit

B. Automatic

C. Durable

D. Explicit

E. Implicit

A and E are correct responses.

 Appendix A: Answers to Self Tests 435

 8. The SQL statements (commands) that end a transaction are

A. SET AUTOCOMMIT

B. BEGIN TRANSACTION (in SQL Server)

C. COMMIT

D. ROLLBACK

E. SAVEPOINT

C and D are correct responses.

 9. The concurrent update problem

A. Is a consequence of simultaneous data sharing

B. Cannot occur when AUTOCOMMIT is set to ON

C. Is the reason that transaction locking must be supported

D. Occurs when two database users submit conflicting SELECT statements

E. Occurs when two database users make conflicting updates to the same data

A, C, and E are correct responses.

 10. A lock

A. Is a control placed on data to reserve it so that the user may update it

B. Is usually released when a COMMIT or ROLLBACK takes place

C. Has a timeout set in DB2 and some other RDBMS products

D. May cause contention when other users attempt to update locked data

E. May have levels and an escalation protocol in some RDBMS products

A, B, C, D, and E are correct responses.

 11. A deadlock

A. Is a lock that has timed out and is therefore no longer needed

B. Occurs when two database users each request a lock on data that is locked by the other

C. Can theoretically put two or more users in an endless lock wait state

D. May be resolved by deadlock detection on some RDBMSs

E. May be resolved by lock timeouts on some RDBMSs

B, C, D, and E are correct responses.

 12. Performance tuning

A. Is a never-ending process

B. Should be used on each query until no more improvement can be realized

 436 Databases: A Beginner’s Guide

C. Should be used only on queries that fail to conform to performance requirements

D. Involves not only SQL tuning but also CPU, file system I/O, and memory usage tuning

E. Should be requirements based

A, C, D, and E are correct responses.

 13. SQL query tuning

A. Can be done in the same way for all relational database systems

B. Usually involves using an explain plan facility

C. Always involves placing SQL statements in a stored procedure

D. Applies only to SQL SELECT statements

E. Requires detailed knowledge of the RDBMS on which the query is to be run

B and E are correct responses.

 14. General SQL tuning tips include which of the following?

A. Avoid table scans on large tables.

B. Use an index whenever possible.

C. Use an ORDER BY clause whenever possible.

D. Use a WHERE clause to filter rows whenever possible.

E. Use views whenever possible.

A, B, and D are correct responses.

 15. SQL practices that obviate the use of an index are

A. Use of a WHERE clause

B. Use of a NOT operator

C. Use of table joins

D. Use of the NOT EQUAL operator

E. Use of wildcards in the first column of LIKE comparison strings

B, D, and E are correct responses.

 16. Indexes work well at filtering rows when

A. They are very selective.

B. The selectivity ratio is very high.

C. The selectivity ratio is very low.

D. They are unique.

 Appendix A: Answers to Self Tests 437

E. They are not unique.

A, B, and D are correct responses.

 17. The main performance considerations for INSERT statements are

A. Row expansion

B. Index maintenance

C. Free space usage

D. Subquery tuning

E. Any very large tables that are involved

B and C are correct responses.

 18. The main performance considerations for UPDATE statements are

A. Row expansion

B. Index maintenance

C. Free space usage

D. Subquery tuning

E. Any very large tables that are involved

A and B are correct responses.

 19. A change control process

A. Can prevent programming errors from being placed into production

B. May also be called change management

C. Helps with understanding when changes may be installed

D. Provides a log of all changes made

E. Can allow defective software versions to be backed out

B, C, D, and E are correct responses.

 20. Common features of change control processes include which of the following?

A. Transaction support

B. Version numbering

C. Deadlock prevention

D. Release numbering

E. Prioritization

B, D, and E are correct responses.

 438 Databases: A Beginner’s Guide

Chapter 12: Databases for Online Analytical Processing
 1. OLTP databases are designed to handle ____________ transaction volumes.

high

 2. OLAP queries typically access ____________ amounts of data.

large

 3. Compared with OLTP systems, data warehouse systems tend to have ____________ running
queries.

longer

 4. Data warehousing was pioneered by ____________.

Bill Inmon

 5. The process of moving from more summarized data to more detailed data is known as ________.

drilling down

 6. The snowflake schema allows dimensions to have ____________.

dimensions of their own

 7. The starflake schema is a hybrid containing both ____________ and ____________ dimensions.

normalized, denormalized

 8. A data warehouse is

A. Subject oriented

B. Integrated from multiple data sources

C. Time variant

D. Updated in real time

E. Organized around one department or business function

A, B, and C are correct answers.

 9. Challenges with the data warehouse approach include

A. Updating operational data from the data warehouse

B. Underestimation of required resources

C. Diminishing user demands

D. Large, complex projects

E. High resource demands

B, D, and E are correct answers.

 Appendix A: Answers to Self Tests 439

 10. The summary table architecture

A. Was originally developed by Bill Inmon

B. Includes a fact table

C. Includes dimension tables

D. Includes lightly and highly summarized tables

E. Should include metadata

A, D, and E are correct answers.

 11. The star schema

A. Was developed by Ralph Kimball

B. Includes a dimension table and one or more fact tables

C. Always has fully normalized dimension tables

D. Was a key feature of the Red Brick DBMS

E. Involves multiple levels of dimension tables

A and D are correct answers.

 12. Factors to consider in designing the fact table include

A. Adding columns to the fact table

B. Reducing column sizes between the source and fact tables

C. Partitioning the fact table

D. How often it must be updated

E. How long history must remain in it

B, C, D, and E are correct answers.

 13. Multidimensional databases

A. Use a fully normalized fact table

B. Are best visualized as cubes

C. Have fully normalized dimension tables

D. Are sometimes called MOLAP databases

E. Accommodate dimensions beyond the third by repeating cubes for each additional dimension

B, D, and E are correct answers.

 14. A data mart

A. Is a subset of a data warehouse

B. Is a shop that sells data to individuals and businesses

 440 Databases: A Beginner’s Guide

C. Supports the requirements of a particular department or business function

D. Can be a good starting point for organizations with no data warehouse experience

E. Can be a good starting point when requirements are sketchy

A, C, D, and E are correct answers.

 15. Reasons to create a data mart include

A. It is more comprehensive than a data warehouse.

B. It is a potentially lower risk project.

C. Data may be tailored to a particular department or business function.

D. It contains more data than a data warehouse.

E. The project has a lower overall cost than a data warehouse project.

B, C, and E are correct answers.

 16. Building a data warehouse first, followed by data marts

A. Will delay data mart deployment if the data warehouse project drags on

B. Has lower risk than trying to build them all together

C. Has the lowest risk of the three possible strategies

D. Has the highest risk of the three possible strategies

E. May require a great deal of rework

A and B are correct answers.

 17. Building one or more data marts first, followed by the data warehouse

A. May delay data warehouse delivery if the data mart projects drag on

B. Has the potential to deliver some OLAP functions more quickly

C. Has the lowest risk of the three possible strategies

D. Has the highest risk of the three possible strategies

E. May require a great deal of rework

B, C, and E are correct answers.

 18. Building the data warehouse and data marts simultaneously

A. Creates the largest single project of all the possible strategies

B. Has the potential to take the longest to deliver any OLAP functions

C. Has the lowest risk of the three possible strategies

D. Has the highest risk of the three possible strategies

 Appendix A: Answers to Self Tests 441

E. May require a great deal of rework

A, B, and D are correct answers

 19. Data mining

A. Creates a scaled-down data warehouse

B. Extracts previously unknown data correlations from the data warehouse

C. Can be successful with small amounts of data

D. Is most useful when the organization is agile enough to take action based on the information

E. Usually requires large data volumes in order to produce accurate results

B, D, and E are correct answers.

 20. Properties of data warehouse systems include

A. Holding historic rather than current information

B. Long-running queries that process many rows of data

C. Support for day-to-day operations

D. Process orientation

E. Medium to low transaction volume

A, B, and E are correct answers.

Chapter 13: Integrating XML Documents
and Objects into Databases
 1. XML is ____________.

a general-purpose markup language used to describe data

 2. How do SQL databases and XML documents vary in terms of data structure?

XML defines sequence and a hierarchical tree structure, while SQL does not.

 3. If two organizations are both using XML, does that mean that they have a standard way of
exchanging data without having to create interface software?

Not necessarily. The two organizations must use a common definition for the elements within the
XML documents to be exchanged before they can process them without the need to perform any
interpretation or conversion.

 4. The valid secondary type modifiers for the SEQUENCE type modifier are __________.

The SEQUENCE type modifier cannot have a secondary type modifier.

 442 Databases: A Beginner’s Guide

 5. The ____________ XML schema type is mapped from the SQL NUMERIC data type.

xs:decimal

 6. The ____________ XML schema type is mapped from the SQL DATE data type.

xs:date

 7. The two ways that null values from the database can be represented by SQL/XML are ________
and ____________.

Absent element, xsi:nil="true"

 8. Which of the following are common uses of XML?

A. Display database data on a web page

B. Create static web pages

C. Transmit database data to another party

D. Enforce business rules on documents

A and C are correct answers.

 9. Which of the following are valid type modifiers for the XML data type?

A. DOCUMENT

B. SEQUENCE

C. SQLXML

D. CONTENT

A, B, and D are correct answers.

 10. Which of the following SQL/XML functions creates an element based on a table column?

A. XMLQUERY

B. XMLELEMENT

C. XMLFOREST

D. XMLDOCUMENT

E. XMLPARSE

C is the correct answer.

 11. Object-oriented programming

A. Uses messages as a vehicle for object interaction

B. Allows an object to directly access the variables in a related object

C. Uses methods to define the behavior of an object

 Appendix A: Answers to Self Tests 443

D. Requires objects to have a primary key

E. Supports the use of complex objects

A, C, and E are correct answers.

 12. Object-oriented (OO) applications

A. Require the use of an OO database

B. Are written in an OO language

C. Use development environments that usually come with predefined classes

D. Use development environments that usually come with predefined methods

E. May be written it the C programming language

B, C, and D are correct answers.

 13. Smalltalk

A. Was developed by Linus Torvalds

B. Was developed in 1972

C. Was developed at the Xerox PARC facility

D. Is based on the C programming language

E. Was the first OO programming language to include a windowing system and use of a mouse

B, C, and E are correct answers.

 14. C++

A. Was developed by Alan Kay

B. Was developed in 1976

C. Was developed at AT&T Bell Laboratories

D. Is based on the Java programming language

E. Allows programmers to ignore the object paradigm if they wish

C and E are correct answers.

 15. Java

A. Was developed by Sun Microsystems

B. May be run only on large systems with lots of memory

C. Was developed around 1995

D. Is an interpretive language

E. Is a general-purpose OO language

A, C, D, and E are correct answers.

 444 Databases: A Beginner’s Guide

 16. Object persistence

A. Preserves the state of an object between executions of an application

B. Preserves the state of an object across the shutdown and startup of the computer system

C. Loads objects into memory to preserve them permanently

D. Occurs when the application requests that an object be saved

E. Can be accomplished only with an OO database

A, B, and D are correct answers.

 17. The events necessary to retrieve an object from an OO database include

A. A message is sent to the object, so the object must be loaded into memory.

B. A request to retrieve the object is sent to the OO database.

C. Object references are swizzled into memory addresses.

D. Relational data is assigned to an object class.

E. The object is made available to the application environment.

A, B, C, and E are correct answers.

 18. The advantages of object-relational databases include

A. Objects are stored within tables.

B. Complex data types are supported.

C. Ad-hoc query capability is fully supported.

D. Class structures and inheritance are fully supported.

E. Centrally stored functions (methods) improve reuse.

B, C, and E are correct answers.

 19. The disadvantages of object-relational databases include

A. The combination is more complex than either pure object-oriented or pure relational databases.

B. Ad-hoc query capability is limited.

C. Objects are table-centric.

D. Neither relational purists nor object purists are enamored with this combination.

E. Object applications are not as data-centric as relational ones.

A, C, D, and E are correct answers.

 Appendix A: Answers to Self Tests 445

 20. When considering the selection of a database model, which of the following facts should be
taken into account?

A. Ordinary file system files can handle simple data, provided there are no ad-hoc query requirements.

B. Relational databases can handle simple data that has ad-hoc query requirements.

C. Object-oriented databases are best at handling complex data.

D. Object-relational databases can handle complex data that has ad-hoc query requirements.

E. Object-oriented databases can handle complex data, provided there are no ad-hoc query requirements.

A, B, C, D, and E are correct answers.

This page intentionally left blank

447

Appendix B
Solutions to the Try
This Exercises

 448 Databases: A Beginner’s Guide

Try This 5-1

This appendix contains my solutions to the Try This exercises contained in various chapters.
In any design endeavor, many solutions are possible. Database design is no different in

this regard; it is not an exact science, and therefore there is some latitude for alternative
solutions. If your solution is different from mine, that does not necessarily mean that your
solution is incorrect, provided your solution meets the requirements stated in the exercise.

The source files for these solutions may also be downloaded from the McGraw-Hill
Professional website. Follow these steps to download the files:

 1. Open your web browser and go to www.mhprofessional.com.

 2. In the Search box, near the top of the page, type Databases A Beginner’s Guide and
click SEARCH.

 3. Click on the displayed image of the book to display the book’s information page.

 4. Find the download links under the image of the book along the left margin. Select
the files you want and either click to open them or right-click to save them to your
personal computer.

 Solution: Project Database
Management Tasks

Project Phase Task
Planning w. Evaluate available DBMS options

Requirements Gathering f. Determine the views required by the business users

r. Identify the attributes required by the business users

t. Identify and document business data requirements

Conceptual Design l. Specify a logical name for each entity and attribute

q. Document business rules that cannot be represented in the data model

s. Identify the relationships between the entities

Logical Design a. Normalization

b. Add foreign keys to the database

d. Specify the unique identifier for each relation

g. Remove data that is easily derived

h. Resolve many-to-many relationships

l. Specify a logical name for each entity and attribute

p. Translate the conceptual data model into a logical model

 Appendix B: Solutions to the Try This Exercises 449

Try This 6-1

q. Document business rules that cannot be represented in the data model

s. Identify the relationships between the entities

Physical Design c. Specify the physical placement of database objects on storage media

e. Specify the primary key for each table

j. Modify the database to meet business requirements

m. Specify a physical name for each table and column

o. Specify database indexes

Construction i. Define views in the database

u. Ensure that user data requirements are met

Implementation and Support k. Denormalize the database for performance

n. Add derivable data to improve performance

v. Tune the database to improve performance

Ongoing Support j. Modify the database to meet business requirements

k. Denormalize the database for performance

n. Add derivable data to improve performance

u Ensure that user data requirements are met

v. Tune the database to improve performance

 Solution: UTLA Academic Tracking
Here are the normalized relations for Try This 6-1, with (PK) denoting primary key attributes:

COURSE: COURSE ID (PK), TITLE, DESCRIPTION, NUMBER OF CREDITS

INSTRUCTOR: INSTRUCTOR ID (PK), INSTRUCTOR NAME, HOME ADDRESS STREET,
 HOME ADDRESS CITY, HOME ADDRESS STATE,
 HOME ADDRESS ZIP CODE, HOME PHONE, OFFICE PHONE

COURSE SECTION: SECTION ID (PK), CALENDAR_YEAR, SEMESTER, COURSE ID,
 BUILDING, ROOM, MEETING DAY, MEETING TIME,
 INSTRUCTOR ID

STUDENT: STUDENT ID (PK), STUDENT NAME, HOME ADDRESS,
 HOME ADDRESS CITY, HOME ADDRESS STATE,
 HOME ADDRESS ZIP CODE, HOME PHONE

STUDENT SECTION: STUDENT ID (PK), SECTION ID (PK), GRADE

COURSE PREREQUISITE: COURSE ID (PK), PREREQUISITE COURSE ID (PK)

COURSE INSTRUCTOR QUALIFIED: INSTRUCTOR ID (PK), COURSE ID (PK)

 450 Databases: A Beginner’s Guide

A few notes on this particular solution are in order:

● No simple natural key exists for the Course Section relation, so a surrogate key was added.

● The Course Prerequisite relation can be quite confusing. This is the intersection
relation for a many-to-many recursive relationship. A course can have many
prerequisites, which may be found by joining COURSE ID in the COURSE relation
with COURSE ID in the COURSE PREREQUISITE relation. At the same time,
any course may be a prerequisite for many other courses. These may be found by
joining COURSE ID in the COURSE relation with PREREQUISITE COURSE ID
in the COURSE PREREQUISITE relation. This means that two relationships exist
between the COURSE and COURSE PREREQUISITE: one in which COURSE
ID is the foreign key and another in which PREREQUISITE COURSE ID is the
foreign key. Comparing the upcoming illustrations for the COURSE and COURSE_
PREREQUISITE tables should help make this point clear.

To assist you in visualizing how all this works, the following illustrations show each
of the tables as implemented in a Microsoft Access database, each loaded with the data
from the original user view (report) examples. The last illustration shows the ERD for the
solution, using the Microsoft Relationships panel as the presentation media.
COURSE table:

INSTRUCTOR table:

 Appendix B: Solutions to the Try This Exercises 451

COURSE_SECTION table:

STUDENT table:

STUDENT_SECTION table:

COURSE_PREREQUISITE table:

 452 Databases: A Beginner’s Guide

Try This 6-2

COURSE_INSTRUCTOR_QUALIFIED table:

ERD for TLA University:

 Solution: Computer Books Company
Here are the normalized relations for Try This 6-2, with primary keys noted with (PK):

BOOK: ISBN (PK), BOOK TITLE, SUBJECT CODE, PUBLISHER ID,
 EDITION CODE, EDITION COST, SELLING PRICE,
 QUANTITY ON HAND, QUANTITY ON ORDER,
 RECOMMENDED QUANTITY, PREVIOUS EDITION ISBN

CUSTOMER ORDER: CUSTOMER ORDER NUMBER (PK), CUSTOMER ID,
 ORDER DATE

CUSTOMER ORDER BOOK: CUSTOMER ORDER NUMBER (PK), ISBN (PK),
 QUANTITY, BOOK PRICE

 Appendix B: Solutions to the Try This Exercises 453

SUBJECT: SUBJECT CODE (PK), DESCRIPTION

AUTHOR: AUTHOR ID (PK), AUTHOR NAME

BOOK-AUTHOR: AUTHOR ID (PK), ISBN (PK)

CUSTOMER: CUSTOMER ID (PK), CUSTOMER_NAME, STREET ADDRESS, CITY,
 STATE, ZIP CODE, PHONE NUMBER, BALANCE DUE

PUBLISHER: PUBLISHER ID (PK), PUBLISHER NAME, STREET ADDRESS,
 CITY, STATE, ZIP CODE, AMOUNT PAYABLE

SHIPPED ORDER (RECEIVABLE): SALES INVOICE NUMBER (PK),
 CUSTOMER ORDER NUMBER, SALES TAX, SHIPPING CHARGES

SHIPPED ORDER BOOK: SALES INVOICE NUMBER (PK), ISBN (PK),
 PRICE_AT_SALE, QUANTITY

PURCHASE (PAYABLE): PURCHASE INVOICE NUMBER (PK), PUBLISHER_ID,
 INVOICE DATE, INVOICE AMOUNT

PURCHASE BOOK: PURCHASE INVOICE NUMBER (PK), ISBN (PK), QUANTITY,
 COST EACH

Here is an ERD that shows the complete design, implemented in Microsoft Access:

 454 Databases: A Beginner’s Guide

Try This 7-1 Solution: Draw an ERD in Information
Engineering (IE) Format

The following illustration shows my solution to Try This 7-1:

PERSON

PERSON_ID

FIRST_NAME
LAST_NAME
BIRTH_DATE
GENDER
FATHER_PERSON_ID (FK)
MOTHER_PERSON_ID (FK)

MARRIAGE

PERSON_ID_1 (FK)
PERSON_ID_2 (FK)
MARRIAGE_DATE

END_DATE

EMPLOYEE

PERSON_ID (FK)

EMPLOYEE_ID
HIRE_DATE
TERMINATION_DATE

CUSTOMER

CUSTOMER_NUMBER

NAME
ADDRESS
CITY
STATE
ZIP_CODE
PHONE

Spouse 1

Reachable via

works for

CUSTOMER CONTACT

PERSON_ID (FK)

CUSTOMER_ID (FK)

Spouse 2

Father
Mother

 Appendix B: Solutions to the Try This Exercises 455

Try This 8-1

Try This 10-1

 Solution: Mapping a Logical Model
to a Physical Database Design

The following illustration shows my solution to Try This 8-1:

 Solution: Database Object Privileges
Here are the SQL statements used in Try This exercise 10-1:

CREATE TABLE DEPARTMENT
 (DEPARTMENT_CODE CHAR(3),
 DEPARTMENT_NAME VARCHAR(50));

GRANT SELECT, INSERT ON DEPARTMENT TO USER1;

INSERT INTO DATA1.DEPARTMENT
VALUES ('001','Executive');

SELECT * FROM DATA1.DEPARTMENT
 WHERE DEPARTMENT_CODE = '001';

DELETE FROM DATA1.DEPARTMENT
 WHERE DEPARTMENT_CODE = '001';

ADDRESS
CITY
STATE

WORKER

WORKER_ID

WORKER_TYPE
FIRST_NAME
LAST_NAME
FTE_RATIO
HOURLY_RATE

CONTRACTOR

WORKER_ID (FK)

START_DATE
END_DATE

EMPLOYEE

WORKER_ID (FK)

EMPLOYEE_TYPE
HIRE_DATE
TERMINATION_DATE
REINSTATEMENT_DATE
PAY_GRADE
ANNUAL_SALARY

PROJECT_ASSIGNMENT

WORKER_ID (FK)
PROJECT_ID (FK)

START_DATE
END_DATE
FTE_RATIO

PROJECT

PROJECT_ID

PROJECT_NAME

 456 Databases: A Beginner’s Guide

Try This 11-1

Try This 12-1

DROP TABLE DATA1.DEPARTMENT;

DROP TABLE DEPARTMENT;

 Solution: SQL Transaction Support
Here are the SQL statements used in Try This exercise 11-1:

DROP TABLE DEPARTMENT;

CREATE TABLE DEPARTMENT
 (DEPARTMENT_CODE CHAR(3),
 DEPARTMENT_NAME VARCHAR(50));

SET IMPLICIT_TRANSACTIONS ON

INSERT INTO DEPARTMENT
VALUES ('001','Executive');

SELECT * FROM DEPARTMENT;

ROLLBACK;

INSERT INTO DEPARTMENT
VALUES ('001','Executive');

COMMIT;

ROLLBACK;

SELECT * FROM DEPARTMENT;

DROP TABLE DEPARTMENT;
COMMIT;

 Solution: Design Star Schema Fact
and Dimension Tables

Here are the fact and dimension tables designed in Try This exercise 12-1:

BOOK (FACT): ISBN (PK), SUBJECT CODE(FK), PUBLISHER ID(FK),
 EDITION COST, SELLING PRICE, QUANTITY ON HAND, QUANTITY ON ORDER,
 RECOMMENDED QUANTITY

BOOK TITLE (DIMENSION): BOOK TITLE, EDITION CODE, PREVIOUS ISBN
SUBJECT (DIMENSION): SUBJECT CODE (PK), DESCRIPTION

 Appendix B: Solutions to the Try This Exercises 457

Try This 13-1

AUTHOR (DIMENSION): ISBN (PK), AUTHOR ID (PK), AUTHOR NAME

PUBLISHER (DIMENSION): PUBLISHER ID (PK), PUBLISHER NAME, STREET ADDRESS,
 CITY, STATE, ZIP CODE

 Solution: Using SQL/XML Functions
If you are not using an Oracle database with Oracle’s HR sample schema, here is the SQL
code to create an Employees table with the necessary columns and populate it with the
three rows needed for this exercise:

CREATE TABLE EMPLOYEES
 (EMPLOYEE_ID NUMBER(6) NOT NULL,
 FIRST_NAME VARCHAR(20),
 LAST_NAME VARCHAR(20),
 PHONE_NUMBER VARCHAR(20),
 DEPARTMENT_ID NUMBER(4));

INSERT INTO EMPLOYEES
 VALUES(100,'Steven','King','515.123.4567',90);
INSERT INTO EMPLOYEES
 VALUES(101,'Neena','Kochhar','515.123.4568',90);
INSERT INTO EMPLOYEES
 VALUES(102,'Lex','DeHaan','515.123.4569',90);
COMMIT;

Here is the SQL statement used in Try This 13-1:

SELECT XMLELEMENT("Employee",
 XMLATTRIBUTES(EMPLOYEE_ID AS ID),
 XMLFOREST(FIRST_NAME AS "First Name",
 LAST_NAME AS "Last Name",
 PHONE_NUMBER AS "Phone"))
 FROM EMPLOYEES
 WHERE DEPARTMENT_ID = 90
 ORDER BY EMPLOYEE_ID;

This page intentionally left blank

459

Index

* (asterisk), 132–133, 138, 148
|| (concatenation operator), 150
! (exclamation point), 80
* (multiplication operator), 105
% (percent sign), 137–138
+ (plus sign), 148, 150
(pound sign), 80
? (question mark), 138
_ (underscore), 137, 138
; (semicolon), 119
[] (square brackets), 105
= (equal to) operator, 80
> (greater than) operator, 80
>= (greater than or equal to) operator, 80
< (less than) operator, 80
<= (less than or equal to) operator, 80
<> (not equal to) operator, 80, 91–94
() parentheses, 136, 156, 157
80/20 rule, 183

A
Access. See Microsoft Access
access security, 314–322

ACID (Atomicity, Consistency, Isolation,
Durability), 333

ACM SIGMOD (Special Interest Group on
Management of Data) conference,
22–23

Acme Industries example, 192–209
Active Server Pages (ASP), 294
Actuate product, 358
ad hoc queries, 8, 17, 21, 65, 392–393
Administration option, 125
aggregate functions

SQL, 150–154
“Try This” exercise, 106–109

aggregation, 230
aliases. See synonyms
ALTER command, 159
ALTER TABLE statement, 161–162
American National Standards Institute

(ANSI), 120
American National Standards Institute/

Standards Planning and Requirements
Committee (ANSI/SPARC), 6

analysis paralysis, 175
AND operator, 94, 140–141
anomalies, 192–193

 460 Databases: A Beginner’s Guide

ANSI (American National Standards
Institute), 120

ANSI/SPARC (American National Standards
Institute/Standards Planning and
Requirements Committee), 6

answers, to self-tests, 401–445
ANY type, 377
API (application programming interface), 295
Application Builder option, 125
Application Express. See Oracle

Application Express
application gateway, 307
application programming interface (API), 295
application programs, 8, 11, 13, 38, 72
application server, 287–297
applications. See also Oracle

Application Express
bug fixes, 181
building, 72
connecting databases to, 295–297
described, 6
Java, 295, 296–297
minimal use of, 313
object-oriented, 385–392
Rapid Application Development, 183
security guidelines, 311–314
testing exposures, 314

ARPANET, 290
artificial identifiers, 196
AS keyword, 150
ASP (Active Server Pages), 294
asterisk (*), 132–133, 138, 148
asymmetric keys, 312
atomic quality, 32
atomicity, 333
Atomicity, Consistency, Isolation, Durability

(ACID), 333
AT&T Bell Laboratories, 387
attributes

atomic, 32
described, 32
multivalued, 194, 195, 199, 207–208
relational databases, 32
as “unit fact,” 32
XML, 374

auditing systems, 322–323
autocommit mode, 155, 334, 335
Autocommit option, 126

automatic commit, 155
AVG function, 107, 143

B
Bachman, Charles W., 22–23
BACKUP DATABASE privilege, 320
base class, 230
BCNF (Boyce-Codd Normal Form), 206–207
BEGIN TRANSACTION statement, 334
behavior diagrams, 243
behaviors, 386
BETWEEN operator, 136–137
blocks, 339
Boyce-Codd Normal Form (BCNF), 206–207
Britton-Lee, 24
browsers. See Object Browser; web browsers
brute force attacks, 311
buffer overflows, 314
buffers, 331
bug fixes, 181
bugs, 181
build numbering, 346
business intelligence tools, 358
Business Objects, 358
business rules, 38, 265–271

C
C language, 387
C++ language, 387
calculated columns, 103–106
Call Level Interface (CLI), 295
candidates, 197
cardinality, 32–33
Cartesian products, 95, 143–144
CASCADE CONSTRAINTS clause, 163
cascading deletes, 49
catalog views, 127–129
CBC (Computer Books Company) exercise,

214–216
Central Intelligence Agency (CIA), 23
centralized model, 282–284
CGI (Common Gateway Interface), 293–294
CGI scripts, 293–294
chains, pointer, 14, 16

 Index 461

change control process, 346–347
change management, 346–347
change request tracking, 346
check constraints, 55, 162, 270
check-out/check-in, 347
Chen, Peter (Dr.), 23, 222, 223–224
Chen’s format, 223–224
“chicken” method, 181
child rows, 49
child/parent relationships, 15
CIA (Central Intelligence Agency), 23
cipher text, 312
circuit-level gateway, 307
class hierarchy, 21
CLI (Call Level Interface), 295
client tools, 121
clients

described, 285, 311
security guidelines, 311–314
SQL, 119, 121

client/server model, 285–290
CLOSE statement, 332
CODASYL (Conference on Data Systems

Languages), 22
Codd, E.F. (Ted), 17, 22–23, 179, 190, 354
Cognos product, 358
Cohera, 24
“cold turkey” implementation, 181
column functions, 107
columns. See also tables

adding, 161–162
calculated, 103–106
constraints, 255
derived, 104
described, 44
foreign key, 47–48, 51
guidelines for, 255
hiding/showing, 57
labels, 105
listing all, 81–82
listing all (SQL), 132–133
locking, 340
names, 105, 255
naming conventions, 263–264
NULL, 98–99
omitting from views, 322
partitioning, 256
primary key, 47
relational databases, 44–46

removing, 161–162
selecting for display, 82–83
selecting for display (SQL), 133–134
updating, 157–158

COM (Common Object Model), 296
command-based queries, 64, 65
command-based query languages, 64, 65
comments, 266
commit, 333
COMMIT statement, 154–155
COMMIT TRANSACTION statement, 334
Common Gateway Interface (CGI), 293–294
Common Object Model (COM), 296
comparison operators, 80
compilers, 311, 387
complex objects, 21, 386
compound row selection, 90–91
Computer Associates, 23
Computer Books Company (CBC) exercise,

214–216
concatenation operator (||), 150
conceptual database design, 30–41, 66–73, 178
concurrent updates, 337–340
conditional operators, SQL, 136–141
conditional relationships, 34–35
Conference on Data Systems Languages

(CODASYL), 22
conformed dimensions, 359
connections. See database connections
consistency, 333
constraints

business rules as, 38
check, 55, 162, 270
column, 255
described, 38, 46, 266
dropped tables and, 163
enforcing with triggers, 56
foreign key, 47, 268
integrity, 53–55
names, 46
naming conventions, 263–264
NOT NULL, 53–55, 267
primary key, 47, 161–162, 267–268
referential, 47–51, 75, 161, 268
relational databases, 46–55
unique, 162, 269

construction phase, 179–180
CONTENT type, 377
contention, 340

 462 Databases: A Beginner’s Guide

cookies, 313
correlated subselects, 142–143
COUNT function, 107
CREATE ANY TABLE privilege, 320
CREATE command, 159
CREATE DATABASE privilege, 320
CREATE INDEX statement, 163
Create ribbon, 69
CREATE ROLE privilege, 321
CREATE SESSION privilege, 320
CREATE TABLE privilege, 320
CREATE TABLE statement, 160
CREATE USER privilege, 320
CREATE USER statement, 322
CREATE VIEW statement, 162–163
credentials, login, 311–312
Criteria option, 79–80
“crow’s foot” methodology, 18
CRUD matrix, 245–246
cursor, 330
cursor declarations, 330–332
cursor processing, 330–332

D
data

complex, 19
encrypted, 309, 310, 312–313
intersection, 36–37
locking, 338–341
logical data independence, 10
physical data independence, 8–9
redundant, 193
relationships. See relationships
sensitive, 312–313

data abstraction, layers of, 6–9
data bank, 6
Data Control Language (DCL), 120, 164–165
Data Definition Language. See DDL
data files, 7–8, 9
data flow diagram (DFD), 240–243
data flows, 242–243
data integrity, 265–271
“data jail,” 18
Data Manipulation Language (DML), 119,

154–159, 345
data marts, 344, 363–364

data modeler, 30
Data Query Language (DQL), 119, 131–154
data relationships. See relationships
data sets, 18
data store, 241
Data Type option, 75
data types

described, 44
extensions, 45–46
from major RDBMS vendors, 46
names, 44
options, 45–46
relational databases, 44–46
SQL, 380–383
table design and, 270
TIMESTAMP, 121
XML, 376–378
XML schema, 380–383

data warehouses, 344, 355–362, 364
data warehousing, 354
database activities, 173
database administrators. See DBAs
database clients. See clients
database connections

to applications, 295–297
concurrent update problem, 337–338
to Java applications, 296–297
login credentials, 311–312
multiple connections, 337–338
security issues, 306–310
terminal emulators, 283
via ODBC, 295–296
via OLE DB, 296

database design
conceptual database, 30–41, 66–73, 178
logical. See logical database design
Northwind database example,

38–41, 66–73
physical. See physical database design

database designer, 30
database instances. See instances
database machines, 24
database management system. See DBMS
database models, 10–21

centralized model, 282–284
client/server model, 285–290
deployment models, 282–290
described, 4

 Index 463

distributed model, 284–285
flat files, 10–13
hierarchical model, 13–15
Internet computing model, 285,

288–290
network model, 15–17
object-oriented model, 19–21
object-relational model, 21
relational model, 17–19

database objects. See objects
database owner (DBO), 319
database queries. See queries
database servers. See also servers

client/server model, 285–290
defined, 315
security issues, 305–311, 315–317
vs. servers, 315

database specialist, 174
Database Task Group (DBTG), 22
Database Tools ribbon, 69, 70
databases

automatically committing changes, 126
created by SQL Server, 316
deploying. See deployment
described, 4, 316
fundamentals, 3–27
history, 22–24
Ingres, 23, 24, 120
layers of data abstraction, 6–9
life cycle, 171–188
locking mechanisms, 338–341
MOLAP, 360–362
normalizing. See normalization
Northwind. See Northwind database
object-oriented, 21, 386, 388–390, 392
object-relational, 392–393
OLAP, 354–366
OLE DB, 296
operational, 354
properties. See properties
relational. See relational databases
removing objects from, 163–164
security. See security
tables. See tables
universal, 21
views. See views
vs. data banks, 6
vs. files, 4–5
to Web, 290–295

data-driven approach, 174–175
Datasheet View, 75, 76
Date, C.J. (Chris), 209
DATE datatype, 121
DB2, 24
DBA role, 321
DBAs (database administrators), 7, 30, 319
DBMS (database management system)

installing minimal software for, 311
layers of data abstraction, 6–9
overview, 5

DBMS catalog, 9
DBO (database owner), 319
DBTG (Database Task Group), 22
DCL (Data Control Language), 120, 164–165
DDL (Data Definition Language), 120, 159, 179
DDL locks, 339
DDL statements, 120, 159–164, 257, 347
deadlocks, 340–341
DECLARE CURSOR clause, 331
delete anomalies, 193
DELETE statement, 158–159, 345
deleting

cascading deletes, 49
columns, 161–162
objects, 9, 10, 73
relationships, 75
rows, 49, 158–159, 268

deliverables, 172
demilitarized zone (DMZ), 293
denial of service (DoS) attacks, 307
denormalization, 209–210
Department of Defense (DoD), 290
dependence, functional, 200–203
dependencies

partial, 200–203
transitive, 203–205

deployment, 329–351
change control, 346–347
cursor processing, 330–332
performance tuning, 342–345
transaction management, 332–341

deployment models, 282–290
derived columns, 104
Descartes, René, 144
DESCRIBE command, 127, 129
Describe option, 127
Description option, 75
designing databases. See database design

 464 Databases: A Beginner’s Guide

designing views, 271–272
determinants, 201, 206
development environments, 179–180
devices, performance, 9
DFD (data flow diagram), 240–243
dimension tables, 358–360, 365–366
DISCONNECT command, 335
discrete tables, 260–261
Display setting, 126
distributed model, 284–285
DKNF (domain-key normal form), 209
DML (Data Manipulation Language), 119,

154–159, 345
DMZ (demilitarized zone), 293
document review, 177–178
DOCUMENT type, 377
DoD (Department of Defense), 290
domain-key normal form (DKNF), 209
DoS (denial of service) attacks, 307
DQL (Data Query Language), 119, 131–154
“drilling down,” 357
DROP command, 159
DROP statement, 163–164
dropping tables, 163–164
“dumb terminals,” 282, 283
durability, 333
dynamic web pages, 290–292

E
Ellison, Larry, 23
e-mail, 313
employees

observing, 177
offsite, 308–309

encapsulation, 20
encryption, 309, 310, 312–313
encryption keys, 305, 312
end users, 357. See also users
enterprise computing infrastructure, 282
enterprise networks, 306–309
enterprise resource planning (ERP), 287
entities

dependent, 226
described, 30–32
external, 31–32
instances, 31

names, 42–43
relating to processes, 245–246
relationships. See relationships
unique identifiers, 32
vs. relations, 191

entity class, 30–31
entity relationship diagrams. See ERDs
entity relationship modeling, 222, 228–230
Epstein, Bob, 24
equal to (=) operator, 80
ERD modeling, 222–244
ERDs (entity relationship diagrams), 222–244

Chen’s format, 23, 222, 223–224
conceptual design phase, 178
entity relationship modeling, 228–230
formats, 222–230
guidelines for, 235
IDEF1X standard, 227–228
IE format, 225–226, 246–247
illustrated, 18
naming conventions, 235
relational format, 224–225
super types, 230–235
Unified Modeling Language, 228–230

ERP (enterprise resource planning), 287
errors, 181
exclamation point (!), 80
exercises. See “Try This” exercises
EXIT command, 335
Explain option, 127
explicit mode, 334
expressions, 133–134
extended hierarchical model, 14
Extensible Markup Language. See XML
External Data ribbon, 69, 70
external design. See conceptual database design
external entities, 31–32
external layer, 8
extranets, 290

F
fact tables, 358
false condition, 54, 55
feasibility study, 174
FETCH statement, 332
Field Name option, 75

 Index 465

Field option, 79
Field Size option, 75
fifth normal form, 208–209
files

data, 7–8
described, 4, 44
flat, 10–13
locking, 339
physical, 44
vs. databases, 4–5
vs. tablespaces, 44

Finkelstein, Clive, 225
firewalls, 290, 307–308
first normal form, 198–200
flat files, 10–13
flow charts, 236–239
foreign key columns, 47–48, 51
foreign keys, 47–52

constraints, 47, 268
described, 47
indexes on, 163
names, 47
normalization and, 197, 199, 231
one-to-one relationships and, 256

forest, 376
Forms object type, 71
forms-based queries, 63–116

creating basic query, 77–81
overview, 64–65
table design view, 75–77
“Try This” exercises, 81–114
working with. See Query Design panel

fourth normal form, 207–208
FROM clause, 131, 143
function hierarchy diagram, 239–240
functional dependence, 200–203
function-based indexes, 344
functions. See also specific functions

aggregate, 106–109
column, 107
nesting, 152
XML value, 378–380

G
General Electric, 22
Generalized Markup Language (GML), 372–373

Generalized Update Access Method (GUAM), 22
GML (Generalized Markup Language), 372–373
GRANT statement, 164–165, 320–321
grantee, 164, 165
grantor, 164, 165
greater than (>) operator, 80
greater than or equal to (>=) operator, 80
grid computing, 285
Group at the Xerox Palo Alto Research Center

(PARC), 386–387
GROUP BY clause, 132, 152–153
GROUP BY specification, 107
grouping rows, 107, 152–153
groups, repeating, 198–200, 212
GUAM (Generalized Update Access Method), 22

H
hardware environment, 179–180
hashing, 256
Hawker Siddeley Aircraft Company, 120
Hawthorne effect, 177
hierarchical model, 13–15
history, database, 22–24
History option, 127
Home ribbon, 68, 69
host variables, 332
HP ALLBASE, 23
HR (human resources) sample schema, 118, 119
HR-XML Consortium, Inc., 293
HTML (Hypertext Markup Language), 292, 372
HTML documents, 294
HTML tags, 373
HTTP (Hypertext Transfer Protocol), 292
human resources (HR) sample schema, 118, 119
Hyperion product, 358
hyperlinks, 290
Hypertext Markup Language. See HTML
Hypertext Transfer Protocol (HTTP), 292

I
IBM, 23, 120
IDEF1X standard, 227–228
identifiers. See also keys

artificial, 196
natural, 196

 466 Databases: A Beginner’s Guide

identifiers (Continued)
object, 21, 386
SQL, 380, 383
surrogate, 52, 196, 197, 199, 214
unique, 32, 190, 196

IDMS (Integrated Database Management
System), 15

IDS (Integrated Data Store), 22
IE (information engineering) format, 225–226,

246–247
IIS (Internet Information Services) API, 294
Illustra, 24
implementation, 180–181
implicit mode, 334, 335
IMS (Information Management System), 13,

14, 22
inclusive joins. See outer joins
index organized table, 274
Indexed option, 76
indexes

adding, 272–274
advantages of, 163
creating, 163
described, 47, 272
dropped tables and, 163
on foreign keys, 163
function-based, 344
guidelines for, 273–274
maintenance of, 345
naming conventions, 264–265
performance and, 272–274, 345
searching, 47
selective, 343–344
unique, 343–344
uses for, 161–162

infinite loops, 16
information engineering (IE) format, 225–226,

246–247
Information Management System (IMS), 13,

14, 22
information technology (IT) industry, 282
Informix, 24
infrastructure, 282
Ingres database, 23, 24, 120
inheritance, 21, 95
Inmon, William H., 354
inner joins, 95, 145–146
insert anomalies, 192–193

INSERT statement, 155–157, 345
instance variables. See variables
instances

described, 4
entity, 31
object, 20
Oracle DBMS, 317

Integrated Data Store (IDS), 22
Integrated Database Management System

(IDMS), 15
integrity constraints, 53–55
International Organization for Standardization

(ISO), 120
Internet. See also Web

exploring, 297–298
isolating enterprise network from, 306–309
offsite employee security issues, 308–309
overview, 290–293

Internet computing model, 285, 288–290
Internet Information Services (IIS) API, 294
Internet service provider (ISP), 308
interpretive language, 387
intersection data, 36–37
intersection tables, 37, 51–53
interviews, conducting, 176
INTO clause, 332
intranets, 290
IP addresses, 292, 308
IP spoofing, 307
ISO (International Organization for

Standardization), 120
isolation, 333
ISP (Internet service provider), 308
IT (information technology) industry, 282

J
JAD (Joint Application Design), 183
Java applications, 295, 296–297
Java classes, 297
Java Database Connectivity. See JDBC
Java language, 270, 296, 387
Java Relational Binding (JRB), 297
Java SQL (JSQL), 297
JavaScript, 296
JDBC (Java Database Connectivity),

296–297

 Index 467

JDBC drivers, 296, 333–335, 390
JOIN clause, 143, 146–147
Join Properties dialog box, 99
joins, 94–101

Cartesian products, 143–144
described, 18, 94
inner, 95, 145–146
limiting join results, 97–98, 148, 149
to lookup tables, 322
multiple, 103–106
Northwind database, 94–101, 109–114
outer, 98–101, 146–148, 149
performance tuning and, 344
self-joins, 109–113, 149–150
SQL, 143–150

Joint Application Design (JAD), 183
JRB (Java Relational Binding), 297
JScript, 296
JSQL (Java SQL), 297
just-in-time compilers, 387

K
Kay, Alan, 386
keys. See also identifiers

asymmetric, 312
encryption, 305, 312
foreign. See foreign keys
natural, 52, 200
primary. See primary keys
private, 312
public, 312
surrogate, 52, 196, 197, 199, 214
symmetric, 312

keywords, SQL, 119
Kimball, Ralph, 354, 358

L
labels, column, 105
LAN (local area network), 308
layers of data abstraction, 6–9
least recently used (LRU) algorithm, 390
less than (<) operator, 80
less than or equal to (<=) operator, 80
level of abstraction, 295

life cycles, 171–188
described, 172
nontraditional, 182–183
phases, 173–182
prototyping, 182–183
SDLC, 172–174

LIKE operator, 137–139
local area network (LAN), 308
lock escalation, 339
lock granularity, 339
locking mechanisms, 338–341
logical data independence, 10
logical database design

considerations, 42
constraints, 46–55
data types, 44–46
database life cycle, 178–179
integrity constraints, 53–55
tables, 42–44

logical database model, 274–275
logical design phase, 178–179
logical layer, 8
logins. See user logins
lookup tables, 322
LRU (least recently used) algorithm, 390

M
MAC (Media Access Control) address, 310
Macros object type, 72
mainframes, 282–283
maintenance tasks, 73
mandatory relationships, 34
many-to-many relationships, 36–37, 38
mappings, 30, 380–383
markup language, 373
Martin, James, 225
master database, 316
material flows, 242
MAX function, 107
maximum cardinality, 32–33
McClure, Carma, 225
Media Access Control (MAC) address, 310
messages, 386
metadata

challenges, 358
described, 11

 468 Databases: A Beginner’s Guide

metadata (Continued)
in Design View, 76
flat files and, 10–11
summary tables, 358

methods, 20, 386
Microsoft, 24
Microsoft Access

accessing via Microsoft Office Online,
39–41

adding objects, 73
adding relationships in, 74
adding tables in, 73
creating forms-based queries in, 77–81
data types and, 46
deleting objects, 73
deleting relationships in, 75
displaying object definitions, 73
editing relationships in, 75
exploring Northwind database, 38–41,

66–73
forms-based queries. See forms-based

queries
getting started with, 65–73
Navigation Pane, 70–73
object types, 71–72
opening objects, 73
physical layer and, 7
queries vs. views, 77
Quick Access Toolbar, 68
relationships panel, 49–50, 73–75
removing tables from display, 74
ribbon, 68–70
selecting relationships in, 75
selecting tables in, 75
startup panel, 66
table design view, 75–77
versions, 38

Microsoft Access SQL, 101–103. See also SQL
Microsoft Office Online, 38, 39–41
Microsoft SQL Server. See SQL Server
middleware, 297
millions of instructions per second (MIPS), 286
MIN function, 107
minimum cardinality, 33
MIPS (millions of instructions per second), 286
model database, 316
modules, 178
Modules object type, 72

MOLAP (multidimensional OLAP) databases,
360–362

monitoring systems, 322–323
msdb database, 316
multidimensional OLAP (MOLAP) databases,

360–362
multidimensional tables, 360–362
multiplication operator (*), 105
multivalued attributes, 194, 195, 199, 207–208
MySQL, 121, 132

N
NAA (North American Aviation), 22
namespace, 132
naming conventions, 262–265

columns, 263–264
constraints, 263–264
ERDs, 235
indexes, 264–265
tables, 42–43, 262–263
views, 265

NASA Apollo moon project, 22
NAT (network address translation), 308
natural identifiers, 196
natural keys, 52, 200
nesting functions, 152
Netscape Server API, 294
network address translation (NAT), 308
network computing devices, 289
network model, 15–17
networks

enterprise, 306–309
firewalls, 307–308
LANs, 308
offsite employees, 308–309
routers, 293, 306–307
security, 306–310
VPNs, 308–309
wireless, 309–310

node, 13
non-CGI gateways, 294–295
noncorrelated subselects, 142
nonprocedural languages, 238
normalization, 189–219

applying process, 193–209
denormalization steps, 209–210

 Index 469

described, 42, 179, 190
foreign keys and, 197, 199, 231
fully normalized, 208–209
logical terminology, 190, 191
need for, 192–193
physical terminology, 190, 191
primary keys and, 190, 196–198
procedure overview, 190–191

North American Aviation (NAA), 22
Northwind database

aggregate functions, 106–109
columns, 44–46
conceptual design components, 38–41,

66–73
conceptual model, 31
constraints, 46–55
data types, 44–46
exploring with Microsoft Access, 38–41,

66–73
joins, 94–101, 109–114
logical/physical components, 42–57
naming, 42–43
opening with Microsoft Access, 66, 68
overview, 38–39
queries. See forms-based queries
queries listing, 77, 78
table definition, 44–45
tables, 42–44

NOT EQUAL operator, 343
not equal to (<>) operator, 80, 91–94
NOT NULL constraints, 53–55, 267
NOT NULL specification, 160
NOT operator, 343
N-tier client, 285, 288–290
NULL columns, 98–99
NULL specification, 160
null values, 53–55
number sign (#), 80

O
Oak language, 296
Object Browser, 125, 130–131
object identifier (OID), 21, 386, 389
object instances, 20
Object Linking and Embedding Database

(OLE DB), 296

object persistence, 387–392
object references, 21, 386
object request broker, 285
object-oriented (OO) applications, 385–392
object-oriented (OO) databases, 21, 386,

388–390, 392
object-oriented (OO) languages, 386–387
object-oriented (OO) model, 19–21
object-oriented (OO) programming, 386
object-relational DBMS (ORDBMS), 392–393
object-relational (OR) model, 21
objects

adding in Access, 73
anatomy of, 20
complex, 21, 386
constraints. See constraints
deleting, 9, 10, 73
described, 4, 9, 19, 20
displaying definition of, 73
finding with views, 127–129
loading into memory, 387–392
logical changes to, 10
maintenance of, 73
opening in Access, 73
physical changes to, 9
privileges, 164, 317, 320–321, 323–324
removing from database, 163–164
viewing with Object Browser, 130

observation, 177
OCI (Oracle Call Interface), 296
ODBC (Open Database Connectivity), 295–296
ODBC data source, 295
ODBC drivers, 295, 333–335
offsite employees, 308–309
OID (object identifier), 21, 386, 389
OLAP (online analytical processing), 353–370

data marts, 363–364
data mining, 364–365
data warehouses, 355–362, 364
OLTP systems, 354, 356
online transaction processing, 354

OLAP databases, 354–366
OLAP tools, 358
OLE DB (Object Linking and Embedding

Database), 296
OLTP (online transaction processing),

354, 356
OLTP systems, 356

 470 Databases: A Beginner’s Guide

ON DELETE CASCADE option, 268–269,
271, 345

one-to-many relationships, 13, 15, 35–36, 38
one-to-one relationships, 34–35, 37, 256
ongoing support, 181
online analytical processing. See OLAP
online transaction processing (OLTP), 354, 356
OO (object-oriented) applications, 385–392
OO (object-oriented) databases, 21, 386,

388–390, 392
OO (object-oriented) languages, 386–387
OO (object-oriented) model, 19–21
OO (object-oriented) programming, 386
OPEN CURSOR statement, 331–332
Open Database Connectivity. See ODBC
OPEN statement, 332
operating systems

minimal services for, 311
pages vs. blocks, 339
security considerations, 310–311
viruses, 314

operational database, 354
OR (object-relational) model, 21
OR operator, 94, 139–141
OR REPLACE option, 163
Oracle Application Express. See also Oracle SQL

main page, 122–123, 125
managing users, 122–125
starting, 121
termination characters and, 119
using Object Browser in, 130–131

Oracle Call Interface (OCI), 296
Oracle Database 10g Express Edition, 118, 119
Oracle databases

cursor processing, 330–332
instances, 317
privileges, 319, 320
schemas, 317–319
security, 317–319
transaction support in, 335
users, 317–318

Oracle SQL. See also Oracle Application
Express

case sensitivity, 132
getting started with, 121–127
tables, 127–131

ORDBMS (object-relational DBMS), 392–393
ORDER BY clause, 132, 134–136, 153, 154, 331

OSQL tool, 121
outer joins, 98–101, 146–148, 149
owner-member relationships, 15

P
packet filtering, 307
packets, 306–307
page locking, 339
parameters, SQL, 119
PARC (Group at the Xerox Palo Alto Research

Center), 386–387
parent tables, 49
parent-child relationships, 13, 15
parentheses (), 136, 156, 157
partitioning, 42, 256
partitioning column, 256
passwords

assigning to users, 122–124
default, 311
security issues, 304, 305, 309, 311–312

patches, 181, 311, 314
PCs (personal computers), 283
PeopleSoft, 286–287
percent sign (%), 137–138
performance

devices, 9
indexes and, 272–274
subselects and, 143
views and, 57, 272, 344

performance tuning, 181, 342–345
permissions. See privileges
persistence, 333, 387–392
personal computers (PCs), 283
phased implementation, 181
phases, 173–182
physical data independence, 8–9
physical database design, 253–278

columns, 44–46
considerations, 42
constraints, 46–55
data types, 44–46
database life cycle, 179
mapping logical model to, 274–275
tables, 42–44

physical design phase, 179–180
physical files, 44

 Index 471

physical layer, 7–8
physical security, 305–306
plain text, 312
planning phase, 174–175
PL/SQL (Procedural Language/SQL), 270, 330
plus sign (+), 148, 150
pointer chains, 14, 16
pointers, 13
port scans, 308
port security, 307
ports, 308
PostgreSQL, 121
pound sign (#), 80
precision, 270
precompilers, 297
primary key columns, 47
Primary Key option, 76
primary keys

choosing, 196–198
constraints, 47, 161–162, 267–268
described, 47
normalization and, 190, 196–198
searches and, 47

prioritization, 346
private keys, 312
privileges

granting with GRANT statement, 164–165
grantor/grantee, 164, 165
managing, 164
objects, 164, 317, 320–321, 323–324
Oracle DBMS, 319, 320
revoking, 165
server, 317
SQL Server, 320
statement, 317
system, 164, 317, 320
users, 317

procedural languages, 238
Procedural Language/SQL (PL/SQL), 270, 330
procedures, stored, 272
process models, 236–244
process-driven approach, 174–175
processes, 245–246
programs. See application programs
project activities, 173
project data management tasks, 184–186
project leader, 174
project manager, 174

project triangle, 183–184
projects, 172
properties, 4–10. See also variables
prototyping, 182–183
proxy servers, 308
pseudo-accounts, 317
public keys, 312

Q
QA (quality assurance) department, 179–180
QBE (Query By Example) tool, 64–65
quality assurance (QA) department, 179–180
QUEL, 120
queries

ad hoc, 8, 17, 21, 65, 392–393
command-based, 64, 65
described, 56
displaying SQL for, 101–103
forms-based. See forms-based queries
naming, 126
saving, 126
saving as views, 162–163
tuning, 342–344
vs. views, 77

Queries object type, 71
Query Builder, 125
Query By Example (QBE) tool, 64–65
Query Design panel, 77–113. See also forms-

based queries
advanced sorting, 85–88
aggregate functions, 106–109
calculated columns, 103–106
choosing columns to display, 82–83
choosing rows to display, 88–89
components, 78–81
compound row selection, 90–91
creating basic query, 77–81
displaying SQL for queries, 101–103
joining tables, 94–96
limiting join results, 97–98
list all customers, 81–82
multiple joins, 103–106
outer joins, 98–101
self-joins, 109–113
sorting results, 84–85
using not equal operator, 91–94

 472 Databases: A Beginner’s Guide

query execution plan, 342
query language, 5
Query tool, 342–343
question mark (?), 138

R
RAD (Rapid Application Development), 183
Rapid Application Development (RAD), 183
Rational Unified Process (RUP), 182, 228
RBA (relative block address), 273
RDBMS SQL interpreter, 132
RDBMS tables, 297
RDBMSs (relational database management

systems), 19
record types, 13, 15
records, 13, 15
recursive relationships, 33, 37–38, 74
Red Brick, 358
redundant data, 193
references

object, 21, 386
“swizzling,” 389–392

referential constraints, 47–51, 75, 161, 268.
See also relationships

relational calculus, 23
relational database management systems

(RDBMSs), 19
relational databases, 29–61. See also databases

advantages of, 24–25
attributes, 32
business rules, 38
columns, 44–46
conceptual database design components,

30–41
constraints, 46–55
data types, 44–46
entities, 30–32
example of, 18–19
integrity constraints, 53–55
logical/physical database design

components, 42–57
overview, 17–19
persistence using, 390–392
relationships, 32–38
tables, 42–44
views, 56–57

relational format, 224–225
relational model, 17–19
relations, 190, 191
relationships. See also referential constraints

Access relationships panel, 49–50, 73–75
adding in Access, 74
conditional, 34–35
deleting in Access, 75
editing in Access, 75
enforcing, 47
hierarchical model, 13
inherited, 95
mandatory, 34
many-to-many, 36–37, 38
maximum cardinality, 32–33
minimum cardinality, 33
multiple entities, 33
network model, 15–16
one-to-many, 35–36, 38
one-to-one, 34–35, 37
optional, 34–35
overview, 32–33
parent-child, 13, 15
recursive, 33, 37–38, 74
relational databases, 32–38
relational model, 18
transferability, 34
vs. relations, 191

relative block address (RBA), 273
release numbering, 346
repeating groups, 198–200, 212
Reports object type, 71
Required option, 76
requirements gathering phase, 175–178
result sets, 330
REVOKE statement, 320–321
ribbon, 68–70
roles, 164, 319, 321
rollback, 333
ROLLBACK statement, 154–155
ROLLBACK TRANSACTION statement, 334
rollout, 180–181
ROUND function, 107, 151, 152
routers, 293, 306–307
routing table, 306
row expansion, 345
rows. See also tables

child, 49

 Index 473

compound selection, 90–91
deleting, 49, 158–159, 268
displaying with SELECT statement,

136–143
grouping, 152–153
groups of, 107
hiding/showing, 57
inserting with INSERT statement, 155–157
limiting returned, 322
listing all, 81–82
listing all (SQL), 132–133
locking, 339
removing, 158–159
selecting for display, 88–91
selecting for display (SQL), 136–143
sorting, advanced, 85–88
sorting, basic, 84–85

Run icon, 80
RUP (Rational Unified Process), 182, 228

S
SA (system administrator) account, 304
sa user, 304, 316, 318, 319
Save button, 126
Saved SQL option, 127
scale, 270
schema owner accounts, 319
schemas

described, 4, 8, 118
Oracle, 317–319
Oracle HR sample schema, 118, 119

scripting languages, 313
SDLC (system development life cycle), 172–174
second normal form, 200–203
sector size, 339
security, 303–328

access, 314–322
applications, 311–314
auditing systems, 322–323
brute force attacks, 311
buffer overflows, 314
database clients, 311–314
database server, 305–311, 315–317
DoS attacks, 307
e-mail, 313
encryption, 309, 310, 312–313

firewalls, 290, 307–308
IP spoofing, 307
monitoring systems, 322–323
need for, 304–305
network, 306–310
offsite employees and, 308–309
Oracle DBMS, 317–319
passwords. See passwords
patches, 181, 311, 314
physical, 305–306
ports, 307, 308
sensitive data, 312–313
Slammer worm, 304
SQL injection, 314
in SQL Server, 315
in Sybase ASE, 315
system-level, 310–311
URL spoofing, 314
views and, 321–322
virus scanners, 314
web browsers, 313
wireless networks, 309–310
zombie attacks, 307

security architectures, 315–319
SELECT clause, 131, 134–136
SELECT statement, 131–154

aggregate functions, 150–154
clauses, 131–132
displaying rows, 136–143
joining tables, 143–150
limiting columns to display, 133–134
listing all rows/columns, 132–133
overview, 131–132
subselects, 141–143

selections
columns, 82–83
relationships, 75
rows, 88–91

self-joins, 109–113, 149–150
self-tests, answers to, 401–445
semicolon (;), 119
SEQUEL (Structured English Query Language),

120. See also SQL
SEQUENCE type, 377
server privileges, 317
Server Side Includes (SSI), 294
servers. See also database servers

application, 287–297

 474 Databases: A Beginner’s Guide

servers (Continued)
client/server model, 285–290
definition of, 315
described, 285
proxy, 308
security, 305–311, 315–317
SQL Server. See SQL Server
vs. database servers, 315
web, 293

services, 315
SET AUTOCOMMIT OFF command, 155
SET AUTOCOMMIT ON command, 155
SGML (Standard Generalized Markup

Language), 292, 372
Show option, 79
Show Table dialog box, 77–78
Show Table icon, 73
SHUTDOWN privilege, 320
Slammer worm, 304
slowly changing dimension, 361–362
Smalltalk language, 386–387
SMEs (subject matter experts), 176
snowflake schema, 360
software. See applications
software environment, 179–180
Sort option, 79
sorting rows, 84–88
Special Interest Group on Management of Data

(ACM SIGMOD) conference, 22–23
spreadsheets, 6
SQL (Structured Query Language), 117–168.

See also Microsoft Access SQL
aggregate functions, 150–154
case sensitivity, 132
choosing columns to display, 134–135
choosing rows to display, 136–143
conditional operators, 136–141
date support, 121
DCL, 120, 164–165
DDL. See DDL
displaying for queries, 101–103
DML, 119, 154–159
DQL. See DQL
Embedded SQL for Java, 297
express editions, 121
extensions, 120–121
history, 49, 120–121
joins, 143–150

listing all rows/columns, 132–133
Oracle. See Oracle SQL
overview, 118–120
PL/SQL, 270, 330
popularity of, 118
subselects, 141–143
tables, 127–131
Transact-SQL, 270–271, 330
versions, 120

SQL character sets, 380, 383
SQL clients, 119, 121, 331
SQL Commands tool, 125, 126
SQL data types, 380–383
SQL Developer, 342
SQL GRANT statement, 320–321
SQL identifiers, 380, 383
SQL injection, 314
SQL keywords, 119
SQL option, 125
SQL parameters, 119
SQL queries, 141, 144. See also queries
SQL REVOKE statement, 320–321
SQL Scripts tool, 125
SQL Server. See also servers

case sensitivity, 132
client tools, 121
cursor support, 270–271, 330
database security, 315–317
databases created by, 316
described, 24, 315
privileges, 320
security in, 315
transaction support in, 333–337
users, 317

SQL Server Management Studio, 121
SQL standards committees, 120
SQL statements

case sensitivity, 119
compatibility issues, 121
described, 49
parentheses in, 136

SQL3, 120
SQL-92, 120
SQL-99, 120
SQL/DS, 120
SQL/XML, 372, 376–385
square brackets [], 105
SSI (Server Side Includes), 294

 Index 475

Standard Generalized Markup Language
(SGML), 292, 372

star schema architecture, 358–360, 364,
365–366

starflake schema, 360
state, 230
statelessness, 292
statement privileges, 317
static web pages, 290
Stonebraker, Michael, 23, 24
STORAGE clause, 160
stored procedures, 272
StreamBase systems, 24
Stroustrup, Bjarne, 387
structure diagrams, 243
Structured English Query Language

(SEQUEL), 120. See also SQL
Structured Query Language. See SQL
subclasses, 230, 231
subject matter experts (SMEs), 176
subnets, 307
subqueries, 141–143, 344
subschemas, 8
subselects, 141–143
subtypes

ERDs, 230–235
tables, 259–262

SUM function, 106, 107
summary table architecture, 356–358, 364
Sun Microsystems, 387
super class, 230
super types

ERDs, 230–235
tables, 259–262

support, technical, 181
surrogate identifiers/keys, 52, 196, 197, 199, 214
surveys, conducting, 176–177
swim lane diagram, 240
“swizzling” references, 389–392
Sybase, 24
Sybase ASE

case sensitivity, 132
database security, 315–317
Transact-SQL, 270–271, 330
users, 317

Sybase System 10, 24
symmetric keys, 312
synonyms, 132, 265

SYS user, 318
system administrator (SA) account, 304
system development life cycle (SDLC), 172–174
system privileges, 164, 317, 320
SYSTEM user, 318
system-level security, 310–311
System/R database, 120

T
table definitions, 44–45
table design view, 75–77
Table option, 79
TABLE_NAME column, 127
tables

adding data to, 155–157
adding in Access, 73
adding to database, 160
altering definitions, 161–162
columns. See columns
described, 42
designing, 254–265
dimension, 358–360, 365–366
discrete, 260–261
displaying information about, 75–76
dropping, 163–164
fact, 358
index organized, 274
intersection, 37, 51–53
joining, 18, 94–101
listing all rows/columns, 81–82
locking, 339
lookup, 322
multidimensional, 360–362
naming conventions, 42–43, 262–263
normalization, 42
“one table” design, 261–262
partitioning, 42, 256
relational databases, 42–44
removing data from, 158–159
removing from Access display, 74
rows. See rows
selecting in Access, 75
size, 344
SQL, 127–131
subtypes, 259–262
summary, 356–358, 364

 476 Databases: A Beginner’s Guide

tables (Continued)
super types, 259–262
“three table” design, 259–260
“two table” design, 260–261
two-dimensional, 18
updating data in, 157–158
virtual, 56

Tables object type, 71
TABLESPACE clause, 160
tablespaces, 42, 44, 345
tagging, 292
tags, 373
TCP/IP (Transmission Control Protocol/Internet

Protocol), 290
technology stack, 290
tempdb database, 316
terminal emulators, 283
testing application exposures, 314
third normal form, 203–205
three-tier client/server model, 285,

287–288
TIMESTAMP data type, 121
Totals icon, 108
transaction deadlock, 340–341
transaction log, 334
transaction management, 330, 332–341
transaction support, 154–155
transactions

ACID acronym, 333
committing, 154–155
DBMS support for, 333–337
described, 154, 332–333
invoking from Web pages, 293–295
locking mechanisms, 338–341
rolling back, 154–155
SQL Server support for, 333–337

Transact-SQL, 270–271, 330
transferability, 34
transitive dependencies, 203–205
Transmission Control Protocol/Internet Protocol

(TCP/IP), 290
triggers, 55, 56, 270–271
trivial splits, 208–209
true condition, 54, 55
“Try This” exercises

Advanced Sorting, 85–88
Aggregate Functions, 106–109
Choose Columns to Display, 82–83

Choosing Rows to Display, 88–89
Compound Row Selection, 90–91
Computer Books Company, 214–216
Database Object Privileges, 323–325
Design Star Schema Tables, 365–366
Draw ERD in IE Format, 246–247
Exploring Northwind Database, 38–41
Exploring World Wide Web, 297–298
Joining Tables, 94–96
Limiting Join Results, 97–98
List All Customers, 81–82
Mapping Logical Model to Physical DB

Design, 274–275
Microsoft Access SQL, 101–103
Multiple Joins and Calculated Columns,

103–106
Outer Joins, 98–101
Project Database Management Tasks,

184–186
Self-Joins, 109–114
solutions, 447–457
Sorting Results, 84–85
SQL Transaction Support, 335–337
Unlock HR Account/Log in as HR,

122–127
Using Application Object Browser,

130–131
Using Not Equal, 91–94
Using SQL/XML Functions,

383–385
UTLA Academic Tracking,

210–213
tuning database queries, 342–344
tuning DML statements, 345
tuples, 192–194, 208, 231–232
two-dimensional tables, 18
two-tier client/server model, 285–287
type discriminator, 232

U
UIDs (unique identifiers), 32, 190, 196
ULTA practice exercise, 210–213
UML (Unified Modeling Language)

class diagrams, 228–230
process diagrams, 243–244

UML notation, 234

 Index 477

underscore (_), 137, 138
Unicode, 380, 383
Unified Modeling Language. See UML
Uniform Resource Locators. See URLs
unique constraints, 162, 270
unique identifiers (UIDs), 32, 190, 196
UNIQUE keyword, 163
unit fact, 32
unit of work, 332–333
universal database, 21
unknown condition, 54
unlocking user accounts, 122–124
UNTYPED type, 377
UPDATE statement, 157–158, 345
updates

anomalies, 193
concurrent, 337–340

URL spoofing, 314
URLs (Uniform Resource Locators), 292
U.S. Department of Defense (DoD), 290
user accounts. See also user logins

creating, 322
logging in, 122–124
unlocking, 122–124

user logins. See also user accounts
credentials, 311–312
Oracle Application Express, 121,

122–124
SQL Server, 315–316
Sybase ASE, 315–316

user views
CBC exercise, 214–216
described, 6, 175
ULTA exercise, 210–213

users
creating, 322
end users, 357
logins. See user logins
Oracle DBMS, 317–318
privileges, 317
pseudo-accounts, 317
schema owner accounts, 319
SQL Server, 317
Sybase ASE, 317

USER_TAB_COLUMNS view, 128, 129
USER_TABLES view, 127–128
USER_VIEWS view, 129
Utilities option, 125

V
VALUES clause, 156–157
variables, 19–20, 332
version numbering, 346
Vertica, 24
view definition, 56–57
views

advantages of, 272
catalog, 127–129
described, 18, 56
designing, 271–272
dropped tables and, 164
naming conventions, 265
omitting columns from, 322
overview, 56–57
performance and, 57, 272, 344
restrictions, 271
saving queries as, 162–163
security and, 321–322
table design, 75–77
user. See user views
vs. queries, 77

virtual private networks (VPNs), 308–309
virtual tables, 56
virus scanners, 314
VPNs (virtual private networks), 308–309

W
Web. See also Internet; World Wide Web

connecting databases to, 290–295
exploring, 297–298
overview, 290–293

web browsers, 121, 290, 313
web pages

dynamic, 290–292
invoking transactions from, 293–295
static, 290

web servers, 293
Web technology stack, 293
WHERE clause, 132, 136, 137, 148–149,

322, 343
wildcard characters, 137–139, 343
wireless access points, 309, 310
wireless networks, 309–310
wireless security policy, 310

 478 Databases: A Beginner’s Guide

WITH ADMIN OPTION clause, 165
WITH GRANT OPTION clause, 165, 320
Wong, Eugene, 23
World Wide Web, 290, 297–298. See also

Internet; Web

X
Xerox, 386–387
XML (Extensible Markup Language), 371–397

basics, 372–375
overview, 292–293, 372
popularity of, 293
SQL/XML, 372, 376–385

XML attributes, 374
XML data type, 376–378

XML elements, 374
XML names, 380
XML schema data types, 380–383
XML tree structures, 376
XML value functions, 378–380
XML vocabularies, 293
XMLSCHEMA type, 377
XMLType data type, 377
XQuery documents, 377

Z
ZIP codes, 204–205
zombie attacks, 307

