
Jenifer Tidwell,
Charles Brewer &

Aynne Valencia

Third Edition

Designing
Interfaces
Patterns for Effective Interaction Design

Jenifer Tidwell, Charles Brewer,
and Aynne Valencia

Designing Interfaces
Patterns for Effective Interaction Design

THIRD EDITION

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-492-05196-1

[TI]

Designing Interfaces
by Jenifer Tidwell, Charles Brewer, and Aynne Valencia

Copyright © 2020 Jenifer Tidwell, Charles Brewer, and Aynne Valencia. All rights reserved.

Printed in Canada.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional
sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: Jennifer Pollock
Development Editor: Angela Rufino
Production Editor: Christopher Faucher
Copyeditor: Octal Publishing, LLC
Proofreader: Carol Keller

Indexer: Ellen Troutman
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

November 2005: First Edition
December 2010: Second Edition
January 2020: Third Edition

Revision History for the Third Edition
2019-12-18: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781492051961 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Designing Interfaces, the cover image,
and related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the authors, and do not represent the publisher’s views.
While the publisher and the authors have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the authors disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781492051961

Table of Contents

Preface to the Third Edition. xi

1. Designing for People. 1
Context 2

Know Your Audience 2
Interactions Are Conversations 2
Match Your Content and Functionality to Your Audience 3
Skill Level 4
Goals: Your Interface Is Just a Means to Their Ends 6
Ask Why 6
Design’s Value: Solve the Right Problem, and Then Solve It Right 6

Research: Ways to Understand Context and Goals 8
Direct Observation 9
Case Studies 9
Surveys 9
Personas 10
Design Research Is Not Marketing Research 10

The Patterns: Cognition and Behavior Related to Interface Design 11
Safe Exploration 12
Instant Gratification 13
Satisficing 14
Changes in Midstream 15
Deferred Choices 16
Incremental Construction 17

iii

Habituation 18
Microbreaks 19
Spatial Memory 20
Prospective Memory 21
Streamlined Repetition 23
Keyboard Only 24
Social Media, Social Proof, and Collaboration 25

Conclusion 26

2. Organizing the Content: Information Architecture and Application Structure. 27
Purpose 28
Definition 29

Designing an Information Space for People 29
Approach 29

Separate Information from Presentation 30
Mutually Exclusive, Collectively Exhaustive 31
Ways to Organize and Categorize Content 32

Alphabetical 32
Number 32
Time 32
Location 33
Hierarchy 33
Category or Facet 33

Designing for Task and Workflow-Dominant Apps 33
Make Frequently Used Items Visible 33
“Chunk Up” Jobs into a Sequence of Steps 34
Multiple Channels and Screen Sizes Are Today’s Reality 34
Display Your Information as Cards 34

Designing a System of Screen Types 35
Overview: Show a List or Grid of Things or Options 36
Focus: Show One Single Thing 37
Make: Provide Tools to Create a Thing 38
Do: Facilitate a Single Task 38
The Patterns 39

Feature, Search, and Browse 39
Mobile Direct Access 51
Streams and Feeds 53
Media Browser 67

iv | Table of Contents

Dashboard 78
Canvas Plus Palette 82
Wizard 86
Settings Editor 90
Alternative Views 97
Many Workspaces 105
Help Systems 110
Tags 120

Conclusion 127

3. Getting Around: Navigation, Signposts, and Wayfinding. 129
Understanding the Information and Task Space 130
Signposts 130
Wayfinding 130
Navigation 131

Global Navigation 131
Utility Navigation 132
Associative and Inline Navigation 132
Related Content 132
Tags 132
Social 133

Design Considerations 133
Separate the Navigation Design from the Visual Design 133
Cognitive Load 133
Keep Distances Short 134

Navigational Models 135
Hub and Spoke 136
Fully Connected 137
Multilevel or Tree 138
Step by Step 139
Pyramid 140
Flat Navigation 141

The Patterns 142
Clear Entry Points 143
Menu Page 148
Pyramid 155
Modal Panel 158
Deep Links 165

Table of Contents | v

Escape Hatch 171
Fat Menus 174
Sitemap Footer 179
Sign-In Tools 185
Progress Indicator 189
Breadcrumbs 193
Annotated Scroll Bar 199
Animated Transition 202

Conclusion 208

4. Layout of Screen Elements. 209
The Basics of Layout 209

Visual Hierarchy 209
What Makes Things Look Important? 211
Four Important Gestalt Principles 217
Visual Flow 220
Using Dynamic Displays 223
Responsive Enabling 224
Progressive Disclosure 224
UI Regions 225

The Patterns 226
Visual Framework 228
Center Stage 231
Grid of Equals 235
Titled Sections 238
Module Tabs 242
Accordion 245
Collapsible Panels 249
Movable Panels 252

5. Visual Style and Aesthetics. 255
The Basics of Visual Design 256

Visual Hierarchy 258
Composition 258
Color 258
Typography 265
Readability 273
Evoking a Feeling 274

vi | Table of Contents

Images 278
Visual Design for Enterprise Applications 281

Accessibility 282
Ranges of Visual Styles 282

Skeuomorphic 282
Illustrated 285
Flat Design 287
Minimalistic 290
Adaptive/Parametric 292

Conclusion 294

6. Mobile Interfaces. 295
The Challenges and Opportunities of Mobile Design 296

Tiny Screen Sizes 296
Variable Screen Widths 296
Touch Screens 297
Difficulty of Typing Text 297
Challenging Physical Environments 297
Location Awareness 298
Social Influences and Limited Attention 298

How to Approach a Mobile Design 298
Some Worthy Examples 301

The Patterns 305
Vertical Stack 306
Filmstrip 310
Touch Tools 313
Bottom Navigation 316
Collections and Cards 318
Infinite List 322
Generous Borders 325
Loading or Progress Indicators 328
Richly Connected Apps 331

Make It Mobile 334

7. Lists of Things. 335
Use Cases for Lists 335
Back to Information Architecture 336
What Are You Trying to Show? 338

Table of Contents | vii

The Patterns 340
Two-Panel Selector or Split View 341
One-Window Drilldown 346
List Inlay 349
Cards 353
Thumbnail Grid 356
Carousel 361
Pagination 365
Jump to Item 368
Alpha/Numeric Scroller 370
New-Item Row 372

Lists Abound 374

8. Doing Things: Actions and Commands. 375
Tap, Swipe, and Pinch 377
Rotate and Shake 377
Buttons 377
Menu Bars 378
Pop-Up Menus 378
Drop-Down Menus 378
Toolbars 378
Links 378
Action Panels 379
Hover Tools 379
Single-Clicking Versus Double-Clicking Items 379
Keyboard Actions 380

Shortcuts 380
Tab Order 380

Drag-and-Drop 380
Typed Commands 381
Affordance 381
Direct Manipulation of Objects 382
The Patterns 383

Button Groups 384
Hover or Pop-Up Tools 387
Action Panel 390
Prominent “Done” Button or Assumed Next Step 396
Smart Menu Items 402

viii | Table of Contents

Preview 404
Spinners and Loading Indicators 409
Cancelability 415
Multilevel Undo 418
Command History 422
Macros 425

Conclusion 432

9. Showing Complex Data. 433
The Basics of Information Graphics 433

Organizational Models: How Is This Data Organized? 434
Preattentive Variables: What’s Related to What? 435
Navigation and Browsing: How Can I Explore This Data? 439
Sorting and Rearranging: Can I Rearrange This Data to See It Differently? 441
Searching and Filtering: How Can I See Only the Data That I Need? 443
The Actual Data: What Are the Specific Data Values? 445

The Patterns 446
Datatips 447
Data Spotlight 452
Dynamic Queries 455
Data Brushing 459
Multi-Y Graph 462
Small Multiples 465
The Power of Data Visualization 469

10. Getting Input from Users: Forms and Controls. 471
The Basics of Form Design 472

Form Design Continues to Evolve 474
Further Reading 475

The Patterns 476
Forgiving Format 477
Structured Format 482
Fill-in-the-Blanks 485
Input Hints 489
Input Prompt 494
Password Strength Meter 497
Autocompletion 502
Drop-down Chooser 510

Table of Contents | ix

List Builder 516
Good Defaults and Smart Prefills 519
Error Messages 524

Conclusion 531

11. User Interface Systems and Atomic Design. 533
UI Systems 534

An Example Component-Based UI System: Microsoft’s Fluent 534
Atomic Design: A Way of Designing Systems 538

Overview 539
The Atomic Design Hierarchy 540

UI Frameworks 541
Overview 542
Benefits 542
The Rise of UI Frameworks 543
A Look at Selected UI Frameworks 543

Conclusion 556

12. Beyond and Behind the Screen. 557
The Ingredients: Smart Systems 558

Connected Devices 558
Anticipatory Systems 559
Assistive Systems 559
Natural User Interfaces 559

Conclusion 559

Index. 561

x | Table of Contents

Preface to the Third Edition

“The more things change, the more they stay the same.”

We’re approaching the 15-year anniversary of the original publication of this book,
Designing Interfaces. And it’s been 10 years since the second edition. It’s worth looking
at what’s changed and what hasn’t, and what it means for interface design and people
who interact with software.

Since then, the big change is that technology and software accelerated their growth
and spread in an ever-increasing way. This trend is not stopping. Today, we interact
with software in almost every aspect of our daily lives; for work, leisure, communicat‐
ing, shopping, learning, and more. The list of devices and things with software smarts
and internet connectivity is exploding: cars, smart speakers, televisions, toys, watches,
homes. Screen sizes and types vary, and an explosion of interfaces that are primarily
gesture or voice are found in consumer products. Globally, more than half the popu‐
lation of the planet now accesses the internet. Finally, software is becoming more
powerful, more analytical, more predictive, more able to offer smarter insights and
operate more independently. In a phrase, it’s becoming more like us.

Interface design, like everything else, changes to keep up with the changing times. A
third edition that tries to be the comprehensive design guide for all the possible inter‐
faces in this increasing complexity would be enormous and never finished.

Why We Wrote This Book
When the opportunity arose to create the third edition of Designing Interfaces, we
were excited for a number of reasons. First, we couldn’t help but be impressed that we
have seen this title regularly on our colleagues’ desks and shelves over the years, a
constant companion. Indeed, Designing Interfaces has been a lasting source of infor‐
mation and inspiration for many designers for a decade and a half. It’s a privilege to
have a hand in updating this stalwart text.

xi

The timing was right, too. The speed of change in technology and our digital lives has
increased dramatically. Design is undergoing rapid change, as well. Designing Inter‐
faces needed to be updated. That meant a twin opportunity of bringing forward what
makes this book special and then sharpening and freshening the focus of the book.

The vision we said “Yes!” to is this: we see the need for a new guidebook to design. It
would help make sense of this new state of software design. We wanted to write a
guidebook that would have broad appeal, one that would be kept on hand by design‐
ers and teams of all stripes, from novice to seasoned. Although it’s no longer possible
for a single tome to be a guide to all emerging digital channels and specializations, we
still wanted a guidebook that would speak to the “home base” of interaction design as
we understand it today. For this reason, we decided to focus this third edition on
screen-based interaction design for web and mobile. What we removed is outlined in
just a moment. Finally, we wanted to write a guidebook that offers a unique point of
view. What makes Designing Interfaces unique and relevant is obviously its design pat‐
terns. We added some patterns of our own, specifically those aspects of human cogni‐
tion and behavior that influence our design work. We hope we have a guidebook that
brings design patterns to a new audience.

Design Patterns Remain Relevant
We asked ourselves, “How is design and Designing Interfaces relevant?” The answer is
the design patterns. Design pattern s come from the ways people perceive and use
software. Human senses and psychology don’t change, and these patterns work with
these, not against them. The patterns are evergreen also because they are based on the
tasks–big and small–that people want to do with software. People will always want to
use screens to search for things; enter data; create, control, or manipulate digital
objects; manage money and payments; and send and receive information, messages,
and files to other people. Design patterns form the building blocks for UIs for any
screen. What’s more, thinking in patterns and looking for emergent ones is very
much in line with how software and interaction design is carried out today.

Software Is Systems Now
Now more than ever, designers, entrepreneurs and developers, and companies have
an effective toolset to design and build great software.

The design and software world has evolved into a systems, components, and modules
approach. Starting from scratch to design or code something entirely new is not the
norm anymore. There are numerous user interface (UI) toolkits and frameworks that
allow you to create screen-based interfaces that work across many screen sizes
quickly. These component libraries should be regarded as a way to rapidly get to a
solid base. They are not a ceiling for design innovation: they are the floor.

xii | Preface to the Third Edition

The services and middleware that power software are increasingly an integration of
separately owned and operated services, as well. Why develop your own registration
system when you can sign up with Google, Facebook, and others? Why develop your
own analytics and report-building software when you can integrate your choice of
robust, customizable business intelligence platforms? Why host your own mobile
platform when you have Amazon Web Services? The same is true for all of your HR
processes, all of your IT infrastructure. We increasingly assemble, rather than create
de novo.

Focus: Screen-Based, Web, and Mobile
We chose to focus on screen-based design for the web and mobile devices because
that is the majority of what’s out there today. Screens are not going away. There will
be more screens. In fact, the complexity of what we need to show on these screens is
increasing. This will test our skills as designers and builders even more. We’ll always
need people to design these interfaces.

We reworked the visual design and interaction design chapters to focus on the foun‐
dational theories and practices that drive great design. The rest of the book is the dis‐
cussion of the patterns and how they can be applied.

We’ve updated the patterns and examples and provided explanations that show how
they are relevant today.

What’s Not in This Edition
We deliberately did not go into a number of newly emerged and still-emerging areas.
Not because they’re unimportant; rather, it’s because they have their own still-
evolving patterns and present special design challenges. Already they represent dis‐
tinct domains of design. Design books that focus on these unique new fields are here
now. To go into the specifics of these areas, look for a design book that specializes in
that domain.

Voice
We talk to our phones, our cars, and our smart music speakers at home to make soft‐
ware work for us. We have conversations with the machine. To find out more about
designing for voice, we recommend Designing Voice User Interfaces: Principles of Con‐
versational Experiences by Cathy Pearl (O’Reilly, 2017).

Social media
Social media has evolved beyond being a way for friends and family to stay connec‐
ted. It is a communication, discussion, and interaction layer that is present in almost
all software. It has revolutionized business communication and productivity. For

Preface to the Third Edition | xiii

more on this, see Designing Social Interfaces: Principles, Patterns, and Practices for
Improving the User Experience by Christian Crumlish and Erin Malone (O’Reilly,
2015).

Streaming digital television
What we call television is now streaming digital video for entertainment on the
screen or device of our choice. The interfaces for this are evolving beyond searching
and browsing. TV is an app now, too, with access to all the features and power of our
devices. You can read more on this in Designing Multi-Device Experiences: An Ecosys‐
tem Approach to User Experiences across Devices by Michal Levin (O’Reilly, 2014).

Augmented reality/virtual reality/mixed reality
Interface and software are becoming a layer on top of the physical world or a fully
immersive world of its own. Goggles, glasses, and other devices are allowing us to
mix the digital world in with what we see in front of us. To learn more, read Creating
Augmented and Virtual Realities: Theory and Practice for Next-Generation Spatial
Computing by Erin Pangilinan et al. (O’Reilly, 2019).

Chatbots and conversational design
Software assistants that seem to be human now talk to us every day via voice, messag‐
ing, and chat. These chatbots understand and respond to a conversation in a highly
natural-seeming way. Powered by software that recognizes patterns in data and
speech, and then learning and improving, chatbots are able to take over the handling
of simple information requests and carrying out basic tasks for almost any business
or situation. To achieve this capability, designers must create the source data domain
and the conversation frameworks and scenarios that make the chatbot learn and
become useful. To learn more about designing bots and conversations, check out
Designing Bots by Amir Shevat (O’Reilly, 2017).

Natural user interfaces—gesture-based interfaces (beyond touch)
This evolving area of design focuses on using the body to interact with technology.
Interfaces that you can touch, hold, squeeze or wave at; experiences that you can trig‐
ger by the movement of the hands, feet, or by moving around in space.

Who This Book Is For
We hope Designing Interfaces reaches current and new audiences. We created it to be
of interest and value to many different people. It’s for design beginners, mid-career
practitioners and managers, seasoned professionals, and executives. It’s for people
who want to learn, to get a refresher, and to get inspiration and a new point of view.
It’s for teams, classes, and individuals. It’s for interaction designers, information

xiv | Preface to the Third Edition

architects, product designers, UX/UI designers, product managers, developers, QA
engineers, strategists, managers, leaders, consultants, teachers, students, and anyone
who is interested in designing better software.

How This Book Is Organized
This book now has 12 chapters—some new, some substantially updated. The chapters
themselves mostly follow a standard two-part structure.

Introduction and Design Discussion
The first half of each chapter is focused on introducing the topic and then expanding
on it. This includes a discussion of the theory and practice of design as it relates to
the chapter topic. Design principles, guidelines, and recommended best practices are
reviewed. This sets the context for the second half of the chapter.

The Patterns
The patterns are concrete bundles of components and functions that help make soft‐
ware more usable and more useful. The second half of each chapter is dedicated to a
selection of software design patterns. The selection is not an exhaustive list. There are
many more out there. Each pattern is broken down into the following structure:

What

A definition of the design pattern.

Use when

This section covers the likely scenarios for use. The context for using the pattern is
explained, along with any special considerations or exceptions.

Why

This section analyzes the purpose and benefits of the design pattern. This includes
who might benefit and what kind of benefits can be intended or expected.

How

This section speaks most closely to the design of the pattern itself and the means of
implementing it. What you should do to use the pattern well and when it is effective
are outlined.

Preface to the Third Edition | xv

Examples

This last section provides a series of screenshots from different web and mobile prop‐
erties that illustrate the selected pattern. Each example is described and analyzed.

Conclusion
We believe more people than ever are designing and building software. The tools are
there. We want a guidebook for this new state of software design that makes it easy to
understand and easy to implement. We wanted to write the handbook for web and
mobile screen design that we would like to have at hand on our desks, a guide to give
early-career designers, and a reference for product managers, engineers, and execu‐
tive management. We hope that it becomes a useful reference that gives a common
vocabulary for designing interfaces.

We see that consumer software experiences are an ever-present part of our lives now.
We’re spending more time than ever using software interfaces. They should make life
easier, not more difficult.

Although new modes, devices, and formats are rapidly emerging, screens are with us
now and will be with us for a long time. We will be typing, tapping, and touching
screens to get jobs done and to entertain ourselves, to find something, to buy some‐
thing, and learn something. We hope the principles and examples in this book will
give you the knowledge and confidence to use these proven patterns to create great
products and services, great design, and great experiences for everyone.

— Jenifer Tidwell, Charlie Brewer, and Aynne Valencia

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates pattern names, new terms, URLs, email addresses, filenames, and file
extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

xvi | Preface to the Third Edition

O’Reilly Online Learning
For more than 40 years, O’Reilly Media has provided technol‐
ogy and business training, knowledge, and insight to help
companies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, conferences, and our online learning platform. O’Reilly’s
online learning platform gives you on-demand access to live training courses, in-
depth learning paths, interactive coding environments, and a vast collection of text
and video from O’Reilly and 200+ other publishers. For more information, please
visit http://oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at https://oreil.ly/designing-interfaces-3e.

Email bookquestions@oreilly.com to comment or ask technical questions about this
book.

For more information about our books, courses, conferences, and news, see our web‐
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
We would like to thank our technical reviewers, Erin Malone, Kate Rutter, Frances
Close, Christy Ennis Kloote, Matthew Russell, and George K. Abraham.

Thank you to Christian Crumlish, for connecting us to this opportunity.

Preface to the Third Edition | xvii

http://oreilly.com
http://www.oreilly.com
https://oreil.ly/designing-interfaces-3e
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

And a big thank you to Angela Rufino and Jennifer Pollock from O’Reilly.

Aynne Valencia: I would like to acknowledge the stellar faculty of IxD@CCA, and the
students I have had at SFSU, CCA, and GA over the years: you are a constant source
of inspiration and give me abundant hope for the future. And mostly, I thank my hus‐
band, Don Brooks, for being my travel partner and for always defaulting to yes.

Charlie Brewer: I would like to thank the following people: the people at O’Reilly, for
the chance to try something new professionally; the product team at SpaceIQ, for
schedule flexibility; and especially my family and friends who have encouraged me in
this effort.

xviii | Preface to the Third Edition

Chapter 1

Designing for People

This book is almost entirely about the look and behavior of applications, web apps,
and interactive devices. But this first chapter is the exception to the rule. No screen‐
shots here, no layouts, no navigation, no diagrams, no visuals at all.

Why not? After all, that’s probably why you picked up the book in the first place.

In this first chapter, we outline the purpose and outcomes of understanding how peo‐
ple use software. Specifically, you’ll get a sense for what is critical to people when it
comes to designing websites, applications and interfaces:

• Overall goals in using your site or application
• The breakdown of tasks in carrying out those goals
• How they think about the particular subject or domain
• The language they use to think and talk about this subject
• How skilled or unskilled they are in doing the work
• Their attitudes toward the subject

Good interface design doesn’t begin with pictures. It begins with an understanding of
people: what they’re like, why they use a given piece of software, and how they might
interact with it. The more you know about them and the more you empathize with
them, the more effectively you can design for them. Software, after all, is merely a
means to an end for the people who use it. The better you satisfy those ends, the hap‐
pier those users will be.

A framework for achieving this is described here. It covers four areas. These are not
strict rules or requirements for creating great designs. But having a plan for how you
will inform yourself and your team in each area will give you confidence that your
work is based on real insights into valuable problems to solve for your target

1

customers. Decide for yourself what level of time and effort is appropriate for your
project or company. Revisiting these areas regularly will keep key insights at the top
of your mind and help focus everyone’s effort, especially user interface (UI) design,
on creating great outcomes for people.

The four-part structure for understanding design for people is this:

Context
Who is your audience?

Goals
What are they trying to do?

Research
Ways to understand context and goals

The Patterns
Cognition and behavior related to interface design

Context
The first major element and the first step in designing for people is to understand the
human context for your design intention. Interaction design starts with defining and
understanding the people who will use your design. Specifically, ground your design
decisions in understanding what they may want to do and what they bring to the
interaction in terms of expectations, knowledge of relevant subjects or information
domains, and their skill level with software.

Know Your Audience
There’s a maxim in the field of interface design: “You are not the user.”

So, this chapter talks about people. It covers a few fundamental ideas briefly in this
introduction, and then discusses some patterns that differ from those in the rest of
the book. They describe human behaviors—as opposed to system behaviors—that the
software you design might need to support. Software that supports these human
behaviors better helps users achieve their goals.

Interactions Are Conversations
Each time someone uses an application, or any digital product, they carry on a con‐
versation with the machine. It might be literal, as with a command line or phone
menu, or tacit, like the “conversation” an artist has with their paints and canvas—the
give and take between the craftsperson and the thing being built. With social soft‐
ware, it can even be a conversation by proxy. Whatever the case, the UI mediates that
conversation, helping users achieve whatever ends they had in mind.

2 | Chapter 1: Designing for People

Here are the key points:

• There are two participants in the conversation: the person and the software.
• There is a constant back and forth exchange of information.
• The exchange is a series of requests, commands, reception, processing, and

response.
• The human in the conversation needs continuous feedback from the interface

that confirms that things are working normally, inputs are being processed, and
that they are proceeding satisfactorily toward the goal of the moment.

• For this feedback loop to work, the software—which can’t be as spontaneous and
responsive as a real human (at least not yet)—should be designed to mimic a
conversation partner. It should be understandable to its partner, it should indi‐
cate it’s active (when it’s “listening”), and it should be obvious when it’s respond‐
ing. Another layer on this is having some anticipated next steps or
recommendations, in the same way a considerate person might be helpful to
another.

As the UI designer, then, you get to script that conversation, or at least define its
terms. And if you’re going to script a conversation, you should understand the
human’s side as well as possible. What are the user’s motives and intentions? What
“vocabulary” of words, icons, and gestures does the user expect to employ? How can
the application set expectations appropriately for the user? How do the user and the
machine finally end up communicating meaningfully with each other?

Match Your Content and Functionality to Your Audience
Before you start the design process, consider your overall approach. Think about how
you might design the interface’s overall interaction style—its personality, if you will.

When you carry on a conversation with someone about a given subject, you adjust
what you say according to your understanding of the other person. You might con‐
sider how much they care about the subject, how much they already know about it,
how receptive they are to learning from you, and whether they’re even interested in
the conversation in the first place. If you get any of that wrong, bad things happen—
the person might feel patronized, uninterested, impatient, or utterly baffled.

This analogy leads to some obvious design advice. The subject-specific vocabulary
you use in your interface, for instance, should match your users’ level of knowledge; if
some users won’t know that vocabulary, give them a way to learn the unfamiliar
terms. If they don’t know computers very well, don’t make them use sophisticated
widgetry or uncommon interface-design conventions. If their level of interest might
be low, respect that, and don’t ask for too much effort for too little reward.

Context | 3

Some of these concerns permeate the entire interface design in subtle ways. For
example, do your users expect a short, tightly focused exchange about something very
specific, or do they prefer a conversation that’s more of a free-ranging exploration? In
other words, how much openness is there in the interface? Too little, and your users
feel trapped and unsatisfied; too much, and they stand there paralyzed, not knowing
what to do next, unprepared for that level of interaction.

Therefore, you need to choose how much freedom your users have to act arbitrarily.
At one end of the scale might be a software installation wizard: the user is carried
through it with no opportunity to use anything other than Next, Previous, or Cancel.
It’s tightly focused and specific, but quite efficient—and satisfying, to the extent that it
works and is quick. At the other end might be an application such as Excel, an “open
floorplan” interface that exposes a huge number of features in one place. At any given
time, the user has hundreds of things that they could do next, but that’s considered
good, because self-directed, skilled users can do a lot with that interface. Again, it’s
satisfying, but for entirely different reasons.

Skill Level
How well can your audience use your interface now and how much effort are your
users willing to spend to learn it?

Some of your customers might use it every day on the job—clearly, they’d become an
expert user over time. But they will become increasingly unhappy with even small
dissatisfactions. Maybe they’ll use it sometimes and learn it only well enough to get
by (Satisficing). Difficulties in usage can be tolerated more. Maybe they’ll use it only
once. Be honest: can you expect most users to become intermediates or experts, or
will most users remain perpetual beginners?

Software designed for intermediate-to-expert users include the following:

• Photoshop
• Excel
• Code development environments
• System-administration tools for web servers

In contrast, here are some things designed for occasional users:

• Kiosks in tourist centers or museums
• Windows or macOS controls for setting desktop backgrounds
• Purchase pages for online stores
• Installation wizards

4 | Chapter 1: Designing for People

• Automated teller machines

The differences between the two groups are dramatic. Assumptions about users’ tool
knowledge permeate these interfaces, showing up in their screen-space usage, label‐
ing, and widget sophistication, and in the places where help is (or isn’t) offered.

The applications in the first group have lots of complex functionality, but they don’t
generally walk the user through tasks step by step. They assume that users already
know what to do, and they optimize for efficient operation, not learnability; they tend
to be document centered or list driven (with a few being command-line applications).
They often have entire books and courses written about them. Their learning curves
are steep.

The applications in the second group are the opposite: restrained in functionality but
helpful about explaining it along the way. They present simplified interfaces, assum‐
ing no prior knowledge of document- or list-centered application styles (e.g., menu
bars, multiple selection, etc.). “Wizards” frequently show up, removing attention-
focusing responsibility from the user. The key is that users aren’t motivated to work
hard at learning these applications—it’s usually just not worth it!

Now that you’ve seen the extremes, look at the applications in the middle of the
continuum:

• Microsoft PowerPoint
• Email clients
• Facebook
• Blog-writing tools

The truth is that most applications fall into this middle ground. They need to serve
people on both ends adequately—to help new users learn the tool (and satisfy their
need for instant gratification) while enabling frequent-user intermediates to get
things done smoothly. Their designers probably knew that people wouldn’t take a
three-day course to learn an email client. Yet the interfaces hold up under repeated
usage. People quickly learn the basics, reach a proficiency level that satisfies them,
and don’t bother learning more until they are motivated to do so for specific
purposes.

You might someday find yourself in tension between the two ends of this spectrum.
Naturally you want people to be able to use your design “out of the box,” but you
might also want to support frequent or expert users as much as possible. Find a bal‐
ance that works for your situation. Organizational patterns in Chapter 2, such as
Help Systems, can help you serve both constituencies.

Context | 5

1 This is the same principle that underlies a well-known technique called root-cause analysis. But root-cause
analysis is a tool for fixing organizational failures; here, we use its “five why’s” (more or less) to understand
everyday user behaviors and feature requests.

Goals: Your Interface Is Just a Means to Their Ends
Everyone who uses a tool—software or otherwise—has a reason for using it. These
are their goals. Goals could be outcomes such as these:

• Finding some fact or object
• Learning something
• Performing a transaction
• Controlling or monitoring something
• Creating something
• Conversing with other people
• Being entertained

Well-known idioms, user behaviors, and design patterns can support each of these
abstract goals. User experience (UX) designers have learned, for example, how to help
people search through vast amounts of online information for specific facts. They’ve
learned how to present tasks so that it’s easy to walk through them. They’re learning
ways to support the building of documents, illustrations, and code.

Ask Why
The first step in designing an interface is to learn what its users are really trying to
accomplish. Filling out a form, for example, is almost never a goal in and of itself—
people only do it because they’re trying to buy something online, renew their driver’s
license, or install software. They’re performing some kind of transaction.

Asking the proper questions can help you connect user goals to the design process.
Users and clients typically speak to you in terms of desired features and solutions, not
of needs and problems. When a user or client tells you that they want a certain fea‐
ture, ask why they want it—determine their immediate goal. Then, to the answer of
this question, ask “why” again. And again. Keep asking until you move well beyond
the boundaries of the immediate design problem.1

Design’s Value: Solve the Right Problem, and Then Solve It Right
Why should you ask these questions if you have clear requirements? Because if you
love designing things, it’s easy to get caught up in an interesting interface design
problem. Maybe you’re good at building forms that ask for just the right information,

6 | Chapter 1: Designing for People

with the right controls, all laid out nicely. But the real art of interface design lies in
solving the right problem, defined as helping the user achieve their goal.

So, don’t get too fond of designing that form. If there’s any way to finish the transac‐
tion without making the user go through that form at all, get rid of it altogether. That
gets the user closer to their goal, with less time and effort spent on their part (and
maybe yours, too).

Let’s use the “why” approach to dig a little deeper into some typical design scenarios:

• Why does a mid-level manager use an email client? Yes, of course—“to read
email.” But, why do they read and send email in the first place? To converse with
other people. Of course, other means can achieve the same ends: the phone, a
hallway conversation, a formal document. But apparently, email fills some needs
that the other methods don’t. What are they, and why are they important to this
manager? The convenience of choosing when to send or respond? Privacy? The
ability to archive a conversation? Social convention? What else?

• A father goes to an online travel agent, types in the city where his family will be
taking a summer vacation, and tries to find plane ticket prices on various dates.
He’s learning from what he finds, but his goal isn’t just to browse and explore dif‐
ferent options. Ask why. His goal is actually a transaction: to buy plane tickets.
Again, he could have done that at many different websites, or over the phone
with a live travel agent. How is this site better than those other options? Is it
faster? Friendlier? More likely to find a better deal?

• Sometimes, goal analysis really isn’t enough. A snowboarding site might provide
information (for learning), an online store (for transactions), and a set of video
clips (for entertainment). Suppose that someone visits the site for a purchase, but
they get sidetracked into the information on snowboarding tricks—they have
switched goals from accomplishing a transaction to browsing and learning.
Maybe they’ll go back to purchasing something, maybe not. And does the life‐
style and entertainment part of the site successfully entertain both the 12-year-
old and the 35-year-old? Will the 35-year-old go elsewhere to buy their new
board if they don’t feel at home there, or do they not care? It’s useful to expand
your goal framework to include an understanding of the specific business pur‐
chase cycle. Your snowboarding customer will have different goals at different
stages of this cycle. Alternately, you might want to design how you could foster a
long-term loyalty between the brand and the customer. This could be done via
content and functionality that fosters an identity, builds a community, and cele‐
brates a lifestyle.

It’s deceptively easy to model users as a single faceless entity—“The User”—walking
through a set of simple use cases, with one task-oriented goal in mind. But that won’t
necessarily reflect your users’ reality.

Context | 7

To do design well, you need to take many “softer” factors into account: expectations,
gut reactions, preferences, social context, beliefs, and values. All of these factors could
affect the design of an application or site. Among these softer factors, you might find
the critical feature or design factor that makes your application more appealing and
successful.

So, be curious. Specialize in finding out what your users are really like, and what they
really think and feel.

Research: Ways to Understand Context and Goals
Research is the starting point in design for understanding people. Empirical discov‐
ery is the only really good way to obtain this information. Qualitative research such
as one-on-one interviews gives you the basis for understanding your audience’s
expectations, vocabulary, and how they think about their goals or structure their
work. You can often detect patterns in what you’re hearing. These are your signals for
guiding the design. Quantitative research such as a survey can give numerical valida‐
tion or disqualification to your quant findings.

To start a design, you’ll need to characterize the kinds of people who will be using
your design (including the softer factors just mentioned), and the best way to do that
is to go out and meet them.

Each user group is unique, of course. The target audience for, say, a new mobile
phone app will differ dramatically from the target audience for a piece of scientific
software. Even if the same person uses both, their expectations for each are different
—a researcher using scientific software might tolerate a less-polished interface in
exchange for high functionality, whereas that same person might stop using the
mobile app if they find its UI to be too difficult to use after a few days.

Each user is unique, too. What one person finds difficult, the next one won’t. The
trick is to figure out what’s generally true about your users, which means learning
about enough individual users to separate the quirks from the common behavior
patterns.

Specifically, you’ll want to learn the following:

• Their goals in using the software or site
• The specific tasks they undertake in pursuit of those goals
• The language and words they use to describe what they’re doing
• Their skill at using software similar to what you’re designing
• Their attitudes toward the kind of thing you’re designing, and how different

designs might affect those attitudes

8 | Chapter 1: Designing for People

I can’t tell you what your particular target audience is like. You need to find out what
they might do with the software or site, and how it fits into the broader context of
their lives. Difficult though it may be, try to describe your potential audience in terms
of how and why they might use your software. You might get several distinct answers,
representing distinct user groups; that’s OK. You might be tempted to throw up your
hands and say, “I don’t know who the users are,” or, “Everyone is a potential user.” But
that doesn’t help you focus your design at all—without a concrete and honest descrip‐
tion of those people, your design will proceed with no grounding in reality.

This user-discovery phase will consume time and resources early in the design cycle,
especially if you don’t really have a handle on who your audience is and why they
might use your designs. It’s an investment. It’s worth it because the understanding you
and the team gain gives long-term payback in better designs: solving the correct
problems, and fit for purpose.

Fortunately, lots of books, courses, and methodologies now exist to help you.
Although this book does not address user research, following are some methods and
topics to consider.

Direct Observation
Interviews and onsite user visits put you directly into the user’s world. You can ask
users about what their goals are and what tasks they typically do. Usually done “on
location,” where users would actually use the software (e.g., in a workplace or at
home), interviews can be structured—with a predefined set of questions—or unstruc‐
tured, in which you probe whatever subject comes up. Interviews give you a lot of
flexibility; you can do many or a few, long or short, formal or informal, on the phone
or in person. These are great opportunities to learn what you don’t know. Ask why.
Ask it again.

Case Studies
Case studies give you deep, detailed views into a few representative users or groups of
users. You can sometimes use them to explore “extreme” users that push the bound‐
aries of what the software can do, especially when the goal is a redesign of existing
software. You can also use them as longitudinal studies—exploring the context of use
over months or even years. Finally, if you’re designing custom software for a single
user or site, you’ll want to learn as much as possible about the actual context of use.

Surveys
Written surveys can collect information from many users. You can actually get statis‐
tically significant numbers of respondents with these. Because there’s no direct
human contact, you will miss a lot of extra information—whatever you don’t ask
about, you won’t learn about—but you can get a very clear picture of certain aspects

Research: Ways to Understand Context and Goals | 9

of your target audience. Careful survey design is essential. If you want reliable num‐
bers instead of a qualitative “feel” for the target audience, you absolutely must write
the questions correctly, pick the survey recipients correctly, and analyze the answers
correctly—and that’s a science.

You can find some further guidelines for writing effective survey questions here:

• Writing Good Survey Questions
• Questionnaire Design Tip Sheet

Personas
Personas aren’t a data-gathering method, but they do help you figure out what to do
with your data after you have it. This is a design technique that models the target
audiences. For each major user group, you create a fictional person, or “proto-
person,” who captures the most important aspects of the users in that group: what
tasks they’re trying to accomplish, their ultimate goals, and their experience levels in
the subject domain and with computers in general. Personas can help you stay
focused. As your design proceeds, you can ask yourself questions such as, “Would
this fictional person really do X? What would she do instead?”

Design Research Is Not Marketing Research
You might notice that some of these methods and topics, such as interviews and sur‐
veys, sound suspiciously like marketing activities. They are closely related. Focus
groups, for example, can be useful, but be careful. In group settings, not everyone will
speak up, and just one or two people might dominate the discussion and skew your
understanding. There is also the very robust marketing practice of market segmenta‐
tion. It resembles the definition of target audiences used here, but market segments
are defined by demographics, psychographics, and other characteristics. Target audi‐
ences from a UI design perspective are defined by their task goals and behaviors.

In both cases, the whole point is to understand the audience as best you can. The dif‐
ference is that as a designer, you’re trying to understand the people who use the soft‐
ware. A marketing professional tries to understand those who buy it.

It’s not easy to understand the real issues that underlie users’ interactions with a sys‐
tem. Users don’t always have the language or introspective skill to explain what they
really need to accomplish their goals, and it takes a lot of work on your part to ferret
out useful design concepts from what they can tell you—self-reported observations
are usually biased in subtle ways.

Some of these techniques are very formal, and some aren’t. Formal and quantitative
methods are valuable because they’re good science. When applied correctly, they help

10 | Chapter 1: Designing for People

https://oreil.ly/P5o1n
https://oreil.ly/7vbqD

you see the world as it actually is, not how you think it is. If you do user research
haphazardly, without accounting for biases such as the self-selection of users, you
might end up with data that doesn’t reflect your actual target audience—and that can
only hurt your design in the long run.

But even if you don’t have time for formal methods, it’s better to just meet a few users
informally than to not do any discovery at all. Talking with users is good for the soul.
If you’re able to empathize with users and imagine those individuals actually using
your design, you’ll produce something much better.

The Patterns: Cognition and Behavior
Related to Interface Design
The patterns that follow are some of the most common ways people think and behave
as it relates to software interfaces. Even though individuals are unique, people in gen‐
eral behave predictably. Designers have been doing site visits and user observations
for years; cognitive scientists and other researchers have spent countless hours watch‐
ing how people do things and how they think about what they do.

So, when you observe people using your software, or doing whatever activity you
want to support with new software, you can expect them to do certain things. The
behavioral patterns that follow are often seen in user observations. The odds are good
that you’ll see them too, especially if you look for them.

Note
For all of you pattern enthusiasts: these patterns aren’t like the others in this
book. They describe human behaviors—not interface design elements—
and they’re not prescriptive, like the patterns in other chapters. Instead of
being structured like the other patterns, these are presented as small essays.

Again, an interface that supports these patterns well will help users achieve their goals
far more effectively than interfaces that don’t support them. And the patterns are not
just about the interface, either. Sometimes the entire package—interface, underlying
architecture, feature choice, documentation, everything—needs to be considered in
light of these behaviors. But as the interface designer or interaction designer, you
should think about these as much as anyone on your team. You might be in a better
place than anyone to advocate for the users.

• Safe Exploration
• Instant Gratification
• Satisficing

The Patterns: Cognition and Behavior Related to Interface Design | 11

2 Nielsen, Jakob. “10 Usability Heuristics for User Interface Design,” Nielsen Norman Group, 24 Apr. 1994.
www.nngroup.com/articles/ten-usability-heuristics.

• Changes in Midstream
• Deferred Choices
• Incremental Construction
• Habituation
• Microbreaks
• Spatial Memory
• Prospective Memory
• Streamlined Repetition
• Keyboard Only
• Social Media, Social Proof, and Collaboration

Safe Exploration
“Let me explore without getting lost or getting into trouble.”

When someone feels like they can explore an interface and not suffer dire conse‐
quences, they’re likely to learn more—and feel more positive about it—than someone
who doesn’t explore. Good software allows people to try something unfamiliar, back
out, and try something else, all without stress.

Those “dire consequences” don’t even need to be very bad. Mere annoyance can be
enough to deter someone from trying things out voluntarily. Clicking away pop-up
windows, reentering data that was mistakenly erased, suddenly muting the volume on
one’s laptop when a website unexpectedly plays loud music—all can be discouraging.
When you design almost any kind of software interface, make many avenues of
exploration available for users to experiment with, without costing the user anything.

This pattern encompasses several of the most effective usability guidelines, based on
research, as identified by usability expert Jakob Nielsen:2

• Visibility of system status
• Match between the system and the real world
• User control and freedom

12 | Chapter 1: Designing for People

http://www.nngroup.com/articles/ten-usability-heuristics

Here are some examples of what “Safe Exploration” is like:

• A photographer tries out a few image filters in an image-processing application.
They then decide that they don’t like the results, and click Undo a few times to
get back to where they were. Then they try another filter, and another, each time
being able to back out of what they did. (The pattern named Multilevel Undo, in
Chapter 8, describes how this works.)

• A new visitor to a company’s home page clicks various links just to see what’s
there, trusting that the Back button will always get them back to the main page.
No extra windows or pop ups open, and the Back button keeps working predicta‐
bly. You can imagine that if a web app does something different in response to
the Back button—or if an application offers a button that seems like a Back but‐
ton, but doesn’t behave quite like it—confusion might ensue. The user can
become disoriented while navigating, and might abandon the app altogether.

Instant Gratification
“I want to accomplish something now, not later.”

People like to see immediate results from the actions they take—it’s human nature. If
someone starts using an application and gets a “success experience” within the first
few seconds, that’s gratifying! They’ll be more likely to keep using it, even if it
becomes more difficult later. They will feel more confident in the application, and
more confident in themselves, than if it had taken a while to figure things out.

The need to support instant gratification has many design ramifications. For instance,
if you can predict the first thing a new user is likely to do, you should design the UI to
make that first thing stunningly easy. If the user’s goal is to create something, for
instance, create a new canvas, put a call to action on it, and place a palette next to it. If
the user’s goal is to accomplish some task, point the way toward a typical starting
point.

This also means that you shouldn’t hide introductory functionality behind anything
that needs to be read or waited for, such as registrations, long sets of instructions,
slow-to-load screens, advertisements, and so on. These are discouraging because they
block users from finishing that first task quickly.

To summarize, anticipate their need, provide an obvious entry point, provide value to
the customer first before asking for something valuable (email address, a sale) in
return.

The Patterns: Cognition and Behavior Related to Interface Design | 13

Satisficing
“This is good enough. I don’t want to spend more time learning to do it better.”

When people look at a new interface, they don’t read every piece of it methodically
and then decide, “Hmmm, I think this button has the best chance of getting me what
I want.” Instead, a user will rapidly scan the interface, pick whatever they see first that
might get them what they want, and try it—even if it might be wrong.

The term satisficing is a combination of satisfying and sufficing. It was coined in 1957
by the social scientist Herbert Simon, who used it to describe the behavior of people
in all kinds of economic and social situations. People are willing to accept “good
enough” instead of “best” if learning all the alternatives might cost time or effort.

Satisficing is actually a very rational behavior after you appreciate the mental work
necessary to “parse” a complicated interface. As Steve Krug points out in his book
Don’t Make Me Think, Revisited: A Common Sense Approach to Web Usability (New
Riders, 2014), people don’t like to think any more than they need to—it’s work! But if
the interface presents an obvious option or two that the user sees immediately, they’ll
try it. Chances are good that it will be the right choice, and if not, there’s little cost in
backing out and trying something else (assuming that the interface supports Safe
Exploration).

This means several things for designers:

• Use “calls to action” in the interface. Give directions on what to do first: type
here, drag an image here, tap here to begin, and so forth.

• Make labels short, plainly worded, and quick to read. (This includes menu items,
buttons, links, and anything else identified by text.) They’ll be scanned and
guessed about; write them so that a user’s first guess about meaning is correct. If
he guesses wrong several times, he’ll be frustrated, and you’ll both be off to a bad
start.

• Use the layout of the interface to communicate meaning. Chapter 4 explains how
to do so in detail. Users “parse” color and form on sight, and they follow these
cues more efficiently than labels that must be read.

• Make it easy to move around the interface, especially for going back to where a
wrong choice might have been made hastily. Provide “escape hatches” (see Chap‐
ter 3). On typical websites, using the Back button is easy, so designing easy for‐
ward/backward navigation is especially important for web apps, installed
applications, and mobile devices.

• Keep in mind that a complicated interface imposes a large cognitive cost on new
users. Visual complexity will often tempt nonexperts to satisfice: they look for the
first thing that might work.

14 | Chapter 1: Designing for People

Satisficing is why many users end up with odd habits after they’ve been using a sys‐
tem for a while. Long ago, a user might have learned Path A to do something, and
even though a later version of the system offers Path B as a better alternative (or
maybe it was there all along), they see no benefit in learning it—that takes effort, after
all—and keep using the less-efficient Path A. It’s not necessarily an irrational choice.
Breaking old habits and learning something new takes energy, and a small improve‐
ment might not be worth the cost to the user.

Changes in Midstream
“I changed my mind about what I was doing.”

Occasionally, people change what they’re doing while in the middle of doing it. Some‐
one might walk into a room with the intent of finding a key that they had left there,
but while there, they find a newspaper and start reading it. Or they might visit
Amazon.com to read product reviews, but end up buying a book instead. Maybe
they’re just sidetracked; maybe the change is deliberate. Either way, the user’s goal
changes while they’re using the interface you designed.

This means designers should provide opportunities for people to do that. Make
choices available. Don’t lock users into a choice-poor environment with no connec‐
tions to other pages or functionality unless there’s a good reason to do so. Those rea‐
sons do exist. See the patterns called Wizard (Chapter 2) and Modal Panel (Chapter 3)
for examples.

You can also make it easy for someone to start a process, stop in the middle, and
come back to it later to pick up where they left off—a property often called reen‐
trance. For instance, a lawyer might start entering information into a form on an
iPad. Then, when a client comes into the room, the lawyer turns off the device, with
the intent of coming back to finish the form later. The entered information shouldn’t
be lost.

To support reentrance, you can make dialogs and web forms remember values typed
previously, and they don’t usually need to be modal; if they’re not modal, they can be
dragged aside on the screen for later use. Builder-style applications—text editors,
code development environments, and paint programs—can let a user work on multi‐
ple projects at one time, thus letting them put any number of projects aside while they
work on another one. For more information, see the Many Workspaces pattern in
Chapter 2.

The Patterns: Cognition and Behavior Related to Interface Design | 15

http://Amazon.com

Deferred Choices
“I don’t want to answer that now; just let me finish!”

This follows from people’s desire for instant gratification. If you ask a task-focused
user unnecessary questions in the process, they might prefer to skip the questions
and come back to them later.

For example, some web-based bulletin boards have long and complicated procedures
for registering users. Screen names, email addresses, privacy preferences, avatars, self-
descriptions…the list goes on and on. “But I just wanted to post one little thing,” says
the user. Why not allow them to skip most of the questions, answer the bare mini‐
mum, and come back later (if ever) to fill in the rest? Otherwise, they might be there
for half an hour answering essay questions and finding the perfect avatar image.

Another example is creating a new project in a video editor. There are some things
that you do need to decide up front, such as the name of the project, but other
choices—where on the server are you going to put this when you’re done? I don’t
know yet!—can easily be deferred.

Sometimes, it’s just a matter of not wanting to answer the questions. At other times,
the user might not have enough information to answer yet. What if a music-writing
software package asked you up front for the title, key, and tempo of a new song,
before you’ve even started writing it? (See Apple’s GarageBand for this bit of “good”
design.)

The implications for interface design are simple to understand, though not always
easy to implement:

• Don’t accost the user with too many upfront choices in the first place.
• On the forms that they do need to use, clearly indicate required versus optional

fields, and don’t make too many of them required. Let them move on without
answering the optional ones.

• Sometimes you can separate the few important questions or options from others
that are less important. Present the short list; hide the long list.

• Use Good Defaults (Chapter 10) wherever possible, to give users some reasonable
default answers to start with. But keep in mind that prefilled answers still require
the user to look at them, just in case they need to be changed. They have a small
cost, too.

• Make it possible for users to return to the deferred fields later, and make them
accessible in obvious places. Some dialog boxes show the user a short statement,
such as “You can always change this later by clicking the Edit Project button.”
Some websites store a user’s half-finished form entries or other persistent data,
such as shopping carts with unpurchased items.

16 | Chapter 1: Designing for People

• If registration is required at a website that provides useful services, users might
be far more likely to register if they’re first allowed to experience the website—
drawn in and engaged—and then asked later about who they are. Some sites let
you complete an entire purchase without registering and then ask you at the end
if you want to create a no-hassle login with the personal information provided in
the purchase step.

Incremental Construction
“Let me change this. That doesn’t look right; let me change it again. That’s better.”

When people create things, they don’t usually do it all in a precise order. Even an
expert doesn’t start at the beginning, work through the creation process methodically,
and come out with something perfect and finished at the end.

Quite the opposite. Instead, they start with some small piece of it, work on it, step
back and look at it, test it (if it’s code or some other “runnable” thing), fix what’s
wrong, and start to build other parts of it. Or maybe they start over, if they really
don’t like it. The creative process goes in fits and starts. It moves backward as much as
forward sometimes, and it’s often incremental, done in a series of small changes
instead of a few big ones. Sometimes it’s top-down; sometimes it’s bottom-up.

Builder-style interfaces need to support that style of work. Make it easy for users to
build small pieces. Keep the interface responsive to quick changes and saves. Feed‐
back is critical: constantly show the user what the entire thing looks and behaves like
while the user works. If the user builds code, simulations, or other executable things,
make the “compile” part of the cycle as short as possible, so the operational feedback
feels immediate—leave little or no delay between the user making changes and seeing
the results.

When creative activities are well supported by good tools, they can induce a state of
flow in the user. This is a state of full absorption in the activity, during which time
distorts, other distractions fall away, and the person can remain engaged for hours—
the enjoyment of the activity is its own reward. Artists, athletes, and programmers all
know this state.

But bad tools will keep users distracted, guaranteed. If the user must wait even half a
minute to see the results of the incremental change they just made, their concentra‐
tion is broken; flow is disrupted.

If you want to read more about flow, there are multiple books by researcher Mihaly
Csikszentmihalyi. One title is Flow: The Psychology of Optimal Experience. (Harper
Row, 2009).

The Patterns: Cognition and Behavior Related to Interface Design | 17

Habituation
“That gesture works everywhere else; why doesn’t it work here, too?”

When you use an interface repeatedly, some frequent physical actions become reflex‐
ive: pressing Ctrl-S to save a document, clicking the Back button to leave a web page,
pressing Return to close a modal dialog box, using gestures to show and hide win‐
dows—even pressing a car’s brake pedal. The user no longer needs to think con‐
sciously about these actions. They’ve become habitual.

This tendency helps people become expert users of a tool (and helps create a sense of
flow, too). Habituation also measurably improves efficiency, as you can imagine. But
it can also lay traps for the user. If a gesture becomes a habit and the user tries to use
it in a situation when it doesn’t work—or, worse, does something destructive—the
user is caught short. They suddenly need to think about the tool again (What did I
just do? How do I do what I intended?), and they might need to undo any damage
done by the gesture.

Millions of people have learned the following keyboard shortcuts based on using
Microsoft Word and other word processors:

Ctrl-X
Cut the selection

Ctrl-V
Paste the selection

Ctrl-S
Save the document

These shortcuts are true universals now. Consistency across applications can be an
advantage to use in your software design. Just as important, though, is consistency
within an application. Some applications are evil because they establish an expecta‐
tion that some gesture will do Action X, except in one special mode where it suddenly
does Action Y. Don’t do that. It’s a sure bet that users will make mistakes, and the
more experienced they are—that is, the more habituated they are—the more likely
they are to make that mistake.

Consider this carefully if you’re developing gesture-based interfaces for mobile
devices. After someone learns how to use their device and gets used to it, they will
depend on the standard gestures working consistently on all applications. Verify that
gestures in your design all do the expected things.

This is also why confirmation dialog boxes often don’t work to protect a user against
accidental changes. When modal dialog boxes pop up, the user can easily get rid of
them just by clicking OK or pressing Return (if the OK button is the default button).
If the dialogs pop up all the time when the user makes intended changes, such as

18 | Chapter 1: Designing for People

deleting files, clicking OK becomes a habituated response. Then, when it actually
matters, the dialog box doesn’t have any effect, because it slips right under the user’s
consciousness.

Note
I’ve seen at least one application that sets up the confirmation dialog box’s
buttons randomly from one invocation to another. You actually must read
the buttons to figure out what to click! This isn’t necessarily the best way to
do a confirmation dialog box—in fact, it’s better to not have them at all
under most circumstances—but at least this design sidesteps habituation
creatively.

Microbreaks
“I’m waiting for the train. Let me do something useful for two minutes.”

People often find themselves with a few minutes of downtime. They might need a
mental break while working; they might be in line at a store or sitting in a traffic jam.
They might be bored or impatient. They want to do something constructive or enter‐
taining to pass the time, knowing they won’t have enough time to get deep into an
online activity.

This pattern is especially applicable to mobile devices, because people can easily pull
them out at times such as these. The enormous success of the social media technol‐
ogy sector was built in no small part by taking advantage of this. Social and casual
gaming, Facebook, Instagram, Snap...all are enjoyed in microbreaks.

Here are some typical activities during microbreaks:

• Checking email
• Reading Streams and Feeds (in Chapter 2) such as Facebook or Twitter
• Visiting a news site to find out what’s going on in the world
• Watching a short video
• Doing a quick web search
• Reading an online book
• Playing a short game

The key to supporting microbreaks is to make an activity easy and fast to reach—as
easy as turning on the device and selecting an application (or website). Don’t require
complicated setup. Don’t take forever to load. And if the user needs to sign in to a

The Patterns: Cognition and Behavior Related to Interface Design | 19

service, try to retain the previous authentication so that they don’t need to sign in
every time.

For “Stream and Feed” services, load the freshest content as quickly as possible and
show it in the first screen the user sees. Other activities such as games, videos, or
online books should remember where the user left them last time and restore the app
or site to its previous state, without asking (thus supporting reentrance).

If you’re designing an email application or anything else for which the user needs to
do “housekeeping” to maintain order, give them a way to triage items efficiently. This
means showing enough data per item so that they can identify, for instance, a
message’s contents and sender. You can also give them a chance to “star” or otherwise
annotate items of interest, delete items easily, and write short responses and updates.

Long load times deserve another mention. Taking too long to load content is a sure
way to make users give up on your app—especially during microbreaks! Make sure
the page is engineered so that readable, useful content loads first, and with very little
delay.

Spatial Memory
“I swear that button was here a minute ago. Where did it go?”

When people manipulate objects and documents, they often find them again later by
remembering where they are, not what they’re named.

Take the Windows, Mac, or Linux desktop. Many people use the desktop background
as a place to put documents, frequently used applications, and other such things. It
turns out that people tend to use spatial memory to find things on the desktop, and
it’s very effective. People devise their own groupings, for instance, or recall that “this
document was at the upper right over by such-and-such.” (Naturally, there are real-
world equivalents, too. Many people’s desks are “organized chaos,” an apparent mess
in which the office owner can find anything instantly. But heaven forbid that some‐
one should clean it up for them.)

Many applications put their dialog buttons—OK, Cancel, and so on—in predictable
places, partly because spatial memory for them is so strong. In complex applications,
people might also find things by remembering where they are relative to other things:
tools on toolbars, objects in hierarchies, and so forth. Therefore, you should use pat‐
terns such as Responsive Enabling (Chapter 4) carefully. Adding items to blank spaces
in an interface doesn’t cause problems, but rearranging existing controls can disrupt
spatial memory and make things more difficult to find. It depends. Try it out on your
users if you’re not sure.

Many mobile applications and games consist of just a few screens. Often the start
screen is designed to be where users spend all of their time. There might not be any
apparent navigation. But users learn to swipe left, right, up, or down to get to the

20 | Chapter 1: Designing for People

other screens (such as messaging or settings). These other screens are there, just off to
the side. Snap is a good example of a mobile app that is designed to use people’s spa‐
tial memory.

Along with habituation, which is closely related, spatial memory is another reason
why consistency across and within a platform’s applications is good. People might
expect to find similar functionality in similar places. For an example, see the Sign-In
Tools pattern (Chapter 3).

Spatial memory explains why it’s good to provide user-arranged areas for storing
documents and objects, such as the aforementioned desktop. Such things aren’t
always practical, especially with large numbers of objects, but it works quite well with
small numbers. When people arrange things themselves, they’re likely to remember
where they put them. (Just don’t rearrange it for them unless they ask!) The Movable
Panels pattern in Chapter 4 describes one particular way to do this.

Also, this is why changing menus dynamically can sometimes backfire. People get
used to seeing certain items on the tops and bottoms of menus. Rearranging or
compacting menu items “helpfully” can work against habituation and lead to user
errors. So can changing navigation menus on web pages. Try to keep menu items in
the same place and in the same order on all subpages in a site.

Incidentally, the tops and bottoms of lists and menus are special locations, cognitively
speaking. People notice and remember them more than items in the middle of a list.
The first and last items in a list are more likely to be noticed. So, if you want to draw
attention to one or two items in a list of items, place them at the beginning or end.
Items moved to the middle are less likely to be noticed or remembered.

Prospective Memory
“I’m putting this here to remind myself to deal with it later.”

Prospective memory is a well-known phenomenon in psychology that doesn’t seem
to have gained much traction yet in interface design. But I think it should.

We engage in prospective memory when we plan to do something in the future, and
we arrange some way of reminding ourselves to do it. For example, if you need to
bring a book to work the next day, the night before you might put it on a table beside
the front door. If you need to respond to someone’s email later (just not right now!),
you might leave that email on your screen as a physical reminder. Or if you tend to
miss meetings, you might arrange for Outlook or your mobile device to ring an alarm
tone five minutes before each meeting.

Basically, this is something almost everyone does. It’s a part of how we cope with our
complicated, highly scheduled, multitasked lives: we use knowledge “in the world” to
aid our own imperfect memories. We need to be able to do it well.

The Patterns: Cognition and Behavior Related to Interface Design | 21

Some software does support prospective remembering. Outlook and most mobile
platforms, as mentioned earlier, implement it directly and actively; they have calen‐
dars, and they sound alarms. Trello is another example; it is a Kanban board of cards.
Memory aids that people use can include the following:

• Notes to oneself, like virtual “sticky notes”
• Windows left on-screen
• Annotations put directly into documents (such as “Finish me!”)
• Browser bookmarks, for websites to be viewed later
• Documents stored on the desktop rather than in the usual places in the filesystem
• Email kept in an inbox (and maybe flagged) instead of filed away

People use all kinds of artifacts to support passive prospective remembering. But
notice that almost none of the techniques in the preceding list were designed with
that in mind! What they were designed for is flexibility—and a laissez-faire attitude
toward how users organize their stuff. A good email client lets you create folders with
any names you want, and it doesn’t care what you do with messages in your inbox.
Text editors don’t care what you type, or what giant bold magenta text means to you;
code editors don’t care that you have a “Finish this” comment in a method header.
Browsers don’t care why you keep certain bookmarks around.

In many cases, that kind of hands-off flexibility is all you really need. Give people the
tools to create their own reminder systems. Just don’t try to design a system that’s too
smart for its own good. For instance, don’t assume that just because a window’s been
idle for a while, that no one’s using it and it should be closed. In general, don’t “help‐
fully” clean up files or objects that the system might think are useless; someone might
be leaving them around for a reason. Also, don’t organize or sort things automatically
unless the user asks the system to do so.

As a designer, is there anything positive you can do for prospective memory? If some‐
one leaves a form half-finished and closes it temporarily, you could retain the data in
it for the next time—it will help remind the user where they left off. (See the Deferred
Choices pattern.) Similarly, many applications recall the last few objects or documents
they edited. You could offer bookmark-like lists of “objects of interest”—both past
and future—and make those lists easily available for reading and editing. You can
implement Many Workspaces (Chapter 2), which lets users leave unfinished pages
open while they work on something else.

Here’s a bigger challenge: if the user starts tasks and leaves them without finishing
them, think about how to leave some artifacts around, other than open windows, that
identify the unfinished tasks. Another idea: how might a user gather reminders from
different sources (email, documents, calendars, etc.) into one place?

22 | Chapter 1: Designing for People

Streamlined Repetition
“I have to repeat this how many times?”

In many kinds of applications, users sometimes find themselves needing to perform
the same operation over and over again. The easier it is for them, the better. If you
can help reduce that operation down to one keystroke or click per repetition—or, bet‐
ter, just a few keystrokes or clicks for all repetitions—you will spare users much
tedium.

Find and Replace dialog boxes, often found in text editors (Word, email composers,
etc.), are one good adaptation to this behavior. In these dialog boxes, the user types
the old phrase and the new phrase. Then, it takes only one Replace button click per
occurrence in the entire document. And that’s only if the user wants to see or veto
each replacement. If they’re confident that they really should replace all occurrences,
they can click the Replace All button; one gesture does the whole job.

Here’s a more general example. Photoshop lets you record “actions” when you want to
perform some arbitrary sequence of actions with a single click. If you want to resize,
crop, brighten, and save 20 images, you can record those four steps as they’re done to
the first image, and then click that action’s Play button for each of the remaining 19.
For more information, see the Macros pattern in Chapter 8.

Scripting environments are even more general. Unix and its variants allow you to
script anything you can type into a shell. You can recall and execute single com‐
mands, even long ones, with a Ctrl-P and Return. You can take any set of commands
you issue to the command line, put them in a for loop, and execute them by pressing
the Return key once.

Or you can put them in a shell script (or in a for-loop in a shell script) and execute
them as a single command. Scripting is very powerful, and when complex, it becomes
full-fledged programming.

Other variants include copy-and-paste capability (preventing the need to retype the
same thing in a million places), user-defined “shortcuts” to applications on operating-
system desktops (preventing the need to find those applications’ directories in the
filesystem), browser bookmarks (so users don’t need to type URLs), and even key‐
board shortcuts.

Direct observation of users can help you to determine just what kinds of repetitive
tasks you need to support. Users won’t always tell you outright. They might not even
be aware that they’re doing repetitive things that could be streamlined with the
appropriate tools—they might have been doing it for so long that they don’t even
notice anymore. By watching them work, you might see what they don’t see.

The Patterns: Cognition and Behavior Related to Interface Design | 23

In any case, the idea is to offer users ways to streamline the repetitive tasks that could
otherwise be time consuming, tedious, and error prone. For more information, see
Macros in Chapter 8.

Keyboard Only
“Please don’t make me use the mouse.”

Some people have real physical trouble using a mouse. Others prefer not to keep
switching between the mouse and keyboard because that takes time and effort—
they’d rather keep their hands on the keyboard at all times. Still others can’t see the
screen, and their assistive technologies often interact with the software using just the
keyboard API.

For the sakes of these users, some applications are designed to be “driven” entirely via
the keyboard. They’re usually mouse-driven, too, but there is no operation that must
be done with only the mouse—keyboard-only users aren’t shut out of any
functionality.

Several standard techniques exist for keyboard-only usage:

• You can define keyboard shortcuts, accelerators, and mnemonics for operations
reachable via application menu bars, such as Ctrl-S for Save. See your platform
style guide for the standard ones.

• Selection from lists, even multiple selection, is usually possible using arrow keys
in combination with modifiers (such as the Shift key), though this depends on
which component set you use.

• The Tab key typically moves the keyboard focus—the control that receives key‐
board entries at the moment—from one control to the next, and Shift-Tab moves
backward. This is sometimes called tab traversal. Many users expect it to work on
form-style interfaces.

• Most standard controls, even radio buttons and combo boxes, let users change
their values from the keyboard by using arrow keys, the Return key, or the space
bar.

• Dialog boxes and web pages often have a “default button”—a button representing
an action that says “I’m done with this task now.” On web pages, it’s often Submit
or Done; on dialog boxes, OK or Cancel. When users press the Return key on
this page or dialog box, that’s the operation that occurs. Then, it moves the user
to the next page or returns him to the previous window.

There are more techniques. Forms, control panels, and standard web pages are fairly
easy to drive from the keyboard. Graphic editors, and anything else that’s mostly spa‐
tial, are much more difficult, though not impossible.

24 | Chapter 1: Designing for People

Keyboard-only usage is particularly important for data-entry applications. In these,
speed of data entry is critical, and users can’t afford to move their hands off the key‐
board to the mouse every time they want to move from one field to another or even
one page to another. (In fact, many of these forms don’t even require users to press
the Tab key to traverse between controls; it’s done automatically.)

Social Media, Social Proof, and Collaboration
“What did everyone else say about this?”

People are social. As strong as our opinions might sometimes be, we tend to be influ‐
enced by what our peers say and do. And we are powerfully attuned to seeking appro‐
val from others and belonging to a group. We maintain social media identities. We
contribute to groups and people we care about.

The advice of peers, whether direct or indirect, influences people’s choices when they
decide any number of things. Finding things online, performing transactions (Should
I buy this product?), playing games (What have other players done here?), and even
building things—people can be more effective when aided by others. If not, they
might at least be happier with the outcome.

We are much more likely to watch, read, buy, join, share, comment, or take any other
action if we see that someone we know has recommended it or done it or is present.
This is called social proof.

All of these real-world dynamics underpin the massive scale and success of social
computing in its many forms. It is fair to say that a social aspect or layer is part of
almost all software today. Enabling social dynamics in your software can bring
increased engagement, virality, community, and growth.

Here are some examples of social functionality:

User-generated reviews and comments
These allow individuals to get a sense of the wisdom of the crowd. Reviews can
be rated, and participants can gain fame or other rewards for being rated as a
good reviewer.

Everything is a social object
Text posts, images, video, check-ins, almost anything that users create in social
media becomes an object that people can virtually gather around. Anything can
be shared, rated, have a discussion thread attached to it, and similar activities.

Collaboration
Business productivity and communication software has been transformed by
software that allows people separated by space and time to come together in dis‐
cussion threads, document reviews, video conferencing, tracking status, live and
asynchronous communications, and many other activities.

The Patterns: Cognition and Behavior Related to Interface Design | 25

Social proof motivates people to take action. Social group identity, participation, and
recognition are powerfully rewarding to people.

Designing these capabilities into your interface creates the opportunity for social
dynamics to increase your audiences’ engagement, reward, and growth.

Of the patterns in this book, Help Systems (Chapter 2) most directly addresses this
idea; an online support community is a valuable part of a complete help system for
some applications.

For a deep dive into designing for social media, see Designing Social Interfaces: Princi‐
ples, Patterns, and Practices for Improving the User Experience by Christian Crumlish
and Erin Malone (O’Reilly, 2015).

Conclusion
This chapter gave you a tour of the vital context for any successful interaction design:
understanding who will be using your software. This is the basis for designs that are
fit for purpose and able to be understood easily. To achieve this, ground your design
process in the four-part foundation described in this chapter. First, understand the
context. This means getting clear on what sorts of people you are designing for, the
subject or work domain you are designing for them, and your users’ existing skill
level. Second, understanding their goals is important. This is the framework of work‐
flows, tasks, and outcomes you will design for. Third, user research is a valuable activ‐
ity and skill to help you understand users and their goals. We outlined a number of
research activities that you can choose from. Finally, we looked at a number of pat‐
terns in human behavior, perception, and thinking that are relevant for designing
interfaces. These four elements form the foundation of your design process. In Chap‐
ter 2, we look at creating a strong organization foundation for your software or app
itself.

26 | Chapter 1: Designing for People

Chapter 2

Organizing the Content: Information
Architecture and Application Structure

Picking up on the concept of building a foundation from Chapter 1, let’s now take a
look at what an information foundation for your software or app might look like.
What this means is designing the information architecture—how the data, content,
and functionality are organized in a way that makes sense for the people you’re
designing for. Specifically, in this chapter we cover the following:

• A definition of information architecture
• How to design the information and task space for comprehension and navigation
• Different methods of organizing content and data for use
• How to organize tools and features for efficient work
• Developing a system of repeatable frameworks or screen types
• Patterns for displaying, accessing, and navigating content and functionality

At this point, you might feel confident that you understand what your users want out
of your application or site. You might have written down some typical scenarios that
describe how people might use high-level elements of the application to accomplish
their goals. You have a clear idea of what value this application adds to people’s lives.

It’s tempting at this stage to want to go directly to designing the screens and compo‐
nents of your interface, working with colors, typography, language, and layouts. If
you’re the kind of person who likes to think visually and needs to play with sketches
while working out the broad strokes of the design, go for it.

However, to take full advantage of your customer insights and give your design the
best chance for success, the next step is to use your understandings to develop your

27

information architecture. Don’t become locked in to specific interface design deci‐
sions just yet. Instead, take a step back and think about designing the overall struc‐
ture and framework of your software so that it makes sense from your user’s point of
view. Think through the information, the workflows, the language of the site or appli‐
cation, and then organize them so they are easy to learn and easy to use.

This is information architecture. Let’s break this down by looking at the benefits and
scope of information architecture design.

Purpose
The purpose of information architecture is to create the framework for your digital
product, service, site, or application to be successful. In particular, we mean success‐
fully understood, learned, and used with a minimum of mental strain or confusion. A
critical part of these interactive experiences is that the interface shouldn’t get in the
way.

The irony of information architecture is that customers only notice it when it’s bad.
For instance: the organization of the experience makes no sense. The interface is con‐
fusing and the screens are frustrating. Customers don’t understand the terminology
they see on screen. They can’t find what they need when they need it. Basically, it gets
in the way.

On the other hand, if we’ve done our jobs properly, our design is invisible. Users don’t
really notice great information architecture. All users know is that they have a natu‐
ral, efficient, and pleasant digital experience.

What does that mean in practice?

Stepping back, we can say that the context is people who are trying to do something:
find information, watch a video, buy something, sign up for something. In short, they
have a task to do. But the people who make the digital product—that’s you—can’t be
there in person. You need to design your app to mimic what a good customer service
representative would do:

• Anticipate what they need
• Organize and talk about the information from the customer’s point of view
• Offer information in a clear, simple way
• Use words that the customer understands
• Offer clear next steps
• Make it really obvious where you are and what’s happening
• Confirm that a task was successfully completed

28 | Chapter 2: Organizing the Content: Information Architecture and Application Structure

Definition
Information architecture (IA) is the art of organizing and labeling an information
space for optimal understanding and use. Specifically, IA is using your understanding
of your users to design the following:

• Structures or categories for organizing your content and functionality
• Different ways that people can navigate through the experience
• Intuitive workflows or multistep processes for getting tasks done
• Labels and language for communicating about this content
• Searching, browsing, and filtering tools to help them find what they’re looking

for
• A standardized system of screen types, templates, or layouts so that information

is presented consistently and for maximum usability

IA encompasses many things: presenting, searching, browsing, labeling, categorizing,
sorting, manipulating, and strategically hiding information. Especially if you’re work‐
ing with a new product, this is where you should begin. The goal is for all of this to
make sense from the user’s point of view so that they can use your site or app
successfully.

Designing an Information Space for People
In the same way that construction architects draw up blueprints before a house is
actually built, designers—information architects—create a plan for how their infor‐
mation space will be laid out in a usable manner and how people will move around in
it and get work done there. In both cases, there is efficiency and value in thinking
through how people will use what you are going to build, before you build it.

Approach
It can be helpful to think about an application in terms of its underlying data and
tasks. Do this without thinking about the look and feel that they will ultimately take
on. Think more abstractly:

• What information and tools do you need to show to the users?
• Based on their expectations and immediate situation, when do you show them?
• How are the information and the tools categorized and ordered?
• What do users need to do with them?

Definition | 29

• How many ways can you present those things and tasks? You might need more
than one.

• How can you make it usable from their point of view?

These lines of inquiry can help you think more creatively about the IA you’re
designing.

Separate Information from Presentation
Thinking about IA separately from the visual design is so important that it’s worth
looking at in more detail. The design challenge becomes more manageable when you
tackle it in phases. In fact, it’s useful to think of designing as a process of building up
layers of design, one on top of the other.

In the same way that software engineers think of applications in three layers—data‐
bases; tools and queries; and reports, results, and responses—designers can think of
their design has having three layers.

Figure 2-1 gives a schematic representation of this approach. IA is the lowest layer,
the foundation. Much like with a physical building, the structure of this foundation
will ultimately be invisible, but will shape everything that is built on top of it. In the
digital world, we are concerned with creating an IA foundation that has appropriate
concepts, labels, relationships, and categories. It lays out the permanent information
structure that users can navigate, search through, and manipulate on the upper layers
of the experience.

The middle layer is the functionality and information delivery layer of your site or app.
It is the screens, pages, stories, lists, and cards your users browse, search, and read. It
contains the tools they use to search, filter, monitor, analyze, communicate, and
create.

The topmost layer is the presentation layer: the visual design and editorial system for
presenting and rendering. It consists of colors, typography, layouts, graphics, and
more. When done well, the presentation layer design creates focus, flow, and clarity.

30 | Chapter 2: Organizing the Content: Information Architecture and Application Structure

Figure 2-1. Layered Design: Designing up from the content/data layer to the presentation
layer (based on ideas by Jesse James Garrett, The Elements of User Experience: User-
Centered Design for the Web and Beyond [New Riders, 2011])

Mutually Exclusive, Collectively Exhaustive
Your content and tools need to be organized in a way that makes sense to your audi‐
ence. As you go through the process of organizing the data and content into major
categories or sections, consider this useful rule of thumb: MECE.

MECE stands for “Mutually Exclusive, Collectively Exhaustive.” First, your informa‐
tion architecture should have categories of content that are clearly distinct from one
another, with no confusing overlap. Second, “collectively exhaustive” means that
taken all together, your organization schema is complete. It accounts for all the infor‐
mation your site or application is supposed to handle, and all of the situations and
use cases you are designing for. There’s a place to find everything or put anything.
Later in the process, your information structure should be able to expand to accom‐
modate new data without things becoming confusing.

These categories will form the foundation of your navigation system, which is dis‐
cussed in more detail in Chapter 3.

To document and communicate this organization scheme, information architects
develop such tools as site maps and content outlines.

Mutually Exclusive, Collectively Exhaustive | 31

Ways to Organize and Categorize Content
You have probably already used some common organizational methods to organize
and categorize the information in your site or app. These are especially useful when
planning how to display large amounts of structured data in tables. They also are
important for planning for how users will search and browse, filter information, and
sort and refine their results. We describe six of these methods in a moment. This list
is based on the work of Richard Saul Wurman in his book on information architec‐
ture, Information Anxiety 2 (Que, 2001), and Abbey Covert and Nicole Fenton’s book
How to Make Sense of Any Mess (Covert, 2014). Both make excellent further reading.

Wurman offers a handy way to remember the main methods of organization in the
acronym “LATCH.” This stands for “Location, Alphabet, Time, Category, Hierarchy.”
Let’s look at these and others in more detail.

Alphabetical
This means organizing lists, names, and any labeled items according to the sequence
of the alphabet. You can do this in descending order, from A to Z, or in ascending or
reverse order, from Z to A. This can also include numbers if they are part of the name
or label, with the numbers “0” and up preceding the alphabetical letters. This is a
great default for any list or menu of items.

Number
Organizing by number can include a number of variations. First is according to inte‐
ger, in which items or the numbers themselves are sorted in ascending or descending
order based on the sequence of the number system. The second is by ordinal position:
first, second, third, and so on. A third way is by value or total. Things such as finan‐
cial amounts, discounts, size, rank, priority, and rates of change can be arranged from
largest value to smallest, and vice versa. Tabular data uses this pattern heavily.

Time
Chronological order is another useful way to organize content. This is very common
in social media feeds, where reverse chronological order is common—the most recent
item is first in the list, with older items lower in the list. Information can be organized
by date, time, or duration in ascending or descending order. They can also be
arranged by frequency—low to high, and the reverse. They can also be arranged by
sequence in time: which happened first, or should happen first, as in steps in a pro‐
cess. Tasks are also often split into a sequence of steps (can also be thought of as the
aforementioned number).

32 | Chapter 2: Organizing the Content: Information Architecture and Application Structure

Location
Location can mean organizing by a geographic or spatial location. There are many
systems for specifying geographic location, such as latitude and longitude. Geo‐
graphic categories are often nested or hierarchical, such as countries containing
states, which contain cities (see Hierarchy, next). Location can also be distance from
or to some reference point, and ordering based on that. In digital systems, it’s critical
for users to learn their location in the information space, both overall and on an indi‐
vidual screen.

Hierarchy
Your data might best be represented by containers or parent–child relationships, with
the larger item containing a smaller one. Examples of this can be countries which
contain states, years which contain months, or transactions which contain purchased
items.

Category or Facet
In IA, content can be labeled and then grouped into categories or topics. A category
can be thought of as a feature or quality that a set of items has in common. This is a
very useful method of organizing because it is so flexible. Often, there is a spectrum
or degree implied in the category that can be used to order the items in the set. A
simple example is organizing by color.

Advanced organizing schemes use facets. A facet system assigns multiple qualities or
categories, with a range of values in each, to each item. A good example of faceted
classification in action is Amazon, where customers can use multiple values to nar‐
row down their product search, such as price, availability, and customer rating.

Designing for Task and Workflow-Dominant Apps
IA also includes designing workflows and tasks. Documentation related to this often
includes such things as user stories and flow diagrams.

Make Frequently Used Items Visible
The first rule of thumb in designing for tasks or workflow is frequency of use. Tasks,
controls, commands, or topics that are repeated often or used frequently should be
immediately available to the user, without having to search or browse. On the other
hand, controls or information that are not needed very often can be hidden away or
accessed only by navigating to it. User settings and help systems are good examples of
features that are hidden in standard use but accessible when needed.

Designing for Task and Workflow-Dominant Apps | 33

“Chunk Up” Jobs into a Sequence of Steps
Sequencing is the second organizing principle for IA for tasks and workflows. This
means breaking up a big task or process into a series of steps, to make each individual
step less demanding on the user. This is often the structure for a wizard or multistep
process that leads the user through a complex task. Plan for communicating to the
user where they are in the process.

Design for both novice and experienced users
When chunking a task, consider the level of learning, skill, or mastery that different
users may have. Like in computer games, it’s useful to consider how first-time users
might need a simplified interface or special additional help to assist them. This can
take the form of additional instructions, screen overlays, or wizards for complex pro‐
cesses. Many applications and websites devote resources to designing a new user expe‐
rience or onboarding, to improve learning and customer retention. People who are
unfamiliar with your app or site will particularly appreciate this approach.

On the other end of the skill spectrum, advanced or experienced users can be fast and
efficient with complicated interfaces that are densely packed with information and
selectors. Offering them “accelerators” such as shortcuts and the ability to customize
their interface help them to be efficient. Designing for keyboard-only navigation and
input is also valuable here.

Multiple Channels and Screen Sizes Are Today’s Reality
It goes without saying that consumers and business users alike now expect to access
information, sites, and applications via multiple channels such as desktop, mobile and
messaging, and across a multitude of screen sizes and devices. Voice-activated serv‐
ices interfaces don’t have screens at all. In designing your IA, consider what channels,
modes, and devices your site or application will need to function across. This will
drive how your information is organized, segmented, and sequenced.

Display Your Information as Cards
A common pattern in several of the examples that follow is a reliance on a Cards pat‐
tern. With the majority of all digital interactive experiences being via mobile devices,
it makes sense to make the building block of your experience a card that fits on a
smaller screen. This small container of information, photos, and other data can work
individually or it can be displayed in a list or grid on larger screens. The key is to plan
for how to scale down and scale up the experience while still delivering access and
control to your information and features.

34 | Chapter 2: Organizing the Content: Information Architecture and Application Structure

1 “Rich Internet Screen Design” in UX Magazine.

Designing a System of Screen Types
As mentioned earlier, IA also includes designing a system of screen types. Each screen
type has a differentiated function. In this way, the user can learn how to use each
screen reliably, even when the content in it changes based on topic, filters, and other
selections.

A useful framework for approaching screen types is from Theresa Neil. She devel‐
oped ideas for application structures in the context of Rich Internet Applications
(RIAs). Neil defines three types of structures based on the user’s primary goal: infor‐
mation, process, and creation.1

This list gives us a framework within which to fit the idioms and patterns that we talk
about in this and other chapters.

Now, let’s look at pages that serve single important functions. In an application, this
might be a main screen or a major interactive tool; in a richly interactive website, it
might be a single page, such as Gmail’s main screen; in a more static website, it might
be a group of pages devoted to one process or function.

Any such page will primarily do one of these things:

Overview
Show a list or set of things

Focus
Show one single thing, such as map, book, video, or game

Make
Provide tools to create a thing

Do
Facilitate a single task

Most apps and sites do some combination of these things, of course. But consider
developing a screen system in which each has a particular organizing principle.

Designing a System of Screen Types | 35

https://oreil.ly/wQzGF

Overview: Show a List or Grid of Things or Options
This is what most of the world’s home pages, start screens, and content sites seem to
do. The digital world has converged on many common idioms for showing lists, most
of which are familiar to you:

• Simple text lists
• Menus
• Grids of cards or images
• Search results in list or grid form
• Lists of email messages or other communications
• Tables of data
• Trees, panels, and accordions

These overview screens present information organization challenges. Here are some
questions to consider in designing your overview screens:

• How big is the dataset or how long is the list?
• How much space is available to display it?
• Is it flat or hierarchical, and if it is a hierarchy, what kind?
• How is it ordered, and can the user change that ordering dynamically?
• How can the user search, filter, and sort?
• What information or operations are associated with each list item, and when and

how should they be shown?

Because lists and grids are so common, a solid grasp of the different ways to present
them can benefit any designer. A few patterns for designing an interface around a list
are described in this chapter (others are in Chapter 7).

You can build either an entire app or site or a small piece of a larger artifact around
one of these patterns. They set up a structure into which other display techniques—
text lists, thumbnail lists, and so on—can fit. Other top-level organizations not listed
here might include calendars, full-page menus, and search results:

• Feature, Search, and Browse. Countless websites that show products and written
content follow this pattern. Searching and browsing provide two ways for users
to find items of interest, whereas the front page features one item to attract
interest.

36 | Chapter 2: Organizing the Content: Information Architecture and Application Structure

• Streams and Feeds. Blogs, news sites, email readers, and social sites such as Twit‐
ter all use a news stream or social stream pattern to list their content, with the
most recent updates first in the scrollable list.

• Grids. A well-defined interface type for presenting stories, actions, cards, and
selectors. It is also used for handling photos and other pictorial documents. It can
accommodate hierarchies and flat lists, tools to arrange and reorder documents,
tools to operate directly on pictures, launch apps, drill down to details, and so on.

After you’ve chosen an overall design for the interface, you might look at other pat‐
terns and techniques for displaying lists. See Chapter 7 for a thorough discussion.

Focus: Show One Single Thing
The entire point of this screen type is to show or play a single piece of content or
functionality, such as an article, map, or video. There might be small-scale tools clus‐
tered around the content—scrollers and sliders, sign-in box, global navigation, head‐
ers and footers, and so forth—but they are minor. Your design might take one of
these shapes:

• A long, vertically scrolled page of flowed text (articles, books, and similar long-
form content).

• A zoomable interface for very large, fine-grained artifacts such as maps, images,
or information graphics. Map sites such as Google Maps provide some well-
known examples.

• The “media player” idiom, including video and audio players.

As you design this interface, consider the following patterns and techniques to sup‐
port the design:

• Mobile Direct Access, to take the user directly into the main function of your app,
often using location and time data to generate valuable information without the
user providing any input.

• Alternative Views, to show the content in more than one way.
• Many Workspaces, in case people want to see more than one place, state, or docu‐

ment at one time.
• Deep-Linked State, in Chapter 3. With this, a user can save a certain place or state

within the content so that they can come back to it later or send someone else a
URL.

• Some of the mobile patterns described in Chapter 6, if one of your design goals is
to deliver the content on mobile devices.

Focus: Show One Single Thing | 37

Make: Provide Tools to Create a Thing
This screen type is for creating or updating digital objects. Most people are familiar
with the idioms used by these tools: text editors, code editors, image editors, editors
that create vector graphics, and spreadsheets.

At the level of application structure or IA, we can often find the following patterns:

• Canvas Plus Palette describes most of these applications. This highly recogniza‐
ble, well-established pattern for visual editors sets user expectations very
strongly.

• Almost all applications of this type provide Many Workspaces—usually windows
containing different documents, which enable users to work on them in parallel.

Do: Facilitate a Single Task
Maybe your interface’s job isn’t to show a list of anything or create anything, but sim‐
ply to get a job done. Signing in, registering, posting, printing, uploading, purchasing,
changing a setting—all such tasks fall into this category.

Forms do a lot of work here. Chapter 10 talks about forms at length and lists many
controls and patterns to support effective forms. Chapter 8 defines another useful set
of patterns that concentrate more on “verbs” than “nouns.”

Not much IA needs to be done if the user can do the necessary work in a small, con‐
tained area, such as a sign-in box. But when the task gets more complicated than that
—if it’s long, or branched, or has too many possibilities—part of your job is to work
out how the task is structured.

• Much of the time, you’ll want to break the task down into smaller steps or groups
of steps. For these, a Wizard might work well for users who need to be walked
through the task.

• A Settings Editor is a very common type of interface that gives users a way to
change the settings or preferences of something—an application, a document, a
product, and so on. This isn’t a step-by-step task at all. Here, your job is to give
users open access to a wide variety of choices and switches and let them change
only what they need, when they need it, knowing that they will skip around.

These four screen types—overview, focus, make, and do—will likely show up in some
form in your own system of screen types for your software.

38 | Chapter 2: Organizing the Content: Information Architecture and Application Structure

The Patterns
The previous section reviewed information architecture in general terms. Now let’s
examine specific design patterns related to expressing information architecture in the
experience of your software.

• Feature, Search, and Browse
• Mobile Direct Access
• Streams and Feeds
• Thumbnail Grid
• Dashboard
• Canvas Plus Palette
• Wizard
• Settings Editor
• Alternative Views
• Many Workspaces
• Help Systems
• Tags

Feature, Search, and Browse

What

A three-element combination on the main page of the site or app: a featured item,
article, or product; a search box (expanded by default, or collapsed); and a list of
items or categories that can be browsed.

Use when

Your site offers users long lists of items—articles, products, videos, and so on—that
can be browsed and searched. You want to engage incoming users immediately by
giving them something interesting to read or watch.

Alternately, your site focuses on enabling searching or transacting. In this case, search
is the dominant element on the screen. Featured content and browsing have secon‐
dary importance.

The Patterns | 39

Why

These three elements are found together on many sites. Searching and browsing go
hand in hand to find desired items. Some people will know what they’re looking for
and use the search box, whereas others will do more open-ended browsing through
the lists and categories you show them.

Featured items are how you engage the user. They’re far more interesting than just
category lists and search boxes, especially when you use appealing images and head‐
lines. A user who lands on your page now has something to read or experiment with,
without doing any additional work at all—and they may find it more interesting than
whatever they originally came for.

How

Place a Search box in a prominent location, such as an upper corner, or in a banner
across the middle top of the site. Demarcate it well from the rest of the site—use
whitespace to set it off, and use a different surrounding background color if
necessary.

Alternatively, display Search in a collapsed or compacted state. It still needs to be easy
to see and access, but it can be an icon or the label “Search.” Selecting this opens the
full search field. This pattern saves space on smaller screens.

Set aside Center Stage (Chapter 4) for the featured article, product, or video. Very
near it, and still at the top of the page, place an area for browsing the rest of the site’s
content. Most sites show a list of stories, cards, topics, or product categories. These
might be links to pages devoted to those categories.

If the category labels open in place to show subcategories, the list behaves like a tree.
Some sites, such as Amazon, turn the category labels into menus: when the pointer
rolls over the label, a menu of subcategories appears.

Choose the features well. Features are a good way to sell items, advertise specials, and
call attention to breaking news. However, they are the front door and also define what
your site is about. What will they want to know about? What will capture their atten‐
tion and hold them at your site?

As the user browses through categories and subcategories, help them “stay found”
with the Breadcrumbs pattern (Chapter 3).

40 | Chapter 2: Organizing the Content: Information Architecture and Application Structure

Examples

Content-centric websites. The following three examples demonstrate the classic pat‐
tern of Feature, Search, Browse. WebMD (Figure 2-2), Yahoo! (Figure 2-3), and
Sheknows (Figure 2-4) are news- and content-centric digital publishers. WebMD and
Yahoo! have Search at the top as a single large feature. Sheknows offers a variation:
two features above a prominent search input.

Figure 2-2. WebMD

The Patterns | 41

Figure 2-3. Yahoo!

42 | Chapter 2: Organizing the Content: Information Architecture and Application Structure

Figure 2-4. Sheknows

The Patterns | 43

Commerce- centric websites. Major retailers like Target (Figure 2-5) and Ace Hardware
(Figure 2-6) follow the same pattern. Search is at the top, with large features (sales
promotions) below. Both sites support browse with grids of cards.

Figure 2-5. Target

44 | Chapter 2: Organizing the Content: Information Architecture and Application Structure

Figure 2-6. Ace Hardware

Task-centric websites. These two examples show how Feature, Search, and Browse
changes when deployed in a context for which getting the user to carry out a task
(search) is the priority. For British Airways (Figure 2-7), a large travel search module
dominates the entire screen at the top of the page. Below the fold, there is minimal
content: A featured article and only three cards for browsing.

Epicurious (Figure 2-8) gives primacy to search, as well. It occupies a screen-width
panel at the top of the page. However, the content features and browse cards begin
immediately below. Their large size and appetizing photos and titles give them almost
equal weight to search. Based on your needs, you can decide which prioritized or bal‐
anced approach is best suited for your situation and design your interface
accordingly.

The Patterns | 45

Figure 2-7. British Airways

46 | Chapter 2: Organizing the Content: Information Architecture and Application Structure

Figure 2-8. Epicurious

The Patterns | 47

Search with facets and filters. These examples show how two different websites use
multiple categories, or facets, to help the user create a targeted search for large data‐
sets. Each facet can have a range of values. Combinations of facets for search or filter‐
ing allows for sophisticated searching of large datasets.

Crunchbase (Figure 2-9) is unusual in that it promotes faceted filters as part of its
search submittal, implying that the searcher can achieve better, more appropriate
search results by using the facets. Featured content is below.

Epicurious (Figure 2-10) and Airbnb (Figure 2-11) both use a more traditional
deployment of faceted filters on their search results screens (note the mobile-friendly
grid of cards format for search results in both cases). The facets are most relevant for
narrowing the search results based on their domain.

Figure 2-9. Crunchbase

48 | Chapter 2: Organizing the Content: Information Architecture and Application Structure

Figure 2-10. Epicurious search results with faceted filters

The Patterns | 49

Figure 2-11. Airbnb search results with faceted filters

50 | Chapter 2: Organizing the Content: Information Architecture and Application Structure

Mobile Direct Access

What

The first screen presents actionable information without requiring any input or
action from the user. The app makes assumptions about any settings or queries (such
as location or time) related to its primary function, and presents the output for
immediate response. Making assumptions about what the user is most likely to do
also drives what appears on launch.

Use when

Your mobile app generates value by doing one thing really well, or is used or known
for one primary thing.

Why

Starting the user with an immediately actionable mode, choice, or screen provides
instant value to the user, and gets them engaged instantly. There is limited ability to
enter search or any kind of choice or configuration, but there is useful information
available from the device and the primary use cases to make this assumption highly
likely to be valuable, even expected.

How

Use live data from the user’s mobile device (assuming the user has given permission
in the settings). Primarily, look at location and time to generate a meaningful landing
screen for the user. Make assumptions about what the user is most likely to be doing
with your app, and get them as close to completing the action as possible, with a min‐
imum of input.

Examples

All of these examples are mobile but could be valuable in desktop settings. In the first
example, Snap (Figure 2-12, left) lives up to its brand as a photo-centric social media
and camera company. When the app is launched, the user-facing camera is automati‐
cally turned on, ready to take a selfie. The next three examples all show how the apps
use location and time data to return meaningful results with no input from the cus‐
tomer. INRIX ParkMe (Figure 2-12, right), Eventbrite and Weatherbug (Figure 2-13)
give useful results this way. ParkMe makes some smart prefill assumptions (park for
one hour) to gather price results by default.

The Patterns | 51

Figure 2-12. Snap and INRIX ParkMe start screens

Figure 2-13. Eventbrite and Weatherbug start screens

52 | Chapter 2: Organizing the Content: Information Architecture and Application Structure

Streams and Feeds

What

A continuously updated series of images, news stories, web articles, comments, or
other content presented in a scrollable, vertical (sometimes horizontal) strip or rib‐
bon. The items in the feed are usually presented as “cards,” with an image from the
article, a headline, introductory copy, and the name of the source with a link.

News/content streams. Content can be first party (publish your own content) or
aggregated from third parties. This news stream approach, inspired by social media,
is an established, mobile-friendly pattern for publishers. This usually consists of time-
stamped items in a reverse chronological list that updates dynamically.

Social streams. Content comes from other members that the user follows (plus
options to have editors highlight certain posts, or insert sponsored content). Again,
this is usually a list of items in reverse chronological order, updated dynamically.

Business collaboration. Social media technology has now integrated into the way we
work online. It is common for companies of all types to use online tools to collabo‐
rate. This allows employees and teams from any location to still come together online
for discussion and feedback. Social media–style comment feeds are one of the most
common patterns. There is often an important difference in how it is displayed: it is
the standard in “collaboration-ware” and messaging-based apps for the most recent
entry or posting to be at the bottom of the activity feed. Older comments move up as
newer comments post at the bottom, where the newest post appears. Discussion
channels in Slack are great examples of this model.

Use when

Your site or app has frequently updated content and the user checks it often, often
dozens of times a day. Also, use this pattern when you have multiple collaborators on
a project, and you need to stay on top of comments and feedback from multiple peo‐
ple. This feedback often comes asynchronously, meaning different people give feed‐
back at different times. This is especially common in distributed or remote teams. For
news publishers and aggregators, use one or more source channels, such as own orig‐
inal content, blogs, major news sites, other social site updates, and content partners to
deliver timely content to users.

The pure social version can be personal—a user “owns” it, as for social media sites
like Twitter or Facebook friends list.

For business collaboration software, use this pattern to allow people to view, com‐
ment, and edit a document. The document and the discussion are presented together.
Employees can scroll through the comment feed to see the history of the discussion.

The Patterns | 53

Why

Ensures that new content is always appearing first in the list of items in the user’s
feed. This makes each visit a reward, with something new to see and to scroll
through. People can keep up with a news stream easily because the latest items relia‐
bly appear first in the list with no effort on the part of the user. This promotes the
habit of checking back frequently and spending lots of time reading, following, and
interacting with their stream.

People go to many sites or apps each day to keep up with their friends’ activities,
engage in conversations, or follow topics or blogs of interest. When multiple “news”
sources can be blended in one place, it’s easier to keep track of it all.

From the perspective of a publisher, such as a news website, publishing your own
content in the feed or stream format promotes engagement, return visits, and
interaction.

From the perspective of a business, social collaboration software allows employees to
be more efficient and to save time. Remote workers and employees in different loca‐
tions and time zones can still come together asynchronously to get work done.

This pattern supports the Microbreaks behavior pattern that we introduced in Chap‐
ter 1. A glance at a Streams and Feeds application can give a user lots of useful infor‐
mation (or entertainment) with very little time or effort.

How

From its origins as a social media innovation, this pattern has become a common one
for any company, app, or site that publishes or aggregates large amounts of content
continuously, for social media, and for business collaboration software. The following
discussion assumes a chronological ordering for the streams and feeds, but this is
only one way. Indeed, nowadays the stream sequence is determined by algorithms,
which might be optimizing for engagement, clicks, customer interest, or other
parameters. So, consider that more personalized, context-responsive experiences are
possible.

List incoming items in reverse chronological order. Display newest items at the
beginning of the list without waiting for the user to request an update. Older items
are pushed further away by the newer comments or entries. Offer a way for the user
to get an immediate update or refresh. Also, they need to be able to scroll or review
through the list to get to the older, unreviewed items.

Offer publisher-curated streams that the user can view in addition to their own social
stream. Offer advanced users the ability to create custom streams based on topics or
curated lists of other members. Others, such as TweetDeck, use Many Workspaces to
show multiple parallel panels of incoming content.

54 | Chapter 2: Organizing the Content: Information Architecture and Application Structure

Information shown with each item might include the following:

What
For short micro-updates, show the entire thing. Otherwise, show a title, a teaser
that’s a few words or sentences long, and a thumbnail picture if one is available.

Who
This might be the person who wrote an update, the blog where an article was
posted, the author of said article, or the sender of an email. It could be the
coworker who posted a comment or document. Actual names of the people
humanizes the interface, but balance this against recognition and authoritative‐
ness—the names of news outlets, blogs, companies, and so forth are important,
too. Use both if that makes sense.

When
Give a date or timestamp; consider using relative times, such as “Yesterday” and
“Eleven minutes ago.” As the post ages, switch to the traditional date-and-time
stamp.

Where
If an item’s source is a website, link to that website. If it comes from one of your
organization’s blogs, link to that.

When there’s more to an item than can be shown easily in the list display, show a
“More” link or button. This is a good pattern for long comments. For news or
story cards, allow the reader to click on the card to load the full story as a new
screen. You might design a way to show the entire contents of an item within the
news stream window. The News Stream is a list, so you can choose among Two-
Panel Selector, One-Window Drilldown, and List Inlay. Examples abound of each
model.

Give the user ways to respond immediately to incoming items. Stars, thumbs-up,
liking, and favoriting are available in some systems—these all provide low-effort
feedback and “handshaking” among people who don’t have time to write out long
replies. But allow those long replies to be written, too! By placing controls and
text fields immediately next to an item, you encourage responsiveness and inter‐
action. This is usually a good thing in social systems.

As of this writing, Streams and Feeds designs for mobile devices are fairly
straightforward. Almost all of them devote the full screen to a single list—often
an Infinite List (Chapter 6) with richly formatted text—and users can drill down
to an item by simply tapping or clicking it in the list.

The Patterns | 55

Many Streams and Feeds services, including Twitter and Facebook, use the Infin‐
ite List pattern for both their mobile and full-screen designs. This pattern lets
users load a page or two of the most recent updates, and it gives the option of
loading more to go “backward in time.”

Activity history
Some resources use the term activity stream for a very closely related concept: the
time-ordered stream of actions (usually social actions) performed by a single
entity such as an individual, system, or organization. It is a history of their
actions. This is a useful concept, and it doesn’t really conflict with a Streams and
Feeds pattern, which talks about the stream of activities that are of interest to an
individual or group of users, not generated by them. A news stream will usually
have multiple diverse sources.

Examples

News/content streams. Techcrunch (Figures 2-14 and 2-15) is a great example of a
Streams and Feeds publisher. The main mobile app and website is a scrollable stream
of stories, with the most recent stories first in the list of content. At this level, the
reader is provided with just enough information to get the main idea: a photo, a
headline, and some introductory copy. If the reader selects the story, they go to the
full version, with larger images and full text. This detail page is where the social shar‐
ing feature is available, promoting distribution to the reader’s own social networks.

56 | Chapter 2: Organizing the Content: Information Architecture and Application Structure

Figure 2-14. Techcrunch

The Patterns | 57

Figure 2-15. Techcrunch Detail/Individual Article screen

BuzzFeed News (Figures 2-16 and 2-17) follows exactly the same pattern. Note that
this company uses the word “feed” in its name. This shows how important this pat‐
tern is to the company’s identity and purpose. Again, we see a scrollable stream of
stories, with the most recent stories first in the list of stories. BuzzFeed’s strong edito‐
rial voice is clear in the enticing headlines and reader-challenging questions. Selecting
a story loads the detail screen, with the full story, quiz, or gallery of images. The social
sharing widget is even more prominent.

58 | Chapter 2: Organizing the Content: Information Architecture and Application Structure

Figure 2-16. BuzzFeed News

The Patterns | 59

Figure 2-17. BuzzFeed News Detail/Individual Article screen

The RealClear family of sites is based around aggregating links to stories published
elsewhere on the web. The most active is RealClearPolitics (Figure 2-18). Although
this looks like a simple, flat list that you might find in a wiki or encyclopedia, it is a
feed. The links are published multiple times each day. These updates, taking a cue
from the history of print newspapers, have the labels “Morning Edition” and

60 | Chapter 2: Organizing the Content: Information Architecture and Application Structure

“Afternoon Edition.” Note how RealClearPolitics mimics the newspapers of the past,
with a “morning edition” of curated links, followed by an “evening edition” of new
links. The reader can scroll or use a menu selector to review previous days’ links. It’s
an endless feed of a curated, time-based list of stories.

Figure 2-18. RealClearPolitics

The Patterns | 61

Flipboard (Figure 2-19) looks like a magazine or picture viewer but is actually a feed
reader. It can link to and aggregate from your social media accounts or from popular
publishers with feeds. You can also use hashtag keywords to create feeds of matching
articles from across all feeds.

Figure 2-19. Flipboard start screen

62 | Chapter 2: Organizing the Content: Information Architecture and Application Structure

Flipboard, again, is actually a feed that has rendered the content cards in a variety of
sizes, organized into pages like a book (Figure 2-20). The user swipes left to right just
like browsing a magazine.

Figure 2-20. Flipboard news stream

Social streams. Social streams dominate the consumer internet experience. This
doesn’t show any signs of ending anytime soon. This is because streams drive engage‐
ment. As shown with Twitter (Figure 2-21) and Instagram (Figure 2-22), the social
stream is alive and well. The feed can be a mix of content or posts or cards from busi‐
ness and personal networks, as with Twitter. Or it can be (almost) purely a personal
social feed, as with Instagram. The feed is the consumption format here: view the
image, the comment, and then use the social feedback features to like, share, or com‐
ment in turn.

Social networking services, news aggregators, and private communications (such as
email) provide plenty of examples of personal Streams and Feeds.

Facebook automatically (and unpredictably) switches between a filtered Top Stories
view, and a Most Recent view that shows everything. However, Facebook excels at the
immediate response. Posting a short comment to a Facebook entry is almost as easy
as thinking about it.

The Patterns | 63

Figure 2-21. Twitter

64 | Chapter 2: Organizing the Content: Information Architecture and Application Structure

Figure 2-22. Instagram

The Patterns | 65

Business collaboration. Social feeds and streams have made the jump from consumer
experiences to business. They are the key component for enabling online, distributed
and remote work collaboration. They allow employees to work together in a number
of ways. They can start or add to threaded discussions organized by topic. Or they
can congregate around a digital document that is generated collaboratively. This work
can happen in real time or asynchronously. Employees can be in the same geographic
location, or distributed across time zones. In Slack (Figure 2-23), the whole platform
is built around discussion topics. Within the company “space,” employees can start or
contribute to group discussions, or start private chat sessions with one or more
coworkers. Files can be shared directly in the feed. In Quip (Figure 2-24), a digital
document is the anchor. Multiple collaborators work on this document. The social
and comment feed next to the document gives a history of the discussion around the
document. Both of these approaches are now a standard part of many business
applications.

Figure 2-23. Slack

66 | Chapter 2: Organizing the Content: Information Architecture and Application Structure

Figure 2-24. Quip

Media Browser

What

A “grid of objects” structure is for browsing and selecting from a group of objects.
The objects are presented in rows and columns. It uses thumbnails, item views, and a
browsing interface, such as a scrolling list. For content-centric sites and applications,
it allows an overview of the files, stories, or documents available to read. Media
browsers are also common for managing media and editing photos, videos, and other
pictorial items.

Why

This is a distinct style of application that is commonly used for mobile and desktop.
As soon as someone sees the grid of image and video objects in the media browser,
they know what to expect: browse, click to view, set up slideshows or playlists, and so
on.

Patterns and other components described elsewhere in this book that often use media
browser structures include the following:

• Grid of Equals
• One-Window Drilldown

The Patterns | 67

• Two-Panel Selector
• Pyramid
• Module Tabs and Collapsible Panels
• Button Groups
• Trees or outlines
• Keyboard Only
• Search box
• Social comments and discussion

How

Set up two principal views: a matrix or grid layout of the items in the list, and a large
view of a single item. Users will go back and forth between these. Design a browsing
interface and associate it with the Media Browser to let users explore a large collection
easily.

The media browser. Use this pattern to show a sequence of items. Many apps show a
small amount of metadata with each item, such as title or author; but do this with
care because it clutters the interface. You might offer a control to adjust the size of the
thumbnails. There might also be a way to sort the items by different criteria, such as
date, label, or rating, or to filter it and show only the starred items (for instance).

When a user clicks an item, show it immediately in the single-item view. Applications
often let the user traverse the grid with the keyboard; for example, with the arrow
keys and space bar. (See the Keyboard Only pattern in Chapter 1.)

If the user owns the items, offer ways to move, reorder, and delete items at this level
in the interface. This implies having a multiple-selection interface, such as Shift-
select, checkboxes, or lassoing a group of items with the pointer. Cut, copy, and paste
should also work in applications.

You can offer slideshow or playlist functionality to all users at the Media Browser
level.

The browsing interface. The contents of the Media Browser should be driven by a
browsing interface that might be complex, simple, or nearly nonexistent, depending
on the nature of the application. If needed, interfaces should offer a Search box, either
to search an individual user’s items or to search all public items (or both). Alterna‐
tively, just present a scrollable grid.

68 | Chapter 2: Organizing the Content: Information Architecture and Application Structure

Websites that host public collections, such as YouTube and Vimeo, use the entire
home page as a browsing interface. Sites such as these often present a balanced view
with user-owned content and also public or promoted content.

Private photo and video management interfaces—especially desktop apps such as
Apple Photos or iMovie—should let the user browse the filesystem for images stored
in different directories. If users can group items into albums, sets, projects, or other
types of collections, these should be available in a browsing interface, too. Most also
permit favoriting or starring of items.

Adobe Bridge puts filters into its browsing interface; more than 10 properties can be
used to slice through a large collection of items, including keywords, modification
date, camera type, and ISO.

The single-item view. This displays a full story or document or image using the entire
screen so that the user can read it, edit it, or comment/share. This is the detail or full-
view screen as a screen on its own. Alternatively, show a large view of the selected
image (or a player, for a video). This view can be next to the media browser grid if the
window is large, or it might replace the area used by the grid. Display metadata—
information about the item—next to it. In practice, this means choosing between a
Two-Panel Selector and a One-Window Drilldown. See Chapter 7 for these list-related
patterns.

If the interface is a website or is otherwise web-connected, you might choose to offer
social features at this level. Comments, liking or thumbs-up, and sharing might be
here. Likewise, users also can tag or label here, either privately or publicly. An “other
items you may like” feature is sometimes found in web-based public collections.

Editing features for individual items will reside here, as well. For instance, a photo
manager might offer simple functionality such as cropping, color and brightness
adjustment, and red-eye reduction. Metadata properties could be edited here, too. If a
full editor is too complex to present here, give the user a way to launch a “real” editor.
(Adobe Bridge, for example, lets the user launch Photoshop on a photo.) Use Button
Groups to maintain a simple, comprehensible visual grouping of all these features.

Link the item to the previous and next items in the list by providing “previous” and
“next” buttons, especially if you use One-Window Drilldown to display the single-item
view (which also requires a Back button). See the Pyramid navigational pattern in
Chapter 3.

The Patterns | 69

Examples

Browse a collection of objects. The power of images is that they can carry a huge
amount of information and can be recognized quickly. This is why they are so fre‐
quently used to represent a collection of objects for browsing and selecting. A grid of
images presented with or without written descriptions is a compact, useful pattern for
selecting a single item from a large collection. This pattern is universal across mobile,
desktop, and large screen user interfaces like Apple TV. Selecting a single item or card
from the media browser grid will load the object for direct consumption or it will
load a detail screen with a description. In the Kindle reading app for iOS
(Figure 2-25), the browser is nothing more than images of the book covers. In Insta‐
gram (Figure 2-26), one’s profile has very little metadata in favor of a scrolling grid of
previously posted images. The layout of images is your Instagram identity and per‐
sonality. In YouTube (Figure 2-27), Apple TV (Figure 2-28) and LinkedIn Learning
(Figure 2-29), full-screen browsers allow users to browse a large number of video
assets quickly. Seen here also is a common variation on the square grid layout: a
scrolling ribbon—a single height row that scrolls. Because of the huge number of
items to browse, all of them group the images into categories for easier comprehen‐
sion and review. Apple TV takes a minimalist approach. YouTube provides the most
information, with each item becoming a “card” with image, title, author, and popular‐
ity metrics (not surprising since YouTube is built on social media dynamics).

When you view someone’s YouTube channel, you can choose to see either a media
browser or, in the single video view, a list beside a video player (the default). Clicking
a thumbnail brings you to the page for that video, where detailed information and a
discussion are shown. Visitors can browse by looking at playlists, the latest videos
added, the most-viewed videos, and the top-rated videos; a Search box is also pro‐
vided, as it is everywhere.

70 | Chapter 2: Organizing the Content: Information Architecture and Application Structure

Figure 2-25. iOS Kindle app

The Patterns | 71

Figure 2-26. Instagram profile screen

72 | Chapter 2: Organizing the Content: Information Architecture and Application Structure

Figure 2-27. YouTube

Figure 2-28. Apple TV

The Patterns | 73

Figure 2-29. LinkedIn Learning

74 | Chapter 2: Organizing the Content: Information Architecture and Application Structure

Manage and edit media assets. Media and document creators also use this media
browser layout to manage assets that are being assembled or processed. Apple Photos
(shown in Figure 2-30), Adobe Bridge (Figure 2-31), and Apple iMovie (Figure 2-32)
are mobile desktop applications for managing personal collections of images. Their
browsing interfaces—all Two-Panel Selector—vary in complexity from Apple Photos’
very simple design to Adobe Bridge’s numerous panels and filters. Apple Photos uses
One-Window Drilldown to reach the single-item view, whereas Adobe Bridge and
Apple iMovie put all three views together on one page. A common variation on the
square grid layout is a single-height row that scrolls: a ribbon. In the case of iMovie, it
is a timeline. It is the central working palette for creating time-based media such as
videos.

Figure 2-30. Apple Photos

The Patterns | 75

Figure 2-31. Adobe Bridge

Figure 2-32. Apple iMovie

76 | Chapter 2: Organizing the Content: Information Architecture and Application Structure

Adobe Acrobat (Figure 2-33), the reader/editor for the popular PDF document for‐
mat, offers a grid view of document pages. This is used in the edit mode. It allows for
rapid reorganization of pages, or selecting pages for deletion, or selecting an insertion
point for adding screens.

Figure 2-33. Adobe Acrobat

The Patterns | 77

Dashboard

What

A dashboard is often the first screen a customer will see when logging in to a con‐
sumer or business platform. They are a very common pattern for business informa‐
tion software. Dashboards display key data points in a single information-dense page,
updated regularly. They show users relevant, actionable information, charts and
graphs, and important messages and links or buttons, often related to key metrics or
workflows that are important to the business.

Dashboards are very popular because they solve the need to get a quick update on
status, on key information, and on tasks to be done. Your site or application deals
with an incoming flow of information from something—web server data, social chat‐
ter, news, airline flights, business intelligence information, or financials, for example.
Your users would benefit from continuous monitoring of that information.

Why

This is a familiar and recognizable page style. Dashboards have a long history, both
online and in the physical world, and people have well-established expectations about
how they work: they show useful information, they update themselves, they usually
use graphics to display data, and so on.

A dashboard uses many interlocking patterns and components. Many online dash‐
boards use a collection of these patterns found elsewhere in this book:

• Titled Sections
• Tabs and Collapsible Panels
• Movable Panels
• One-Window Drilldown
• Lists and tables of various kinds (Chapter 7)
• Information graphics (Chapter 9)
• Datatips

78 | Chapter 2: Organizing the Content: Information Architecture and Application Structure

How

Determine what information users need or want to see, or what tasks they need to
stay on top of. This isn’t as simple as it sounds, because you need a researcher’s or
editor’s eye—eliminate confusing or unimportant data, or people won’t be able to pick
out the parts that matter. Remove, or at least deemphasize, information that doesn’t
help the user. Feature the most important information or next steps.

Use a good visual hierarchy (Chapter 4) to arrange lists, tables, and information
graphics on the page. Try to keep the main information on one page, with little or no
scrolling, so people can keep the window on-screen and see everything at a glance.
Group related data into Titled Sections, and use tabs only when you’re confident that
users won’t need to see the tab contents side by side.

Use One-Window Drilldown to let users see additional details about the data—they
should be able to click links or graphics to find out more. Datatips work well to show
individual data points when the pointer rolls over an information graphic.

Choose appropriate and well-designed information graphics for the data you need to
show. Gauges, dials, pie charts, and 3D bar charts look nice, but they are rarely the
best way to show comparative information at a glance—simple line and bar charts
express data better, especially time-based data. When numbers and text are more rel‐
evant than graphics, use lists and tables. Row Striping is a common style for multicol‐
umn data tables.

People will try to get actionable information from the dashboard at a glance, without
looking closely at every element on the page. So, when you show text, consider high‐
lighting keywords and numbers so that they stand out from surrounding text.

Should your users be able to customize their dashboard displays? Many dashboards
do offer customization, and your users might expect it. One way to customize a dash‐
board page is to rearrange the sections—Salesforce offers Movable Panels to users, in
addition to choosing which gadgets are shown.

Examples

Salesforce (Figure 2-34) has built a huge software business around answering the
need for enterprises large and small to monitor and manage all forms of business
processes. Custom-built and customizable dashboards are a central part of this strat‐
egy. Some examples of purpose-built dashboards are shown here. Users can build or
configure modules according to their needs, and then arrange the standard-sized
modules into a grid that suits them best. These can be saved and shared.

The Patterns | 79

Figure 2-34. Salesforce Dashboards

80 | Chapter 2: Organizing the Content: Information Architecture and Application Structure

SpaceIQ (Figure 2-35) offers a dashboard on login. This startup follows a classic
design pattern of offering key performance indicators, an overview of what is hap‐
pening now or needs attention, and quick navigation to other key parts of the
platform.

Figure 2-35. SpaceIQ

Finally, you might be interested in Stephen Few’s book on information dashboards,
Information Dashboard Design: Displaying Data for At-a-Glance Monitoring (Analyt‐
ics Press, 2013).

The Patterns | 81

Canvas Plus Palette

What

An application structure defined by a central workspace with containers of tools
around it. It consists of a large blank area, or canvas, where a user creates or edits a
digital object. Arranged around this open area, at the sides or top or bottom, are grids
of tools, called palettes. The tools are represented as icons. The user clicks the palette
buttons to create objects on the canvas, or to select a tool to modify objects. The over‐
all effect is a digital workbench or virtual artist’s easel. The user selects one tool after
another to use on the main object.

Use when

You’re designing any kind of graphical editor. A typical use case involves creating new
objects and arranging them on some virtual space.

Why

This pair of panels—a palette with which to create things, and a canvas on which to
put them—is so common that almost every user of desktop software has seen it. It’s a
natural mapping from familiar physical objects to the virtual on-screen world. And
the palette takes advantage of visual recognition: the most common icons (paint‐
brush, hand, magnifying glass, etc.) are reused over and over again in different appli‐
cations, with the same meaning each time.

How

Present a large empty area to the user as a canvas. It might be in its own window, as in
Photoshop (Figure 2-18), or embedded in a single page with other tools. The user just
needs to see the canvas side by side with the palette. Place additional tools—property
panels, color swatches, and so on—to the right or bottom of the canvas, in small
palette-like windows or panels.

The palette itself should be a grid of iconic buttons. They can have text in them if the
icons are too cryptic; some GUI-builder palettes list the names of GUI components
alongside their icons, for instance.

Place the palette to the left or top of the canvas. It can be divided into subgroups, and
you might want to use Module Tabs or Collapsible Panels to present those subgroups.

Most palette buttons should create the pictured object on the canvas. But many build‐
ers have successfully integrated other things such as zoom mode and lassoing into the
palette.

82 | Chapter 2: Organizing the Content: Information Architecture and Application Structure

The gestures used to create items on a palette vary from one application to another.
Some use drag-and-drop only; some use a single click on the palette and a single click
on the canvas; and some use pressure-sensitive tools, such as a digital pen or simply
varying your finger pressure on a touch-sensitive screen and other carefully designed
gestures. Usability testing in this area is particularly important because the behaviors
of the tools might not be obvious or might be difficult to learn.

Examples

The examples that follow show a variety of canvas and palette patterns. Adobe Photo‐
shop (Figure 2-36) is a classic. All four edges of the app feature palettes, panels and
commands that the author uses when working on an image. In Axure RP Pro
(Figure 2-37), there are palettes to the left and right of the central drawing pane,
where the user creates interactive wireframes for software prototypes. Next is Omni‐
Graffle (Figure 2-38), a vector drawing application for MacOS, which has its tools
palette on the left. Even mobile apps have need of this pattern when dealing with
large numbers of tools or choices. In iOS Photos (Figure 2-39), the image that the
user is editing appears in the central canvas. Below this are three tools palettes that
are open-close panels, with multiple editing tools inside each.

Figure 2-36. Adobe Photoshop

The Patterns | 83

Figure 2-37. Axure RP Pro

Figure 2-38. OmniGraffle

84 | Chapter 2: Organizing the Content: Information Architecture and Application Structure

Figure 2-39. iOS Photos

The Patterns | 85

Wizard

What

A feature or component that leads the user through the interface step by step to do
tasks in a prescribed order.

Use when

You are designing a UI for a task that is long or complicated, and that will usually be
novel for users—not something that they do often or want much fine-grained control
over (such as the installation of a software package). You’re reasonably certain that
the designer of the UI will know more than the user does about how best to get the
task done.

Tasks that seem well suited for this approach tend to be either branched or very long
and tedious—they consist of a series of user-made decisions that affect downstream
choices.

The catch is that the user must be willing to surrender control over what happens and
when. In many contexts, that works out fine, because making decisions is an unwel‐
come burden for people doing certain things: “Don’t make me think, just tell me what
to do next.” Think about moving through an unfamiliar airport—it’s often easier to
follow a series of signs than it is to figure out the airport’s overall structure. You don’t
get to learn much about how the airport is designed, but you don’t care about that.

But in other contexts, it backfires. Expert users often find a Wizard frustratingly rigid
and limiting. This is particularly true for software that supports creative processes
such as writing, art, or coding. It’s also true for users who actually do want to learn
the software; Wizard doesn’t show users what their actions really do or what applica‐
tion state gets changed as choices are made. That can be infuriating to some people.

Why

Divide and conquer. By splitting up the task into a sequence of chunks, each of which
can be dealt with in a discrete “mental space” by the user, you effectively simplify the
task. You have put together a preplanned road map through the task, thus sparing the
user the effort of figuring out the task’s structure—all they need to do is address each
step in turn, trusting that if they follow the instructions, things will turn out OK.

But the very need for a Wizard indicates that a task might be too complicated. If you
can simplify a task to the point where a short form or a few button clicks can do the
trick instead, that’s a better solution. (Keep in mind, too, that a Wizard approach is
considered a bit patronizing.)

86 | Chapter 2: Organizing the Content: Information Architecture and Application Structure

How

“Chunking” the task. Break up the operations constituting the task into a series of
chunks, or groups of operations. You might need to present these groups in a strict
sequence, or not; sometimes there is value in breaking up a task into steps 1, 2, 3, and
4 just for convenience.

A thematic breakdown for an online purchase can include screens for product selec‐
tion, payment information, a billing address, and a shipping address. The presenta‐
tion order doesn’t much matter because later choices don’t depend on earlier choices.
Putting related choices together just simplifies things for people filling out those
forms.

You might decide to split up the task at decision points so that choices made by the
user can change the downstream steps dynamically. In a software installation Wizard,
for example, the user might choose to install optional packages that require yet more
choices; if they choose not to do a custom installation, those steps are skipped.
Dynamic UIs are good at presenting branched tasks such as this because the user
never needs to see anything that’s irrelevant to the choices they made.

In either case, the difficult part of designing this kind of UI is striking a balance
between the sizes of the chunks and the number of them. It’s silly to have a two-step
Wizard, whereas one comprising 15 steps is tedious. On the other hand, each chunk
shouldn’t be overwhelmingly large, or you’ve lost some benefits of this pattern.

Physical structure. Wizards that present each step in a separate page, usually navigated
with Back and Next buttons, are the most obvious and well-known implementation
of this pattern. They’re not always the right choice, though, because now each step is
an isolated UI space that shows no context—the user can’t see what went before or
what comes next. But an advantage of such a Wizard is that they can devote each page
to that step completely, including illustrations and explanations.

If you do this, allow the user to move back and forth at will through the task
sequence. Offer a way for the user to step backward or to otherwise change their
mind about an earlier choice. Additionally, many UIs show a selectable map or over‐
view of all the steps, getting some of the benefits of a Two-Panel Selector. (In contrast
to that pattern, a Wizard implies a prescribed order—even if it’s merely suggested—as
opposed to completely random access.)

The Patterns | 87

If you instead choose to keep all the steps on one page, you could use one of several
patterns from Chapter 4:

• Titled Sections, with prominent numbers in the titles. This is most useful for tasks
that aren’t heavily branched because all steps can be visible at once.

• Responsive Enabling, in which all the steps are present on the page, but each one
remains disabled until the user has finished the previous step.

• Progressive Disclosure, in which you wait to show a step on the UI until the user
finishes the previous one. This might be the most elegant way to implement a
short Wizard. It’s dynamic, compact, and easy to use.

Good Defaults and Smart Prefills (from Chapter 10) are useful no matter how you
arrange the steps. If the user is willing to turn over control of the process to you, the
odds are good they’re also willing to let you pick reasonable defaults for choices they
might not care much about, such as the location of a software installation.

Examples

The Microsoft Office designers have done away with many of its Wizards, but a few
remain—and for good reason. Importing data into Excel is a potentially bewildering
task. The Import Wizard (Figure 2-40) is an old-school, traditional application Wiz‐
ard that guides the user step by step through the import process. It uses Back/Next
buttons, branching, and no sequence map, but it works. Each screen lets you focus on
the step at hand, without worrying about what comes next.

88 | Chapter 2: Organizing the Content: Information Architecture and Application Structure

Figure 2-40. The Microsoft Excel import wizard

The Patterns | 89

Settings Editor

What

An easy-to-find, self-contained page or window where users can change settings,
preferences, or properties. Divide the content into separate tabs or pages if you need
to manage large numbers of settings.

Use when

You are designing any of the following applications or tools, or something similar:

• An application that has app-wide preferences.
• An operating system (OS), mobile device, or platform that has system-wide pref‐

erences.
• A site or app for which a user must sign in—users will need to edit their accounts

and profiles.
• An open-ended tool to create documents or other complex work products. Users

might need to change a document’s properties, an object within a document, or
another item.

• A product configurator, which allows people to customize a product online.

Why

Though both use forms, a Settings Editor is distinct from a Wizard, and it has very
particular requirements. A user must be able to find and edit a desired property
without being forced to walk through a prescribed sequence of steps—random access
is important.

To aid findability, the properties should be grouped into categories that are well
labeled and make immediate sense.

Another important aspect of Settings Editor design is that people will use it for view‐
ing existing settings, not just changing them. The design needs to communicate the
values of those settings at a glance.

Experienced users have strong expectations for preference editors, account settings,
and user profiles being in familiar places and behaving in familiar ways. Break these
expectations at your own peril!

How

First, make it findable. Most platforms, both mobile and desktop, have a standard
place to find application-wide preferences—follow the conventions, and don’t try to

90 | Chapter 2: Organizing the Content: Information Architecture and Application Structure

be overly clever. Likewise, websites where people sign in usually put links to account
settings and profiles where the username is shown, often in the upper-right or upper-
left corner.

Second, group the properties into pages, and give those pages names that make it easy
to guess what’s on them. (Sometimes all the properties or settings fit on one page, but
not often.) Card-sorting exercises with representative users can help you figure out
the categories and their names. An outrageously large number of properties might
require a three- or four-level hierarchy of groups, but be careful that users don’t get
frustrated at having to click 53 times to reach commonly needed properties.

Third, decide how to present these pages. Tabs, Two-Panel Selector, and One-Window
Drilldown (Chapter 7) with an extensive page “menu” on the top page seem to be the
most common layouts for Settings Editor.

The design of the forms themselves deserves an entire chapter. See Chapter 10 for
patterns and techniques used in forms.

Finally, should you immediately apply changes that the user makes or offer Save and
Cancel buttons? That can depend on the type of settings you’re working with.
Platform-wide settings seem to be applied immediately when changed; settings on
websites mostly use Save buttons; and application settings and preferences can go
either way. It might not be a huge usability issue in any case. Follow an established
convention if there is one, or see what the underlying technology requires; test it with
users if you still have open questions.

Examples

Google (Figure 2-41) and Facebook (Figure 2-42) both use tabs to present the pages
of their profile editors. Amazon has one single link for all account-related informa‐
tion: Your Account (see Figure 2-43). This Menu Page (Chapter 3) lists account set‐
tings alongside order information, credit card management, digital content, and even
community and wish-list activity. The clean, tight page organization is terrific—if I
have any questions about what’s going on with my relationship to Amazon, I know I
can find it somewhere on this page.

Google, Facebook, and Amazon have huge settings, preferences, and configuration
management issues related to their services. Customers must access these settings
from time to time in order to review or change them. All have opted for a strong
organization system to categorize their settings and preferences. Google and Face‐
book use tabs to organize the settings into major categories, with screens in each that
are in turn sectioned out with titles and groups of controls to allow for comprehen‐
sion and relatively easy access. Amazon places its most frequently used settings and
configurations at the top of the settings screen, with special formatting as giant but‐
tons. Selecting one allows the user to drill down into the appropriate category of

The Patterns | 91

settings. Below this is a grid of cards, each labeled with its settings category name,
and displaying a list of links to each subcategory within. All three use strong informa‐
tion architecture and navigation to bring some understandable structure to a compli‐
cated part of their platform. Although it’s not painless, the user has a good chance of
eventually finding and changing the setting they seek.

Amazon (Figure 2-43) offers an outrageously large number of properties that require
a deep hierarchy of pages. The designers mitigated some of the problems, however.
For instance, they put a list of shortcuts on the top-level page; these are probably the
items users look for most often. They put a search box on the top. And by using lists
of items, they show users which items fall into which categories.

Figure 2-41. Google

92 | Chapter 2: Organizing the Content: Information Architecture and Application Structure

Figure 2-42. Facebook

The Patterns | 93

Figure 2-43. Amazon

In Apple’s mobile OS, iOS, there are many settings (Figure 2-44). Some are for the
entire device, and some are for individual apps on the iPhone. Apple has opted for a
single scrolling list. Some order is provided by putting the most critical and fre‐
quently used settings at the top. The items in the long list are also grouped to help
with navigation and selection.

For its desktop OS, macOS, Apple has opted for a panel of categories for its system
settings (Figure 2-45). These are marked by sections, icons, and labels to help with
understanding the categories and selecting the right one.

94 | Chapter 2: Organizing the Content: Information Architecture and Application Structure

Figure 2-44. iOS settings

The Patterns | 95

Figure 2-45. macOS system preferences

96 | Chapter 2: Organizing the Content: Information Architecture and Application Structure

Alternative Views

What

Views or methods of visualizing information in your software or app that are sub‐
stantially different from one another but offer access to the same information.

Use when

You’re building something that views or edits a complex document, list, website, map,
or other content. You might face design requirements that directly conflict with one
another. You can’t find a way to show both feature set A and feature set B at the same
time, so you need to design both separately and let the user choose between them.

Why

Try as you might, you can’t always accommodate all possible usage scenarios in a sin‐
gle design. For instance, printing is typically problematic for websites because the
information display requirements differ—navigation and interactive gizmos should
be removed, for instance, and the remaining content reformatted to fit the printer
paper.

There are several other reasons for Alternative Views:

• Users have preferences with regard to speed, visual style, and other factors.
• A user might need to temporarily view data through a different “lens” or perspec‐

tive in order to gain insight into a problem. Consider a map user switching
between views of street information and topographic information (see
Figure 2-31 at the top of the pattern).

• If a user is editing a slideshow or website, for instance, they might do most of
their editing while using a “structural” view of the document, containing editing
handles, markers for invisible content, layout guides, private notes, and so on.
But sometimes they will want to see the work as an end user would see it.

How

Choose a few usage scenarios that cannot easily be served by the application’s or site’s
normal mode of operation. Design specialized views for those scenarios, and present
them as alternatives within the same window or screen.

In these alternative views, some information might be added and some might be
taken away, but the core content should remain more or less the same. A common
way to switch views is to change the rendering of a list; file finders in both Windows

The Patterns | 97

and macOS let users switch from lists to Thumbnail Grid to Tree Table to Carousel, for
instance.

If you need to strip down the interface—for use by a printer or screen reader, for
instance—consider removing secondary content, shrinking or eliminating images,
and cutting out all navigation but the most basic.

Put a “switch” for the mode somewhere on the main interface. It doesn’t need to be
prominent; PowerPoint and Word used to put their mode buttons in the lower-left
corner, which is an easily overlooked spot on any interface. Most applications repre‐
sent the alternative views with icons. Make sure it’s easy to switch back to the default
view, too. As the user switches back and forth, preserve all of the application’s current
state—selections, the user’s location in the document, uncommitted changes, undo/
redo operations, and so on because losing them will surprise the user.

Applications that “remember” their users often retain the user’s alternative-view
choice from one use to the next. In other words, if a user decides to switch to an alter‐
native view, the application will just use that view by default next time. Websites can
do this by using cookies; desktop applications can keep track of preferences per user;
an app on a mobile device can simply remember what view it used the last time it was
invoked. Web pages can have the option of implementing Alternative Views as alter‐
native CSS pages. This is how some sites switch between ordinary pages and print-
only pages, for example.

Examples

Let’s look at an effective use of different “modes” or alternative views of data in two
different applications. The pattern is to offer search results on a map, giving a spatial
or geographic representation, and then to show the same results as a scrollable list,
which can be sorted and filtered more easily. One mode is for an overview, and geo‐
graphic context (closer to or further from me). The other is for reading detailed
information about each item.

Yelp, the local business directory platform, is the first example. On iOS, the Yelp
mobile app (Figure 2-46) offers the two aforementioned views. The searcher must
toggle between the views on the small screen format. The Yelp desktop app
(Figure 2-47) has the room to offer the map and list views side by side. This offers
more robust exploration and learning interactions, such as highlighting the same
venue in the list and on the map.

98 | Chapter 2: Organizing the Content: Information Architecture and Application Structure

Zillow, the real estate platform, follows a similar design. On iOS, Zillow offers a map
view and a list view of your query results (Figure 2-48). The user must toggle between
the views. On the Zillow desktop app (Figure 2-49), the home or rental searcher can
view these modes side by side. Note the choice to use photographs of the properties
in the list view. This supports rapid scanning of the huge numbers of choices so that
the searcher can zero in on properties they consider most attractive.

Figure 2-46. Yelp iOS map and list screens

The Patterns | 99

Figure 2-47. Yelp desktop map and list combination screen

100 | Chapter 2: Organizing the Content: Information Architecture and Application Structure

Figure 2-48. Zillow iOS map and list screens

The Patterns | 101

Figure 2-49. Zillow desktop map and list combination screen

Two graphic editors, Apple Keynote (Figure 2-50) and Adobe Illustrator
(Figure 2-51), show different views of a work product. In the slideshow, the user nor‐
mally edits one slide at a time, along with its notes, but sometimes the user needs to
see all the slides laid out on a virtual table. (Not shown is a third view, in which Key‐
note takes over the screen and actually plays the slideshow.)

Adobe Illustrator shows an “outline” view of the graphic objects in the document—
most useful if you have a lot of complex and layered objects—and the normal, fully
rendered view of the artwork. This mode is explicitly for performance reasons. The
outline view puts much less demand on the computer processor and so speeds up
work considerably.

102 | Chapter 2: Organizing the Content: Information Architecture and Application Structure

Figure 2-50. Apple Keynote

The Patterns | 103

Figure 2-51. Adobe Illustrator

104 | Chapter 2: Organizing the Content: Information Architecture and Application Structure

Many Workspaces

What

An interface where users can view more than one page, project, file, or context at a
time. It can consist of multiple top-level tabs, tab groups, streams/feeds, panels, or
windows. Users might have the option to place these workspaces side by side.

Use when

You’re building an application that views or edits any type of content—websites,
documents, images, or entire projects that include many files. A major aspect of
choosing this pattern is the need to have different views or task “modes” available at
the same time. For example, people often keep many browser tabs open at the same
time so that they can switch between various websites, or compare them. Application
developers and media creators often need to see and adjust code or controls in an edi‐
tor window, and at the same time see the output of their work to see whether they are
getting the desired outcomes—either as compiled and executed code, or as a rendered
media object.

Designers of conventional websites don’t generally need to think about this. All of the
major browsers supply perfectly good implementations of this pattern, using tabs and
browser windows. Spreadsheet applications such as from Microsoft or Google offer
tabbed workspaces to separate a complicated workbook into individual calculation
sheets.

Applications whose central organizing structure is a personal news stream might not
need Many Workspaces, either. Email clients, personal Facebook pages, and so forth
show only the one news stream that matters to the user; multiple windows don’t add
much value. That being said, email clients often let a user launch multiple email mes‐
sages in different windows. Some Twitter applications can show several filtered
streams side by side; for instance, they might show a search-based feed, then a feed
from a custom list, and then a feed of popular retweets. (See the TweetDeck example
in Figure 2-52.)

Why

People sometimes need to switch rapidly between different tasks in the same project
or file, or monitor activity across a large number of real-time feeds.

People multitask. They go off on tangents, abandon trains of thought, stop working
on task A to switch to task B, and eventually come back to something they left hang‐
ing. You might as well support it directly with a well-designed interface for
multitasking.

The Patterns | 105

Side-by-side comparisons between two or more items can help people learn and gain
insight. Let users pull up pages or documents side-by-side without having to labori‐
ously switch context from one to another.

This pattern directly supports some Chapter 1 patterns, such as Prospective Memory
(a user might leave a window open as a self-reminder to finish something) and Safe
Exploration (because there’s no cost in opening up an additional workspace while
leaving the original one where it is).

How

Choose one or more ways to show multiple workspaces. Many well-known applica‐
tions use the following:

• Tabs
• Separate OS windows
• Columns or panels within a window
• Split windows, with the ability to adjust the splitters interactively

If you deal with fairly simple content in each workspace—such as text files, lists, or
Streams and Feeds—split windows or panels work fine. More complex content might
warrant entire tab pages or windows of their own so that a user can see a larger area
at once.

The most complicated cases involve development environments for entire coding
projects. When a project is open, a user might be looking at several code files, style‐
sheets, command windows (where compilers and other tools are run), output or log‐
files, or visual editors. This means that many, many windows or panels can be open at
once.

When users close some web browsers, such as Chrome, the set of workspaces (all
open web pages, in tabs and windows) are automatically saved for later use. Then,
when the user restarts the browser, their entire set of previously opened web pages is
restored, almost as they left it. This is especially nice when the browser or machine
has crashed. Consider designing in this feature; it would be a kindness to your users.

106 | Chapter 2: Organizing the Content: Information Architecture and Application Structure

Examples

Both TweetDeck (Figure 2-52) and Hootsuite (Figure 2-53) take a multipanel or mul‐
tistream approach to managing social media feeds.

TweetDeck is a Streams and Feeds–type application that can show many streams at
once: filtered Twitter feeds, non-Twitter sources, and so on. The example in
Figure 2-52 shows several typical TweetDeck columns. This maintains the spirit of a
news stream by keeping all the updates visible at once; had these columns been in dif‐
ferent tabs or windows, a user wouldn’t be able to see all the updates as they happen.

TweetDeck by default allows the user to see multiple streams side by side from within
their own account. In the example in Figure 2-52, the user can see their main feed,
notifications, and their messages at the same time. Normally, these are hidden behind
various navigation tabs and can be viewed only one at a time. Note also that the
fourth panel displays a Twitter-curated list of trending hashtags. TweetDeck supports
many feed panels open at the same time, which is useful for monitoring other Twitter
accounts at the same time.

Figure 2-52. Twitter TweetDeck

The Patterns | 107

Hootsuite is a social media postings management platform. It’s valuable for individu‐
als, businesses, and publishers who want to manage and coordinate their social media
accounts in one place. This is useful for pushing out new content or increasing fol‐
lower and reader interaction across their entire social media ecosystem. In this exam‐
ple (Figure 2-53), the Hootsuite user has set up their Twitter and LinkedIn accounts.
With this side-by-side feed view, the user can keep track of activity in both accounts
(and many more). Posting and responding to each separate account can be carried
out from one multipanel Hootsuite view.

Figure 2-53. Hootsuite

108 | Chapter 2: Organizing the Content: Information Architecture and Application Structure

Cinema 4D (Figure 2-54) is a tool for creating, rendering, and animating three-
dimensional objects. This desktop application uses a multipanel approach to give the
user simultaneous views of multiple information and tool spaces. There are panels
that show source files and versions of the current work file; a central panel that shows
the current 3D object, palettes, toolbars, and panels that have all the controls for
working on the 3D object; and a timeline tool that controls the animation of the 3D
object.

Figure 2-54. Cinema 4D

The Patterns | 109

Help Systems

What

Providing labels, explanations, and descriptions of how to use the interface are a fun‐
damental part of making usable software. The goal is to provide assistance, answers,
or training to users when they need it—in multiple forms so the it can be accessed in
different situations.

Inline/display. Helping your users in an immediate way starts with the copy that dis‐
plays on the screen by default. The purpose of inline copy is to communicate what the
user is looking at and what the purpose of a given section or component is. Addition‐
ally, examples of the inputs you might be soliciting from users also helps prevent mis‐
formatting. Consider a mix of the following:

• Meaningful headlines and subheaders
• Instructions: a phrase or sentence directly on the screen to help with a particu‐

larly tricky interface.
• Labels for form elements
• Prompts or example inputs either in or next to form elements

Tool tips. Tool tips are brief descriptions or explanations of each component on the
screen. On desktop web apps, these display when the user hovers over the interface
component. Another method is to display a question mark or other icon (or a link)
next to a specific component. Tapping or clicking the icon displays a short
explanation.

Full help system. This is a fully written out user guide that covers all the major fea‐
tures and functions of your app. This is most common for desktop applications. The
help system can include descriptions, glossaries, FAQs, how-to’s, videos, and other
information. Help systems often reinforce or replicate user training materials, espe‐
cially for complicated apps. Help systems can be embedded in the app itself, or can be
hosted on a separate website.

Guided tours. It is now common to deploy step-by-step guided tours or walkthroughs
within your application. Many companies now offer this capability. It usually takes
the form of a lightbox or other layer on top of the application itself. These display as a
series of pop ups or pointers that take the user through a tour or help them complete
a process in a stepwise fashion. These guided tours can be triggered by a variety of
events: first time in the app, from the user selecting a “show me how” help option, or
by more advanced user behavior analytics and behaviors.

110 | Chapter 2: Organizing the Content: Information Architecture and Application Structure

Knowledge base. Many contemporary customer success software platforms include a
Quora-style knowledge base. This consists of a database of questions and answers
that are built up over time by the users of the system. This can be created or used just
by a customer support team. However, it is now common to open up the knowledge
base to customers, as well. Often this knowledge base offers the ability to submit a
question or topic and see a list of most related questions and answers created by pre‐
vious users. Knowledge bases are often the core of modern app help systems, and are
the first form of customer support–self-support.

Online community. Software that is popular enough or specialized enough to have a
significant user base can also be supported by an online community of users. This is
an advanced technique where the goal is to build a long-term community of users
who will help one another, spread usage, and create a culture that fosters platform
growth. Sometimes, these communities form on their own, as groups on social media
platforms or forums like LinkedIn, Facebook, or Reddit. Many companies create,
host, and moderate their own online user communities to ensure quality discussions.
They also create and moderate official groups and communities on social media sites.

Use a mixture of lightweight and heavyweight help techniques to support users with
varying needs.

Use when

Every well-designed website or application should have some form of help. Copy on
the screen, prompts in form elements, and tool tips are a must. How will you help
beginners become experts? Some users might need a full-fledged help system, but you
know most users won’t take the time to use it. For complicated applications, full train‐
ing and help documentation is a must.

Why

Users of almost any software artifact need varying levels of support for the tasks
they’re trying to accomplish. Someone approaching it for the first time ever (or the
first time in a while) needs different support than someone who uses it frequently.
Even among first-time users, enormous differences exist in commitment level and
learning styles. Some people want to watch a tutorial video, some won’t; most find
tool tips helpful, but a few find them irritating.

Help texts that are provided on many levels at once—even when they don’t look like
traditional “help systems”—reach everyone who needs them. Many good help techni‐
ques put the help texts within easy reach, but not directly in the user’s face all the
time, so users don’t become irritated. However, the techniques need to be familiar to
your users. If they don’t notice or open a Collapsible Panels, for instance, they’ll never
see what’s inside it.

The Patterns | 111

How

A lightweight or simple help approach can include displaying meaningful on-screen
copy, such as descriptive headers and on-screen instructions. Rollover tool tips for all
controls is another lightweight approach. However, rollovers work only on desktop
apps in which the browser can track where the user’s mouse pointer is, thus triggering
tool tips based on location. Mobile can offer tool tips, as well, but these must be tap‐
ped on to access them (there is no hover concept in the mobile interaction design
world). This also means any hover tools that you have implemented in a web app
must be accessed via a tap action, icon, or menu on mobile.

When the user wants to learn in more detail or as a task in itself, a user guide or
online manual is the way to go. Sometimes, this is in your application itself. Other
times, it is a separate website or system. This is a more heavyweight technique
because it involves creating more content. The benefit is that this help system infor‐
mation has a long life cycle–it provides value for a long time and doesn’t need contin‐
uous updating. Users can refer to it again and again, and updates need happen only
periodically.

You can think of help systems as existing on multiple levels of detail. Some are very
close to the user and their task and are meant to maintain focus on completing it.
Others are separate experiences in and of themselves and create a separate learning
environment, for times when the user wants to focus on learning.

Create help on several levels, including some (but not necessarily all) of the help types
in the following list. Think of it as a continuum: each requires more effort from the
user than the previous one but can supply more detailed and nuanced information:

• Meaningful headings, instructions, examples, and help text directly on the page,
including patterns such as Input Hints and Input Prompt (both found in Chap‐
ter 10). At the same time, try to keep the total amount of text on the page low.

• Prompt text in form fields.
• Tool tips. Use them to show very brief, one- or two-line descriptions of interface

features that aren’t self-evident. For icon-only features, tool tips are critical; users
can take even nonsensical icons in stride if a rollover says what the icon does!
(Not that I’d recommend poor icon design, of course.) The disadvantages of tool
tips are that they hide whatever’s under them and that some users don’t like them
popping up all the time. A short time delay for the mouse hover—for example,
one or two seconds—removes the irritation factor for most people.

• Hover Tools (Chapter 8). These can display slightly longer descriptions, shown
dynamically as the user selects or rolls over certain interface elements. Set aside
areas on the page itself for this rather than using a tiny tool tip.

• Longer help texts contained inside Collapsible Panels (see Chapter 4).

112 | Chapter 2: Organizing the Content: Information Architecture and Application Structure

• Introductory material, such as static introductory screens, guided tours, and vid‐
eos. When a new user starts the application or service for the first time, these
materials can immediately orient them toward their first steps (see the Instant
Gratification pattern in Chapter 1). Users might also be interested in links to
Help resources. Offer a toggle switch to turn off the introduction—users will
eventually stop finding it useful—and offer a way back to it elsewhere in the
interface in case a user wants to go back and read it later.

• Help shown in a separate window, often in HTML via browsers, but sometimes
in WinHelp or Mac Help (a desktop app for help). The help resource is often an
online manual—an entire book—reached via menu items on a Help menu, or
from Help buttons on dialog boxes and HTML pages.

• Live technical support, usually via chat email, the web, Twitter, or telephone.
• Online community support. This applies only to the most heavily used and inves‐

ted software—the likes of Photoshop, Linux, Mac OS X, or MATLAB—but users
might consider it a highly valuable resource. Host your own community or use
social networking resources for these or more traditional online forums.

Examples

In-screen help: labels and tool tips. The first layer of help that can be designed into your
software is the help that appears right in the context of usage: labels, rollover high‐
lights, and tool tips. In Adobe Photoshop’s desktop application (Figure 2-55), hover‐
ing the mouse over a tool icon (which lacks a label) causes it to change background
color and then display a tool tip that explains what the highlighted tool does. Learn‐
ing through exploration is enabled this way.

Figure 2-55. Adobe Photoshop: animated titles as hover tools and tool tips

The Patterns | 113

Microsoft Excel (Figure 2-56) view controls have permanent labels. The selected tool
has a selected appearance and a corresponding label. But if the user hovers over an
unselected view button, the label will change to show temporarily what the name of
the highlighted (not selected) tool is. Excel also makes extensive use of regular roll‐
over tool tips, as shown in Figure 2-57, especially for icons that don’t have default
labels.

Figure 2-56. Microsoft Excel: animated titles as hover tools

Figure 2-57. Microsoft Excel: tool tips

114 | Chapter 2: Organizing the Content: Information Architecture and Application Structure

Help systems. Publishing instructional and reference content in the software platform
or application itself is a longstanding best practice in usability and customer success.
Essentially it means providing a digital version of the user manual for the software
that the customer can access as needed. This provides incredible value to users
because they have a place to turn to answer their questions that they can access on
their own, without having to initiate a customer service request. They also don’t need
to break from their task at hand to come back later. Also, new users self-train with
such materials. From a customer confidence and satisfaction point of view, and con‐
sidering the savings in reduced customer service requests, deploying a help system in
your application (or in a separate website that your software can link to) is a signifi‐
cant benefit.

Adobe Photoshop (Figure 2-58) shows how a designer can access help and tutorials
directly in the application. From Photoshop, the user has links to the Adoble Photo‐
shop Help website (Figure 2-59). Microsoft Excel (Figure 2-60) offers the full help
system in a separate application window that can be opened while using the app.

Figure 2-58. Adobe Photoshop Search and Help

The Patterns | 115

Figure 2-59. Adobe Photoshop Help (website)

Figure 2-60. Microsoft Excel Help (in the application itself)

New user experiences: guided instruction. What is the most natural way in the world for
a visitor, a new resident, or a new employee to learn where things are, how the space
or campus is laid out, or how to do things? Or, what’s the best way for an existing user
to get some help in the form of a reminder, a repeat training, or a “refresher”? It’s to

116 | Chapter 2: Organizing the Content: Information Architecture and Application Structure

ask a more experienced person to give a tour, to be a guide. Many software platforms
have taken this approach to onboarding new users. It’s possible to create and deploy
step-by-step guides for software that gives a new customer or employee a tour of the
software or a guide for how to do specific tasks. These often take the form of an over‐
lay on top of the standard interface, or a series of pop ups that point to key screen
components. In this way, a new UX can be scripted and developed once and then
used by many people after that.

Userlane (Figure 2-61) is a company that provides a user-guide authoring platform
that other companies can deploy in their own software. In the example here, using
Wikipedia as a demonstration, an instructional panel displays in lightbox mode on
top of the regular Wikipedia interface. In this way, the learner is prompted to focus
on one step or interface component at a time, which promotes better learning. They
can also go at their own pace while still getting a tour of all the most important parts
of the software by the end.

Similarly, Pendo (Figure 2-62) offers pop-up user guides as part of its customer
engagement platform. The Pendo customer, usually a software company, creates user
guides for how to do things in the app. In this example, the learner is in the middle of
some task walk-through. The immediate next step, which is to go to Settings, is high‐
lighted at top in an overlay.

Figure 2-61. Lightbox mode: instructional panel with highlighted step (Userlane)

The Patterns | 117

Figure 2-62. Overlay mode: step-by-step pop ups pointing to UI elements (Pendo)

Online community. Finally. if all other sources of help are exhausted, a user can turn to
the wider user community for advice. We’ve now moved beyond the realm of soft‐
ware design, per se, but this is still product design—the UX extends beyond the bits
installed on users’ computers. It includes the interactions they have with the organi‐
zation, its employees or other representatives, and its website.

The UI design app Sketch is widely used, and it’s no surprise that the company wants
to bring this community together around this popular tool. The Sketch User commu‐
nity (Figure 2-63) shows how this community is a source of news and learning.

Similarly, Adobe User Forums (Figure 2-64) offer a way for designers and others to
discuss issues. Adobe creates the forum. Their customers create the content in the
form of discussions, questions and answers, and advice. In this way, knowledge can
be spread more easily among members of the community.

Community building like this happens only for products in which users become
deeply invested, perhaps because they use the product every day at work or at home.
But having an online community of users of some sort is common. It is also a huge
advantage for the product. So, it is worth considering how to foster such a
community.

118 | Chapter 2: Organizing the Content: Information Architecture and Application Structure

Figure 2-63. User community as a learning resource; hosted by third party (Sketch commu‐
nity hosted by Spectrum)

Figure 2-64. Adobe User Forums

The Patterns | 119

Tags

What

Tags are a method of classifying and categorizing information by adding labels to it.
To put it another way, it is a method of creating or attaching descriptive metadata to
an article, a social media post, or any other piece of information. They form an addi‐
tional kind of faceted classification and navigation system for your app or website: a
topic-based one. If you provide or attach these tags, the customer can use them to
search and browse content by these facets, or category descriptors.

Another aspect of tags is that they can be provided by the reader or consumer, too.
They can be a form of user-generated content. Tags can be a way for users to manage
their own data: grouping of content, searching, browsing, sharing, or recall. Multiple
tags can be added to the same post or article. With enough tagged content, online
consumers can view or browse the content or online activity using tags created by co-
users. This is a common feature of discussion boards, blogs and social-enabled apps
and sites of all kinds.

Social media has created and spread the near-universal standard of adding the hash
or pound symbol “#” to the beginning of a word to mark it specifically as a tag, or
“hashtag. ” Hashtags create a way for users to link from a single social post or article
to a search results feed that contains posts from other people also marked with the
same hashtag. This is a powerful way for information to spread rapidly.

Use when

Enable tagging when you want to take advantage of your users’ desire to classify,
browse, share, and promote content associated with topics of interest to them. Tags
are a user-generated classification system. When this is generated by your readers or
customers and is accessible to others, it becomes a way for them to discover and navi‐
gate to content that’s of interest. Apps or platforms that have a large amount of infor‐
mation, such as news publishers or social media sites, will add tags to their content,
or allow users to tag their posts. In this way, a homegrown topic navigation and dis‐
covery system grows along with the content, a complement to whatever formal navi‐
gation and IA scheme you have designed into your product.

Why

The purpose of tagging from a design perspective is twofold. First, it promotes
increased usage of your app or website because your users are able to find content,
media, and other information that is highly relevant to the tag or keyword of interest
at the moment. Even more, if you have users who actively tag content, they are
becoming more invested in your product or platform because they are creating their

120 | Chapter 2: Organizing the Content: Information Architecture and Application Structure

own content (usually for social media sharing) using your content. Both of these can
help to increase usage and retention.

The second reason to tag your content or enable your users to tag is to crowdsource
an organic organization scheme for your app or community that would otherwise be
too expensive and time consuming to do on your own. These can form quickly
around topics of the moment, and they can also be long-lived topics. Over time, a
naturally user-centered structure and order can emerge. This can be especially useful
if you want to activate or amplify your customers’ own interest in finding, reading,
sharing, commenting on, and more related to topics that are naturally interesting to
them.

How

Create or incorporate software that allows words to be added to content or posts as
tags. Furthermore, your search function must be able to search the tagged content
and create index or results screens that show all content that is tagged with a particu‐
lar keyword. Tags or hashtags also should be formatted as links automatically. Select‐
ing the tag generates a search based on that tag, and creates a search results page with
most relevant or most recent content also tagged with that term.

Examples

Stack Overflow (Figures 2-65 and 2-66) is a hugely popular question-and-answer dis‐
cussion board and online community that serves the software developer community.
This website consists almost totally of user-generated content in the form of threa‐
ded, tagged discussions. In other words, it offers a deep and robust crowd-sourced
tag/topic system for finding information. Readers can browse lists of most recent and
most popular questions. They also use the tags attached to each post. Participants tag
their posts liberally. This allows readers to find discussion threads tagged with the
same topic, and closely related topics. Tracking and displaying related tags creates a
rich information and navigation browsing ecosystem with high likelihood of readers
finding relevant content related to their topic of interest.

The Patterns | 121

Figure 2-65. Stack Overflow, showing relevant tags (each highlighted within in a round-
cornered rectangle below the subject) for each question

122 | Chapter 2: Organizing the Content: Information Architecture and Application Structure

Figure 2-66. Stack Overflow filtered by tag

The Patterns | 123

Texas Monthly (Figure 2-67) uses the massively popular Wordpress content manage‐
ment system and web publishing platform to create their online magazines. A promi‐
nent feature of Wordpress is the ability to add tags to articles and posts at the time of
publication. These tags are displayed along with the main article, and link to other
posts within the Wordpress system, which generates additional pages for the reader
based on the tag they clicked. In the Texas Monthly example, several tags display at
the bottom of an article. The authors have chosen a number of keywords to describe
this and other articles. In this example, when the user clicks the tag “Travel,” for
example, they can see a list of other travel articles that Texas Monthly has published.
This promotes increased time on the site, site circulation, and reader engagement.

Figure 2-67. Texas Monthly article tags (powered by Wordpress)

124 | Chapter 2: Organizing the Content: Information Architecture and Application Structure

Evernote is a personal note-taking and web archiving application for mobile, web,
and desktop. Its users save articles, files, presentations and web pages into a central
location: the Evernote platform. It allows users to add their own tags when “clipping”
a web page to Evernote (Figure 2-68). This helps with categorizing and finding simi‐
lar saved articles later. There is also a tag index screen where the user can see what
tags exist, and how many articles or clippings are tagged with each term
(Figure 2-69). Selecting a given tag creates a search results list of clippings with that
tag. In addition to free-text searching, Evernote’s user-generated tag system creates a
powerful method for categorizing and managing large amounts of disparate media
and information. Inside the Evernote app itself, the user can search by tag
(Figure 2-70).

Figure 2-68. Evernote Screen Clipper offers the ability to add tags

The Patterns | 125

Figure 2-69. Evernote app with tags browser

126 | Chapter 2: Organizing the Content: Information Architecture and Application Structure

Figure 2-70. Evernote app with ability to search by tags

Conclusion
Information architecture, or IA, is a challenging aspect of designing software because
it is simultaneously abstract (organization and labeling schemes) and also concrete
(navigation and tags, for example). It’s important to remember that the IA should be
based on the users’ vocabulary and mental model of the business or task domain. The
IA should be designed to accept new content and data over time, and still serve to
organize and hold everything without confusion. So, design for an “evergreen” infor‐
mation architecture. The processes outlined in this chapter will help you do just that:
mutually exclusive, collectively exhaustive categorization; using commonly under‐
stood organization methods, chunking up content, developing a system of screen
types based on usage, and then the patterns in this chapter. It’s useful to think of the
IA of your software as being the invisible organization scheme, and the various inter‐
action design patterns and widgets as ways of exploring this information space.
Search, browse, navigation systems, tags, cross-links, multiple media types, and more
might all be necessary to learn and navigate the information architecture fully.

In Chapter 11, we look at how modern UI frameworks and atomic design principles
help us to quickly build out these IA widgets at scale.

Conclusion | 127

Chapter 3

Getting Around: Navigation,
Signposts, and Wayfinding

The patterns in this chapter deal with the challenges of navigation: How do users
know where they are now? Where can they or should they go next? How can they get
there from here?

To answer these questions, we look at these important aspects of navigation:

• The purpose of navigation in user experience (UX)
• Methods to promote wayfinding in your software
• Different types of navigation
• How to design navigation
• Patterns of navigation that can be useful

Navigation can be challenging because moving around in a website or application is
like commuting: you need to do it to get where you want to go, but it’s dull, it’s some‐
times infuriating, and the time and energy you spend on it just seems wasted.
Couldn’t you be doing something better with your time, such as playing a game or
getting some actual work done?

The best kind of commuting is none at all. Having everything you need right at your
fingertips without having to travel somewhere is pretty convenient. Likewise, keeping
most tools “within reach” on an interface is handy, especially for intermediate-to-
expert users (i.e., people who have already learned where everything is). Sometimes,
you do need to put lesser-used tools on separate screens where they don’t clutter
things up; sometimes, you need to group content onto different pages so that the
interface makes sense. All of this is fine as long as the “distances” that a user must
travel remain short. So, less is better.

129

Understanding the Information and Task Space
The purpose of navigation is to help the user know and understand the information
space they are in. This includes understanding what tasks they can do, as well. Finally,
they need to know how to get around. Navigation helps users know the following:

• The information and tools that are available in terms of subject and scope
• How the content and functionality are structured
• Where I am now
• Where I can go
• Where I came from and how to go back or how to back up

Suppose that you’ve built a large website or application that you’ve had to break up
into sections, subsections, specialized tools, pages, windows, wizards, and so forth.
How do you help users navigate?

Signposts
Signposts are features that help users figure out their immediate surroundings. Com‐
mon signposts include page and window titles, web-page logos and other branding
devices, tabs, and selection indicators. Patterns and techniques such as good global
and local navigation links, Progress Indicator, Breadcrumbs, and Annotated Scroll Bar
—all described in this chapter—inform users as to where they currently are and,
often, where they can go with only one more jump. They help a user to stay “found”
and to plan their next steps.

Wayfinding
Wayfinding is what people do as they find their way toward their goal. The term is
pretty self-explanatory. But how people actually do it is quite a research subject—
specialists from cognitive science, environmental design, and website design have
studied it. These common-sense features help users with wayfinding:

Good signage
Clear, unambiguous labels anticipate what you’re looking for and instruct you
where to go; signs are where you expect them to be, and you’re never left stand‐
ing at a decision point without guidance. You can check this by walking through
the artifact you’re designing and following the paths of all the major use cases.
Make sure that each point where a user must decide where to go next is signed or
labeled appropriately. Use strong “calls to action” on the first pages that a user
sees.

130 | Chapter 3: Getting Around: Navigation, Signposts, and Wayfinding

Environmental clues
You’d look for restrooms in the back of a restaurant, for instance, or a gate where
a walkway intersects a fence. Likewise, you would look for an “X” close button in
the upper right of a modal dialog box and logos in the upper-left corner of a web
page. Keep in mind that these clues are often culturally determined, and someone
new to the culture (e.g., someone who’s never used a given operating system
before) might not be aware of them.

Maps
Sometimes, people go from sign to sign or link to link without ever really know‐
ing where they’re going in a larger frame of reference. (If you’ve ever found your
way through an unfamiliar airport, that’s probably what you did.) But some peo‐
ple might prefer to have a mental picture of the whole space, especially if they’re
there often. Also, in badly signed or densely built spaces, such as urban neighbor‐
hoods, maps might be the only navigational aids people have.

In this chapter, the Clear Entry Points pattern is an example of careful signage com‐
bined with environmental clues–the links should be designed to stand out on the
page. A Progress Indicator, obviously, is a map. Modal Panel sort of qualifies as an
environmental clue because the ways out of a modal panel take you directly back to
where you just were.

I’ve compared virtual spaces to physical spaces here. But virtual spaces have the
unique ability to provide a navigational trump card, one that physical spaces can’t
(yet) provide: the Escape Hatch. Wherever you are, click that link, and you’re back to
a familiar page. It’s like carrying a wormhole with you. Or a pair of ruby slippers.

Navigation
Let’s briefly review the different types of navigation that designers commonly use and
that users are probably familiar with. The types described here are broadly deter‐
mined by function. The listing here is not exhaustive. Naming can also vary but we
use some of the most common terms: global, utility, associative and inline, related
content, tags, and social.

Global Navigation
This is the site or app navigation that is on every main screen. It usually takes the
form of menus, tabs, and/or sidebars, and this is how users move around the formal
navigational structure of the site. (In an earlier version of this book, global navigation
was defined as a pattern. But by now, it’s so common and well understood that it
really doesn’t need to be called out as such anymore.)

Navigation | 131

Global navigation is almost always shown at the top or left of a web page, sometimes
both (called the inverted L navigation layout). Rarely, you might find it on the right—
but this placement can cause problems with page size and horizontal scrolling.

In the mobile environment, we see two main approaches to global navigation. The
first is a navigation bar that sits at the bottom of the screen. It remains in that location
as the user goes from screen to screen. It might have an internal left-right scroll, as
well, if there are additional navigation items. The second approach is the “hambur‐
ger” menu; this is a stack of three horizontal lines. Sometimes, this is a slenderer stack
of three dots. Tapping this invokes a panel with the global navigation choices.

Utility Navigation
This is also found on every main screen and contains links and tools related to non‐
content aspects of the site or application: sign-in, help, print, Settings Editor (Chap‐
ter 2), language tools, and so on.

When a site’s visitors are typically signed-in members, that site might offer a set of
utility navigation links in its upper-right corner. Often there is an icon of a human or
a tiny photo of the member, if that is available. This is the symbol of the member—
their avatar—clearly hinting that personal-to-you information is located here. Users
tend to look there for tools related to their presence on the site: account settings, user
profile, logout, help, and so on. See the Sign-in Tools pattern for more. Sometimes, all
the utility navigation items are displayed. Often, they are collapsed behind the avatar
icon, and the user must click to open it.

Associative and Inline Navigation
These are links in or near the actual content. As the user reads or interacts with the
site, these links present options that might be immediately relevant to the user. They
tie content together thematically.

Related Content
A common form of associative navigation is a Related Articles section or panel. News
sites and blogs use this a lot. When a user reads an article, a sidebar or footer shows
other articles that talk about similar topics or are written by the same author.

Tags
Tags, user defined and system defined, can help support associative navigation and
related articles or links. Tag clouds support topical findability on some sites, espe‐
cially where the number of articles is very large and the topics fine-grained. (On
smaller sites and blogs, they don’t work as well.) A more common navigational

132 | Chapter 3: Getting Around: Navigation, Signposts, and Wayfinding

technique is to list an article’s tags at the end; each tag is a link leading to an entire set
of articles that share that tag.

Social
When a site takes advantage of social media integration, even more navigation
options come into play. This often takes a number of forms. There might be a news or
postings module that displays activity and content shared by your friends. There
might be a type of leaderboard or “trending now” component. This provides links to
stories and posts that are being shared the most among all users on the social media
network. For a closer look at how to use the social graph in your designs, see Design‐
ing Social Interfaces: Principles, Patterns, and Practices for Improving the User Experi‐
ence by Christian Crumlish and Erin Malone (O’Reilly, 2015).

Design Considerations
Navigation must be designed. What navigation options are displayed, how they are
labeled, and where and when the navigation displays in the UI are all considerations
for design. This section briefly discusses design considerations for effective
navigation.

Separate the Navigation Design from the Visual Design
It’s a good process to separate the design of the navigational model from its visual
design. Work out the number and sequence of navigation options that are needed and
what it shows by default. Is it necessary for the user to expand the navigation cate‐
gories to browse the structure, with links to a second or even third levels? Or is that
not necessary? Reasoning this way can help you think more flexibly and deliberately
about how to design the pages themselves. After you’ve established that, you then can
consider the look and feel. There are conventions regarding visual placement of navi‐
gational features. Although it’s tempting to be different, there are huge advantages to
following common layout patterns.

Cognitive Load
When you walk into an unfamiliar room, you look around. In a fraction of a second,
you take in the shape of the room, the furnishings, the light, the ways out, and other
clues; very quickly you make some assumptions about what this room is and how it
relates to why you walked in. Then, you need to do what you came in to do. Where?
How? You might be able to answer immediately—or not. Or maybe you’re just dis‐
tracted by other interesting things in the room.

Similarly, bringing up a web page or opening a window incurs a cognitive cost. Again,
you need to figure out this new space: you take in its shape, its layout, its contents, its

Design Considerations | 133

exits, and how to do what you came to do. All of this takes energy and time. The
“context switch” forces you to refocus your attention and adjust to your new
surroundings.

Even if you’re already familiar with the web page (or room) you just went into, it still
incurs a cost in terms of time for perceiving, thinking, and reorienting yourself to the
information space. Not a large cost, but it adds up—especially when you figure in the
actual time it takes to display a window or load a page.

This is true whether you’re dealing with web pages, application windows, dialog
boxes, or device screens. The decisions that users make about where to go are similar
—they still need to read labels or decode icons, and the users will still make leaps of
faith by clicking links or buttons they’re not sure about.

Furthermore, loading time affects people’s decisions. If a user clicks through to a page
that takes too long to load—or fails to load altogether—they might be discouraged
and just close the page before they find what they came for. (So, how many viewers is
that sidebar video player costing you?) Also, if a site’s pages take a chronically long
time to load, users will be less likely to explore that site.

There’s a reason why companies like Google work very hard to keep page loads as fast
as possible: latency costs viewers.

Keep Distances Short
Knowing that there’s a cost associated with jumping from page to page, you can
understand now why it’s important to keep the number of those jumps down. A great
rule of thumb is to think about how to keep the number of taps or clicks to get from
point A to point B as small as possible. There are several ways you can optimize for
this in your navigation design.

Broad global navigation
Design your navigation and your application so that there are more selections at the
first, topmost level. Make the site structure as flat as possible; that is, minimize the
levels of the site hierarchy. Put access to more screens directly in the global naviga‐
tion. Put another way, avoid having just a few top-level navigation items if that means
users must navigate a lot of category and subcategory menus.

Put frequently accessed items directly in the global navigation
Frequency of use influences the design of your navigation, too. Elevate or raise fre‐
quent actions so that they are at the top level of your navigation structure and thus
there is direct access. This is independent of where they are in the structure of your
site or app.

134 | Chapter 3: Getting Around: Navigation, Signposts, and Wayfinding

You can bury infrequently-used tools or content in the site structure. They will
require a drilldown in the appropriate submenu. This is true within a single tool or
screen, as well. You can hide seldom-used settings or optional steps behind an extra
“door : a closed accordion panel or a tabbed panel. As always, experiment with differ‐
ent designs, and usability-test them if you have any doubts.

Bring steps together
Real efficiency gains can come from structuring the application so that common tasks
can be accomplished in a single screen. One of the most annoying situations for users
is to have a simple or frequent task, but be forced to go into multiple levels of sub‐
pages, dialogs, and so forth to perform one step in each place. It’s even worse if there
is a dependency among the steps. Having to back up because of a missing precondi‐
tion is wasted time and energy.

Can you design your workflows so that the most common 80% of use cases can be
done in one page, without any context switches?

This is difficult to do with some kinds of applications. A certain tool or form can sim‐
ply be very complicated. First try simplifying and minimizing. Group and segment
the screen, but then shorten labels, turn words into pictures, use different form con‐
trols that save space, and move instructional copy to tool tips and pop-up panels.
Then, look at using progressive disclosure so that only the first step or most-used
controls display. Consider Module Tabs or an Accordion to hide other steps or content
by default. This can be revealed automatically as the user works their way through the
tool, or it can be optional information that the user must click or tap to view.

A second method is to bring multiple steps, tools, or screens together into a single
Wizard with multiple steps (we examine this shortly).

Navigational Models
What is the navigational model for your site or app? In other words, how do the dif‐
ferent screens (or pages, or spaces) link to one another and how do users move
between them?

Now let’s look at a few models found in typical sites and apps.

Navigational Models | 135

Hub and Spoke
Most often found on mobile devices, this architecture (Figure 3-1) lists all of the
major parts of the site or app on the home screen, or “hub.” The user clicks or taps
through to them, does what they need to do, and comes back to the hub to go some‐
where else. The “spoke” screens focus tightly on their jobs, making careful use of
space—they might not have room to list all of the other major screens. The iPhone
home screen is a good example; the Menu Page pattern found on some websites is
another.

Figure 3-1. Hub and spoke architecture

136 | Chapter 3: Getting Around: Navigation, Signposts, and Wayfinding

Fully Connected
Many websites and mobile applications follow this model. There’s a home page or
screen, but it and every other page link to all the others—they each have a global nav‐
igation feature, such as a top menu. The global navigation might be a single level (as
shown in Figure 3-2, with only five pages), or it might be deep and complex, with
multiple levels and deeply buried content but with complete navigation on every
screen. As long as the user can reach any page from any other with a single jump, it’s
fully connected.

Figure 3-2. The fully connected model

Navigational Models | 137

Multilevel or Tree
This is also common among websites (see Figure 3-3). The main pages are fully con‐
nected with one another, but the subpages are connected only among themselves
(and usually to the other main pages, via global navigation). You’ve seen this on sites
that have subpages listed only in sidebars or subtabs—users see these on menus that
only show up after they’ve clicked the link for the main page or category. It takes two
or more jumps to get from one arbitrary subpage to another. Using drop-down
menus, the Fat Menus pattern, or the Sitemap Footer pattern with a multilevel site
converts it to a fully connected one, which is preferable.

Figure 3-3. Multilevel navigation

138 | Chapter 3: Getting Around: Navigation, Signposts, and Wayfinding

This pattern is also found in enterprise web software. Companies that offer a suite of
web applications often keep these apps separate. This can be because full integration
into a unitary platform is not desired, or simply hasn’t happened yet, or because the
apps are a result of recent or ongoing acquisitions. Another reason is that the compo‐
nents of the suite might be sold separately. The end result is a product set in which
each application is an experience on its own, separate from the others. However, the
software provider and the customer usually want a single sign on and a single point of
access to everything. So, they are tied together at the top, behind a login. There, the
user can access each of the applications and manage their account settings.

Step by Step
Slideshows, process flows, and Wizard (Chapter 2) lead the user step by step through
the screens in a prescribed sequence (Figure 3-4). Back/Next links are prominent on
the page. Stepwise navigation can be as simple as designing a search interface that
then presents a search engine results page. Ecommerce purchase flows are also a
common example. Here, there is a designed path from product page, to shopping
cart, to the checkout process (can be multiple screens), and finally the completed
transaction confirmation. As a third example, many subscription retail companies
(especially clothing, cosmetics, and other personal goods) have a questionnaire or
online survey as the first step in the customer onboarding process. The customer
steps through a series of questions that establish their preferences for style, budget,
sizes, brands, frequency of delivery, and so on.

Figure 3-4. Step-by-step flows

Navigational Models | 139

Pyramid
A variant on the stepwise model, a pyramid uses a hub page or menu page to list an
entire sequence of items or subpages in one place (see Figure 3-5). The user picks out
any item, jumps to it, and then has the option to use Back/Next links to step through
other items in order. They can go back to the hub page anytime. See the Pyramid
pattern in this chapter for more. This is very common for content sites that publish
stories as a gallery of pictures.

Figure 3-5. Pyramid

Some artifacts are best represented as single large spaces, not many small ones. Maps,
large images, large text documents, information graphics, and representations of
time-based media (such as sound and video) fall into this category. Panning and
zooming are still navigation–so offer controls for panning (moving horizontally or
vertically), zooming in and out, and resetting to a known position and state.

Figure 3-6 shows an example of pan-and-zoom. Map interfaces are the most common
example of this type of navigation.

140 | Chapter 3: Getting Around: Navigation, Signposts, and Wayfinding

Figure 3-6. Pan and Zoom

Flat Navigation
Some types of applications need little or no navigation at all. Consider Canvas Plus
Palette applications such as Photoshop, or other complex apps such as Excel–these
offer tons of tools and functions that are easily reached via menus, toolbars, and
palettes. Tools that don’t act immediately upon the work can be accessible via Modal
Panel or step-by-step progressions. These types of applications seem to be qualita‐
tively different from the other navigation styles listed here: the user always knows
where they are, but they might not easily find the tools they need because of the sheer
number of features available at one time.

There are three things to notice about these navigational models. The first is that
they’re mix and match–an app or site might combine several of these.

The second thing is universal global navigation and short jumps are good things most
of the time. But at other times, a mode with very few navigation options is better.
When a user is in the middle of a full-screen slideshow, they don’t want to see a com‐
plicated global navigation menu. They would rather just focus on the slideshow itself,
so Back/Next controls and an Escape Hatch are all that’s necessary. The presence of
full global navigation everywhere is not without cost: it takes up space, clutters the
screen, incurs cognitive load, and signals to the user that leaving the page doesn’t
matter.

Navigational Models | 141

Third, all of these mechanisms and patterns can be rendered on screen in different
ways. A complex site or app might use tabs, menus, or a sidebar tree view to show the
global navigation on each page–that’s something you don’t need to decide until you
begin laying out the page. Likewise, a modal panel might be done with a lightbox or
an actual modal dialog–but you can postpone that until you know what needs to be
modal and what doesn’t.

Visual design can come later in the design progression, after the information archi‐
tecture (IA) and navigational models.

The Patterns
This chapter talks about several aspects of navigation: overall structure or model,
knowing where you are, determining where you’re going, and getting there efficiently.

The first set of patterns address the navigational model and are more or less inde‐
pendent of screen layout:

• Clear Entry Points
• Menu Page
• Pyramid
• Modal Panel
• Deep Links
• Escape Hatch
• Fat Menus
• Sitemap Footer
• Sign-In Tools

The next few patterns work well as “You are here” signposts (as can a well-designed
global navigation):

• Progress Indicator
• Breadcrumbs
• Annotated Scroll Bar

Progress Indicator, Breadcrumbs, and Annotated Scroll Bar also serve as interactive
maps of the content. Annotated Scroll Bar is intended more for pan-and-zoom models
than for multiple interconnected pages. Finally, Animated Transition helps users stay
oriented as they move from one place to another. It’s a visual trick, nothing more, but
it’s very effective at preserving a user’s sense of where they are and what’s happening.
Now, let’s begin exploring these patterns.

142 | Chapter 3: Getting Around: Navigation, Signposts, and Wayfinding

Clear Entry Points

What

Present only a few main entry points into the interface so that the user knows where
to start. For first-time and infrequent users, it removes some of the burden of learn‐
ing the site. Make them task-oriented or directed at a specific audience type. Use clear
calls to action. The Clear Entry Points schematic in Figure 3-7 represents this concept.

Figure 3-7. Clear Entry Points schematic

Use when

You’re designing a site or application that has a lot of first-time or infrequent users.
Most of these users would be best served by reading a certain piece of introductory
text, doing an initial task, or choosing from a very small number of frequently used
options.

However, if the purpose is clear to basically everyone who starts it, and if most users
might be irritated by one more navigation step than is necessary (like applications
designed for intermediate-to-expert users), this might not be the best design choice.

Why

Some applications and websites, when opened, present the user with what looks like a
morass of information and structure: lots of tiled panels, unfamiliar terms and
phrases, irrelevant ads, or toolbars that just sit there disabled. They don’t give the hes‐
itant user any clear guidance on what to do first. “OK, here I am. Now what?”

The Patterns | 143

For the sake of these users, list a few options for getting started. If those options
match a user’s expectations, they can confidently choose one and begin working-this
contributes to immediate gratification. If not, at least they know now what the site or
app actually does, because you’ve defined the important tasks or categories at the out‐
set. You’ve made the application more self-explanatory.

How

When the site is visited or the application started, present these entry points as
“doors” into the main content. From these starting points, guide the user gently and
unambiguously into the application until they have enough of a context to continue
by themselves.

Collectively, these entry points should cover most of the reasons most users would be
there. There might be only one or two entry points, or several; it depends on what fits
your design. But you should phrase them with language that first-time users can
understand—this is not the place for application-specific tool names.

Visually, you should show these entry points with emphasis proportional to their
importance.

On the home page or starting page, most sites will additionally list other navigation
links—global navigation, utility navigation, and so on—and these should be smaller
and less prominent than the Clear Entry Points . They’re more specialized, and don’t
necessarily lead you directly into the heart of the site any more than a garage door
leads you directly into the living room. The Clear Entry Points should serve as the
“front doors.”

Examples

Apple’s main iPad page (Figure 3-8) needs to do only a few things: identify itself,
make the iPad look inviting, and direct the user toward resources for buying one or
learning more. The global navigation recedes visually, compared to the strong, well-
defined entry point. There is a secondary focus on the row of small schematic dia‐
grams. These are links to the iPad models, too, plus accessories. But above the fold,
the users is clearly directed to the iPad Pro. On the rest of the page, there are addi‐
tional front doors—large promotional images for other iPad models.

144 | Chapter 3: Getting Around: Navigation, Signposts, and Wayfinding

Figure 3-8. iPad page on Apple’s site

Spotify (Figure 3-9) focuses exclusively on the new customer with its website’s land‐
ing page. There is a simple and clear call to action in the center of the screen.

Figure 3-9. The Spotify landing page—a very clear single door

The Patterns | 145

Adobe Illustrator and other applications show a startup dialog when the application is
started (see Figure 3-10). This orients a new or infrequent user to the possibilities for
action. The major actions are creating something new or opening an existing docu‐
ment. Each one is treated twice. On the left, for more experienced or confident users
who are ready to get down to business, there are two boldly marked buttons: Create
New and Open. Despite being small, their visual treatment makes them pop as entry
points into getting started. On the right, there are the same two options, but given a
much bigger, more visual and more explanatory approach. “Start a New File Fast” has
several choices that represent most likely device and screen sizes. The schematic dia‐
grams for each make them even easier to understand. Below this, in Recent, is a grid
of recently opened files, each with a thumbnail image to assist in recognition and
recall. This is a good example of designing different entry points to appeal to different
users.

Figure 3-10. The Adobe Illustrator CC startup dialog

Prezi (Figure 3-11), like Spotify, is using its entry point on the website to make it easy
for potential customers to move toward purchase. In Prezi’s case, it realized its inno‐
vative presentation software needs demonstration. Differentiating its product is the
biggest need, and probably the biggest question in the minds of Prezi’s potential buy‐
ers. The front door sends the message, “Come in and check it out.”

146 | Chapter 3: Getting Around: Navigation, Signposts, and Wayfinding

Figure 3-11. Prezi’s landing page

Tesla (Figure 3-12) offers three entry points as represented by the three Tesla models
in the photograph. The primary focus is on the Model 3 (the user interface zooms in
on it, a clever move). With the focus on the Model 3, there are two entry points: Cus‐
tomize your own Tesla or browse the cars that are available now.

Figure 3-12. Tesla’s landing page

The Patterns | 147

Menu Page

What

Fill the page with a list of links to content-rich pages in your site or app. Show enough
information about each link to enable the user to choose well. Show no other signifi‐
cant content on the page. The venerable Craigslist home page (Figure 3-13) is an
example of a highly successful menu page.

Figure 3-13. Craigslist

148 | Chapter 3: Getting Around: Navigation, Signposts, and Wayfinding

Use when

You’re designing a home page, starting screen, or any other screen whose purpose is
to be just a “table of contents”–to show where users can go from here. You might not
have room for featured content (such as an article, video, or promotion), or you
might simply want to let the user pick a link with no distractions.

Mobile apps and sites often use compact, one-column Menu Pages to make the best
use of their small screens when they need to display many navigation options.

If your (full-size) site needs to “hook” visitors into staying on the page, it might be
better to use some of the page space for promotional items or other interesting con‐
tent, and a Menu Page wouldn’t be the best design choice. Likewise, a site that needs
to explain its value and purpose should use the space to do that, instead.

It takes some courage to design a Menu Page because you must be very confident of
the following:

• Visitors know what the site or app is about
• They know what they came for and how to find it
• They are searching for a particular topic or destination and want to locate it as

quickly as possible
• They wouldn’t be interested in news, updates, or features
• They won’t be confused or repelled by the density of your menu page design

Why

With no distractions, users can focus all of their attention on the available navigation
options. You get the entire screen (or most of it, anyway) to organize, explain, and
illustrate those links, and can thus direct users to the most appropriate destination
page for their needs (Figure 3-13).

How

If you’re creating a mobile design, Menu Page is one of your principal tools for
designing sites or apps with many levels of functionality. Keep list labels short, make
targets large enough to tap easily (for touch screens), and try not to make hierarchies
too deep.

A word of caution regarding menu pages: It is very easy for these to become over‐
whelming. Consider using them for seldom-used screens such as reference or index
pages. In all cases, look for ways to align, group, and label content for easier
comprehension.

The remainder of the discussion here applies to full-sized sites and apps.

The Patterns | 149

First, label the links well and provide just enough contextual information for users to
decide where to go. This isn’t necessarily easy. Visitors might find it very helpful to
have a description or teaser with each link, but that could take up a lot of space on the
page. Likewise for thumbnail images—they can look great, but how much value do
they add?

Look at the San Francisco city government directory screen in Figure 3-14 and the
University of California, Berkeley directory screen in Figure 3-15. Visitors to the
SF.gov Departments page are given just that: an alphabetical list. Visitors to the UC,
Berkeley site already know the meanings of these links—they’re the names of aca‐
demic programs—so the extra information is about the degree offerings, not the defi‐
nition of the school. The designer is thus able to pack in more links toward the top of
the screen. The result is an information-dense, useful page.

On the other hand, the articles in the AIGA resources page (Figure 3-16) do benefit
from descriptive text and images. The titles alone aren’t necessarily enough to per‐
suade a visitor to click through. (Keep in mind, too, that a user who clicks through
and finds that the destination page isn’t what they wanted will become frustrated
quickly. Make sure your descriptions are accurate and fair!)

Second, consider the visual organization of the list of links. Do they come in cate‐
gories, or perhaps a two- or three-level hierarchy? Is it ordered by date? Express that
organizational scheme in the list.

Third, don’t forget a search box.

Finally, reconsider whether you have anything else to say on this page. Home page
space, in particular, is quite valuable for drawing in users. Is there an interesting arti‐
cle teaser you can put there? A work of visual art? If such things would annoy more
than intrigue, continue designing a pure Menu Page.

150 | Chapter 3: Getting Around: Navigation, Signposts, and Wayfinding

http://SF.gov

Examples

The website for the City and County of San Francisco, SF.gov (still being developed as
of this writing), takes a portal approach (Figure 3-14). It brings together links to all of
the services and departments. The implied majority use case here is that people are
searching for a particular department or service within this large governmental
organization.

Figure 3-14. SF.gov

In the website for the University of California, Berkeley (Figure 3-15), the “Academ‐
ics” page shows a list of links. When a user reaches this point in the website, they’re
probably looking for a specific department or resource, not for, say, an explanation of
what Berkeley is about. The whole point of this page is to move the visitor along to a
page that answers a well-defined need.

The Patterns | 151

http://SF.gov
http://SF.gov

Figure 3-15. The University of California, Berkeley schools and colleges menu page

152 | Chapter 3: Getting Around: Navigation, Signposts, and Wayfinding

The AIGA website contains many resources for design professionals. The site
presents several top-level categories for those resources, as shown in the global navi‐
gation, but the landing page for each of those categories is a Menu Page (Figure 3-16).
The articles are shown with thumbnail images and summary text; the rich format
gives the viewer enough of a context to decide whether to invest time in clicking
through to the article.

This page is intriguing enough to hook a user on its own, without featuring any par‐
ticular content at all.

Figure 3-16. A Menu Page from AIGA’s website

The Patterns | 153

Last, the Museum of Modern Art uses large images and small text on this version of
Menu Page (Figure 3-17).

Figure 3-17. The Museum of Modern Art, New York PS1 exhibit menu page

154 | Chapter 3: Getting Around: Navigation, Signposts, and Wayfinding

Pyramid

What

Link together a sequence of pages with Back/Next links. Create a parent page that
links to all of the pages in this sequence, and let the user view them either in sequence
or out of order. Figure 3-18 presents this pattern schematically.

Figure 3-18. Pyramid schematic

Use when

The site or application contains a sequence of items that a user would normally view
one after another, such as a slideshow, a wizard, chapters in a book, or a set of prod‐
ucts. Some users would rather view them one at a time and out of order, however, and
they need to be able to pick from a full list of the items.

Why

This pattern reduces the number of clicks it takes to get around. It improves naviga‐
tion efficiency, and it expresses a sequential relationship among the pages.

Back/Next (or Previous/Next) links or buttons are all well and good. People know
what to do with them. But a user doesn’t necessarily want to be locked into a page
sequence that they can’t easily get out of: having gone seven pages in, will they need to
click the Back button seven times to get back where they started? That is a recipe for
frustration and low usability (lack of user control).

By putting a link back to the parent page on each sequence page, you increase the
user’s options. You’ve now have three main navigation options instead of two—Back,
Next, and Up. You haven’t made it much more complex, but a user who is casually
browsing (or one who’s changed his mind in midstream) will need far fewer clicks to
go where they want to go. It’s more convenient for users.

The Patterns | 155

Likewise, chaining together a set of unconnected pages is kind to users who actually
want to see all the pages. Without the Back/Next links, they would be “pogo sticking”
to the parent page all the time; they might just give up and leave.

How

List all of the items or pages, in order, on the parent page. Render the list in a way that
suits the types of items you’re dealing with (Chapter 7), such as a Thumbnail Grid for
photos or a rich text list for articles. A click on an item or link brings the user to that
item’s page.

On each item page, put Back/Next links. Many sites show a small preview of the next
item, such as its title or a thumbnail. In addition, put in an Up or Cancel link to bring
the user back to the parent page.

One Pyramid variation turns a static linear sequence into a loop by linking the last
page back to the first without going back to the parent. This can work, but does the
user know that they’ve looped all the way back around? Do they recognize the first
page in the sequence? Not necessarily. If the order of a sequence is important, you
should link the last page to the parent page; this signals the user that they’ve seen all
there is to see.

Examples

Facebook’s photo album page is a classic Pyramid example.The album can be seen in
its entirety by scrolling the page (see Figure 3-19). The images are thumbnails. Select‐
ing a photo opens the slideshow, which is organized via the Pyramid pattern
(Figure 3-20). Scroll right, scroll left, or exit to the grid again are the navigation
options.

156 | Chapter 3: Getting Around: Navigation, Signposts, and Wayfinding

Figure 3-19. A Facebook photo album

The Patterns | 157

Figure 3-20. A child page from the same Facebook feature, showing Back, Next, and Close
buttons near the photo

Modal Panel

What

A screen with no navigation options other than acknowledging its message, complet‐
ing its form, or clicking the panel away. Modals appear on top of the current screen.
Modals are usually invoked by a user action. This can be selecting something or per‐
forming some triggering action. Modal panels often show up in a “lightbox” on top of
a full screen or page: The screen underneath is visible but everything except the
modal is behind a gray layer and is not accessible. This is used for small, focused tasks
that require the user’s full attention. Modals usually consist of one page, with no other
navigation options, until the user finishes the immediate task. Figure 3-21 illustrates
the schematic for the Modal Panel pattern.

158 | Chapter 3: Getting Around: Navigation, Signposts, and Wayfinding

Figure 3-21. The Modal Panel schematic

Use when

Modals are great for focusing on a single action or process. They are also great for not
losing context while carrying out a quick subtask or detour from a main screen or
action, where you want the user to take care of a small task and then get back to the
bigger task. They can also work well when the app or site has gotten into a state from
which it shouldn’t or can’t proceed without input from the user. In a document-
centric application, for instance, a “save” action might need the user to supply a file‐
name if one wasn’t already given. In other contexts, the user might need to sign in
before proceeding, or acknowledge an important message.

If the user simply initiates a minor action that might need further input, try to find a
way to ask for that input without a modal panel. You could show a text field right
below the button that the user clicked, for example, and leave it “hanging” there until
the user comes back to it—there’s no need to hold up the entire site or app until that
input is given. Let the user do something else and then return to the question at a
later time.

Why

A modal panel cuts off all other navigation options from the user. They can’t ignore it
and go somewhere else in the app or site: they must deal with it here and now. When
that’s done, the user is sent back to where they were before.

It’s an easy model to understand—and to program—though it was overused in appli‐
cations of past years. A modal panel is disruptive. If the user isn’t prepared to answer
whatever the modal panel asks, it interrupts their workflow, possibly forcing them to
make a decision about something they just don’t care about. But when used

The Patterns | 159

appropriately, a modal panel channels the user’s attention into the next decision that
they need to make. There are no other navigation possibilities to distract the user.

How

In the same space on the screen where the user’s attention lies, place a panel, dialog
box, or page that requests the needed information. It should prevent the user from
bringing up other pages in that application. This panel ought to be relatively unclut‐
tered, in keeping with the need to focus the user’s attention onto this new task with
minimal distractions.

Remember that this is a navigation-related pattern. You should carefully mark and
label the ways out, and there shouldn’t be many of them; one, two, or maybe three. In
most cases, they are buttons with short, verbish labels, such as “Save” or “Don’t save.”
There is usually a “Close” or “X” button in the upper right. Upon clicking a button,
the user should be taken back to the page they came from.

The lightbox effect is a very effective visual presentation of a modal panel. By dim‐
ming most of the screen, the designer highlights the bright modal panel and focuses
attention on it. (For this to work, the modal panel needs to be large enough for the
user to find it effortlessly.)

Some websites use modals for sign-in and registration screens. Retail and other sites
that want to prompt sign in/registration only when truly needed (to avoid interrupt‐
ing the user) are commonly done this way: global and local navigation are stripped
out, and all that’s left are to perform the sign-in task or exit.

Operating systems and graphical user interface (GUI) platforms usually offer OS-
level modal dialog boxes. These are best used in traditional desktop applications—
websites should avoid them in favor of lighter-weight overlay techniques, which are
easier for the designer to control and less disruptive to the user. OS-level modals usu‐
ally freeze the UI except for the modal window.

Examples

Airbnb uses a lightbox to draw attention to its login (Figure 3-22). This appears
directly over the public website landing page. There are only three ways to deal with
it: sign in, register, or click the familiar “X” button in the upper-left corner. This is
typical of many lightbox-highlighted modal panels on the web. If Airbnb does not
recognize the user’s computer (usually because they cleared cookies), the modal panel
changes in place to display the two-factor authentication screen.

160 | Chapter 3: Getting Around: Navigation, Signposts, and Wayfinding

Figure 3-22. Airbnb login modal panel and security check modal panel

The Patterns | 161

As mentioned earlier, retailers often delay any sign-in or register step until the last
possible moment in the shopping process in order to make the purchase process as
uninterrupted as possible. After the user is in the shopping cart, however, it makes
sense to require them to sign in. Registered shoppers need to activate their shipping
and payment details, and the retailer would like to invite new customers to become
registered. B&H Photo is a good example of this pattern (Figure 3-23).

Figure 3-23. B&H checkout log in modal

162 | Chapter 3: Getting Around: Navigation, Signposts, and Wayfinding

Macy’s uses a modal window earlier in the shopping process (Figure 3-24). In its case,
it confirms for the shopper that their selected item has been added to their shopping
bag for purchase. Macy’s takes advantage of this moment to offer additional items
that the shopper might be interested in.

Figure 3-24. Macy’s “Put in Bag” confirmation modal

The Patterns | 163

Priceline uses a modal to respond to a traveler’s lack of activity in a clever way
(Figure 3-25). If the customer has searched for a flight or hotel, but doesn’t take any
further action from the search results page, it’s possible they’ve switched to another
task or website or have stepped away. Priceline seeks to reengage with the customer,
so after a short time, this modal appears, offering to show even more recent, up-to-
date results.

Figure 3-25. Priceline timeout and reengagement modal

The “shade” form of a MacOS modal dialog box draws attention to itself as it drops
down from the window title bar (animated, of course). These and other application-
level modal dialog boxes actually prevent the user from interacting with the rest of
the application; thus, the user is forced to finish or dismiss this thread of work before
doing anything else (Figure 3-26).

164 | Chapter 3: Getting Around: Navigation, Signposts, and Wayfinding

Figure 3-26. A modal panel in a Mac application

Deep Links

What

Capture the state of a site or app in a URL or other link that can be saved or sent to
other people. When loaded, it restores the state of the app to what the user was see‐
ing. In other words, a deep link should be a method for linking to both a location in
your software and also a state, such as being signed in or resuming an incomplete
process at the point where the user left off, or retaining information so that the user
doesn’t need to reenter it. Such bookmarks, permalinks, and deep links are all ways
for a user to conveniently navigate to a selected point or state, even if it’s deep within
a navigational structure. This avoids traversing many links to get to a desired page or
state. Mobile OS deep links are a particular method for allowing users to go from app
to app on their mobile device without losing information or task context. Figure 3-27
shows how this works schematically.

The Patterns | 165

Figure 3-27. Deep Links state schematic

Use when

The site or app’s content is something specific and interactive, such as a map location
and zoom level, book page, video clip, or information graphic. The deep-link sender
wants to include a specific desired point or state that might be difficult to find other‐
wise, or it might take many steps to get there from a typical starting point. The app
might have many user-settable parameters or states, such as viewing modes, scales,
data layers, and so on—these can add to the complexity of finding a particular point
and seeing it in the “right” way.

Why

Deep Links gives the user a way to jump directly to a desired point and application
state, thus saving time and work. It behaves like a “deep link” directly into a piece of
content on a conventional site—or a permalink to a blog entry—in the sense that you
end up with a URL pointing directly to the desired content. But it can be more com‐
plex than a permalink, because it can capture both application state and content
position.

166 | Chapter 3: Getting Around: Navigation, Signposts, and Wayfinding

This pattern is useful for saving a state that the user might want to recreate later, espe‐
cially if they can “bookmark” it using well-known mechanisms (like browser book‐
marks). It’s also handy for sharing with other people, and that’s where it really shines.
A URL representing a deep-linked state can be emailed, tweeted, posted to a social
network, discussed in a forum, published in a blog entry, and talked about in any
number of ways. It might make a statement, or go viral, or become a “socially medi‐
ated object.”

How

Track the user’s position in the content, and put that into a URL. Track supporting
data there as well—comments, data layers, markers, highlighting, and so on—so that
reloading the URL will bring it all back.

Consider what other parameters or interface states you might want users to save:
zoom levels, magnification, viewing modes, search results, and so on. Not all of these
should necessarily be captured, because loading the deep-linked state shouldn’t tram‐
ple on settings that a user doesn’t want changed. Work carefully through some usage
scenarios to figure this out.

URLs are the best format for saving Deep Links: they are universally understood,
portable, short, and supported by a vast variety of tools, such as bookmarking
services.

As a user moves through the content and changes various parameters, immediately
put the updated URL in the browser’s URL field so that it can be easily seen and ulti‐
mately copied and shared. Not everyone will think to find it there, so you might also
design a “Link” feature whose existence informs the user, “Here’s how you create a
link to this screen.” Some sites offer to generate a JavaScript “Embed” fragment that
not only captures position and state, but also lets users embed the entire thing into
another website.

Deep links in the mobile world have a specific meaning. Both iOS and Android appli‐
cations can be configured so that public URLs map to corresponding “locations” in
the native OS mobile application (rather than the public URL in the mobile browser).
This allows any shared links to launch their associated mobile app, with its (usually)
more robust controls and performance. Mobile-native applications can also pass deep
links from one application to another. For example, the IMDB app might host a link
to a movie trailer on a website. Instead of opening the mobile web browser, the link is
passed to, say, the YouTube native app on the user’s device, which offers more control
over playback and interaction.

The Patterns | 167

Examples

One of the nicest features of sharing videos from YouTube is the ability to embed a
starting point for the clip directly in the share link (Figure 3-28). YouTube sharing
includes the ability to specify starting point in a video. Recipient’s video playback will
begin here, not at the beginning of the shared video.

Figure 3-28. Sharing a YouTube video

Google Books captures a large amount of state in its URLs (Figure 3-29): the position
in the book, the viewing mode (single page, two-up, thumbnails), the presence of
toolbars, and even search results. It does not capture magnification level, which
makes sense, because that’s a very individual setting. The URL as seen in the “Link”
tool is actually redundant—the URL shown by the browser itself is exactly the same.

Figure 3-29. Deep-linked state in Google Books, found in two places: the browser’s URL
field, and the “Link” feature

168 | Chapter 3: Getting Around: Navigation, Signposts, and Wayfinding

In Apple iOS, the operating system itself checks public URLs against the deep link
configuration of all installed native applications. This allows a pass-off from the
mobile browser so that the user can view the selected page, song, stream, or video in
an installed app (Figure 3-30), and not through the mobile browser, which might
offer limited functionality for the destination link. Rerouting to the device-resident
app lets the user enjoy more functionality and a more robust viewing experience.

Figure 3-30. iOS; Deep linking from mobile web to mobile app

The Patterns | 169

Job listings site Indeed.com has robust searching and filtering tools for job searchers.
These parameters are written to the URL, allowing the search to be shared or saved
for later, to trigger a refreshed search (Figure 3-31).

Figure 3-31. Indeed job search; parameters are written in the URL so that this search can
be shared or saved

170 | Chapter 3: Getting Around: Navigation, Signposts, and Wayfinding

Escape Hatch

What

A well-labeled button or link that clearly gets the user out of their current screen and
back to a known place. Use these on screens that have limited navigation options.
Also use escape hatches for when a user is hopelessly entangled in an app, reaches an
error state, or becomes deep-linked into a page that they have no context for under‐
standing. The schematic in Figure 3-32 illustrates this concept.

Figure 3-32. Escape Hatch schematic

Use when

You have pages that constitute some sort of serial process, such as a wizard, or any
pages that lock the user into a limited navigation situation, such as a Modal Panel.
These might also be pages that users can reach out of context, as they could do via
search results.

There are also dead-end screens. For example, HTTP server error screens, such as for
Error 404 Page Not Found (there are many of this type of error screens), are a great
place to put an escape hatch.

The Patterns | 171

Why

Limited navigation is one thing, but having no way out is quite another! If you give
the user a simple, obvious way to escape from a page, no strings attached, they’re less
likely to feel trapped there. It also prevents people from bailing out completely by
closing the application completely.

This is the kind of feature that helps people feel like they can safely explore an app or
site. It’s sort of like an undo feature—it encourages people to go down paths without
feeling like they’re committing to them. (See the Safe Exploration pattern in
Chapter 1.)

Now, if these are pages that users can reach via search results, it’s doubly important
that escape hatches be put on each page. Visitors can click these to get to a “normal”
page that tells them more about where they actually are.

How

Put a button or link on the page that brings the user back to a “safe place.” This might
be a home page, a hub page in a hub-and-spoke design, or any page with full naviga‐
tion and something self-explanatory on it. Exactly what it links to will depend upon
the application’s design.

Examples

Websites often use clickable site logos as home-page links, usually in the upper left of
a page. These provide an Escape Hatch in a familiar place while helping with
branding.

In some dialogs, a Cancel button or the equivalent can serve this purpose. These also
let the user say, “I’m done with this; forget I ever started it.”

Have you ever called a company—for instance, your bank—and had to work your
way through a set of phone menus? They can be long, confusing, and time-
consuming. If you find yourself in the wrong menu, you might just hang up and try
again from the top. But many phone menu systems have a hidden Escape Hatch that
they don’t tell you about: if you dial “0” at any point, you might be connected to a
human operator. Many customers go directly to this hidden shortcut.

Many websites have certain pages that limit navigation options, such as Modal Panel
and pages without global navigation. The LinkedIn Settings screen is one example.
This section of LinkedIn is separate from the main web application. The global navi‐
gation is not present. If a user finds themselves here, there are two ways to get back,
through two escape hatches. The first is the LinkedIn logo to go back to the home
page. The second is a “Go Back to LinkedIn.com” link with the member’s own profile
picture (see Figure 3-33).

172 | Chapter 3: Getting Around: Navigation, Signposts, and Wayfinding

Figure 3-33. The LinkedIn Settings page, with link and avatar in the upper right as an
escape hatch back to LinkedIn

Helping browsers recover from dead ends is a good use of escape hatches, too. Cur‐
bed.com’s website offers an escape hatch on its 404 Not found error screens. In the
copy is a link to jump to the home page (Figure 3-34). Curbed also offers system sta‐
tus messaging, so if the Curbed website is actually not active, the user would know
that.

Figure 3-34. Curbed.com 404 error page with an escape hatch to the home page

The Patterns | 173

Fat Menus

What

Display a long list of navigation options in drop-down or fly-out menus. Also called
“mega-menus.” Use these to show all of the subpages in site sections. Organize them
with care, using well-chosen categories or a natural sorting order, and spread them
out horizontally. You can find an example of this pattern in the “All Microsoft” fat
menu on Microsoft.com (Figure 3-35).

Figure 3-35. Microsoft’s All Microsoft menu

Use when

The site or app has many pages in many categories, possibly in a hierarchy with three
or more levels. You want to expose most of these pages to people casually exploring
the site, so they can see what’s available. Your users are comfortable with drop-down
menus (click to see them) or fly-outs (hover over them with the pointer).

Why

Fat Menus makes a complex site more discoverable. They expose many more naviga‐
tion options to visitors than they might otherwise find.

By showing so many links on every page, you make it possible for a user to jump
directly from any subpage to any other subpage (for most subpages, anyhow). You
thus turn a multilevel site—where subpages aren’t linked to the subpages in other site
sections—into a fully connected site (Figure 3-35).

Fat Menus are a form of progressive disclosure, an important concept in UI design.
Complexity is hidden until the user asks to see it. A visitor to a site that uses these can
look over the menu headings to get a high-level idea of what’s there, and when that
user is ready to dive in, they can open up a Fat Menu with a gesture. The user isn’t
shown millions of subpages before they’re ready to deal with them.

174 | Chapter 3: Getting Around: Navigation, Signposts, and Wayfinding

http://Microsoft.com

If you’re already using menus in your global navigation, you might consider expand‐
ing them to Fat Menus if showing more links makes the content more attractive to
casual browsers. People won’t need to drill down into categories and subcategories of
your site hierarchy in order to discover interesting pages—they’ll see them there,
right up front.

How

On each menu, present a well-organized list of links. Arrange them into Titled Sec‐
tions (Chapter 4) if they fit into subcategories; if not, use a sorting order that suits the
nature of the content, such as an alphabetical or time-based list.

Use headers, dividers, generous whitespace, modest graphic elements, and whatever
else you need to visually organize those links. And take advantage of horizontal space
—you can spread the menu across the entire page if you want. Many sites make excel‐
lent use of multiple columns to present categories. If you make the menu too tall, it
might go right off the end of the browser page.

The best sites have Fat Menus that work stylistically with the rest of the site. Design
them to fit well into the color scheme, grid, and so on of the page.

Some menu implementations don’t work well with accessibility technology such as
screen readers. Ensure that your Fat Menus can work with these. If they can’t, con‐
sider switching to a more static strategy, such as a Sitemap Footer.

You can adapt Fat Menus for mobile screens if necessary. In that case, you should lin‐
earize the columnar layout left to right. That is, the menu is reordered into a single
column, with the sections stacked vertically. It’s best not to insert this much naviga‐
tion content into every mobile screen. Instead, consider making this a reference navi‐
gation screen that is accessed through a separate mobile navigation scheme.

Examples

Macy’s, like most big retailers, has a vast inventory with many categories of items for
sale. Browsing and finding a specific category or item of interest can be challenging in
these cases. Well-designed fat menus can be a useful solution. Macy’s uses a two-part
fat menu (Figure 3-36). The shopper first opens the top-level fat menu with the level-
one major categories. When they select one of these, a second panel opens that covers
the page. A huge amount of level-2 categories are displayed in this second panel.

The Patterns | 175

Figure 3-36. The Macy’s two-level fat menu with progressive disclosure

176 | Chapter 3: Getting Around: Navigation, Signposts, and Wayfinding

The Fat Menus on the Starbucks website are very well designed (Figure 3-37). Each
menu is a different height but the same width and follows a strict common page grid
(they’re all laid out the same way). The style blends in with the site, and the generous
negative space makes it easy to read. Product promotions are worked into the design,
but not obnoxiously.

Figure 3-37. Starbucks coffee menu

As shown in Figure 3-38, Mashable’s fat menus use a hybrid approach. The text
menus are off to the left and deemphasized. It takes full advantage of the horizontal
space to show featured articles. This is clever—the knowledgeable user can skim a
large number of headlines by rolling over the menus.

Figure 3-38. Mashable’s Science menu

The Patterns | 177

The American Red Cross uses Fat Menus liberally (Figure 3-39). When the user rolls
over any top-level menu item, the resultant Fat Menus cover up the top portion of the
screen. There is good organization and presentation of topics and links, making this
large website structure easily comprehensible. The sections in each Fat Menu are
organized by most likely questions or use cases.

Figure 3-39. The American Red Cross menu

WebMD uses an alphabetical sorting order for its list of health topics (Figure 3-40).
There is direct access to information on most common conditions, a long list of addi‐
tional resources, and room for two promoted stories with graphics. The likelihood
that the site visitor can find the link they’re looking for—and continue to engage—is
high.

Figure 3-40. WebMD’s Health A–Z menu

178 | Chapter 3: Getting Around: Navigation, Signposts, and Wayfinding

Sitemap Footer

What

A comprehensive directory of links, organized into categories, that provides an at-a-
glance review of the full scope of the website, and links to all major sections and
pages (Figure 3-41). In other words, the sitemap footer is an index to the website, and
could also be a directory to other sites and resources. What is unique about the footer
location is that there are no vertical space restrictions, unlike Fat Menus at the top of
the screen.

Figure 3-41. Whole Foods footer

Use when

The site you’re designing uses a generous amount of space on each page and you
don’t have severe constraints on page size or download time. You don’t want to take
up too much header or sidebar space with navigation.

The site has more than a handful of pages, but not an outrageously large number of
categories and “important” pages (things that users will look for). You can fit a rea‐
sonably complete site map—at least for pages that aren’t in the header—into a strip
no taller than about half of a browser window.

There might be a global navigation menu in the page header, but it doesn’t show all
levels in the site hierarchy—maybe it shows only the top-level categories. You prefer a
simple, well-laid-out footer instead of Fat Menus, perhaps because of implementation
ease or accessibility issues.

The Patterns | 179

Why

Sitemap Footer make a complex site more discoverable. The pattern exposes many
more navigation options to visitors than they might otherwise have.

By showing so many links on every page, you make it possible for a user to jump
directly from any subpage to any other subpage (or major page, anyhow). You thus
turn a multilevel site—where subpages aren’t linked to the subpages in other site sec‐
tions—into a fully connected site. The footer is where the user’s attention lands when
they read to the end of a page. By placing interesting links there, you entice the user
to stay on the site and read more.

Finally, showing users the entire site map gives them a strong sense of how the site is
constructed and where they might find relevant features. In complex sites, that could
be valuable.

You might find yourself trying to choose between a Sitemap Footer design and a Fat
Menus design. In conventional websites, a Sitemap Footer would be easier to imple‐
ment and debug because it doesn’t depend on anything dynamic: instead of showing
fly-out menus when the user rolls over items or clicks them, a Sitemap Footer is just a
set of static links. It’s also easier to use with screen readers and it doesn’t require fine
pointer control, so it wins on accessibility, as well.

On the other hand, the footer might be ignored by busy or casual users who focus
only on the page content and the headers. Usability-test if you have any doubts, and
watch the click metrics to see if anyone even uses the Sitemap Footer.

How

Design a page-wide footer that contains the site’s major sections (categories) and their
most important subpages. Include utility navigation and tools such as language
choice, along with other typical footer information such as copyright and privacy
statements.

This might constitute a complete site map for your site, or it might not. The idea is to
cover most of what visitors need to find without overloading the header or sidebar
navigation. Place a site map into the footer of every page on a site. Treat it as part of
the global navigation, complementary to the header.

In practice, what often happens is that the global navigation options at the top of the
page reflect a more task-oriented design—it tries to answer visitors’ immediate ques‐
tions regarding “What is this about?” and “Where do I find X right this second?”
Meanwhile, the Sitemap Footer shows the complete, permanent information architec‐
ture of the site itself. This two-part arrangement appears to work well.

180 | Chapter 3: Getting Around: Navigation, Signposts, and Wayfinding

If your site deals with content that itself requires complex navigation—such as a large
set of products, news articles, music, videos, books, and so on—you could use the top
of the page for content navigation and the Sitemap Footer for almost everything else.

Here are some features that you can find found in Sitemap Footer:

• Major content categories
• Information about the site or organization
• Corporate information, Contact Us, and Careers links
• Partner or sister sites; for example, sites or brands owned by the same company
• Community links such as forums
• Help and support
• Contact information
• Current promotions
• Donation or volunteer information, for nonprofits

Examples

REI’s website demonstrates the difference between task-oriented top-of-page global
navigation and an effective Sitemap Footer (Figure 3-42). Shopping, learning, and
travel dominate the header, as they should—these are what most site visitors come
for. The footer handles secondary tasks that are nevertheless important: Corporate
“about” information, customer support, membership, and so on.

The Patterns | 181

Figure 3-42. REI header and footer

The Los Angeles Times header and footer shows a similar approach, but for a big pub‐
lisher. The header menu is organized by the major topics of interest to the news con‐
sumer. It maps closely to a traditional newspaper section structure. The footer is
different: it’s organized around corporate information and links, and secondary audi‐
ences such as advertisers and job seekers (Figure 3-43).

182 | Chapter 3: Getting Around: Navigation, Signposts, and Wayfinding

Figure 3-43. Los Angeles Times header and footer

The Wall Street Journal takes a similar approach in its header and footer
(Figure 3-44). There is a robust news topics structure in the header. The footer is
dedicated mostly to the business: membership, customer service, and other busi‐
nesses in the Dow Jones & Company organization. There is additional consumer con‐
tent featured in the Tools section.

Figure 3-44. Wall Street Journal footer

The Patterns | 183

The New York Times does not follow this pattern in its footer. It uses this space to
offer an expanded view into the information hierarchy of the new content. It’s a big‐
ger index that backs up the header navigation (Figure 3-45). There are links to the
corporate organization, but they are strongly deemphasized at the very bottom.

Figure 3-45. New York Times footer

Salesforce uses its sitemap footer to recap the three main areas that it expects visitors
and customers to be interested in (Figure 3-46). There is a set of links that showcases
the company’s products, and why customers should care. A second set offers links to
the usual corporate information, careers, and investors information. The third is to
important related content, such as the company’s third-party application marketplace
and its annual conference.

Figure 3-46. Salesforce footer

184 | Chapter 3: Getting Around: Navigation, Signposts, and Wayfinding

Sign-In Tools

What

Place utility navigation related to a signed-in user’s site experience in the upper-right
corner. Show tools such as shopping carts, profile and account settings, help, and
sign-out buttons.

Use when

Sign-In Tools are useful for any site or service for which users often sign in.

Why

This pattern is purely convention; the upper-right corner is where many people
expect such tools to be, so they will often look there. Give users a successful experi‐
ence by putting these tools where they expect them to be.

How

Reserve space near the upper-right corner of each page for Sign-In Tools. Place the
user’s sign-in name there first (and possibly a small version of their avatar, if it exists),
unless the name and avatar are already present elsewhere on the page. Make sure each
tool works exactly the same on every page in the site or app.

Cluster together tools such as the following:

• Sign-out button or link (this is important, so make sure it’s here)
• Account settings
• Profile settings
• Site help
• Customer service
• Shopping cart
• Personal messages or other notifications
• A link to personal collections of items (e.g., image sets, favorites, or wish lists)
• Home

Don’t make this space too large or loud, lest it dominate the page—it shouldn’t. This
is utility navigation; it’s there when a user needs it, but is otherwise “invisible” (well,
not literally). For some items, you can use small icons instead of text—shopping
carts, messages, and help all have standard visuals you can use, for instance. See the
examples in this pattern for some of them.

The Patterns | 185

The site Search box is often placed near the Sign-In Tools, although it needs to be in a
consistent spot regardless of whether anyone is signed in.

When no user is signed in, this area of the page can be used for a sign-in box—name,
password, call to action, and possibly tools for retrieval of forgotten passwords.

Examples

Following are some examples of Sign-In Tools from Airbnb (Figure 3-47), Google
(Figure 3-48), and Twitter (Figure 3-49). These are visually unobtrusive but findable
simply because they’re in the correct corner of the page or window. Airbnb surfaces a
set of links that relate to membership and signing in: becoming a host, upcoming
trips, saved searches in addition to the member sign-in tools drop-down menu. Goo‐
gle and Twitter hide the sign-in tools completely in a drop-down menu. Only the
user’s profile picture displays as the access by default.

Figure 3-47. Airbnb sign-in tools

186 | Chapter 3: Getting Around: Navigation, Signposts, and Wayfinding

Figure 3-48. Google sign-in tools

The Patterns | 187

Figure 3-49. Twitter sign-in tools

188 | Chapter 3: Getting Around: Navigation, Signposts, and Wayfinding

Progress Indicator

What

On each page in a sequence, show a map of all the pages in order to show steps in a
process, including a “You are here” indicator. Retailer Menlo Club (Figure 3-50) uses
a progress indicator in its check-out process.

Figure 3-50. Menlo Club checkout progress indicator.

Use when

You design a written narrative, a process flow, a Wizard, or anything else through
which a user progresses page by page. The user’s path is mainly linear.

If the navigation topology is large and hierarchical (as opposed to linear) you might
want to consider using Breadcrumbs instead. If you have a large number of steps or
items and their order doesn’t matter much, this morphs into a Two-Panel Selector
(Chapter 7).

Why

Progress Indicators indicate to a user how far they’ve come through a series of steps—
and, more important, how far they have yet to go before the process is finished.
Knowing this helps them decide whether to continue, estimate how long it will take,
and stay oriented.

Progress Indicators also serve as navigational devices. If someone wants to go back to a
previously completed step, they can do so by clicking that step in the map of steps.

How

Near an edge of the page, place a small map of the pages in the sequence. Make it one
line or column if you can, to keep it from competing visually with the actual page
content. Give the current page’s indicator some special treatment such as making it
lighter or darker than the others; do something similar with the already-visited pages.

For the user’s convenience, you might want to put the map near or next to the main
navigation controls, usually Back and Next buttons.

How should you label each page’s indicator on the map? If the pages or steps are
numbered, use the numbers—they’re short and easy to understand. But you should

The Patterns | 189

also put the page titles in the map. (Keep the titles short, so the map can accommo‐
date them.) This gives the user enough information to know which pages to go back
to and anticipate what information they’ll need in upcoming pages.

Examples

The slideshow shown in Figure 3-51 has a simple Progress Indicator at the bottom. It’s
a simple page count, with the current page indicated. The user cannot use it to
actually move through the sequence. Users would need to use the Previous and Next
arrow buttons on the sides.

Figure 3-51. National Geographic Kids slideshow with page number progress indicator
(center bottom)

190 | Chapter 3: Getting Around: Navigation, Signposts, and Wayfinding

The Vanity Fair slideshow also uses a static page numbering progress indicator
(Figure 3-52). The indicator itself does not trigger navigation.

Figure 3-52. Vanity Fair’s slide show with page number progress indicator

The Patterns | 191

The Mini Cooper product configurator (Figure 3-53) shows a full-featured progress
indicator that lets the user move back and forth at will, but organizes the pages in a
sequence. The Progress Indicator at the top is a critical control for “playing” with the
app, for moving among the various pages, and exploring different options.

Figure 3-53. Mini Cooper product configurator, with sequence map across the top

192 | Chapter 3: Getting Around: Navigation, Signposts, and Wayfinding

Ecommerce check-out processes usually have a few, defined steps. The one for B&H
Photo (Figure 3-54) has a typical Progress Indicator at the top. Its steps are disabled
when the user hasn’t completed the required earlier step.

Figure 3-54. B&H checkout with progress indicator

Breadcrumbs

What

Breadcrumbs refers to a specific type of navigation that shows the path from the start‐
ing screen down through the navigational hierarchy, the content architecture of the
site, to the selected screen. The Breadcrumbs navigation pattern can be thought of as a
series of parent—child links that show the drilldown into the information architec‐
ture of the site. The breadcrumbs show where in the content hierarchy the current
screen is. Target (Figure 3-55) shows a common use of breadcrumbs on sites with
large product directories.

The Patterns | 193

Figure 3-55. Target breadcrumbs

Use when

Your application or site has a hierarchical structure with two or more levels. Users
move around via direct navigation, browsing, filtering, searching within the site, or
deep-linking into it from elsewhere. Global navigation alone isn’t sufficient to show a
“You are here” signpost, because the hierarchy is too deep or large.

Alternatively, your site or app might have a set of browsing and filtering tools for a
large dataset, such as products being sold online. The products are categorized in a
hierarchy, but that categorization doesn’t necessarily match the way people will look
for those products.

Why

Breadcrumbs show each level of hierarchy leading to the current page, from the top of
the application all the way down. In a sense, they show a single linear “slice” of the
overall map of the site or app.

So, like a Progress Indicator, Breadcrumbs help a user to pinpoint where they are. This
is especially handy if they’ve jumped abruptly to somewhere deep in the tree, as they
would by following search results or a faceted browsing tool. Unlike a Progress Indica‐
tor, though, Breadcrumbs don’t indicate to the user where they’re headed next. They
deal only with the present.

Some texts tell you that Breadcrumbs—so named for the Hansel and Gretel story, in
which Hansel drops breadcrumbs on a forest trail to mark their way home—are most
useful for telling the user how they got to where he is from the top of the site or app.
But that’s only true if the user has drilled straight down from the top, with no side‐
tracking, or following other branches, or dead-ends, or searching, or linking directly
from other pages…not likely.

194 | Chapter 3: Getting Around: Navigation, Signposts, and Wayfinding

Instead, Breadcrumbs are best for telling you where you are relative to the rest of the
app or site—it’s about context, not just history. Look at the Target example in
Figure 3-55. Faceted browsing—searching for items with certain characteristics—
brought me to this page deep in the Target website. (A keyword search could have
done the same.) But now that I’m here, I can see where I am in the product hierarchy
and I know what else I can look at. I can use the Breadcrumbs to look at all of Target’s
stand mixers and do some comparison shopping.

Finally, Breadcrumbs are usually clickable links or buttons. This turns them into a
navigational device in their own right.

How

On each page that is below a certain level in the navigational hierarchy—that is, it is
deep in the content or screen or page architecture—show a list of all the parent pages,
up to the main or home page. The goal is to see the parent-child relationships or what
the “drill down” path is to get to the currently selected screen. Near the top of the
page, put a line of text or icons indicating the current level of hierarchy. Start with the
top level; to its right, put the next level and so on down to the current page. Between
the levels, put a graphic or text character to indicate the parent—child relationship
between them. This is usually a right-pointing arrow, triangle, greater-than sign (>),
slash (/), or right angle quotes (»).

The labels for each page should be the page titles. Users should recognize them if
they’ve been to those pages already; if not, the titles should at least be self-explanatory
enough to tell the user what those pages are about. The labels should be links to those
pages.

Some Breadcrumbs show the current page as the last item in the chain; some don’t. If
yours do, make them visually different from the rest of the items because they’re not
links.

The Patterns | 195

Examples

Samsung makes extensive use of Breadcrumbs, especially in its content-dense cus‐
tomer support area of the website. Figure 3-56 shows two uses of breadcrumbs. One
is in the expected position in the upper left, just above the central image. It shows
where we are in the product support hierarchy. Down below in the main content area,
there is a step-by-step “Find your TV” widget that helps the customer narrow in on
their specific television. On the left we can see a smaller breadcrumb that plays back
where the user is in the product hierarchy.

Figure 3-56. Samsung TV support; showing breadcrumbs twice

196 | Chapter 3: Getting Around: Navigation, Signposts, and Wayfinding

B&H Photo uses a large, prominent breadcrumb component to help the customer see
where they are and where they have navigated to in this huge online catalog of prod‐
ucts (Figure 3-57).

Figure 3-57. Breadcrumbs on the B&H site

The Patterns | 197

Figure 3-58 shows an example of Breadcrumbs used outside a “page” context. The
Chrome developer tools, among many other such tools for software developers, pro‐
vide a way for users to manage very deep hierarchical structures (in this case, the
Document Object Model and nested structural tags in an HTML page). Breadcrumbs
are invaluable here for letting the you keep track of where you are in that code
structure.

Figure 3-58. Chrome developer tools

198 | Chapter 3: Getting Around: Navigation, Signposts, and Wayfinding

Annotated Scroll Bar

What

An addition to ordinary scroll bar functionality so that it serves as a notification or as
a map of the content in the current document or screen, or as a “You are here” indica‐
tor. In the example from Google Docs (Figure 3-59), the pop-up panel attached to the
scroll grab bar lets the user see where they are in a multipage document.

Figure 3-59. Google Docs scroll bar showing page numbers

Use when

You’re designing a document- or data-centric application. Users will scan this docu‐
ment or graphic for items of note such as specific page numbers or section or chapter
titles, or alerts. This can be helpful if your users have trouble keeping track of where
they are and where to go next as they scroll.

Why

Even though the user remains within one navigational space as they scroll through
the content, signposts are still useful. When scrolling quickly, it’s really difficult to

The Patterns | 199

read the text flying by (or impossible, if the screen can’t refresh quickly enough), so
some other indicator of position is necessary. Even if they stop briefly, the part of the
document that they can see might not contain anything by which they can orient
themselves, like headers.

Why a scroll bar? Because that’s where the user’s attention is focused. If you put sign‐
posts there, the user will see them and use them as they scroll, rather than trying to
look at two different screen areas at once. You can put signposts close to the scroll bar
and still get the same effect; the closer, the better.

When the scroll bar shows indicators in the scroll bar track itself, you get something
that behaves just like a one-dimensional Overview Plus Detail (Chapter 9). The track
is the overview; the scrolled window is the detail.

How

Put a position indicator on or near the scroll bar. Either static or dynamic indicators
might work—dynamic indicators change as the user scrolls (Figure 3-59). Static indi‐
cators are those that don’t change from second to second, such as blocks of color in
the scroll bar track (see the DiffMerge screenshot in Figure 3-60). Make sure their
purpose is clear, though; such things can baffle users who aren’t used to seeing graph‐
ics in the scroll bar track.

Dynamic indicators change as the user scrolls, and they are often implemented as tool
tips. As the scroll position changes, the tool tip shown next to the scroll thumb
changes to show information about the content there. This will vary with the nature
of the application. Microsoft Word, for instance, puts page numbers and headers in
these tool tips.

In either case, you’ll need to learn what a user will most likely be looking for and thus
what you need to put into the annotations. The content structure is a good starting
point. If the content is code, you might show the name of the current function or
method; if it’s a spreadsheet, show the row number, and so on. Also consider whether
the user is currently performing a search—the scroll bar annotation should show
where the search results are in the document.

Examples

The DiffMerge application shown in Figure 3-60 visually highlights the differences
between two versions of a text file: differing sections are marked in red, and the cor‐
responding section of the scroll bar is highlighted in blue. The scroll bar serves as an
overall map, thus making large numbers of file “diffs” easier to comprehend.

200 | Chapter 3: Getting Around: Navigation, Signposts, and Wayfinding

Figure 3-60. DiffMerge

Chrome annotates its scroll bar with search results (Figure 3-61). When you search
for a word on a web page, Chrome highlights the found words on the page with yel‐
low, and places a yellow indicator in the scroll bar wherever they are found. This way,
the user can scroll directly to those points in the document.

In this example, the two instances of the “Find” search word are highighted in the
text. In the scroll bar on the right, notice the small hash marks running top to bot‐
tom. The search matches are indicated as the first two yellow bars in this list. We can
see that there are many more “Find” matches down in the rest of the article because
we see many more yellow hash mark displayed down the scroll bar.

The Patterns | 201

Figure 3-61. Chrome “Find” results

Animated Transition

What

Add motion and transformations to the appearance of objects to indicate that an
action is happening. Smooth out a startling or dislocating transition with an anima‐
tion that makes it feel natural. This pattern includes slides, fade ins/fade outs, boun‐
ces, zooms, and other animation techniques.

Use when

Interface animations are very popular and common in mobile applications. They are
almost a standard for quality interactions on mobile. Some folder, window, and
scrolling animations are part of the mobile OS itself. Above and beyond this, when
you want to add a clear visual confirmation that a user’s input was received, such as a
tap on a button or that an action is in progress (such as “screen loading”), or when
you simply want to brand your application experience, consider using animations.

202 | Chapter 3: Getting Around: Navigation, Signposts, and Wayfinding

Users might need to move through a large virtual space, such as an image or map.
They might be able to zoom in to varying degrees, pan or scroll, or rotate the entire
thing. This is especially useful for information graphics, such as maps and plots.

Alternatively, the interface might have sections that can be closed and opened again,
either by the system or by the user—such as trees with closable parent nodes, stand‐
alone windows that open and close, or an interface built with open/close panels. You
also might use Animated Transition when users jump from one separate page to
another.

Animated transitions can also give the user a sense for where the file or object is loca‐
ted in the interface itself—for example, where a launcher icon might be in the macOS
launch bar.

Why

All of these transformations can disrupt a user’s sense of where they are in the virtual
space. Zooming in and out, for instance, can throw off a user’s spatial sense when it’s
done instantaneously, as can rotation and the closing of entire sections that prompts a
relayout of the screen. Even scrolling down a long page of text, when it’s jumpy, can
slow down the reader.

But when the shift from one state to another is visually continuous, it’s not so bad. In
other words, you can animate the transition between states so that it looks smooth,
not discontinuous. This helps keep the user oriented. We can guess that it works
because it more closely resembles physical reality—when was the last time you
instantly jumped from the ground to 20 feet in the air? Less fancifully, an animated
transition gives the user’s eyes a chance to track a location while the view changes
rather than trying to find the location again after an abrupt change.

It can also give useful UI control and navigation feedback. In Figure 3-62, we see two
animations that Apple’s macOS uses extensively. The first is rollover magnification of
icons in the “dock.” This actually helps users understand which icon their mouse is
above as they swipe back and forth. The second is the page open/close zoom effect.
The document window animates to its parent app icon in the dock, helping the user
remember where they have put it away.

The Patterns | 203

Figure 3-62. macOS dock magnification and app window transition

When done well, Animated Transition bolsters your application’s perception of qual‐
ity, speed, and liveliness.

204 | Chapter 3: Getting Around: Navigation, Signposts, and Wayfinding

How

For each type of transformation that you use in your interface, design a short anima‐
tion that “connects” the first state with the second state. For zoom and rotate, you
might show the in-between zoom or rotate levels; for a closing panel, you might show
it shrinking while the other panels expand to take up the space it leaves behind. To
whatever extent possible, make it look like something physical is happening.

But this pattern is a double-edged sword. Beware of making the user motion sick!
The animations should be quick and precise, with little or no lag time between the
user’s initiating gesture and the beginning of the animation. Limit it to the affected
part of the screen; don’t animate the entire window. And keep it short. Research
shows that 300 milliseconds might be ideal for smooth scrolling. Test it with your
users to see what’s tolerable.

If the user issues multiple actions in quick succession, such as pressing the down
arrow key many times to scroll, combine them into one animated action. Otherwise,
the user might sit there through several seconds’ worth of animation as the punish‐
ment for pressing the down arrow key 10 times. Again: keep it quick and responsive.

Some of the types of transitions to consider include the following:

• Brighten and dim
• Expand and collapse
• Fade in, fade out, and cross-fade
• Slide
• Spotlight

Examples

Tesla (Figure 3-63) uses a simple zoom in the initial load of its website. The user can
see the three Tesla models in overview, and then the image zooms in on the Model 3.
In this case, the zoom in is purely an attention-focusing flourish. The user can’t
actually control the zoom in. However, the user can pan left and right to select the
other Tesla models. This panning action is smoothly animated.

The Patterns | 205

Figure 3-63. Tesla.com, loading screen “zoom in” animation

206 | Chapter 3: Getting Around: Navigation, Signposts, and Wayfinding

http://Tesla.com

Prezi presentation software makes extensive use of zooming and panning views to
create unique and flowing presentations. Figure 3-64 shows a selection of screens
from a demonstration. As the user steps through the screens, the presentation zooms
in, displays text, pans to the right, and then zooms out again when exiting the section.
It makes for an interesting sense of flying through the information space.

Figure 3-64. Prezi’s unique presentation software features animated “zoom reveals,” slides,
and zoom-out animations.

The Patterns | 207

Further Reading

For a much deeper exploration of the value of animation and how to bring it into
your interface design, check out the following:

• Creating Web Animations: Bringing Your UIs to Life by Kirupa Chinnathambi
(O’Reilly, 2017).

• Transitions and Animations in CSS: Adding Motion with CSS by Estelle Weyl
(O’Reilly, 2016)

• “SVG Animations” in From Common UX Implementations to Complex Responsive
Animation by Sarah, Drasner (O’Reilly, 2017)

Conclusion
Well-designed navigation and wayfinding in your app or platform can help your users
learn your app more quickly, maintain a sense of orientation and context, be confi‐
dent in using your content and tools, know what to do and where to go, and generally
not spend excess time being flustered, confused, or lost. Navigation is a feature of
your designs that has a long life cycle —maybe the longest of any feature. If designed
well (that is, it makes sense from your user’s point of view and fit for purpose, based
on the information and tasks they are working with), it will have “evergreen” value.
Good navigation and wayfinding help tremendously with new user onboarding,
recovering from error states and confusion, getting work done, and generally feeling
not blocked but capable. The design approach and the navigation patterns outlined in
this chapter will help you to create a UX in your application where getting around
takes on a flowing, magic quality of almost vanishing from the user’s awareness.

208 | Chapter 3: Getting Around: Navigation, Signposts, and Wayfinding

Chapter 4

Layout of Screen Elements

Layout is defined as the particular way elements are arranged. In the case of interface
design, these elements are the informational, functional, framing, and decorative
parts of the screen. Thoughtful placement of these elements helps to guide and
inform your users about the relative importance of the information and functions.

No matter what size screen you are designing for—web, kiosks, or mobile—careful
consideration of the placement of content is key to helping the user understand what
they need to know and what to do about it.

Often you will hear the term “clean” to describe a screen-based design. A clean layout
follows the principles of visual information hierarchy, visual flow, alignment through
a grid, and adheres to Gestalt principles.

In this chapter, we define these principles that inform your users what you want them
to know and what you want them to do about it.

The Basics of Layout
This section discusses several elements of layout: visual hierarchy, visual flow, and
dynamic displays.

Visual Hierarchy
Visual hierarchy plays a part in all forms of design. The most important content
should stand out the most, and the least important should stand out the least. A
viewer should be able to deduce the informational structure from its layout.

209

A good visual hierarchy gives instant clues about the following:

• The relative importance of screen elements
• The relationships among them
• What to do next

Visual hierarchy in action
Take a look at the example in Figure 4-1. Can you tell at a glance what is the most
important information in Example A? Can you tell what is the most important infor‐
mation in example B? Most people will find Example B the easier layout to under‐
stand, even with only rectangles and squares. This is because the arrangement of the
screen elements, the relative size, and proportion of the elements imply their impor‐
tance and guide the viewer on what to pay the most attention to.

Figure 4-1. A) Example of no visual hierarchy, and B) example of a visual hierarchy

210 | Chapter 4: Layout of Screen Elements

What Makes Things Look Important?

Size
The size of the headlines and subheads give the viewer a clue about order and impor‐
tance. Headlines will tend to be bigger and more dramatic because of contrasting size,
visual weight, or color. In contrast, a small strip of text at the bottom of the page says
quietly, “I’m just a footer,” and less important (Figure 4-2).

Figure 4-2. Example of size

The Basics of Layout | 211

Position
Simply by glancing at the size, position, and colors of the layout in Figure 4-3, you
can guess the most important elements of each of the four examples.

Figure 4-3. Ways to distinguish importance by position, size, or color

212 | Chapter 4: Layout of Screen Elements

Density
Density refers to the amount of space between elements of the screen. Take a look at
the example in Figure 4-4. The left shows a denser layout where content is tightly
gathered together. The example on the right has a more open look with content
spread evenly apart. The less-dense example will also be slightly more difficult to read
and for the viewer to distinguish which elements are related to one another.

Figure 4-4. Example of more density and less density

The Basics of Layout | 213

Background color
Adding shade or a background color will draw attention to a block of text and distin‐
guish it from other text. The example on the left in Figure 4-5 has a consistent back‐
ground for all elements. This implies no distinction and a continuity of the
importance of the elements. In comparison, in the example on the right side of the
figure, the background and contrast elements in the middle draw the eye immediately
to it, implying more importance. Contrast draws attention.

Figure 4-5. Example of no background color and background color

Rhythm
Lists, grids, whitespace, and alternating elements such as headlines and summaries
can create a strong visual rhythm that irresistibly draws the eye, as shown in
Figure 4-6.

Figure 4-6. Lists and grids to create a visual rhythm

214 | Chapter 4: Layout of Screen Elements

Emphasizing small items
To make small items stand out, put them at the top, along the left side, or in the
upper-right corner. Give them high contrast and visual weight, and set them off with
whitespace. But note that in a text-heavy screen, like most websites, certain controls
—especially search fields, sign-in fields, and large buttons—tend to stand out anyway.
This is less about raw visual characteristics than meaning: if someone is looking for a
Search box, for instance, their eyes will go straight to the text fields on the page.
(They might not even read the labels for those text fields.)

Another way to emphasize small items is to use spacing and contrast to distinguish
them, as shown in Figure 4-7.

Figure 4-7. Techniques to bring attention to small items

The Basics of Layout | 215

Alignment and grid
In digital design, legibility is critical. Helping guide the viewer to information and
action is key. Creating a design that is based on a grid (Figure 4-8) allows the designer
to focus on the content, assured that the layout will have visual consistency and bal‐
ance (Figure 4-9). Grids also help multiple designers work on separate but related
layouts.

Figure 4-8. Gridless layout (left), and a layout designed on a grid (right)

Figure 4-9. Grid overlaid on the examples in Figure 4-8

Grids are found in all digital design, and they are fundamental in creating designs
that will be responsive and can accommodate dynamic content, which we discuss
later.

216 | Chapter 4: Layout of Screen Elements

Grids are composed of margins and gutters (Figure 4-10 and Figure 4-11). Margins
are the space around the content and gutters are the spaces between.

Figure 4-10. Vertical grid with margins (yellow) and gutters (blue)

Figure 4-11. Horizontal grid with margins (yellow) and gutters (blue)

Using a grid is a good way to ensure that the content will create a visually harmonious
composition, and will aid in reducing the cognitive load of your viewer.

Four Important Gestalt Principles
“Gestalt” is a term that comes from a psychological theory that took hold in the
1920s. Gestalt is a German word that means “form” or “shape.” In design, we often
refer to Gestalt Principles which refers to a set of rules describing the way humans
perceive visual objects. The theory behind grouping and alignment was developed
early in the twentieth century by the Gestalt psychologists. They described several
layout properties that seem to be hardwired into our visual systems. We look at each
one in the following subsections.

The Basics of Layout | 217

Proximity
When you put things close together, viewers associate them with one another. This is
the basis for a strong grouping of content and controls on a user interface (UI). Grou‐
ped items look related. Conversely, isolation implies a distinction.

Figure 4-12. The Gestalt principle of proximity

Similarity
Items that are similar in shape, size, or color are perceived as related to one another. If
you have a few things “of a type” and you want viewers to see them as equally interest‐
ing alternatives, give them an identical (and distinctive) graphic treatment.

A list of many similar items, arranged in a strong line or column, becomes a set of
peer items to be viewed in a certain order. Align these items very precisely with one
another to create a visual line. Examples include bulleted lists, navigation menus, text
fields in a form, row-striped tables, and lists of headline and summary pairs.

218 | Chapter 4: Layout of Screen Elements

Are one or more items more “special” than the others like it? Give it a slightly differ‐
ent treatment, such as a contrasting background color, but otherwise, keep it consis‐
tent with its peers (see the example on the right in Figure 4-13). Or use a graphic
element to disrupt the line along which the items are aligned, such as a bump-out,
overlap, or something at an angle.

Figure 4-13. Grouping related peer items (left) and distinguishing two items among peers
(right)

Continuity
Our eyes will naturally follow the perceived lines and curves formed by the alignment
of other elements, as demonstrated in Figure 4-14.

Figure 4-14. Two examples of visual continuity.

The Basics of Layout | 219

Closure
The brain will naturally “close” lines to create simple closed shapes such as rectangles
and blobs of whitespace, even if they aren’t explicitly drawn for us. In the examples in
Figure 4-15, you will likely see (clockwise, from upper left) a rectangle, a circle, and
two triangles. None of these shapes are actually represented in the image but the eye
completes the line in your brain.

Figure 4-15. Example of closure

These principles are best used in combination with one another. Continuity and clo‐
sure explain alignment. When you align things, you form a continuous line with their
edges, and the users will follow that line and assume a relationship. If the aligned
items are coherent enough to form a shape—or to form one out of the whitespace or
“negative space” around it—closure is also at work, adding to the effect.

Visual Flow
Visual flow deals with the tracks that readers’ eyes tend to follow as they scan the
page.

It’s intimately related to visual hierarchy, of course—a well-designed visual hierarchy
sets up focal points on the page wherever you need to draw attention to the most
important elements, and visual flow leads the eyes from those into the less important
information.

220 | Chapter 4: Layout of Screen Elements

As a designer, you want to be able to control visual flow on a page so that people fol‐
low it in approximately the correct sequence. Several forces can work against one
another when you try to set up a visual flow. For those raised in Western culture, one
is our tendency to read top to bottom and left to right. When faced with a monoto‐
nous page of text, that’s what you’ll do naturally; but if there are strong focal points
on the page, they can distract you from the usual progression, for better or for worse.

Focal points are the spots your eyes can’t resist going to. You tend to follow them
from strongest to weakest, and skillfully designed pages have only a few—too many
focal points dilute the importance of each one. A good visual hierarchy uses focal
points to pull eyes to the appropriate places in the correct order. The next time you
pick up a magazine, look at some well-designed ads and notice what your eyes gravi‐
tate toward. The best commercial graphic artists are masters at setting up focal points
to manipulate what you see first.

So, how do you create a good visual flow? One simple way is to use implied lines,
either curved or straight, to connect elements on the page. This creates a visual narra‐
tive for the viewer to follow. In the example in Figure 4-16, the designer who created
this older Uber home page used several techniques to guide the eye around the
screen; from the use of the blue call to action buttons, to the use of a grid to bring
harmony to the composition, to the size of the headline in comparison to the sub‐
head. Pay particular attention to the gaze of the young woman in the photo. Her gaze
is pointed to the headline, which uses implied lines to subconsciously guide the view‐
er’s eye around the layout to hit all the of the most important elements of the page.

Figure 4-16. Visual hierarchy in an older Uber home page

The Basics of Layout | 221

In the examples in Figure 4-17, your eyes will naturally follow the lines. It’s not diffi‐
cult to set up a layout that flows well, but be on your guard against layout choices that
work counter to flow. If you want viewers to read a site’s story and value proposition,
arrange the critical pieces of that narrative along a continuous line, and don’t inter‐
rupt it with eye-catching extras.

Figure 4-17. Implied lines for visual flow

If you’re designing a form or set of interactive tools, don’t scatter controls all over the
page—that just forces the user to work harder to find them. In the example in
Figure 4-18, look for where the call to action button is; it should be easy to find
because the designer placed it after the text that a user will read first. If you don’t care
whether they read that text, you can isolate the calls to action with whitespace.

Figure 4-18. Calls to action

222 | Chapter 4: Layout of Screen Elements

Figure 4-19 shows a poor example of visual flow and visual hierarchy. How many
focal points are there, and how do they compete with one another? Where do your
eyes want to go first, and why? What does this page say is important?

Figure 4-19. Weather Underground’s jumbled visual hierarchy

Using Dynamic Displays
Everything we’ve discussed so far applies equally to UIs, websites, posters, billboards,
and magazine pages. They deal with static aspects of the layout. Ah, but you have a
dynamic computer to work with—and suddenly time becomes another dimension of
design.

Just as important, computers permit user interaction with the layout to an extent that
most printed matter can’t. There are ways in which you can take advantage of the
dynamic nature of computer or mobile displays. Consider space usage, for example—
even the biggest consumer-grade computer screens have less usable space than, say, a
poster or a newspaper page. There are many techniques for using that space to
present more content than you can show at one time.

Scroll Bars
Scroll bars let the user move around at will, in one or two dimensions (but refrain
from using horizontal scrolling with text, please!). Scroll bars are one very common
way of presenting a small “viewport” onto a large thing, such as text, an image, or a

The Basics of Layout | 223

table. Or, if you can carve up the content into coherent sections, you have several
options—Module Tabs, Accordions, Collapsible Panels, and Movable Panels are pat‐
terns that put some layout control into the user’s hands, unlike the more static Titled
Sections.

The following techniques invoke time by letting the user see different content at dif‐
ferent times.

Responsive Enabling
To guide a user successfully through a form or process, or to prevent confusion about
the user’s mental model, a UI might only enable certain functionality when the user
completes a specific action. In the example in Figure 4-20, the Mac OS System Prefer‐
ences provide a typical example of disabling based on a binary choice.

Figure 4-20. Mac OS System Preferences

Progressive Disclosure
In some contexts, information is shown only after the user takes a specific action.
Moo.com, an online custom business card and print shop (Figure 4-21), uses this
technique in its “create a custom product” flow. In the figure, a customer doesn’t see
the customization options until they click into the editable parts of the card.

224 | Chapter 4: Layout of Screen Elements

http://Moo.com

Figure 4-21. Progressive Disclosure example in Moo.com

UI Regions
Whether you are designing for web, software, or mobile layouts, you can typically
count on having one or more of the following UI regions to work with (see also
Figure 4-22):

Header/window title
This is the topmost region in any given layout, it is used for global branding and
global navigation elements in mobile and web design, and you will often see this
region used for toolbars and navigation in software. Headers are typically a con‐
stant element in the layout of a template, so it’s important to carefully choose
what you put on this valuable screen space.

Menu or navigation
This is usually near the top or to the left-hand side of the screen. Note these can
also be panels (see below).

Main content area
This should be where the majority of screen real estate is dedicated. This is where
the information content, forms, task areas, and branding for landing experiences
is located.

Footers
This is where secondary and global or redundant navigation resides; it can also
contain helpful information like business contact information.

Panels
Panels can be on the top, on the side or the bottom. They can be persistent or
dismissible depending on what functionality you are using on that panel.

The Basics of Layout | 225

http://Moo.com

Figure 4-22. UI regions, web and desktop application

The Patterns
This chapter’s patterns give you specific ways to put all these layout concepts into
play. The first three address the visual hierarchy of the entire page, screen, or window,
regardless of the type of content you put into that page. You should consider Visual
Framework fairly early in a project because it affects all of the major pages and win‐
dows in an interface.

226 | Chapter 4: Layout of Screen Elements

Layout
The following patterns are most commonly used for desktop and web applications. If
you are primarily showing search results, a Grid of Equals is a good choice. However,
if your application is task or productivity or a creation tool, Center Stage might make
the most sense. Whatever you choose, make sure that choice is driven by the content
you need to show for the user to achieve the desired objective.

• Visual Framework
• Center Stage
• Grid of Equals

Figure 4-23. Visual Framework (upper left), Center Stage with a panel (upper right), Grid
of Equals (lower left)

Chunking Information
The next group of patterns represents alternative ways of “chunking” content on a
page or window. This is useful when you have more content than you can comforta‐
bly put on the screen at one time. These patterns deal with visual hierarchy, too, but

The Patterns | 227

they also involve interactivity, and they can help you choose among the specific
mechanisms available in UI toolkits. Here are the patterns we look at in this section:

• Titled Sections
• Module Tabs
• Accordion
• Collapsible Panels
• Movable Panels

Visual Framework

What

Across an entire app or site, all screen templates share common characteristics to
maintain a consistent layout and style. Each page might use the same basic layout,
margin, header and gutter size, colors, and stylistic elements, but the design gives
enough flexibility to handle varying page content.

Use when

You’re building a website with multiple pages or a UI with multiple windows—in
other words, almost any complex software. You want it to “hang together” and look
like one thing, deliberately designed; you want it to be easy to use and navigate.

Why

When a UI uses consistent color, font, layout, and when titles and navigational aids—
signposts—are in the same place every time, users know where they are and where to
find things. They don’t need to figure out a new layout each time they switch context
from one page or window to another.

A strong visual framework, repeated on each page, helps the page content stand out
more. That which is constant fades into the background of the user’s awareness; that
which changes is noticed. Furthermore, adding enough character to the design of the
visual framework helps with the branding of your website or product—the pages
become recognizable as yours.

How

Draw up an overall look-and-feel that will be shared among all pages or windows.
Home pages and main windows are “special” and are usually laid out differently from
inner pages, but they should still share certain characteristics with the rest of the site,
such as:

228 | Chapter 4: Layout of Screen Elements

Color
Backgrounds, text colors, accent colors, and other colors

Fonts
For titles, subtitles, ordinary text, callout text, and minor text

Writing style and grammar
Titles, names, content, short descriptions, any long blocks of text, and anything
else that uses language.

In a Visual Framework design like that of JetBlue, shown in Figure 4-24, all pages or
windows share the following, as appropriate:

• “You are here” signposts, such as titles, logos, Breadcrumbs trails, global naviga‐
tion with indicators of the current page, and Module Tabs

• Navigational devices, including global and utility navigation, OK/Cancel buttons,
Back buttons, Quit or Exit buttons, and navigational patterns such as Progress
Indicator and Breadcrumbs (Chapter 3)

• Techniques used to define Titled Sections
• Spacing and alignment, including page margins, line spacing, the gaps between

labels and their associated controls, and text and label justification
• The overall layout, or the placement of things on the page, in columns and/or

rows, taking into account the margins and spacing issues listed previously

Figure 4-24. Example of a Visual Framework in JetBlue’s mobile website

The Patterns | 229

Implementation of a Visual Framework should force you to separate stylistic aspects
of the UI from the content. This isn’t a bad thing. If you define the framework in only
one place—such as a CSS stylesheet, a Java class, or a visual system library—it lets you
change the framework independently from the content, which means that you can
more easily tweak and adjust it to get it as you want it. (It’s also good software engi‐
neering practice.)

Examples

JetBlue’s site (Figure 4-25) employs a restricted color palette, a strong header, and
consistent use of fonts and curved rectangles in its Visual Framework. Even the login
page and modal dialogs use these elements; they don’t look out of place. Notice the
stylistic similarities to the mobile site.

Figure 4-25. The JetBlue home page

230 | Chapter 4: Layout of Screen Elements

In the same way, TED’s site (Figure 4-26) uses limited color and a layout grid to
maintain consistency.

Figure 4-26. The TED home page

Center Stage

What

The task at hand is placed front and center at most times in the user experience. This
type of layout puts the most important part of the UI into the largest subsection of the
page or window, clustering secondary tools and content around it in smaller panels.

Use when

The screen’s primary job is to show a single unit of coherent information to the user,
let them edit a document, or enable them to perform a certain task. Other content
and functions are secondary to this one. Many types of interfaces can use a Center
Stage—tables and spreadsheets, forms, and graphical editors all qualify. So do web
pages that show single articles, images, or features.

Why

The design should guide the user’s eyes immediately to the beginning of the most
important information (or task) rather than have them wandering over the page in
confusion. An unambiguous central entity anchors the user’s attention. Just as the

The Patterns | 231

lead sentence in a news article establishes the subject matter and purpose of the arti‐
cle, so the entity in Center Stage establishes the purpose of the UI.

After that’s done, the user will assess the items in the periphery in terms of how they
relate to what’s in the center. This is easier for the user than repeatedly scanning the
page, trying to figure it out. What comes first? What’s the second? How does this
relate to that? And so on.

How

Establish a visual hierarchy with the primary content or document dominating every‐
thing else. (See the chapter introduction for a discussion of visual hierarchy.) When
designing a Center Stage, consider these particular factors, though none of them are
absolutely required:

Size
The Center Stage content should be at least twice as wide as whatever’s in its side
margins, and twice as tall as its top and bottom margins. (The user can change its
size in some UIs, but this is how it should be when the user first sees it.) Keep
“the fold” in mind—when a small screen is used, where does the content cut off at
the bottom? Make sure the Center Stage still takes up more of the “above-the-
fold” space than anything else.

Headlines
Big headlines are focal points and can draw the user’s eye to the top of the Center
Stage. That happens in print media, too, of course. See the chapter introduction
and Titled Sections for more.

Context
What is the primary task of the product? This will inform what the user will
expect to see when they open the screen. Is it a graphic editor? A long text article?
A map? A filesystem tree?

Notice that I didn’t mention one traditional layout variable: position. It doesn’t much
matter where you put the Center Stage—top, left, right, bottom, center; it can be made
to work. If it’s big enough, it ends up more or less in the center anyway. Note that
well-established genres have conventions about what goes into which margins, such
as toolbars on top of graphic editors, or navigation bars on the left side of web or
mobile screens.

232 | Chapter 4: Layout of Screen Elements

Examples

The Google Docs text editor (Figure 4-27) devotes almost all of its horizontal space to
the document being edited; so does Google’s spreadsheet editor. Even the tools at the
top of the page don’t take up a huge amount of space. The result is a clean and bal‐
anced look.

Figure 4-27. Google Docs

The Sketch desktop application (Figure 4-28) features a Center Stage layout. Upon
launching a new blank document or template, the user sees a canvas where they are
able to have the visual focus on creating content unencumbered by unneeded content
or features.

Because most of the products in the Google Suite are task-based, Center Stage is a
common framework found in most of those products (Figure 4-29), such as Google
Earth, Google Slides, Google Hangout, and Google Sheets.

The Patterns | 233

Figure 4-28. Bohemian Sketch

Figure 4-29. Google Maps

For more information on Google’s design language, go to https://material.io/design.

234 | Chapter 4: Layout of Screen Elements

https://material.io/design

Grid of Equals

What

Arrange content items, such as search results, into a grid or matrix. Each item should
follow a common template, and each item’s visual weight should be similar. Link to
item pages as necessary.

Use when

The page contains many content items that have similar style and importance, such as
news articles, blog posts, products, or subject areas. You want to present the viewer
with rich opportunities to preview and select these items.

Why

A grid that gives each item equal space announces that they have equal importance.
The common template for items within the grid informs the user that the items are
similar to one another. Together, these techniques establish a powerful visual hierar‐
chy that should match the semantics of your content.

How

Figure out how to lay out each item in the grid. Do they have thumbnail images or
graphics? Headlines, subheads, summary text? Experiment with ways to fit all the
right information into a relatively small space—tall, wide, or square—and apply that
template to the items you need to display. Arrange content items in a grid or matrix.
Each item should follow a common template, and each item’s visual weight should be
similar.

Now arrange the items in a grid. You could use a single row or a matrix that’s two,
three, or more items wide. Consider page width as you do this design work—what
will your design look like in a narrow window? Will most of your users have large
browser windows or use mobile or other devices (Figure 4-30)?

The Patterns | 235

Figure 4-30. Responsive design example: desktop version (left), mobile version (center),
tablet version (right)

You might choose to highlight grid items statically (to emphasize one item over oth‐
ers) or dynamically, as a user hovers over those grid items. Use color and other stylis‐
tic changes, but don’t change the positions, sizes, or other structural elements of the
grid items.

Examples

In the Hulu example (Figure 4-31), the size and relative importance of each item in
the grid is the same and has a consistent interaction behavior.

Figure 4-31. Hulu grid

236 | Chapter 4: Layout of Screen Elements

In CNN’s layout (Figure 4-32) and Apple TV’s layout (Figure 4-33), the consistent
visual treatment marks these items as peers of one another. An advantage of using
grids to display lists of items is that a user of this interface will need to interact with
only one grid item to understand how all of the grid items behave.

Figure 4-32. CNN’s grid

Figure 4-33. Apple TV’s grid

The Patterns | 237

Titled Sections

What

Define separate sections of content by giving each one a visually strong title, separat‐
ing the sections visually, and arranging them on the page.

Use when

You have a lot of content to show, but you want to make the page easy to scan and
understand, with everything visible. You can group the content into thematic or task-
based sections that make sense to the user.

Why

Well-defined and well-named sections structure the content into easily digestible
“chunks,” each of which is now understandable at a glance. This makes the informa‐
tion architecture obvious. When the user sees a page sectioned neatly into chunks like
this, their eye is guided through the page more comfortably.

How

First, get the information architecture right—split up the content into coherent
chunks (if it hasn’t already been done for you) and give them short, memorable
names (see Figure 4-34):

• For titles, use typography that stands out from the rest of the content—bolder,
wider, larger point size, stronger color, different font family, outdented text, and
so on. See the chapter introduction for more on visual hierarchy.

• Try reversing the title against a strip of contrasting color.
• Use whitespace to separate sections.
• Use blocks of contrasting background color behind the entire section.
• Boxes made from etched, beveled or raised lines are familiar with desktop UIs.

But they can get lost (and just become visual noise) if they’re too big, too close to
one another, or deeply nested.

238 | Chapter 4: Layout of Screen Elements

Figure 4-34. Examples of titled sections

If the page is still too overwhelming, try using Module Tabs, an Accordion, or Collapsi‐
ble Panels to hide some of the content.

If you’re having trouble giving reasonable titles to these chunks of content, that might
be a sign that the grouping isn’t a natural fit for the content. Consider reorganizing it
into different chunks that are easier to name and remember. “Miscellaneous” cate‐
gories may also be a sign of not-quite-right organization, though sometimes they’re
genuinely necessary.

The Patterns | 239

Examples

In its account settings page, Amazon (Figure 4-35) shows titles corresponding to lev‐
els of the visual hierarchy: the page title, section titles, and subtitles atop lists of links.
Note the use of whitespace, boxes, and alignment to structure the page.

Figure 4-35. Amazon account settings

240 | Chapter 4: Layout of Screen Elements

Google’s settings also feature Titled Sections (Figure 4-36). Some contain functional‐
ity; others deep-link to other settings pages.

Figure 4-36. Google account settings

The Patterns | 241

Module Tabs

What

Put modules of content into small tabbed areas so that only one module is visible at a
time. The user clicks or taps on tabs to bring different content to the top.

Figure 4-37. The Module Tabs pattern

Use when

You have a lot of heterogeneous content to show on the page, possibly including text
blocks, lists, buttons, form controls, or images, and you don’t have room for every‐
thing. Some of the page content comes in groups or modules (or can be sorted into
coherent groups). Those modules have the following characteristics:

• Users need to see only one module at a time.
• They are of similar length and height.
• There aren’t many modules—fewer than 10; preferably a small handful.
• The set of modules is fairly static; new pages won’t be added frequently nor will

existing pages change or be removed frequently.
• The modules’ contents can be related to or similar to one another.

Why

Grouping and hiding chunks of content can be a very effective technique for declut‐
tering an interface. Tabs work well; so do Accordions, Movable Panels, Collapsible Pan‐
els, and simply arranging things into a clean grid of Titled Sections.

How

First, get the information architecture right. Split up the content into coherent
chunks, if it hasn’t already been done for you, and give them short, memorable titles
(one or two words, if possible). Remember that if you split up the content incorrectly,
users will be forced to switch back and forth between tabs as they compare them or

242 | Chapter 4: Layout of Screen Elements

look for information they can’t find. Be kind to your users and test the way you’ve
organized it.

Indicate the selected tab unambiguously, such as by making it contiguous with the
panel itself. (Color alone isn’t usually enough. If you have only two tabs, make sure it’s
abundantly clear which one is selected and which one isn’t.)

The tabs don’t need to be literal tabs, and they don’t have to be at the top of the stack
of modules. You can put them in a left-hand column, or underneath, or even turned
90 degrees with the text read sideways.

When deployed on web pages, Module Tabs tend to be distinct from navigational tabs
(those used for global navigation, or separate documents, or for loading new pages).
Tabs are useful there, too, of course, but this pattern is more about giving the user a
lightweight way to see alternative modules of content within a page.

If there are too many tabs to fit in a narrow space, you could do one of several things:
shorten the labels by using an ellipsis (and thus make each tab narrower), or use
carousel-like arrow buttons to scroll the tabs. You could also put the tab labels in a
left-hand column, instead of putting them on top. Never double-row the tabs.

Examples

Expedia’s flight search module (Figure 4-38) breaks up the different types of searches
available into tabs. This allows Expedia to feature the options available to the poten‐
tial customer in a highly discoverable way without sacrificing valuable screen real
estate.

Figure 4-38. Expedia Search

The Patterns | 243

MacOS system preferences (Figure 4-39) also use Module Tabs to highlight function‐
ality in the most logical place a user might look for it. The tabs are across the top,
labeled Battery and Power Adapter.

Figure 4-39. macOS system preferences

244 | Chapter 4: Layout of Screen Elements

Accordion

What

Put modules of content into a collinear stack of panels that the user can close and
open independently of one another (Figure 4-40).

Figure 4-40. Examples of accordions

Use when

You have a lot of heterogeneous content to show on the page, possibly including text
blocks, lists, buttons, form controls, or images, and you don’t have room for every‐
thing. Some of the page content comes in groups or modules (or can be sorted into
coherent groups).

Those modules have the following characteristics:

• Users might want to see more than one module at a time.
• Some modules are much taller or shorter than others, but they’re all of a similar

width.
• The modules are part of a tool palette, a two-level menu, or some other coherent

system of interactive elements.
• The modules’ contents might be otherwise related or similar.
• You might want to preserve the linear order of the modules.

Also note that when large modules are open or many modules are open, the labels on
the bottom of the Accordion can scroll off the screen or window. If that’s a problem
for your users, consider using a different solution.

The Patterns | 245

Why

Accordions have become a familiar interactive element on web pages, almost as
familiar as tabs and drop-down menus. (They aren’t quite as straightforward to use,
however.) Many websites use accordions in their menu systems to manage very long
lists of pages and categories.

In general, grouping and hiding chunks of content can be a very effective technique
for decluttering an interface. The Accordion pattern is part of a toolkit that includes
Module Tabs, Movable Panels, Collapsible Panels, and Titled Sections to do so.

Accordions can be useful in web-page navigation systems, but they really shine in
desktop applications. Tool palettes in particular work well with Accordions (and Mov‐
able Panels, as well, for similar reasons). Because users can open any set of modules
and leave them open, Accordions help users modify their “living space” in a way that
suits them. Yet it’s easy to reopen a rarely used module when it becomes needed.

How

Establish the title that you want to name each section. It should be concise but
enough information to know what the information under it will be.

Create a visual affordance (an indication that represents how something is meant to
be used) such as an arrow or triangle icon to indicate that there is information that
can be revealed by clicking or tapping on it.

Allow more than one module to be open at a time. There are differing opinions on
this—some designers prefer only one module to be open at a time, and some imple‐
mentations allow only one (or have a switch that developers can set, at least). But in
my experience, especially in applications, it’s better to let users open multiple modules
at a time. It avoids the abrupt and unexpected disappearance of a previously open
module, and allows users to compare content in multiple modules without repeatedly
opening and closing modules.

When used in an application or when the user is signed in to a website, an Accordion
ought to preserve its state of opened and closed modules between sessions. This isn’t
as important for navigation menus as it is for tool palettes.

246 | Chapter 4: Layout of Screen Elements

Examples

Samsung’s FAQs in its Help pages use accordions to display the question and reveal
the answer upon clicking on the expand arrow (Figure 4-41). This allows the user to
quickly scan the page for the information they are seeking and quickly navigate to
another topic if they need to.

Figure 4-41. Samsung Help

The Patterns | 247

Google Chrome’s settings page uses expanding accordions to reveal the detailed set‐
ting options (Figure 4-42). This enables the user to see all the options “above the fold”
and get a better idea of where to click.

Figure 4-42. Google Chrome Settings

248 | Chapter 4: Layout of Screen Elements

Collapsible Panels

What

Put modules of secondary or optional content or functions into panels that can be
opened and closed by the user.

Use when

You have a lot of heterogeneous content to show on the page, possibly including text
blocks, lists, buttons, form controls, or images or when you have Center Stage content
that needs to take visual priority.

These modules have the following characteristics:

• Their content annotates, modifies, explains, or otherwise supports the content in
the main part of the page.

• The modules might not be important enough for any of them to be open by
default.

• Their value can vary a lot from user to user. Some will really want to see a partic‐
ular module; others won’t care about it at all.

• Even for one user, a module might be useful sometimes, but not other times.
When it’s not open, its space is better used by the page’s main content.

• Users might want to open more than one module at the same time.
• The modules have very little to do with one another. When Module Tabs or

Accordions are used, they group modules together, implying that they are some‐
how related; Collapsible Panels do not group them.

Why

Hiding noncritical pieces of functionality or content helps to simplify the interface.
When a user hides a module that supports the main content, it simply collapses, giv‐
ing its space back over to the main content (or to whitespace). This is an example of
the principle of Progressive Disclosure (showing hidden content when and where the
user needs it). In general, grouping and hiding chunks of content can be a very effec‐
tive technique for decluttering an interface.

How

Put each supporting module into a panel that the user can open and close via a single
click. Label the button or link with the module’s name or simply “More,” and consider
using a chevron, menu icon, or rotating triangle to indicate that more content is
hidden there. When the user closes the panel, collapse the space used by that panel

The Patterns | 249

and devote it to other content (such as by moving up the content below it on the
page).

Animating the panels as they open and close helps the user create a visual and spatial
understanding of how this functions and where to find it in the future.

If you find that most users are opening up a Collapsible Panel that’s closed by default,
switch to open by default.

Examples

The Apple news application (Figure 4-43) uses a left-hand panel as an extensible way
for the user to add or remove news and topic channels and a way to navigate through
those channels. When the user wants to focus on the content alone, they can tap the
panel icon (to the left of “Today,” on the center header) to slide the panel away to the
left.

Figure 4-43. Apple News, iPad version, with navigation panel expanded

250 | Chapter 4: Layout of Screen Elements

Google Maps (Figure 4-44) allows for the user to continue to see the map while find‐
ing directions, once the destination directions are selected, the panel collapses to
allow for viewing the directions unobstructed. If the user needs to edit or change or
add a stop, they can easily expand the side panel.

Figure 4-44. Google Maps, iPad version, showing left-hand panel with direction
functionality

The Patterns | 251

Movable Panels

What

Put modules of content in boxes that can be opened and closed independently of one
another. Allow the user to arrange the boxes freely on the page into a custom configu‐
ration. You will often see movable panels in the Center Stage layout in creator tools
like the Adobe Suite (Figure 4-45), and productivity and communication applications
like Microsoft Excel and Skype.

Figure 4-45. Movable Panels in Adobe Illustrator

Use when

You’re designing either a desktop application or a website that most users sign in to.
News portals, dashboards, and canvas-plus-palette apps often use Movable Panels.
The screen you are designing is a major part of the app or site—something that users
see often or for long periods of time. You have a lot of heterogeneous content to show
on the page, possibly including text blocks, lists, buttons, form controls, or images.

252 | Chapter 4: Layout of Screen Elements

Modules have some of the following characteristics:

• Users will almost certainly want to see more than one module at a time.
• Their value can vary a lot from user to user. Some people want modules A, B, and

C, whereas others don’t need those at all and want to see only D, E, and F.
• The modules vary a lot in size.
• Their position on the page isn’t terribly important to you, but it might be to

users. (By contrast, a page of static Titled Sections ought to be arranged with
thought given to the importance of page position; important things go to the top,
for instance.)

• There are many modules—possibly so many that if all were shown at once, a
viewer would be overwhelmed. Either you or the user should pick and choose
among them.

• You’re willing to let users hide some modules from view altogether (and offer a
mechanism to bring them back).

• The modules can be part of the tool palette or some other coherent system of
interactive elements.

Why

Different users have different interests. Websites such as dashboards and portals are
most useful to people when they can choose the content they see. When they’ll be
working on something for a while in a desktop application, people like to rearrange
their environment to suit their working style. They can place needed tools close to
where they work; they can hide things they don’t need; they can use Spatial Memory
to remember where they put things.

Rationally speaking, Movable Panels help users get things done more efficiently and
comfortably (in the long run—after they’ve spent time rearranging their environment
the way they like it.). But this kind of personalization seems to appeal to people on
some other level, too. They might do this on infrequently visited websites that pro‐
vide some kind of entertainment, for instance. Personalization can increase engage‐
ment and buy-in.

Finally, a Movable Panels design easily accommodates new modules introduced over
time, such as those contributed by third parties.

The Patterns | 253

How

Give each module a name, a title bar, and a default size, and arrange them on the
screen in a reasonable default configuration. Let the user move modules around the
page at will, via drag-and-drop if possible. Permit each module to be opened and
closed with a simple gesture, such as a mouse click on a title bar button.

Depending upon the design you’ve chosen, you might want to give the user freedom
to place these pieces anywhere at all, even if they overlap. Or you might want a
predefined layout grid with “slots” where pieces can be dragged and dropped—this
lets the screen maintain alignment (and some sense of dignity) without making the
user spend too much time fiddling with windows. Some designs use ghosting—big
drop targets that appear dynamically; for example, dotted rectangles—to show where
a dragged module would go when dropped.

Consider letting users remove modules altogether. An “X” button in the title bar is
the familiar way to remove one. After a module is gone, how does a user bring it
back? Let users add modules—including brand-new ones, perhaps—from a list of
available modules that can be browsed and searched.

254 | Chapter 4: Layout of Screen Elements

Chapter 5

Visual Style and Aesthetics

“Never underestimate the power of beauty.”

Visual design is more than just “skinning a user interface”; visual design and look-
and-feel, done well, can make a digital product stand out. The visual language used in
any given interface conveys the attitude and spirit of your brand, and stands as an
avatar of it across various touchpoints. Visual design can make or break the usability
of a product and trust in your brand.

In 2002, a research group discovered something interesting. The Stanford Web Credi‐
bility Project set out to learn what causes people to trust or distrust websites. Much of
what they found made intuitive sense: company reputation, customer service, spon‐
sorships, and ads all helped users decide whether a website is credible.

But the most important factor—number one on their list—was the appearance of the
website. Users did not trust sites that looked amateurish. Sites that made the effort to
craft a nice, professionally designed look made a lot more headway with users, even if
those users had few other reasons to trust the site.

What was true then is true now; looking good matters.

True beauty is the combination of the physical form and desired function operating
together in harmony. In digital design, it is not enough that each pixel is perfect but it
also must add usefulness, understanding, or delight and often a combination of all
three.

In this chapter, we go over the core elements of visual design and discuss what makes
a visual design aesthetically pleasing.

255

http://credibility.stanford.edu
http://credibility.stanford.edu

The Basics of Visual Design
In this chapter, we talk about some of the principles of good visual design:

• Visual hierarchy
• Composition
• Color
• Typography
• Readability
• Evoking a feeling
• Images

Take a look at the four examples in Figure 5-1. They might look like different designs
but they all contain mostly the same visual elements. Using only color and changes to
the text, they achieve such different impressions—a screen’s color scheme can cause
you to either smile or cringe, for example. The impression they give are vastly differ‐
ent, although they contain the same content.

256 | Chapter 5: Visual Style and Aesthetics

Figure 5-1. Visual design examples

The Basics of Visual Design | 257

Visual Hierarchy
Visual hierarchy refers to presentation of visual elements on any given layout. Let’s
explore the characteristics of visual hierarchy.

Clarity
How well the design communicates the information the designer is trying to convey.

Actionability
How the user knows what they are supposed to do on any given screen.

Affordance
Affordance means that it looks or behaves like what it does. For example, a button
that looks slightly three-dimensional gives a visual cue that it is clickable.

Composition
Composition refers to the arrangement and proportion of a visual design.

Consistency
Visual elements appear in a predictable and uniform visual language. If you employ
icons in your interface design that they are always used within your experience to
convey the same functionality. The same goes for the use of language in your
interface.

Alignment
Nothing is more jarring to a user than moving from screen to screen and having the
elements of the screen change for no apparent reason. Make sure the screen elements
do not move their place from screen to screen. Text that changes from left, right, or
center aligned randomly is also disharmonious to the understandability and legibility
of digital product design.

Color
Color is immediate. It’s one of the first things you perceive about a design, along with
basic forms and shapes. Yet the application of color to art and design is infinitely
subtle—master painters have studied it for centuries. We can only scratch the surface
here.

When devising a color scheme for an interface, first rule out anything that makes the
text difficult to read:

258 | Chapter 5: Visual Style and Aesthetics

• Always put dark foregrounds against light backgrounds, and vice versa—to test,
pull the design into an image tool such as Photoshop and desaturate it (make it
grayscale).

• When red or green indicate a critical distinction, make sure to also reinforce the
color with a different shape or with text. This is because many color blind people
won’t be able to see the difference. Statistically, 10% of men have some form of
colorblindness, as do about 1% of women.

• Avoid certain color combinations. As an example, bright blue text on a bright red
background will fatique the eye. This is because blue and red are complimentary
colors, which means they are on opposite sides of the color wheel (Figure 5-2).

Figure 5-2. A color wheel

• It is less straining on the eyes to read black text on a white background, however,
white backgrounds tend to glow light through them, which can be fatiguing to
the eye. So, if you are designing something that will be used on a tablet and you
will have lots of blank space around your content or UI elements, try a dark col‐
ored background to reduce the backlight glow.

With that out of the way, here are some very approximate rules for color usage.

The Basics of Visual Design | 259

Warm versus cool
Red, orange, yellow, brown, and beige are considered “warm” colors. Blue, green,
purple, gray (in large quantities), and white are considered “cool.” See Figure 5-3.

Figure 5-3. Warm colors versus cool colors

260 | Chapter 5: Visual Style and Aesthetics

Dark versus light background
The screens with light backgrounds—white, beige, and light gray—feel very different
from those with very dark backgrounds. Light is more typical of computer interfaces
(and printed screens); dark screens can feel edgier, more somber, or more energetic,
depending on other design aspects. See Figure 5-4.

Figure 5-4. Dark versus light backgrounds

The Basics of Visual Design | 261

High versus low contrast
Whether the background is dark or light, the elements on that background might
have either high or low contrast against it. Strong contrast evokes tension, strength,
and boldness; low contrast is more soothing and relaxing. See Figure 5-5.

Figure 5-5. Contrast

262 | Chapter 5: Visual Style and Aesthetics

Saturated versus unsaturated
Highly saturated, or pure, colors—brilliant yellows, reds, and greens, for example—
evoke energy, vividness, brightness, and warmth. They are daring; they have charac‐
ter. But when overused, they can tire the eyes, so most UI designs use them sparingly;
they often choose only one or two. Muted colors, either dark or light (tones or tints,
respectively), make up the bulk of most color palettes. You probably wouldn’t want to
stare at that pink all day long in a desktop application. See Figure 5-6.

Figure 5-6. Saturated versus desaturated

Combinations of hues
When you begin combining colors, interesting effects happen. Two saturated colors
can evoke far more energy, motion, or richness than one alone. A screen that com‐
bines one saturated color with a set of muted colors directs attention to the saturated
color and sets up “layers” of color—the brighter and stronger ones appear closer to
the viewer, whereas the grayer and paler colors recede. Strong dimensionality can
make a design dramatic. Flatter designs, with more muted or lighter colors, are
calmer.

The Basics of Visual Design | 263

Don’t rely on color alone
Color is awesome, but don’t rely on color alone to indicate important information. A
good example from the real world is a stop sign in the United States (see Figure 5-7).
Anywhere you go, the stops signs will always look the same. They are red, they say
“STOP” and they are a distinct octagon shape. These create three cognitive cues to
indicate what is being asked of the viewer.

Figure 5-7. Example of a stop sign in the United States

The same is true in using visual elements in the digital world. Help your users to
understand the information you are trying to convey by doubling up with color and
shape.

Color references and resources

• https://www.colorbox.io
• https://color.adobe.com/create
• http://khroma.co

264 | Chapter 5: Visual Style and Aesthetics

https://www.colorbox.io
https://color.adobe.com/create
http://khroma.co

Typography
The majority of content on the web, other than cat videos and movies, is textual.
Designing for a legible, non–eye straining experience on the digital medium is an art
all to itself. Typography is a topic deserving of its own book, and in fact, there are
entire categories of books devoted to this topic alone. You can certainly nerd out on
typography, as is demonstrated in Figure 5-8. In this section, we introduce some of
the most important points to understand typography for digital design.

Figure 5-8. The anatomy of type for digital design

Types of typefaces
There are a couple of terms that will help in understanding some of the finer points
around using type. A typeface refers to the name of the particular design of type. For
example, Helvetica or Arial or Times New Roman are typefaces. A font is a particular
size, weight, and style of a typeface; for example, Helvetica Bold 12 pt, or Arial Italic
8pt, or Times New Roman 18 pt. You will often see the word “font” incorrectly used
to describe a typeface in digital design. There is no origin story that we have found to
explain why that is, but it is helpful to know the difference.

There are several layers of classifications for typefaces, but here are the ones most rel‐
evant to digital design.

The Basics of Visual Design | 265

Serif
Serif typefaces have small lines and curves at the end of the letters (Figure 5-9). They
tend to be the most common typefaces for reading dense amounts of text. The serif
tends to subtly guide the reader from letter to letter, thereby making the reading
experience less taxing on the eye.

Figure 5-9. Examples of serif typefaces

266 | Chapter 5: Visual Style and Aesthetics

Sans serif
San serif fonts (Figure 5-10) do not have lines at the end of the letters. They tend to
have a more contemporary look and the letters tend to hold their legibility at smaller
sizes, which is one of the main reasons you will see sans serif typefaces used fre‐
quently in user interfaces.

Figure 5-10. Examples of sans serif typefaces

The Basics of Visual Design | 267

Display
Display typefaces (Figure 5-11) are typefaces that work well at a very large size; they
can be serif or sans serif. Display typefaces are good for establishing a look and feel of
a brand, in a headline or for a logo, but they are not appropriate for user interfaces,
UI controls, forms, or body copy. Never use a display typeface for large amounts of
text as display typefaces can be overwhelming when overused and lose legibility in
smaller sizes.

Figure 5-11. Examples of display typefaces

268 | Chapter 5: Visual Style and Aesthetics

Monospace
Monospace fonts (Figure 5-12) have letters that occupy the same space horizontally
regardless of the actual width of the character. These typefaces were used in the early
days of computers and you will see them also used in the interfaces of LED screens,
interfaces where numbers are the primary content and screens that do not have more
sophisticated ways of rendering text. Examples where you might see monospaced
fonts are interfaces of noncomputer electronic devices, in-dash car displays, and
appliance interfaces.

Figure 5-12. Examples of monospaced typefaces

The Basics of Visual Design | 269

Size
Type size is measured by “points,” commonly abbreviated as “pt.” The smaller the
point size, the smaller the type. Generally, you do not want to go below 10 pts for the
best on-screen legibility; 12 pts seems to be the most used standard body-text size
(see Figure 5-13). For small print items such as copyright information you might have
in the footer of a website, 9 pts works well. For experiences that are primarily for
reading (such as a news site, or a digital reader), it’s best to default to a comfortable
point size like 12 pts and allow the user to increase the size as they prefer.

Figure 5-13. Examples of font sizes

Leading
Leading (pronounced like the metal) refers to the vertical separation between lines of
text, specifically the distance between the baseline (refer back to Figure 5-8) of one
line of text and the baseline of the next line. Leading should provide enough space
between the lines so the eye flows from line to line and to prevent ascenders and
descenders from overlapping, but not so much that the each line feels distant and
separated.

Tracking and kerning
Related to leading is tracking. Tracking is the horizontal spacing between all letters.
Improper tracking can affect readability, particularly when set too tight or too wide
(Figure 5-14). But even when set properly, there can still be problems with certain
characters. This is when kerning comes in handy. Kerning is when a designer manipu‐
lates and adjusts the space (tracking) between specific pairs of characters (usually
reducing the space). This is needed, for instance, when a letter that takes up a lot of

270 | Chapter 5: Visual Style and Aesthetics

space, such as a capital “D,” and one that takes up much less space, like an “I,” are side
by side and have an awkward distance between them. Kerning helps make the letter
pairs look more balanced and legible. Most typefaces that are optimized for digital
design, such as the fonts in Google Fonts or Apple or Microsoft UI typefaces, have
already been kerned to look proportional on the screen.

Figure 5-14. Tracking that is tight, proportional and wide

Font pairing
Font pairing is combining two typefaces in a design. Combining fonts is an art unto
itself, but there are now some sites that help in aiding selection of fonts that look
good together. There are numerous subtleties to finding combinations that work well,
but there are a couple of quick rules:

• When combining fonts that are in the same typeface family, use a different
weight or style (bold, italic) to differentiate the text.

• Never combine two typefaces that are similar. A way to avoid this is to pair a serif
with a sans serif type (Figure 5-15).

The Basics of Visual Design | 271

Figure 5-15. Examples of type pairs

Paragraph alignment
Paragraph alignment refers to the imaginary vertical line to which the text of a para‐
graph aligns. In digital design, there are four options to choose from: left align, center
align, right align, or justified. Justified text adjusts the spacing between words so that
lines are both left- and right-aligned.

Generally speaking, you cannot go wrong left-aligning the text. As you can see in
Figure 5-16, this is a highly readable way to align large amounts of text.

• The center-aligned text will draw the eye because of the whitespace around it, but
use it sparingly because it is also more difficult to read.

• Right-aligned text and justified text are not usually used in UI design.

272 | Chapter 5: Visual Style and Aesthetics

Figure 5-16. Paragraph alignment

Numbers
When choosing a typeface, always be sure to see what the numbers and letters look
like together. In some typefaces, it is difficult to distinguish the lowercase letter “l”
from the number “1” or “0” from the capital letter “O.”

Readability
By choosing a typeface for a piece of text, you decide what kind of voice that text is
“spoken” in. The voice might be loud or soft, friendly or formal, colloquial or authori‐
tative, hip or old-fashioned.

As with color, readability—the cognitive part—comes first when choosing type. Small
text—or what’s called “body text” in print and on websites—demands careful consid‐
eration. The following characteristics for body text also apply to “label fonts” in
graphical user interfaces (GUIs), used to caption text fields and other controls:

• On computer displays, sans serif fonts often work better at very small point sizes,
unlike print, for which the serif fonts tend to be more readable as body text. Pix‐
els aren’t big enough to render tiny serifs well. (Some serif fonts, such as Georgia,
do look passable, though.)

• Avoid italicized, cursive, or otherwise ornamental fonts; they are unreadable at
small sizes.

• Highly geometric fonts tend to be difficult to read at small point sizes, as the cir‐
cular letters (e, c, d, o, etc.) are difficult to differentiate. Futura, Universal, and
some other mid-twentieth-century fonts are like this.

The Basics of Visual Design | 273

• All-capital letters is too difficult to read for body text, though it works fine for
headlines and short texts. Capital letters tend to look similar and are not as easy
for a reader to differentiate.

• Set large amounts of text in a medium-width column when possible—say, around
10—12 English words on average. Don’t right justify narrower columns of text;
let it be “ragged right.”

Evoking a Feeling
Now for the visceral and emotional aspects. Typefaces have distinctive voices—they
have different characteristics, textures, and colors on the screen. For instance, some
fonts are dense and dark, whereas others are more open (Figure 5-17)—look at the
thickness of strokes and the relative sizes of letter openings for clues, and use the
“squint test” if you need a fresh and objective look at the font. Some fonts have nar‐
rower letters than others, and some font families have “condensed” versions to make
them even narrower. The tracking might be distant or close, making the block of text
look either more open or more solid.

Figure 5-17. Examples of typefaces

Serifs and curves add another dimension to font color and texture. Serifs add a level
of scale that’s much smaller than the letterform itself, and that adds refinement to the
font’s texture—the thick sans serif fonts look blunt and strong in comparison. The
curves and angles used in each letterform, including those that form the serif, com‐
bine to form an overall texture. Though it’s not always easy to explain why some fonts
speak with a formal voice, whereas others speak with an informal voice. Comic Sans
and other playful fonts are certainly informal, but so is Georgia, when compared to

274 | Chapter 5: Visual Style and Aesthetics

Didot or Baskerville. All-caps and capitalized words speak more formally than lower‐
case; italics speak informally.

Cultural aspects come into play here, too. Old-fashioned fonts, usually with serifs,
tend to look—wait for it—old-fashioned, although anything set in Futura (a sans serif
font) still looks like it came from a 1963 science textbook. Verdana has been used so
much on the web that it’s now standard for that medium. And Chicago will always be
the original Mac font, no matter what context it’s used in.

Spaciousness and crowding
Some designs use plenty of whitespace; others crowd the screen elements together.
Spaciousness on the screen gives an impression of airiness, openness, quiet, calmness,
freedom, or stateliness and dignity, depending on other design factors.

Crowded designs can evoke urgency or tension under some circumstances. Why?
Because text and other graphic elements need to “breathe”—when they’re colliding
against one another or against the edges or borders of the screen, they cause visual
tension, as demonstrated in Figure 5-18. Our eyes want to see margins around things.
We become slightly disturbed by designs that shove the headlines directly against the
text. Likewise, the compact layout somehow contributes to the busy, industrial feel of
the screen, though it doesn’t have collisions.

Figure 5-18. A spacious and crowded visual design

However, not all crowded designs evoke that kind of tension. Some connote friendli‐
ness and comfort. If you give the text and other elements just enough space and
reduce the interline spacing (leading) to the smallest amount that is comfortably
readable, you might achieve a friendlier and less rarified look.

The Basics of Visual Design | 275

Angles and curves
A screen composed of straight up-and-down lines and right angles generally looks
calmer and more still than a screen containing diagonal lines and nonrectangular
shapes. Likewise, a screen with many different angles has more apparent motion than
a screen with a single repeated angle on it.

Curves can also add motion and liveliness, but not always. A design made with a lot
of circles and circular arcs can be calming and restful. But a curve swooping through
a screen sets the whole design in motion, and a few carefully chosen curves in an
otherwise rectangular design add sophistication and interest.

In the example in Figure 5-19, Stripe uses angles to create a dynamic and legible
design to guide the eye around the design and thus to the important information the
designer wants visitors to read.

Figure 5-19. Stripe online payments website

Wherever two curves intersect, notice what the geometrical tangents to those curves
are doing. Are the tangents at right angles? That results in a calmer, more still compo‐
sition; if they cross at a more acute angle, the design has more tension and apparent
motion. (Again, these aren’t hard-and-fast rules, but they’re generally true.)

276 | Chapter 5: Visual Style and Aesthetics

When using angles, curves, and nonrectangular shapes, think about where the focal
points are: at sharp angles, where lines cross, and where multiple lines converge, for
instance. Use these focal points to draw the viewer’s eye where you want it to go.

Texture and rhythm
Texture can add richness to visual design. Text forms its own texture, and you can
control the look of that texture by choosing good typefaces. For many screens and
interfaces, fonts are the most important texture element.

You also can use texture to surround strong visual elements and set them off. Tex‐
tures add visual interest and depending on what they look like, they can add warmth,
richness, excitement, or tension.

The most effective textures in the interface design are subtle, not vivid checkerboards
of eye-hurting colors. They use gentle color gradations and very tiny details. When
spread over large areas, their impact is greater than you might think. An exception
might be in the example in Figure 5-20. Szimpla Kert is a store and cafe in Budapest
and the website uses bright colors and visual texture to evoke a celebratory, dynamic
look and feel.

Figure 5-20. Szimpla Kert website

The Basics of Visual Design | 277

Be careful when using textures behind words on a computer screen—it rarely works.
All but the subtlest textures interfere with the readability of small text. You can put
them behind large text, but watch the way the edges of the letterforms interact with
the different colors in the texture; this can visually distort the letters.

Images

Photography
Photography can set the mood of a design. On the web and mobile digital products,
photography is one of the most powerful tools to establish how a brand is expressed.
A well-placed photo can tell a story in a single glance much more efficiently than
words could. Photographs are extraordinary tools for evoking emotional responses.

In most desktop applications and mobile applications, content and ease of use are
more important than style. You should use purely decorative images sparingly and
with great care on functional GUIs because they tend to be distracting.

Here are a few tips to keep in mind:

• If you use a person’s face, be sure to pay attention to where the gaze of the per‐
son’s eye is directed. Humans tend to look where other humans look. Even when
those humans are images on a screen.

• Try to avoid clichés when you can. How many web screens have you seen show‐
ing the same happy, smiling faces? Kids flying kites? Competent-looking business
people in crisp suits? How about roads winding through beautiful mountain
scenery? Sunsets or beaches? Rolling grassy hills under sunny blue skies? Try not
to rely on these visual conventions alone to set the tone for your brand.

• Stock art (photographs that you can purchase, sometimes royalty-free) are okay,
but for the biggest impact, nothing beats custom photography or designs that
have been created by trained art directors and visual designers.

Icons
Icons (Figure 5-21) are graphical representations that serve in place of text to express
an idea or denote functionality.

278 | Chapter 5: Visual Style and Aesthetics

Figure 5-21. Icons

Creating icons, like typography, photography, or illustration, is a skill on its own.
Icons express complex ideas at a glance and give the user an idea of what actions to
expect when they click or tap an item.

• Look for UI conventions you see on the web or from other icons. Applying com‐
mon conventions found in other designs make it less likely your user will need to
relearn what the icon means.

• Make sure your icons all share the same visual style: the same weight, and either
filled in or outlined, for example.

• Don’t rely on icons alone. Use them sparingly and when you can, use text labels
as well for maximum user comprehension.

Icon references and resources

• https://developer.apple.com/design/human-interface-guidelines/ios/icons-and-
images/custom-icons

• https://thenounproject.com
• https://material.io/tools/icons

The Basics of Visual Design | 279

https://developer.apple.com/design/human-interface-guidelines/ios/icons-and-images/custom-icons
https://developer.apple.com/design/human-interface-guidelines/ios/icons-and-images/custom-icons
https://thenounproject.com
https://material.io/tools/icons

Cultural references
A design might remind you of something cultural—a brand, movies, art style, histori‐
cal era, a literary genre, or inside joke. A familiar reference can evoke memories or
emotions strong enough to trump all these other design factors, though the best
designs make cultural references work in concert with everything else.

Obviously, if you make overt cultural references, consider your audience. A 10-year-
old will not get a 1970s pop art reference. Chances are good that a young adult in
India won’t either. But if your audience is sufficiently well defined for you to know
that a cultural reference will be familiar to them, it can be a good “hook” to engage a
viewer emotionally with your design.

Cultural references are rarely used in functional application designs, but you can see
them in applications like QuickBooks, in which some screens are designed to look
like checks and bills. They actually move beyond a stylistic treatment and become an
interaction metaphor, but the metaphor still is entirely cultural—someone who has
never seen a checkbook wouldn’t respond in the same way as someone who has.

Repeated visual motifs
Good design has unity: it hangs together as one entity, with each element supporting
the others structurally and viscerally. That’s a challenging goal to achieve. I can’t give
you hard-and-fast rules on how to do it; it takes skill and practice.

But one thing that contributes greatly toward visual unity is the repetition of visual
elements or motifs. We’ve already talked about angles and curves; you can use diago‐
nal lines of the same angle, or lines with similar curvature, as repeated elements in a
design.

Also, consider typography. Use only one main body text font, though other fonts can
work very effectively in small areas such as sidebars or navigation links. (Their con‐
trast to the main font makes them stand out.) If you have several headlines or titled
sections, use the same headline font for them. You also can pull smaller graphic ele‐
ments—line width and color, for instance—out of your fonts into the rest of the
design.

Rhythms like these can be powerful design tools. Use them with care, and apply them
to groups of comparable things—users will assume that similarity in form means
similarity in function.

280 | Chapter 5: Visual Style and Aesthetics

Visual Design for Enterprise Applications
Those of you who work on consumer-facing digital products might already be famil‐
iar with everything discussed so far. People expect websites and mobile applications
to have strong graphic styling, and you rarely will find them looking completely plain
and neutral.

But what if you work on desktop or enterprise applications? If you try to apply these
principles to the controls’ look-and-feel—how the controls are drawn—you might
not have many choices. Native Windows or Mac applications generally use the stan‐
dard platform look-and-feel, unless you’re willing to work hard to develop a custom
one. Enterprise applications should be optimized for workflow and be easy to look at
for large stretches of the workday.

Given the situation, you can be forgiven for just using the platform look-and-feel
standards and concentrating your graphic design attentions elsewhere.

Even if you do use a neutral look-and-feel for your actual widgets, there still are ways
to be creative:

Backgrounds
Unobtrusive images, gradient fills, and subtle textures or repeated patterns in
large background areas can brighten up an interface to an amazing extent. Use
them in dialog or screen backgrounds; tree, table, or list backgrounds; or box
backgrounds (in conjunction with a box border).

Colors and fonts
You often can control overall color schemes and fonts in a native-looking UI, too.
For instance, you might draw headlines in an unusual font at several point sizes
larger than standard dialog text, and maybe even on a strip of contrasting back‐
ground color. Consider using these if you design a screen layout using the Titled
Sections pattern (Chapter 7).

Borders
Borders offer another possibility for creative styling. Again, if you use Titled Sec‐
tions or any other kind of physical grouping, you might be able to change how
box borders are drawn.

Images
In some UI toolkits, certain controls let you replace their standard look-and-feel
with custom images on a per-item basis. Buttons often allow this, for instance, so
your buttons, including their borders, can look like anything you want. Tables,
trees, and lists sometimes permit you to define how their items are drawn You
also can place static images on UI layouts, giving you the ability to put images of
any dimension just about anywhere.

Visual Design for Enterprise Applications | 281

1 And, depending on who buys your software, it might also be the legal thing to do. The US government, for
example, requires that all software used by federal agents be accessible to people with disabilities. For more
information, see http://www.section508.gov. The Americans with Disabilities Act also has design standards.

Accessibility
The biggest concern is accessibility. Operating systems such as Windows let users
change desktop color/font themes, and that’s not just for fun—visually impaired users
use desktop themes with high-contrast color schemes and giant fonts just so they can
see what they’re doing. Make sure your design works with those high-contrast
themes. It’s the right thing to do.1

Another danger is fatiguing your users. If you design an application meant to be used
at full size or for a long time, tone down the saturated colors, huge text, high contrast,
and eye-catching textures—make the design quiet, not loud. More important, if your
application is meant to be used in high-stress situations, such as a control panel for
heavy machinery, strip out anything superfluous that might distract users from the
task. Here, cognitive concerns are far more important than aesthetic .

Ranges of Visual Styles
Visual design styles change fairly quickly. Most often, new releases of operating sys‐
tems drive a change in the visual UI styles that are adopted after their release. In this
way, Apple, Microsoft, and now Google are setting the trends for the visual styles in
the applications that will be used on their platforms. We take a deep-dive into a few of
the more widely used styles across these platforms and across their touchpoints: web,
desktop software, and mobile applications.

Skeuomorphic
A skeuomorphic design refers to a style of UI that mimics the characteristics of
objects found in real life. Skeuomorphism is often used during a period of transition
when a new type of interaction is used and you want the user to understand how
something works by using an idea or concept with which they are already familiar.

When the iPad was first released, skeuomorphic visual designs were on almost every
application. This was used as a visual affordance to inform the user how to interact
with a touch interface.

In the Apple Wallet example shown in Figure 5-22 (left), the list of items stored in the
list of data has been given a visual design that mimics the look of cards or tickets.
This translation of real-life objects to the digital help the user to find what they are
looking for and also helps them manage and arrange the content.

282 | Chapter 5: Visual Style and Aesthetics

http://www.section508.gov
https://oreil.ly/mNptX

Figure 5-22. Apple iOS Wallet and Apple iOS calculator

Apple uses the skeuomorph successfully again in its calculator app Figure 5-22
(right). The rounded numbers are an optimal “touch target” size (we will discuss this
more in the context of mobile design in Chapter 6) and the functionality mirrors
what you would expect from a physical calculator. In this way, the designers of iOS
have transcended the iPhone into a device that morphs and changes to the intended
functionality of the application.

Ranges of Visual Styles | 283

You can also use a skeuomorph within another design style to increase usability. In
the Square Invoice set-up process (Figure 5-23), the designer chose to use the visual
language of the real-life physical check so that a user would know where to locate the
routing and checking account numbers needed to set up their account.

Figure 5-23. Square Invoice bank account entry and Eventbrite interface

284 | Chapter 5: Visual Style and Aesthetics

Illustrated
Interface design doesn’t need to be cold and sterile. If it makes sense for the brand,
using illustration is a good way to set a fun and approachable tone to an application
or website. Using an illustrated style also sets you free from what is possible in the
real world and allows the designer to express complex concepts limited to only what’s
possible in the imagination.

Eventbrite (Figure 5-24) is an event-listing and ticket-purchase service that uses an
illustrated style all around its mobile application interface providing a warm and
inviting visual look and feel.

Figure 5-24. Eventbrite interface

Ranges of Visual Styles | 285

Florence (Figure 5-25) is a site for self-employed nurses to find shifts. This could have
been a boring, staid site but the illustrations and visual design set the tone for a fun
and friendly brand.

Figure 5-25. Florence.co.uk

286 | Chapter 5: Visual Style and Aesthetics

Happy Cow (Figure 5-26) is a mobile application that helps vegetarians and vegans
find restaurants and food anywhere in the world. The site uses the Happy Cow mas‐
cot and a lighthearted icon language throughout its UI.

Figure 5-26. Happy Cow

When your product is your application or website, which is the case with the exam‐
ples shown in this section, using custom illustrations is an effective way to establish a
memorable brand.

Flat Design
Characterized by solid background colors, simple understandable icons and sans serif
typography, flat design is one of the most widely used visual design styles you will see
on the web and in mobile apps. Think of the style of signage used in airports and in
transportation and you can see why this flat and minimal style has such universal
appeal. It is culturally agnostic, easy to localize, and can scale to different viewports
(screen sizes) easily.

Ranges of Visual Styles | 287

Flat design is considered a truly digital style because the visual language of the UI
(with the exception of the icons) is no longer pretending to be analogous to some‐
thing in real life. Instead, the UI is meant to blend into the background and allow the
user to focus on the content.

The examples shown in Figure 5-27 demonstrate flat design in a mobile application.
What are the commonalities you see? Do you see solid colors, a single typeface used
at different sizes, use of two-dimensional icons? When you pay attention to this visual
style you will notice that it is used everywhere.

Figure 5-27. Cash and Booking.com apps

288 | Chapter 5: Visual Style and Aesthetics

http://Booking.com

AirVisual (Figure 5-28) is a mobile application that shows the air quality in cities
throughout the world. It employs a combination of flat design and custom illustra‐
tions for a clear and usable visual presentation.

Figure 5-28. AirVisual app

For more details on flat design

• https://www.microsoft.com/design/fluent
• https://material.io/design

Ranges of Visual Styles | 289

https://www.microsoft.com/design/fluent
https://material.io/design

Minimalistic
Minimal designs reduce the screen elements to the barest minimum. You will often
see minimal designs used in task-based apps when the things that a user can do are
straightforward or the interface is primarily used for viewing data rather than input‐
ting or manipulating data.

Clear Todos (Figure 5-29) is an extreme example of showing only shades of color and
text and very limited Visual UI cues as to how the interface works.

Figure 5-29. Clear Todos app

290 | Chapter 5: Visual Style and Aesthetics

The Calm app (Figure 5-30, left) shows only what is absolutely necessary for the user
to see on any given screen. In the example here, one button is used to control the
functionality and a subtle but helpful animation instructs the user what to do.

Apple Health (Figure 5-30, right) uses bold colorful information graphics as the core
of its visual UI.

Figure 5-30. Calm and Apple Health apps

Glitché (Figure 5-31) is an application to create “glitch” style photos and videos. Its
minimal UI allows the user to focus on the task and doesn’t take valuable screen
estate away from the primary task of photo and video editing.

Brian Eno’s Bloom music application (Figure 5-31) uses only audio cues to inform the
user how to interact with it. The experience relies on subtle, muted color changes and
ambient sound that encourages exploration and creation.

Ranges of Visual Styles | 291

Figure 5-31. Glitché and Bloom

Adaptive/Parametric
On the extreme end of minimalism, adaptive or parametric refers to designs where
the form is not static or defined but rather generated algorithmically, in relationship
to the objects (static or dynamic) that come in proximity. You will see this type of
interface paradigm often used in video or photo applications, and more and more
you will see it in other types of interfaces. A written definition does not do this type
of design justice. Imagine an interface that is mostly invisible until it comes into con‐
tact with something that enables an interaction to happen—then the UI reveals itself
and wraps around the object with which a user can interact. When creating visual
designs for this kind of interface, creating a high-contrast and fluid UI visual style is
key.

292 | Chapter 5: Visual Style and Aesthetics

Apple Measure (Figure 5-32) is a measuring tool that comes with iOS. To measure
something, the user points their phone or tablet at the object and then the measuring
tools and functions assemble themselves onto the interface.

Figure 5-32. Apple iOS Measure

Ranges of Visual Styles | 293

Simple (Figure 5-33) is a mobile banking application. To deposit a check, a user is
prompted to take a photo of the check, and the UI will emerge to indicate when the
photo is in the correct place and when a photo can be captured.

Figure 5-33. Simple check capture

Conclusion
Great visual design is a skill that takes time to perfect. Graphic design is a discipline
all to itself, and it would take far more than a chapter to get into the nuances of the
grid, color theory, typography, and gestalt to truly understand how to create a pixel-
perfect visual design. Fortunately, with new website creation and editing tools, much
of the finesse that it takes to get a perfectly kerned and detailed designed look are
available to everyone with a credit card and content to share.

Web creation platforms like Squarespace, Wix, and WordPress have premade tem‐
plates that have been created by visual designers. These tools take the guesswork out
of designing layouts and worrying over spacing and margins and legibility.

We have just scratched the surface of what there is to know about visual design in the
context of the UI. The big takeaways are that aesthetics matter, and getting those
details right makes a huge difference in how your product or service will be perceived
by your audience.

294 | Chapter 5: Visual Style and Aesthetics

1 The Mobile Economy Report, GSM Association, 2018

Chapter 6

Mobile Interfaces

Look around on any city street, and you will see people with their heads hunched
down looking at their mobile devices. The world is full of iPhones, Android phones,
and other smartphones and tablet computers. There are entire countries where peo‐
ple reach the internet primarily through their phones. By 2025, five billion people are
projected to be mobile internet users worldwide.1 It is likely the users of your product
will primarily interact with your product via a mobile device. Designing for mobile is
not just good design practice or a practical business concern, it’s common sense.

It stands to reason that mobile devices have become an indispensable part of daily
life. A cell phone is not simply a phone or means to connect to the internet; it has
become a primary gateway to communication, commerce, entertainment, transporta‐
tion, and navigating one’s way. Smartphones and tablets in particular also have the
benefit of direct manipulation—being able to touch the object you want to select or
edit—which makes mobile interfaces easy and intuitive to learn.

Simply making a compact version of your website is no longer the way design is done,
and a mobile-first (designing for the mobile experience prior to designing for a fuller
featured web experience) or responsive-design (designing for a web experience that
can gracefully scale to fit different screen sizes) approach is adopted by companies
who want to ensure their digital products can scale for the future.

The world of mobile experience is vast and spans from mobile web to native mobile
applications (apps). Some products will want to supply all of their functionality via
the mobile site, but all of it would be tailored to the small screen and other mobile
constraints. Many people view the internet exclusively through their mobile device,

295

and they’ll want all of your site’s features. You might choose to do two separate and
parallel designs, one for mobile and one for the desktop.

If you create tools and applications for large screens, instead of websites, this chapter
might not apply to you at all. You and your organization might want to evaluate
whether your tools (or some subset thereof) could be re-created as apps on mobile
devices and still be useful. Know your users—understand their needs, tasks, and con‐
texts of use.

Each have their pros and cons and depending on the richness of the experience you
need to deliver you will likely be designing for a desktop (web), mobile-web, and
mobile-native application. Creating mobile apps is a nontrivial investment, but it
might be worth it.

Some of these users will see your sites through browsers that are small, slow, quirky,
and difficult to interact with. They will use your sites in environmental conditions—
and mindsets—that are entirely different from what they would experience if they
were sitting quietly at a comfortable desk, in front of a large screen.

In this chapter, we won’t go into the technical details of platform detection and how
to present the correct design for the user’s situation (e.g., different CSS stylesheets)—
but the knowledge is out there and fairly easy to find. A relatively small investment of
knowledge, design work, and time can go a long way toward improving the mobile
experience of the sites you design.

The Challenges and Opportunities of Mobile Design
When you design for a mobile platform, you face challenges that you don’t encounter
when your user can be presumed to be viewing a large screen and using a keyboard:

Tiny Screen Sizes
Mobile devices just don’t offer much space to present information or choices. Sadly,
you don’t have the luxury of sidebars, long header menus, big images that don’t do
anything, or long lists of links. You need to strip your design down to its essence—
take away all the extra stuff you can. Leave the most important functions on the front
screen and either discard the rest or bury them deeper in the site.

Variable Screen Widths
It’s difficult to make a design that works well on screens that are 360 pixels wide and
640 pixels wide. Scrolling down a mobile screen isn’t terribly onerous (which is why
width gets special mention, not height), but the design needs to use the available
screen width intelligently. Some sites end up creating different versions—with

296 | Chapter 6: Mobile Interfaces

2 Material.IO Accessibility Guidelines
3 Apple Developer Human Interface Guidelines

different logo graphics, different navigation options, and so on—for the smallest key‐
pad devices, and another for the iPhone-size class of touch devices.

Touch Screens
Most mobile web and app access comes from devices with touch screens. Keypad
devices obviously should be served, too, because they constitute the majority of exist‐
ing mobile devices, but you might want to bias the design toward the touch-screen
experience. Links on keypad devices can be navigated with keys fairly easily, as long
as you follow good design principles (restricted content, linearized layout, etc.).

It’s difficult to touch small targets accurately with fingers. Make your links and but‐
tons large enough to easily touch; at a minimum, make important targets at least 48 ×
48 dp (9 mm) for Android devices2 and 44pt × 44pt for Apple iOS3 on each side, and
put space between them. This reduces the available space for other content, of course.

Difficulty of Typing Text
No one likes typing text on a touch screen or keypad. You should design interaction
paths through your site or tool in such a way that typing is unnecessary or very limi‐
ted. Use “Auto Completion” (functionality that predicts the next letter a user is going
to type to save the user keystrokes) in text fields whenever possible, for instance, and
prefill form fields whenever you can do so reliably. Remember that numbers are
much easier than text in some contexts, however.

Challenging Physical Environments
People use their phones and other devices in all kinds of places: outside in the bright
sun, in dark theaters, in conference rooms, cars, buses, trains, planes, stores, bath‐
rooms, and in bed. Think about the ambient light differences, to begin with—tasteful
gray text on a gray background might not work so well in direct sun. Think also
about ambient noise differences: assume that some users won’t hear the device at all,
and that others might find sudden noises jarring and inappropriate.

Finally, think about motion. Tiny text is difficult to read when the device (or the user)
is moving around. And a tiny hit target on a touch-screen device will be challenging
to use under the best of circumstances, but it can be nearly impossible on a rocking
and jolting bus. Again, design for “fat fingers,” and design so that mistakes are easily
corrected.

The Challenges and Opportunities of Mobile Design | 297

https://oreil.ly/S5tSG
https://oreil.ly/wnZOS

Location Awareness
Mobiles are on the go with their users. This also means that these devices are able to
locate exactly where they are being used. This makes it possible to design for scenar‐
ios in which information specific to the location can be served up and paired with the
local data. Systems can even infer what situations the user might be in to better antici‐
pate their needs.

Social Influences and Limited Attention
Most of the time, mobile users won’t spend lots of time and attention on your site or
app. They’ll be looking at your design while doing other things—walking, riding in a
vehicle, talking with other people, sitting in a meeting, or—but most preferably not—
driving. Occasionally a mobile user will focus their full attention on the device, such
as when playing a game, but they won’t do it as often as someone sitting at a keyboard
will. Therefore, design for distracted users: make the task sequences easy, quick, and
reentrant. And make everything self-explanatory.

Another assumption you can make is that lots of mobile users will be engaging in
conversations or other social situations. They might pass around the device to show
people something on the screen. They might have people looking over their shoulder.
They might need to suddenly turn off the sound if it’s not socially acceptable to have a
noisy device—or they may turn it up to let others hear something. Does your design
behave well in these situations? Can it support graceful social interaction?

How to Approach a Mobile Design
If you’re simply trying to take a site’s usual content and cram it into a 360 × 640 win‐
dow, stop. Take a big step back and look at the whole picture.

1. What Do Users in a Mobile Context Actually Need?
A person who is out and about with a mobile device might want to use your site (or
app) only in particular ways; they won’t have the same range of needs that a user of
the full site will have. Design for use contexts such as these:

• “I need to know this fact right now, quickly.”
• “I have a few minutes to spare, so entertain me.”
• “Connect me socially.”
• “If there’s something I need to know right now, tell me.”
• “What’s relevant to the place I’m in right now?”

298 | Chapter 6: Mobile Interfaces

2. Strip the Site or App Down to Its Essence
Don’t be afraid to take away all that other stuff—the extra content, eye-catching fea‐
tures, sidebars, pull quotes, ads, images, site maps, social links, and so on. Focus
tightly on the few tasks that mobile users will need from your site, use minimal
branding, and chuck the rest.

In fact, make sure that even on the home screen (for a website) or the first working
screen of an app, relevant content appears high on the screen. That means getting rid
of the “layer cake effect” of logos, ads, tabs, and headers that stack up on the screen.
See Figure 6-1 for an example of a poor mobile design; the only piece of content that
a user really cares about is the score at the bottom of the screen. (If the user were to
rotate the phone sideways, the score wouldn’t even be visible “above the fold.”)

Figure 6-1. An example of poor mobile design in which the only information the user cares
about is at the bottom

Having reduced the site to its minimal form, you should then make sure that a user
who really needs the full nonmobile site can get it. Put a link to the full site in an
obvious place. Remember that many of the world’s population can access the web
only through their phones, so you can’t count on them just going to the full site on
their large screen—they might not have one, let alone that device being connected to
the internet.

How to Approach a Mobile Design | 299

Alternatively, you might create the two “separate and parallel” designs mentioned ear‐
lier, in which all of the site’s functions and information are presented in the mobile
site (meaning the user never needs to go to the full nonmobile site). You might still
need to strip down the home screen or main screen. Instead of having a flat and
broad navigational hierarchy in which the home screen has a zillion links directly to
other screens, you might need to reorganize the site so that the hierarchy is somewhat
narrower and deeper. This lets you put fewer options on the home screen, which
means less clutter on a small screen. (Of course, you’ll need to balance that against
the time it takes for a user to jump from screen to screen.)

3. If You Can, Use the Device’s Hardware
Mobile devices offer wonderful features that you don’t get on the desktop. Location,
camera, voice integration, gestural input, haptic feedback such as bumps and vibra‐
tions, and other features can be available to you. Some devices multitask so that your
app can be running in the background while the user is doing other things; can you
use that?

4. Linearize Your Content
This goes back to the width problem. Many devices simply don’t give you enough pix‐
els in the width dimension to do any interesting side-by-side layouts. Instead of forc‐
ing the issue, just accept that one way or another, your content will end up being laid
out vertically. Order the mobile site’s content so that it “reads well” when laid out this
way. See the Vertical Stack pattern later in this chapter.

5. Optimize the Most Common Interaction Sequences
After you’ve decided which tasks your typical mobile users will want to perform, and
you’ve narrowed down the site to only the most relevant content, try to make those
tasks as easy as possible by following these heuristics:

• Eliminate typing, or reduce it to as few characters as possible.
• Use as few screen loads as possible, and don’t inflate screens with unnecessary

bytes. Download times can be very slow; most parts of the world are still outside
the reach of high-bandwidth wireless internet facilities.

• Reduce scrolling and sideways dragging, except where it eliminates screen loads
and typing. In other words, prefer one long vertical screen to many small screens
if you need to present a lot of content.

• Reduce the number of taps it takes for a user to reach the desired information or
accomplish a task. Tapping large hit targets—or using hardware buttons—is bet‐
ter than typing by a long shot, but try to reduce them anyway.

300 | Chapter 6: Mobile Interfaces

Some Worthy Examples
Here are some mobile versions of home screens that manage to meet most of the
design constraints listed in the preceding section while retaining the branding and
personality of each site. In some of these examples, I show the mobile web (internet)
version and the mobile app version for comparison.

Lugg (Figure 6-2) is an on-demand moving service. Its mobile web and mobile app
both follow good mobile design practices. Lugg focuses on the main task point of its
service and have big touch targets for text inputs and buttons and a clear call to
action. All the most important information is easily seen at a glance.

Figure 6-2. Lugg’s Mobile Web and Native iOS App

How to Approach a Mobile Design | 301

Booking.com is a travel booking site that books hotels, flights, and rental cars, so it
stands to reason that both its mobile web and native-mobile app home screens are
100% focused on getting the visitor to engage in a destination search as it s first and
default experience (Figure 6-3). Booking.com also takes advantage of the geolocation
data available on smartphones and incorporates this into the experience.

Figure 6-3. Booking.com mobile website and native-iOS app

302 | Chapter 6: Mobile Interfaces

http://Booking.com
http://Booking.com
http://Booking.com

The New York Times crossword puzzle (Figure 6-4, left) gets high marks for being
optimized for the limitations and opportunities afforded by its mobile form factor.
When the user taps the first space to enter a letter, the entire row highlights and the
clue appears in the blue highlighted area above the keypad. This is an excellent visual
affordance that saves keystrokes and simplifies what otherwise would have been a
very complex interaction.

NPR’s One App (Figure 6-4, right) shows an excellent example of streamlining func‐
tionality with its pared-down mobile user interface. It uses location-based data to
show the closest station and displays single, large “play” button.

Figure 6-4. The New York Times crossword puzzle on a native-iOS mobile app and the
NPR One app

How to Approach a Mobile Design | 303

Gratuity (Figure 6-5, left) is a tip calculator that gracefully places all the features on
one screen and has buttons with ample touch targets.

Music Memos (Figure 6-5, right) allows a user to create a quick recording. The app is
pared down to highlight the main functionality and offers a graceful animation to
indicate the recording is taking place.

Figure 6-5. Gratuity and Music Memos

304 | Chapter 6: Mobile Interfaces

The Patterns
In the introduction, we talked about the need to structure content in a vertical col‐
umn for maximum flexibility. The Vertical Stack pattern goes into more detail.

A mobile application needs a way to show its top-level navigational structure. A per‐
sistent toolbar across the top or bottom of each app screen is one standard way to
organize a mobile interface; tabs and full-screen menus are two other common ways.
Less obvious, yet worth mentioning, are the Filmstrip and Touch Tools patterns.

Mobile web screens often use the Bottom Navigation pattern for their global menus,
preferring to use valuable top-of-screen space for more immediately relevant content.

Lists are everywhere in the mobile world—lists of apps, pictures, messages, contacts,
actions, settings, everything! Both web screens and applications should present well-
designed lists that look good and are usable. Ordinary text lists are often adequate,
and Carousel and Thumbnail Grid work beautifully in mobile designs. (See Chapter 7
for those patterns and more discussion of list design.) Sometimes, an Infinite List
suits the needs of mobile designs. Following are the other patterns we look at in this
chapter:

• Collections and Cards
• Infinite List
• Generous Borders
• Loading or Progress Indicators
• Richly Connected Apps

The Patterns | 305

Vertical Stack

What

Order the mobile screen’s content in a vertical column, as shown in Figure 6-6, with
little or no use of side-by-side elements. Text elements line-wrap, and the screen
scrolls down past the bottom of most device screens.

Figure 6-6. Vertical Stack

306 | Chapter 6: Mobile Interfaces

Use when

Most mobile web screens that must work on devices of different sizes should use this
pattern, especially if they contain text-based content and forms. (Immersive content
such as a full-screen video or games won’t generally use this because it doesn’t usually
scroll like a text-based screen does.)

When going from one screen to another is expensive—as is the case with web
screens, which take time to download—this pattern is applicable. On the other hand,
an app that resides on the device can go from screen to screen almost instantly
because the content doesn’t need to be downloaded. For these, it makes more sense to
structure the content into single screen so that the user never needs to scroll vertically
—they can just tap or swipe. But vertical scrolling of a long screen is preferable to
interminable waits for downloads.

Why

Devices come in different widths. You can’t always anticipate what the actual width in
pixels will be, unless you detect the screen width at runtime or build apps for particu‐
lar devices. (You can create optimized designs for single devices or standard device-
specific widths, but not everyone has the resources to do so.)

A fixed-width design that’s too big for the physical device can scroll sideways or be
zoomed, but these designs are never as usable as those that let the user simply scroll
down.

Font sizes can also change, unbeknownst to you. A Vertical Stack with line-wrapped
text elements will adjust gracefully when this happens.

How

Lay out the screen’s content in a scrolling vertical column. Put the most important
items on top and lesser important items farther down so that most users can see the
essential material.

Useful content—from the user’s perspective, that is—should show up in the first 100
pixels (or less) of the Vertical Stack. This top part of the screen is precious real estate.
Don’t waste it with too-tall logos, ads, or endless toolbars all stacked up into a “layer
cake” that pushes all the useful content off the bottom of the screen. That annoys
users to no end.

Put form labels above their controls, not next to them, to save horizontal space. You
will need all the space you can get to show text fields and choice controls with ade‐
quate width.

The Patterns | 307

Put buttons side by side only if you’re really sure their total width will never be wider
than the visible screen. If the buttons contain long text that might be subject to locali‐
zation or font enlargements, forget it.

Thumbnail images can fit beside text fairly easily, and it’s common to do this in lists
of articles, contacts, books, and so on—see the Collections and Cards pattern. Make
sure the design degrades well when the screen width is reduced to 128 pixels (or
whatever the realistic minimum happens to be when you create your design).

Examples

The sites for ESPN, the Washington Post, and REI (Figure 6-7) demonstrate three
styles of using a Vertical Stack. ESPN places only the most immediately relevant con‐
tent on the home screen, preferring to put the rest behind menu items on a strip at
the top of the screen. The Washington Post puts it all out there; the stack shown in the
figure is just a small fragment of the entire screen! REI simply shows a menu of all the
available places and ways to shop, with a teaser, on its home screen.

Figure 6-7. Vertical Stack on the mobile sites for ESPN, the Washington Post, and REI

308 | Chapter 6: Mobile Interfaces

Salon.com (Figure 6-8) features a vertical stack layout for its mobile web and mobile
applications. This allows for flexibility in the amount of content it is able to show and
makes it easy for a user to scroll the new articles with their thumb, making it possible
to browse the content using only one hand.

Figure 6-8. Salon.com

The Patterns | 309

http://Salon.com
http://Salon.com

Filmstrip

What

Allow users to navigate by swiping back and forth to view content one screen at a
time (Figure 6-9).

Figure 6-9. Filmstrip

Use when

You have screens of content that are conceptually parallel, such as the weather in dif‐
ferent cities or the scores in different sports. Users won’t mind swiping through these
screens, going through several before reaching the one they’re looking for, because
they are all potentially interesting.

This pattern can sometimes be a viable alternative to other navigation schemes for
mobile apps, such as toolbars, tabs, or full-screen menus.

Why

Each item to be displayed can occupy the entire screen; no space needs to be used for
tabs or other navigation.

Because the user can’t jump straight to a desired screen—they must swipe through
others to get there—this pattern encourages browsing and serendipity.

Swiping seems to be a very satisfying gesture for some users.

310 | Chapter 6: Mobile Interfaces

A disadvantage of this pattern is that it doesn’t scale very well; you can’t use too many
top-level screens, or users might become irritated at being forced to swipe too many
times to get to a desired screen. Another disadvantage is lack of transparency. A new
user, just seeing your app for the first time, cannot easily see that swiping is how they
get from one screen to another.

How

Essentially, a Filmstrip is like a carousel for a mobile application’s main screens. One
difference is that a carousel usually shows metadata—information about the item or
screen—and context, such as fragments of the previous and next screens. Mobile apps
that use Filmstrip as a top-level organizing device don’t generally do that.

If you want to give the user a clue that multiple top-level screens exist, and that they
can swipe between them, use a dot indicator like the Weather app uses at the bottom
of the screen.

Examples

The BBC News iPhone app (Figure 6-10) structures its main screens as a Filmstrip.
The user can swipe or tap back and forth between the Top Stories, My News, Popular,
Video, and Live.

Figure 6-10. BBC News

The Patterns | 311

The iPhone’s built-in Weather app (Figure 6-11) uses a Filmstrip to show the weather
in the various geographic locations that the user chooses.

Figure 6-11. iPhone Weather app

312 | Chapter 6: Mobile Interfaces

Touch Tools

What

Show certain tools in response to a touch or key press. Functions appear in small,
dynamic overlays atop the content.

Netflix (Figure 6-12) is a digital product that allows viewers to watch video content.
The intent is that the user will be mostly focused on the video content but might want
to pause, turn captioning on and off, rewind or fast forward the video from time to
time. The user can invoke the functionality by tapping the screen. The options go
away again after about five seconds of nonuse.

Figure 6-12. Touch Tools on the Netflix mobile application

Use when

You are designing an immersive or full-screen experience, such as videos, photos,
games, maps, or books. To manage that experience, the user will sometimes need
controls—navigation tools, media player tools, information about the content, and so
forth. The tools require significant space but are needed only sometimes.

Why

The content is allowed to dominate the experience most of the time. The user isn’t
distracted by controls taking space and attention away from the content. Remember

The Patterns | 313

that in a mobile context, space and attention are even more precious resources than
usual.

The user controls the experience by choosing when to show the tools.

How

Show the unadorned content using the full screen. When the user touches the device’s
screen or presses a particular key or softkey, show the tools.

Many apps only show Touch Tools when the user touches a certain region of the
screen. This way, the user doesn’t accidentally bring up the tools just by ordinary han‐
dling of the device.

Show the tools in a small, translucent area that appears to float above the content. The
translucency makes the tools look ephemeral (which they are).

Remove the tools after a few seconds of nonuse, or immediately if the user taps the
screen outside the bounds of the tools. It can be annoying to wait for the tools to go
away by themselves.

Examples

The video player on the iPhone shows Touch Tools when the user taps the indicated
area of the screen (see Figure 6-13). They disappear after about five seconds of non‐
use.

Figure 6-13. YouTube for iPhone Touch Tools

314 | Chapter 6: Mobile Interfaces

The Apple Notes application (Figure 6-14, left) allows the user to focus on reading the
notes, but upon touching the screen, editing tools appear.

Figure 6-14. Apple Notes and Amazon’s Bottom Navigation

The Patterns | 315

Bottom Navigation

What

Place the global navigation at the bottom of the screen. Amazon uses a simple “Bot‐
tom Navigation” system on the global footer of its mobile website (Figure 6-14, right).

Use when

A mobile website needs to show some global navigation links, but these links repre‐
sent low-priority paths through the interface for many users.

Your highest priority on the site’s front screen is to show fresh, interesting content.

Why

The top of a mobile home screen is precious real estate. You should generally put only
the two or three most important navigation links there—if any at all—and devote the
rest of the front screen to content that will interest most users.

A user looking for navigational links can easily scroll to the bottom of a screen, even
when those links are far below “the fold.”

How

Create a set of vertically arranged menu items on the bottom of the screen. Make
them easy to tap with a finger on touch screens—stretch them across the full width of
the mobile screen, if necessary, and make the text large and readable.

In a mobile application, you probably aren’t trying to fit an entire site map into the
footer—you have room for only a few well-chosen links. But the idea is similar:
instead of taking up too much top-of-screen space for navigation, you can push it to
the bottom of the screen, where real estate is less valuable.

Examples

NPR puts a footer across the bottom of each of its screens (Figure 6-15, left). It
includes standard navigational links and a text-only version.

REI uses a more web-like simple footer links and a large button with its 800 number
(Figure 6-15, right) that is a good size for mobile use.

316 | Chapter 6: Mobile Interfaces

Figure 6-15. NPR’s Bottom Navigation and REI’s footer

The Patterns | 317

Collections and Cards

What

Collections are series of thumbnail photos that serve as a list of items from which a
user can choose, as illustrated in Figure 6-16. Cards are similar but they contain con‐
tent and functionality. You will see these used frequently on ecommerce sites, sites
that have video content, and news sites.

Figure 6-16. The Collections and Cards pattern

Use when

You need to show lists of articles, blog entries, videos, applications, or other complex
content. Many or all of these have associated images. You want to invite the user to
click or tap these items and view them.

318 | Chapter 6: Mobile Interfaces

Why

Thumbnail images improve text-only lists because they look appealing, help identify
items, and establish a generous height for the list items.

Reading conditions on mobile devices are rarely ideal. By adding colorful images, you
can improve the visual differentiation among items, which helps people scan and
parse the list quickly.

Many news and blog websites have converged on this design pattern as a way to show
links to their articles. They look more appealing, and more “finished” than similar
sites that list only article titles or text fragments.

How

Place a thumbnail image next to the text of the item. Most sites and apps put the
thumbnail on the left.

In addition to picture thumbnails, you can include other visual markers, such as five-
star ratings or icons representing people’s social presence.

Don’t be afraid to use bright or saturated colors. You probably wouldn’t design so
much visual stimulation in a desktop context, but in a mobile context, it works. Even
if the colors seem garish, don’t worry—small screens can handle strong colors better
than large screens can.

Examples

Many news sites use this pattern to show their articles, and videos and other media fit
this pattern naturally. These help a user scan down a list and pick out items. Jacobin,
NPR and The Atlantic offer examples of this pattern effectively for their feature arti‐
cles, in Figure 6-17.

This pattern is extremely versatile for most contexts. In the example in Figure 6-18,
you will see a variety of apps that show a variation of the thumbnail and text or card
list.

The Patterns | 319

Figure 6-17. Jacobin, NPR, and The Atlantic iPad apps

320 | Chapter 6: Mobile Interfaces

Figure 6-18. Hulu, CNN, Jigsaw and Pinterest iPad apps

The Patterns | 321

Infinite List

What

An Infinite List shows more and more content as the user scrolls to the bottom of a
long list, as demonstrated in Figure 6-19.

Figure 6-19. Infinite scrolling

322 | Chapter 6: Mobile Interfaces

Use when

You need to show long lists of email messages, search results, an archive of articles or
blog posts, or anything else that is effectively “bottomless.”

Users are likely to find desired items near the top, but they sometimes need to search
further.

Why

The initial loading of a screenful or two of items is fast, and the user isn’t forced to
wait for a very long initial screen load before they see anything useful.

Each subsequent loading of a new chunk of items is also fast, and it’s under user con‐
trol—the user decides when (and whether) they need to load more items.

Because the new items are just appended to the current screen, the user never needs
to context-shift by going to a new screen to see new items, as they would with pagina‐
ted search results.

How

When the screen or list is initially sent to the mobile device, truncate the list at a rea‐
sonable length. That length will vary greatly with item size, download time, and the
user’s goal—is the user reading everything, or just scanning a large number of items
to find the one they want (as with search results)?

At the bottom of the scrolled screen, put a button that lets the user load and show
more items. Let the user know how many more will be loaded.

Alternatively, you could use no button at all. After the user has loaded and can view
the first chunk of items, silently start loading the next chunk. Append them to the
visible list when they’re ready, and the user has scrolled down to the end of the origi‐
nal list. (This is your clue that the user might want to see more. If the user doesn’t
scroll down, don’t bother getting more items.)

In software engineering, this well-known approach to managing lists of undefined
length is often called lazy loading.

Examples

Several iPhone applications use Infinite List, including Mail, as well as third-party
apps such as Facebook (Figure 6-20, left). The Facebook mobile web, like the full-size
Facebook screen, loads up the first several screens of updates and then lets the user
load more.

The Patterns | 323

Apple’s email application (Figure 6-20, right) offers an endless scroll to accommodate
varying lengths of email a user might have in their inbox.

Figure 6-20. Facebook and Apple iOS email

324 | Chapter 6: Mobile Interfaces

Generous Borders

What

Leave lots of space around tappable UI elements. On devices with touch screens, put
large margins and whitespace around buttons, links, and any other tappable control.

Figure 6-21. Generous Borders

Use when

You need to use buttons with text labels, or a list of items, or ordinary text-based
links—in short, any touch target that isn’t already large on the screen.

Why

Touch targets must be large enough for fingers to tap successfully. In particular, they
need to be tall enough, which is challenging for buttons and links that consist only of
text.

How

Surround each touch target with enough inner margin, border, and surrounding
whitespace to make a sufficiently large hit target for fingertips.

One trick is to make the whitespace immediately surrounding a target tappable. The
button will look the same size, thus fitting into your visual design as expected, but
you gain a few pixels of sensitivity in each direction around the button. Exactly how
big to make these targets is a very good question. Ideally, you want a size that ends up
large enough on the physical device to be manipulated by most people—many of
whom will have large fingers. Some others will not have great control over their fin‐
gertips. Yet others will be using their mobile devices in challenging conditions: bad
light, moving vehicles, little attention to spare.

The Patterns | 325

So ultimately, how big should you make your targets? It depends on what device and
resolution you are designing for, but here are a couple of dimensions for reference:

• 48 × 48 dp (9 mm) for Android devices
• 44 pt × 44 pt for Apple iOS

Examples

Autodesk’s Sketchbook application (Figure 6-22, left) for the iPhone reliably puts
plenty of margin space around its touch targets. The entire application has a relaxed,
uncramped feeling.

The Zoom mobile app (Figure 6-22, right) has large buttons that make it easy for a
finger to hit the touch target.

Figure 6-22. Autodesk’s Sketchbook and Zoom app

326 | Chapter 6: Mobile Interfaces

The Instacart app (Figure 6-23) is similar, though its visual styling is quite different.
The buttons for key actions—“add item,” navigation elements—are distinctive.

Figure 6-23. Instacart

The Patterns | 327

Loading or Progress Indicators

What

Use microinteraction (a single task-based event with a device) animations used to
inform the user that something is going to happen but it just hasn’t appeared on the
screen yet. You can use these to indicate an unspecified or estimated amount of time
it will take for the screen to load or for a task to be completed and show on the
screen. Done well, they can make a slow download bearable and even be a way to cre‐
ate a brand-building moment.

Use when

The user has to wait for content to load, especially in a screen that changes dynami‐
cally in response to user interaction.

Why

Loading new content can be slow and erratic over mobile connections. You should
always show as much of a partially loaded screen as you can so that the user can
actually see something useful.

In general, progress indicators make loading times appear faster to a user. They are
reassured that something is actually happening in response to a gesture, especially
when that indicator appears where the gesture occurred.

How

Show as much of the screen as can be loaded quickly, but if part of it takes a long
time, such as a graphic or video, show a lightweight animated progress indicator
where the graphic will appear. (The mobile platform might supply a default
indicator.)

When the user initiates an action that causes part of the screen to be reloaded—or
loads a whole new screen—show a progress indicator in situ on the screen.

328 | Chapter 6: Mobile Interfaces

Examples

Trulia (Figure 6-24, left) is a real estate application that uses an infinite loop on the
top of the screen to indicate the screen is loading, and image placeholders to let the
user know something is about to happen.

SoundHound (Figure 6-24, right) is an app that allows a user to “listen” to music to
search for the name and artist of a song. After a user taps the button to listen to a
song, a beautiful and simple animation starts to indicate that the system is listening
and searching for a match.

Figure 6-24. The Trulia loading screen and SoundHound’s animated progress indicator

The Patterns | 329

When an iPhone installs a new app, a miniature circular progress indicator appears
over the app’s icon to show how far it’s gotten with the download (see Figure 6-25).
It’s cute, and its meaning is unmistakable.

Figure 6-25. iPhone’s app installation progress indicator

330 | Chapter 6: Mobile Interfaces

Richly Connected Apps

What

Use the features that come for “free” with your mobile device. Some examples of these
are direct links to other apps, such as the camera, the phone dialer, map, or browser;
and prefilling credit card passwords and address with data from the user’s current
context.

Use when

The mobile app shows data that is “connectable” in obvious ways, such as phone
numbers and hyperlinks.

More subtly, your app can offer ways to capture images (via the device camera),
sound, or video. It might even be aware of social networking conventions, such as
Facebook or Twitter usernames. In all cases, your app might direct the user to
another app to perform these device-based functions.

Why

A user can see only one mobile app at a time, even when multiple apps are being used
at once, and it’s annoying to switch between them by hand.

Mobile devices often have enough context and available functionality to offer intelli‐
gent paths between apps.

As of this writing, mobile devices have no good way to arbitrarily shuffle small
amounts of information from one application to another. On the desktop, you can
easily type, or use copy and paste, or even use the filesystem. You don’t have those
options on a mobile platform. So, you need to support moving that data
automatically.

How

In your app, keep track of data that might be closely associated with other apps or
services. When the user taps or selects that data, or uses special affordances that you
provide, open another app and handle the data there.

Here are some examples. Consider all the ways that data in your app can connect
directly to other mobile functions:

• Phone numbers connect to the dialer
• Addresses connect to the map, or to the contacts app
• Dates connect to the calendar

The Patterns | 331

• Email addresses connect to the email app
• Hyperlinks connect to the browser
• Music and videos connect to media players

In addition, you might be able to do such things as take a picture, or use a map,
entirely within the context of your application.

You can do some of this on a desktop, but the walled-garden nature of many mobile
devices makes it easier to launch the “right” app for certain kinds of data. You don’t
need to decide which email reader to use, or which address or contact management
system, and so on. Plus, many mobile devices supply a phone dialer, a camera, and
geographic location services.

Examples

Citizen (Figure 6-26) is a live information reporting application that uses geolocation
data to keep the user informed about crime and other activity that is going on around
them. When a user wants to contribute information, the app uses the user’s geoloca‐
tion data and invokes the phone’s camera or video recording functionality so that the
user can post it directly from the app.

Figure 6-26. Citizen

332 | Chapter 6: Mobile Interfaces

Simple (Figure 6-27) is a banking application. To deposit a check, the camera func‐
tionality is invoked and the checks information is read by the application.

Figure 6-27. Simple’s integration with the camera

The Patterns | 333

Google’s Calendar application (Figure 6-28) integrates with the phone, maps, contact
lists, and email.

Figure 6-28. Google’s Calendar app

Make It Mobile
It isn’t difficult to see that smartphone and tablet interfaces are not afterthoughts but
critical to the success of digital products. The mobile web or application you create
might be the primary way a user experiences your brand, so give special attention to
the small details, microinteractions, usability, and the mobile context of use.

334 | Chapter 6: Mobile Interfaces

Chapter 7

Lists of Things

This chapter covers only one topic: how to display lists of items in an interactive set‐
ting. Just lists.

Why do lists merit their own chapter, you may ask?

Lists are everywhere in screen design. Consider the many types of items that we show
in lists: articles, screens, photos, videos, maps, books, games, movies, TV shows,
songs, products, email messages, blog entries, status updates, forum posts, comments,
search results, people, events, files, documents, apps, links, URLs, tools, modes, and
actions. And that list of lists goes on and on.

Practically every interface or website ever designed includes lists. This chapter will
help you think about them logically and clearly, understand different design aspects,
and make good trade-offs when designing interfaces that use lists.

Use Cases for Lists
Before jumping into a design, it’s useful to analyze the use cases for a list. What will
people need to do with the list? Consider which of these scenarios apply:

Getting an overview
What impression will someone get from the list as a whole? In some cases, a user
should be able to skim down the list and understand what it’s about. Often that
requires more than just words; it might require images or carefulvisual organiza‐
tion to convey that impression.

Browsing item by item
Will the user peruse items randomly or in order? Do they need to click or tap
items to open them? If so, it should be easy to go back to the list and find another
item, or move directly to the next one.

335

Searching for a specific item
Is the user looking for something in particular? They should be able to find it
quickly, with a minimum of clicks, scrolling, and back-and-forth.

Sorting and filtering
If someone is looking for an item or group of items with a specific characteristic
(e.g., “anything with a date between X and Y”) or is looking for general insight
into a set of data, sorting and filtering functions might help.

Rearranging, adding, deleting, or recategorizing items
Does the user have the need to rearrange the items? Does the user own the list
and the items within it? Most apps and sites that show personal collections per‐
mit direct manipulation of those lists so that the user can drag items around into
a desired order or grouping scheme. They should also be able to select multiple
items at a time for moving, editing, or deleting; a design should either use the
platform standards for multiple selection (e.g., Shift-select or tapping in an edit
mode), or supply checkboxes beside each item to permit the user to select an
arbitrary subset.

Back to Information Architecture
We discussed information architecture in Chapter 2—organizing information, inde‐
pendent of its visual representation. Let’s return to it for a minute. If you have a list of
things to show on a screen, what are the salient nonvisual characteristics of that list?

• Length
— How long is the list? Can it fit in the space you’ve designed for it?
— Could the list sometimes be “bottomless”? For example, web search results

often constitute such a long list that the user will never reach the end; likewise
for items taken from a very large and deep archive.

• Order
— Does the list have a natural order, such as alphabetical or by time? (See Chap‐

ter 2 for a more in-depth discussion of ways to organize data and content.)
— Would it make sense for a user to change the sorting order of the list? If so,

what would the user sort on?
— If you choose to put a list into an order, would it actually make more sense as

a grouping scheme, or vice versa? As an example, think about a blog archive:
the articles are naturally ordered by time, and most blogs categorize them by
month and year, rather than offering a flat ordered list. Someone looking for a
particular article might remember that “it was before article X but after article
Y,” but not remember exactly which month it was published. A monthly

336 | Chapter 7: Lists of Things

grouping thus makes it hard to find that article; a time-ordered flat list of titles
might work better.

• Grouping
— Do the items come in categories? Is it a natural categorization that users will

immediately understand? If not, how can you explain it, either verbally or
visually?

— Do these categories come in larger categories? More broadly, do the items fit
into a multilevel hierarchy, such as files in a filesystem?

— Are there several potential categorizations? Would they fit different use cases
or user personas? And can users create their own categories for their own
purposes?

• Item types
— What are the items like? Are they simple, or are they rich and complex? Are

they just stand-ins for larger things, such as headlines for articles or thumb‐
nails for video clips?

— Are the items in a list very different from each other (e.g., some are simple
and some are complex)? Or are they homogeneous?

— Does each item have an image or picture associated with it?
— Does each item have a strict field-like structure? Would it help the user to

know that structure, or possibly even sort the list based on different fields?
(Email messages typically have a strict and sortable structure—timestamp,
from field, subject, etc.—and this structure is shown in lists of messages.)

• Interaction
— Should you show the whole item at once in the list, or can you just show a

representation of the item (such as its name or the first few sentences) and
hide the rest?

— What is the user supposed to do with those items? Should they be looked at?
Should they be selected for inspection, or for performing tasks on them? Or
are they links or buttons to be clicked on?

— Does it make sense for the user to select multiple items at a time?
• Dynamic behavior

— How long does it take to load the entire list? Can it be more or less immediate,
or will there be a noticeable delay as the list is put together somewhere and
finally shown to the user?

— Will the list change on the fly? Should you show the updates as they happen?
Does this mean inserting new items at the top of the list automatically?

Back to Information Architecture | 337

The answers to these questions might suggest a variety of design solutions to you. Of
course, a solution should also take into account the type of content (blogs should look
different from, say, contact lists), the surrounding screen layout, and implementation
constraints.

What Are You Trying to Show?
The interaction questions listed in the preceding section set the tone for almost all
other decisions. For instance, a fully interactive list—multiple selection, drag-and-
drop, editing items, and so on—tends to dominate the interface. You might be build‐
ing a photo management app, an email client, or some other full-fledged application
that people use to manage and enjoy the content that they own.

In this and other types of interfaces, a common requirement is to show only item
names or thumbnails in a list—just a representation of each item—and then display
the whole item when the user selects one from the list. There are at least three ways to
do this.

“When the user selects an item from a list, where should I show the
details of that item?”
Two-Panel Selector or Split View shows the item details right next to the list. It sup‐
ports the overview and browsing use cases quite well because everything’s visible at
once; the surrounding screen stays the same, so there’s no awkward context switch or
screen reload.

One-Window Drilldown replaces the list’s space with the item details. This is often
used for small spaces that cannot accommodate a Two-Panel Selector, such as mobile
screens or small module panels. It does lead the user to “pogo-stick” between the list
screen and the item screen, though, so browsing and searching are not so easy.

List Inlay shows the item details embedded in the list itself. The list expands to show
the detail when the user clicks or taps. This pattern supports the overview and brows‐
ing use cases, too—though an overview is more difficult if lots of items are open.

Now let’s shift our attention to the items that appear on a list. How much detail
should you show with each item, assuming that the user will click or tap through to
see the whole thing? Again, you have three main use cases to serve: get a quick over‐
view, browse the list, and find items of interest. For really focused tasks, such as find‐
ing a person’s phone number in a long contact list, all that’s needed is the item name.
But for a broader, more browsing-oriented experience—news articles on a web
screen, for instance—more information makes an item more interesting (up to a
point, anyway). And if you have visuals associated with each item you should show
the thumbnails.

338 | Chapter 7: Lists of Things

“How can I show a list of items that have heavy visuals?”
Cards consolidate images, text and functionality into one user interface (UI) element.
See the Grid of Equals (Chapter 4) for the basis of this pattern.

Thumbnail Grid is a common pattern for pictorial objects. A 2D grid of small pictures
is visually powerful; it dominates the screen and draws attention. Text data is often
shown with the thumbnails, but it tends to be small and less important than the pic‐
tures. Again, see the Grid of Equals pattern for a generalization.

Carousel is an alternative to Thumbnail Grid that can use less space on the screen. It
is strictly linear, not 2D, and the user must actively scroll through it to see more than
a few objects. Depending on its design, a Carousel implementation might actually
give you more space to show the selected or center object than a Thumbnail Grid.

Very long lists can be difficult to design. Certainly, there are technical challenges
around loading times and screen length, but interaction design might be even harder
—how does a user browse and move through such a list? How can they find some‐
thing specific, especially if a text search doesn’t behave as desired? The following tech‐
niques and patterns apply to all the previously listed ways to show a list and its items
(except maybe a Carousel, which has tighter constraints):

“How can I manage a very long list?”
Pagination lets you load the list in sections, putting the onus on the user to load those
sections as needed. This is, of course, quite common in websites—it’s easy to design
and implement. Pagination is most useful when the user is likely to find the desired
item(s) in the first screen given that many people won’t bother going to subsequent
screens anyway. You could also resort to Pagination when loading the entire list will
result in a ridiculously long screen or take a ridiculously long time. A good Pagina‐
tion control shows the user how many screens of items there are as well as letting a
user jump among those screens.

Common in mobile designs, the Infinite List (Chapter 6) is a single-screen alternative
to Pagination. The first section of a long list gets loaded, and at the bottom the user
finds a button that loads and appends the next section. The user stays on one screen.
This pattern is useful when you don’t actually know how long the list will be, or when
it’s bottomless.

A variant on Infinite List has the list automatically loading itself as the user scrolls
down. See the Continuous Scrolling pattern.

When a very long alphabetized list or range of dates is kept in a scrolled box, consider
using an Alpha/Numeric Scroller. This device shows the alphabet arrayed along the
scroll bar itself; the user can then jump directly to a desired letter.

What Are You Trying to Show? | 339

Direct searching via a Find field may be critical for helping your users to find specific
items. Also, filtering a list—screening out entire classes of items that don’t meet cer‐
tain criteria—can help shorten a list to a manageable size.

So far, this section has talked mostly about flat lists: those that have no categories,
containment, or hierarchy. However a list might be rendered, you might still want to
break it up into categories for clarity.

“How can I show a list that’s organized into categories or
hierarchies?”
Titled Sections work well for a single level of containment. Just separate the list into
sections with titles, and perhaps allow the user to sort the list within a single section
so as not to disrupt the categorization. If you have only a few sections, try an Accor‐
dion—this lets the user close list sections that they don’t need.

For two or more levels of hierarchy, basic trees are the standby solution. These are
normally presented with indented hierarchy levels, and with icons such as pluses and
minuses (commonly found on Windows) or rotating triangles. The levels can be
closed and opened by the users or automatically by the interface as needed. Many UI
toolkits offer tree implementations.

Next, we will take a deeper dive into how the solutions for showing lists actually
appear on the web and in mobile UIs.

The Patterns
Now that you have identified what the purpose is for the list you are showing, let’s
take a look at when and how to use them.

• Two-Panel Selector or Split View
• One-Window Drilldown
• List Inlay
• Cards
• Thumbnail Grid
• Carousel
• Pagination
• Jump to Item
• Alpha/Numeric Scroller
• New-Item Row

340 | Chapter 7: Lists of Things

Two-Panel Selector or Split View

What

Also known as a Split View, this consists of two side-by-side panels on the interface.
In the first one, show a list of items that the user can select at will; in the second one,
show the content of the selected item, as demonstrated in Figure 7-1, which shows
the Spotify website.

Figure 7-1. Spotify

Use when

You have a list of items to show. Each item has interesting content associated with it,
such as the text of an email message, a long article, a full-sized image, contained items
(if the list is a set of categories or folders), or details about a file’s size or date.

You want the user to see the overall structure of the list and keep that list in view all
the time, but you also want them to be able to browse through the items easily and
quickly. People won’t need to see the details or content of more than one item at a
time.

Physically, the display you’re working with is large enough to show two separate pan‐
els at once. Very small smartphone displays cannot cope with this pattern, but many
larger mobile devices like tablets can.

The Patterns | 341

Why

This is a learned convention, but it’s an extremely common and powerful one. People
quickly learn that they’re supposed to select an item in one panel to see its contents in
the other. They might learn it from their email clients or from websites; whatever the
case, they apply the concept to other applications that look similar.

When both panels are visible side by side, users can quickly shift their attention back
and forth, looking at the overall structure of the list (“How many more unread email
messages do I have?”), and now at an object’s details (“What does this email say?”).
This tight integration has several advantages over other physical structures, such as
two separate windows or One-Window Drilldown:

• It reduces physical effort. The user’s eyes don’t need to travel a long distance
between the panels, and they can change the selection with a single mouse click
or key press rather than first navigating between windows or screens (which can
take an extra mouse click).

• It reduces visual cognitive load. When a window pops to the top, or when a
screen’s contents are completely changed (as happens with One-Window Drill‐
down), the user suddenly must pay more attention to what their now looking at;
when the window stays mostly stable, as in a Two-Panel Selector, the user can
focus on the smaller area that did change. There is no major “context switch” on
the screen.

• It reduces the user’s memory burden. Think about the email example again: when
the user is looking at just the text of an email message, there’s nothing on-screen
to remind them of where that message is in the context of their inbox. If they
want to know, they must remember, or navigate back to the list. But if the list is
already on-screen, the user merely has to look, not remember. The list thus serves
as a “You are here” signpost.

• It’s faster than loading a new screen for each item, as can happen with One-
Window Drilldown.

342 | Chapter 7: Lists of Things

How

Place the selectable list on the top or left panel, and the details panel below it or to its
right, as shown in Figure 7-2. This takes advantage of the visual flow that most users
who read left-to-right languages will expect (so try reversing it for right-to-left lan‐
guage readers).

When the user selects an item, immediately show its contents or details in the second
panel. Selection should be done with a single click. But while you’re at it, give the user
a way to change their selection from the keyboard, particularly with the arrow keys—
this helps reduce both the physical effort and the time required for browsing, and
contributes to keyboard-only usability.

Figure 7-2. Apple iOS News

Make the selected item visually obvious. Most toolkits have a particular way of show‐
ing selection (e.g., reversing the foreground and background of the selected list item).
If that doesn’t look good, or if you’re not using a toolkit with this feature, try to make
the selected item a different color and brightness than the unselected ones—that
helps it stand out.

What should the selectable list look like? It depends—on the inherent structure of the
content, or perhaps on the task to be performed. For instance, most filesystem

The Patterns | 343

viewers show the directory hierarchy, since that’s how filesystems are structured. Ani‐
mation and video editing software use interactive timelines. A graphical user inter‐
face (GUI) builder may simply use the layout canvas itself; selected objects on it then
show their properties in a property editor next to the canvas.

A Two-Panel Selector has identical semantics to tabs: one area for the selectors, and
one area next to it for the content of the selected thing. Likewise, a List Inlay is like an
Accordion, and One-Window Drilldown is like a Menu Screen.

Examples

Many email clients (Figure 7-3) use this pattern to show a list of email messages next
to the currently selected message. Such listings benefit from being nearly as wide as
the entire window, so it makes sense to put the listing on top of the second panel, not
to its left.

Figure 7-3. Google Mail

344 | Chapter 7: Lists of Things

Apple Photos (Figure 7-4) lists the various image folders and categories in its Two-
Panel Selector. The result is a second list, of images. When the user selects an image,
the whole window is replaced; see One-Window Drilldown.

Figure 7-4. Apple Photos

The Patterns | 345

One-Window Drilldown

What

Show a list of items in a single screen or window. When the user selects an item from
the list, show the details or contents of that item in the screen, replacing the list, as in
the example in Figure 7-5.

Figure 7-5. Mac Mail on iPhone

Use when

You are designing for mobile applications or websites. You have a list of items to
show. Each item has interesting content associated with it, such as the text of an email
message, a long article, a full-size image, or details about a file’s size or date.

346 | Chapter 7: Lists of Things

Alternatively, the list items and contents might just be large. You might need the
entire screen or window to show the list, and again to show the contents of an item.
Online forums tend to work this way, requiring the whole width of the screen to list
conversation topics and a separate scrolled screen to show the conversations
themselves.

Why

In a very constrained space, this might be the only reasonable option for presenting a
list and item details. It gives each view the entire available space to “spread out” on
the screen.

The shallow hierarchy of the one window drilldown pattern helps your user to not get
too deep in the UI and makes it easy to return to the list where they started.

How

Create the list using whatever layout or format you find best—simple text names,
cards, rows, trees, or outlines all work fine with Thumbnail Grid, as do other formats.
Vertically scroll it if necessary, to fit it into the available space.

When the user clicks, taps, or otherwise selects one of the list items, replace the list
display with a display of the item details or contents. On it, place a Back or Cancel
button that brings the user back to the list screen (unless the platform supplies hard‐
ware buttons for such).

The item screen can offer additional navigational possibilities, such as drilling down
further into the item details, stepping down into an item contained within that item
(as in a hierarchy), or going “sideways” to the previous or next item in the list (as dis‐
cussed in the next paragraph). In each case, replace the previous screen with the new
one, and make sure the user can easily step back to the previous screen.

One disadvantage of this pattern is that to go from item to item, the user must “pogo-
stick” between the list screen and the item screen. It takes a lot of clicks or taps to see
more than a few items, and the user certainly can’t flick between them quickly (as
with Two-Panel Selector) or compare them easily (as with List Inlay). You can mitigate
this problem by using Back and Next links to connect the user directly to the previous
and next items in the list.

The Patterns | 347

Examples

Examples abound in mobile design. Contrast the mobile version of a mail client
shown in Figure 7-5 with its desktop counterpart. For instance, the One-Window
Drilldown approach requires more text to be shown in the list, so the user has enough
context to identify messages and triage them.

In the example in Figure 7-6 a reader can scroll through all the comments on a post
in Reddit, and by clicking the back arrow in the header, easily return back to the
Topic to view other threads.

Figure 7-6. Reddit

348 | Chapter 7: Lists of Things

List Inlay

What

Show a list of items as rows in a column. When the user selects an item, open that
item’s details in place, within the list itself (Figure 7-7). Allow items to be opened and
closed independently of each other.

Figure 7-7. Kayak’s expanding list items

The Patterns | 349

Use when

You have a list of items to show. Each item has interesting content associated with it,
such as the text of an email message, a long article, a full-size image, or details about a
file’s size or date. The item details don’t take up a large amount of space, but they’re
not so small that you can fit them all in the list itself.

You want the user to see the overall structure of the list and keep that list in view all
the time, but you also want them to browse through the items easily and quickly.
Users might want to see two or more item contents at a time, for comparison.

The list of items has a vertically oriented, columnar structure, rather than a grid.

Why

A List Inlay shows an item’s details within the context of the list itself. The user can
see the surrounding items, which might help in understanding and using the item
contents.

Also, a user can see the details of multiple items at once. This is not possible in Two-
Panel Selector, One-Window Drilldown, rollover windows, or most other ways of dis‐
playing item details. If your use cases call for frequent comparison of two or more
items, this might be the best option.

Because a List Inlay is neatly contained within a vertical column, it can be combined
well with a Two-Panel Selector to present a three-level containment hierarchy. Con‐
sider an email client or RSS reader, for instance—the messages or articles might be
viewed in a List Inlay, whereas the item containers (mailboxes, groupings, filters, etc.)
are shown next to it in a Two-Panel Selector structure.

How

Show list items in a column. When the user clicks one, open the item in place to show
the details of that item. A similar gesture should close the item again.

When an item is opened, enlarge the item’s space downward, pushing the subsequent
items down the screen. Other items do the same when opened. A scrolled area should
be used to contain this ever-changing vertical structure because it could become very
tall indeed!

To close the details panel, use a control that clearly indicates its purpose (e.g., “Close”
or “X”). Some implementations of List Inlay only put that control at the end of the
details panel, but users might need it at the top of the panel if it is long and they don’t
want to move all the way down to the bottom. Put a closing control very near the
original “open” control (or replace one with the other). This at least ensures that the

350 | Chapter 7: Lists of Things

user’s pointer won’t move very far if they want to open an item, glance at it, close it,
and move on.

Use an Animated Transition as the item opens and closes to keep the user oriented
and to focus attention on the newly opened item. If your application permits the user
to edit items, you could use a List Inlay to open an editor instead of item details (or in
addition to them).

A list that uses List Inlay works the same way as an Accordion: everything lies in a
single column, with panels opening and closing in situ within it. Likewise, a Two-
Panel Selector works like a set of tabs, and One-Window Drilldown is like a Menu
Screen.

Examples

Apple iOS Voice Memos (Figure 7-8) uses a List Inlay to hide functionality and only
shows the playback and recording controls when a user taps on the recording in the
list.

Figure 7-8. Apple iOS Voice Memos

The Patterns | 351

The Transit app (Figure 7-9) demonstrates a unique hybrid use of a List Inlay behav‐
ior combined with a modal window. When a user sees routes nearest them, they can
tap the route and the list expands not only to see the times the next bus or train
arrives, but it also reveals the specific stops they can expect along the route.

Figure 7-9. Transit

Further reading

Bill Scott and Theresa Neil identified this technique in their book, Designing Web
Interfaces (O’Reilly, 2009). List Inlay is one of a set of inlay techniques that includes
Dialog Inlays and Detail Inlays.

352 | Chapter 7: Lists of Things

http://oreilly.com/catalog/9780596516253
http://oreilly.com/catalog/9780596516253

Cards

What

Cards are one of the most popular and flexible UI components in use. Cards are self-
contained components that have images, text, and sometimes actions. They were
given their name because they resemble playing cards. You can find examples of these
nifty components in newer websites and mobile applications that were designed to be
responsive (resizable) and use popular UI component libraries. Pinterest’s use of
cards is shown in Figure 7-10.

Figure 7-10. Pinterest website and mobile app

Use when

You are showing a list of heterogeneous items and they will all have the same behav‐
iors associated with them. For example, all of the items will contain an image, some
text, a way to “favorite” or share the item, and a link to a detail screen.

You need to show a collection of items, but each item might differ in size and/or
aspect ratio.

Why

Cards are used frequently in mobile and web design, so a user will likely have seen
this UI convention before. Cards allow a great deal of flexibility in the layout or size
of the viewport (screen type) your user will be viewing them on.

The Patterns | 353

How

Think about the things you want a user to do with the list of items you are showing.
What are their commonalities? Do they all have a picture, a title, and a short descrip‐
tion? Perhaps they will show a rating? What do you want the user to do? Do you want
them to link to a detail screen? Add the item to a cart? Share the item to social media?
Will all of the items do the same thing? If so, a card will be likely be the best way to
show your list.

A good practice when designing is to take the item with the most or longest amount
of content and mock it up. Do the same for the one with the least or smallest amount
of content. Tweak your layouts until your design looks good and the information is
readable and clear at both sizes.

Consider which actions will be icons and which will be text links. Use real examples
of the photos you will be using to determine the best orientation (portrait or land‐
scape) that works for the type of content you will be showing.

Examples

Airbnb (Figure 7-11) uses cards all over its website and mobile application to display
homes and experiences listings. Using this style for its listings ensures a consistent
look and feel and also offers a visually pleasing way to view the information without
giving more visual weight to one listing over another.

Figure 7-11. Airbnb website and mobile App

354 | Chapter 7: Lists of Things

Uber Eats (Figure 7-12) uses cards without a border to show a photo, the restaurant
name, and user ratings.

Figure 7-12. Uber Eats search results

Further reading

For more information on cards, check out the following:

• https://material.io/design/components/cards.html
• https://getbootstrap.com/docs/4.0/components/card

The Patterns | 355

https://material.io/design/components/cards.html
https://getbootstrap.com/docs/4.0/components/card

Thumbnail Grid

What

Arrange a list of visual items into a “small multiples” grid of photos, as illustrated in
Figure 7-13.

Figure 7-13. Google Photos app

356 | Chapter 7: Lists of Things

Use when

The list items have small visual representations that uniquely identify them: images,
logos, screen captures, reduced photos, and so forth. These tend to be similar in size
and style. The list can be long, and it can be divided into Titled Sections.

You want to show a little bit of metadata (information about the item) with each one,
such as its name and date, but you don’t need to show a lot of that—the picture
should take up most of the space devoted to the item.

Users will want an overview of the entire list, and they might need to scan it quickly
to find a particular item of interest. Users might also need to select one or more items
at a time for moving, deleting, or viewing.

Why

A Thumbnail Grid is a dense, attractive presentation of large numbers of items. A spe‐
cialized instance of Grid of Equals, this pattern creates a visual hierarchy that shows
the list items as peers, and a strong grid tends to draw the eye to that part of the
screen.

It might be easier to show the list items in text form, but sometimes pictures can be
recognized and differentiated more easily than text.

Thumbnails that are roughly square make easy targets for fingertips (on touch
screens) and for indirect pointing devices, as well. This pattern works well on mobile
and tablet screens.

How

Scale the thumbnails so that they’re the same size, to keep the grid tidy. Place the text
metadata close to the thumbnail, but in small print in order to maintain the thumb‐
nail visual prominence.

Some Thumbnail Grids look much nicer when the thumbnails all have similar width
and height. If you’re working with graphics that come in different sizes or aspect
ratios (the ratio of width to height), or if they’re large, some image processing will
need to be done to construct thumbnails. Try to find a size and aspect ratio that
works reasonably well with all of them, even if some images will be cropped to fit it.
(Reducing image size is easy; cropping appropriately is not. Be careful to preserve the
image’s integrity by choosing the most relevant piece of the image to show when pos‐
sible.)

An exception is if you’re dealing with images whose size and proportion are useful
information to the viewer. For instance, a set of personal photos will contain some
that are in a landscape format and some in a portrait (vertical) format. There’s no

The Patterns | 357

need to crop these to match an idealized thumbnail—the user will want to see which
photos are which!

On the other hand, a thumbnail gallery of products (such as shoes or shirts) should
all have the same height and width, with the products presented consistently within
those photos.

Examples

The macOS Finder (Figure 7-14) displays a variety of thumbnail types for a file direc‐
tory listing. When a file is an image, a shrunken version of that image is shown; for
directories, a simple folder; for files without an available visual, just the file type (e.g.,
“DOC”) over a generic icon. The thumbnail grid is not at all uniform, so it doesn’t
look as clean as the others in this pattern, but the size and style variations communi‐
cate useful information to the user.

Figure 7-14. The macOS Finder

358 | Chapter 7: Lists of Things

The video application, HBO Now, shown in Figure 7-15, features a photo and title of
the movie or TV show in a thumbnail grid.

Figure 7-15. HBO Now search results

The Patterns | 359

Mobile devices need Thumbnail Grid in many contexts: to show applications, fea‐
tures, and images themselves. Note the relative sizes of the thumbnails in Figure 7-16;
the Google Images and iPhone home screen examples are just big enough to be
touched easily by human fingertips.

Figure 7-16. Google Drive

Further reading

For more information on thumbnail lists, check out the following:

• https://developer.apple.com/design/human-interface-guidelines/ios/views/collections
• https://material.io/design/components/image-lists.html#types

360 | Chapter 7: Lists of Things

https://developer.apple.com/design/human-interface-guidelines/ios/views/collections
https://material.io/design/components/image-lists.html#types

Carousel

What

Arrange a list of visually interesting items arranged into a horizontal strip or arc, as
demonstrated in Figure 7-17. This lets the user scroll or swipe the image thumbnails
back and forth to view them.

Figure 7-17. Apple TV carousel

Use when

The list items have visual representations that uniquely identify them: images, logos,
screen captures, reduced photos, and so forth. These tend to be similar in size and
style. The list is flat (i.e., not divided into categories or containers).

You want to show a little bit of metadata (information about the item) with each one,
such as its name and date, but you don’t need to show a lot of that—the picture
should take up most of the space devoted to the item.

Each item is potentially of interest. Users will browse the items casually; they won’t
normally search for a specific item, or need to get an overall look at the entire list at
once. If someone does look for a specific item, they won’t mind moving past many
items before finding the one they’re looking for. You might be able to order the items
with the most interesting ones first, or in chronological order.

The Patterns | 361

You don’t have enough vertical space for a Thumbnail Grid, and you may not have a
lot of horizontal space either, but you need to make this list look interesting and
attractive.

Why

A Carousel offers an engaging interface for browsing visual items, encouraging the
user to inspect the items that are in view and to see what’s next. A user can’t easily
jump to a certain point deep in the list, so they must scroll through everything—this
pattern thus encourages browsing and serendipity.

Carousels are compact vertically, so they can be a better solution than a Thumbnail
Grid for a small space. Horizontally, they can be either compact or spread out.

If a particular implementation focuses attention on a central item or selection, such as
by enlarging it, this pattern delivers “focus plus context”—users get a detailed view of
one item while also seeing the ones immediately around it.

How

First, create thumbnails for each item shown in the Carousel. See the Thumbnail Grid
pattern for issues related to thumbnail size and proportion (keeping in mind that
Carousel imposes even stricter restraints—thumbnails of different sizes or aspect ratio
tend to look more awkward in Carousel than in Thumbnail Grid). Place the text meta‐
data close to the thumbnail, but in small print in order to maintain the thumbnail’s
visual prominence.

In a horizontal scrolling widget, arrange the thumbnails horizontally, either randomly
or in an order that makes obvious sense to the user (such as by date). Show a small
number of them—fewer than 10—and hide the rest on either side. Put large arrows
on the left and right for paging through the Carousel; each click on an arrow should
move more than one item. Animate this scrolling for extra visual interest.

If users will want to move quickly through a long list, as though they are looking for
something in particular, put a scroll bar below the Carouselin addition to the arrows.
You might find that users do this a lot; if so, consider restructuring the list as a more
conventional vertical list, and add a “find” capability.

You can choose to enlarge the central item in the Carousel to draw attention to it. This
gives the Carousel single-selection semantics—the enlarged item is clearly the selected
one, and you can then do dynamic things based on that selection, such as showing
text details about it, or offering video controls if the items are video thumbnails.

Some Carousels are straight; some are curved or circular. These usually use the trick
of a 3D perspective, in which items shrink and are partially obscured as they drift far‐
ther away from the center.

362 | Chapter 7: Lists of Things

In the mobile design space, the Filmstrip pattern is a variant on a Carousel. Only one
item at a time is shown on the small screen, and the user swipes or scrolls back and
forth to see other items.

Examples

Many websites use a basic, linear Carousel for browsing products. Amazon shows
book covers this way (Figure 7-18); note the different amounts of text metadata and
the implications for design. How much information should be provided with each
book? How tightly packed should the book covers be?

Figure 7-18. Amazon Books

The Patterns | 363

Both Amazon and Airbnb (Figure 7-19) provide arrows with their Carousels. This
helps the user understand that there is more content beyond the bounds of the
window.

Figure 7-19. Airbnb

364 | Chapter 7: Lists of Things

Pagination

What

Break up a very long list into pages, and load them one page at a time. Provide con‐
trols to navigate the list, as shown in Figure 7-20.

Figure 7-20. TripAdvisor pagination control

Use when

You’re showing a list that might be very, very long. Most users will either look for a
particular item or browse the top of the list for relevant items (e.g., with search
results); in any case, they won’t really want to see the entire list.

The technology you’re using doesn’t support loading the entire list into a single screen
or scrolled are, for any of the following reasons:

• Loading the entire list would take too much time, and you don’t want to make the
user wait. This might be the case over a slow internet connection or with a slow
backend server.

• Rendering the list would take too much time.
• The list is effectively “bottomless,” and implementing an Infinite List or a contin‐

uously scrolling list (which both handle bottomless lists) isn’t feasible for some
reason.

Why

“Pagination” breaks a list into chunks that a user can easily take in without being
overwhelmed. Furthermore, it puts the choice to see more into the user’s hands—do
you want to load more items from the list, or is this screen of items enough for you?

The Patterns | 365

This pattern also has the advantage of being very common on the web, especially
(though not exclusively) for search results. It’s easy to implement and can come pre‐
built in some systems.

How

First, you’ll need to decide how many items will be in each screen. Base this on the
amount of space each item takes up, the screen sizes users are likely to have (don’t
forget to consider mobile platforms), the time it takes to load or show the items, and
the likelihood that the user will find one or more desired items in the first screen.

This is fairly important: the first screen should be enough! The odds are good that
most users won’t go beyond that first screen of items, so if they can’t find what they’re
looking for on the first screen, they might become discouraged. (If you’re dealing
with a search facility, make sure that it returns high-quality results at the top of that
first screen.)

For screens on which users might linger, such as lists of products or videos, consider
letting the user set the number of items per screen. Some people are irritated by hav‐
ing to screen back and forth to see all the items of interest.

Next, you’ll need to decide how to present the pagination controls. They’re usually
found at the bottom of the screen, but some designs also have them at the top—if a
user really does need to go to a subsequent screen of items, there’s no need to make
them scroll all the way down the screen.

Consider these elements in the pagination control:

• Previous and Next links, with arrows or triangles for emphasis. Disable the Previ‐
ous link when the user is on the first screen and the Next link when the user is on
the last screen (if there is a known last screen).

• A link to the first screen. This should always be visible; remember that the first
screen is supposed to contain the most relevant items.

• A sequence of numbered links to screens. Don’t link the screen the user is on, of
course; instead, show it in a contrasting color and type size to give the user a
“You are here” navigational clue.

• Ellipses to cut out parts of the sequence if there are too many screens to reasona‐
bly show in the control—more than 20, for instance. Again, keep the first screen,
and the last screen if the list isn’t “bottomless.” Keep the screens immediately
before and after the user’s current screen. Elide the rest.

• Optionally, the total number of screens (if known). You could do this in several
ways, such as showing text like “screen 2 out of 45,” or simply showing the last
screen as a numbered link at the end of the pagination control.

366 | Chapter 7: Lists of Things

Examples

Etsy does an excellent job of including all the elements and cues from the preceding
list. Figure 7-21 shows the first screen for a very large number of items.

Figure 7-21. Etsy search results pagination control

Figure 7-22 shows a gallery of examples from all over the web. Notice which ones are
easier to parse visually—Which link is which? Where should I click next?—and
which ones give you sufficient information about your location and the total number
of screens. Also note the size of the click targets. How accurate does the user need to
be with their mouse or fingertip?

Figure 7-22. Counterclockwise from top: The Atlantic, eBay, National Geographic, Target,
Anthropologie

The Patterns | 367

Jump to Item

What

When the user types the name of an item into a list, jump straight to that item, as
depicted in Figure 7-23.

Figure 7-23. Font Book app

Use when

The interface uses a scrolling list, table, drop-down box, combo box, or tree to
present a long list of items. These items are sorted, either alphabetically or numeri‐
cally. The user wants to select one particular item quickly and accurately, and prefera‐
bly with the keyboard.

368 | Chapter 7: Lists of Things

This pattern is often used in file finders, long lists of names, and drop-down boxes for
state or country selection. You can also use it for numbers—such as years or dollar
amounts—or even calendar time, such as months or days of the week.

Why

People aren’t good at scanning down long lists of words or numbers for a particular
item. But computers are. Let them do what they’re good at!

Another nice thing about this technique is that it lets the user keep their hands on the
keyboard. As the user moves through a form or dialog box, they might find it nice to
select from a list simply by typing the first few characters of the item they want—the
system then picks the item for the user, and they can continue on to the next thing.
No scrolling or clicking is necessary; the user’s hand never needs to move from the
keyboard to the mouse.

How

When the user types the first letter or number of the item they’re looking for, jump to
the first item that matches what the user typed: automatically scroll the list so that the
item is visible and then select it.

As the user types more characters in rapid succession, keep changing the selection to
the first exact match for the user-typed string to that point. If there is no match, stay
put at the nearest match, and don’t scroll back to the top of the list. You might want to
beep at the user to inform them that there’s no match—some applications do, some
don’t.

Examples

A variant of Jump to Item is used by Spotify’s search functionality. A user can start
typing and the search results will begin to show different results as each letter allows
the system to better predict what songs or artists the user is looking for.

In the example in Figure 7-24 in the upper left, I have typed “Brian” and the results
show Spotify’s algorithms best guess at what I am searching for. I don’t even have to
type the second word before the search results display the artist I was searching for.
In some ways, this incremental search is more convenient—and certainly faster.

The Patterns | 369

Figure 7-24. Spotify’s variant of the Jump to Item pattern

Alpha/Numeric Scroller

What

Display the letters of the alphabet, numbers, or a timeline arrayed along the scroll bar
of a list, as shown in Figure 7-25 (left).

Use when

Users will be searching for very specific items in a long list, which is usually rendered
as a scrolled list, table, or tree. You want to make item finding as easy and quick to
achieve as possible.

Why

Alpha/Numeric Scrollers are not common, but their use is self-explanatory. They pro‐
vide an interactive map to the list content, in much the same way as an Annotated
Scroll Bar. They’re closely related to Jump to Item—both enable immediate jumping to
a point in an ordered list.

370 | Chapter 7: Lists of Things

This pattern probably arose from physical books (such as dictionaries) and notebooks
(such as address books) that use tabs to mark points in the alphabet.

How

Place a long list into a scrolled area. Along the scroll bar, show the letters of the alpha‐
bet or date; when the user clicks a letter, scroll the list to that point.

Examples

The iPhone offers what is probably the best-known example of this pattern.
Figure 7-25 (right) shows its built-in Contacts app.

Figure 7-25. Apple iOS Health app Date Scroller control and the iPhone Contacts list

The Patterns | 371

New-Item Row

What

Use the last or first row in the list or table to create a new item in place, as in the
fourth list item in Figure 7-26.

Figure 7-26. Hulu, Profile Switcher

Use when

The interface contains a table, list, tree view, or any other vertical presentation of a set
of items (one item per row). At some point, the user needs to add new items to it. But
you don’t have a lot of room to spare on the UI for extra buttons or options, and you
want to make item creation very efficient and easy for the user.

Also use when you want to be explicit about what type of information or functional‐
ity the user is adding.

372 | Chapter 7: Lists of Things

Why

By letting the user type directly into the end (or the beginning) of the table, you put
the act of creation into the same place where the item will ultimately “live.” It’s con‐
ceptually more coherent than putting it in some other part of the UI. Also, it makes
the interface more elegant than having an entirely different UI for item creation—it
uses less screen real estate, it reduces the amount of navigation that needs to be done
(thus eliminating a “jump” to another window), and it’s less work for your users.

How

Give the user an easy and obvious way to initiate a new object from the first empty
table row. A single mouse click in that row might start editing, for instance, or the
row might contain a “New Whatever” button.

At that point, the UI should create the new item and put it in that row. Each column
in the table (if it’s a multicolumn table) should then be editable, thus letting the user
set up the values of that item. The cells could have text fields in them, or drop-down
lists, or whatever else is necessary to set the values quickly and precisely. As with any
form-like user input, Good Defaults (Chapter 10) help save the user work by prefilling
those values; the user doesn’t have to edit every column.

There are still some loose ends to clean up, though. What happens if the user aban‐
dons the new item before finishing? You can establish a valid item right from the
beginning—if the user abandons the edits at any time, the item exists until the user
goes back and deletes it. Again, Good Defaults help by prefilling valid values if there
are multiple fields.

Depending on how it’s implemented, this pattern can resemble Input Prompt (also
Chapter 10). In both cases, a dummy value is set up for the user to edit into a real
value, and that dummy value is worded as a “prompt” that shows the user what to do.

The Patterns | 373

Examples

You can find the new item row pattern most frequently in applications where the user
organizes or created their own content.

Slack (Figure 7-27) uses this same pattern in its “Add Workspaces” function.

Figure 7-27. Slack → Add Workspaces

Lists Abound
In this chapter, we have covered the most common ways to show lists and when to
use them. As is evident, a lot of the content you see on the web and in mobile applica‐
tions are actually lists. When designing for lists, try out different ways in which you
might display your content, and remember to always keep in mind what the task your
user is trying to do and optimize your design for it.

374 | Chapter 7: Lists of Things

Chapter 8

Doing Things: Actions and Commands

This chapter is devoted to the “verbs” in the interface: how people can take an action
or use a command. In other words, we’re going to look at the ways people get work
done in software. This chapter explores the following:

• Different methods for initiating action or activating commands
• How to make it clear that an item can be acted on with affordances
• Patterns and components that promote controlling and editing

This is in contrast to our discussions of “nouns” in interface design so far. First, we
discussed structure and flow and visual layout. We reviewed interface objects such as
windows, text, links, and static elements in pages. In subsequent chapters, we will
look at complex components such as data visualizations and forms.

We think of the verbs—designing actions and commands—as the methods people
can use to perform tasks in your application. Specifically, what we mean by that is
how the person using your software can carry out these tasks:

• Start, pause, cancel, or complete an action
• Enter a setting, configuration, or value
• Manipulate an object or component in the interface
• Apply a change or transformation
• Remove or delete something
• Add or create something

Many of the patterns described in this chapter come from hardware interfaces that
were developed and standardized long before software interfaces became ubiquitous.

375

Other patterns mimic real-world behaviors and methods directly. It’s true that there is
a lot of history here, and there are many best practices to follow. The standard plat‐
form style guides, such as those for Android and iOS, Windows and Macintosh, and
JavaScript frameworks for responsive web and mobile user interfaces (UIs) will gen‐
erally get you pretty close to a workable UI.

Most users now depend upon behaviors they have learned from other applications to
negotiate menus and find buttons, so it benefits your users and you to follow those
conventions, even if they seem to lack originality. Most of the time, people want to get
work done using the interaction methods they already know.

A good UI strategy is to realize that the “lack of originality” in today’s software envi‐
ronments just means there are now near-universal UI standards for many common
patterns and processes that your audience has already learned. They’re ready to use
these skills immediately. So, a savvy UI designer, product manager, engineer, or prod‐
uct team will regard today’s established software standards, UI toolkits, component
libraries, and off-the-shelf frameworks as a useful foundation. Many of the most com‐
mon application features and functions no longer need to be coded from scratch.
This frees up time and energy to design the unique features that truly excite your
users and set your endeavor apart.

Examples of common functionality that we can now take for granted include such
actions as cut, copy, and paste. Even though this is an abstract process, it is based on
real-world actions. The “cut” or removed object or text is held temporarily in the
“clipboard”–out of sight, not visible, temporarily in computer memory. Moderately
experienced desktop computer users have learned how it’s “supposed to work.” The
same is true for pop-up menus (context menus), which some users seem to look for
everywhere, and other users never think to look for at all.

Another example is drag-and-drop. Drag-and-drop is more directly modeled on real-
world behaviors: picking up objects and putting them down. But it absolutely has to
work the way users intuitively expect it to—putting an object onto a “target drop
zone” or onto a folder—or the illusion of direct manipulation is broken.

That being said, you can do many things to make your interface less dull and more
usable. Your goals should be to make the appropriate actions available, label them
well, make them easy to find, and support sequences of actions. There are a few crea‐
tive ways to do it.

First, let’s list the common ways actions are available to the user:

376 | Chapter 8: Doing Things: Actions and Commands

Tap, Swipe, and Pinch
In mobile operating systems and applications, finger gestures are the primary method
for performing actions. There is a wide variety of actions that we can perform in a
touch screen operating system (OS). A deep dive into mobile interaction design is
beyond the scope of this book. But the major actions to be aware of are tap, swipe,
and pinch. Tap means to touch an icon, button, or object in the mobile OS. Doing
this will either launch an application, click a button, select an object (like an image),
or some other action. This is all determined by context.

Swiping is a common method for doing several other actions. Within an application,
swiping on a screen is a way of navigating: scroll a page up or down, move to the next
image in a series, move through a carousel or list of screens, or bring up another
screen in the app, such as a settings screen or information panel. In a list UI, swiping
on a line item is a way of revealing actions that can be applied to the item, such as
archive or delete. Pinching usually controls the view or zoom. Pinching—sliding two
fingertips inwards, toward each other on a touch screen—causes the view to zoom
out on a photo or web page. Reverse pinching on an image or web page—sliding two
fingertips apart—causes the view to zoom in, or magnify the page.

Rotate and Shake
Mobile devices are small enough that the entire device can be manipulated to perform
commands—something that’s impossible with larger devices. The accelerometers and
other sensors in the mobile device enable this. For example, it’s now almost univer‐
sally understood that when viewing a video or image on a mobile device, rotating it
ninety degrees from vertical to horizontal will change the viewport orientation from
portrait to landscape. Most often this is done to maximize the video for better view‐
ing. Shaking the device is also a common way to perform actions. Depending on the
application, shaking can skip a song or undo an action.

Buttons
Buttons are placed directly onto the interface, without requiring the user to perform
any action to see them, and are usually grouped semantically. (See the Button Groups
pattern.) They’re big, readable, obvious, and extremely easy to use for even the most
inexperienced computer users. But they take up a lot of space on the interface, unlike
menu bars and pop-up menus. On landing pages, such as corporate home pages and
product startup pages, calls to action are usually represented as single, large, eye-
catching buttons—this is entirely appropriate for their purpose, which is to attract
attention and say, “Click me!”

Tap, Swipe, and Pinch | 377

Menu Bars
Menu bars are standard on most desktop applications. They generally show an appli‐
cation’s complete set of actions, organized in a mostly predictable way (such as File,
Edit, or View). Some actions operate on the entire application, and some operate only
on individually selected items. Menu bars often duplicate functionality found in con‐
text menus and toolbars because they are accessible—screen readers can read them,
users can reach them via keyboard accelerators, and so on. (Accessibility alone makes
menu bars indispensable in many products.) Menu bars appear in some web applica‐
tions, especially productivity software, drawing programs, and other products that
emulate desktop apps.

Pop-Up Menus
Also known as context menus, pop-up menus are raised with a right-mouse click or
some similar gesture on panels or items. They usually list context-specific, common
actions, not all the actions that are possible on the interface. Keep them short.

Drop-Down Menus
Users raise these menus by clicking on a drop-down control such as a combo box.
However, drop-down controls are intended for selecting choices on a form, not for
performing actions. Avoid using them for actions.

Toolbars
The canonical toolbar is a long, thin row of icon buttons. Often, they have other
kinds of buttons or controls on them, too, such as text fields or Drop-down Choosers
(Chapter 10). Iconic toolbars work best when the portrayed actions have obvious vis‐
ual renderings; when the actions really need to be described with words, try other
controls, such as combo boxes or buttons with text labels. Cryptic icons are a classic
source of confusion and lack of usability.

Links
Buttons don’t need borders. Thanks to the web, everyone understands that colored
text (especially blue text) usually indicates a clickable link. In a UI area where actions
are expected but where you don’t need to draw attention or clutter the page, you can
use simple clickable “link” text for actions instead of buttons. The link can be under‐
lined by default, or you can have the underline appear only on hover. When the user
rolls the mouse over the text, change the cursor and the link rendering (background
color or border, for example) to reinforce the impression of clickability.

378 | Chapter 8: Doing Things: Actions and Commands

Action Panels
These are menus that the user doesn’t need to open; they’re always visible on the main
interface. They are a fine substitute for toolbars when actions are better described
verbally than visually. See the Action Panel pattern.

Hover Tools
If you want to show two or more actions for each item on an interface but you don’t
want to clutter the page with lots of repeated buttons, you can make those buttons
invisible until the mouse hovers over the item. (This is great for mouse-driven inter‐
face, but it doesn’t work well for touch screens.) See the Hover Tools pattern for more.

Then there are invisible action , which don’t have any labels at all to announce what
they do. Users need to know (or guess) that they’re there, unless you put written
instructions on the UI. Therefore, they don’t help with discovery at all, because users
can’t read over them to find out what actions are possible. With buttons, links, and
menus, the UI actions are available for inspection, so users learn from those. In usa‐
bility tests, I’ve seen many users look at a new product and methodically walk down
the menu bar, item by item, just to find out what it can do.

That being said, you almost always need to use one or more of the following invisible
actions. People often expect to be able to double-click on items, for example. How‐
ever, the keyboard (or the equivalent) is sometimes the only means of access for visu‐
ally impaired users and people who can’t use a mouse. In addition, the expert users of
some operating systems and applications prefer to work by typing commands into a
shell and/or by using its keyboard actions.

Single-Clicking Versus Double-Clicking Items
Users in object-oriented operating systems—Windows and macOS—have learned
that single-clicking an object such as an image or a document file means they are
selecting it in order to perform an action on it. First, select the object. Then, apply an
action or command, and it will be performed on the selected object. For example,
selecting a file on your computer desktop allows you to perform an action on it, such
as “move to trash.” Inside an application, single-clicking on an element will allow you
to move it, scale it, or apply some action or command to it.

Users tend to view double-clicking as either “open this item,” “launch this applica‐
tion,” or “edit this item,” depending on context. Double-clicking on an image often
means opening it in the creator or default application for viewing and editing it.
Double-clicking an application’s icon directly in most operating systems launches that
application. Double-clicking a piece of text might edit it in place.

Action Panels | 379

Keyboard Actions
There are two types of keyboard actions to consider including in your UI designs.
Both could be considered types of “accelerators.” That is, they are capabilities or fea‐
tures that seem more hidden or complicated, but actually enable more experienced
users to complete tasks more quickly. Ideally, the goal for this group is less mouse and
arm movement.

Keyboard commands are also critical to enabling access to the interface by people
with different levels of physical ability and who might need assistive technology. The
goal for this group is to not be required to use the mouse and graphical user interface
(GUI) components to enter commands. That’s why both of these techniques help the
user control the UI without their hands leaving the keyboard. The two types of key‐
board actions are shortcuts and tab order.

Shortcuts
Keyboard shortcuts, such as the well-known Ctrl-S to save, should be designed into
most desktop applications to support accessibility by differently abled persons, and
efficient, rapid use by experienced users. The major UI platforms, including Win‐
dows, Mac, and some Linux environments, each have style guides that describe the
standard shortcuts—and they’re all very similar. Additionally, menus and controls
often have underlined access keys, which let users reach those controls without
mouse-clicking or tabbing. (Press the Alt key, and then press the key corresponding
to the underlined letter, to invoke these actions.)

Tab Order
In desktop applications, both native OS and web, we have the same accessibility and
efficiency goals for tab ordering. Tab ordering means being able to use the tab (or
other designated) key to move the keyboard “focus” or selection from one screen UI
component to the next. The user can cycle continuously through all the selectable
options on a screen. A selected UI component can receive keyboard commands, until
the user moves the focus to the next screen component. When a form field or a sub‐
mit button is selected this way, they can be modified or “clicked” without having to
use the mouse. This is useful for people who need to use voice browsers or who find
full keyboard and mouse controls beyond their physical capability.

Drag-and-Drop
Dragging and dropping items on an interface usually means either “move this here”
or “do this to that.” In other words, someone might drag a file onto an application
icon to say, “Open this file in that application.” Or they might drag that file from one

380 | Chapter 8: Doing Things: Actions and Commands

place in a file finder to another place, thus moving or copying the item. Drag-and-
drop is context-dependent, but it almost always results in one of these two actions.

Typed Commands
Command-line interfaces (CLIs) hark back to a much earlier computer era when the
GUI had not yet been invented. Computer screens showed only text. Computer oper‐
ating systems could be controlled by typing commands directly into a line or position
on the screen for text input. CLIs generally allow free-form access to all the actions in
the software system, whether it’s an operating system or an application. We consider
these kinds of actions “invisible” because most CLIs don’t easily divulge the available
commands. They’re not very discoverable, though they’re quite powerful once you
learn what’s available—much can be done with a single well-constructed command.
As such, CLIs are best for users committed to learning the software very well. Both
macOS and Windows allow access to a Terminal mode for interacting with the com‐
puter in this way. Unix and DOS operating systems worked this way. Today, written
SQL queries are a widely used form of typed commands.

Affordance
When a UI object looks like it might let you do something, such as tap it, click it, or
drag it, we say it “affords” performing that action. It is, or has, an affordance. For
example, traditional raised-edge buttons afford tapping or clicking; a scroll bar
affords dragging; a date picker looks spinnable or rollable and so affords spinning; a
text field affords typing; a blue underlined word affords clicking or tapping.

Contemporary mobile UIs and desktop GUIs offer functionality via exactly this type
of direct perception, invitation to action, and manipulation. You have good grounds
for designing your UI based on the rule of thumb that every interesting visual feature
does something.

Building on this, affordances for actions could include the following:

• Icons, objects, or shapes that are different from the rest of the interface
• Text that is styled differently from regular reading copy
• Something that reacts when the mouse pointer rolls over it
• Something that reacts when tapped or swiped
• A highlighted or high-contrast visual design treatment
• Some object that looks manipulable: drop shadows, ridges or texture, highlights
• An object or component that just looks different, or is separated with whitespace,

from everything else on the screen

Typed Commands | 381

Direct Manipulation of Objects
Today, when the majority of interactions are on a mobile device, the design approach
is to assume direct manipulation of the screen components. Tap a button to submit it,
swipe a list item to delete it or open a contextual menu, drag an object to move it,
pinch a map to zoom out, tap an image to access contextual image controls. This is in
contrast to the older, desktop-menus approach in which the user must select an
object and then go to another part of the interface to activate a command to apply to
the selected object. The main point here is that mobile interfaces mostly go without
complicated, indirect action menus and multiple selections. They favor acting on
objects one by one, using a few simple gestures to act on the addressable object
directly, or invoke contextual menus when needed.

Figure 8-1 illustrates the affordances in the Adobe Premier Rush interface. It is a
mobile-only video editing app for social media. It’s a good example of a UI challenge.
In software interfaces, the user doesn’t get many sensory clues about what can be
tweaked or handled: visuals give most of the clues, and affordances like highlighting
or movement do the rest.

The video player controls at top are a near-universal control—certainly not an
inscrutable UI. In the lower panel, things are more challenging. The bright blue verti‐
cal line overlies the tracks that hold the video and audio, so that indicates it’s a tool or
reference point for the media. In fact, it’s the playhead, the video scrubber that marks
the playback point for the media file above. The clips themselves are displayed as
jumbo icons: squares or rectangles with an image from the underlying video. The
assumption is that the creator remembers the original recorded events or at least rec‐
ognizes that these are indeed the clips they want to work with. So the user knows
what they represent. These clip objects automatically display a selected highlight out‐
line (so you’ll know they’re selectable) when they touch the blue playback line or are
tapped to select.

382 | Chapter 8: Doing Things: Actions and Commands

Figure 8-1. Adobe Premier Rush

The Patterns
The first patterns in this chapter talk about three of the many ways to present actions.
When you find yourself reflexively putting actions on an application’s menu bar or
pop-up menu, stop for a moment and consider using one of these instead:

• Button Groups
• Hover or Pop-Up Tools
• Action Panel

The Patterns | 383

Prominent “Done” Button or Assumed Next Step improves the single most important
button on many web pages and dialog boxes. Smart Menu Items is a technique for
improving some of the actions you put on menus; this is a very general pattern, useful
for many kinds of menus (or buttons or links).

We’d like it if all the user-initiated actions in an application could be completed
instantly, but that’s not reality. Preview shows the user what’s going to happen before a
time-consuming action is committed. Spinners and Loading Indicators is a well-
known technique for letting the user know where they are in a multi step process,
whereas Cancelability refers to a UI’s ability to stop an operation when the user asks it
to.

The last three patterns all deal with sequences of actions:

• Multilevel Undo
• Command History
• Macros

These three interlocking patterns are most useful in complex applications, especially
those whose users are committed to learning the software well and using it exten‐
sively. (That’s why the examples come from complex software such as Linux, Photo‐
shop, and MS Word.) Be aware that these patterns are not easy to implement. They
require the application to model a user’s actions as discrete, describable, and some‐
times reversible operations, and such a model is very difficult to retrofit into an exist‐
ing software architecture.

For further discussion of designing actions and commands, we recommend Design
Patterns: Elements of Reusable Object-Oriented Software (Gamma, Erich, et al.;
Addison-Wesley, 1998.)

Button Groups

What

A group of related actions as a small cluster of buttons, aligned and with similar
graphic treatments. Multiple groups are possible if there are more than three or four
actions.

Use when

There are many actions to show on the interface. You want to make sure they are all
visible all the time, but you need to visually organize them so that they’re not chaotic
or difficult to sort out. Some of these actions are similar to one another—they have

384 | Chapter 8: Doing Things: Actions and Commands

similar or complementary effects, for instance, or they operate with similar semantics
—and they can thus be assembled into groups of two to five.

You can use Button Groups for app-wide operations (such as Open or Preferences),
item-specific actions (Save, Edit, Delete), or any other scope. Actions with different
scope ought not to be grouped together, however.

Why

Grouping buttons helps make an interface self-describing. Well-defined clusters of
buttons are easy to pick out of a complex layout, and because they’re so visible, they
instantly communicate the availability of those actions. They announce, “These are
the actions that are available to you in this context.”

Gestalt principles (Chapter 4) apply here. Proximity hints at relatedness; if the but‐
tons are all together, they probably do related things. So does visual similarity; if you
make all the buttons the same dimensions, for instance, they look like they belong
together. Conversely, button groups that are separated in space—or that are different
in shape—imply unrelated groups of actions.

Proper sizing and alignment help the Button Groups form a larger composite visual
shape (this is the principle of closure).

How

Make a group out of related buttons so that they form a natural or logical set. An
additional option is to label them with short but unambiguous verbs or verb phrases.
Use vocabulary that makes sense to the users. Do not mix buttons that affect different
things or have different scope; separate them into different groups.

All buttons in the group should have the same graphic treatment: borders, color,
height and/or width, icon style, dynamic effects, and so on. You can line them up in a
single column, or arrange them in a single row if they aren’t too wide.

(However, treat them differently if one action is a “primary” action, such as a Submit
button on a web form. A primary action is an action that you want most users to take
or that most users will expect to take. Give that button a stronger graphic treatment
to make it stand out among the others.)

If all the buttons in a group act on the same object or objects, put the Button Groups
to the left or right of those objects. You could put them below the objects instead, but
users often have a “blind spot” at the bottom of complex UI elements such as multi‐
column lists and trees—the user might not see the buttons at all. To make them more
visible, keep the rest of the interface clean and uncluttered. If you have a specific
design that works better with the buttons at the bottom, test its usability and find out.

The Patterns | 385

If there are enough buttons and if they have icons, you could also put them on a tool‐
bar or ribbon-like strip at the top of the page.

By using Button Groups, you’re trying to avoid a crowded mess of buttons and links,
or perhaps a long and plodding list of actions with no apparent differentiation at all.
With this pattern, you create a visual hierarchy of actions: the user can see at a glance
what’s related and what’s important.

Examples

Standard tools for graphic editors are often grouped by function. Figure 8-2 shows
some common tools in groupings in Google Docs (separated by vertical lines, or
“pipes”) that actually aid recognition. There are no fewer than 27 buttons on this
interface. There’s a lot to understand and keep track of. But thanks to careful visual
and semantic organization, the interface is never overwhelming.

Figure 8-2. Button Groups in Google Docs

The second example (Figure 8-3) shows the header of a finder window from macOS.
True to its design tradition, buttons are clearly more button-like. The Navigation
group is two buttons placed together in a group. The View controls button group is a
segmented button. The whole set has rounded edges only on the left and right, not for
the contiguous buttons in the middle.

Figure 8-3. Apple macOS Finder

386 | Chapter 8: Doing Things: Actions and Commands

Hover or Pop-Up Tools

What

Place buttons and other actions next to the items they act upon, but hide them until
the user hovers the pointer over them. In a mobile UI, have the tools appear next to
an object when the user taps it.

Use when

There are many actions to show on the interface. You want a clean, uncluttered look
most of the time, but you need to put those actions somewhere, preferably on or next
to the items they act upon. You’ve already allocated the space to show those actions,
but they just make things too crowded and busy if they’re all visible all the time.

Hover Tools are commonly used in list interfaces, in which many small items—pho‐
tos, messages, search results, and so on—are displayed in a column or list. The user
can perform a number of actions on each one.

You don’t intend the interface to be used with fingertips, as with a touchpad device—
you’re certain that almost all users will interact with your UI via a mouse.

Why

Hover Tools reveal themselves exactly when and where they’re needed. They stay out
of sight otherwise, allowing the UI to remain clean and uncluttered. They appear
when the user requests them, and by appearing in response to the user’s gesture, they
draw attention to themselves.

Pop-up (right-click) menus, pull-down menus, and menu bars also meet these crite‐
ria, but they are not discoverable enough for some kinds of interfaces—they’re best
used on traditional desktop applications, not web-based interfaces. (And sometimes
they’re not the best choice on traditional applications, either.) Hover Tools are more
easily discoverable because the gesture that produces them—a rollover—is so simple
and natural.

Unfortunately, on touch screens, we have lost the ability to have a mouse and so there
isn’t a hover state. On a touchpad, the only way a user can see the “Hover Tools” is if
they actually touch the hover area. In these situations, if there are tools or actions that
can apply to the object, display them in a pop-up panel or list that is grouped with the
tapped object, or on top of it.

The Patterns | 387

How

Design each item or hover area with enough space to show all the available actions.
Hide the ones that clutter the interface too much, and show them only when the user
hovers the mouse pointer over the area in question.

Respond quickly to the hover, and don’t use an Animated Transition—simply show
the tools immediately, and hide them immediately when the user moves the pointer
away. Likewise, never enlarge the hover area or otherwise rearrange the page when
the user hovers the pointer over it. The idea is to make the hover action as lightweight
and quick as possible so that the user can easily reach the necessary tools.

If the hover area is an item in a list, you might want to highlight the item by changing
its background color or drawing a border around it. The act of showing tools will
draw the user’s eyes to that area, but highlighting the item will do so even more.

Consider Hover Tools as an alternative to a drop-down menu, a pop-up menu, an
Action Panel, a List Inlay with buttons in it, or a set of buttons repeated in each item.

Examples

Slack uses hover tools extensively (Figure 8-4). They appear for each posting in the
main feed or in a thread. The alternatives would have been to show all the tools all the
time—far too busy and crowded—or to move the tools to the top toolbar, where they
would only operate on posts selected in the feed. That’s rather complicated. In con‐
trast, the “Hover Tools” are right there and self-explanatory (or at least quickly
learned).

388 | Chapter 8: Doing Things: Actions and Commands

Figure 8-4. Slack; examples of hover tools for posts and threads

Other implementations of Hover Tools use a show/hide overlay to display buttons or
controls such as sliders. This is similar to the Drop-down Chooser pattern in Chap‐
ter 10, the only difference being your intent to use it for actions and not settings.

In YouTube (Figure 8-5), the YouTube player uses a hover to show the volume slider
and other controls. The video player controls only display when the mouse scrolls
over the player area itself. Otherwise, they are hidden so that there is less clutter to
distract from the video itself.

The Patterns | 389

Figure 8-5. YouTube web player

Action Panel

What

A panel or other grouping of commands that is more than just a static menu. The
actions can promote the most common actions or the most relevant commands,
depending on where the user is or what they are doing in the software. Action panels
are a way to feature commands in a more eye-catching way.

Use when

You have a list of items, and a set of actions that can be performed on each one—too
many to show all the actions for each item, and too many for Hover Tools. You could
put them into a menu, but you might not have a menu bar at all, or you’d rather make
the actions more discoverable than they would be on menu bars. Same for pop-up
menus; they’re just not visible enough. Your users might not even realize the pop-up
menus exist.

Or maybe your set of possible actions is too complex for a menu. Menus are best at
showing a flat set of actions (because pull-right menus, or cascading menus, are diffi‐
cult for some users to manipulate) in a very simple, linear, one-line-per-item

390 | Chapter 8: Doing Things: Actions and Commands

presentation. If your actions need to be grouped, and especially if those groups don’t
fit the standard top-level menu names—such as File, Edit, View, Tools, and so on—
you might want a different presentation altogether.

This pattern can take up a lot of screen space, so it’s not usually a good choice for
small devices.

Why

There are three main reasons to use Action Panel instead of menus or per-item but‐
tons: visibility, available space, and freedom of presentation.

By placing the actions out on the main UI and not hiding them inside a traditional
menu, you make those actions fully visible to the user. Really, Action Panel are menus
in the generic sense; they just aren’t found in menu bars, drop downs, or pop ups.
Users don’t need to do anything to see what’s on an Action Panel—it’s right there in
front of them—so your interface is more discoverable. This is particularly nice for
users who aren’t already familiar with the traditional document model and its menu
bars.

There are many, many ways to structure objects on an interface: lists, grids or tables,
hierarchies, and just about any custom structure you can devise. But Button Groups
and traditional menus give you only a list (and not a very long one at that). An Action
Panel is free-form—it gives you as much freedom to visually organize verbs as you
have for nouns.

How

Putting the Action Panel on the UI. Set aside a block of space on the interface for the
Action Panel. Place it below or to the side of the target of the action. The target is
usually a list, table, or tree of selectable items, but it might also be a document in
Center Stage (Chapter 4). Remember that proximity is important. If you place the
Action Panel too far away from whatever it acts on, users might not grasp the rela‐
tionship between them.

The panel could be a simple rectangle on the page. It could be one of several tiled
panels on the page, perhaps a Movable Panels (see Chapter 4), a “drawer” in macOS,
or even a separate window. If it’s closable, make it very easy to reopen, especially if
those actions are present only on the Action Panel and aren’t duplicated on a menu!

The odds are good that you’ll need to show different actions at different times. So, the
contents of the Action Panel might depend on the state of the application (e.g., are
there any open documents yet?), on the items selected in some list somewhere, or
other factors. Let the Action Panel be dynamic. The changes will attract the user’s
attention, which is good.

The Patterns | 391

Structuring the actions. Next, you need to decide how to structure the actions you
need to present. Here are some ways you could do it:

• Simple lists
• Multicolumn lists
• Categorized lists with headings and groupings
• Tables or grids
• Trees
• Any combination of these in one panel

If you categorize the actions, consider using a task-centered approach. Group them
according to what people intend to do. However, try to present them linearly. Imagine
reading the actions aloud to someone who can’t see the screen—can you proceed
through them in a logical fashion, with obvious start and end points? That, of course,
is how a blind user would “hear” the interface.

Labeling the actions. For each action’s label, you could use text, icons, or both,
depending on what conveys the nature of the actions best. In fact, if you use mostly
icons, you end up with…a traditional toolbar! (Or a palette, if your UI is a visual
builder-style application.)

Text labels on an Action Panel can be longer than those on a menu or a button. You
can use multiline labels, for instance—better to explain fully. Just remember that
longer, more descriptive labels are better for first-time or infrequent users who need
to learn (or be reminded) what these actions do. The extra space spent on long labels
might not be appreciated in high-performance interfaces used mostly by experienced
users. If there are too many words, even first-time users’ eyes will glaze over.

392 | Chapter 8: Doing Things: Actions and Commands

Examples

The example in Figure 8-6 is from Dropbox. This is the desktop web UI for that ser‐
vice. on the right of the screen, there is an action panel. The purpose is to have
always-visible, one-click access to the most common actions. The most likely or most
frequently used command is given special treatment. Altogether, the grouping and
separation of these commands show that this is an action panel.

Figure 8-6. An Action Panel in Dropbox

The following screenshots from Windows 10 show two examples of a show/hide
Action Panel. These are not always visible due to their screen-filling size. The user
must click to open them. But after they’re open, they stay open and show a large
number of options and actions the user could take.

The Patterns | 393

Microsoft Windows 10 Start Menu (Figure 8-7)—the legendary pop-up menu—has
been expanded beyond the classic list of app icons to launch. Now the panel is much
larger in order to show groups of tiles (actually large, square buttons, some with
dynamic status, such as the latest weather). The tiles are grouped according to the
users’ anticipated most likely tasks. Selecting one will launch an application or open a
directory.

Figure 8-7. Microsoft Windows 10 Start Menu

The Microsoft Windows 10Action Panel (Figure 8-8) is accessed via the “speech bub‐
ble” icon in the lower right. Most of this panel is a scrolling list of notifications. Many
of these notifications are calls to action: the user needs to change a setting, activate a
process or fix a problem. The notifications are clickable, so the user can take action
directly from this list. At bottom is a set of buttons to access notification and system
settings. Other design resources call this pattern a Task Pane.

394 | Chapter 8: Doing Things: Actions and Commands

Figure 8-8. Microsoft Windows 10 Action Panel

The Patterns | 395

Prominent “Done” Button or Assumed Next Step

What

A button or other obviously selectable screen component that is the preferred next
step or obvious conclusion to a screen or process.

Use when

Whenever you need to put a button such as Done, Submit, OK, or Continue on your
interface , you should use this pattern. More generally, use a visually prominent but‐
ton for the final step of any transaction—such as an online purchase—or to commit a
group of settings.

Why

A well-understood, obvious last step gives your users a sense of closure. There’s no
doubt that the transaction will be done when that button is clicked; don’t leave them
hanging, wondering whether their work took effect.

Making that last step obvious is what this pattern is really about. Doing it well draws
on the layout concepts in Chapter 4: visual hierarchy, visual flow, grouping, and
alignment.

How

Create a button that actually looks like a button, not a link; either use platform stand‐
ards for pushbuttons, or use a large or medium-sized button graphic with bold colors
and well-defined borders. This will help the button stand out on the page and not be
lost among other things.

Place the button that finishes a transaction at the end of the eye’s travel through the
visual layout of the screen. Give it a label that is easy to understand. Make the whole
button very obvious to see.

When labeling the button, prefer text labels to icons. They’re easier to understand for
actions such as this, especially given that most users will look for a button labeled
“Done” or “Submit.” The text in that label can be a verb or a short verb phrase that
describes what will happen in the user’s terms—for example, “Send,” “Buy,” or
“Change Record” are more specific than “Done” and can sometimes communicate
more effectively.

Place the button where the user is most likely to find it. Trace the task flow down
through the page or form or dialog box , and put the button just beyond the last step.
Usually that will be on the bottom and/or right of the page. Your page layouts might

396 | Chapter 8: Doing Things: Actions and Commands

have a standard place for them (see the Visual Framework pattern in Chapter 4), or
the platform standard might prescribe it; if so, use the standard place.

In any case, make sure the button is near the last text field or control. If it’s too far
away, the user might not find it immediately upon finishing their work, and they
might go looking for other affordances trying to find out “what to do next.” On the
web, users can end up abandoning the page (and possibly a purchase) without realiz‐
ing it.

Examples

The Google Play store on an Android OS mobile device (Figure 8-9) displays infor‐
mation about a specific game. The preferred action, Install, is obvious from the size,
color, position and white space around the Install button.

This is a good implementation in a mobile context. You can see the action button
without even reading the labels, due to visual design alone:

• The green color stands out. It’s a saturated color and it contrasts with the white
background. (A white or light gray button with a black border would blend into
the form.)

• The graphic used for the button looks like a button. It’s a rectangle with subtle
rounded corners. It is large, too.

• The button is positioned under and to the right of the content, in this case, a
mobile game. Both the task flow (the user scans from top to bottom) and the vis‐
ual flow bring the user’s eye to rest at that button.

• The button is set off by whitespace.

The Patterns | 397

Figure 8-9. Google Play store, Android OS mobile device

398 | Chapter 8: Doing Things: Actions and Commands

JetBlue.com (Figure 8-10), Kayak.com (Figure 8-11), and Southwest.com (Figure 8-12)
use strong buttons on their home page flight-search interfaces. These follow all the
guidelines for Prominent “Done” Buttons, and again, you can see them immediately.
In each, Search is the most prominent action step on the screen. It is called out as a
button element and formatted with prominent size and contrasting color. (Southwest
actually has two calls to action: Search and Book Now, for the current flight
promotion).

Among these examples, JetBlue is using the most effective design. The button is easy
to see due to color contrast, centered location, generous surrounding negative space,
and its label.

Kayak uses a strong color pop for its search button, too, but it is less effective because
its button uses an icon only and is on the far-right edge of the screen, where it is not
immediately seen. The magnifying glass is a standard shorthand for search, but the
user still must translate the shape into the word or concept.

Southwestuses the same button design for two buttons, so the user’s attention is split.
It’s no longer a single call to action. In the lower Book panel, the button is effectively
used: contrasting color to the white and blue, and a label and anchor location that
message the next step for the job the panel has to do (help users find a flight). At the
top, in the promotion area, the red and yellow are a lower-contrast combination, and
the button seems a little lost. There are other, much larger components to this area of
the screen that draw the eye, and the button is not so clearly aligned or placed so that
the eye is driven to it.

Airbnb (Figure 8-13) offers a clear done/next step button on its home screen. The
user fills out the booking search form. A single large Search button, designed to draw
the eye, is the action that Airbnb wants to promote.

The Patterns | 399

http://JetBlue.com
http://Kayak.com
http://Southwest.com

Figure 8-10. JetBlue.com

Figure 8-11. Kayak.com

400 | Chapter 8: Doing Things: Actions and Commands

http://JetBlue.com
http://Kayak.com

Figure 8-12. Southwest.com

Figure 8-13. Airbnb.com

The Patterns | 401

http://Southwest.com
http://Airbnb.com

Smart Menu Items

What

Menu labels that dynamically show precisely what they will do when invoked. This is
a mechanism for making menus more efficient and responsive by offering different
choices depending on what the user is doing.

Use when

Your UI has menu items that operate on specific documents or items, such as Close,
or that behave slightly differently in different contexts, such as Undo.

Why

Menu items that say exactly what they’re going to do make the UI self-explanatory.
The user doesn’t need to stop and figure out what object will be affected. They’re also
less likely to accidentally do something that they didn’t intend to do, such as deleting
“Chapter 8” instead of “Footnote 3.” It thus encourages safe exploration.

How

Every time the user changes the selected object (or current document, last undoable
operation, etc.), change the menu items that operate on it to include the specifics of
the action. Obviously, if there is no selected object at all, you should disable the menu
item, thus reinforcing the connection between the item and its object.

Incidentally, this pattern could also work for button labels, or links, or anything else
that is a “verb” in the context of the UI.

What if there are multiple selected objects? There’s not a whole lot of guidance out
there—in existing software, this pattern mostly applies to documents and undo oper‐
ations—but you could write in a plural, as in “Delete Selected Objects.”

Examples

Figure 8-14 shows a menu from the Adobe Lightroom menu bar. The first selection in
the Edit drop-down menu is dynamic. The last filter the user applied in this case was
the “Increase Clarity” filter. The menu remembers that, so it changes its first item to
reflect that. The Undo action that it triggers is based on the immediately previous
action performed by the user. The label changes depending on the actions the user
takes.

The accelerator keystrokes are handy for repeated application of the same filter.

402 | Chapter 8: Doing Things: Actions and Commands

Figure 8-14. Adobe Lightroom

The previous example is from application menu bars , but you also can use this pat‐
tern effectively in contextual tools, such as the drop-down menu in Gmail
(Figure 8-15). Several commands in the drop-down menu change depending on the
currently selected email message. The menu item “Add [person from email] to Con‐
tacts list” is much clearer and more self-explanatory than a generic alternative, such
as “Add sender to Contacts list.”

The Patterns | 403

Figure 8-15. Gmail

Preview

What

Render a lightweight sample of the effects of a command, or the likely outcomes of an
action. They are proactively rendered before the user has even submitted the action.
This is a pattern in which the user is presented with realistic modeling of their possi‐
ble action outcomes so that they can choose the one they like or want. This pattern is
the opposite of the more simplistic and traditional interaction design method
whereby the user must activate a command first and then wait to see what the results
are.

Use when

The user is just about to perform a “heavyweight” action such as opening a large file,
printing a 10-page document, submitting a form that took time to fill out, or commit‐
ting a purchase over the web. Users want some assurance that they’re doing it

404 | Chapter 8: Doing Things: Actions and Commands

correctly. Doing it incorrectly would be time-consuming, difficult to reverse, or
otherwise costly.

Alternatively, the user might be about to perform some visual change with a difficult-
to-predict result, such as applying a filter to a photo. It’s better to know in advance
whether the effect will be desirable.

Why

Previews help prevent errors. A user might have made a typo or misunderstood
something that led to the action in question (such as purchasing the wrong item
online). By showing the user a summary or visual description of what’s about to hap‐
pen, you give them a chance to back out or correct any mistakes.

Previews can also help an application become more self-describing. If someone’s
never used a certain action before, or doesn’t know what it will do under certain cir‐
cumstances, a preview explains it better than documentation—the user learns about
the action exactly when and where they need to.

How

Just before the user commits an action, display whatever information gives them the
clearest picture of what’s about to happen. If it’s a print preview, show what the page
will look like on the chosen paper size; if it’s an image operation, show a close-up of
what the image will look like; if it’s a transaction, show a summary of everything the
system knows about that transaction. Show what’s important—no more, no less.

Give the user a way to commit the action straight from the preview page. There’s no
need to make the user close the preview or navigate elsewhere.

Likewise, give the user a way to back out. If they can salvage the transaction by cor‐
recting information previously entered, provide a chance to do that too, with
“Change” buttons next to changeable information. In some wizards and other linear
processes, this might just be a matter of navigating a few steps backward.

Examples

Apple Photos (Figure 8-16, left) gives users a wide variety of photo filters. Each filter
offers a “what you see is what you get” prospective render. When editing a selected
photo, each filter choice at the bottom of the screen displays what that image would
look like, using that filter. Users do not need to guess what a filter might do, or make a
filter selection first in order to see what it does. They can simply review the rendered
thumbnails and select the one they like, based on the realistic preview of the image.
From a usability perspective, it is much easier and quicker for people to recognize the
choice they like and select it, as opposed to having to remember what the command is

The Patterns | 405

and guessing at the outcome. (Photoshop and other image-processing applications
use similar previews.)

The Bitmoji app example (Figure 8-16, right) shows a closely related use case. Bitmoji
creates customized illustration-style avatars and amusing cartoons that users can
share via messaging and social media. The first step in using Bitmoji is for the user to
build their own cartoon likeness by adding their choices for hair, eyes, expression
lines, skin tone, and other features. Here, the user is trying to find the closest match
to their real-world appearance from a limited set of pre rendered options. For skin
tone, Bitmoji renders faces based on the user’s selections, and then offers a different
preview for each of the available skin tones. Creating a more realistic, personalized
avatar is easier and faster when the user can scroll through a large selection of skin
tone previews.

Figure 8-16. Apple Photos app and Bitmoji app

406 | Chapter 8: Doing Things: Actions and Commands

Online product builders and customizers often use Previews to show what the user
has created so far as part of the sales process. The customizable Prius car in
Figure 8-17 is a good example. As the user specifies the exact features they would like
for their Prius, the preview of the vehicle updates to show the user’s selections. Multi‐
ple previews for exterior and interior help potential buyers get a better idea of what
their choices might look like. The user is able to move back and forth between the
major steps in the process, and also to experiment with variations at each step to see
what it would actually look like. The goal is to get a quote for a car that’s based on
what the customer exactly wants. Preview tools like this are highly engaging.

Figure 8-17. Toyota.com

The Patterns | 407

http://Toyota.com

The customizable makeup regimen from Sephora.com (Figure 8-18) is a more per‐
sonal example. Here, the customer is trying to find the right beauty products out of a
huge number of possible brands and selections. They can experiment with how things
would look. This makeup preview app lets the shopper add an image of their own
face and then virtually try out a huge range of cosmetics and techniques. They can
preview what different products and colors would do for skin, eyes, lashes, eyebrows,
and lips. The outcome of experimenting and previewing is a list of the products that
will give them the look she wants. The products that are applied to the face preview
automatically appear in the “What You’re Wearing” purchase list.

Figure 8-18. Sephora.com

408 | Chapter 8: Doing Things: Actions and Commands

http://Sephora.com
http://Sephora.com

1 Nielsen, Jakob. “Response Times: The 3 Important Limits.” Nielsen Norman Group, Nielsen Norman Group, 1
Jan. 1993, https://oreil.ly/6IunB. This article, updated in 2014, cites additional sources of research into software
response time and its effect on users.

Spinners and Loading Indicators

What

An animation or other indicator that displays after a user submits an action and
before there is a response. If there is a delay in this response, Spinners and Loading
Indicators let a waiting user know that their interaction session is “live” and that a
response from the system is in progress. This prevents users from breaking their task
focus.

Spinners. A spinner is an animation that shows the system is processing something.
It is normally stateless; that is, it does not communicate a changing state such as per‐
centage complete (although this is not a rule).

Loading indicators. A loading indicator is usually a meter or thermometer-style ani‐
mation that shows key data about a task that takes a long time, for example, upload‐
ing large files or images, or loading a mobile app on the consumer’s mobile device.
Loading indicators show a constantly updating “empty/full” meter plus helpful data
such as percent complete, bytes of data processed versus unprocessed, and how much
time remains to completion.

Use when

A time-consuming operation interrupts the UI, or runs in the background, for longer
than two seconds or so.

A summary of advice from prominent usability and digital design experts Don Nor‐
man and Jakob Nielsen, reviewing research on this topic, can offer a good set of
guidelines:1

• Less than one-tenth of a second, users feel they are interacting with a “live” UI
because the response from the software feels instantaneous. There is no delay in
going from one UI action to the next. This is the expected response time for usa‐
ble software.

• Between one-tenth of a second and one second, the user is aware of the delay but
they will wait, staying on task, with the expectation of continuing immediately.

• Longer than a one-second delay in response, the user is likely to think the UI is
not working, that something might be wrong, or they might abandon the task. In
this situation, spinners or loading indicators are mandatory if you want users to

The Patterns | 409

https://oreil.ly/6IunB

know that your software is indeed working. Alternately, you might want to let
them know that they have time to move on to another activity while the process
completes.

Why

Users become impatient when the UI just sits there. Even if you change the mouse
pointer to a clock or hourglass (which you should in any case, if the rest of the UI is
locked out), you don’t want to make a user wait for an unspecified length of time.

Experiments show that if users see an indication that something is going on, they’re
much more patient, even if they must wait longer than they would without a Loading
Indicator. Maybe it’s because they know that “the system is thinking,” and it isn’t just
hung or waiting for them to do something.

How

Show an animated indicator of how much progress has been made. Either verbally or
graphically (or both), tell the user:

• What’s currently going on
• What proportion of the operation is complete
• How much time remains
• How to stop it

As far as time estimates are concerned, it’s OK to be wrong sometimes, as long as
your estimates converge on something accurate quickly. But sometimes the UI can’t
determine how far along it is. In that case, show a stateless spinner.

Most GUI toolboxes provide a widget or dialog box that implements this pattern.
Beware of potentially tricky threading issues, however—the Loading Indicator must
be updated consistently while the operation itself proceeds uninhibited. If you can,
keep the rest of the UI alive, too. Don’t lock up the UI while the Loading Indicator is
visible.

If it’s possible to cancel the operation whose progress is being monitored, offer a can‐
cel button or similar affordance on or near the Loading Indicator; that’s where a user
is likely to look for it. See the Cancelability pattern (next) for more information.

410 | Chapter 8: Doing Things: Actions and Commands

Examples

Spinners are usually used when there is a very slight wait. Their function is to let the
user know “we’re working on it, hang on a second.”

Apple’s Touch ID service on its iPhones (Figure 8-19) allows app developers (in this
case, CVS) to securely log in their customers without typing usernames and pass‐
words. We see the iOS spinner momentarily while the iPhone/iOSand CVS are pro‐
cessing the log in.

Figure 8-19. Apple iOS, CVS mobile app; An iOS spinner example

Spinners are also a standard part of most UI toolkits and frameworks. Figure 8-20
shows the specification and example in the Twitter Bootstrap UI framework. One of
the standard components in the Bootstrap library is a customizable spinner, which is
ready to be used anywhere in a Bootstrap web application.

The Patterns | 411

Figure 8-20. Twitter Bootstrap component library (getbootstrap.com) border spinner

The Blueprint UI toolkit (Figure 8-21) offers a button component that supports the
inline display of a spinner as part of the button. When the user clicks one of these
buttons, they would see the label or icon on the button change to the spinner
momentarily.

Figure 8-21. Blueprint UI toolkit (blueprintjs.com), button loading state

412 | Chapter 8: Doing Things: Actions and Commands

http://getbootstrap.com
http://blueprintjs.com

Loading indicators offer more robust status and information for processes that take a
longer time. They are for situations in which there is enough time to generate and
display this information. The user will then know how long it’s going to take and can
wait, cancel, or do something else and come back later.

Figure 8-22 shows the Google Play store again, this time with a game download in
progress to a user’s Android device. The “Install” button has disappeared. It was
replaced with the loading indicator. This is an informative loading indicator. The
loading indicator is the green and gray horizontal line. The animated green bar repre‐
sents how much of the game has been downloaded compared to the total file size,
represented by the gray bar. The same information is given as updating numerical
totals. There is also a percentage complete figure.

Figure 8-22. Google Play store, Android OS

The Patterns | 413

Adobe uses loading indicators in its Creative Cloud application for macOS desktop.
This is a small and compact version that is still usable. Figure 8-23 shows an update
to Photoshop CC in progress. There is a small thermometer-style loading indicator,
which here is 3% complete.

Figure 8-23. Adobe Creative Cloud desktop manager, macOS

414 | Chapter 8: Doing Things: Actions and Commands

2 Nielsen, Jakob. “10 Usability Heuristics for User Interface Design: Article by Jakob Nielsen.” Nielsen Norman
Group, 24 Apr. 1994, https://oreil.ly/Sdw4P.

Cancelability

What

Away to instantly cancel a time-consuming operation, with no side effects.

Use when

A time-consuming operation interrupts the UI or runs in the background for longer
than two seconds or so—such as when you print a file, query a database, or load a
large file. Alternatively, the user is engaged in an activity that literally or apparently
shuts out most other interactions with the system, such as when working with a
modal dialog box.

Why

The ability for software users to cancel a task or process in the UI at any time is an
important usability standard. It relates to “user control and freedom,” one of the top
10 usability heuristics, or guidelines, that software expert Jakob Nielsen of Nielsen
Norman Group found from a review of industry research and findings.2

Users change their minds. After a time-consuming operation starts, a user might
want to stop it, especially if a Loading Indicator informs the user that it will take a
while. Or the user might have started it by accident in the first place. Cancelability
certainly helps with error prevention and recovery—a user can cancel out of some‐
thing they know will fail, such as loading a page from an unreachable website.

In any case, a user will feel better about exploring the interface and trying things out
if they know that anything is cancelable. It encourages Safe Exploration (Chapter 1),
which in turn makes the interface easier and more fun to learn.

How

First, find out if there’s a way to speed up the time-consuming operation so that it
appears to be instantaneous. It doesn’t even need to be genuinely fast; if a user per‐
ceives it as immediate, that’s good enough. On the web or a networked application,
this can mean preloading data or code—sending it to the client before it’s asked for—
or sending data in increments, showing it to the user as it comes in. Remember, peo‐
ple can read only so fast. You might as well use the loading time to let the user read
the first page of data, then another page, and so on.

The Patterns | 415

https://oreil.ly/Sdw4P

But if you really do need Cancelability, here’s how to do it. Put a Cancel button
directly on the interface, next to the Loading Indicator (which you are using, right?) or
wherever the results of the operation will appear. Label it with the word Stop or Can‐
cel, and/or put an internationally recognizable stop icon on it: a red octagon, or a red
circle with a horizontal bar, or an “X.”

When the user clicks or presses the Cancel button, cancel the operation immediately.
If you wait too long—for more than a second or two—the user might doubt whether
the cancel actually worked (or you might just dissuade them from using it because
they might as well wait for the operation to finish). Inform the user that the cancel
worked—halt the Loading Indicator, and show a status message on the interface, for
instance.

Multiple parallel operations present a challenge. How does the user cancel a particu‐
lar one and not others? The Cancel button’s label or tool tip can state exactly what is
being canceled when it’s clicked (see the Smart Menu Items pattern for a similar con‐
cept). If the actions are presented as a list or a set of panels, you might consider pro‐
viding a separate Cancel button for each action to avoid ambiguity.

Examples

The game install screen in the Google Play store (Figure 8-24) shows a minimalist
cancel icon. The green and gray bar here is actually a spinner. The green bar animates
left-right for a few seconds while the download connection is established. Note the
large “X” cancel icon to the right of this. The consumer can cancel the download and
install process at any time.

Figure 8-24. Google Play store, Android OS

416 | Chapter 8: Doing Things: Actions and Commands

Adobe displays a different style of cancel “X” button in its Creative Cloud desktop
app for macOS (Figure 8-25). In this desktop drop-down panel, in the Photoshop CC
line item, next to the loading indicator, there is an “X” icon. The customer can select
this to cancel the update/install process anytime.

Figure 8-25. Adobe Creative Cloud desktop manager, macOS

The Patterns | 417

3 Alan Cooper and Robert Reimann devote an entire chapter to the undo concept in their book About Face 2.0:
The Essentials of Interaction Design (Wiley, 2003).

Multilevel Undo

What

The ability to reverse a series of actions performed by the user. Multilevel Undo is a
combination of simple undo combined with a history of user actions, with their
sequence captured as well as the actions. Multilevel Undo is a way of reversing any
recent history of commands or actions step by step, in the opposite order in which
they were performed. That is, the first undo is for the most recently completed action.
The second undo reverses the second most-recent action, and so on. There are usu‐
ally limits to the length of the history file to support Multilevel Undo.

Use when

You’re building a highly interactive UI that is more complex than simple navigation
or form fill-in. This includes mail readers, database software, authoring tools, graph‐
ics software, and programming environments. Design this function when you want to
give your users the ability to back out of or recover from a series of actions, not just a
single action.

Why

The ability to reverse a long sequence of operations step by step lets users feel that the
interface is safe to explore. While they learn the interface, they can experiment with
it, confident that they aren’t making irrevocable changes—even if they accidentally do
something “bad.” This is true for users of all levels of skill, not just beginners.3

After the user knows the interface well, they can move through it with the confidence
that mistakes aren’t permanent. If the user’s finger slips and they hit the wrong menu
item, no complicated and stressful recovery is necessary; they don’t need to revert to
saved files, shut down and start afresh, or go ask a system administrator to restore a
backup file. This spares users wasted time and occasional mental anguish.

Multilevel Undo also lets expert users explore work paths quickly and easily. For
instance, a Photoshop user might perform a series of filtering operations on an
image, study the result to see whether they like it, and then undo back to the starting
point. Then they might try out another series of filters, maybe save it, and undo
again. The user could do this without Multilevel Undo, but it would take a lot more
time (for closing and reloading the image). When a user works creatively, speed and
ease of use are important for maintaining the experience of flow. See Chapter 1 for

418 | Chapter 8: Doing Things: Actions and Commands

more information, especially the Safe Exploration and Incremental Construction
patterns.

How

Reversible operations. The software your UI is built on first needs a strong model of
what an action is—what it’s called, what object it was associated with, how to record
it, and how to reverse it. Then, you can build an interface on it.

Decide which operations need to be reversible. Any action that might change a file or
database—anything that could be permanent—should be reversible, whereas transi‐
ent or view-related states, such as selecting between tabs, often are not. Specifically,
these kinds of changes are expected to be reversible in most applications:

• Text entry for documents or spreadsheets
• Database transactions
• Modifications to images or painting canvases
• Layout changes—position, size, stacking order, or grouping—in graphics applica‐

tions
• File operations, such as deleting or renaming files
• Creation, deletion, or rearrangement of objects such as email messages or

spreadsheet columns
• Any cut, copy, or paste operation

The following kinds of changes are generally untracked in the action history and are
not reversible. Navigation actions are a good example of this kind of ribbon-like,
nonreversible action.

• Text or object selection
• Navigation between windows or pages
• Mouse cursor and text cursor locations
• Scroll bar position
• Window or panel positions and sizes
• Changes made in an uncommitted or modal dialog box

Some operations are on the borderline. Form fill-in, for instance, is sometimes
reversible and sometimes not. However, if tabbing out of a changed field automati‐
cally commits that change, it’s probably a good idea to explore making it reversible.

The Patterns | 419

4 Constantine, Larry L., and Lucy A.D. Lockwood. “Instructive Interaction: Making Innovative Interfaces Self-
Teaching.” User Experience, vol. 1, no. 3, 2002. Winter, https://oreil.ly/QMNpz.

Note
Certain kinds of operations are impossible to undo, but usually the nature
of the application makes that obvious to users with any experience at all.
Impossible undos include the purchase step of an ecommerce transaction,
posting a message to a forum or chat room, or sending an email—as much
as we’d sometimes like that to be undoable!

In any case, make sure the reversible operations make sense to the user. Be sure to
define and name them in terms of how the user thinks about the operations, not how
the computer thinks about them. You should be able to undo a block of typed text, for
instance, in chunks of words, not letter by letter.

Design an undo or action history stack. Each operation goes on the top of the action his‐
tory stack as it is performed. Each undo reverses the operation at the top (the most
recent action) first, then the next one below it (the next most recent), then the next,
and so on. Redo works its way back up the stack step by step.

The stack should be at least 10 to 12 items long to be the most useful, and longer if
you can manage it. Long-term observation or usability testing can tell you what your
usable limit is. (Constantine and Lockwood assert that having more than a dozen
items is usually unnecessary because “users are seldom able to make effective use of
more levels.”4 Expert users of high-powered software might tell you differently.)

Presentation. Finally, decide how to present the undo stack to the user. Most desktop
applications put Undo/Redo items on the Edit menu. Also, Undo is usually hooked
up to Ctrl-Z or its equivalent. The best-behaved applications use Smart Menu Items to
let the user know exactly which operation is next up on the undo stack.

Examples

Microsoft Word (Figure 8-26) shows a more typical presentation of Multilevel Undo.
In this case, the user typed some text and then inserted a table. The first undo
removes the table. When that’s done, the following undo—the next action in the
undo stack—represents the typed text, and invoking Undo again will remove that
text. Meanwhile, the user has the opportunity to “undo the undo” by using the Redo
menu item. If we’re at the top of the stack (as in the first screenshot), there is no Redo,
and that menu item is overloaded with a Repeat action. This is a complicated abstract

420 | Chapter 8: Doing Things: Actions and Commands

https://oreil.ly/QMNpzg

concept to try to bring to life in an interface. If you attempt something this, add a
scenario or two in your help system to explain more fully how it works.

Figure 8-26. Microsoft Word History of Actions

Although it is not visible, Word keeps an undo stack in memory. This allows the user
to select Undo multiple times to return to a previous state of the file. When the user
reverses their most recent action with the Undo command, the first item in the Edit
smart menu changes to the next action in the undo stack.

Most users will never develop a clear mental picture of the algorithms being used
here; most people don’t know what a “stack” is, let alone how it is used in conjunction
with Repeat and Redo. That’s why the Smart Menu Items are absolutely critical to usa‐
bility here. They explain exactly what’s going to happen, which reduces the cognitive
burden on the user. What is important is that they see that they can back up and
move forward again through the sequence of their recent actions.

The Patterns | 421

Command History

What

Undoable actions. As the user performs actions, keep a visible record of those actions
—what was done to what, and when. This is a list or record of the steps that the user
took. This list is visible, and can be manipulated by the user, applying or removing or
changing the sequence of these actions. Usually this is in conjunction with a file,
photo, or other digital object that is being changed by these commands.

Browser history. As the user browses the internet browsers keep a visible record of the
sites, apps and URLs they visit. This is more like a log file. This data can be searched
for keywords in the URL string, or browsed by date. This is useful for finding a site
that the user visited before, but can’t remember the exact URL.

Use when

Users perform long and complex sequences of actions, either with a GUI or a com‐
mand line. Most users are fairly experienced, or if not, they at least want an efficient
interface that’s supportive of long-term and recurring work. Graphical editors and
programming environments are usually good candidates.

Why

Sometimes, a user needs to remember or review what they did in the course of work‐
ing with the software. For instance, they might want to do any of these things:

• Repeat an action or command done earlier, which they don’t remember well
• Recall the order in which some actions were done
• Repeat a sequence of operations, originally done to one object, on a different

object
• Keep a log of their actions, for legal or security reasons
• Convert an interactive series of commands into a script or macro (see the Macros

pattern in this chapter)

422 | Chapter 8: Doing Things: Actions and Commands

How

Keep a running list of the actions taken by the user. If the interface is driven from a
command line, you have it easy—just record everything typed there. If you can, keep
track of the history across sessions so that the user can see what was done even a
week ago or longer.

If it’s a GUI, or a combination of graphic and command-line interfaces, things
become a little more complicated. Find a way to express each action in one
consistent, concise way, usually with words (though there’s no reason why it can’t be
done visually). Make sure you define these with the right granularity—if one action is
done en masse to 17 objects, record it as one action, not 17.

What commands should be recorded, and what shouldn’t? See the Multilevel Undo
pattern for a thorough discussion of what commands should “count.” If a command is
undoable, it should be recorded in the history, too.

Finally, display the history to the user. That display should be optional in most soft‐
ware, because it will almost certainly play a supporting role in the user’s work, not a
starring role. Lists of commands—oldest to newest—tend to work well. If you’d like,
you could timestamp the history display somehow.

Examples

Google’s Chrome browser (Figure 8-27), like all browsers, keeps a history of the web‐
sites and web applications that the user visits. The user can view, search, and browse
it, which allows the user to go back to a URL they went to before, or share an item
from the list. Google Chrome History screen, although not strictly a history of
actions, is a history file from the user’s browsing history. This allows for predictive
text options when typing in a URL if the URL or file is already in the history. The user
can also search the history file or manually select a URL to go back to a previously
visited URL.

The Patterns | 423

Figure 8-27. Google Chrome History screen

Adobe Photoshop CC’s undo stack (Figure 8-28) is effectively a command history.
You can use it to undo the actions you performed, but you don’t have to; you can also
just look at it and scroll through it, reviewing what you did. It uses icons to identify
different classes of actions, which is unusual, but nice to use. This bona fide history of
actions is a long-established feature of Photoshop. Each tool, action, filter, or other
command is recorded in a chronological list. This is visible in the History palette (in
the lower left of the figure). More than a simple history for undo, the History feature
allows the user to selectively turn actions on or off or rearrange their sequence, which
affects the current image.

424 | Chapter 8: Doing Things: Actions and Commands

Figure 8-28. Adobe Photoshop CC

Macros

What

Macros are single actions composed of other, smaller actions. Users can create them
by recording or putting together sequences of actions. These can be saved for reuse,
by themselves or in a sequence of other commands. This can enable huge time sav‐
ings and workflow efficiencies.

Use when

Users might want to repeat long sequences of actions or commands. They might want
to loop over lists of files, images, database records, or other objects, for instance,
doing the same things to each object. You might already have implemented Multilevel
Undo or Command History.

Why

No one wants to perform the same set of repetitive interactive tasks over, and over,
and over again! This is exactly what computers are supposed to be good at. Chapter 1
described a user-behavior pattern called Streamlined Repetition; macros are precisely
the kind of mechanism that can support that well.

The Patterns | 425

Macros obviously help users work faster. But by reducing the number of commands
or gestures needed to get something done, they also reduce the possibility of finger
slips, oversights, and similar mistakes.

You might also recall the concept of “flow,” also discussed in Chapter 1. When a long
sequence of actions can be compressed down into a single command or keyboard
shortcut, the experience of flow is enhanced—the user can accomplish more with less
effort and time, and they can keep their larger goals in sight without becoming
bogged down in the details.

How

Provide a way for the user to “record” a sequence of actions and easily “play them
back” at any time. The playback should be as easy as giving a single command, press‐
ing a single button, or dragging and dropping an object.

Defining the macro. The user should be able to give the macro a name of their choice.
Let them review the action sequence somehow so that they can check their work or
revisit a forgotten sequence to see what it did (as in the Command History pattern).
Make it possible for one macro to refer to another so that the user can build on each
other.

Users will certainly want to save macros from one day to the next, so make sure that
those macros can be saved to files or a database. Present them in a searchable, sorta‐
ble, and even categorizable list, depending on the needs of your users.

Running the macro. The macro itself could be played back literally, to keep things sim‐
ple; or, if it acts upon an object that can change from one invocation to another, you
could allow the sequence to be parameterized (e.g., use a placeholder or variable
instead of a literal object). Macros should also be able to act on many things at once.

How the names of the macros (or the controls that launch them) are presented
depends heavily upon the nature of the application, but consider putting them with
built-in actions rather than making them second-class citizens.

The ability to record these sequences—plus the facility for macros to build on one
other—create the potential for the user to invent an entirely new linguistic or visual
grammar, a grammar that is finely tuned to their own environment and work habits.
This is a very powerful capability. In reality, it’s programming; but if your users don’t
think of themselves as programmers, don’t call it that or you’ll scare them off. (“I
don’t know how to program anything; I must not be able to do this.”)

426 | Chapter 8: Doing Things: Actions and Commands

Examples

Adobe Photoshop CC (Figure 8-29) has extensive macro capabilities. The primary
one is the ability to create or record complex, multi step image edit and transforma‐
tion commands. These are called Actions in Photoshop. Actions greatly speed up
image workflows through automation and reuse. In this example, on the left, an exist‐
ing action called Sepia Toning is selected to show the multiple, nested steps that all
happen in sequence within this action. On the right, the Actions menu shows the
options for recording, editing, and fine-tuning complicated, multi step actions.

Figure 8-29. Recording a macro in Adobe Photoshop CC

Adobe Photoshop CC (Figure 8-30) shows the Batch automation menu and dialog
box in Photoshop. This is another macro builder. These are user-created workflow
scripts that direct Photoshop to open images from one location, apply saved actions,
and save the images with specified naming in a different location. This creates even
more time savings because the user does not need to open each image by hand to
apply the action macro. In this way the user can quickly and automatically process
very large numbers of files, saving huge amounts of manual effort.

The Patterns | 427

Figure 8-30. Batch automation: configuring a series of actions to perform on multiple files
automatically

428 | Chapter 8: Doing Things: Actions and Commands

It is now possible to integrate and script different web apps, services, and platforms as
if they were one application. IFTTT (If This, Then That) (Figure 8-31) is a web appli‐
cation for doing this. Third-party software companies that have API access and have
integrated with the IFTTT platform become available for use. A given customer can
provide their third-party logins to IFTTT and begin connecting their disparate web
apps with macros, called “recipes” in IFTTT, to do work.

Here are some examples of what IFTTT recipes can do:

• Synchronize the profile photo across all your social media accounts
• Automatically back up image files from social media to a cloud storage account
• Turn home automation devices on/off based on your mobile
• Save social media posts to a cloud spreadsheet
• Save fitness data from devices to a cloud spreadsheet

IFTTT recipes are built by providing your login credentials to your online accounts
and then building simple macros using the IFTTT web app (Figure 8-31). The large
phrase in the screen “if [Twitter] then [+] that” is a macro in the process of being cre‐
ated. The first part is ready. This account has integrated with their Twitter account(s).
Selecting the Twitter icon opens a different screen for configuring the Twitter-driven
trigger for the macro. The next step is to configure the “that” step. For example, log
each tweet to a Google spreadsheet. These are the actions IFTTT or other integrated
internet service should execute. These macros allow for custom automated business
processes that integrate unconnected web apps and services.

The Patterns | 429

Figure 8-31. IFTTT (If This, Then That) applet creator

Microsoft Excel (Figure 8-32) allows macros to be recorded, named, stored along
with the document, and even assigned to a keyboard shortcut. In this example, the
user can record a macro and later edit it in a programming environment (a light‐
weight Visual Basic editor included in Excel). The user records macros to process
data and manipulate spreadsheets within Excel. These can be edited and saved for
reuse.

If you are developing a truly scriptable application, the lesson from Excel is to think
about how such macros could be abused. You might want to put constraints around
what can be done via macros.

430 | Chapter 8: Doing Things: Actions and Commands

Figure 8-32. Microsoft Excel

The Patterns | 431

Conclusion
In this chapter, we examined the different modes and means of taking action or ini‐
tiating commands in software. As an interaction designer, you have a number of pat‐
terns and best practices to help users see and understand what they can do and what’s
going on. The important point is that you want to make the most important actions
visible. To accomplish this, you can use the graphic design methods discussed in this
chapter. The benefits of making actions clear is that you can guide new and existing
users to the preferred next step. Patterns like Preview and Multilevel Undo help users
to avoid error. They will learn the software more quickly, too.

Don’t underestimate the positive feelings that come from giving people the ability to
play around safely with your interface (that is, they stay in control of what they’re
doing because the understand how to preview, initiate, cancel and reverse actions.)
For more advanced users or in complicated interactions, designing the ability to
record actions as if on a timeline, with the ability to go forward and back in time, is a
powerful level of control over actions. Finally, you might want to consider designing
macro-like abilities into your software for users who need the speed and efficiency of
executing multiple actions automatically and programmatically.

432 | Chapter 8: Doing Things: Actions and Commands

Chapter 9

Showing Complex Data

Done well, information graphics—including maps, tables, and graphs—communicate
knowledge visually rather than verbally in an elegant and magical way. They let peo‐
ple use their eyes and minds to draw their own conclusions; they show, rather than
tell. Visualizing data is an art and a science. Data visualization is a specialization
within the discipline of design and requires subject matter expertise in addition to a
strong visual design sensibility.

Creating artful visualizations is a discipline unto itself. This chapter discusses the
basics of information graphics and shows some of the most common ways to display
data in a mobile application or website.

The Basics of Information Graphics
Information graphics simply means data presented visually, with the goal of imparting
knowledge to the user. We include tables and tree views in that description because
they are inherently visual, even though they’re constructed primarily from text
instead of lines and polygons. Other familiar static information graphics include
maps, flowcharts, bar plots, and diagrams of real-world objects.

But we’re dealing with computers, not paper. You can make almost any good static
design better with interactivity. Interactive tools let the user hide and show informa‐
tion as they need it, and they put the user in control, allowing them to choose how to
view and explore that information.

Even the mere act of manipulating and rearranging the data in an interactive graphic
has value—the user becomes a participant in the discovery process, not just a passive
observer. This can be invaluable. The user might not end up producing the world’s
best-designed plot or table, but the process of manipulating that plot or table puts the
user face to face with aspects of the data that they might never have noticed on paper.

433

Ultimately, the user’s goal in using information graphics is to learn something. But
the designer needs to understand what the user needs to learn. The user might be
looking for something very specific, such as a particular street on a map, in which
case they need to be able to find it—for instance, by directly searching or by filtering
out extraneous information. The user needs to get a “big picture” only to the extent
necessary to reach that specific data point. The ability to search, filter, and zero in on
details is critical.

On the other hand, the user might be trying to learn something less concrete. They
might look at a map to grasp the layout of a city rather than to find a specific address.
Or, they might be a scientist visualizing a biochemical process, trying to understand
how it works. Now, overviews are important; users need to see how the parts inter‐
connect with the whole. They might want to zoom in, zoom back out again, look at
the details occasionally, and compare one view of the data to another.

Good interactive information graphics offer users answers to these questions:

• How is this data organized?
• What’s related to what?
• How can I explore this data?
• Can I rearrange this data to see it differently?
• How can I see only the data that I need?
• What are the specific data values?

In these sections, keep in mind that the term information graphics is a very big
umbrella. It covers plots, graphs, maps, tables, trees, timelines, and diagrams of all
sort; the data can be huge and multilayered, or small and focused. Many of these tech‐
niques apply surprisingly well to graphic types that you wouldn’t expect.

Before describing the patterns themselves, let’s set the stage by talking about some of
the questions posed in the previous list.

Organizational Models: How Is This Data Organized?
The first thing a user sees in any information visualization is the shape you’ve chosen
for the data. Ideally, the data itself has an inherent structure that suggests this shape to
you. Table 9-1 shows a variety of organizational models. Which of these best fits your
data?

434 | Chapter 9: Showing Complex Data

Table 9-1. Organizational models
Model Diagram Common graphics
Linear List, single-variable plot

Tabular Spreadsheet, multicolumn list, sortable table, Multi-Y Graph, other
multivariable plots

Hierarchical Tree, list, tree table

Network of interconnections Directed graph, flowchart

Geographic (or spatial) Map, schematic, scatter plot
Textual Word cloud, directed graph
Other Plots of various sorts, such as parallel coordinate plots, treemap, etc.

Try these out against the data you’re trying to show. If two or more might fit, consider
which ones play up which aspects of your data. If your data could be both geographic
and tabular, for instance, showing it as only a table might obscure its geographic
nature—a viewer might miss interesting features or relationships in the data if it’s not
shown as a map, too.

Preattentive Variables: What’s Related to What?
The organizational model you choose tells the user about the shape of the data. Part
of this message operates at a subconscious level; people recognize trees, tables, and
maps, and they immediately make some assumptions about the underlying data
before they even begin to think consciously about it. But it’s not just the shape that
does this. The look of the individual data elements also works at a subconscious level
in the user’s mind: things that look alike must be associated with one another.

If you’ve read Chapter 4, that should sound familiar—you already know about the
Gestalt principles. (If you jumped ahead in the book, this might be a good time to go
back and read the introduction to Chapter 4.) Most of those principles, especially
similarity and continuity, will come into play here, too. Let’s look a little more at how
they work.

The Basics of Information Graphics | 435

Certain visual features operate preattentively: they convey information before the
viewer pays conscious attention. Take a look at Figure 9-1 and find the blue objects.

Figure 9-1. Find the blue objects

I’m guessing that you can do that pretty quickly. Now look at Figure 9-2 and do the
same.

Figure 9-2. Find the blue objects again

You did that pretty quickly too, right? In fact, it doesn’t matter how many red objects
there are; the amount of time it takes you to find the blue ones is constant! You might
think it should be linear with the total number of objects—order-N time, in algorith‐
mic terms—but it’s not. Color operates at a primitive cognitive level. Your visual sys‐
tem does the difficult work for you, and it seems to work in a “massively parallel”
fashion.

436 | Chapter 9: Showing Complex Data

On the other hand, visually monotonous text forces you to read the values and think
about them. Figure 9-3 shows exactly the same problem with numbers instead of col‐
ors. How fast can you find the numbers that are greater than one?

Figure 9-3. Find the values greater than one

When dealing with text such as this, your “search time” really is linear with the num‐
ber of items. But what if we still use text, but make the target numbers physically
larger than the others, as in Figure 9-4?

Figure 9-4. Find the values greater than one again

Now we’re back to constant time again. Size is, in fact, another preattentive variable.
The fact that the larger numbers protrude into their right margins of their respective
columns also helps you find them—alignment is yet another preattentive variable.

The Basics of Information Graphics | 437

Figure 9-5 shows many known preattentive variables.

Figure 9-5. Eight preattentive variables

This concept has profound implications for text-based information graphics, like the
table of numbers shown earlier in Figure 9-3. If you want some data points to stand
out from the others, you need to make them look different by varying their color,
size, or some other preattentive variable. More generally, you can use these variables
to differentiate classes or dimensions of data on any kind of information graphics.
This is sometimes called encoding.

When you need to plot a multidimensional data set, you can use several different vis‐
ual variables to encode all those dimensions in a single static display. Consider the
scatter plot shown in Figure 9-6. Position is used along the x- and y-axes; color hue
encodes a third variable. The shape of the scatter markers could encode yet a fourth
variable, but in this case, shape is redundant with color hue. The redundant encoding
helps a user visually separate the three data groups.

All of this is related to a general graphic design concept called layering. When you
look at well-designed graphics of any sort, you perceive different classes of informa‐
tion on the screen. Preattentive factors such as color cause some of them to “pop” out

438 | Chapter 9: Showing Complex Data

of the screen, and similarity causes you to see those as connected to each other, as
though each were on a transparent layer over the base graphics. It’s an extremely
effective way of segmenting data—each layer is simpler than the whole graphic, and
the viewer can study each in turn, but the relationships among the whole are pre‐
served and emphasized.

Figure 9-6. Encoding three variables in a scatter plot

Navigation and Browsing: How Can I Explore This Data?
A user’s first investigation of an interactive data graphic might be browsing—just
looking around to see what’s there. The user might also navigate through it to find
some specific thing they’re seeking. Filtering and searching can serve that purpose,
too, but navigation through the “virtual space” of a data set is often better. The user
can see points of interest in context with the rest of the data.

There’s a famous mantra in the information visualization field: “Focus plus context.”
A good visualization should permit a user to focus on a point of interest, while simul‐
taneously showing enough stuff around that point of interest to give the user a sense
of where it is in the big picture. Here are some common techniques for navigation
and browsing:

Scroll and pan
If the entire data display won’t fit on the screen at once, you could put it in a
scrolled window, giving the user easy and familiar access to the off-screen por‐
tions. Scroll bars are familiar to almost everyone and are easy to use. However,

The Basics of Information Graphics | 439

some displays are too big, or their size is indeterminate (thus making scroll bars
inaccurate), or they have data beyond the visible window that needs to be
retrieved or recalculated (thus making scroll bars too slow to respond). Instead of
using scroll bars in those cases, try setting up buttons that the user must click to
retrieve the next screenful of data. Other applications do panning instead, in
which the information graphic is “grabbed” with the cursor and dragged until the
point of interest is found, like in Google Maps.

These are appropriate for different situations, but the basic idea is the same: to
interactively move the visible part of the graphic. Sometimes, an overview next to
a detail view can help the user stay oriented. A small view of the whole graphic
can be shown with an indicator rectangle showing the visible “viewport”; the user
might pan by dragging that rectangle, in addition to using scroll bars or however
else it’s done.

Zoom
Whereas scrolling changes the location being viewed, zooming changes the scale
of the section being viewed, When you present a data-dense map or graph, con‐
sider offering the user the ability to zoom in on points of interest. It means you
don’t need to pack every single data detail into the full view—if you have lots of
labels, or very tiny features (especially on maps), that might be impossible any‐
way. As the user zooms in, those features can emerge when there is enough space.

Most zooms are triggered with a pinch, mouse click, or button press, and the
entire viewing area changes scale at once. But that’s not the only way to zoom.
Some applications create nonlinear distortions of the information graphic as the
user moves the mouse pointer over the graphic: whatever is under the pointer is
zoomed, but the stuff far away from the pointer stays the same scale.

Open and close points of interest
Tree views typically let users open and close parent items at will, so they can
inspect the contents of those items. Some hierarchically structured diagrams and
graphs also give users the chance to open and close parts of the diagram “in
place,” without having to open a new window or go to a new screen. With these
mechanisms, the user can explore containment or parent–child relationships
easily, without leaving that window.

Drill down into points of interest
Some information graphics just present a “top level” of information. A user
might click or double-click on a map to see information about the city they just
clicked, or they might tap key points in a diagram to see sub diagrams. This
“drilling down” might reuse the same window, use a separate panel on the same
window, or bring up a new window. This technique is similar to opening and
closing points of interest, except that the viewing occurs separately from the
graphic and is not integrated into it.

440 | Chapter 9: Showing Complex Data

If you also provide a search facility for an interactive information graphic, con‐
sider linking the search results to whichever of the aforementioned techniques is
in use. In other words, when a user searches for the city of Sydney on a map,
show the map zooming and/or panning to that point. The search user thus gets
some of the benefits of context and spatial memory.

Sorting and Rearranging: Can I Rearrange This Data to See It
Differently?
Sometimes, just rearranging an information graphic can reveal unexpected relation‐
ships. Look at Figure 9-7, taken from the National Cancer Institute’s online mortality
charts. It shows the number of deaths from lung cancer in the state of Texas. The
major metropolitan regions in Texas are arranged alphabetically—not an unreasona‐
ble default order if you’re going to look up specific cities, but as presented, the data
doesn’t lead you to ask interesting questions. It’s not clear why Abilene, Alice, Ama‐
rillo, and Austin all seem to have similar numbers, for instance; it might just be
chance.

Figure 9-7. Cancer data by city, sorted alphabetically

But this chart lets you reorder the data into numerically descending order, as in
Figure 9-8. Suddenly the graph becomes much more interesting. Galveston is ranked
first—why is that, when its neighbor, Houston, is further down the scale? What’s spe‐
cial about Galveston? (OK, you need to know something about Texas geography to

The Basics of Information Graphics | 441

ask these questions, but you get my point.) Likewise, why the difference between
neighbors Dallas and Fort Worth? And apparently the Mexico-bordering southern
cities of El Paso, Brownsville, and Laredo have less lung cancer than the rest of Texas;
why might that be? You can’t answer these questions with this data set, but at least you
can ask them.

Figure 9-8. The same Cancer data chart, sorted numerically

People who can interact with data graphics this way have more opportunities to learn
from the graphic. Sorting and rearranging puts different data points next to each
other, thus letting users make different kinds of comparisons—it’s far easier to com‐
pare neighbors than widely scattered points. And users tend to zero in on the extreme
ends of scales, as I did in the preceding example.

How else can you apply this concept? A sortable table offers one obvious way: when
you have a many-columned table, users might want to sort the rows according to
their choice of column. This is pretty common. (Many table implementations also
permit rearrangement of the columns themselves, by dragging.) Trees might allow
reordering of their child nodes. Diagrams and connected graphs might allow spatial
repositioning of their elements while retaining their connectivity.

Drawing on the information architecture approaches discussed in Chapter 2, con‐
sider these methods of sorting and rearranging:

• Alphabetically
• Numerically
• By date or time
• By physical location

442 | Chapter 9: Showing Complex Data

• By category or tag
• By popularity—heavily used versus lightly used
• User-designed arrangement
• Completely random (you never know what you might see)

For a subtle example, take a look at Figure 9-9. Bar charts that show multiple data
values on each bar (known as stacked bar charts) might also be amenable to rearrang‐
ing—the bar segments nearest the baseline are the easiest to evaluate and compare, so
you might want to let users determine which variable is next to the baseline.

Figure 9-9. Rearrangement of a stacked bar chart

The light blue variable in this example might be the same height from bar to bar.
Does it vary, and how? Which light blue bars are the tallest? You really can’t tell until
you move that data series to the baseline—that transformation lines up the bases of all
those blue rectangles. Now a visual comparison is easy: light blue bars 6 and 12 are
the tallest, and the variation seems loosely correlated to the overall bar heights.

Searching and Filtering: How Can I See Only the Data That I Need?
Sometimes you don’t want to see an entire data set at once. You might start with the
whole thing and narrow it down to what you need—filtering—or you might build up
a subset of the data via searching or querying. Most users won’t even distinguish
between filtering and querying (though there’s a big difference from, say, a database’s
point of view). The user’s intent is the same: to zero in on whatever part of the data is
of interest, and get rid of the rest.

The simplest filtering and querying techniques offer users a choice of which aspects
of the data to view. Checkboxes and other one-click controls turn parts of the interac‐
tive graphic on and off. A table might show some columns and not others, per the
user’s choice; a map might show only the points of interest (e.g., restaurants) selected
by the user. The Dynamic Queries pattern, which can offer very rich interaction, is a
logical extension of simple filter controls such as these.

Sometimes, simply highlighting a subset of the data, rather than hiding or removing
the rest, is sufficient. That way a user can see that subset in context with the rest of the

The Basics of Information Graphics | 443

data. Interactively, you can do this with simple controls, as described earlier. The
Data Brushing pattern describes a variation of data highlighting; it highlights the
same data in several data graphics at once.

Look at Figure 9-10. This interactive ski trail map can show four categories of trails,
coded by symbol, plus other features such as ski lifts and base lodges. When every‐
thing is “turned on” at once, it’s so crowded that it’s difficult to read anything. But
users can click the trail symbols, as shown, to turn the data “layers” on and off. The
screenshot on the left shows no highlighted trails; the one on the right switches on the
trails rated black diamond with a single click.

Figure 9-10. Interactive ski trail map

Searching mechanisms vary heavily from one type of graphic to another. A table or
tree should permit textual searches, of course; a map should offer searches on
addresses and other physical locations; numeric charts and plots might let users
search for specific data values or ranges of values. What are your users interested in
searching on?

When the search is done and the results obtained, you might set up the interface to
show the results in context, on the graphic—you could scroll the table or map so that
the searched-for item is in the middle of the viewport, for instance. Seeing the results
in context with the rest of the data helps the user understand the results better.

Here are the characteristics of the best filtering and querying interfaces:

Highly interactive
They respond as quickly as possible to the user’s searching and filtering. (Don’t
react to individual keystrokes if it significantly slows down the user’s typing,
however.)

444 | Chapter 9: Showing Complex Data

Iterative
They let a user refine the search, query, or filter until they get the desired results.
They might also combine these operations: a user might do a search, get a screen‐
ful of results, and then filter those results down to what they want.

Contextual
They show results in context with surrounding data, to make it easier for a user
to understand where they are in a data space. This is also true for other kinds of
searches, as it happens; the best text search facilities show the search terms
embedded in sentences, for instance.

Complex
They go beyond simply switching entire data sets on and off, and allow the user
to specify nuanced combinations of conditions for showing data. For instance,
can this information graphic show me all the items for which conditions X, Y,
and Z are true, but A and B are false, within the time range M–N? Such complex‐
ity lets users test hypotheses about the data and explore the data set in creative
ways.

The Actual Data: What Are the Specific Data Values?
Several common techniques help a viewer get specific values out of an information
graphic. Know your audience—if they’re interested in getting only a qualitative sense
of the data, there’s no need for you to spend large amounts of time or pixels labeling
every little thing. But some actual numbers or text is usually necessary.

Because these techniques all involve text, don’t forget the graphic design principles
that will make the text look good: readable fonts, appropriate font size (not too big,
not too small), proper visual separation between unrelated text items, alignment of
related items, no heavy-bordered boxes, and no unnecessary obscuring of data. Here
are some other aspects for you to consider:

Labels
Many information graphics put labels directly on the graphic, such as town
names on a map. Labels can also identify the values of symbols on a scatter plot,
bars on a bar graph, and other things that might normally force the user to
depend on axes or legends. Labels are easier to use. They communicate data val‐
ues precisely and unambiguously (when placed correctly), and they’re located in
or beside the data point of interest—no going back and forth between the data
point and a legend. The downside is that they clutter up a graphic when over‐
used, so be careful.

Legends
When you use color, texture, line style, symbols, or size on an information
graphic to represent values (or categories or value ranges), the legend shows the

The Basics of Information Graphics | 445

user what represents what. You should place the legend on the same screen as the
graphic itself so the user’s eyes don’t need to travel far between the data and the
legend.

Axes, rulers, scales, and timelines
Whenever position represents data, as it does on plots and maps (but not on
most diagrams), these tell the user what values those positions represent. They
are reference lines or curves on which reference values are marked. The user has
to draw an imaginary line from the point of interest to the axis, and maybe inter‐
polate to find the right number. This is more of a burden on the user than direct
labeling. But labeling clutters things when the data is dense, and many users don’t
need to derive precise values from graphics; they just want a more general sense
of the values involved. For those situations, axes are appropriate.

Datatips
The Datatips pattern (described in this chapter) are tool tips that show data val‐
ues when the user hovers over a point of interest. They offer the physical proxim‐
ity advantages of labels without the clutter. They work only in interactive
graphics, though.

Data spotlight
Like Datatips, a data spotlight highlights data when the user hovers over a point
of interest. But instead of showing the specific point’s value, it displays a “slice” of
the data in context with the rest of the information graphic, often by dimming
the rest of the data. See the Data Spotlight pattern.

Data brushing
A technique called data brushing lets users select a subset of the data in the infor‐
mation graphic and see how that data fits into other contexts. You use this with
two or more information graphics; for instance, selecting some outliers in a scat‐
ter plot causes those same data points to be highlighted in a table showing the
same data. For more information, see the Data Brushing pattern in this chapter.

The Patterns
Because this book is about interactive interfaces, most of these patterns describe ways
to interact with the data: moving through it; sorting, selecting, inserting, or changing
items; and probing for specific values or sets of values. A few of them deal only with
static graphics: information designers have known about Multi-Y Graph and Small
Multiples for a while now, but they translate well to the world of digital interfaces.

You can apply the following patterns to most varieties of interactive graphic, regard‐
less of the data’s underlying structure (some are more difficult to learn and use than
others, so don’t throw them at every data graphic you create):

446 | Chapter 9: Showing Complex Data

• Datatips
• Data Spotlight
• Dynamic Queries
• Data Brushing

The remaining patterns are ways to construct complex data graphics for multidimen‐
sional data—data that has many attributes or variables. They encourage users to ask
different kinds of questions about the data, and to make different types of compari‐
sons among data elements.

• Multi-Y Graph
• Small Multiples

Datatips

What

Data values appear when your finger or mouse rolls over a point of interest on an
interactive data table or when you tap or click the icon.

The Pew Research chart (Figure 9-11) example shows Datatips in action.

Figure 9-11. Pew Research, Changing Face of America

The Patterns | 447

Use when

You’re showing an overview of a data set, in almost any form. More data is “hidden
behind” specific points on that graphic, such as the names of streets on a map or the
values of bars in a bar chart. The user is able to “point at” places of interest with a
mouse cursor or a touch screen.

Why

Looking at specific data values is a common task in data-rich graphics. Users will
want the overview, but they might also look for particular facts that aren’t present in
the overview. Datatips let you present small, targeted chunks of context-dependent
data, and they put that data directly where the user’s attention is focused: the mouse
pointer or fingertip. If the overview is reasonably well organized, users will find it
easy to look up what they want, and you won’t need to put it all on the graphic. Data‐
tips can substitute for labels.

Also, some people might just be curious. What else is here? What can I find out?
Datatips offer an easy, rewarding form of interactivity. They’re quick (no screen load‐
ing), they’re lightweight, and they offer intriguing little glimpses into an otherwise
invisible data set.

How

Use a tool tip–like window to show the data associated with that point. It doesn’t need
to be technically a “tool tip”—all that matters is that it appears where the pointer is,
it’s layered atop the graphic, and it’s temporary. Users will get the idea pretty quickly.

Inside that window, format the data appropriately. Denser is usually better, because a
tool-tip window is expected to be small; don’t let the window get so large that it
obscures too much of the graphic while it’s visible. And place it well. If there’s a way to
programmatically position it so that it covers as little content as possible, try that.

You might even want to format the Datatips differently depending on the situation.
An interactive map might let the user toggle between seeing place names and seeing
latitude/longitude coordinates, for example. If you have a few data sets plotted as sep‐
arate lines on one graph, the Datatips might be labeled differently for each line, or
have different kinds of data in them.

Many Datatips offer links that the user can click. This lets the user “drill down” into
parts of the data that might not be visible at all on the main information graphic. The
Datatips is beautifully self-describing—it offers not only information, but also a link
and instructions for drilling down.

An alternative way of dynamically showing hidden data is to reserve some panel on
or next to the graphic as a static data window. As the user rolls over various points on

448 | Chapter 9: Showing Complex Data

the graphic, data associated with those points appears in the data window. It’s the
same idea, but using a reserved space rather than temporary Datatips. The user must
shift their attention from the pointer to that panel, but you never have a problem with
the rest of the graphic being hidden. Furthermore, if that data window can retain its
data, the user can view it while interacting with something else.

In contemporary interactive infographics, Datatips often work in conjunction with a
Data Spotlight mechanism . The spotlight shows a slice through the data—for exam‐
ple, a line or set of scattered points— whereas the Datatips shows the specific data
point that’s under the mouse pointer.

Examples

The CrimeMapping example (Figure 9-12) shows an icon to indicate what kind of
crime has occurred and plots this point on a map. A user can zoom in and out of the
map and filter the nature of the crime by selecting “What” from the panel on the left.

Figure 9-12. CrimeMapping

The Patterns | 449

CrimeMapping uses both Datatips and a Data Spotlight. All incidents of theft are
highlighted on the map (via the spotlight), but the Datatips pattern describes the par‐
ticular incident at which the user is pointing. Note also the link to the raw data about
this crime.

So many geographic information graphics are built upon Google Maps that it
deserves a particular mention. The map can toggle between a simplified map or satel‐
lite view, and can have information like traffic, routes, and place markers overlaid on
the map (Figure 9-13).

Figure 9-13. Google Maps

450 | Chapter 9: Showing Complex Data

The Transit Mobile App (Figure 9-14) shows a route overlaid on a map with simpli‐
fied route icons and Datatips. The colors, symbols and data change depending on
what mode of transport is selected.

Figure 9-14. Transit Mobile App

The Patterns | 451

Data Spotlight

What

As the user hovers over an area of interest, highlight that slice of data (graph line,
map layer, etc.) and dim the rest.

The very beautiful Atlas of Emotions (Figure 9-15) shows a range of emotions and
their intensity. When the user cursors over the data, it reveals associated emotions in
that family.

Figure 9-15. Atlas of Emotions

Use when

The graphic contains so much information that it tends to obscure its own structure.
It might be difficult for a viewer to pick out relationships and trace connections
among the data because of its sheer richness.

The data itself is structurally complex—it might have several independent variables
and complicated “slices” of dependent data such as lines, areas, scattered sets of

452 | Chapter 9: Showing Complex Data

points, or systems of connections. (If the rolled-over data is merely a point or a sim‐
ple shape, Datatips is a better solution than Data Spotlight. They’re often used in con‐
junction with each other, though.)

Why

A Data Spotlight untangles the threads of data from one another. It’s one way that you
can offer “focus plus context” on a complex infographic: a user eliminates some of the
visual clutter on the graphic by quieting most of it, focusing only on the data slice of
interest. However, the rest of the data is still there to provide context.

It also permits dynamic exploration by letting a user flick quickly from one data slice
to another. The user can see both large differences and very small differences that way
—as long as the Data Spotlight transitions quickly and smoothly (without flicker)
from one data slice to another as the mouse moves, even very tiny differences will be
visible.

Finally, Data Spotlight can be fun and engaging to use.

How

First, design the information graphic so that it doesn’t initially depend on a Data
Spotlight. Try to keep the data slices visible and coherent so that a user can follow
what’s going on without interacting with the graphic (someone might print it, after
all).

To create a spotlight effect, make the spotlighted data either a light color or a satura‐
ted color while the other data fades to a darker or grayer color. Make the reaction
very quick on rollover to give the user a sense of immediacy and smoothness.

Besides triggering a spotlight when the mouse rolls over data elements, you might
also put “hot spots” onto legends and other references to the data.

Consider a “spotlight mode.” In this, the Data Spotlight waits for a longer initial
mouse hover before turning itself on. After it’s in that mode, the user’s mouse
motions cause immediate changes to the spotlight. This means the spotlight effect
won’t be triggered accidentally, when a user just happens to roll the mouse over the
graphic.

An alternative to the mouse rollover gesture is a simple mouse click or finger tap.
This lacks the immediacy of rollovers, but it works on touch screens and it isn’t as
subject to accidental triggering. However, you might want to reserve the mouse click
for a different action, such as drilling down into the data.

Use Datatips to describe specific data points, describe the data slice being highlighted,
and offer instructions where necessary.

The Patterns | 453

Examples

Here is an example of the data spotlight in action.

Winds and Words (Figure 9-16) is an interactive Game of Thrones data visualization.
When a user clicks on a character, the other characters recede into the background
and the selected character is shown along with their relationship to other characters.

Figure 9-16. Winds and Words

454 | Chapter 9: Showing Complex Data

Dynamic Queries

What

Employ easy-to-use standard controls such as sliders and checkboxes to define which
slices or layers of the data set are shown, and immediately and interactively filter the
data set. As the user adjusts those controls, show the results immediately on the data
display.

The Google Public DataExplorer (Figure 9-17) allows the user to select a variety of
variables and see the results immediately, the user can also move the slider on a time‐
line to see the results of the data over time.

Figure 9-17. Google Public Data Explorer

Use when

You’re showing the user a large, multivariate data set, of any shape, with any presenta‐
tion. Users need to filter out some of the data in order to accomplish any of several
objectives—to eliminate irrelevant parts of the data set, to see which data points meet
certain criteria, to understand the relationships among the various data attributes, or
simply to explore the data set and see what’s there.

The Patterns | 455

The data set itself has a fixed and predictable set of attributes (or parameters, vari‐
ables, dimensions, whatever term you prefer) that are of interest to users. They are
usually numeric and range bounded; they might also be sortable strings, dates, cate‐
gories, or enumerations (sets of numbers representing non-numeric values). Or they
might be visible areas of data on the information display itself that can be interac‐
tively selected.

Dynamic Queries can also apply to search results. Faceted searches might use a
dynamic query interface to let users explore a rich database of items, such as prod‐
ucts, images, or text.

Why

First, Dynamic Queries are easy to learn. No complicated query language is necessary
at the user’s end; well-understood controls are used to express common-sense
Boolean expressions such as “price > $70 AND price < $100.” They lack the full
expressive power of a query language—only simple queries are possible without mak‐
ing the user interface too complicated—but in most cases, that’s enough. It’s a judg‐
ment call that you need to make.

Second, the immediate feedback encourages open-ended exploration of the data set.
As the user moves a slider thumb, for instance, they see the visible data contract or
expand. As the user adds or removes different subsets of the data, they see where the
subsets go and how they change the display. The user can concoct long and complex
query expressions incrementally, by tweaking this control, then that, then another.
Thus, a continuous and interactive “question and answer session” is carried on
between the user and the data. The immediate feedback shortens the iteration loop so
that exploration is fun and a state of flow is possible.

Third—and this is a little subtler—the presence of labeled dynamic-query controls
clarifies what the queryable attributes are in the first place. If one of the data
attributes is a number that ranges from 0 to 100, for instance, the user can learn that
just by seeing a slider that has 0 at one end and 100 at the other end.

How

The best way to design a dynamic query depends on your data display, the kinds of
queries you think should be made, and your toolkit’s capabilities. As mentioned, most
programs map data attributes to ordinary controls that live next to the data display.
This allows querying on many variables at once, not just those encoded by spatial fea‐
tures on the display. Plus, most people know how to use sliders and buttons.

456 | Chapter 9: Showing Complex Data

Other programs afford interactive selection directly on the information display. Usu‐
ally the user draws a box around a region of interest and the data in that region is
removed (or retained while the rest of the data is removed). This is manipulation at
its most direct, but it has the disadvantage of being tied to the spatial rendering of the
data. If you can’t draw a box around it—or otherwise select points of interest—you
can’t query on it! See the Data Brushing pattern for the pros and cons of a very similar
technique.

Back to controls, then: picking controls for dynamic queries is similar to the act of
picking controls for any kind of form—the choices arise from the data type, the kind
of query to be made, and the available controls. Here are some common choices:

• Sliders to specify a single number within a range.
• Double sliders or slider pairs to specify a subset of a range: “Show data points

that are greater than this number, but less than this other number.”
• Radio buttons or drop-down (combo) boxes to pick one value out of several pos‐

sible values. You might also use these to pick entire variables or data sets. In
either case, “All” is frequently used as an additional metavalue.

• Checkboxes or toggles to pick an arbitrary subset of values, variables, or data
layers.

• Text fields to type in single values. Remember that text fields leave more room for
errors and typos than do sliders and buttons, but are better for precise values.

The Patterns | 457

Example

The Apple Health interface (see Figure 9-18) allows the user to tap on days and view
the individual day’s activity.

Figure 9-18. Apple Health

458 | Chapter 9: Showing Complex Data

Data Brushing

What

Allow the user to select data items in one view and show the same data selected
simultaneously in another view. The example in Figure 9-19 shows a timeline that
allows the user to easily shift the view over time and changes the data points on the
map as well as the data on the side panel on the right.

Figure 9-19. American Panorama, Foreign-Born Population

Use when

You can show two or more information graphicsat a time. You might have two line
plots and a scatter plot, or a scatter plot and a table, or a diagram and a tree, or a map
and a timeline, whatever—as long as each graphic is showing the same data set.

The Patterns | 459

Why

Data Brushing offers a very rich form of interactive data exploration. First, the user
can select data points using an information graphic itself as a “selector.” Sometimes,
it’s easier to find points of interest visually than by less-direct means, such as Dynamic
Queries—outliers on a plot can be seen and manipulated immediately, for instance,
whereas figuring out how to define them numerically might take a few seconds (or
longer). “Do I want all points where X > 200 and Y > 5.6? I can’t tell; just let me draw
a box around that group of points.”

Second, by seeing the selected or “brushed” data points simultaneously in the other
graphic(s), the user can observe those points in at least one other graphical context.
That can be invaluable. To use the outlier example again, the user might want to
know where those outliers are in a different data space, indexed by different variables
—and by learning that, the user might gain immediate insight into the phenomenon
that produced the data.

A larger principle here is coordinated or linked views. Multiple views on the same data
can be linked or synchronized so that certain manipulations—zooming, panning,
selection, and so forth—done to one view are simultaneously shown in the others.
Coordination reinforces the idea that the views are simply different perspectives on
the same data. Again, the user focuses on the same data in different contexts, which
can lead to insight.

How

First, how will users select or “brush” the data? It’s the same problem you’d have with
any selectable collection of objects: users might want one object or several, contigu‐
ous or separate, selected all at once or incrementally. Consider these ideas:

• Tapping keywords
• Single selection by clicking with the mouse
• Selecting a range by turning them on and off

As you can see, it’s important that the other views react immediately to Data Brush‐
ing. Make sure the system can handle a fast turnaround.

If the brushed data points appear with the same visual characteristics in all the data
views, including the graphic in which the brushing occurs, the user can more easily
find them and recognize them as being brushed. They also form a single perceptual
layer (see the “Preattentive Variables: What’s Related to What?” on page 435). Color
hue is the preattentive variable most frequently used for brushing, probably because
you can see a bright color so easily even when your attention is focused elsewhere.

460 | Chapter 9: Showing Complex Data

Examples

Maps lend themselves well to Data Brushing, because data shown in a geographic
context can often be organized and rendered in other ways, as well. A super delightful
variation of the data brushing is in the AllTrails app (Figure 9-20, left). When the user
moves their finger over the trail map on the bottom of the screen, the trail map
pointer (the blue dot) moves along the trail to indicate the elevation and grade at that
point in the trail.

Trulia’s Search map view (Figure 9-20, right) shows available listings that fit within
the search parameters by plotting them on a map. Users can filter the results of the
specific boundaries outlined on the map by tapping or clicking Local Info and seeing
data specific to the area within the boundaries.

Figure 9-20. AllTrails app and Trulia Search results

The Patterns | 461

Multi-Y Graph

What

Stack multiple graph lines in one panel to share the same x-axis (Figure 9-21).

Figure 9-21. New York Times graphic

Use when

You present two or more graphs, usually simple line plots, bar charts, or area charts
(or any combination thereof). The data in those graphs all share the same x-axis—
often a timeline, but otherwise they describe different things, perhaps with different
units or scale on the y-axis. You want to encourage the viewer to find “vertical” rela‐
tionships among the data sets being shown—correlations, similarities, unexpected
differences, and so on.

Why

Aligning the graphs along the x-axis first informs the viewer that these data sets are
related, and then it lets them make side-by-side comparisons of the data.

How

Stack one graph on top of the other. Use one x-axis for both, but separate the y-axes
into different vertical spaces. If the y-axes need to overlap somewhat, they can, but try
to keep the graphs from visually interfering with each other.

462 | Chapter 9: Showing Complex Data

Sometimes, you don’t need y-axes at all; maybe it’s not important to let the user find
exact values (or maybe the graph itself contains exact values, such as labeled bar
charts). In that case, simply move the graph curves up and down until they don’t
interfere with each other.

Label each graph so that its identity is unambiguous. Use vertical grid lines if possible;
they let viewers follow an X value from one data set to another, for easier comparison.
They also make it possible to discover an exact value for a data point of interest (or
one close to it) without making the user take out a straightedge and pencil.

Examples

Google Trends allows a user to compare the use frequency of different search terms.
The example in Figure 9-22 shows two sports-related terms that are comparable in
volume, so they’re easy to compare in one simple chart. But Google Trends goes
beyond that. Relative search volume is illustrated on the top chart, whereas the bot‐
tom chart shows news reference volume. The metrics and their scales are different, so
Trends uses two separate y-axes.

Figure 9-22. Google Trends

The example in Figure 9-23 shows an interactive Multi-Y Graph constructed in MAT‐
LAB. You can manipulate the three data traces’ y-axes, color-coded on the left, with
the mouse—you can drag the traces up and down the graph, “stretch” them vertically
by sliding the colored axis end caps, and even change the displayed axis range by edit‐
ing the y-axis limits in place. Here’s why that’s interesting: you might notice that the
traces look similar, as though they were correlated somehow—all three drop in value
just after the vertical line labeled 1180, for instance. But just how similar are they?
Move them and see.

The Patterns | 463

Figure 9-23. MATLAB plot

Your eyes are very, very good at discerning relationships among data graphics. By
stacking and superimposing the differently scaled plot traces shown in Figure 9-24, a
user might gain valuable insight into whatever phenomenon produced this data.

Figure 9-24. MATLAB plot, again

The information graphics in a multi-Y display don’t need to be traditional graphs.
The weather chart shown in Figure 9-25 uses a series of pictograms to illustrate
expected weather conditions; these are aligned with the same time-based x-axis that
the graph uses. (This chart hints at the next pattern, Small Multiples.)

464 | Chapter 9: Showing Complex Data

Figure 9-25. Weather chart from The Weather Channel

Small Multiples

What

Small multiples display small pictures of the data using two or three data dimen‐
sions. The images are tiled on the screen according to one or two additional data
dimensions, either in a single comic-strip sequence or in a 2D matrix.

The climate heat map (Figure 9-26) shows data over time in small thumbnails to
show dense information in a manner that is easy to understand.

Figure 9-26. Climate heat map, from a University of Oregon publication

The Patterns | 465

Use when

You need to display a large data set with more than two dimensions or independent
variables. It’s easy to show a single “slice” of the data as a picture—as a plot, table,
map, or image, for instance—but you find it difficult to show more dimensions than
that. Users might be forced to look at one plot at a time, flipping back and forth
among them to see differences.

When using Small Multiples, you need to have a fairly large display area available.
Mobile devices rarely do this well, unless each individual picture is very tiny. Use this
pattern when most users will be seeing these on a large screen or on printed paper.

That being said, sparklines are a particular type of Small Multiples that can be very
effective at tiny scales, such as in running text or in a column of table cells. They are
essentially miniature graphs, stripped of all labels and axes, created to show the shape
or envelope of a simple data set.

Why

Small Multiples are data-rich—they show a lot of information at one time, but in a
comprehensible way. Every individual picture tells a story. But when you put them all
together and demonstrate how each picture varies from one to the next, an even big‐
ger story is told.

As Edward Tufte put it in his classic book, Envisioning Information (Graphics Press),
“Small multiple designs, multivariate and data bountiful, answer directly by visually
enforcing comparisons of changes, of the differences among objects, of the scope of
alternatives.” (Tufte named and popularized Small Multiples in his famous books
about visualization.)

Think about it this way. If you can encode some dimensions in each individual pic‐
ture, but you need to encode an extra dimension that just won’t fit in the pictures,
how could you do it?

Sequential presentation
Express that dimension varying across time. You can play them like a movie, use
Back/Next buttons to screen one at a time, and so on.

3D presentation
Place the pictures along a third spatial axis, the z-axis.

Small multiples
Reuse the x- and y-axes at a larger scale.

Side-by-side placement of pictures lets a user glance from one to the other freely and
rapidly. The user doesn’t need to remember what was shown in a previous screen, as
would be required by a sequential presentation (although a movie can be very

466 | Chapter 9: Showing Complex Data

effective at showing tiny differences between frames). The user also doesn’t need to
decode or rotate a complicated 3D plot, as would be required if you place 2D pictures
along a third axis. Sequential and 3D presentations sometimes work very well, but
not always, and they often don’t work in a noninteractive setting at all.

How

Choose whether to represent one extra data dimension or two. With only one, you
can lay out the images vertically, horizontally, or even line-wrapped, like a comic strip
—from the starting point, the user can read through to the end. With two data
dimensions, you should use a 2D table or matrix—express one data dimension as col‐
umns, and the other as rows.

Whether you use one dimension or two, label the Small Multiples with clear captions
—individually if necessary, or otherwise along the sides of the display. Make sure the
users understand which data dimension is varying across the multiples, and whether
you’re encoding one or two data dimensions.

Each image should be similar to the others: the same size and/or shape, the same axis
scaling (if you’re using plots), and the same kind of content. When you use Small
Multiples, you’re trying to bring out the meaningful differences between the things
being shown. Try to eliminate the visual differences that don’t mean anything.

Of course, you shouldn’t use too many Small Multiples on one screen. If one of the
data dimensions has a range of 1 to 100, you probably don’t want 100 rows or col‐
umns of small multiples, so what do you do? You could bin those 100 values into, say,
five bins containing 20 values each. Or you could use a technique called shingling,
which is similar to binning but allows substantial overlap between the bins. (That
means some data points will appear more than once, but that can be a good thing for
users trying to discern patterns in the data; just make sure it’s labeled well so that they
know what’s going on.)

Some small-multiple plots with two extra encoded dimensions are called trellis plots
or trellis graphs. William Cleveland, a noted authority on statistical graphing, uses this
term, and so do the software packages S-PLUS and R.

Examples

The North American climate graph, at the top of the pattern in Figure 9-26, shows
many encoded variables. Underlying each small-multiple picture is a 2D geographic
map, of course, and overlaid on that is a color-coded “graph” of some climate metric,
such as temperature. With any one picture, you can see interesting shapes in the color
data; they might prompt a viewer to ask questions about why blobs of color appear
over certain parts of the continent.

The Patterns | 467

The Small Multiples display as a whole encodes two additional variable : each column
is a month of the year, and each row represents a climate metric. Your eyes have prob‐
ably followed the changes across the rows, noting changes through the year, and com‐
parisons up and down the columns are easy, too.

The example shown in Figure 9-27 uses the grid to encode two independent variables
—ethnicity/religion and income—into the state-by-state geographic data. The depen‐
dent variable, encoded by color, is the estimated level of public support for school
vouchers (orange representing support, green opposition). The resultant graphic is
very rich and nuanced, telling countless stories about Americans’ attitudes toward the
topic.

Figure 9-27. Geographic and demographic Small Multiples chart

468 | Chapter 9: Showing Complex Data

The Power of Data Visualization
The example in Figure 9-28 is an excellent demonstration of how using data visuali‐
zation done well can be aesthetically pleasing but informative. The Show Your Stripes
information graphics shows temperature change data from 1850 to 2019 using only
simple bars and color. Its designer compiled dense information and simplified it to
inform the viewer. One visual image is doing the work of several charts and graphs in
this compelling image.

Figure 9-28. Show Your Stripes via The Economist, Sept 2019

Yes, a picture can tell a thousand words, but when you add interactivity to these pic‐
tures you increase understanding. The examples in this chapter show that graphical
methods such as maps and diagrams can communicate dense amounts of informa‐
tion in graceful, delightful, and beautiful ways.

The Patterns | 469

https://showyourstripes.info

Chapter 10

Getting Input from Users:
Forms and Controls

Sooner or later, the software you design will probably need to collect information
from people. It might even happen in the first few minutes of interaction. What’s your
login name? What words do you want to search for? Where should we ship your
order?

In this chapter, we look at a number of topics related to getting input from users:

• Guidelines for designing useful, usable forms
• Different forms for different purposes
• Developing effective autocompletion
• Designing complicated controls

Form interactions seem to be easy to design at first. This is for several reasons. Every‐
one is familiar with the standard form elements such as text fields, checkboxes, and
combo boxes. We have more than two decades of interactive form design examples to
choose from. These input controls are also a big part of the user interface (UI) frame‐
works we will review in Chapter 11. All of these interface toolkits have form elements
and controls ready to go, out of the box.

However, you might stuggle with a design that is awkward, difficult for users to
understand, or difficult to complete. Here’s another sample question that can shed
light on the kinds of problems designers need to think about in designing forms and
controls: for what location do you want a weather report? The user might wonder, do
I specify a location by neighborhood, city, region, state, country, postal code, or what?
Are abbreviations OK? What if I misspell it? What if I ask for a city it doesn’t know

471

about? Isn’t there a map to choose from? And why can’t it remember the location I
gave it yesterday, anyhow?

This chapter discusses ways to smooth out these problems. The patterns, techniques,
and controls described here apply mostly to form design—a form being simply a ser‐
ies of question/answer pairs. However, they will also be useful in other contexts, such
as for single controls on web pages or on application toolbars. Input design and form
design are core skills for interaction designers, as you can use them in every genre
and on every platform.

First, let’s review some design guidelines for creating effective, usable forms and
controls.

The Basics of Form Design
Here are a few principles to remember when doing input and form design:

Respect the user’s time and attention
Approach form design with an awareness of how much time and effort it will cost
a person to fill out a form. This cost in their eyes can be higher than the designer
thinks. Make the form as short and simple as possible using the techniques that
we describe in this chapter.

Make sure the user understands the purpose of the form
A form asks the user to do work in exchange for something. The form’s head‐
lines, context, and wording should confirm why it’s asking for this information,
how the information will be used, and what the user will get out of it.

Minimize the number of form inputs
Consider each question or element carefully. It’s unkind to ask the user to do
unnecessary work. If you ask for a US Zip Code, for instance, can you deduce the
city and state? For credit cards, it’s not necessary to ask for the card type (Visa,
Mastercard, etc.) because the first two integers will identity the type of credit
card. Consider not asking for first and last name if an email address can function
as the username.

Minimize visual clutter
Generally, a form is not the place to distract the user with other material. Keep it
simple, clean, and focused.

Group and title the form elements into sections where possible
If you design a long or complicated form, break it up into descriptive Titled Sec‐
tions (see “Titled Sections” on page 238). Group and label the form elements. Use
titles and subtitles to further organize and explain the form.

472 | Chapter 10: Getting Input from Users: Forms and Controls

Consider dynamic, show/hide sections for long, complicated forms
A long or complicated form can be intimidating if everything is displayed all at
once. There is also the increased chance that the user will skip a step among all
the fields. Instead, consider breaking up the form into sections with only the first
section displayed by default. The other sections can be displayed one by one, in
sequence. Optional parts of a form can be always hidden by default.

Use alignment for clear vertical flow
Use layout and alignment so there is a strong vertical flow to the form whether in
one column or more. Align the left edges of the inputs, and use the same vertical
separation as much as possible. The eye should be able to move from label to
input with minimum travel.

Indicate what are required and what are optional fields
Indicating what fields must be filled out in a form is both a courtesy and also a
usability and error-prevention strategy. Should you mark the required fields, or
the optional ones? You will need to decide on a standard approach for all your
forms in your app or website.

Labels, instructions, examples, and help
Use descriptive form labels, input examples, and help text with individual form
fields. Labels are still a best practice for ensuring accessibility by differently abled
people. Avoid lots of placeholder text in fields because it can confuse users into
thinking they filled them out already. Use vocabulary that is appropriate for the
audience and task domain. Don’t be afraid to put instructions into your form if
necessary (and you always have the option of putting instructions in a user-
triggered pop-up or modal window).

Use the width of the input fields to preview the length of the input
Your choice of controls will affect the user’s expectation of what is asked for. A
radio button suggests a one-out-of-many choice, whereas a one-line text field
suggests a single word or phrase. A large, multiline text entry field implies a
longer answer, such as a paragraph.

Accept variations in input formatting
Accept multiple formats for dates, addresses, phone numbers, credit card num‐
bers, and so on, per the Forgiving Format pattern. If you ask for input that needs
to be formatted in a specific way, offer the user examples about how to format it.

Error prevention and validation as quickly as possible
The goal here is to help the user get it right the first time. Give instructions and
examples to make it clear what information is needed. Deploy contextual help in
the form. Show an error message as soon as it becomes clear that the user made a
mistake. Consider giving feedback on a field-by-field basis. Help the person catch
any individual validation errors before submitting the form as a whole. On the

The Basics of Form Design | 473

form, give actionable validation messaging: Indicate which input field is prob‐
lematic, why, and how the user might fix it. See the patterns Password Strength
Meter and Error Messages.

Autocompletion goes a step further by telling the user what input is valid, or by
reminding the user what they entered some previous time, or saving time by
offering the most common entries.

Consider top-aligned labels for mobile and web-responsive designs
Top-aligned labels are those that appear above the user input fields, instead of to
the left. Using this alignment works best for responsive-design screens because
the components can stack vertically without a change to layout. There is less
chance the label and input will become misaligned.

Consider internationalization
Account for the need to offer the form to users in countries and cultures outside
your own. There are the immediate concerns that it be possible for the language
of the form to be changed without breaking the layout (consider different lengths
of translated text strings and different writing directions). There is also the need
to switch to different units, styles, and formatting of numbers, measurements,
dates, times, currencies, and other standards. Beyond that, different data securi‐
tyand privacy legislation might affect what information you can legally gather,
transmit, and store.

Message success
When a user has successfully submitted a form, make sure to let them know this
and specify to them what is going to happen next.

Usability test it
For some reason, when input forms are involved, it’s particularly easy for design‐
ers and users to make radically different assumptions about terminology, possible
answers, intrusiveness, and other context-of-use issues. Do some usability test‐
ing, even if you’re reasonably sure your design is good.

Form Design Continues to Evolve
One major caveat to form design is that it continues to change and evolve. As interac‐
tion designers, we need to consider the pros and cons of new form capabilities.

Required versus optional
The practice of marking required fields with an asterisk (*) is still common. It’s a
good idea in this case to explain in the form what the asterisk means, although many
sites are now omitting the legend. Because this places a slight burden on the user to

474 | Chapter 10: Getting Input from Users: Forms and Controls

1 Budiu, Raluca. “Marking Required Fields in Forms.” Nielsen Norman Group, 16 Jun. 2019, https://oreil.ly/
vPQSQ.

figure out, other approaches are now used. Usability experts Nielsen/Norman Group
says marking all required fields is still the most usable approach.1

One option is to count how many required fields versus optional fields there are and
then label only the smaller number—the exceptions to the majority. A second option
is to display only required fields, omitting all optional fields. Explaining that all fields
are required helps remove confusion, but many forms do without this notice, as well.

A third way is to not mark required fields, and mark optional fields with the word
“optional” next to the label or input field. This is the standard approach as used in the
United States Web Design System and the UK Government web design standards.

Floating labels
It’s now possible to display labels for input fields inside the form elements themselves.
The labels display at full size by default, similar to placeholder text in an input field.
However, if a user selects the input field, the floating label becomes small-sized text
and moves up to be aligned close to the inside top of the input field. It gets out of the
way but remains visible as the user enters text. Although it gives a snappy animation
to your forms, consider whether this will be usable for your audience.

Further Reading
There are a number of design books focused specifically on form design. Here are
three to consider if you want a more extensive analysis:

• Enders, Jessica. Designing UX: Forms: Create Forms That Don’t Drive Your Users
Crazy. SitePoint, 2016.

• Jarrett, Caroline, and Gerry Gaffney. Forms That Work: Designing Web Forms for
Usability. Elsevier/Morgan Kaufmann, 2010.

• Wroblewski, Luke. Web Form Design: Filling in the Blanks. Rosenfeld Media,
2008.

The Basics of Form Design | 475

https://oreil.ly/vPQSQ
https://oreil.ly/vPQSQ
https://oreil.ly/VH3Jp
https://oreil.ly/oQV6S

The Patterns
Most of these patterns describe controls—specifically, how you can combine input
controls with other controls and text in ways that make them easier to use. Some pat‐
terns define structural relationships between elements, such as Drop-down Chooser
and Fill-in-the-Blanks.Others, such as Good Defaults and Smart Prefills and Autocom‐
pletion, discuss the values of controls and how those values change.

The patterns in the list that follows deal primarily with text fields. That shouldn’t be
surprising. Text fields are as common as dirt, but they don’t make it easy for users to
figure out what should go in them. They’re easiest to use when presented in a context
that makes their usage clear. The patterns give you many ways to create that context.

• Forgiving Format
• Structured Format
• Fill-in-the-Blanks
• Input Hints
• Input Prompt
• Password Strength Meter
• Autocompletion

The next two patterns deal with controls other than text fields. Drop-down Chooser
describes a way to create a custom control, and List Builder, referenced in the control
table shown earlier, describes a commonly reinvented combination of controls that
lets users construct a list of items.

You should design the remaining patterns into the whole form. They apply equally
well to text fields, drop- down menus, radio buttons, lists, and other stateful controls,
but you should use them consistently within a form (or within a dialog box, or even
an entire application).

• Good Defaults and Smart Prefills
• Error Messages

Patterns from other chapters apply to form design, as well. You can place labels above
the form fields (at the cost of vertical space, but with plenty of horizontal room for
long labels), or left-aligned along the left edge of the form. The choice can affect the
speed of form completion.

Chapters 3 and 4 also give you some larger-scale design possibilities. A gatekeeper
form—any form that stands between the user and their immediate goal, such as

476 | Chapter 10: Getting Input from Users: Forms and Controls

sign-up or purchase forms—should be in Center Stage, with very few distractions on
the page. Alternatively, you might make it a Modal Panel, layered over the page.

If you have a long form that covers different topics, you might consider breaking it up
into Titled Sections or even separate pages. (Tabs tend to work poorly as grouping
mechanisms for forms.) If you break up a form into a sequence of pages, use the Wiz‐
ard and Progress Indicator patterns to show users where they are and where they’re
going.

Finally, forms should use a Prominent “Done” Button (Chapter 8) for the completion
or submission action. If you have secondary actions, such as a form reset or a help
link, make those less prominent.

Forgiving Format

What

Permit users to enter inputs in a variety of choices, formats, and syntax, and make the
application interpret it intelligently. Weather.com (Figure 10-1) shows an example of
this.

Figure 10-1. Weather.com

Use when

Your UI asks for data that users might type with an unpredictable mix of vocabulary
or styling (whitespace, hyphens, abbreviations, or capitalizations). More generally, the
UI can accept input of various kinds from the user—different meanings, formats, or
syntax. But you want to keep the interface visually simple.

The Patterns | 477

http://Weather.com
http://Weather.com

Why

The user just wants to get something done, not think about “correct” formats and
complex UI . Computers are good at figuring out how to handle input of different
types (up to a point, anyway). It’s a perfect match: let the user type whatever they
need, and if it’s reasonable, make the software do the appropriate thing with it.

This can help simplify the UI tremendously, making it much easier to figure out. It
can even remove the requirement for an Input Hints or Input Prompt, though they’re
often seen together, as in the example in Figure 10-1.

You might consider Structured Format as an alternative, but that pattern works best
when the input format is entirely predictable (and usually numeric, like telephone
numbers).

How

The catch: it turns a UI design problem into a programming problem. You need to
think about what kinds of text a user is likely to type in. Maybe you ask for a date or
time, and only the format varies—that’s an easy case. Or maybe you ask for search
terms, and the variation is what the software does with the data. That’s more difficult.
Can the software disambiguate one case from another? How?

Each application uses this pattern differently. Just make sure the software’s response
to various input formats matches what users expect it to do. Test, test, and test again
with real users.

Examples

The New York Times uses Forgiving Format in several features that need information
from users. Figure 10-2 shows examples from its real estate search and from its finan‐
cial quotes feature.

Figure 10-2. Two search fields in the New York Times website hint at the variety of possi‐
ble formats they will accept

478 | Chapter 10: Getting Input from Users: Forms and Controls

Google Finance (Figure 10-3) helps users find the correct stock symbol by mapping
what they type to the most likely matching stock symbols. It’s not necessary to know
or enter the exact stock symbol.

Figure 10-3. Adding a stock to a personal watchlist in Google Finance

The Patterns | 479

Consider forms that request credit card numbers from the user. As long as 16 digits
are typed, why should the form care whether the user separates them by spaces, or by
hyphens, or by nothing at all? PayPal, for example, allows customers to enter their
credit card number however they want. The credit card number field accepts spaces
as separators, hyphens, or no spaces. Paypal standardizes the format immediately
afterward. (Figure 10-4).

Figure 10-4. PayPal

480 | Chapter 10: Getting Input from Users: Forms and Controls

Figure 10-5 comes from Google Calendar’s tool for setting up a meeting. Look at the
“from” and “to” fields in the screenshot—you don’t need to give it a fully defined date,
like what’s in the text fields now. If today is July 13 and you want to set up a meeting
for July 20, you can type any of the following terms:

• Saturday 7/20
• Saturday 20/7
• 20/7/2019
• 7/20/2019
• 20/7
• 7/20

The specified date then is “echoed back” to the user in the appropriate format for the
user’s language and location.

Figure 10-5. Google Calendar

The Patterns | 481

Structured Format

What

Instead of using one text field, use a set of text fields that reflect the structure of the
requested data.

Use when

Your interface requests a specific kind of text input from the user, formatted in a cer‐
tain way. That format is familiar and well defined, and you don’t expect any users to
need to deviate from the format you expect. Examples include credit card informa‐
tion, local telephone numbers, and license strings or numbers.

It’s generally a bad idea to use this pattern for any data in which the preferred format
might vary from user to user. Consider especially what might happen if your interface
is used in other countries. Names, addresses, postal codes, and telephone numbers all
have different standard formats in different places. Consider using Forgiving For‐
matin those cases.

Why

The structure of the text fields gives the user a clue about what kind of input is being
requested. Expectations are clear. The user is spared from wondering whether they
need to type in any spaces, slashes, or hyphens. The structure already takes care of
that.

This pattern usually is implemented as a set of small text fields instead of one big one.
That alone can reduce data entry errors. It’s easier for someone to double-check sev‐
eral short strings (two to five characters or so) than one long one, especially when
numbers are involved. Likewise, it’s easier to transcribe or memorize a long number
when it’s broken up into chunk . That’s how the human brain works.

Contrast this pattern to Forgiving Format, which takes the opposite tack: it allows you
to type in data in any format, without providing structural evidence of what’s being
asked for. (You can use other clues, instead, like Input Hints.) Structured Format is
better for very predictable formats, Forgiving Format for open-ended input.

How

Design a set of text fields that reflect the format being asked for. Keep the text fields
short, as clues to the length of the input.

After the user has typed all the digits or characters in the first text field, confirm it by
automatically moving the input focus to the next field. The user can still go back and

482 | Chapter 10: Getting Input from Users: Forms and Controls

re-edit the first one, of course, but now they know how many digits are required
there.

You can also use Input Prompt to give the user yet more clues about what’s expected.
In fact, structured format fields for dates often do use Input Prompt, such as “dd/mm/
yyyy”.

Examples

Airbnb uses structured format in the form for the customer to enter their security
code to verify their identity (Figure 10-6). There are four placeholder dashes of one
digit each. This corresponds to the code they are sent. This is structured format for
the four-digit code, with the insertion point jumping automatically to the next integer
field when the user types in a digit.

Figure 10-6. Airbnb security code entry form

The Patterns | 483

At Official Payments, a service provider to the State of California, the online forms
for making tax payments include structured data (Figure 10-7). The taxpayer’s tele‐
phone number fields and the tax date range fields are separate and have added sym‐
bols to reinforce the proper data format. Telephone number and date fields are
structured to promote successful data entry and avoid errors.

Figure 10-7. Officialpayments.com

Similarly, in Outlook for Microsoft Office 360, scheduling a meeting brings up a dia‐
log window with date and time selectors (Figure 10-8). These are broken up into indi‐
vidual input fields so that the user must step through each one in sequence. It’s not
possible to select the entire date string or time string and type in new values, or try
alternates such as DD/MM/YYYY. Each month, day, year, hour, minute and am/pm
string must be entered separately, in the prescribed place and format (unless using the
date picker drop-down list).

484 | Chapter 10: Getting Input from Users: Forms and Controls

http://Officialpayments.com

Figure 10-8. Microsoft Outlook/Office 360

Fill-in-the-Blanks

What

Arrange one or more fields in the form of a prose sentence or phrase, with the fields
as “blanks” to be filled in by the user. San Francisco Public Library (Figure 10-9) uses
this approach for its search.

Figure 10-9. San Francisco Public Library

Use when

You need to ask the user for input, usually one-line text, a number, or a choice from a
drop-down list. You tried to write it out as a set of label/control pairs, but the labels’
typical declarative style (such as “Name:” and “Address:”) isn’t clear enough for users
to understand what’s going on. You can, however, verbally describe the action to be
taken once everything’s filled out, in an active-voice sentence or phrase.

Why

Fill-in-the-Blanks helps to make the interface self-explanatory. It makes it easier to
construct rules or conditions. After all, we all know how to finish a sentence. (A verb
phrase or noun phrase will do the trick, too.) Seeing the input, or “blanks,” in the con‐
text of a verbal description helps the user understand what’s going on and what’s
required.

The Patterns | 485

2 See their book About Face 2.0: The Essentials of Interaction Design (Wiley), page 205.

How

Write the sentence or phrase using all your word-crafting skills. Use controls in place
of words.

If you’re going to embed the controls in the middle of the phrase instead of at the end,
this pattern works best with text fields, drop-down list , and combo boxes—in other
words, controls with the same form factor (width and height) as words in the sen‐
tence. Also, make sure the baseline of the sentence text lines up with the text baselines
in the controls, or it will look sloppy. Size the controls so that they are just long
enough to contain the user’s choices, and maintain proper word spacing between
them and the surrounding words.

This is particularly useful for defining conditions, as one might do when searching
for items or filtering them out of a display. The Excel and eBay examples in Figures
10-10, 10-11, and 10-12 illustrate the point. Robert Reimann and Alan Cooper
describe this pattern as an ideal way to handle queries; their term for it is natural lan‐
guage output.2

There’s a big “gotcha” in this pattern, however: it becomes very difficult to properly
localize the interface (convert it to a different language) because comprehension now
depends upon word order in a natural language. For some international products or
websites, that’s a nonstarter. You might need to rearrange the UI to make it work in a
different language; at the very least, work with a competent translator to make sure
the UI can be localized.

Examples

Microsoft Excel makes extensive use of Fill-in-the-Blanks for its conditional format‐
ting rules. These allow users to set up automatic cell highlighting based on logical
rules so that it’s easy to see important status or results. Using the sentence-style for‐
mat of Fill-in-the-Blanks makes it easy to specify the desired logic.

In Figures 10-10 and 10-11, we see two different ways Excel enables this. In the “Clas‐
sic” example, a sequence of drop-down menus with phrases allows the user to set up a
fairly complicated If-then instruction. The user selects a series of statements and con‐
ditions in a sentence-like sequence to specify the desired logic. In Figure 10-10, read‐
ing the fill-in-the-blank structure sounds very close to natural language instructions:
“Format only cells that contain a cell value between 33 and 66. Format them with a
yellow fill and bold yellow text.”

486 | Chapter 10: Getting Input from Users: Forms and Controls

In Figure 10-11, we’re creating instructions for when to display green, yellow, and red
icons. There’s more to configure here, but Excel lays out a stack of three fill-in-the-
blank statement builders. These are more compact, using logical symbols like “>=”
instead of writing out “greater than or equal to.” Still, it’s easy to construct the display
logic by stepping through the fill-in-the-blanks structure. It’s a little more work, but
for the green icon, reading left to right, we can get “Display the green icon when the
value is greater than or equal to 67 percent.” Excel takes the numerical value that the
user enters here and automatically prefills the fill-in-the-blank logic for the second,
yellow icon so that it doesn’t conflict with the first.

Figure 10-10. Classic conditional fomatting in Microsoft Excel

Figure 10-11. Icon Set conditional formatting in Microsoft Excel

The Patterns | 487

When users search for items on eBay, they can use the Advanced Search form to spec‐
ify various criteria. The form shown in Figure 10-12 has several examples of Fill-in-
the-Blanks.

Figure 10-12. eBay search filter form

488 | Chapter 10: Getting Input from Users: Forms and Controls

Input Hints

What

Beside or below an empty text field, place a phrase or example that explains what is
required or gives additional detail about what is being requested.

Use when

The interface presents a text field, but the kind of input it requires isn’t obvious to all
users. You don’t want to put more than a few words into the text field’s label.

Why

A text field that explains what goes into it frees users from having to guess. The hint
provides context that the label itself may not provide. If you visually separate the hint
from the main label, users who know what to do can more or less ignore the hint, and
stay focused on the label and contro .

How

Write a short example or explanatory sentence, and put it below or beside the text
field. The hint can be visible all the time, or it can appear when the text field receives
input focus.

Keep the text in the hint small and inconspicuous, though readable; consider using a
font two points smaller than the label font. (A one-point difference will look more
like a mistake than an intended font-size change.) Also, keep the hint short. Beyond a
sentence or two, many users’ eyes will glaze over, and they’ll ignore the text
altogether.

Examples

Figure 10-13 shows two short input hints in the 1-800-Flowers registration page. The
advantage of Input Hints is that it leaves the control blank—the user is forced to con‐
sider the question and give an answer, and there is no chance the input field will be
skipped over because it looks already filled in.

The Patterns | 489

http://1800flowers.com

Figure 10-13. The 1-800-Flowers registration screen

The printing dialog boxes used by several Microsoft Office applications supply an
Input Hints below a Forgiving Format text field—it takes page numbers, page ranges,
or both (Figure 10-14). The hint explains how to use the Page Range print feature.
The hint is very useful to anyone who’s never had to use the Page Range option, but
users who already understand it don’t need to focus on the written text; they can just
go straight for the input field.

490 | Chapter 10: Getting Input from Users: Forms and Controls

Figure 10-14. Microsoft Word print dialog box

Longer descriptions can be used in Input Hints when necessary. The examples from
Gmail’s registration page (Figure 10-15), are about as long as you’d want to put next
to a text field. Indeed, Google offers additional information, but the user must select
the link “Why we ask for this information”—which loads a web page in a new
browser window. It’s good customer service to explain what the company policy is,
but most users will never follow a link when they’re filling out a form, especially if
they’re trying to get through it quickly and don’t have major privacy concerns. So,
don’t depend on linked pages to convey critical information.

The Patterns | 491

Figure 10-15. Gmail registration page

Apple places Input Hints on the right of the form, aligning the controls with their
hints (Figure 10-16). This is a graceful way to structure a page full of Input Hints.

Figure 10-16. Apple checkout screen

492 | Chapter 10: Getting Input from Users: Forms and Controls

Some forms show Input Hints only when the focus is on the text field itself, or only
when a condition is met, as Yelp does (see Figure 10-17). This hint appears only after
the user starts composing their password but has not included a required character.
Otherwise, the hints are hidden. This is nice because the hidden hints don’t clutter the
interface or add visual noise; however, the user doesn’t see them at all until they click
(or tab into) the text field. If you use these, note that you must leave space for them in
the interface, or have it expand.

Figure 10-17. Yelp password input hint

Trunk Club (Figure 10-18) offers a fairly compact, vertical registration form. When
the user selects the Password field, the form opens up to display the password hints.
That is, the password hints appear only when the user tabs into the password field.

Figure 10-18. Trunk Club

The Patterns | 493

Input Prompt

What

Prefill a text field with an example input or instructional text that helps the user with
what to do or type. This is also called placeholder text.

Use when

The UI presents a text field, drop-down list, or combo box for input. Normally you
would use a good default value, but you can’t in this case—perhaps there is no reason‐
able default. The examples from the Blueprintjs UI Toolkit (Figure 10-19) show how
prompts can help explain the function of the input field.

Figure 10-19. Blueprintjs UI Toolkit; four example inputs with prompts

Why

It helps make the UI self-explanatory. Like Input Hints, an Input Prompt is a handy
way of supplying help information for controls whose purpose or format might not
be immediately clear.

With Input Hints, someone quickly scanning the UI can easily ignore the hint (or
miss it entirely). Sometimes this is your desired outcome. But an Input Prompt sits
right where the user will type, so it can’t be ignored. The advantage here is that the
user doesn’t have to guess whether they have to deal with this control or not—the
control itself tells them to. (Remember that users don’t fill out forms for fun—they’ll
do as little as needed to finish up and get out of there.) A question or an imperative
“Fill me in!” is likely to be noticed.

494 | Chapter 10: Getting Input from Users: Forms and Controls

Not the same as floating labels. Contemporary form design frequently uses “float
labels” (see Brad Frost’s article on Float Labels). This uses HTML label elements
inside the form fields, very similar to input prompts, for the sake of elegance and sim‐
plicity. However, an input prompt disappears when the focus is on a form input that
has prompt text. Floating labels move and change size but do not disappear on focus.
Look again at Figure 10-15 (the Gmail registration screen); there are no labels outside
the form inputs. The label “Phone number (optional)” and the next form input label
“Recovery email address (optional)” are actually floating labels inside the input fields.
In this case, input prompts are redundant. The phone number field has been selected,
and instead of the text vanishing completely (formerly a huge drawback of input
prompts), the label has moved up to the top edge of the input field. The user can still
refer to it, and not need to remember it. On the other hand, only using floating labels
can be problematic when you need to have both label text and input prompt text to
explain different information.

How

Choose an appropriate prompt string:

• For a drop-down list, use Select, Choose, or Pick
• For a text field, use Type or Enter
• A short verb phrase

End it with a noun describing what the input is, such as “Choose a state,” “Type your
message here,” or “Enter the patient’s name.” Put this phrase into the control where
the value would normally be. (The prompt itself shouldn’t be a selectable value in a
drop down; if the user selects it, it’s not clear what the software should do with it.)

Because the point of the exercise was to tell the users what they were required to do
before proceeding, don’t let the operation proceed until they’ve done it! As long as the
prompt is still sitting untouched in the control, disable the button (or other device)
that lets the user finish this part of the operation. That way, you won’t need to throw
an error message at the user.

For text fields, put the prompt back into the field as soon as the user erases the typed
response.

Use Good Defaults and Smart Prefills instead of an Input Prompt when you can make a
very accurate guess about what value the user will put in. The user’s email address
might already have been typed somewhere else, for instance, and the originating
country can often be detected by websites.

The Patterns | 495

https://oreil.ly/QqVjd

Examples

Lyft (Figure 10-20) deploys a form with an Input Prompt. The Input Prompt displays
by default, and disappears when the user begins typing. If the user deletes their entry,
the input prompt text returns.

Figure 10-20. Lyft mobile app input prompt

496 | Chapter 10: Getting Input from Users: Forms and Controls

Password Strength Meter

What

Give the user immediate feedback on the validity and strength of a new password
while it is being typed.

Use when

The UI asks the user to choose a new password. This is quite common for site regis‐
trations. Your site or system cares about having strong passwords, and you want to
actively help users choose good ones.

Why

Strong passwords protect both the individual user and the entire site, especially when
the site handles sensitive information and/or social interactions. Weak passwords
ought to be disallowed because they permit break-ins.

A Password Strength Meter gives immediate feedback to the user about their new
password—is it strong enough or not? Do they need to make up a new one, and if so,
with what characteristics (numbers, capital letters, etc.)? If your system is going to
reject weak passwords, it’s usually best to do it instantly, not after the user has submit‐
ted the registration form.

How

While the user types their new password or after keyboard focus leaves the text field,
show an estimate of the password strength beside the text field. At minimum, display
a text and/or graphic label indicating a weak, medium, or strong password, and spe‐
cial wording to describe a too-short or invalid password. Colors help: red for unac‐
ceptable, green or blue for good, and some other color (often yellow) in between.
Yelp’s password strength meter is a good example of this (Figure 10-21).

If you can, show additional text with specific advice on how to make a weak password
better—a minimum length of eight characters (for instance), or the inclusion of num‐
bers or capital letters. A user might get frustrated if they repeatedly fail to produce a
valid password, so help them be successful.

The Patterns | 497

Figure 10-21. Yelp password strength meter

Also, the form containing the password field should use Input Hints or other text to
explain this beforehand. A short reminder of good password heuristics can be useful
to users who need reminders, and if your system will actually reject weak passwords,
you should warn the user about it before they finish the form. Many systems require a
minimum number of characters for a valid password, such as six or eight.

By default, don’t show the password, but you might consider offering a toggle with
which the user can view their password. Don’t make suggestions of alternative pass‐
words. General hints are all you can really give.

498 | Chapter 10: Getting Input from Users: Forms and Controls

An explanation of password security is beyond the scope of a UI pattern. There are
excellent online and print references for this topic, however, should you need to
understand it more deeply.

Examples

GitHub’s password strength meter (Figure 10-22) takes a contemporary approach that
converts the password requirements or conditions (displayed as input hints) into a
kind of meter. This could also be considered a kind of checkmark process. The user
can read the requirements and follow them directly, of course. As they type, certain
key words and phrases in the hint change from red (password requirement not met)
to green (requirement is met). In this way, the user can adjust their password as they
type to create a good one.

Figure 10-22. GitHub password strength meter states

The Patterns | 499

Airbnb does a very similar thing, except that it makes the password meter into an
explict checklist that updates as the user types (Figure 10-23)

Figure 10-23. Airbnb password strength meter states

H&M uses a highly compact checklist style password strength meter (Figure 10-24).
Again, it is presented as an input hint that is just a brief set of phrases. As the user
enters a strong password, the requirements become checked.

500 | Chapter 10: Getting Input from Users: Forms and Controls

Figure 10-24. H&M password strength meter states

Retailer Menlo Club uses a minimalist approach, as well (Figure 10-25). It chose a
classic thermometer-style password strength meter that uses just color and length.
There is no input hint or instructions. As the user enters a password, the color bar
“fills in” the meter, changing from red to yellow and finally to green.

Figure 10-25. Menlo Club password strength meter

The Patterns | 501

Glassdoor offers another minimalist approach (Figure 10-26). There is an input hint
for the password, but the requirements are light. The password strength indicator has
just two states: Red with warning icon, meaning not a compliant password, and a
green checkmark, meaning the password is acceptable.

Figure 10-26. Glassdoor password strength meter. This is reduced to just two password
strength states: The rating is either “warning/error” or “OK.”

Autocompletion
Search becomes much more efficient and powerful if you add autocompletion. In real
time, as the searcher enters their term(s) into the search input field, offer the most
likely match based on the available string of characters. Offering up the most popular
or most frequently searched terms is often part of making smart suggestions here.
The benefit is that searchers save time because a match for their intent appears for
selection without having to enter their entire search string. Amazon (Figure 10-27)
offers an example of this capability in action.

502 | Chapter 10: Getting Input from Users: Forms and Controls

Figure 10-27. Amazon autocomplete

What

As the user types into a text field, anticipate the possible answers, show a selectable
list of them, and automatically complete the entry when appropriate.

Use when

The user types something predictable, such as a URL, the user’s own name or address,
today’s date, or a filename. You can make a reasonable guess as to what the user is
attempting to type—perhaps there’s a saved history of things this user has previously
typed, for instance, or perhaps they are picking from a set of preexisting values, such
as a list of filenames in a directory.

Search boxes, browser URL fields, email fields, common web forms (such as site reg‐
istration or purchase), text editors, and command lines all seem to be much easier to
use when supported by Autocompletion.

Predictive and social algorithms now drive autocomplete, as well. Popular, trending
or most commonly entered search terms populate search engine autocompletes.

The Patterns | 503

Why

Autocompletion saves time, energy, cognitive burden, and wrist strain for the user. It
turns a laborious typing effort into a simple pick list (or less, if a single completion
can be reliably supplied). You can thus save your users countless seconds of work, and
contribute to the good health of thousands of wrists.

When the typed entries are long and difficult to type (or remember), like URLs or
email addresses, Autocompletion is quite valuable. It reduces a user’s memory burden
by supplying “knowledge in the world” in the form of a drop-down list. An additional
benefit can be error prevention: the longer or stranger the string that must be typed,
the greater the odds of the user making a typographical error. Autocompleted entries
have no such problems.

For mobile devices, it’s even more valuable. Typing text on a tiny device is no fun; if a
user needs to enter a long string of letters, appropriate Autocompletion can save them
a great deal of time and frustration. Again, email addresses and URLs are excellent
candidates to support mobile email and web usage.

Autocompletion is also common in text editors and command-line UI . As users type
commands or phrases, the application or shell might offer suggestions for comple‐
tion. Code editors and operating system shells are well suited for this, because the
language used is limited and predictable (as opposed to a human language, such as
English); it’s therefore easier to guess what the user tries to type.

Finally, lists of possible autocompletions can serve as a map or guide to a large world
of content. Search engines and site-wide search boxes do this well—when the user
types the beginning of a phrase, an Autocompletion drop-down list shows likely com‐
pletions that other people have typed (or that refer to available content). Thus, a
searcher can get a view into the public mental landscape, the trends among the vast
numbers of people online. Very often they are seeking the same things. This offers a
curious or uncertain user a way to navigate based on the wisdom (or curiosity) of
crowds.

How

With each additional character that the user types, the software quietly forms a list of
the possible completions to that partially entered string. If the user enters one of a
limited number of possible valid values, use that set of valid values. If the possible val‐
ues are wide open, one of these might supply completions:

• Previous entries typed by this user, stored in a preferences or history mechanism
• Common phrases that many users have used in the past, supplied as a built-in

“dictionary” for the application

504 | Chapter 10: Getting Input from Users: Forms and Controls

• Possible matches drawn from the content being searched or perused, as for a site-
wide search box

• Other artifacts appropriate to the context, such as company-wide contact lists for
internal email

• Most popular or frequently submitted request strings

From here, you can approach the interaction design of Autocompletion in two ways.
One is to show the user a list of possible completions on demand—for example, by
pressing the Tab key—and let the user choose one explicitly by picking from that list.
Many code editors do this. It’s probably better used when the user would recognize
what they want when they see it but might not remember how to type it without help.
“Knowledge in the world is better than knowledge in the head.”

The other way is to wait until there’s only one reasonable completion and then put it
in front of the user, unprompted. Word does this with a tool tip; many forms do it by
filling in the remainder of the entry but with selection turned on, so another key‐
stroke would wipe out the autocompleted part. Either way, the user gets a choice
about whether to retain the Autocompletion or not—and the default is to not keep it.

Make sure that Autocompletion doesn’t irritate users. If you guess wrong, the user
won’t like it—they then must erase the Autocompletion and retype what they meant in
the first place, avoiding having Autocompletion pick the wrong completion yet again.
These interaction details can help prevent irritation:

• Always give the user a choice to take the completion or not take it; default to
“no.”

• Don’t interfere with ordinary typing. If the user intends to type a certain string
and just keeps typing in spite of the attempts at autocompletion, make sure the
result is what the user intended to type.

• If the user keeps rejecting a certain autocompletion in one place, don’t keep offer‐
ing it. Let it go at some point.

• Guess correctly.

The Patterns | 505

Examples

Many email clients, of course, use Autocompletion to help users fill in To: and CC:
fields. They generally draw on an address book, contacts list, or list of addresses with
which you’ve exchanged email. The example from Apple Mail (Figure 10-28) shows a
single completion suggested upon typing the letters f i d; the completed text is auto‐
matically highlighted, so a single keystroke can get rid of it. You can thus type straight
“through” the completion if it’s wrong.

Figure 10-28. Apple Mail autocomplete

Google’s Gmail offers autocomplete for email composition (Figure 10-29). Pressing
the right arrow key completes the sentence with the suggestion.

Figure 10-29. Gmail autocompletion in the body of the email

Drop-down lists of Autocompletion possibilities can take many forms. Figures 10-30
through 10-36 show examples of drop-down list formatting. Strategies for autocom‐
pletion can focus on specific data types and information only, or they can be more
expansive, including searching varied data sources. Autocompletion can also be an
opportunity for promotions and paid placement.

506 | Chapter 10: Getting Input from Users: Forms and Controls

Figure 10-30. Apple Safari browser autocomplete

Figure 10-31. Google Chrome browser autocomplete

The Patterns | 507

Figure 10-32. Google.com Search autocomplete

Figure 10-33. Android Search autocomplete

508 | Chapter 10: Getting Input from Users: Forms and Controls

http://Google.com

Figure 10-34. Yelp.com Search autocomplete

Figure 10-35. Expedia.com “Things to Do” Search autocomplete

The Patterns | 509

http://Yelp.com
http://Expedia.com

Figure 10-36. Kayak.com Search autocomplete

Drop-down Chooser

What

Expand the concept of a menu by using a drop-down list or pop-up panel that con‐
tains a more complex or hierarchical selection UI.

Use when

The user needs to supply input that is a choice from a set (such as in the color exam‐
ple in Figure 10-37), a date or time, a number, or anything other than free text typed
at a keyboard. You want to provide a UI that supports that choice—a nice visual ren‐
dering of the choices, for instance, or interactive tools—but you don’t want to use
space on the main page for that; a tiny space showing the current value is all you
want.

Why

Most users are very familiar with the drop-down list control (called a combo box
when used with a free-typing text field). Many applications successfully extend this
concept to drop-down lists that aren’t simple lists, such as trees, 2D grids, and arbi‐
trary layouts. Users seem to understand them with no problem, as long as the con‐
trols have down-arrow buttons to indicate that they open when clicked.

Drop-down Choosers encapsulate complex UIs in a small space, so they are a fine sol‐
ution for many situations. Toolbars, forms, dialog boxes, and web pages of all sorts
use them now. The page the user sees remains simple and elegant, and the chooser UI
shows itself only when the user requests it—an appropriate way to hide complexity
until it is needed.

510 | Chapter 10: Getting Input from Users: Forms and Controls

http://Kayak.com

How

For the Drop-down Chooser control’s “closed” state, show the current value of the con‐
trol in either a button or a text field. To its right, put a down arrow. This can be in its
own button or not, as you see fit; experiment and see what looks good and makes
sense to your users. A click on the arrow (or the whole control) brings up the chooser
panel, and a second click closes it again.

Design a chooser panel for the choice the user needs to make. Make it relatively small
and compact; its visual organization should be a familiar format, such as a list, a table,
an outline-type tree, or a specialized format like a calendar or calculator (see the
examples in the next section). See Chapter 7 for a discussion of list presentation.

Scrolling the panel is fine if the user understands that it’s a choice from a large set,
such as a file from a filesystem, but keep in mind that scrolling one of these pop-up
panels is not easy for people without perfect dexterity!

Links or buttons on the panel can in turn bring up secondary UIs—for example,
color-chooser dialog boxes, file-finder dialog boxes, or help pages—that help the user
choose a value. These devices usually are modal dialog boxes. In fact, if you intend to
use one of these modal dialog boxes as the primary way the user picks a value (say, by
launching it from a button), you could use a Drop-down Chooser instead of going
straight to the modal dialog box. The pop-up panel could contain the most common
or recently chosen items. By making frequently chosen items so easy to pick, you
reduce the total time (or number of clicks) it takes for an average user to pick values.

The Patterns | 511

Examples

This first example shows several drop-down selectors in Microsoft Word
(Figure 10-37).

Figure 10-37. Microsoft Word drop-down choosers

Photoshop’s compact, interaction-rich toolbars use Drop-down Chooser heavily.
Figure 10-38 shows three examples: Brush, Marquee Tool, and Opacity. The Brush
chooser is a selectable list with a twist—it has extra controls such as a sliders, brush
direction dial, icons of presets, and an expandable folder directory of brushes for yet
more choices. Selecting the lower-right corner of the Marquee Tool opens the options
menu, showing the special versions of that, too. The Opacity chooser is a simple
slider, and the text field above it echoes its value.

512 | Chapter 10: Getting Input from Users: Forms and Controls

Figure 10-38. Photoshop drop-down choosers

The Patterns | 513

Design tool Sketch offers a multifunction drop-down chooser for its color picker
(Figure 10-39). It offers robust color space configuration with hue and shade controls,
numerical color values, and a grid of saved colors. Several menus offer access to even
more functionality.

Figure 10-39. Sketch drop-down chooser

514 | Chapter 10: Getting Input from Users: Forms and Controls

The Thumbnail Grid pattern (Chapter 7) is often used in Drop-down Chooser in place
of a text-based menu. The examples fromPowerPoint (Figure 10-40) and Keynote
(Figure 10-41) demonstrate several styles of Thumbnail Grid.

Figure 10-40. Microsoft PowerPoint drop-down choosers with thumbnail grid

The Patterns | 515

Figure 10-41. Apple Keynote drop-down choosers with thumbnail grid

List Builder

What

A pattern for creating a complicated selection set from a larger source set of objects.
A list builder has the “source” and the “destination” lists visible in the same widget.
This lets the user move items between them, via buttons or drag-and-drop. This pat‐
tern is also called a two column multiselector.

Use when

You’re asking the user to create a list of items by choosing them from another list. The
source list may be long—too long to easily show as a set of checkboxes, for instance.

516 | Chapter 10: Getting Input from Users: Forms and Controls

Why

The key to this pattern is to show both lists on the same page. The user can see what’s
what—they don’t need to jump to and from a modal chooser dialog box, for instance.

A simpler alternative to List Builder might be a single list of checkbox items. Both
solve the “select a subset” problem. But if you have a very large source list (such as an
entire filesystem), a list of checkboxes doesn’t scale—the user can’t easily see what’s
been checked off, and thus might not get a clear picture of what they selected. The
user must continually scroll up and down to see it all.

How

Put the source list and the destination list next to each other, either left to right or top
to bottom. Between the two lists, put Add and Remove buttons (unless your users
find drag-and-drop to be obvious, not requiring explanation). You could label the
buttons with words, arrows, or both. Clicking list elements can also cause them to
jump to the opposite list.

This pattern provides room for additional functionality, too. Both the source list and
the destination list may be searchable. The source list could be a multilevel directory
with an open/close file folder structure. The destination list could be ordered, with
tools to move or drag and drop the items into the desired order from top to bottom.

Depending on what kind of items you deal with, you could either move the items lit‐
erally from the source to the destination—so the source list “loses” the item—or
maintain a source list that doesn’t change. A listing of files in a filesystem shouldn’t
change; users would find it bizarre if it did because they see such a list as a model of
the underlying filesystem, and the files aren’t actually deleted. That’s a judgment call.

Give the lists multiple-selection semantics instead of single-selection, so users can
move large numbers of items from list to list.

Examples

Most modern implementations of this pattern depend upon drag-and-drop or simple
clicking to move items between areas; it’s important that the user receive visual con‐
firmation that selected items are moved to the destination list. The web application
multiselector, multiselect.js, shows a fast and simple UI for creating lists
(Figure 10-42). This open source developer project has developed a typical two-
column multiselect widget for use in web applications.

The Patterns | 517

Figure 10-42. Loudev.com multiselect.js

Drupal offers a similar component, a multiselect list builder widget, as part of its
enterprise content management system (Figure 10-43).

Figure 10-43. Drupal content management system

518 | Chapter 10: Getting Input from Users: Forms and Controls

http://Loudev.com

Graphical list building works, too. Lightroom (Figure 10-44) demonstrates a more
contemporary approach to a List Builder: you can drag items from a potentially long
list of source images into a “batch” group in order to perform operations on all
batched images at once. Large text informs the user what to do at critical moments in
the interaction, such as starting a new batch or removing an image from the batch.

Figure 10-44. Adobe Lightroom

Good Defaults and Smart Prefills

What

Use default values for form elements that are intended to save the user time and effort
in completing the form. Good defaults draw from a number of sources of data for
prefills: previously entered data from the session, information from the user’s
account, current location, current data and time, and other values that the designer
can identify as having a high probability of making it easier and quicker for the user
to complete a form.

Use when

Your UI asks the user any questions requiring form-like input (such as text fields or
radio buttons), and you want to reduce the amount of work that users need to do.
Perhaps most users will answer in a certain way, or the user has already provided
enough contextual information for the UI to make an accurate guess. For technical or

The Patterns | 519

semirelevant questions, maybe the user can’t be expected to know or care about the
answer, and “whatever the system decides” is OK.

But supplying defaults is not always wise when answers might be sensitive or politi‐
cally charged, such as passwords, gender. or citizenship. Making assumptions like
that, or prefilling fields with data you should be careful with can make users uncom‐
fortable or angry. (And for the love of all that is good in the world, don’t leave “Please
send me advertising email” checkboxes selected by default!)

Why

By providing reasonable default answers to questions, you save the users work. It’s
really that simple. You spare the user the effort of thinking about, or typing, the
answer. Filling in forms is never fun, but if having default answers provided halves
the time it takes the user to work through the form, they’ll be grateful.

Even if the default isn’t what the user wants, at least you offered an example of what
kind of answer is asked for. That alone can save the user a few seconds of thought—
or, worse, an error message.

Sometimes, you might run into an unintended consequence of Good Defaults. If a
user can skip over a field, that question might not “register” mentally with the user.
They might forget that it was asked; they might not understand the implications of
the question, or of the default value. The act of typing an answer, selecting a value, or
clicking a button forces the user to address the issue consciously, and that can be
important if you want the user to learn the application effectively.

How

Prefill the text fields, combo boxes, and other controls with a reasonable default
value. You could do this when you show the page to the user for the first time, or you
could use the information the user supplies early in the application to dynamically set
later default values. (For instance, if someone supplies a US Zip Code, you can infer
the state, country, and municipality from just that number.)

Don’t choose a default value just because you think you shouldn’t leave any blank
controls. Do so only when you’re reasonably sure that most users, most of the time,
won’t change it—otherwise, you will create extra work for everybody. Know your
users!

Occasional-use interfaces such as software installers deserve a special note. You
should ask users for some technical information, such as the location of the install, in
case they want to customize it. But 90% of users probably won’t. And they won’t care
where you install it, either—it’s just not important to them. So, it’s perfectly reason‐
able to supply a default location.

520 | Chapter 10: Getting Input from Users: Forms and Controls

Examples

Kayak (Figure 10-45) supplies default values when a user begins a search for flights.
Kayak kindly suggests a week-long vacation: it prefills the flight search with duration
of one week, starting a month from now. The other defaults are quite reasonable: a
round-trip economy flight with one traveler is common, and the “From” city can be
derived from either the user’s geographic location or the user’s previous searches.
Kayak goes one step further by prefilling the departure date (a month in the future)
and the return (one week later). The effect of having all these defaults is that the user
spends less time thinking about those parts of the form, and they get a quicker path to
their immediate goal—the search results.

Figure 10-45. Kayak

The Patterns | 521

The Fandango mobile app (Figure 10-46) uses the current location and date as its
default movie search parameters. When the person opens this app, it uses the current
date and location to generate a list of movies for today near where you are. It goes one
step further: the default for this screen has a small “toast” or pop-up banner at the
bottom (on top of the search results), offering a look at what’s playing today at the
very nearest movie theater.

Figure 10-46. Fandango (iOS)

522 | Chapter 10: Getting Input from Users: Forms and Controls

When creating a new image file in Photoshop, it starts by default with the OS clip‐
board (Figure 10-47). The assumption here is that the user has just created a screen‐
shot and is in the process of editing that image. So Photoshop takes the width and
height of the image in the clipboard and uses that to prefill the dimensions of the
Create New file, a smart way to save time. No worry that the image and the canvas
will have a size mismatch.

Figure 10-47. A Create New dialog in Photoshop CC

When an image canvas is resized in Photoshop, the dialog box shown in Figure 10-48
appears. The original image was 1340 × 1060, as shown. These dimensions become
the default Width and Height, which is very convenient for several use cases. The
application prefills the width and height of the current image as the starting point for
a different canvas size. If the user wants to put a thin frame around the image, they
can start with the existing dimensions and increase them by just two pixels each; if
they want to make the image canvas wider but not taller, they need only change the
Width field; or just click OK now and nothing changes.

The Patterns | 523

Figure 10-48. Canvas Size dialog box in Photoshop CC

Error Messages

What

When there is a form input error, such as a skipped required field, place an eye-
catching explanatory error message directly on the form itself. The message might
describe how the user can fix the error. If possible, put indicators next to the originat‐
ing controls.

Use when

Users might enter form information that somehow isn’t acceptable. They might skip
required fields, enter numbers that cannot be parsed, or type invalid email addresses,
for instance. You want to encourage them to try again. You want to point out typos
before they become a problem, and help puzzled users understand what is asked for.

524 | Chapter 10: Getting Input from Users: Forms and Controls

Why

The goal of displaying error messages is to help the user fix their issues and complete
their task as quickly and painlessly as possible.

Two very traditional methods are seldom encountered and not recommended. One is
to report error messages to users via modal dialog boxes. Those messages could be
very helpful, pointing out what the problem was and how you could fix it. The prob‐
lem is that you had to click away the modal dialog box to fix the error. And with the
dialog box gone, you couldn’t read the error message anymore. A second traditional
approach is to show the form error messages on an error screen after you clicked the
Submit button. Again, you can read the message, but you must click the Back button
to fix the problem; after you do that, the error messages are gone. Then you need to
remember what the error said and then scan the form to find the field with the error,
and then fix the error. This is so much effort that it is not likely to be completed suc‐
cessfully or requires a great deal of back and forth.

Most web forms now place the error message on the form itself. By keeping both
messages and controls together on the same page, you allow the user to read the mes‐
sage and make the form corrections easily, with no jumping around or error-prone
memorization. Also, web forms put error messages physically next to the controls
where the errors were made. Now the user can see at a glance where the problems
were—no need to hunt down the offending field based just on its name—and the
instructions for fixing it are right there, easily visible.

How

First, design the form to prevent certain kinds of errors. Use drop-down lists instead
of open text fields if the choices are limited and not easy to type. For text fields, offer
Input Hints, Input Prompt, Forgiving Format, Autocompletion, and Good Defaults and
Smart Prefills to support text entry. Limit the total number of form fields as much as
possible. Have a clear system for marking what fields are optional and what are
required.

When errors do happen, and your form is long or complicated, you should show
some kind of error message on top of the form. The top is the first thing people see.
(It’s also good for visually impaired users—the top of the form is read to them first, so
they know immediately that the form has an error.) Put an attention-getting graphic
there, and use text that’s stronger than the body text: make it red and bold, for
instance. In contemporary short forms, this step is often omitted.

The universal standard is to mark the form fields that caused the errors. You should
display element-specific messages next to each affected control. This will require
extra space beside, above, or below the fields—but at the least, use color and/or a
small graphic to mark the field. Users commonly associate red with errors in this

The Patterns | 525

context. Use it freely, but since so many people are colorblind with respect to red, use
other cues, too: language, bold text (not huge), and graphics.

If you’re designing for the web or some other client/server system, try to do as much
validation as you can on the client side. This means checking for and displaying vali‐
dation feedback to the user as they fill out the form, not after they have submitted it.
The contemporary standard is to validate an input as soon as the focus moves to the
next input field. Some forms have validation code that begins checking input as soon
as the user selects the input field. Errors and feedback can appear once a user triggers
it with their data entry. Either way is much quicker: The user has a chance to fix
everything before submitting the form. (In some clumsy designs, an error message
appears as soon as the user begins to type a valid entry, and it doesn’t disappear until
the user finishes a valid string or entry. This is inappropriate and annoying, so don’t
do this.)

A tutorial on error-message writing is beyond the scope of this pattern, but here are
some quick guidelines:

• Make them short, but detailed enough to explain both which field it is and what
went wrong: “You haven’t given us your address” versus “Not enough
information.”

• Use ordinary language, not computerese: “Is that a letter in your zip code?” ver‐
sus “Numeric validation error.”

• Be polite: “Sorry, but something went wrong! Please click ‘Go’ again” versus
“JavaScript Error 693” or “This form contains no data.”

Examples

The registration forms for Mailchimp (Figure 10-49), Mint (Intuit) (Figure 10-50)
and H&M (Figure 10-51) show a traditional approach. The user fills out the form and
then selects submit. The Get Started! button for Mailchimp becomes active after suc‐
cessfully entering an email address and password, but omits checking for the required
Username field. To discover this, the user has to submit and then try again. The spe‐
cific problem inputs are highlighted for correction, with error messages. Mailchimp
displays a generic error alert at the top of the form in addition to marking the error
inputs. However, the error messaging is clear.

526 | Chapter 10: Getting Input from Users: Forms and Controls

Figure 10-49. Mailchimp registration page

The Patterns | 527

In the Mint example (Figure 10-50), the error message explains that the second pass‐
word string does not match the first, and needs to be re-entered so it does match.

Figure 10-50. Mint (Intuit) registration screen

At H&M (Figure 10-51) the Become a Member button is always active. If the cus‐
tomer forgets a required field, they get an error message only after selecting Become a
Member. The error message itself is good: It says exactly what needs to be done to fix
the problem.

528 | Chapter 10: Getting Input from Users: Forms and Controls

Figure 10-51. H&M

The Patterns | 529

The standard solution today is to avoid creating a situation where the user skips a
required step or has an invalid entry in the first place. The submit option simply
doesn’t become active until the required steps are filled in successfully.

Twitter breaks their sign-up process into multiple steps (Figure 10-52). In Step 1, the
option to continue is not active by default. There is no option to go to Step 2 until this
screen is successfully filled out. This drives the outcome of completing the form suc‐
cessfully with properly formatted data in order to get to the goal of the next step in
registration. Bonus: The form is in a modal dialog box. There is no other navigation
to distract, except to quit the whole process. Validation happens in real time, before
the user selects the Next button. After the user fixes the required fields, the next step
selector becomes active. Email address validation happens in real time. Actionable
feedback appears without having to submit the form, saving the user a wasted action.

Figure 10-52. Twitter registration

When you add a not fully specified item to your cart at the Jos. A. Bank site, it uses a
gentle message to remind you to fill in missing information, as shown in
Figure 10-53. In this case, the Add to Bag button is always active. The shopper must
select it to generate the validation error message.

530 | Chapter 10: Getting Input from Users: Forms and Controls

Figure 10-53. Jos. A. Bank

Conclusion
Form and control design is one area of interaction design in which the designer really
can analyze all the possible use cases and think through exactly how they would like
to handle the various interactions—standard, error, and edge cases. Form design can
start out fairly simple but can become an exacting and challenging task. However, the
design principles in this chapter give you a solid grounding in how to approach this
activity and create useful, usable designs. The examples we reviewed can also be mod‐
els for how you can manage important processes such as registration and passwords,
validation and error messages, data formatting, and creating controls to handle com‐
plicated tools and settings.

Conclusion | 531

Chapter 11

User Interface Systems and Atomic Design

The previous chapter gives many examples that point to a strong pattern in interface
design: screen interfaces often are made up of a system of commonly used compo‐
nents. Recent developments in how designers and developers approach interface
design build on this trend of design as a system. In this chapter, we’ll look at
component-based front end UI frameworks. Understanding and using this approach
will help you deliver consistency, scalability, and better usability to your software.
Thus, this chapter covers the following:

• An overview of component-based user interface (UI) systems
• A summary of the Atomic Design philosophy that takes a components-based

approach
• A look at selected UI frameworks (component libraries) specifically for web and

mobile web that you will likely be working with

Designing software applications today means creating a rich interactive experience
for consumers and business customers, no matter what device they are using or
where they are. The expectation is that the experience is always on, always communi‐
cating with the world around it, communicating with other people, and dynamically
responding to its user from second to second.

Today, software is created from the ground up to connect to the internet in order to
take advantage of powerful cloud-based information processing, storage, and com‐
munication. Mobile devices are the dominant consumer computing platform. Cus‐
tomers expect a given application to take full advantage of the capabilities of the local
device, such as cameras, voice input, live location data, their own prior activities and
preferences, and more. They also want to access the same software from multiple
devices—mobile, tablet, desktop, watch, TV, and more—with a seamless transition
and an experience that stays recognizably the same. They also do not expect to

533

compromise functionality and capability with smaller devices. Designers create UI
systems to set UI standards in this environment.

The design and development approach that makes this possible is centered around
components and widgets as well as connection to other systems in real time for com‐
munication, transaction, live data, and storage. The idea is to design and build a sys‐
tem of components that lets users accomplish their tasks without regard to the many
different devices, screen sizes, operating systems, or web browsers.

UI Systems
UI systems, or UI design systems, are UI styles and standards systems that help a
company’s designers, developers, and partners maintain quality and consistency in
the look and feel of their software products. They use a components-based approach.
They focus on standardizing the functionality and look and feel as much as possible
while still staying in line with different operating system (OS) standards. They do not
specify implementation technologies, such as what programming language to use.

The main point for you as an interaction designer is that a components-based
approach to interfaces and design is the standard approach now (at least for the nuts-
and-bolts functionality like filling out forms, picking dates and times, and so on.)
Let’s look at this briefly.

Technology companies such as Microsoft, Apple, Google, and many others have UI
systems that cover multiple operating systems and multiple devices and screens:

• Microsoft’s Fluent Design System offers a standardized library of styles and code
modules for Windows OS, web, iOS, and Android.

• Apple’s User Interface Guidelines cover macOS and iOS apps, watchOS (for
Apple Watch) and tvOS (for Apple TV).

• Google’s Material Design System covers web, Android, iOS, and now native desk‐
top OS applications through its Flutter UI framework.

An Example Component-Based UI System: Microsoft’s Fluent
Let’s look at one UI system and one component in it as an example. In 2017, Micro‐
soft released Fluent, its UI system. Its goal is to help any product in Microsoft’s soft‐
ware ecosystem look and feel like Microsoft, whether it is on the Windows desktop,
on Android, on iOS or on the web.

534 | Chapter 11: User Interface Systems and Atomic Design

A quick look at the website for the Fluent UI system shows its scope (Figure 11-1).
Let’s imagine that you are an interaction designer at Microsoft, and you are designing
an app that needs a date and time picker. If you’re designing for the web, you’ll want
to look at the Fluent web date picker (Figure 11-2). If you are a mobile designer, you
will want to look at either the Fluent iOS date picker (Figure 11-3) or the Fluent
Android date picker (Figure 11-4). Finally, if you are a Windows desktop designer,
you’ll want the Fluent Windows date picker (Figure 11-5).

Figure 11-1. The Microsoft Fluent Design System home page

UI Systems | 535

Figure 11-2. The Microsoft Fluent web date picker

536 | Chapter 11: User Interface Systems and Atomic Design

Figure 11-3. The Microsoft Fluent iOS date picker

Figure 11-4. The Microsoft Fluent Android date picker

UI Systems | 537

Figure 11-5. The Microsoft Fluent Windows date picker

That is a quick look at a components-based UI design system. How can interaction
designers develop design systems that give them the same advantages of consistency,
scalability, and reusability in their own work? One method has become popular:
Atomic Design. We review this approach to design in the next section.

Atomic Design: A Way of Designing Systems
Design and design methodologies have been evolving directly alongside UI design
systems, as described previously. UI design now includes the idea that we are design‐
ing a system of flexible, reusable components for assembling interfaces for almost any
screen or device.

Many designers have begun thinking this way. Atomic design is an example of proba‐
bly the most widely known name for this approach. It was originally developed by
designer Brad Frost on his blog and now also his book, Atomic Design (Brad Frost,
2017). It is now widely adopted and adapted by design teams in solving design prob‐
lems and creating their UI design systems. We present a brief summary of this
approach here.

538 | Chapter 11: User Interface Systems and Atomic Design

http://atomicdesign.bradfrost.com

Overview
Atomic design consists of selected principles and a structure for categorizing UI com‐
ponents. We summarize them broadly in the following subsections.

Break it down
Atomic design is basically a bottom-up approach to building interfaces. A starting
point is analyzing the software you are designing at the moment. Then, break down
the pages and screens into their smallest pieces that still remain usable and functional
on their own. Many of the aforementioned UI frameworks can also be a starting point
because they are already broken down into components.

Style guide
The basic and universal guidelines for design are set up: color, typography, a layout
grid (or a plan for contemporary, grid-less, resizing containers), icons, and more. See
Chapter 4 for a discussion of layout grids, and Chapter 5 for color and typography. It’s
important to remember that this is still in service of delivering a unique and pleasing
look and feel in the end. Following brand guidelines, or creating a branded look and
feel, drives the choices here. Everything in your atomic design system will build from
this and inherit these styles through CSS. Begin with styling the most basic, atomic
units of your software. As you combine these elements, you’ll need to add more style
standards to control appearance, behavior, and layout, up to templates for entire
screens of components.

Consistency
Avoiding “UX debt,” the slow accumulation of diverging design styles and a different
look and feel, is a major goal. The same component is reused everywhere, retaining
its specified design. It’s reused as an entire component. There’s no need to create it
from scratch, with the associated chance of changing how it looks. In this way, the
software can grow and expand while maintaining consistency in its UI.

Modularity
The main idea is that you want a system of software building blocks that can be
assembled into tools and screens to meet a specific need. Little pieces join together to
make bigger pieces. The metaphor here is creating a LEGO toy set, except for user
interfaces. You can use small pieces on their own, or you can put them together in
combination to create much bigger, more robust components and tools.

Nesting
As mentioned a moment ago, the strategy is to start with the smallest possible func‐
tional elements and the most universal style standards, such as typography and color

Atomic Design: A Way of Designing Systems | 539

palettes. You can use the smaller pieces to create larger ones. For example, a simple
text input field can be combined with a label, an Input Hint or Input Prompt (see
Chapter 10), and a drop-down selector within the input field to make a more usable,
dynamic form component. There is also the idea of inheritance of styles. The styling
of the smaller components is carried with them into the larger aggregation. Changing
the style declaration at the base level will then change it everywhere in the system. For
example, a color from the color palette could be adjusted for better contrast and
accessibility, and this propagates everywhere that this color is used. You could adjust
the corner radius for buttons, and anything using the button element picks up this
shape change right away. For the design team, this can be accomplished by using a
common library file or shared file that all the designers reference. When linked prop‐
erly, design files can automatically update when the source file updates. In live prod‐
ucts, the engineering team must integrate any design updates into the source code
that renders the associated component. Once this is done, the product will reflect the
changes.

Build it up
It almost goes without saying that the point of creating a set of LEGO-like building
blocks is so that we can build entire screens, workflows, and applications. Designers
can style existing web app components such as buttons and input fields and then
build up from there. They can also start with the modules and components already
available in UI frameworks, like those we discussed earlier. There are many to choose
from, with different levels of customizability. Some require more component build‐
ing; others already have a big library of UI components. Pick the one that best suits
your needs and works with the JavaScript framework that your developers are using.

Not tied to any technology
Despite the tech-centric discussion in this chapter, Frost and many other designers
take pains to say that designers should stay focused on design and not on the limits of
any particular technology or framework. The goal is the same as it always was: under‐
standing users; finding opportunities to make their lives easier; and designing
delightful, usable software experiences for them. Atomic design, UI frameworks, and
UI patterns are merely tools to achieve this, not any kind of restraint or blocker.

The Atomic Design Hierarchy
A UI design system that is built up with atomic design has a structure based on going
from small and simple to large and complex.

Atoms
Atoms are defined as the smallest, most basic building block of the UI system. They
are modules that can’t be broken down any further without losing their ability to

540 | Chapter 11: User Interface Systems and Atomic Design

function as a workable component. Examples would include a text input field, a label,
a color, a typeface.

Molecules
Molecules are groupings of two or more atomic components to make a more com‐
plete functional element. Examples of molecule elements might be an image with title
and caption to form a news or promotional molecule within a Grid of Equals (Chap‐
ter 4), or a form input with a label, Input Hint, Input Prompt, and a submit button.

Organisms
Organisms represent collections of molecules into fairly complex objects that handle
multiple functions or a major function of your software. A good example of this
would be a header module in your app or website. It might consist of a company logo,
the entire global navigation component (such as Fat Menus, in Chapter 3), a search
module, utility navigation or Sign-In Tools, user avatar, and a notifications counter.

Templates
Templates are the scaffolding for putting molecules and organisms together for spe‐
cific purposes. They are the layout recipes for creating the types of screens that you
will need based on the content you have. Often these templates represent a screen
type that occurs over and over. Examples of this would include a form, a home page, a
report with a chart, or a screen for tabular data.

Pages
Pages represent the end product: templates now filled out with real content. The
underlying template and module system can be standardized, but each page is differ‐
ent based on the unique content it serves up. And you now have a consistent Visual
Framework (Chapter 4) enforced throughout the site.

How can an interaction designer bring an atomic design–inspired system to life? For‐
tunately, there are many libraries of interface components that are ready to be styled,
modified and put to use quickly. These are called UI frameworks. It’s likely your
development team has selected one already. In the next section, we take a look at
some selected UI frameworks.

UI Frameworks
The UI frameworks we discuss in this section are tied to web and mobile web tech‐
nologies: HTML, CS , and JavaScript (or similar programming language, such as Cof‐
feeScript or TypeScript). That is because this third edition of Designing Interfaces
focuses specifically on screen-based interfaces for web and mobile.

UI Frameworks | 541

UI frameworks have a number of different names: frontend frameworks, CSS frame‐
works, UI kits, UI toolkits. But they all consist of the same thing: A system of soft‐
ware components for building a screen-based UI. It’s worth looking at these more
closely for two reasons:

• UI frameworks are great examples of component systems in action
• It’s likely you will be designing software that uses one of these frameworks

Overview
Software developers today for web and mobile have developed JavaScript (or other
similar language) frameworks for rendering their frontend code. These frameworks
are simply libraries of prepared, configurable code modules which can be customized
more easily than writing code from scratch. They are used to generate the appropriate
HTML, CSS, and JavaScript for web and mobile web applications. This makes for
rapid software development and more consistent code and UI. Some examples of the
most popular JavaScript frameworks are Angular, React, Vue, Ember, and Node.js,
and there are many others. These code frameworks handle user inputs, make API
calls, and process data returned by these APIs.

Benefits
Code frameworks are the middleware engine that is churning away to make a lot of
underlying complexity go away. This offers a number of benefits:

Speed
Prepared code to handle the majority of expected use cases means that you can
generate working software faster.

Consistency
Code modules and common CSS render UI components the same way.

Masking different browser capabilities
In the not so distant past, browsers had varying levels of support for HTML, CSS,
and JavaScript standards. They also implemented browser-specific quirks. This
was an attempt to differentiate and “win the browser wars.” This created a huge
problem getting early web and mobile software to operate and look the same on
different browsers. Modern JavaScript frameworks now automatically take care
of browser and OS differences.

Responsive design automatically included
There’s no doubting that we have seen an explosion of different device types and
screen sizes. Responsive design is an answer to this challenge. Liquid layouts that
automatically change based on the user’s screen size helped designers create

542 | Chapter 11: User Interface Systems and Atomic Design

designs that worked across devices. Modern code frameworks include this
important capability.

The Rise of UI Frameworks
These code frameworks also provide the component libraries for the front end or pre‐
sentation layer of your application. This is why they are called UI frameworks, UI
kits, UI toolkits, CSS frameworks, or frontend frameworks. They contain modules
and components with which interaction designers are familiar: headings, buttons,
form inputs, images, and so on.

Designers can customize the appearance of these UI frameworks in many ways.
Indeed, the main point of this chapter is that this is often the bulk of the design job
on a software project today. This is the context for UI design today:

• Component-based UI frameworks are part of a systems approach to UI design.
• Design the system, not one-off screens.
• UI frameworks are a starting point, and can be adapted and styled.
• UI frameworks are a floor, not a ceiling. They save time and energy that you can

use to solve other, more complex problems.

In the following sections, we look at some common UI toolkits and compare and
contrast them by looking at just a few examples of components from each.

A Look at Selected UI Frameworks
In this section, we take a quick tour of a selection of the UI frameworks that are out
there today. There are dozens, with more appearing every day. An exhaustive com‐
parison and contrast is beyond our scope here. One key point is that they all use CSS
so that color, typography, and other design styles are open to customization. Another
key point is that these toolkits consist of modules and component . The goal is to
show that UI frameworks will often be your starting point for your atomic design–
inspired design process. Here are the selected UI frameworks that we look at:

• Bootstrap
• Foundation
• Semantic UI
• Materialize
• Blueprint
• UIkit

UI Frameworks | 543

Bootstrap
Bootstrap is one of the most popular UI frameworks today. Originally developed by
Twitter, it’s available for anyone to use. Figure 11-6 shows the list of components that
are included by default. Figure 11-7 shows examples of common button components.

Figure 11-6. Bootstrap components

544 | Chapter 11: User Interface Systems and Atomic Design

Figure 11-7. Bootstrap button components

UI Frameworks | 545

Foundation
Foundation is another popular UI framework today. Originally developed by a com‐
pany called Zurb, it is robust and has a large contributor community. Many large
enterprises use Foundation. Figure 11-8 shows the list of components that are
included by default. Figure 11-9 shows examples of button components.

Figure 11-8. Foundation components

546 | Chapter 11: User Interface Systems and Atomic Design

Figure 11-9. Foundation button components

UI Frameworks | 547

Semantic UI
Semantic is a UI framework that aims to be friendly to the ordinary person. Its orga‐
nization and naming use natural language and real-world concepts. Figure 11-10
shows the list of components that are included by default, and Figure 11-11 shows its
button components.

Figure 11-10. Semantic UI components

548 | Chapter 11: User Interface Systems and Atomic Design

Figure 11-11. Semantic UI button components

UI Frameworks | 549

Materialize
Materialize is one of many UI frameworks that is based on Material, the design sys‐
tem for Android. Originally developed by Google, Material is widely used for
Android-native apps but also for web and mobile apps by third parties. Materialize
helps them do this and stay in line with Material style. Figure 11-12 shows the list of
components that are included by default. Figure 11-13 shows button component
examples.

Figure 11-12. Materialize components

550 | Chapter 11: User Interface Systems and Atomic Design

Figure 11-13. Materialize button components

UI Frameworks | 551

Blueprint
Blueprint is a UI framework that is optimized for data-intensive web applications.
Developed by Palantir Technologies, it’s available to any software project.
Figure 11-14 shows the list of components that are included by default; Figure 11-15
presents examples of buttons.

Figure 11-14. Blueprint components

552 | Chapter 11: User Interface Systems and Atomic Design

Figure 11-15. Blueprint buttons component

UI Frameworks | 553

UIkit
UIkit is a minimalist UI framework intended for a quick start with a frontend com‐
ponent design. Figure 11-16 shows UIkit’s list of components that are included by
default, and Figure 11-17 shows button component examples.

Figure 11-16. UIKit components

554 | Chapter 11: User Interface Systems and Atomic Design

Figure 11-17. UIkit buttons component

UI Frameworks | 555

Conclusion
A strong basis for designing scalable, consistent interfaces today is using a design sys‐
tems approach, such as atomic design, paired with a modern UI framework like the
those previewed in this chapter. UI frameworks are a standard part of the engineering
foundation for software projects, so you can expect your engineering team to select
one. These frameworks use a patterns-based approach to the UI. The benefits are
quicker and easier design and deployment of the standardized, repeated parts of your
interaction design. For your customers, there is the benefit of an easier learning curve
and more confidence in using your designs. There are also the benefits of scaling the
design team and your software without introducing random variations or different
ways of doing the same thing. This allows you to free up time to solve the really diffi‐
cult interaction design challenges.

556 | Chapter 11: User Interface Systems and Atomic Design

Chapter 12

Beyond and Behind the Screen

In the preceding chapters, we explored the world of designing screen-based interfaces
for the web, software, and mobile devices. These patterns and best practices cover the
world of people-facing digital product design, characterized by screen-based experi‐
ences that people can click and tap. Behind the scenes, however, changes are happen‐
ing in the complex systems that power these interfaces and experiences, and more
and more these changes are manifesting themselves in the way users interact with the
systems and the systems interact (or don’t need to interact) with the user.

The majority of systems that are visible to the user involve the user contributing
information or transactions to a system, and an interface that shows the results to the
user. The patterns these systems use vary according to the intended use of that
system.

Social media–oriented experiences such as YouTube, Facebook, or Twitter follow sim‐
ilar patterns, because at their core, the things they need to do are very similar. At a
very basic level, the interactions involve a user posting content to a system that other
people can view and comment on. The owner of the content can edit the content,
delete it, or modify who can view it. Other users can like or share the content with
others, or even tell the system if the content is offensive or if they choose not to see it.
In this way, although the system mediates and shows content based on a complex set
of algorithms, from the user’s perspective, the interactions are fairly straightforward.

Likewise, news sites like the New York Times, The Atlantic, or your local online news‐
paper also follow a similar pattern from a systems perspective. Behind the scenes
there is a content management system that reporters, editors, and photographers use
to put content into the system and review it before it goes out to the public. Users can
view articles, share them, and in some systems, post and edit comments.

557

Ecommerce sites can also be broken down into a simple pattern. Behind the scenes,
there is a system in which an employee inputs a photo and description and all the
options available for a particular item; there is a system that keeps track of how many
of these items the company has available and where it can be located. A user can view
items by categories or collections, and eventually navigate to a product detail screen
where they can select a particular size and quantity of items, add them to a cart, and
make the purchase.

These are the patterns we see all over the web and mobile apps. But as technology is
capable of handling more complex operations, the complexity of input and output
likewise increases. Behind the scenes, algorithms (sets of rules of calculation of data)
power the information and content that is displayed to users. These algorithms
become more sophisticated as they evolve through machine learning: a subset of arti‐
ficial intelligence in which systems look for patterns to infer identification and classi‐
fication of data.

Ubiquitous computing (also referred to as the Internet of Things or the industrial
internet) refers to the capability of objects or spaces to be embedded with internet-
connected hardware, such as sensors, that can read information about the environ‐
ment and communicate this information back. These systems can be profoundly
complex, and most of the time are completely invisible to people.

These complex systems “interface” with users differently from the screen-based inter‐
actions we have focused on in this book. As interactions become more automated and
invisible, the user won’t even need a keyboard--the interactions will become simpler,
as a user confirms and approves of actions a system takes on the user’s behalf. These
types of interactions will be more and more pervasive in the future.

The Ingredients: Smart Systems
The world of technology is undergoing a massive change in its infrastructure. Sys‐
tems are moving from the user actively inputting data to systems that “read” activity
and location to establish meaning of these indirect inputs.

Connected Devices
Connected devices are those that are connected to the internet. Your smartphone, TV,
car, thermostat, lightbulbs, and even the dog’s food bowl can be connected and moni‐
tored via the internet.

558 | Chapter 12: Beyond and Behind the Screen

Anticipatory Systems
Anticipatory systems are systems that quietly observe what the user is doing and
serve up data, suggestions or even proactively place orders for the user. An example
of this might be a connected refrigerator that knows what food is in the fridge and
reorders the milk when the supply is low.

Assistive Systems
Assistive systems allow for the user to have their human capabilities augmented and
enhanced through technology.

Natural User Interfaces
Natural user interface refers to “interfaces” that involve using motions, gestures,
touch, or other tactile and sensory ways to provide input and output. The touch
screen you use on your smart phone or tablet is an early example of a natural user
interface. There are more examples, such as Amazon’s Alexa, or Microsoft’s Kinect
system that reads gestures, and there will be many more of these types of interfaces
that you can tap, squeeze, hold, wave at, or talk to.

Conclusion
The third edition of Designing Interfaces covers a vast amount of territory of design
patterns and practices for designing for screen-based design, from desktop software
to websites to mobile. As these systems become more complex, we hope the experi‐
ence for the people who use these systems will become simpler and easier to under‐
stand. The role of a designer is to understand these patterns and apply them to their
particular context. In this way, storytelling and narrative and imagining the scenarios
and the “rules” that will apply to those scenarios will be one of the primary responsi‐
bilities of design.

Regardless of how interfaces find their way in front of a user, the patterns and princi‐
ples of this book are evergreen. Understanding the foundational patterns of a sound
UI architecture, creating a visual presentation with a clear information hierarchy that
follows the Gestalt principles, supporting the user with appropriate help—all of these
will bring clarity and understanding to an interface’s users.

We leave you with this thought. As designers and people who work in technology cre‐
ate the experiences that touch people’s lives in ways great and small, we are presented
with the opportunity to move into a future with an ethical, human-centered mindset
that makes life better for people and our planet. We have this amazing palette of tech‐
nology and tools to build the future. The question we must now ask ourselves is this:
what type of future will we create with it?

Conclusion | 559

Index

A
accessibility

in enterprise or desktop applications, 282
scrolling pop-up panels and, 511
tab ordering and, 380

Accordion pattern
about, 245-249
Collapsible Panels pattern and, 249
in dynamic displays, 224
List Inlay pattern and, 351
navigation and, 135
showing lists organized into categories, 340
Titled Sections pattern and, 239

Ace Hardware website, 44
action and command patterns, 383-432

Action Panel, 390-396
Cancelability, 415-418
Command History, 422-425
Hover Tools, 387-390
Macros, 425-432
Multilevel Undo, 418-421
Preview, 404-409
Prominent “Done” Button, 396-402
Smart Menu Items, 402-404
Spinners and Loading Indicators, 409-415

action history stack, 420
Action Panel pattern

about, 390-396
Hover Tools pattern and, 388

actions and commands
about, 375
affordance for, 381
direct manipulation of objects, 382
drag-and-drop actions, 380

drop-down menus and, 378
keyboard actions, 380
rotate and shake, 377
single-clicking versus double-clicking items,

379
tap, swipe, and pinch, 377
typed commands, 381
using action panels, 379
using buttons, 377
using hover tools, 379
using links, 378
using menu bars, 378
using pop-up menus, 378
using toolbars, 378

activity streams, 56
adaptive/parametric visual design, 292-294
Adobe Acrobat, managing and editing docu‐

ments, 77
Adobe Bridge

Alternative Views pattern and, 97
filters in browsing interface, 69
managing and editing media assets, 75

Adobe Creative Cloud
Cancelability pattern and, 417
loading indicators in, 414

Adobe Illustrator
Alternative Views pattern and, 102
Clear Entry Points pattern and, 146
Movable Panels pattern and, 252

Adobe Lightroom
List Builder pattern and, 519
Smart Menu Items pattern and, 402

Adobe Photoshop
Canvas Plus Palette pattern and, 82, 141

561

Drop-down Chooser pattern and, 512
Help Systems pattern and, 114
launching from Adobe Bridge, 69
Streamlined Repetition pattern and, 23

Adobe Photoshop CC
Command History pattern and, 424
Good Defaults and Smart Prefills patterns

in, 523
Macros pattern and, 427

Adobe Premier Rush interface, affordances in,
382

Adobe User Forums, 118
aesthetics and visual design, 255

(see also visual design)
affordance in interface design, 381
AIGA website, Menu Page pattern, 150, 153
Airbnb

Cards pattern on website and mobile app,
354

Carousel pattern and, 364
Modal Panel pattern on website, 160
Password Strength Meter pattern and, 500
Prominent “Done” Button pattern on web‐

site, 399
search with faceted filters, 48
Sign-In Tools pattern on website, 186
Structure Format pattern in security code

form, 483
AirVisual application, 289
alignment

and grid in screen layout, 216
continuity and closure, 220
Gestalt principles behind, 217
paragraph, 272
spacing and, in Visual Framework pattern,

229
Titled Sections pattern and, 240
in visual hierarchy, 258

AllTrails app, Data Brushing pattern in, 461
Alpha/Numeric Scroller pattern

about, 370-372
use cases, 339

alphabetical ordering of content, 32
Alternative Views pattern, 37, 97-105
Amazon website

Autocompletion pattern and, 502
Bottom Navigation pattern on mobile web‐

site, 315
Carousel pattern on Amazon Books, 363

faceted classification, 33
Settings Editor pattern and, 91
Titled Sections pattern and, 240

American Red Cross website, Fat Menus pat‐
tern and, 178

Android OS
Autocompletion pattern in Search, 508
Google Play store, loading indicator, 413
Google Play store, Prominent “Done” But‐

ton and, 397
Material UI framework, 550
Microsoft Fluent date picker, 537
touch screens, links and buttons on, 297

angles and curves in visual design, 276
Animated Transition pattern

about, 142, 202-208
Hover Tools pattern and, 388
List Inlay pattern and, 351

animation
bringing into interface design, additional

resources for, 208
in Spinners and Loading Indicators pattern,

410
Annotated Scroll Bar pattern

about, 142, 199-202
Alpha/Numeric Scroller pattern and, 370

Anthropologie website, Pagination pattern, 367
anticipatory systems, 559
Apple

Input Hints pattern on checkout screen, 492
Touch ID service on iPhones, 411
UI typefaces, 271

Apple Health app
bold colorful information graphics on, 291
Dynamic Queries pattern and, 458

Apple iMovie, managing and editing media
assets, 75

Apple iOS (see iOS)
Apple iPad (see iPad)
Apple Keynote

Alternative Views pattern and, 102
drop-down choosers with thumbnail grid,

516
Apple Mail, Autocompletion pattern in, 506
Apple Measure app, 293
Apple News application, Collapsible Panels pat‐

tern, 250
Apple Notes, Touch Tools pattern, 315
Apple Photos, 69

562 | Index

One-Window Drilldown pattern and, 75
Preview pattern and, 407
Two-Panel Selector pattern and, 345

Apple Safari browser autocomplete, 506
Apple TV

browsing a collection of objects, 70
Grid of Equals pattern and, 237

Apple Wallet, skeuomorphic visual design in,
282

assistive systems, 559
associative navigation, 132
Assumed Next Step pattern (see Prominent

“Done” Button pattern)
Atlantic, The

Collections and Cards pattern in iPad app,
319

Pagination pattern and, 367
Atlas of Emotions, Data Spotlight pattern in,

452
Atomic Design, 538-541

hierarchy, 540
principles of, 539

atoms (Atomic Design), 540
autocompletion in form input, 474
Autocompletion pattern, 502-510
Autodesk Sketchbook app, Generous Borders

pattern, 326
axes (information graphics), 446
Axure RP Pro, Canvas Plus Palette pattern in,

83

B
B&H Photo website

Breadcrumbs pattern and, 197
Modal Panel pattern and, 162
Progress Indicator pattern and, 193

backgrounds
blocks of contrasting color in Titled Sec‐

tions pattern, 238
dark versus light, 261
distinguishing importance with background

color, 214
for enterprise applications, 281
high versus low contrast on, 262

batch automation in Photoshop, 427
BBC News iPhone app, 311
behavioral patterns, 11-26

Changes in Midstream, 15
Deferred Choices, 16

Habituation, 18-19
Incremental Construction, 17
Instant Gratification, 13
Keyboard Only, 24
Microbreaks, 19
Prospective Memory, 21
Safe Exploration, 12
Satisficing, 14
social media, social proof, and collabora‐

tion, 25
Spatial Memory, 20
Streamlined Repetition, 23

Bitmoji app, Preview pattern, 406
Bloom application, minimal design in, 291
Blueprint UI Toolkit, 552-554

Input Prompt pattern and, 494
Spinners and Loading Indicators pattern

and, 412
Booking.com

flat design in mobile app, 288
mobile web and mobile iOS app, 302

bookmarks, Deep Links pattern and, 167
Bootstrap UI framework

components in, 544-546
spinner component, customizable, 411

borders
buttons in Button Groups, 385
in enterprise applications, 281
Generous Borders pattern, 325-328
hover tools and, 388

Bottom Navigation pattern, 305, 316-318
bottom-up approach to building interfaces, 539
boxes in Titled Sections pattern, 238, 240
Breadcrumbs pattern

about, 142, 193-199
Feature, Search, and Browse pattern and, 40
Visual Framework pattern and, 229

British Airways website, 45
brushing or selecting data, 460

(see also Data Brushing pattern)
builder-style interfaces, 17
building up in Atomic Design, 540
business collaboration, social media technology

in, 53, 66
Button Groups pattern

about, 384-387
Action Panel pattern and, 391
in media browsers, 69

buttons, 377

Index | 563

on Drop-down Chooser panel, 511
Smart Menu Items pattern and, 384
Spatial Memory pattern and, 20
in Vertical Stack pattern, 308

BuzzFeed News website, Streams and Feeds
pattern on, 58

C
calls to action, 222
Calm app, minimal design in, 291
Cancelability pattern, 384

about, 415-418
Spinners and Loading Indicators pattern

and, 410
Canvas Plus Palette pattern

about, 38, 82-86
flat navigation with, 141

Cards pattern, 34
about, 353-356
list display considerations, 339

Carousel pattern
about, 361-365
Alternative Views pattern and, 98
list display considerations, 339
in mobile designs, 305

case studies, 9
Cash app, flat design in, 288
category or facet, organizing content by, 33
Center Stage pattern

about, 227, 231-234
Action Panel pattern and, 391
Feature, Search, and Browse pattern and, 40
form design and, 477

Changes in Midstream pattern, 15
checkboxes, List Builder pattern and, 516
Chinnathambi, Kirupa, 208
Chrome browser

Accordion pattern and, 248
Autocompletion pattern and, 507
History screen, 423
Many Workspaces pattern and, 106

Chrome developer tools
Annotated Scroll Bar pattern and, 201
Breadcrumbs pattern and, 198

chronological order, 32
chunking content

Accordion pattern and, 245-249
Collapsible Panels pattern and, 249-252
Module Tabs pattern and, 242-245

patterns in, 227
Titled Sections pattern and, 238-242

chunking tasks, 87
(see also sequencing)

Cinema 4D application, Many Workspaces pat‐
tern in, 109

Citizen app, Richly Connected Apps pattern,
332

clean layout, 209
Clear Entry Points pattern, 131, 143-148
Clear Todos app, minimal design in, 290
Cleveland, William, 467
closure (Gestalt principle), 220

Button Groups pattern and, 385
Prominent “Done” Button pattern and, 396

CNN
Grid of Equals pattern on website, 237
iPad app, Collections and Cards pattern in,

319
code editors, autocompletion in, 504
cognitive concerns, applications used in high-

stress situations, 282
cognitive load of navigation, 133
collaboration, 25
Collapsible Panels pattern

about, 249-252
Canvas Plus Palette pattern and, 82
in dynamic displays, 224
Help Systems pattern and, 111
Titled Sections pattern and, 239

Collections and Cards pattern
about, 318-322
Vertical Stack Pattern and, 308

color, 258-265
combinations of hues, 263
cues followed by users more efficiently, 14
dark versus light background, 261
in data brushing, 460
distinguishing importance with background

color, 214
in enterprise applications, 281, 282
high versus low contrast, 262
making text easier to read, 258
not relying on color alone to indicate

important information, 264
as preattentive variable, 436, 438
red associated with errors, 525
references and resources on, 264
saturated versus unsaturated, 263

564 | Index

texture in visual design and, 277
in Titled Sections pattern, 238
Visual Framework pattern and, 229
warm versus cool, 260

Command History pattern
about, 384, 422-425
Macros pattern and, 425

command-line interfaces (CLIs), 381, 503
commerce-centric websites, Feature, Search,

and Browse pattern, 44
composition

about, 258
angles and curves in visual design, 276

connected devices, 558
consistency in Atomic Design, 539
Constantine, Larry L., 420
content, 27

(see also organizing content; organizing
content patterns)

matching to your audience, 3
content-centric websites, Feature, Search, and

Browse pattern, 41
context menus, 378

(see also pop-up menus)
context, human, for design intent, 2
continuity (Gestalt principle), 219
Continuous Scrolling pattern

Pagination pattern and, 365
showing long lists, 339

controls, 476
(see also form and control paterns; forms)
for dynamic queries, 457

Cooper, Alan, 486
Craigslist website, Menu Page pattern and, 148
CrimeMapping website, 449
crowded designs, 275
Crumlish, Christian, 26, 133
Crunchbase website, search with faceted filters,

48
Csikszentmihalyi, Mihaly, 17
CSS frameworks (see UI frameworks)
CSS pages, alternative, 98
cultural references in visual design, 280
Curbed website, Escape Hatch pattern and, 173
curves in visual design, 276

D
Dashboard pattern, 78-81

creating dashboards, 79

patterns and components used with, 78
Data Brushing pattern

about, 444, 459-462
Dynamic Queries pattern and, 457

data brushing technique, 446
data presentation patterns, 446

(see also information graphics)
Data Brushing, 459-462
Data Spotlight, 452-455
Datatips, 447-452
Dynamic Queries, 455-459
Multi-Y Graph, 462-465
Small Multiples, 465-469

Data Spotlight pattern
about, 452-455
Datatips pattern and, 450

data visualization, power of, 469
Datatips pattern

about, 447-452, 453
Data Spotlight pattern and, 453
defined, 446
using with Dashboard pattern, 79

Deep Links pattern, 165, 171
Deep-Linked State pattern, 37
Deferred Choices pattern, 16
density, 213
desktop applications

Accordion pattern in, 246
responsive design example, 235
visual design and, 281

desktops, Spatial Memory pattern and, 20
dialog boxes, 131

(see also modal dialog boxes)
Drop-down Chooser pattern and, 511

DiffMerge application, 200
direct manipulation of screen components, 382
direct observation, 9, 23
display typefaces, 268
Done button, 396

(see also Prominent “Done” Button pattern)
double-clicking items, 379
drag-and-drop action, 380

in fully interactive lists, 338
List Builder pattern and, 517

Drasner, Sarah, 208
drill-down technique, 338

(see also One-Window Drilldown pattern)
information graphics considerations, 440

Drop-down Chooser pattern

Index | 565

about, 476, 510-516
Hover Tools pattern and, 389

drop-down lists in autocompletion, 506
drop-down menus, 378

Hover Tools pattern as alternative to, 388
Dropbox, Action Panel pattern in, 393
Drupal application, multiselect list builder

widget, 518
dynamic displays, 223
Dynamic Queries pattern, 443, 455-459
dynamic UIs, 87

E
eBay website

Fill-in-the-Blanks pattern and, 488
Pagination pattern and, 367

ecommerce sites, patterns from systems per‐
spective, 558

The Economist, Show Your Stripes information
graphic, 469

email applications
autocompletion in, 504
autocompletion in Apple Mail, 506
autocompletion in Gmail, 506
housekeeping to maintain order, 20

emphasizing small items, 215
encoding, 438
Eno, Brian, 291
enterprise applications, visual design and, 281

accessibility, 282
environmental clues, navigation and, 131
Epicurious website, 45

search with faceted filters, 48
Error Messages pattern

about, 474, 524-531
form design and, 476

Escape Hatch pattern
about, 131, 171-174
design considerations, 14
flat navigational model and, 141

ESPN, Vertical Stack in mobile site, 308
Etsy website, Paginaton pattern, 367
Eventbrite app, 51

illustration in, 285
Evernote application, using tags, 125
Expedia website

Autocompletion pattern and, 509
Module Tabs pattern in Search, 243

F
Facebook website

Infinite List pattern and, 56, 323
online communities on, 111
photo album page, Pyramid pattern, 156
Settings Editor pattern and, 91
Streams and Feeds pattern and, 63

faceted filters, 48
facets, organizing content by, 33
Fandango mobile app, Good Defaults pattern,

522
Fat Menus pattern

about, 174-179
navigation in multilevel sites, 138

Feature, Search, and Browse pattern, 39-51
about, 36
on content-centric websites, 41
searching with facets and filters, 48
on task-centric websites, 45

Few, Stephen, 81
Fill-in-the-Blanks pattern, 485-489
Filmstrip pattern

about, 310-313
Carousel pattern and, 363

filtering data
Fill-in-the-Blanks pattern and, 486
in information graphics, 443-445

filters
in Adobe Bridge browsing interface, 69
searching with, 48

Find and Replace dialog boxes, 23
flat design, 287-290
flat navigational model, 141
Flipboard website, Streams and Feeds pattern

on, 62
floating labels in forms, 475

input prompts versus, 495
Florence.co.uk website, illustrations in, 286
flow, state of, 17
Font Book app, Jump to Item pattern, 368
fonts, 265

(see also typography)
font pairing, 271
in Titled Sections pattern, 238
Visual Framework pattern and, 229

Forgiving Format pattern
about, 476, 477-482
in Microsoft Office printing dialog boxes,

490

566 | Index

Structured Format pattern versus, 482
use cases, 482

form and control patterns, 476-531
Autocompletion, 502-510
Drop-down Chooser, 510-516
Error Messages, 524-531
Fill-in-the-Blanks, 485-489
Forgiving Format, 477-482
Good Defaults and Smart Prefills, 519-524
Input Hints, 489-494
Input Prompt, 494-497
List Builder, 516-519
Password Strength Meter, 497-502
Structured Format, 482-485

forms
about, 471
design basics, 472-474
further reading on design, 475
ongoing evolution of design, 474

Foundation UI framework, 546
frontend frameworks (see UI frameworks)
Frost, Brad, 538
fully connected navigational model, 137
functionality and information delivery layer, 30

G
Gamma, Erich, et al., 384
GarageBand application, 16
gatekeeper forms, 476
Generous Borders pattern, 325-328
geographic and demographic Small Multiples

chart, 468
Gestalt principles, 217-220

Button Groups pattern and, 385
closure, 220
continuity, 219
in information graphics, 435
proximity, 218
similarity, 218

ghosting, 254
GitHub website, Password Strength Meter pat‐

tern, 499
Glassdoor, Password Strength Meter pattern,

502
Glitché application, minimal UI, 291
global navigation

Breadcrumbs pattern and, 194
defined, 131
design considerations, 134

universal, costs of, 141
Gmail

Autocompletion pattern in email body, 506
Input Hints pattern on registration page,

491, 495
Smart Menu Items pattern and, 403

goals of users, 6
Good Defaults pattern

Deferred Choices pattern and, 16
form design and, 476, 519-524
Input Prompt pattern and, 495
New-Item row pattern and, 373
Wizard pattern and, 88

Google Books, Deep Links pattern and, 168
Google Calendar

Forgiving Format pattern and, 481
Richly Connected Apps pattern and, 334

Google Docs
Annotated Scroll Bar pattern and, 199
Button Groups pattern and, 386
Center Stage pattern and, 233

Google Drive, Thumbnail Grid pattern, 360
Google Finance, Forgiving Format pattern in,

479
Google Fonts, 271
Google Maps

Center Stage pattern and, 233
Collapsible Panels pattern and, 251
Datatips pattern and, 450

Google Play store, Android OS mobile devices,
397
Cancelability pattern and, 416
loading indicator in, 413

Google Public DataExplorer, 455
Google Suite applications, Center Stage pattern

and, 233
Google Trends, Multi-Y Graph in, 463
Google website

Autocompletion pattern and, 508
Settings Editor pattern and, 91
Sign-In Tools pattern and, 186
Titled Sections pattern and, 241

graphical list building, 519
Gratuity app, 304
Grid of Equals pattern

about, 227, 235-238
list display considerations, 339
Thumbnail Grid pattern and, 357

grids, 37

Index | 567

for actions in action panels, 392
alignment and, 216
creating visual rhythm with, 214

grouping and alignment, 217
(see also Gestalt principles)

GUI (graphical user interface) platforms, OS
level modal dialog boxes, 160

guided tours or walkthroughs, 110

H
H&M website

Error Message pattern and, 528
Password Strength Meter pattern and, 500

Habituation pattern, 18-19
Happy Cow mobile app, 287
HBO Now application, Thumbnail Grid pat‐

tern, 359
headers and footers

footers in UI regions, 225
header/window title in UI regions, 225
Sitemap Footer pattern, 179-185

Help Systems pattern, 110-120
full help system, 110
guided tours or walkthroughs, 110
in-screen help, labels and tool tips, 113
inline/display, 110
knowledge base, 111
new user experiences, guided instruction,

116
online community of users, 111
tool tips, 110

hierarchy, organizing content by, 33
Hootsuite application, Many Workspaces pat‐

tern and, 108
Hover Tools pattern

about, 387-390
Help Systems pattern and, 112

hover tools, about, 379
HTML frameworks (see UI frameworks)
hub and spoke navigational model, 136
Hulu

Grid of Equals pattern and, 236
iPad app, Collections and Cards pattern in,

319
New-Item Row pattern in Proffile Switcher,

372
human behavior, 11

(see also behavioral patterns)
about, 1, 2

basics of user research, 8-11
goals of users, 6

I
icons

references and resources on, 279
in toolbars, 378
using for actions in action panels, 392
visual design considerations, 278

IFTTT (If This, Then That), 429
illustrations in visual design, 285
images

in enterprise applications, 281
visual design considerations, 278-280

iMovie website, 69
Incremental Construction pattern, 17

Multilevel Undo pattern and, 419
Indeed website, Deep Links pattern and, 170
Infinite List pattern

about, 305, 322-325
Pagination pattern and, 365
showing very long lists, 339
Streams and Feeds designs for mobile devi‐

ces, 55
information architecture (IA)

defined, 29
lists and, 336

information graphics
about, 433
accessing specific values, 445-446
in dashboards, 79

(see also Dashboard pattern)
defined, 433
design considerations, 433
navigation and browsing, 439-441
organizational models, 434
preattentive variables, 435-439
searching and filtering, 443-445
sorting and rearranging data, 441-443

information, separating from presentation, 30
inline navigation, 132
input from users, 471

(see also form and control patterns; forms)
Input Hints pattern

about, 489-494
Forgiving Format pattern and, 478
Help Systems pattern and, 112
Structured Format pattern and, 482

Input Prompt pattern

568 | Index

about, 494-497
Forgiving Format pattern and, 478
Help Systems pattern and, 112
New-Item row pattern and, 373
Structured Format pattern and, 483

INRIX ParkMe app, 51
Instacart app, Generous Borders pattern, 327
Instagram website

profile screen, 70
Streams and Feeds pattern and, 63

Instant Gratification pattern
about, 13
Help Systems pattern and, 113

interactions as conversations, 2
interface design

basics of user research, 8-11
basis of, 1
cognition and behavior patterns related to,

11-26
human context for design intention, 2-8

internationalization in forms, 474
Fill-in-the-Blanks pattern and, 486

Internet of Things (IoT), systems perspective,
558

inverted L navigation layout, 132
iOS

Apple Measure app, 293
Booking.com app, 302
Deep Links pattern and, 169
email application, Infinite List pattern in,

324
Health app, Alpha/Numeric Scroller pattern,

371
Kindle app for, 70
Lugg app, 302
Micrsoft Fluent date picker, 537
Photos app, Canvas Plus Palette pattern and,

83
Settings Editor pattern and, 94
skeuomorphic visual designs, 282
spinner in CVS app, 411
touch screens, links and buttons on, 297
Voice Memos app, List Inlay pattern, 351
Zillow and Yelp websites, alternative views,

99
iPad

Clear Entry Points pattern and, 144
Hulu, CNN, Jigsaw, and Pinterest apps, 319
Jacobin, NPR, and The Atlantic apps, 319

skeuomorphic visual designs, 282
iPhone

app installation progress indicator, 330
apps using Infinite List pattern, 323
Contacts app, Alpha/Numeric Scroller pat‐

tern, 371
Google home page, Thumbnail Grid pat‐

tern, 360
hub and spoke navigation, 136
Mac Mail on, One-Window Drilldown pat‐

tern, 346
Weather app, Filmstrip pattern in, 312
YouTube for iPhone, Touch Tools pattern,

314

J
Jacobin mobile app, 319
JavaScript frameworks (see UI frameworks)
JetBlue websites

Prominent “Done” Button pattern and, 399
Visual framework pattern in home page,

230
Visual Framework pattern in mobile web‐

site, 229
Jigsaw mobile app, Collections and Cards pat‐

tern, 319
Jos. A. Bank website, Error Message pattern,

530
Jump to Item pattern

about, 368-370
Alpha/Numeric Scroller pattern and, 370

K
Kayak website

Autocompletion pattern in Search, 510
List Inlay pattern and, 349
Prominent “Done” Button pattern and, 399

kerning, 270
keyboard actions, 380
Keyboard Only pattern, 24-25

in media browsers, 68
keyboard shortcuts, 23

about, 380
habituation to, 18

Kindle app for iOS, 70
knowledge base, 111
Krug, Steve, 14

Index | 569

L
labels

for actions in action panels, 392
design of, 14
floating labels in forms, 475
fonts in GUIs, 273
form labels in Vertical Stack pattern, 307
information graphics and, 446
input prompts versus floating labels, 495
in Modal Panel navigation, 160
placement in forms, 476
for prominent “Done” button, 396

languages, Fill-in-the-Blanks pattern and, 486
LATCH acronym, 32
layered design, 30
layering, defined, 438
layout of screen elements, 209-226

communicating meaning with, 14
Gestalt principles in, 217-220
making things look important, 211-217
overall layout in Visual Framework pattern,

229
visual flow, 220-223
visual hierarchy, 209-211

layout patterns, 226-254, 227-254
Accordion, 245-249
Center Stage, 231-234
Collapsible Panels, 249-252
Grid of Equals, 235-238
Module Tabs, 242-245
Titled Sections, 238-242
Visual Framework, 228-231

lazy loading, 323
leading (in typography), 270
legends (information graphics), 445
lightbox-highlighted modal panels, 158, 160
LinkedIn Learning website, full-screen brows‐

ers, 70
LinkedIn website

online communities on, 111
Settings page, Escape Hatch pattern, 172

links, 378
on Drop-down Chooser panel, 511
Smart Menu Items pattern and, 384

List Builder pattern, 476, 516-519
list display patterns, 340-374

Alpha/Numeric Scroller, 370-372
Cards, 353-356
Carousel, 361-365

Jump to Item, 368-370
List Inlay, 349-352
New-Item Row, 372-374
One-Window Drilldown, 346-349
Pagination, 365-368
Thumbnail Grid, 356-361
Two-Panel Selector, 341-346

list displays, 36
Spatial Memory pattern and, 21

List Inlay pattern
about, 338, 349-352
Hover Tools pattern and, 388
One-Window Drilldown pattern and, 347
Streams and Feeds pattern and, 55

lists
about, 335
for actions in action panels, 392
creating visual rhythm with, 214
in Drop-down Chooser pattern, 511
extensive use on web and in mobile apps,

374
information architecture and, 336
managing a very long list, 339
in mobile interfaces, 305
organized into categories or hierarchies, 340
showing details for selected items, 338
showing items with heavy visuals, 339
use cases, 335

loading indicators
cancelling loads, 416
in Spinners and Loading Indicators pattern,

409
when to use, 413

Loading or Progress Indicators pattern, 328
locations

location awareness in mobile devices, 298
organizing content by, 33

Lockwood, Lucy A.D., 420
Los Angeles Times website, Sitemap Footer pat‐

tern and, 182
Loudev.com multiselect.js, 517
Lugg mobile web and mobile app, 301
Lyft mobile app, Input Prompt pattern, 496

M
Mac Help application, 113
macOS

Alternative Views pattern and, 98
Animated Scroll Bar pattern and, 203

570 | Index

command-line interface, 381
Finder application, Button Groups pattern,

386
Finder application, Thumbnail Grid pattern,

358
Modal Panel pattern and, 164
Module Tabs pattern in System Preferences,

244
OmniGraffle vector drawing application, 83
Responsive Enabling pattern in System

Preferences, 224
Settings Editor pattern and, 94
single-clicking versus double-clicking items,

379
standard platform look-and-feel for applica‐

tions, 281
Zillow and Yelp websites, alternative views,

99
Macros pattern

about, 384, 425-432
Command History pattern and, 422
Streamlined Repetition pattern and, 23

Macy's website
Fat Menus pattern and, 175
Modal Panel pattern and, 163

Mailchimp registration, Error Message pattern
and, 526-528

main content area (UI regions), 225
Malone, Erin, 26, 133
Many Workspaces pattern, 38, 105-110

about, 15
Prospective Memory pattern and, 22
Streams and Feeds pattern and, 54

maps
Data Brushing pattern and, 461
map and list views on Zillow and Yelp, 99
navigation and, 131
pyramid navigational model, 140

marketing research versus design research, 10
Mashable website, Fat Menus pattern, 177
Materialize UI framework, 550
MATLAB, Multi-Y Graph in, 463
MECE (Mutually Exclusive, Collectively

Exhaustive), 31
Media Browser pattern

browsing a collection of objects, 70
managing and editing media assets, 75
patterns and components used with, 67
single-item view, 69

media browsers, browsing interface, 68
memory aids, 22
Menlo Club website, Password Strength Meter

pattern, 501
menu bars, 378

Hover Tools pattern and, 387
Menu Page pattern

about, 148-155
navigational model for, 136
Settings Editor pattern and, 91

Menu Screen pattern, One-Window Drilldown
pattern and, 351

menus
in Bottom Navigation pattern on mobile

apps, 316
drop-down, 378
Fat Menus pattern and, 138, 174-179
pop-up, 378
Smart Menu Items pattern and, 384
Spatial Memory pattern and, 21
in UI regions, 225

Microbreaks pattern
about, 19
Streams and Feeds pattern supporting, 54

microinteractions, 328
Microsoft Fluent Design System, 534-538

Android date picker, 537
iOS date picker, 537
web date picker, 536
Windows date picker, 538

Microsoft Office applications
Canvas Plus Palette pattern in Excel, 141
Drop-down Chooser pattern in Word, 512
Excel Help, 113
Fill-in-the-Blanks pattern in Excel, 486
Input Hints and Forgiving Format patterns

in Word printing dialog, 490
Macros pattern in Excel, 430
Multilevel Undo pattern in Word, 420
Outlook for Office 360, Sructured Format

pattern and, 484
Powerpoint drop-down choosers with

thumbnail grid, 515
Wizard pattern and, 88

Microsoft UI typefaces, 271
Mini Cooper website, Progress Indicator pat‐

tern, 192
minimal designs, 290-291

Index | 571

Mint (Intuit) registration, Error Message pat‐
tern, 528

mobile devices
Animated Transition pattern and, 202
Autocompletion pattern and, 504
design and development approach to, 533
global navigation in, 132
intelligent paths between apps, 331
Menu Page pattern and, 149
organizing content and, 19
OS deep links, 165
responsive design example, 235
rotate and shake actions, 377
Streams and Feeds designs for, 55
tap, swipe, and pinch actions, 377
tool tips on, 112

Mobile Direct Access pattern, 37, 51-53
mobile interface patterns, 305-334

Bottom Navigation, 316-318
Collections and Cards, 318-322
Filmstrip, 310-313
Generous Borders, 325-328
Infinite List, 322-325
Loading or Progress Indicators, 328-331
Richly Connected Apps, 331-334
Touch Tools, 313-316
Vertical Stack, 306-310

mobile interfaces
about, 295
design approaches, 298-300
design challenges and opportunities,

296-298
examples meeting design constraints,

301-305
mobile-first design, 295
modal dialog boxes, 160

Drop-down Chooser pattern and, 511
environmental clues and, 131
Error Message pattern and, 530
error messages and, 525

Modal Panel pattern
about, 158-165
as environmental clue, 131
flat navigational model and, 141
form design and, 477

modal panels or modal dialogs, 142
modularity in Atomic Design, 539
Module Tabs pattern

about, 242-245

Canvas Plus Palette pattern and, 82
Collapsible Panels pattern and, 249
in dynamic displays, 224
navigation and, 135
Titled Sections pattern and, 239

molecules (Atomic Design), 541
monospace typefaces, 269
Moo.com website, Progressive Disclosure pat‐

tern, 224
Movable Panels pattern

about, 252-254
Action Panel pattern and, 391
Dashboard pattern and, 79
in dynamic displays, 224
Spatial Memory pattern and, 21

Multi-Y Graph pattern, 462-465
multilevel navigational model, 138
Multilevel Undo pattern

about, 384, 418-421
Command History pattern and, 423
Macros pattern and, 425
Safe Exploration pattern and, 13

multiselect.js application, 517
Museum of Modern Art (MoMA) website

Menu Page pattern and, 154
Music Memos app, 304
Mutually Exclusive, Collectively Exhaustive

(MECE), 31

N
National Geographic Kids website, Progress

Indicator pattern, 190
National Geographic website, Pagination pat‐

tern and, 367
natural language output, 486
natural user interfaces, 559
navigation, 14, 129-135

associative and inline, 132
Bottom Navigation pattern and, 305,

316-318
common techniques for, 439-441
considerations in forms, 476
design considerations, 133-135

cognitive load, 133
keeping distances short, 134

environmental clues and, 131
global, 131
maps and, 131

572 | Index

showing top-level structure in mobile apps,
305

signage and, 130
signposts, 130
social methods, 133
tags supporting, 132
in UI regions, 225
understanding the information and task

space, 130
utility navigation, 132
in Visual Framework pattern, 229
wayfinding, 130
websites having pages that limit options,

172
navigation patterns, 142-208

Animated Transition, 202-208
Annotated Scroll Bar, 199-202
Breadcrumbs, 229
Clear Entry Points, 143-148
Deep Links, 165-171
Escape Hatch, 171-174
Fat Menus, 174-179
Menu Page, 148-155
Modal Panel, 158-165
Progress Indicator, 189-193, 229
Pyramid, 155-158
Sign-In Tools, 185-189
Sitemap Footer, 179-185

navigational models, 135-142
flat, 141
fully connected, 137
hub and spoke, 136
multilevel or tree, 138
pyramid, 140
step by step, 139

Neil, Theresa, 35
list inlays, 352

nesting of design elements in Atomic Design,
540

Netflix mobile app, Touch Tool pattern in, 313
new user experience or onboarding, 34, 117
New York Times crossword puzzle on mobile

iOS app and NPR One app, 303
New York Times graphic, Multi-Y Graph, 462
New York Times website

Forgiving Format pattern and, 478
New-Item Row pattern

about, 372-374
news sites

patterns from systems perspective, 557
news/content streams, 37, 53

examples of Streams and Feeds use, 56
Nielsen Norman group, 474
Nielsen, Jakob, 409, 415
Norman, Don, 409, 415
North American climate graph, Small Multiples

in, 465
NPR

Bottom Navigation pattern on mobile web‐
site, 316

Collections and Cards pattern in iPad app,
319

NPR One App, 303
numbers

choosing typefaces and, 273
organizing content by, 32

Numeric Scroller pattern (see Alpha/Numeric
Scroller pattern)

O
Official Payments website, Structured Format

pattern, 484
OmniGraffle application, Canvas Plus Palette

pattern, 83
onboarding, 34
One-Window Drilldown pattern

about, 338, 346-349
List Inlay pattern and, 350
in media browser single-item view, 69
Settings Editor pattern and, 91
Streams and Feeds pattern and, 55
Two-Panel Selector pattern and, 345
use in Apple Photos, 75
using with Dashboard pattern, 79

online communities, help from, 111, 113, 118
openness in interfaces, 4
operating systems

accessibility in desktop applications, 282
Autocompletion pattern in shells, 504
keyboard shortcuts on, 380
mobile OS deep links, 165
modal dialog boxes, 160
single-clicking versus double-clicking items,

379
optional fields in forms, 475
organisms (Atomic Design), 541
organizing content

about, 5, 27-28

Index | 573

designing system of screen types, 35
facilitating a single task, 38
high-level concerns, 28
methods of, 32-33
Mutually Exclusive, Collectively Exhaustive

(MECE), 31
providing toos to create, 38
separating information from presentation,

30
showing list or grid of things, 36
showing one single thing, 37
for task and workflow-dominant apps,

33-34
using tags, 120-127

organizing content patterns, 39-127
Alternative Views, 97-105
Canvas Plus Palette, 82-86
Dashboard, 78-81
Feature, Search, and Browse, 39-51
Help Systems, 110-120
Many Workspaces, 105-110
Media Browser, 67-78
Mobile Direct Access, 51-53
Settings Editor, 90-97
Streams and Feeds pattern, 53-67
Wizard, 86

Overview Plus Detail pattern, Annotated Scroll
Bar pattern and, 200

overviews, 36

P
pages (Atomic Design), 541
Pagination pattern

about, 365-368
showing lists, 339

panels
layout in UI regions, 225
modal panels or modal dialogs, 142

panning and zooming in navigation, 140
Tesla website example, 205
throwing off user's spatial sense, 203

parent—child relationship in navigation hierar‐
chy, 195

Password Strength Meter pattern, 474, 497-502
patterns, 11

(see also behavioral patterns; specific pat‐
terns listed throughout)

PayPal website, Forgiving Format pattern, 480
Pendo website, pop-up user guides, 117

personalization, Movable Panels pattern and,
253

personas, 10
physical environments, challenging, mobile

device use in, 297
Pinterest iPad app, Collections and Cards pat‐

tern in, 319
placeholder text, 494

(see also Input Prompt pattern)
pop-up menus, 378

Hover Tools pattern and, 387
Pop-Up Tools pattern (see Hover Tools pattern)
position, distinguishing importance by, 212
preattentive variables, 435-439
preferences, 90

(see also Settings Editor pattern)
presentation, separating from information, 30
Preview pattern, 384, 404-409
Prezi website

Annotated Scroll Bar pattern and, 207
Clear Entry Points pattern and, 146

Priceline website, Modal Panel pattern and, 164
problem solving, interface design for, 6
Progress Indicator pattern

about, 131, 142, 189-193
Breadcrumbs pattern and, 194
form design and, 477

Progressive Disclosure pattern
about, 224
Wizard pattern and, 88

Prominent “Done” Button pattern
about, 384, 396-402
in forms, 477

Prospective Memory pattern
about, 21
Many Workspaces pattern and, 106

proximity (Gestalt principle)
about, 218
Button Groups pattern and, 385

pyramid navigational model, 140
Pyramid pattern

about, 155-158
using with One-Window Drilldown, 69

Q
querying

characteristics of best querying interfaces,
444

Dynamic Queries pattern and, 443, 455-459

574 | Index

in information graphics, 443
Quip website, social streams and feeds on, 66

R
readability, 273
RealClearPolitics website, Streams and Feeds

pattern and, 60
Reddit website

One-Window Drilldown pattern and, 348
online communities on, 111

reentrance property, 15
REI website

Bottom Navigation pattern on mobile web‐
site, 316

Sitemap Footer pattern and, 181
Vertical Stack pattern on mobile site, 308

Reimann, Robert, 486
related content, navigation by, 132
repeated visual motifs, promoting visual unity,

280
required versus optional fields in forms, 474
responsive design, 295

automatically included in UI frameworks,
542

examples, desktop, mobile, and tablet, 235
Responsive Enabling pattern

about, 224
Spatial Memory pattern and, 20
Wizard pattern and, 88

reversible operations, 419
(see also Multilevel Undo pattern)

rhythm, visual, 214, 277
Rich Internet Applications (RIAs), 35
Richly Connected Apps pattern, 331-334
rotate and shake actions, 377
rulers (information graphics), 446

S
Safe Exploration pattern, 12

Cancelability pattern and, 415
Escape Hatch pattern and, 172
Many Workspaces pattern and, 106
Multilevel Undo pattern and, 418

Salesforce website
Dashboard pattern and, 79
Sitemap Footer pattern and, 184

Salon.com, Vertical Stack pattern on mobile
web and mobile app, 309

Samsung website

Accordion pattern and, 247
Breadcrumbs pattern, 196

San Francisco (SF.gov) website, Menu Page pat‐
tern, 151

San Francisco Public Library website, 485
sans serif typefaces, 267, 287
Satisficing pattern, 4, 14
saturated versus unsaturated colors, 263
scales (information graphics), 446
Scott, Bill, list inlays, 352
screen sizes and devices, multiple, designing

for, 34
screens

challenges for mobile design, 296
designing system of screen types, 35
layout, 209

(see also layout of screen element)
showing total number with Pagination pat‐

tern, 366
touch screens on mobile devices, 297

scripting environments, 23
scroll and pan technique, 439
scroll bars, 199, 223

(see also Annotated Scroll Bar pattern)
scrolling ribbon, 70, 75
searching

Autocompletion pattern and, 503
directing for long lists via Find field, 340
with facets and filters, 48
Fill-in-the-Blanks pattern and, 486
in information graphics, 443-445
in media browser interface, 68
saving search results through deep linking

URLs, 170
showing results using Grid of Equals pat‐

tern, 227
showing results using Pagination pattern,

366
Semantic UI framework, 548
Sephora website, Preview pattern, 408
sequencing, 34

patterns for sequences of actions, 384
in Wizard pattern, 86

serif typefaces, 266
Settings Editor pattern, 38, 90-97
shape

of data in information graphics, 434
preattentive variable, 438

Sheknows website, 41

Index | 575

shingling technique, 467
Show Your Stripes information graphic from

The Economist, 469
showing complex data (see information graph‐

ics)
Sign-In Tools pattern, 132

about, 185-189
Spatial Memory pattern and, 21

signage, navigation and, 130
signposts

defined, 130
patterns functioning as, 142
in Visual Framework pattern, 229

similarity (Gestalt principle)
about, 218
Button Groups pattern and, 385

Simple check capture app, 294
Richly Connected Apps pattern and, 333

single-clicking versus double-clicking items,
379

Sitemap Footer pattern
about, 179-185
navigation in multilevel sites, 138

size
distinguishing importance by, 211
preattentive variable, 437
of type, 270

Sketch application
Center Stage layout, 233
Drop-down Chooser pattern for color

picker, 514
online community, 118

skeuomorphic design, 282
skill level of users, 4

designing for novice and experienced users,
34

Slack website
Hover Tools pattern and, 388
New-Item Row pattern and, 374
social feeds and streams in, 66

slideshows, flat navigational model, 141
small items, emphasizing, 215
Small Multiples pattern, 465-469
Smart Menu Items pattern

about, 384, 402-404
Cancelability pattern and, 416
Multilevel Undo pattern and, 420

Smart Prefills pattern
about, 519-524

form design and, 476
Input Prompt pattern and, 495
Wizard pattern and, 88

smart systems, 558-559
smartphones, 295
Snap app, 51
social influences and limited attention of

mobile users, 298
social media, 25

features in media browser single-item view,
69

Microbreaks pattern and, 19
navigation in, 133
patterns from systems perspective, 557
social algorithms driving autocomplete, 503
social streams, 53, 63
use in business collaboration, 53
use of tags in, 120

social proof, 25
sorting data, 441-443
SoundHound app, animated progress indicator,

329
Southwest website, Prominent “Done” Button

pattern, 399
SpaceIQ website, Dashboard pattern, 81
spacing

spaciousness and crowding in visual design,
275

in Visual Framework pattern, 229
whitespace separating sections, 238

sparklines, 466
Spatial Memory pattern

about, 20
Movable Panels pattern and, 253

Spinners and Loading Indicators pattern, 384,
409-415

Split View pattern (see Two-Panel Selector pat‐
tern)

Spotify website
Clear Entry Points pattern and, 145
Jump to Item pattern variant, 369
Two-Panel Selector pattern and, 341

spotlight effect, 446
(see also Data Spotlight pattern)
creating, 453

SQL queries, 381
Square Invoice, skeuomorphic visual designs

in, 284
Stack Overflow website, use of tags in, 121

576 | Index

stacked bar charts, rearranging, 443
Stanford Web Credibility Project, 255
Starbucks website, Fat Menus pattern on, 177
stepwise navigational model, 139
Stream and Feed services, 20, 37
Streamlined Repetition pattern, 23

Macros pattern and, 425
Streams and Feeds pattern, 53-67

Many Workspaces pattern and, 105
newscontent streams using, 56
showing lists of things, 55
social streams, 63
Twitter TweetDeck and, 107

Stripe website, 276
Structured Format pattern

about, 476, 482-485
Forgiving Format pattern and, 478

style guide in Atomic Design, 539
surveys, 9
systems behind screen-based interfaces,

557-558
smart systems, 558-559

Szimpla Kert website, 277

T
tab ordering, 380
tables

for actions in action panels, 392
New-Item row pattern and, 373
sortable, 442

tablets, 295
responsive design example for apps, 235

tags, 120-127
supporting navigation, 132

tap, swipe, and pinch actions, 377, 382
Target website

Breadcrumbs pattern, 193
Feature, Search, and Browse pattern and, 44
Pagination pattern and, 367

task and workflow-dominant apps, 33-34
Feature, Search, and Browse pattern on

task-centric sites, 45
Wizard pattern in, 86

Task Pane pattern, 394
Techcrunch website, Streams and Feeds pattern

on, 56
technology-agnostic (Atomic Design), 540
TED website, Visual Framework pattern, 231
templates in Atomic Design, 541

Tesla website
Animated Scroll Bar pattern and, 205
Clear Entry Points pattern and, 147

Texas Monthly, using tags in articles, 124
text fields, form and control patterns for, 476,

525
text, readability of, 273
texture

adding richness to visual design, 277
preattentive variable, 438

Thumbnail Grid pattern
about, 356-361
Alternative Views pattern and, 97
Drop-down Chooser pattern and, 515
list display considerations, 339
lists displays with, 347
Menu Page pattern and, 156
in mobile designs, 305

time, organizing content by, 32
timelines (information graphics), 446
Titled Sections pattern

about, 238-242
Dashboard pattern and, 79
form design and, 477
list display considerations, 340
Visual Framework pattern and, 229
Wizard pattern and, 88

tool tips in help systems, 110
toolbars, 378

Action Panel pattern and, 392
action panels and, 379

touch screens, 297
actions in touch screen operating systems,

377
hover tools and, 387

Touch Tools pattern, about, 313-316
Toyota.com website, Preview pattern, 407
tracking and kerning, 270
Transit app, List Inlay pattern and modal win‐

dow, 352
Transit Mobile App, Datatips pattern, 451
transitions, 202

(see also Animated Transition pattern)
types to consider, 205

tree navigational model, 138
Tree Table pattern, Alternative Views pattern

and, 98
trees

displaying actions in action panels as, 392

Index | 577

showing lists organized into categories, 340
sorting and rearranging data in, 442

trellis plots or trellis graphs, 467
TripAdvisor website, Pagination pattern, 365
Trulia app

loading screen, 329
Search results, Data Brushing pattern and,

461
Trunk Club website, Input Hints pattern, 493
Tufte, Edward, 466
TweetDeck application, Many Workspaces pat‐

tern and, 54, 107
Twitter Bootstrap UI framework

components in, 544-546
spinner component, customizable, 411

Twitter website
Error Message pattern and, 530
Infinite List pattern and, 56
Sign-In Tools pattern and, 186
Streams and Feeds pattern and, 63

two column multiselector (see List Builder pat‐
tern)

Two-Panel Selector pattern
about, 338, 341-346
List Inlay pattern and, 350
in media browser single-item view, 69
One-Window Drilldown pattern and, 347
Settings Editor pattern and, 91
Streams and Feeds pattern and, 55
Wizard pattern and, 87

typing text, difficulty mobile devices, 297
typography, 265-273

in flat design, 287
font pairing, 271
numbers and, 273
paragraph alignment, 272
repreated visual motifs and, 280
tracking and kerning, 270
type size, 270
typefaces, 265-270
typefaces evoking a feeling, 274

U
Uber website

Cards pattern on Uber Eats, 355
visual hierarchy in older home page, 221

Ubiquitous computing, 558
UI frameworks, 541-556

about, 541-543

Blueprint, 552-554
Bootstrap, 544-546
examining selected frameworks, 543
Foundation, 546
Materialize, 550
Semantic, 548
UIkit, 554-556

UI regions, 225
UI systems, 533-538

components-based approach, 534
Microsoft Fluent Design System, 534-538

UIkit framework, 554-556
UIs

affordance in, 381
standards for common patterns and pro‐

cesses, 376
UK Government web design standards, 475
undo actions, 418

(see also Multilevel Undo pattern)
designing for Multilevel Undo, 420
Escape Hatch pattern and, 172
operations that are nonversible, 419
undoable actions and, 422

Undo/Redo items on Edit menu, 420
United States Web Design System, 475
University of California, Berkeley website,

Menu Page pattern and, 150
University of Oregon, climate heat map, 465
URLs

autocompletion in browser URL fields, 503
in browser history, 422
representing a deep-linked state, 167

Userlane website, user-guide authoring plat‐
form, 117

utility navigation, 132
UX debt, avoiding in Atomic Design, 539

V
Vanity Fair website, Progress Indicator pattern,

191
Vertical Stack pattern, 306-310
Vimeo website, browsing interface, 69
visual design, 256-280

about, 255
adaptive/parametric, 292-294
avoiding complexity, 14
basic principles of, 256
color, 258-265
composition, 258

578 | Index

evoking a feeling, 274-278
examples of, 256-258
flat design, 287-290
illustration in, 285
meaning for enterprise applications, 281
minimalistic, 290-291
readability, 273
skeuomorphic, 282
visual hierarchy, 258

visual flow, 220-223
Visual Framework pattern

about, 226, 228-231
in Atomic Design, 541
Prominent “Done” Button pattern and, 397

visual hierarchy, 209-211
about, 258

visually impaired users, 282

W
Wall Street Journal website, Sitemap Footer pat‐

tern and, 183
warm colors versus cool colors, 260
Washington Post, Vertical Stack in mobile site,

308
wayfinding, defined, 130
Weather Channel

Forgiving Format pattern on website, 477
Weather Chart with Multi-Y Graph, 464

Weather Underground website, poor visual
flow and visual hierarchy, 223

Weatherbug app, 51
web and mobile web technologies, 541
web browsers

autocompletion in URL fields, 503
browser history, 422
Many Workspaces pattern and, 106
masking different capabilities, 542

WebMD website
Fat Menus pattern and, 178
Feature, Search, and Browse pattern and, 41

websites, importance of good visual design, 255
Weyl, Estelle, 208
Windows

accessibility in desktop applications, 282

Alternative Views pattern and, 98
command-line interface, 381
Microsoft Fluent date picker, 538
single-clicking versus double-clicking items,

379
standard platform look-and-feel for applica‐

tions, 281
Windows 10 Action Panel, 393

Winds and Words data visualization, 454
WinHelp application, 113
Wizard pattern, 38, 86-90

form design and, 477
physical structure, 87
step by step navigation in, 139
user motivation to learn and, 5

Wordpress platform, 124
workflows and tasks, designing, 33-34
writing style and grammar in Visual Frame‐

work, 229
Wroblewski, Luke, 475
Wurman, Richard Saul, 32

Y
Yahoo! website, Feature, Search, and Browse

pattern and, 41
Yelp website

Alternative Views pattern and, 99
Autocompletion pattern in Search, 509
password input hints, 493
Password Strength Meter pattern and, 497

YouTube
browsing interface, 69, 70
Deep Links pattern and, 168
Hover Tools pattern in video player, 389
iPhone app, Touch Tools pattern, 314

Z
Zillow, Alternative Views pattern on iOS, 99
Zoom mobile app, Generous Borders pattern,

326
zooming

navigation technique, 440
zoomable interfaces, 37

Index | 579

About the Authors
Jenifer Tidwell has been designing and building user interfaces for industry for more
than a decade. She has been researching user interface patterns since 1997, and
designing and building complex applications and web interfaces since 1991. She
recently pivoted from digital design to landscape design, where she still balances
usability, beauty, and good engineering every day.

Charlie Brewer is a user experience design leader with deep experience in B2B web
applications and SaaS platforms. He works in organizations to build the design capa‐
bility to turn insights into digital products. His background includes independent
film, teaching, and digital brand-building for global clients. Charlie went on to design
a groundbreaking programmatic TV ad marketplace, cofound a social gaming
startup, and launch multiple digital products.

Aynne Valencia is Design Director for The City of San Francisco Digital Services and
Associate Professor at California College of the Arts. Her experience includes build‐
ing creative teams, launching major products and services, mentoring and educating
designers and collaborating with major global brands. She has an extensive design
background in both physical product design, digital product design, service design
and software.

Colophon
The animal on the cover of Designing Interfaces is a mandarin duck (Aix galericulata),
one of the most beautiful of the duck species. Originating in China, these colorful
birds can be found in southeast Russia, northern China, Japan, southern England,
and Siberia. The males have diverse and colorful plumage, characterized by an irides‐
cent crown, chestnut-colored cheeks, and a white eye stripe that extends from their
red bills to the back of their heads. Females are less flamboyant in appearance and
tend to be gray, white, brown, and greenish-brown, with a white throat and foreneck.

These birds live in woodland areas near streams and lakes. Being omnivorous, they
tend to have a seasonal diet, eating acorns and grains in autumn; insects, land snails,
and aquatic plants in spring; and dew worms, grasshoppers, frogs, fish, and mollusks
during the summer months.

The mating ritual of mandarin ducks begins with an elaborate and complex courtship
dance that involves shaking movements, mimed drinking gestures, and preening.
Males fight each other to win a female, but it is ultimately the female who chooses her
mate. Mandarin ducklings instinctively follow their notoriously protective mothers,
who will feign injury to distract predators such as otters, raccoons, dogs, mink, pole‐
cats, eagle owls, and grass snakes.

Mandarin ducks are not an endangered species, but they are considered to be threat‐
ened. Loggers continuously encroach upon their habitats, and hunters and poachers
prize the males for their plumage. Their meat is considered unpalatable by humans,
and so are generally not hunted for food.

Many of the animals on O’Reilly covers are endangered; all of them are important to
the world.

The cover illustration is by Karen Montgomery, based on a black and white engraving
from Wood’s Illustrated Natural History. The cover fonts are Gilroy Semibold and
Guardian Sans. The text font is Adobe Minion Pro; the heading font is Adobe Myriad
Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

There’s much more
where this came from.
Experience books, videos, live online
training courses, and more from O’Reilly
and our 200+ partners—all in one place.

Learn more at oreilly.com/online-learning

©
20

19
 O

’R
ei

lly
 M

ed
ia

, I
nc

. O
’R

ei
lly

 is
 a

 re
gi

st
er

ed
 tr

ad
em

ar
k

of
 O

’R
ei

lly
 M

ed
ia

, I
nc

. |
 17

5

https://oreilly.com/online-learning

	Cover
	Copyright
	Table of Contents
	Preface to the Third Edition
	Why We Wrote This Book
	Design Patterns Remain Relevant
	Software Is Systems Now
	Focus: Screen-Based, Web, and Mobile
	What’s Not in This Edition

	Who This Book Is For
	How This Book Is Organized
	Introduction and Design Discussion
	The Patterns

	Conclusion
	Conventions Used in This Book
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments

	Chapter 1. Designing for People
	Context
	Know Your Audience
	Interactions Are Conversations
	Match Your Content and Functionality to Your Audience
	Skill Level
	Goals: Your Interface Is Just a Means to Their Ends
	Ask Why
	Design’s Value: Solve the Right Problem, and Then Solve It Right

	Research: Ways to Understand Context and Goals
	Direct Observation
	Case Studies
	Surveys
	Personas
	Design Research Is Not Marketing Research

	The Patterns: Cognition and Behavior Related to Interface Design
	Safe Exploration
	Instant Gratification
	Satisficing
	Changes in Midstream
	Deferred Choices
	Incremental Construction
	Habituation
	Microbreaks
	Spatial Memory
	Prospective Memory
	Streamlined Repetition
	Keyboard Only
	Social Media, Social Proof, and Collaboration

	Conclusion

	Chapter 2. Organizing the Content: Information Architecture and Application Structure
	Purpose
	Definition
	Designing an Information Space for People

	Approach
	Separate Information from Presentation

	Mutually Exclusive, Collectively Exhaustive
	Ways to Organize and Categorize Content
	Alphabetical
	Number
	Time
	Location
	Hierarchy
	Category or Facet

	Designing for Task and Workflow-Dominant Apps
	Make Frequently Used Items Visible
	“Chunk Up” Jobs into a Sequence of Steps
	Multiple Channels and Screen Sizes Are Today’s Reality
	Display Your Information as Cards

	Designing a System of Screen Types
	Overview: Show a List or Grid of Things or Options
	Focus: Show One Single Thing
	Make: Provide Tools to Create a Thing
	Do: Facilitate a Single Task
	The Patterns
	Feature, Search, and Browse
	Mobile Direct Access
	Streams and Feeds
	Media Browser
	Dashboard
	Canvas Plus Palette
	Wizard
	Settings Editor
	Alternative Views
	Many Workspaces
	Help Systems
	Tags

	Conclusion

	Chapter 3. Getting Around: Navigation, Signposts, and Wayfinding
	Understanding the Information and Task Space
	Signposts
	Wayfinding
	Navigation
	Global Navigation
	Utility Navigation
	Associative and Inline Navigation
	Related Content
	Tags
	Social

	Design Considerations
	Separate the Navigation Design from the Visual Design
	Cognitive Load
	Keep Distances Short

	Navigational Models
	Hub and Spoke
	Fully Connected
	Multilevel or Tree
	Step by Step
	Pyramid
	Flat Navigation

	The Patterns
	Clear Entry Points
	Menu Page
	Pyramid
	Modal Panel
	Deep Links
	Escape Hatch
	Fat Menus
	Sitemap Footer
	Sign-In Tools
	Progress Indicator
	Breadcrumbs
	Annotated Scroll Bar
	Animated Transition

	Conclusion

	Chapter 4. Layout of Screen Elements
	The Basics of Layout
	Visual Hierarchy
	What Makes Things Look Important?
	Four Important Gestalt Principles
	Visual Flow
	Using Dynamic Displays
	Responsive Enabling
	Progressive Disclosure
	UI Regions

	The Patterns
	Layout
	Chunking Information
	Visual Framework
	Center Stage
	Grid of Equals
	Titled Sections
	Module Tabs
	Accordion
	Collapsible Panels
	Movable Panels

	Chapter 5. Visual Style and Aesthetics
	The Basics of Visual Design
	Visual Hierarchy
	Composition
	Color
	Typography
	Readability
	Evoking a Feeling
	Images

	Visual Design for Enterprise Applications
	Accessibility

	Ranges of Visual Styles
	Skeuomorphic
	Illustrated
	Flat Design
	Minimalistic
	Adaptive/Parametric

	Conclusion

	Chapter 6. Mobile Interfaces
	The Challenges and Opportunities of Mobile Design
	Tiny Screen Sizes
	Variable Screen Widths
	Touch Screens
	Difficulty of Typing Text
	Challenging Physical Environments
	Location Awareness
	Social Influences and Limited Attention

	How to Approach a Mobile Design
	1. What Do Users in a Mobile Context Actually Need?
	2. Strip the Site or App Down to Its Essence
	3. If You Can, Use the Device’s Hardware
	4. Linearize Your Content
	5. Optimize the Most Common Interaction Sequences
	Some Worthy Examples

	The Patterns
	Vertical Stack
	Filmstrip
	Touch Tools
	Bottom Navigation
	Collections and Cards
	Infinite List
	Generous Borders
	Loading or Progress Indicators
	Richly Connected Apps

	Make It Mobile

	Chapter 7. Lists of Things
	Use Cases for Lists
	Back to Information Architecture
	What Are You Trying to Show?
	“When the user selects an item from a list, where should I show the details of that item?”
	“How can I show a list of items that have heavy visuals?”
	“How can I manage a very long list?”
	“How can I show a list that’s organized into categories or hierarchies?”

	The Patterns
	Two-Panel Selector or Split View
	One-Window Drilldown
	List Inlay
	Cards
	Thumbnail Grid
	Carousel
	Pagination
	Jump to Item
	Alpha/Numeric Scroller
	New-Item Row

	Lists Abound

	Chapter 8. Doing Things: Actions and Commands
	Tap, Swipe, and Pinch
	Rotate and Shake
	Buttons
	Menu Bars
	Pop-Up Menus
	Drop-Down Menus
	Toolbars
	Links
	Action Panels
	Hover Tools
	Single-Clicking Versus Double-Clicking Items
	Keyboard Actions
	Shortcuts
	Tab Order

	Drag-and-Drop
	Typed Commands
	Affordance
	Direct Manipulation of Objects
	The Patterns
	Button Groups
	Hover or Pop-Up Tools
	Action Panel
	Prominent “Done” Button or Assumed Next Step
	Smart Menu Items
	Preview
	Spinners and Loading Indicators
	Cancelability
	Multilevel Undo
	Command History
	Macros

	Conclusion

	Chapter 9. Showing Complex Data
	The Basics of Information Graphics
	Organizational Models: How Is This Data Organized?
	Preattentive Variables: What’s Related to What?
	Navigation and Browsing: How Can I Explore This Data?
	Sorting and Rearranging: Can I Rearrange This Data to See It Differently?
	Searching and Filtering: How Can I See Only the Data That I Need?
	The Actual Data: What Are the Specific Data Values?

	The Patterns
	Datatips
	Data Spotlight
	Dynamic Queries
	Data Brushing
	Multi-Y Graph
	Small Multiples
	The Power of Data Visualization

	Chapter 10. Getting Input from Users: Forms and Controls
	The Basics of Form Design
	Form Design Continues to Evolve
	Further Reading

	The Patterns
	Forgiving Format
	Structured Format
	Fill-in-the-Blanks
	Input Hints
	Input Prompt
	Password Strength Meter
	Autocompletion
	Drop-down Chooser
	List Builder
	Good Defaults and Smart Prefills
	Error Messages

	Conclusion

	Chapter 11. User Interface Systems and Atomic Design
	UI Systems
	An Example Component-Based UI System: Microsoft’s Fluent

	Atomic Design: A Way of Designing Systems
	Overview
	The Atomic Design Hierarchy

	UI Frameworks
	Overview
	Benefits
	The Rise of UI Frameworks
	A Look at Selected UI Frameworks

	Conclusion

	Chapter 12. Beyond and Behind the Screen
	The Ingredients: Smart Systems
	Connected Devices
	Anticipatory Systems
	Assistive Systems
	Natural User Interfaces

	Conclusion

	Index
	About the Authors
	Colophon

